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Preface 

This book is intended to cover some advanced modelling techniques applied to equity 
investment strategies that are built on firm characteristics. The content is threefold. 
First, we try to simply explain the ideas behind most mainstream machine learning algorithms 
that are used in equity asset allocation. Second, we mention a wide range of academic 
references for the readers who wish to push a little further. Finally, we provide hands-on R 
code samples that show how to apply the concepts and tools on a realistic dataset which we 
share to encourage reproducibility. 

What this book is not about 

This book deals with machine learning (ML) tools and their applications in factor investing. 
Factor investing is a subfield of a large discipline that encompasses asset allocation, quantita­
tive trading and wealth management. Its premise is that differences in the returns of firms can 
be explained by the characteristics of these firms. Thus, it departs from traditional analyses 
which rely on price and volume data only, like classical portfolio theory à la Markowitz 
(1952), or high frequency trading. For a general and broad treatment of Machine Learning 
in Finance, we refer to Dixon et al. (2020). 

The topics we discuss are related to other themes that will not be covered in the monograph. 
These themes include: 

•	 Applications of ML in other financial fields, such as fraud detection or credit 
scoring. We refer to Ngai et al. (2011) and Baesens et al. (2015) for general purpose 
fraud detection, to Bhattacharyya et al. (2011) for a focus on credit cards and to 
Ravisankar et al. (2011) and Abbasi et al. (2012) for studies on fraudulent financial 
reporting. On the topic of credit scoring, Wang et al. (2011) and Brown and Mues (2012) 
provide overviews of methods and some empirical results. Also, we do not cover ML 
algorithms for data sampled at higher (daily or intraday) frequencies (microstructure 
models, limit order book). The chapter from Kearns and Nevmyvaka (2013) and the 
recent paper by Sirignano and Cont (2019) are good introductions on this topic. 

•	 Use cases of alternative datasets that show how to leverage textual data from 
social media, satellite imagery, or credit card logs to predict sales, earning reports, and, 
ultimately, future returns. The literature on this topic is still emerging (see, e.g., Blank 
et al. (2019), Jha (2019) and Ke et al. (2019)) but will likely blossom in the near future. 

•	 Technical details of machine learning tools. While we do provide some insights on 
specificities of some approaches (those we believe are important), the purpose of the 
book is not to serve as reference manual on statistical learning. We refer to Hastie et al. 
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xiv	 Preface 

(2009), Cornuejols et al. (2018) (written in French), James et al. (2013) (coded in R!) 
and Mohri et al. (2018) for a general treatment on the subject.1 Moreover, Du and 
Swamy (2013) and Goodfellow et al. (2016) are solid monographs on neural networks 
particularly and Sutton and Barto (2018) provide a self-contained and comprehensive 
tour in reinforcement learning. 

•	 Finally, the book does not cover methods of natural language processing (NLP) 
that can be used to evaluate sentiment which can in turn be translated into investment 
decisions. This topic has nonetheless been trending lately and we refer to Loughran and 
McDonald (2016), Cong et al. (2019a), Cong et al. (2019b) and Gentzkow et al. (2019) 
for recent advances on the matter. 

The targeted audience 

Who should read this book? This book is intended for two types of audiences. First, 
postgraduate students who wish to pursue their studies in quantitative finance with a 
view towards investment and asset management. The second target groups are professionals 
from the money management industry who either seek to pivot towards allocation 
methods that are based on machine learning or are simply interested in these new tools and 
want to upgrade their set of competences. To a lesser extent, the book can serve scholars 
or researchers who need a manual with a broad spectrum of references both on recent 
asset pricing issues and on machine learning algorithms applied to money management. 
While the book covers mostly common methods, it also shows how to implement more exotic 
models, like causal graphs (Chapter 14), Bayesian additive trees (Chapter 9), and hybrid 
autoencoders (Chapter 7). 

The book assumes basic knowledge in algebra (matrix manipulation), analysis (function 
differentiation, gradients), optimization (first and second order conditions, dual forms), 
and statistics (distributions, moments, tests, simple estimation method like maximum likeli­
hood). A minimal financial culture is also required: simple notions like stocks, accounting 
quantities (e.g., book value) will not be defined in this book. Lastly, all examples and 
illustrations are coded in R. A minimal culture of the language is sufficient to understand the 
code snippets which rely heavily on the most common functions of the tidyverse (Wickham 
et al. (2019), www.tidyverse.org), and piping (Bache and Wickham (2014), Mailund (2019)). 

How this book is structured 

The book is divided into four parts. 

Part I gathers preparatory material and starts with notations and data presentation (Chap­
ter 1), followed by introductory remarks (Chapter 2). Chapter 3 outlines the economic 

1For a list of online resources, we recommend the curated page https://github.com/josephmisiti/ 
awesome-machine-learning/blob/master/books.md. 

https://www.github.com
https://www.github.com
http://www.tidyverse.org
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foundations (theoretical and empirical) of factor investing and briefly sums up the dedicated 
recent literature. Chapter 4 deals with data preparation. It rapidly recalls the basic tips and 
warns about some major issues. 

Part II of the book is dedicated to predictive algorithms in supervised learning. Those are 
the most common tools that are used to forecast financial quantities (returns, volatilities, 
Sharpe ratios, etc.). They range from penalized regressions (Chapter 5), to tree methods 
(Chapter 6), encompassing neural networks (Chapter 7), support vector machines (Chapter 
8) and Bayesian approaches (Chapter 9). 

The next portion of the book bridges the gap between these tools and their applications in 
finance. Chapter 10 details how to assess and improve the ML engines defined beforehand. 
Chapter 11 explains how models can be combined and often why that may not be a good 
idea. Finally, one of the most important chapters (Chapter 12) reviews the critical steps of 
portfolio backtesting and mentions the frequent mistakes that are often encountered at this 
stage. 

The end of the book covers a range of advanced topics connected to machine learning more 
specifically. The first one is interpretability. ML models are often considered to be black 
boxes and this raises trust issues: how and why should one trust ML-based predictions? 
Chapter 13 is intended to present methods that help understand what is happening under 
the hood. Chapter 14 is focused on causality, which is both a much more powerful concept 
than correlation and also at the heart of many recent discussions in Artificial Intelligence 
(AI). Most ML tools rely on correlation-like patterns and it is important to underline the 
benefits of techniques related to causality. Finally, Chapters 15 and 16 are dedicated to 
non-supervised methods. The latter can be useful, but their financial applications should be 
wisely and cautiously motivated. 

Companion website 

This book is entirely available at http://www.mlfactor.com. It is important that not only 
the content of the book be accessible, but also the data and code that are used throughout the 
chapters. They can be found at https://github.com/shokru/mlfactor.github.io/tree/ 
master/material. The online version of the book will be updated beyond the publication 
of the printed version. 

Why R? 

The supremacy of Python as the dominant ML programming language is a widespread 
belief. This is because almost all applications of deep learning (which is as of 2020 one of 
the most fashionable branches of ML) are coded in Python via Tensorflow or Pytorch. The 
fact is that R has a lot to offer as well. First of all, let us not forget that one of the most 
influencial textbooks in ML (Hastie et al. (2009)) is written by statisticians who code in R. 
Moreover, many statistics-orientated algorithms (e.g., BARTs in Section 9.5) are primarily 

http://www.mlfactor.com
https://www.github.com
https://www.github.com
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coded in R and not always in Python. The R offering in Bayesian packages in general 
(https://cran.r-project.org/web/views/Bayesian.html) and in Bayesian learning in 
particular is probably unmatched. 

There are currently several ML frameworks available in R. 

•	 caret: https://topepo.github.io/caret/index.html, a compilation of more than 
200 ML models; 

•	 tidymodels: https://github.com/tidymodels, a recent collection of packages for ML 
workflow (developed by Max Kuhn at RStudio, which is a token of high quality material!); 

•	 rtemis: https://rtemis.netlify.com, a general purpose package for ML and 
visualization; 

•	 mlr3: https://mlr3.mlr-org.com/index.html, also a simple framework for ML 
models; 

•	 h2o: https://github.com/h2oai/h2o-3/tree/master/h2o-r, a large set of tools 
provided by h2o (coded in Java); 

•	 Open ML: https://github.com/openml/openml-r, the R version of the OpenML 
(www.openml.org) community. 

Moreover, via the reticulate package, it is possible (but not always easy) to benefit from 
Python tools as well. The most prominent example is the adaptation of the tensorflow and 
keras libraries to R. Thus, some very advanced Python material is readily available to R 
users. This is also true for other resources, like Stanford’s CoreNLP library (in Java) which 
was adapted to R in the package coreNLP (which we will not use in this book). 

Coding instructions 

One of the purposes of the book is to propose a large-scale tutorial of ML applications in 
financial predictions and portfolio selection. Thus, one keyword is REPRODUCIBILITY! 
In order to duplicate our results (up to possible randomness in some learning algorithms), 
you will need running versions of R and RStudio on your computer. The best books 
to learn R are also often freely available online. A short list can be found here https: 
//rstudio.com/resources/books/. The monograph R for Data Science is probably the 
most crucial. 

In terms of coding requirements, we rely heavily on the tidyverse, which is a collection of 
packages (or libraries). The three packages we use most are dplyr which implements simple 
data manipulations (filter, select, arrange), tidyr which formats data in a tidy fashion, and 
ggplot, for graphical outputs. 

https://www.cran.r-project.org
https://www.topepo.github.io
https://www.github.com
https://www.rtemis.netlify.com
https://www.mlr3.mlr-org.com
https://www.github.com
https://www.github.com
http://www.openml.org
http://www.rstudio.com
http://www.rstudio.com
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A list of the packages we use can be found in Table 1 below. Packages with a star ∗ need to 
3be installed via bioconductor.2 Packages with a plus + need to be installed manually.

TABLE 1: List of all packages used in the book. 

Package Purpose Chapter(s) 

BART Bayesian additive trees 10 
broom 
CAM + 

Tidy regression output 
Causal Additive Models 

5 
15 

caTools AUC curves 11 
CausalImpact 
cowplot 

Causal inference with structural time series 
Stacking plots 

15 
4 & 13 

breakDown Breakdown interpretability 14 
dummies 
e1071 

One-hot encoding 
Support Vector Machines 

8 
9 

factoextra PCA visualization 16 
fastAdaboost Boosted trees 7 
forecast Autocorrelation function 4 
FNN 
ggpubr 

Nearest Neighbors detection 
Combining plots 

16 
11 

glmnet Penalized regressions 6 
iml 
keras 

Interpretability tools 
Neural networks 

14 
8 

lime Interpretability 14 
lmtest 
lubridate 

Granger causality 
Handling dates 

15 
All (or many) 

naivebayes 
pcalg 

Naive Bayes classifier 
Causal graphs 

10 
15 

quadprog Quadratic programming 12 
quantmod 
randomForest 

Data extraction 
Random forests 

4, 12 
7 

rBayesianOptimization Bayesian hyperparameter tuning 11 
ReinforcementLearning 
Rgraphviz∗ 

Reinforcement Learning 
Causal graphs 

17 
15 

rpart and rpart.plot 
spBayes 

Simple decision trees 
Bayesian linear regression 

7 
10 

tidyverse Environment for data science, data wrangling All 
xgboost 
xtable 

Boosted trees 
Table formatting 

7 
4 

Of all of these packages (or collections thereof), the tidyverse and lubridate are compulsory 
in almost all sections of the book. To install a new package in R, just type 

install.packages(“name_of_the_package”) 

in the console. Sometimes, because of function name conflicts (especially with the select() 
function), we use the syntax package::function() to make sure the function call is from the 

2One example: https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html 
3By copy-pasting the content of the package in the library folder. To get the address of the folder, execute 

the command .libPaths() in the R console. 

https://www.bioconductor.org
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right source. The exact version of the packages used to compile the book is listed in the 
“renv.lock” file available on the book’s GitHub web page https://github.com/shokru/ 
mlfactor.github.io. One minor comment is the following: while the functions gather() and 
spread() from the dplyr package have been superseded by pivot_longer() and pivot_wider(), 
we still use them because of their much more compact syntax. 

As much as we could, we created short code chunks and commented each line whenever 
we felt it was useful. Comments are displayed at the end of a row and preceded with a single 
hastag #. 

The book is constructed as a very big notebook, thus results are often presented below code 
chunks. They can be graphs or tables. Sometimes, they are simple numbers and are preceded 
with two hashtags ##. The example below illustrates this formatting. 

1+2 # Example 

## [1] 3 

The book can be viewed as a very big tutorial. Therefore, most of the chunks depend on 
previously defined variables. When replicating parts of the code (via online code), please 
make sure that the environment includes all relevant variables. One best practice is 
to always start by running all code chunks from Chapter 1. For the exercises, we often resort 
to variables created in the corresponding chapters. 
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Future developments 

Machine learning and factor investing are two immense research domains and the overlap 
between the two is also quite substantial and developing at a fast pace. The content of this 
book will always constitute a solid background, but it is naturally destined to obsolescence. 
Moreover, by construction, some subtopics and many references will have escaped our 
scrutiny. Our intent is to progressively improve the content of the book and update it with 
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the latest ongoing research. We will be grateful to any comment that helps correct or update 
the monograph. Thank you for sending your feedback directly (via pull requests) on the 
book’s website which is hosted at https://github.com/shokru/mlfactor.github.io. 
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Notations and data
 

1.1 Notations 

This section aims at providing the formal mathematical conventions that will be used 
throughout the book. 

Bold notations indicate vectors and matrices. We use capital letters for matrices and lower 
case letters for vectors. v� and M� denote the transposes of v and M. M = [m]i,j , where i 
is the row index and j the column index. 

We will work with two notations in parallel. The first one is the pure machine learning notation 
in which the labels (also called output, dependent variables or predicted variables) 
y = yi are approximated by functions of features Xi = (xi,1, . . . , xi,K ). The dimension 
of the feature matrix X is I × K: there are I instances, records, or observations and 
each one of them has K attributes, features, inputs, or predictors which will serve as 
independent and explanatory variables (all these terms will be used interchangeably). 
Sometimes, to ease notations, we will write xi for one instance (one row) of X or xk for one 
(feature) column vector of X. 

The second notation type pertains to finance and will directly relate to the first. We will 
often work with discrete returns rt,n = pt,n/pt−1,n − 1 computed from price data. Here t 
is the time index and n the asset index. Unless specified otherwise, the return is always 
computed over one period, though this period can sometimes be one month or one year. 
Whenever confusion might occur, we will specify other notations for returns. 

In line with our previous conventions, the number of return dates will be T and the number 
(k)of assets, N . The features or characteristics of assets will be denoted with x : it is the t,n 

time-t value of the kth attribute of firm or asset n. In stacked notation, xt,n will stand for 
the vector of characteristics of asset n at time t. Moreover, rt stands for all returns at time 
t while rn stands for all returns of asset n. Often, returns will play the role of the dependent 
variable, or label (in ML terms). For the riskless asset, we will use the notation rt,f . 

The link between the two notations will most of the time be the following. One instance (or 
observation) i will consist of one couple (t, n) of one particular date and one particular 
firm (if the data is perfectly rectangular with no missing field, I = T × N). The label will 
usually be some performance measure of the firm computed over some future period, while 
the features will consist of the firm attributes at time t. Hence, the purpose of the machine 
learning engine in factor investing will be to determine the model that maps the time-t 
characteristics of firms to their future performance. 

In terms of canonical matrices: IN will denote the (N × N) identity matrix. 

From the probabilistic literature, we employ the expectation operator E[·] and the conditional 
expectation Et[·], where the corresponding filtration Ft corresponds to all information 
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available at time t. More precisely, Et[·] = E[·|Ft]. V[·] will denote the variance operator. 
Depending on the context, probabilities will be written simply P , but sometimes we will use 
the heavier notation P. Probability density functions (pdfs) will be denoted with lowercase 
letters (f) and cumulative distribution functions (cdfs) with uppercase letters (F ). We will 

dwrite equality in distribution as X = Y , which is equivalent to FX (z) = FY (z) for all z on 
the support of the variables. For a random process Xt, we say that it is stationary if the 

d dlaw of Xt is constant through time, i.e., Xt = Xs, where = means equality in distribution. 

Sometimes, asymptotic behaviors will be characterized with the usual Landau notation 
o(·) and O(·). The symbol ∝ refers to proportionality: x ∝ y means that x is proportional 

∂to y. With respect to derivatives, we use the standard notation when differentiating ∂x 
with respect to x. We resort to the compact symbol \ when all derivatives are computed
 
(gradient vector).
 

In equations, the left-hand side and right-hand side can be written more compactly: l.h.s.
 
and r.h.s., respectively.
 

Finally, we turn to functions. We list a few below:
 
- 1{x}: the indicator function of the condition x, which is equal to one if x is true and to
 
zero otherwise.
 
- φ(·) and Φ(·) are the standard Gaussian pdf and cdf.
 
- card(·) = #(·) are two notations for the cardinal function which evaluates the number of
 
elements in a given set (provided as argument of the function).
 
- l·J is the integer part function.
 
- for a real number x, [x]+ is the positive part of x, that is max(0, x).
 

e x−e −x

- tanh(·) is the hyperbolic tangent: tanh(x) = . ex+e−x 

- ReLu(·) is the rectified linear unit: ReLu(x) = max(0, x). 
e- s(·) will be the softmax function: s(x)i =  xi

xj 
, where the subscript i refers to the ith 

J 
e 

element of the vector. 
j=1 

1.2 Dataset 

Throughout the book, and for the sake of reproducibility, we will illustrate the con­
cepts we present with examples of implementation based on a single financial dataset 
available at https://github.com/shokru/mlfactor.github.io/tree/master/material. 
This dataset comprises information on 1,207 stocks listed in the US (possibly originating 
from Canada or Mexico). The time range starts in November 1998 and ends in March 2019. 
For each point in time, 93 characteristics describe the firms in the sample. These attributes 
cover a wide range of topics: 

• valuation (earning yields, accounting ratios); 

• profitability and quality (return on equity); 

• momentum and technical analysis (past returns, relative strength index); 

• risk (volatilities); 

https://github.com
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• estimates (earnings-per-share); 

• volume and liquidity (share turnover). 

The sample is not perfectly rectangular: there are no missing points, but the number of 
firms and their attributes is not constant through time. This makes the computations in the 
backtest more tricky, but also more realistic. 

library(tidyverse) # Activate the data science package 
library(lubridate) # Activate the date management package 
load("data_ml.RData") # Load the data 
data_ml <- data_ml %>% 

filter(date > "1999-12-31", # Keep the date with sufficient data points 
date < "2019-01-01") %>% 

arrange(stock_id, date) # Order the data 
data_ml[1:6, 1:6] # Sample values 

## # A tibble: 6 x 6 
## stock_id date Advt_12M_Usd Advt_3M_Usd Advt_6M_Usd Asset_Turnover 
## <int> <date> <dbl> <dbl> <dbl> <dbl> 
## 1 1 2000-01-31 0.41 0.39 0.42 0.19 
## 2 1 2000-02-29 0.41 0.39 0.4 0.19 
## 3 1 2000-03-31 0.4 0.37 0.37 0.2 
## 4 1 2000-04-30 0.39 0.36 0.37 0.2 
## 5 1 2000-05-31 0.4 0.42 0.4 0.2 
## 6 1 2000-06-30 0.41 0.47 0.42 0.21 

The data has 99 columns and 268336 rows. The first two columns indicate the stock identifier 
and the date. The next 93 columns are the features (see Table 17.1 in the Appendix for 
details). The last four columns are the labels. The points are sampled at the monthly 
frequency. As is always the case in practice, the number of assets changes with time, as is 
shown in Figure 1.1. 

data_ml %>% 
group_by(date) %>% # Group by date 
summarize(nb_assets = stock_id %>% # Count nb assets 

as.factor() %>% nlevels()) %>%
 
ggplot(aes(x = date, y = nb_assets)) + geom_col() + # Plot
 
coord_fixed(3)
 

0

250

500

750

1000

1250

2000 2005 2010 2015
date

nb
_a
ss
et
s

FIGURE 1.1: Number of assets through time. 
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There are four immediate labels in the dataset: R1M_Usd, R3M_Usd, R6M_Usd and 
R12M_Usd, which correspond to the 1-month, 3-month, 6-month and 12-month fu-
ture/forward returns of the stocks. The returns are total returns, that is, they incorporate 
potential dividend payments over the considered periods. This is a better proxy of financial 
gain compared to price returns only. We refer to the analysis of Hartzmark and Solomon 
(2019) for a study on the impact of decoupling price returns and dividends. These labels are 
located in the last 4 columns of the dataset. We provide their descriptive statistics below. 
## # A tibble: 4 x 5 
## Label mean sd min max 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 R12M_Usd 0.137 0.738 -0.991 96.0 
## 2 R1M_Usd 0.0127 0.176 -0.922 30.2 
## 3 R3M_Usd 0.0369 0.328 -0.929 39.4 
## 4 R6M_Usd 0.0723 0.527 -0.98 107. 

In anticipation for future models, we keep the name of the predictors in memory. In addition, 
we also keep a much shorter list of predictors. 

features <- colnames(data_ml[3:95]) # Keep the feature's column names (hard-coded, beware!) 
features_short <- c("Div_Yld", "Eps", "Mkt_Cap_12M_Usd", "Mom_11M_Usd", 

"Ocf", "Pb", "Vol1Y_Usd") 

The predictors have been uniformized, that is, for any given feature and time point, the 
distribution is uniform. Given 1,207 stocks, the graph below cannot display a perfect 
rectangle. 

data_ml %>% 
filter(date == "2000-02-29") %>% 
ggplot(aes(x = Div_Yld)) + geom_histogram(bins = 100) + coord_fixed(0.03) 
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FIGURE 1.2: Distribution of the dividend yield feature on date 2000-02-29. 

The original labels (future returns) are numerical and will be used for regression exercises, 
that is, when the objective is to predict a scalar real number. Sometimes, the exercises can 
be different and the purpose may be to forecast categories (also called classes), like “buy”, 
“hold” or “sell”. In order to be able to perform this type of classification analysis, we create 
additional labels that are categorical. 

data_ml <- data_ml %>% 
group_by(date) %>% # Group by date 
mutate(R1M_Usd_C = R1M_Usd > median(R1M_Usd), # Create the categorical labels 

R12M_Usd_C = R1M_Usd > median(R12M_Usd)) %>% 
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ungroup() %>%
 
mutate_if(is.logical, as.factor)
 

The new labels are binary: they are equal to 1 (true) if the original return is above that of 
the median return over the considered period and to 0 (false) if not. Hence, at each point in 
time, half of the sample has a label equal to zero and the other half to one: some stocks 
overperform and others underperform. 

In machine learning, models are estimated on one portion of data (training set) and then 
tested on another portion of the data (testing set) to assess their quality. We split our 
sample accordingly. 

separation_date <- as.Date("2014-01-15")
 
training_sample <- filter(data_ml, date < separation_date)
 
testing_sample <- filter(data_ml, date >= separation_date)
 

We also keep in memory a few key variables, like the list of asset identifiers and a rectangular 
version of returns. For simplicity, in the computation of the latter, we shrink the investment 
universe to keep only the stocks for which we have the maximum number of points. 

stock_ids <- levels(as.factor(data_ml$stock_id)) # A list of all stock_ids 
stock_days <- data_ml %>% # Compute the number of data points per stock 

group_by(stock_id) %>% summarize(nb = n()) 
stock_ids_short <- stock_ids[which(stock_days$nb == max(stock_days$nb))] # Stocks with full data 
returns <- data_ml %>% # Compute returns, in matrix format, in 3 steps: 

filter(stock_id %in% stock_ids_short) %>% # 1. Filtering the data 
dplyr::select(date, stock_id, R1M_Usd) %>% # 2. Keep returns along with dates & firm names 
spread(key = stock_id, value = R1M_Usd) # 3. Put in matrix shape 
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Introduction
 

Conclusions often echo introductions. This chapter was completed at the very end of the 
writing of the book. It outlines principles and ideas that are probably more relevant than 
the sum of technical details covered subsequently. When stuck with disappointing results, 
we advise the reader to take a step away from the algorithm and come back to this section 
to get a broader perspective of some of the issues in predictive modelling. 

2.1 Context 

The blossoming of machine learning in factor investing has it source at the confluence of three 
favorable developments: data availability, computational capacity, and economic groundings. 

First, the data. Nowadays, classical providers, such as Bloomberg and Reuters have seen their 
playing field invaded by niche players and aggregation platforms.1 In addition, high-frequency 
data and derivative quotes have become mainstream. Hence, firm-specific attributes are easy 
and often cheap to compile. This means that the size of X in (2.1) is now sufficiently large 
to be plugged into ML algorithms. The order of magnitude (in 2019) that can be reached is 
the following: a few hundred monthly observations over several thousand stocks (US listed 
at least) covering a few hundred attributes. This makes a dataset of dozens of millions of 
points. While it is a reasonably high figure, we highlight that the chronological depth is 
probably the weak point and will remain so for decades to come because accounting figures 
are only released on a quarterly basis. Needless to say that this drawback does not hold for 
high-frequency strategies. 

Second, computational power, both through hardware and software. Storage and pro­
cessing speed are not technical hurdles anymore and models can even be run on the cloud 
thanks to services hosted by major actors (Amazon, Microsoft, IBM and Google) and by 
smaller players (Rackspace, Techila). On the software side, open source has become the 
norm, funded by corporations (TensorFlow & Keras by Google, Pytorch by Facebook, h2o, 
etc.), universities (Scikit-Learn by INRIA, NLPCore by Stanford, NLTK by UPenn) and 
small groups of researchers (caret, xgboost, tidymodels to list but a pair of frameworks). 
Consequently, ML is no longer the private turf of a handful of expert computer scientists, 
but is on the contrary accessible to anyone willing to learn and code. 

Finally, economic framing. Machine learning applications in finance were initially intro­
duced by computer scientists and information system experts (e.g., Braun and Chandler 
(1987), White (1988)) and exploited shortly after by academics in financial economics (Bansal 

1We refer to https://alternativedata.org/data-providers/2 for a list of alternative data providers. Moreover, 
we recall that Quandl, an alt-data hub was acquired by Nasdaq in December 2018. As large players acquire 
newcomers, the field may consolidate. 
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and Viswanathan (1993)), and hedge funds (see, e.g., Zuckerman (2019)). Nonlinear relation­
ships then became more mainstream in asset pricing (Freeman and Tse (1992), Bansal et al. 
(1993)). These contributions started to pave the way for the more brute-force approaches 
that have blossomed since the 2010 decade and which are mentioned throughout the book. 

In the synthetic proposal of Arnott et al. (2019b), the first piece of advice is to rely on a model 
that makes sense economically. We agree with this stance, and the only assumption that we 
make in this book is that future returns depend on firm characteristics. The relationship 
between these features and performance is largely unknown and probably time-varying. 
This is why ML can be useful: to detect some hidden patterns beyond the documented 
asset pricing anomalies. Moreover, dynamic training allows to adapt to changing market 
conditions. 

2.2 Portfolio construction: the workflow 

Building successful portfolio strategies requires many steps. This book covers many of them 
but focuses predominantly on the prediction part. Indeed, allocating to assets most of the 
time requires to make bets and thus to presage and foresee which ones will do well and 
which ones will not. In this book, we mostly resort to supervised learning to forecast returns 
in the cross-section. The baseline equation in supervised learning, 

y = f(X) + C, (2.1) 

is translated in financial terms as 

rt+1,n = f(xt,n) + Ct+1,n, (2.2) 

where f(xt,n) can be viewed as the expected return for time t + 1 computed at time t, 
that is, Et[rt+1,n]. Note that the model is common to all assets (f is not indexed by n), 
thus it shares similarity with panel approaches. 

Building accurate predictions requires to pay attention to all terms in the above equation. 
Chronologically, the first step is to gather data and to process it (see Chapter 4). To the 
best of our knowledge, the only consensus is that, on the x side, the features should include 
classical predictors reported in the literature: market capitalization, accounting ratios, risk 
measures, momentum proxies (see Chapter 3). For the dependent variable, many researchers 
and practitioners work with monthly returns, but other maturities may perform better 
out-of-sample. 

While it is tempting to believe that the most crucial part is the choice of f (it is the most 
sophisticated, mathematically), we believe that the choice and engineering of inputs, that 
is, the variables, are at least as important. The usual modelling families for f are covered 
in Chapters 5 to 9. Finally, the errors Ct+1,n are often overlooked. People consider that 
vanilla quadratic programming is the best way to go (the most common for sure!), thus the 
mainstream objective is to minimize squared errors. In fact, other options may be wiser 
choices (see for instance Section 7.4.3). 

Even if the overall process, depicted in Figure 2.1, seems very sequential, it is more judicious 
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to conceive it as integrated. All steps are intertwined and each part should not be dealt 
with independently from the others.3 The global framing of the problem is essential, from 
the choice of predictors, to the family of algorithms, not to mention the portfolio weighting 
schemes (see Chapter 12 for the latter). 

FIGURE 2.1: Simplified workflow in ML-based portfolio construction. 

2.3 Machine learning is no magic wand 

By definition, the curse of predictions is that they rely on past data to infer patterns about 
subsequent fluctuations. The more or less explicit hope of any forecaster is that the past 
will turn out to be a good approximation of the future. Needless to say, this is a pious 
wish; in general, predictions fare badly. Surprisingly, this does not depend much on the 
sophistication of the econometric tool. In fact, heuristic guesses are often hard to beat. 

To illustrate this sad truth, the baseline algorithms that we detail in Chapters 5 to 7 yield 
at best mediocre results. This is done on purpose. This forces the reader to understand 
that blindly feeding data and parameters to a coded function will seldom suffice to reach 
satisfactory out-of-sample accuracy. 

Below, we sum up some key points that we have learned through our exploratory journey in 
financial ML. 

•	 The first point is that causality is key. If one is able to identify X → y, where y are 
expected returns, then the problem is solved. Unfortunately, causality is incredibly hard 
to uncover. 

•	 Thus, researchers have most of the time to make do with simple correlation patterns, 
which are far less informative and robust. 

•	 Relatedly, financial datasets are extremely noisy. It is a daunting task to extract 
signals out of them. No-arbitrage reasonings imply that if a simple pattern yielded 
durable profits, it would mechanically and rapidly vanish. 

3Other approaches are nonetheless possible, as is advocated in de Prado and Fabozzi (2020). 
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•	 The no-free lunch theorem of Wolpert (1992a) imposes that the analyst formulates 
views on the model. This is why economic or econometric framing is key. The 
assumptions and choices that are made regarding both the dependent variables 
and the explanatory features are decisive. As a corollary, data is key. The inputs 
given to the models are probably much more important than the choice of the model itself. 

•	 To maximize out-of-sample efficiency, the right question is probably to paraphrase Jeff 
Bezos: what’s not going to change? Persistent series are more likely to unveil enduring 
patterns. 

•	 Everybody makes mistakes. Errors in loops or variable indexing are part of the journey. 
What matters is to learn from those lapses. 

To conclude, we remind the reader of this obvious truth: nothing will ever replace practice. 
Gathering and cleaning data, coding backtests, tuning ML models, testing weighting schemes, 
debugging, starting all over again: these are all absolutely indispensable steps and tasks that 
must be repeated indefinitely. There is no sustitute to experience. 
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Factor investing and asset pricing anomalies
 

Asset pricing anomalies are the foundations of factor investing. In this chapter our aim is 
twofold: 

•	 present simple ideas and concepts: basic factor models and common empirical facts 
(time-varying nature of returns and risk premia); 

•	 provide the reader with lists of articles that go much deeper to stimulate and satisfy 
curiosity. 

The purpose of this chapter is not to provide a full treatment of the many topics related 
to factor investing. Rather, it is intended to give a broad overview and cover the essential 
themes so that the reader is guided towards the relevant references. As such, it can serve as 
a short, non-exhaustive, review of the literature. The subject of factor modelling in finance 
is incredibly vast and the number of papers dedicated to it is substantial and still rapidly 
increasing. 

The universe of peer-reviewed financial journals can be split in two. The first kind is the 
academic journals. Their articles are mostly written by professors, and the audience consists 
mostly of scholars. The articles are long and often technical. Prominent examples are the 
Journal of Finance, the Review of Financial Studies and the Journal of Financial Economics. 
The second type is more practitioner-orientated. The papers are shorter, easier to read, 
and target finance professionals predominantly. Two emblematic examples are the Journal 
of Portfolio Management and the Financial Analysts Journal. This chapter reviews and 
mentions articles published essentially in the first family of journals. 

Beyond academic articles, several monographs are already dedicated to the topic of style 
allocation (a synonym of factor investing used for instance in theoretical articles (Barberis 
and Shleifer (2003)) or practitioner papers (Asness et al. (2015))). To cite but a few, we 
mention: 

•	 Ilmanen (2011): an exhaustive excursion into risk premia, across many asset classes, 
with a large spectrum of descriptive statistics (across factors and periods), 

•	 Ang (2014): covers factor investing with a strong focus on the money management 
industry, 

•	 Bali et al. (2016): very complete book on the cross-section of signals with statistical 
analyses (univariate metrics, correlations, persistence, etc.), 

•	 Jurczenko (2017): a tour on various topics given by field experts (factor purity, pre­
dictability, selection versus weighting, factor timing, etc.). 

Finally, we mention a few wide-scope papers on this topic: Goyal (2012), Cazalet and Roncalli 
(2014) and Baz et al. (2015). 

13 
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3.1 Introduction 

The topic of factor investing, though a decades-old academic theme, has gained traction 
concurrently with the rise of equity traded funds (ETFs) as vectors of investment. Both have 
gathered momentum in the 2010 decade. Not so surprisingly, the feedback loop between 
practical financial engineering and academic research has stimulated both sides in a mutually 
beneficial manner. Practitioners rely on key scholarly findings (e.g., asset pricing anomalies) 
while researchers dig deeper into pragmatic topics (e.g., factor exposure or transaction costs). 
Recently, researchers have also tried to quantify and qualify the impact of factor indices on 
financial markets. For instance, Krkoska and Schenk-Hoppé (2019) analyze herding behaviors 
while Cong and Xu (2019) show that the introduction of composite securities increases 
volatility and cross-asset correlations. 

The core aim of factor models is to understand the drivers of asset prices. Broadly speaking, 
the rationale behind factor investing is that the financial performance of firms depends on 
factors, whether they be latent and unobservable, or related to intrinsic characteristics (like 
accounting ratios for instance). Indeed, as Cochrane (2011) frames it, the first essential 
question is which characteristics really provide independent information about average 
returns? Answering this question helps understand the cross-section of returns and may 
open the door to their prediction. 

Theoretically, linear factor models can be viewed as special cases of the arbitrage pricing 
theory (APT) of Ross (1976), which assumes that the return of an asset n can be modelled 
as a linear combination of underlying factors fk: 

KK 
rt,n = αn + βn,kft,k + Ct,n, (3.1) 

k=1 

where the usual econometric constraints on linear models hold: E[Ct,n] = 0, cov(Ct,n, Ct,m) = 0 
for n  ) = 0. If such factors do exist, then they are in contradiction with = m and cov(fn, En
the cornerstone model in asset pricing: the capital asset pricing model (CAPM) of Sharpe 
(1964), Lintner (1965) and Mossin (1966). Indeed, according to the CAPM, the only driver 
of returns is the market portfolio. This explains why factors are also called ‘anomalies’. 

Empirical evidence of asset pricing anomalies has accumulated since the dual publication of 
Fama and French (1992) and Fama and French (1993). This seminal work has paved the 
way for a blossoming stream of literature that has its meta-studies (e.g., Green et al. (2013), 
Harvey et al. (2016) and McLean and Pontiff (2016)). The regression (3.1) can be evaluated 
once (unconditionally) or sequentially over different time frames. In the latter case, the 
parameters (coefficient estimates) change and the models are thus called conditional (we 
refer to Ang and Kristensen (2012) and to Cooper and Maio (2019) for recent results on 
this topic as well as for a detailed review on the related research). Conditional models are 
more flexible because they acknowledge that the drivers of asset prices may not be constant, 
which seems like a reasonable postulate. 
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3.2 Detecting anomalies 

3.2.1 Challenges 

Obviously, a crucial step is to be able to identify an anomaly and the complexity of this 
task should not be underestimated. Given the publication bias towards positive results 
(see, e.g., Harvey (2017) in financial economics), researchers are often tempted to report 
partial results that are sometimes invalidated by further studies. The need for replication 
is therefore high and many findings have no tomorrow (Linnainmaa and Roberts (2018)), 
especially if transation costs are taken into account (Patton and Weller (2020), Chen and 
Velikov (2020)). Nevertheless, as is demonstrate by Chen (2019), p-hacking alone cannot 
account for all the anomalies documented in the literature. One way to reduce the risk of 
spurious detection is to increase the hurdles (often, the t-statistics) but the debate is still 
ongoing (Harvey et al. (2016), Chen (2020)), or to resort to multiple testing (Harvey et al. 
(2020)). 

Some researchers document fading anomalies because of publication: once the anomaly 
becomes public, agents invest in it, which pushes prices up and the anomaly disappears. 
McLean and Pontiff (2016) document this effect in the US but Jacobs and Müller (2020) find 
that all other countries experience sustained post-publication factor returns. With a different 
methodology, Chen and Zimmermann (2020) introduce a publication bias adjustment for 
returns and the authors note that this (negative) adjustment is in fact rather small. Penasse 
(2019) recommends the notion of alpha decay to study the persistence or attenuation of 
anomalies. 

The destruction of factor premia may be due to herding (Krkoska and Schenk-Hoppé (2019), 
Volpati et al. (2020)) and could be accelerated by the democratization of so-called smart-beta 
products (ETFs notably) that allow investors to directly invest in particular styles (value, 
low volatility, etc.). For a theoretical perspective on the attractivity of factor investing, we 
refer to Jin (2019). On the other hand, DeMiguel et al. (2019) argue that the price impact 
of crowding in the smart-beta universe is mitigated by trading diversification stemming 
from external institutions that trade according to strategies outside this space (e.g., high 
frequency traders betting via order-book algorithms). 

The remainder of this subsection was inspired from Baker et al. (2017) and Harvey and Liu 
(2019a). 

3.2.2 Simple portfolio sorts 

This is the most common procedure and the one used in Fama and French (1992). The idea 
is simple. On one date, 

1.	 rank firms according to a particular criterion (e.g., size, book-to-market ratio); 

2.	 form J ≥ 2 portfolios (i.e., homogeneous groups) consisting of the same number of 
stocks according to the ranking (usually, J = 2, J = 3, J = 5 or J = 10 portfolios 
are built, based on the median, terciles, quintiles or deciles of the criterion); 
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3.	 the weight of stocks inside the portfolio is either uniform (equal weights), or 
proportional to market capitalization; 

4.	 at a future date (usually one month), report the returns of the portfolios. 
Then, iterate the procedure until the chronological end of the sample is reached. 

jThe outcome is a time series of portfolio returns r for each grouping j. An anomaly is t 
identified if the t-test between the first (j = 1) and the last group (j = J) unveils a significant 
difference in average returns. More robust tests are described in Cattaneo et al. (2020). A 
strong limitation of this approach is that the sorting criterion could have a non-monotonic 
impact on returns and a test based on the two extreme portfolios would not detect it. Several 
articles address this concern: Patton and Timmermann (2010) and Romano and Wolf (2013) 
for instance. Another concern is that these sorted portfolios may capture not only the priced 
risk associated to the characteristic, but also some unpriced risk. Daniel et al. (2020b) show 
that it is possible to disentangle the two and make the most of altered sorted portfolios. 

Instead of focusing on only one criterion, it is possible to group asset according to more 
characteristics. The original paper Fama and French (1992) also combines market capitaliza­
tion with book-to-market ratios. Each characteristic is divided into 10 buckets, which makes 
100 portfolios in total. Beyond data availability, there is no upper bound on the number of 
features that can be included in the sorting process. In fact, some authors investigate more 
complex sorting algorithms that can manage a potentially large number of characteristics 
(see e.g., Feng et al. (2019) and Bryzgalova et al. (2019b)). 

Finally, we refer to Ledoit et al. (2020) for refinements that take into account the covariance 
structure of asset returns and to Cattaneo et al. (2020) for a theoretical study on the 
statistical properties of the sorting procedure (including theoretical links with regression-
based approaches). Notably, the latter paper discusses the optimal number of portfolios and 
suggests that it is probably larger than the usual 10 often used in the literature. 

In the code and Figure 3.1 below, we compute size portfolios (equally weighted: above 
versus below the median capitalization). According to the size anomaly, the firms with below 
median market cap should earn higher returns on average. This is verified whenever the 
orange bar in the plot is above the blue one (it happens most of the time). 

data_ml %>% 
group_by(date) %>% 
mutate(large = Mkt_Cap_12M_Usd > median(Mkt_Cap_12M_Usd)) %>% # Creates the cap sort 
ungroup() %>%	 # Ungroup 
mutate(year = lubridate::year(date)) %>%	 # Creates a year variable 
group_by(year, large) %>%	 # Analyze by year & cap 
summarize(avg_return = mean(R1M_Usd)) %>%	 # Compute average return 
ggplot(aes(x = year, y = avg_return, fill = large)) + # Plot! 
geom_col(position = "dodge") +	 # Bars side-to-side 
theme(legend.position = c(0.8, 0.2)) +	 # Legend location 
coord_fixed(124) + theme(legend.title=element_blank()) + # x/y aspect ratio 
scale_fill_manual(values=c("#F87E1F", "#0570EA"), name = "", # Colors 

labels=c("Small", "Large")) + 
ylab("Average returns") + theme(legend.text=element_text(size=9)) 
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FIGURE 3.1: The size factor: average returns of small versus large firms. 

3.2.3 Factors 

The construction of so-called factors follows the same lines as above. Portfolios are based on 
one characteristic and the factor is a long-short ensemble of one extreme portfolio minus 
the opposite extreme (small minus large for the size factor or high book-to-market ratio 
minus low book-to-market ratio for the value factor). Sometimes, subtleties include forming 
bivariate sorts and aggregating several portfolios together, as in the original contribution 
of Fama and French (1993). The most common factors are listed below, along with a few 
references. We refer to the books listed at the beginning of the chapter for a more exhaustive 
treatment of factor idiosyncrasies. For most anomalies, theoretical justifications have been 
brought forward, whether risk-based or behavioral. We list the most frequently cited factors 
below: 

•	 Size (SMB = small firms minus large firms): Banz (1981), Fama and French (1992), Fama 
and French (1993), Van Dijk (2011), Asness et al. (2018) and Astakhov et al. (2019). 

•	 Value (HM = high minus low: undervalued minus ‘growth’ firms): Fama and French 
(1992), Fama and French (1993), Asness et al. (2013). 

•	 Momentum (WML = winners minus losers): Jegadeesh and Titman (1993), Carhart 
(1997) and Asness et al. (2013). The winners are the assets that have experienced the 
highest returns over the last year (sometimes the computation of the return is truncated 
to omit the last month). Cross-sectional momentum is linked, but not equivalent, to time 
series momentum (trend following), see e.g., Moskowitz et al. (2012) and Lempérière et al. 
(2014). Momentum is also related to contrarian movements that occur both at higher and 
lower frequencies (short-term and long-term reversals), see Luo et al. (2020). 

•	 Profitability (RMW = robust minus weak profits): Fama and French (2015), Bouchaud 
et al. (2019). In the former reference, profitability is measured as (revenues - (cost and 
expenses))/equity. 

•	 Investment (CMA = conservative minus aggressive): Fama and French (2015), Hou et al. 
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TABLE 3.1: Sample of monthly factor returns. 

date MKT_RF SMB HML RMW CMA RF 

1963-07-31 
1963-08-31 
1963-09-30 
1963-10-31 
1963-11-30 

-0.0039 
0.0507 

-0.0157 
0.0253 

-0.0085 

-0.0047 
-0.0079 
-0.0048 
-0.0129 
-0.0084 

-0.0083 
0.0167 
0.0018 

-0.0010 
0.0171 

0.0066 
0.0040 

-0.0076 
0.0275 

-0.0045 

-0.0115 
-0.0040 
0.0024 

-0.0224 
0.0222 

0.0027 
0.0025 
0.0027 
0.0029 
0.0027 

1963-12-31 0.0183 -0.0189 -0.0012 0.0007 -0.0030 0.0029 

(2015). Investment is measured via the growth of total assets (divided by total assets). 
Aggressive firms are those that experience the largest growth in assets. 

•	 Low ‘risk’ (sometimes, BAB = betting against beta): Ang et al. (2006), Baker et al. (2011), 
Frazzini and Pedersen (2014), Boloorforoosh et al. (2020), Baker et al. (2020) and Asness 
et al. (2020). In this case, the computation of risk changes from one article to the other 
(simple volatility, market beta, idiosyncratic volatility, etc.). 

With the notable exception of the low risk premium, the most mainstream anomalies are 
kept and updated in the data library of Kenneth French (https://mba.tuck.dartmouth. 
edu/pages/faculty/ken.french/data_library.html). Of course, the computation of the 
factors follows a particular set of rules, but they are generally accepted in the academic sphere. 
Another source of data is the AQR repository: https://www.aqr.com/Insights/Datasets. 

In the dataset we use for the book, we proxy the value anomaly not with the book-to-market 
ratio but with the price-to-book ratio (the book value is located in the denominator). As is 
shown in Asness and Frazzini (2013), the choice of the variable for value can have sizable 
effects. 

Below, we import data from Ken French’s data library. We will use it later on in the chapter. 

library(quantmod) # Package for data extraction
 
library(xtable) # Package for LaTeX exports
 
min_date <- "1963-07-31" # Start date
 
max_date <- "2020-03-28" # Stop date
 
temp <- tempfile()
 
KF_website <- "http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/"
 
KF_file <- "ftp/F-F_Research_Data_5_Factors_2x3_CSV.zip"
 
link <- paste0(KF_website,KF_file) # Link of the file
 
download.file(link, temp, quiet = TRUE) # Download!
 
FF_factors <- read_csv(unz(temp, "F-F_Research_Data_5_Factors_2x3.CSV"),
 

skip = 3) %>% # Check the number of lines to skip! 
rename(date = X1, MKT_RF = `Mkt-RF`) %>% # Change the name of first columns 
mutate_at(vars(-date), as.numeric) %>% # Convert values to number 
mutate(date = ymd(parse_date_time(date, "%Y%m"))) %>% # Date in right format 
mutate(date = rollback(date + months(1))) # End of month date 

FF_factors <- FF_factors %>% mutate(MKT_RF = MKT_RF / 100, # Scale returns
 
SMB = SMB / 100,
 
HML = HML / 100,
 
RMW = RMW / 100,
 
CMA = CMA / 100,
 
RF = RF/100) %>%
 

filter(date >= min_date, date <= max_date) # Finally, keep only recent points 
knitr::kable(head(FF_factors), booktabs = TRUE, 

caption = "Sample of monthly factor returns.") # A look at the data (see table) 

https://www.mba.tuck.dartmouth.edu
https://www.mba.tuck.dartmouth.edu
https://www.aqr.com
http://www.mba.tuck.dartmouth.edu
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Posterior to the discovery of these stylized facts, some contributions have aimed at building 
theoretical models that capture these properties. We cite a handful below: 

•	 size and value: Berk et al. (1999), Daniel et al. (2001b), Barberis and Shleifer (2003), 
Gomes et al. (2003), Carlson et al. (2004), Arnott et al. (2014); 

•	 momentum: Johnson (2002), Grinblatt and Han (2005), Vayanos and Woolley (2013), 
Choi and Kim (2014). 

In addition, recent bridges have been built between risk-based factor representations and 
behavioural theories. We refer essentially to Barberis et al. (2016) and Daniel et al. (2020a) 
and the references therein. 

While these factors (i.e., long-short portfolios) exhibit time-varying risk premia and are 
magnified by corporate news and announcements (Engelberg et al. (2018)), it is well-
documented (and accepted) that they deliver positive returns over long horizons. We refer 
to Gagliardini et al. (2016) and to the survey Gagliardini et al. (2019), as well as to the 
related bibliography for technical details on estimation procedures of risk premia and the 
corresponding empirical results. A large sample study that documents regime changes in 
factor premia was also carried out by Ilmanen et al. (2019). Moreover, the predictability of 
returns is also time-varying (as documented in Farmer et al. (2019), Tsiakas et al. (2020) 
and Liu et al. (2020)), and estimation methods can be improved (Johnson (2019)). 

In Figure 3.2, we plot the average monthly return aggregated over each calendar year for five 
common factors. The risk free rate (which is not a factor per se) is the most stable, while 
the market factor (aggregate market returns minus the risk-free rate) is the most volatile. 
This makes sense because it is the only long equity factor among the five series. 

FF_factors %>% 
mutate(date = year(date)) %>%	 # Turn date into year 
gather(key = factor, value = value, - date) %>% # Put in tidy shape 
group_by(date, factor) %>%	 # Group by year and factor 
summarise(value = mean(value)) %>%	 # Compute average return 
ggplot(aes(x = date, y = value, color = factor)) + # Plot 
geom_line() + coord_fixed(500)	 # Fix x/y ratio 

The individual attributes of investors who allocate towards particular factors is a blossoming 
topic. We list a few references below, even though they somewhat lie out of the scope of 
this book. Betermier et al. (2017) show that value investors are older, wealthier and face 
lower income risk compared to growth investors who are those in the best position to take 
financial risks. The study Cronqvist et al. (2015b) leads to different conclusions: it finds 
that the propensity to invest in value versus growth assets has roots in genetics and in life 
events (the latter effect being confirmed in Cocco et al. (2020), and the former being further 
detailed in a more general context in Cronqvist et al. (2015a)). Psychological traits can also 
explain some factors: when agents extrapolate, they are likely to fuel momentum (this topic 
is thoroughly reviewed in Barberis (2018)). Micro- and macro-economic consequences of 
these preferences are detailed in Bhamra and Uppal (2019). To conclude this paragraph, we 
mention that theoretical models have also been proposed that link agents’ preferences and 
beliefs (via prospect theory) to market anomalies (see for instance Barberis et al. (2020)). 

Finally, we highlight the need of replicability of factor premia and echo the recent editorial 
by Harvey (2020). As is shown by Linnainmaa and Roberts (2018) and Hou et al. (2020), 
many proclaimed factors are in fact very much data-dependent and often fail to deliver 
sustained profitability when the investment universe is altered or when the definition of 
variable changes (Asness and Frazzini (2013)). 
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FIGURE 3.2: Average returns of common anomalies (1963-2020). Source: Ken French 
library. 

Campbell Harvey and his co-authors, in a series of papers, tried to synthesize the research 
on factors in Harvey et al. (2016), Harvey and Liu (2019a) and Harvey and Liu (2019b). 
His work underlines the need to set high bars for an anomaly to be called a ‘true’ factor. 
Increasing thresholds for p-values is only a partial answer, as it is always possible to resort 
to data snooping in order to find an optimized strategy that will fail out-of-sample but that 
will deliver a t-statistic larger than three (or even four). Harvey (2017) recommends to resort 
to a Bayesian approach which blends data-based significance with a prior into a so-called 
Bayesianized p-value (see subsection below). 

Following this work, researchers have continued to explore the richness of this zoo. Bryzgalova 
et al. (2019a) propose a tractable Bayesian estimation of large-dimensional factor models 
and evaluate all possible combinations of more than 50 factors, yielding an incredibly large 
number of coefficients. This combined with a Bayesianized Fama and MacBeth (1973) 
procedure allows to distinguish between pervasive and superfluous factors. Chordia et al. 
(2020) use simulations of 2 million trading strategies to estimate the rate of false discoveries, 
that is, when a spurious factor is detected (type I error). They also advise to use thresholds 
for t-statistics that are well above three. In a similar vein, Harvey and Liu (2020) also 
underline that sometimes true anomalies may be missed because of a one time t-statistic 
that is too low (type II error). 

The propensity of journals to publish positive results has led researchers to estimate the 
difference between reported returns and true returns. Chen and Zimmermann (2020) call this 
difference the publication bias and estimate it as roughly 12%. That is, if a published average 
return is 8%, the actual value may in fact be closer to (1-12%)8%=7%. Qualitatively, this 
estimation of 12% is smaller than the out-of-sample reduction in returns found in McLean 
and Pontiff (2016). ### Predictive regressions, sorts, and p-value issues For simplicity, we 
assume a simple form: 

r = a + bx + e, (3.2) 



p −   P D|H  

target prob. = P [H|D] = 
P [D|H] × P [H],

P [D] 

−t /2 priorBayesianized p − value = Bpv = e 
2
× (3.3)

1 + e−t2 /2 × prior 
, 

21 3.2 Detecting anomalies 

where the vector r stacks all returns of all stocks and x is a lagged variable so that the 
regression is indeed predictive. If the estimate b̂ is significant given a specified threshold, then 
it can be tempting to conclude that x does a good job at predicting returns. Hence, long-short 
portfolios related to extreme values of x (mind the sign of b̂) are expected to generate profits. 
This is unfortunately often false because b̂ gives information on the past* ability of x to 
forecast returns. What happens in the future may be another story. 

Statistical tests are also used for portfolio sorts. Assume two extreme portfolios are expected 
to yield very different average returns (like very small cap versus very large cap, or strong 

+ −winners versus bad losers). The portfolio returns are written r and r . The simplest test t t 
mr+ −mr−for the mean is t = 

√ 
T , where T is the number of points and mr± denotes the σr+−r− 

means of returns and σr+−r− is the standard deviation of the difference between the two 
series, i.e., the volatility of the long-short portfolio. In short, the statistic can be viewed as 
a scaled Sharpe ratio (though usually these ratios are computed for long-only portfolios) 
and can in turn be used to compute p-values to assess the robustness of an anomaly. As is 
shown in Linnainmaa and Roberts (2018) and Hou et al. (2020), many factors discovered by 
reasearchers fail to survive in out-of-sample tests. 

One reason why people are overly optimistic about anomalies they detect is the widespread 
reverse interpretation of the p-value. Often, it is thought of as the probability of one 
hypothesis (e.g., my anomaly exists) given the data. In fact, it’s the opposite; it’s the 
likelihood of your data sample, knowing that the anomaly holds. 

value = [ ]

where H stands for hypothesis and D for data. The equality in the second row is a plain 
application of Bayes’ identity: the interesting probability is in fact a transform of the p-value. 

Two articles (at least) discuss this idea. Harvey (2017) introduces Bayesianized p-values: 

where t is the t-statistic obtained from the regression (i.e., the one that defines the p-value) 
and prior is the analyst’s estimation of the odds that the hypothesis (anomaly) is true. The 
prior is coded as follows. Suppose there is a p% chance that the null holds (i.e., (1-p)% 
for the anomaly). The odds are coded as p/(1 − p). Thus, if the t-statistic is equal to 2 
(corresponding to a p-value of 5% roughly) and the prior odds are equal to 6, then the Bpv 
is equal to e−2 × 6 × (1 + e−2 × 6)−1 ≈ 0.448 and there is a 44.8% chance that the null is 
true. This interpretation stands in sharp contrast with the original p-value which cannot be 
viewed as a probability that the null holds. Of course, one drawback is that the level of the 
prior is crucial and solely user-specified. 

The work of Chinco et al. (2020) is very different but shares some key concepts, like 
the introduction of Bayesian priors in regression outputs. They show that coercing the 
predictive regression with an L2 constraint (see the ridge regression in Chapter 5) amounts 
to introducing views on what the true distribution of b is. The stronger the constraint, 
the more the estimate b̂ will be shrunk towards zero. One key idea in their work is the 
assumption of a distribution for the true b across many anomalies. It is assumed to be 
Gaussian and centered. The interesting parameter is the standard deviation: the larger it is, 
the more frequently significant anomalies are discovered. Notably, the authors show that 



 
γ̂k 

tk = √ 
σ̂k/ T 
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this parameter changes through time and we refer to the original paper for more details on 
this subject. 

3.2.4 Fama-Macbeth regressions 

Another detection method was proposed by Fama and MacBeth (1973) through a two-stage 
regression analysis of risk premia. The first stage is a simple estimation of the relationship 
(3.1): the regressions are run on a stock-by-stock basis over the corresponding time series. 
The resulting estimates β̂i,k are then plugged into a second series of regressions: 

KK 
rt,n = γt,0 + γt,kβ̂n,k + εt,n, (3.4) 

k=1 

which are run date-by-date on the cross-section of assets.1 Theoretically, the betas would be 
known and the regression would be run on the βn,k instead of their estimated values. The 
γ̂t,k estimate the premia of factor k at time t. Under suitable distributional assumptions on 
the εt,n, statistical tests can be performed to determine whether these premia are significant 

Tor not. Typically, the statistic on the time-aggregated (average) premia γ̂k = T 
1 

t=1 γ̂t,k: 

is often used in pure Gaussian contexts to assess whether or not the factor is significant (σ̂k 

is the standard deviation of the γ̂t,k). 

We refer to Jagannathan and Wang (1998) and Petersen (2009) for technical discussions on 
the biases and losses in accuracy that can be induced by standard ordinary least squares 
(OLS) estimations. Moreover, as the β̂i,k in the second-pass regression are estimates, a second 
level of errors can arise (the so-called errors in variables). The interested reader will find 
some extensions and solutions in Shanken (1992), Ang et al. (2018) and Jegadeesh et al. 
(2019). 

Below, we perform Fama and MacBeth (1973) regressions on our sample. We start by the 
first pass: individual estimation of betas. We build a dedicated function below and use some 
functional programming to automate the process. 

nb_factors <- 5 # Number of factors 
data_FM <- left_join(data_ml %>% # Join the 2 datasets 

dplyr::select(date, stock_id, R1M_Usd) %>% # (with returns... 
filter(stock_id %in% stock_ids_short), # ... over some stocks) 

FF_factors, 
by = "date") %>% 

mutate(R1M_Usd = lag(R1M_Usd)) %>% # Lag returns 
na.omit() %>% # Remove missing points 
spread(key = stock_id, value = R1M_Usd) 

models <- lapply(paste0("`", stock_ids_short, 
'` ~ MKT_RF + SMB + HML + RMW + CMA'), # Model spec 

1Originally, Fama and MacBeth (1973) work with the market beta only: rt,n = αn + βnrt,M + �t,n and 
the second pass included nonlinear terms: rt,n = γn,0 + γt,1β̂n + γt,2β̂2 + γt,3ŝn + ηt,n, where the ŝn aren 
risk estimates for the assets that are not related to the betas. It is then possible to perform asset pricing 
tests to infer some properties. For instance, test whether betas have a linear influence on returns or not 
(E[γt,2] = 0), or test the validity of the CAPM (which implies E[γt,0] = 0). 
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TABLE 3.2: Sample of beta values (row numbers are stock IDs). 

1 
3 
4 
7 
9 
11 

Constant 

0.008 
-0.002 
0.005 
0.006 
0.005 
0.000 

MKT_RF 

1.438 
0.791 
0.364 
0.414 
0.810 
0.937 

SMB 

0.525 
1.084 
0.305 
0.682 
0.682 
0.120 

HML 

0.567 
0.854 

-0.072 
0.284 
1.047 
0.494 

RMW 

1.006 
0.220 
0.589 
0.294 
0.009 

-0.247 

CMA 

-0.301 
-0.423 
0.267 
0.119 
0.147 
0.085 

TABLE 3.3: Sample of reformatted beta values (ready for regression). 

MKT_RF SMB HML RMW CMA 2000-01-31 2000-02-29 2000-03-31 

1 1.438 0.525 0.567 1.006 -0.301 -0.036 0.263 0.031 
3 0.791 1.084 0.854 0.220 -0.423 0.077 -0.024 0.018 
4 0.364 0.305 -0.072 0.589 0.267 -0.016 0.000 0.153 
7 0.414 0.682 0.284 0.294 0.119 -0.009 0.027 0.000 
9 0.810 0.682 1.047 0.009 0.147 0.032 0.076 -0.025 

11 0.937 0.120 0.494 -0.247 0.085 0.144 0.258 0.049 

function(f){ lm(as.formula(f), data = data_FM, # Call lm(.) 
na.action="na.exclude") %>% 

summary() %>% # Gather the output 
"$"(coef) %>% # Keep only coefs 
data.frame() %>% # Convert to dataframe 
dplyr::select(Estimate)} # Keep the estimates 

) 
betas <- matrix(unlist(models), ncol = nb_factors + 1, byrow = T) %>% # Extract the betas 

data.frame(row.names = stock_ids_short) # Format: row names 
colnames(betas) <- c("Constant", "MKT_RF", "SMB", "HML", "RMW", "CMA") # Format: col names 

In the table, MKT_RF is the market return minus the risk free rate. The corresponding 
coefficient is often referred to as the beta, especially in univariate regressions. We then 
reformat these betas from Table 3.2 to prepare the second pass. Each line corresponds to 
one asset: the first 5 columns are the estimated factor loadings and the remaining ones are 
the asset returns (date by date). 

loadings <- betas %>% # Start from loadings (betas) 
dplyr::select(-Constant) %>% # Remove constant 
data.frame() # Convert to dataframe 

ret <- returns %>% # Start from returns 
dplyr::select(-date) %>% # Keep the returns only 
data.frame(row.names = returns$date) %>% # Set row names 
t() # Transpose 

FM_data <- cbind(loadings, ret) # Aggregate both 

We observe that the values of the first column (market betas) revolve around one, which is 
what we would expect. Finally, we are ready for the second round of regressions. 

models <- lapply(paste("`", returns$date, "`", ' ~ MKT_RF + SMB + HML + RMW + CMA', sep = ""), 
function(f){ lm(as.formula(f), data = FM_data) %>% # Call lm(.) 



24 3 Factor investing and asset pricing anomalies 

TABLE 3.4: Sample of gamma (premia) values. 

Constant MKT_RF SMB HML RMW CMA 

2000-01-31 
2000-02-29 
2000-03-31 
2000-04-30 
2000-05-31 

-0.031 
0.020 
0.007 
0.127 
0.042 

0.037 
0.081 

-0.011 
-0.132 
-0.005 

0.227 
-0.134 
-0.016 
-0.104 
0.075 

-0.157 
0.050 
0.054 
0.088 

-0.113 

-0.276 
0.089 
0.036 
0.117 

-0.080 

0.044 
-0.027 
0.039 

-0.002 
-0.045 

2000-06-30 0.028 -0.029 -0.019 0.054 0.045 0.017 

summary() %>% # Gather the output 
"$"(coef) %>% # Keep only the coefs 
data.frame() %>% # Convert to dataframe 
dplyr::select(Estimate)} # Keep only estimates 

) 
gammas <- matrix(unlist(models), ncol = nb_factors + 1, byrow = T) %>% # Switch to dataframe 

data.frame(row.names = returns$date) # & set row names 
colnames(gammas) <- c("Constant", "MKT_RF", "SMB", "HML", "RMW", "CMA") # Set col names 

Visually, the estimated premia are also very volatile. We plot their estimated values for the
market, SMB and HML factors. 

gammas %>% # Take gammas: 
dplyr::select(MKT_RF, SMB, HML) %>% # Select 3 factors 
bind_cols(date = data_FM$date) %>% # Add date 
gather(key = factor, value = gamma, -date) %>% # Put in tidy shape 
ggplot(aes(x = date, y = gamma, color = factor)) + # Plot 
geom_line() + facet_grid( factor~. ) + # Lines & facets 
scale_color_manual(values=c("#F87E1F", "#0570EA", "#F81F40")) + # Colors 
coord_fixed(980) # Fix x/y ratio 
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FIGURE 3.3: Time series plot of gammas (premia) in Fama-Macbeth regressions.
 

The two spikes at the end of the sample signal potential colinearity issues; two factors seem
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to compensate in an unclear aggregate effect. This underlines the usefulness of penalized 
estimates (see Chapter 5). 

3.2.5 Factor competition 

The core purpose of factors is to explain the cross-section of stock returns. For theoretical 
and practical reasons, it is preferable if redundancies within factors are avoided. Indeed, 
redundancies imply collinearity which is known to perturb estimates (Belsley et al. (2005)). 
In addition, when asset managers decompose the performance of their returns into fac­
tors, overlaps (high absolute correlations) between factors yield exposures that are less 
interpretable; positive and negative exposures compensate each other spuriously. 

A simple protocol to sort out redundant factors is to run regressions of each factor against 
all others: K 

ft,k = ak + δk,j ft,j + Ct,k. (3.5) 
j=k �

The interesting metric is then the test statistic associated to the estimation of ak. If ak is 
significantly different from zero, then the cross-section of (other) factors fails to explain 
exhaustively the average return of factor k. Otherwise, the return of the factor can be 
captured by exposures to the other factors and is thus redundant. 

One mainstream application of this technique was performed in Fama and French (2015), in 
which the authors show that the HML factor is redundant when taking into account four 
other factors (Market, SMB, RMW and CMA). Below, we reproduce their analysis on an 
updated sample. We start our analysis directly with the database maintained by Kenneth 
French. 

We can run the regressions that determine the redundancy of factors via the procedure 
defined in Equation (3.5). 

factors <- c("MKT_RF", "SMB", "HML", "RMW", "CMA") 
models <- lapply(paste(factors, ' ~ MKT_RF + SMB + HML + RMW + CMA-',factors), 
function(f){ lm(as.formula(f), data = FF_factors) %>% # Call lm(.) 

summary() %>% # Gather the output 
"$"(coef) %>% # Keep only the coefs 
data.frame() %>% # Convert to dataframe 
filter(rownames(.) == "(Intercept)") %>% # Keep only the Intercept 
dplyr::select(Estimate,`Pr...t..`)} # Keep the coef & p-value 

) 
alphas <- matrix(unlist(models), ncol = 2, byrow = T) %>% # Switch from list to dataframe 

data.frame(row.names = factors) 
# alphas # To see the alphas (optional) 

We obtain the vector of α values from Equation (3.5). Below, we format these figures along 
with p-value thresholds and export them in a summary table. The significance levels of 
coefficients is coded as follows: 0 < (∗ ∗ ∗) < 0.001 < (∗∗) < 0.01 < (∗) < 0.05. 

results <- matrix(NA, nrow = length(factors), ncol = length(factors) + 1) # Coefs 
signif <- matrix(NA, nrow = length(factors), ncol = length(factors) + 1) # p-values 
for(j in 1:length(factors)){ 

form <- paste(factors[j], 
' ~ MKT_RF + SMB + HML + RMW + CMA-',factors[j]) # Build model 

fit <- lm(form, data = FF_factors) %>% summary() # Estimate model 
coef <- fit$coefficients[,1] # Keep coefficients 
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TABLE 3.5: Factor competition among the Fama and French (2015) five factors. The 
sample starts in 1963-07 and ends in 2020-03. The regressions are run on monthly returns. 

Dep. Variable Intercept MKT_RF SMB HML RMW CMA 

MKT_RF 0.008 (***) NA 0.258 (***) 0.104 -0.368 (***) -0.911 (***) 
SMB 0.003 (*) 0.131 (***) NA 0.072 -0.43 (***) -0.127 
HML 0 0.028 0.038 NA 0.148 (***) 1.02 (***) 
RMW 0.004 (***) -0.096 (***) -0.219 (***) 0.143 (***) NA -0.287 (***) 
CMA 0.002 (***) -0.11 (***) -0.03 0.456 (***) -0.133 (***) NA 

p_val <- fit$coefficients[,4] # Keep p-values 
results[j,-(j+1)] <- coef # Fill matrix 
signif[j,-(j+1)] <- p_val 

} 
signif[is.na(signif)] <- 1 # Kick out NAs 
results <- results %>% round(3) %>% data.frame() # Basic formatting 
results[signif<0.001] <- paste(results[signif<0.001]," (***)") # 3 star signif 
results[signif>0.001&signif<0.01] <- # 2 star signif 

paste(results[signif>0.001&signif<0.01]," (**)") 
results[signif>0.01&signif<0.05] <- # 1 star signif 

paste(results[signif>0.01&signif<0.05]," (*)") 
results <- cbind(as.character(factors), results) # Add dep. variable 
colnames(results) <- c("Dep. Variable","Intercept", factors) # Add column names 

We confirm that the HML factor remains redundant when the four others are present in the 
asset pricing model. The figures we obtain are very close to the ones in the original paper 
(Fama and French (2015)), which makes sense, since we only add 5 years to their initial 
sample. 

At a more macro-level, researchers also try to figure out which models (i.e., combinations 
of factors) are the most likely, given the data empirically observed (and possibly given 
priors formulated by the econometrician). For instance, this stream of literature seeks to 
quantify to which extent the 3-factor model of Fama and French (1993) outperforms the 
5 factors in Fama and French (2015). In this direction, De Moor et al. (2015) introduce a 
novel computation for p-values that compare the relative likelihood that two models pass a 
zero-alpha test. More generally, the Bayesian method of Barillas and Shanken (2018) was 
subsequently improved by Chib et al. (2020). 

Lastly, even the optimal number of factors is a subject of disagreement among conclusions 
of recent work. While the traditional literature focuses on a limited number (3-5) of factors, 
more recent research by DeMiguel et al. (2020), He et al. (2020), Kozak et al. (2019) and 
Freyberger et al. (2020) advocates the need to use at least 15 or more (in contrast, Kelly 
et al. (2019) argue that a small number of latent factors may suffice). Green et al. (2017) 
even find that the number of characteristics that help explain the cross-section of returns 
varies in time. 

3.2.6 Advanced techniques 

The ever increasing number of factors combined to their importance in asset management 
has led researchers to craft more subtle methods in order to “organize” the so-called factor 
zoo and, more importantly, to detect spurious anomalies and compare different asset pricing 
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model specifications. We list a few of them below. - Feng et al. (2020) combine LASSO 
selection with Fama-MacBeth regressions to test if new factor models are worth it. They 
quantify the gain of adding one new factor to a set of predefined factors and show that many 
factors reported in papers published in the 2010 decade do not add much incremental value; 
- Harvey and Liu (2019a) (in a similar vein) use bootstrap on orthogonalized factors. They 
make the case that correlations among predictors is a major issue and their method aims at 
solving this problem. Their lengthy procedure seeks to test if maximal additional contribution 
of a candidate variable is significant; 
- Fama and French (2018) compare asset pricing models through squared maximum Sharpe 
ratios; 
- Giglio and Xiu (2019) estimate factor risk premia using a three-pass method based on 
principal component analysis; 
- Pukthuanthong et al. (2018) disentangle priced and non-priced factors via a combination 
of principal component analysis and Fama and MacBeth (1973) regressions; 
- Gospodinov et al. (2019) warn against factor misspecification (when spurious factors are 
included in the list of regressors). Traded factors (resp. macro-economic factors) seem more 
likely (resp. less likely) to yield robust identifications (see also Bryzgalova (2019)). 

There is obviously no infallible method, but the number of contributions in the field highlights 
the need for robustness. This is evidently a major concern when crafting investment decisions 
based on factor intuitions. One major hurdle for short-term strategies is the likely time-
varying feature of factors. We refer for instance to Ang and Kristensen (2012) and Cooper 
and Maio (2019) for practical results and to Gagliardini et al. (2016) and Ma et al. (2020) 
for more theoretical treatments (with additional empirical results). 

3.3 Factors or characteristics? 

The decomposition of returns into linear factor models is convenient because of its simple 
interpretation. There is nonetheless a debate in the academic literature about whether 
firm returns are indeed explained by exposure to macro-economic factors or simply by 
the characteristics of firms. In their early study, Lakonishok et al. (1994) argue that one 
explanation of the value premium comes from incorrect extrapolation of past earning 
growth rates. Investors are overly optimistic about firms subject to recent profitability. 
Consequently, future returns are (also) driven by the core (accounting) features of the firm. 
The question is then to disentangle which effect is the most pronounced when explaining 
returns: characteristics versus exposures to macro-economic factors. 

In their seminal contribution on this topic, Daniel and Titman (1997) provide evidence in 
favour of the former (two follow-up papers are Daniel et al. (2001a) and Daniel and Titman 
(2012)). They show that firms with high book-to-market ratios or small capitalizations 
display higher average returns, even if they are negatively loaded on the HML or SMB 
factors. Therefore, it seems that it is indeed the intrinsic characteristics that matter, and 
not the factor exposure. For further material on characteristics’ role in return explanation or 
prediction, we refer to the following contributions: - Section 2.5.2. in Goyal (2012) surveys 
pre-2010 results on this topic; 
- Chordia et al. (2019) find that characteristics explain a larger proportion of variation in 
estimated expected returns than factor loadings; 
- Kozak et al. (2018) reconcile factor-based explanations of premia to a theoretical model in 
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which some agents’ demands are sentiment driven; 
- Han et al. (2019) show with penalized regressions that 20 to 30 characteristics (out of 
94) are useful for the prediction of monthly returns of US stocks. Their methodology is 
interesting: they regress returns against characteristics to build forecasts and then regress the 
returns on the forecast to assess if they are reliable. The latter regression uses a LASSO-type 
penalization (see Chapter 5) so that useless characteristics are excluded from the model. 
The penalization is extended to elasticnet in Rapach and Zhou (2019). 
- Kelly et al. (2019) and Kim et al. (2019) both estimate models in which factors are 
latent but loadings (betas) and possibly alphas depend on characteristics. Kirby (2020) 
generalizes the first approach by introducing regime-switching. In contrast, Lettau and 
Pelger (2020a) and Lettau and Pelger (2020b) estimate latent factors without any link to 
particular characteristics (and provide large sample asymptotic properties of their methods). 
- In the same vein as Hoechle et al. (2018), Gospodinov et al. (2019) and Bryzgalova (2019) 
and discuss potential errors that arise when working with portfolio sorts that yield long-short 
returns. The authors show that in some cases, tests based on this procedure may be deceitful. 
This happens when the characteristic chosen to perform the sort is correlated with an 
external (unobservable) factor. They propose a novel regression-based approach aimed at 
bypassing this problem. 

