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Preface

Preface to the First Edition

Over the past several years I have taught a two-semester graduate
course on quantum field theory at the University of Rochester. In this
course the ideas of quantum field theory are developed in a traditional
manner through canonical quantization. This book consists of my
lectures in this course. At Rochester, we also teach a separate course
on quantum field theory based on the path integral approach and
my lectures in that course have already been published by World
Scientific in

A. Das, Field Theory: A Path Integral Approach (Second Edition),
World Scientific, Singapore (2006).

The material in the present book should be thought of as comple-
mentary to this earlier book. In fact, in the present lectures, there is
no attempt to develop the path integral methods, rather we use the
results from path integrals with a brief discussion when needed.

The topics covered in the present book contain exactly the mate-
rial discussed in the two-semester course except for Chapter 10 (Dirac
quantization) and Chapter 11 (Discrete symmetries) which have been
added for completeness and are normally discussed in another course.
Quantum field theory is a vast subject and only selected topics, which
I personally feel every graduate student in the subject should know,
have been covered in these lectures. Needless to say, there are many
other important topics which have not been discussed because of
time constraints in the course (and space constraints in the book).
However, all the material covered in this book has been presented in
an informal (classroom like) setting with detailed derivations which
should be helpful to students.

vil



viii PREFACE

A book of this size is bound to have many possible sources of
error. However, since my lectures have already been used by various
people in different universities, I have been fortunate to have their
feedback which I have incorporated into the book. In addition, sev-
eral other people have read all the chapters carefully and I thank
them all for their comments. In particular, it is a pleasure for me to
thank Ms. Judy Mack and Professor Susumu Okubo for their tireless
effort in going through the entire material. I am personally grateful
to Dr. John Boersma for painstakingly and meticulously checking all
the mathematical derivations. Of course, any remaining errors and
typos are my own.

Like the subject itself, the list of references to topics in quantum
field theory is enormous and it is simply impossible to do justice to
everyone who has contributed to the growth of the subject. I have
in no way attempted to give an exhaustive list of references to the
subject. Instead I have listed only a few suggestive references at the
end of each chapter in the hope that the readers can get to the other
references from these sources.

The Feynman graphs in this book were drawn using Jaxodraw
while most other figures were generated using PSTricks. I am grate-
ful to the people who developed these extremely useful softwares.
Finally, I would like to thank Dave Munson for helping out with
various computer related problems.

Ashok Das,
Rochester
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Preface to the Second Edition

This second edition of the book grew out of requests, by students
and colleagues alike from all over the world, to include a wide range
of related interesting topics. However, it was not at all practical to
accommodate all the topics that were requested since the first edition
of the book already had about 775 pages. I have only been able to
fulfill only a few of the requests which, I believed, would fit in nicely
with the logic of the earlier edition. There are two new chapters as
well as two appendices in this new edition and that has enlarged the
book by about 150 pages. One of the two chapters added discusses
Nielsen identities which addresses questions of gauge independence
of physical parameters such as mass of a particle as well as other
physical parameters derived from the effective potential which itself
is gauge dependent. The other chapter discusses global supersym-
metry which is a very important idea and which was requested by
many readers. One of the two appendices discusses fermions in ar-
bitrary dimensions (as well as in four dimensions). In particular, it
investigates the number of space-time dimensions where Majorana,
Weyl and Majorana-Weyl fermions can exist. The second appendix
discusses the question of gauge invariant (gauge) potentials in detail
as well as the Fock-Schwinger gauge as an implementable, complete
and ghost free gauge which is widely used in nonperturbative calcu-
lations of condensates. In addition, the material of the earlier edition
of the book has also been revised and expanded wherever necessary
to make explanations simpler and easier.

I would like to thank Dr. Pushpa Kalauni for going through the
material carefully and Dave Munson for all the technical help with
LaTex.

Ashok Das,
Rochester
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CHAPTER 1

Relativistic equations

1.1 Introduction

As we know, in single particle, non-relativistic quantum mechan-
ics, we start with the Hamiltonian description of the correspond-
ing classical, non-relativistic physical system and promote each of
the observables to a Hermitian operator. The time evolution of the
quantum mechanical system (state), in this case, is given by the time
dependent Schrédinger equation which has the form

oY
th— = Hq. 1.1
Y~ (11)
Here 1 (x,t) represents the wave function of the system which cor-
responds to the probability amplitude for finding the particle at the
coordinate x at a given time ¢ and the Hamiltonian, H, has the
generic form

H= p—m + V(x), (1.2)

with p denoting the momentum of the particle and V (x) representing
the potential through which the particle moves. (Throughout the
book we will use a bold symbol to represent a three dimensional
vector.)

This formalism is clearly non-relativistic (non-covariant) which
can be easily seen by noting that, even for a free particle, the dy-
namical equation (1.1) takes the form
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2l -

p2
=5V (1.3)

In the coordinate basis, the momentum operator has the form

p — —ihV, (1.4)

so that the time dependent Schrodinger equation, in this case, takes
the form

Loy R,

This equation is linear in the time derivative while it is quadratic
in the space derivatives. Therefore, space and time are not treated
on an equal footing in this case and, consequently, the equation can-
not have the same form (covariant) in different Lorentz frames. A
relativistic equation, on the other hand, must treat space and time
coordinates on an equal footing and remain form invariant in all in-
ertial frames (Lorentz frames). Let us also recall that, even for a
simple fundamental system such as the Hydrogen atom, the ground
state electron is fairly relativistic (2, for the ground state electron
is of the order of the fine structure constant). Consequently, there
is a need to generalize the non-relativistic quantum mechanical de-
scription to relativistic systems. In this chapter, we will study how
we can systematically develop a quantum mechanical description of
a single relativistic particle and the difficulties associated with such
a description.

1.2 Notations

Before proceeding any further, let us fix our notations. We note that
in the three dimensional Euclidean space, which we are all familiar
with, a vector is labelled uniquely by its three components. (We
denote three dimensional vectors in boldface.) Thus,
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X = (.%'1,.%'2,1'3),
J= (JI,JQ,J3),
A = (Ay, Ay, Ag), (1.6)

where x and J represent respectively the position and the angular
momentum vectors of a particle (system) while A stands for any
arbitrary vector. In such a space, as we know, the scalar product of
any two arbitrary vectors is defined to be

A -B=A;B; = 6,;A;B; = §9 A;B;, (1.7)

where repeated indices are assumed to be summed. The scalar prod-
uct of two vectors is invariant under rotations of the three dimen-
sional space which is the maximal symmetry group of the Euclidean
space that leaves the origin invariant. This also allows us to define
the length of a vector simply as

A=A A =AA =06,AA; =59 A A, (1.8)

The Kronecker delta, d;;, in this case, represents the metric of the
Euclidean space and is trivial (in the sense that all the nonzero com-
ponents are positive and simply unity). Consequently, it does not
matter whether we write the indices “up” or “down”. Let us note
from the definition of the length of a vector in Euclidean space that,
for any nontrivial vector, it is necessarily positive definite, namely,

A? =0, if and only if A = 0. (1.9)

When we treat space and time on an equal footing and enlarge our
three dimensional Euclidean manifold to the four dimensional space-
time manifold, we can again define vectors in this manifold. However,
these would now consist of four components. Namely, any point
in this manifold will be specified uniquely by four coordinates and,
consequently, any vector would also have four components. However,
unlike the case of the Euclidean space, there are now two distinct four
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vectors that we can define on this manifold, namely, (u = 0,1,2,3
and we are being a little sloppy in representing the four vector by
what may seem like its component)

at = (ct,x),

x, = (ct, —x). (1.10)

Here ¢ represents the speed of light (necessary to give the same di-
mension to all the components) and we note that the two four vectors
simply represent the two distinct possible ways space and time com-
ponents can be embedded into the four vector. On a more fundamen-
tal level, the two four vectors have distinct transformation properties
under Lorentz transformations (in fact, one transforms inversely with
respect to the other) and are known respectively as contravariant and
covariant vectors.

