

Python

Beginner To Pro

Every topics with unique Examples

In this book you will learn from A to Z in Python such as Python Tutorial, File Handling, Python NumPy, Python Matplotlib, Python SciPy, Machine Learning, Python MySQL,Python MySQL, Python Reference, Module Reference, Python Examples And more.

N KRISHNA KUMAR

Table Of Content

What can Python do?

Why Python?

Good to know

Python Syntax compared to other programming languages

Python Quickstart

The Python Command Line

Execute Python Syntax

Python Indentation

Example

Example

Example

Example

Python Variables

Example

Comments

Example

Creating a Comment

Example

Example

Example

Multi Line Comments

Example

Example

Variables

Creating Variables

Example

Example

Casting

Example

Get the Type

Example

Single or Double Quotes?

Example

Case-Sensitive

Example

Python - Variable Names

Variable Names

Example

Example

Multi Words Variable Names

Camel Case

Pascal Case

Snake Case

Python Variables - Assign Multiple Values

Many Values to Multiple Variables

Example

One Value to Multiple Variables

Example

Unpack a Collection

Example

Python - Output Variables

Output Variables

The Python print statement is often used to output variables.

To combine both text and a variable, Python uses the + character:

print("Python is " + x)

You can also use the + character to add a variable to another variable:

x = "Python is "

y = "awesome"

z = x + y

print(z)

For numbers, the + character works as a mathematical operator:

Example

x = 5

y = 10

print(x + y)

Example

x = 5

y = "John"

print(x + y)

Python - Global Variables

Global Variables

Example

Example

The global Keyword

Example

Example

Built-in Data Types

Getting the Data Type

Example

Setting the Data Type

Setting the Specific Data Type

Python Numbers

Example

Example

Int

Example

Float

Example

Example

Complex

Example

Type Conversion

Example

Random Number

Example

Specify a Variable Type

Example

Example

Example

Strings

Example

Assign String to a Variable

Example

Multiline Strings

Example

Example

Strings are Arrays

Example

Looping Through a String

Example

String Length

Example

Check String

Example

Example

Check if NOT

Example

Example

Python - Slicing Strings

Slicing

Example

Slice From the Start

Example

Slice To the End

Example

Negative Indexing

Example

Python - Modify Strings

Upper Case

Example

Lower Case

Example

Remove Whitespace

Example

Replace String

Example

Split String

Example

Python - String Concatenation

String Concatenation

Example

Example

String Format

Example

Example

Example

Example

Escape Character

Example

Example

Escape Characters

Python - String Methods

String Methods

Boolean Values

Example

Example

Evaluate Values and Variables

Example

Example

Most Values are True

Example

Some Values are False

Example

Example

Functions can Return a Boolean

Example

Example

Example

Python Operators

Example

Python Arithmetic Operators

Python Assignment Operators

Python Comparison Operators

Python Logical Operators

Python Identity Operators

Python Membership Operators

Python Bitwise Operators

List

Example

List Items

Ordered

Changeable

Allow Duplicates

Example

List Length

Example

List Items - Data Types

Example

Example

type()

Example

The list() Constructor

Example

Python Collections (Arrays)

Python - Access List Items

Access Items

Example

Negative Indexing

Example

Range of Indexes

Example

Example

Example

Range of Negative Indexes

Example

Check if Item Exists

Example

Python - Change List Items

Change Item Value

Example

Change a Range of Item Values

Example

Example

Example

Insert Items

Example

Python - Add List Items

Append Items

Example

Insert Items

Example

Extend List

Example

Add Any Iterable

Example

Python - Remove List Items

Remove Specified Item

Example

Remove Specified Index

Example

Example

Example

Example

Clear the List

Example

Python - Loop Lists

Loop Through a List

Example

Loop Through the Index Numbers

Example

Using a While Loop

Example

Looping Using List Comprehensive

Example

Python - List Comprehension

List Comprehension

Example

Example

The Syntax

Condition

Example

Example

Iterable

Example

Example

Expression

Example

Example

Example

Python - Sort Lists

Sort List Alphanumerically

Example

Example

Sort Descending

Example

Example

Customize Sort Function

Example

Case Insensitive Sort

Example

Example

Reverse Order

Example

Python - Copy Lists

Copy a List

Example

Example

Python - Join Lists

Join Two Lists

Example

Example

Example

Python - List Methods

List Methods

Python List Exercises

Test Yourself With Exercises

Exercise:

Python Tuples

Tuple

Example

Tuple Items

Ordered

Unchangeable

Allow Duplicates

Example

Tuple Length

Example

Create Tuple With One Item

Example

Tuple Items - Data Types

Example

Example

type()

Example

The tuple() Constructor

Example

Python Collections (Arrays)

Python - Access Tuple Items

Access Tuple Items

Example

Negative Indexing

Example

Range of Indexes

Example

Example

Example

Range of Negative Indexes

Example

Check if Item Exists

Example

Python - Update Tuples

Change Tuple Values

Example

Example

Example

Remove Items

Example

Example

Python - Unpack Tuples

Unpacking a Tuple

Example

Example

Using Asterix*

Example

Example

Python - Loop Tuples

Loop Through a Tuple

Example

Loop Through the Index Numbers

Example

Using a While Loop

Example

Python - Join Tuples

Join Two Tuples

Example

Multiply Tuples

Example

Python - Tuple Methods

Tuple Methods

Python Sets

Set

Example

Set Items

Unordered

Unchangeable

Duplicates Not Allowed

Example

Get the Length of a Set

Example

Set Items - Data Types

Example

Example

type()

Example

The set() Constructor

Example

Python Collections (Arrays)

Python - Add Set Items

Add Items

Example

Add Sets

Example

Add Any Iterable

Example

Python - Remove Set Items

Remove Item

Example

Example

Example

Example

Example

Python - Loop Sets

Loop Items

Example

Python - Join Sets

Join Two Sets

Example

Example

Keep ONLY the Duplicates

Example

Example

Keep All, But NOT the Duplicates

Example

Example

Python - Set Methods

Python Dictionaries

Dictionary

Example

Dictionary Items

Example

Unordered

Changeable

Duplicates Not Allowed

Example

Dictionary Length

Example

Dictionary Items - Data Types

Example

type()

Example

Python Collections (Arrays)