More recently and in a separate stream of literature, Koijen and Yogo (2019) have introduced 
a demand model in which investors form their portfolios according to their preferences 
towards particular firm characteristics. They show that this allows them to mimic the 
portfolios of large institutional investors. In their model, aggregate demands (and hence, 
prices) are directly linked to characteristics, not to factors. In a follow-up paper, Koijen et al. 
(2019) show that a few sets of characteristics suffice to predict future returns. They also 
show that, based on institutional holdings from the UK and the US, the largest investors are 
those who are the most influencial in the formation of prices. In a similar vein, Betermier 
et al. (2019) derive an elegant (theoretical) general equilibrium model that generates some 
well-documented anomalies (size, book-to-market). The models of Arnott et al. (2014) and 
Alti and Titman (2019) are also able to theoretically generate known anomalies. Finally, 
in Martin and Nagel (2019), characteristics influence returns via the role they play in the 
predictability of dividend growth. This paper discussed the asymptotic case when the number 
of assets and the number of characteristics are proportional and both increase to infinity. 

3.4 Hot topics: momentum, timing and ESG 

3.4.1 Factor momentum 

A recent body of literature unveils a time series momentum property of factor returns. For 
instance, Gupta and Kelly (2019) report that autocorrelation patterns within these returns 
is statistically significant.2 In the same vein, Arnott et al. (2020) make the case that the 
industry momentum found in Moskowitz and Grinblatt (1999) can in fact be explained by 
this factor momentum. Going even further, Ehsani and Linnainmaa (2019) conclude that 
the original momentum factor is in fact the aggregation of the autocorrelation that can be 
found in all other factors. Given the data obtained on Ken French’s website, we compute 

2Autocorrelation in aggregate/portfolio returns is a widely documented effect since the seminal paper Lo 
and MacKinlay (1990) (see also Moskowitz et al. (2012)). 
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the autocorrelation function (ACF) of factors. We recall that 

ACFk(xt) = E[(xt − x̄)(xt+k − x̄)]. 

library(cowplot) # For stacking plots 
library(forecast) # For autocorrelation function 
acf_SMB <- ggAcf(FF_factors$SMB, lag.max = 10) + labs(title = "") # ACF SMB 
acf_HML <- ggAcf(FF_factors$HML, lag.max = 10) + labs(title = "") # ACF HML 
acf_RMW <- ggAcf(FF_factors$RMW, lag.max = 10) + labs(title = "") # ACF RMW 
acf_CMA <- ggAcf(FF_factors$CMA, lag.max = 10) + labs(title = "") # ACF CMA 
plot_grid(acf_SMB, acf_HML, acf_RMW, acf_CMA, # Plot 

labels = c('SMB', 'HML', 'RMW', 'CMA')) 
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FIGURE 3.4: Autocorrelograms of common factor portfolios. 

Of the four chosen series, only the size factor is not significantly autocorrelated at the first 
order. 

3.4.2 Factor timing 

Given the abundance of evidence of the time-varying nature of factor premia, it is legitimate 
to wonder if it is possible to predict when factor will perform well or badly. The evidence on 
the effectiveness of timing is diverse: positive for Greenwood and Hanson (2012), Hodges 
et al. (2017), Hasler et al. (2019), Haddad et al. (2020) and Lioui and Tarelli (2020), negative 
for Asness et al. (2017) and mixed for Dichtl et al. (2019). There is no consensus on which 
predictors to use (general macroeconomic indicators in Hodges et al. (2017), stock issuances 
versus repurchases in Greenwood and Hanson (2012), and aggregate fundamental data in 
Dichtl et al. (2019)). In ML-based factor investing, it is possible to resort to more granularity 
by combining firm-specific attributes to large-scale economic data as we explain in Section 
4.7.2. 
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3.4.3 The green factors 

The demand for ethical financial products has sharply risen during the 2010 decade, leading 
to the creation of funds dedicated to socially responsible investing (SRI - see Camilleri 
(2020)). Though this phenomenon is not really new (Schueth (2003), Hill et al. (2007)), its 
acceleration has prompted research about whether or not characteristics related to ESG 
criteria (environment, social, governance) are priced. Dozens and even possibly hundreds of 
papers have been devoted to this question, but no consensus has been reached. More and 
more, researchers study the financial impact of climate change (see Bernstein et al. (2019), 
Hong et al. (2019) and Hong et al. (2020)) and the societal push for responsible corporate 
behavior (Fabozzi (2020), Kurtz (2020)). We gather below a very short list of papers that 
suggests conflicting results: 

•	 favorable: ESG investing works (Kempf and Osthoff (2007), Cheema-Fox et al. (2020)), 
can work (Nagy et al. (2016), Alessandrini and Jondeau (2020)), or can at least be 
rendered efficient (Branch and Cai (2012)). A large meta-study reports overwhelming 
favorable results (Friede et al. (2015)), but of course, they could well stem from the 
publication bias towards positive results. 

•	 unfavorable: Ethical investing is not profitable according to Adler and Kritzman (2008) 
and Blitz and Swinkels (2020). An ESG factor should be long unethical firms and short 
ethical ones (Lioui (2018)). 

•	 mixed: ESG investing may be beneficial globally but not locally (Chakrabarti and Sen 
(2020)). Portfolios relying on ESG screening do not significantly outperform those with no 
screening but are subject to lower levels of volatility (Gibson et al. (2020), Gougler and 
Utz (2020)). As is often the case, the devil is in the details, and results depend on whether 
to use E, S or G (Bruder et al. (2019)). 

On top of these contradicting results, several articles point towards complexities in the 
measurement of ESG. Depending on the chosen criteria and on the data provider, results 
can change drastically (see Galema et al. (2008), Berg et al. (2020) and Atta-Darkua et al. 
(2020)). 

We end this short section by noting that of course ESG criteria can directly be integrated 
into ML model, as is for instance done in de Franco et al. (2020). 

3.5 The links with machine learning 

Given the exponential increase in data availability, the obvious temptation of any asset 
manager is to try to infer future returns from the abundance of attributes available at the 
firm level. We allude to classical data like accounting ratios and to alternative data, such as 
sentiment. This task is precisely the aim of Machine Learning. Given a large set of predictor 
variables (X), the goal is to predict a proxy for future performance y through a model of 
the form (2.1). 

Some attempts toward this direction have already been made (e.g., Brandt et al. (2009), 
Hjalmarsson and Manchev (2012), Ammann et al. (2016), DeMiguel et al. (2020)), but not 
with any ML intent or focus originally. In retrospect, these approaches do share some links 
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with ML tools. The general formulation is the following. At time T , the agent or investor 
seeks to solve the following program:     

max ET [u(rp,T +1)] = max ET u (w̄T + xT θT )� rT +1 , 
θT	 θT 

	

where u is some utility function and rp,T +1 = (w̄T + xT θT )� rT +1 is the return of the 
portfolio, which is defined as a benchmark w̄T plus some deviations from this benchmark 
that are a linear function of features xT θT . The above program may be subject to some 
external constraints (e.g., to limit leverage). 

In practice, the vector θT must be estimated using past data (from T − τ to T − 1): the 
agent seeks the solution of 

on a sample of size τ where NT is the number of asset in the universe. The above formulation 
can be viewed as a learning task in which the parameters are chosen such that the reward 
(average return) is maximized. 

3.5.1 A short list of recent references 

Independent of a characteristics-based approach, ML applications in finance have blossomed, 
initially working with price data only and later on integrating firm characteristics as predictors. 
We cite a few references below, grouped by methodological approach: 

•	 penalized quadratic programming: Goto and Xu (2015), Ban et al. (2016) and Perrin and 
Roncalli (2019), 

•	 regularized predictive regressions: Rapach et al. (2013) and Chinco et al. (2019a), 
•	 support vector machines: Cao and Tay (2003) (and the references therein), 
•	 model comparison and/or aggregation: Kim (2003), Huang et al. (2005), Matías and 

Reboredo (2012), Reboredo et al. (2012), Dunis et al. (2013), Gu et al. (2020b) and Guida 
and Coqueret (2018b). The latter two more recent articles work with a large cross-section 
of characteristics. 

We provide more detailed lists for tree-based methods, neural networks and reinforcement 
learning techniques in Chapters 6, 7 and 16, respectively. Moreover, we refer to Ballings 
et al. (2015) for a comparison of classifiers and to Henrique et al. (2019) and Bustos and 
Pomares-Quimbaya (2020) for surveys on ML-based forecasting techniques. 

3.5.2 Explicit connections with asset pricing models 

The first and obvious link between factor investing and asset pricing is (average) return 
prediction. The main canonical academic reference is Gu et al. (2020b). Let us first write 
the general equation and then comment on it: 

rt+1,n = g(xt,n) + Ct+1.	 (3.7) 

The interesting discussion lies in the differences between the above model and that of 
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Equation (3.1). The first obvious difference is the introduction of the nonlinear function g: 
indeed, there is no reason (beyond simplicity and interpretability) why we should restrict the 
model to linear relationships. One early reference for nonlinearities in asset pricing kernels is 
Bansal and Viswanathan (1993). 

More importantly, the second difference between (3.7) and (3.1) is the shift in the time index. 
Indeed, from an investor’s perspective, the interest is to be able to predict some information 
about the structure of the cross-section of assets. Explaining asset returns with synchronous 
factors is not useful because the realization of factor values is not known in advance. Hence, 
if one seeks to extract value from the model, there needs to be a time interval between 
the observation of the state space (which we call xt,n) and the occurrence of the returns. 
Once the model ĝ is estimated, the time-t (measurable) value g(xt,n) will give a forecast for 
the (average) future returns. These predictions can then serve as signals in the crafting of 
portfolio weights (see Chapter 12 for more on that topic). 

While most studies do work with returns on the l.h.s. of (3.7), there is no reason why other 
indicators should not be used. Returns are straightforward and simple to compute, but they 
could very well be replaced by more sophisticated metrics, like the Sharpe ratio, for instance. 
The firms’ features would then be used to predict a risk-adjusted performance rather than 
simple returns. 

Beyond the explicit form of Equation (3.7), several other ML-related tools can also be used 
to estimate asset pricing models. This can be achieved in several ways, some of which we 
list below. 

First, one mainstream problem in asset pricing is to characterize the stochastic discount 
factor (SDF) Mt, which satisfies Et[Mt+1(rt+1,n − rt+1,f )] = 0 for any asset n (see Cochrane 
(2009)). This equation is a natural playing field for the generalized method of moment 
(Hansen (1982)): Mt must be such that 

E[Mt+1Rt+1,ng(Vt)] = 0, (3.8) 

where the instrumental variables Vt are Ft-measurable (i.e., are known at time t) and the 
capital Rt+1,n denotes the excess return of asset n. In order to reduce and simplify the 
estimation problem, it is customary to define the SDF as a portfolio of assets (see chapter 
3 in Back (2010)). In Chen et al. (2020), the authors use a generative adversarial network 
(GAN, see Section 7.6.1) to estimate the weights of the portfolios that are the closest to 
satisfy (3.8) under a strongly penalizing form. 

A second approach is to try to model asset returns as linear combinations of factors, just as 
in (3.1). We write in compact notation 

+ β� rt,n = αn t,nft + Ct,n, 

and we allow the loadings βt,n to be time-dependent. The trick is then to introduce the 
firm characteristics in the above equation. Traditionally, the characteristics are present in 
the definition of factors (as in the seminal definition of Fama and French (1993)). The 
decomposition of the return is made according to the exposition of the firm’s return to these 
factors constructed according to market size, accounting ratios, past performance, etc. Given 
the exposures, the performance of the stock is attributed to particular style profiles (e.g., 
small stock, or value stock, etc.). 

Habitually, the factors are heuristic portfolios constructed from simple rules like thresholding. 
For instance, firms below the 1/3 quantile in book-to-market are growth firms and those 
above the 2/3 quantile are the value firms. A value factor can then be defined by the 



 
returns (r ) NN1

t  −→ factors (ft = NN1(rt)) 
�
−→ 

haracteristics N returns (rt)
c  (x N2

t−1) −→ loadings (βt =−1  NN2(xt−1)) 

A simple autoencoder would consist of only the first line of the model. This specification is 
discussed in more details in Section 7.6.2. 

As a conclusion of this chapter, it appears undeniable that the intersection between the 
two fields of asset pricing and machine learning offers a rich variety of applications. The 
literature is already exhaustive and it is often hard to disentangle the noise from the great 
ideas in the continuous flow of publications on these topics. Practice and implementation is 
the only way forward to extricate value from hype. This is especially true because agents 

3In the same spirit, see also Lettau and Pelger (2020a) and Lettau and Pelger (2020b). 
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long-short portfolio of these two sets, with uniform weights. Note that Fama and French 
(1993) use a more complex approach which also takes market capitalization into account 
both in the weighting scheme and also in the composition of the portfolios. 

One of the advances enabled by machine learning is to automate the construction of the 
factors. It is for instance the approach of Feng et al. (2019). Instead of building the factors 
heuristically, the authors optimize the construction to maximize the fit in the cross-section 
of returns. The optimization is performed via a relatively deep feed-forward neural network 
and the feature space is lagged so that the relationship is indeed predictive, as in Equation 
(3.7). Theoretically, the resulting factors help explain a substantially larger proportion of 
the in-sample variance in the returns. The prediction ability of the model depends on how 
well it generalizes out-of-sample. 

A third approach is that of Kelly et al. (2019) (though the statistical treatment is not 
machine learning per se).3 Their idea is the opposite: factors are latent (unobserved) and 
it is the betas (loadings) that depend on the characteristics. This allows many degrees of 
freedom because in rt,n = αn + (βt,n(xt−1,n))�ft + Ct,n, only the characteristics xt−1,n are 
known and both the factors ft and the functional forms βt,n(·) must be estimated. In their 
article, Kelly et al. (2019) work with a linear form, which is naturally more tractable. 

Lastly, a fourth approach (introduced in Gu et al. (2020a)) goes even further and combines 
two neural network architectures. The first neural network takes characteristics xt−1 as 
inputs and generates factor loadings βt−1(xt−1). The second network transforms returns rt 

into factor values ft(rt) (in Feng et al. (2019)). The aggregate model can then be written: 

rt = βt−1(xt−1)�ft(rt) + Et. (3.9) 

The above specification is quite special because the output (on the l.h.s.) is also present as 
input (in the r.h.s.). In machine learning, autoencoders (see Section 7.6.2) share the same 
property. Their aim, just like in principal component analysis, is to find a parsimonious 
nonlinear representation form for a dataset (in this case, returns). In Equation (3.9), the 
input is rt and the output function is βt−1(xt−1)�ft(rt). The aim is to minimize the difference 
between the two just as is any regression-like model. 

Autoencoders are neural networks which have outputs as close as possible to the inputs 
with an objective of dimensional reduction. The innovation in Gu et al. (2020a) is that the 
pure autoencoder part is merged with a vanilla perceptron used to model the loadings. The 
structure of the neural network is summarized below. 
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often tend to overestimate the role of factors in the allocation decision process of real-world 
investors (see Chinco et al. (2019b) and Castaneda and Sabat (2019)). 

3.6 Coding exercises 

1.	 Compute annual returns of the growth versus value portfolios, that is, the average 
return of firms with above median price-to-book ratio (the variable is called ‘Pb’ 
in the dataset). 

2.	 Same exercise, but compute the monthly returns and plot the value (through 
time) of the corresponding portfolios. 

3.	 Instead of a unique threshold, compute simply sorted portfolios based on quartiles 
of market capitalization. Compute their annual returns and plot them. 



4 

Data preprocessing 

The methods we describe in this chapter are driven by financial applications. For an 
introduction to non-financial data processing, we recommend two references: chapter 3 from 
the general purpose ML book by Boehmke and Greenwell (2019) and the monograph on this 
dedicated subject by Kuhn and Johnson (2019). 

4.1 Know your data 

The first step, as in any quantitative study, is obviously to make sure the data is trustworthy, 
i.e., comes from a reliable provider (a minima). The landscape in financial data provision is 
vast to say the least: some providers are well established (e.g., Bloomberg, Thomson-Reuters, 
Datastream, CRSP, Morningstar), some are more recent (e.g., Capital IQ, Ravenpack) 
and some focus on alternative data niches (see https://alternativedata.org/data­
providers/ for an exhaustive list). Unfortunately, and to the best of our knowledge, no 
study has been published that evaluates a large spectrum of these providers in terms of data 
reliability. 

The second step is to have a look at summary statistics: ranges (minimum and maximum 
values), and averages and medians. Histograms or plots of time series carry of course more 
information but cannot be analyzed properly in high dimensions. They are nonetheless 
sometimes useful to track local patterns or errors for a given stock and/or a particular feature. 
Beyond first order moments, second order quantities (variances and covariances/correlations) 
also matter because they help spot colinearities. When two features are highly correlated, 
problems may arise in some models (e.g., simple regressions, see Section 15.1). 

Often, the number of predictors is so large that it is unpractical to look at these simple 
metrics. A minimal verification is recommended. To further ease the analysis: 

•	 focus on a subset of predictors, e.g., the ones linked to the most common factors 
(market-capitalization, price-to-book or book-to-market, momentum (past returns), 
profitability, asset growth, volatility); 

•	 track outliers in the summary statistics (when the maximum/median or median/minimum 
ratios seem suspicious). 

Below, in Figure 4.1, we show a box plot that illustrates the distribution of correlations 
between features and the one month ahead return. The correlations are computed on a 
date-by-date basis, over the whole cross-section of stocks. They are mostly located close 
to zero, but some dates seem to experience extreme shifts (outliers are shown with black 
circles). The market capitalization has the median which is the most negative while volatility 
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is the only predictor with positive median correlation (this particular example seems to 
refute the low risk anomaly). 

data_ml %>% 
dplyr::select(c(features_short, "R1M_Usd", "date")) %>% # Keep few features, label & date 
group_by(date) %>% # Group: dates! 
summarise_all(funs(cor(.,R1M_Usd))) %>% # Compute correlations 
dplyr::select(-R1M_Usd) %>% # Remove label 
gather(key = Predictor, value = value, -date) %>% # Put in tidy format 
ggplot(aes(x = Predictor, y = value, color = Predictor)) + # Plot 
geom_boxplot(outlier.colour = "black") + coord_flip() + 
theme(aspect.ratio = 0.6) + xlab(element_blank()) 
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FIGURE 4.1: Boxplot of correlations with the 1M forward return (label). 

More importantly, when seeking to work with supervised learning (as we will do most of the 
time), the link of some features with the dependent variable can be further characterized 
by the smoothed conditional average because it shows how the features impact the label. 
The use of the conditional average has a deep theoretical grounding. Suppose there is only 
one feature X and that we seek a model Y = f(X) + error, where variables are real-valued. 
The function f that minimizes the average squared error E[(Y − f(X))2] is the so-called 
regression function (see Section 2.4 in Hastie et al. (2009)): 

f(x) = E[Y |X = x]. (4.1) 

In Figure 4.2, we plot two illustrations of this function when the dependent variable (Y ) is 
the one month ahead return. The first one pertains to the average market capitalization over 
the past year and the second to the volatility over the past year as well. Both predictors have 
been uniformized (see Section 4.4.2 below) so that their values are uniformly distributed 
in the cross-section of assets for any given time period. Thus, the range of features is [0, 1] 
and is shown on the x-axis of the plot. The grey corridors around the lines show 95% level 
confidence interval for the computation of the mean. Essentially, it is narrow when both (i) 
many data points are available and (ii) these points are not too dispersed. 

data_ml %>% # From dataset: 
ggplot(aes(y = R1M_Usd)) + # Plot 
geom_smooth(aes(x = Mkt_Cap_12M_Usd, color = "Market Cap")) + # Cond. Exp. Mkt_cap 
geom_smooth(aes(x = Vol1Y_Usd, color = "Volatility")) + # Cond. Exp. Vol 
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scale_color_manual(values=c("#F87E1F", "#0570EA")) + # Change color 
coord_fixed(10) + # Change x/y ratio 
labs(color = "Predictor") + xlab(element_blank()) 

FIGURE 4.2: Conditional expectations: average returns as smooth functions of features. 

The two variables have a close to monotonic impact on future returns. Returns, on average, 
decrease with market capitalization (thereby corroborating the so-called size effect). The 
reverse pattern is less pronounced for volatility: the curve is rather flat for the first half 
of volatility scores and progressively increases, especially over the last quintile of volatility 
values (thereby contradicting the low-volatility anomaly). 

One important empirical property of features is autocorrelation (or absence thereof). A 
high level of autocorrelation for one predictor makes it plausible to use simple imputation 
techniques when some data points are missing. But autocorrelation is also important when 
moving towards prediction tasks and we discuss this issue shortly below in Section 4.6. 
In Figure 4.3, we build the histogram of autocorrelations, computed stock-by-stock and 
feature-by-feature. 

autocorrs <- data_ml %>% # From dataset: 
dplyr::select(c("stock_id", features)) %>% # Keep ids & features 
gather(key = feature, value = value, -stock_id) %>% # Put in tidy format 
group_by(stock_id, feature) %>% # Group 
summarize(acf = acf(value, lag.max = 1, plot = FALSE)$acf[2]) # Compute ACF 

autocorrs %>% ggplot(aes(x = acf)) + xlim(-0.1,1) + # Plot 
geom_histogram(bins = 60) 
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FIGURE 4.3: Histogram of sample feature autocorrelations. 

Given the large number of values to evaluate, the above chunk is quite time-consuming. The 
output shows that predictors are highly autocorrelated: most of them have a first order 
autocorrelation above 0.80. 

4.2 Missing data 

Similarly to any empirical discipline, portfolio management is bound to face missing data 
issues. The topic is well known and several books detail solutions to this problem (e.g., 
Allison (2001), Enders (2010), Little and Rubin (2014) and Van Buuren (2018)). While 
researchers continuously propose new methods to cope with absent points (Honaker and 
King (2010) or Che et al. (2018) to cite but a few), we believe that a simple, heuristic 
treatment is usually sufficient as long as some basic cautious safeguards are enforced. 

First of all, there are mainly two ways to deal with missing data: removal and imputation. 
Removal is agnostic but costly, especially if one whole instance is eliminated because of only 
one missing feature value. Imputation is often preferred but relies on some underlying and 
potentially erroneous assumption. 

A simplified classification of imputation is the following: 

•	 A basic imputation choice is the median (or mean) of the feature for the stock over the 
past available values. If there is a trend in the time series, this will nonetheless alter the 
trend. Relatedly, this method can be forward-looking, unless the training and testing sets 
are treated separately. 

•	 In time series contexts with views towards backtesting, the most simple imputation comes 
from previous values: if xt is missing, replace it with xt−1. This makes sense most of the 
time because past values are all that is available and are by definition backward-looking. 
However, in some particular cases, this may be a very bad choice (see words of caution 
below). 
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•	 Medians and means can also be computed over the cross-section of assets. This roughly 
implies that the missing feature value will be relocated in the bulk of observed values. 
When many values are missing, this creates an atom in the distribution of the feature and 
alters the original distribution. One advantage is that this imputation is not forward-looking. 

•	 Many techniques rely on some modelling assumptions for the data generating process. 
We refer to nonparametric approaches (Stekhoven and Bühlmann (2011) and Shah et al. 
(2014), which rely on random forests, see Chapter 6), Bayesian imputation (Schafer 
(1999)), maximum likelihood approaches (Enders (2001), Enders (2010)), interpolation 
or extrapolation and nearest neighbor algorithms (García-Laencina et al. (2009)). More 
generally, the four books cited at the begining of the subsection detail many such imputation 
processes. Advanced techniques are much more demanding computationally. 

A few words of caution: 

•	 Interpolation should be avoided at all cost. Accounting values or ratios that are released 
every quarter must never be linearly interpolated for the simple reason that this is 
forward-looking. If numbers are disclosed in January and April, then interpolating 
February and March requires the knowledge of the April figure, which, in live trading will 
not be known. Resorting to past values is a better way to go. 

•	 Nevertheless, there are some feature types for which imputation from past values should be 
avoided. First of all, returns should not be replicated. By default, a superior choice is to set 
missing return indicators to zero (which is often close to the average or the median). A good 
indicator that can help the decision is the persistence of the feature through time. If it is 
highly autocorrelated (and the time series plot create a smooth curve, like for market capi­
talization), then imputation from the past can make sense. If not, then it should be avoided. 

•	 There are some cases that can require more attention. Let us consider the following 
fictitious sample of dividend yield: 

TABLE 4.1: Challenges with chronological imputation. 

Date Original yield Replacement value 

2015-02 
2015-03 
2015-04 
2015-05 
2015-06 

NA 
0.02 
NA 
NA 
NA 

preceding (if it exists) 
untouched (none) 
0.02 (previous) 
0.02 (previous) 
<= Problem! 

In this case, the yield is released quarterly, in March, June, September, etc. But in June, the 
value is missing. The problem is that we cannot know if it is missing because of a genuine 
data glitch, or because the firm simply did not pay any dividends in June. Thus, imputation 
from past value may be erroneous here. There is no perfect solution but a decision must 
nevertheless be taken. For dividend data, three options are: 

1)	 Keep the previous value. In R, the function na.locf() from the zoo package is 
incredibly efficient for this task. 

2)	 Extrapolate from previous observations (this is very different from interpolation): 
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for instance, evaluate a trend on past data and pursue that trend. 

3)	 Set the value to zero. This is tempting but may be sub-optimal due to dividend 
smoothing practices from executives (see for instance Leary and Michaely (2011) 
and Chen et al. (2012) for details on the subject). For persistent time series, the 
first two options are probably better. 

Tests can be performed to evaluate the relative performance of each option. It is also 
important to remember these design choices. There are so many of them that they are easy 
to forget. Keeping track of them is obviously compulsory. In the ML pipeline, the scripts 
pertaining to data preparation are often key because they do not serve only once! 

4.3 Outlier detection 

The topic of outlier detection is also well documented and has its own surveys (Hodge and 
Austin (2004), Chandola et al. (2009) and Gupta et al. (2014)) and a few dedicated books 
(Aggarwal (2013) and Rousseeuw and Leroy (2005), though the latter is very focused on 
regression analysis). 

Again, incredibly sophisticated methods may require a lot of efforts for possibly limited gain. 
Simple heuristic methods, as long as they are documented in the process, may suffice. They 
often rely on ‘hard’ thresholds: 

•	 for one given feature (possibly filtered in time), any point outside the interval [µ − mσ, µ + 
mσ] can be deemed an outlier. Here µ is the mean of the sample and σ the standard 
deviation. The multiple value m usually belongs to the set {3, 5, 10}, which is of course 
arbitrary. 

•	 likewise, if the largest value is above m times the second-to-largest, then it can also be 
classified as an outlier (the same reasoning applied for the other side of the tail). 

•	 finally, for a given small threshold q, any value outside the [q, 1 − q] quantile range can be 
considered outliers. 

(q)This latter idea was popularized by winsorization. Winsorizing amounts to setting to x

all values below x(q) and to x(1−q) all values above x(1−q). The winsorized variable x̃ is:
 ⎧ (q) (1−q)]⎨ xi if xi ∈ [x , x (unchanged) 

(q) (q)x̃i = x if xi < x	 . 
(1−q) (1−q)	 

x if xi > x
⎩

The range for q is usually (0.5%, 5%) with 1% and 2% being the most often used. 

The winsorization stage must be performed on a feature-by-feature and a date-by-date 
basis. However, keeping a time series perspective is also useful. For instance, a $800B 
market capitalization may seems out of range, except when looking at the history of Apple’s 
capitalization. 

We conclude this subsection by recalling that true outliers (i.e., extreme points that are 
not due to data extraction errors) are valuable because they are likely to carry important 
information. 
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4.4 Feature engineering 

Feature engineering is a very important step of the portfolio construction process. Computer 
scientists often refer to the saying “garbage in, garbage out”. It is thus paramount to prevent 
the ML engine of the allocation to be trained on ill-designed variables. We invite the 
interested reader to have a look at the recent work of Kuhn and Johnson (2019) on this 
topic. The (shorter) academic reference is Guyon and Elisseeff (2003). 

4.4.1 Feature selection 

The first step is selection. Given a large set of predictors, it seems a sound idea to filter out 
unwanted or redundant exogenous variables. Heuristically, simple methods include: 

•	 computing the correlation matrix of all features and making sure that no (absolute) value 
is above a threshold (0.7 is a common value) so that redundant variables do not pollute 
the learning engine; 

•	 carrying out a linear regression and removing the non significant variables (e.g., those 
with p-value above 0.05). 

•	 perform a clustering analysis over the set of features and retain only one feature within 
each cluster (see Chapter 15). 

Both these methods are somewhat reductive and overlook nonlinear relationships. Another 
approach would be to fit a decision tree (or a random forest) and retain only the features 
that have a high variable importance. These methods will be developed in Chapter 6 for 
trees and Chapter 13 for variable importance. 

4.4.2 Scaling the predictors 

The premise of the need to pre-process the data comes from the large variety of scales in 
financial data: 

•	 returns are most of the time smaller than one in absolute value; 
•	 stock volatility lies usually between 5% and 80%; 
•	 market capitalization is expressed in million or billion units of a particular currency; 
•	 accounting values as well; 
•	 accounting ratios can have inhomogeneous units; 
•	 synthetic attributes like sentiment also have their idiosyncrasies. 

While it is widely considered that monotonic transformations of the features have a marginal 
impact on prediction outcomes, Galili and Meilijson (2016) show that this is not always the 
case (see also Section 4.8.2). Hence, the choice of normalization may in fact very well matter. 

If we write xi for the raw input and x̃i for the transformed data, common scaling practices 
include: 

•	 standardization: x̃i = (xi − mx)/σx, where mx and σx are the mean and standard 
deviation of x, respectively; 
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•	 min-max rescaling over [0,1]: x̃i = (xi − min(x))/(max(x) − min(x)); 
• min(x)	 min-max rescaling over [-1,1]: xx̃ i

i = 2 − −  max(x)−min(x) 1;
•	 uniformization: x̃i = Fx(xi), where Fx is the empirical c.d.f. of x. In this case, the vector 

x̃ is defined to follow a uniform distribution over [0,1]. 

Sometimes, it is possible to apply a logarithmic transform of variables with both large values 
(market capitalization) and large outliers. The scaling can come after this transformation. 
Obviously, this technique is prohibited for features with negative values. 

It is often advised to scale inputs so that they range in [0,1] before sending them through the 
training of neural networks for instance. The dataset that we use in this book is based on 
variables that have been uniformized: for each point in time, the cross-sectional distribution 
of each feature is uniform over the unit interval. In factor investing, the scaling of features 
must be operated separately for each date and each feature. This point is critical. 
It makes sure that for every rebalancing date, the predictors will have a similar shape and 
do carry information on the cross-section of stocks. 

Uniformization is sometimes presented differently: for a given characteristic and time, 
characteristic values are ranked and the rank is then divided by the number of non-missing 
points. This is done in Freyberger et al. (2020) for example. In Kelly et al. (2019), the 
authors perform this operation but then subtract 0.5 to all features so that their values lie 
in [-0.5,0.5]. 

Scaling features across dates should be proscribed. Take for example the case of market 
capitalization. In the long run (market crashes notwithstanding), this feature increases 
through time. Thus, scaling across dates would lead to small values at the beginning of the 
sample and large values at the end of the sample. This would completely alter and dilute 
the cross-sectional content of the features. 

4.5 Labelling 

4.5.1 Simple labels 

There are several ways to define labels when constructing portfolio policies. Of course, the 
finality is the portfolio weight, but it is rarely considered as the best choice for the label.1 

Usual labels in factor investing are the following: 

•	 raw asset returns; 

•	 future relative returns (versus some benchmark: market-wide index, or sector-based 
portfolio for instance). One simple choice is to take returns minus a cross-sectional mean 
or median; 

•	 the probability of positive return (or of return above a specified threshold); 

1Some methodologies do map firm attributes into final weights, e.g., Brandt et al. (2009) and Ammann 
et al. (2016), but these are outside the scope of the book. 
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•	 the probability of outperforming a benchmark (computed over a given time frame); 

•	 the binary version of the above: YES (outperforming) versus NO (underperforming); 

•	 risk-adjusted versions of the above: Sharpe ratios, information ratios, MAR or CALMAR 
ratios (see Section 12.3). 

When creating binary variables, it is often tempting to create a test that compares returns 
to zero (profitable versus non profitable). This is not optimal because it is very much 
time-dependent. In good times, many assets will have positive returns, while in market 
crashes, few will experience positive returns, thereby creating very unbalanced classes. It 
is a better idea to split the returns in two by comparing them to their time-t median (or 
average). In this case, the indicator is relative and the two classes are much more balanced. 

As we will discuss later in this chapter, these choices still leave room for additional degrees 
of freedom. Should the labels be rescaled, just like features are processed? What is the best 
time horizon on which to compute performance metrics? 

4.5.2 Categorical labels 

In a typical ML analysis, when y is a proxy for future performance, the ML engine will 
try to minimize some distance between the predicted value and the realized values. For 
mathematical convenience, the sum of squared error (L2 norm) is used because it has the 
simplest derivative and makes gradient descent accessible and easy to compute. 

Sometimes, it can be interesting not to focus on raw performance proxies, like returns or 
Sharpe ratios, but on discrete investment decisions, which can be derived from these proxies. 
A simple example (decision rule) is the following: 

⎧ ⎨	 −1 if r̂t,i < r− 

yt,i = 0 if r̂t,i ∈ [r−, r+] ,	 (4.2)
 +1 if r̂t,i > r+ 

⎩
where r̂t,i is the performance proxy (e.g., returns or Sharpe ratio) and r± are the decision 
thresholds. When the predicted performance is below r−, the decision is -1 (e.g., sell), when 
it is above r+, the decision is +1 (e.g., buy) and when it is in the middle (the model is 
neither very optimistic nor very pessimistic), then the decision is neutral (e.g., hold). The 
performance proxy can of course be relative to some benchmark so that the decision is 
directly related to this benchmark. It is often advised that the thresholds r± be chosen 
such that the three categories are relatively balanced, that is, so that they end up having a 
comparable number of instances. 

In this case, the final output can be considered as categorical or numerical because it belongs 
to an important subgroup of categorical variables: the ordered categorical (ordinal) variables. 
If y is taken as a number, the usual regression tools apply. 

When y is treated as a non-ordered (nominal) categorical variable, then a new layer of 
processing is required because ML tools only work with numbers. Hence, the categories must 
be recoded into digits. The mapping that is most often used is called ‘one-hot encoding’. 
The vector of classes is split in a sparse matrix in which each column is dedicated to one class. 
The matrix is filled with zeros and ones. A one is allocated to the column corresponding to 
the class of the instance. We provide a simple illustration in the table below. 
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TABLE 4.2: Concise example of one-hot encoding. 

Initial data 

Position 
buy 
buy 
hold 
sell 
buy 

Sell 
0 
0 
0 
1 
0 

One-hot encoding 

Hold 
0 
0 
1 
0 
0 

Buy 
1 
1 
0 
0 
1 

In classification tasks, the output has a larger dimension. For each instance, it gives the 
probability of belonging to each class assigned by the model. As we will see in Chapters 6 
and 7, this is easily handled via the softmax function. 

From the standpoint of allocation, handling categorical predictions is not necessarily easy. 
For long-short portfolios, plus or minus one signals can provide the sign of the position. For 
long-only portfolio, two possible solutions: (i) work with binary classes (in versus out of the 
portfolio) or (ii) adapt weights according to the prediction: zero weight for a -1 prediction, 
0.5 weight for a 0 prediction and full weight for a +1 prediction. Weights are then of course 
normalized so as to comply with the budget constraint. 

4.5.3 The triple barrier method 

We conclude this section with an advanced labelling technique mentioned in De Prado 
(2018). The idea is to consider the full dynamics of a trading strategy and not a simple 
performance proxy. The rationale for this extension is that often money managers implement 
P&L triggers that cash in when gains are sufficient or opt out to stop their losses. Upon 
inception of the strategy, three barriers are fixed (see Figure 4.4): 

•	 one above the current level of the asset (magenta line), which measures a reasonable 
expected profit; 

•	 one below the current level of the asset (cyan line), which acts as a stop-loss signal to 
prevent large negative returns; 

•	 and finally, one that fixes the horizon of the strategy after which it will be terminated 
(black line). 

If the strategy hits the first (resp. second) barrier, the output is +1 (resp. -1), and if it 
hits the last barrier, the output is equal to zero or to some linear interpolation (between -1 
and +1) that represents the position of the terminal value relative to the two horizontal 
barriers. Computationally, this method is much more demanding, as it evaluates a whole 
trajectory for each instance. Again, it is nonetheless considered as more realistic because 
trading strategies are often accompanied with automatic triggers such as stop-loss, etc. 
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FIGURE 4.4: Illustration of the triple barrier method. 

4.5.4 Filtering the sample 

One of the main challenges in Machine Learning is to extract as much signal as possible. By 
signal, we mean patterns that will hold out-of-sample. Intuitively, it may seem reasonable to 
think that the more data we gather, the more signal we can extract. This is in fact false in 
all generality because more data also means more noise. Surprisingly, filtering the training 
samples can improve performance. This idea was for example implemented successfully in 
Fu et al. (2018), Guida and Coqueret (2018a) and Guida and Coqueret (2018b). 

In Coqueret and Guida (2020), we investigate why smaller samples may lead to superior 
out-of-sample accuracy for a particular type of ML algorithm: decision trees (see Chapter 
6). We focus on a particular kind of filter: we exclude the labels (e.g., returns) that are not 
extreme and retain the 20% values that are the smallest and the 20% that are the largest 
(the bulk of the distribution is removed). In doing so, we alter the structure of trees in two 
ways: 
- when the splitting points are altered, they are always closer to the center of the distribution 
of the splitting variable (i.e., the resulting clusters are more balanced and possibly more 
robust); 
- the choice of splitting variables is (sometimes) pushed towards the features that have a 
monotonic impact on the label. 
These two properties are desirable. The first reduces the risk of fitting to small groups of 
instances that may be spurious. The second gives more importance to features that appear 
globally more relevant in explaining the returns. However, the filtering must not be too 
intense. If, instead of retaining 20% of each tail of the predictor, we keep just 10%, then the 
loss in signal becomes too severe and the performance deteriorates. 
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4.5.5 Return horizons 

This subsection deals with one of the least debated issues in factor-based machine learning 
models: horizons. Several horizons come into play during the whole ML-driven allocation 
workflow: the horizon of the label, the estimation window (chronological depth of the 
training samples) and the holding periods. One early reference that looks at these aspects 
is the founding academic paper on momentum by Jegadeesh and Titman (1993). The authors 
compute the profitability of portfolios based on the returns over the past J = 3, 6, 9, 12 
months. Four holding periods are tested: K = 3, 6, 9, 12 months. They report: “The most 
successful zero-cost (long-short) strategy selects stocks based on their returns over the previous 
12 months and then holds the portfolio for 3 months.” While there is no machine learning 
whatsoever in this contribution, it is possible that their conclusion that horizons matter may 
also hold for more sophisticated methods. This topic is in fact much discussed, as is shown 
by the continuing debate on the impact of horizons in momentum profitability (see, e.g., 
Novy-Marx (2012), Gong et al. (2015) and Goyal and Wahal (2015)). 

This debate should also be considered when working with ML algorithms. The issues of 
estimation windows and holding periods are mentioned later in the book, in Chapter 12. 
Naturally, in the present chapter, the horizon of the label is the important ingredient. 
Heuristically, there are four possible combinations if we consider only one feature for 
simplicity: 

1. oscillating label and feature; 

2. oscillating label, smooth feature (highly autocorrelated); 

3. smooth label, oscillating feature; 

4. smooth label and feature. 

Of all of these options, the last one is probably preferable because it is more robust, all 
things being equal.2 By all things being equal, we mean that in each case, a model is capable 
of extracting some relevant pattern. A pattern that holds between two slowly moving series 
is more likely to persist in time. Thus, since features are often highly autocorrelated (cf 
Figure 4.3), combining them with smooth labels is probably a good idea. To illustrate how 
critical this point is, we will purposefully use 1-month returns in most of the examples of 
the book and show that the corresponding results are often disappointing. These returns are 
very weakly autocorrelated while 6-month or 12-month returns are much more persistent 
and are better choices for labels. 

Theoretically, it is possible to understand why that may be the case. For simplicity, let 
us assume a single feature x that explains returns r: rt+1 = f(xt) + et+1. If xt is highly 
autocorrelated and the noise embeded in et+1 is not too large, then the two-period ahead 
return (1 + rt+1)(1 + rt+2) − 1 may carry more signal than rt+1 because the relationship with 
xt has diffused and compounded through time. Consequently, it may also be beneficial to 
embed memory considerations directly into the modelling function, as is done for instance in 
Dixon (2020). We discuss some practicalities related to autocorrelations in the next section. 

2This is of course not the case for inference relying on linear models. Memory generates many problems 
and complicates the study of estimators. We refer to Hjalmarsson (2011) and Xu (2020) for theoretical and 
empirical results on this matter. 
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4.6 Handling persistence 

While we have separated the steps of feature engineering and labelling in two different 
subsections, it is probably wiser to consider them jointly. One important property of the 
dataset processed by the ML algorithm should be the consistency of persistence between 
features and labels. Intuitively, the autocorrelation patterns between the label yt,n (future 

performance) and the features (k) xt,n should not be too distant. 

One problematic example is when the dataset is sampled at the monthly frequency (not 
unusual in the money management industry) with the labels being monthly returns and the 
features being risk-based or fundamental attributes. In this case, the label is very weakly 
autocorrelated, while the features are often highly autocorrelated. In this situation, most 
sophisticated forecasting tools will arbitrage between features which will probably result 
in a lot of noise. In linear predictive models, this configuration is known to generate bias 
in estimates (see the study of Stambaugh (1999) and the review by Gonzalo and Pitarakis 
(2018)). 

Among other more technical options, there are two simple solutions when facing this issue: 
either introduce autocorrelation into the label, or remove it from the features. Again, the 
first option is not advised for statistical inference on linear models. Both are rather easy 
econometrically: 

•	 to increase the autocorrelation of the label, compute performance over longer time ranges. 
For instance, when working with monthly data, considering annual or biennial returns will 
do the trick. 

•	 to get rid of autocorrelation, the shortest route is to resort to differences/variations: 
Δ (k) = ( k) (k)

x  x  −x 1 . One advantage of this procedure is that it makes sense, economically: 
variations

t,n t,n t− ,n

 in features may be better drivers of performance, compared to raw levels. 

A mix between persistent and oscillating variables in the feature space is of course possible, 
as long as it is driven by economic motivations. 

4.7 Extensions 

4.7.1 Transforming features 

The feature space can easily be augmented through simple operations. One of them is lagging, 
that is, considering older values of features and assuming some memory effect for their 
impact on the label. This is naturally useful mostly if the features are oscillating (adding 
a layer of memory on persistent features can be somewhat redundant). New variables are 

(k) (k)defined by x̆t,n = xt−1,n. 

In some cases (e.g., insufficient number of features), it is possible to consider ratios or 
products between features. Accounting ratios like price-to-book, book-to-market, debt-to­
equity are examples of functions of raw features that make sense. The gains brought by a 
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larger spectrum of features are not obvious. The risk of overfitting increases, just like in a 
simple linear regression adding variables mechanically increases the R2. The choices must 
make sense, economically. 

Another way to increase the feature space (mentioned above) is to consider variations. 
Variations in sentiment, variations in book-to-market ratio, etc., can be relevant predictors 
because sometimes, the change is more important than the level. In this case, a new predictor 

(k) (k) (k)is x̆ = x − x .t,n t,n t−1,n 

4.7.2 Macro-economic variables 

Finally, we discuss a very important topic. The data should never be separated from the 
context it comes from (its environment). In classical financial terms, this means that a 
particular model is likely to depend on the overarching situation which is often proxied by 
macro-economic indicators. One way to take this into account at the data level is simply to 
multiply the feature by an exogenous indicator zt and in this case, the new predictor is 

(k) (k)
x̆ = zt × x (4.3)t,n t,n 

This technique is used by Gu et al. (2020b) who use 8 economic indicators (plus the original 
predictors (zt = 1)). This increases the feature space ninefold. 

Another route that integrates shifting economic environments is conditional engineering. 
Suppose that labels are coded via formula (4.2). The thresholds can be made dependent on 
some exogenous variable. In times of turbulence, it might be a good idea to increase both 
r+ (buy threshold) and r− (sell threshold) so that the labels become more conservative: it 
takes a higher return to make it to the buy category, while short positions are favored. One 
such example of dynamic thresholding could be 

¯±δ(VIXt−VIX)rt,± = r± × e , (4.4) 

¯where VIXt is the time-t value of the VIX, while VIX is some average or median value. 
When the VIX is above its average and risk seems to be increasing, the thresholds also 
increase. The parameter δ tunes the magnitude of the correction. In the above example, we 
assume r− < 0 < r+. 

4.7.3 Active learning 

We end this section with the notion of active learning. To the best of our knowledge, it is not 
widely used in quantitative investment, but the underlying concept is enlightening, hence we 
dedicate a few paragraphs to this notion for the sake of completeness. 

In general supervised learning, there is sometimes an asymmetry in the ability to gather 
features versus labels. For instance, it is free to have access to images, but the labelling of 
the content of the image (e.g., “a dog”, “a truck”, “a pizza”, etc.) is costly because it requires 
human annotation. In formal terms, X is cheap but the corresponding y is expensive. 

As is often the case when facing cost constraints, an evident solution is greed. Ahead of the 
usual learning process, a filter (often called query) is used to decide which data to label and 
train on (possibly in relationship with the ML algorithm). The labelling is performed by a 
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where the notation f(x; D) is used to highlight the dependence between the model f̂  and 
the dataset D: the model has been trained on D. The first term is irreducible, as it does 
not depend on f̂ . Thus, only the second term is of interest. If we take the average of this 
quantity, taken over all possible values of D: 

  \ \   
If this expression is not too complicated to compute, the learner can query the x that 
minimizes the tradeoff. Thus, on average, this new instance will be the one that yields the 
best learning angle (as measured by the 2L  error). Beyond this approach (which is limited 
because it requires the oracle to label a possibly irrelevant instance), many other criteria 
exist for querying and we refer to section 3 from Settles (2009) for an exhaustive list. 

One final question: is active learning applicable to factor investing? One straightfoward 
answer is that data cannot be annotated by human intervention. Thus, the learners cannot 
simulate their own instances and ask for corresponding labels. One possible option is to 
provide the learner with X but not y and keep only a queried subset of observations with 
the corresponding labels. In spirit, this is close to what is done in Coqueret and Guida (2020) 
except that the query is not performed by a machine but by the human user. Indeed, it is 
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so-called oracle (which/who knows the truth), usually human. This technique that focuses 
on the most informative instances is referred to as active learning. We refer to the surveys 
of Settles (2009) and Settles (2012) for a detailed account of this field (which we briefly 
summarize below). The term active comes from the fact that the learner does not passively 
accept data samples but actively participates in the choices of items it learns from. 

One major dichotomy in active learning pertains to the data source X on which the query is 
based. One obvious case is when the original sample X is very large and not labelled and 
the learner asks for particular instances within this sample to be labelled. The second case is 
when the learner has the ability to simulate/generate its own values xi. This can sometimes 
be problematic if the oracle does not recognize the data that is generated by the machine. 
For instance, if the purpose is to label images of characters and numbers, the learner may 
generate shapes that do not correspond to any letter or digit: the oracle cannot label it. 

In active learning, one key question is, how does the learner choose the instances to be 
labelled? Heuristically, the answer is by picking those observations that maximize learning 
efficiency. In binary classification, a simple criterion is the probability of belonging to one 
particular class. If this probability is far from 0.5, then the algorithm will have no difficulty of 
picking one class (even though it can be wrong). The interesting case is when the probability 
is close to 0.5: the machine may hesitate for this particular instance. Thus, having the oracle 
label it is useful in this case because it helps the learner in a configuration in which it is 
undecided. 

Other methods seek to estimate the fit that can be obtained when including particular (new) 
instances in the training set, and then to optimize this fit. Recalling Section 3.1 in Geman 
et al. (1992) on the variance-bias tradeoff, we have, for a training dataset D and one instance 
x (we omit the bold font for simplicity), 
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shown in this paper that not all observations carry the same amount of signal. Instances 
with ‘average’ label values seem to be on average less informative compared to those with 
extreme label values. 

4.8 Additional code and results 

4.8.1 Impact of rescaling: graphical representation 

We start with a simple illustration of the different scaling methods. We generate an arbitrary 
series and then rescale it. The series is not random so that each time the code chunk is 
executed, the output remains the same. 

Length <- 100 # Length of the sequence 
x <- exp(sin(1:Length)) # Original data 
data <- data.frame(index = 1:Length, x = x) # Data framed into dataframe 
ggplot(data, aes(x = index, y = x)) + geom_bar(stat = "identity") # Plot 
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We define and plot the scaled variables below. 

norm_unif <- function(v){ # This is a function that uniformalises a vector. 
v <- v %>% as.matrix() 
return(ecdf(v)(v)) 

} 

norm_0_1 <- function(v){ # This is a function that uniformalises a vector. 
return((v-min(v))/(max(v)-min(v))) 

} 

data_norm <- data.frame( # Formatting the data 
index = 1:Length, # Index of point/instance 
standard = (x - mean(x)) / sd(x), # Standardisation 
norm_0_1 = norm_0_1(x), # [0,1] reduction 
unif = norm_unif(x)) %>% # Uniformisation 
gather(key = Type, value = value, -index) # Putting in tidy format 

ggplot(data_norm, aes(x = index, y = value, fill = Type)) + # Plot! 
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geom_bar(stat = "identity") +
 
facet_grid(Type~.) # This option creates 3 concatenated graphs to ease comparison
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Finally, we look at the histogram of the newly created variables. 

ggplot(data_norm, aes(x = value, fill = Type)) + geom_histogram(position = "dodge") 
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With respect to shape, the green and red distributions are close to the original one. It is only 
the support that changes: the min/max rescaling ensures all values lie in the [0, 1] interval. In 
both cases, the smallest values (on the left) display a spike in distribution. By construction, 
this spike disappears under the uniformization: the points are evenly distributed over the 
unit interval. 
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TABLE 4.3: Sample data for a toy example. 

firm 

1 
1 
1 
2 
2 
2 
3 
3 
3 

date 

1 
2 
3 
1 
2 
3 
1 
2 
3 

cap 

10 
50 

100 
15 
10 
15 

200 
120 
80 

return 

0.06 
0.01 

-0.06 
-0.03 
0.00 
0.02 

-0.04 
-0.02 
0.00 

cap_0_1 

0.000 
0.364 
1.000 
0.026 
0.000 
0.000 
1.000 
1.000 
0.765 

cap_u 

0.333 
0.667 
1.000 
0.667 
0.333 
0.333 
1.000 
1.000 
0.667 

4.8.2 Impact of rescaling: toy example 

To illustrate the impact of choosing one particular rescaling method,3 we build a simple 
dataset, comprising 3 firms and 3 dates. 

firm <- c(rep(1,3), rep(2,3), rep(3,3)) # Firms (3 lines for each) 
date <- rep(c(1,2,3),3) # Dates 
cap <- c(10, 50, 100, # Market capitalization 

15, 10, 15, 
200, 120, 80) 

return <- c(0.06, 0.01, -0.06, # Return values 
-0.03, 0.00, 0.02, 
-0.04, -0.02,0.00) 

data_toy <- data.frame(firm, date, cap, return) # Aggregation of data 
data_toy <- data_toy %>% # Transformation of data 

group_by(date) %>% 
mutate(cap_0_1 = norm_0_1(cap), cap_u = norm_unif(cap)) 

Let’s briefly comment on this synthetic data. We assume that dates are ordered chronologically 
and far away: each date stands for a year or the beginning of a decade, but the (forward) 
returns are computed on a monthly basis. The first firm is hugely successful and multiplies 
its cap ten times over the periods. The second firm remains stable cap-wise, while the third 
one plummets. If we look at ‘local’ future returns, they are strongly negatively related to 
size for the first and third firms. For the second one, there is no clear pattern. 

Date-by-date, the analysis is fairly similar, though slightly nuanced. 

1.	 On date 1, the smallest firm has the largest return and the two others have 
negative returns. 

2.	 On date 2, the biggest firm has a negative return while the two smaller firms do not. 

3.	 On date 3, returns are decreasing with size. 

While the relationship is not always perfectly monotonous, there seems to be a link between 
size and return and, typically, investing in the smallest firm would be a very good strategy 
with this sample. 

3For a more thorough technical discussion on the impact of feature engineering, we refer to Galili and 
Meilijson (2016). 
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TABLE 4.4: Regression output when the independent var. comes from min-max rescaling 

term estimate std.error statistic p.value 

(Intercept) 0.0162778 0.0137351 1.185121 0.2746390 
cap_0_1 -0.0497032 0.0213706 -2.325777 0.0529421 

TABLE 4.5: Regression output when the indep. var. comes from uniformization 

term estimate std.error statistic p.value 

(Intercept) 0.06 0.0198139 3.028170 0.0191640 
cap_u -0.10 0.0275162 -3.634219 0.0083509 

Now let us look at the output of simple regressions. Below, the package broom is part of the 
tidyverse. It is great to format regression outputs. 

lm(return ~ cap_0_1, data = data_toy) %>% # First regression (min-max rescaling) 
broom::tidy() %>% 
knitr::kable(caption = 'Regression output when the independent var. comes 

from min-max rescaling', booktabs = T) 

lm(return ~ cap_u, data = data_toy) %>% # Second regression (uniformised feature) 
broom::tidy() %>% 
knitr::kable(caption = 'Regression output when the indep. var. comes from uniformization', 

booktabs = T) 

In terms of p-value (last column), the first estimation for the cap coefficient is above 5% 
(in Table 4.4) while the second is below 1% (in Table 4.5). One possible explanation for this 
discrepancy is the standard deviation of the variables. The deviations are equal to 0.47 and 
0.29 for cap_0 and cap_u, respectively. Values like market capitalizations can have very 
large ranges and are thus subject to substantial deviations (even after scaling). Working 
with uniformized variables reduces dispersion and can help solve this problem. 

Note that this is a double-edged sword: while it can help avoid false negatives, it can 
also lead to false positives. 

4.9 Coding exercises 

1.	 The Federal Reserve of Saint Louis (https://fred.stlouisfed.org) hosts 
thousands of time series of economic indicators that can serve as conditioning 
variables. Pick one and apply formula (4.3) to expand the number of predictors. 
If need be, use the function defined above. 

2.	 Create a new categorical label based on formulae (4.4) and (4.2). The time 
series of the VIX can also be retrieved from the Federal Reserve’s website: 
https://fred.stlouisfed.org/series/VIXCLS. 

https://www.fred.stlouisfed.org
https://www.fred.stlouisfed.org
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3.	 Plot the histogram of the R12M_Usd variable. Clearly, some outliers are present. 
Identify the stock with highest value for this variable and determine if the value 
can be correct or not. 



Part II
 

Common supervised algorithms
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5 

Penalized regressions and sparse hedging for minimum
variance portfolios 

In this chapter, we introduce the widespread concept of regularization for linear models. There 
are in fact several possible applications for these models. The first one is straightforward: 
resort to penalizations to improve the robustness of factor-based predictive regressions. The 
outcome can then be used to fuel an allocation scheme. For instance, Han et al. (2019) and 
Rapach and Zhou (2019) use penalized regressions to improve stock return prediction when 
combining forecasts that emanate from individual characteristics. 

Similar ideas can be developed for macroeconomic predictions for instance, as in Uematsu 
and Tanaka (2019). The second application stems from a less known result which originates 
from Stevens (1998). It links the weights of optimal mean-variance portfolios to particular 
cross-sectional regressions. The idea is then different and the purpose is to improve the 
quality of mean-variance driven portfolio weights. We present the two approaches below 
after an introduction on regularization techniques for linear models. 

Other examples of financial applications of penalization can be found in d’Aspremont (2011), 
Ban et al. (2016) and Kremer et al. (2019). In any case, the idea is the same as in the 
seminal paper Tibshirani (1996): standard (unconstrained) optimization programs may lead 
to noisy estimates, thus adding a structuring constraint helps remove some noise (at the 
cost of a possible bias). For instance, Kremer et al. (2019) use this concept to build more 
robust mean-variance (Markowitz (1952)) portfolios and Freyberger et al. (2020) use it to 
single out the characteristics that really help explain the cross-section of equity returns. 

5.1 Penalized regressions 

5.1.1 Simple regressions 

The ideas behind linear models are at least two centuries old (Legendre (1805) is an 
early reference on least squares optimization). Given a matrix of predictors X, we seek to 
decompose the output vector y as a linear function of the columns of X (written Xβ) plus 
an error term E: y = Xβ + E. 

The best choice of β is naturally the one that minimizes the error. For analytical tractability, 
Iit is the sum of squared errors that is minimized: L = E�E = i=1 C

2 
i . The loss L is called 

the sum of squared residuals (SSR). In order to find the optimal β, it is imperative to 
differentiate this loss L with respect to β because the first order condition requires that the 
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gradient be equal to zero: 
∂ ∂ \βL = (y − Xβ)�(y − Xβ) = β�X�Xβ − 2y�Xβ 

∂β ∂β 

= 2X�Xβ − 2X�y 

so that the first order condition \β = 0 is satisfied if 

β ∗ = (X�X)−1X�y, (5.1) 
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which is known as the standard ordinary least squares (OLS) solution of the linear model.
 
If the matrix X has dimensions I × K, then the X�X can only be inverted if the number of
 
rows I is strictly superior to the number of columns K. In some cases, that may not hold;
 
there are more predictors than instances and there is no unique value of β that minimizes
 
the loss. If X�X is nonsingular (or positive definite), then the second order condition ensures
 
that β∗ yields a global minimum for the loss L (the second order derivative of L with respect
 
to β, the Hessian matrix, is exactly X�X).
 

Up to now, we have made no distributional assumption on any of the above quantities.
 
Standard assumptions are the following:
 
- E[y|X] = Xβ: linear shape for the regression function;
 
- E[E|X] = 0: errors are independent of predictors;
 
- E[EE�|X] = σ2I: homoscedasticity - errors are uncorrelated and have identical variance;
 
- the Ci are normally distributed.
 

Under these hypotheses, it is possible to perform statistical tests related to the β̂ coefficients.
 
We refer to chapters 2 to 4 in Greene (2018) for a thorough treatment on linear models as
 
well as to chapter 5 of the same book for details on the corresponding tests.
 

5.1.2 Forms of penalizations 

Penalized regressions have been popularized since the seminal work of Tibshirani (1996). 
The idea is to impose a constraint on the coefficients of the regression, namely that their 
total magnitude be restrained. In his original paper, Tibshirani (1996) proposes to estimate 
the following model (LASSO): 

K 

KKK 

KJ J

yi = βj xi,j + Ci, i = 1, . . . , I, s.t. |βj | < δ, (5.2) 
j=1 j=1 

for some strictly positive constant δ. Under least square minimization, this amounts to solve 
the Lagrangian formulation: 

I J J

⎧ ⎪⎨ 
⎫ ⎪⎬ 

⎞⎛ 2 

min , (5.3)⎝yi − βj xi,j
⎠ + λ |βj |⎪⎩ ⎪⎭β 

i=1 j=1 j=1 

for some value λ > 0 which naturally depends on δ (the lower the δ, the higher the λ: 
the constraint is more binding). This specification seems close to the ridge regression (L2 

regularization), which is in fact anterior to the Lasso: ⎧ ⎪⎨ 
⎫ ⎪⎬ 

⎞⎛ 2 KKKI J J

i=1 j=1 j=1 

βj 
2min , (5.4)⎝yi − ⎠ + λβj xi,j⎪⎩ ⎪⎭β 
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and which is equivalent to estimating the following model 

J JK K 
β2 yi = βj xi,j + Ci, i = 1, . . . , I, s.t. j < δ, (5.5) 

j=1 j=1 

but the outcome is in fact quite different, which justifies a separate treatment. Mechanically, 
as λ, the penalization intensity, increases (or as δ in (5.5) decreases), the coefficients of the 
ridge regression all slowly decrease in magnitude towards zero. In the case of the LASSO, 
the convergence is somewhat more brutal as some coefficients shrink to zero very quickly. 
For λ sufficiently large, only one coefficient will remain nonzero, while in the ridge regression, 
the zero value is only reached asymptotically for all coefficients. We invite the interested 
read to have a look at the survey in Hastie (2020) about all applications of ridge regressions 
in data science with links to other topics like cross-validation and dropout regularization, 
among others. 

To depict the difference between the Lasso and the ridge regression, let us consider the case 
of K = 2 predictors which is shown in Figure 5.1. The optimal unconstrained solution β∗ is 
pictured in red in the middle of the space. The problem is naturally that it does not satisfy 
the imposed conditions. These constraints are shown in light grey: they take the shape of a 
square |β1| + |β2| ≤ δ in the case of the Lasso and a circle β1

2 + β2
2 ≤ δ for the ridge regression. 

In order to satisfy these constraints, the optimization needs to look in the vicinity of β∗ by 
allowing for larger error levels. These error levels are shown as orange ellipsoids in the figure. 
When the requirement on the error is loose enough, one ellipsoid touches the acceptable 
boundary (in grey) and this is where the constrained solution is located. 
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FIGURE 5.1: Schematic view of Lasso (left) versus ridge (right) regressions. 

Both methods work when the number of exogenous variables surpasses that of observations, 
i.e., in the case where classical regressions are ill-defined. This is easy to see in the case of 
the ridge regression for which the OLS solution is simply 

β̂ = (X�X + λIN )−1X�Y. 

The additional term λIN compared to Equation (5.1) ensures that the inverse matrix is 
well-defined whenever λ > 0. As λ increases, the magnitudes of the β̂i decrease, which 
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explains            
coefficients see their values shrink). 

Zou and Hastie (2005) propose to benefit from the best of both worlds when combining both 
penalizations in a convex manner (which they call the elasticnet): 

J	 J JK	 K K 
yi = βj xi,j + Ci, s.t. α |βj | + (1 − α) βj 

2 < δ, i = 1, . . . , N, (5.6) 
j=1	 j=1 j=1 

which is associated to the optimization program ⎧	 ⎫⎛ ⎞ ⎛	 ⎞2⎪	 ⎪⎨ I J	 J J ⎬K K	 K K 
min ⎝yi − + λ |βj | + (1 − α) β2⎠ . (5.7)
β	 

βj xi,j ⎠ ⎝α j 
i=1 j=1	 j=1 j=1 

⎪ ⎪⎩ ⎭

why penalizations are sometimes referred to as shrinkage methods (the estimated

The main advantage of the LASSO compared to the ridge regression is its selection capability. 
Indeed, given a very large number of variables (or predictors), the LASSO will progressively 
rule out those that are the least relevant. The elasticnet preserves this selection ability and 
Zou and Hastie (2005) argue that in some cases, it is even more effective than the LASSO. 
The parameter α ∈ [0, 1] tunes the smoothness of convergence (of the coefficients) towards 
zero. The closer α is to zero, the smoother the convergence. 

5.1.3 Illustrations 

We begin with simple illustrations of penalized regressions. We start with the LASSO. 
The original implementation by the authors is in R, which is practical. The syntax is 
slightly different, compared to usual linear models. The illustrations are run on the whole 
dataset. First, we estimate the coefficients. By default, the function chooses a large array of 
penalization values so that the results for different penalization intensities (λ) can be shown 
immediately. 

library(glmnet) 
y_penalized <- data_ml$R1M_Usd # Dependent variable 
x_penalized <- data_ml %>% # Predictors 

dplyr::select(all_of(features)) %>% as.matrix() 
fit_lasso <- glmnet(x_penalized, y_penalized, alpha = 1) # Model alpha = 1: LASSO 

Once the coefficients are computed, they require some wrangling before plotting. Also, there 
are too many of them, so we only plot a subset of them. 

lasso_res <- summary(fit_lasso$beta) # Extract LASSO coefs 
lambda <- fit_lasso$lambda # Values of the penalisation const 
lasso_res$Lambda <- lambda[lasso_res$j] # Put the labels where they belong 
lasso_res$Feature <- features[lasso_res$i] %>% as.factor() # Add names of variables to output 
lasso_res[1:120,] %>% # Take the first 120 estimates 

ggplot(aes(x = Lambda, y = x, color = Feature)) + # Plot! 
geom_line() + coord_fixed(0.25) + ylab("beta") + # Change aspect ratio of graph 
theme(legend.text = element_text(size = 7)) # Reduce legend font size 

http:coord_fixed(0.25


61 5.1 Penalized regressions 

−0.010

−0.005

0.000

0.005

0.001 0.002 0.003 0.004 0.005
Lambda

be
ta

Feature
Ebit_Oa

Ebit_Ta

Eps

Fcf_Bv

Mkt_Cap_3M_Usd

Mom_11M_Usd

Mom_5M_Usd

Net_Margin

Pb

Pe

Recurring_Earning_Total_Assets

Total_Debt_Capital

Total_Liabilities_Total_Assets

Vol1Y_Usd

Vol3Y_Usd

FIGURE 5.2: LASSO model. The dependent variable is the 1 month ahead return. 

The graph plots the evolution of coefficients as the penalization intensity, λ, increases. For 
some characteristics, like Ebit_Ta (in orange), the convergence to zero is rapid. Other 
variables resist the penalization longer, like Mkt_Cap_3M_Usd, which is the last one to 
vanish. Essentially, this means that at the first order, this variable is an important driver 
of future 1-month returns in our sample. Moreover, the negative sign of its coefficient is 
a confirmation (again, in this sample) of the size anomaly, according to which small firms 
experience higher future returns compared to their larger counterparts. 

Next, we turn to ridge regressions. 

fit_ridge <- glmnet(x_penalized, y_penalized, alpha = 0) # alpha = 0: ridge 
ridge_res <- summary(fit_ridge$beta) # Extract ridge coefs 
lambda <- fit_ridge$lambda # Penalisation const 
ridge_res$Feature <- features[ridge_res$i] %>% as.factor() 
ridge_res$Lambda <- lambda[ridge_res$j] # Set labels right 
ridge_res %>% 

filter(Feature %in% levels(droplevels(lasso_res$Feature[1:120]))) %>% # Keep same features 
ggplot(aes(x = Lambda, y = x, color = Feature)) + ylab("beta") + # Plot! 
geom_line() + scale_x_log10() + coord_fixed(45) + # Aspect ratio 
theme(legend.text = element_text(size = 7)) 

In Figure 5.3, the convergence to zero is much smoother. We underline that the x-axis 
(penalization intensities) have a log-scale. This allows to see the early patterns (close to zero, 
to the left) more clearly. As in the previous figure, the Mkt_Cap_3M_Usd predictor clearly 
dominates, with again large negative coefficients. Nonetheless, as λ increases, its domination 
over the other predictor fades. 

By definition, the elasticnet will produce curves that behave like a blend of the two above 
approaches. Nonetheless, as long as α > 0, the selective property of the LASSO will be 
preserved: some features will see their coefficients shrink rapidly to zero. In fact, the strength 
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FIGURE 5.3: Ridge regression. The dependent variable is the 1 month ahead return. 

of the LASSO is such that a balanced mix of the two penalizations is not reached at α = 1/2, 
but rather at a much smaller value (possibly below 0.1). 

5.2 Sparse hedging for minimum variance portfolios 

5.2.1 Presentation and derivations 

The idea of constructing sparse portfolios is not new per se (see, e.g., Brodie et al. (2009), 
Fastrich et al. (2015)) and the link with the selective property of the LASSO is rather 
straightforward in classical quadratic programs. Note that the choice of the L1 norm is 
imperative because when enforcing a simple L2 norm, the diversification of the portfolio 
increases (see Coqueret (2015)). 

The idea behind this section stems from Goto and Xu (2015) but the cornerstone result was 
first published by Stevens (1998) and we present it below. We provide details because the 
derivations are not commonplace in the literature. 

In usual mean-variance allocations, one core ingredient is the inverse covariance matrix of 
assets Σ−1. For instance, the maximum Sharpe ratio (MSR) portfolio is given by 



  �

  
σ2 c� 

Σ = ,c C

classical partitioning results (e.g., Schur complements) imply   
(σ2 − c�C−1c)−1 −(σ2 − c�C−1c)−1c�C−1 

Σ−1 = −(σ2 − c�C−1c)−1C−1c C−1 + (σ2 − c�C−1c)−1C−1cc�C−1 . 

We are interested in the first line, which has 2 components: the factor (σ2 − c�C−1c)−1 and 
the line vector c�C−1. C is the covariance matrix of assets 2 to N and c is the covariance 
between the first asset and all other assets. The first line of Σ−1 is ⎡ ⎤ 

(σ2 − c�C−1c)−1 ⎣1 −\ c
�C−1 ⎦ . (5.9) 

N−1 terms 

We now consider an alternative setting. We regress the returns of the first asset on those of 
all other assets: 

NK 
r1,t = a1 + β1|nrn,t + Ct, i.e., r1 = a11T + R−1β1 + C1, (5.10) 

n=2 

where R−1 gathers the returns of all assets except the first one. The OLS estimator for β1 is 

β̂1 = C−1c, (5.11) 

and this is the partitioned form (when a constant is included to the regression) stemming 
from the Frisch-Waugh-Lovell theorem (see chapter 3 in Greene (2018)). 

In addition, 
(1 − R2)σ2 = σ2 − c�C−1c = σ2 (5.12)r1 r1  1 

. 

The proof of this last fact is given below. 

With X being the concatenation of 1T with returns R−1 and with y = r1, the classical 
expression of the R2 is 

C�C y�y − β̂�X�Xβ̂ y�y − y�Xβ̂
R2 = 1 − = 1 − = 1 − ,

Tσ2 Tσ2 Tσ2 
Y Y Y 
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where µ is the vector of expected (excess) returns. Taking µ = 1 yields the minimum variance
 
portfolio, which is agnostic in terms of the first moment of expected returns (and, as such,
 
usually more robust than most alternatives which try to estimate µ and often fail).
 

Usually, the traditional way is to estimate Σ and to invert it to get the MSR weights.
 
However, several approaches aim at estimating Σ−1 directly and we present one of them
 
below. We proceed one asset at a time, that is, one line of Σ−1 at a time.
 
If we decompose the matrix Σ into:
 



 

  

� �� � � 

with fitted values Xβ̂ = â11T + R−1C−1c. Hence, 

Tσ2 = Tσ2
1r1 + ˆ T r1 + r�R2 − r� a11� 

1R−1C−1cr1 r1 

1T 1� 1T 1� 
T ˜ TR−1 +T (1 − R2)σ2 

r1 
R−1 C−1c= r� 

1r1 − â11� 
T r1 − r̃1 + r1

T T 

1T 1� 
TT (1 − R2)σr

2 
1 

= r1
� r1 − â11T 

� r1 − T c�C−1c − r1 
� R−1C−1c 

T 

T (1 − R2)σ2 = r1
� r1 − 

(1T 
� r1)2 

− T c�C−1cr1 T 
2 2(1 − R2)σ = σ − c�C−1cr1 r1 

1�
Twhere in the fourth equality we have plugged â1 = (r1 − R−1C−1c). Note that there is T

probably a simpler proof, see, e.g., section 3.5 in Greene (2018). 

Combining (5.9), (5.11) and (5.12), we get that the first line of Σ−1 is equal to 

1 × 1 − β̂1 
� .	 (5.13)

σ2 
1 

 

 

  

 

   

1.	 estimate the elasticnet regression over the t = 1, . . . , T samples to get the ith 

line of Σ̂−1: ⎧ ⎪⎨ 
⎞⎛ 2 KKT N

t=1 n=i 

Σ̂−1 + λα||βi|||1 + λ(1 − α)||βi|||2= argmin ⎝ri,t − ai + βi|nrn,t ⎠ ⎪⎩i,· βi| 

⎫ ⎪⎬ ⎪⎭ 

2. to get the weights of asset i, we compute the µ-weighted sum: wi = 

σ−
i 

2 µi − j=i βi|j µj , 

2 
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Given the first line of Σ−1, it suffices to multiply by µ to get the portfolio weight in the 
first asset (up to a scaling constant). 

There is a nice economic intuition behind the above results which justifies the term “sparse 
hedging”. We take the case of the minimum variance portfolio, for which µ = 1. In Equation 
(5.10), we try to explain the return of asset 1 with that of all other assets. In the above 
equation, up to a scaling constant, the portfolio has a unit position in the first asset and 
−β̂1 positions in all other assets. Hence, the purpose of all other assets is clearly to hedge 
the return of the first one. In fact, these positions are aimed at minimizing the squared 
errors of the aggregate portfolio for the first asset (these errors are exactly C1). Moreover, 
the scaling factor σ−

1 

2 is also simple to interpret: the more we trust the regression output 
(because of a small σ2 

1 
), the more we invest in the hedging portfolio of the asset. 