The contravariant and the covariant vectors are related to each
other through the metric tensor of the four dimensional manifold,
commonly known as the Minkowski space, namely,

o v
LTy = N,

b =nx,, w,v=0,1,2 3. (1.11)

From the forms of the contravariant and the covariant vectors in
(1.10) as well as using (1.11), we can immediately read out the com-
ponents of the metric tensors for the four dimensional Minkowski
space which are diagonal with the signature (4, —,—, —). Namely,
we can write them in the matrix form as

: (1.12)

3
=
I
SO O =
]
|
—_
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1 0 0 0
0 -1 0 0

=10 o0 -1 o (1.13)
0 0 0 -1

The contravariant metric tensor, n*¥, and the covariant metric ten-
sor, 7)., are inverses of each other, since they satisfy

7 = 0. (1.14)

Furthermore, each is symmetric as they are expected to be, namely,

=0t N = N (1.15)

This particular choice of the metric is conventionally known as the
Bjorken-Drell metric and this is what we will be using throughout
these lectures. Different authors, however, use different metric con-
ventions and you should be careful in reading the literature. (As
is clear from the above discussion, the nonuniqueness in the choice
of the metric tensors reflects the nonuniqueness of the embedding
of space and time components into a four vector. Physical results,
however, are independent of the choice of a metric.)
Given two arbitrary four vectors

A = (AY A),
B* = (B, B), uw=0,1,2,3, (1.16)

we can define an invariant scalar product of the two vectors as
A-B=A'B, = A,B"

=n"A,B, = nuA"'B”
= A°B°— A .B. (1.17)
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Since the contravariant and the covariant vectors transform in an
inverse manner, such a product is easily seen to be invariant un-
der Lorentz transformations. This is the generalization of the scalar
product of the three dimensional Euclidean space (1.7) to the four
dimensional Minkowski space and is invariant under Lorentz trans-
formations which are the analogs of rotations in Minkowski space. In
fact, any product of Lorentz tensors defines a scalar if all the Lorentz
indices are contracted, namely, if there is no free Lorentz index left
in the resulting product. (Two Lorentz indices are said to be con-
tracted if a contravariant and a covariant index are summed over all
possible values.)

Given this, we note that the length of a (four) vector in Minkowski
space can be determined to have the form (compare with (1.8))

A2 = A A=A, A, =, APAY = (A%)2 — A2, (1.18)

Unlike the Euclidean space, however, here we see that the length of
a vector need not always be positive semi-definite (recall (1.9)). In
fact, if we look at the Minkowski space itself, we find that

2% = xhz, = ot = AP — x2 (1.19)

This is the invariant length (of any point from the origin) in this
space. The invariant length between two points infinitesimally close
to each other follows from this to be

ds? = 2dr? =y, datds”, (1.20)

where 7 is known as the proper time.
For coordinates which satisfy (see (1.19), we will set ¢ = 1 from
now on for simplicity)

=1t —x*>0, (1.21)

we say that the region of space-time is time-like for obvious reasons.
On the other hand, for coordinates which satisfy
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22 =1 —x* <0, (1.22)

the region of space-time is known as space-like. The boundary of the
two regions, namely, the region for which

=1 —x* =0, (1.23)

defines trajectories for light-like particles and is, consequently, known
as the light-like region. (Light-like vectors, for which the invariant
length vanishes, are nontrivial unlike the case of the Euclidean space
in (1.9).)

(A 4 \(S&f
& ttg Y
g
E
space-like + / space-like
T
O
=5
d
e
+~

Figure 1.1: Different invariant regions of Minkowski space.

Thus, we see that, unlike the Euclidean space, the Minkowski
space-time manifold separates into four invariant cones (namely, re-
gions which do not mix under Lorentz transformations), which in a
two dimensional projection has the form of wedges shown in Fig. 1.1.
The different invariant cones (wedges) are known as

t>0, 22>0: futurelightcone,
t<0, 22>0: pastlightcone,

x> <0: space — like. (1.24)
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All physical processes are assumed to take place in the future light
cone or the forward light cone defined by

t>0 and 2%>0. (1.25)

Given the contravariant and the covariant coordinates, we can
define the contragradient and the cogradient respectively as (¢ = 1)

0 0
T
0 Oz, ((%’ V)’

0 0

From these, we can construct the Lorentz invariant quadratic oper-
ator

62
O=0*=0"0, = i v (1.27)
which is known as the D’Alembertian. It is the generalization of the
Laplacian to the four dimensional Minkowski space.

Let us note next that energy and momentum also define four
vectors in this case. (Namely, they transform like four vectors under
Lorentz transformations.) Thus, we can write (remember that ¢ = 1,
otherwise, we have to write £)

p,u = (Ea p)a
pp = (E,—p). (1.28)

Given the energy-momentum four vectors, we can construct the
Lorentz scalar

p* =pl'py = E* — p*. (1.29)

The Einstein relation for a free particle (remember ¢ = 1)
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E? = p* +m?, (1.30)

where m represents the rest mass of the particle, can now be seen as
the Lorentz invariant condition

p?=E?—p?=m? (1.31)

In other words, in this space, the energy and the momentum of a free
particle must lie on a hyperbola satisfying the relation (1.31).

We already know that the coordinate representations of the en-
ergy and the momentum operators take the forms

B,
E — ih—
— zhat,
p — —ihV. (1.32)

We can combine these to write the coordinate representation for the
energy-momentum four vector operator as

0 0
“ = = ) —_— _— 1 = 1 _— = 1 ILL
D (E,p) <Zh8t’ th) zha 1hot,

L

0 0
=(F,—p) = | th—,iAV | = ih— = ih0,. 1.33
Finally, let us note that in the four dimensional space-time, we can
construct two totally anti-symmetric fourth rank tensors e, €vAps
the four dimensional contravariant and covariant Levi-Civita tensors
respectively. We will choose the normalization €123 = 1 =
that

—€0123 SO

= €ijk = —€0ijk> (1.34)

where ¢;;, denotes the three dimensional Levi-Civita tensor with
€123 = 1. An anti-symmetric tensor such as €’ ik is then understood
to denote

eijk = Uizegjk, (1.35)
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and so on. This completes the review of all the essential basic no-
tation that we will be using in this book. We will introduce new
notations as they arise in the context of our discussions.

1.3 Klein-Gordon equation

With all these basics, we are now ready to write down the sim-
plest of the relativistic equations. We recall that in the case of a
non-relativistic particle, we start with the non-relativistic energy-
momentum relation

E= p_2 +V(x), (1.36)

2m

and promote the dynamical variables (observables) to Hermitian op-
erators to obtain the time-dependent Schrédinger equation (see (1.1))

L0y A
i = Hi = (—%V + V(x)> . (1.37)

Let us consider the simplest of relativistic systems, namely, a
relativistic free particle of mass m. In this case, we have seen that the
energy-momentum relation is none other than the Einstein relation
(1.30), namely,

B2 = p® +m?,
or, E?—p?= plpu = m?. (1.38)

Thus, as before, promoting these to operators, we obtain the simplest
relativistic quantum mechanical equation to be (see (1.33))

P'pud = m?,
or, (ihd")(ihdy)p = m>¢,
or, _ hQDQb — m2¢‘ (139)
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Setting & = 1 from now on for simplicity, the equation above takes
the form

(04 m?)¢ = 0. (1.40)

Since the operator in the parenthesis is a Lorentz scalar and since we
assume the quantum mechanical wave function, ¢(x,t), to be a scalar
function, this equation is invariant under Lorentz transformations.

This equation, (1.40), is known as the Klein-Gordon equation
and, for m = 0, or when the rest mass of the particle vanishes,
it reduces to the wave equation (recall Maxwell’s equations). Like
the wave equation, the Klein-Gordon equation also has plane wave
solutions which are characteristic of free particle solutions. In fact,
the functions

ik- ik, Tt ikFa, _ i (kot—k-
eTike — ikt — oFiktou — oFilkot—kx) (1.41)

with k# = (k¥ k) are eigenfunctions of the energy-momentum oper-
ator, namely, using (1.33) (remember that i = 1) we obtain

Ty

so that +k* are the eigenvalues of the energy-momentum operator.
(In fact, the eigenvalues should be +hk”, but we have set h = 1.)

This shows that the plane waves define a solution of the Klein-Gordon
equation (1.39) or (1.40) provided

k?_m2:(k0)2_k2_m2:0’
or, k"=+Vk2+m?2=+FE. (1.43)

Thus, we see the first peculiarity of the Klein-Gordon equa-
tion (which is a relativistic equation), namely, that it allows for
both positive and negative energy solutions. This basically arises
from the fact that, for a relativistic particle (even a free one), the
energy-momentum relation is given by the Einstein relation which is



12 1 RELATIVISTIC EQUATIONS

a quadratic relation in E, as opposed to the case of a non-relativistic
particle, where the energy-momentum relation is linear in E. If we
accept the Klein-Gordon equation as describing a free, relativistic,
quantum mechanical particle of mass m, then, we will see shortly
that the presence of the negative energy solutions would render the
theory inconsistent.