Python - Access Dictionary Items

Accessing Items

Example

Example

Get Keys

Example

Example

Get Values

Example

Example

Get Items

Example

Example

Check if Key Exists

Example

Python - Change Dictionary Items

Change Values

Example

Update Dictionary

Example

Python - Add Dictionary Items

Adding Items

Example

Update Dictionary

Example

Python - Remove Dictionary Items

Removing Items

Example

Example

Example

Example

Example

Python - Loop Dictionaries

Loop Through a Dictionary

Example

Example

Example

Example

Example

Python - Copy Dictionaries

Copy a Dictionary

Example

Example

Python - Nested Dictionaries

Nested Dictionaries

Example

Example

Python Dictionary Methods

Dictionary Methods

Python If ... Else

Python Conditions and If statements

Example

Indentation

Example

Elif

Example

Else

Example

Example

Short Hand If

Example

Short Hand If ... Else

Example

Example

And

Example

Or

Example

Nested If

Example

The pass Statement

Example

Python While Loops

Python Loops

The while Loop

Example

The break Statement

Example

The continue Statement

Example

The else Statement

Example

Python For Loops

Example

Looping Through a String

Example

The break Statement

Example

Example

The continue Statement

Example

The range() Function

Example

Example

Example

Else in For Loop

Example

Nested Loops

Example

The pass Statement

Example

Python Functions

Creating a Function

Example

Calling a Function

Example

Arguments

Example

Parameters or Arguments?

Number of Arguments

Example

Example

Arbitrary Arguments, *args

Example

Keyword Arguments

Example

Arbitrary Keyword Arguments, **kwargs

Example

Default Parameter Value

Example

Passing a List as an Argument

Example

Return Values

Example

The pass Statement

Example

Recursion

Example

Syntax

Example

Example

Example

Why Use Lambda Functions?

Example

Example

Example

Arrays

Example

What is an Array?

Access the Elements of an Array

Example

Example

The Length of an Array

Example

Looping Array Elements

Example

Adding Array Elements

Example

Removing Array Elements

Example

Example

Array Methods

Python Classes/Objects

Create a Class

Example

Create Object

Example

The __init__() Function

Example

Object Methods

Example

The self Parameter

Example

Modify Object Properties

Example

Delete Object Properties

Example

Delete Objects

Example

The pass Statement

Example

Create a Parent Class

Example

Create a Child Class

Example

Example

Add the __init__() Function

Example

Example

Use the super() Function

Example

Add Properties

Example

Example

Add Methods

Example

Iterator vs Iterable

Example

Example

Looping Through an Iterator

Example

Example

Create an Iterator

Example

StopIteration

Example

Local Scope

Example

Function Inside Function

Example

Global Scope

Example

Naming Variables

Example

Global Keyword

Example

Example

What is a Module?

Create a Module

Example

Use a Module

Example

Variables in Module

Example

Example

Naming a Module

Re-naming a Module

Example

Built-in Modules

Example

Using the dir() Function

Example

Import From Module

Example

Example

Python Dates

Example

Date Output

Example

Creating Date Objects

Example

The strftime() Method

Example

Built-in Math Functions

Example

Example

Example

The Math Module

Example

Example

Example

Complete Math Module Reference

JSON in Python

Example

Parse JSON - Convert from JSON to Python

Example

Convert from Python to JSON

Example

Example

Example

Format the Result

Example

Example

Order the Result

Example

RegEx Module

RegEx in Python

Example

RegEx Functions

Metacharacters

Special Sequences

Sets

The findall() Function

Example

Example

The search() Function

Example

Example

The split() Function

Example

Example

The sub() Function

Example

Example

Match Object

Example

Example

Example

Example

What is PIP?

What is a Package?

Check if PIP is Installed

Example

Download a Package

Example

Using a Package

Example

Remove a Package

Example

List Packages

Example

Exception Handling

Example

Example

Many Exceptions

Example

Else

Example

Finally

Example

Example

Raise an exception

Example

Example

User Input

Python 3.6

Python 2.7

String format()

Example

Example

Multiple Values

Example

Index Numbers

Example

Example

Named Indexes

Example

Python File Open

File Handling

Syntax

Open a File on the Server

Example

Example

Read Only Parts of the File

Example

Read Lines

Example

Example

Example

Close Files

Example

Write to an Existing File

Example

Example

Create a New File

Example

Example

Delete a File

Example

Check if File exist:

Example

Delete Folder

Example

What is NumPy?

Why Use NumPy?

Why is NumPy Faster Than Lists?

Which Language is NumPy written in?

Installation of NumPy

Import NumPy

Example

NumPy as np

Example

Checking NumPy Version

Example

Create a NumPy ndarray Object

Example

Example

Dimensions in Arrays

0-D Arrays

Example

1-D Arrays

Example

2-D Arrays

Example

3-D arrays

Example

Check Number of Dimensions?

Example

Higher Dimensional Arrays

Example

Access Array Elements

Example

Example

Example

Access 2-D Arrays

Example

Example

Access 3-D Arrays

Example

Example Explained

Negative Indexing

Example

Slicing arrays

Example

Example

Example

Negative Slicing

Example

STEP

Example

Example

Slicing 2-D Arrays

Example

Example

Example

Data Types in Python

Data Types in NumPy

Checking the Data Type of an Array

Example

Example

Creating Arrays With a Defined Data Type

Example

Example

What if a Value Can Not Be Converted?

Example

Converting Data Type on Existing Arrays

Example

Example

Example

The Difference Between Copy and View

COPY:

Example

VIEW:

Example

Make Changes in the VIEW:

Example

Check if Array Owns it's Data

Example

Shape of an Array

Get the Shape of an Array

Example

Example

What does the shape tuple represent?

Reshaping arrays

Reshape From 1-D to 2-D

Example

Reshape From 1-D to 3-D

Example

Can We Reshape Into any Shape?

Example

Returns Copy or View?

Example

Unknown Dimension

Example

Flattening the arrays

Example

Iterating Arrays

Example

Iterating 2-D Arrays

Example

Example

Iterating 3-D Arrays

Example

Example

Iterating Arrays Using nditer()

Iterating on Each Scalar Element

Example

Iterating Array With Different Data Types

Example

Iterating With Different Step Size

Example

Enumerated Iteration Using ndenumerate()

Example

Example

Joining NumPy Arrays

Example

Example

Joining Arrays Using Stack Functions

Example

Stacking Along Rows

Example

Stacking Along Columns

Example

Stacking Along Height (depth)

Example

Splitting NumPy Arrays

Example

Example

Split Into Arrays

Example

Splitting 2-D Arrays

Example

Example

Example

Example

Searching Arrays

Example

Example

Example

Search Sorted

Example

Search From the Right Side

Example

Multiple Values

Example

Sorting Arrays

Example

Example

Example

Sorting a 2-D Array

Example

Filtering Arrays

Example

Creating the Filter Array

Example

Example

Creating Filter Directly From Array

Example

Example

What is a Random Number?

Pseudo Random and True Random.