This reasoning is easily generalized for any line of Σ−1, which can be obtained by regressing 
the returns of asset i on the returns of all other assets. If the allocation scheme has the 
form (5.8) for given values of µ, then the pseudo-code for the sparse portfolio strategy is the 
following. 

At each date (which we omit for notational convenience), 

• For all stocks i, 

�

�



5.2 Sparse hedging for minimum variance portfolios 65 

where we recall that the vectors βi| = [βi|1, . . . , βi|i−1, βi|i+1, . . . , βi|N ] are the coefficients 
from regressing the returns of asset i against the returns of all other assets. 
The introduction of the penalization norms is the new ingredient, compared to the original 
approach of Stevens (1998). The benefits are twofold: first, introducing constraints yields 
weights that are more robust and less subject to errors in the estimates of µ; second, because 
of sparsity, weights are more stable, less leveraged and thus the strategy is less impacted 
by transaction costs. Before we turn to numerical applications, we mention a more direct 
route to the estimation of a robust inverse covariance matrix: the Graphical LASSO. 
The GLASSO estimates the precision matrix (inverse covariance matrix) via maximum 
likelihood while imposing constraints/penalizations on the weights of the matrix. When the 
penalization is strong enough, this yields a sparse matrix, i.e., a matrix in which some and 
possibly many coefficients are zero. We refer to the original article Friedman et al. (2008) 
for more details on this subject. 

5.2.2 Example 

The interest of sparse hedging portfolios is to propose a robust approach to the estimation 
of minimum variance policies. Indeed, since the vector of expected returns µ is usually very 
noisy, a simple solution is to adopt an agnostic view by setting µ = 1. In order to test the 
added value of the sparsity constraint, we must resort to a full backtest. In doing so, we 
anticipate the content of Chapter 12. 

We first prepare the variables. Sparse portfolios are based on returns only; we thus base 
our analysis on the dedicated variable in matrix/rectangular format (returns) which were 
created at the end of Chapter 1. 

Then, we initialize the output variables: portfolio weights and portfolio returns. We want to 
compare three strategies: an equally weighted (EW) benchmark of all stocks, the classical 
global minimum variance portfolio (GMV) and the sparse-hedging approach to minimum 
variance. 

t_oos <- returns$date[returns$date > separation_date] %>% # Out-of-sample dates 
unique() %>% # Remove duplicates 
as.Date(origin = "1970-01-01") # Transform in date format 

Tt <- length(t_oos) # Nb of dates, avoid T 
nb_port <- 3 # Nb of portfolios/strats. 
portf_weights <- array(0, dim = c(Tt, nb_port, ncol(returns) - 1)) # Initial portf. weights 
portf_returns <- matrix(0, nrow = Tt, ncol = nb_port) # Initial portf. returns 

Next, because it is the purpose of this section, we isolate the computation of the weights 
of sparse-hedging portfolios. In the case of minimum variance portfolios, when µ = 1, the 
weight in asset 1 will simply be the sum of all terms in Equation (5.13) and the other weights 
have similar forms. 

weights_sparsehedge <- function(returns, alpha, lambda){ # The parameters are defined here 
w <- 0 # Initiate weights 
for(i in 1:ncol(returns)){ # Loop on the assets 

y <- returns[,i] # Dependent variable 
x <- returns[,-i] # Independent variable 
fit <- glmnet(x,y, family = "gaussian", alpha = alpha, lambda = lambda) 
err <- y-predict(fit, x) # Prediction errors 
w[i] <- (1-sum(fit$beta))/var(err) # Output: weight of asset i 

} 
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return(w / sum(w)) # Normalisation of weights 
} 

In order to benchmark our strategy, we define a meta-weighting function that embeds 
three strategies: (1) the EW benchmark, (2) the classical GMV and (3) the sparse-hedging 
minimum variance. For the GMV, since there are much more assets than dates, the covariance 
matrix is singular. Thus, we have a small heuristic shrinkage term. For a more rigorous 
treatment of this technique, we refer to the original article Ledoit and Wolf (2004) and to the 
recent improvements mentioned in Ledoit and Wolf (2017). In short, we use Σ̂ = ΣS + δI 
for some small constant δ (equal to 0.01 in the code below). 

weights_multi <- function(returns,j, alpha, lambda){ 
N <- ncol(returns) 
if(j == 1){ # j = 1 => EW 

return(rep(1/N,N))
 
}
 
if(j == 2){ # j = 2 => Minimum Variance
 

sigma <- cov(returns) + 0.01 * diag(N) # Covariance matrix + regularizing term 
w <- solve(sigma) %*% rep(1,N) # Inverse & multiply 
return(w / sum(w)) # Normalize 

} 
if(j == 3){ # j = 3 => Penalised / elasticnet 

w <- weights_sparsehedge(returns, alpha, lambda) 
} 

} 

Finally, we proceed to the backtesting loop. Given the number of assets, the execution of 
the loop takes a few minutes. At the end of the loop, we compute the standard deviation of 
portfolio returns (monthly volatility). This is the key indicator as minimum variance seeks 
to minimize this particular metric. 

for(t in 1:length(t_oos)){ # Loop = rebal. dates 
temp_data <- returns %>% # Data for weights 

filter(date < t_oos[t]) %>% # Expand. window 
dplyr::select(-date) %>% 
as.matrix() 

realised_returns <- returns %>% # OOS returns 
filter(date == t_oos[t]) %>% 
dplyr::select(-date) 

for(j in 1:nb_port){ # Loop over strats 
portf_weights[t,j,] <- weights_multi(temp_data, j, 0.1, 0.1) # Hard-coded params! 
portf_returns[t,j] <- sum(portf_weights[t,j,] * realised_returns) # Portf. returns 

} 
} 
colnames(portf_returns) <- c("EW", "MV", "Sparse") # Colnames 
apply(portf_returns, 2, sd) # Portfolio volatilities (monthly scale) 

## EW MV Sparse 
## 0.04180422 0.03350424 0.02672169 

The aim of the sparse hedging restrictions is to provide a better estimate of the covariance 
structure of assets so that the estimation of minimum variance portfolio weights is more 
accurate. From the above exercise, we see that the monthly volatility is indeed reduced 
when building covariance matrices based on sparse hedging relationships. This is not the 
case if we use the shrunk sample covariance matrix because there is probably too much 
noise in the estimates of correlations between assets. Working with daily returns would 
likely improve the quality of the estimates. But the above backtest shows that the penalized 
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methodology performs well even when the number of observations (dates) is small compared 
to the number of assets. 

5.3 Predictive regressions 

5.3.1 Literature review and principle 

The topic of predictive regressions sits on a collection of very interesting articles. One 
influential contribution is Stambaugh (1999), where the author shows the perils of regressions 
in which the independent variables are autocorrelated. In this case, the usual OLS estimate 
is biased and must therefore be corrected. The results have since then been extended in 
numerous directions (see Campbell and Yogo (2006) and Hjalmarsson (2011), the survey in 
Gonzalo and Pitarakis (2018) and, more recently, the study of Xu (2020) on predictability 
over multiple horizons). 

A second important topic pertains to the time-dependence of the coefficients in predictive 
regressions. One contribution in this direction is Dangl and Halling (2012), where coefficients 
are estimated via a Bayesian procedure. More recently Kelly et al. (2019) use time-dependent 
factor loadings to model the cross-section of stock returns. The time-varying nature of 
coefficients of predictive regressions is further documented by Henkel et al. (2011) for short 
term returns. Lastly, Farmer et al. (2019) introduce the concept of pockets of predictability: 
assets or markets experience different phases; in some stages, they are predictable and in 
some others, they aren’t. Pockets are measured both by the number of days that a t-statistic 
is above a particular threshold and by the magnitude of the R2 over the considered period. 
Formal statistical tests are developed by Demetrescu et al. (2020). 

The introduction of penalization within predictive regressions goes back at least to Rapach 
et al. (2013), where they are used to assess lead-lag relationships between US markets 
and other international stock exchanges. More recently, Chinco et al. (2019a) use LASSO 
regressions to forecast high frequency returns based on past returns (in the cross-section) at 
various horizons. They report statistically significant gains. Han et al. (2019) and Rapach 
and Zhou (2019) use LASSO and elasticnet regressions (respectively) to improve forecast 
combinations and single out the characteristics that matter when explaining stock returns. 

These contributions underline the relevance of the overlap between predictive regressions 
and penalized regressions. In simple machine-learning based asset pricing, we often seek to 
build models such as that of Equation (3.7). If we stick to a linear relationship and add 
penalization terms, then the model becomes: 

K J JK K K 
2βkfk rt+1,n = αn + + Ct+1,n, s.t. (1 − α) |βj | + α βj < θ n t,n 

k=1 j=1 j=1 

kwhere we use fk or x interchangeably and θ is some penalization intensity. Again, one of t,n t,n

the aims of the regularization is to generate more robust estimates. If the patterns extracted 
hold out of sample, then 

KK ˆˆ = α̂n + βkfk rt+1,n n t,n, 
k=1 

will be a relatively reliable proxy of future performance. 
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5.3.2 Code and results 

Given the form of our dataset, implementing penalized predictive regressions is easy. 

y_penalized_train <- training_sample$R1M_Usd # Dependent variable 
x_penalized_train <- training_sample %>% # Predictors 

dplyr::select(all_of(features)) %>% as.matrix() 
fit_pen_pred <- glmnet(x_penalized_train, y_penalized_train, # Model 

alpha = 0.1, lambda = 0.1) 

We then report two key performance measures: the mean squared error and the hit ratio, 
which is the proportion of times that the prediction guesses the sign of the return correctly. 
A detailed account of metrics is given later in the book (Chapter 12). 

x_penalized_test <- testing_sample %>% # Predictors 
dplyr::select(all_of(features)) %>% as.matrix() 

mean((predict(fit_pen_pred, x_penalized_test) - testing_sample$R1M_Usd)^2) # MSE 

## [1] 0.03699696 

mean(predict(fit_pen_pred, x_penalized_test) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5460346 

From an investor’s standpoint, the MSEs (or even the mean absolute error) are hard to 
interpret because it is complicated to map them mentally into some intuitive financial 
indicator. In this perspective, the hit ratio is more natural. It tells the proportion of correct 
signs achieved by the predictions. If the investor is long in positive signals and short in 
negative ones, the hit ratio indicates the proportion of ‘correct’ bets (the positions that 
go in the expected direction). A natural threshold is 50% but because of transaction costs, 
51% of accurate forecasts probably won’t be profitable. The figure 0.546 can be deemed a 
relatively good hit ratio, though not a very impressive one. 

5.4 Coding exercise 

On the test sample, evaluate the impact of the two elastic net parameters on out-of-sample 
accuracy. 
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Tree-based methods
 

Classification and regression trees are simple yet powerful clustering algorithms popularized 
by the monograph of Breiman et al. (1984). Decision trees and their extensions are known 
to be quite efficient forecasting tools when working on tabular data. A large proportion of 
winning solutions in ML contests (especially on the Kaggle website1) resort to improvements 
of simple trees. For instance, the meta-study in bioinformatics by Olson et al. (2018) finds 
that boosted trees and random forests are the top 2 algorithms from a group of 13, excluding 
neural networks. 

Recently, the surge in Machine Learning applications in Finance has led to multiple publi­
cations that use trees in portfolio allocation problems. A long, though not exhaustive, list 
includes: Ballings et al. (2015), Patel et al. (2015a), Patel et al. (2015b), Moritz and Zimmer­
mann (2016), Krauss et al. (2017), Gu et al. (2020b), Guida and Coqueret (2018a), Coqueret 
and Guida (2020) and Simonian et al. (2019). One notable contribution is Bryzgalova et al. 
(2019b) in which the authors create factors from trees by sorting portfolios via simple trees, 
which they call Asset Pricing Trees. 

In this chapter, we review the methodologies associated to trees and their applications in 
portfolio choice. 

6.1 Simple trees 

6.1.1 Principle 

Decision trees seek to partition datasets into homogeneous clusters. Given an exogenous 
variable Y and features X, trees iteratively split the sample into groups (usually two at a 
time) which are as homogeneous in Y as possible. The splits are made according to one 
variable within the set of features. A short word on nomenclature: when Y consists of 
real numbers, we talk about regression trees and when Y is categorical, we use the term 
classification trees. 

Before formalizing this idea, we illustrate this process in Figure 6.1. There are 12 stars with 
three features: color, size and complexity (number of branches). 

The dependent variable is the color (let’s consider the wavelength associated to the color for 
simplicity). The first split is made according to size or complexity. Clearly, complexity is the 
better choice: complicated stars are blue and green, while simple stars are yellow, orange 
and red. Splitting according to size would have mixed blue and yellow stars (small ones) 
and green and orange stars (large ones). 

1See www.kaggle.com. 
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FIGURE 6.1: Elementary tree scheme; visualization of the splitting process. 

The second step is to split the two clusters one level further. Since only one variable 
(size) is relevant, the secondary splits are straightforward. In the end, our stylized tree has 
four consistent clusters. The analogy with factor investing is simple: the color represents 
performance: red for high performance and blue for mediocre performance. The features 
(size and complexity of stars) are replaced by firm-specific attributes, such as capitalization, 
accounting ratios, etc. Hence, the purpose of the exercise is to find the characteristics that 
allow to split firms into the ones that will perform well versus those likely to fare more 
poorly. 

We now turn to the technical construction of regression trees (splitting process). We follow 
the standard literature as exposed in Breiman et al. (1984) or in chapter 9 of Hastie et al. 
(2009). Given a sample of (yi,xi) of size I, a regression tree seeks the splitting points that 
minimize the total variation of the yi inside the two child clusters. These two clusters need 
not have the same size. In order to do that, it proceeds in two steps. First, it finds, for each 

(k)feature x , the best splitting point (so that the clusters are homogeneous in Y). Second, it i 
selects the feature that achieves the highest level of homogeneity. 

Homogeneity in regression trees is closely linked to variance. Since we want the yi inside 
each cluster to be similar, we seek to minimize their variability (or dispersion) inside 
each cluster and then sum the two figures. We cannot sum the variances because this would 
not take into account the relative sizes of clusters. Hence, we work with total variation, 
which is the variance times the number of elements in the clusters. 

Below, the notation is a bit heavy because we resort to superscripts k (the index of the 
feature), but it is largely possible to ignore these superscripts to ease understanding. The 
first step is to find the best split for each feature, that is, solve argmin V (k)(c(k)) withI 

(k)c



where K 
k,− 1 

m (c(k)) = yi andI (k)#{i, x < c(k)}i (k){x <c(k)}
i K 

k,+ 1 
m (c(k)) = (k) 

yiI #{i, x > c(k)}i (k){x >c(k)}
i 
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are the average values of Y , conditional on X(k) being smaller or larger than c. The cardinal 
function #{·} counts the number of instances of its argument. For feature k, the optimal 

k,∗split c is thus the one for which the total dispersion over the two subgroups is the smallest. 
k,∗ (k)The optimal splits satisfy c = argmin V (c(k)). Of all the possible splitting variables, I 

c(k) 

the tree will choose the one that minimizes the total dispersion not only over all splits, but 
(k) k,∗).also over all variables: k∗ = argmin V (cI 

k 

After one split is performed, the procedure continues on the two newly formed clusters. 
There are several criteria that can determine when to stop the splitting process (see Section 
6.1.3). One simple criterion is to fix a maximum number of levels (the depth) for the tree. A 
usual condition is to impose a minimum gain that is expected for each split. If the reduction 
in dispersion after the split is only marginal and below a specified threshold, then the split 
is not executed. For further technical discussions on decision trees, we refer for instance to 
section 9.2.4 of Hastie et al. (2009). 

When the tree is built (trained), a prediction for new instances is easy to make. Given its 
feature values, the instance ends up in one leaf of the tree. Each leaf has an average value 
for the label: this is the predicted outcome. Of course, this only works when the label is 
numerical. We discuss below the changes that occur when it is categorical. 

6.1.2 Further details on classification 

Classification exercises are somewhat more complex than regression tasks. The most obvious 
difference is the measure of dispersion or heterogeneity. This loss function which must 
take into account the fact that the final output is not a simple number, but a vector. The 
output ỹi has as many elements as there are categories in the label and each element is the 
probability that the instance belongs to the corresponding category. 

For instance, if there are 3 categories: buy, hold and sell, then each instance would have a 
label with as many columns as there are classes. Following our example, one label would be 
(1,0,0) for a buy position for instance. We refer to Section 4.5.2 for a introduction on this 
topic. 

Inside a tree, labels are aggregated at each cluster level. A typical output would look like 
(0.6,0.1,0.3): they are the proportions of each class represented within the cluster. In this 
case, the cluster has 60% of buy, 10% of hold and 30% of sell. 

The loss function must take into account this multidimensionality of the label. When 
building trees, since the aim is to favor homogeneity, the loss penalizes outputs that are not 
concentrated towards one class. Indeed, facing a diversified output of (0.3,0.4,0.3) is much 
harder to handle than the concentrated case of (0.8,0.1,0.1). 

The algorithm is thus seeking purity: it searches a splitting criterion that will lead to 
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clusters that are as pure as possible, i.e., with one very dominant class, or at least just a few 
dominant classes. There are several metrics proposed by the literature and all are based on 
the proportions generated by the output. If there are J classes, we denote these proportions 
with pj . For each leaf, the usual loss functions are: 

•	 the Gini impurity index: 1 − 
 J 2

j=1 p
 

j ; 

•	 the misclassification error: 1 − max pj ; 
j
 

•	 entropy: − 
 J


j=1 log(pj )pj . 

The Gini index is nothing but one minus the Herfindahl index which measures the diver­
sification of a portfolio. Trees seek partitions that are the least diversified. The minimum 
value of the Gini index is zero and reached when one pj = 1 and all others are equal to 
zero. The maximum value is equal to 1 − 1/J and is reached when all pj = 1/J . Similar 
relationships hold for the other two losses. One drawback of the misclassification error is its 
lack of differentiability which explains why the other two options are often favored. 

Once the tree is grown, new instances automatically belong to one final leaf. This leaf is 
associated to the proportions of classes it nests. Usually, to make a prediction, the class with 
hightest proportion (or probability) is chosen when a new instance is associated with the 
leaf. 

6.1.3 Pruning criteria 

When building a tree, the splitting process can be pursued until the full tree is grown, that 
is, when: 

•	 all instances belong to separate leaves, and/or 

•	 all leaves comprise instances that cannot be further segregated based on the current set of 
features. 

At this stage, the splitting process cannot be pursued. 

Obviously, fully grown trees often lead to almost perfect fits when the predictors are relevant, 
numerous and numerical. Nonetheless, the fine grained idiosyncrasies of the training sample 
are of little interest for out-of-sample predictions. For instance, being able to perfectly match 
the patterns of 2000 to 2006 will probably not be very interesting in the period from 2007 
to 2009. The most reliable sections of the trees are those closest to the root because they 
embed large portions of the data: the average values in the early clusters are trustworthy 
because the are computed on a large number of observations. The first splits are those that 
matter the most because they determine the most general patterns. The deepest splits only 
deal with the peculiarities of the sample. 

Thus, it is imperative to limit the size of the tree to avoid overfitting. There are several ways 
to prune the tree and all depend on some particular criteria. We list a few of them below: 

•	 Impose a minimum number of instances for each terminal node (leaf). This ensures that 
each final cluster is composed of a sufficient number of observations. Hence, the average 
value of the label will be reliable because it is calculated on a large amount of data. 

•	 Similarly, it can be imposed that a cluster has a minimal size before even considering any 
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further split. This criterion is of course related to the one above. 

•	 Require a certain threshold of improvement in the fit. If a split does not sufficiently reduce 
the loss, then it can be deemed unnecessary. The user specifies a small number C > 0 and 
a split is only validated if the loss obtained post-split is smaller than 1 − C times the loss 
before the split. 

•	 Limit the depth of the tree. The depth is defined as the overal maximum number of splits 
between the root and any leaf of the tree. 

In the example below, we implement all of these criteria at the same time, but usually, two 
of them at most should suffice. 

6.1.4 Code and interpretation 

We start with a simple tree and its interpretation. We use the package rpart and its plotting 
engine rpart.plot. The label is the future 1-month return and the features are all predictors 
available in the sample. The tree is trained on the full sample. 

library(rpart) # Tree package
 
library(rpart.plot) # Tree plot package
 
formula <- paste("R1M_Usd ~", paste(features, collapse = " + ")) # Defines the model
 
formula <- as.formula(formula) # Forcing formula object
 
fit_tree <- rpart(formula,
 

data = data_ml, # Data source: full sample 
minbucket = 3500, # Min nb of obs required in each terminal node (leaf) 
minsplit = 8000, # Min nb of obs required to continue splitting 
cp = 0.0001, # Precision: smaller = more leaves 
maxdepth = 3 # Maximum depth (i.e. tree levels) 
) 

rpart.plot(fit_tree) # Plot the tree 
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Pb >= 0.025
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FIGURE 6.2: Simple characteristics-based tree. The dependent variable is the 1 month 
future return. 

There usually exists a convention in the representation of trees. At each node, a condition 
describes the split with a Boolean expression. If the expression is true, then the instance 
goes to the left cluster; if not, it goes to the right cluster. Given the whole sample, the 
initial split in this tree (Figure 6.2) is performed according to the price-to-book ratio. If the 
Pb score (or value) of the instance is above 0.025, then the instance is placed in the left 
bucket; otherwise, it goes in the right bucket. 

At each node, there are two important metrics. The first one is the average value of the label 
in the cluster, and the second one is the proportion of instances in the cluster. At the top of 
the tree, all instances (100%) are present and the average 1-month future return is 1.3%. One 
level below, the left cluster is by far the most crowded, with roughly 98% of observations 
averaging a 1.2% return. The right cluster is much smaller (2%) but concentrates instances 
with a much higher average return (5.9%). This is possibly an idiosyncracy of the sample. 

The splitting process continues similarly at each node until some condition is satisfied 
(typically here: the maximum depth is reached). A color codes the average return: from 
white (low return) to blue (high return). The leftmost cluster with the lowest average return 
consists of firms that satisfy all the following criteria: 

• have a Pb score above 0.025; 

• have a 3-month market capitalization score above 0.16; 

• have a score of average daily volume over the past 3 months above 0.085. 

Notice that one peculiarity of trees is their possible heterogeneity in cluster sizes. Sometimes, 
a few clusters gather almost all of the observations while a few small groups embed some 
outliers. This is not a favorable property of trees, as small groups are more likely to be flukes 
and may fail to generalize out-of-sample. 
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This is why we imposed restrictions during the construction of the tree. The first one 
(minbucket = 3500 in the code) imposes that each cluster consists of at least 3500 instances. 
The second one (minsplit) further imposes that a cluster comprises at least 8000 observations 
in order to pursue the splitting process. These values logically depend on the size of the 
training sample. The cp = 0.0001 parameter in the code requires any split to reduce the loss 
below 0.9999 times its original value before the split. Finally, the maximum depth of three 
essentially means that there are at most three splits between the root of the tree and any 
terminal leaf. 

The complexity of the tree (measured by the number of terminal leaves) is a decreasing 
function of minbucket, minsplit and cp and an increasing function of maximum depth. 

Once the model has been trained (i.e., the tree is grown), a prediction for any instance is 
the average value of the label within the cluster where the instance should land. 

predict(fit_tree, data_ml[1:6,]) # Test (prediction) on the first six instances of the sample 

## 1 2 3 4 5 6 
## 0.01088066 0.01088066 0.01088066 0.01088066 0.01088066 0.01088066 

Given the figure, we immediately conclude that these first six instances all belong to the 
second cluster (starting from the left). 

As a verification of the first splits, we plot the smoothed average of future returns, condi­
tionally on market capitalization, past return and trading volume. 

data_ml %>% ggplot() + 
stat_smooth(aes(x = Mkt_Cap_3M_Usd, y = R1M_Usd, color = "Market Cap"), se = FALSE) + 
stat_smooth(aes(x = Pb, y = R1M_Usd, color = "Price-to-Book"), se = FALSE) + 
stat_smooth(aes(x = Advt_3M_Usd, y = R1M_Usd, color = "Volume"), se = FALSE) + 
xlab("Predictor") + coord_fixed(11) + labs(color = "Characteristic") 
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FIGURE 6.3: Average of 1-month future returns, conditionally on market capitalization, 
price-to-book and volatility scores. 

The graph shows the relevance of clusters based on market capitalizations and price-to-book 
ratios. For low score values of these two features, the average return is high (close to +4% 
on a monthly basis on the left of the curves). The pattern is more pronounced compared to 
volume for instance. 

Finally, we assess the predictive quality of a single tree on the testing set (the tree is grown 
on the training set). We use a deeper tree, with a maximum depth of five. 
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fit_tree2 <- rpart(formula, 
data = training_sample, # Data source: training sample 
minbucket = 1500, # Min nb of obs required in each terminal node (leaf) 
minsplit = 4000, # Min nb of obs required to continue splitting 
cp = 0.0001, # Precision: smaller cp = more leaves 
maxdepth = 5 # Maximum depth (i.e. tree levels) 
) 

mean((predict(fit_tree2, testing_sample) - testing_sample$R1M_Usd)^2) # MSE 

## [1] 0.03700039 

mean(predict(fit_tree2, testing_sample) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5416619 

The mean squared error is usually hard to interpret. It’s not easy to map an error on returns 
into the impact on investment decisions. The hit ratio is a more intuitive indicator because 
it evaluates the proportion of correct guesses (and hence profitable investments). Obviously, 
it is not perfect: 55% of small gains can be mitigated by 45% of large losses. Nonetheless, 
it is a popular metric and moreover it corresponds to the usual accuracy measure often 
computed in binary classification exercises. Here, an accuracy of 0.542 is satisfactory. Even 
if any number above 50% may seem valuable, it must not be forgotten that transaction costs 
will curtail benefits. Hence, the benchmark threshold is probably at least at 52%. 

6.2 Random forests 

While trees give intuitive representations of relationships between Y and X, they can be 
improved via the simple idea of ensembles in which predicting tools are combined (this topic 
of model aggregation is discussed both more generally and in more details in Chapter 
11). 

6.2.1 Principle 

Most of the time, when having several modelling options at hand, it is not obvious upfront 
which individual model is the best, hence a combination seems a reasonable path towards 
the diversification of prediction errors (when they are not too correlated). Some theoretical 
foundations of model diversification were laid out in Schapire (1990). 

More practical considerations were proposed later in Ho (1995) and more importantly in 
Breiman (2001) which is the major reference for random forests. There are two ways to 
create multiple predictors from simple trees, and random forests combine both: 

•	 first, the model can be trained on similar yet different datasets. One way to achieve 
this is via bootstrap: the instances are resampled with or without replacement (for each 
individual tree), yielding new training data each time a new tree is built. 

•	 second, the data can be altered by curtailing the number of predictors. Alternative models 
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are built based on different sets of features. The user chooses how many features to retain
and then the algorithm selects these features randomly at each try.

Hence, it becomes simple to grow many different trees and the ensemble is simply a weighted
combination of all trees. Usually, equal weights are used, which is an agnostic and robust
choice. We illustrate the idea of simple combinations (also referred to as bagging) in Figure
6.4 below. The terminal prediction is simply the mean of all intermediate predictions.

(0.1-0.05+0.25)/3 = 0.1

Tree 1 Tree 2 Tree 3

+0.1 -0.05 +0.25

average
prediction

FIGURE 6.4: Combining tree outputs via random forests.

Random forests, because they are built on the idea of bootstrapping, are more efficient than
simple trees. They are used by Ballings et al. (2015), Patel et al. (2015a), Krauss et al.
(2017), and Huck (2019) and they are shown to perform very well in these papers. The
original theoretical properties of random forests are demonstrated in Breiman (2001) for
classification trees. In classification exercises, the decision is taken by a vote: each tree votes
for a particular class and the class with the most votes wins (with possible random picks in
case of ties). Breiman (2001) defines the margin function as

mg = M−1
M∑
m=1

1{hm(x)=y} −max
j=y

(
M−1

M∑
m=1

1{hm(x)=j}

)
,

6

where the left part is the average number of votes based on the M trees hm for the correct
class (the models hm based on x matches the data value y). The right part is the maximum
average for any other class. The margin reflects the confidence that the aggregate forest
will classify properly. The generalization error is the probability that mg is strictly negative.
Breiman (2001) shows that the inaccuracy of the aggregation (as measured by generalization
error) is bounded by ρ̄(1− 2s ) 2/s , where
- 2s is the strength (average quality ) of the individual classifiers and
- ρ̄ is the average correlation between the learners.

Notably, Breiman (2001) also shows that as the number of trees grows to infinity, the
inaccuracy converges to some finite number which explains why random forests are not
prone to overfitting.

While the original paper of Breiman (2001) is dedicated to classification models, many
articles have since then tackled the problem of regression trees. We refer the interested reader
to Biau (2012) and Scornet et al. (2015). Finally, further results on classifying ensembles
can be obtained in Biau et al. (2008) and we mention the short survey paper by Denil et al.
(2014) which sums up recent results in this field.

2The strength is measured as the average margin, i.e. the average of mg when there is only one tree.
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6.2.2 Code and results 

Several implementations of random forests exist. For simplicity, we choose to work with the 
original R library, but another choice could be the one developed by h2o, which is a highly 
efficient meta-environment for machine learning (coded in Java). 

The syntax of randomForest follows that of many ML libraries. The full list of options for 
some random forest implementations is prohibitively large.3 Below, we train a model and 
exhibit the predictions for the first 5 instances of the testing sample. 

library(randomForest)
 
set.seed(42) # Sets the random seed
 
fit_RF <- randomForest(formula, # Same formula as for simple trees!
 

data = training_sample, # Data source: training sample 
sampsize = 10000, # Size of (random) sample for each tree 
replace = FALSE, # Is the sampling done with replacement? 
nodesize = 250, # Minimum size of terminal cluster 
ntree = 40, # Nb of random trees 
mtry = 30 # Nb of predictive variables for each tree 

) 
predict(fit_RF, testing_sample[1:5,]) # Prediction over the first 5 test instances 

## 1 2 3 4 5 
## 0.009787728 0.012507087 0.008722386 0.009398814 -0.011511758 

One first comment is that each instance has its own prediction, which contrasts with the 
outcome of simple tree-based outcomes. Combining many trees leads to tailored forecasts. 
Note that the second line of the chunk freezes the random number generation. Indeed, 
random forests are by construction contingent on the arbitrary combinations of instances 
and features that are chosen to build the individual learners. 

In the above example, each individual learner (tree) is built on 10,000 randomly chosen 
instances (without replacement) and each terminal leaf (cluster) must comprise at least 240 
elements (observations). In total, 40 trees are aggregated and each tree is constructed based 
on 30 randomly chosen predictors (out of the whole set of features). 

Unlike for simple trees, it is not possible to simply illustrate the outcome of the learning 
process (though solutions exist, see Section 13.1.1). It could be possible to extract all 40 
trees, but a synthetic visualization is out-of-reach. A simplified view can be obtained via 
variable importance, as is discussed in Section 13.1.2. 

Finally, we can assess the accuracy of the model. 

mean((predict(fit_RF, testing_sample) - testing_sample$R1M_Usd)^2) # MSE 

## [1] 0.03698197 

mean(predict(fit_RF, testing_sample) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5370186 

The MSE is smaller than 4% and the hit ratio is close to 54%, which is reasonably above 
both 50% and 52% thresholds. 

Let’s see if we can improve the hit ratio by resorting to a classification exercise. We start by 
training the model on a new formula (the label is R1M_Usd_C). 

3See, e.g., http://docs.h2o.ai/h2o/latest-stable/h2o-r/docs/reference/h2o.randomForest.html 

http://www.docs.h2o.ai
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formula_C <- paste("R1M_Usd_C ~", paste(features, collapse = " + ")) # Defines the model 
formula_C <- as.formula(formula_C) # Forcing formula object 
fit_RF_C <- randomForest(formula_C, # New formula! 

data = training_sample, # Data source: training sample 
sampsize = 20000, # Size of (random) sample for each tree 
replace = FALSE, # Is the sampling done with replacement? 
nodesize = 250, # Minimum size of terminal cluster 
ntree = 40, # Number of random trees 
mtry = 30 # Number of predictive variables for each tree 

) 

We can then assess the proportion of correct (binary) guesses. 

mean(predict(fit_RF_C, testing_sample) == testing_sample$R1M_Usd_C) # Hit ratio 

## [1] 0.4979062 

The accuracy is disappointing. There are two potential explanations for this (beyond the 
possibility of very different patterns in the training and testing sets). The first one is the 
sample size, which may be too small. The original training set has more than 200,000 
observations, hence we retain only one in 10 in the above training specification. We are 
thus probably sidelining relevant information and the cost can be heavy. The second reason 
is the number of predictors, which is set to 30, i.e., one third of the total at our disposal. 
Unfortunately, this leaves room for the algorithm to pick less pertinent predictors. The 
default numbers of predictors chosen by the routines are 

√ 
p and p/3 for classification and 

regression tasks, respectively. Here p is the total number of features. 

6.3 Boosted trees: Adaboost 

The idea of boosting is slightly more advanced compared to agnostic aggregation. In random 
forest, we hope that the diversification through many trees will improve the overall quality 
of the model. In boosting, it is sought to iteratively improve the model whenever a new 
tree is added. There are many ways to boost learning and we present two that can easily 
be implemented with trees. The first one (Adaboost, for adaptive boosting) improves the 
learning process by progressively focusing on the instances that yield the largest errors. The 
second one (xgboost) is a flexible algorithm in which each new tree is only focused on the 
minimization of the training sample loss. 

6.3.1 Methodology 

The origins of adaboost go back to Freund and Schapire (1997) and Freund and Schapire 
(1996), and for the sake of completeness, we also mention the book dedicated to boosting 
by Schapire and Freund (2012). Extensions of these ideas are proposed in Friedman et al. 
(2000) (the so-called real Adaboost algorithm) and in Drucker (1997) (for regression analysis). 
Theoretical treatments were derived by Breiman et al. (2004). 

We start by directly stating the general structure of the algorithm: 



 

 
� �

• set equal weights wi = I−1; 

• For m = 1, . . . , M do: 

I1.	 Find a learner lm that minimizes the weighted loss (xi), yi);i=1 wiL(lm
2.	 Compute a learner weight 

am = fa(w, lm(x), y);	 (6.2) 

3.	 Update the instance weights 

fw (lm (xi),yi);wi ← wie	 (6.3) 

4.	 Normalize the wi to sum to one. 
M• The output for instance xi is a simple function of lm(xi),m=1 am

MK 
ỹi = fy amlm(xi) . (6.4) 

m=1 

Let us comment on the steps of the algorithm. The formulation holds for many variations of 
Adaboost and we will specify the functions fa and fw below. 
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1.	 The first step seeks to find a learner (tree) lm that minimizes a weighted loss. 
Here the base loss function L essentially depends on the task (regression versus 
classification). 

2.	 The second and third steps are the most interesting because they are the heart 
of Adaboost: they define the way the algorithm adapts sequentially. Because 
the purpose is to aggregate models, a more sophisticated approach compared 
to uniform weights for learners is a tailored weight for each learner. A natural 
property (for fa) should be that a learner that yields a smaller error should have 
a larger weight because it is more accurate. 

3.	 The third step is to change the weights of observations. In this case, because the 
model aims at improving the learning process, fw is constructed to give more 
weight on observations for which the current model does not do a good job (i.e., 
generates the largest errors). Hence, the next learner will be incentivized to pay 
more attention to these pathological cases. 

4.	 The third step is a simple scaling procedure. 

In Table 6.1, we detail two examples of weighting functions used in the literature. For the 
original Adaboost (Freund and Schapire (1996), Freund and Schapire (1997)), the label is 
binary with values +1 and -1 only. The second example stems from Drucker (1997) and is 
dedicated to regression analysis (with real-valued label). The interested reader can have a 
look at other possibilities in Schapire (2003) and Ridgeway et al. (1999). 



TABLE 6.1: Examples of functions for Adaboost-like algorithms. 

Bin. classif. (orig. 
Adaboost) 

Regression (Drucker 
(1997)) 

Individual error 

Weight of learner via fa 

Weight of instances via 
fw(i) 
Output function via fy 

Ci = 1{yi=lm(xi)}   
 1− fa = log ,with    I

I−1C = wiCii=1 
fw = faCi 

fy (x) = sign(x) 

|yi−lm(xi)|Ci = max|yi−lm(xi )|
i   

 1−fa = log ,with    I
I−1C = wiCii=1  

fw = faCi 

weighted median of 
predictions 
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�

Let us comment on the original Adaboost specification. The basic error term Ci = 1{y =l (x )}
is a dummy number indicating if the prediction is correct (we recall only two values

i m

 are
i

 
possible, +1 and -1). The average error C ∈ [0, 1] is simply a weighted average of individual 
errors and the weight of the 1   mth learner defined in Equation (6.2) is given by am = log − . 
The function x �→ log((1 − −1x)x ) decreases on switches sign (from positiv

 
e
 

 [0, 1] and  to 
negative) at x = 1/2. Hence, when the average error is small, the learner has a large positiv

 
e 

weight, but when the error becomes large, the learner can even obtain a negative weight. 
Indeed, the threshold C > 1/2 indicated that the learner is wrong more than 50% of the time. 
Obviously, this indicates a problem and the learner should even be discarded. 

The
w

  change  in instance weights follows a similar logic. The new weight is proportional to 
1−   i 

i . If the prediction is right and Ci = 0, the weight    is unchanged. If the prediction is 
wrong and Ci = 1, the weight is adjusted depending on the aggregate error C. If the error is 
small and the learner efficient (C < 1/2), then (1 − C)/C > 1 and the weight of the instance 
increases. This means that for the next round, the learner will have to focus more on instance 
i. 

Lastly, the final prediction of the model corresponds to the sign of the weighted sums of 
individual predictions: if the sum is positive, the model will predict +1 and it will yield 
-1 otherwise.4 The odds of a zero sum are negligible. In the case of numerical labels, the 
process is slightly more complicated and we refer to Section 3, step 8 of Drucker (1997) for 
more details on how to proceed. 

We end this presentation with one word on instance weighting. There are two ways to deal 
with this topic. The first one works at the level of the loss functions. For regression trees, 
Equation (6.1) would naturally generalize to 

 2)   2(k
V ( ( c k)
N , w) =

K
k,  (k) k,+ ( ) w k

i 

 
yi − mN

−(c ) 
 

+ 
K

wi 

 
yi − mN (c ) ,

(k) ( (kk) ) ( )x <c x >c k  
i i 

 

and hence an instance with a large weight wi would contribute more to the dispersion of its 
cluster. For classification objectives, the alteration is more complex and we refer to Ting 
(2002) for one example of an instance-weighted tree-growing algorithm. The idea is closely 
linked to the alteration of the misclassification risk via a loss matrix (see Section 9.2.4 in 
Hastie et al. (2009)). 

4The Real Adaboost of Friedman et al. (2000) has a different output: the probability of belonging to a 
particular class. 

�



 

I JK K 
O = loss(yi, ỹi) + Ω(Tj ) . 

i=1 j=1
 

error term regularization term 

  �   �
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The second way to enforce instance weighting is via random sampling. If instances have 
weights wi, then the training of learners can be performed over a sample that is randomly 
extracted with distribution equal to wi. In this case, an instance with a larger weight will 
have more chances to be represented in the training sample. The original adaboost algorithm 
relies on this method. 

6.3.2 Illustration 

Below, we test an implementation of the original Adaboost classifier. As such, we work 
with the R1M_Usd_C variable and change the model formula. The computational cost of 
Adaboost is high on large datasets, thus we work with a smaller sample and we only impose 
three iterations. 

library(fastAdaboost) # Adaboost package 
subsample <- (1:52000)*4 # Target small sample 
fit_adaboost_C <- adaboost(formula_C, # Model spec. 

data = data.frame(training_sample[subsample,]), # Data source 
nIter = 3) # Number of trees 

Finally, we evaluate the performance of the classifier. 

mean(testing_sample$R1M_Usd_C == predict(fit_adaboost_C, testing_sample)$class) 

## [1] 0.5028202 

The accuracy (as evaluated by the hit ratio) is clearly not satisfactory. One reason for this 
may be the restrictions we enforced for the training (smaller sample and only three trees). 

6.4 Boosted trees: extreme gradient boosting 

The ideas behind tree boosting were popularized, among others, by Mason et al. (2000), 
Friedman (2001), and Friedman (2002). In this case, the combination of learners (prediction 
tools) is not agnostic as in random forest, but adapted (or optimized) at the learner level. 
At each step s, the sum of models MS = S−1 

ms + mS is such that the last learner mSs=1 
was precisely designed to reduce the loss of MS on the training sample. 

Below, we follow closely the original work of Chen and Guestrin (2016) because their 
algorithm yields incredibly accurate predictions and also because it is highly customizable. It 
is their implementation that we use in our empirical section. The other popular alternative 
is lightgbm (see Ke et al. (2017)). What XGBoost seeks to minimize is the objective 

\ \
The first term (over all instances) measures the distance between the true label and the 
output from the model. The second term (over all trees) penalizes models that are too 
complex. 
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For simplicity, we propose the full derivation with the simplest loss function loss(y, ỹ) = 
(y − ỹ)2, so that: 

I JK K 
O = (yi − mJ−1(xi) − TJ (xi))2 + Ω(Tj ). 

i=1 j=1 

6.4.1 Managing loss 

Let us assume that we have already built all trees Tj up to j = 1, . . . , J − 1 (and hence 
model MJ−1): how to choose tree TJ optimally? We rewrite 

I JK K 
O = (yi − mJ−1(xi) − TJ (xi))2 + Ω(Tj ) 

i=1 j=1 

I J−1K K
2= y + mJ−1(xi)2 + TJ (xi)2 + Ω(Tj ) + Ω(TJ ) (squared terms + penalization) i
 

i=1 j=1
 

I
K 
− 2 {yimJ−1(xi) + yiTJ (xi) − mJ−1(xi)TJ (xi))} (cross terms)
 

i=1
 

IK  
= −2yiTJ (xi) + 2mJ−1(xi)TJ (xi)) + TJ (xi)2 + Ω(TJ ) + c
 

i=1


All terms known at step J (i.e., indexed by J − 1) vanish because they do not enter the 
optimization scheme. They are embedded in the constant c. 

Things are fairly simple with quadratic loss. For more complicated loss functions, Taylor 
expansions are used (see the original paper). 

6.4.2 Penalization 

In order to go any further, we need to specify the way the penalization works. For a given 
tree T , we specify its structure by T (x) = wq(x), where w is the output value of some leaf 
and q(·) is the function that maps an input to its final leaf. This encoding is illustrated in 
Figure 6.5. The function q indicates the path, while the vector w = wi codes the terminal 
leaf values. 



We write l = 1, . . . , L for the indices of the leaves of the tree. In XGBoost, complexity is 
defined as: 

LKλΩ(T ) = γL + wl 
2 ,2 

l=1 

where 

• the first term penalizes the total number of leaves; 

• the second term penalizes the magnitude of output values (this helps reduce variance). 

The first penalization term reduces the depth of the tree, while the second shrinks the size 
of the adjustments that will come from the latest tree. 

� � ��

� � 

� � 

I LK Kλ 2O = 2 −yiTJ (xi) + mJ−1(xi)TJ (xi)) + 
TJ (xi)2 

+ γL + wl2 2 
i=1 l=1 

I 2 LK w Kλq(xi) 2= 2 −yiwq(xi) + mJ−1(xi)wq(xi)) + + γL + wl2 2 
i=1 l=1 

LK K 2 K 
l= 2 wl (−yi + mJ−1(xi)) + 

w

2 
1 + 

λ 
2 + γL 

l=1 i∈Il i∈Il 

84 6 Tree-based methods 

terminal
(leaf)
values

Mkt_Cap_6M_Usd >= 0.025

Mkt_Cap_3M_Usd >= 0.19

Recurring_Earning_Total_Assets >= 0.025 Vol3Y_Usd < 0.84

Vol3Y_Usd < 0.92

0.013
100%

0.012
98%

0.0097
82%

0.0093
w1

0.036
w2

0.022
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0.016
w3

0.038
w4
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0.03
w5

0.15
w6

yes no

q(.) codes
the path

FIGURE 6.5: Coding a decision tree: decomposition between structure and node and leaf 
values. 

6.4.3 Aggregation 

We aggregate both sections of the objective (loss and penalization). We write Il for the set 
of the indices of the instances belonging to leaf l. Then, 



        

The function is of the form awl + b 2, which has minimum values − a 2 
at point wl = −a/b.2 wl 2b

Thus, writing #(.) for the cardinal function that counts the number of items in a set, 

(yi − mJ−1(xi))∗ i∈Il→ w = , so that (6.5)l 1 + λ #{i ∈ Il}2 

L1 K (yi − mJ−1(xi)) 
2 

i∈IlOL(q) = − + γL, 2 1 + λ #{i ∈ Il}l=1 2 

where we added the dependence of the objective both in q (structure of tree) and L (number 
of leaves). Indeed, the meta-shape of the tree remains to be determined. 

   

• proceed node-by-node; 

• for each node, look at whether a split is useful (in terms of objective) or not: 

1Gain = (GainL + GainR − GainO) − γ2 

• each gain is computed with respect to the instances in each bucket (cluster): 

(yi − mJ−1(xi)) 
2 

GainX = i∈IX ,
1 + λ #{i ∈ IX }2 
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6.4.4 Tree structure 

Final problem: the tree structure! Let us take a step back. In the construction of a simple 
regression tree, the output value at each node is equal to the average value of the label 
within the node (or cluster). When adding a new tree in order to reduce the loss, the node 
values must be computed completely differently, which is the purpose of Equation (6.5). 

Nonetheless, the growing of the iterative trees follows similar lines as simple trees. Features 
must be tested in order to pick the one that minimizes the objective for each given split. 
The final question is then: what’s the best depth and when to stop growing the tree? The 
method is to 

where IX is the set of instances within cluster X . 

GainO is the original gain (no split) and GainL and GainR are the gains of the left and right 
clusters, respectively. One word about the −γ adjustment in the above formula: there is one 
unit of new leaves (two new minus one old)! This makes a one leaf difference; hence ΔL = 1 
and the penalization intensity for each new leaf is equal to γ. 

Lastly, we underline the fact that XGBoost also applies a learning rate: each new tree is 
scaled by a factor η, with η ∈ (0, 1]. After each step of boosting the new tree TJ sees its 
values discounted by multiplying them by η. This is very useful because a pure aggregation 
of 100 optimized trees is the best way to overfit the training sample. 
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6.4.5 Extensions 

Several additional features are available to further prevent boosted trees to overfit. Indeed, 
given a sufficiently large number of trees, the aggregation is able to match the training 
sample very well, but may fail to generalize well out-of-sample. 

Following the pioneering work of Srivastava et al. (2014), the DART (Dropout for Additive 
Regression Trees) model was proposed by Rashmi and Gilad-Bachrach (2015). The idea 
is to omit a specified number of trees during training. The trees that are removed from 
the model are chosen randomly. The full specifications can be found at https://xgboost. 
readthedocs.io/en/latest/tutorials/dart.html and we use a 10% dropout in the first 
example below.. 

Monotonicity constraints are another element that is featured both in xgboost and lightgbm. 
Sometimes, it is expected that one particular feature has a monotonic impact on the label. 
For instance, if one deeply believes in momentum, then past returns should have an increasing 
impact on future returns (in the cross-section of stocks). 

Given the recursive nature of the splitting algorithm, it is possible to choose when to perform 
a split (according to a particular variable) and when not to. In Figure 6.6, we show how 
the algorithm proceeds. All splits are performed according to the same feature. For the 
first split, things are easy because it suffices to verify that the averages of each cluster are 
ranked in the right direction. Things are more complicated for the splits that occur below. 
Indeed, the average values set by all above splits matter as they give bounds for acceptable 
values for the future average values in lower splits. If a split violates these bounds, then it is 
overlooked and another variable will be chosen instead. 

6.4.6 Code and results 

In this section, we train a model using the XGBoost library. Other options include catboost, 
gbm, lightgbm, and h2o’s own version of boosted machines. Unlike many other packages, the 
XGBoost function requires a particular syntax and dedicated formats. The first step is thus 
to encapsulate the data accordingly. 

Moreover, because training times can be long, we shorten the training sample as advocated 
in Coqueret and Guida (2020). We retain only the 40% most extreme observations (in terms 
of label values: top 20% and bottom 20%) and work with the small subset of features. In all 

Aggregate
mean = 0

Aggregate
mean = -1

Aggregate
mean = +1

-1 < agg mean < +1 agg mean > +1

feature < a feature > a

a < feature < b feature > b > a

FIGURE 6.6: Imposing monotonic constraints. The constraints are shown in bold blue in 
the bottom leaves. 

https://www.xgboost.readthedocs.io
https://www.xgboost.readthedocs.io
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coding sections dedicated to boosted trees in this book, the models will be trained with only 
7 features. 

library(xgboost) # The package for boosted trees 
train_features_xgb <- training_sample %>% 

filter(R1M_Usd < quantile(R1M_Usd, 0.2) | 
R1M_Usd > quantile(R1M_Usd, 0.8)) %>% # Extreme values only! 

dplyr::select(all_of(features_short)) %>% as.matrix() # Independent variable 
train_label_xgb <- training_sample %>% 

filter(R1M_Usd < quantile(R1M_Usd, 0.2) | 
R1M_Usd > quantile(R1M_Usd, 0.8)) %>% 

dplyr::select(R1M_Usd) %>% as.matrix() # Dependent variable 
train_matrix_xgb <- xgb.DMatrix(data = train_features_xgb, 

label = train_label_xgb) # XGB format! 

The second (optional) step is to determine the monotonicity constraints that we want to 
impose. For simplicity, we will only enforce three constraints on 

1.	 market capitalization (negative, because large firms have smaller returns under 
the size anomaly); 

2.	 price-to-book ratio (negative, because overvalued firms also have smaller returns 
under the value anomaly); 

3.	 past annual returns (positive, because winners outperform losers under the mo­
mentum anomaly). 

mono_const <- rep(0, length(features)) # Initialize the vector 
mono_const[which(features == "Mkt_Cap_12M_Usd")] <- (-1) # Decreasing in market cap 
mono_const[which(features == "Pb")] <- (-1) # Decreasing in price-to-book 
mono_const[which(features == "Mom_11M_Usd")] <- 1 # Increasing in past return 

The third step is to train the model on the formatted training data. We include the 
monotonicity constraints and the DART feature (via rate_drop). Just like random forests, 
boosted trees can grow individual trees on subsets of the data: both row-wise (by selecting 
random instances) and column-wise (by keeping a smaller portion of predictors). These 
options are implemented below with the subsample and colsample_bytree in the arguments 
of the function. 

fit_xgb <- xgb.train(data = train_matrix_xgb, # Data source 
eta = 0.3,	 # Learning rate 
objective = "reg:linear", # Objective function 
max_depth = 4,	 # Maximum depth of trees 
subsample = 0.6,	 # Train on random 60% of sample 
colsample_bytree = 0.7, # Train on random 70% of predictors 
lambda = 1,	 # Penalisation of leaf values 
gamma = 0.1,	 # Penalisation of number of leaves 
nrounds = 30,	 # Number of trees used (rather low here) 
monotone_constraints = mono_const, # Monotonicity constraints 
rate_drop = 0.1,	 # Drop rate for DART 
verbose = 0	 # No comment from the algo 

) 

Finally, we evaluate the performance of the model. Note that before that, a proper formatting 
of the testing sample is required. 



  �   �
I JK K 

O = Wi × loss(yi, ỹi) + Ω(Tj ) . 
i=1 j=1\ \ 

weighted error term regularization term (unchanged) 
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xgb_test <- testing_sample %>% # Test sample => XGB format 
dplyr::select(all_of(features_short)) %>% 
as.matrix() 

mean((predict(fit_xgb, xgb_test) - testing_sample$R1M_Usd)^2) # MSE 

## [1] 0.03908855 

mean(predict(fit_xgb, xgb_test) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5077626 

The performance is comparable to those observed for other predictive tools. As a final 
exercise, we show one implementation of a classification task under XGBoost. Only the label 
changes. In XGBoost, labels must be coded with integer number, starting at zero exactly. In 
R, factors are numerically coded as integer numbers starting from one, hence the mapping 
is simple. 

train_label_C <- training_sample %>% 
filter(R1M_Usd < quantile(R1M_Usd, 0.2) | # Either low 20% returns 

R1M_Usd > quantile(R1M_Usd, 0.8)) %>% # Or top 20% returns 
dplyr::select(R1M_Usd_C) 

train_matrix_C <- xgb.DMatrix(data = train_features_xgb, 
label = as.numeric(train_label_C == "TRUE")) # XGB format! 

When working with categories, the loss function is usually the softmax function (see Section 
1.1). 

fit_xgb_C <- xgb.train(data = train_matrix_C, # Data source (pipe input) 
eta = 0.8, # Learning rate 
objective = "multi:softmax", # Objective function 
num_class = 2, # Number of classes 
max_depth = 4, # Maximum depth of trees 
nrounds = 10, # Number of trees used 
verbose = 0 # No warning message 

) 

We can then proceed to the assessment of the quality of the model. We adjust the prediction 
to the value of the true label and count the proportion of accurate forecasts. 

mean(predict(fit_xgb_C, xgb_test) + 1 == as.numeric(testing_sample$R1M_Usd_C)) # Hit ratio 

## [1] 0.495613 

Consistently with the previous classification attempts, the results are underwhelming, as if 
switching to binary labels incurred a loss of information. 

6.4.7 Instance weighting 

In the computation of the aggregate loss, it is possible to introduce some flexibility and 
assign weights to instances: 
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In factor investing, these weights can very well depend on the feature values (Wi = Wi(xi)). 
For instance, for one particular characteristic xk, weights can be increasing thereby giving 
more importance to assets with high values of this characteristic (e.g., value stocks are 
favored compared to growth stocks). One other option is to increase weights when the values 
of the characteristic become more extreme (deep value and deep growth stocks have larger 

k kweights). If the features are uniform, the weights can simply be Wi(x ) ∝ |x − 0.5|: firms i i 
with median value 0.5 have zero weight and as the feature value shifts towards 0 or 1, the 
weight increases. Specifying weights on instances biases the learning process just like views 
introduced à la Black and Litterman (1992) influence the asset allocation process. The 
difference is that the nudge is performed well ahead of the portfolio choice problem. 

In xgboost, the implementation instance weighting is done very early, in the definition of 
the xgb.DMatrix: 

inst_weights <- runif(nrow(train_features_xgb)) # Random weights 
inst_weights <- inst_weights / sum(inst_weights) # Normalization 
train_matrix_xgb <- xgb.DMatrix(data = train_features_xgb, 

label = train_label_xgb, 
weight = inst_weights) # Weights! 

Then, in the subsequent stages, the optimization will be performed with these hard-coded 
weights. The splitting points can be altered (via the total weighted loss in clusters) and the 
terminal weight values (6.5) are also impacted. 

6.5 Discussion 

We end this chapter by a discussion on the choice of predictive engine with a view towards 
portfolio construction. As recalled in Chapter 2, the ML signal is just one building stage of 
construction of the investment strategy. At some point, this signal must be translated into 
portfolio weights. 

From this perspective, simple trees appear suboptimal. Tree depths are usually set between 3 
and 6. This implies between 8 and 64 terminal leaves at most, with possibly very unbalanced 
clusters. The likelihood of having one cluster with 20% to 30% of the sample is high. This 
means that when it comes to predictions, roughly 20% to 30% of the instances will be given 
the same value. 

On the other side of the process, portfolio policies commonly have a fixed number of assets. 
Thus, having assets with equal signals does not permit to discriminate and select a subset to 
be included in the portfolio. For instance, if the policy requires exactly 100 stocks and 105 
stocks have the same signal, the signal cannot be used for selection purposes. It would have 
to be combined with exogenous information such as the covariance matrix in a mean-variance 
type allocation. 

Overall, this is one reason to prefer aggregate models. When the number of learners is 
sufficiently large (5 is almost enough), the predictions for assets will be unique and tailored 
to these assets. It then becomes possible to discriminate via the signal and select only those 
assets that have the most favorable signal. In practice, random forests and boosted trees are 
probably the best choices. 
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6.6 Coding exercises 

1.	 Using the formula in the chunks above, build two simple trees on the training 
sample with only one parameter: cp. For the first tree, take cp=0.001 and for the 
second take cp=0.01. Evaluate the performance of both models on the testing 
sample. Comment. 

2.	 With the smaller set of predictors, build random forests on the training sample. 
Restrict the learning on 30,000 instances and over 5 predictors. Construct the 
forests on 10, 20, 40, 80 and 160 trees and evaluate their performance on the 
training sample. Is complexity worthwhile in this case and why? 

3.	 Plot a tree based on data from calendar year 2008 and then from 2009. Compare. 
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Neural networks
 

Neural networks (NNs) are an immensely rich and complicated topic. In this chapter, we 
introduce the simple ideas and concepts behind the most simple architectures of NNs. For 
more exhaustive treatments on NN idiosyncracies, we refer to the monographs by Haykin 
(2009), Du and Swamy (2013) and Goodfellow et al. (2016). The latter is available freely 
online: www.deeplearningbook.org. For a practical introduction, we recommend the great 
book of Chollet (2017). 

For starters, we briefly comment on the qualification “neural network”. Most experts agree 
that the term is not very well chosen, as NNs have little to do with how the human brain 
works (of which we know not that much). This explains why they are often referred to as 
“artificial neural networks” - we do not use the adjective for notational simplicity. Because 
we consider it more appropriate, we recall the definition of NNs given by François Chollet: 
“chains of differentiable, parameterised geometric functions, trained with gradient descent 
(with gradients obtained via the chain rule)”. 

Early references of neural networks in finance are Bansal and Viswanathan (1993) and Eakins 
et al. (1998). Both have very different goals. In the first one, the authors aim to estimate a 
nonlinear form for the pricing kernel. In the second one, the purpose is to identify and 
quantify relationships between institutional investments in stocks and the attributes of the 
firms (an early contribution towards factor investing). An early review (Burrell and Folarin 
(1997)) lists financial applications of NNs during the 1990s. More recently, Sezer et al. (2019), 
Jiang (2020) and Lim and Zohren (2020) survey the attempts to forecast financial time series 
with deep-learning models, mainly by computer science scholars. 

The pure predictive ability of NNs in financial markets is a popular subject and we further 
cite for example Kimoto et al. (1990), Enke and Thawornwong (2005), Zhang and Wu 
(2009), Guresen et al. (2011), Krauss et al. (2017), Fischer and Krauss (2018), Aldridge and 
Avellaneda (2019) and Soleymani and Paquet (2020).1 The last reference even combines 
several types of NNs embedded inside an overarching reinforcement learning structure. This 
list is very far from exhaustive. In the field of financial economics, recent research on neural 
networks includes: 

•	 Feng et al. (2019) use neural networks to find factors that are the best at explaining the 
cross-section of stock returns. 

•	 Gu et al. (2020b) map firm attributes and macro-economic variables into future returns. 
This creates a strong predictive tool that is able to forecast future returns very accurately. 

•	 Chen et al. (2020) estimate the pricing kernel with a complex neural network structure 

1Neural networks have also been recently applied to derivatives pricing and hedging, see for instance the 
work of Buehler et al. (2019) and Andersson and Oosterlee (2020) and the survey by Ruf and Wang (2019). 
Limit order book modelling is also an expanding field for neural network applications (Sirignano and Cont 
(2019), Wallbridge (2020)). 

91 

http://www.deeplearningbook.org


�
      

   

92 7 Neural networks 

including a generative adversarial network. This again gives crucial information on the 
structure of expected stock returns and can be used for portfolio construction (by building 
an accurate maximum Sharpe ratio policy). 

7.1 The original perceptron 

The origins of NNs go back at least to Rosenblatt (1958). Its aim is binary classification. For 
simplicity, let us assume that the output is {0 = do not invest} versus {1 = invest} (e.g., 
derived from return, negative versus positive). Given the current nomenclature, a perceptron 
can be defined as an activated linear mapping. The model is the following: 

1 if x�w + b > 0 
f(x) = 0 otherwise 

The vector of weights w scales the variables and the bias b shifts the decision barrier. Given 
values for b and wi, the error is Ci = yi −1 . As is customary, we set b = w0J 

j=1 
xi,j wj +w0>0 

and add an initial constant column to x: xi,0 = 1, so that Ci = yi − 1 . In J 

j=0 
xi,j wj >0 

contrast to regressions, perceptrons do not have closed-form solutions. The optimal weights 
can only be approximated. Just like for regression, one way to derive good weights is to 
minimize the sum of squared errors. To this purpose, the simplest way to proceed is to 

1. compute the current model value at point xi: ỹi = 1 ,J 

j=0 
wj xi,j >0 

2. adjust the weight vector: wj ← wj + η(yi − ỹi)xi,j , 

which amounts to shifting the weights in the right direction. Just like for tree methods, the 
scaling factor η is the learning rate. A large η will imply large shifts: learning will be rapid 
but convergence may be slow or may even not occur. A small η is usually preferable, as it 
helps reduce the risk of overfitting. 

In Figure 7.1, we illustrate this mechanism. The initial model (dashed grey line) was trained 
on 7 points (3 red and 4 blue). A new black point comes in. 
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FIGURE 7.1: Scheme of a perceptron. 

•	 if the point is red, there is no need for adjustment: it is labelled correctly as it lies on the 
right side of the border. 

•	 if the point is blue, then the model needs to be updated appropriately. Given the rule 
mentioned above, this means adjusting the slope of the line downwards. Depending on η, 
the shift will be sufficient to change the classification of the new point - or not. 

At the time of its inception, the perceptron was an immense breakthrough which received an 
intense media coverage (see Olazaran (1996) and Anderson and Rosenfeld (2000)). Its rather 
simple structure was progressively generalized to networks (combinations) of perceptrons. 
Each one of them is a simple unit, and units are gathered into layers. The next section 
describes the organization of simple multilayer perceptrons (MLPs). 

7.2 Multilayer perceptron 

7.2.1 Introduction and notations 

A perceptron can be viewed as a linear model to which is applied a particular function: 
the Heaviside (step) function. Other choices of functions are naturally possible. In the NN 
jargon, they are called activation functions. Their purpose is to introduce nonlinearity in 
otherwise very linear models. 

Just like for random forests with trees, the idea behind neural networks is to combine 
perceptron-like building blocks. A popular representation of neural networks is shown in 
Figure 7.2. This scheme is overly simplistic. It hides what is really going on: there is a 
perceptron in each green circle and each output is activated by some function before it is sent 
to the final output aggregation. This is why such a model is called a Multilayer Perceptron 
(MLP). 
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FIGURE 7.2: Simplified scheme of a multi-layer perceptron.
 

A more faithful account of what is going on is laid out in Figure 7.3.
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FIGURE 7.3: Detailed scheme of a perceptron with 2 intermediate layers. 

Before we proceed with comments, we introduce some notation that will be used thoughout 
the chapter. 

•	 The data is separated into a matrix X = xi,j of features and a vector of output values 
y = yi. x or xi denotes one line of X. 

•	 A neural network will have L ≥ 1 layers and for each layer l, the number of units is Ul  1. 
• The weights for unit located in layer are denoted with w(l) = (l)

≥
	     k    l    k  wk,j and the corresponding 

biases (l)	. The length of w(l) bk	     k is equal to Ul 1. k refers to the location of the unit in layer −
l while j to the unit in layer l − 1. 



  

  

(l)• Outputs (post-activation) are denoted o for instance i, layer l and unit k.i,k 

The process is the following. When entering the network, the data goes though the initial 
linear mapping: 

(1) (1) (1)
v = xi

� w + b , for l = 1, k ∈ [1, U1],i,k k k 

which is then transformed by a non-linear function f1. The result of this alteration is then 
given as input of the next layer and so on. The linear forms will be repeated (with different 
weights) for each layer of the network: 

(l) (l−1) (l) (l)
v = (o )�w + b , for l ≥ 2, k ∈ [1, Ul].i,k i k k 

The connections between the layers are the so-called outputs, which are basically the linear 
mappings to which the activation functions f (l) have been applied. The output of layer l is 
the input of layer l + 1. 

(l) (l) (l)
o = f v .i,k i,k 

Finally, the terminal stage aggregates the outputs from the last layer: 

= f (L+1) (L))�w(L+1) + b(L+1)ỹi (o .i 

In the forward-propagation of the input, the activation function naturally plays an important 
role. In Figure 7.4, we plot the most usual activation functions used by neural network 
libraries. 
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FIGURE 7.4: Plot of the most common activation functions. 

Let us rephrase the process through the lens of factor investing. The input x are the 
characteristics of the firms. The first step is to multiply their value by weights and add 
a bias. This is performed for all the units of the first layer. The output, which is a linear 
combination of the input is then transformed by the activation function. Each unit provides 
one value and all of these values are fed to the second layer following the same process. This 
is iterated until the end of the network. The purpose of the last layer is to yield an output 
shape that corresponds to the label: if the label is numerical, the output is a single number, 
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if it is categorical, then usually it is a vector with length equal to the number of categories. 
This vector indicates the probability that the value belongs to one particular category. 

It is possible to use a final activation function after the output. This can have a huge 
importance on the result. Indeed, if the labels are returns, applying a sigmoid function at 
the very end will be disastrous because the sigmoid is always positive. 

7.2.2 Universal approximation 

One reason neural networks work well is that they are universal approximators. Given any 
bounded continuous function, there exists a one-layer network that can approximate this 
function up to arbitrary precision (see Cybenko (1989) for early references, section 4.2 in 
Du and Swamy (2013) and section 6.4.1 in Goodfellow et al. (2016) for more exhaustive lists 
of papers, and Guliyev and Ismailov (2018) for recent results). 

Formally, a one-layer perceptron is defined by 

n

fn(x) = clφ(xwl + bl) + c0, 
l=1 

K 

where φ is a (non-constant) bounded continuous function. Then, for any C > 0, it is possible 
to find one n such that for any continuous function f on the unit hypercube [0, 1]d, 

|f(x) − fn(x)| < C, ∀x ∈ [0, 1]d . 

This result is rather intuitive: it suffices to add units to the layer to improve the fit. The 
process is more or less analogous to polynomial approximation, though some subtleties 
arise depending on the properties of the activations functions (boundedness, smoothness, 
convexity, etc.). We refer to Costarelli et al. (2016) for a survey on this topic. 

The raw results on universal approximation imply that any well-behaved function f can be 
approached sufficiently closely by a simple neural network, as long as the number of units 
can be arbitrarily large. Now, they do not directly relate to the learning phase, i.e., when 
the model is optimized with respect to a particular dataset. In a series of papers (Barron 
(1993) and Barron (1994), notably), Barron gives a much more precise characterization of 
what neural networks can achieve. In Barron (1993) it is for instance proved a more precise 
version of universal approximation: for particular neural networks (with sigmoid activation), 
E[(f(x) − fn(x))2] ≤ cf /n, which gives a speed of convergence related to the size of the 
network. In the expectation, the random term is x: this corresponds to the case where the 
data is considered to be a sample of i.i.d. observations of a fixed distribution (this is the 
most common assumption in machine learning). 

Below, we state one important result that is easy to interpret; it is taken from Barron (1994). 

In the sequel, fn corresponds to a possibly penalized neural network with only one interme­
diate layer with n units and sigmoid activation function. Moreover, both the supports of the 
predictors and the label are assumed to be bounded (which is not a major constraint). The 
most important metric in a regression exercise is the mean squared error (MSE) and the 
main result is a bound (in order of magnitude) on this quantity. For N randomly sampled 
i.i.d. points yi = f(xi) + Ci on which fn is trained, the best possible empirical MSE behaves 
like 



  cf nK N
E (f(x) − fn(x))2 = O + O , (7.1) 

n N  
size of network size of sample 

  � �
log( )  �   �\ \

where K is the dimension of the input (number of columns) and cf is a constant that depends 
on the generator function f . The above quantity provides a bound on the error that can be 
achieved by the best possible neural network given a dataset of size N . 

There are clearly two components in the decomposition of this bound. The first one pertains 
to the complexity of the network. Just as in the original universal approximation theorem, 
the error decreases with the number of units in the network. But this is not enough! Indeed, 
the sample size is of course a key driver in the quality of learning (of i.i.d. observations). 
The second component of the bound indicates that the error decreases at a slightly slower 
pace with respect to the number of observations (log(N)/N) and is linear in the number of 
units and the size of the input. This clearly underlines the link (trade-off?) between sample 
size and model complexity: having a very complex model is useless if the sample is small 
just like a simple model will not catch the fine relationships in a large dataset. 

Overall, a neural network is a possibly very complicated function with a lot of parameters. In 
linear regressions, it is possible to increase the fit by spuriously adding exogenous variables. 
In neural networks, it suffices to increase the number of parameters by arbitrarily adding 
units to the layer(s). This is of course a very bad idea because high-dimensional networks 
will mostly capture the particularities of the sample they are trained on. 

∂D(ỹi)W ← W − η . (7.2)
∂W 
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7.2.3 Learning via back-propagation 

Just like for tree methods, neural networks are trained by minimizing some loss function 
subject to some penalization: 

I  
O = loss(yi, ỹi) + penalization, 

i=1 

K
where ỹi are the values obtained by the model and yi are the true values of the instances. 
A simple requirement that eases computation is that the loss function be differentiable. 
The most common choices are the squared error for regression tasks and cross-entropy for 
classification tasks. We discuss the technicalities of classification in the next subsection. 

The training of a neural network amounts to alter the weights (and biases) of all units in 
all layers so that O defined above is the smallest possible. To ease the notation and given 
that the yi are fixed, let us write D(ỹi(W)) = loss(yi, ỹi), where W denotes the entirety 
of weights and biases in the network. The updating of the weights will be performed via 
gradient descent, i.e., via 

This mechanism is the most classical in the optimization literature and we illustrate it in 
Figure 7.5. We highlight the possible suboptimality of large learning rates. In the diagram, 
the descent associated with the high η will oscillate around the optimal point, whereas the 
one related to the small eta will converge more directly. 
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∂D(ỹi(wk)) D(ỹi(wk + h)) − D(ỹi(wk − h))= + O(h2),
∂wk 2h 

where h > 0 is some arbitrarily small number. In spite of its apparent simplicity, this method 
is costly computationally because it requires a number of operations of the magnitude of the 
number of weights. 

Luckily, there is a small trick that can considerably ease and speed up the computation. 
The idea is to simply follow the chain rule and recycle terms along the way. Let us start by 
recalling 

ULK 
= f (L+1) (L))�w(L+1) + b(L+1) = f (L+1) b(L+1) + (L+1) (L)

ỹi (o w o ,i k i,k 
k=1 

so that if we differentiate with the most immediate weights and biases, we get: 

UL� K∂D(ỹi) 
f (L+1) b(L+1) + (L+1) (L) (L)= D�(ỹi) w o o (7.3)(L+1) k i,k i,k

∂wk k=1 

f (L+1) (L+1) (L)= D�(ỹi) v o (7.4)i,k i,k 

UL� K∂D(ỹi) 
f (L+1) b(L+1) + (L+1) (L)= D�(ỹi) w o . (7.5)

∂b(L+1) k i,k 
k=1 

This is the easiest part. We must now go back one layer and this can only be done via 
(L) (L−1) (L) (L) (L)the chain rule. To access layer L, we recall identity v = (o )�w + b = b +i,k i k k k 

UL (L−1) (L)
w . We can then proceed: j=1 oi,j k,j 
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The complicated task in the above equation is to compute the gradient (derivative) which tells 
in which direction the adjustment should be done. The problem is that the successive nested 
layers and associated activations require many iterations of the chain rule for differentiation. 

ERROR (LOSS)

First iteration
First iteration

Second iterationSecond iteration

starting point
(negative derivative)

Large learning rate
Small learning rate

WEIGHT

FIGURE 7.5: Outline of gradient descent. 

The most common way to approximate a derivative is probably the finite difference method. 
Under the usual assumptions (the loss is twice differentiable), the centered difference satisfies: 



    � 

(L)
∂D(ỹi) ∂D(ỹi) ∂vi,k ∂D(ỹi) (L−1)= = o	 (7.6)(L) (L) (L) (L) i,j
∂w ∂v ∂w ∂vk,j i,k k,j i,k 

(L)
∂o∂D(ỹi) i,k (L−1) ∂D(ỹi) (L) (lL1)= o = (f (L))�(v )o	 (7.7)(L) (L) i,j (L) i,k i,j

∂o ∂v ∂oi,k i,k i,k 

f (L+1) (L+1) (L+1)(f (L))�(v(L) (L−1)= D�(ỹi) v w	 )o , (7.8)i,k k i,k i,j 
 

computed above! 
  �
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\
where, as we show in the last line, one part of the derivative was already computed in the 
previous step (Equation (7.4)). Hence, we can recycle this number and only focus on the 
right part of the expression. 