To proceed further, let us note that the Klein-Gordon equation
and its complex conjugate (remember that a quantum mechanical
wave function is, in general, complex), namely,

(O+m?o =0,
(O +m?)¢* =0, (1.44)

would imply

¢"0¢ — ¢l¢"™ =0,
or, Oy (¢*0" ¢ — g0t e") =

or, <¢ 99 _ a;; > — V- (¢"'Vo—odVe*) =0. (1.45)

Defining the probability current density four vector as

JH=(J%T) = (p,d), (1.46)

where

1 * *
J:§%ﬂ¢V¢—¢V¢L

00 09
<¢ % % ) , (1.47)

we note that equation (1.45) can be written as a continuity equation
for the probability current, namely,

0, J" = ? +V-J=0. (1.48)
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The probability current density,

1

J:,—
2im

(¢"V o — V"), (1.49)
of course, has the same form as in non-relativistic quantum mechan-

ics. However, we note that the form of the probability density (which
results from the requirement of covariance)

p:L< 00 ‘%*), (1.50)

2m ot ot

is quite different from that in non-relativistic quantum mechanics
(namely, p = ¢*¢) and it is here that the problem of the negative en-
ergy states shows up. For example, even for the simplest of solutions,
namely, plane waves of the form

b(z) = e, (151)
we obtain
S E

Since energy can take both positive and negative values, it follows
that p cannot truly represent the probability density which, by defi-
nition, has to be positive semi-definite. It is worth noting here that
this problem really arises because the Klein-Gordon equation, unlike
the time dependent Schrodinger equation, is second order in time
derivatives. This has the consequence that the probability density
involves a first order time derivative and that is how the problem
of the negative energy states enters. (Note that if the equation is
second order in the space derivatives, then covariance would require
that it be second order in time derivative as well. This would, in turn,
lead to the difficulty with the probability density being positive semi-
definite.) One can, of course, ask whether we can restrict ourselves
only to positive energy solutions in order to avoid the difficulty with
the interpretation of p. Classically, we can do this. However, quan-
tum mechanically, we cannot arbitrarily impose this for a variety of
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reasons. The simplest way to see this is to note that the positive
energy solutions alone do not define a complete set of (basis) states
in the Hilbert space and, consequently, even if we restrict the states
to be of positive energy to begin with, negative energy states may be
generated through quantum mechanical corrections. It is for these
reasons that the Klein-Gordon equation was abandoned as a quan-
tum mechanical equation for a relativistic single particle. However,
as we will see later, this equation is quite meaningful as a relativistic
field equation.

1.3.1 Klein paradox. Let us consider a charged scalar particle de-
scribed by the Klein-Gordon equation (1.40) in an external electro-
magnetic field. We recall that the coupling of a charged particle to
an electromagnetic field is given by the minimal coupling

Pu — Pu — eA;u
or, 0, — 0, +ieA,, (1.53)

where we have used the coordinate representation for the momentum
as in (1.33) and A, denotes the vector potential associated with the
electromagnetic field. In this case, therefore, the scalar particle will
satisfy the minimally coupled Klein-Gordon equation (e > 0, namely,
the particles are chosen to carry positive charge)

((0y +ieA,) (O + ieA") + m?) ¢(x) = 0. (1.54)

As a result, the probability current density in (1.46) can be deter-
mined to have the form

7= o (6 (@) P () + 2ieA S (2)(x)) (1.55)

T 2m

where we have defined

AP B = A(0"B) — (9" A) B. (1.56)

With this general description, let us consider the scattering of a
charged scalar (Klein-Gordon) particle with positive energy from a
constant electrostatic potential. In this case, therefore, we have
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A =0, A°=® = constant. (1.57)

For simplicity, let us assume the constant electrostatic potential to
be of the form

0, =<0,
D(z2) = (1.58)
Py, z2>0,

and we assume that the particle is incident on the potential along
the z-axis as shown in Fig. 1.2.

€q>(]

Figure 1.2: Klein-Gordon particle scattering from a constant electro-
static potential.

The dynamical equations will now be different in the two regions,
z < 0 (region I) and z > 0 (region II), and have the forms (see (1.54))

(D+m2)¢120, z <0,

0
<D +m? + 2ied i 62‘1)3) ¢un =0, z > 0. (1.59)

In region I, there will be an incident as well as a reflected (plane)
wave so that we can write (remember that the incident particle has
positive energy)

Bi(t, z) = e (eipz + Ae*ipz) , 2<0, (1.60)
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while in region II, we only expect a transmitted wave (traveling to
the right) of the form

bu(t,z) = Be 'z 55, (1.61)

where A, B are related respectively to reflection and transmission
coefficients. We note here that the continuity of the wave function
at the boundary z = 0 requires that the energy be the same in the
two regions.

For the wave functions in (1.60) and (1.61) to satisfy the respec-
tive equations in (1.59), we must have

E = +/p%+m?2,

P =4/ (E - ey)? —m?

=+ /(E —e®y+m)(E —edy —m). (1.62)

Here we have used the fact that the energy of the incident particle is
positive and, therefore, the square root in the first equation in (1.62)
is with a positive sign. However, the sign of the square root in the
second relation remains to be fixed.

Let us note from the second relation in (1.62) that p’ is real
for both E — e®y > m (weak potential) and for E — e®y < —m
(strong potential). However, for a potential of intermediate strength
satisfying —m < FE — e®y < m, we note that p’ is purely imaginary.
Thus, the behavior of the transmitted wave depends on the strength
of the potential. As a result, in this second case, we must have

p = ilp/], —-m < E —e®y <m, (1.63)

in order that the wave function is damped in region II. To determine
the sign of the square root in the cases when p’ is real, let us note
from the second relation in (1.62) that the group velocity of the
transmitted wave is given by

OF P
Vgroup = =

— == 1.64
= = 9y E - edy (1.64)
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Since we expect the transmitted wave to be travelling to the right,
we determine from (1.64) that

p' >0, for E—edPy>0,
(1.65)
p' <0, for E—edPy<0.
This, therefore, fixes the sign of the square root in the second relation
n (1.62) for various cases.
Matching the wave functions in (1.60) and (1.61) and their first
derivatives at the boundary z = 0, we determine

/
1+4=B, 1-4=2p, (1.66)
p

so that we determine

2
A= p+p B= er/. (1.67)
p+p p+p

Let us next determine the probability current densities associated
with the different waves. From (1.55) as well as the form of the
potential in (1.58) we obtain

Jine =2 Jine = %,
I e .
Jrefl = Jrefl (p+p)(p+( ) )
Jtrans =7 Jtrans = (p * ( )*) 4p2 ) (168)

2m (p+r)p+@))
where we have used (1.67) as well as the fact that, while p is real and
positive, p’ can be positive or negative or even imaginary depending
on the strength of the potential (see (1.63) and (1.65)). We can now
determine the reflection and the transmission coefficients simply as

Jreﬂ _ (p p)( (p/)*)
Jinc (p +0)(p+ ()*)’

Jtrans o 2p(p + (p) )
T~ )t @) (1.69)

R =

T —
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We see from the reflection and the transmission coefficients that

(p—p)—@))+2p0 + @)")
(p+p)p+(@))

so that the reflection and the transmission coefficients satisfy unitar-
ity for all strengths of the potential.

However, let us now analyze the different cases of the potential
strengths individually. First, for the case, F — e®y > m (weak po-
tential), we see that p’ is real and positive and we have

R+T=

=1, (1.70)

p+p (p+1')?

which corresponds to the normal scenario in scattering. For the case
of an intermediate potential strength, —m < E — e®y < m, we note
from (1.63) that p’ is purely imaginary in this case. As a result, it
follows from (1.69) that

7\ 2 /
- 4
R:<p p><<L T=—TC S0 R+T=1, (L71)

(p—pP)p+p)
P+ —7)
so that the incident beam is totally reflected and there is no transmis-
sion in this case. The third case of the strong potential, £ — e®y <

—m, is the most interesting. In this case, we note from (1.65) that
p is real, but negative. As a result, from (1.69) we have

R= =1, T=0, R+T=1, (1.72)

71\ 2 /
4
:<£fBD >1, T:—G%%%§<Q R+T =1.

(1.73)

Namely, even though unitarity is not violated, in this case the trans-
mission coefficient is negative and the reflection coefficient exceeds
unity. This is known as the Klein paradox and it contradicts our
intuition from the one particle scatterings studied in non-relativistic
quantum mechanics. On the other hand, if we go beyond the one par-
ticle description and assume that a sufficiently strong enough elec-
trostatic potential can produce particle-antiparticle pairs, there is
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no paradox. For example, the antiparticles are attracted towards
the barrier leading to a negative charged current moving to the right
(remember that the particles are chosen to carry positive charge so
that antiparticles carry negative charge) which explains the nega-
tive transmission coefficient. On the other hand, the particles are
reflected from the barrier and add to the totally reflected incident
particles (which is already seen for intermediate strength potentials)
to give a reflection coefficient that exceeds unity.