Generate Random Number

Example

Generate Random Float

Example

Generate Random Array

Integers

Example

Example

Floats

Example

Example

Generate Random Number From Array

Example

Example

What is Data Distribution?

Random Distribution

Example

Example

What are ufuncs?

Why use ufuncs?

What is Vectorization?

Add the Elements of Two Lists

Example

Example

How To Create Your Own ufunc

Example

Check if a Function is a ufunc

Example

Example

Example

Example

What is Matplotlib?

Matplotlib Getting Started

Installation of Matplotlib

Import Matplotlib

Checking Matplotlib Version

Example

Matplotlib Pyplot

Pyplot

Example

Plotting x and y points

Example

Plotting Without Line

Example

Multiple Points

Example

Default X-Points

Example

Matplotlib Markers

Markers

Example

Example

Marker Reference

Format Strings fmt

Example

Line Reference

Color Reference

Marker Size

Example

Marker Color

Example

Example

Example

Example

Line

Example

Example

Result:

Shorter Syntax

Example

Line Styles

Line Color

Example

Example

Example

Line Width

Example

Multiple Lines

Example

Example

Display Multiple Plots

Example

The subplots() Function

Example

Example

Title

Example

Super Title

Example

Compare Plots

Example

Colors

Example

Color Each Dot

Example

ColorMap

How to Use the ColorMap

Example

Example

Available ColorMaps

Size

Example

Alpha

Example

Combine Color Size and Alpha

Example

Matplotlib Bars

Creating Bars

Example

Example

Horizontal Bars

Example

Bar Color

Example

Color Names

Example

Color Hex

Example

Bar Width

Example

Bar Height

Example

Matplotlib Histograms

Histogram

Create Histogram

Example

Example

Creating Pie Charts

Example

Labels

Example

Start Angle

Example

Explode

Example

Shadow

Example

Colors

Example

Legend

Example

Legend With Header

Example

What is SciPy?

Why Use SciPy?

Which Language is SciPy Written in?

SciPy Getting Started

Installation of SciPy

Import SciPy

Example

Checking SciPy Version

Example

Constants in SciPy

Example

Constant Units

Example

Unit Categories

Metric (SI) Prefixes:

Example

Binary Prefixes:

Example

Mass:

Example

Angle:

Example

Time:

Example

Length:

Example

Pressure:

Example

Area:

Example

Volume:

Example

Speed:

Example

Temperature:

Example

Energy:

Example

Power:

Example

Force:

Example

Optimizers in SciPy

Optimizing Functions

Roots of an Equation

Example

Example

Minimizing a Function

Finding Minima

Example

What is Sparse Data

How to Work With Sparse Data

CSR Matrix

Example

Sparse Matrix Methods

Example

Example

Example

Example

Example

SciPy Graphs

Working with Graphs

Adjacency Matrix

Connected Components

Example

Dijkstra

Example

Floyd Warshall

Example

Bellman Ford

Example

Depth First Order

Example

Breadth First Order

Example

SciPy Spatial Data

Working with Spatial Data

Triangulation

Example

Convex Hull

Example

KDTrees

Example

Distance Matrix

Euclidean Distance

Example

Cityblock Distance (Manhattan Distance)

Example

Cosine Distance

Example

Hamming Distance

Example

SciPy Matlab Arrays

Working With Matlab Arrays

Exporting Data in Matlab Format

Example

Import Data from Matlab Format

Example

Example

Example

SciPy Interpolation

What is Interpolation?

How to Implement it in SciPy?

1D Interpolation

Example

Result:

Spline Interpolation

Example

Result:

Interpolation with Radial Basis Function

Example

Result:

SciPy Statistical Significance Tests

What is Statistical Significance Test?

Hypothesis in Statistics

Null Hypothesis

Alternate Hypothesis

One tailed test

Two tailed test

Alpha value

P value

T-Test

Example

Result:

Example

Result:

KS-Test

Example

Result:

Statistical Description of Data

Example

Result:

Normality Tests (Skewness and Kurtosis)

Skewness:

Kurtosis:

Example

Result:

Example

Result:

Where To Start?

Data Set

Data Types

Mean, Median, and Mode

Mean

Example

Median

Example

Example

Mode

Example

Chapter Summary

Machine Learning - Standard Deviation

What is Standard Deviation?

Example

Example

Variance

Example

Standard Deviation

Example

Symbols

Chapter Summary

Machine Learning - Percentiles

What are Percentiles?

Example

Example

Machine Learning - Data Distribution

Data Distribution

How Can we Get Big Data Sets?

Example

Histogram

Example

Histogram Explained

Big Data Distributions

Example

Machine Learning - Normal Data Distribution

Normal Data Distribution

Example

Histogram Explained

Machine Learning - Scatter Plot

Scatter Plot

Example

Random Data Distributions

Example

Scatter Plot Explained

Machine Learning - Linear Regression

Regression

Linear Regression

How Does it Work?

Example

Example

Example Explained

R for Relationship

Example

Predict Future Values

Example

Bad Fit?

Example

Example

Machine Learning - Polynomial Regression

Polynomial Regression

How Does it Work?

Example

Example Explained

R-Squared

Example

Predict Future Values

Example

Bad Fit?

Example

Example

Machine Learning - Multiple Regression

Multiple Regression

How Does it Work?

Example

Result:

Coefficient

Example

Result:

Result Explained

Example

Result:

Machine Learning - Scale

Scale Features

Example

Result:

Predict CO2 Values

Example

Result:

Evaluate Your Model

What is Train/Test

Start With a Data Set

Example

Result:

Split Into Train/Test

Display the Training Set

Example

Result:

Display the Testing Set

Example

Result:

Fit the Data Set

Example

R2

Example

Bring in the Testing Set

Example

Predict Values

Example

Decision Tree

How Does it Work?