The magic of the so-called back-propagation is that this will hold true for each step of the 
differentiation. When computing the gradient for weights and biases in layer l, there will 
be two parts: one that can be recycled from previous layers and another, local part, that 
depends only on the values and activation function of the current layer. A nice illustration 
of this process is given by the Google developer team: playground.tensorflow.org. 

When the data is formatted using tensors, it is possible to resort to vectorization so that the 
number of calls is limited to an order of the magnitude of the number of nodes (units) in 
the network. 

The back-propagation algorithm can be summarized as follows. Given a sample of points 
(possibly just one): 

1.	 the data flows from left as is described in Figure 7.6. The blue arrows show the 
forward pass; 

2.	 this allows the computation of the error or loss function; 

3.	 all derivatives of this function (w.r.t. weights and biases) are computed, starting 
from the last layer and diffusing to the left (hence the term back-propagation) ­
the green arrows show the backward pass; 

4.	 all weights and biases can be updated to take the sample points into account (the 
model is adjusted to reduce the loss/error stemming from these points). 

http://www.playground.tensorflow.org.


Wt+1 ← Wt − mt with 

∂D(ỹi)mt ← η + γmt−1, (7.9)
∂Wt 
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FIGURE 7.6: Diagram of back-propagation. 

This operation can be performed any number of times with different sample sizes. We discuss 
this issue in Section 7.3. 

The learning rate η can be refined. One option to reduce overfitting is to impose that 
after each epoch, the intensity of the update decreases. One possible parametric form is 
η = αe−βt, where t is the epoch and α, β > 0. One further sophistication is to resort to 
so-called momentum (which originates from Polyak (1964)): 

where t is the index of the weight update. The idea of momentum is to speed up the 
convergence by including a memory term of the last adjustment (mt−1) and going in the 
same direction in the current update. The parameter γ is often taken to be 0.9. 

More complex and enhanced methods have progressively been developed:
 
- Nesterov (1983) improves the momentum term by forecasting the future shift in parameters;
 
- Adagrad (Duchi et al. (2011)) uses a different learning rate for each parameter;
 
- Adadelta (Zeiler (2012)) and Adam (Kingma and Ba (2014)) combine the ideas of Adagrad
 
and momentum. 

Lastly, in some degenerate case, some gradients may explode and push weights far from their 
optimal values. In order to avoid this phenomenon, learning libraries implement gradient 
clipping. The user specifies a maximum magnitude for gradients, usually expressed as a 
norm. Whenever the gradient surpasses this magnitude, it is rescaled to reach the authorized 
threshold. Thus, the direction remains the same, but the adjustment is smaller. 

7.2.4 Further details on classification 

In decision trees, the ultimate goal is to create homogeneous clusters, and the process to 
reach this goal was outlined in the previous chapter. For neural networks, things work 
differently because the objective is explicitly to minimize the error between the prediction 
ỹi and a target label yi. Again, here yi is a vector full of zeros with only one one denoting 
the class of the instance. 



xieỹi = s(x)i = .
J 
j=1 e

xj 
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Facing a classification problem, the trick is to use an appropriate activation function at the 
very end of the network. The dimension of the terminal output of the network should be 
equal to J (number of classes to predict), and if, for simplicity, we write xi for the values of 
this output, the most commonly used activation is the so-called softmax function: 

The justification of this choice is straightforward: it can take any value as input (over the 
real line) and it sums to one over any (finite-valued) output. Similarly as for trees, this 
yields a ‘probability’ vector over the classes. Often, the chosen loss is a generalization of the 
entropy used for trees. Given the target label yi = (yi,1, . . . , yi,L) = (0, 0, . . . , 0, 1, 0, . . . , 0) 
and the predicted output ỹi = (ỹi,1, . . . , ỹi,L), the cross-entropy is defined as 

JK 
CE(yi, ỹi) = − log(ỹi,j )yi,j . (7.10) 

j=1 

Basically, it is a proxy of the dissimilarity between its two arguments. One simple interpreta­
tion is the following. For the nonzero label value, the loss is − log(ỹi,l), while for all others, 
it is zero. In the log, the loss will be minimal if ỹi,l = 1, which is exactly what we seek (i.e., 
yi,l = ỹi,l). In applications, this best case scenario will not happen, and the loss will simply 
increase when ỹi,l drifts away downwards from one. 

7.3 How deep we should go and other practical issues 

Beyond the ones presented in the previous sections, the user faces many degrees of freedom 
when building a neural network. We present a few classical choices that are available when 
constructing and training neural networks. 

7.3.1 Architectural choices 

Arguably, the first choice pertains to the structure of the network. Beyond the dichotomy 
feed-forward versus recurrent (see Section 7.5), the immediate question is: how big (or how 
deep) the networks should be. First of all, let us calculate the number of parameters (i.e., 
weights plus biases) that are estimated (optimized) in a network. 

•	 For the first layer, this gives (U0 + 1)U1 parameters, where U0 is the number of columns 
in X (i.e., number of explanatory variables) and U1 is the number of units in the layer. 

•	 For layer l ∈ [2, L], the number of parameters is (Ul−1 + 1)Ul. 

•	 For the final output, there are simply UL + 1 parameters. 
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•	 In total, this means the total number of values to optimize is �KL  
N = (Ul 1 + 1)U− l + UL + 1 

l=1 

�
As in any model, the number of parameters should be much smaller than the number of 
instances. There is no fixed ratio, but it is preferable if the sample size is at least ten times 
larger than the number of parameters. Below a ratio of 5, the risk of overfitting is high. 
Given the amount of data readily available, this constraint is seldom an issue, unless one 
wishes to work with a very large network. 

The number of hidden layers in current financial applications rarely exceeds three or four. 
The number of units per layer (Uk) is often chosen to follow the geometric pyramid rule 
(see, e.g., Masters (1993)). If there are L hidden layers, with I features in the input and 
O dimensions in the output (for regression tasks, O = 1), then, for the kth layer, a rule of 
thumb for the number of units is 

  

 
If there is only one intermediate layer, the recommended proxy is the integer part of 

√
IO. 

If not, the network starts with many units and the number of unit decreases exponentially 
towards the output size. Often, the number of layers is a power of two because, in high 
dimensions, networks are trained on Graphics Processing Units (GPUs) or Tensor Processing 
Units (TPUs). Both pieces of hardware can be used optimally when the inputs have sizes 
equals to powers of two. 

Several studies have shown that very large architectures do not always perform better than 
more shallow ones (e.g., Gu et al. (2020b) and Orimoloye et al. (2019) for high frequency 
data, i.e., not factor-based). As a rule of thumb, a maximum of three hidden layers seem to 
be sufficient for prediction purposes. 

7.3.2 Frequency of weight updates and learning duration 

In the expression (7.2), it is implicit that the computation is performed for one given instance. 
If the sample size is very large (hundreds of thousands or millions of instances), updating 
the weights according to each point is computationally too costly. The updating is then 
performed on groups of instances which are called batches. The sample is (randomly) split 
into batches of fixed sizes and each update is performed following the rule: 

The change in weights is computed over the average loss computed over all instances in the 
batch. The terminology for training includes: 

•	 epoch: one epoch is reached when each instance of the sample has contributed to the 
update of the weights (i.e., the training). Often, training a NN requires several epochs and 
up to a few dozen. 

•	 batch size: the batch size is the number of samples used for one single update of weights. 
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•	 iterations: the number of iterations can mean alternatively the ratio of sample size divided 
by batch size or this ratio multiplied by the number of epochs. It’s either the number of 
weight updates required to reach one epoch or the total number of updates during the 
whole training. 

When the batch is equal to only one instance, the method is referred to as ‘stochastic gradient 
descent’ (SGD): the instance is chosen randomly. When the batch size is strictly above one 
and below the total number of instances, the learning is performed via ‘mini’ batches, that 
is, small groups of instances. The batches are also chosen randomly, but without replacement 
in the sample because for one epoch, the union of batches must be equal to the full training 
sample. 

It is impossible to know in advance what a good number of epochs is. Sometimes, the network 
stops learning after just 5 epochs (the validation loss does not decrease anymore). In some 
cases when the validation sample is drawn from a distribution close to that of the training 
sample, the network continues to learn even after 200 epochs. It is up to the user to test 
different values to evaluate the learning speed. In the examples below, we keep the number 
of epochs low for computational purposes. 

7.3.3 Penalizations and dropout 

At each level (layer), it is possible to enforce constraints or penalizations on the weights (and 
biases). Just as for tree methods, this helps slow down the learning to prevent overfitting 
on the training sample. Penalizations are enforced directly on the loss function and the 
objective function takes the form 

I   
O = loss(yi, ỹi) + λk||Wk||1 + δk||Wj ||22, 

i=1 k j 

K K K
where the subscripts k and j pertain to the weights to which the L1 and (or) L2 penalization 
is applied. 

In addition, specific constraints can be enforced on the weights directly during the training. 
Typically, two types of constraints are used: 

•	 norm constraints: a maximum norm is fixed for the weight vectors or matrices; 

•	 non-negativity constraint: all weights must be positive or zero. 

Lastly, another (somewhat exotic) way to reduce the risk of overfitting is simply to reduce 
the size (number of parameters) of the model. Srivastava et al. (2014) propose to omit units 
during training (hence the term ‘dropout’). The weights of randomly chosen units are set to 
zero during training. All links from and to the unit are ignored, which mechanically shrinks 
the network. In the testing phase, all units are back, but the values (weights) must be scaled 
to account for the missing activations during the training phase. 

The interested reader can check the advice compiled in Bengio (2012) and Smith (2018) for 
further tips on how to configure neural networks. A paper dedicated to hyperparameter 
tuning for stock return prediction is Lee (2020). 
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7.4 Code samples and comments for vanilla MLP 

There are several frameworks and libraries that allow robust and flexible constructions of 
neural networks. Among them, Keras and Tensorflow (developed by Google) are probably 
the most used at the time we write this book (PyTorch, from Facebook, is one alternative). 
For simplicity and because we believe it is the best choice, we implement the NN with Keras 
(which is the high level API of Tensorflow, see https://www.tensorflow.org). The original 
Python implementation is referenced on https://keras.io, and the details for the R version 
can be found here: https://keras.rstudio.com. We recommend a thorough installation 
before proceeding. Because the native versions of Tensorflow and Keras are written in Python 
(and accessed by R via the reticulate package), a running version of Python is required below. 
To install Keras, please follow the instructions provided at https://keras.rstudio.com. 

In this section, we provide a detailed (though far from exhaustive) account of how to train 
neural networks with Keras. For the sake of completeness, we proceed in two steps. The first 
one relates to a very simple regression exercise. Its purpose is to get the reader familiar with 
the syntax of Keras. In the second step, we lay out many of the options proposed by Keras 
to perform a classification exercise. With these two examples, we thus cover most of the 
mainstream topics falling under the umbrella of feed-forward multilayered perceptrons. 

7.4.1 Regression example 

Before we head to the core of the NN, a short stage of data preparation is required. Just 
as for penalized regressions (glmnet package) and boosted trees (xgboost package), the 
data must be sorted into four parts which are the combination of two dichotomies: training 
versus testing and labels versus features. We define the corresponding variables below. For 
simplicity, the first example is a regression exercise. A classification task will be detailed 
below. 

NN_train_features <- dplyr::select(training_sample, features) %>% # Training features 
as.matrix() # Matrix = important 

NN_train_labels <- training_sample$R1M_Usd # Training labels 
NN_test_features <- dplyr::select(testing_sample, features) %>% # Testing features 

as.matrix() # Matrix = important 
NN_test_labels <- testing_sample$R1M_Usd # Testing labels 

In Keras, the training of neural networks is performed through three steps: 

1. Defining the structure/architecture of the network; 

2. Setting the loss function and learning process (options on the updating of weights); 

3. Train by specifying the batch sizes and number of rounds (epochs). 

We start with a very simple architecture with two hidden layers. 

library(keras) 
# install_keras() # To complete installation 
model <- keras_model_sequential() 

https://www.tensorflow.org
https://www.keras.io
https://www.keras.rstudio.com
https://keras.rstudio.com
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model %>% # This defines the structure of the network, i.e. how layers are organized 
layer_dense(units = 16, activation = 'relu', input_shape = ncol(NN_train_features)) %>% 
layer_dense(units = 8, activation = 'tanh') %>% 
layer_dense(units = 1) # No activation means linear activation: f(x) = x. 

The definition of the structure is very intuitive and uses the sequential syntax in which one 
input is iteratively transformed by a layer until the last iteration which gives the output. 
Each layer depends on two parameters: the number of units and the activation function that 
is applied to the output of the layer. One important point is the input_shape parameter for 
the first layer. It is required for the first layer and is equal to the number of features. For 
the subsequent layers, the input_shape is dictated by the number of units of the previous 
layer; hence it is not required. The activations that are currently available are listed on 
https://keras.io/activations/. We use the hyperbolic tangent in the second-to-last 
layer because it yields both positive and negative outputs. Of course, the last layer can 
generate negative values as well, but it’s preferable to satisfy this property one step ahead 
of the final output. 

model %>% compile( # Model specification 
loss = 'mean_squared_error', # Loss function 
optimizer = optimizer_rmsprop(), # Optimisation method (weight updating) 
metrics = c('mean_absolute_error') # Output metric 

) 
summary(model) # Model architecture 

## __________________________________________________________________________________________
 
## Layer (type) Output Shape Param #
 
## ==========================================================================================
 
## dense_48 (Dense) (None, 16) 1504
 
## __________________________________________________________________________________________
 
## dense_49 (Dense) (None, 8) 136
 
## __________________________________________________________________________________________
 
## dense_50 (Dense) (None, 1) 9
 
## ==========================================================================================
 
## Total params: 1,649
 
## Trainable params: 1,649
 
## Non-trainable params: 0
 
## __________________________________________________________________________________________
 

The summary of the model lists the layers in their order from input to output (forward 
pass). Because we are working with 93 features, the number of parameters for the first layer 
(16 units) is 93 plus one (for the bias) multiplied by 16, which makes 1504. For the second 
layer, the number of inputs is equal to the size of the output from the previous layer (16). 
Hence given the fact that the second layer has 8 units, the total number of parameters is 
(16+1)*8 = 136. 

We set the loss function to the standard mean squared error. Other losses are listed on 
https://keras.io/losses/, some of them work only for regressions (MSE, MAE) and 
others only for classification (categorical cross-entropy, see Equation (7.10)). The RMS 
propragation optimizer is the classical mini-batch back-propagation implementation. For 
other weight updating algorithms, we refer to https://keras.io/optimizers/. The metric 
is the function used to assess the quality of the model. It can be different from the loss: for 
instance, using entropy for training and accuracy as the performance metric. 

The final stage fits the model to the data and requires some additional training parameters: 

https://www.keras.io
https://keras.io
https://keras.io
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fit_NN <- model %>% 
fit(NN_train_features, # Training features 

NN_train_labels, # Training labels 
epochs = 10, batch_size = 512, # Training parameters 
validation_data = list(NN_test_features, NN_test_labels) # Test data 

)
 
plot(fit_NN) # Plot, evidently!
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FIGURE 7.7: Output from a trained neural network (regression task). 

The batch size is quite arbitrary. For technical reasons pertaining to training on GPUs, these 
sizes are often powers of 2. 

In Keras, the plot of the trained model shows four different curves (shown here in Figure 
7.7). The top graph displays the improvement (or lack thereof) in loss as the number of 
epochs increases. Usually, the algorithm starts by learning rapidly and then converges to a 
point where any additional epoch does not improve the fit. In the example above, this point 
arrives rather quickly because it is hard to notice any gain beyond the fourth epoch. The 
two colors show the performance on the two samples: the training sample and the testing 
sample. By construction, the loss will always improve (even marginally) on the training 
sample. When the impact is negligible on the testing sample (the curve is flat, as is the case 
here), the model fails to generalize out-of-sample: the gains obtained by training on the 
original sample do not translate to gains on previously unseen data; thus, the model seems 
to be learning noise. 

The second graph shows the same behavior but is computed using the metric function. The 
correlation (in absolute terms) between the two curves (loss and metric) is usually high. If 
one of them is flat, the other should be as well. 
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In order to obtain the parameters of the model, the user can call get_weights(model).2 We 
do not execute the code here because the size of the output is much too large, as there are 
thousands of weights. 

Finally, from a practical point of view, the prediction is obtained via the usual predict() 
function. We use this function below on the testing sample to calculate the hit ratio. 

mean(predict(model, NN_test_features) * NN_test_labels > 0) # Hit ratio 

## [1] 0.539853 

Again, the hit ratio lies between 50% and 55%, which seems reasonably good. Most of the 
time, neural networks have their weights initialized randomly. Hence, two independently 
trained networks with the same architecture and same training data may well lead to 
very different predictions and performance! One way to bypass this issue is to freeze the 
random number generator. Models can also be easily exchanged by loading weights via the 
set_weights() function. 

7.4.2 Classification example 

We pursue our exploration of neural networks with a much more detailed example. The aim 
is to carry out a classification task on the binary label R1M_Usd_C. Before we proceed, 
we need to format the label properly. To this purpose, we resort to one-hot encoding (see 
Section 4.5.2). 

library(dummies) # Package for one-hot encoding 
NN_train_labels_C <- training_sample$R1M_Usd_C %>% dummy() # One-hot encoding of the label 
NN_test_labels_C <- testing_sample$R1M_Usd_C %>% dummy() # One-hot encoding of the label 

The labels NN_train_labels_C and NN_test_labels_C have two columns: the first flags 
the instances with above median returns and the second flags those with below median 
returns. Note that we do not alter the feature variables: they remain unchanged. Below, we 
set the structure of the networks with many additional features compared to the first one. 

model_C <- keras_model_sequential()
 
model_C %>% # This defines the structure of the network, i.e. how layers are organized
 

layer_dense(units = 16, activation = 'tanh', # Nb units & activation 
input_shape = ncol(NN_train_features), # Size of input 
kernel_initializer = "random_normal", # Initialization of weights 
kernel_constraint = constraint_nonneg()) %>% # Weights should be nonneg 

layer_dropout(rate = 0.25) %>% # Dropping out 25% units 
layer_dense(units = 8, activation = 'elu', # Nb units & activation 

bias_initializer = initializer_constant(0.2), # Initialization of biases 
kernel_regularizer = regularizer_l2(0.01)) %>% # Penalization of weights 

layer_dense(units = 2, activation = 'softmax') # Softmax for categorical output 

Before we start commenting on the many options used above, we highlight that Keras 
models, unlike many R variables, are mutable objects. This means that any piping %>% 
after calling a model will alter it. Hence, successive trainings do not start from scratch but 
from the result of the previous training. 

2In case of package conflicts, use keras::get_weights(model). Indeed, another package in the machine 
learning landscape, yardstick, uses the function name “get_weights”. 

http:regularizer_l2(0.01
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First, the options used above and below were chosen as illustrative examples and do not 
serve to particularly improve the quality of the model. The first change compared to Section 
7.4.1 is the activation functions. The first two are simply new cases, while the third one (for 
the output layer) is imperative. Indeed, since the goal is classification, the dimension of the 
output must be equal to the number of categories of the labels. The activation that yields a 
multivariate is the softmax function. Note that we must also specify the number of classes 
(categories) in the terminal layer. 

The second major innovation is options pertaining to parameters. One family of options 
deals with the initialization of weights and biases. In Keras, weights are referred to as the 
‘kernel’. The list of initializers is quite long and we suggest the interested reader has a look at 
the Keras reference (https://keras.io/initializers/). Most of them are random, but 
some of them are constant. 

Another family of options is the constraints and norm penalization that are applied on 
the weights and biases during training. In the above example, the weights of the first layer 
are coerced to be non-negative, while the weights of the second layer see their magnitude 
penalized by a factor (0.01) times their L2 norm. 

Lastly, the final novelty is the dropout layer (see Section 7.3.3) between the first and second 
layers. According to this layer, one fourth of the units in the first layer will be (randomly) 
omitted during training. 

The specification of the training is outlined below. 

model_C %>% compile( # Model specification 
loss = 'binary_crossentropy', # Loss function 
optimizer = optimizer_adam(lr = 0.005, # Optimisation method (weight updating) 

beta_1 = 0.9, 
beta_2 = 0.95), 

metrics = c('categorical_accuracy') # Output metric 
) 
summary(model_C) # Model structure 

## __________________________________________________________________________________________
 
## Layer (type) Output Shape Param #
 
## ==========================================================================================
 
## dense_51 (Dense) (None, 16) 1504
 
## __________________________________________________________________________________________
 
## dropout_2 (Dropout) (None, 16) 0
 
## __________________________________________________________________________________________
 
## dense_52 (Dense) (None, 8) 136
 
## __________________________________________________________________________________________
 
## dense_53 (Dense) (None, 2) 18
 
## ==========================================================================================
 
## Total params: 1,658
 
## Trainable params: 1,658
 
## Non-trainable params: 0
 
## __________________________________________________________________________________________
 

Here again, many changes have been made: all levels have been revised. The loss is now the 
cross-entropy. Because we work with two categories, we resort to a specific choice (binary 
cross-entropy), but the more general form is the option categorical_crossentropy and works 
for any number of classes (strictly above 1). The optimizer is also different and allows 
for several parameters and we refer to Kingma and Ba (2014). Simply put, the two beta 
parameters control decay rates for exponentially weighted moving averages used in the 
update of weights. The two averages are estimates for the first and second moment of the 
gradient and can be exploited to increase the speed of learning. The performance metric 

https://keras.io
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in the above chunk is the categorical accuracy. In multiclass classification, the accuracy is 
defined as the average accuracy over all classes and all predictions. Since a prediction for one 
instance is a vector of weights, the ‘terminal’ prediction is the class that is associated with 
the largest weight. The accuracy then measures the proportion of times when the prediction 
is equal to the realized value (i.e., when the class is correctly guessed by the model). 

Finally, we proceed with the training of the model. 

fit_NN_C <- model_C %>% 
fit(NN_train_features, # Training features 

NN_train_labels_C, # Training labels 
epochs = 20, batch_size = 512, # Training parameters 
validation_data = list(NN_test_features, 

NN_test_labels_C), # Test data 
verbose = 0, # No comments from algo 
callbacks = list( 

callback_early_stopping(monitor = "val_loss", # Early stopping: 
min_delta = 0.001, # Improvement threshold 
patience = 3, # Nb epochs with no improvmt 
verbose = 0 # No warnings 
) 

) 
) 

plot(fit_NN_C) 
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FIGURE 7.8: Output from a trained neural network (classification task) with early 
stopping. 

There is only one major difference here compared to the previous training call. In Keras, 
callbacks are functions that can be used at given stages of the learning process. In the above 
example, we use one such function to stop the algorithm when no progress has been made 
for some time. 

When datasets are large, the training can be long, especially when batch sizes are small 
and/or the number of epochs is high. It is not guaranteed that going to the full number of 
epochs is useful, as the loss or metric functions may be plateauing much sooner. Hence, it 
can be very convenient to stop the process if no improvement is achieved during a specified 
time-frame. We set the number of epochs to 20, but the process will likely stop before that. 

In the above code, the improvement is focused on validation accuracy (“val_acc”; one 
alternative is “val_loss”). The min_delta value sets the minimum improvement that needs 
to be attained for the algorithm to continue. Therefore, unless the validation accuracy gains 
0.001 points at each epoch, the training will stop. Nevertheless, some flexibility is introduced 
via the patience parameter, which in our case asserts that the halting decision is made only 
after three consecutive epochs with no improvement. In the option, the verbose parameter 
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dictates the amount of comments that is made by the function. For simplicity, we do not 
want any comments, hence this value is set to zero. 

In Figure 7.8, the two graphs yield very different curves. One reason for that is the scale of 
the second graph. The range of accuracies is very narrow. Any change in this range does not 
represent much variation overall. The pattern is relatively clear on the training sample: the 
loss decreases, while the accuracy improves. Unfortunately, this does not translate to the 
testing sample which indicates that the model does not generalize well out-of-sample. 

7.4.3 Custom losses 

In Keras, it is possible to define user-specified loss functions. This may be interesting in 
some cases. For instance, the quadratic error has three terms yi 

2, ỹ2 and −2yiỹi. In practice, i 
it can make sense to focus more on the latter term because it is the most essential: we do 
want predictions and realized values to have the same sign! Below we show how to optimize 
on a simple (product) function in Keras, l(yi, ỹi) = (ỹi − m̃)2 − γ(yi − m)(ỹi − m̃), where m 
and m̃ are the sample averages of yi and ỹi. With γ > 2, we give more weight to the cross 
term. We start with a simple architecture. 

model_custom <- keras_model_sequential() 
model_custom %>% # This defines the structure of the network, i.e. how layers are organized 

layer_dense(units = 16, activation = 'relu', input_shape = ncol(NN_train_features)) %>% 
layer_dense(units = 8, activation = 'sigmoid') %>% 
layer_dense(units = 1) # No activation means linear activation: f(x) = x. 

Then we code the loss function and integrate it to the model. The important trick is to 
resort to functions that are specific to the library (the k_functions). We code the variance 
of predicted values minus the scaled covariance between realized and predicted values. Below 
we use a scale of five. 

custom_loss <- function(y, f){ # Defines the loss, we use gamma = 5 
return(k_mean((f - k_mean(f))*(f - k_mean(f)))-5*k_mean((y - k_mean(y))*(f - k_mean(f)))) 

} 
model_custom %>% compile( # Model specification 

loss = function(y_true, y_pred) custom_loss(y_true, y_pred), # New loss function! 
optimizer = optimizer_rmsprop(), # Optim method 
metrics = c('mean_absolute_error') # Output metric 

) 

Finally, we are ready to train and briefly evaluate the performance of the model. 

fit_NN_cust <- model_custom %>% 
fit(NN_train_features, # Training features
 

NN_train_labels, # Training labels
 
epochs = 10, batch_size = 512, # Training parameters
 
validation_data = list(NN_test_features, NN_test_labels) # Test data
 

) 
plot(fit_NN_cust) 
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The curves may go in opposite direction. One reason for that is that while improving 
correlation between realized and predicted values, we are also increasing the sum of squared 
predicted returns. 

mean(predict(model_custom, NN_test_features) * NN_test_labels > 0) # Hit ratio 

## [1] 0.4468864 

The outcome could be improved. There are several directions that could help. One of them 
is arguably that the model should be dynamic and not static (see Chapter 12). 

7.5 Recurrent networks 

7.5.1 Presentation 

Multilayer perceptrons are feed-forward networks because the data flows from left to right 
with no looping in between. For some particular tasks with sequential linkages (e.g., time-
series or speech recognition), it might be useful to keep track of what happened with the 
previous sample (i.e., there is a natural ordering). One simple way to model ‘memory’ would 



be to consider the following network with only one intermediate layer: 
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where h0 is customarily set at zero (vector-wise). 

These kinds of models are often referred to as Elman (1990) models or to Jordan (1997) 

\

models if in the latter case hi−1 is replaced by yi−1 in the computation of hi. Both types of 
models fall under the overarching umbrella of Recurrent Neural Networks (RNNs). 

The hi is usually called the state or the hidden layer. The training of this model is complicated 
and must be done by unfolding the network over all instances to obtain a simple feed-forward 
network and train it regularly. We illustrate the unfolding principle in Figure 7.9. It shows a 
very deep network. The first input impacts the first layer and then the second one via h1 

and all following layers in the same fashion. Likewise, the second input impacts all layers 
except the first and each instance i − 1 is going to impact the output ỹi and all outputs ỹj 

for j ≥ i. In Figure 7.9, the parameters that are trained are shown in blue. They appear 
many times, in fact, at each level of the unfolded network. 
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FIGURE 7.9: Unfolding a recurrent network. 

The main problem with the above architecture is the loss of memory induced by vanishing 
gradients. Because of the depth of the model, the chain rule used in the back-propagation 
will imply a large number of products of derivatives of activation functions. Now, as is shown 
in Figure 7.4, these functions are very smooth and their derivatives are most of the time 
smaller than one (in absolute value). Hence, multiplying many numbers smaller than one 
leads to very small figures: beyond some layers, the learning does not propagate because the 
adjustments are too small. 

One way to prevent this progressive discounting of the memory was introduced in Hochreiter 
and Schmidhuber (1997) (Long-Short Term Memory - LSTM model). This model was 
subsequently simplified by the authors Chung et al. (2015) and we present this more 
parsimonious model below. The Gated Recurrent Unit (GRU) is a slightly more complicated 



  

  

version of the vanilla recurrent network defined above. It has the following representation: 

ỹi = ziỹi−1 + (1 − zi) tanh w� 
yxi + by + uyriỹi−1 output (prediction) 

zi = sig(w� xi + bz + uz ỹi−1) ‘update gate’ ∈ (0, 1)z

ri = sig(wr
� xi + br + urỹi−1) ‘reset gate’ ∈ (0, 1). 

In compact form, this gives 

ỹi = zi ỹi−1 + (1 − zi) tanh w� xi + by + uyriỹi−1 ,
  y

weight past value weight candidate value (classical RNN) 

  �   �\  \ \   �
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\
where the zi decides the optimal mix between the current and past values. For the candidate 
value, ri decides which amount of past/memory to retain. ri is commonly referred to as the 
‘reset gate’ and zi to the ‘update gate’. 

There are some subtleties in the training of a recurrent network. Indeed, because of the 
chaining between the instances, each batch must correspond to a coherent time series. A 
logical choice is thus one batch per asset with instances (logically) chronologically ordered. 
Lastly, one option in some frameworks is to keep some memory between the batches by 
passing the final value of ỹi to the next batch (for which it will be ỹ0). This is often referred 
to as the stateful mode and should be considered meticulously. It does not seem desirable 
in a portfolio prediction setting if the batch size corresponds to all observations for each 
asset: there is no particular link between assets. If the dataset is divided into several parts 
for each given asset, then the training must be handled very cautiously. 

Reccurrent networks and LSTM especially have been found to be good forecasting tools in 
financial contexts (see, e.g., Fischer and Krauss (2018) and Wang et al. (2020)). 

7.5.2 Code and results 

Recurrent networks are theoretically more complicated compared to multilayered perceptrons. 
In practice, they are also more challenging in their implementation. Indeed, the serial linkages 
require more attention compared to feed-forward architectures. In an asset pricing framework, 
we must separate the assets because the stock-specific time series cannot be bundled together. 
The learning will be sequential, one stock at a time. 

The dimensions of variables are crucial. In Keras, they are defined for RNNs as: 

1.	 The size of the batch: in our case, it will be the number of assets. Indeed, the 
recurrence relationship holds at the asset level, hence each asset will represent a 
new batch on which the model will learn. 

2.	 The time steps: in our case, it will simply be the number of dates. 

3.	 The number of features: in our case, there is only one possible figure which is the 
number of predictors. 

For simplicity and in order to reduce computation times, we will use the same subset of 
stocks as that from Section 5.2.2. This yields a perfectly rectangular dataset in which all 
dates have the same number of observations. 
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First, we create some new, intermediate variables. 

data_rnn <- data_ml %>% # Dedicated dataset 
filter(stock_id %in% stock_ids_short) 

training_sample_rnn <- filter(data_rnn, date < separation_date) 
testing_sample_rnn <- filter(data_rnn, date > separation_date) 
nb_stocks <- length(stock_ids_short) # Nb stocks 
nb_feats <- length(features) # Nb features 
nb_dates_train <- nrow(training_sample) / nb_stocks # Nb training dates (size of sample) 
nb_dates_test <- nrow(testing_sample) / nb_stocks # Nb testing dates 

Then, we construct the variables we will pass as arguments. We recall that the data file was 
ordered first by stocks and then by date (see Section 1.2). 

train_features_rnn <- array(NN_train_features, # Formats the training data into array 
dim = c(nb_dates_train, nb_stocks, nb_feats)) %>% # Tricky order 

aperm(c(2,1,3)) # The order is: stock, date, feature 
test_features_rnn <- array(NN_test_features, # Formats the testing data into array 

dim = c(nb_dates_test, nb_stocks, nb_feats)) %>% # Tricky order 
aperm(c(2,1,3)) # The order is: stock, date, feature 

train_labels_rnn <- as.matrix(NN_train_labels) %>% 
array(dim = c(nb_dates_train, nb_stocks, 1)) %>% aperm(c(2,1,3)) 

test_labels_rnn <- as.matrix(NN_test_labels) %>% 
array(dim = c(nb_dates_test, nb_stocks, 1)) %>% aperm(c(2,1,3)) 

Finally, we move towards the training part. For simplicity, we only consider a simple RNN 
with only one layer. The structure is outlined below. In terms of recurrence structure, we 
pick a Gated Recurrent Unit (GRU). 

model_RNN <- keras_model_sequential() %>% 
layer_gru(units = 16, # Nb units in hidden layer 

batch_input_shape = c(nb_stocks, # Dimensions = tricky part! 
nb_dates_train, 
nb_feats), 

activation = 'tanh', # Activation function
 
return_sequences = TRUE) %>% # Return all the sequence
 

layer_dense(units = 1) # Final aggregation layer
 
model_RNN %>% compile( 

loss = 'mean_squared_error', # Loss = quadratic 
optimizer = optimizer_rmsprop(), # Backprop 
metrics = c('mean_absolute_error') # Output metric MAE 

) 

There are many options available for recurrent layers. For GRUs, we refer to the Keras 
documentation https://keras.rstudio.com/reference/layer_gru.html. We comment 
briefly on the option return_sequences which we activate. In many cases, the output is 
simply the terminal value of the sequence. If we do not require the entirety of the sequence 
to be returned, we will face a problem in the dimensionality because the label is indeed a 
full sequence. Once the structure is determined, we can move forward to the training stage. 

fit_RNN <- model_RNN %>% fit(train_features_rnn, # Training features 
train_labels_rnn, # Training labels 
epochs = 10, # Number of rounds 
batch_size = nb_stocks, # Length of sequences 
verbose = 0) # No comments 

plot(fit_RNN) 

https://www.keras.rstudio.com
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FIGURE 7.10: Output from a trained recurrent neural network (regression task). 

Compared to our previous models, the major difference both in the ouptut (the graph on 
Figure 7.10) and the input (the code) is the absence of validation (or testing) data. One 
reason for that is because Keras is very restrictive on RNNs and imposes that both the 
training and testing samples share the same dimensions. In our situation this is obviously 
not the case, hence we must bypass this obstacle by duplicating the model. 

new_model <- keras_model_sequential() %>% 
layer_gru(units = 16, 

batch_input_shape = c(nb_stocks, # New dimensions 
nb_dates_test, 
nb_feats), 

activation = 'tanh', # Activation function 
return_sequences = TRUE) %>% # Return the full sequence 

layer_dense(units = 1) # Output dimension 
new_model %>% keras::set_weights(keras::get_weights(model_RNN)) 

Finally, once the new model is ready, and with the matching dimensions, we can push 
forward to predicting the test values. We resort to the predict() function and immediately 
compute the hit ratio obtained by the model. 

pred_rnn <- predict(new_model, test_features_rnn, batch_size = nb_stocks) # Predictions 
mean(c(t(as.matrix(pred_rnn))) * test_labels_rnn > 0) # Hit ratio 

## [1] 0.4995844 

The hit ratio is close to 50%, hence the model does hardly better than coin tossing. 

Before we close this section on RNNs, we mention a new type architecture, called α-RNN 
which are simpler compared to LSTMs and GRUs. They consist in vanilla RNNs to which a 
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simple autocorrelation is added to generate long term memory. We refer to the paper Dixon 
(2020) for more details on this subject. 

7.6 Other common architectures 

In this section, we present other network structures. Because they are less mainstream 
and often harder to implement, we do not propose code examples and stick to theoretical 
introductions. 

7.6.1 Generative adversarial networks 

The idea of Generative Adversarial Networks (GANs) is to improve the accuracy of a classical 
neural network by trying to fool it. This very popular idea was introduced by Goodfellow 
et al. (2014). Imagine you are an expert in Picasso paintings and that you boast about being 
able to easily recognize any piece of work from the painter. One way to refine your skill is to 
test them against a counterfeiter. A true expert should be able to discriminate between a 
true original Picasso and one emanating from a forger. This is the principle of GANs. 

GANs consist in two neural networks: the first one tries to learn and the second one tries to 
fool the first (induce it into error). Just like in the example above, there are also two sets of 
data: one (x) is true (or correct), stemming from a classical training sample and the other 
one (z) is fake and generated by the counterfeiter network. 

In the GAN nomenclature, the network that learns is D because it is supposed to discriminate, 
while the forger is G because it generates false data. In their original formulation, GANs are 
aimed at classifying. To ease the presentation, we keep this scope. The discriminant network 
has a simple (scalar) output: the probability that its input comes from true data (versus 
fake data). The input of G is some arbitrary noise and its output has the same shape/form 
as the input of D. 

We state the theoretical formula of a GAN directly and comment on it below. D and G play 
the following minimax game: 

min max {E[log(D(x))] + E[log(1 − D(G(z)))]} . (7.12)
G D 

First, let us decompose this expression in its two parts (the optimizers). The first part 
(i.e., the first max) is the classical one: the algorithm seeks to maximize the probability of 
assigning the correct label to all examples it seeks to classify. As is done in economics and 
finance, the program does not maximize D(x) itself on average, but rather a functional form 
(like a utility function). 

On the left side, since the expectation is driven by x, the objective must be increasing in 
the output. On the right side, where the expectation is evaluated over the fake instances, 
the right classification is the opposite, i.e., 1 − D(G(z)). 

The second, overarching, part seeks to minimize the performance of the algorithm on the 
simulated data: it aims at shrinking the odds that D finds out that the data is indeed corrupt. 
A summarized version of the structure of the network is provided below in Figure (7.13). 
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In ML-based asset pricing, the most notable application of GANs was introduced in Chen 
et al. (2020). Their aim is to make use of the method of moment expression 

E[Mt+1rt+1,ng(It, It,n)] = 0, 

training sample true data = x = 
 

�� ��
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which is an application of Equation (3.8) where the instrumental variables It,n are firm-
dependent (e.g., characteristics and attributes) while the It are macro-economic variables (ag­
gregate dividend yield, volatility level, credit spread, term spread, etc.). The function g yields 
a d-dimensional output, so that the above equation leads to d moment conditions. The trick 

Nis to model the SDF as an unknown combination of assets Mt+1 = 1 − n=1 w(It, It,n)rt+1,n. 
The primary discriminatory network (D) is the one that approximates the SDF via the 
weights w(It, It,n). The secondary generative network is the one that creates the moment 
condition through g(It, It,n) in the above equation. 

The full specification of the network is given by the program: 

where the L2 norm applies on the d values generated via g. The asset pricing equations 
(moments) are not treated as equalities but as a relationship that is approximated. The 
network defined by w is the asset pricing modeler and tries to determine the best possible 
model, while the network defined by g seeks to find the worst possible conditions so that 
the model performs badly. We refer to the original article for the full specification of both 
networks. In their empirical section, Chen et al. (2020) report that adopting a strong 
structure driven by asset pricing imperatives add values compared to a pure predictive 
‘vanilla’ approach such as the one detailed in Gu et al. (2020b). The out-of-sample behavior 
of decile sorted portfolios (based on the model’s prediction) display a monotonic pattern 
with respect to the order of the deciles. 

GANs can also be used to generate artificial financial data (see Efimov and Xu (2019), Marti 
(2019) and Wiese et al. (2020)), but this topic is outside the scope of the book. 

7.6.2 Autoencoders 

In the recent literature, autoencoders (AEs) are used in Huck (2019) (portfolio management), 
and Gu et al. (2020a) (asset pricing). 
AEs are a strange family of neural networks because they are classified among non-supervised 
algorithms. In the supervised jargon, their label is equal to the input. Like GANS, autoen­
coders consist of two networks, though the structure is very different: the first network 
encodes the input into some intermediary output (usually called the code), and the second 
network decodes the code into a modified version of the input. 

E D x�x −→ z −→ 
input encoder code decoder modified input 
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Because autoencoders do not belong to the large family of supervised algorithms, we postpone 
their presentation to Section 15.2.3. 

The article Gu et al. (2020a) resorts to the idea of AEs while at the same time augmenting 
the complexity of their asset pricing model. From the simple specification rt = βt−1ft + et 

(we omit asset dependence for notational simplicity), they add the assumptions that the 
betas depend on firm characteristics, while the factors are possibly nonlinear functions of 
the returns themselves. The model takes the following form: 

rt,i = NNbeta(xt 1,i) + NN− factor(rt) + et,i, (7.14) 

where NNbeta and NNfactor are two neural networks. The above equation looks like an 
autoencoder because the returns are both inputs and outputs. However, the additional 
complexity comes from the second neural network NNbeta. Modern neural network libraries 
such as Keras allow for customized models like the one above. The coding of this structure 
is left as exercise (see below). 

7.6.3 A word on convolutional networks 

Neural networks gained popularity during the 2010 decade thanks to a series of successes 
in computer vision competitions. The algorithms behind these advances are convolutional 
neural networks (CNNs). While they may seem a surprising choice for financial predictions, 
several teams of researchers in the Computer Science field have proposed approaches that 
rely on this variation of neural networks (Chen et al. (2016), Loreggia et al. (2016), Dingli 
and Fournier (2017), Tsantekidis et al. (2017), Hoseinzade and Haratizadeh (2019)). Hence, 
we briefly present the principle in this final section on neural networks. We lay out the 
presentation for CNNs of dimension two, but they can also be used in dimension one or 
three. 

The reason why CNNs are useful is because they allow to progressively reduce the dimension 
of a large dataset by keeping local information. An image is a rectangle of pixels. Each pixel 
is usually coded via three layers, one for each color: red, blue and green. But to keep things 
simple, let’s just consider one layer of, say 1,000 by 1,000 pixels, with one value for each 
pixel. In order to analyze the content of this image, a convolutional layer will reduce 
the dimension of inputs by resorting to some convolution. Visually, this simplification is 
performed by scanning and altering the values using rectangles with arbitrary weights. 

Figure 7.11 sketches this process (it is strongly inspired by Hoseinzade and Haratizadeh 
(2019)). The original data is a matrix (I × K) xi,k and the weights are also a matrix wj,l of 
size (J × L) with J < I and L < K. The scanning transforms each rectangle of size (J × L) 
into one real number. Hence, the output has a smaller size: (I − J + 1) × (K − L + 1). If 
I = K = 1, 000 and J = L = 201, then the output has dimension (800 × 800) which is 
already much smaller. The output values are given by 

J LKK 
oi,k = wj,lxi+j−1,k+l−1. 

j=1 l=1 



120 7 Neural networks 

x1,1 ... x1,F ... x1,K
... ... ...
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... ... ...
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wF,1 ... wF,FInitial Data

(features)
dim = (I,K)

Weights
dim = (F,F)

Output, dim = (I-F+1,K-F+1)

FIGURE 7.11: Scheme of a convolutional unit. Note: the dimensions are general and do 
not correspond to the number of squares. 

Iteratively reducing the dimension of the output via sequences of convolutional layers like 
the one presented above would be costly in computation and could give rise to overfitting 
because the number of weights would be incredibly large. In order to efficiently reduce 
the size of outputs, pooling layers are often used. The job of pooling units is to simplify 
matrices by reducing them to a simple metric such as the minimum, maximum or average 
value of the matrix: 

oi,k = f(xi+j−1,k+l−1, 1 ≤ j ≤ J, 1 ≤ l ≤ L), 

where f is the minimum, maximum or average value. We show examples of pooling in Figure 
7.12 below. In order to increase the speed of compression, it is possible to add a stride 
to omit cells. A stride value of v will perform the operation only every v value and hence 
bypass intermediate steps. In Figure 7.12, the two cases on the left do not resort to pooling, 
hence the reduction in dimension is exactly equal to the size of the pooling size. When stride 
is into action (right pane), the reduction is more marked. From a 1,000 by 1,000 input, a 
2-by-2 pooling layer with stride 2 will yield a 500-by-500 output: the dimension is shrinked 
fourfold, as in the right scheme of Figure 7.12. 
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7 9
8 6

Mean pooling with strideMax pooling

FIGURE 7.12: Scheme of pooling units. 

With these tools in hand, it is possible to build new predictive tools. In Hoseinzade and 
Haratizadeh (2019), predictors such as price quotes, technical indicators and macro-economic 
data are fed to a complex neural network with 6 layers in order to predict the sign of price 
variations. While this is clearly an interesting computer science exercise, the deep economic 
motivation behind this choice of architecture remains unclear. 

7.6.4 Advanced architectures 

The superiority of neural networks in tasks related to computer vision and natural language 
processing is now well established. However, in many ML tournaments in the 2010 decade, 
neural networks have often been surpassed by tree-based models when dealing with tabular 
data. This puzzle encouraged researchers to construct novel NN structures that are better 
suited to tabular databases. Examples include Arik and Pfister (2019) and Popov et al. 
(2019), but their ideas lie outside the scope of this book. Surprisingly, the reverse idea also 
exists: Nuti et al. (2019) try to adapt trees and random forests so that they behave more 
like neural networks. The interested reader can have a look at the original papers. 

7.7 Coding exercise 

The purpose of the exercise is to code the autoencoder model described in Gu et al. (2020a) 
(see Section 7.6.2). When coding NNs, the dimensions must be rigorously reported. This is 
why we reproduce a diagram of the model in Figure 7.13 which clearly shows the inputs and 
outputs along with their dimensions. 
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FIGURE 7.13: Scheme of the autoencoder pricing model. 

In order to harness the full potential of Keras, it is imperative to switch to more general 
formulations of NNs. This can be done via the so-called functional API : https://keras. 
rstudio.com/articles/functional_api.html. 

https://keras.rstudio.com
https://keras.rstudio.com
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Support vector machines
 

While the origins of support vector machines (SVMs) are old (and go back to Vapnik and 
Lerner (1963)), their modern treatment was initiated in Boser et al. (1992) and Cortes and 
Vapnik (1995) (binary classification) and Drucker et al. (1997) (regression). We refer to http: 
//www.kernel-machines.org/books for an exhaustive bibliography on their theoretical 
and empirical properties. SVMs have been very popular since their creation among the 
machine learning community. Nonetheless, other tools (neural networks especially) have 
gained popularity and progressively replaced SVMs in many applications like computer 
vision notably. 

8.1 SVM for classification 

As is often the case in machine learning, it is easier to explain a complex tool through an 
illustration with binary classification. In fact, sometimes, it is originally how the tool was 
designed (e.g., for the perceptron). Let us consider a simple example in the plane, that is, 
with two features. In Figure 8.1, the goal is to find a model that correctly classifies points: 
filled circles versus empty squares. 

A model consists of two weights w = (w1, w2) that load on the variables and create a natural 
linear separation in the plane. In the example above, we show three separations. The red one 

y=1

y=-1

margin
bad classifier

good classifier, large margingood classifier,
small margin

x1

x2

(linearly separable case)

w*
x-
b=
1

w*
x-
b=-
-1w*

x-
b=
0

||w||-1

FIGURE 8.1: Diagram of binary classification with support vectors. 
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K 
k=1 wkxi,k + b ≥ +1 when yi = +1 (8.1)K 
k=1 wkxi,k + b ≤ −1 when yi = −1, 

Kwhich can be summarized in compact form yi × k=1 wkxi,k + b ≥ 1. Now, the margin 

between the green model and a support vector on the dashed grey line is equal to ||w||−1 = 
−1/2

K 2 
k=1 wk . This value comes from the fact that the distance between a point (x0, y0) 

|ax0 +by0+c|and a line parametrized by ax + by + c = 0 is equal to d = √ . In the case of the 
a2+b2 

model defined above (8.1), the numerator is equal to 1 and the norm is that of w. Thus, the 
final problem is the following: 

KK1argmin 2 
||w||2 s.t. yi wkxi,k + b ≥ 1. (8.2) 

w,b 
k=1 

The dual form of this program (see chapter 5 in Boyd and Vandenberghe (2004)) is 

I KK K1 
L(w, b, λ) = 2 

||w||2 + λi yi wkxi,k + b − 1 , (8.3) 
i=1 k=1 

Kwhere either λi = 0 or yi k=1 wkxi,k + b = 1. Thus, only some points will matter in 

the solution (the so-called support vectors). The first order conditions impose that the 
derivatives of this Lagrangian be null: 

∂L ∂L 
L(w, b, λ) = 0, L(w, b, λ) = 0,

∂w ∂b 
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is not a good classifier because there are circles and squares above and beneath it. The blue 
line is a good classifier: all circles are to its left and all squares to its right. Likewise, the 
green line achieves a perfect classification score. Yet, there is a notable difference between 
the two. 

The grey star at the top of the graph is a mystery point and given its location, if the 
data pattern holds, it should be a circle. The blue model fails to recognize it as such while 
the green one succeeds. The interesting features of the scheme are those that we have not 
mentioned yet, that is, the grey dotted lines. These lines represent the no-man’s land in 
which no observation falls when the green model is enforced. In this area, each strip above 
and below the green line can be viewed as a margin of error for the model. Typically, the 
grey star is located inside this margin. 

The two margins are computed as the parallel lines that maximize the distance between the 
model and the closest points that are correctly classified (on both sides). These points are 
called support vectors, which justifies the name of the technique. Obviously, the green 
model has a greater margin than the blue one. The core idea of SVMs is to maximize the 
margin, under the constraint that the classifier does not make any mistake. Said differently, 
SVMs try to pick the most robust model among all those that yield a correct classification. 

More formally, if we numerically define circles as +1 and squares as -1, any ‘good’ linear 
model is expected to satisfy: 



�  K 
k=1 wkxi,k + b ≥ +1 − ξi when yi = +1 (8.4)K 
k=1 wkxi,k + b ≤ −1 + ξi when yi = −1, 

 

The optimization program then becomes 
 

1 I K

argmin ||w||2 + C
K

ξi s.t. 
�

yi 

�K
wkφ(xi,k) + b 

�
≥ 1 − ξ  2 i and ξi ≥ 0, 

k

∀i , (8.5) 
w,b,ξ i=1 =1 

�
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where the first condition leads to 

IK 
w ∗ = λiuixi. 

i=1 

This solution is indeed a linear form of the features, but only some points are taken into 
account. They are those for which the inequalities (8.1) are equalities. 

Naturally, this problem becomes infeasible whenever the condition cannot be satisfied, that 
is, when a simple line cannot perfectly separate the labels, no matter the choice of coefficients. 
This is the most common configuration and datasets are then called logically not linearly 
separable. This complicates the process but it is possible to resort to a trick. The idea is to 
introduce some flexbility in (8.1) by adding correction variables that allow the conditions to 
be met: 

where the novelties, the ξi are positive so-called ‘slack’ variables that make the conditions 
feasible. They are illustrated in Figure 8.2. In this new configuration, there is no simple 
linear model that can perfectly discriminate between the two classes. 

y=1

y=-1

margin

x1

x2

(linearly inseparable case)

||w||-1

z
i

z
j

FIGURE 8.2: Diagram of binary classification with SVM - linearly inseparable data. 

where the parameter C > 0 tunes the cost of mis-classification: as C increases, errors become 
more penalizing. 

In addition, the program can be generalized to nonlinear models, via the kernel φ which is 
applied to the input points xi,k. Nonlinear kernels can help cope with patterns that are more 
complex than straight lines (see Figure 8.3). Common kernels can be polynomial, radial 



 

IK1argmin 2 
||w||2 + C (ξi + ξ ∗)	 (8.6)i 

w,b,ξ i=1 

KK 
s.t.	 wkφ(xi,k) + b − yi ≤ C + ξi (8.7) 

k=1 

KK 
yi − wkφ(xi,k) − b ≤ C + ξi 

∗ (8.8) 
k=1 

ξi, ξ ∗ ≥ 0, ∀i,	 (8.9)i 
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or sigmoid. The solution is found using more or less standard techniques for constrained 
quadratic programs. Once the weights w and bias b are set via training, a prediction for 

Ka new vector xj is simply made by computing k=1 wkφ(xj,k) + b and choosing the class 
based on the sign of the expression. 

radial kernel quadratic kernel

FIGURE 8.3: Examples of nonlinear kernels. 

8.2 SVM for regression 

The ideas of classification SVM can be transposed to regression exercises but the role of the 
margin is different. One general formulation is the following 

and it is illustrated in Figure 8.4. The user specifies a margin C and the model will try to 
find the linear (up to kernel transformation) relationship between the labels yi and the input 
xi. Just as in the classification task, if the data points are inside the strip, the slack variables 
ξi and ξ∗ are set to zero. When the points violate the threshold, the objective function (first i 
line of the code) is penalized. Note that setting a large C leaves room for more error. Once 

Kthe model has been trained, a prediction for xj is simply k=1 wkφ(xj,k) + b. 
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FIGURE 8.4: Diagram of regression SVM. 

Let us take a step back and simplify what the algorithm does, that is: minimize the sum of 
squared weights ||w||2 subject to the error being small enough (modulo a slack variable). In 
spirit, this somewhat the opposite of the penalized linear regressions which seek to minimize 
the error, subject to the weights being small enough. 

The models laid out in this section are a preview of the universe of SVM engines and several 
other formulations have been developed. One reference library that is coded in C and C++ 
is LIBSVM and it is widely used by many other programming languages. The interested 
reader can have a look at the corresponding article Chang and Lin (2011) for more details 
on the SVM zoo (a more recent November 2019 version is also available online). 

8.3 Practice 

In R the LIBSVM library is exploited in several packages. One of them, e1071, is a good 
choice because it also nests many other interesting functions, especially a naive Bayes 
classifier that we will see later on. 

In the implementation of LIBSVM, the package requires to specify the label and features 
separately. For this reason, we recycle the variables used for the boosted trees. Moreover, the 
training being slow, we perform it on a subsample of these sets (first thousand instances). 

library(e1071) 
fit_svm <- svm(y = train_label_xgb[1:1000], # Train label 

x = train_features_xgb[1:1000,], # Training features 
type = "eps-regression", # SVM task type (see LIBSVM documentation) 
kernel = "radial", # SVM kernel (or: linear, polynomial, sigmoid) 
epsilon = 0.1, # Width of strip for errors 
gamma = 0.5, # Constant in the radial kernel 
cost = 0.1) # Slack variable penalisation 

test_feat_short <- dplyr::select(testing_sample,features_short) 
mean((predict(fit_svm, test_feat_short) - testing_sample$R1M_Usd)^2) # MSE 
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## [1] 0.03839085 

mean(predict(fit_svm, test_feat_short) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5222197 

The results are slightly better than those of the boosted trees. All parameters are completely 
arbitrary, especially the choice of the kernel. We finally turn to a classification example. 

fit_svm_C <- svm(y = training_sample$R1M_Usd_C[1:1000], # Train label 
x = training_sample[1:1000,] %>% 

dplyr::select(features), # Training features 
type = "C-classification", # SVM task type (see LIBSVM doc.) 
kernel = "sigmoid", # SVM kernel 
gamma = 0.5, # Parameter in the sigmoid kernel 
coef0 = 0.3, # Parameter in the sigmoid kernel 
cost = 0.2) # Slack variable penalisation 

mean(predict(fit_svm_C, 
dplyr::select(testing_sample,features)) == testing_sample$R1M_Usd_C) # Accuracy 

## [1] 0.5008973 

Both the small training sample and the arbitrariness in our choice of the parameters may 
explain why the predictive accuracy is so poor. 

8.4 Coding exercises 

1.	 From the simple example shown above, extend SVM models to other kernels and 
discuss the impact on the fit. 

2.	 Train a vanilla SVM model with labels being the 12-month forward (i.e., future) 
return and evaluate it on the testing sample. Do the same with a simple random 
forest. Compare. 



 

 

P [A|B] = 
P [A ∩ B] 

,
P [B] 

that is, the probability of the intersection between the two sets divided by the probability 
of B. Likewise, the probability that both events occur is equal to P [A ∩ B] = P [A]P [B|A]. 

nGiven n disjoint events Ai, i = 1, ...n such that i=1 P (Ai) = 1, then for any event B, the 
law of total probabilities is (or implies) 

n nK K 
P (B) = P (B ∩ Ai) = P (B|Ai)P (Ai). 

i=1 i=1 

Given this expression, we can formulate a general version of Bayes’ theorem: 

P (Ai)P (B|Ai)
P (Ai|B) = 

P (Ai)P (B|Ai) = (9.1)nP (B) i=1 P (B|Ai)P (Ai) 
. 

Endowed with this result, we can move forward to the core topic of this section, which is the 
estimation of some parameter θ (possibly a vector) given a dataset, which we denote with y 

9 

Bayesian methods
 

This section is dedicated to the subset of machine learning that makes prior assumptions 
on parameters. Before we explain how Bayes’ theorem can be applied to simple building 
blocks in machine learning, we introduce some notations and concepts in the subsection 
below. Good references for Bayesian analysis are Gelman et al. (2013) and Kruschke (2014). 
The latter, like the present book, illustrates the concepts with many lines of R code. 

9.1 The Bayesian framework 

Up to now, the models that have been presented rely on data only. This approach is often 
referred to as ‘frequentist’. Given one dataset, a frequentist will extract (i.e., estimate) a 
unique set of optimal parameters and consider it to be the best model. Bayesians, on the 
other hand, consider datasets as snapshots of reality and, for them, parameters are thus 
random! Instead of estimating one value for parameters (e.g., a coefficient in a linear model), 
they are more ambitious and try to determine the whole distribution of the parameter. 

In order to outline how that can be achieved, we introduce basic notations and results. 
The foundational concept in Bayesian analysis is the conditional probability. Given two 
random sets (or events) A and B, we define the probability of A knowing B (equivalently, 
the odds of having A, conditionally on having B) as 
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p(θ|y) = 
p(θ)p(y|θ) ∝ p(θ)p(y|θ). (9.2) 

p(y) 

� I

p(y|θ, λ) = fλ(yi; β), (9.3) 
i=1 
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thereby following the conventions from Gelman et al. (2013). This notation is suboptimal in 
this book nonetheless because in all other chapters, y stands for the label of a dataset. 

In Bayesian analysis, one sophistication (compared to a frequentist approach) comes from 
the fact that the data is not almighty. The distribution of the parameter θ will be a mix 
between some prior distribution set by the statistician (the user, the analyst) and the 
empirical distribution from the data. More precisely, a simple application of Bayes’ formula 
yields 

The interpretation is immediate: the distribution of θ knowing the data y is proportional to 
the distribution of θ times the distribution of y knowing θ. The term p(y) is often omitted 
because it is simply a scaling number that ensures that the density sums or integrates to 
one. 

We use a slightly different notation between Equation (9.1) and Equation (9.2). In the 
former, P denotes a true probability, i.e., it is a number. In the latter, p stands for the whole 
probability density function of θ or y. 

The whole purpose of Bayesian analysis is to compute the so-called posterior distribution 
p(θ|y) via the prior distribution p(θ) and the likelihood function p(y|θ). Priors are 
sometimes qualified as informative, weakly informative or uninformative, depending on the 
degree to which the user is confident on the relevance and robustness of the prior. The 
simplest way to define a non-informative prior is to set a constant (uniform) distribution 
over some realistic interval(s). 

The most challenging part is usually the likelihood function. The easiest way to solve 
the problem is to resort to a specific distribution (possibly a parametric family) for the 
distribution of the data and then consider that obsevations are i.i.d., just as in a simple 
maximum likelihood inference. If we assume that new parameters for the distributions are 
gathered into λ, then the likelihood can be written as 

but in this case the problem becomes slightly more complex because adding new parameters 
changes the posterior distribution to p(θ, λ|y). The user must find out the joint distribution 
of θ and λ - given y. Because of their nested structure, these models are often called 
hierarchical models. 

Bayesian methods are widely used for portfolio choice. The rationale is that the distribution 
of asset returns depends on some parameter and the main issue is to determine the posterior 
distribution. We very briefly review a vast literature below. Bayesian asset allocation is 
investigated in Lai et al. (2011) (via stochastic optimization), Guidolin and Liu (2016) and 
Dangl and Weissensteiner (2020). Shrinkage techniques (of means and covariance matrices) 
are tested in Frost and Savarino (1986), Kan and Zhou (2007) and DeMiguel et al. (2015). In 
a similar vein, Tu and Zhou (2010) build priors that are coherent with asset pricing theories. 
Finally, Bauder et al. (2020) sample portfolio returns which allows to dervive a Bayesian 
optimal frontier. We invite the interested reader to also dwelve in the references that are 
cited within these few articles. 
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9.2 Bayesian sampling 

9.2.1 Gibbs sampling 

One adjacent field of applications of Bayes’ theorem is simulation. Suppose we want to 
simulate the multivariate distribution of a random vector X given by its density p = 
p(x1, . . . , xJ ). Often, the full distribution is complex, but its marginals are more accessible. 
Indeed, they are simpler because they depend on only one variable (when all other values 
are known): 

p(Xj = xj |X1 = x1, . . . , Xj−1 = xj−1, Xj+1 = xj+1, . . . , XJ = xJ ) = p(Xj = xj |X−j = x−j ), 

where we use the compact notation X−j for all variables except Xj . One way to generate 
samples with law p is the following and relies both on the knowledge of the conditionals 
p(xj |x−j ) and on the notion of Markov Chain Monte Carlo, which we outline below. 
The process is iterative and assumes that it is possible to draw samples of the aforementioned 

mconditionals. We write x for the mth sample of the jth variable (Xj ). The simulation starts j 
0 0with a prior (or fixed, or random) sample x0 = (x1, . . . , x ). Then, for a sufficiently large J 

number of times, say T , new samples are drawn according to 

m+1 m m x = p(X1|X2 = x2 , . . . , XJ = x );1 J 
m+1 m+1 m m x = p(X2|X1 = x , X3 = x3 , . . . , XJ = x );2 1 J 

. . . 
m+1 m+1 m+1 m+1 xJ = p(XJ |X1 = x1 , X2 = x2 , . . . , XJ−1 = xJ−1 ). 

The important detail is that after each line, the value of the variable is updated. Hence, in 
m+1the second line, X2 is sampled with the knowledge of X1 = x1 and in the last line, all 

variables except XJ have been updated to their (m + 1)th state. The above algorithm is 
called Gibbs sampling. It relates to Markov chains because each new iteration depends only 
on the previous one. 

Under some technical assumptions, as T increases, the distribution of xT converges to that 
of p. The conditions under which the convergence occurs have been widely discussed in series 
of articles in the 1990s. The interested reader can have a look for instance at Tierney (1994), 
Roberts and Smith (1994), as well as at section 11.7 of Gelman et al. (2013). 

Sometimes, the full distribution is complex and the conditional laws are hard to determine 
and to sample. Then, a more general method, called Metropolis-Hastings, can be used that 
relies on the rejection method for the simulation of random variables. 

9.2.2 Metropolis-Hastings sampling 

The Gibbs algorithm can be considered as a particular case of the Metropolis-Hastings (MH) 
method, which, in its simplest version, was introduced in Metropolis and Ulam (1949). The 
premise is similar: the aim is to simulate random variables that follow p(x) with the ability 
to sample from a simpler form p(x|y) which gives the probability of the future state x, given 
the past one y. 



 � �

�

 1.	 generate a candidate value x� ),m+1 from p(x|xm

p(x m+1)p(xm|x m+1 )2.	 compute the acceptance ratio α = min p(xm)p(x m+1 |xm) 

3.	 pick xm+1 = xm
� 

+1 with probability α or stick with the previous value (xm+1 = xm) 
with probability 1 − α. 

 

 � �

�  � � �  �

�
�2 

I i 2�	 e− 2σ √ i− 
i=1 2σ2p(E|b, σ) = √ = (σ 2π)−I e 
I 

. 
σ	 2π

i=1 

In a regression analysis, the data is given both by y and by X, hence both are reported in 
the notations. Simply acknowledging that E = y − Xb, we get 

�2
 
I i
� e− 2σ 

p(y, X|b, σ) = √ (9.4)
σ	 2π

i=1 

√ − 
I (yi −x 

i 
b)2 √ − (y−Xb) (y−Xb)

= (σ 2π)−I e i=1 2σ2 = (σ 2π)−I e 2σ2 

√ − 
(y−Xˆ b) − (b−ˆ b)b) (y−Xˆ b) X X(b−ˆ

2σ2	 2σ2= (σ 2π)−I e × e\	 . (9.5)\ 
depends on both σ, and bdepends on σ, not b 

In the last line, the second term is a function of the difference b− b̂, where b̂ = (X�X)−1X�y. 
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Once an initial value for x has been sampled (x0), each new iteration (m) of the simulation 
takes place in three stages: 

The interpretation of the acceptance ratio is not straightforward in the general case. When 
the sampling generator is symmetric (p(x|y) = (y|x)), the candidate is always chosen 
whenever p(x� ). If the reverse condition holds (p(x� )), then the m+1) ≥ p(xm m+1) < p(xm

candidate is retained with odds equal to p(x� ), which is the ratio of likelihoods. m+1)/p(xm

The more likely the new proposal, the higher the odds of retaining it. 

Often, the first simulations are discarded in order to leave time to the chain to converge 
to a high probability region. This procedure (often called ‘burn in’) ensures that the first 
retained samples are located in a zone that is likely, i.e., that they are more representative 
of the law we are trying to simulate. 

For the sake of brevity, we stick to a succinct presentation here, but some additional details 
are outlined in section 11.2 of Gelman et al. (2013) and in chapter 7 of Kruschke (2014). 

9.3 Bayesian linear regression 

Because Bayesian concepts are rather abstract, it is useful to illustrate the theoretical notions 
with a simple example. In a linear model, yi = xib + Ci and it is often statistically assumed 
that the Ci are i.i.d. and normally distributed with zero mean and variance σ2. Hence, the 
likelihood of Equation (9.3) translates into 
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� 

(b−b0) Λ0(b−b0)− 
2σ2p[b|σ] = σ−k e , (9.6) 

where we are obliged to condition with respect to σ. The density has prior mean b0 and 
prior covariance matrix Λ−1. This prior gets us one step closer to the posterior because 0 

p[b, σ|y, X] ∝ p[y, X|b, σ]p[b, σ] 
∝ p[y, X|b, σ]p[b|σ]p[σ]. (9.7) 

In order to fully specify the cascade of probabilities, we need to take care of σ and set a 
density of the form 

2)−1−a0 − 
2σ2p[σ2] ∝ (σ e 
b0 

, (9.8) 

which is close to that of the left part of (9.5). This corresponds to an inverse gamma 
distribution for the variance with prior parameters a0 and b0 (this scalar notation is not 
optimal because it can be confused with the prior mean b0 so we must pay extra attention). 

Now, we can simplify p[b, σ|y, X] with (9.5), (9.6) and (9.8): 
√ (y−Xˆ b)b) (y−Xˆ

p[b, σ|y, X] ∝ (σ 2π)−I σ−2(1+a0)e − 
2σ2 

(b−b̂) X X(b−b̂) (b−b0) Λ0(b−b0) b0− − −
2σ2 σ−k 2σ2 2σ2× e e e 

which can be rewritten 

⎞ 

× exp⎜⎝
⎛p[b, σ|y, X] ∝ σ−I−k−2(1+a0) 

y − Xb̂ y − Xb̂ + (b − b̂)�X�X(b − b̂) + (b − b0)�Λ0(b − b0) + b0 
− 2σ2 

⎟⎠ . 

The above expression is simply a quadratic form in b and it can be rewritten after burdensome 
algebra in a much more compact manner: 

(b−b∗) Λ∗(b−b∗) − b∗− 
2σ2 2σ2p(b|y, X, σ) ∝ σ−k e × (σ2)−1−a∗ e , (9.9) 

where 

Λ∗ = X�X + Λ0 

b∗ = Λ−1(Λ0b0 + X�Xb̂)∗ 

a∗ = a0 + I/2 
1 

b∗ = b0 + y�y + b� 
0Λ0b0 + b� Λ∗b∗ .∗2 
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This is not surprising: b̂ is a natural benchmark for the mean of b. Moreover, introducing b̂
yields a relatively simple form for the probability. 

The above expression is the frequentist (data-based) block of the posterior: the likelihood. 
If we want to obtain a tractable expression for the posterior, we need to find a prior 
component that has a form that will combine well with this likelihood. These forms are 
called conjugate priors. A natural candidate for the right part (that depends on both b 
and σ) is the multivariate Gaussian density: 



− β−1−αfinvgamma(x, α, β) = 
βα 

eΓ(α) 
x x , 
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This expression has two parts: the Gaussian component which relates mostly to b, and the 
inverse gamma component, entirely dedicated to σ. The mix between the prior and the data 
is clear. The posterior covariance matrix of the Gaussian part (Λ∗) is the sum between the 
prior and a quadratic form from the data. The posterior mean b∗ is a weighted average of 
the prior b0 and the sample estimator b̂. Such blends of quantities estimated from data and 
a user-supplied version are often called shrinkages. For instance, the original matrix of 
cross-terms X�X is shrunk towards the prior Λ0. This can be viewed as a regularization 
procedure: the pure fit originating from the data is mixed with some ‘external’ ingredient to 
give some structure to the final estimation. 

The interested reader can also have a look at section 16.3 of Greene (2018) (the case of 
conjugate priors is treated in subsection 16.3.2). 

The formulae above can be long and risky to implement. Luckily, there is an R package 
(spBayes) that performs Bayesian inference for linear regression using the conjugate priors. 
Below, we provide one example of how it works. To simplify the code and curtail computation 
times, we consider two predictors: market capitalization (size anomaly) and price-to-book 
ratio (value anomaly). In statistics, the precision matrix is the inverse of the covariance 
matrix. In the parameters, the first two priors relate to the Gaussian law and the last two 
to the inverse gamma distribution: 

where α is the shape and β is the scale. 

prior_mean <- c(0.01,0.1,0.1) # Average value of parameters (prior) 
precision_mat <- diag(prior_mean^2) %>% solve() # Inverse cov matrix of parameters (prior) 
fit_lmBayes <- bayesLMConjugate( 

R1M_Usd ~ Mkt_Cap_3M_Usd + Pb, # Model: size and value 
data = testing_sample, # Data source, here, the test sample 
n.samples = 2000, # Number of samples used 
beta.prior.mean = prior_mean, # Avg prior: size & value rewarded & unit beta 
beta.prior.precision = precision_mat, # Precision matrix 
prior.shape = 0.5, # Shape for prior distribution of sigma 
prior.rate = 0.5) # Scale for prior distribution of sigma 

In the above specification, we must also provide a prior for the constant. By default, we 
set its average value to 0.01, which corresponds to a 1% average monthly return. Once the 
model has been estimated, we can plot the distribution of coefficient estimates. 

fit_lmBayes$p.beta.tauSq.samples[,1:3] %>% as_tibble() %>% 
`colnames<-`(c("Intercept", "Size", "Value")) %>% 
gather(key = coefficient, value = value) %>% 
ggplot(aes(x = value, fill = coefficient)) + geom_histogram(alpha = 0.5) 



� 

Bayes’ theorem can also be easily applied to classification. We formulate it with respect to 
the label and features and write 

P [y|X] = 
P [X|y]P [y] ∝ P [X|y]P [y], (9.10)

P [X] 

and then split the input matrix into its column vectors X = (x1, . . . , xK ). This yields 

P [y|x1, . . . , xK ] ∝ P [x1, . . . , xK |y]P [y]. (9.11) 

The ‘naive’ qualification of the method comes from a simplifying assumption on the features.1 

If they are all mutually independent, then the likelihood in the above expression can be 
expanded into 

K

P [y|x1, . . . , xK ] ∝ P [y] P [xk|y]. (9.12) 
k=1 

1This assumption can be relaxed, but the algorithms then become more complex and are out of the scope 
of the current book. One such example that generalizes the naive Bayes approach is Friedman et al. (1997). 
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FIGURE 9.1: Distribution of linear regression coefficients (betas). 

The distribution of the constant in Figure 9.1 is firmly to the right with a small dispersion, 
hence it is solidly positive. For the size coefficient, it is the opposite; it is negative (small 
firms are more profitable). With regard to value, it is hard to conclude, the distribution is 
balanced around zero: there is no clear exposition to the price-to-book ratio variable. 

9.4 Naive Bayes classifier 



− (z−mc)2 

2σ2 
c 

P [xi,k = z|yi = c] = 
e √ , 

σc 2π 

136 9 Bayesian methods 

The next step is to be more specific about the likelihood. This can be done non-parametrically 
(via kernel estimation) or with common distributions (Gaussian for continuous data, Bernoulli 
for binary data). In factor investing, the features are continuous, thus the Gaussian law is 
more adequate: 

where c is the value of the classes taken by y and σc and mc are the standard error and mean 
of xi,k, conditional on yi being equal to c. In practice, each class is spanned, the training set 
is filtered accordingly and σc and mc are taken to be the sample statistics. This Gaussian 
parametrization is probably ill-suited to our dataset because the features are uniformly 
distributed. Even after conditioning, it is unlikely that the distribution will be even remotely 
close to Gaussian. Technically, this can be overcome via a double transformation method. 
Given a vector of features xk with empirical cdf Fxk , the variable 

x̃k = Φ−1 (Fxk (xk)) , (9.13) 

will have a standard normal law whenever Fxk is not pathological. Non-pathological cases 
are when the cdf is continuous and strictly increasing and when observations lie in the 
open interval (0,1). If all features are independent, the transformation should not have any 
impact on the correlation structure. Otherwise, we refer to the literature on the NORmal­
To-Anything (NORTA) method (see, e.g., Chen (2001) and Coqueret (2017)). 