1.4 Dirac equation

As we have seen, relativistic equations seem to imply the presence of
both positive as well as negative energy solutions and that quantum
mechanically, we need both these solutions to describe a physical
system. Furthermore, as we have seen, the Klein-Gordon equation is
second order in the time derivatives and this leads to the definition
of the probability density which is first order in the time derivative.
Together with the negative energy solutions, this implies that the
probability density can become negative which is inconsistent with
the definition of a probability density. It is clear, therefore, that
even if we cannot avoid the negative energy solutions, we can still
possibly obtain a consistent probability density provided we have a
relativistic equation which is first order in the time derivative just like
the time dependent Schrodinger equation. The difference, of course,
is that Lorentz invariance (or covariance under Lorentz transforma-
tions) would require space and time to be treated on an equal footing
and, therefore, such an equation, if we can find it, must be first or-
der in both space and time derivatives. Clearly, this can be done
provided we have a linear relation between energy and momentum
operators. Let us recall that the Einstein relation gives

E? = p? + m?% (1.74)

The positive square root of this gives

E =+/p?+m?, (1.75)

which is far from a linear relation.
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Although the naive square root of the Einstein relation does not
lead to a linear relation between the energy and the momentum vari-
ables, a matrix square root may, in fact, lead to such a relation.
This is exactly what Dirac proposed. Let us, for example, write the
Finstein relation as

E?—p?=m?

or, p*=p'p,=m’. (1.76)

Let us consider this as a matrix relation (namely, an n x n identity
matrix multiplying both sides). Let us further assume that there
exist four linearly independent n x n matrices v*, 4 = 0, 1,2, 3, which
are space-time independent such that

P =7"Pu; (1.77)

represents the matrix square root of p?. If this is true, then, by
definition, we have

pp =11,
or, Y'pu,y'py = p?lL,

or, Yv'pup, = p°1,

or, %(’Y“’YV +9"7") pupy = 1. (1.78)
Here 1 denotes the identity matrix (in the appropriate matrix space,
in this case, n dimensional) and we have used the fact that the ma-
trices, v*, are constant to move them past the momentum operators.
For the relation (1.78) to be true, it is clear that the matrices, v#,
have to satisfy the algebra (1 =0,1,2,3)

P A =[], = 2L (1.79)

Here the brackets with a subscript “4” stand for the anti-commutator
of two quantities defined in (1.79) (sometimes it is also denoted by
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curly brackets which we will not use to avoid confusion with Poisson
brackets) and this algebra is known as the Clifford algebra. We see
that if we can find a set of four linearly independent constant ma-
trices satisfying the Clifford algebra, then, we can obtain a matrix
square root of p? which would be linear in energy and momentum.

Before going into an actual determination of such matrices, let
us look at the consequences of such a possibility. In this case, the
solutions of the equation (sign of the mass term is irrelevant and the
wave function is a matrix in this case)

P = my, (1.80)

would automatically satisfy the Einstein relation. Namely,

p(pY) = mpy,
or, p* =m?y. (1.81)

Furthermore, since the new equation, (1.80), is linear in the energy
and momentum variables, it will, consequently, be linear in the space
and time derivatives. This is, of course, what we would like for a
consistent definition of the probability density. The equation (1.80)
(or its coordinate representation) is known as the Dirac equation.

To determine the matrices, v*, and their dimensionality, let us
note that the Clifford algebra in (1.79)

[V "], =21, n=0,1,23, (1.82)

can be written out explicitly as

(v)? = -1, for any fixed i =1,2,3,

N N N S R | (1.83)
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We can choose any one of the matrices to be diagonal and without
loss of generality, let us choose

by O 0
0 by --- 0
0 0 by,

From the fact that (7°)? = 1, we conclude that each of the diagonal
elements in 4 must be +1, namely,
bo = +1, a=1,2--,n. (1.85)
Let us next note that using the relations from the Clifford algebra
in (1.83), for a fixed ¢, we obtain
Try'y%y' = Try'(—y'") = =Tr ()" = Tr 7’ (1.86)

where “Tr” denotes trace over the matrix indices. On the other hand,
the cyclicity property of the trace, namely,

Tr ABC = Tr CAB, (1.87)
leads to
Trainyf = Tr (71)24° = —TrA". (1.88)

Thus, comparing Eqgs. (1.86) and (1.88), we obtain

Try'y'y' = Try = ~Tr9”,
or, Tr~%=0. (1.89)
For this to be true, we conclude that v must have as many diagonal

elements with value +1 as with —1. Consequently, the v* matrices
must be even dimensional.
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Let us assume that n = 2N. The simplest nontrivial matrix
structure would arise for N = 1 when the matrices would be two
dimensional (namely, 2 x 2 matrices). We know that the three Pauli
matrices along with the identity matrix define a complete basis for
2 x 2 matrices. However, as we know, they do not satisfy the Clifford
algebra. Namely, if we define o# = (1, 0), then,

(0", 0"] # 20" 1. (1.90)

In fact, we know that in two dimensions, there cannot exist four
anti-commuting matrices.

The next choice is N = 2 for which the matrices will be four
dimensional (4 x 4 matrices). In this case, we can find a set of four
linearly independent, constant matrices which satisfy the Clifford
algebra. A particular choice of these matrices, for example, has the
form

1 0
0 _

yi= (_Oai ‘6) i=1,2,3, (1.91)
where each element of the 4 x 4 matrices represents a 2 X 2 matrix
and the o; correspond to the three Pauli matrices. This particular
choice of the Dirac matrices is commonly known as the Pauli-Dirac
representation.

There are, of course, other representations for the y* matrices.
However, the physics of Dirac equation is independent of any par-
ticular representation for the y* matrices. This can be easily seen
by invoking Pauli’s fundamental theorem which says that if there
are two sets of (constant) matrices v* and " satisfying the Clifford
algebra, then, they must be related by a similarity transformation.
Namely, if

[7“a7y]+ = 277!“/]]_,

[ 4"] =21, (1.92)
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then, there exists a constant, nonsingular matrix S such that (in fact,
the similarity transformation is really a unitary transformation if we
take the Hermiticity properties of the y-matrices into account)

A= SyrSTL (1.93)

Therefore, given the equation

(Y#pu —m)y’ =0, (1.94)

we obtain

(S~ py —m)y' =0,
or, S(Yp,—m)S~ly =0,
or, (Ypu—m)SY =0,
or, (y"pu—m)y =0, (1.95)

with ¢ = S~1¢’. (The matrix S~! can be moved past the momentum
operator since it is assumed to be constant.) This shows that dif-
ferent representations of the v* matrices are equivalent and merely
correspond to a change in the basis of the wave function. As we
know, a change of basis does not change physics.

To obtain the Hamiltonian for the Dirac equation, let us go to
the coordinate representation where the Dirac equation (1.80) takes
the form (remember i = 1)

(i) —m)y = ("6, —m)y =0,
or, (i7°0y + iy -V —m)y = 0. (1.96)

Multiplying with 4° from the left and using the fact that (7°)? = 1,
we obtain

zaa—lf = (=i - V +mA ). (1.97)
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Conventionally, one denotes

B=19"  a=7". (1.98)

In terms of these matrices, then, we can write (1.97) as

Oy

v (i - V+mpB)yY = (a-p+ fm)y. (1.99)

This is a first order equation (in time derivative) like the Schrodinger
equation and we can identify the Hamiltonian for the Dirac equation
with (recall the time dependent Schrédinger equation (1.37))

H=a p+pm. (1.100)

In the particular representation of the 4* matrices in (1.91), we
note that

o =7y = (g _O]l> (_OU ‘g) = (2 ‘;) . (1.101)

We can now determine either from the definition in (1.98) and (1.79)
or from the explicit representation in (1.101) that the matrices o, 8
satisfy the anti-commutation relations

[ai,aj]Jr =269 1,
[o", 8], =0, (1.102)

with 82 = 1. We can, of course, directly check from this explicit
representation that both § and a are Hermitian matrices. But, in-
dependently, we also note from the form of the Hamiltonian in (1.100)
that, in order for it to be Hermitian, we must have
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st =8,
ol =a. (1.103)

In terms of the v* matrices, this translates to

B=+"=("" =4
a=1"y =" =a. (1.104)

Equivalently, we can write

()T =47,
o (1.105)

Namely, independent of the representation, the v* matrices must sat-
isfy the Hermiticity properties in (1.105). (With a little bit of more
analysis, it can be seen that, in general, the Hermiticity properties
of the v* matrices are related to the choice of the metric tensor and
this particular choice is associated with the Bjorken-Drell metric.)
In the next chapter, we would study the plane wave solutions of the
first order Dirac equation.
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CHAPTER 2

Solutions of the Dirac equation

2.1 Plane wave solutions

The Dirac equation in the momentum representation (see (1.80))