Example

Example

Example

Example

Result Explained

Rank

Gini

True - 5 Comedians End Here:

False - 8 Comedians Continue:

Nationality

True - 4 Comedians Continue:

Age

False - 4 Comedians End Here:

True - 2 Comedians End Here:

False - 2 Comedians Continue:

Experience

True - 1 Comedian Ends Here:

False - 1 Comedian Ends Here:

Predict Values

Example

Example

Different Results

Install MySQL Driver

Test MySQL Connector

Create Connection

Python MySQL Create Database

Creating a Database

Example

Check if Database Exists

Example

Example

Python MySQL Create Table

Creating a Table

Example

Check if Table Exists

Example

Primary Key

Example

Example

Python MySQL Insert Into Table

Insert Into Table

Example

Insert Multiple Rows

Example

Get Inserted ID

Example

Python MySQL Select From

Select From a Table

Example

Selecting Columns

Example

Using the fetchone() Method

Example

Python MySQL Where

Select With a Filter

Example

Wildcard Characters

Example

Prevent SQL Injection

Example

Python MySQL Delete From By

Delete Record

Example

Prevent SQL Injection

Example

Python MySQL Drop Table

Delete a Table

Example

Drop Only if Exist

Example

Python MySQL Update Table

Update Table

Example

Prevent SQL Injection

Example

Python MySQL Limit

Limit the Result

Example

Start From Another Position

Example

Python MySQL Join

Join Two or More Tables

users

products

Example

LEFT JOIN

Example

RIGHT JOIN

Example

MongoDB

PyMongo

Test PyMongo

Creating a Database

Example

Check if Database Exists

Example

Example

Creating a Collection

Example

Check if Collection Exists

Example

Example

Insert Into Collection

Example

Return the _id Field

Example

Insert Multiple Documents

Example

Insert Multiple Documents, with Specified IDs

Example

Find One

Example

Find All

Example

Return Only Some Fields

Example

Example

Example

Filter the Result

Example

Advanced Query

Example

Filter With Regular Expressions

Example

Sort the Result

Example

Sort Descending

Example

Delete Document

Example

Delete Many Documents

Example

Delete All Documents in a Collection

Example

Delete Collection

Example

Delete Collection

Example

Limit the Result

Customers

Example

Python Built in Functions

Python String Methods

Python List/Array Methods

Python Dictionary Methods

Python Set Methods

Python File Methods

Python Keywords

Python Built-in Exceptions

Built-in Exceptions

Module Reference

Python Requests Module

Example

Definition and Usage

Download and Install the Requests Module

Syntax

Methods

Python statistics Module

Python statistics Module

Python math Module

Math Methods

Python cmath Module

Example

Example Explained

A List with Duplicates

Create a Dictionary

Convert Into a List

Print the List

Create a Function

Example

Example Explained

Create a Function

Create a Dictionary

Convert Into a List

Return List

Call the Function

Print the Result

How to Reverse a String in Python

Example

Example Explained

The String to Reverse

Slice the String

Print the List

Create a Function

Example

Example Explained

Create a Function

Slice the String

Return the String

Call the Function

Print the Result

How to Add Two Numbers in Python

Example

Add Two Numbers with User Input

Example

Python Introduction

Python is a popular programming language. Which was created created by Guido van Rossum, and released in 1991.

It is used for:

●
web development (server-side),

●
software development,

●
mathematics,

●
system scripting.

What can Python do?

●
 Python can be used on a server to create web applications.

●
 Python can be used alongside software to create workflows.

●
 Python can connect to database systems. It can also read and modify files.

●
 Python can be used to handle big data and perform complex mathematics.

●
 Python can be used for rapid prototyping, or for production-ready software development.

Why Python?

●
 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

●
 Python has a simple syntax similar to the English language.

●
 Python has syntax that allows developers to write programs with fewer lines than some other programming languages.

●
 Python runs on an interpreter system, meaning that code can be executed as soon as it is written. This means that prototyping can be very quick.

●
 Python can be treated in a procedural way, an object-oriented way or a functional way.

Good to know

●
 The most recent major version of Python is Python 3, which we shall be using in this tutorial. However, Python 2, although not being updated with anything other than security updates, is still quite popular.

●
 In this tutorial Python will be written in a text editor. It is possible to write Python in an Integrated Development Environment, such as Thonny, Pycharm, Netbeans or Eclipse which are particularly useful when managing larger collections of Python files.

Python Syntax compared to other programming languages

●
 Python was designed for readability, and has some similarities to the English language with influence from mathematics.

●
 Python uses new lines to complete a command, as opposed to other programming languages which often use semicolons or parentheses.

●
 Python relies on indentation, using whitespace, to define scope; such as the scope of loops, functions and classes.

Python Getting Started

To check if you have python installed on a Windows PC, search in the start bar for Python or run the following on the Command Line (cmd.exe):

C:\Users\Your Name
>python --version

To check if you have python installed on a Linux or Mac, then on linux open the command line or on Mac open the Terminal and type:

python --version

Python Quickstart

Python is an interpreted programming language, this means that as a developer you write Python (.py) files in a text editor and then put those files into the python interpreter to be executed.

The way to run a python file is like this on the command line:

C:\Users\Your Name
>python helloworld.py

Where "helloworld.py" is the name of your python file.

Let's write our first Python file, called helloworld.py, which can be done in any text editor.

Example:helloworld.py

print
("Hello, World!"
)

Simple as that. Save your file. Open your command line, navigate to the directory where you saved your file, and run:

C:\Users\Your Name
>python helloworld.py

The output should read:

Hello, World!

Congratulations, you have written and executed your first Python program.

The Python Command Line

To test a short amount of code in python sometimes it is quickest and easiest not to write the code in a file. This is made possible because Python can be run as a command line itself.

Type the following on the Windows, Mac or Linux command line:

C:\Users\Your Name
>python

Or, if the "python" command did not work, you can try "py":

C:\Users\Your Name
>py

From there you can write any python, including our hello world example from earlier in the tutorial:

C:\Users\Your Name
>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Which will write "Hello, World!" in the command line:

C:\Users\Your Name
>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Hello, World!

Whenever you are done in the python command line, you can simply type the following to quit the python command line interface:

exit()

Python Syntax

Execute Python Syntax

As we learned in the previous page, Python syntax can be executed by writing directly in the Command Line:

>>> print("Hello, World!")

Hello, World!

Or by creating a python file on the server, using the .py file extension, and running it in the Command Line:

C:\Users\Your Name
>python myfile.py

Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability only, the indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example

if
 5
 > 2
:

 print
("Five is greater than two!"
)

Python will give you an error if you skip the indentation:

Example

Syntax Error:

if
 5
 > 2
:

print
("Five is greater than two!"
)

The number of spaces is up to you as a programmer, but it has to be at least one.

Example

if
 5
 > 2
:

 print
("Five is greater than two!"
)

if
 5
 > 2
:

 print
("Five is greater than two!"
)

You have to use the same number of spaces in the same block of code, otherwise Python will give you an error:

Example

Syntax Error:

if
 5
 > 2
:

 print
("Five is greater than two!"
)

 print
("Five is greater than two!"
)

Python Variables

In Python, variables are created when you assign a value to it:

Example

Variables in Python:

x = 5

y = "Hello, World!"

Python has no command for declaring a variable.

You will learn more about variables in the Python chapter.

Comments

Python has commenting capability for the purpose of in-code documentation.