Lastly, the prior P [y] in Equation (9.12) is often either taken to be uniform across the classes 
(1/K for all k) or equal to the sample distribution. 

We illustrate the naive Bayes classification tool with a simple example. While the pack­
age e1071 embeds such a classifier, the naivebayes library offers more options (Gaussian, 
Bernoulli, multinomial and nonparametric likelihoods). Below, since the features are uni­
formly distributed, thus the transformation in (9.13) amounts to apply the Gaussian quantile 
function (inverse cdf). 

For visual clarity, we only use the small set of features. 

library(naivebayes) # Load package 
gauss_features_train <- training_sample %>% # Build sample 

dplyr::select(features_short) %>% 
as.matrix() %>% 
`*`(0.999) %>% # Features smaller than 1 
+ (0.0001) %>% # Features larger than 0
 
qnorm() %>% # Inverse Gaussian cdf
 
`colnames<-`(features_short)
 

fit_NB_gauss <- naive_bayes(x = gauss_features_train, # Transformed features 
y = training_sample$R1M_Usd_C) # Label 

layout(matrix(c(1,1,2,3,4,5,6,7), 4, 2, byrow = TRUE), # Organize graphs 
widths=c(0.9,0.45)) 

par(mar=c(1, 1, 1, 1)) 
plot(fit_NB_gauss, prob = "conditional") 

http:widths=c(0.9,0.45
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FIGURE 9.2: Distributions of predictor variables, conditional on the class of the label. 
TRUE is when the instance corresponds to an above median return and FALSE to a below 
median return. 

The plots in Figure 9.2 show the distributions of the features, conditionally on each value of 
the label. Essentially, those are the densities P [xk|y]. For each feature, both distributions 
are very similar. 

As usual, once the model has been trained, the accuracy of predictions can be evaluated. 

gauss_features_test <- testing_sample %>% 
dplyr::select(features_short) %>% 
as.matrix() %>% 
`*`(0.999) %>% 
+ (0.0001) %>%
 
qnorm() %>%
 
`colnames<-`(features_short)
 

mean(predict(fit_NB_gauss, gauss_features_test) == testing_sample$R1M_Usd_C) # Hit ratio 

## [1] 0.4956985 

The performance of the classifier is not satisfactory as it underperforms a random guess. 



  
  

M

y = Tm(qm, wm, x) + C, (9.14) 
m=1 

where C is a Gaussian noise with variance σ2, and the Tm = Tm(qm, wm, x) are decision trees 
with structure qm and weights vectors wm. This decomposition of the tree is the one we 

K 

used for boosted trees and is illustrated in Figure 6.5 codes all splits (variables chosen . qm 

for the splits and levels of the splits) and the vectors wm correspond to the leaf values (at 
the terminal nodes). 

At the macro-level, BARTs can be viewed as traditional Bayesian objects, where the 
parameters θ are all of the unknowns coded through qm, wm and σ2 and where the focus is 
set on determining the posterior 

2 qm, wm, σ |(X, Y). (9.15) 

Given particular forms of priors for qm, wm, σ2 , the algorithm draws the parameters using 
a combination of Metropolis-Hastings and Gibbs samplers. 

 

  �   �   �

� 

� 

P ((q1, w1) , . . . , (qM , wM ) , σ2) = P (σ2) 
M

P (qm, wm) . 
m=1 

Moreover, it is customary (for simplicity) to separate the structure of the tree (qm) and the 
terminal weights (wm), so that by a Bayesian conditioning 

M

m=1 

P ((q1, w1) , . . . , (qM , wM ) , σ2) = 2)\ 
P (σ

noise term 
\\ 

P (wm P (qm
tree weights tree struct. 

) ) (9.16)|qm
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9.5 Bayesian additive trees 

9.5.1 General formulation 

Bayesian additive regression trees (BARTs) are an ensemble technique that mixes Bayesian 
thinking and regression trees. In spirit, they are close to the tree ensembles seen in Chapter 
6, but they differ greatly in their implementation. In BARTs like in Bayesian regressions, 
the regularization comes from the prior. The original article is Chipman et al. (2010) and 
the implementation (in R) follows Sparapani et al. (2019). 

Formally, the model is an aggregation of M models, which we write as 

9.5.2 Priors 

The definition of priors in tree models is delicate and intricate. The first important assumption 
is independence: independence between σ2 and all other parameters and independence 
between trees, that is, between couples (qm, wm) and (qn, wn) for m = n. This assumption 
makes BARTs closer to random forests in spirit and further from boosted trees. This 
independence entails 



  S MK K 
ỹ(x∗) := 

1 Tm q(s), w(s), x∗ .m mS 
s=1 m=1 
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It remains to formulate the assumptions for each of the three parts. 

We start with the trees’ structures, qm. Trees are defined by their splits (at nodes) and these 
splits are characterized by the splitting variable and the splitting level. First, the size of 
trees is parametrized such that a node at depth d is nonterminal with probability given by 

α(1 + d)−β , α  (0, 1), β > 0. (9.17) ∈

The authors recommend to set α = 0.95 and β = 2. This gives a probability of 5% to have 
1 node, 55% to have 2 nodes, 28% to have 3 nodes, 9% to have 4 nodes and 3% to have 5 
nodes. Thus, the aim is to force relatively shallow structures. 

Second, the choice of splitting variables is driven by a generalized Bernoulli (categorical) 
distribution which defines the odds of picking one particular feature. In the original paper 
by Chipman et al. (2010), the vector of probabilities was uniform (each predictor has the 
same odds of being chosen for the split). This vector can also be random and sampled from 
a more flexible Dirichlet distribution. The level of the split is drawn uniformly on the set of 
possible values for the chosen predictor. 

Having determined the prior of structure of the tree qm, it remains to fix the terminal 
values at the leaves (wm|qm). The weights at all leaves are assumed to follow a Gaussian 
distribution N (µµ, σ2 ), where µµ = (ymin + ymax)/2 is the center of the range of the label µ

values. The variance σ2 is chosen such that µµ plus or minus two times σ2 covers 95% of µ µ

the range observed in the training dataset. Those are default values and can be altered by 
the user. 

Lastly, for computational purposes similar to those of linear regressions, the parameter σ2 

(the variance of C in (9.14)) is assumed to follow an inverse Gamma law IG(ν/2, λν/2) akin 
to that used in Bayesian regressions. The parameters are by default computed from the data 
so that the distribution of σ2 is realistic and prevents overfitting. We refer to the original 
article, section 2.2.4, for more details on this topic. 

In sum, in addition to M (number of trees), the prior depends on a small number of 
parameters: α and β (for the tree structure), µµ and σ2 (for the tree weights) and ν and λµ

(for the noise term). 

9.5.3 Sampling and predictions 

The posterior distribution in (9.15) cannot be obtained analytically but simulations are an 
efficient shortcut to the model (9.14). Just as in Gibbs and Metropolis-Hastings sampling, 
the distribution of simulations is expected to converge to the sought posterior. After some 
burn-in sample, a prediction for a newly observed set x∗ will simply be the average (or 
median) of the predictions from the simulations. If we assume S simulations after burn-in, 
then the average is equal to 

The complex part is naturally to generate the simulations. Each tree is sampled using the 
Metropolis-Hastings method: a tree is proposed, but it replaces the existing one only under 
some (possibly random) criterion. This procedure is then repeated in a Gibbs-like fashion. 

Let us start with the MH building block. We seek to simulate the conditional distribution 
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(qm, wm) | (q−m, w−m, σ2 , y, x), 

where q−m and w−m collect the structures and weights of all trees except for tree number 
m. One tour de force in BART is to simplify the above Gibbs draws to 

(qm, wm) | (Rm, σ2), 

where Rm = y − Tl(ql, wl, x) is the partial residual on a prediction that excludes the l=m 

mth tree. 
�

The new MH proposition for qm is based on the previous tree and there are three possible
 
(and random) alterations to the tree:
 
- growing a terminal node (increase the complexity of the tree by adding a supplementary
 
leaf);
 
- pruning a pair of terminal nodes (the opposite operation: reducing complexity);
 
- changing splitting rules.
 

For simplicity, the third option is often excluded. Once the tree structure is defined (i.e.,
 
sampled), the terminal weights are independently drawn according to a Gaussian distribution
 
N (µµ, σ2 ).
µ

After the tree is sampled, the MH principle requires that it be accepted or rejected based on 
some probability. This probability increases with the odds that the new tree increases the 
likelihood of the model. Its detailed computation is cumbersome and we refer to section 2.2 
in Sparapani et al. (2019) for details on the matter. 

Now, we must outline the overarching Gibbs procedure. First, the algorithm starts with trees 
that are simple nodes. Then, a specified number of loops include the following sequential 
steps: 

Step Task 

1 sample (q1, w1) | (R1, σ2); 
2 sample (q2, w2) | (R2, σ2); 

. . . . . . ; 
m sample (qm, wm) | (Rm, σ2); 
. . . . . . ; 
M sample (qM , wM ) | (RM , σ2); (last 

tree ) 
M+1 sample σ2 given the full residual 

MR = y − l=1 Tl(ql, wl, x) 

At each step m, the residual Rm is updated with the values from step m − 1. We illustrate 
this process in Figure 9.3 in which M = 3. At step 1, a partition is proposed for the first 
tree, which is a simple node. In this particular case, the tree is accepted. In this scheme, the 
terminal weights are omitted for simplicity. At step 2, another partition is proposed for the 
tree, but it is rejected. In the third step, the proposition for the third is accepted. After the 
third step, a new value for σ2 is drawn and a new round of Gibbs sampling can commence. 
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FIGURE 9.3: Diagram of the MH/Gibbs sampling of BARTs. At step 2, the proposed 
tree is not validated. 

9.5.4 Code 

There are several R packages that implement BART methods: BART, bartMachine and an 
older one (the original), BayesTree. The first one is highly efficient, hence we work with it. 
We resort to only a few parameters, like the power and base, which are the β and α defined 
in (9.17). The program is a bit verbose and delivers a few parametric details. 

library(BART) # Load package 
fit_bart <- gbart( # Main function 

x.train = dplyr::select(training_sample, features_short) %>% # Training features 
data.frame(), 

y.train = dplyr::select(training_sample, R1M_Usd) %>% # Training label 
as.matrix() , 

x.test = dplyr::select(testing_sample, features_short) %>% # Testing features 
data.frame(), 

type = "wbart", # Option: label is continuous 
ntree = 20, # Number of trees in the model 
nskip = 100, # Size of burn-in sample 
ndpost = 200, # Number of posteriors drawn 
power = 2, # beta in the tree structure prior 
base = 0.95) # alpha in the tree structure prior 

## *****Calling gbart: type=1 
## *****Data: 
## data:n,p,np: 198128, 7, 70208 
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## y1,yn: -0.049921, 0.024079 
## x1,x[n*p]: 0.010000, 0.810000 
## xp1,xp[np*p]: 0.270000, 0.880000 
## *****Number of Trees: 20 
## *****Number of Cut Points: 100 ... 100 
## *****burn,nd,thin: 100,200,1 
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,1.57391,3,2.84908e-31,0.0139209 
## *****sigma: 0.000000 
## *****w (weights): 1.000000 ... 1.000000 
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,7,0 
## *****printevery: 100 
## 
## MCMC 
## done 0 (out of 300) 
## done 100 (out of 300) 
## done 200 (out of 300) 
## time: 26s 
## trcnt,tecnt: 200,200 

Once the model is trained,2 we evaluated its performance. We simply compute the hit ratio. 
The predictions are embedded within the fit variable, under the name ‘yhat.test’. 

mean(fit_bart$yhat.test * testing_sample$R1M_Usd > 0) 

## [1] 0.5429237 

The performance seems reasonable but is by no means not impressive. The data from all 
sampled trees is available in the fit_bart variable. It has nonetheless a complex structure 
(as is often the case with trees). The simplest information we can extract is the value of σ 
across all 300 simulations (see Figure 9.4). 

data.frame(simulation = 1:300, sigma = fit_bart$sigma) %>% 
ggplot(aes(x = simulation, y = sigma)) + geom_point(size = 0.7) 
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FIGURE 9.4: Evolution of sigma across BART simulations. 

And we see that, as the number of samples increases, σ decreases. 
2In the case of BARTs, the training consists exactly in the drawing of posterior samples. 



Part III
 

From predictions to portfolios
 



http://taylorandfrancis.com


10
 

Validating and tuning
 

As is shown in Chapters 5 to 11, ML models require user-specified choices before they can 
be trained. These choices encompass parameter values (learning rate, penalization intensity, 
etc.) or architectural choices (e.g., the structure of a network). Alternative designs in ML 
engines can lead to different predictions, hence selecting a good one can be critical. We refer 
to the work of Probst et al. (2018) for a study on the impact of hyperparameter tuning on 
model performance. For some models (neural networks and boosted trees), the number of 
degrees of freedom is so large that finding the right parameters can become complicated and 
challenging. This chapter addresses these issues but the reader must be aware that there is 
no shortcut to building good models. Crafting an effective model is time-consuming and 
often the result of many iterations. 

10.1 Learning metrics 

The parameter values that are set before training are called hyperparameters. In order to 
be able to choose good hyperparameters, it is imperative to define metrics that evaluate 
the performance of ML models. As is often the case in ML, there is a dichotomy between 
models that seek to predict numbers (regressions) and those that try to forecast categories 
(classifications). Before we outline common evaluation benchmarks, we mention the econo­
metric approach of Li et al. (2020). The authors propose to assess the performance of a 
forecasting method compared to a given benchmark, conditional on some external variable. 
This helps monitor under which (economic) conditions the model beats the benchmark. The 
full implementation of the test is intricate, and we recommend the interested reader have a 
look at the derivations in the paper. 

10.1.1 Regression analysis 

Errors in regression analyses are usually evaluated in a straightforward way. The L1 and L2 

norms are mainstream; they are both easy to interpret and to compute. The second one, 
the root mean squared error (RMSE) is differentiable everywhere but harder to grasp 
and gives more weight to outliers. The first one, the mean absolute error gives the average 
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IK1MAE(y, ỹ) = |yi − ỹi|, (10.1)
I 

i=1 

IK1MSE(y, ỹ) = (yi − ỹi)2 , (10.2)
I 

i=1 

 I 
yi)2 

i=1(yi − ˜
R2(y, ỹ) = 1 − , (10.3)

I 
y)2 

i=1(yi − ¯
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distance to the realized value but is not differentiable at zero. Formally, we define them as 

and the RMSE is simply the square root of the MSE. It is always possible to generalize these 
formulae by adding weights wi to produce heterogeneity in the importance of instances. Let 
us briefly comment on the MSE. It is by far the most common loss function in machine 
learning, but it is not necessarily the exact best choice for return prediction in a portfolio 
allocation task. If we decompose the loss into its 3 terms, we get the sum of squared realized 
returns, the sum of squared predicted returns and the product between the two (roughly 
speaking, a covariance term if we assume zero means). The first term does not matter. The 
second controls the dispersion around zero of the predictions. The third term is the most 
interesting from the allocator’s standpoint. The negativity of the cross-product −2yiỹi is 
always to the investor’s benefit: either both terms are positive and the model has recognized 
a profitable asset, or they are negative and it has identified a bad opportunity. It is when 
yi and ỹi don’t have the same sign that problems arise. Thus, compared to the ỹ2, the i 
cross-term is more important. Nonetheless, algorithms do not optimize with respect to this 
indicator.1 

These metrics (MSE and RMSE) are widely used outside ML to assess forecasting errors. 
Below, we present other indicators that are also sometimes used to quantify the quality of a 
model. In line with the linear regressions, the R2 can be computed in any predictive exercise. 

where ȳ is the sample average of the label. One important difference with the classical R2 is 
that the above quantity can be computed on the testing sample and not on the training 
sample. In this case, the R2 can be negative when the mean squared error in the numerator 
is larger than the (biased) variance of the testing sample. Sometimes, the average value ȳ is 
omitted in the denominator (as in Gu et al. (2020b) for instance). The benefit of removing 
the average value is that it compares the predictions of the model to a zero prediction. This 
is particularly relevant with returns because the simplest prediction of all is the constant 
zero value and the R2 can then measure if the model beats this naive benchmark. A zero 
prediction is always preferable to a sample average because the latter can be very much 
period dependent. Also, removing ȳ in the denominator makes the metric more conservative 
as it mechanically reduces the R2. 

Beyond the simple indicators detailed above, several exotic extensions exist and they all 
consist in altering the error before taking the averages. Two notable examples are the Mean 
Absolute Percentage Error (MAPE) and the Mean Square Percentage Error (MSPE). Instead 
of looking at the raw error, they compute the error relative to the original value (to be 
predicted). Hence, the error is expressed in a percentage score and the averages are simply 
equal to: 

1There are some exceptions, like attempts to optimize more exotic criteria, such as the Spearman rho, 
which is based on rankings and is close in spirit to maximizing the correlation between the output and the 
prediction. Because this rho cannot be differentiated, this causes numerical issues. These problems can be 
partially alleviated when resorting to complex architectures, as in Engilberge et al. (2019). 
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I

I yii=1 

K1 yi − ỹiMAPE(y, ỹ) = , (10.4) 

2I

I yii=1 

K1 yi − ỹiMSPE(y, ỹ) = , (10.5) 

where the latter can be scaled by a square root if need be. When the label is positive with 
possibly large values, it is possible to scale the magnitude of errors, which can be very large. 
One way to do this is to resort to the Root Mean Squared Logarithmic Error (RMSLE), 
defined below: 

    IK 

=1i

log 
1 + yi 

1 + ỹi 
, (10.6)1RMSLE(y, ỹ) =

I 

where it is obvious that when yi = ỹi, the error metric is equal to zero. 

Before we move on to categorical losses, we briefly comment on one shortcoming of the 
MSE, which is by far the most widespread metric and objective in regression tasks. A simple 
decomposition yields: KI

I 
i=1 

1 2 + ỹ 2 
iMSE(y, ỹ) = (y − 2yiỹi).i 

� �
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In the sum, the first term is given, there is nothing to be done about it, hence models focus 
on the minimization of the other two. The second term is the dispersion of model values. 
The third term is a cross-product. While variations in ỹi do matter, the third term is by 
far the most important, especially in the cross-section. It is more valuable to reduce the 
MSE by increasing yiỹi. This product is indeed positive when the two terms have the same 
sign, which is exactly what an investor is looking for: correct directions for the bets. For 
some algorithms (like neural networks), it is possible to manually specify custom losses. 
Maximizing the sum of yiỹi may be a good alternative to vanilla quadratic optimization 
(see Section 7.4.3 for an example of implementation). 

10.1.2 Classification analysis 

The performance metrics for categorical outcomes are substantially different compared to 
those of numerical outputs. A large proportion of these metrics are dedicated to binary 
classes, though some of them can easily be generalized to multiclass models. 

We present the concepts pertaining to these metrics in an increasing order of complexity 
and start with the two dichotomies true versus false and positive versus negative. In binary 
classification, it is convenient to think in terms of true versus false. In an investment setting, 
true can be related to a positive return, or a return being above that of a benchmark - false 
being the opposite. 

There are then 4 types of possible results for a prediction. Two when the prediction is right 
(predict true with true realization or predict false with false outcome) and two when the 
prediction is wrong (predict true with false realization and the opposite). We define the 
corresponding aggregate metrics below: 



• Accuracy = TP + TN is the percentage of correct forecasts; 

TP • Recall = measures the ability to detect a winning strategy/asset (left column TP +FN 
analysis). Also known as sensitivity or true positive rate (TPR); 

TP • Precision = computes the probability of good investments (top row analysis); TP +FP
 
TN
 • Specificity = measures the proportion of actual negatives that are correctly FP +TN 

identified as such (right column analysis); 
FP • Fallout = = 1−Specificity is the probability of false alarm (or false positive rate), FP +TN 

i.e., the frequence at which the algorithm detects falsely performing assets (right column 
analysis); 

• F-score, F1 = 2 recall×precision
recall+precision is the harmonic average of recall and precision. 

All of these items lie in the unit interval and a model is deemed to perform better when 
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• frequency of true positive:  I
TP = I−1

i=1 1 ,{yi =ỹi =1  }

• frequency of true negative:  = 1 I
TN I−

 
 

i=1 1{yi=ỹi=0 , }

• frequency of false positive: 

 
I

FP = I−1 
i=1 1{ỹi=1,yi=0 , }

• frequency of false negative: I
FN = I−1

 
 

i=1 1{ỹi=0,yi=1 , }

where true is conventionally encoded into

 
 1 and false into 0. The sum of the four figures is 

equal to one. These four numbers have very different impacts on out-of-sample results, as is 
shown in Figure 10.1. In this table (also called a confusion matrix), it is assumed that 
some proxy for future profitability is forecast by the model. Each row stands for the model’s 
prediction and each column for the realization of the profitability. The most important cases 
are those in the top row, when the model predicts a positive result because it is likely that 
assets with positive predicted profitability (possibly relative to some benchmark) will end 
up in the portfolio. Of course, this is not a problem if the asset does well (left cell), but it 
becomes penalizing if the model is wrong because the portfolio will suffer. 

True positive

True negative

False positive
= Type I error

False negative
= Type II error

You invested in a strategy
that did not work!

You did not invest in
a strategy that worked...

Realized profitability = what happened
Positive

Positive

Negative

Negative

Predicted
Profitability
=
what the
model
told you You did not invest in a

strategy that did not work...

You invested in a
strategy that worked!

FIGURE 10.1: Confusion matrix: summary of binary outcomes. 

Among the two types of errors, type I is the most daunting for investors because it has 
a direct effect on the portfolio. The type II error is simply a missed opportunity and is 
somewhat less impactful. Finally, true negatives are those assets which are correctly excluded 
from the portfolio. 

From the four baseline rates, it is possible to derive other interesting metrics: 
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they increase (except for fallout for which it is the opposite). Many other indicators also 
exist, like the false discovery rate or false omission rate, but they are not as mainstream and 
less cited. Moreover, they are often simple functions of the ones mentioned above. 

A metric that is popular but more complex is the Area Under the (ROC) Curve, often 
referred to as AUC. The complicated part is the ROC curve where ROC stands for Receiver 
Operating Characteristic; the name comes from signal theory. We explain how it is built 
below. 

As seen in Chapters 6 and 7, classifiers generate output that are probabilities that one 
instance belongs to one class. These probabilities are then translated into a class by choosing 
the class that has the highest value. In binary classification, the class with a score above 0.5 
basically wins. 

In practice, this 0.5 threshold may not be optimal and the model could very well correctly 
predict false instances when the probability is below 0.4 and true ones otherwise. Hence, it 
is a natural idea to test what happens if the decision threshold changes. The ROC curve 
does just that and plots the recall as a function of the fallout when the threshold increases 
from zero to one. 

When the threshold is equal to 0, true positives are equal to zero because the model never 
forecasts positive values. Thus, both recall and fallout are equal to zero. When the threshold 
is equal to one, false negatives shrink to zero and true negatives too, hence recall and fallout 
are equal to one. The behavior of their relationship in between these two extremes is called 
the ROC curve. We provide stylized examples below in Figure 10.2. A random classifier 
would fare equally good for recall and fallout and thus the ROC curve would be a linear line 
from the point (0,0) to (1,1). To prove this, imagine a sample with a p ∈ (0, 1) proportion 
of true instances and a classifier that predicts true randomly with a probability p� ∈ (0, 1). 
Then because the sample and predictions are independent, TP = p p, FP = p�(1 − p), 
TN = (1 − p�)(1 − p) and FN = (1 − p�)p. Given the above definition, this yields that both 
recall and fallout are equal to p . 
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FIGURE 10.2: Stylized ROC curves.
 

An algorithm with a ROC curve above the 45° angle is performing better than an average
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classifier. Indeed, the curve can be seen as a tradeoff between benefits (probability of detecting 
good strategies on the y axis) minus costs (odds of selecting the wrong assets on the x axis). 
Hence being above the 45° is paramount. The best possible classifier has a ROC curve that 
goes from point (0,0) to point (0,1) to point (1,1). At point (0,1), fallout is null, hence there 
are no false positives, and recall is equal to one so that there are also no false negatives: the 
model is always right. The opposite is true: at point (1,0), the model is always wrong. 

Below, we use a particular package (caTools) to compute a ROC curve for a given set of 
predictions on the testing sample. 

if(!require(caTools)){install.packages("caTools")} 

library(caTools) # Package for AUC computation 
colAUC(X = predict(fit_RF_C, testing_sample, type = "prob"), 

y = testing_sample$R1M_Usd_C, 
plotROC = TRUE) 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(1−Specificity)
probability of false alarm

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n
(S

en
si

tiv
ity

)

ROC Curves

�

�

FALSE
TRUE

���������
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�����������������
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

���������

FIGURE 10.3: Example of ROC curve. 

## FALSE TRUE 
## FALSE vs. TRUE 0.5003885 0.5003885 

In Figure 10.3, the curve is very close to the 45° angle and the model seems as good (or, 
rather, as bad) as a random classifier. 

Finally, having one entire curve is not practical for comparison purposes, hence the informa­
tion of the whole curve is synthesized into the area below the curve, i.e., the integral of the 
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The variance-bias tradeoff is one of the core concepts in supervised learning. To explain 
it, let us assume that the data is generated by the simple model 

yi = f(xi) + Ci, E[E] = 0, V[E] = σ2 , 

but the model that is estimated yields 

yi = f̂(xi) + Ĉi. 

Given an unknown sample x, the decomposition of the average squared error is 

E[Ĉ2] = E[(y − f̂(x))2] = E[(f(x) + C − f̂(x))2] (10.7) 

= E[(f(x) − f̂(x))2] + E[C2]\ \ 
total quadratic error irreducible error 

= E[f̂(x)2] + E[f(x)2] − 2E[f(x)f̂(x)] + σ2 

= E[f̂(x)2] + f(x)2 − 2f(x)E[f̂(x)] + σ2 

= E[f̂(x)2] − E[f̂(x)]2 + E[f̂(x)]2 + f(x)2 − 2f(x)E[f̂(x)] + σ2 

= V[f̂(x)] + E[(f(x) − f̂(x))]2 + σ2 \ \ 
variance of model squared bias 

In the above derivation, f(x) is not random, but f̂(x) is. Also, in the second line, we assumed 
E[C(f(x) − f̂(x))] = 0, which may not always hold (though it is a very common assumption). 
The average squared error thus has three components: 
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corresponding function. The 45° angle (quadrant bisector) has an area of 0.5 (it is half the 
unit square which has a unit area). Thus, any good model is expected to have an area under 
the curve (AUC) above 0.5. A perfect model has an AUC of one. 

We end this subsection with a word on multiclass data. When the output (i.e., the label) 
has more than two categories, things become more complex. It is still possible to compute a 
confusion matrix, but the dimension is larger and harder to interpret. The simple indicators 
like TP , TN , etc., must be generalized in a non-standard way. The simplest metric in this 
case is the cross-entropy defined in Equation (7.10). We refer to Section 6.1.2 for more 
details on losses related to categorical labels. 

10.2 Validation 

Validation is the stage at which a model is tested and tuned before it starts to be deployed 
on real or live data (e.g., for trading purposes). Needless to say, it is critical. 

10.2.1 The variance-bias tradeoff: theory 
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• the variance of the model (over its predictions); 

• the squared bias of the model; 

• and one irreducible error (independent from the choice of a particular model). 

The last one is immune to changes in models, so the challenge is to minimize the sum of the 
first two. This is known as the variance-bias tradeoff because reducing one often leads to 
increasing the other. The goal is thus to assess when a small increase in either one can lead 
to a larger decrease in the other. 

There are several ways to represent this tradeoff and we display two of them. The first one 
relates to archery (see Figure 10.4) below. The best case (top left) is when all shots are 
concentrated in the middle: on average, the archer aims correctly and all the arrows are very 
close to one another. The worst case (bottom right) is the exact opposite: the average arrow 
is above the center of the target (the bias is nonzero) and the dispersion of arrows is large. 

FIGURE 10.4: First representation of the variance-bias tradeoff. 

The most often encountered cases in ML are the other two configurations: either the arrows 
(predictions) are concentrated in a small perimeter, but the perimeter is not the center of 
the target; or the arrows are on average well distributed around the center, but they are, on 
average, far from it. 

The second way the variance bias tradeoff is often depicted is via the notion of model 
complexity. The most simple model of all is a constant one: the prediction is always the 
same, for instance equal to the average value of the label in the training set. Of course, this 
prediction will often be far from the realized values of the testing set (its bias will be large), 
but at least its variance is zero. On the other side of the spectrum, a decision tree with as 
many leaves as there are instances has a very complex structure. It will probably have a 
smaller bias, but undoubtedly it is not obvious that this will compensate the increase in 
variance incurred by the intricacy of the model. 

This facet of the tradeoff is depicted in Figure 10.5 below. To the left of the graph, a simple 
model has a small variance but a large bias, while to the right it is the opposite for a complex 
model. Good models often lie somewhere in the middle, but the best mix is hard to find. 
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FIGURE 10.5: Second representation of the variance-bias tradeoff. 

The most tractable theoretical form of the variance-bias tradeoff is the ridge regression.2 

The coefficient estimates in this type of regression are given by b̂λ = (X�X + λIN )−1X�Y 
(see Section 5.1.1), where λ is the penalization intensity. Assuming a true linear form for the 
data generating process (y = Xb + E where b is unknown and σ2 is the variance of errors ­
which have identity correlation matrix), this yields 

E[b̂λ] = b − λ(X�X + λIN )−1b, (10.8) 

V[b̂λ] = σ2(X�X + λIN )−1X�X(X�X + λIN )−1 . (10.9) 

Basically, this means that the bias of the estimator is equal to −λ(X�X + λIN )−1b, which is 
zero in the absence of penalization (classical regression) and converges to some finite number 
when λ →∞, i.e., when the model becomes constant. Note that if the estimator has a zero 
bias, then predictions will too: E[X(b − b̂)] = 0. 

The variance (of estimates) in the case of an unconstrained regression is equal to V[b̂] = 
σ(X�X)−1. In Equation (10.9), the λ reduces the magnitude of figures in the inverse matrix. 
The overall effect is that as λ increases, the variance decreases and in the limit λ →∞, the 
variance is zero when the model is constant. The variance of predictions is 

V[Xb̂] = E[(Xb̂− E[Xb̂])(Xb̂− E[Xb̂])�] 
= XE[(b̂− E[b̂])(b̂− E[b̂])�]X� 

= XV[b̂]X 

All in all, ridge regressions are very handy because with a single parameter, they are able to 
provide a cursor that directly tunes the variance-bias tradeoff. 

It’s easy to illustrate how simple it is to display the tradeoff with the ridge regression. In 
the example below, we recycle the ridge model trained in Chapter 5. 

2Another angle, critical of neural networks is provided in Geman et al. (1992). 
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ridge_errors <- predict(fit_ridge, x_penalized_test) - # Errors from all models 
(rep(testing_sample$R1M_Usd, 100) %>% 
matrix(ncol = 100, byrow = FALSE)) 

ridge_bias <- ridge_errors %>% apply(2, mean) # Biases 
ridge_var <- predict(fit_ridge, x_penalized_test) %>% apply(2, var) # Variance 
tibble(lambda, ridge_bias^2, ridge_var, total = ridge_bias^2+ridge_var) %>% # Plot 

gather(key = Error_Component, value = Value, -lambda) %>% 
ggplot(aes(x = lambda, y = Value, color = Error_Component)) + geom_line() 
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FIGURE 10.6: Error decomposition for a ridge regression. 

In Figure 10.6, the pattern is different from the one depicted in Figure 10.5. In the graph, 
when the intensity lambda increases, the magnitude of parameters shrinks and the model 
becomes simpler. Hence, the most simple model seems like the best choice: adding complexity 
increases variance but does not improve the bias! One possible reason for that is that features 
don’t actually carry much predictive value and hence a constant model is just as good as 
more sophisticated ones based on irrelevant variables. 

10.2.2 The variance-bias tradeoff: illustration 

The variance-bias tradeoff is often presented in theoretical terms that are easy to grasp. It is 
nonetheless useful to demonstrate how it operates on true algorithmic choices. Below, we 
take the example of trees because their complexity is easy to evaluate. Basically, a tree with 
many terminal nodes is more complex than a tree with a handful of clusters. 

We start with the parsimonious model, which we train below. 

fit_tree_simple <- rpart(formula, 
data = training_sample, # Data source: training sample 
cp = 0.0001, # Precision: smaller = more leaves 
maxdepth = 2 # Maximum depth (i.e. tree levels) 
) 

rpart.plot(fit_tree_simple) 
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Mkt_Cap_3M_Usd >= 0.15

Pb >= 0.025 Vol3Y_Usd < 0.84

0.014
100%

0.011
86%

0.011
85%

0.041
1%

0.032
14%

0.019
10%

0.062
4%

yes no

FIGURE 10.7: Simple tree. 

The model depicted in Figure 10.7 only has 4 clusters, which means that the predictions 
can only take four values. The smallest one is 0.011 and encompasses a large portion of 
the sample (85%) and the largest one is 0.062 and corresponds to only 4% of the training 
sample. 
We are then able to compute the bias and the variance of the predictions on the testing set. 

mean(predict(fit_tree_simple, testing_sample) - testing_sample$R1M_Usd) # Bias 

## [1] 0.004973917 

var(predict(fit_tree_simple, testing_sample)) # Variance 

## [1] 0.0001398003 

On average, the error is slightly positive, with an overall overestimation of 0.005. As expected, 
the variance is very small (10−4). 

For the complex model, we take the boosted tree that was obtained in Section 6.4.6 (fit_xgb). 
The model aggregates 40 trees with a maximum depth of 4, it is thus undoubtedly more 
complex. 

mean(predict(fit_xgb, xgb_test) - testing_sample$R1M_Usd) # Bias 

## [1] 0.00324996 

var(predict(fit_xgb, xgb_test)) # Variance 

## [1] 0.002206797 

The bias is indeed smaller compared to that of the simple model, but in exchange, the 
variance increases substantially. The net effect (via the squared bias) is in favor of the simpler 
model. 
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10.2.3 The risk of overfitting: principle 

The notion of overfitting is one of the most important in machine learning. When a model 
overfits, the accuracy of its predictions will be disappointing, thus it is one major reason 
why some strategies fail out-of-sample. Therefore, it is important to understand not only 
what overfitting is, but also how to mitigate its effects. 

One recent reference on this topic and its impact on portfolio strategies is Hsu et al. (2018), 
which builds on the work of White (2000). Both of these references do not deal with ML 
models, but the principle is the same. When given a dataset, a sufficiently intense level of 
analysis (by a human or a machine) will always be able to detect some patterns. Whether 
these patterns are spurious or not is the key question. 

In Figure 10.8, we illustrate this idea with a simple visual example. We try to find a model 
that maps x into y. The (training) data points are the small black circles. The simplest 
model is the constant one (only one parameter), but with two parameters (level and slope), 
the fit is already quite good. This is shown with the blue line. With a sufficient number of 
parameters, it is possible to build a model that flows through all the points. One example 
would be a high-dimensional polynomial. One such model is represented with the red line. 
Now there seems to be a strange point in the dataset and the complex model fits closely to 
match this point. 

FIGURE 10.8: Illustration of overfitting: a model closely matching training data is rarely 
a good idea. 

A new point is added in light green. It is fair to say that it follows the general pattern of the 
other points. The simple model is not perfect and the error is non-negligible. Nevertheless, the 
error stemming from the complex model (shown with the dotted gray line) is approximately 
twice as large. This simplified example shows that models that are too close to the training 
data will catch idiosyncracies that will not occur in other datasets. A good model would 
overlook these idiosyncracies and stick to the enduring structure of the data. 
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10.2.4 The risk of overfitting: some solutions 

Obviously, the easiest way to avoid overfitting is to resist the temptation of complicated 
models (e.g., high-dimensional neural networks or tree ensembles). 

The complexity of models is often proxied via two measures: the number of parameters of 
the model and their magnitude (often synthesized through their norm). These proxies are 
not perfect because some complex models may only require a small number of parameters 
(or even small parameter values), but at least they are straightforward and easy to handle. 
There is no universal way of handling overfitting. Below, we detail a few tricks for some 
families of ML tools. 

For regressions, there are two simple ways to deal with overfitting. The first is the number 
of parameters, that is, the number of predictors. Sometimes, it can be better to only select a 
subsample of features, especially if some of them are highly correlated (often, a threshold 
of 70% is considered as too high for absolute correlations between features). The second 
solution is penalization (via LASSO, ridge or elasticnet), which helps reduce the magnitude 
of estimates and thus of the variance of predictions. 

For tree-based methods, there are a variety of ways to reduce the risk of overfitting. When 
dealing with simple trees, the only way to proceed is to limit the number of leaves. This 
can be done in many ways. First, by imposing a maximum depth. If it is equal to d, then 
the tree can have at most 2d terminal nodes. It is often advised not to go beyond d = 6. 
The complexity parameter in rpart (cp) is another way to shrink the size of trees: any new 
split must lead to a reduction in loss at least equal to cp. If not, the split is not deemed 
useful and is thus not performed. Thus when cp is large, the tree is not grown. The last 
two parameters available in rpart are the minimum number of instances required in each 
leaf and the minimum number of instances per cluster requested in order to continue the 
splitting process. The higher (i.e., the more coercive) these figures are, the harder it is to 
grow complex trees. 

In addition to these options, random forests allow to control for the number of trees in 
the forest. Theoretically (see Breiman (2001)), this parameter is not supposed to impact the 
risk of overfitting because new trees only help reduce the total error via diversification. In 
practice, and for the sake of computation times, it is not recommended to go beyond 1,000 
trees. Two other hyperparameters are the subsample size (on which each learner is trained) 
and the number of features retained for learning. They do not have a straightforward impact 
on bias and tradeoff, but rather on raw performace. For instance, if subsamples are too small, 
the trees will not learn enough. Same problem if the number of features is too low. On the 
other hand, choosing a large number of predictors (i.e., close to the total number) may lead 
to high correlations between each learner’s prediction because the overlap in information 
contained in the training samples may be high. 

Boosted trees have other options that can help alleviate the risk of overfitting. The most 
obvious one is the learning rate, which discounts the impact of each new tree by η ∈ (0, 1). 
When the learning rate is high, the algorithm learns too quickly and is prone to sticking 
close to the training data. When it’s low, the model learns very progressively, which can be 
efficient if there are sufficiently many trees in the ensemble. Indeed, the learning rate and 
the number of trees must be chosen synchronously: if both are low, the ensemble will learn 
nothing and if both are large, it will overfit. The arsenal of boosted tree parameters does not 
stop there. The penalizations, both of score values and of the number of leaves, are naturally 
a tool to prevent the model from going to deep in the particularities of the training sample. 
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Finally, constraints of monotonicity like those mentioned in Section 6.4.5 are also an efficient 
way to impose some structure on the model and force it to detect particular patterns. 

Lastly neural networks also have many options aimed at protecting them against overfitting. 
Just like for boosted trees, some of them are the learning rate and the penalization of weights 
and biases (via their norm). Constraints, like nonnegative constraints, can also help when 
the model theoretically requires positive inputs. Finally, dropout is always a direct way to 
reduce the dimension (number of parameters) of a network. 

10.3 The search for good hyperparameters 

10.3.1 Methods 

Let us assume that there are p parameters to be defined before a model is run. The simplest 
way to proceed is to test different values of these parameters and choose the one that yields 
the best results. There are mainly two ways to perform these tests: independently and 
sequentially. 

Independent tests are easy and come in two families: grid (deterministic) search and random 
exploration. The advantage of a deterministic approach is that it covers the space uniformly 
and makes sure that no corners are omitted. The drawback is the computation time. 
Indeed, for each parameter, it seems reasonable to test at least five values, which makes 5p 

combinations. If p is small (smaller than 3), this is manageable when the backtests are not 
too lengthy. When p is large, the number of combinations may become prohibitive. This is 
when random exploration can be useful because in this case, the user specifies the number 
of tests upfront and the parameters are drawn randomly (usually uniformly over a given 
range for each parameter). The flaw in random search is that some areas in the parameter 
space may not be covered, which can be problematic if the best choice is located there. It is 
nonetheless shown in Bergstra and Bengio (2012) that random exploration is preferable to 
grid search. 

Both grid and random searches are suboptimal because they are likely to spend time in 
zones of the parameter space that are irrelevant, thereby wasting computation time. Given 
a number of parameter points that have been tested, it is preferable to focus the search in 
areas where the best points are the most likely. This is possible via an interative process 
that adapts the search after each new point has been tested. 

One other popular approach in this direction is Bayesian optimization (BO). The central 
object is the objective function of the learning process. We call this function O and it can 
be widely seen as a loss function possibly combined with penalization and constraints. For 
simplicity here, we will not mention the training/testing samples and they are considered 
to be fixed. The variable of interest is the vector p = (p1, . . . , pl) which synthesizes the 
hyperparameters (learning rate, penalization intensities, number of models, etc.) that have 
an impact on O. The program we are interested in is 

p∗ = argmin O(p). (10.10) 
p 

The main problem with this optimization is that the computation of O(p) is very costly. 
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Therefore, it is critical to choose each trial for b wisely. One key assumption of BO is that 
the distribution of O is Gaussian and that O can be proxied by a linear combination of the 
pl. Said differently, the aim is to build a Bayesian linear regression between the input p and 
the output (dependent variable) O. Once a model has been estimated, the information that 
is concentrated in the posterior density of O is used to make an educated guess at where to 
look for new values of p. 

This educated guess is made based on a so-called acquisition function. Suppose we 
have tested  values for p, which we write p( )m m . The current best parameter is written 
p∗ 

 = argmin O(p(k)
m ). If we test a new point p, then it will lead to an improvement only if 

1≤k≤m 

O(p) < O(p∗ 
m), that is if the new objective improves the minimum value that we already 

know. The average value of this improvement is 

EIm(p) = Em[[O(p∗
m 

 ) − O(p)]+],	 (10.11)

where the positive part [·]+ emphasizes that when O(p) ≥ O(p∗ 
m), the gain is zero. The 

expectation is indexed by m because it is computed with respect to the posterior distribution 
of O(p) based on the m samples p(m). The best choice for the next sample pm+1 is then 

pm+1 = argmax EIm(p),	 (10.12) 
p 

which corresponds to the maximum location of the expected improvement. Instead of the EI, 
the optimization can be performed on other measures, like the probability of improvement, 
which is Pm[O(p) < O(p∗ 

m)].

In compact form, the iterative process can be outlined as follows: 

•	 step 1: compute O(p(m)) for m = 1, . . . , M0 values of parameters. 

•	 step 2a: compute sequentially the posterior density of O on all available points. 

•	 step 2b: compute the optimal new point to test pm+1 given in Equation (10.12). 

•	 step 2c: compute the new objective value O(pm+1). 

•	 step 3: repeat steps 2a to 2c as much as deemed reasonable and return the pm that yields 
the smallest objective value. 

The interested reader can have a look at Snoek et al. (2012) and Frazier (2018) for more 
details on the numerical facets of this method. 

Finally, for the sake of completeness, we mention a last way to tune hyperparameters. Since 
the optimization scheme is argmin O(p), a natural way to proceed would be to use the 

p 

sensitivity of O with respect to p. Indeed, if the gradient ∂O is known, then a gradient 
descent will always improve the

∂p
  objective value. The problem is

l

 that it is hard to compute 
a reliable gradient (finite differences can become costly). Nonetheless, some methods (e.g., 
Maclaurin et al. (2015)) have been applied successfully to optimize over large dimensional 
parameter spaces. 

We conclude by mentioning the survey Bouthillier and Varoquaux (2020), which spans 2 major 
AI conferences that took place in 2019. It shows that most papers resort to hyperparameter 
tuning. The two most often cited methods are manual tuning (hand-picking) and grid search. 
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10.3.2 Example: grid search 

In order to illustrate the process of grid search, we will try to find the best parameters for a 
boosted tree. We seek to quantify the impact of three parameters: 

•	 eta, the learning rate, 

•	 nrounds, the number of trees that are grown, 

•	 lambda, the weight regularizer which penalizes the objective function through the total 
sum of squared weights/scores. 

Below, we create a grid with the values we want to test for these parameters. 

eta <- c(0.1, 0.3, 0.5, 0.7, 0.9) # Values for eta
 
nrounds <- c(10, 50, 100) # Values for nrounds
 
lambda <- c(0.01, 0.1, 1, 10, 100) # Values for lambda
 
pars <- expand.grid(eta, nrounds, lambda) # Exploring all combinations!
 
head(pars) # Let's see the parameters
 

## Var1 Var2 Var3
 
## 1 0.1 10 0.01
 
## 2 0.3 10 0.01
 
## 3 0.5 10 0.01
 
## 4 0.7 10 0.01
 
## 5 0.9 10 0.01
 
## 6 0.1 50 0.01
 

eta <- pars[,1]
 
nrounds <- pars[,2]
 
lambda <- pars[,3]
 

Given the computational cost of grid search, we perform the exploration on the dataset 
with the small number of features (which we recycle from Chapter 6). In order to avoid the 
burden of loops, we resort to the functional programming capabilities of R, via the purrr 
package. This allows us to define a function that will lighten and simplify the code. This 
function, coded below, takes data and parameter inputs and returns an error metric for the 
algorithm. We choose the mean squared error to evaluate the impact of hyperparameter 
values. 

grid_par <- function(train_matrix, test_features, test_label, eta, nrounds, lambda){
 
fit <- train_matrix %>%
 

xgb.train(data = ., # Data source (pipe input) 
eta = eta, # Learning rate 
objective = "reg:linear", # Objective function 
max_depth = 5, # Maximum depth of trees 
lambda = lambda, # Penalisation of leaf values 
gamma = 0.1, # Penalisation of number of leaves 
nrounds = nrounds, # Number of trees used 
verbose = 0 # No comment from algo 

) 

pred <- predict(fit, test_features) # Predictions based on model & test values 
return(mean((pred-test_label)^2)) # Mean squared error 

} 

The grid_par function can then be processed by the functional programming tool pmap 
that is going to perform the loop on parameter values automatically. 
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# grid_par(train_matrix_xgb, xgb_test, testing_sample$R1M_Usd, 0.1, 3, 0.1) # Possible test 
grd <- pmap(list(eta, nrounds, lambda), # Parameters for the grid search 

grid_par, # Function on which to apply the search 
train_matrix = train_matrix_xgb, # Input for function: training data 
test_features = xgb_test, # Input for function: test features 
test_label = testing_sample$R1M_Usd # Input for function: test labels (returns) 

) 
grd <- data.frame(eta, nrounds, lambda, error = unlist(grd)) # Dataframe with all results 

Once the squared mean errors have been gathered, it is possible to plot them. We chose to 
work with 3 parameters on purpose because their influence can be simultaneuously plotted 
on one graph. 

grd$eta <- as.factor(eta)	 # Params as categories (for plot) 
grd	 %>% ggplot(aes(x = eta, y = error, fill = eta)) + # Plot! 

geom_bar(stat = "identity") + 
facet_grid(rows = vars(nrounds), cols = vars(lambda)) + 
theme(axis.text.x = element_text(size = 6)) 
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FIGURE 10.9: Plot of error metrics (SMEs) for many parameter values. Each row of 
graph corresponds to nrounds and each column to lambda. 

In Figure 10.9, the main information is that a small learning rate (η = 0.1) is detrimental to 
the quality of the forecasts when the number of trees is small (nrounds=10), which means 
that the algorithm does not learn enough. 

Grid search can be performed in two stages: the first stage helps locate the zones that are of 
interest (with the lowest loss/objective values) and then zoom in on these zones with refined 
values for the parameter on the grid. With the results above, this would mean considering 
many learners (more than 50, possibly more than 100), and avoiding large learning rates 
such as η = 0.9 or η = 0.8. 
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10.3.3 Example: Bayesian optimization 

There are several packages in R that relate to Bayesian optimization. We work with 
rBayesianOptimization, which is general purpose but also needs more coding involvement. 

Just as for the grid search, we need to code the objective function on which the hyperparam­
eters will be optimized. Under rBayesianOptimization, the output has to have a particular 
form, with a score and a prediction variable. The function will maximize the score, hence we 
will define it as minus the mean squared error. 

bayes_par_opt <- function(train_matrix = train_matrix_xgb, # Input for func: train data 
test_features = xgb_test, # Input for func: test feats 
test_label = testing_sample$R1M_Usd, # Input for func: test label 
eta, nrounds, lambda){ # Input for func params 

fit <- train_matrix %>% 
xgb.train(data = ., # Data source (pipe input) 

eta = eta, # Learning rate 
objective = "reg:linear", # Objective function 
max_depth = 5, # Maximum depth of trees 
lambda = lambda, # Penalisation of leaf values 
gamma = 0.1, # Penalisation of number of leaves 
nrounds = round(nrounds), # Number of trees used 
verbose = 0 # No comment from algo 

) 

pred <- predict(fit, test_features) # Forecast based on fitted model & test values 
list(Score = -mean((pred-test_label)^2), # Minus RMSE 

Pred = pred) # Predictions on test set 
} 

Once the objective function is defined, it can be plugged into the Bayesian optimizer. 

library(rBayesianOptimization)
 
bayes_opt <- BayesianOptimization(bayes_par_opt, # Function to maximize
 

bounds = list(eta = c(0.2, 0.8), # Bounds for eta 
lambda = c(0.5, 15), # Bounds for lambda 
nrounds = c(10, 100)), # Bounds for nrounds 

init_points = 10, # Nb initial points for first estimation 
n_iter = 24, # Nb optimization steps/trials 
acq = "ei", # Acquisition function = expected improvement 
verbose = FALSE) 

##
 
## Best Parameters Found:
 
## Round = 27 eta = 0.3568 lambda = 8.4042 nrounds = 11.9646 Value = -0.0372
 

bayes_opt$Best_Par
 

## eta lambda nrounds
 
## 0.3567502 8.4041836 11.9645900
 

The final parameters indicate that it is advised to resist overfitting: small number of learners 
and large penalization seem to be the best choices. 

To confirm these results, we plot the relationship between the loss (up to the sign) and two 
hyperparameters. Each point corresponds to a value tested in the optimization. The best 
values are clearly to the left of the left graph and to the right of the right graph and the 
pattern is reliably pronounced. According to these graphs, it seems indeed wiser to pick a 
smaller number of trees and a larger penalization factor (to maximize minus the loss). 
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library("ggpubr") # Package for combining plots 
plot_rounds <- bayes_opt$History %>% 

ggplot(aes(x = nrounds, y = Value)) + geom_point() + geom_smooth(method = "lm") 
plot_lambda <- bayes_opt$History %>% 

ggplot(aes(x = lambda, y = Value)) + geom_point() + geom_smooth(method = "lm") 
par(mar = c(1,1,1,1)) 
ggarrange(plot_rounds, plot_lambda, ncol = 2) 

FIGURE 10.10: Relationship between (minus) the loss and hyperparameter values. 

10.4 Short discussion on validation in backtests 

The topic of validation in backtests is more complex than it seems. There are in fact two 
scales at which it can operate, depending on whether the forecasting model is dynamic 
(updated at each rebalancing) or fixed. 

Let us start with the first option. In this case, the aim is to build a unique model and to test 
it on different time periods. There is an ongoing debate on the methods that are suitable to 
validate a model in that case. Usually, it makes sense to test the model on successive dates, 
moving forward posterior to the training. This is what makes more sense, as it replicates 
what would happen in a live situation. 

In machine learning, a popular approach is to split the data into K partitions and to test 
K different models: each one is tested on one of the partitions but trained on the K − 1 
others. This so-called cross-validation (CV) is proscribed by most experts (and common 
sense) for a simple reason: most of the time, the training set encompasses data from future 
dates and tests on past values. Nonetheless, some advocate one particular form of CV that 
aims at making sure that there is no informational overlap between the training and testing 
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set (Sections 7.4 and 12.4 in De Prado (2018)). The premise is that if the structure of the 
cross-section of returns is constant through time, then training on future points and testing 
on past data is not problematic as long as there is no overlap. The paper Schnaubelt (2019) 
provides a comprehensive and exhaustive tour in many validation schemes. 

One example cited in De Prado (2018) is the reaction to a model to an unseen crisis. Following 
the market crash of 2008, at least 11 years have followed without any major financial shake. 
One option to test the reaction of a recent model to a crash would be to train it on recent 
years (say 2015-2019) and test it on various points (e.g., months) in 2008 to see how it 
performs. 

The advantage of a fixed model is that validation is easy: for one set of hyperparameters, 
test the model on a set of dates, and evaluate the performance of the model. Repeat the 
process for other parameters and choose the best alternative (or use Bayesian optimization). 

The second major option is when the model is updated (retrained) at each rebalancing. The 
underlying idea here is that the structure of returns evolves through time and a dynamic 
model will capture the most recent trends. The drawback is that validation must (should?) 
be rerun at each rebalancing date. 

Let us recall the dimensions of backtests:
 
- number of strategies: possibly dozens or hundreds, or even more;
 
- number of trading dates: hundreds for monthly rebalancing;
 
- number of assets: hundreds or thousands;
 
- number of features: dozens or hundreds.
 

Even with a lot of computational power (GPUs, etc.), training many models over many dates 
is time-consuming, especially when it comes to hyperparameter tuning when the parameter 
space is large. Thus, validating models at each trading date of the out-of-sample period is 
not realistic. 

One solution is to keep an early portion of the training data and to perform a smaller 
scale validation on this subsample. Hyperparameters are tested on a limited number of 
dates and most of the time, they exhibit stability: satisfactory parameters for one date are 
usually acceptable for the next one and the following one as well. Thus, the full backtest 
can be carried out with these values when updating the models at each period. The backtest 
nonetheless remains compute-intensive because the model has to be retrained with the most 
recent data for each rebalancing date. 
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Ensemble models
 

Let us be honest. When facing a prediction task, it is not obvious to determine the best 
choice between ML tools: penalized regressions, tree methods, neural networks, SVMs, etc. 
A natural and tempting alternative is to combine several algorithms (or the predictions 
that result from them) to try to extract value out of each engine (or learner). This intention 
is not new and contributions towards this goal go back at least to Bates and Granger (1969) 
(for the purpose of passenger flow forecasting). 

Below, we outline a few books on the topic of ensembles. The latter have many names 
and synonyms, such as forecast aggregation, model averaging, mixture of experts 
or prediction combination. The first four references below are monographs, while the 
last two are compilations of contributions: 

•	 Zhou (2012): a very didactic book that covers the main ideas of ensembles; 

•	 Schapire and Freund (2012): the main reference for boosting (and hence, ensembling) with 
many theoretical results and thus strong mathematical groundings; 

•	 Seni and Elder (2010): an introduction dedicated to tree methods mainly; 

•	 Claeskens and Hjort (2008): an overview of model selection techniques with a few chapters 
focused on model averaging; 

•	 Zhang and Ma (2012): a collection of thematic chapters on ensemble learning; 

•	 Okun et al. (2011): examples of applications of ensembles. 

In this chapter, we cover the basic ideas and concepts behind the notion of ensembles. We 
refer to the above books for deeper treatments on the topic. We underline that several 
ensemble methods have already been mentioned and covered earlier, notably in Chapter 6. 
Indeed, random forests and boosted trees are examples of ensembles. Hence, other early 
articles on the combination of learners are Schapire (1990), Jacobs et al. (1991) (for neural 
networks particularly), and Freund and Schapire (1997). Finally, for a theoretical view on 
ensembles with a Bayesian perspective, we refer to Razin and Levy (2020). 
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so that when ρ → 1, the model with the smallest errors (minimum σ2) will see its weight i 
increasing towards infinity while the other model will have a similarly large negative weight: 
the model arbitrages between two highly correlated variables. This seems like a very bad 
idea. 

There is another illustration of the issues caused by correlations. Let’s assume we face M 
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11.1 Linear ensembles 

11.1.1 Principles 

In this chapter we adopt the following notations. We work with M models where ỹi,m is the 
prediction of model m for instance i and errors Ci,m = yi − ỹi,m are stacked into a (I × M ) 
matrix E. A linear combination of models has sample errors equal to Ew, where w = wm 

are the weights assigned to each model and we assume w�1M = 1. Minimizing the total 
(squared) error is thus a simple quadratic program with unique constraint. The Lagrange 
function is L(w) = w�E�Ew − λ(w�1M − 1) and hence 

This expression shows an important feature of optimized linear ensembles: they can only add 
value if the models tell different stories. If two models are redundant, E�E will be close to 
singular and w∗ will arbitrage one against the other in a spurious fashion. This is the exact 
same problem as when mean-variance portfolios are constituted with highly correlated assets: 
in this case, diversification fails because when things go wrong, all assets go down. Another 
problem arises when the number of observations is too small compared to the number of 
assets so that the covariance matrix of returns is singular. This is not an issue for ensembles 
because the number of observations will usually be much larger than the number of models 
(I >> M). 

In the limit when correlations increase to one, the above formulation becomes highly unstable 
and ensembles cannot be trusted. One heuristic way to see this is when M = 2 and 

�

�



�
w�1M = 1 argmin w�E�Ew, s.t. . 

w wm ≥ 0 ∀m 
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where while the second term converges to zero as M increases, the second term remains and 
is linearly increasing with ρ. In passing, because variances are always positive, this result 
implies that the common pairwise correlation between M variables is bounded below by 
−(M − 1)−1. This result is interesting but rarely found in textbooks. 

One improvement proposed to circumvent the trouble caused by correlations, advocated in 
a seminal publication (Breiman (1996)), is to enforce positivity constraints on the weights 
and solve 

Mechanically, if several models are highly correlated, the constraint will impose that only one 
of them will have a nonzero weight. If there are many models, then just a few of them will be 
selected by the minimization program. In the context of portfolio optimization, Jagannathan 
and Ma (2003) have shown the benefits of constraint in the construction mean-variance 
allocations. In our setting, the constraint will similarly help discriminate wisely among the 
‘best’ models. 

In the literature, forecast combination and model averaging (which are synonyms of ensembles) 
have been tested on stock markets as early as in Von Holstein (1972). Surprisingly, the articles 
were not published in Finance journals but rather in fields such as Management (Virtanen and 
Yli-Olli (1987), Wang et al. (2012)), Economics and Econometrics (Donaldson and Kamstra 
(1996), Clark and McCracken (2009), Mascio et al. (2020)), Operations Reasearch (Huang 
et al. (2005), Leung et al. (2001), and Bonaccolto and Paterlini (2019)), and Computer 
Science (Harrald and Kamstra (1997), Hassan et al. (2007)). 

In the general forecasting literature, many alternative (refined) methods for combining 
forecasts have been studied. Trimmed opinion pools (Grushka-Cockayne et al. (2016)) 
compute averages over the predictions that are not too extreme. We refer to Gaba et al. 
(2017) for a more exhaustive list of combinations as well as for an empirical study of their 
respective efficiency. Overall, findings are mixed and the heuristic simple average is, as usual, 
hard to beat (see, e.g., Genre et al. (2013)). 

11.1.2 Example 

In order to build an ensemble, we must gather the predictions and the corresponding errors 
into the E matrix. We will work with 5 models that were trained in the previous chapters: 
penalized regression, simple tree, random forest, xgboost and feed-forward neural network. 
The training errors have zero means, hence E�E is the covariance matrix of errors between 
models. 

err_pen_train <- predict(fit_pen_pred, x_penalized_train) - training_sample$R1M_Usd # Reg. 
err_tree_train <- predict(fit_tree, training_sample) - training_sample$R1M_Usd # Tree 
err_RF_train <- predict(fit_RF, training_sample) - training_sample$R1M_Usd # RF 
err_XGB_train <- predict(fit_xgb, train_matrix_xgb) - training_sample$R1M_Usd # XGBoost 
err_NN_train <- predict(model, NN_train_features) - training_sample$R1M_Usd # NN 
E <- cbind(err_pen_train, err_tree_train, err_RF_train, err_XGB_train, err_NN_train) # E matrix 
colnames(E) <- c("Pen_reg", "Tree", "RF", "XGB", "NN") # Names 
cor(E) # Cor. mat. 

## Pen_reg Tree RF XGB NN 
## Pen_reg 1.0000000 0.9984394 0.9968224 0.9310186 0.9972770 
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## Tree 0.9984394 1.0000000 0.9974647 0.9296081 0.9976229 
## RF 0.9968224 0.9974647 1.0000000 0.9281725 0.9975322 
## XGB 0.9310186 0.9296081 0.9281725 1.0000000 0.9286332 
## NN 0.9972770 0.9976229 0.9975322 0.9286332 1.0000000 

As is shown by the correlation matrix, the models fail to generate heterogeneity in their 
predictions. The minimum correlation (though above 95%!) is obtained by the boosted 
tree models. Below, we compare the training accuracy of models by computing the average 
absolute value of errors. 

apply(abs(E), 2, mean) # Mean absolute error or columns of E 

## Pen_reg Tree RF XGB NN 
## 0.08345916 0.08362133 0.08327121 0.08986993 0.08347214 

The best performing ML engine is the random forest. The boosted tree model is the worst, 
by far. Below, we compute the optimal (non-constrained) weights for the combination of 
models. 

w_ensemble <- solve(t(E) %*% E) %*% rep(1,5) # Optimal weights 
w_ensemble <- w_ensemble / sum(w_ensemble) 
w_ensemble 

## [,1] 
## Pen_reg -0.659429079 
## Tree -0.069388482 
## RF 1.323525884 
## XGB -0.001401754 
## NN 0.406693431 

Because of the high correlations, the optimal weights are not balanced and diversified: they 
load heavily on the random forest learner (best in sample model) and ‘short’ a few models 
in order to compensate. As one could expect, the model with the largest negative weights 
(Pen_reg) has a very high correlation with the random forest algorithm (0.997). 

Note that the weights are of course computed with training errors. The optimal combination 
is then tested on the testing sample. Below, we compute out-of-sample (testing) errors and 
their average absolute value. 

err_pen_test <- predict(fit_pen_pred, x_penalized_test) - testing_sample$R1M_Usd # Reg. 
err_tree_test <- predict(fit_tree, testing_sample) - testing_sample$R1M_Usd # Tree 
err_RF_test <- predict(fit_RF, testing_sample) - testing_sample$R1M_Usd # RF 
err_XGB_test <- predict(fit_xgb, xgb_test) - testing_sample$R1M_Usd # XGBoost 
err_NN_test <- predict(model, NN_test_features) - testing_sample$R1M_Usd # NN 
E_test <- cbind(err_pen_test, err_tree_test, err_RF_test, err_XGB_test, err_NN_test) # E matrix 
colnames(E_test) <- c("Pen_reg", "Tree", "RF", "XGB", "NN") 
apply(abs(E_test), 2, mean) # Mean absolute error or columns of E 

## Pen_reg Tree RF XGB NN 
## 0.06618181 0.06653527 0.06710349 0.07170802 0.06717428 

The boosted tree model is still the worst performing algorithm while the simple models 
(regression and simple tree) are the ones that fare the best. The most naive combination is 
the simple average of model and predictions. 

err_EW_test <- apply(E_test, 1, mean) # Equally weighted combination 
mean(abs(err_EW_test)) 
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## [1] 0.06693159 

Because the errors are very correlated, the equally weighted combination of forecasts yields 
an average error which lies ‘in the middle’ of individual errors. The diversification benefits 

are too small. Let us now test the ‘optimal’ com
�E bination (E )−11 w∗ = M

(1� E�E)−11M
.

M 

err_opt_test <- E_test %*% w_ensemble # Optimal unconstrained combination 
mean(abs(err_opt_test)) 

## [1] 0.06847281 

Again, the result is disappointing because of the lack of diversification across models. The 
correlations between errors are high not only on the training sample, but also on the testing 
sample, as shown below. 

cor(E_test) 

## Pen_reg Tree RF XGB NN 
## Pen_reg 1.0000000 0.9987069 0.9968882 0.9537914 0.9966683 
## Tree 0.9987069 1.0000000 0.9978366 0.9583641 0.9975307 
## RF 0.9968882 0.9978366 1.0000000 0.9606570 0.9976525 
## XGB 0.9537914 0.9583641 0.9606570 1.0000000 0.9602100 
## NN 0.9966683 0.9975307 0.9976525 0.9602100 1.0000000 

The leverage from the optimal solution only exacerbates the problem and underperforms 
the heuristic uniform combination. We end this section with the constrained formulation 
of Breiman (1996) using the quadprog package. If we write Σ for the covariance matrix of 
errors, we seek 

w ∗ = argmin w�Σw, 1�w = 1, wi ≥ 0, 
w 

The constraints will be handled as: 

Aw = 

⎡
1 1 1 
1 0 0 

⎤
1 ⎢⎢ 0 

 
⎥⎥w compared to b = 0 1 0 

⎡
1

⎢
 0

⎤
0 0

⎢
 

⎥⎥ , 

 0 

⎣ ⎦ ⎣ ⎦
where the first line will be an equality (weights sum to one) and the last three will be 
inequalities (weights are all positive). 

library(quadprog) # Package for quadratic programming 
Sigma <- t(E) %*% E # Unscaled covariance matrix 
nb_mods <- nrow(Sigma) # Number of models 
w_const <- solve.QP(Dmat = Sigma, # D matrix = Sigma 

dvec = rep(0, nb_mods), # Zero vector 
Amat = rbind(rep(1, nb_mods), diag(nb_mods)) %>% t(), # A matrix for constraints 
bvec = c(1,rep(0, nb_mods)), # b vector for constraints 
meq = 1 # 1 line of equality constraints, others = inequalities 
) 

w_const$solution %>% round(3) # Solution 

## [1] 0 0 1 0 0 

Compared to the unconstrained solution, the weights are sparse and concentrated in one or 
two models, usually those with small training sample errors. 
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11.2 Stacked ensembles 

11.2.1 Two-stage training 

Stacked ensembles are a natural generalization of linear ensembles. The idea of generalizing 
linear ensembles goes back at least to Wolpert (1992b). In the general case, the training 
is performed in two stages. The first stage is the simple one, whereby the M models are 
trained independently, yielding the predictions ỹi,m for instance i and model m. The second 
step is to consider the output of the trained models as input for a new level of machine 
learning optimization. The second level predictions are y̆i = h(ỹi,1, . . . , ỹi,M ), where h is a 
new learner (see Figure 11.1). Linear ensembles are of course stacked ensembles in which the 
second layer is a linear regression. 

The same techniques are then applied to minimize the error between the true values yi and 
the predicted ones y̆i. 

Model 1
Model 2
...
Model M

I*M = nb
predictions

(I = nb instances)

Stage 1:
first learning level
simple training
and predictions y

Stage 2:
2nd learning level
optimise combination
or feed new learner

Stage 3:
Forecast!
reverse operation:
two step prediction

y = h(y , y ,...,y )
estimate this model:

1 2 M

h is the aggregate
meta model

1. Make the forecasts
at indiv. learner
level

2. Feed the forecasts
to the second
model h

~ ~ ~

~
m

FIGURE 11.1: Scheme of stacked ensembles. 

11.2.2 Code and results 

Below, we create a low-dimensional neural network which takes in the individual predictions 
of each model and compiles them into a synthetic forecast. 

model_stack <- keras_model_sequential() 
model_stack %>% # This defines the structure of the network, i.e. how layers are organized 

layer_dense(units = 8, activation = 'relu', input_shape = nb_mods) %>% 
layer_dense(units = 4, activation = 'tanh') %>% 
layer_dense(units = 1) 

The configuration is very simple. We do not include any optional arguments and hence the 
model is likely to overfit. As we seek to predict returns, the loss function is the standard L2 

norm. 

model_stack %>% compile( # Model specification 
loss = 'mean_squared_error', # Loss function 
optimizer = optimizer_rmsprop(), # Optimisation method (weight updating) 
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metrics = c('mean_absolute_error') # Output metric 
) 
summary(model_stack) # Model architecture 

## __________________________________________________________________________________________
 
## Layer (type) Output Shape Param #
 
## ==========================================================================================
 
## dense_59 (Dense) (None, 8) 48
 
## __________________________________________________________________________________________
 
## dense_60 (Dense) (None, 4) 36
 
## __________________________________________________________________________________________
 
## dense_61 (Dense) (None, 1) 5
 
## ==========================================================================================
 
## Total params: 89
 
## Trainable params: 89
 
## Non-trainable params: 0
 
## __________________________________________________________________________________________
 

y_tilde <- E + matrix(rep(training_sample$R1M_Usd, nb_mods), ncol = nb_mods) # Train preds
 
y_test <- E_test + matrix(rep(testing_sample$R1M_Usd, nb_mods), ncol = nb_mods) # Testing
 
fit_NN_stack <- model_stack %>% fit(y_tilde, # Train features
 

training_sample$R1M_Usd, # Train labels 
epochs = 12, batch_size = 512, # Train parameters 
validation_data = list(y_test, # Test features 

testing_sample$R1M_Usd) # Test labels 
) 
plot(fit_NN_stack) # Plot, evidently! 

FIGURE 11.2: Training metrics for the ensemble model. 

The performance of the ensemble is again disappointing: the learning curve is flat in Figure 
11.2, hence the rounds of back-propagation are useless. The training adds little value which 
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means that the new overarching layer of ML does not enhance the original predictions. Again, 
this is because all ML engines seem to be capturing the same patterns and both their linear 
and non-linear combinations fail to improve their performance. 

11.3 Extensions 

11.3.1 Exogenous variables 

In a financial context, macro-economic indicators could add value to the process. It is possible 
that some models perform better under certain conditions and exogenous predictors can 
help introduce a flavor of economic-driven conditionality in the predictions. 

Adding macro-variables to the set of predictors (here, predictions) ỹi,m could seem like one 
way to achieve this. However, this would amount to mix predicted values with (possibly 
scaled) economic indicators and that would not make much sense. 

One alternative outside the perimeter of ensembles is to train simple trees on a set of 
macro-economic indicators. If the labels are the (possibly absolute) errors stemming from 
the original predictions, then the trees will create clusters of homogeneous error values. This 
will hint towards which conditions lead to the best and worst forecasts. We test this idea 
below, using aggregate data from the Federal Reserve of Saint Louis. A simple downloading 
function is available in the quantmod package. We download and format the data in the 
next chunk. CPIAUCSL is a code for consumer price index and T10Y2YM is a code for the 
term spread (10Y minus 2Y). 

library(quantmod) # Package that extracts the data 
library(lubridate) # Package for date management 
getSymbols("CPIAUCSL", src = "FRED") # FRED is the Fed of St Louis 

## [1] "CPIAUCSL" 

getSymbols("T10Y2YM", src = "FRED") 

## [1] "T10Y2YM" 

cpi <- fortify(CPIAUCSL) %>% 
mutate (inflation = CPIAUCSL / lag(CPIAUCSL) - 1) # Inflation via Consumer Price Index 

ts <- fortify(T10Y2YM) # Term spread (10Y minus 2Y rates) 
colnames(ts)[2] <- "termspread" # To make things clear 
ens_data <- testing_sample %>% # Creating aggregate dataset 

dplyr::select(date) %>% 
cbind(err_NN_test) %>% 
mutate(Index = make_date(year = lubridate::year(date), # Change date to first day of month 

month = lubridate::month(date), 
day = 1)) %>% 

left_join(cpi) %>% # Add CPI to the dataset 
left_join(ts) # Add termspread 

head(ens_data) # Show first lines 

## date err_NN_test Index CPIAUCSL inflation termspread 
## 1 2014-01-31 -0.14923912 2014-01-01 235.288 0.002424175 2.47 
## 2 2014-02-28 0.07663103 2014-02-01 235.547 0.001100779 2.38 
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## 3 2014-03-31 -0.01574262 2014-03-01 236.028 0.002042055 2.32 
## 4 2014-04-30 -0.07923669 2014-04-01 236.468 0.001864186 2.29 
## 5 2014-05-31 -0.08927884 2014-05-01 236.918 0.001903006 2.17 
## 6 2014-06-30 0.04113976 2014-06-01 237.231 0.001321132 2.15 

We can now build a tree that tries to explain the accuracy of models as a function of 
macro-variables. 

library(rpart.plot) # Load package for tree plotting 
fit_ens <- rpart(abs(err_NN_test) ~ inflation + termspread, # Tree model 

data = ens_data, 
cp = 0.001) # Complexity param (size of tree) 

rpart.plot(fit_ens) # Plot tree 

termspread >= 0.29

inflation >= 0.0015

0.067
100%

0.064
92%

0.098
8%

0.053
2%

0.11
6%

yes no

FIGURE 11.3: Conditional performance of a ML engine. 

The tree creates clusters which have homogeneous values of absolute errors. One big cluster 
gathers 92% of predictions (the left one) and is the one with the smallest average. It 
corresponds to the periods when the term spread is above 0.29 (in percentage points). The 
other two groups (when the term spread is below 0.29%) are determined according to the 
level of inflation. If the latter is positive, then the average absolute error is 7%, if not, it is 
12%. This last number, the highest of the three clusters, indicates that when the term spread 
is low and the inflation negative, the model’s predictions are not trustworthy because their 
errors have a magnitude twice as large as in other periods. Under these circumstances (which 
seem to be linked to a dire economic environment), it may be wiser not to use ML-based 
forecasts. 