(P —m)y = (v"'py —m)y =0, (2.1)
or in the coordinate representation
(i@ —m)y = (iy"0, — m)y = 0, (2.2)

defines a set of matrix equations. Since the Dirac matrices, v*, are
4 x 4 matrices, the wave function 1, in this case, is a four com-
ponent column matrix (column vector). From the study of angular
momentum, we know that multicomponent wave functions suggest a
nontrivial spin angular momentum for the particle. (Other nontrivial
internal symmetries can also lead to a multicomponent wavefunction,
but here we are considering a simple system without any nontrivial
internal symmetry.) Therefore, we expect the solutions of the Dirac
equation to describe particles with spin. To understand what kind
of particles are described by the Dirac equation, let us look at the
plane wave solutions of the equation (which are supposed to describe
free particles). Let us denote the four component wave function as
(z stands for both space and time)

Y1 (

B (
Y(z) = (
Ya(z

X
X

T

)
)
| (2.3)
)

27
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with

VYalz) = e PTuy(p), a=1,2,3,4. (2.4)

Substituting this back into the Dirac equation, we obtain (we define
A =~"A, for any four vector A,,)

(tv" 0y — m)y(x) = 0,
or, (iv*(—ipu) —m)u(p) =0,
or, (p—mu(p) =0, (2.5)

where the four component function, u(p), has the form

U1

<

2

()
u(p) = Ei; : (2.6)
()

I

3

Ug

Let us simplify the analysis by restricting to motion along the
z-axis. In other words, let us set

p1=p2 =0. (2.7)

In this case, equation (2.5) takes the form

(7°po +7*ps — m)u(p) = 0. (2.8)

Taking the particular representation of the v* matrices in (1.91), we
can write this explicitly as

Po—m 0 P3 0 uy
0 po—m 0 —p3 u2
—Dp3 0 —(po +m) 0 ug(p
0 p3 0 —(po +m)/ \ua
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This is a set of four linear homogeneous equations (in the four vari-
ables uy(p),a = 1,2,3,4) and a nontrivial solution exists only if the
determinant of the coefficient matrix vanishes. Thus, requiring,

Po—m 0 D3 0
0 po—m 0 —p3
det —0, (2.10
—p3 0 —(po +m) 0 (2.10)
0 D3 0 —(po +m)
we obtain,

(po —m) [(Po —m)(po +m)® — p3(po + m)]
+ps [P} + (po — m)(—ps(po +m))] =0,
or, (py—m®)® = 2p3(pg — m*) +p3 =0,
or, (p3—ps—m??=0,

or, p% — pg —m?=0. (2.11)

Thus, we see that a nontrivial plane wave solution of the Dirac equa-
tion exists only for the energy values

po=+ E == /p}+m2 (2.12)

Furthermore, we see from (2.11) that each of these energy values is
doubly degenerate. Of course, we would expect the positive and the
negative energy roots in (2.12) from Einstein’s relation. However,
the double degeneracy seems to be a reflection of the nontrivial spin
structure of the wave function as we will see shortly.

The energy eigenvalues (and the degeneracy) can also be ob-
tained in a simpler fashion by noting that (in the gamma matrix
representation of (1.91))
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det('y“pu —m) =0,
—m)l o
or, det (Po ) 3Ps =0,
—osps  —(po+m)l
or, det(— (pj —m*)1+p3l) =0,
or, det(— (p§ —pj —m*)1) =0,

or, pi—pi-m?=0. (2.13)

This is identical to (2.11) and the energy eigenvalues would then
correspond to the roots of this equation given in (2.12). (Note that
this method of evaluating a determinant is not valid, in general, for
matrices involving submatrices that do not commute. In the present
case, however, the submatrices 1, o3 are both diagonal and, therefore,
commute which is why this simpler method works.)

We can obtain the solutions (wave functions) of the Dirac equa-
tion, in this case, by directly solving the set of four coupled equations
in (2.9). Alternatively, we can introduce two component wave func-
tions 4(p) and ¥(p) and write

u(p) = <a(p)> ; (2.14)

. [wp) s — [ 1@
“(p)‘<u2<p>)’ v <u4<p>)' 21

po=E; =FE=/p3+m? (2.16)

the set of coupled equations takes the form
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(V'pu —m)u(p) =0,

o ((E+ —m)l o3p3 ) (WP)) o (2.17)
’ —o3ps  —(Ex +m)1 ) \9(p) . '

Writing out explicitly, (2.17) leads to

(Ey —m)u(p) + o3p3t(p) = 0,
o3pst(p) + (E4+ +m)o(p) = 0. (2.18)

The two component function 9(p) can be solved in terms of @(p) and
we obtain from the second relation in (2.18)

o3P3

o(p) = "B tm u(p). (2.19)

Let us note here parenthetically that the first relation in (2.18) also
leads to the same relation (as it should), namely,

(Ey —m)
p3

(Ey —m)(Ey +m)

=TT By rm) )

(E2 — m2) _
ity oy

o(p) = — o3t(p)

D3 - _ 03p3

= 7) JBU(p) _m

i i(p), (2.20)

where we have used the property of the Pauli matrices, namely, O'g =
1 (in the first line). Note also that if the relation (2.19) obtained from
the second equation in (2.18) is substituted into the first relation, it
will hold trivially (because of the Einstein relation). Therefore, the
positive energy solution is completely determined by the relation
(2.19) in terms of u(p).

Choosing the two independent solutions for u as
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) 1 ) 0
u(p) = <0> , a(p) = <1> ; (2.21)

we obtain respectively

- 03D3 1 _Ef)ﬁ
v(p)=—m o) = . , (2.22)

and

. o3p3 (0} 0
o(p) = Tm <1> = <E+pim> : (2.23)

This determines the two positive energy solutions of the Dirac equa-
tion (remember that the energy eigenvalues are doubly degenerate).
(The question of which components can be chosen independently fol-
lows from an examination of the dynamical equations. Thus, for ex-
ample, from the second of the two two-component Dirac equations in
(2.18), we note that © must vanish in the rest frame while 4 remains
arbitrary. Thus, @ can be thought of as the independent solution.)
Similarly, for the negative energy solutions we write

and the set of equations (2.9) becomes

(E— —m)u(p) + o3p3v(p) = 0,

os3p3t(p) + (E- +m)v(p) = 0. (2.25)
We can solve these as

W(p) = — 2 o(p). (2.26)
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Choosing the independent solutions as

_ 1 N 0
v(p): o/’ U(p): 1) (2'27)

o3P3 1 _Epii
up) =g~ <0> = < _0 m) ; (2.28)

and

o 0
alp) = — ®:<E ps ) (2.29)

and these determine the two negative energy solutions of the Dirac
equation.

The independent two component wave functions in (2.21) and
(2.27) are reminiscent of the spin up and spin down states of a two
component spinor. Thus, from the fact that we can write

) ( a(p) ) o) — (—% @(p)>
s ) iw )

(2.30)

the positive and the negative energy solutions have the explicit forms

1 0
A 0 . 1
uy(p)=1__ ps : ul = 0 . (231)
Ei+m

0 Ei+m



34 2 SOLUTIONS OF THE DIRAC EQUATION

__p3
E_—m ]?
3
ul (p) = ! : ut = E_o_ m (2.32)
0 1

The notation is suggestive and implies that the wave function corre-
sponds to that of a spin % particle. (We will determine the spin of
the Dirac particle shortly.) It is because of the presence of negative
energy solutions that the wave function becomes a four component
column matrix as opposed to the two component spinor we expect
in non-relativistic systems. (The correct counting for the number of
components of the wave function for a massive, relativistic particle of
spin s in the presence of both positive and negative energies follows
to be 2(2s 4 1), unlike the nonrelativistic counting (2s + 1).)

From the structure of the wave function, it is also clear that, for
the case of general motion, where

p1#p2 #0, (2.33)

the solutions take the forms (with pg = Fx = +F = +/p? + m?2)

i(p) L= i(p)
() (). o

which can be explicitly verified. (The change in the sign in the de-

pendent components in (2.34) compared to (2.30) comes from raising
the index of the momentum, namely, p; = —p° = —(p);.)

2.2 Normalization of the wave function

Let us note that if we define

E=E, =\/p2+m2=—E_, (2.35)

then, we can write the solutions (2.34) for motion along a general
direction as
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i A X
U+(p)=a< p(p)()>7U—(p):6< E;m (p)>- (2.36)

(o ~
E+m “\P (p)

Here o and 3 are normalization constants to be determined. The two
component spinors 4(p) and 9(p) in (2.21) and (2.27) respectively are
normalized as (for the same spin components)

af(p)a(p) =1 =o' (p)3(p). (2.37)

For different spin components, this product vanishes.

Given this, we can now calculate

= o (atatp) + 1) T 2HT ) )

2

= |af? (1 + (EEW) i (p)a(p)

2 m m2 2
— o (S )

ol 25

= P a ()at), (239)

where we have used the familiar identity satisfied by the Pauli ma-
trices, namely

(0-A)(oc-B)=A-B+io-(AxB). (2.39)

Similarly, for the negative energy solutions we have
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_o-p -
UT( )) ( E—i—mv(p))
o(p)

(-
2( 1 (o-p)(o-p) (p) +6T(p)17(p)>
(

ot (p

ul (p)u_(p) = 58

E+m)

=B ) o' (p)(p)

= 1B )i, (2.40)

It is worth remarking here that although we have seen in (2.37) that,
for the same spin components, @'t = 1 = ¢'5, we have carried along
these factors in (2.38) and (2.40) simply because we have not specified
their spin components.