Comments start with a #, and Python will render the rest of the line as a comment:

Example

Comments in Python:

#This is a comment.

print
("Hello, World!"
)

Python Comments

Comments can be used to explain Python code.

Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

Creating a Comment

Comments starts with a #
, and Python will ignore them:

Example

#This is a comment

print
("Hello, World!"
)

Comments can be placed at the end of a line, and Python will ignore the rest of the line:

Example

print
("Hello, World!"
) #This is a comment

Comments does not have to be text to explain the code, it can also be used to prevent Python from executing code:

Example

#print("Hello, World!")

print
("Cheers, Mate!"
)

Multi Line Comments

Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a #
 for each line:

Example

#This is a comment

#written in

#more than just one line

print
("Hello, World!"
)

Or, not quite as intended, you can use a multiline string.

Since Python will ignore string literals that are not assigned to a variable, you can add a multiline string (triple quotes) in your code, and place your comment inside it:

Example

"""

This is a comment

written in

more than just one line

"""

print
("Hello, World!"
)

As long as the string is not assigned to a variable, Python will read the code, but then ignore it, and you have made a multiline comment.

Python Variables

Variables

Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

x = 5

y = "John"

print
(x)

print
(y)

Variables do not need to be declared with any particular type
, and can even change type after they have been set.

Example

x = 4
 # x is of type int

x = "Sally"
 # x is now of type str

print
(x)

Casting

If you want to specify the data type of a variable, this can be done with casting.

Example

x = str
(3
) # x will be '3'

y = int
(3
) # y will be 3

z = float
(3
) # z will be 3.0

Get the Type

You can get the data type of a variable with the type(
)
 function.

Example

x = 5

y = "John"

print
(type
(x))

print
(type
(y))

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Example

x = "John"

is the same as

x = 'John'

Case-Sensitive

Variable names are case-sensitive.

Example

This will create two variables:

a = 4

A = "Sally"

#A will not overwrite a

Python - Variable Names

Variable Names

A variable can have a short name (like x and y) or a more descriptive name (age, carname, total_volume). Rules for Python variables:

●
 A variable name must start with a letter or the underscore character

●
A variable name cannot start with a number

●
 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

●
 Variable names are case-sensitive (age, Age and AGE are three different variables)

Example

Legal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

Example

Illegal variable names:

2myvar = "John"

my-var = "John"

my var = "John"

Remember that variable names are case-sensitive

Multi Words Variable Names

Variable names with more than one word can be difficult to read.

There are several techniques you can use to make them more readable:

Camel Case

Each word, except the first, starts with a capital letter:

myVariableName = "John"

Pascal Case

Each word starts with a capital letter:

MyVariableName = "John"

Snake Case

Each word is separated by an underscore character:

my_variable_name = "John"

Python Variables - Assign Multiple Values

Many Values to Multiple Variables

Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange"
, "Banana"
, "Cherry"

print
(x)

print
(y)

print
(z)

Note: Make sure the number of variables matches the number of values, or else you will get an error.

One Value to Multiple Variables

And you can assign the same
 value to multiple variables in one line:

Example

x = y = z = "Orange"

print
(x)

print
(y)

print
(z)

Unpack a Collection

If you have a collection of values in a list, tuple etc. Python allows you to extract the values into variables. This is called unpacking
.

Example

Unpack a list:

fruits = ["apple"
, "banana"
, "cherry"
]

x, y, z = fruits

print
(x)

print
(y)

print
(z)

Python - Output Variables

Output Variables

The Python
 prin
t
 statement is often used to output variables.

To combine both text and a variable, Python uses the
 +
 character:

Example

x =
 "awesome"

print
(
"Python is "
 + x)

You can also use the
 +
 character to add a variable to another variable:

Example

x =
 "Python is "

y =
 "awesome"

z = x + y

print
(z)

For numbers, the
 +
 character works as a mathematical operator:

Example

x =
 5

y =
 10

print
(x + y)

If you try to combine a string and a number, Python will give you an error
:

Example

x =
 5

y =
 "John"

print
(x + y)

Python - Global Variables

Global Variables

Variables that are created outside of a function (as in all of the examples above) are known as global variables.

Global variables can be used by everyone, both inside of functions and outside.

Example

Create a variable outside of a function, and use it inside the function

x = "awesome"

def
 myfunc():

 print
("Python is "
 + x)

myfunc()

If you create a variable with the same name inside a function, this variable will be local, and can only be used inside the function. The global variable with the same name will remain as it was, global and with the original value.

Example

Create a variable inside a function, with the same name as the global variable

x = "awesome"

def
 myfunc():

 x = "fantastic"

 print
("Python is "
 + x)

myfunc()

print
("Python is "
 + x)

The global Keyword

Normally, when you create a variable inside a function, that variable is local, and can only be used inside that function.

To create a global variable inside a function, you can use the globa
l
 keyword.

Example

If you use the globa
l
 keyword, the variable belongs to the global scope:

def
 myfunc():

 global
 x

 x = "fantastic"

myfunc()

print
("Python is "
 + x)

Also, use the globa
l
 keyword if you want to change a global variable inside a function.

Example

To change the value of a global variable inside a function, refer to the variable by using the globa
l
 keyword:

x = "awesome"

def
 myfunc():

 global
 x

x = "fantastic"

myfunc()

print
("Python is "
 + x)

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do different things.

Python has the following data types built-in by default, in these categories:

[image: Text Type: str Numeric Types: int, float, complex Sequence Types: list, tuple, range Mapping Type: dict Set Types: set, frozenset Boolean Type: bool Binary Types: bytes, bytearray, memoryview]

Getting the Data Type

You can get the data type of any object by using the type(
)
 function:

Example

Print the data type of the variable x:

x = 5

print
(type
(x))

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

	
Example

	
Data Type

	

	
x = "Hello World"

	
str

	

	
x = 20

	
int

	

	
x = 20.5

	
float

	

	
x = 1j

	
complex

	

	
x = ["apple", "banana", "cherry"]

	
list

	

	
x = ("apple", "banana", "cherry")

	
tuple

	

	
x = range(6)

	
range

	

	
x = {"name" : "John", "age" : 36}

	
dict

	

	
x = {"apple", "banana", "cherry"}

	
set

	

	
x = frozenset({"apple", "banana", "cherry"})

	
frozenset

	

	
x = True

	
bool

	

	
x = b"Hello"

	
bytes

	

	
x = bytearray(5)

	
bytearray

	

	
x = memoryview(bytes(5))

	
memoryview

	

Setting the Specific Data Type

If you want to specify the data type, you can use the following constructor functions:

	
Example

	
Data Type

	

	
x = str("Hello World")

	
str

	

	
x = int(20)

	
int

	

	
x = float(20.5)

	
float

	

	
x = complex(1j)

	
complex

	

	
x = list(("apple", "banana", "cherry"))

	
list

	

	
x = tuple(("apple", "banana", "cherry"))

	
tuple

	

	
x = range(6)

	
range

	

	
x = dict(name="John", age=36)

	
dict

	

	
x = set(("apple", "banana", "cherry"))

	
set

	

	
x = frozenset(("apple", "banana", "cherry"))

	
frozenset

	

	
x = bool(5)

	
bool

	

	
x = bytes(5)

	
bytes

	

	
x = bytearray(5)

	
bytearray

	

	
x = memoryview(bytes(5))

	
memoryview

	

Python Numbers

Python Numbers

There are three numeric types in Python:

●
int

●
float

●
complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1
 # int

y = 2.8
 # float

z = 1j # complex

To verify the type of any object in Python, use the type(
)
 function:

Example

print
(type
(x))

print
(type
(y))

print
(type
(z))

Int

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print
(type
(x))

print
(type
(y))

print
(type
(z))

Float

Float, or "floating point number" is a number, positive or negative, containing one or more decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print
(type
(x))

print
(type
(y))

print
(type
(z))

Float can also be scientific numbers with an "e" to indicate the power of 10.

Example

Floats:

x = 35e3

y = 12E4

z = -87.7e100

print
(type
(x))

print
(type
(y))

print
(type
(z))

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3
+5j

y = 5j

z = -5j

print
(type
(x))

print
(type
(y))

print
(type
(z))

Type Conversion

You can convert from one type to another with the int(
)
, float(
)
, and complex(
)
 methods:

Example

Convert from one type to another:

x = 1
 # int

y = 2.8
 # float

z = 1j # complex

#convert from int to float:

a = float
(x)

#convert from float to int:

b = int
(y)

#convert from int to complex:

c = complex
(x)

print
(a)

print
(b)

print
(c)

print
(type
(a))

print
(type
(b))

print
(type
(c))

Note: You cannot convert complex numbers into another number type.

Random Number

Python does not have a random(
)
 function to make a random number, but Python has a built-in module called rando
m
 that can be used to make random numbers:

Example

Import the random module, and display a random number between 1 and 9:

import
 random

print
(random.randrange(1
, 10
))

Python Casting

Specify a Variable Type

There may be times when you want to specify a type on to a variable. This can be done with casting. Python is an object-orientated language, and as such it uses classes to define data types, including its primitive types.

Casting in python is therefore done using constructor functions:

●
 int(
)
 - constructs an integer number from an integer literal, a float literal (by rounding down to the previous whole number), or a string literal (providing the string represents a whole number)

●
 float(
)
 - constructs a float number from an integer literal, a float literal or a string literal (providing the string represents a float or an integer)

●
 str(
)
 - constructs a string from a wide variety of data types, including strings, integer literals and float literals

Example

Integers:

x = int
(1
) # x will be 1

y = int
(2.8
) # y will be 2

z = int
("3"
) # z will be 3

Example

Floats:

x = float
(1
) # x will be 1.0

y = float
(2.8
) # y will be 2.8

z = float
("3"
) # z will be 3.0

w = float
("4.2"
) # w will be 4.2

Example

Strings:

x = str
("s1"
) # x will be 's1'

y = str
(2
) # y will be '2'

z = str
(3.0
) # z will be '3.0'

Python Strings

Strings

Strings in python are surrounded by either single quotation marks, or double quotation marks.

'hello
'
 is the same as "hello
"
.

You can display a string literal with the print(
)
 function:

Example

print
("Hello"
)

print
('Hello'
)

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and the string:

Example

a = "Hello"

print
(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

Example

You can use three double quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print
(a)

Or three single quotes:

Example

a = '''Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.'''

print
(a)

Note: in the result, the line breaks are inserted at the same position as in the code.

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes representing unicode characters.

However, Python does not have a character data type, a single character is simply a string with a length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"

print
(a[1
])

Looping Through a String

Since strings are arrays, we can loop through the characters in a string, with a fo
r
 loop.

Example

Loop through the letters in the word "banana":

for
 x in
 "banana"
:

 print
(x)

String Length

To get the length of a string, use the len(
)
 function.

Example

The len(
)
 function returns the length of a string:

a = "Hello, World!"

print
(len
(a))

Check String

To check if a certain phrase or character is present in a string, we can use the keyword i
n
.

Example

Check if "free" is present in the following text:

txt = "The best things in life are free!"

print
("free"
 in
 txt)

Use it in an i
f
 statement:

Example

Print only if "free" is present:

txt = "The best things in life are free!"

if
 "free"
 in
 txt:

 print
("Yes, 'free' is present."
)

Learn more about If statements in our Python If...Else chapter.

Check if NOT

To check if a certain phrase or character is NOT present in a string, we can use the keyword not i
n
.

Example

Check if "expensive" is NOT present in the following text:

txt = "The best things in life are free!"

print
("expensive"
 not in
 txt)

Use it in an i
f
 statement:

Example

print only if "expensive" is NOT present:

txt = "The best things in life are free!"

if
 "expensive"
 not in
 txt:

 print
("Yes, 'expensive' is NOT present."
)

Python - Slicing Strings

Slicing

You can return a range of characters by using the slice syntax.

Specify the start index and the end index, separated by a colon, to return a part of the string.

Example

Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print
(b[2
:5
])

Note: The first character has index 0.

Slice From the Start

By leaving out the start index, the range will start at the first character:

Example

Get the characters from the start to position 5 (not included):

b = "Hello, World!"

print
(b[:5
])

Slice To the End

By leaving out the end
 index, the range will go to the end:

Example

Get the characters from position 2, and all the way to the end:

b = "Hello, World!"

print
(b[2
:])

Negative Indexing

Use negative indexes to start the slice from the end of the string:

Example

Get the characters:

From: "o" in "World!" (position -5)

To, but not included: "d" in "World!" (position -2):

b = "Hello, World!"

print
(b[-5
:-2
])

Python - Modify Strings

Python has a set of built-in methods that you can use on strings.

Upper Case

Example

The
 upper(
)
 method returns the string in upper case:

a = "Hello, World!"

print
(a.upper())

Lower Case

Example

The
 lower(
)
 method returns the string in lower case:

a = "Hello, World!"

print
(a.lower())

Remove Whitespace

Whitespace is the space before and/or after the actual text, and very often you want to remove this space.

Example

The
 strip(
)
 method removes any whitespace from the beginning or the end:

a = " Hello, World! "

print
(a.strip()) # returns "Hello, World!"