11.3.2 Shrinking inter-model correlations 

As shown earlier in this chapter, one major problem with ensembles arises when the first 
layer of predictions is highly correlated. In this case, ensembles are pretty much useless. 
There are several tricks that can help reduce this correlation, but the simplest and best is 
probably to alter training samples. If algorithms do not see the same data, they will probably 
infer different patterns. 
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There are several ways to split the training data so as to build different subsets of training 
samples. The first dichotomy is between random versus deterministic splits. Random splits 
are easy and require only the target sample size to be fixed. Note that the training samples 
can be overlapping as long as the overlap is not too large. Hence if the original training 
sample has I instance and the ensemble requires M models, then a subsample size of lI/MJ 
may be too conservative especially if the training sample is not very large. In this case 
lI/ 
√ 

M J may be a better alternative. Random forests are one example of ensembles built in 
random training samples. 

One advantage of deterministic splits is that they are easy to reproduce and their outcome 
does not depend on the random seed. By the nature of factor-based training samples, the 
second splitting dichotomy is between time and assets. A split within assets is straightforward: 
each model is trained on a different set of stocks. Note that the choices of sets can be random, 
or dictacted by some factor-based criterion: size, momentum, book-to-market ratio, etc. 

A split in dates requires other decisions: is the data split in large blocks (like years) and 
each model gets a block, which may stand for one particular kind of market condition? Or 
are the training dates divided more regularly? For instance, if there are 12 models in the 
ensemble, each model can be trained on data from a given month (e.g., January for the first 
models, February for the second, etc.). 

Below, we train four models on four different years to see if this helps reduce the inter-model 
correlations. This process is a bit lengthy because the samples and models need to be all 
redefined. We start by creating the four training samples. The third model works on the 
small subset of features, hence the sample is smaller. 

training_sample_2007 <- training_sample %>% 
filter(date > "2006-12-31", date < "2008-01-01") 

training_sample_2009 <- training_sample %>% 
filter(date > "2008-12-31", date < "2010-01-01") 

training_sample_2011 <- training_sample %>% 
dplyr::select(c("date",features_short, "R1M_Usd")) %>% 
filter(date > "2010-12-31", date < "2012-01-01") 

training_sample_2013 <- training_sample %>% 
filter(date > "2012-12-31", date < "2014-01-01") 

Then, we proceed to the training of the models. The syntaxes are those used in the previous 
chapters, nothing new here. We start with a penalized regression. In all predictions below, 
the original testing sample is used for all models. 

y_ens_2007 <- training_sample_2007$R1M_Usd # Dep. var. 
x_ens_2007 <- training_sample_2007 %>% # Predictors 

dplyr::select(features) %>% as.matrix() 
fit_ens_2007 <- glmnet(x_ens_2007, y_ens_2007, alpha = 0.1, lambda = 0.1) # Model 
err_ens_2007 <- predict(fit_ens_2007, x_penalized_test) - testing_sample$R1M_Usd # Pred. errs 

We continue with a random forest. 

fit_ens_2009 <- randomForest(formula, # Same formula as for simple trees! 
data = training_sample_2009, # Data source: 2011 training sample 
sampsize = 4000, # Size of (random) sample for each tree 
replace = FALSE, # Is the sampling done with replacement? 
nodesize = 100, # Minimum size of terminal cluster 
ntree = 40, # Nb of random trees 
mtry = 30 # Nb of predictive variables for each tree 
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) 
err_ens_2009 <- predict(fit_ens_2009, testing_sample) - testing_sample$R1M_Usd # Pred. errs 

The third model is a boosted tree. 

train_features_2011 <- training_sample_2011 %>% 
dplyr::select(features_short) %>% as.matrix() # Independent variable 

train_label_2011 <- training_sample_2011 %>% 
dplyr::select(R1M_Usd) %>% as.matrix() # Dependent variable 

train_matrix_2011 <- xgb.DMatrix(data = train_features_2011, 
label = train_label_2011) # XGB format! 

fit_ens_2011 <- xgb.train(data = train_matrix_2011, # Data source 
eta = 0.4, # Learning rate 
objective = "reg:linear", # Objective function 
max_depth = 4, # Maximum depth of trees 
nrounds = 18 # Number of trees used 

) 
err_ens_2011 <- predict(fit_ens_2011, xgb_test) - testing_sample$R1M_Usd # Prediction errors 

Finally, the last model is a simple neural network. 

NN_features_2013 <- dplyr::select(training_sample_2013, features) %>% 
as.matrix() # Matrix format is important 

NN_labels_2013 <- training_sample_2013$R1M_Usd 
model_ens_2013 <- keras_model_sequential() 
model_ens_2013 %>% # This defines the structure of the network, i.e. how layers are organized 

layer_dense(units = 16, activation = 'relu', input_shape = ncol(NN_features_2013)) %>%
 
layer_dense(units = 8, activation = 'tanh') %>%
 
layer_dense(units = 1)
 

model_ens_2013 %>% compile( # Model specification 
loss = 'mean_squared_error', # Loss function 
optimizer = optimizer_rmsprop(), # Optimisation method (weight updating) 
metrics = c('mean_absolute_error') # Output metric 

) 
model_ens_2013 %>% fit(NN_features_2013, # Training features 

NN_labels_2013, # Training labels 
epochs = 9, batch_size = 128 # Training parameters 

) 
err_ens_2013 <- predict(model_ens_2013, NN_test_features) - testing_sample$R1M_Usd 

Endowed with the errors of the four models, we can compute their correlation matrix. 

E_subtraining <- tibble(err_ens_2007, 
err_ens_2009, 
err_ens_2011, 
err_ens_2013) 

cor(E_subtraining) 

## err_ens_2007 err_ens_2009 err_ens_2011 err_ens_2013 
## err_ens_2007 1.0000000 0.9610165 0.6460091 0.9990129 
## err_ens_2009 0.9610165 1.0000000 0.6340258 0.9626267 
## err_ens_2011 0.6460091 0.6340258 1.0000000 0.6457394 
## err_ens_2013 0.9990129 0.9626267 0.6457394 1.0000000 

The results are overall disappointing. Only one model manages to extract patterns that are 
somewhat different from the other ones, resulting in a 65% correlation across the board. 
Neural networks (on 2013 data) and penalized regressions (2007) remain highly correlated. 
One possible explanation could be that the models capture mainly noise and little signal. 
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Working with long-term labels like annual returns could help improve diversification across 
models. 

11.4 Exercise 

Build an integrated ensemble on top of 3 neural networks trained entirely with Keras. Each 
network obtains one third of predictors as input. The three networks yield a classification 
(yes/no or buy/sell). The overarching network aggregates the three outputs into a final 
decision. Evaluate its performance on the testing sample. Use the functional API. 
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Portfolio backtesting
 

In this section, we introduce the notations and framework that will be used when analyzing 
and comparing investment strategies. Portfolio backtesting is often conceived and perceived 
as a quest to find the best strategy - or at least a solidly profitable one. When carried out 
thoroughly, this possibly long endeavor may entice the layman to confuse a fluke for a robust 
policy. Two papers published back-to-back warn against the perils of data snooping, 
which is related to p-hacking. In both cases, the researcher will torture the data until the 
sought result is found. 

Fabozzi and de Prado (2018) acknowledge that only strategies that work make it to the 
public, while thousands (at least) have been tested. Picking the pleasing outlier (the only 
strategy that seemed to work) is likely to generate disappointment when switching to real 
trading. In a similar vein, Arnott et al. (2019b) provide a list of principles and safeguards 
that any analyst should follow to avoid any type of error when backtesting strategies. The 
worst type is arguably false positives whereby strategies are found (often by cherrypicking) 
to outperform in one very particular setting, but will likely fail in live implementation. 

In addition to these recommendations on portfolio constructions, Arnott et al. (2019a) also 
warn against the hazards of blindly investing in smart beta products related to academic 
factors. Plainly, expectations should not be set too high or face the risk of being disappointed. 
Another takeaway from their article is that economic cycles have a strong impact on factor 
returns: correlations change quickly and drawdowns can be magnified in times of major 
downturns. 

Backtesting is more complicated than it seems and it is easy to make small mistakes that 
lead to apparently good portfolio policies. This chapter lays out a rigorous approach to this 
exercise, discusses a few caveats, and proposes a lengthy example. 

12.1 Setting the protocol 

We consider a dataset with three dimensions: time t = 1, . . . , T , assets n = 1, . . . , N 
and characteristics k = 1, . . . , K. One of these attributes must be the price of asset n at 
time t, which we will denote pt,n. From that, the computation of the arithmetic return is 
straightforward (rt,n = pt,n/pt−1,n − 1) and so is any heuristic measure of profitability. For 
simplicity, we assume that time points are equidistant or uniform, i.e., that t is the index of 
a trading day or of a month for example. If each point in time t has data available for all 
assets, then this makes a dataset with I = T × N rows. 

The dataset is first split in two: the out-of-sample period and the initial buffer period. The 
buffer period is required to train the models for the first portfolio composition. This period 
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is determined by the size of the training sample. There are two options for this size: fixed 
(usually equal to 2 to 10 years) and expanding. In the first case, the training sample will roll 
over time, taking into account only the most recent data. In the second case, models are 
built on all of the available data, the size of which increases with time. This last option can 
create problems because the first dates of the backtest are based on much smaller amounts 
of information compared to the last dates. Moreover, there is an ongoing debate on whether 
including the full history of returns and characteristics is advantageous or not. Proponents 
argue that this allows models to see many different market conditions. Opponents make 
the case that old data is by definition outdated and thus useless and possibly misleading 
because it won’t reflect current or future short-term fluctuations. 

Henceforth, we choose the rolling period option for the training sample, as depicted in Figure 
12.1. 

Buffer
period Out-of-sample period

1 2 3 4
training sample for second rebalancing

training sample for third rebalancing
training sample for fourth rebalancing

the training samples roll forward

... rebalancing dates

FIGURE 12.1: Backtesting with rolling windows. The training set of the first period is 
simply the buffer period. 

Two crucial design choices are the rebalancing frequency and the horizon at which the 
label is computed. It is not obvious that they should be equal but their choice should make 
sense. It can seem right to train on a 12-month forward label (which captures longer trends) 
and invest monthly or quarterly. However, it seems odd to do the opposite and train on 
short-term movements (monthly) and invest at a long horizon. 

These choices have a direct impact on how the backtest is carried out. If we note: 

•	 Δh for the holding period between 2 rebalancing dates (in days or months); 
•	 Δs for the size of the desired training sample (in days or months - not taking the number 

of assets into consideration); 
•	 Δl for the horizon at which the label is computed (in days or months), 

then the total length of the training sample should be Δs + Δl. Indeed, at any moment t, 
the training sample should stop at t − Δl so that the last point corresponds to a label that 
is calculated until time t. This is highlighted in Figure 12.2 in the form of the red danger 
zone. We call it the red zone because any observation which has a time index s inside the 
interval (t − Δl, t] will engender a forward looking bias. Indeed if a feature is indexed by 
s ∈ (t − Δl, t], then by definition, the label covers the period [s, s + Δl] with s + Δl > t. At 
time t, this requires knowledge of the future and is naturally not realistic. 
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desired training sample

required amount of data for training

holding period

current
time

t t+�ht-�l -�s t-�l
rebalancing

time

danger
zone

FIGURE 12.2: The subtleties in rolling training samples. 

12.2 Turning signals into portfolio weights 

The predictive tools outlined in Chapters 5 to 11 are only meant to provide a signal that 
is expected to give some information on the future profitability of assets. There are many 
ways that this signal can be integrated in an investment decision (see Snow (2020) for ways 
to integrate ML tools into this task). 

First and foremost, there are at least two steps in the portfolio construction process and the 
signal can be used at any of these stages. Relying on the signal for both steps puts a lot of 
emphasis on the predictions and should only be considered when the level of confidence in 
the forecasts is high. 

The first step is selection. While a forecasting exercise can be carried out on a large number 
of assets, it is not compulsory to invest in all of these assets. In fact, for long-only portfolios, it 
would make sense to take advantage of the signal to exclude those assets that are presumably 
likely to underperform in the future. Often, portfolio policies have fixed sizes that impose a 
constant number of assets. One heuristic way to exploit the signal is to select the assets that 
have the most favorable predictions and to discard the others. This naive idea is often used 
in the asset pricing literature: portfolios are formed according to the quantiles of underlying 
characteristics and some characteristics are deemed interesting if the corresponding sorted 
portfolios exhibit very different profitabilities (e.g., high average return for high quantiles 
versus low average return for low quantiles). 

This is for instance an efficient way to test the relevance of the signal. If Q portfolios 
q = 1, . . . , Q are formed according to the rankings of the assets with respect to the signal, 
then one would expect that the out-of-sample performance of the portfolios be monotonic 
with q. While a rigorous test of monotonicity would require to account for all portfolios (see, 
e.g., Romano and Wolf (2013)), it is often only assumed that the extreme portfolios suffice. 
If the difference between portfolio number 1 and portfolio number Q is substantial, then the 
signal is valuable. Whenever the investor is able to short assets, this amounts to a dollar 
neutral strategy. 

The second step is weighting. If the selection process relied on the signal, then a simple 
weighting scheme is often a good idea. Equally weighted portfolios are known to be hard to 
beat (see DeMiguel et al. (2009b)), especially compared to their cap-weighted alternative, as 
is shown in Plyakha et al. (2016). More advanced schemes include equal risk contributions 
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(Maillard et al. (2010)) and constrained minimum variance (Coqueret (2015)). Both only 
rely on the covariance matrix of the assets and not on any proxy for the vector of expected 
returns. 

For the sake of completeness, we explicitize a generalization of Coqueret (2015) which is a 
generic constrained quadratic program: 

where it is easy to recognize the usual mean-variance optimization in the left-hand side. 
We impose three constraints on the right-hand side.1 The first one is the budget constraint 
(weights sum to one). The second one penalizes variations in weights (compared to the 
current allocation, w−) via a diagonal matrix Λ that penalizes trading costs. This is a crucial 
point. Portfolios are rarely constructed from scratch and are most of the time adjustments 
from existing positions. In order to reduce the orders and the corresponding transaction costs, 
it is possible to penalize large variations from the existing portfolio. In the above program, 
the current weights are written w− and the desired ones w so that w − w− is the vector of 
deviations from the current positions. The term (w − w−)Λ(w − w−) is an expression that 
characterizes the sum of squared deviations, weighted by the diagonal coefficients Λn,n. This 
can be helpful because some assets may be more costly to trade due to liquidity (large cap 
stocks are more liquid and their trading costs are lower). When δR decreases, the rotation is 
reduced because weights are not allowed too deviate too much from w−. The last constraint 
enforces diversification via the Herfindhal-Hirschmann index of the portfolio: the smaller 
δD, the more diversified the portfolio. 

Recalling that there are N assets in the universe, the Lagrange form of (12.1) is: 

This parameter ensures that the budget constraint is satisfied. The optimal weights in (12.3)
 
depend on three tuning parameters: λ, κR and κD.
 
- When λ is large, the focus is set more on risk reduction than on profit maximization (which
 
is often a good idea given that risk is easier to predict);
 
- When κR is large, the importance of transaction costs in (12.2) is high and thus, in the
 
limit when κR →∞, the optimal weights are equal to the old ones w− (for finite values of
 

1Constraints often have beneficial effects on portfolio composition, see Jagannathan and Ma (2003) and 
DeMiguel et al. (2009a). 
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the other parameters).
 
- When κD is large, the portfolio is more diversified and (all other things equal) when
 
κD →∞, the weights are all equal (to 1/N).
 
- When κR = κD = 0, we recover the classical mean-variance weights which are a mix
 
between the maximum Sharpe ratio portfolio proportional to (Σ)−1µ and the minimum
 
variance portfolio proportional to (Σ)−11N .
 

This seemingly complex formula is in fact very flexible and tractable. It requires some tests
 
and adjustments before finding realistic values for λ, κR and κD (see exercise at the end of
 
the chapter). In Pedersen et al. (2020), the authors recommend a similar form, except that
 
the covariance matrix is shrunk towards the diagonal matrix of sample variances and the
 
expected returns are mix between a signal and an anchor portfolio. The authors argue that
 
their general formulation has links with robust optimization (see also Kim et al. (2014)),
 
Bayesian inference (Lai et al. (2011)), matrix denoising via random matrix theory, and,
 
naturally, shrinkage. In fact, shrunk expected returns have been around for quite some
 
time (Jorion (1985), Kan and Zhou (2007) and Bodnar et al. (2013)) and simply seek to
 
diversify and reduce estimation risk.
 

12.3 Performance metrics 

The evaluation of performance is a key stage in a backtest. This section, while not exhaustive, 
is intended to cover the most important facets of portfolio assessment. 

12.3.1 Discussion 

While the evaluation of the accuracy of ML tools (See Section 10.1) is of course valuable 
(and imperative!), the portfolio returns are the ultimate yardstick during a backtest. One 
essential element in such an exercise is a benchmark because raw and absolute metrics 
don’t mean much on their own. 

This is not only true at the portfolio level, but also at the ML engine level. In most of 
the trials of the previous chapters, the MSE of the models on the testing set revolves 
around 0.037. An interesting figure is the variance of one-month returns on this set, which 
corresponds to the error made by a constant prediction of 0 all the time. This figure is equal 
to 0.037, which means that the sophisticated algorithms don’t really improve on a naive 
heuristic. This benchmark is the one used in the out-of-sample R2 of Gu et al. (2020b). 

In portfolio choice, the most elementary allocation is the uniform one, whereby each asset 
receives the same weight. This seemingly simplistic solution is in fact an incredible benchmark, 
one that is hard to beat consistently (see DeMiguel et al. (2009b) and Plyakha et al. (2016)). 
Theoretically, uniform portfolios are optimal when uncertainty, ambiguity or estimation risk 
is high (Pflug et al. (2012), Maillet et al. (2015)) and empirically, it cannot be outperformed 
even at the factor level (Dichtl et al. (2020b)). Below, we will pick an equally weighted 
(EW) portfolio of all stocks as our benchmark. 
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The simplest indicator is the average return: 

T TK K1 1P B r̄P = µP = E[r P ] ≈ r , r̄B = µB = E[r B ] ≈ r ,
T t T t 

t=1 t=1 

where, obviously, the portfolio is noteworthy if E[rP ] > E[rB ]. Note that we use the arithmetic 
average above but the geometric one is also an option, in which case: 

T 1/T T 1/T 

P B µ̃P ≈ (1 + r ) − 1, µ̃B =≈ (1 + r ) − 1.t t 
t=1 t=1 

T TK K1 1P Bσ2 = V[r P ] ≈ (r − µP )2 , σ2 = V[r B ] ≈ (r − µB )2 .P t B tT − 1 T − 1 
t=1 t=1 
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12.3.2 Pure performance and risk indicators 

We then turn to the definition of the usual metrics used both by practitioners and academics 
P P B Balike. Henceforth, we write r = (r )1≤t≤T and r = (r )1≤t≤T for the returns of the t t 

portfolio and those of the benchmark, respectively. When referring to some generic returns, 
we simply write rt. There are many ways to analyze them and most of them rely on their 
distribution. 

The benefit of this second definition is that it takes the compounding of returns into account 
and hence compensates for volatility pumping. To see this, consider a very simple two-period 
model with returns −r and +r. The arithmetic average is zero, but the geometric one √

1 − r2 − 1 is negative. 

Akin to accuracy, it ratios evaluate the proportion of times when the position is in the right 
direction (long when the realized return is positive and short when it is negative). Hence hit 
ratios evaluate the propensity to make good guesses. This can be computed at the asset level 
(the proportion of positions in the correct direction2) or at the portfolio level. In all cases, 
the computation can be performed on raw returns or on relative returns (e.g., compared to 
a benchmark). A meaningful hit ratio is the proportion of times that a strategy beats its 
benchmark. This is of course not sufficient, as many small gains can be offset by a few large 
losses. 

Lastly, one important precision. In all examples of supervised learning tools in the book, we 
compared the hit ratios to 0.5. This is in fact wrong because if an investor is bullish, he or 
she may always bet on upward moves. In this case, the hit ratio is the percentage of time 
that returns are positive. Over the long run, this probability is above 0.5. In our sample, 
it is equal to 0.556, which is well above 0.5. This could be viewed as a benchmark to be 
surpassed. 

Pure performance measures are almost always accompanied by risk measures. The second 
moment of returns is usually used to quantify the magnitude of fluctuations of the portfolio. 
A large variance implies sizable movements in returns, and hence in portfolio values. This is 
why the standard deviation of returns is called the volatility of the portfolio. 

In this case, the portfolio can be preferred if it is less risky compared to the benchmark, i.e., 
when σ2 < σ2 and when average returns are equal (or comparable). P B 

2A long position in an asset with positive return or a short position in an asset with negative return. 



� �

negative returns: 
T

σ2 
K1 

− ≈ (rt − µP )21{rt<0}.card(rt < 0) 
t=1 

The average return and the volatility are the typical moment-based metrics used by practi­
tioners. Other indicators rely on different aspects of the distribution of returns with a focus 
on tails and extreme events. The Value-at-Risk (VaR) is one such example. If Fr is the 
empirical cdf of returns, the VaR at a level of confidence α (often taken to be 95%) is 

VaRα(rt) = Fr(1 − α). 

It is equal to the realization of a bad scenario (of return) that is expected to happen (1 − α)% 
of the time on average. An even more conservative measure is the so-called Conditional 
Value at Risk (CVaR), also known as expected shortfall, which computes the average loss 
of the worst (1 − α)% scenarios. Its empirical evaluation is K1CVaRα(rt) = rt.Card(rt < VaRα(rt)) 

rt<VaRα (rt) 

Going crescendo in the severity of risk measures, the ultimate evaluation of loss is the 
maximum drawdown. It is equal to the maximum loss suffered from the peak value of 
the strategy. If we write Pt for the time-t value of a portfolio, the drawdown is 

DP 
T = max Pt − PT ,

0≤t≤T 

and the maximum drawdown is 

MDP = max max Pt − Ps, 0 .T 0≤s≤T 0≤t≤s 

This quantity evaluates the greatest loss over the time frame [0, T ] and is thus the most 
conservative risk measure of all. 
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Higher order moments of returns are sometimes used (skewness and kurtosis), but they are 
far less common. We refer for instance to Harvey et al. (2010) for one method that takes 
them into account in the portfolio construction process. 

For some people, the volatility is an incomplete measure of risk. It can be argued that it 
should be decomposed into ‘good’ volatility (when prices go up) versus ‘bad’ volatility when 
they go down. The downward semi-variance is computed as the variance taken over the 

12.3.3 Factor-based evaluation 

In the spirit of factor models, performance can also be assessed through the lens of exposures. 
If we recall the original formulation from Equation (3.1): 

KK 
rt,n = αn + βt,k,nft,k + Ct,n, 

k=1 

then the estimated α̂n is the performance that cannot be explained by the other factors. 



IR(P, B) = 
µP −B 

,
σP −B 

  

µ̃P
MARP = ,

MDP 

while the Treynor ratio is equal to 

Treynor = 
µ

ˆ
P 

, 
βM 

i.e., the (excess) return divided by the market beta (see Treynor (1965)). This definition was 
generalized to multifactor expositions by Hübner (2005) into the generalized Treynor ratio: 

K 
fk 
¯ 

GT = µP
k=1 ,

K 
βkfk 
ˆ ¯ 

k=1 

¯where the fk are the sample average of the factors ft,k. We refer to the original article for a 
detailed account of the analytical properties of this ratio. 
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When                
the market factor, then this quantity is called Jensen’s alpha (Jensen (1968)). Often, it is 
simply referred to as alpha. The other estimate, β̂t,M,n (M for market), is the market beta. 

Because of the rise of factor investing, it has become customary to also report the alpha of 
more exhaustive regressions. Adding the size and value premium (as in Fama and French 
(1993)) and even momentum (Carhart (1997)) helps understand if a strategy generates value 
beyond that which can be obtained through the usual factors. 

returns are excess returns (over the risk-free rate) and when there is only one factor,

12.3.4 Risk-adjusted measures 

Now, the tradeoff between the average return and the volatility is a cornerstone in modern 
finance, since Markowitz (1952). The simplest way to synthesize both metrics is via the 
information ratio: 

where the index P − B implies that the mean and standard deviations are computed on the 
P Blong-short portfolio with returns r − r . The denominator σP −B is sometimes called the t t 

tracking error. 

The most widespread information ratio is the Sharpe ratio (Sharpe (1966)) for which 
the benchmark is some riskless asset. Instead of directly computing the information ratio 
between two portfolios or strategies, it is often customary to compare their Sharpe ratios. 
Simple comparisons can benefit from statistical tests (see, e.g., Ledoit and Wolf (2008)). 

More extreme risk measures can serve as denominator in risk-adjusted indicators. The 
Managed Account Report (MAR) ratio is, for example, computed as 

12.3.5 Transaction costs and turnover 

Updating portfolio composition is not free. In all generality, the total cost of one rebalancing 
Nat time t is proportional to Ct = n=1 |Δwt,n|ct,n, where Δwt,n is the change in position 

for asset n and ct,n the corresponding fee. This last quantity is often hard to predict, thus it 
is customary to use a proxy that depends for instance on market capitalization (large stocks 



T N1Turnover = |wt,n − wt−,n|,
T − 1 

t=2 n=1 

µP − TC 
SRTC = . (12.4)

σP 
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have more liquid shares and thus require smaller fees) or bid-ask spreads (smaller spreads 
mean smaller fees). 

As a first order approximation, it is often useful to compute the average turnover: 

KK
where wt,n are the desired t-time weights in the portfolio and wt−,n are the weights just 
before the rebalancing. The positions of the first period (launching weights) are exluded 
from the computation by convention. Transaction costs can then be proxied as a multiple of 
turnover (times some average or median cost in the cross-section of firms). This is a first 
order estimate of realized costs that does not take into consideration the evolution of the 
scale of the portfolio. Nonetheless, a rough figure is much better than none at all. 

Once transaction costs (TCs) have been annualized, they can be deducted from average 
returns to yield a more realistic picture of profitability. In the same vein, the transaction 
cost-adjusted Sharpe ratio of a portfolio P is given by 

Transaction costs are often overlooked in academic articles but can have a sizable impact in 
real life trading (see, e.g., Novy-Marx and Velikov (2015)). DeMiguel et al. (2020) show how 
to use factor investing (and exposures) to combine and offset positions and reduce overall 
fees. 

12.4 Common errors and issues 

12.4.1 Forward looking data 

One of the most common mistakes in portfolio backtesting is the use of forward looking 
data. It is for instance easy to fall in the trap of the danger zone depicted in Figure 12.2. 
In this case, the labels used at time t are computed with knowledge of what happens at 
times t + 1, t + 2, etc. It is worth triple checking every step in the code to make sure that 
strategies are not built on prescient data. 

12.4.2 Backtest overfitting 

The second major problem is backtest overfitting. The analogy with training set overfitting 
is easy to grasp. It is a well-known issue and was formalized for instance in White (2000) 
and Romano and Wolf (2005). In portfolio choice, we refer to Bajgrowicz and Scaillet (2012) 
and Bailey and de Prado (2014) and the references therein. 

At any given moment, a backtest depends on only one particular dataset. Often, the result 
of the first backtest will not be satisfactory - for many possible reasons. Hence, it is tempting 
to have another try, when altering some parameters that were probably not optimal. This 
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second test may be better, but not quite good enough - yet. Thus, in a third trial, a new 
weighting scheme can be tested, along with a new forecasting engine (more sophisticated). 
Iteratively, the backtester can only end up with a strategy that performs well enough, it is 
just a matter of time and trials. 

One consequence of backtest overfitting is that it is illusory to hope for the same Sharpe 
ratios in live trading as those obtained in the backtest. Reasonable professionals divide the 
Sharpe ratio by two at least (Harvey and Liu (2015), Suhonen et al. (2017)). In Bailey and 
de Prado (2014), the authors even propose a statistical test for Sharpe ratios, provided that 
some metrics of all tested strategies are stored in memory. The formula for deflated Sharpe 
ratios is: 

is the theoretical average maximum SR. Moreover, 

• T is the number of trading dates; 

• γ3 and γ4 are the skewness and kurtosis of the returns of the chosen (best) strategy; 

• φ is the cdf of the standard Gaussian law and γ ≈ 0, 577 is the Euler-Mascheroni constant; 

• N refers to the number of strategy trials. 

If t defined above is below a certain threshold (e.g., 0.95), then the SR cannot be deemed 
significant: the best strategy is not outstanding compared to all of those that were 
tested. Most of the time, sadly, that is the case. In Equation (12.5), the realized SR must 
be above the theoretical maximum SR∗ and the scaling factor must be sufficiently large to 
push the argument inside φ close enough to two, so that t surpasses 0.95. 

In the scientific community, test overfitting is also known as p-hacking. It is rather common 
in financial economics and the reading of Harvey (2017) is strongly advised to grasp the 
magnitude of the phenomenon. p-hacking is also present in most fields that use statistical 
tests (see, e.g., Head et al. (2015) to cite but one reference). There are several ways to cope 
with p-hacking: 

1.	 don’t rely on p-values (Amrhein et al. (2019)); 

2.	 use detection tools (Elliott et al. (2019)); 

3.	 or, finally, use advanced methods that process arrays of statistics (e.g., the 
Bayesianized versions of p-values to include some prior assessment from Harvey 
(2017), or other tests such as those proposed in Romano and Wolf (2005) and 
Simonsohn et al. (2014)). 

The first option is wise, but the drawback is that the decision process is then left to another 
arbitrary yardstick. 
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12.4.3 Simple safeguards 

As is mentioned at the beginning of the chapter, two common sense references for backtesting 
are Fabozzi and de Prado (2018) and Arnott et al. (2019b). The pieces of advice provided in 
these two articles are often judicious and thoughtful. 

One additional comment pertains to the output of the backtest. One simple, intuitive and 
widespread metric is the transaction cost-adjusted Sharpe ratio defined in Equation (12.4). 
In the backtest, let us call SRB the corresponding value for the benchmark, which we like TC 
to define as the equally-weighted portfolio of all assets in the trading universe (in our dataset, 
roughly one thousand US equities). If the SRP of the best strategy is above 2 × SRB 

TC TC , 
then there is probably a glitch somewhere in the backtest. 

This criterion holds under two assumptions: 

1) a sufficiently long enough out-of-sample period and 

2) long-only portfolios. 

It is unlikely that any realistic strategy can outperform a solid benchmark by a very wide 
margin over the long term. Being able to improve the benchmark’s annualized return by 
150 basis points (with comparable volatility) is already a great achievement. Backtests that 
deliver returns more than 5% above those of the benchmark are dubious. 

12.5 Implication of non-stationarity: forecasting is hard 

This subsection is split into two parts: in the first, we discuss the reason that makes forecasting 
such a difficult task and in the second we present an important theoretical result originally 
developed towards machine learning but that sheds light on any discipline confronted with 
out-of-sample tests. An interesting contribution related to this topic is the study from Farmer 
et al. (2019). The authors assess the predictive fit of linear models through time: they show 
that the fit is strongly varying: sometimes the model performs very well, sometimes, not so 
much. There is no reason why this should not be the case for ML algorithms as well. 

12.5.1 General comments 

The careful reader must have noticed that throughout Chapters 5 to 11, the performance of 
ML engines is underwhelming. These disappointing results are there on purpose and highlight 
the crucial truth that machine learning is no panacea, no magic wand, no philosopher’s 
stone that can transform data into golden predictions. Most ML-based forecasts fail. This is 
in fact not only true for very enhanced and sophisticated techniques, but also for simpler 
econometric approaches (Dichtl et al. (2020a)), which again underlines the need to replicate 
results to challenge their validity. 

One reason for that is that datasets are full of noise and extracting the slightest amount 
of signal is a tough challenge (we recommend a careful reading of the introduction of 
Timmermann (2018) for more details on this topic). One rationale for that is the ever 
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time-varying nature of factor analysis in the equity space. Some factors can perform very 
well during one year and then poorly the next year and these reversals can be costly in the 
context of fully automated data-based allocation processes. 

In fact, this is one major difference with many fields for which ML has made huge advances. 
In image recognition, numbers will always have the same shape, and so will cats, buses, 
etc. Likewise, a verb will always be a verb and syntaxes in languages do not change. This 
invariance, though sometimes hard to grasp,3 is nonetheless key to the great improvement 
both in computer vision and natural language processing. 

In factor investing, there does not seem to be such invariance (see \cite(cornell2020stock)). 
There is no factor and no (possibly nonlinear) combination of factors that can explain and 
accurately forecast returns over long periods of several decades.4 The academic literature 
has yet to find such a model; but even if it did, a simple arbitrage reasoning would logically 
invalidate its conclusions in future datasets. 

12.5.2 The no free lunch theorem 

We start by underlying that the no free lunch theorem in machine learning has nothing to do 
with the asset pricing condition with the same name (see, e.g., Delbaen and Schachermayer 
(1994), or, more recently, Cuchiero et al. (2016)). The original formulation was given by 
Wolpert (1992a) but we also recommend a look at the more recent reference Ho and Pepyne 
(2002). There are in fact several theorems and two of them can be found in Wolpert and 
Macready (1997). 

The statement of the theorem is very abstract and requires some notational conventions. 
We assume that any training sample S = ({x1, y1}, . . . , {xI , yI }) is such that there exists 
an oracle function f that perfectly maps the features to the labels: yi = f(xi). The oracle 
function f belongs to a very large set of functions F . In addition, we write H for the set of 
functions to which the forecaster will resort to approximate f . For instance, H can be the 
space of feed-forward neural networks, or the space of decision trees, or the reunion of both. 
Elements of H are written h and P[h|S] stands for the (largely unknown) distribution of h 
knowing the sample S. Similarly, P[f |S] is the distribution of oracle functions knowing S. 
Finally, the features have a given law, P[x]. 

Let us now consider two models, say h1 and h2. The statement of the theorem is usually 
formulated with respect to a classification task. Knowing S, the error when choosing hk 

induced by samples outside of the training sample S can be quantified as: 

One of the no free lunch theorems states that E1(S) = E2(S), that is, that with the sole 

3We invite the reader to have a look at the thoughtful albeit theoretical paper by Arjovsky et al. (2019).
4In the thread https://twitter.com/fchollet/status/1177633367472259072, François Chollet, the cre­

ator of Keras argues that ML predictions based on price data cannot be profitable in the long term. Given the 
wide access to financial data, it is likely that the statement holds for predictions stemming from factor-related 
data as well. 

https://www.twitter.com
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knowledge of S, there can be no superior algorithm, on average. In order to build a performing 
algorithm, the analyst or econometrician must have prior views on the structure of the 
relationship between y and x and integrate these views in the construction of the model. 
Unfortunately, this can also yield underperforming models if the views are incorrect. 

12.6 First example: a complete backtest 

We finally propose a full detailed example of one implementation of a ML-based strategy 
run on a careful backtest. What follows is a generalization of the content of Section 5.2.2. In 
the same spirit, we split the backtest in four parts: 

1. the creation/initialization of variables; 

2. the definition of the strategies in one main function; 

3. the backtesting loop itself; 

4. the performance indicators. 

Accordingly, we start with initializations. 

sep_oos <- as.Date("2007-01-01") # Starting point for backtest 
ticks <- data_ml$stock_id %>% # List of all asset ids 

as.factor() %>% 
levels() 

N <- length(ticks) # Max number of assets 
t_oos <- returns$date[returns$date > sep_oos] %>% # Out-of-sample dates 

unique() %>% # Remove duplicates 
as.Date(origin = "1970-01-01") # Transform in date format 

Tt <- length(t_oos) # Nb of dates, avoid T = TRUE 
nb_port <- 2 # Nb of portfolios/stragegies 
portf_weights <- array(0, dim = c(Tt, nb_port, N)) # Initialize portfolio weights 
portf_returns <- matrix(0, nrow = Tt, ncol = nb_port) # Initialize portfolio returns 

This first step is crucial, it lays the groundwork for the core of the backtest. We consider 
only two strategies: one ML-based and the EW (1/N) benchmark. The main (weighting) 
function will consist of these two components, but we define the sophisticated one in a 
dedicated wrapper. The ML-based weights are derived from XGBoost predictions with 80 
trees, a learning rate of 0.3 and a maximum tree depth of 4. This makes the model complex 
but not exceedingly so. Once the predictions are obtained, the weighting scheme is simple: 
it is an EW portfolio over the best half of the stocks (those with above median prediction). 

In the function below, all parameters (e.g., the learning rate, eta or the number of trees 
nrounds) are hard-coded. They can easily be passed in arguments next to the data inputs. 
One very important detail is that in contrast to the rest of the book, the label is the 12-month 
future return. The main reason for this is rooted in the discussion from Section 4.6. Also, to 
speed up the computations, we remove the bulk of the distribution of the labels and keep 
only the top 20% and bottom 20%, as is advised in Coqueret and Guida (2020). The filtering 
levels could also be passed as arguments. 
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weights_xgb <- function(train_data, test_data, features){ 
train_features <- train_data %>% dplyr::select(features) %>% as.matrix() # Indep. variable 
train_label <- train_data$R12M_Usd / exp(train_data$Vol1Y_Usd) # Dep. variable 
ind <- which(train_label < quantile(train_label,0.2)| # Filter 

train_label > quantile(train_label, 0.8)) 
train_features <- train_features[ind, ] # Filt'd features 
train_label <- train_label[ind] # Filtered label 
train_matrix <- xgb.DMatrix(data = train_features, label = train_label) # XGB format 
fit <- train_matrix %>% 

xgb.train(data = ., # Data source (pipe input)
 
eta = 0.3, # Learning rate
 
objective = "reg:linear", # Number of random trees
 
max_depth = 4, # Maximum depth of trees
 
nrounds = 80 # Number of trees used
 

) 
xgb_test <- test_data %>% # Test sample => XGB format
 

dplyr::select(features) %>%
 
as.matrix() %>%
 
xgb.DMatrix()
 

pred <- predict(fit, xgb_test) # Single prediction
 
w <- pred > median(pred) # Keep only the 50% best predictions
 
w$weights <- w / sum(w)
 
w$names <- unique(test_data$stock_id)
 
return(w) # Best predictions, equally-weighted
 

} 

Compared to the structure proposed in Section 6.4.6, the differences are that the label is not 
only based on long-term returns, but it also relies on a volatility component. Even though 
the denominator in the label is the exponential quantile of the volatility, it seems fair to 
say that it is inspired by the Sharpe ratio and that the model seeks to explain and forecast 
a risk-adjusted return instead of a raw return. A stock with very low volatility will have 
its return unchanged in the label, while a stock with very high volatility will see its return 
divided by a factor close to three (exp(1)=2.718). 

This function is then embedded in the global weighting function which only wraps two 
schemes: the EW benchmark and the ML-based policy. 

portf_compo <- function(train_data, test_data, features, j){ 
if(j == 1){ # This is the benchmark 

N <- test_data$stock_id %>% # Test data dictates allocation 
factor() %>% nlevels()
 

w <- 1/N # EW portfolio
 
w$weights <- rep(w,N)
 
w$names <- unique(test_data$stock_id) # Asset names
 
return(w)
 

} 
if(j == 2){ # This is the ML strategy. 

return(weights_xgb(train_data, test_data, features)) 
} 

} 

Equipped with this function, we can turn to the main backtesting loop. Given the fact that 
we use a large-scale model, the computation time for the loop is large (possibly a few hours 
on a slow machine with CPU). Resorting to functional programming can speed up the loop 
(see exercise at the end of the chapter). Also, a simple benchmark equally weighted portfolio 
can be coded with tidyverse functions only. 
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m_offset <- 12 # Offset in months for buffer period 
train_size <- 5 # Size of training set in years 
for(t in 1:(length(t_oos)-1)){ # Stop before last date: no fwd ret.! 

if(t%%12==0){print(t_oos[t])} # Just checking the date status 
train_data <- data_ml %>% filter(date < t_oos[t] - m_offset * 30, # Roll window w. buffer 

date > t_oos[t] - m_offset * 30 - 365 * train_size) 
test_data <- data_ml %>% filter(date == t_oos[t]) # Test sample 
realized_returns <- test_data %>% # Computing returns via: 

dplyr::select(R1M_Usd) # 1M holding period! 
for(j in 1:nb_port){ 

temp_weights <- portf_compo(train_data, test_data, features, j) # Weights 
ind <- match(temp_weights$names, ticks) %>% na.omit() # Index: test vs all 
portf_weights[t,j,ind] <- temp_weights$weights # Allocate weights 
portf_returns[t,j] <- sum(temp_weights$weights * realized_returns) # Compute returns 

} 
} 

## [1] "2007-12-31" 
## [1] "2008-12-31" 
## [1] "2009-12-31" 
## [1] "2010-12-31" 
## [1] "2011-12-31" 
## [1] "2012-12-31" 
## [1] "2013-12-31" 
## [1] "2014-12-31" 
## [1] "2015-12-31" 
## [1] "2016-12-31" 
## [1] "2017-12-31" 

There are two important comments to be made on the above code. The first comment 
pertains to the two parameters that are defined in the first lines. They refer to the size of 
the training sample (5 years) and the length of the buffer period shown in Figure 12.2. This 
buffer period is imperative because the label is based on a long-term (12-month) return. 
This lag is compulsory to avoid any forward-looking bias in the backtest. 

Below, we create a function that computes the turnover (variation in weights). It requires 
both the weight values as well as the returns of all assets because the weights just before a 
rebalancing depend on the weights assigned in the previous period, as well as on the returns 
of the assets that have altered these original weights during the holding period. 

turnover <- function(weights, asset_returns, t_oos){ 
turn <- 0 
for(t in 2:length(t_oos)){ 

realised_returns <- returns %>% filter(date == t_oos[t]) %>% dplyr::select(-date) 
prior_weights <- weights[t-1,] * (1 + realised_returns) # Before rebalancing 
turn <- turn + apply(abs(weights[t,] - prior_weights/sum(prior_weights)),1,sum) 

} 
return(turn/(length(t_oos)-1)) 

} 

Once turnover is defined, we embed it into a function that computes several key indicators. 

perf_met <- function(portf_returns, weights, asset_returns, t_oos){ 
avg_ret <- mean(portf_returns, na.rm = T) # Arithmetic mean 
vol <- sd(portf_returns, na.rm = T) # Volatility 
Sharpe_ratio <- avg_ret / vol # Sharpe ratio 
VaR_5 <- quantile(portf_returns, 0.05) # Value-at-risk 
turn <- 0 # Initialisation of turnover 
for(t in 2:dim(weights)[1]){ 
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realized_returns <- asset_returns %>% filter(date == t_oos[t]) %>% dplyr::select(-date)
 
prior_weights <- weights[t-1,] * (1 + realized_returns)
 
turn <- turn + apply(abs(weights[t,] - prior_weights/sum(prior_weights)),1,sum)
 

} 
turn <- turn/(length(t_oos)-1) # Average over time 
met <- data.frame(avg_ret, vol, Sharpe_ratio, VaR_5, turn) # Aggregation of all of this 
rownames(met) <- "metrics" 
return(met) 

} 

Lastly, we build a function that loops on the various strategies. 

perf_met_multi <- function(portf_returns, weights, asset_returns, t_oos, strat_name){ 
J <- dim(weights)[2] # Number of strategies 
met <- c() # Initialization of metrics 
for(j in 1:J){ # One very ugly loop 

temp_met <- perf_met(portf_returns[, j], weights[, j, ], asset_returns, t_oos) 
met <- rbind(met, temp_met)
 

}
 
row.names(met) <- strat_name # Stores the name of the strat
 
return(met)
 

} 

Given the weights and returns of the portfolios, it remains to compute the returns of the 
assets to plug them in the aggregate metrics function. 

asset_returns <- data_ml %>% # Compute return matrix: start from data 
dplyr::select(date, stock_id, R1M_Usd) %>% # Keep 3 attributes 
spread(key = stock_id, value = R1M_Usd) # Shape in matrix format 

asset_returns[is.na(asset_returns)] <- 0 # Zero returns for missing points 

met <- perf_met_multi(portf_returns = portf_returns, # Computes performance metrics 
weights = portf_weights, 
asset_returns = asset_returns, 
t_oos = t_oos, 
strat_name = c("EW", "XGB_SR")) 

met # Displays perf metrics 

## avg_ret vol Sharpe_ratio VaR_5 turn 
## EW 0.009697248 0.05642917 0.1718481 -0.07712509 0.0714512 
## XGB_SR 0.012602882 0.06376845 0.1976351 -0.08335864 0.5679932 

The ML-based strategy performs finally well! The gain is mostly obtained by the average 
return, while the volatility is higher than that of the benchmark. The net effect is that the 
Sharpe ratio is improved compared to the benchmark. The augmentation is not breathtaking, 
but (hence?) it seems reasonable. It is noteworthy to underline that turnover is substantially 
higher for the sophisticated strategy. Removing costs in the numerator (say, 0.005 times the 
turnover, as in Goto and Xu (2015), which is a conservative figure) only mildly reduces the 
superiority in Sharpe ratio of the ML-based strategy. 

Finally, it is always tempting to plot the corresponding portfolio values and we display two 
related graphs in Figure 12.3. 

library(lubridate) # Date management 
library(cowplot) # Plot grid management 
g1 <- tibble(date = t_oos, 

benchmark = cumprod(1+portf_returns[,1]),
 
ml_based = cumprod(1+portf_returns[,2])) %>%
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gather(key = strat, value = value, -date) %>%
 
ggplot(aes(x = date, y = value, color = strat)) + geom_line() +theme_grey()
 

g2 <- tibble(year = lubridate::year(t_oos), 
benchmark = portf_returns[,1], 
ml_based = portf_returns[,2]) %>% 

gather(key = strat, value = value, -year) %>%
 
group_by(year, strat) %>%
 
summarise(avg_return = mean(value)) %>%
 
ggplot(aes(x = year, y = avg_return, fill = strat)) +
 

geom_col(position = "dodge") + theme_grey() 
plot_grid(g1,g2, nrow = 2) 

Out of the 12 years of the backtest, the advanced strategy outperforms the benchmark 
during 10 years. It is less hurtful in two of the four years of aggregate losses (2015 and 2018). 
This is a satisfactory improvement because the EW benchmark is tough to beat! 

12.7 Second example: backtest overfitting 

To end this chapter, we quantify the concepts of Section 12.4.2. First, we build a function 
that is able to generate performance metrics for simple strategies that can be evaluated 
in batches. The strategies are pure factor bets and depend on three inputs: the chosen 
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FIGURE 12.3: Graphical representation of the performance of the portfolios. 



194 12 Portfolio backtesting 

characteristic (e.g., market capitalization), a threshold level (quantile of the characteristic) 
and a direction (long position in the top or bottom of the distribution). 

strat <- function(data, feature, thresh, direction){ 
data_tmp <- dplyr::select(data, feature, date, R1M_Usd) # Data 
colnames(data_tmp)[1] <- "feature" # Colname 
data_tmp %>% 

mutate(decision = direction * feature > direction * thresh) %>% # Investment decision 
group_by(date) %>% # Date-by-date analysis 
mutate(nb = sum(decision), # Nb assets in portfolio 

w = decision / nb, # Weights of assets 
return = w * R1M_Usd) %>% # Asset contribution 

summarise(p_return = sum(return)) %>% # Portfolio return 
summarise(avg = mean(p_return), sd = sd(p_return), SR = avg/sd) %>% # Perf. metrics 
return() 

} 

Then, we test the function on a triplet of arguments. We pick the price-to-book (Pb) ratio. 
The position is positive and the threshold is 0.3, which means that the strategy buys the 
stocks that have a Pb value above the 0.3 quantile of the distribution. 

strat(data_ml, "Pb", 0.3, 1) # Large cap 

## # A tibble: 1 x 3 
## avg sd SR 
## <dbl> <dbl> <dbl> 
## 1 0.0102 0.0496 0.207 

The output keeps three quantities that will be useful to compute the statistic (12.5). We 
must now generate these indicators for many strategies. We start by creating the grid of 
parameters. 

feature <- c("Div_Yld", "Ebit_Bv", "Mkt_Cap_6M_Usd", "Mom_11M_Usd", "Pb", "Vol1Y_Usd") 
thresh <- seq(0.2,0.8, by = 0.1) # Threshold values values 
direction <- c(1,-1) # Decision direction 
pars <- expand.grid(feature, thresh, direction) # The grid 
feature <- pars[,1] %>% as.character() # re-features 
thresh <- pars[,2] # re-thresholds 
direction <- pars[,3] # re-directions 

This makes 84 strategies in total. We can proceed to see how they fare. We plot the 
corresponding Sharpe ratios below in Figure 12.4. The top plot shows the strategies that 
invest in the bottoms of the distributions of characteristics while the bottom plot pertains 
to the portfolios that are long in the lower parts of these distributions. 

grd <- pmap(list(feature, thresh, direction), # Parameters for the grid search 
strat, # Function on which to apply the grid search 
data = data_ml # Data source/input 

) %>% 
unlist() %>% 
matrix(ncol = 3, byrow = T) 

grd <- data.frame(feature, thresh, direction, grd) # Gather & reformat results
 
colnames(grd)[4:6] <- c("mean", "sd", "SR") # Change colnames
 
grd <- grd %>% mutate_at(vars(direction), as.factor) # Change type: factor (for plot)
 
grd %>% ggplot(aes(x = thresh, y = SR, color = feature)) + # Plot!
 

geom_point() + geom_line() + facet_grid(direction~.) 
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FIGURE 12.4: Sharpe ratios of all backtested strategies. 

The last step is to compute the statistic (12.5). We code it here: 

DSR <- function(SR, Tt, M, g3, g4, SR_m, SR_v){ # First, we build the function 
gamma <- -digamma(1) # Euler-Mascheroni constant 
SR_star <- SR_m + sqrt(SR_v)*((1-gamma)*qnorm(1-1/M) + gamma*qnorm(1-1/M/exp(1))) # SR* 
num <- (SR-SR_star) * sqrt(Tt-1) # Numerator 
den <- sqrt(1 - g3*SR + (g4-1)/4*SR^2) # Denominator 
return(pnorm(num/den)) 

} 

All that remains to do is to evaluate the arguments of the function. The “best” strategy is 
the one on the top left corner of Figure 12.4 and it is based on market capitalization. 

M <- nrow(pars) # Number of strategies we tested 
SR <- max(grd$SR) # The SR we want to test 
SR_m <- mean(grd$SR) # Average SR across all strategies 
SR_v <- var(grd$SR) # Std dev of SR 
# Below, we compute the returns of the strategy by recycling the code of the strat() function 
data_tmp <- dplyr::select(data_ml, "Mkt_Cap_6M_Usd", date, R1M_Usd) # feature = Mkt_Cap
 
colnames(data_tmp)[1] <- "feature"
 
returns_DSR <- data_tmp %>%
 

mutate(decision = feature < 0.2) %>% # Investment decision: 0.2 is the best threshold 
group_by(date) %>% # Date-by-date computations 
mutate(nb = sum(decision), # Nb assets in portfolio 

w = decision / nb, # Portfolio weights 
return = w * R1M_Usd) %>% # Asset contribution to return 

summarise(p_return = sum(return)) # Portfolio return 
g3 <- skewness(returns_DSR$p_return) # Function from the e1071 package 
g4 <- kurtosis(returns_DSR$p_return) + 3 # Function from the e1071 package 
Tt <- nrow(returns_DSR) # Number of dates 
DSR(SR, Tt, M, g3, g4, SR_m, SR_v) # The sought value! 

## [1] 0.6676416 

The value 0.6676416 is not high enough (it does not reach the 90% or 95% threshold) to 
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make the strategy significantly superior to the other ones that were considered in the batch 
of tests. 

12.8 Coding exercises 

1. Code the returns of the EW portfolio with tidyverse functions only (no loop). 

2. Code the advanced weighting function defined in Equation (12.3). 

3. Test it in a small backtest and check its sensitivity to the parameters. 

4. Using the functional programming package purrr, avoid the loop in the backtest. 



Part IV
 

Further important topics
 



http://taylorandfrancis.com


13
 

Interpretability
 

This chapter is dedicated to the techniques that help understand the way models process in­
puts into outputs. A recent book (Molnar (2019) available at https://christophm.github. 
io/interpretable-ml-book/) is entirely devoted to this topic and we highly recommend 
to have a look at it. Another more introductory and less technical reference is Hall and Gill 
(2019). Obviously, in this chapter, we will adopt a tone which is factor-investing orientated 
and discuss examples related to ML models trained on a financial dataset. 

Quantitative tools that aim for interpretability of ML models are required to satisfy two 
simple conditions: 

1. That they provide information about the model. 

2. That they are highly comprehensible. 

Often, these tools generate graphical outputs which are easy to read and yield immediate 
conclusions. 

In attempts to white-box complex machine learning models, one dichotomy stands out: 

•	 Global models seek to determine the relative role of features in the construction of the 
predictions once the model has been trained. This is done at the global level, so that 
the patterns that are shown in the interpretation hold on average over the whole training set. 

•	 Local models aim to characterize how the model behaves around one particular instance 
by considering small variations around this instance. The way these variations are processed 
by the original model allows to simplify it by approximating it, e.g., in a linear fashion. 
This approximation can for example determine the sign and magnitude of the impact of 
each relevant feature in the vicinity of the original instance. 

Molnar (2019) proposes another classification of interpretability solutions by splitting 
interpretations that depend on one particular model (e.g., linear regression or decision tree) 
versus the interpretations that can be obtained for any kind of model. In the sequel, we 
present the methods according to the global versus local dichotomy. 

199 
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13.1 Global interpretations 

13.1.1 Simple models as surrogates 

Let us start with the simplest example of all. In a linear model, 

KK  
k yi = α + βkxi  + Ci,

k=1 

the following elements are usually extracted from the estimation of the βk: 

•	 the 2R , which appreciates the global fit of the model (possibly penalized to prevent 
overfitting with many regressors). The 2R  is usually computed in-sample; 

•	 the sign of the estimates β̂k, which indicates the direction of the impact of each feature 
xk	 on y; 

•	 the t-statistics t ˆ , which 
k

aluate the β ev magnitude of this impact: regardless of its direction, 
large statistics in absolute value reveal prominent variables. Often, the t-statistics are 
translated into p-values which are computed under some suitable distributional assumptions. 

The last two indicators are useful because they inform the user on which features matter the 
most and on the sign of the effect of each predictor. This gives a simplified view of how the 
model processes the features into the output. Most tools that aim to explain black boxes 
follow the same principles. 

Decision trees, because they are easy to picture, are also great models for interpretability. 
Thanks to this favorable feature, they are target benchmarks for simple models. Recently, 
Vidal et al. (2020) propose a method to reduce an ensemble of trees into a unique tree. The 
aim is to propose a simpler model that behaves exactly like the complex one. 

More generally, it is an intuitive idea to resort to simple models to proxy more complex 
algorithms. One simple way to do so is to build so-called surrogate models. The process is 
simple: 

1. train the original model f on features X and labels y; 

2. train a simpler model  to explain the predictions of the trained model ˆ g f given 
the features X:
 

f̂(X) = g(X) + error
 

The estimated model ĝ explains how the initial model f̂  maps the features into the labels. 
To illustrate this, we use the iml package (see Molnar et al. (2018)). The simpler model is a 
tree with a depth of two. 

library(iml) 
mod <- Predictor$new(fit_RF, 

data = training_sample %>% dplyr::select(features)) 
dt <- TreeSurrogate$new(mod, maxdepth = 2) 
plot(dt) 
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FIGURE 13.1: Example of surrogate tree. 

The representation of the tree is different, compared to those seen in Chapter 6. Indeed, the 
four possible outcomes (determined by the conditions in the top lines) no longer yield a 
simple value (average of the label), but more information is given, in the form of a box plot 
(including the interquartile range and outliers). In the above representation, it is the top 
right cluster that seems to have the highest rewards, with especially many upward outliers. 
This cluster consists of small firms with volatile past returns. 

13.1.2 Variable importance (tree-based) 

One incredibly favorable feature of simple decision trees is their interpretability. Their visual 
representation is clear and straightforward. Just like regressions (which are another building 
block in ML), simple trees are easy to comprehend and do not suffer from the black-box 
rebuke that is often associated with more sophisticated tools. 

Indeed, both random forests and boosted trees fail to provide perfectly accurate accounts of 
what is happening inside the engine. In contrast, it is possible to compute the aggregate 
share (or importance) of each feature in the determination of the structure of the tree once 
it has been trained. 

After training, it is possible to compute, at each node n the gain G(n) obtained by the 
subsequent split if there are any, i.e., if the node is not a terminal leaf. It is also easy to 
determine which variable is chosen to perform the split, hence we write Nk the set of nodes 
for which feature k is chosen for the partition. Then, the global importance of each feature 
is given by K

I(k) = G(n), 
n∈Nk 
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and it is often rescaled so that the sum of I(k) across all k is equal to one. In this case, I(k) 
measures the relative contribution of feature k in the reduction of loss during the training. 
A variable with high importance will have a greater impact on predictions. Generally, these 
variables are those that are located close to the root of the tree. 

Below, we take a look at the results obtained from the tree-based models trained in Chapter 
6. We start by recycling the output from the three regression models we used. Notice that 
each fitted output has its own structure and importance vectors have different names. 

tree_VI <- fit_tree$variable.importance %>% # VI from tree model 
as_tibble(rownames = NA) %>% # Transform in tibble 
rownames_to_column("Feature") # Add feature column 

RF_VI <- fit_RF$importance %>% # VI from random forest 
as_tibble(rownames = NA) %>% # Transform in tibble 
rownames_to_column("Feature") # Add feature column 

XGB_VI <- xgb.importance(model = fit_xgb)[,1:2] # VI from boosted trees 
VI_trees <- tree_VI %>% left_join(RF_VI) %>% left_join(XGB_VI) # Aggregate the VIs 
colnames(VI_trees)[2:4] <- c("Tree", "RF", "XGB") # New column names 
norm_1 <- function(x){return(x / sum(x))} # Normalizing function 
VI_trees %>% na.omit %>% mutate_if(is.numeric, norm_1) %>% # Plotting sequence 

gather(key = model, value = value, -Feature) %>%
 
ggplot(aes(x = Feature, y = value, fill = model)) + geom_col(position = "dodge") +
 
theme(axis.text.x = element_text(angle = 35, hjust = 1))
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FIGURE 13.2: Variable importance for tree-based models. 

In the above code, tibbles are like dataframes (they are the v2.0 of dataframes, so to speak). 
Given the way the graph is coded, Figure 13.2 is in fact misleading. Indeed, by construction, 
the simple tree model only has a small number of features with nonzero importance: in 
the above graph, there are only 3: capitalization, price-to-book and volatility. In contrast, 
because random forest and boosted trees are much more complex, they give some importance 
to many predictors. The graph shows the variables related to the simple tree model only. 
For scale reasons, the normalization is performed after the subset of features is chosen. 
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We preferred to limit the number of features shown on the graph for obvious readability 
concerns. 

There are differences in the way the models rely on the features. For instance, the most 
important feature changes from a model to the other: the simple tree model gives the most 
importance to the price-to-book ratio, while the random forest bets more on volatility and 
boosted trees give more weight to capitalization. 

One defining property of random forests is that they give a chance to all features. Indeed, 
by randomizing the choice of predictors, each individual exogenous variable has a shot at 
explaining the label. Along with boosted trees, the allocation of importance is more balanced 
across predictors, compared to the simple tree which puts most of its eggs in just a few 
baskets. 

13.1.3 Variable importance (agnostic) 

The idea of quantifying the importance of each feature in the learning process can be 
extended to nontree-based models. We refer to the papers mentioned in the study by Fisher 
et al. (2019) for more information on this stream of the literature. The premise is the same as 
above: the aim is to quantify to what extent one feature contributes to the learning process. 

One way to track the added value of one particular feature is to look at what happens if its 
values inside the training set are entirely shuffled. If the original feature plays an important 
role in the explanation of the dependent variable, then the shuffled version of the feature 
will lead to a much higher loss. 

The baseline method to assess feature importance in the general case is the following: 

1.	 Train the model on the original data and compute the associated loss l∗ . 

2.	 For each feature k, create a new training dataset in which the feature’s values are 
randomly permuted. Then, evaluate the loss lk of the model based on this altered 
sample. 

3.	 Rank the variable importance of each feature, computed as a difference VIk = lk−l∗ 

or a ratio VIk = l  
k/l∗. 

Whether to compute the losses on the training set or the testing set is an open question 
and remains to the appreciation of the analyst. The above procedure is of course random 
and can be repeated so that the importances are averaged over several trials: this improves 
the stability of the results. This algorithm is implemented in the FeatureImp() function of 
the iml R package developed by the author of Molnar (2019). We also recommend the vip 
package, see Greenwell and Boehmke (ming). 
Below, we implement this algorithm manually so to speak for the features appearing in 
Figure 13.2. We test this approach on ridge regressions and recycle the variables used in 
Chapter 5. We start by the first step: computing the loss on the original training sample. 

fit_ridge_0 <- glmnet(x_penalized_train, y_penalized_train,	 # Trained model 
alpha = 0, lambda = 0.01) 

l_star <- mean((y_penalized_train-predict(fit_ridge_0, x_penalized_train))^2) # Loss 
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Next, we evaluate the loss when each of the predictors has been sequentially shuffled. To 
reduce computation time, we only make one round of shuffling. 

l <- c() # Initialize 
for(i in 1:nrow(VI_trees)){ # Loop on the features 

feat_name <- as.character(VI_trees[i,1]) 
temp_data <- training_sample %>% dplyr::select(features) # Temp feature matrix 
temp_data[, which(colnames(temp_data) == feat_name)] <- # Shuffles the values 

sample(temp_data[, which(colnames(temp_data) == feat_name)] 
%>% pull(1), replace = FALSE) 

x_penalized_temp <- temp_data %>% as.matrix() # Predictors into matrix 
l[i] <- mean((y_penalized_train-predict(fit_ridge_0, x_penalized_temp))^2) # = Loss 

} 

Finally, we plot the results. 

data.frame(Feature = VI_trees[,1], loss = l - l_star) %>% 
ggplot(aes(x = Feature, y = loss)) + geom_col() + 
theme(axis.text.x = element_text(angle = 35, hjust = 1)) 
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FIGURE 13.3: Variable importance for a ridge regression model. 

The resulting importances are in line with thoses of the tree-based models: the most 
prominent variables are volatility-based, market capitalization-based, and the price-to-book 
ratio; these closely match the variables from Figure 13.2. Note that in some cases (e.g., the 
share turnover), the score can even be negative, which means that the predictions are more 
accurate than the baseline model when the values of the predictor are shuffled! 



  

� 
¯ fk(xk) = E[f̂(x−k, xk)] = f̂(x−k, xk)dP−k(x−k), (13.1) 

where dP−k(·) is the (multivariate) distribution of the non-k features x−k. The above function 
takes the feature values xk as argument and keeps all other features frozen via their sample 
distributions: this shows the impact of feature k solely. In practice, the average is evaluated 
using Monte-Carlo simulations: 

MK1 (m)
f̄  
k(xk) ≈ f̂  xk, x , (13.2)−kM 

m=1 
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13.1.4 Partial dependence plot 

Partial dependence plots (PDPs) aim at showing the relationship between the output of a 
model and the value of a feature (we refer to section 8.2 of Friedman (2001) for an early 
treatment of this subject). 

Let us fix a feature k. We want to understand the average impact of k on the predictions 
of the trained model f̂ . In order to do so, we assume that the feature space is random 
and we split it in two: k versus −k, which stands for all features except for k. The partial 
dependence plot is defined as 

(m)where x are independent samples of the non-k features.−k 

Theoretically, PDPs could be computed for more than one feature at a time. In practice, this 
is only possible for two features (yielding a 3D surface) and is more computationally intense. 

We illustrate this concept below, using the dedicated package iml (interpretable machine 
learning); see also the pdp package documented in Greenwell (2017). The model we seek to 
explain is the random forest built in Section 6.2. We recycle some variables used therein. We 
choose to test the impact of the price-to-book ratio on the outcome of the model. 

library(iml) # One package for interpretability 
mod_iml <- Predictor$new(fit_RF, # This line encapsulates the objects 

data = training_sample %>% dplyr::select(features)) 
pdp_PB = FeatureEffect$new(mod_iml, feature = "Pb") # This line computes the PDP for p/b ratio 
plot(pdp_PB) # Plot the partial dependence. 
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FIGURE 13.4: Partial dependence plot for the price-to-book ratio on the random forest 
model. 

The average impact of the price-to-book ratio on the predictions is decreasing. This was 
somewhat expected, given the conditional average of the dependent variable given the 
price-to-book ratio. This latter function is depicted in Figure 6.3 and shows a behavior 
comparable to the above curve: strongly decreasing for small value of P/B and then relatively 
flat. When the price-to-book ratio is low, firms are undervalued. Hence, their higher returns 
are in line with the value premium. 

Finally, we refer to Zhao and Hastie (2020) for a theoretical discussion on the causality 
property of PDPs. Indeed, a deep look at the construction of the PDPs suggests that they 
could be interpreted as a causal representation of the feature on the model’s output. 

13.2 Local interpretations 

Whereas global interpretations seek to assess the impact of features on the output overall, 
local methods try to quantify the behavior of the model on particular instances or the 
neighborhood thereof. Local interpretability has recently gained traction and many papers 
have been published on this topic. Below, we outline the most widespread methods.1 

1For instance, we do not mention the work of Horel and Giesecke (2019) but the interested reader can 
have a look at their work on neural networks (and also at the references cited in the paper). 
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13.2.1 LIME 

LIME (Local Interpretable Model-Agnostic Explanations) is a methodology originally pro­
posed by Ribeiro et al. (2016). Their aim is to provide a faithful account of the model under 
two constraints: 

•	 simple interpretability, which implies a limited number of variables with visual or 
textual representation. This is to make sure any human can easily understand the outcome 
of the tool; 

•	 local faithfulness: the explanation holds for the vicinity of the instance. 

The original (black-box) model is f and we assume we want to approximate its behavior 
around instance x with the interpretable model g.2 The simple function g belongs to a larger 
class G. The vicinity of x is denoted πx and the complexity of g is written Ω(g). LIME seeks 
an interpretation of the form 

ξ(x) = argmin L(f, g, πx) + Ω(g), 
g∈G 

where L(f, g, πx) is the loss function (error/imprecision) induced by g in the vicinity πx of x. 
The penalization Ω(g) is for instance the number of leaves or depth of a tree, or the number 
of predictors in a linear regression. 

It now remains to define some of the above terms. The vicinity of x is defined by πx(z) = 
−D(x,z)2/σe

2 
, where D is some distance measure and σ2 some scaling constant. We underline 

that this function decreases when z shifts away from x. 

The tricky part is the loss function. In order to minimize it, LIME generates artificial samples 
close to x and averages/sums the error on the label that the simple representation makes. 
For simplicity, we assume a scalar output for f , hence the formulation is the following: K 

L(f, g, πx) = πx(z)(f(z) − g(z))2 

z 

and the errors are weighted according to their distance from the initial instance x: the closest 
points get the largest weights. In its most basic implementation, the set of models G consists 
of all linear models. 

In Figure 13.5, we provide a simplified diagram of how LIME works. 

2In the original paper, the authors dig deeper into the notion of interpretable representations. In complex 
machine learning settings (image recognition or natural language processing), the original features given to 
the model can be hard to interpret. Hence, this requires an additional translation layer because the outcome 
of LIME must be expressed in terms of easily understood quantities. In factor investing, the features are 
elementary, hence we do not need to deal with this issue). 
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FIGURE 13.5: Simplistic explanation of LIME: the explained instance is surrounded by a 
red square. Five points are generated (the triangles) and a weighted linear model is fitted 
accordingly (dashed grey line). 

For expositional clarity, we work with only one dependent variable. The original training 
sample is shown with the black points. The fitted (trained) model is represented with 
the blue line (smoothed conditional average) and we want to approximate how the model 
works around one particular instance which is highlighted by the red square around it. 
In order to build the approximation, we sample 5 new points around the instance (the 5 
red triangles). Each triangle lies on the blue line (they are model predictions) and has a 
weight proportional to its size: the triangle closest to the instance has a bigger weight. Using 
weighted least-squares, we build a linear model that fits to these 5 points (the dashed grey 
line). This is the outcome of the approximation. It gives the two parameters of the model: 
the intercept and the slope. Both can be evaluated with standard statistical tests. 

The sign of the slope is important. It is fairly clear that if the instance had been taken 
closer to x = 0, the slope would have probably been almost flat and hence the predictor 
could be locally discarded. Another important detail is the number of sample points. In our 
explanation, we take only five, but in practice, a robust estimation usually requires around 
one thousand points or more. Indeed, when too few neighbors are sampled, the estimation 
risk is high and the approximation may be rough. 

We proceed with an example of implementation. There are several steps: 

1. Fit a model on some training data. 

2. Wrap everything using the lime() function. 
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3.	 Focus on a few predictors and see their impact over a few particular instances 
(via the explain() function). 

We start with the first step. This time, we work with a boosted tree model. 

library(lime)	 # Package for LIME interpretation 
params_xgb <- list( # Parameters of the boosted tree 

max_depth = 5, # Max depth of each tree 
eta = 0.5, # Learning rate 
gamma = 0.1, # Penalization 
colsample_bytree = 1, # Proportion of predictors to be sampled (1 = all) 
min_child_weight = 10, # Min number of instances in each node 
subsample = 1) # Proportion of instance to be sampled (1 = all) 

xgb_model <- xgb.train(params_xgb, # Training of the model 
train_matrix_xgb, # Training data 
nrounds = 10) # Number of trees 

Then, we head on to steps two and three. As underlined above, we resort to the lime() and 
explain() functions. 

explainer <- lime(training_sample %>% dplyr::select(features_short), xgb_model) # Step 2. 
explanation <- explain(x =	 training_sample %>% # Step 3. 

dplyr::select(features_short) %>% 
dplyr::slice(1:2), # First two instances in train_sample 

explainer = explainer, # Explainer variable created above 
n_permutations = 900, # Nb samples for loss function 
dist_fun = "euclidean", # Dist.func. "gower" is one alternative 
n_features = 6 # Nb of features shown (important ones) 

) 
plot_features(explanation, ncol = 1) # Visual display 

Case: 2
Prediction: 0.101195394992828
Explanation Fit: 0.065

Case: 1
Prediction: 0.101195394992828
Explanation Fit: 0.091
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    NK 
Euclidean(x, y) = (xi − yi)2 . 

n=1 

Another possible choice would be the Manhattan distance: 
NK 

Manhattan(x, y) = |xi − yi|. 
n=1 

  �
  

  �
K Card(S)!(K − Card(S) − 1)!

φk = f̂  
S∪{xk }(S ∪ {xk}) − f̂  

S (S) (13.3) 
S⊆{x1,...,xK }\xk \ K! \
 

weight of coalition gain when adding xk
 

S is any subset of the coalition that doesn’t include feature k and its size is Card(S). 
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In each graph (one graph corresponds to the explanation around one instance), there are 
two types of information: the sign of the impact and the magnitude of the impact. The sign 
is revealed with the color (positive in blue, negative in red) and the magnitude is shown 
with the size of the rectangles. 

The values to the left of the graphs show the ranges of the features with which the local 
approximations were computed. 

Lastly, we briefly discuss the choice of distance function chosen in the code. It is used to 
evaluate the discrepancy between the true instance and a simulated one to give more or 
less weight to the prediction of the sampled instance. Our dataset comprises only numerical 
data; hence, the Euclidean distance is a natural choice: 

The problem with these two distances is that they fail to handle categorical variables. This is 
where the Gower distance steps in (Gower (1971)). The distance imposes a different treatment 
on features of different types (classes versus numbers essentially, but it can also handle 
missing data!). For categorical features, the Gower distance applies a binary treatment: the 
value is equal to 1 if the features are equal, and to zero if not (i.e., 1{xn }). For numerical =yn

−yn|features, the spread is quantified as 1 − |xn , where Rn is the maximum absolute value Rn

the feature can take. All similarity measurements are then aggregated to yield the final score. 
Note that in this case, the logic is reversed: x and y are very close if the Gower distance is 
close to one, and they are far away if the distance is close to zero. 

13.2.2 Shapley values 

The approach of Shapley values is somewhat different compared to LIME and closer in spirit 
to PDPs. It originates from cooperative game theory (Shapley (1953)). The rationale is 
the following. One way to assess the impact (or usefulness) of a variable is to look at what 
happens if we remove this variable from the dataset. If this is very detrimental to the quality 
of the model (i.e., to the accuracy of its predictions), then it means that the variable is 
substantially valuable. 

The simplest way to proceed is to take all variables and remove one to evaluate its predictive 
ability. Shapley values are computed on a larger scale because they consider all possible 
combinations of variables to which they add the target predictor. Formally, this gives: 
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In the equation above, the model f must be altered because it’s impossible to evaluate f 
when features are missing. In this case, there are several possible options: 

•	 set the missing value to its average or median value (in the whole sample) so that its effect 
is some ‘average’ effect;  

•	 directly compute an average value R f(x1, . . . , xk, . . . , xK )dPxk , where dPxk is the empiri­
cal distribution of xk in the sample. 