In dealing with the Dirac equation, another wave function (known
as the adjoint spinor) plays an important role and is defined to be

u(p) = uf (p)?". (2.41)

= (N oF ). (2.42)

Thus, we see that the difference between the Hermitian conjugate
u! and the adjoint @ is in the relative sign in the second of the two-
component spinors.

We can also calculate the product
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E? +2Em 4+ m? — p?

= lof? (e
~lof 2 wat)
= P (). (243
Similarly, we can show that
T (p)u-(p) = 18P 51 0)o0). (244

E—l—m

Our naive instinct will be to normalize the wave function, as in
the non-relativistic case, by requiring (for the same spin components)

ul (p)us(p) = 1 = ul (p)u_(p). (2.45)

However, as we will see shortly, this is not a relativistic normalization.
In fact, ufu, as we will see, is related to the probability density
which transforms like the time component of a four vector. Thus, a
relativistically covariant normalization would be to require (for the
same spin components)

ul (p)uy (p) = E_ut

— (p)u—(p). (2.46)

(Remember that this will correspond to the probability density and,
therefore, must be positive. By the way, the motivation for such a
normalization condition comes from the fact that, in the rest frame
of the particle, this will reduce to ului = 1 which corresponds to the
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non-relativistic normalization (2.45).) The independent wave func-
tions for a free particle, 1, (x) = e~ %u(p) with py = +F, with this
normalization condition, would give (for the same spin components)

=— (2m)36%(p — p'). (2.47)

/ B 55 (@) ()

With the requirement (2.46), we determine from (2.38) and (2.40)
(for the same spin components when (2.37) holds)

2F E
ul (p)us(p) = g fal* = =,
N [E+m
or, a=o = om
2F E
L pyu-(p) = 53— I8 = —,
N E+m
or, f=p"= ST (2.48)

Therefore, with this normalization, we can write the normalized
positive and negative energy solutions of the Dirac equation to be

E+m a(p)
" (5"’&@))’
_ P D
u )=/ 5" ( B o (p)>- (2.49)

It is also clear that, with this normalization, we will obtain from
(2.43) and (2.44) (for the same spin components)

_ 2m 2m E+m

uy(p)uy(p) = Etm lof® = Exm om 1,

_ 2m 2m  E+4+m
TP (p) =~ B = — e S 1 250)
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This particular product, therefore, appears to be a Lorentz invariant
(scalar) and we will see later that this is indeed true.

Let us also note here that by construction the positive and the
negative energy solutions are orthogonal. For example,

= 0. (2.51)

Therefore, the solutions we have constructed correspond to four lin-
early independent, orthonormal solutions of the Dirac equation. Note,
however, that

T (p)u-(p) = ~20"B i (p) 7~ 5(p) # 0,

T (p)ui (p) = 28" 0 () - (D) # 0. (2.52)

While we will be using this particular normalization for massive
particles, let us note that it becomes meaningless for massless parti-
cles. (There is no rest frame for a massless particle.) The probability
density has to be well defined. Correspondingly, an alternative nor-
malization which works well for both massive and massless particles
is given by

ul (p)u (p) = E = ul (p)u_(p). (2.53)

This still behaves like the time component of a four vector (m is a
Lorentz scalar). In this case, we will obtain from (2.38) and (2.40)
(for the same spin components)
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2
= = E
ul ) () = 0 laf = B,
N E+m
or, a=a" = )
2
i 2
u_(p)u—(p) = E+m 16" =
E
or, f=p"= —|2—m (2.54)
Correspondingly, in this case, we obtain
— 2m 2
Ut (p)ut(p) = E+m ol =m,
_ 2
_ _(p) = 2.55
u—(p)u-(p) E+m 18" = (2.55)

which vanishes for a massless particle. This product continues to be
a scalar. Let us note once again that this is a particularly convenient
normalization for massless particles.

Let us note here parenthetically that, while the arbitrariness in
the normalization of u(p) may seem strange, it can be understood in
light of what we have already pointed out earlier as follows. We can
write the solution of the Dirac equation for a general motion (along
an arbitrary direction) as

wm:/&m@mﬂwﬁfmmm (2.56)

where a(p) is a coefficient which depends on the normalization of u(p)
in such a way that the wave function would lead to a total probability
normalized to unity,

/ B yi(z)p(z) = 1. (2.57)

Namely, a particular choice of normalization for the u(p) is compen-
sated for by a specific choice of the coefficient function a(p) so that
the total probability integrates to unity. The true normalization is
really contained in the total probability.
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2.3 Spin of the Dirac particle

As we have argued repeatedly, the structure of the plane wave solu-
tions of the Dirac equation is suggestive of the fact that the particle
described by the Dirac equation has spin % That this is indeed true
can be seen explicitly as follows.

Let us define a four dimensional generalization of the Pauli matri-
ces as (in this section, we will use the notations of three dimensional
Fuclidean space since we will be dealing only with three dimensional
vectors)

a; 0
& = ( ) . i=1,2,3. (2.58)

0 ag;

It can, of course, be checked readily that these matrices are related
to the a; matrices defined in (1.98) and (1.101) through the relation

0 o;
o = < ’) = pd; = ayp, (2.59)

o; 0

0 1
p= (1 0) . (2.60)

We note that p? = 1 so that we can invert the defining relation (2.59)
and write

Qa; = po; = Qp. (2.61)

From the structures of the matrices «; and &; we conclude that

g _ (lonosl 0
00,8 ( 0 [WM])

. Qiﬁiijk 0 Y N
= ‘ = 2i€; 10 (2.62)
0 QZGZ‘jkO'k
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This shows that %di satisfies the angular momentum algebra (remem-

ber A = 1) and this is why we call the matrices, &;, the generalized

Pauli matrices. (Note, however, that &; define a reducible representa-

tion of spin generators since these matrices are block diagonal.) Us-

ing (2.59) and (2.60), it can also be checked that oy, ;] = 2ie€;j50.
Let us also note that

[~ ] a; 0 0 Uj 0 O'j o; 0
Qi 0| = —
v 0 oy o; 0 o; 0 0 oy
0 00 — 0;0;
- O'Z'O'j—O'jO'Z' 0

_ ( 0 [UZ',Uj])
[Ui7aj] 0

0 QiEijkO'k .
= ) = 2i€;j,
QZGZ‘jkO'k 0

- o [O-i’]l] 0 _
(&, 8] = ( 0 _[%HJ =0. (2.63)

Here we have used the fact that (see (1.101))

B="= (g _O]l> : (2.64)

is block diagonal like ;.

With these relations at our disposal, let us look at the free Dirac
Hamiltonian in (1.100) (remember that we are using three dimen-
sional Euclidean notations in this section)

H =« p+ pm=ap;+ Bm. (2.65)

As we will see in the next chapter, the Dirac equation transforms
covariantly under a Lorentz transformation. In other words, Lorentz
transformations define a symmetry of the Dirac Hamiltonian and,
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therefore, rotations which correspond to a subset of the Lorentz
transformations must also be a symmetry of the Dirac Hamiltonian.
Consequently, the (total) angular momentum operators which gen-
erate rotations should commute with the Dirac Hamiltonian. Let
us recall that the orbital angular momentum operators are given by
(repeated indices are summed)

Lz‘ = €ijkT Pk, i,j, k= 1, 2, 3. (2.66)

Calculating the commutator of this operator with the Dirac Hamil-
tonian, we obtain

(L, H] = [€;ju2 Pk, aepe + fm)]
= [€ijkT Pk, Cepy]
= €ijrulTj, Pelpr;
= €0y (1050) Pr = 1€jK0DE- (2.67)

Here we have used the fact that since 8 is a constant matrix and
m is a constant, the second term in the Hamiltonian drops out of
the commutator. Thus, we note that the orbital angular momentum
operator does not commute with the Dirac Hamiltonian. Conse-
quently, the total angular momentum which should commute with
the Hamiltonian must contain a spin part as well.