Replace String

Example

The
 replace(
)
 method replaces a string with another string:

a = "Hello, World!"

print
(a.replace("H"
, "J"
))

Split String

The split(
)
 method returns a list where the text between the specified separator becomes the list items.

Example

The
 split(
)
 method splits the string into substrings if it finds instances of the separator:

a = "Hello, World!"

print
(a.split(","
)) # returns ['Hello', ' World!']

Python - String Concatenation

String Concatenation

To concatenate, or combine, two strings you can use the + operator.

Example

Merge variable a
 with variable b
 into variable c
:

a = "Hello"

b = "World"

c = a + b

print
(c)

Example

To add a space between them, add a "
 "
:

a = "Hello"

b = "World"

c = a + " "
 + b

print
(c)

Python - Format - Strings

String Format

As we learned in the Python Variables chapter, we cannot combine strings and numbers like this:

Example

age = 36

txt = "My name is John, I am "
 + age

print
(txt)

But we can combine strings and numbers by using the format(
)
 method!

The format(
)
 method takes the passed arguments, formats them, and places them in the string where the placeholders {
}
 are:

Example

Use the format(
)
 method to insert numbers into strings:

age = 36

txt = "My name is John, and I am {}"

print
(txt.format
(age))

The format() method takes unlimited number of arguments, and are placed into the respective placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."

print
(myorder.format
(quantity, itemno, price))

You can use index numbers {0
}
 to be sure the arguments are placed in the correct placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {0} pieces of item {1}."

print
(myorder.format
(quantity, itemno, price))

Python - Escape Characters

Escape Character

To insert characters that are illegal in a string, use an escape character.

An escape character is a backslash \
 followed by the character you want to insert.

An example of an illegal character is a double quote inside a string that is surrounded by double quotes:

Example

You will get an error if you use double quotes inside a string that is surrounded by double quotes:

txt = "We are the so-called "
Vikings" from the north."

To fix this problem, use the escape character \
"
:

Example

The escape character allows you to use double quotes when you normally would not be allowed:

txt = "We are the so-called \"
Vikings\" from the north."

Escape Characters

Other escape characters used in Python:

	
Code

	
Result

	

	
\'

	
Single Quote

	

	
\\

	
Backslash

	

	
\n

	
New Line

	

	
\r

	
Carriage Return

	

	
\t

	
Tab

	

	
\b

	
Backspace

	

	
\f

	
Form Feed

	

	
\ooo

	
Octal value

	

	
\xhh

	
Hex value

	

Python - String Methods

String Methods

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the original string.

	

Method

	

Description

	
capitalize()

	
Converts the first character to upper case

	
casefold()

	
Converts string into lower case

	
center()

	
Returns a centered string

	
count()

	
Returns the number of times a specified value occurs in a string

	
encode()

	
Returns an encoded version of the string

	
endswith()

	
Returns true if the string ends with the specified value

	
expandtabs()

	
Sets the tab size of the string

	
find()

	
Searches the string for a specified value and returns the position of where it was found

	
format()

	
Formats specified values in a string

	
format_map()

	
Formats specified values in a string

	
index()

	
Searches the string for a specified value and returns the position of where it was found

	
isalnum()

	
Returns True if all characters in the string are alphanumeric

	
isalpha()

	
Returns True if all characters in the string are in the alphabet

	
isdecimal()

	
Returns True if all characters in the string are decimals

	
isdigit()

	
Returns True if all characters in the string are digits

	
isidentifier()

	
Returns True if the string is an identifier

	
islower()

	
Returns True if all characters in the string are lower case

	
isnumeric()

	
Returns True if all characters in the string are numeric

	
isprintable()

	
Returns True if all characters in the string are printable

	
isspace()

	
Returns True if all characters in the string are whitespaces

	
istitle()

	
Returns True if the string follows the rules of a title

	
isupper()

	
Returns True if all characters in the string are upper case

	
join()

	
Joins the elements of an iterable to the end of the string

	
ljust()

	
Returns a left justified version of the string

	
lower()

	
Converts a string into lower case

	
lstrip()

	
Returns a left trim version of the string

	
maketrans()

	
Returns a translation table to be used in translations

	
partition()

	
Returns a tuple where the string is parted into three parts

	
replace()

	
Returns a string where a specified value is replaced with a specified value

	
rfind()

	
Searches the string for a specified value and returns the last position of where it was found

	
rindex()

	
Searches the string for a specified value and returns the last position of where it was found

	
rjust()

	
Returns a right justified version of the string

	
rpartition()

	
Returns a tuple where the string is parted into three parts

	
rsplit()

	
Splits the string at the specified separator, and returns a list

	
rstrip()

	
Returns a right trim version of the string

	
split()

	
Splits the string at the specified separator, and returns a list

	
splitlines()

	
Splits the string at line breaks and returns a list

	
startswith()

	
Returns true if the string starts with the specified value

	
strip()

	
Returns a trimmed version of the string

	
swapcase()

	
Swaps cases, lower case becomes upper case and vice versa

	
title()

	
Converts the first character of each word to upper case

	
translate()

	
Returns a translated string

	
upper()

	
Converts a string into upper case

	
zfill()

	
Fills the string with a specified number

Python Booleans

Booleans represent one of two values: Tru
e
 or Fals
e
.

Boolean Values

In programming you often need to know if an expression is Tru
e
 or Fals
e
.

You can evaluate any expression in Python, and get one of two answers, Tru
e
 or Fals
e
.

When you compare two values, the expression is evaluated and Python returns the Boolean answer:

Example

print
(10
 > 9
)

print
(10
 == 9
)

print
(10
 < 9
)

When you run a condition in an if statement, Python returns Tru
e
 or Fals
e
:

Example

Print a message based on whether the condition is Tru
e
 or Fals
e
:

a = 200

b = 33

if
 b > a:

 print
("b is greater than a"
)

else
:

 print
("b is not greater than a"
)

Evaluate Values and Variables

The bool(
)
 function allows you to evaluate any value, and give you Tru
e
 or Fals
e
 in return,

Example

Evaluate a string and a number:

print
(bool
("Hello"
))

print
(bool
(15
))

Example

Evaluate two variables:

x = "Hello"

y = 15

print
(bool
(x))

print
(bool
(y))

Most Values are True

Almost any value is evaluated to Tru
e
 if it has some sort of content.

Any string is Tru
e
, except empty strings.

Any number is Tru
e
, except 0
.

Any list, tuple, set, and dictionary are Tru
e
, except empty ones.

Example

The following will return True:

bool
("abc"
)

bool
(123
)

bool
(["apple"
, "cherry"
, "banana"
])

Some Values are False

In fact, there are not many values that evaluates to Fals
e
, except empty values, such as (
)
, [
]
, {
}
, "
"
, the number 0
, and the value Non
e
. And of course the value Fals
e
 evaluates to Fals
e
.