Obviously, Shapley values can take a lot of time to compute if the number of predictors is 
large. We refer to Chen et al. (2018) for a discussion on a simplifying method that reduces 
computation times in this case. Extensions of Shapley values for interpretability are studied 
in Lundberg and Lee (2017). 

The implementation of Shapley values is permitted in R via the iml package. There are 
two restrictions compared to LIME. First, the features must be filtered upfront because all 
features are shown on the graph (which becomes illegible beyond 20 features). This is why 
in the code below, we use the short list of predictors (from Section 1.2). Second, instances 
are analyzed one at a time. 

We start by fitting a random forest model. 

fit_RF_short <- randomForest(R1M_Usd ~., # Same formula as for simple trees!
 
data = training_sample %>% dplyr::select(c(features_short), "R1M_Usd"),
 
sampsize = 10000, # Size of (random) sample for each tree
 
replace = FALSE, # Is the sampling done with replacement?
 
nodesize = 250, # Minimum size of terminal cluster
 
ntree = 40, # Nb of random trees
 
mtry = 4 # Nb of predictive variables for each tree
 

) 

We can then analyze the behavior of the model around the first instance of the training 
sample. 

predictor <- Predictor$new(fit_RF_short, # This wraps the model & data
 
data = training_sample %>% dplyr::select(features_short),
 
y = training_sample$R1M_Usd)
 

shapley <- Shapley$new(predictor,	 # Compute the Shapley values... 
x.interest = training_sample %>% 

dplyr::select(features_short) %>% 
dplyr::slice(1)) # On the first instance 

plot(shapley) + coord_fixed(1500) + # Plot
 
theme(axis.text.x = element_text(angle = 35, hjust = 1)) + coord_flip()
 



  MK1 (m) ∗ f̃k(x ∗) = f̂  x−k , x . (13.4)kM 
m=1 
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FIGURE 13.6: Illustration of the Shapley method. 

In the output shown in Figure 13.6, we again obtain the two crucial insights: sign of the 
impact of the feature and relative importance (compared to other features). 

13.2.3 Breakdown 

Breakdown (see, e.g., Staniak and Biecek (2018)) is a mixture of ideas from PDPs and 
Shapley values. The core of breakdown is the so-called relaxed model prediction defined 
in Equation (13.4). It is close in spirit to Equation (13.1). The difference is that we are 
working at the local level, i.e., on one particular observation, say x ∗. We want to measure 
the impact of a set of predictors on the prediction associated to x ∗; hence, we fix two sets 
k (fixed features) and −k (free features) and evaluate a proxy for the average prediction 
of the estimated model f̂  when the set k of predictors is fixed at the values of x ∗, that is, 

∗equal to xk in the expression below: 

The x(m) in the above expression are either simulated values of instances or simply sampled 
values from the dataset. The notation implies that the instance has some values replaced by 
those of x ∗, namely those that correspond to the indices k. When k consists of all features, 
then f̃k(x ∗) is equal to the raw model prediction f̂(x ∗) and when k is empty, it is equal to 
the average sample value of the label (constant prediction). 
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The quantity of interest is the so-called contribution of feature j /∈ k with respect to data 
∗point x and set k: 

jφk(x ∗) = f̃k∪j (x ∗) − f̃k(x ∗). 

Just as for Shapley values, the above indicator computes an average impact when augmenting 
the set of predictors with feature j. By definition, it depends on the set k, so this is one 
notable difference with Shapley values (that span all permutations). In Staniak and Biecek 
(2018), the authors devise a procedure that incrementally increases or decreases the set 
k. This greedy idea helps alleviate the burden of computing all possible combinations of 
features. Moreover, a very convenient property of their algorithm is that the sum of all 
contributions is equal to the predicted value: K 

jφk(x ∗) = f(x ∗). 
j 

The visualization makes that very easy to see (as in Figure 13.7 below). 

In order to illustrate one implementation of breakdown, we train a random forest on a 
limited number of features, as shown below. This will increase the readability of the output 
of the breakdown. 

formula_short <- paste("R1M_Usd ~", paste(features_short, collapse = " + ")) # Model 
formula_short <- as.formula(formula_short) # Formula format 
fit_RF_short <- randomForest(formula_short, # Same formula as before 

data = dplyr::select(training_sample, c(features_short, "R1M_Usd")), 
sampsize = 10000, # Size of (random) sample for each tree 
replace = FALSE, # Is the sampling done with replacement? 
nodesize = 250, # Minimum size of terminal cluster 
ntree = 12, # Nb of random trees 
mtry = 5 # Nb of predictive variables for each tree 

) 

Once the model is trained, the syntax for the breakdown of predictions is very simple. 

library(breakDown) 
explain_break <- broken(fit_RF_short, 

data_ml[6,] %>% dplyr::select(features_short), 
data = data_ml %>% dplyr::select(features_short)) 

plot(explain_break) 
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FIGURE 13.7: Example of a breakdown output. 

The graphical output is intuitively interpreted. The grey bar is the prediction of the model 
at the chosen instance. Green bars signal a positive contribution and the yellowish rectangles 
show the variables with negative impact. The relative sizes indicate the importance of each 
feature. 
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Two key concepts: causality and non-stationarity
 

A prominent point of criticism faced by ML tools is their inability to uncover causality 
relationships between features and labels because they are mostly focused (by design) to 
capture correlations. Correlations are much weaker than causality because they characterize 
a two-way relationship (X ↔ y), while causality specifies a direction X → y or X ← y. 
One fashionable example is sentiment. Many academic articles seem to find that sentiment 
(irrespectively of its definition) is a significant driver of future returns. A high sentiment for 
a particular stock may increase the demand for this stock and push its price up (though 
contrarian reasonings may also apply: if sentiment is high, it is a sign that mean-reversion is 
possibly about to happen). The reverse causation is also plausible: returns may well cause 
sentiment. If a stock experiences a long period of market growth, people become bullish 
about this stock and sentiment increases (this notably comes from extrapolation, see Barberis 
et al. (2015) for a theoretical model). In Coqueret (2020), it is found (in opposition to most 
findings in this field), that the latter relationship (returns → sentiment) is more likely. This 
result is backed by causality driven tests (see Section 14.1.1). 

Statistical causality is a large field and we refer to Pearl (2009) for a deep dive into this 
topic. Recently, researchers have sought to link causality with ML approaches (see, e.g., 
Peters et al. (2017), Heinze-Deml et al. (2018), Arjovsky et al. (2019)). The key notion in 
their work is invariance. 

Often, data is collected not at once, but from different sources at different moments. Some 
relationships found in these different sources will change, while others may remain the same. 
The relationships that are invariant to changing environments are likely to stem from 
(and signal) causality. One counter-example is the following (related in Beery et al. (2018)): 
training a computer vision algorithm to discriminate between cows and camels will lead the 
algorithm to focus on grass versus sand! This is because most camels are pictured in the 
desert while cows are shown in green fields of grass. Thus, a picture of a camel on grass will 
be classified as cow, while a cow on sand would be labelled “camel”. It is only with pictures 
of these two animals in different contexts (environments) that the learner will end up truly 
finding what makes a cow and a camel. A camel will remain a camel no matter where it 
is pictured: it should be recognized as such by the learner. If so, the representation of the 
camel becomes invariant over all datasets and the learner has discovered causality, i.e., the 
true attributes that make the camel a camel (overall silhouette, shape of the back, face, 
color (possibly misleading!), etc.). 

This search for invariance makes sense for many disciplines like computer vision or natural 
language processing (cats will always look like cats and languages don’t change much). In 
finance, it is not obvious that invariance may exist. Market conditions are known to be 
time-varying and the relationships between firm characteristics and returns also change 
from year to year. One solution to this issue may simply be to embrace non-stationarity 
(see Section 1.1 for a definition of stationarity). In Chapter 12, we advocate to do that 
by updating models as frequently as possible with rolling training sets: this allows the 
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predictions to be based on the most recent trends. In Section 14.2 below, we introduce other 
theoretical and practical options. 

14.1 Causality 

Traditional machine learning models aim to uncover relationships between variables but 
do not usually specify directions for these relationships. One typical example is the linear 
regression. If we write y = a + bx + C, then it is also true that x = b−1(y − a − C), which is of 
course also a linear relationship (with respect to y). These equations do not define causation 
whereby x would be a clear determinant of y (x → y, but the opposite could be false). 

14.1.1 Granger causality 

The most notable tool first proposed by Granger (1969) is probably the simplest. For 
simplicity, we consider only two stationary processes, Xt and Yt. A strict definition of 
causality could be the following. X can be said to cause Y , whenever, for some integer k, 

d 
(Yt+1, . . . , Yt+k)|(FY,t ∪ FX,t) = (Yt+1, . . . , Yt+k)|FY,t, 

that is, when the distribution of future values of Yt, conditionally on the knowledge of both 
processes is not the same as the distribution with the sole knowledge of the filtration FY,t. 
Hence X does have an impact on Y because its trajectory alters that of Y . 

Now, this formulation is too vague and impossible to handle numerically, thus we simplify 
the setting via a linear formulation. We keep the same notations as section 5 of the original 
paper by Granger (1969). The test consists of two regressions: 

KKm m

Xt = aj Xt−j + bj Yt−j + Ct 

j=1 j=1 

m m

Yt = cj Xt−j + dj Yt−j + νt 

j=1 j=1 

KK
where for simplicity, it is assumed that both processes have zero mean. The usual assumptions 
apply: the Gaussian noises Ct and νt are uncorrelated in every possible way (mutually and 
through time). The test is the following: if one bj is nonzero, then it is said that Y Granger-
causes X and if one cj is nonzero, X Granger-causes Y . The two are not mutually exclusive 
and it is widely accepted that feedback loops can very well occur. 

Statistically, under the null hypothesis, b1 = · · · = bm = 0 (resp. c1 = · · · = cm = 0), which 
can be tested using the usual Fischer distribution. Obviously, the linear restriction can be 
dismissed but the tests are then much more complex. The main financial article in this 
direction is Hiemstra and Jones (1994). 

There are many R packages that embed Granger causality functionalities. One of the most 
widespread is lmtest, so we work with it below. The syntax is incredibly simple. The order 
is the maximum lag m in the above equation. We test if market capitalization averaged over 
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the past 6 months Granger-causes 1 month ahead returns for one particular stock (the first 
in the sample). 

library(lmtest) 
x_granger <- training_sample %>% # X variable =... 

filter(stock_id ==1) %>% # ... stock nb 1 
pull(Mkt_Cap_6M_Usd) # ... & Market cap 

y_granger <- training_sample %>% # Y variable = ... 
filter(stock_id ==1) %>% # ... stock nb 1 
pull(R1M_Usd) # ... & 1M return 

fit_granger <- grangertest(x_granger, # X variable 
y_granger, # Y variable 
order = 6, # Maximmum lag 
na.action = na.omit) # What to do with missing data 

fit_granger 

## Granger causality test 
##
 
## Model 1: y_granger ~ Lags(y_granger, 1:6) + Lags(x_granger, 1:6)
 
## Model 2: y_granger ~ Lags(y_granger, 1:6)
 
## Res.Df Df F Pr(>F)
 
## 1 149
 
## 2 155 -6 4.111 0.0007554 ***
 
## --­
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 

The test is directional and only tests if X Granger-causes Y . In order to test the reverse 
effect, it is required to inverse the arguments in the function. In the output above, the p-value 
is very low, hence the probability of observing samples similar to ours knowing that H0 

holds is negligible. Thus it seems that market capitalization does Granger-cause one-month 
returns. We nonetheless underline that Granger causality is arguably weaker than the one 
defined in the next subsection. A process that Granger-causes another one simply contains 
useful predictive information, which is not proof of causality in a strict sense. Moreover, 
our test is limited to a linear model and including nonlinearities may alter the conclusion. 
Lastly, including other regressors (possibly omitted variables) could also change the results 
(see, e.g., Chow et al. (2002)). 

14.1.2 Causal additive models 

The zoo of causal model encompasses a variety of beasts (even BARTs from Section 9.5 are 
used for this purpose in Hahn et al. (2019)). The interested reader can have a peek at Pearl 
(2009), Peters et al. (2017), Maathuis et al. (2018) and Hünermund and Bareinboim (2019) 
and the references therein. One central tool in causal models is the do-calculus developed 
by Pearl. Whereas traditional probabilities P [Y |X] link the odds of Y conditionally on 
observing X take some value x, the do(·) forces X to take value x. This is a looking versus 
doing dichotomy. One classical example is the following. Observing a barometer gives a clue 
what the weather will be because high pressures are more often associated with sunny days: 

P [sunny weather|barometer says “high”] > P [sunny weather|barometer says “low”], 

but if you hack the barometer (force it to display some value), 

P [sunny weather|barometer hacked to “high”] = P [sunny weather|barometer hacked “low”], 

because hacking the barometer will have no impact on the weather. In short notation, when 
there is an intervention on the barometer, P [weather|do(barometer)] = P [weather]. This is 



� 
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X 
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an interesting example related to causality. The overarching variable is pressure. Pressure 
impacts both the weather and the barometer and this joint effect is called confounding. 
However, it may not be true that the barometer impacts the weather. The interested reader 
who wants to dive deeper into these concepts should have a closer look at the work of Judea 
Pearl. Do-calculus is a very powerful theoretical framework, but it is not easy to apply it to 
any situation or dataset (see for instance the book review Aronow and Sävje (2019)). 

While we do not formally present an exhaustive tour of the theory behind causal inference, 
we wish to show some practical implementations because they are easy to interpret. It 
is always hard to single out one type of model in particular so we choose one that can 
be explained with simple mathematical tools. We start with the simplest definition of a 
structural causal model (SCM), where we follow here chapter 3 of Peters et al. (2017). The 
idea behind these models is to introduce some hierarchy (i.e., some additional structure) in 
the model. Formally, this gives 

X = CX
 

Y = f(X, CY ),
 

where the CX and CY are independent noise variables. Plainly, a realization of X is drawn 
randomly and has then an impact on the realization of Y via f . Now this scheme could be 
more complex if the number of observed variables was larger. Imagine a third variable comes 
in so that 

X = CX
 

Y = f(X, CY ),
 
Z = g(Y, CZ )
 

In this case, X has a causation effect on Y and then Y has a causation effect on Z. We thus 
have the following connections: 

The above representation is called a graph and graph theory has its own nomenclature, which 
we very briefly summarize. The variables are often referred to as vertices (or nodes) and the 
arrows as edges. Because arrows have a direction, they are called directed edges. When two 
vertices are connected via an edge, they are called adjacent. A sequence of adjacent vertices 
is called a path, and it is directed if all edges are arrows. Within a directed path, a vertex 
that comes first is a parent node and the one just after is a child node. 

Graphs can be summarized by adjacency matrices. An adjacency matrix A = Aij is a matrix 
filled with zeros and ones. Aij = 1 whenever there is an edge from vertex i to vertex j. 
Usually, self-loops (X → X) are prohibited so that adjacency matrices have zeros on the 
diagonal. If we consider a simplified version of the above graph like X → Y → Z, the 
corresponding adjacency matrix is 

⎡ ⎤
0 1 0 

A = ⎣0 0 1⎦ . 
0 0 0 
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where letters X, Y , and Z are naturally ordered alphabetically. There are only two arrows: 
from X to Y (first row, second column) and from Y to Z (second row, third column). 

A cycle is a particular type of path that creates a loop, i.e., when the first vertex is also 
the last. The sequence X → Y → Z → X is a cycle. Technically, cycles pose problems. 
To illustrate this, consider the simple sequence X → Y → X. This would imply that a 
realization of X causes Y which in turn would cause the realization of Y . While Granger 
causality can be viewed as allowing this kind of connection, general causal models usually 
avoid cycles and work with directed acyclic graphs (DAGs). Formal graph manipulations 
(possibly linked to do-calculus) can be computed via the causaleffect package Tikka and 
Karvanen (2017). Direct acyclic graphs can also be created and manipulated with the dagitty 
(textor2016robust) and ggdag packages. 

Equipped with these tools, we can explicitize a very general form of models: 

Xj = fj XpaD (j), Cj , (14.1) 

where the noise variables are mutually independent. The notation paD(j) refers to the set of 
parent nodes of vertex j within the graph structure D. Hence, Xj is a function of all of its 
parents and some noise term Cj . An additive causal model is a mild simplification of the 
above specification: 

K 
Xj = fj,k (Xk) + Cj , (14.2) 

k∈paD (j) 

where the nonlinear effect of each variable is cumulative, hence the term ‘additive’. Note that 
there is no time index there. In contrast to Granger causality, there is no natural ordering. 
Such models are very complex and hard to estimate. The details can be found in Bühlmann 
et al. (2014). Fortunately, the authors have developed an R package that determines the 
DAG D. 

Below, we build the adjacency matrix pertaining to the small set of predictor variables plus 
the 1-month ahead return (on the training sample). We use the CAM package which has a 
very simple syntax.1 

library(CAM) # Activate the package
 
data_caus <- training_sample %>% dplyr::select(c("R1M_Usd", features_short))
 
fit_cam <- CAM(data_caus) # The main function
 
fit_cam$Adj # Showing the adjacency matrix
 

## 8 x 8 sparse Matrix of class "dgCMatrix"
 
##
 
## [1,] . 1 1 1 1 1 1 1
 
## [2,] . . . 1 . . 1 .
 
## [3,] . 1 . 1 . . 1 1
 
## [4,] . . . . . . . .
 
## [5,] . 1 1 1 . 1 1 1
 
## [6,] . 1 1 1 . . 1 1
 
## [7,] . . . 1 . . . .
 
## [8,] . 1 . 1 . . 1 .
 

1The CAM package was removed from CRAN in November 2019 but can still be installed manually. 
First, download the content of the package: https://cran.r-project.org/web/packages/CAM/index.html. 
Second, copy it in the directory obtained by typing .libPaths() in the console. 

https://www.cran.r-project.org
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The matrix is not too sparse, which means that the model has uncovered many relationships 
between the variables within the sample. Sadly, none are in the direction that is of interest 
for the prediction task that we seek. Indeed, the first variable is the one we want to predict 
and its column is empty. However, its row is full, which indicates the reverse effect: future 
returns cause the predictor values, which may seem rather counter-intuitive, given the nature 
of features. 

For the sake of completeness, we also provide an implementation of the pcalg package 
(Kalisch et al. (2012)).2 Below, an estimation via the so-called PC (named after its authors 
Peter Spirtes and Clark Glymour) is performed. The details of the algorithm are out of the 
scope of the book, and the interested reader can have a look at section 5.4 of Spirtes et al. 
(2000) or section 2 from Kalisch et al. (2012) for more information on this subject. We use 
the Rgraphviz package available at https://www.bioconductor.org/packages/release/ 
bioc/html/Rgraphviz.html. 

library(pcalg) # Load packages 
library(Rgraphviz) 
est_caus <- list(C = cor(data_caus), n = nrow(data_caus)) # Compute correlations 
pc.fit <- pc(est_caus, indepTest = gaussCItest, # Estimate model 

p = ncol(data_caus),alpha = 0.01) 
iplotPC(pc.fit) # Plot model 
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FIGURE 14.1: Representation of a directed graph. 

A bidirectional arrow is shown when the model was unable to determine the edge orientation. 
While the adjacency matrix is different compared to the first model, there are still no 
predictors that seem to have a clear causal effect on the dependent variable (first circle). 

14.1.3 Structural time series models 

We end the topic of causality by mentioning a particular type of structural models: structural 
time series. Because we illustrate their relevance for a particular kind of causal inference, 

2Another possible choice is the baycn package documented in Martin and Fu (2019). 

https://www.bioconductor.org
https://www.bioconductor.org
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we closely follow the notations of Brodersen et al. (2015). The model is driven by two 
equations: 

yt = Z� αt + Ctt

αt+1 = Ttαt + Rtηt. 

The dependent variable is expressed as a linear function of state variables αt plus an error 
term. These variables are in turn linear functions of their past values plus another error term 
which can have a complex structure (it’s a product of a matrix Rt with a centered Gaussian 
term ηt). This specification nests many models as special cases, like ARIMA for instance. 

The goal of Brodersen et al. (2015) is to detect causal impacts via regime changes. They 
estimate the above model over a given training period and then predict the model’s response 
on some test set. If the aggregate (summed/integrated) error between the realized versus 
predicted values is significant (based on some statistical test), then the authors conclude 
that the breaking point is relevant. Originally, the aim of the approach is to quantify the 
effect of an intervention by looking at how a model trained before the intervention behaves 
after the intervention. 

Below, we test if the 100th date point in the sample (April 2008) is a turning point. Arguably, 
this date belongs to the time span of the subprime financial crisis. We use the CausalImpact 
package which uses the bsts library (Bayesian structural time series). 

library(CausalImpact)
 
stock1_data <- data_ml %>% filter(stock_id == 1) # Data of first stock
 
struct_data <- data.frame(y = stock1_data$R1M_Usd) %>% # Combine label...
 

cbind(stock1_data %>% dplyr::select(features_short)) # ... and features 
pre.period <- c(1,100) # Pre-break period (pre-2008) 
post.period <- c(101,200) # Post-break period 
impact <- CausalImpact(zoo(struct_data), pre.period, post.period) 
summary(impact) 

## Posterior inference {CausalImpact} 
## 
## Average Cumulative 
## Actual 0.016 1.638 
## Prediction (s.d.) 0.031 (0.017) 3.091 (1.715) 
## 95% CI [-0.004, 0.065] [-0.403, 6.476] 
## 
## Absolute effect (s.d.) -0.015 (0.017) -1.453 (1.715) 
## 95% CI [-0.048, 0.02] [-4.838, 2.04] 
## 
## Relative effect (s.d.) -47% (55%) -47% (55%) 
## 95% CI [-157%, 66%] [-157%, 66%] 
##
 
## Posterior tail-area probability p: 0.18293
 
## Posterior prob. of a causal effect: 82%
 
##
 
## For more details, type: summary(impact, "report")
 

#summary(impact, "report") # Get the full report (see below) 

The time series associated with the model are shown in Figure 14.2. 
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FIGURE 14.2: Output of the causal impact study. 

Below, we copy and paste the report generated by the function (obtained by the commented 
line in the above code). The conclusions do not support a marked effect of the crisis on the 
model probably because the signs of the error in the post period constantly change sign. 

During the post-intervention period, the response variable had an average value of approx. 
0.016. In the absence of an intervention, we would have expected an average response of 
0.031. The 95% interval of this counterfactual prediction is [-0.0059, 0.063]. Subtracting this 
prediction from the observed response yields an estimate of the causal effect the intervention 
had on the response variable. This effect is -0.015 with a 95% interval of [-0.047, 0.022]. 

Summing up the individual data points during the post-intervention period (which can only 
sometimes be meaningfully interpreted), the response variable had an overall value of 1.64. 
Had the intervention not taken place, we would have expected a sum of 3.09. The 95% interval 
of this prediction is [-0.59, 6.34]. The above results are given in terms of absolute numbers. 
In relative terms, the response variable showed a decrease of -47%. The 95% interval of this 
percentage is [-152%, +72%]. 

This means that, although it may look as though the intervention has exerted a negative effect 
on the response variable when considering the intervention period as a whole, this effect is 
not statistically significant, and so cannot be meaningfully interpreted. The apparent effect 
could be the result of random fluctuations that are unrelated to the intervention. This is 
often the case when the intervention period is very long and includes much of the time when 
the effect has already worn off. It can also be the case when the intervention period is too 
short to distinguish the signal from the noise. Finally, failing to find a significant effect can 
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happen when there are not enough control variables or when these variables do not correlate 
well with the response variable during the learning period. 

The probability of obtaining this effect by chance is p = 0.199. This means the effect may be 
spurious and would generally not be considered statistically significant. 

14.2 Dealing with changing environments 

The most common assumption in machine learning contributions is that the samples that 
are studied are i.i.d. realizations of a phenomenon that we are trying to characterize. This 
constraint is natural because if the relationship between X and y always changes, then it is 
very hard to infer anything from observations. One major problem in Finance is that this is 
often the case: markets, behaviors, policies, etc., evolve all the time. This is at least partly 
related to the notion of absence of arbitrage: if a trading strategy worked all the time, all 
agents would eventually adopt it via herding, which would annihilate the corresponding 
gains.3 If the strategy is kept private, its holder would become infinitely rich, which obviously 
has never happened. 

There are several ways to define changes in environments. If we denote with PXY the 
multivariate distribution of all variables (features and label), with PXY = PX PY |X , then 
two simple changes are possible: 

•	 covariate shift: PX changes but PY X does not: the features have a fluctuating |
distribution, but their relationship with Y holds still; 

•	 concept drift: PY X changes but PX does not: feature distributions are stable, but their |
relation to Y is altered. 

Obviously, we omit the case when both items change, as it is too complex to handle. In 
factor investing, the feature engineering process (see Section 4.4) is partly designed to bypass 
the risk of covariate shift. Uniformization guarantees that the marginals stay the same but 
correlations between features may of course change. The main issue is probably concept drift 
when the way features explain the label changes through time. In Cornuejols et al. (2018),4 

the authors distinguish four types of drifts, which we reproduce in Figure 14.3. In factor 
models, changes are presumably a combination of all four types: they can be abrupt during 
crashes, but most of the time they are progressive (gradual or incremental) and never-ending 
(continuously recurring). 

3See for instance the papers on herding in factor investing: Krkoska and Schenk-Hoppé (2019) and Santi 
and Zwinkels (2018).

4This book is probably the most complete reference for theoretical results in machine learning, but it is 
in French. 



224 14 Two key concepts: causality and non-stationarity 

co
nc

ep
t

co
nc

ep
t

Abrupt concept change

co
nc

ep
t Incremental concept change

co
nc

ep
t Recurring concept change

Gradual concept change

time

time

time

time

FIGURE 14.3: Different flavors of concept change. 

Naturally, if we aknowledge that the environment changes, it appears logical to adapt models 
accordingly, i.e., dynamically. This gives rise to the so-called stability-plasticity dilemma. 
This dilemma is a trade-off between model reactiveness (new instances have an important 
impact on updates) versus stability (these instances may not be representative of a slower 
trend and they may thus shift the model in a suboptimal direction). 

Practically, there are two ways to shift the cursor with respect to this dilemma: alter the 
chronological depth of the training sample (e.g., go further back in time) or, when it’s 
possible, allocate more weight to recent instances. We discuss the first option in Section 12.1 
and the second is mentioned in Section 6.3 (though the purpose in Adaboost is precisely to 
let the algorithm handle the weights). In neural networks, it is possible, in all generality to 
introduce instance-based weights in the computation of the loss function, though this option 
is not (yet) available in Keras (to the best of our knowledge: the framework evolves rapidly). 
For simple regressions, this idea is known as weighted least squares wherein errors are 
weighted inside the loss: 

I  
L = wi(yi − xib)2 . 

i=1 

K
In matrix terms, L = (y − Xb)�W(y − Xb), where W is a diagonal matrix of weights. The 
gradient with respect to b is equal to 2X�WXb − 2X�Wy so that the loss is minimized for 
b∗ = (X�WX)−1X�Wy. The standard least-square solution is recovered for W = I. In order 
to fine-tune the reactiveness of the model, the weights must be a function that decreases as 
instances become older in the sample. 

There is of course no perfect solution to changing financial environements. Below, we mention 
two routes that are taken in the ML literature to overcome the problem of non-stationarity 
in the data generating process. But first, we propose yet another clear verification that 
markets do experience time-varying distributions. 
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14.2.1 Non-stationarity: yet another illustration 

One of the most basic practices in (financial) econometrics is to work with returns (relative 
price changes). The simple reason is that returns seem to behave consistently through time 
(monthly returns are bounded, they usually lie between -1 and +1). Prices on the other 
hand shift and, often, some prices never come back to past values. This makes prices harder 
to study. 

Stationarity is a key notion in financial econometrics: it is much easier to characterize a 
phenomenon with distributional properties that remain the same through time (this makes 
them possible to capture). Sadly, the distribution of returns is not stationary: both the mean 
and the variance of returns change along cycles. 

Below, in Figure 14.4, we illustrate this fact by computing the average monthly return for 
all calendar years in the whole dataset. 

data_ml %>% 
mutate(year = year(date)) %>% # Create a year variable 
group_by(year) %>% # Group by year 
summarize(avg_ret = mean(R1M_Usd)) %>% # Compute average return 
ggplot(aes(x = year, y = avg_ret)) + geom_col() + theme_grey() 
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FIGURE 14.4: Average monthly return on a yearly basis. 

These changes in the mean are also accompanied by variations in the second moment 
(variance/volatility). This effect, known as volatility clustering, has been widely documented 
ever since the theoretical breakthrough of Engle (1982) (and even well before). We refer 
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for instance to Cont (2007) for more details on this topic. For the computation of realized 
volatility in R, we strongly recommend chapter 4 in Regenstein (2018). 

In terms of machine learning models, this is also true. Below, we estimate a pure characteristic 
regression with one predictor, the market capitalization averaged over the past 6-months 
(rt+1,n = α + βxcap + Ct+1,n). The label is the 6-month forward return and the estimation is t,n

performed over every calendar year. 

data_ml %>% 
mutate(year = year(date)) %>% # Create a year variable 
group_by(year) %>% # Group by year 
summarize(beta_cap = lm(R6M_Usd ~ Mkt_Cap_6M_Usd) %>% # Perform regression 

coef() %>% # Extract coefs 
t() %>% # Transpose 
data.frame() %>% # Format into df 
pull(Mkt_Cap_6M_Usd)) %>% # Pull coef (remove intercept) 

ggplot(aes(x = year, y = beta_cap)) + geom_col() + # Plot
 
theme_grey()
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FIGURE 14.5: Variations in betas with respect to 6-month market capitalization. 

The bars in Figure 14.5 highlight the concept drift: overall, the relationship between capital­
ization and returns is negative (the size effect again). Sometimes it is markedly negative, 
sometimes, not so much. The ability of capitalization to explain returns is time-varying and 
models must adapt accordingly. 
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14.2.2 Online learning 

Online learning refers to a subset of machine learning in which new information arrives 
progressively and the integration of this flow is performed iteratively (the term ‘online’ is not 
linked to the internet). In order to take the latest data updates into account, it is imperative 
to update the model (stating the obvious). This is clearly the case in finance and this topic 
is closely related to the discussion on learning windows in Section 12.1. 

The problem is that if a 2019 model is trained on data from 2010 to 2019, the (dynamic) 
2020 model will have to be re-trained with the whole dataset including the latest points 
from 2020. This can be heavy and including just the latest points in the learning process 
would substantially decrease its computational cost. In neural networks, the sequential batch 
updating of weights can allow a progressive change in the model. Nonetheless, this is typically 
impossible for decision trees because the splits are decided once and for all. One notable 
exception is Basak (2004), but, in that case, the construction of the trees differs strongly 
from the original algorithm. 

The simplest example of online learning is the Widrow-Hodd algorithm (originally from 
Widrow and Hoff (1960)). Originally, the idea comes from the so-called ADALINE (ADAptive 
LInear NEuron) model which is a neural network with one hidden layer with linear activation 
function (i.e., like a perceptron, but with a different activation). 

Suppose the model is linear, that is y = Xb + e (a constant can be added to the list of 
predictors) and that the amount of data is both massive and coming in at a high frequency so 
that updating the model on the full sample is proscribed because it is technically intractable. 
A simple and heuristic way to update the values of b is to compute 

bt+1 ←− bt − η(xtb − yt)xt
� , 

where xt is the row vector of instance t. The justification is simple. The quadratic error 
(xtb − yt)2 has a gradient with respect to b equal to 2(xtb − yt)x� ; therefore, the above t

update is a simple example of gradient descent. η must of course be quite small: if not, each 
new point will considerably alter b, thereby resulting in a volatile model. 

An exhaustive review of techniques pertaining to online learning is presented in Hoi et al. 
(2018) (section 4.11 is even dedicated to portfolio selection). The book Hazan et al. (2016) 
covers online convex optimization which is a very close domain with a large overlap with 
online learning. The presentation below is adapted from the second and third parts of the 
first survey. 

Datasets are indexed by time: we write Xt and yt for features and labels (the usual column 
index (k) and row index (i) will not be used in this section). Time has a bounded horizon T . 
The machine learning model depends on some parameters θ and we denote it with fθ. At 
time t (when dataset (Xt, yt) is gathered), the loss function L of the trained model naturally 
depends on the data (Xt, yt) and on the model via θt which are the parameter values fitted 
to the time-t data. For notational simplicity, we henceforth write Lt(θt) = L(Xt, yt, θt). The 
key quantity in online learning is the regret over the whole time sequence: 

T TK K 
RT = Lt(θt) − inf Lt(θ ∗). (14.3)

θ∗∈Θ 
t=1 t=1 

The regret is the total loss incurred by the models θt minus the minimal loss that could 
have been obtained with full knowledge of the data sequence (hence computed in hindsight). 
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The basic methods in online learning are in fact quite similar to the batch-training of neural 
networks. The updating of the parameter is based on 

zt+1 = θt − ηt\Lt(θt), (14.4) 

where \Lt(θt) denotes the gradient of the current loss Lt. One problem that can arise is 
when zt+1 falls out of the bounds that are prescribed for θt. Thus, the candidate vector for 
the new parameters, zt+1, is projected onto the feasible domain which we call S here: 

θt+1 = ΠS (zt+1), with ΠS (u) = argmin ||θ − u||2. (14.5) 
θ∈S 

Hence θt+1 is as close as possible to the intermediate choice zt+1. In Hazan et al. (2007), 
it is shown that under suitable assumptions (e.g., Lt being strictly convex with bounded 

gradient sup \Lt(θ) ≤ G), the regret RT satisfies 
θ 

G2 

RT ≤ (1 + log(T )),2H 

 

 

�

 

0 if |θ�x − y| ≤ C (close enough prediction)
L (θ) = ,|θ�x − y| − C if |θ�x − y| > C (prediction too far) 

for some parameter C > 0. If the weight θ is such that the model is close enough to the true 
value, then the loss is zero; if not, it is equal to the absolute value of the error minus C. In 
PAA, the update of the parameter is given by 

θt+1 = argmin||θ − θt||22, subject to L (θ) = 0, 
θ 
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where H is a scaling factor for the learning rate (also called step sizes): ηt = (Ht)−1. 

More sophisticated online algorithms generalize (14.4) and (14.5) by integrating the Hessian 
∂matrix \2Lt(θ) := [\2Lt]i,j = Lt(θ) and/or by including penalizations to reduce ∂θi∂θj

instability in θt. We refer to section 2 in Hoi et al. (2018) for more details on these extensions. 

An interesting stream of parameter updating is that of the passive-aggressive algorithms 
(PAAs) formalized in Crammer et al. (2006). The base case involves classification tasks, but 
we stick to the regression setting below (section 5 in Crammer et al. (2006)). One strong 
limitation with PAAs is that they rely on the set of parameters where the loss is either 
zero or negligible: Θ∗ = {θ, Lt(θ) < C}. For general loss functions and learner f , this set 
is largely inaccessible. Thus, the algorithms in Crammer et al. (2006) are restricted to a 
particular case, namely linear f and C-insensitive hinge loss: 

hence the new parameter values are chosen such that two conditions are satisfied:
 
- the loss is zero (by the definition of the loss, this means that the model is close enough to
 
the true value);
 
- and, the parameter is as close as possible to the previous parameter values.
 

By construction, if the model is good enough, the model does not move (passive phase), but
 
if not, it is rapidly shifted towards values that yield satisfactory results (aggressive phase).
 

We end this section with a historical note. Some of the ideas from online learning stem from
 
the financial literature and from the concept of universal portfolios originally coined by
 
Cover (1991) in particular. The setting is the following. The function f is assumed to be
 



wealth from optimal strategy wealth universal ≥ ,
2(n + 1)(m−1)/2 
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linear f(xt) = θ�xt and the data xt consists of asset returns, thus, the values are portfolio 
returns as long as θ�1N = 1 (the budget constraint). The loss functions Lt correspond to a 
concave utility function (e.g., logarithmic) and the regret is reversed: 

T TK K 
RT = sup Lt(r� θ ∗) − Lt(r� θt), 

θ∗∈Θ 
t t

t=1 t=1 

where r� are the returns. Thus, the program is transformed to maximize a concave function. t 
Several articles (often from the Computer Science or ML communities) have proposed 
solutions to this type of problems: Blum and Kalai (1999), Agarwal et al. (2006) and Hazan 
et al. (2007). Most contributions work with price data only, with the notable exception of 
Cover and Ordentlich (1996), which mentions external data (‘side information’). In the 
latter article, it is proven that constantly rebalanced portfolios distributed according to two 
random distributions achieve growth rates that are close to the unattainable optimal rates. 
The two distributions are the uniform law (equally weighting, once again) and the Dirichlet 
distribution with constant parameters equal to 1/2. Under this universal distribution, Cover 
and Ordentlich (1996) show that the wealth obtained is bounded below by: 

where m is the number of assets and n is the number of periods. 

The literature on online portfolio allocation is reviewed in Li and Hoi (2014) and outlined in 
more details in Li and Hoi (2018). Online learning, combined to early stopping for neural 
networks, is applied to factor investing in Wong et al. (2020). Finally, online learning is 
associated to clustering methods for portfolio choice in Khedmati and Azin (2020). 

14.2.3 Homogeneous transfer learning 

This subsection is mostly conceptual and will not be illustrated by coded applications. The 
ideas behind transfer learning can be valuable in that they can foster novel ideas, which is 
why we briefly present them below. 

Transfer learning has been surveyed numerous times. One classical reference is Pan and 
Yang (2009), but Weiss et al. (2016) is more recent and more exhaustive. Suppose we are 
given two datasets DS (source) and DT (target). Each dataset has its own features XS and 
XT and labels yS and yT . In classical supervised learning, the patterns of the target set 
are learned only through XT and yT . Transfer learning proposes to improve the function 

TfT (obtained by minimizing the fit y = fT (xT ) + CT on the target data) via the function i i i 
SfS (from y = fS (xS ) + εS on the source data). Homogeneous transfer learning is when i i i 

the feature space does not change, which is the case in our setting. In asset management, 
this may not always be the case if for instance new predictors are included (e.g., based on 
alternative data like sentiment, satellite imagery, credit card logs, etc.). 

There are many subcategories in transfer learning depending on what changes between the 
source S and the target T : is it the feature space, the distribution of the labels, and/or the 
relationship between the two? These are the same questions as in Section 14.2. The latter 
case is of interest in finance because the link with non-stationarity is evident: it is when 
the model f in y = f(X) changes through time. In transfer learning jargon, it is written 
as P [yS |XS ] = P [yT |XT ]: the conditional law of the label knowing the features is not the 
same when switching from the source to the target. Often, the term ‘domain adaptation’ is 



CS (f, h) = ES [|f(x) − h(x)|]. 

Then, 

CT (fT , h) ≤ CS (fS , h)+ 2 sup |PS (B) − PT (B)| + min (ES [|fS (x) − fT (x)|], ET [|fS (x) − fT (x)|]), 
 B  

difference between the two learning tasks 
difference between domains 

  �\  �

  

  

CT (f) = ET [L(y, f(X))] , 

where L is some loss function that depends on the task (regression versus classification). 
This can be arranged 

PS (y, X)
CT (f) = ET 

PS (y, X) 
L(y, f(X)) K 

PT (y, X) 
PS (y, X)= 
PS (y, X) 

L(y, f(X)) 
y,X 

PT (y, X)= ES 
PS (y, X) 

L(y, f(X)) 

PT (y,X)The key quantity is thus the transition ratio PS (y,X) (Radon–Nikodym derivative under 
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used as synonym to transfer learning. Because of a data shift, we must adapt the model to 
increase its accuracy. These topics are reviewed in a series of chapters in the collection by 
Quionero-Candela et al. (2009). 

An important and elegant result in the theory was proven by Ben-David et al. (2010) in 
the case of binary classification. We state it below. We consider f and h two classifiers with 
values in {0, 1}. The average error between the two over the domain S is defined by 

\
where PS and PT denote the distribution of the two domains. The above inequality is a
 
bound on the generalization performance of h. If we take fS to be the best possible classifier
 
for S and fT the best for T , then the error generated by h in T is smaller than the sum of
 
three components:
 
- the error in the S space;
 
- the distance between the two domains (by how much the data space has shifted);
 
- the distance between the two best models (generators).
 

One solution that is often mentioned in transfer learning is instance weighting. We present
 
it here in a general setting. In machine learning, we seek to minimize
 

some assumptions). Of course this ratio is largely inaccessible in practice, but it is possible 
to find a weighting scheme (over the instances) that yields improvements over the error 
in the target space. The weighting scheme, just as in Coqueret and Guida (2020), can be 
binary, thereby simply excluding some observations in the computation of the error. Simply 
removing observations from the training sample can have beneficial effects. 

More generally, the above expression can be viewed as a theoretical invitation for user-
specified instance weighting (as in Section 6.4.7). In the asset allocation parlance, this can 
be viewed as introducing views as to which observations are the most interesting, e.g., value 
stocks can be allowed to have a larger weight in the computation of the loss if the user 
believes they carry more relevant information. Naturally, it then always remains to minimize 
this loss. 
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We close this topic by mentioning a practical application of transfer learning developed in 
Koshiyama et al. (2020). The authors propose a neural network architecture that allows to 
share the learning process from different strategies across several markets. This method is, 
among other things, aimed at alleviating the backtest overfitting problem. 



http://taylorandfrancis.com
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Unsupervised learning
 

All algorithms presented in Chapters 5 to 9 belong to the larger class of supervised learning 
tools. Such tools seek to unveil a mapping between predictors X and a label Z. The 
supervision comes from the fact that it is asked that the data tries to explain this particular 
variable Z. Another important part of machine learning consists of unsupervised tasks, that 
is, when Z is not specified and the algorithm tries to make sense of X on its own. Often, 
relationships between the components of X are identified. This field is much too vast to be 
summarized in one book, let alone one chapter. The purpose here is to briefly explain in 
what ways unsupervised learning can be used, especially in the data pre-processing phase. 

15.1 The problem with correlated predictors 

Often, it is tempting to supply all predictors to a ML-fueled predictive engine. That may not 
be a good idea when some predictors are highly correlated. To illustrate this, the simplest 
example is a regression on two variables with zero mean and covariance and precisions 
matrices: 

When the covariance/correlation ρ increase towards 1 (the two variables are co-linear), the 
scaling denominator in Σ−1 goes to zero and the formula β̂ = Σ−1X�Z implies that one 
coefficient will be highly positive and one highly negative. The regression creates a spurious 
arbitrage between the two variables. Of course, this is very inefficient and yields disastrous 
results out-of-sample. 

We illustrate what happens when many variables are used in the regression below (Ta­
ble 15.1). One elucidation of the aforementioned phenomenon comes from the variables 
Mkt_Cap_12M_Usd and Mkt_Cap_6M_Usd, which have a correlation of 99.6% in the 
training sample. Both are singled out as highly significant but their signs are contradictory. 
Moreover, the magnitude of their coefficients are very close (0.21 versus 0.18) so that their 
net effect cancels out. Naturally, providing the regression with only one of these two inputs 
would have been wiser. 

library(broom) # Package for clean regression output 
training_sample %>% 

dplyr::select(c(features, "R1M_Usd")) %>% # List of variables 
lm(R1M_Usd ~ . , data = .) %>% # Model: predict R1M_Usd 
tidy() %>% # Put output in clean format 
filter(abs(statistic) > 3) %>% # Keep significant predictors only 
knitr::kable(booktabs = TRUE, 

caption = "Significant predictors in the training sample.") 

233 



234 15 Unsupervised learning 

TABLE 15.1: Significant predictors in the training sample. 

term estimate std.error statistic p.value 

(Intercept) 0.0405741 0.0053427 7.594323 0.0000000 
Ebitda_Margin 0.0132374 0.0034927 3.789999 0.0001507 
Ev_Ebitda 0.0068144 0.0022563 3.020213 0.0025263 
Fa_Ci 0.0072308 0.0023465 3.081471 0.0020601 
Fcf_Bv 0.0250538 0.0051314 4.882465 0.0000010 

Fcf_Yld -0.0158930 0.0037359 -4.254126 0.0000210 
Mkt_Cap_12M_Usd 0.2047383 0.0274320 7.463476 0.0000000 
Mkt_Cap_6M_Usd -0.1797795 0.0459390 -3.913443 0.0000910 
Mom_5M_Usd -0.0186690 0.0044313 -4.212972 0.0000252 
Mom_Sharp_11M_Usd 0.0178174 0.0046948 3.795131 0.0001476 

Ni 0.0154609 0.0044966 3.438361 0.0005854 
Ni_Avail_Margin 0.0118135 0.0038614 3.059359 0.0022184 
Ocf_Bv -0.0198113 0.0052939 -3.742277 0.0001824 
Pb -0.0178971 0.0031285 -5.720637 0.0000000 
Pe -0.0089908 0.0023539 -3.819565 0.0001337 

Sales_Ps -0.0157856 0.0046278 -3.411062 0.0006472 
Vol1Y_Usd 0.0114250 0.0027923 4.091628 0.0000429 
Vol3Y_Usd 0.0084587 0.0027952 3.026169 0.0024771 

In fact, there are several indicators for the market capitalization and maybe only one would 
suffice, but it is not obvious to tell which one is the best choice. 

To further depict correlation issues, we compute the correlation matrix of the predictors 
below (on the training sample). Because of its dimension, we show it graphically. As there 
are too many labels, we remove them. 

library(corrplot) # Package for plots of correlation matrices 
C <- cor(training_sample %>% dplyr::select(features)) # Correlation matrix 
corrplot(C, tl.pos='n') # Plot 

The graph of Figure 15.1 reveals several blue squares around the diagonal. For instance, the 
biggest square around the first third of features relates to all accounting ratios based on 
free cash flows. Because of this common term in their calculation, the features are naturally 
highly correlated. These local correlation patterns occur several times in the dataset and 
explain why it is not a good idea to use simple regression with this set of features. 

In full disclosure, multicollinearity (when predictors are correlated) can be much less a 
problem for ML tools than it is for pure statistical inference. In statistics, one central goal 
is to study the properties of β coefficients. Collinearity perturbs this kind of analysis. In 
machine learning, the aim is to maximize out-of-sample accuracy. If having many predictors 
can be helpful, then so be it. One simple example can help clarify this matter. When building 
a regression tree, having many predictors will give more options for the splits. If the features 
make sense, then they can be useful. The same reasoning applies to random forests and 
boosted trees. What does matter is that the large spectrum of features helps improve the 
generalization ability of the model. Their collinearity is irrelevant. 
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FIGURE 15.1: Correlation matrix of predictors. 

In the remainder of the chapter, we present two approaches that help reduce the number of 
predictors: 

•	 the first one aims at creating new variables that are uncorrelated with each other. Low 
correlation is favorable from an algorithmic point of view, but the new variables lack 
interpretability; 

•	 the second one gathers predictors into homogeneous clusters and only one feature should 
be chosen out of this cluster. Here the rationale is reversed: interpretability is favored over 
statistical properties because the resulting set of features may still include high correlations, 
albeit to a lesser point compared to the original one. 

15.2 Principal component analysis and autoencoders 

The first method is a cornerstone in dimensionality reduction. It seeks to determine a smaller
 
number of factors (K � < K) such that:
 
- i) the level of explanatory power remains as high as possible;
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- ii) the resulting factors are linear combinations of the original variables;
 
- iii) the resulting factors are orthogonal.
 

15.2.1 A bit of algebra 

In this short subsection, we define some key concepts that are required to fully understand 
the derivation of principal component analysis (PCA). Henceforth, we work with matrices 
(in bold fonts). An I × K matrix X is orthonormal if I > K and X�X = IK . When I = K, 
the (square) matrix is called orthogonal and X�X = XX� = IK , i.e., X−1 = X� . 

One foundational result in matrix theory is the Singular Value Decomposition (SVD, see, 
e.g., chapter 5 in Meyer (2000)). The SVD is formulated as follows: any I × K matrix X 
can be decomposed into 

X = UΔV� , (15.1) 

where U (I × I) and V (K × K) are orthogonal and Δ (with dimensions I × K) is diagonal, 
i.e., Δi,k = 0 whenever i = k. In addition, Δi, i ≥ 0: the diagonal terms of Δ are nonnegative. 

For simplicity, we assume below that 1� X = 0� , i.e., that all columns have zero sum (and I K 
hence zero mean).1 This allows to write that the covariance matrix is equal to its sample 

1estimate ΣX = I−1 X
�X. 

One crucial feature of covariance matrices is their symmetry. Indeed, real-valued symmetric 
(square) matrices enjoy a SVD which is much more powerful: when X is symmetric, there 
exist an orthogonal matrix Q and a diagonal matrix D such that 

X = QDQ� . (15.2) 

This process is called diagonalization (see chapter 7 in Meyer (2000)) and conveniently 
applies to covariance matrices. 

15.2.2 PCA 

The goal of PCA is to build a dataset X̃ that has fewer columns but that keeps as much 
information as possible when compressing the original one, X. The key notion is the change 
of base, which is a linear transformation of X into Z, a matrix with identical dimension, via 

Z = XP, (15.3) 

where P is a K × K matrix. There are of course an infinite number of ways to transform X 
into Z, but two fundamental constraints help reduce the possibilities. The first constraint is 
that the columns of Z be uncorrelated. Having uncorrelated features is desirable because 
they then all tell different stories and have zero redundancy. The second constraint is that 
the variance of the columns of Z is highly concentrated. This means that a few factors 
(columns) will capture most of the explanatory power (signal), while most (the others) will 
consist predominantly of noise. All of this is coded in the covariance matrix of Y: 

• the first condition imposes that the covariance matrix be diagonal; 

1In practice, this is not a major problem; since we work with features that are uniformly distributed, 
de-meaning amounts to remove 0.5 to all feature values. 



      

1 1 1ΣY = Z�Z = P�X�XP = P�ΣX P. (15.4)
I − 1 I − 1 I − 1 

In this expression, we plug the decomposition (15.2) of ΣX : 

1ΣY = P�QDQ�P,
I  1 
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•	 the second condition imposes that the diagonal elements, when ranked in decreasing 
magnitude, see their value decline (sharply if possible). 

The covariance matrix of Z is

−
1thus picking P = Q, we get, by orthogonality, ΣY = I−1 D, that is, a diagonal covariance 

matrix for Z. The columns of Z can then be re-shuffled in decreasing order of variance so 
that the diagonal elements of ΣY progressively shrink. This is useful because it helps locate 
the factors with most informational content (the first factors). In the limit, a constant vector 
(with zero variance) carries no signal. 

The matrix Z is a linear transformation of X, thus, it is expected to carry the same 
information, even though this information is coded differently. Since the columns are ordered 
according to their relative importance, it is simple to omit some of them. The new set of 
features X̃ consists in the first K � (with K � < K) columns of Z. 

Below, we show how to perform PCA and visualize the output with the factoextra package. 
To ease readability, we use the smaller sample with few predictors. 

pca <- training_sample %>% 
dplyr::select(features_short) %>% # Smaller number of predictors 
prcomp() # Performs PCA 

pca	 # Show the result 

## Standard deviations (1, .., p=7): 
## [1] 0.4536601 0.3344080 0.2994393 0.2452000 0.2352087 0.2010782 0.1140988 
## 
## Rotation (n x k) = (7 x 7): 
## PC1 PC2 PC3 PC4 PC5 PC6 
## Div_Yld 0.27159946 -0.57909866 0.04572501 -0.52895604 -0.22662581 -0.506566090 
## Eps 0.42040708 -0.15008243 -0.02476659 0.33737265 0.77137719 -0.301883295 
## Mkt_Cap_12M_Usd 0.52386846 0.34323935 0.17228893 0.06249528 -0.25278113 -0.002987057 
## Mom_11M_Usd 0.04723846 0.05771359 -0.89715955 0.24101481 -0.25055884 -0.258476580 
## Ocf 0.53294744 0.19588990 0.18503939 0.23437100 -0.35759553 -0.049015486 
## Pb 0.15241340 0.58080620 -0.22104807 -0.68213576 0.30866476 -0.038674594 
## Vol1Y_Usd -0.40688963 0.38113933 0.28216181 0.15541056 -0.06157461 -0.762587677 
## PC7 
## Div_Yld 0.032011635 
## Eps 0.011965041 
## Mkt_Cap_12M_Usd 0.714319417 
## Mom_11M_Usd 0.043178747 
## Ocf -0.676866120 
## Pb -0.168799297 
## Vol1Y_Usd 0.008632062 

The rotation gives the matrix P: it’s the tool that changes the base. The first row of the 
output indicates the standard deviation of each new factor (column). Each factor is indicated 
via a PC index (principal component). Often, the first PC (first column PC1 in the output) 
loads positively on all initial features: a convex weighted average of all predictors is expected 
to carry a lot of information. In the above example, it is almost the case, with the exception 
of volatility, which has a negative coefficient in the first PC. The second PC is an arbitrage 
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between price-to-book (long) and dividend yield (short). The third PC is contrarian, as 
it loads heavily and negatively on momentum. Not all principal components are easy to 
interpret. 

Sometimes, it can be useful to visualize the way the principal components are built. In 
Figure 15.2, we show one popular representation that is used for two factors (usually the 
first two). 

library(factoextra) # Package for PCA visualization 
fviz_pca_var(pca, # Source of PCA decomposition 

col.var="contrib", 
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 
repel = TRUE # Avoid text overlapping 

) 

The plot shows that no initial factor has negative signs for the first two principal components. 
Volatility is negative for the first one and earnings per share and dividend yield are negative 
for the second. The numbers indicated along the axes are the proportion of explained variance 
of each PC. Compared to the figures in the first line of the output, the numbers are squared 
and then divided by the total sum of squares. 

Once the rotation is known, it is possible to select a subsample of the transformed data. 
From the original 7 features, it is easy to pick just 4. 

training_sample %>% # Start from large sample 
dplyr::select(features_short) %>% # Keep only 7 features 
as.matrix() %>% # Transform in matrix 
multiply_by_matrix(pca$rotation[,1:4]) %>% # Rotate via PCA (first 4 columns of P) 
`colnames<-`(c("PC1", "PC2", "PC3", "PC4")) %>% # Change column names 
head() # Show first 6 lines 

## PC1 PC2 PC3 PC4 
## [1,] 0.3989674 0.7578132 -0.13915223 0.3132578 
## [2,] 0.4284697 0.7587274 -0.40164338 0.3745255 
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FIGURE 15.2: Visual representation of PCA with two dimensions. 
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In a PCA, the coding from X to Z is straightfoward, linear and works both ways: 

Z = XP and X = YP� , 

so that we recover X from Z. This can be writen differently: 

encode via P decode via PX −→ Z −→ X (15.5) 

If we take the truncated version and seek a smaller output (with only K � columns), this 
gives: 

encode via PK 
decode via P 

KX, (I × K) −→ X̃, (I × K �) −→ X̆, (I × K), (15.6) 

where PK is the restriction of P to the K � columns that correspond to the factors with 
the largest variances. The dimensions of matrices are indicated inside the brackets. In this 
case, the recoding cannot recover P exactly but only an approximation, which we write X̆. 
This approximation is coded with less information, hence this new data X̆ is compressed 
and provides a parsimonious representation of the original sample X. 

An autoencodeur generalizes this concept to nonlinear coding functions. Simple linear 
autoencoders are linked to latent factor models (see Proposition 1 in Gu et al. (2020a) for 
the case of single layer autoencoders.) The scheme is the following 

encode via N decode via NX, (I × K) −→ X̃ = N(X), (I × K �) −→ X̆ = N �(X̃), (I × K), 
(15.7) 
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## [3,] 0.5215295 0.5679119 -0.10533870 0.2574949 
## [4,] 0.5445359 0.5335619 -0.08833864 0.2281793 
## [5,] 0.5672644 0.5339749 -0.06092424 0.2320938 
## [6,] 0.5871306 0.6420126 -0.44566482 0.3075399 

These 4 factors can then be used as orthogonal features in any ML engine. The fact that the 
features are uncorrelated is undoubtedly an asset. But the price of this convenience is high: 
the features are no longer immediately interpretable. De-correlating the predictors adds yet 
another layer of “blackbox-ing” in the algorithm. 

PCA can also be used to estimate factor models. In Equation (15.3), it suffices to replace 
Z with returns, X with factor values and P with factor loadings (see, e.g., Connor and 
Korajczyk (1988) for an early reference). More recently, Lettau and Pelger (2020a) and 
Lettau and Pelger (2020b) propose a thorough analysis of PCA estimation techniques. They 
notably argue that first moments of returns are important and should be included in the 
objective function, alongside the optimization on the second moments. 

We end this subsection with a technical note. Usually, PCA is performed on the covariance 
matrix of returns. Sometimes, it may be preferable to decompose the correlation matrix. 
The result may adjust substantially if the variables have very different variances (which is 
not really the case in the equity space). If the investment universe encompasses several asset 
classes, then a correlation-based PCA will reduce the importance of the most volatile class. 
In this case, it is as if all returns are scaled by their respective volatilities. 

15.2.3 Autoencoders 
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where the encoding and decoding functions N and N � are often taken to be neural networks. 
The term autoencoder comes from the fact that the target output, which we often write 
Z is the original sample X. Thus, the algorithm seeks to determine the function N that 
minimizes the distance (to be defined) between X and the output value X̆. The encoder 
generates an alternative representation of X, whereas the decoder tries to recode it back 
to its original values. Naturally, the intermediate (coded) version X̃ is targeted to have a 
smaller dimension compared to X. 

15.2.4 Application 

Autoencoders are easy to code in Keras (see Chapter 7 for more details on Keras). To 
underline the power of the framework, we resort to another way of coding a NN: the so-
called functional API. For simplicity, we work with the small number of predictors (7). The 
structure of the network consists of two symmetric networks with only one intermediate 
layer containing 32 units. The activation function is sigmoid; this makes sense since the 
input has values in the unit interval. 

input_layer <- layer_input(shape = c(7)) # features_short has 7 columns 

encoder <- input_layer %>% # First, encode 
layer_dense(units = 32, activation = "sigmoid") %>% 
layer_dense(units = 4) # 4 dimensions for the output layer (same as PCA example) 

decoder <- encoder %>% # Then, from encoder, decode 
layer_dense(units = 32, activation = "sigmoid") %>% 
layer_dense(units = 7) # the original sample has 7 features 

In the training part, we optimize the MSE and use an Adam update of the weights (see 
Section 7.2.3). 

ae_model <- keras_model(inputs = input_layer, outputs = decoder) # Builds the model 

ae_model %>% compile( # Learning parameters 
loss = 'mean_squared_error', 
optimizer = 'adam', 
metrics = c('mean_absolute_error') 

) 

Finally, we are ready to train the data onto itself! The evolution of loss on the training and 
testing samples is depicted in Figure 15.3. The decreasing pattern shows the progress of the 
quality in compression. 

fit_ae <- ae_model %>% 
fit(training_sample %>% dplyr::select(features_short) %>% as.matrix(), # Input 

training_sample %>% dplyr::select(features_short) %>% as.matrix(), # Output 
epochs = 15, batch_size = 512, 
validation_data = list(testing_sample %>% dplyr::select(features_short) %>% as.matrix(), 

testing_sample %>% dplyr::select(features_short) %>% as.matrix()) 
) 

plot(fit_ae) + theme_grey() 
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FIGURE 15.3: Output from the training of an autoencoder. 

In order to get the details of all weights and biases, the syntax is the following. 

ae_weights <- ae_model %>% get_weights() 

Retrieving the encoder and processing the data into the compressed format is just a matter 
of matrix manipulation. In practice, it is possible to build a submodel by loading the weights 
from the encoder (see exercise below). 

15.3 Clustering via k-means 

The second family of unsupervised tools pertains to clustering. Features are grouped into 
homogeneous families of predictors. It is then possible to single out one among the group 
(or to create a synthetic average of all of them). Mechanically, the number of predictors is 
reduced. 

The principle is simple: among a group of variables (the reasoning would be the same for 
observations in the other dimension) x{1≤j≤J}, find the combination of k < J groups that 
minimize 

kK K 
||x − mi||2 , (15.8) 

i=1 x∈Si 
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where || · || is some norm which is usually taken to be the Euclidean 2l -norm. The Si are 
the groups and the minimization is run on the whole set of groups  S. The mi are the group 
means (also called centroids or barycenters): mi = (card(Si))−1 

x Si 
x.∈

In order to ensure optimality, all possible arrangements must be tested, which is prohibitively 
long when k and J are large. Therefore, the problem is usually solved with greedy algorithms 
that seek (and find) solutions that are not optimal but ‘good enough’. 

One heuristic way to proceed is the following: 

0. Start with a (possibly random) partition of k clusters. 

1. For each cluster, compute the optimal mean values m∗ 
 that minimizes expression 

(15.8).
i

 This is a simple quadratic program. 

2. Given the optimal centers m∗
i , reassign the points xi so that they are all the 

closest to their center. 

3. Repeat steps 1. and 2. until the points do not change cluster at step 2. 

Below, we illustrate this process with an example. From all 93 features, we build 10 clusters. 

set.seed(42) # Setting the random seed (the optim. is random) 
k_means <- training_sample %>% # Performs the k-means clustering 

dplyr::select(features) %>% 
as.matrix() %>% 
t() %>% 
kmeans(10) 

clusters <- tibble(factor = names(k_means$cluster), # Organize the cluster data 
cluster = k_means$cluster) %>% 

arrange(cluster) 
clusters %>% filter(cluster == 4) # Shows one particular group 

## # A tibble: 4 x 2 
## factor cluster 
## <chr> <int> 
## 1 Asset_Turnover 4 
## 2 Bb_Yld 4 
## 3 Recurring_Earning_Total_Assets 4 
## 4 Sales_Ps 4 

We single out the fourth cluster which is composed mainly of accounting ratios related to 
the profitability of firms. Given these 10 clusters, we can build a much smaller group of 
features that can then be fed to the predictive engines described in Chapters 5 to 9. The 
representative of a cluster can be the member that is closest to the center, or simply the 
center itself. This pre-processing step can nonetheless cause problems in the forecasting 
phase. Typically, it requires that the training data be also clustered. The extension to the 
testing data is not straightforward (the clusters may not be the same). 
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15.4 Nearest neighbors 

To the best of our knowledge, nearest neighbors are not used in large-scale portfolio choice 
applications. The reason is simple: computational cost. Nonetheless, the concept of neigh­
bors is widespread in unsupervised learning and can be used locally in complement to 
interpretability tools. Theoretical results on k-NN relating to bounds for error rates on 
classification tasks can be found in section 6.2 of Ripley (2007). The rationale is the following. 
If: 

1.	 the training sample is able to accurately span the distribution of (y, X); and 

2.	 the testing sample follows the same distribution as the training sample (or close 
enough); 

then the neighborhood of one instance xi from the testing features computed on the training 
sample will yield valuable information on yi. 

In what follows, we thus seek to find neighbors of one particular instance xi (a K-dimensional 
row vector). Note that there is a major difference with the previous section: the clustering is 
intended at the observation level (row) and not at the predictor level (column). 

Given a dataset with the same (corresponding) columns Xi,k, the neighbors are defined via 
a similarity measure (or distance) 

KK 
D(xj , xi) = ckdk(xj,k, xi,k), (15.9) 

k=1 

where the distance functions dk can operate on various data types (numerical, categorical, 
etc.). For numerical values, dk(xj,k, xi,k) = (xj,k − xi,k)2 or dk(xj,k, xi,k) = |xj,k − xi,k|. For 
categorical values, we refer to the exhaustive survey by Boriah et al. (2008) which lists 
14 possible measures. Finally the ck in Equation (15.9) allow some flexbility by weighting 
features. This is useful because both raw values (xi,k versus xi,k ) or measure outputs (dk 

versus dk ) can have different scales. 

Once the distances are computed over the whole sample, they are ranked using indices 
l1
i , . . . , li :I 

D xli 
1 
, xi ≤ D xli 

2 
, xi ≤ . . . , ≤ D xli

I 
, xi 

The nearest neighbors are those indexed by li for m = 1, . . . , k. We leave out the case m 

when there are problematic equalities of the type D xlim 
, xi = D xli , xi 

m+1 
for the sake 

of simplicity and because they rarely occur in practice as long as there are sufficiently many 
numerical predictors. 

Given these neighbors, it is now possible to build a prediction for the label side yi. The 
rationale is straightforward: if xi is close to other instances xj , then the label value yi should 
also be close to yj (under the assumption that the features carry some predictive information 
over the label y). 



 
h(D(xj , xi))yj=i 

ŷi = j
,

h(D(xj , xi))j=i 

 

 
j neighbor h(D(xj , xi))yj 

ŷi = . 
j neighbor h(D(xj , xi)) 
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An intuitive prediction for yi is the following weighted average: 

�

�

where h is a decreasing function. Thus, the further xj is from xi, the smaller the weight in 
−azthe average. A typical choice for h is h(z) = e for some parameter a > 0 that determines 

how penalizing the distance D(xj , xi) is. Of course, the average can be taken in the set 
of k nearest neighbors, in which case the h is equal to zero beyond a particular distance 
threshold: 

A more agnostic rule is to take h := 1 over the set of neighbors and in this case, all neighbors 
have the same weight (see the old discussion by Bailey and Jain (1978) in the case of 
classification). For classification tasks, the procedure involves a voting rule whereby the class 
with the most votes wins the contest, with possible tie-breaking methods. The interested 
reader can have a look at the short survey in Bhatia et al. (2010). 

For the choice of optimal k, several complicated techniques and criteria exist (see, e.g., 
Ghosh (2006) and Hall et al. (2008)). Heuristic values often do the job pretty well. A rule 
of thumb is that k = 

√ 
I (I being the total number of instances) is not too far from the 

optimal value, unless I is exceedingly large. 

Below, we illustrate this concept. We pick one date (31th of December 2006) and single out 
one asset (with stock_id equal to 13). We then seek to find the k = 30 stocks that are the 
closest to this asset at this particular date. We resort to the FNN package that proposes an 
efficient computation of Euclidean distances (and their ordering). 

library(FNN) # Package for Fast Nearest Neighbors detection 
knn_data <- filter(data_ml, date == "2006-12-31") # Dataset for k-NN exercise 
knn_target <- filter(knn_data, stock_id == 13) %>% # Target observation 

dplyr::select(features) 
knn_sample <- filter(knn_data, stock_id != 13) %>% # All other observations 

dplyr::select(features) 
neighbors          
neighbors$nn.index # Indices of the k nearest neighbors 

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] 
## [1,] 905 876 730 548 1036 501 335 117 789 54 618 130 342 360 673 
## [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] 
## [1,] 153 265 858 830 286 1150 166 946 192 340 162 951 376 785 
## [,30] 
## [1,] 2 

Once the neighbors and distances are known, we can compute a prediction for the return 
of the target stock. We use the function h(z) = e−z for the weighting of instances (via the 
distances). 

knn_labels <- knn_data[as.vector(neighbors$nn.index),] %>% # y values for neighb. 
dplyr::select(R1M_Usd) 

sum(knn_labels * exp(-neighbors$nn.dist) / sum(exp(-neighbors$nn.dist))) # Pred w. k(z)=e^(-z) 

## [1] 0.003042282 

<- get.knnx(data = knn_sample, query = knn_target, k = 30)
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filter(knn_data, stock_id == 13) %>% # True y 
dplyr::select(R1M_Usd) 

## # A tibble: 1 x 1 
## R1M_Usd 
## <dbl> 
## 1 0.089 

The prediction is neither very good, nor very bad (the sign is correct!). However, note that 
this example cannot be used for predictive purposes because we use data from 2006-12-31 to 
predict a return at the same date. In order to avoid the forward-looking bias, the knn_sample 
variable should be chosen from a prior point in time. 

The above computations are fast (a handful of seconds at most), but hold for only one 
asset. In a k-NN exercise, each stock gets a customed prediction and the set of neighbors 
must be re-assessed each time. For N assets, N(N − 1)/2 distances must be evaluated. This 
is particularly costly in a backtest, especially when several parameters can be tested (the 
number of neighbors, k, or a in the weighting function h(z) = e−az ). When the investment 
universe is small (when trading indices for instance), k-NN methods become computationally 
attractive (see for instance Chen and Hao (2017)). 

15.5 Coding exercise 

Code the compressed version of the data (narrow training sample) via the encoder part of 
the autoencoder. 
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Reinforcement learning
 

Due to its increasing popularity within the Machine Learning community, we dedicate a 
chapter to reinforcement learning (RL). In 2019 only, more than 25 papers dedicated to 
RL have been submitted to (or updated on) arXiv under the q:fin (quantitative finance) 
classification. Moreover, an early survey of RL-based portfolios is compiled in Sato (2019) 
(see also Zhang et al. (2020)) and general financial applications are discussed in Kolm and 
Ritter (2019b), Meng and Khushi (2019), Charpentier et al. (2020) and Mosavi et al. (2020). 
This shows that RL has recently gained traction among the quantitative finance community.1 

While RL is a framework much more than a particular algorithm, its efficient application in 
portfolio management is not straightforward, as we will show. 

16.1 Theoretical layout 

16.1.1 General framework 

In this section, we introduce the core concepts of RL and follow relatively closely the 
notations (and layout) of Sutton and Barto (2018), which is widely considered as a solid 
reference in the field, along with Bertsekas (2017). One central tool in the field is called the 
Markov Decision Process (MDP, see Chapter 3 in Sutton and Barto (2018)). 

MDPs, like all RL frameworks, involve the interaction between an agent (e.g., a trader or 
portfolio manager) and an environment (e.g., a financial market). The agent performs 
actions that may alter the state of environment and gets a reward (possibly negative) for 
each action. This short sequence can be repeated an arbitrary number of times, as is shown 
in Figure 16.1. 

Environment Agent
R0
S0

A0 Environment Agent
R1
S1

A1

Initialization
of state and
reward

Agent
performs
action

Action
generates
reward and
alters state

Agent
performs
new action

...

FIGURE 16.1: Scheme of Markov Decision Process. R, S and A stand for reward, state 
and action, respectively. 

1Like neural networks, reinforcement learning methods have also been recently developed for derivatives 
pricing and hedging, see for instance Kolm and Ritter (2019a). 

247 



� �

�

�

� Ra rp(s , r|s, a) = Pa , where (16.2)ss ss
 
r
 

Pa = P [St = s �|St−1 = s, At−1 = a] , andss
 

Ra
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� p(s , r|s, a) = P [St = s �, Rt = r|St−1 = s, At−1 = a] , (16.1) 
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Given initialized values for the state of the environment (S0) and reward (usually R0 = 0), 
the agent performs an action (e.g., invests in some assets). This generates a reward R1 (e.g., 
returns, profits, Sharpe ratio) and also a future state of the environment (S1). Based on that, 
the agent performs a new action and the sequence continues. When the sets of states, actions 
and rewards are finite, the MDP is logically called finite. In a financial framework, this is 
somewhat unrealistic and we discuss this issue later on. It nevertheless is not hard to think 
of simplified and discretized financial problems. For instance, the reward can be binary: win 
money versus lose money. In the case of only one asset, the action can also be dual: investing 
versus not investing. When the number of assets is sufficiently small, it is possible to set 
fixed proportions that lead to a reasonable number of combinations of portfolio choices, etc. 

We pursue our exposé with finite MDPs; they are the most common in the literature and 
their formal treatment is simpler. The relative simplicity of MDPs helps grasp the concepts 
that are common to other RL techniques. As is often the case with Markovian objects, the 
key notion is that of transition probability: 

which is the probability of reaching state s� and reward r at time t, conditionally on being 
in state s and performing action a at time t − 1. The finite sets of states and actions will be 
denoted with S and A henceforth. Sometimes, this probability is averaged over the set of 
rewards which gives the following decomposition: K 

The goal of the agent is to maximize some function of the stream of rewards. This gain is 
usually defined as 

TK 
Gt = γkRt+k+1 

k=0 

= Rt+1 + γGt+1, (16.3) 

i.e., it is a discounted version of the reward, where the discount factor is γ ∈ (0, 1]. The 
horizon T may be infinite, which is why γ was originally introduced. Assuming the rewards 
are bounded, the infinite sum may diverge for γ = 1. That is the case if rewards don’t 
decrease with time and there is no reason why they should. When γ < 1 and rewards are 
bounded, convergence is assured. When T is finite, the task is called episodic and, otherwise, 
it is said to be continuous. 

In RL, the focal unknown to be optimized or learned is the policy π, which drives the actions 
of the agent. More precisely, π(a, s) = P[At = a|St = s], that is, π equals the probability of 
taking action a if the state of the environment is s. This means that actions are subject to 
randomness, just like for mixed strategies in game theory. While this may seem disappointing 
because an investor would want to be sure to take the best action, it is also a good reminder 
that the best way to face random outcomes may well be to randomize actions as well. 