To determine the spin angular momentum, we note that (see

(2.63))

i, H] = [&s, ajp; + ]
= [ai, o5]p; + @, Blm
= 2ieijkakpj = —2ieijkoszk, (2.68)

so that combining this relation with (2.67) we obtain

1

1
[Li + 55@,}4 = [Li, H] + 3 [, H]

= ’L'Eijkajpk - ieijkajpk =0. (269)
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In other words, the total angular momentum which should commute
with the Hamiltonian, if rotations are a symmetry of the system, can
be identified with

1
Ji=L; + 5 Q. (2.70)

In this case, therefore, we can identify the spin angular momentum
operator with

S; == . (2.71)

DN | —

Note, in particular, that

0
Si=3d =3 ("3 ) , (2.72)

2 0 g3

which has doubly degenerate eigenvalues i%. Therefore, we conclude
that the particle described by the Dirac equation corresponds to a
spin 3 (fermionic) particle.

2.4 Continuity equation

The Dirac equation, written in the Hamiltonian form (see (1.99)), is
given by

. oY

ZE:sz(—ia-V—i—ﬁm)w. (2.73)

Taking the Hermitian conjugate of this equation, we obtain

ot
—i 8—% — T (i - ¥ + pm), (2.74)
where the gradient is assumed to act on 1. Multiplying (2.73) with
YT on the left and (2.74) with ) on the right and subtracting the
second from the first, we obtain
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o, ot

o Ti g v =—i(¥la Vet (Vuh) - ay),

it
.0 .
or, a (¢T¢) =—iV- (WLO“/)),

d
or, = (Wiy) = -V - (YTa)). (2.75)

This is the continuity equation for the probability current density
associated with the Dirac equation and we note that we can identify

p= YT = probability density,
J = ¢Tap = probability current density, (2.76)

to write the continuity equation as

op
- _Vv.J. 2.
T v-J (2.77)

This suggests that we can write the current four vector as

= (p,J) = (W, pla)), (2.78)

so that the continuity equation can be written in the manifestly co-
variant form

B J" = 0. (2.79)

This, in fact, shows that the probability density, p, is the time com-
ponent of J¥ (see (2.78)) and, therefore, must transform like the
time coordinate under a Lorentz transformation (as we had alluded
to earlier). (We are, of course, yet to show that J#* transforms like
a four vector which we will do in the next chapter.) On the other
hand, the total probability

P= /d?’xp: /d?’xww, (2.80)
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is a constant independent of any particular Lorentz frame. It is worth
recalling that we have already used this Lorentz transformation prop-
erty of p in defining the normalization of the wave function.

An alternative and more covariant way of deriving the continuity
equation is to start with the covariant Dirac equation

(iv"0, —m)y =0, (2.81)

and note that the Hermitian conjugate of v satisfies

U1 (= i) 0 —m) =0. (2.82)

Multiplying this equation with 7" on the right and using the fact
that (v%)2 = 1, we obtain (¢ = ¥T4" so that ! = ¥1?)

U0 (= i(y")15, — m)+° =0,

or, T(—ir"(4)11%8, —m) =0,
or, (- iy“g“ —m) =0, (2.83)
where we have used the property of the gamma matrices that (for

w=0,1,2,3, see also (2.102) and (2.103) in section 2.6)

9y = ()1,
()T = A5 (2.84)

Multiplying (2.81) with ¢ on the left and (2.83) with ¢ on the
right and subtracting the second from the first, we obtain

i(Vy o + %“5@) =0,
or, 0, (Ev‘%b) =0,
or, O,(¢Yy*y) =0. (2.85)

This is, in fact, the covariant continuity equation for the Dirac equa-
tion and we can identify the conserved current density with
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JH = ahrytp. (2.86)
Note from the definition in (2.86) that we can identify

JO =y = 9Ty 090% = ¢l = p,
J =y = 10y = plap, (2.87)

which is what we had derived earlier in (2.78).

Let us conclude this discussion by noting that although the Dirac
equation has both positive and negative energy solutions, because it
is a first order equation (particularly in the time derivative), the
probability density is independent of time derivative much like in
the Schrodinger equation. Consequently, the probability density, as
we have seen explicitly in (2.38) and (2.40), can be defined to be
positive definite even in the presence of negative energy solutions.
This is rather different from the case of the Klein-Gordon equation
that we have studied in chapter 1.

2.5 Dirac’s hole theory

We have seen that the Dirac equation leads to both positive and
negative energy solutions. In the free particle case, for example, the
energy eigenvalues are given by

P’ =FEy=+F =+ \/p2+m2. (2.88)

Thus, even for this simple case of a free particle the energy spectrum
has the form shown in Fig. 2.1. We note from Fig. 2.1 (as well as
from the equation above, (2.88)) that the positive and the negative
energy solutions are separated by a gap of magnitude 2m (remember
that we are using ¢ = 1).

Even when the probability density is consistently defined, the
presence of negative energy solutions leads to many conceptual diffi-
culties. First of all, in such a case, we note that the energy spectrum
is unbounded from below. Since physical systems have a tendency
to go to the lowest energy state available, this implies that any such
physical system (of Dirac particles) would make a transition to these
unphysical energy states thereby leading to a collapse of all stable



48 2 SOLUTIONS OF THE DIRAC EQUATION

Figure 2.1: Energy spectrum for a free Dirac particle.

systems such as the Hydrogen atom. Classically, of course, we can
restrict ourselves to the subspace of positive energy solutions. But as
we have argued earlier within the context of the Klein-Gordon equa-
tion, quantum mechanically this is not acceptable. Namely, even if
we start out with a positive energy solution, any perturbation would
cause the energy to lower, destabilizing the physical system and lead-
ing to an ultimate collapse.

In the case of Dirac particles, however, there is a way out of
this difficulty. Let us recall that the Dirac particles carry spin %
and are, therefore, fermions. To be specific, let us assume that the
particles described by the Dirac equation are the spin % electrons.
Since fermions obey Pauli exclusion principle, any given energy state
can accommodate at the most two electrons with opposite spin pro-
jections. Taking advantage of this fact, Dirac postulated that the
physical ground state (vacuum) in such a theory should be redefined
for consistency. Namely, Dirac postulated that the ground state in
such a theory is the state where all the negative energy states are
filled with electrons. Thus, unlike the conventional picture of the
ground state as being the state without any particle (quantum), here
the ground state, in fact, contains an infinite number of negative en-
ergy particles. Furthermore, Dirac assumed that the electrons in the
negative energy states are passive in the sense that they do not pro-
duce any observable effect such as charge, electromagnetic field etc.
(Momentum and energy of these electrons are also assumed to be
unobservable. This simply means that one redefines the values of all
these observables with respect to this ground state.)
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This redefinition of the vacuum automatically prevents the insta-
bility associated with matter. For example, a positive energy electron
can no longer drop down to a negative energy state without violat-
ing the Pauli exclusion principle since the negative energy states are
already filled. (Note that this would not work for a bosonic system
such as particles described by the Klein-Gordon equation. It is only
because fermions obey Pauli exclusion principle that this works for
the Dirac equation.) On the other hand, such a redefinition of the
ground state does predict some new physical phenomena which are
experimentally observed. For example, if enough energy is provided
to such a ground state, a negative energy electron can make a tran-
sition to a positive energy state and can appear as a positive energy
electron. Furthermore, the absence of a negative energy electron can
be thought of as a “hole” which would have exactly the same mass
as the particle but otherwise opposite internal quantum numbers.
This “hole” state is what we have come to recognize as the anti-
particle — in this case, a positron — and the process under discussion
is commonly referred to as pair creation (production). Thus, the
Dirac theory predicts an anti-particle of equal mass for every Dirac
particle. (The absence of a negative energy electron in the ground
state can be thought of as the ground state plus a positive energy
“hole” state with exactly opposite quantum numbers to neutralize its
effects. The amount of energy necessary to excite a negative energy
electron to a positive energy state is E > 2m.)

This is Dirac’s theory of electrons and works quite well. However,
we must recognize that it is inherently a many particle theory in the
sense that the vacuum (ground state) of the theory is defined to con-
tain infinitely many negative energy particles. (This unconventional
definition of the vacuum state can be avoided in a second quantized
field theory which we will study later.) In spite of this, the Dirac
equation passes as a one particle equation primarily because of the
Pauli exclusion principle. On the other hand, this is a general feature
that combining quantum mechanics with relativity necessarily leads
to a many particle theory.
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2.6 Properties of the Dirac matrices

The Dirac matrices, v*, were crucial in taking a matrix square root
of the Einstein relation and, thereby, in defining a first order equa-
tion. In this section, we will study some of the useful properties of
these matrices. As we have seen, the four Dirac matrices satisfy (in
addition to the Clifford algebra)

COUET

(= —, i=123

Tr v* =0, w=0,1,2,3,

()% =1, (v')? = =1, for a fixedi = 1,2,3. (2.89)

Since these are 4 x 4 matrices, a complete set of Dirac matrices
must consist of 16 such matrices. Of course, the identity matrix will
correspond to one of them.

To obtain the other basis matrices, let us define the following sets
of matrices. Let

. 1
15 =07 = = g wa " (2.90)
where
0128 — 1 = ¢ 10a, (2.91)

represents the four-dimensional generalization of the Levi-Civita ten-
sor. Note that in our particular representation for the v* matrices
given in (1.91), we obtain

(1 0 0 o 0 o9 0 o3
V5 =1

0 -1/ \-0o1 0 —og 0 —o3 0
0 01 —09203 0
01 0 0 —09203

0 —i1) [0 1 2.0
—1 0 ) \1 o)’ (292)
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where we have used the property of the Pauli matrices

010203 = il. (2.93)

We recognize from (2.92) that we can identify this with the matrix
p defined earlier in (2.60). Note that, by definition,

%=1, "W =, (2.94)

and that, since it is the product of all the four v* matrices, it anti-
commutes with any one of them. Namely,

[15:9"], =0, p=0,1,23 (2.95)

Given the matrix 75, we can define four new matrices as

5y, uw=0,1,23. (2.96)

Since we know the explicit forms of the matrices 1, v* and 75 in
our representation, let us write out the forms of v5v* also in this
representation.

o (0 1\ (1 0\ (o -1
=1 o) \o 1) T\ oo )

i 0 1 0 a; . —0; 0 997
BT o) \ce o) T L0 w) (297

Finally, we can also define six anti-symmetric matrices, o"¥, as
(v =0,1,2,3)

i
2

=i(n" —~"y")
— —i(nw/ — 'y“f}/y)’ (298)

oM = " =5 1] = 5 ("1 = 7"")
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whose explicit forms in our representation can be worked out to be
(4,5,k =1,2,3)

[ —oioj 0
=1
0 —0i0;
[ €Ok 0 o, 0
=1 = €,
0 —1€;jk0k ik 0 ok

= €k, (2.99)

Here we have used the three dimensional notation €;;, = €7k We
have already seen in (2.71) that the matrices % &; represent the spin
operators for the Dirac particle. From (2.99) we conclude, therefore,

that the matrices

1 . 1 A
5 0= eijno’®, (2.100)
can be identified with the spin operators for the Dirac particle. (This
relation can be obtained from (2.99) using the identity for products
of Levi-Civita tensors, namely, €;;x€x = 2 di¢.)
We have thus constructed a set of sixteen Dirac matrices, namely,

re =1, 1,
Tv) M 4,
@ =gw 6, (2.101)
T =59k, 4,
P =, 1
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where the numbers on the right denote the number of matrices in each
category and these, in fact, provide a basis for all the 4 x 4 matrices.
Here, the notation is suggestive and stands for the fact that ¢/ T'(5)¢)
transforms like a scalar under Lorentz and parity transformations.
Similarly, 9T ()4, T Ty, T A ) and TPy behave respectively
like a vector, tensor, axial-vector and a pseudo-scalar under Lorentz
and parity transformations as we will see in the next chapter.

Let us note here that each of the matrices, even within a given
class, has its own Hermiticity property. However, it can be checked
that except for +5, which is defined to be Hermitian, all other matri-
ces satisfy

’yOF(O‘)’yO - (P(a))Jra o = Sa ‘/7 A7 T. (2102)

In fact, it follows easily that

170 = (") =1= (1),
7oyt = ()1, (2.103)
Vo570 = —45799190 = —(v5)T (") T = —(7#35)T = (359*)T,

where we have used the fact that 5 is Hermitian and it anti-commutes
with v*. Finally, from

POy = 209909090 = (M) = ()T, (2.104)

it follows that

4 Z 4 4
Yoo = 2 (7 =
Z’ v v
=5 (r)f = ()
i
=—5 (" - vyt

= (o")1. (2.105)
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The Dirac matrices satisfy nontrivial (anti) commutation rela-
tions. We already know that

V"], =201,
[vs,7"], = 0. (2.106)

We can also calculate various other commutation relations in a
straightforward and representation independent manner. For exam-

ple,

Al Yy

= [ =i =)

[V, o
= i[y*,7'7]
=i([v, 7], =" )
= 2i (" — ). (2.107)

In this derivation, we have used the fact that

[A,BC] = ABC — BCA
= (AB+ BA)C — B(AC + CA)
= [A,B],C—-B[A,C] .. (2.108)
We note here parenthetically that the commutator in (2.108) can also

be expressed in terms of commutators (instead of anti-commutators)
as

[A,BC] = [A,B|C + B[A,C]. (2.109)

However, since +* matrices satisfy simple anti-commutation rela-
tions, the form in (2.108) is more useful for our purpose.
Similarly, for the commutator of two o*” matrices, we obtain
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[0, 0] = [=i(n" = "7"), 0]
= i[y"y", 0]
=iy [y, o] + iy, o]
=3 [Qin”)"y" — 21’77””7)‘] +1 [21'77“)")/” — 21’77“"7)‘] ~Y
= =2i[" (i(n" = 4*7")) + 0" (=i = 4"))
— " (i = ) = (=i — AH4P))]
= -2 [77“)‘0”” + PPt — PGt n”)‘a“p]. (2.110)
Thus, we see that the ¢*” matrices satisfy an algebra in the sense
that the commutator of any two of them gives back a ¢*” matrix.
We will see in the next chapter that they provide a representation
for the Lorentz algebra.
The various commutation and anti-commutation relations also
lead to many algebraic simplifications in dealing with such matrices.
This becomes particularly useful in calculating various amplitudes

involving Dirac particles. Thus, for example, (these relations are
true only in 4-dimensions)

W = ("] =)
=y, — dyY = 29" — 4y = —29", (2.111)

where we have used (7, = 7,7")

At =41, (2.112)

and it follows now that,

YA = v A AR = Ayt = 24,0 = =24, (2.113)

Similarly,
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WYY =’ (] — )
= 27y + 297
=27 + 29" = 2[y* "] = 4L
WYY = [ ¥ A
= (26), = 7 )"
= 27797 — A7y, (2.114)

and so on.

The commutation and anti-commutation relations also come in
handy when we are evaluating traces of products of such matrices.
For example, we know from the cyclicity of traces that

Tr v#~4Y = Tr 4¥~H. (2.115)

Therefore, it follows (in 4-dimensions) that

1 1
Tr 9" = 5 (Tr4#9" + Try"y#) = 5 Tr [1*,9"],
1 v v v
=5 T (291) = 0™ Tr 1= 49",
Tr 59" = Tr yF95 = =Tr 57" = 0. (2.116)

Here in the second relation we have used the fact that 5 anti-
commutes with 4* in addition to the cyclicity of trace. Even more
complicated traces can be evaluated by using the basic relations we
have developed so far. For example, we note that

Tr A" = Tr [([v 7], = 7))
= Tr (gnuvfy&yp _ ,yv,yu,yk,yp)
=80 — Tr o ([0 =)

= 8 — 8P+ Tr Y ([, 97] | = P")
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= 8 — 8P + 8 A — Tr Ay A,
or, 2Tr fy“fy”fy)‘fyp = 8771“/77)\0 _ 877‘”‘77”” + 87,]V)\77up’
or, Tr fyu,yu,y)\,yp — 4(77;“/77)\/) _ nu)\nup + nu)\nup)7 (2.117)

and so on. We would use all these properties in the next chapter to
study the covariance of the Dirac equation under a Lorentz transfor-
mation.

To conclude this section, let us note that we have constructed a
particular representation for the Dirac matrices commonly known as
the Pauli-Dirac representation. However, there are other equivalent
representations possible which may be more useful for a particular
system under study. For example, there exists a representation for
the Dirac matrices where v* are all purely imaginary. This is known
as the Majorana representation and is quite useful in the study of
Majorana fermions which are charge neutral fermions. Explicitly, the
~£ matrices have the forms

0 0 o9 1 103 0
T = y Im = . >
g9 0 0 103
0 —09 —’L'O'l 0
T = , = R (2.118)
09 0 0 —1i01

It can be checked that the Dirac matrices in the Pauli-Dirac represen-
tation and the Majorana representation are related by the similarity
(unitary) transformation (see (1.93))

1
=SS S=—7"(1+4%). (2.119)

V2

Similarly, there exists yet another representation for the +* matrices,
namely,

" 0o 2.120
Tw = 5—# O ) ( N )
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where

o =(1,0), & =(1,-0o). (2.121)

This is known as the Weyl representation for the Dirac matrices and
is quite useful in the study of massless fermions. It can be checked
that the Weyl representation is related to the standard Pauli-Dirac
representation through the similarity (unitary) transformation

1
Yy =SSt S=—(1+7"). (2.122)

V2

2.6.1 Fierz rearrangement. As we have pointed out in (2.101), the
sixteen Dirac matrices I'®),a = S, V, T, A, P define a complete basis
for 4 x 4 matrices. This is easily demonstrated by showing that they
are linearly independent which is seen as follows.

We have explicitly constructed the sixteen matrices to correspond
to the set

F(a) = {]]_,ryﬂ