Finally, in order to try to determine the best policy, one key indicator is the so-called value 
function: 

vπ(s) = Eπ [Gt|St = s] , (16.4) 
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where the time index t is not very relevant and omitted in the notation of the function. The 
index π under the expectation operator E[·] simply indicates that the average is taken when 
the policy π is enforced. The value function is simply equal to the average gain conditionally 
on the state being equal to s. In financial terms, this is equivalent to the average profit if 
the agent takes actions driven by π when the market environment is s. More generally, it 
is also possible to condition not only on the state, but also on the action taken. We thus 
introduce the qπ action-value function: 

qπ(s, a) = Eπ [Gt|St = s, At = a] . (16.5) 

The qπ function is highly important because it gives the average gain when the state and 
action are fixed. Hence, if the current state is known, then one obvious choice is to select 
the action for which qπ(s, ·) is the highest. Of course, this is the best solution if the optimal 
value of qπ is known, which is not always the case in practice. The value function can easily 
be accessed via qπ: vπ(s) = π(a, s)qπ (s, a). a 

The optimal vπ and qπ are straightforwardly defined as 

v∗(s) = max vπ(s), ∀s ∈ S, and q∗(s, a) = max qπ (s, a), ∀(s, a) ∈ S ×A. 
π π 

If only v∗(s) is known, then the agent must span the set of actions and find those that yield 
the maximum value for any given state s. 

Finding these optimal values is a very complicated task and many articles are dedicated 
to solving this challenge. One reason why finding the best qπ(s, a) is difficult is because it 
depends on two elements (s and a) on one side and π on the other. Usually, for a fixed policy π, 
it can be time consuming to evaluate qπ(s, a) for a given stream of actions, states and rewards. 
Once qπ(s, a) is estimated, then a new policy π� must be tested and evaluated to determine 
if it is better than the original one. Thus, this iterative search for a good policy can take 
long. For more details on policy improvement and value function updating, we recommend 
chapter 4 of Sutton and Barto (2018) which is dedicated to dynamic programming. 

16.1.2 Q-learning 

An interesting shortcut to the problem of finding v∗(s) and q∗(s, a) is to remove the 
dependence on the policy. Consequently, there is then of course no need to iteratively 
improve it. The central relationship that is required to do this is the so-called Bellman 
equation that is satisfied by qπ (s, a). We detail its derivation below. First of all, we recall 
that 

qπ(s, a) = Eπ[Gt|St = s, At = a] 
= Eπ[Rt+1 + γGt+1|St = s, At = a], 

where the second equality stems from (16.3). The expression Eπ[Rt+1|St = s, At = a] 
can be further decomposed. Since the expectation runs over π, we need to sum over all 
possible actions a and states s and resort to π(a , s�). In addition, the sum on the s
and r arguments of the probability p(s , r|s, a) = P [St+1 = s�, Rt+1 = r|St = s, At = a] 
gives access to the distribution of the random couple (St+1, Rt+1) so that in the end 
Eπ[Rt+1|St = s, At = a] = π(a , s�)p(s , r|s, a)r. A similar reasoning applies to the a ,r,s 



(QL) 

⎪⎪⎪⎪ 0. Initialize state S0 and for each iteration i until the end of the episode; ⎨ 1. observe state si; 
2. perform action (depending on Q); ⎪⎪⎪⎩⎪    ai   
3. receive reward ri+1 +1  and observe state si ; 
4. Update Q as follows: 

 

Qi+1(si, ai) ←− Qi(si, ai) + η 

⎛⎜⎜ri+1 + γ max Qi(si+1, a) −Qi(si, ai) 

⎞
(16.8) 

a 

echo of (16.7) 

⎟⎟

 ⎧

250 16 Reinforcement learning 

second portion of qπ and: K 
qπ(  ) = � s, a π(a , s� )p(s�  , r|s, a) [r + γEπ [Gt+1|St = s� , At = a� ]] 

aK� ,r,s� 
 

= π(a�  s� ) �  , p(s , r|s, a) [r + γqπ(s � , a� )] . (16.6) 
a� ,r,s� 

This equation links qπ(s, a) to the future qπ(s�, a�) from the states and actions (s�, a�) that 
are accessible from (s, a). 

Notably, Equation (16.6) is also true for the optimal action-value function q  = max qπ(s, a): ∗
π 

) = max (  � a
K 

q (s, p s , r|s, a) [r + γq (  s �, a� )] , ∗
a� 

∗
r,s �

 Eπ∗ [r|s,
K 

=  a] + γ p(s�  a) 
 

maxq (  , r|s, s �, a� ) (16.7) 
a� 

∗
r,s �

 

because one optimal policy is one that maximizes qπ(s, a), for a given state s and over all 
possible actions a. This expression is central to a cornerstone algorithm in reinforcement 
learning called Q-learning (the formal proof of convergence is outlined in Watkins and Dayan 
(1992)). In Q-learning, the state-action function no longer depends on policy and is written 
with capital Q. The process is the following: 

Initialize values Q(s, a) for all states s and actions a. For each episode: 

⎝\ ⎠
The underlying reason this update rule works can

  
 be linked 

�
to fixed point theorems of 

contraction mappings. If a function f satisfies |f(x) − f(y)| < δ|x − y| (Lipshitz continuity), 
then a fixed point z satisfying f(z) = z can be iteratively obtained via z ← f(z). This 
updating rule converges to the fixed point. Equation (16.7) can be solved using a similar 
principle, except that a learning rate η slows the learning process but also technically ensures 
convergence under technical assumptions. 

More generally, (16.8) has a form that is widespread in reinforcement learning that is 
summarized in Equation (2.4) of Sutton and Barto (2018): 

New estimate ← Old estimate + Step size (i.e., learning rate) × (Target - Old estimate), 
(16.9) 

where the last part can be viewed as an error term. Starting from the old estimate, the new 
estimate therefore goes in the ‘right’ (or sought) direction, modulo a discount term that 



�
argmax Qi(si, a) with probability 1 − C 

ai = a . (16.10)
randomly (uniformly) over A with probability C 

� �

Qi+1(si, ai) ←− Qi(si, ai) + η (ri+1 + γ Qi(si+1, ai+1) − Qi(si, ai)) (16.11) 

The improvement comes only from the local point Qi(si+1, ai+1) that is based on the new 
states and actions (si+1, ai+1), whereas in Q-learning, it comes from all possible actions of 
which only the best is retained max Qi(si+1, a). 

a 

A more robust but also more computationally demanding version of SARSA is expected 
SARSA in which the target Q function is averaged over all actions: 

K 
Qi+1(si, ai) ←− Qi(si, ai) + η ri+1 + γ π(a, si+1)Qi(si+1, a) − Qi(si, ai) (16.12) 

a 
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makes sure that the magnitude of this direction is not too large. The update rule in (16.8) 
is often referred to as ‘temporal difference’ learning because it is driven by the improvement 
yielded by estimates that are known at time t + 1 (target) versus those known at time t. 

One important step of the Q-learning sequence (QL) is the second one where the action ai 

is picked. In RL, the best algorithms combine two features: exploitation and exploration. 
Exploitation is when the machine uses the current information at its disposal to choose the 
next action. In this case, for a given state si, it chooses the action ai that maximizes the 
expected reward Qi(si, ai). While obvious, this choice is not optimal if the current function 
Qi is relatively far from the true Q. Repeating the locally optimal strategy is likely to favor 
a limited number of actions, which will narrowly improve the accuracy of the Q function. 

In order to gather new information stemming from actions that have not been tested much 
(but that can potentially generate higher rewards), exploration is needed. This is when an 
action ai is chosen randomly. The most common way to combine these two concepts is called 
C-greedy exploration. The action ai is assigned according to: 

Thus, with probability C, the algorithm explores and with probability 1 − C, it exploits the 
current knowledge of the expected reward and picks the best action. Because all actions 
have a non-zero probability of being chosen, the policy is called “soft”. Indeed, then best 
action has a probability of selection equal to 1 − C(1 − card(A)−1), while all other actions 
are picked with probability C/card(A). 

16.1.3 SARSA 

In Q-learning, the algorithm seeks to find the action-value function of the optimal policy. 
Thus, the policy that is followed to pick actions is different from the one that is learned 
(via Q). Such algorithms are called off-policy. On-policy algorithms seek to improve the 
estimation of the action-value function qπ by continuously acting according to the policy 
π. One canonical example of on-policy learning is the SARSA method which requires two 
consecutive states and actions SARSA. The way the quintuple (St, At, Rt+1, St+1, At+1) is 
processed is presented below. 

The main difference between Q learning and SARSA is the update rule. In SARSA, it is 
given by 



� � � 
N  

SN = x ∈ RN xn = 1, xn ≥ 0, ∀n = 1, . . . , N (16.13) 
n=1 

����
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Expected SARSA is less volatile than SARSA because the latter is strongly impacted by the 
random choice of ai+1. In expected SARSA, the average smoothes the learning process. 

16.2 The curse of dimensionality 

Let us first recall that reinforcement learning is a framework that is not linked to a particular 
algorithm. In fact, different tools can very well co-exist in a RL task (AlphaGo combined both 
tree methods and neural networks, see Silver et al. (2016)). Nonetheless, any RL attempt will 
always rely on the three key concepts: the states, actions and rewards. In factor investing, 
they are fairly easy to identify, though there is always room for interpretation. Actions are 
evidently defined by portfolio compositions. The states can be viewed as the current values 
that describe the economy: as a first-order approximation, it can be assumed that the feature 
levels fulfill this role (possibly conditioned or complemented with macro-economic data). 
The rewards are even more straightforward. Returns or any relevant performance metric2 

can account for rewards. 

A major problem lies in the dimensionality of both states and actions. Assuming an absence 
of leverage (no negative weights), the actions take values on the simplex 

K
and assuming that all features have been uniformized, their space is [0, 1]NK . Needless to 
say, the dimensions of both spaces are numerically impractical. 

A simple solution to this problem is discretization: each space is divided into a small number 
of categories. Some authors do take this route. In Yang et al. (2018), the state space is 
discretized into three values depending on volatility, and actions are also split into three 
categories. Bertoluzzo and Corazza (2012) and Xiong et al. (2018) also choose three possible 
actions (buy, hold, sell). In Almahdi and Yang (2019), the learner is expected to yield binary 
signals for buying or shorting. García-Galicia et al. (2019) consider a larger state space (8 
elements) but restrict the action set to 3 options.3 In terms of the state space, all articles 
assume that the state of the economy is determined by prices (or returns). 

One strong limitation of these approaches is the marked simplification they imply. Realistic 
discretizations are numerically intractable when investing in multiple assets. Indeed, splitting 
the unit interval in h points yields hNK possibilities for feature values. The number of options 
for weight combinations is exponentially increasing N . As an example: just 10 possible values 
for 10 features of 10 stocks yield 10100 permutations. 

The problems mentioned above are of course not restricted to portfolio construction. Many 
solutions have been proposed to solve Markov Decision Processes in continuous spaces. We 
refer for instance to Section 4 in Powell and Ma (2011) for a review of early methods (outside 
finance). 

2e.g., Sharpe ratio which is for instance used in Moody et al. (1998), Bertoluzzo and Corazza (2012) and 
Aboussalah and Lee (2020) or drawdown-based ratios, as in Almahdi and Yang (2017).

3Some recent papers consider arbitrary weights (e.g., Jiang et al. (2017) and Yu et al. (2019)) for a 
limited number of assets. 
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θ h(a,s)e
πθ(a, s) = (16.14) 

b e
θ h(b,s) 
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\Eθ[Gt] = Eθ Gt 

\πθ 
. (16.15)

πθ 
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This curse of dimensionality is accompanied by the fundamental question of training data. 
Two options are conceivable: market data versus simulations. Under a given controlled 
generator of samples, it is hard to imagine that the algorithm will beat the solution that 
maximizes a given utility function. If anything, it should converge towards the static optimal 
solution under a stationary data generating process (see, e.g., Chaouki et al. (2020) for 
trading tasks), which is by the way a very strong modelling assumption. 

This leaves market data as a preferred solution but even with large datasets, there is little 
chance to cover all the (actions, states) combinations mentioned above. Characteristics-based 
datasets have depths that run through a few decades of monthly data, which means several 
hundreds of time-stamps at most. This is by far too limited to allow for a reliable learning 
process. It is always possible to generate synthetic data (as in Yu et al. (2019)), but it is 
unclear that this will solidly improve the performance of the algorithm. 

16.3 Policy gradient 

16.3.1 Principle 

Beyond the discretization of action and state spaces, a powerful trick is parametrization. 
When a and s can take discrete values, action-value functions must be computed for all 
pairs (a, s), which can be prohibitively cumbersome. An elegant way to circumvent this 
problem is to assume that the policy is driven by a relatively modest number of parameters. 
The learning process is then focused on optimizing this set of parameters θ. We then write 
πθ(a, s) for the probability of choosing action a in state s. One intuitive way to define πθ(a, s) 
is to resort to a soft-max form: 

where the output of function h(a, s), which has the same dimension as θ is called a feature 
vector representing the pair (a, s). Typically, h can very well be a simple neural network 
with two input units and an output dimension equal to the length of θ. 

One desired property for πθ is that it be differentiable with respect to θ so that θ can be 
improved via some gradient method. The most simple and intuitive results about policy 
gradients are known in the case of episodic tasks (finite horizon) for which it is sought 
to maximize the average gain Eθ [Gt] where the gain is defined in Equation (16.3). The 
expectation is computed according to a particular policy that depends on θ, this is why we 
use a simple subscript. One central result is the so-called policy gradient theorem which 
states that 

This result can then be used for gradient ascent: when seeking to maximize a quantity, 
the parameter change must go in the upward direction: 

θ ← θ + η\Eθ[Gt]. (16.16) 



θ ← θ + η (Rt+1 + γv(St+1, w) − v(St, w)) 
\πθ 

, (16.17)
πθ 

� N1 
fα(w1, . . . , wn) = w αn−1 ,nB(α) 

n=1 
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This simple update rule is known as the REINFORCE algorithm. One improvement of 
this simple idea is to add a baseline, and we refer to section 13.4 of Sutton and Barto (2018) 
for a detailed account on this topic. 

16.3.2 Extensions 

A popular extension of REINFORCE is the so-called actor-critic (AC) method which 
combines policy gradient with Q- or v-learning. The AC algorithm can be viewed as some 
kind of mix between policy gradient and SARSA. A central requirement is that the state-
value function v(·) be a differentiable function of some parameter vector w (it is often taken 
to be a neural network). The update rule is then 

but the trick is that the vector w must also be updated. The actor is the policy side which is 
what drives decision making. The critic side is the value function that evaluates the actor’s 
performance. As learning progresses (each time both sets of parameters are updated), both 
sides improve. The exact algorithmic formulation is a bit long and we refer to Section 13.5 
in Sutton and Barto (2018) for the precise sequence of steps of AC. 

Another interesting application of parametric policies is outlined in Aboussalah and Lee 
(2020). In their article, the authors define a trading policy that is based on a recurrent 
neural network. Thus, the parameter θ in this case encompasses all weights and biases in 
the network. 

Another favorable feature of parametric policies is that they are compatible with continuous 
sets of actions. Beyond the form (16.14), there are other ways to shape πθ . If A is a subset 
of R, and fΩ is a density function with parameters Ω, then a candidate form for πθ is 

πθ = fΩ(s,θ)(a), (16.18) 

in which the parameters Ω are in turn functions of the states and of the underlying (second 
order) parameters θ. 

While the Gaussian distribution (see section 13.7 in Sutton and Barto (2018)) is often a 
preferred choice, they would require some processing to lie inside the unit interval. One easy 
way to obtain such values is to apply the normal cumulative distribution function to the 
output. In Wang and Zhou (2019), the multivariate Gaussian policy is theoretically explored, 
but it assumes no constraint on weights. 

Some natural parametric distributions emerge as alternatives. If only one asset is traded, 
then the Bernoulli distribution can be used to determine whether or not to buy the asset. If 
a riskless asset is available, the beta distribution offers more flexibility because the values 
for the proportion invested in the risky asset span the whole interval; the remainder can be 
invested into the safe asset. When many assets are traded, things become more complicated 
because of the budget constraint. One ideal candidate is the Dirichlet distribution because 
it is defined on a simplex (see Equation (16.13)): 



   
where B(α) is the multinomial beta function: �N 

n=1 Γ(αn)
B(α) = . 

NΓ n=1 αn 

If we set π = πα = fα, the link with factors or characteristics can be coded through α via a 
linear form: 

K  (k) (k)(F1) αn,t = θ0,t + θt xt,n , (16.19) 
k=1 

 

� �

    

θ = min ||θ ∗ − z||2 , (16.20) 
z∈Θ(xt)

where || · || is the Euclidean norm and Θ(xt) is the feasible set, that is, the set of vectors θ 
K (k) (k)such that the αn,t = θ0,t + k=1 θt xt,n are all non-negative. 

A second option for the form of the policy, π2 , is slightly more complex but remains always θt

valid (i.e., has positive αn,t values): 

KK (k) (k)(F2) αn,t = exp θ0,t + θ x , (16.21)t t,n 
k=1 

which is simply the exponential of the first version. With some algebra, it is possible to 
jderive the policy gradients. The policies π are defined by the Equations (Fj) above. Let Fθt 

denote the digamma function. Let 1 denote the RN vector of all ones. We have 

Nπ1 K\θt θt = (F (1�Xtθt) − F(xt,nθt) + ln wn) x� 
t,nπ1 

θt n=1
 

N
π2 K\θt θt Xtθt xt,nθt x�= F 1� e − F(e xt,nθt ) + ln wn e t,nπ2 
θt n=1 

where Xe  is the element-wise exponential of a matrix X. 

The allocation can then either be made by direct sampling, or using the mean of the 
distribution (1�α)−1α. Lastly, a technical note: Dirichlet distributions can only be used for 
small portfolios because the scaling constant in the density becomes numerically intractable 
for large values of N (e.g., above 50). 

K
which          αn,t >      
θk,t. Indeed, during the learning process, an update in θ might yield values that are out of 
the feasible set of αt. In this case, it is possible to resort to a trick that is widely used in 
online learning (see, e.g., section 2.3.1 in Hoi et al. (2018)). The idea is simply to find the 
acceptable solution that is closest to the suggestion from the algorithm. If we call θ∗ the 
result of an update rule from a given algorithm, then the closest feasible vector is 

is highly tractable, but may violate the condition that 0 for some values of

255 16.3 Policy gradient 
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16.4 Simple examples 

16.4.1 Q-learning with simulations 

To illustrate the gist of the problems mentioned above, we propose two implementations of 
Q-learning. For simplicity, the first one is based on simulations. This helps understand the 
learning process in a simplified framework. We consider two assets: one risky and one riskless, 
with return equal to zero. The returns for the risky process follow an autoregressive model 
of order one (AR(1)): rt+1 = a + ρrt + Ct+1 with |ρ| < 1 and C following a standard white 
noise with variance σ2. In practice, individual (monthly) returns are seldom autocorrelated, 
but adjusting the autocorrelation helps understand if the algorithm learns correctly (see 
exercise below). 

The environment consists only in observing the past return rt. Since we seek to estimate the 
Q function, we need to discretize this state variable. The simplest choice is to resort to a 
binary variable: equal to -1 (negative) if rt < 0 and to +1 (positive) if rt ≥ 0. The actions 
are summarized by the quantity invested in the risky asset. It can take 5 values: 0 (risk-free 
portfolio), 0.25, 0.5, 0.75 and 1 (fully invested in the risky asset). This is for instance the 
same choice as in Pendharkar and Cusatis (2018). 

The landscape of R libraries for RL is surprisingly sparse. We resort to the package Rein­
forcementLearning which has an intuitive implementation of Q-learning (another option 
would be the reinforcelearn package). It requires a dataset with the usual inputs: state, 
action, reward and subsequent state. We start by simulating the returns: they drive the 
states and the rewards (portfolio returns). The actions are sampled randomly. Technically, 
the main function of the package requires that states and actions be of character type. The 
data is built in the chunk below. 

library(ReinforcementLearning) # Package for RL 
set.seed(42) # Fixing the random seed 
n_sample <- 10^5 # Number of samples to be generated 
rho <- 0.8 # Autoregressive parameter 
sd <- 0.4 # Std. dev. of noise 
a <- 0.06 * rho # Scaled mean of returns 
data_RL <- tibble(returns = a/rho + arima.sim(n = n_sample, # Returns via AR(1) simulation 

list(ar = rho), 
sd = sd), 

action = round(runif(n_sample)*4)/4) %>% # Random action (portfolio) 
mutate(new_state = if_else(returns < 0, "neg", "pos"), # Coding of state 

reward = returns * action, # Reward = portfolio return 
state = lag(new_state), # Next state 
action = as.character(action)) %>% 

na.omit() # Remove one missing state 
data_RL %>% head() # Show first lines 

## # A tibble: 6 x 5 
## returns action new_state reward state 
## <dbl> <chr> <chr> <dbl> <chr> 
## 1 -0.474 0.5 neg -0.237 neg 
## 2 -0.185 0.25 neg -0.0463 neg 
## 3 0.146 0.25 pos 0.0364 neg 
## 4 0.543 0.75 pos 0.407 pos 
## 5 0.202 0.75 pos 0.152 pos 
## 6 0.376 0.25 pos 0.0940 pos 
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There are 3 parameters in the implementation of the Q-learning algorithm: 

•	 η, which is the learning rate in the updating Equation (16.8). In ReinforcementLearning, 
this is coded as alpha; 

•	 γ, the discounting rate for the rewards (also shown in Equation (16.8)); 

•	 and C, which controls the rate of exploration versus exploitation (see Equation (16.10)). 

control <- list(alpha = 0.1, # Learning rate
 
gamma = 0.7, # Discount factor for rewards
 
epsilon = 0.1) # Exploration rate
 

fit_RL <- ReinforcementLearning(data_RL, # Main RL function
 
s = "state",
 
a = "action",
 
r = "reward",
 
s_new = "new_state",
 
control = control)
 

print(fit_RL) # Show the output 

## State-Action function Q
 
## 0.25 0 1 0.75 0.5
 
## neg 0.2473169 0.4216894 0.1509653 0.1734538 0.229004
 
## pos 1.0721669 0.7561417 1.4739050 1.1214795 1.045047
 
##
 
## Policy
 
## neg pos
 
## "0" "1"
 
##
 
## Reward (last iteration)
 
## [1] 2588.659
 

The output shows the Q function, which depends naturally both on states and actions. 
When the state is negative, large risky positions (action equal to 0.75 or 1.00) are associated 
with the smallest average rewards, whereas small positions yield the highest average rewards. 
When the state is positive, the average rewards are the highest for the largest allocations. 
The rewards in both cases are almost a monotonic function of the proportion invested in 
the risky asset. Thus, the recommendation of the algorithm (i.e., the policy) is to be fully 
invested in a positive state and to refrain from investing in a negative state. Given the 
positive autocorrelation of the underlying process, this does make sense. 

Basically, the algorithm has simply learned that positive (resp. negative) returns are more 
likely to follow positive (resp. negative) returns. While this is somewhat reassuring, it is by 
no means impressive, and much simpler tools would yield similar conclusions and guidance. 

16.4.2 Q-learning with market data 

The second application is based on the financial dataset. To reduce the dimensionality of
 
the problem, we will assume that:
 
- only one feature (price-to-book ratio) captures the state of the environment. This feature
 
is processed so that is has only a limited number of possible values;
 
- actions take values over a discrete set consisting of three positions: +1 (buy the market), -1
 
(sell the market) and 0 (hold no risky positions);
 
- only two assets are traded: those with stock_id equal to 3 and 4 - they both have 245 days
 
of trading data.
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The construction of the dataset is unelegantly coded below. 

return_3 <- data_ml %>% filter(stock_id == 3) %>% pull(R1M_Usd) # Return of asset 3 
return_4 <- data_ml %>% filter(stock_id == 4) %>% pull(R1M_Usd) # Return of asset 4 
pb_3 <- data_ml %>% filter(stock_id == 3) %>% pull(Pb) # P/B ratio of asset 3 
pb_4 <- data_ml %>% filter(stock_id == 4) %>% pull(Pb) # P/B ratio of asset 4 
action_3 <- floor(runif(length(pb_3))*3) - 1 # Action for asset 3 (random) 
action_4 <- floor(runif(length(pb_4))*3) - 1 # Action for asset 4 (random) 

RL_data <- tibble(return_3, return_4, # Building the dataset 
pb_3, pb_4, 
action_3, action_4) %>% 

mutate(action = paste(action_3, action_4), # Uniting actions 
pb_3 = round(5 * pb_3), # Simplifying states (P/B) 
pb_4 = round(5 * pb_4), # Simplifying states (P/B) 
state = paste(pb_3, pb_4), # Uniting states 
reward = action_3*return_3 + action_4*return_4, # Computing rewards 
new_state = lead(state)) %>% # Infer new state 

dplyr::select(-pb_3, -pb_4, -action_3, # Remove superfluous vars. 
-action_4, -return_3, -return_4) 

head(RL_data) # Showing the result 

## # A tibble: 6 x 4 
## action state reward new_state 
## <chr> <chr> <dbl> <chr> 
## 1 -1 -1 1 1 -0.061 1 1 
## 2 0 1 1 1 0 1 1 
## 3 -1 0 1 1 -0.018 1 1 
## 4 0 -1 1 1 0.011 1 1 
## 5 -1 1 1 1 -0.036 1 1 
## 6 -1 -1 1 1 -0.056 1 1 

Actions and states have to be merged to yield all possible combinations. To simplify the 
states, we round 5 times the price-to-book ratios. 

We keep the same hyperparameters as in the previous example. Columns below stand for 
actions: the first (resp. second) number notes the position in the first (resp. second) asset. 
The rows correspond to states. The scaled P/B ratios are separated by a point (e.g., “X2.3” 
means that the first (resp. second) asset has a scaled P/B of 2 (resp. 3). 

fit_RL2 <- ReinforcementLearning(RL_data, # Main RL function 
s = "state", 
a = "action", 
r = "reward", 
s_new = "new_state", 
control = control) 

fit_RL2$Q <- round(fit_RL2$Q, 3) # Round the Q-matrix 
print(fit_RL2) # Show the output 

## State-Action function Q 
## 0 0 0 1 0 -1 -1 -1 -1 0 -1 1 1 -1 1 0 1 1 
## X0.2 0.000 0.000 0.000 -0.017 0.000 0.000 0.000 0.002 0.000 
## X0.3 0.000 0.000 0.003 0.000 0.000 0.000 0.030 0.000 0.000 
## X3.1 0.002 0.000 0.005 0.000 -0.002 0.000 0.000 0.000 0.000 
## X2.1 0.005 0.018 0.009 -0.028 0.010 -0.003 0.021 0.008 -0.004 
## X2.2 0.000 0.010 0.000 0.014 0.000 0.000 -0.013 0.006 0.000 
## X2.3 0.000 0.000 0.000 0.000 0.000 0.020 0.000 -0.034 0.000 
## X1.1 0.002 -0.005 -0.022 -0.011 -0.002 -0.009 -0.020 -0.014 -0.023 
## X1.2 0.006 0.016 0.006 0.028 -0.001 0.001 0.020 0.020 -0.001 
## X1.3 0.001 0.004 0.004 -0.011 0.000 0.003 0.005 0.003 0.010 
## 
## Policy 
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## X0.2 X0.3 X3.1 X2.1 X2.2 X2.3 X1.1 X1.2 X1.3 
## "1 0" "1 -1" "0 -1" "1 -1" "-1 -1" "-1 1" "0 0" "-1 -1" "1 1" 
## 
## Reward (last iteration) 
## [1] -1.296 

The output shows that there are many combinations of states and actions that are not 
spanned by the data: basically, the Q function has a zero and it is likely that the combination 
has not been explored. Some states seem to be more often represented (“X1.1”, “X1.2” and 
“X2.1”), others, less (“X3.1” and “X3.2”). It is hard to make any sense of the recommendations. 
Some states close “X0.1” and “X1.1” but the outcomes related to them are very different 
(buy and short versus hold and buy). Moreover, there is no coherence and no monotonicity 
in actions with respect to individual state values: low values of states can be associated to 
very different actions. 

One reason why these conclusions do not appear trustworthy pertains to the data size. With 
only 200+ time points and 99 state-action pairs (11 times 9), this yields on average only two 
data points to compute the Q function. This could be improved by testing more random 
actions, but the limits of the sample size would eventually (rapidly) be reached anyway. This 
is left as an exercise (see below). 

16.5 Concluding remarks 

Reinforcement learning has been applied to financial problems for a long time. Early 
contributions in the late 1990s include Neuneier (1996), Moody and Wu (1997), Moody 
et al. (1998) and Neuneier (1998). Since then, many researchers in the computer science field 
have sought to apply RL techniques to portfolio problems. The advent of massive datasets 
and the increase in dimensionality make it hard for RL tools to adapt well to very rich 
environments that are encountered in factor investing. 

Recently, some approaches seek to adapt RL to continuous action spaces (Wang and Zhou 
(2019), Aboussalah and Lee (2020)) but not to high-dimensional state spaces. These spaces are 
those required in factor investing because all firms yield hundreds of data points characterizing 
their economic situation. In addition, applications of RL in financial frameworks have a 
particularity compared to many typical RL tasks: in financial markets, actions of agents 
have no impact on the environment (unless the agent is able to perform massive trades, 
which is rare and ill-advised because it pushes prices in the wrong direction). This lack of 
impact of actions may possibly mitigate the efficiency of traditional RL approaches. 

Those are challenges that will need to be solved in order for RL to become competitive 
with alternative (supervised) methods. Nevertheless, the progressive (online-like) way RL 
works seems suitable for non-stationary environments: the algorithm slowly shifts paradigms 
as new data arrives. In stationary environments, it has been shown that RL manages to 
converge to optimal solutions (Kong et al. (2019), Chaouki et al. (2020)). Therefore, in 
non-stationary markets, RL could be a recourse to build dynamic predictions that adapt to 
changing macroeconomic conditions. More research needs to be carried out in this field on 
large dimensional datasets. 

We end this chapter by underlining that reinforcement learning has also been used to estimate 
complex theoretical models (Halperin and Feldshteyn (2018), García-Galicia et al. (2019)). 
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The research in the field is incredibly diversified and is orientated towards many directions. 
It is likely that captivating work will be published in the near future. 

16.6 Exercises 

1.	 Test what happens if the process for generating returns has a negative autocorre­
lation. What is the impact on the Q function and the policy? 

2.	 Keeping the same 2 assets as in Section 16.4.2, increases the size of RL_data by 
testing all possible action combinations for each original data point. Re-run 
the Q-learning function and see what happens. 
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Data description 

TABLE 17.1: List of all variables (features and labels) in the dataset 

Column Name	 Short Description 

stock_id	 security id 
date	 date of the data 
Advt_12M_Usd	 average daily volume in amount in USD 

over 12 months 
Advt_3M_Usd	 average daily volume in amount in USD 

over 3 months 
Advt_6M_Usd	 average daily volume in amount in USD 

over 6 months 
Asset_Turnover	 total sales on average assets 
Bb_Yld	 buyback yield 
Bv	 book value 
Capex_Ps_Cf capital expenditure on price to sale cash 

flow 
Capex_Sales capital expenditure on sales 
Cash_Div_Cf cash dividends cash flow 
Cash_Per_Share cash per share 
Cf_Sales cash flow per share 
Debtequity debt to equity 
Div_Yld dividend yield 
Dps dividend per share 
Ebit_Bv EBIT on book value 
Ebit_Noa EBIT on non operating asset 
Ebit_Oa EBIT on operating asset 
Ebit_Ta EBIT on total asset 
Ebitda_Margin EBITDA margin 
Eps earnings per share 
Eps_Basic earnings per share basic 
Eps_Basic_Gr earnings per share growth 
Eps_Contin_Oper earnings per share continuing operations 
Eps_Dil earnings per share diluted 
Ev enterprise value 
Ev_Ebitda enterprise value on EBITDA 
Fa_Ci fixed assets on common equity 
Fcf free cash flow 
Fcf_Bv free cash flow on book value 
Fcf_Ce free cash flow on capital employed 
Fcf_Margin free cash flow margin 
Fcf_Noa free cash flow on net operating assets 
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Column Name Short Description 

Fcf_Oa free cash flow on operating assets 
Fcf_Ta free cash flow on total assets 
Fcf_Tbv free cash flow on tangible book value 
Fcf_Toa free cash flow on total operating assets 
Fcf_Yld 
Free_Ps_Cf 

free cash flow yield 
free cash flow on price sales 

Int_Rev intangibles on revenues 
Interest_Expense 
Mkt_Cap_12M_Usd 

interest expense coverage 
average market capitalization over 12 
months in USD 

Mkt_Cap_3M_Usd average market capitalization over 3 
months in USD 

Mkt_Cap_6M_Usd average market capitalization over 6 
months in USD 

Mom_11M_Usd price momentum 12 - 1 months in USD 
Mom_5M_Usd 
Mom_Sharp_11M_Usd 

price momentum 6 - 1 months in USD 
price momentum 12 - 1 months in USD 

Mom_Sharp_5M_Usd 
divided by volatility 
price momentum 6 - 1 months in USD 
divided by volatility 

Nd_Ebitda net debt on EBITDA 
Net_Debt net debt 
Net_Debt_Cf net debt on cash flow 
Net_Margin 
Netdebtyield 

net margin 
net debt yield 

Ni net income 
Ni_Avail_Margin net income available margin 
Ni_Oa net income on operating asset 
Ni_Toa 
Noa 

net income on total operating asset 
net operating asset 

Oa operating asset 
Ocf 
Ocf_Bv 

operating cash flow 
operating cash flow on book value 

Ocf_Ce 
Ocf_Margin 

operating cash flow on capital employed 
operating cash flow margin 

Ocf_Noa operating cash flow on net operating assets 
Ocf_Oa 
Ocf_Ta 

operating cash flow on operating assets 
operating cash flow on total assets 

Ocf_Tbv operating cash flow on tangible book value 
Ocf_Toa operating cash flow on total operating 

assets 
Op_Margin 
Op_Prt_Margin 

operating margin 
net margin 1Y growth 

Oper_Ps_Net_Cf cash flow from operations per share net 
Pb 
Pe 

price to book 
price earnings 

Ptx_Mgn margin pretax 
Recurring_Earning_Total_Assets 
Return_On_Capital 

reccuring earnings on total assets 
return on capital 
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Column Name Short Description 

Rev 
Roa 
Roc 
Roce 
Roe 
Sales_Ps 
Share_Turn_12M 
Share_Turn_3M 
Share_Turn_6M 
Ta 
Tev_Less_Mktcap 

Tot_Debt_Rev 
Total_Capital 
Total_Debt 
Total_Debt_Capital 
Total_Liabilities_Total_Assets 
Vol1Y_Usd 
Vol3Y_Usd 
R1M_Usd 
R3M_Usd 
R6M_Usd 
R12M_Usd 

revenue 
return on assets 
return on capital 
return on capital employed 
return on equity 
price to sales 
average share turnover 12 months 
average share turnover 3 months 
average share turnover 6 months 
total assets 
total enterprise value less market 
capitalization 
total debt on revenue 
total capital 
total debt on revenue 
total debt on capital 
total liabilities on total assets 
volatility of returns over one year 
volatility of returns over 3 years 
return forward 1 month (LABEL) 
return forward 3 months (LABEL) 
return forward 6 months (LABEL) 
return forward 12 months (LABEL) 
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Solutions to exercises
 

18.1 Chapter 4 

For annual values, see 18.1: 

data_ml %>% 
group_by(date) %>% 
mutate(growth = Pb > median(Pb)) %>% # Creates the sort 
ungroup() %>% # Ungroup 
mutate(year = lubridate::year(date)) %>% # Creates a year variable 
group_by(year, growth) %>% # Analyze by year & sort 
summarize(ret = mean(R1M_Usd)) %>% # Compute average return 
ggplot(aes(x = year, y = ret, fill = growth)) + geom_col(position = "dodge") + # Plot! 
theme(legend.position = c(0.7, 0.8)) 
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FIGURE 18.1: The value factor: annual returns. 

For monthly values, see 18.2: 

returns_m <- data_ml %>% 
group_by(date) %>% 
mutate(growth = Pb > median(Pb)) %>% # Creates the sort 
group_by(date, growth) %>% # Analyze by date & sort 
summarize(ret = mean(R1M_Usd)) %>% # Compute average return 
spread(key = growth, value = ret) %>% # Pivot to wide matrix format 
ungroup() 

colnames(returns_m)[2:3] <- c("value", "growth") # Changing column names 
returns_m %>% 

mutate(value = cumprod(1 + value), # From returns to portf. values 
growth = cumprod(1 + growth)) %>% 
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gather(key = portfolio, value = value, -date) %>% # Back in tidy format 
ggplot(aes(x = date, y = value, color = portfolio)) + geom_line() + # Plot! 
theme(legend.position = c(0.7, 0.8)) 
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FIGURE 18.2: The value factor: portfolio values. 

Portfolios based on quartiles, using the tidyverse only. We rely heavily on the fact that 
features are uniformized, i.e., that their distribution is uniform for each given date. Overall, 
small firms outperform heavily (see Figure 18.3). 

data_ml %>% 
mutate(small = Mkt_Cap_6M_Usd <= 0.25, # Small firms...
 

medium = Mkt_Cap_6M_Usd > 0.25 & Mkt_Cap_6M_Usd <= 0.5,
 
large = Mkt_Cap_6M_Usd > 0.5 & Mkt_Cap_6M_Usd <= 0.75,
 
xl = Mkt_Cap_6M_Usd > 0.75, # ...Xlarge firms
 
year = year(date)) %>%
 

group_by(year) %>% 
summarize(small = mean(small * R1M_Usd), # Compute avg returns 

medium = mean(medium * R1M_Usd), 
large = mean(large * R1M_Usd), 
xl = mean(xl * R1M_Usd)) %>% 

gather(key = size, value = return, -year) %>%
 
ggplot(aes(x = year, y = return, fill = size)) + geom_col(position = "dodge")
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FIGURE 18.3: The value factor: portfolio values. 

18.2 Chapter 5 

Below, we import a credit spread supplied by Bank of America. Its symbol/ticker is 
“BAMLC0A0CM”. We apply the data expansion on the small number of predictors to 
save memory space. One important trick that should not be overlooked is the uniformization 
step after the product (4.3) is computed. Indeed, we want the new features to have the same 
properties as the old ones. If we skip this step, distributions will be altered, as we show in 
one example below. 

We start with the data extraction and joining. It’s important to join early so as to keep the 
highest data frequency (daily) in order to replace missing points with close values. Joining 
with monthly data before replacing creates unnecessary lags. 

getSymbols.FRED("BAMLC0A0CM", # Extract data 
env = ".GlobalEnv", 
return.class = "xts") 

## [1] "BAMLC0A0CM" 

cred_spread <- fortify(BAMLC0A0CM) # Transform to dataframe 
colnames(cred_spread) <- c("date", "spread") # Change column name 
cred_spread <- cred_spread %>% # Take extraction and... 

full_join(data_ml %>% dplyr::select(date), by = "date") %>% # Join! 
mutate(spread = na.locf(spread)) # Replace NA by previous 

cred_spread <- cred_spread[!duplicated(cred_spread),] # Remove duplicates 

The creation of the augmented dataset requires some manipulation. Features are no longer 
uniform as is shown in Figure 18.4. 
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data_cond <- data_ml %>% # Create new dataset 
dplyr::select(c("stock_id", "date", features_short)) 

names_cred_spread <- paste0(features_short, "_cred_spread") # New column names 
feat_cred_spread <- data_cond %>% # Old values 

dplyr::select(features_short) 
cred_spread <- data_ml %>% # Create vector of spreads 

dplyr::select(date) %>% 
left_join(cred_spread, by = "date") 

feat_cred_spread <- feat_cred_spread * # This product creates... 
matrix(cred_spread$spread, # the new values... 

length(cred_spread$spread), # using duplicated... 
length(features_short)) # columns 

colnames(feat_cred_spread) <- names_cred_spread # New column names 
data_cond <- bind_cols(data_cond, feat_cred_spread) # Aggregate old & new 
data_cond %>% ggplot(aes(x = Eps_cred_spread)) + geom_histogram() # Plot example 
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FIGURE 18.4: Distribution of Eps after conditioning. 

To prevent this issue, uniformization is required and is verified in Figure 18.5. 

data_cond <- data_cond %>% # From new dataset 
group_by(date) %>% # Group by date and... 
mutate_at(names_cred_spread, norm_unif) # Uniformize the new features 

data_cond %>% ggplot(aes(x = Eps_cred_spread)) + geom_histogram(bins = 100) # Verification 
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FIGURE 18.5: Distribution of uniformized conditioned feature values. 



271 18.2 Chapter 5 

The second question naturally requires the downloading of VIX series first and the joining 
with the original data. 

getSymbols.FRED("VIXCLS", # Extract data 
env = ".GlobalEnv", 
return.class = "xts") 

## [1] "VIXCLS" 

vix <- fortify(VIXCLS) # Transform to dataframe 
colnames(vix) <- c("date", "vix") # Change column name 
vix <- vix %>% # Take extraction and... 

full_join(data_ml %>% dplyr::select(date), by = "date") %>% # Join! 
mutate(vix = na.locf(vix)) # Replace NA by previous 

vix <- vix[!duplicated(vix),] # Remove duplicates 
vix <- data_ml %>% # Keep original data format 

dplyr::select(date) %>% # ...
 
left_join(vix, by = "date") # Via left_join()
 

We can then proceed with the categorization. We create the vector label in a new (smaller) 
dataset but not attached to the large data_ml variable. Also, we check the balance of labels 
and its evolution through time (see Figure 18.6). 

delta <- 0.5 # Magnitude of vix correction 
vix_bar <- median(vix$vix) # Median of vix 
data_vix <- data_ml %>% # Smaller dataset 

dplyr::select(stock_id, date, R1M_Usd) %>% 
mutate(r_minus = (-0.02) * exp(-delta*(vix$vix-vix_bar)), # r_­

r_plus = 0.02 * exp(delta*(vix$vix-vix_bar))) # r_+ 
data_vix <- data_vix %>% 

mutate(R1M_Usd_Cvix = if_else(R1M_Usd < r_minus, -1, # New label! 
if_else(R1M_Usd > r_plus, 1,0)), 

R1M_Usd_Cvix = as.factor(R1M_Usd_Cvix)) 
data_vix %>% 

mutate(year = year(date)) %>% 
group_by(year, R1M_Usd_Cvix) %>% 
summarize(nb = n()) %>% 
ggplot(aes(x = year, y = nb, fill = R1M_Usd_Cvix)) + geom_col() 
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FIGURE 18.6: Evolution of categories through time. 

Finally, we switch to the outliers (Figure 18.7). 
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data_ml %>%
 
ggplot(aes(x = R12M_Usd)) + geom_histogram()
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FIGURE 18.7: Outliers in the dependent variable. 

Returns above 50 should indeed be rare. 

data_ml %>% filter(R12M_Usd > 50) %>% dplyr::select(stock_id, date, R12M_Usd) 

## # A tibble: 8 x 3 
## stock_id date R12M_Usd 
## <int> <date> <dbl> 
## 1 212 2000-12-31 53.0 
## 2 221 2008-12-31 53.5 
## 3 221 2009-01-31 55.2 
## 4 221 2009-02-28 54.8 
## 5 296 2002-06-30 72.2 
## 6 683 2009-02-28 96.0 
## 7 683 2009-03-31 64.8 
## 8 862 2009-02-28 58.0 

The largest return comes from stock #683. Let’s have a look at the stream of monthly 
returns in 2009. 

data_ml %>% 
filter(stock_id == 683, year(date) == 2009) %>% 
dplyr::select(date, R1M_Usd) 

## # A tibble: 12 x 2 
## date R1M_Usd 
## <date> <dbl> 
## 1 2009-01-31 -0.625 
## 2 2009-02-28 0.472 
## 3 2009-03-31 1.44 
## 4 2009-04-30 0.139 
## 5 2009-05-31 0.086 
## 6 2009-06-30 0.185 
## 7 2009-07-31 0.363 
## 8 2009-08-31 0.103 
## 9 2009-09-30 9.91 
## 10 2009-10-31 0.101 
## 11 2009-11-30 0.202 
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## 12 2009-12-31 -0.251 

The returns are all very high. The annual value is plausible. In addition, a quick glance at 
the Vol1Y values shows that the stock is the most volatile of the dataset. 

18.3 Chapter 6 

We recycle the training and testing data variables created in the chapter (coding section 
notably). In addition, we create a dedicated function and resort to the map2 () function from 
the purrr package. 

alpha_seq <- (0:10)/10 # Sequence of alpha values 
lambda_seq <- 0.1^(0:5) # Sequence of lambda values 
pars <- expand.grid(alpha_seq, lambda_seq) # Exploring all combinations! 
alpha_seq <- pars[,1] 
lambda_seq <- pars[,2] 
lasso_sens <- function(alpha, lambda, x_train, y_train, x_test, y_test){ # Function 

fit_temp <- glmnet(x_train, y_train, # Model 
alpha = alpha, lambda = lambda) 

return(sqrt(mean((predict(fit_temp, x_test) - y_test)^2))) # Output 
} 
rmse_elas <- map2(alpha_seq, lambda_seq, lasso_sens, # Automation 

x_train = x_penalized_train, y_train = y_penalized_train, 
x_test = x_penalized_test, y_test = testing_sample$R1M_Usd) 

bind_cols(alpha = alpha_seq, lambda = as.factor(lambda_seq), rmse = unlist(rmse_elas)) %>% 
ggplot(aes(x = alpha, y = rmse, fill = lambda)) + geom_col() + facet_grid(lambda ~.) + 
coord_cartesian(ylim = c(0.19,0.193)) 

As is outlined in Figure 18.8, the parameters have a very marginal impact. Maybe the model 
is not a good fit for the task. 

18.4 Chapter 7 

fit1 <- rpart(formula, 
data = training_sample, # Data source: full sample 
cp = 0.001) # Precision: smaller = more leaves 

mean((predict(fit1, testing_sample) - testing_sample$R1M_Usd)^2) 

## [1] 0.04018973 

fit2 <- rpart(formula, 
data = training_sample, # Data source: full sample 
cp = 0.01) # Precision: smaller = more leaves 

mean((predict(fit2, testing_sample) - testing_sample$R1M_Usd)^2) # Test! 

## [1] 0.03699696 
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FIGURE 18.8: Performance of elasticnet across parameter values. 

rpart.plot(fit1) # Plot the first tree 

The first model (Figure 18.9) is too precise: going into the details of the training sample 
does not translate to good performance out-of-sample. The second, simpler model, yields 
better results. 

n_trees <- c(10, 20, 40, 80, 160)
 
mse_RF <- 0
 
for(j in 1:length(n_trees)){ # No need for functional programming here...
 

fit_temp <- randomForest( 
as.formula(paste("R1M_Usd ~", paste(features_short, collapse = " + "))), # New formula! 
data = training_sample, # Data source: training sample 
sampsize = 30000, # Size of (random) sample for each tree 
replace = TRUE, # Is the sampling done with replacement? 
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FIGURE 18.9: Sample (complex) tree. 
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ntree = n_trees[j], # Nb of random trees
 
mtry = 5) # Nb of predictors for each tree
 

mse_RF[j] <- mean((predict(fit_temp, testing_sample) - testing_sample$R1M_Usd)^2) 
} 
mse_RF 

## [1] 0.03967754 0.03885924 0.03766900 0.03696370 0.03699772 

Trees are by definition random so results can vary from test to test. Overall, large numbers 
of trees are preferable and the reason is that each new tree tells a new story and diversifies 
the risk of the whole forest. Some more technical details of why that may be the case are 
outlined in the original paper by Breiman (2001). 

For the last exercises, we recycle the formula used in Chapter 6. 

tree_2008 <- rpart(formula, 
data = data_ml %>% filter(year(date) == 2008), # Data source: 2008 
cp = 0.001, 
maxdepth = 2) 

rpart.plot(tree_2008) 

The first splitting criterion in Figure 18.10 is enterprise value (EV). EV is an indicator that 
adjusts market capitalization by substracting debt and adding cash. It is a more faithful 
account of the true value of a company. In 2008, the companies that fared the least poorly 
were those with the highest EV (i.e., large, robust firms). 

tree_2009 <- rpart(formula, 
data = data_ml %>% filter(year(date) == 2009), # Data source: 2009 
cp = 0.001, 
maxdepth = 2) 

rpart.plot(tree_2009) 

In 2009 (Figure 18.11), the firms that recovered the fastest were those that experienced 
high volatility in the past (likely, downwards volatility). Momentum is also very important: 
the firms with the lowest past returns are those that rebound the fastest. This is a typical 
example of the momentum crash phenomenon studied in Barroso and Santa-Clara (2015) 
and Daniel and Moskowitz (2016). The rationale is the following: after a market downturn, 
the stocks with the most potential for growth are those that have suffered the largest losses. 
Consequently, the negative (short) leg of the momentum factor performs very well, often 
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FIGURE 18.10: Tree for 2008. 
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better than the long leg. And indeed, being long in the momentum factor in 2009 would 
have generated negative profits. 

18.5 Chapter 8: the autoencoder model 

First, it is imperative to format the inputs properly. To avoid any issues, we work with 
perfectly rectangular data and hence restrict the investment set to the stocks with no missing 
points. Dimensions must also be in the correct order. 

data_short <- data_ml %>% # Shorter dataset 
filter(stock_id %in% stock_ids_short) %>% 
dplyr::select(c("stock_id", "date",features_short, "R1M_Usd")) 

dates <- unique(data_short$date) # Vector of dates 

N <- length(stock_ids_short) # Dimension for assets 
Tt <- length(dates) # Dimension for dates 
K <- length(features_short) # Dimension for features 

factor_data <- data_short %>% # Factor side date 
dplyr::select(date, stock_id, R1M_Usd) %>% 
spread(key = stock_id, value = R1M_Usd) %>% 
dplyr::select(-date) %>% 
as.matrix() 

beta_data <- array(unlist(data_short %>% # Beta side data: beware the permutation below! 
dplyr::select(-stock_id, -date, -R1M_Usd)), 

dim = c(N, Tt, K)) 
beta_data <- aperm(beta_data, c(2,1,3)) # Permutation 

Next, we turn to the specification of the network, using a functional API form. 

main_input <- layer_input(shape = c(N), name = "main_input") # Main input: returns 
factor_network <- main_input %>% # Def of factor side network 

layer_dense(units = 8, activation = "relu", name = "layer_1_r") %>% 
layer_dense(units = 4, activation = "tanh", name = "layer_2_r") 
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FIGURE 18.11: Tree for 2009. 
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aux_input <- layer_input(shape = c(N,K), name = "aux_input") # Aux input: characteristics 
beta_network <- aux_input %>% # Def of beta side network 

layer_dense(units = 8, activation = "relu", name = "layer_1_l") %>% 
layer_dense(units = 4, activation = "tanh", name = "layer_2_l") %>% 
layer_permute(dims = c(2,1), name = "layer_3_l") # Permutation! 

main_output <- layer_dot(c(beta_network, factor_network), # Product of 2 networks 
axes = 1, name = "main_output") 

model_ae <- keras_model( # AE Model specs 
inputs = c(main_input, aux_input), 
outputs = c(main_output) 

) 

Finally, we ask for the structure of the model, and train it. 

summary(model_ae) # See model details / architecture 

## __________________________________________________________________________________________ 
## Layer (type) Output Shape Param # Connected to 
## ========================================================================================== 
## aux_input (InputLayer) (None, 793, 7) 0 
## __________________________________________________________________________________________ 
## layer_1_l (Dense) (None, 793, 8) 64 aux_input[0][0] 
## __________________________________________________________________________________________ 
## main_input (InputLayer) (None, 793) 0 
## __________________________________________________________________________________________ 
## layer_2_l (Dense) (None, 793, 4) 36 layer_1_l[0][0] 
## __________________________________________________________________________________________ 
## layer_1_r (Dense) (None, 8) 6352 main_input[0][0] 
## __________________________________________________________________________________________ 
## layer_3_l (Permute) (None, 4, 793) 0 layer_2_l[0][0] 
## __________________________________________________________________________________________ 
## layer_2_r (Dense) (None, 4) 36 layer_1_r[0][0] 
## __________________________________________________________________________________________ 
## main_output (Dot) (None, 793) 0 layer_3_l[0][0] 
## layer_2_r[0][0] 
## ========================================================================================== 
## Total params: 6,488 
## Trainable params: 6,488 
## Non-trainable params: 0 
## __________________________________________________________________________________________ 

model_ae %>% compile( # Learning parameters 
optimizer = "rmsprop", 
loss = "mse" 

) 

model_ae %>% fit( # Learning function 
x = list(main_input = factor_data, aux_input = beta_data), 
y = list(main_output = factor_data), 
epochs = 20, # Nb rounds 
batch_size = 49 # Nb obs. per round 

) 
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18.6 Chapter 9 

Since we are going to reproduce a similar analysis several times, let’s simplify the task with 
2 tips. First, by using default parameter values that will be passed as common arguments to 
the svm function. Second, by creating a custom function that computes the MSE. Third, by 
resorting to functional calculus via the map function from the purrr package. Below, we 
recycle datasets created in Chapter 6. 

mse <- function(fit, features, label){ # MSE function 
return(mean((predict(fit, features)-label)^2)) 

} 
par_list <- list(y = train_label_xgb[1:10000], # From Tree chapter 

x = train_features_xgb[1:10000,],
 
type = "eps-regression",
 
epsilon = 0.1, # Width of strip for errors
 
gamma = 0.5, # Constant in the radial kernel
 
cost = 0.1)
 

svm_par <- function(kernel, par_list){ # Function for SVM fit automation 
require(e1071) 
return(do.call(svm, c(kernel = kernel, par_list))) 

} 
kernels <- c("linear", "radial", "polynomial", "sigmoid") # Kernels 
fit_svm_par <- map(kernels, svm_par, par_list = par_list) # SVM models 
map(fit_svm_par, mse, # MSEs 

features = test_feat_short, # From SVM chapter
 
label = testing_sample$R1M_Usd)
 

## [[1]]
 
## [1] 0.03849786
 
##
 
## [[2]]
 
## [1] 0.03924576
 
##
 
## [[3]]
 
## [1] 0.03951328
 
##
 
## [[4]]
 
## [1] 334.8173
 

The first two kernels yield the best fit, while the last one should be avoided. Note that apart 
from the linear kernel, all other options require parameters. We have used the default ones, 
which may explain the poor performance of some nonlinear kernels. 

Below, we train an SVM model on a training sample with all observations but that is limited 
to the 7 major predictors. Even with a smaller number of features, the training is time 
consuming. 

svm_full <- svm(y = train_label_xgb, # Train label 
x = train_features_xgb, # Training features 
type = "eps-regression", # SVM task type (see LIBSVM documentation) 
kernel = "linear", # SVM kernel 
epsilon = 0.1, # Width of strip for errors 
cost = 0.1) # Slack variable penalisation 

test_feat_short <- dplyr::select(testing_sample,features_short) # Test set 
mean(predict(svm_full, test_feat_short) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.490343 



279 18.7 Chapter 12: ensemble neural network 

This figure is very low. Below, we test a very simple form of boosted trees, for comparison 
purposes. 

xgb_full <- xgb.train(data = train_matrix_xgb, # Data source 
eta = 0.3, # Learning rate 
objective = "reg:linear", # Objective function 
max_depth = 4, # Maximum depth of trees 
nrounds = 60 # Number of trees used (bit low here) 

) 
mean(predict(xgb_full, xgb_test) * testing_sample$R1M_Usd > 0) # Hit ratio 

## [1] 0.5017377 

The forecasts are slightly better, but the computation time is lower. Two reasons why the 
models perform poorly: 

1. there are not enough predictors; 

2. the models are static: they do not adjust dynamically to macro-conditions. 

18.7 Chapter 12: ensemble neural network 

First, we create the three feature sets. The first one gets all multiples of 3 between 3 and 
93. The second one gets the same indices, minus one, and the third one, the initial indices 
minus two. 

feat_train_1 <- training_sample %>% dplyr::select(features[3*(1:31)]) %>% #First set of feats 
as.matrix() 

feat_train_2 <- training_sample %>% dplyr::select(features[3*(1:31)-1]) %>% #Second set of feats 
as.matrix() 

feat_train_3 <- training_sample %>% dplyr::select(features[3*(1:31)-2]) %>% #Third set of feats 
as.matrix() 

feat_test_1 <- testing_sample %>% dplyr::select(features[3*(1:31)]) %>% #Test features 1 
as.matrix() 

feat_test_2 <- testing_sample %>% dplyr::select(features[3*(1:31)-1]) %>% #Test features 2 
as.matrix() 

feat_test_3 <- testing_sample %>% dplyr::select(features[3*(1:31)-2]) %>% #Test features 3 
as.matrix() 

Then, we specify the network structure. First, the 3 independent networks, then the aggre­
gation. 

first_input <- layer_input(shape = c(31), name = "first_input") # First input 
first_network <- first_input %>% # Def of 1st network 

layer_dense(units = 8, activation = "relu", name = "layer_1") %>% 
layer_dense(units = 2, activation = 'softmax') # Softmax for categ. output 

second_input <- layer_input(shape = c(31), name = "second_input") # Second input 
second_network <- second_input %>% # Def of 2nd network 

layer_dense(units = 8, activation = "relu", name = "layer_2") %>% 
layer_dense(units = 2, activation = 'softmax') # Softmax for categ. output 

third_input <- layer_input(shape = c(31), name = "third_input") # Third input 
third_network <- third_input %>% # Def of 3rd network 

layer_dense(units = 8, activation = "relu", name = "layer_3") %>% 
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layer_dense(units = 2, activation = 'softmax') # Softmax for categ. output 

main_output <- layer_concatenate(c(first_network, 
second_network, 
third_network)) %>% # Combination 

layer_dense(units = 2, activation = 'softmax', name = 'main_output') 

model_ens <- keras_model( # Agg. Model specs 
inputs = c(first_input, second_input, third_input), 
outputs = c(main_output) 

) 

Lastly, we can train and evaluate (see Figure 18.12). 

summary(model_ens) # See model details / architecture 

## __________________________________________________________________________________________ 
## Layer (type) Output Shape Param # Connected to 
## ========================================================================================== 
## first_input (InputLayer) (None, 31) 0 
## __________________________________________________________________________________________ 
## second_input (InputLayer) (None, 31) 0 
## __________________________________________________________________________________________ 
## third_input (InputLayer) (None, 31) 0 
## __________________________________________________________________________________________ 
## layer_1 (Dense) (None, 8) 256 first_input[0][0] 
## __________________________________________________________________________________________ 
## layer_2 (Dense) (None, 8) 256 second_input[0][0] 
## __________________________________________________________________________________________ 
## layer_3 (Dense) (None, 8) 256 third_input[0][0] 
## __________________________________________________________________________________________ 
## dense_69 (Dense) (None, 2) 18 layer_1[0][0] 
## __________________________________________________________________________________________ 
## dense_70 (Dense) (None, 2) 18 layer_2[0][0] 
## __________________________________________________________________________________________ 
## dense_71 (Dense) (None, 2) 18 layer_3[0][0] 
## __________________________________________________________________________________________ 
## concatenate_2 (Concatenate) (None, 6) 0 dense_69[0][0] 
## dense_70[0][0] 
## dense_71[0][0] 
## __________________________________________________________________________________________ 
## main_output (Dense) (None, 2) 14 concatenate_2[0][0] 
## ========================================================================================== 
## Total params: 836 
## Trainable params: 836 
## Non-trainable params: 0 
## __________________________________________________________________________________________ 

model_ens %>% compile( # Learning parameters 
optimizer = optimizer_adam(), 
loss = "binary_crossentropy", 
metrics = "categorical_accuracy" 

) 

fit_NN_ens <- model_ens %>% fit( # Learning function 
x = list(first_input = feat_train_1,
 

second_input = feat_train_2,
 
third_input = feat_train_3),
 

y = list(main_output = NN_train_labels_C), # Recycled from NN Chapter
 
epochs = 12, # Nb rounds
 
batch_size = 512, # Nb obs. per round
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FIGURE 18.12: Learning an integrated ensemble. 

validation_data = list(list(feat_test_1, feat_test_2, feat_test_3), 
NN_test_labels_C) 

) 
plot(fit_NN_ens) 

18.8 Chapter 13 

18.8.1 EW portfolios with the tidyverse 

This one is incredibly easy; it’s simpler and more compact but close in spirit to the code
that generates Figure 3.1. The returns are plotted in Figure 18.13. 

data_ml %>% 
group_by(date) %>% # Group by date 
summarize(return = mean(R1M_Usd)) %>% # Compute return 
ggplot(aes(x = date, y = return)) + geom_point() + geom_line() # Plot 
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FIGURE 18.13: Time series of returns. 

18.8.2 Advanced weighting function 

First, we code the function with all inputs. 

weights <- function(Sigma, mu, Lambda, lambda, k_D, k_R, w_old){ 
N <- nrow(Sigma) 
M <- solve(lambda*Sigma + 2*k_R*Lambda + 2*k_D*diag(N)) # Inverse matrix 
num <- 1-sum(M %*% (mu + 2*k_R*Lambda %*% w_old)) # eta numerator 
den <- sum(M %*% rep(1,N)) # eta denominator 
eta <- num / den # eta 
vec <- mu + eta * rep(1,N) + 2*k_R*Lambda %*% w_old # Vector in weight 
return(M %*% vec) 

} 

Second, we test it on some random dataset. We use the returns created at the end of Chapter 
1 and used for the Lasso allocation in Section 5.2.2. For µ, we use the sample average, which 
is rarely a good idea in practice. It serves as illustration only. 

Sigma <- returns %>% dplyr::select(-date) %>% as.matrix() %>% cov() # Covariance matrix 
mu <- returns %>% dplyr::select(-date) %>% apply(2,mean) # Vector of exp. returns 
Lambda <- diag(nrow(Sigma)) # Trans. Cost matrix 
lambda <- 1 # Risk aversion 
k_D <- 1 
k_R <- 1 
w_old <- rep(1, nrow(Sigma)) / nrow(Sigma) # Prev. weights: EW 
weights(Sigma, mu, Lambda, lambda, k_D, k_R, w_old) %>% head() # First weights 

## [,1] 
## 1 0.0031339308 
## 3 -0.0003243527 
## 4 0.0011944677 
## 7 0.0014194215 
## 9 0.0015086240 
## 11 -0.0005015207 

Some weights can of course be negative. Finally, we use the map2() function to test some 
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sensitivity. We examine 3 key indicators:
 
- diversification, which we measure via the inverse of the sum of squared weights (inverse
 
Hirschman-Herfindhal index);
 
- leverage, which we assess via the absolute sum of negative weights;
 
- in-sample volatility, which we compute as w�Σx
 

To do so, we create a dedicated function below.
 

sensi <- function(lambda, k_D, Sigma, mu, Lambda, k_R, w_old){ 
w <- weights(Sigma, mu, Lambda, lambda, k_D, k_R, w_old) 
out <- c() 
out$div <- 1/sum(w^2) # Diversification 
out$lev <- sum(abs(w[w<0])) # Leverage 
out$vol <- t(w) %*% Sigma %*% w # In-sample vol 
return(out) 

} 

Instead of using the baseline map2 function, we rely on a version thereof that concatenates 
results into a dataframe directly. 

lambda <- 10^(-3:2) # parameter values 
k_D <- 2*10^(-3:2) # parameter values 
pars <- expand_grid(lambda, k_D) # parameter grid 
lambda <- pars$lambda 
k_D <- pars$k_D 

res <- map2_dfr(lambda, k_D, sensi, 
Sigma = Sigma, mu = mu, Lambda = Lambda, k_R = k_R, w_old = w_old) 

bind_cols(lambda = as.factor(lambda), k_D = as.factor(k_D), res) %>% 
gather(key = indicator, value = value, -lambda, -k_D) %>% 
ggplot(aes(x = lambda, y = value, fill = k_D)) + geom_col(position = "dodge") + 
facet_grid(indicator ~. , scales = "free") 

In Figure 18.14, each panel displays an indicator. In the first panel, we see that diversification 
increases with kD: indeed, as this number increases, the portfolio converges to uniform (EW) 
values. The parameter λ has a minor impact. The second panel naturally shows the inverse 
effect for leverage: as diversification increases with kD, leverage (i.e., total negative positions 
- shortsales) decreases. Finally, the last panel shows that in-sample volatility is however 
largely driven by the risk aversion parameter. As λ increases, volatility logically decreases. 
For small values of λ, kD is negatively related to volatility but the pattern reverses for large 
values of λ. This is because the equally weighted portfolio is less risky than very leveraged 
mean-variance policies, but more risky than the minimum-variance portfolio. 

18.8.3 Functional programming in the backtest 

Often, programmers prefer to avoid loops. In order to avoid a loop in the backtest, we need 
to code what happens for one given date. This is encapsulated in the following function. For 
simplicity, we code it for only one strategy. Also, the function will assume the structure of 
the data is known, but the columns (features & labels) could also be passed as arguments. 
We recycle the function weights_xgb from Chapter 12. 

portf_map <- function(t, data_ml, ticks, t_oos, m_offset, train_size, weight_func){ 
train_data <- data_ml %>% filter(date < t_oos[t] - m_offset * 30, # Roll. window w. buffer 



284 18 Solutions to exercises 

date > t_oos[t] - m_offset * 30 - 365 * train_size) 
test_data <- data_ml %>% filter(date == t_oos[t]) # Test set 
realized_returns <- test_data %>% # Computing returns via: 

dplyr::select(R1M_Usd) # 1M holding period! 
temp_weights <- weight_func(train_data, test_data, features) # Weights = > recycled! 
ind <- match(temp_weights$names, ticks) %>% na.omit() # Index of test assets 
x <- c() 
x$weights <- rep(0, length(ticks)) # Empty weights 
x$weights[ind] <- temp_weights$weights # Locate weights correctly 
x$returns <- sum(temp_weights$weights * realized_returns) # Compute returns 
return(x) 

} 

Next, we combine this function to map(). We only test the first 6 dates: this reduces the 
computation times. 

back_test <- 1:3 %>% # Test on the first 100 out-of-sample dates 
map(portf_map, data_ml = data_ml, ticks = ticks, t_oos = t_oos, 

m_offset = 1, train_size = 5, weight_func = weights_xgb) 
head(back_test[[1]]$weights) # Sample weights 

## [1] 0.001675042 0.000000000 0.000000000 0.001675042 0.000000000 0.001675042 

back_test[[1]]$returns # Return of first period 

## [1] 0.0189129 

Each element of backtest is a list with two components: the portfolio weights and the returns. 
To access the data easily, functions like melt from the package reshape2 are useful. 
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18.9 Chapter 16 

We recycle the AE model trained in Chapter 15. Strangely, building smaller models (encoder) 
from larger ones (AE) requires to save and then reload the weights. This creates an external 
file, which we call “ae_weights”. We can check that the output does have 4 columns 
(compressed) instead of 7 (original data). 

save_model_weights_hdf5(object = ae_model,filepath ="ae_weights.hdf5", overwrite = TRUE)
 
encoder_model <- keras_model(inputs = input_layer, outputs = encoder)
 
encoder_model %>%
 

load_model_weights_hdf5(filepath = "ae_weights.hdf5",skip_mismatch = TRUE,by_name = TRUE) 
encoder_model %>% compile( 

loss = 'mean_squared_error', 
optimizer = 'adam', 
metrics = c('mean_absolute_error') 

)
 
encoder_model %>%
 

keras::predict_on_batch(x =	 training_sample %>%
 
dplyr::select(features_short) %>%
 
as.matrix()) %>%
 

head(5) 

## [,1] [,2] [,3] [,4] 
## [1,] 1.038496 -0.2121131 0.5755218 0.7277557 
## [2,] 1.037245 -0.1829648 0.5782604 0.6981937 
## [3,] 1.035456 -0.1848094 0.5722961 0.7637734 
## [4,] 1.030122 -0.1830992 0.5703658 0.7688833 
## [5,] 1.015239 -0.1816818 0.5698297 0.7628086 

18.10 Chapter 17 

All we need to do is change the rho coefficient in the code of Chapter 16. 

set.seed(42) # Fixing the random seed 
n_sample <- 10^5 # Number of samples generated 
rho <- (-0.8) # Autoregressive parameter 
sd <- 0.4 # Std. dev. of noise 
a <- 0.06 * rho # Scaled mean of returns 
data_RL3 <- tibble(returns = a/rho + arima.sim(n = n_sample, # Returns via AR(1) simulation 

list(ar = rho), 
sd = sd), 

action = round(runif(n_sample)*4)/4) %>% # Random action (portfolio) 
mutate(new_state = if_else(returns < 0, "neg", "pos"), # Coding of state 

reward = returns * action, # Reward = portfolio return 
state = lag(new_state), # Next state 
action = as.character(action)) %>% 

na.omit()	 # Remove one missing state 

The learning can then proceed. 
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control <- list(alpha = 0.1, # Learning rate 
gamma = 0.7, # Discount factor for rewards 
epsilon = 0.1) # Exploration rate 

fit_RL3 <- ReinforcementLearning(data_RL3, # Main RL function 
s = "state", 
a = "action", 
r = "reward", 
s_new = "new_state", 
control = control) 

print(fit_RL3) # Show the output 

## State-Action function Q 
## 0.25 0 1 0.75 0.5 
## neg 0.7107268 0.5971710 1.4662416 0.9535698 0.8069591 
## pos 0.7730842 0.7869229 0.4734467 0.4258593 0.6257039 
## 
## Policy 
## neg pos 
## "1" "0" 
## 
## Reward (last iteration) 
## [1] 3013.162 

In this case, the constantly switching feature of the return process changes the outcome. 
The negative state is associated with large profits when the portfolio is fully invested, while 
the positive state has the best average reward when the agent refrains from investing. 

For the second exercise, the trick is to define all possible actions, that is all combinations 
(+1,0-1) for the two assets on all dates. We recycle the data from Chapter 16. 

pos_3 <- c(-1,0,1) # Possible alloc. to asset 1 
pos_4 <- c(-1,0,1) # Possible alloc. to asset 3 
pos <- expand_grid(pos_3, pos_4) # All combinations 
pos <- bind_cols(pos, id = 1:nrow(pos)) # Adding combination id 

ret_pb_RL <- bind_cols(r3 = return_3, r4 = return_4, # Returns & P/B dataframe 
pb3 = pb_3, pb4 = pb_4) 

data_RL4 <- sapply(ret_pb_RL, # Combining return & positions 
rep.int, 
times = nrow(pos)) %>% 

data.frame() %>%
 
bind_cols(id = rep(1:nrow(pos), 1, each = length(return_3))) %>%
 
left_join(pos) %>% dplyr::select(-id) %>%
 
mutate(action = paste(pos_3, pos_4), # Uniting actions
 

pb3 = round(5 * pb3), # Simplifying states 
pb4 = round(5 * pb4), # Simplifying states 
state = paste(pb3, pb4), # Uniting states 
reward = pos_3*r3 + pos_4*r4, # Computing rewards 
new_state = lead(state)) %>% # Infer new state 

dplyr::select(-pb3, -pb4, -pos_3, # Remove superfluous vars.
 
-pos_4, -r3, -r4)
 

We can the plug this data into the RL function. 

fit_RL4 <- ReinforcementLearning(data_RL4, # Main RL function 
s = "state", 
a = "action", 
r = "reward", 
s_new = "new_state", 
control = control) 



287 18.10 Chapter 17 

fit_RL4$Q <- round(fit_RL4$Q, 3) # Round the Q-matrix 
print(fit_RL4) # Show the output 

## State-Action function Q 
## 0 0 0 1 0 -1 -1 -1 -1 0 -1 1 1 -1 1 0 1 1 
## X0.2 0.000 0.000 0.002 -0.017 -0.018 -0.020 0.023 0.025 0.024 
## X0.3 0.001 -0.005 0.007 -0.013 -0.019 -0.026 0.031 0.027 0.021 
## X3.1 0.003 0.003 0.003 0.002 0.002 0.003 0.002 0.002 0.003 
## X2.1 0.027 0.038 0.020 0.004 0.015 0.039 0.013 0.021 0.041 
## X2.2 0.021 0.014 0.027 0.038 0.047 0.045 -0.004 -0.011 -0.016 
## X2.3 0.007 0.006 0.008 0.054 0.057 0.056 -0.041 -0.041 -0.041 
## X1.1 0.027 0.054 0.005 -0.031 -0.005 0.041 0.025 0.046 0.072 
## X1.2 0.019 0.020 0.020 0.015 0.023 0.029 0.012 0.014 0.023 
## X1.3 0.008 0.019 0.000 -0.036 -0.027 -0.016 0.042 0.053 0.060 
## 
## Policy 
## X0.2 X0.3 X3.1 X2.1 X2.2 X2.3 X1.1 X1.2 X1.3 
## "1 0" "1 -1" "0 -1" "1 1" "-1 0" "-1 0" "1 1" "-1 1" "1 1" 
## 
## Reward (last iteration) 
## [1] 0 

The matrix is less sparse compared to the one of Chapter 16; we have covered much more 
ground! Some policy recommendations have not changed compared to the smaller sample, 
but some have! The change occurs for the states for which only a few points were available 
in the first trial. With more data, the decision is altered. 
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