Example

The following will return False:

bool
(False
)

bool
(None)

bool
(0
)

bool
(""
)

bool
(())

bool
([])

bool
({})

One more value, or object in this case, evaluates to Fals
e
, and that is if you have an object that is made from a class with a __len_
_
 function that returns 0
 or Fals
e
:

Example

class
 myclass():

 def
 __len__(self):

 return
 0

myobj = myclass()

print
(bool
(myobj))

Functions can Return a Boolean

You can create functions that returns a Boolean Value:

Example

Print the answer of a function:

def
 myFunction() :

 return
 True

print
(myFunction())

You can execute code based on the Boolean answer of a function:

Example

Print "YES!" if the function returns True, otherwise print "NO!":

def
 myFunction() :

 return
 True

if
 myFunction():

 print
("YES!"
)

else
:

 print
("NO!"
)

Python also has many built-in functions that returns a boolean value, like the isinstance(
)
 function, which can be used to determine if an object is of a certain data type:

Example

Check if an object is an integer or not:

x = 200

print
(isinstance
(x, int
))

Python Operators

Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the +
 operator to add together two values:

Example

print
(10
 + 5
)

Python divides the operators in the following groups:

●
Arithmetic operators

●
Assignment operators

●
Comparison operators

●
Logical operators

●
Identity operators

●
Membership operators

●
Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical operations:

	
Operator

	
Name

	
Example

	

	
+

	
Addition

	
x + y

	

	
-

	
Subtraction

	
x - y

	

	
*

	
Multiplication

	
x * y

	

	
/

	
Division

	
x / y

	

	
%

	
Modulus

	
x % y

	

	
**

	
Exponentiation

	
x ** y

	

	
//

	
Floor division

	
x // y

	

Python Assignment Operators

Assignment operators are used to assign values to variables:

	
Operator

	
Example

	
Same As

	

	
=

	
x = 5

	
x = 5

	

	
+=

	
x += 3

	
x = x + 3

	

	
-=

	
x -= 3

	
x = x - 3

	

	
*=

	
x *= 3

	
x = x * 3

	

	
/=

	
x /= 3

	
x = x / 3

	

	
%=

	
x %= 3

	
x = x % 3

	

	
//=

	
x //= 3

	
x = x // 3

	

	
**=

	
x **= 3

	
x = x ** 3

	

	
&=

	
x &= 3

	
x = x & 3

	

	
|=

	
x |= 3

	
x = x | 3

	

	
^=

	
x ^= 3

	
x = x ^ 3

	

	
>>=

	
x >>= 3

	
x = x >> 3

	

	
<<=

	
x <<= 3

	
x = x << 3

	

Python Comparison Operators

Comparison operators are used to compare two values:

	
Operator

	
Name

	
Example

	

	
==

	
Equal

	
x == y

	

	
!=

	
Not equal

	
x != y

	

	
>

	
Greater than

	
x > y

	

	
<

	
Less than

	
x < y

	

	
>=

	
Greater than or equal to

	
x >= y

	

	
<=

	
Less than or equal to

	
x <= y

	

Python Logical Operators

Logical operators are used to combine conditional statements:

	
Operator

	
Description

	
Example

	

	
and

	
Returns True if both statements are true

	
x < 5 and x < 10

	

	
or

	
Returns True if one of the statements is true

	
x < 5 or x < 4

	

	
not

	
Reverse the result, returns False if the result is true

	
not(x < 5 and x < 10)

	

Python Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually the same object, with the same memory location:

	
Operator

	
Description

	
Example

	

	
is

	
Returns True if both variables are the same object

	
x is y

	

	
is not

	
Returns True if both variables are not the same object

	
x is not y

	

Python Membership Operators

Membership operators are used to test if a sequence is presented in an object:

	
Operator

	
Description

	
Example

	

	
in

	
Returns True if a sequence with the specified value is present in the object

	
x in y

	

	
not in

	
Returns True if a sequence with the specified value is not present in the object

	
x not in y

	

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

	
Operator

	
Name

	
Description

	
&

	
AND

	
Sets each bit to 1 if both bits are 1

	
|

	
OR

	
Sets each bit to 1 if one of two bits is 1

	
^

	
XOR

	
Sets each bit to 1 if only one of two bits is 1

	
~

	
NOT

	
Inverts all the bits

	
<<

	
Zero fill left shift

	
Shift left by pushing zeros in from the right and let the leftmost bits fall off

	
>>

	
Signed right shift

	
Shift right by pushing copies of the leftmost bit in from the left, and let the rightmost bits fall off

Python Lists

mylist = ["apple"
, "banana"
, "cherry"
]

List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example

Create a List:

thislist = ["apple"
, "banana"
, "cherry"
]

print
(thislist)

List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0
]
, the second item has index [1
]
 etc.

Ordered

When we say that lists are ordered, it means that the items have a defined order, and that order will not change.

If you add new items to a list, the new items will be placed at the end of the list.

Note: There are some list methods that will change the order, but in general: the order of the items will not change.

Changeable

The list is changeable, meaning that we can change, add, and remove items in a list after it has been created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value:

Example

Lists allow duplicate values:

thislist = ["apple"
, "banana"
, "cherry"
, "apple"
, "cherry"
]

print
(thislist)

List Length

To determine how many items a list has, use the len(
)
 function:

Example

Print the number of items in the list:

thislist = ["apple"
, "banana"
, "cherry"
]

print
(len
(thislist))

List Items - Data Types

List items can be of any data type:

Example

String, int and boolean data types:

list1 = ["apple"
, "banana"
, "cherry"
]

list2 = [1
, 5
, 7
, 9
, 3
]

list3 = [True
, False
, False
]

A list can contain different data types:

Example

A list with strings, integers and boolean values:

list1 = ["abc"
, 34
, True
, 40
, "male"
]

type()

From Python's perspective, lists are defined as objects with the data type 'list':

<class 'list'>

Example

What is the data type of a list?

mylist = ["apple"
, "banana"
, "cherry"
]

print
(type
(mylist))

The list() Constructor

It is also possible to use the list(
)
 constructor when creating a new list.

Example

Using the list(
)
 constructor to make a List:

thislist = list(("apple"
, "banana"
, "cherry"
)) # note the double round-brackets

print
(thislist)

Python Collections (Arrays)

There are four collection data types in the Python programming language:

●
 List is a collection which is ordered and changeable. Allows duplicate members.

●
 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

●
 Set is a collection which is unordered and unindexed. No duplicate members.

●
 Dictionary is a collection which is unordered and changeable. No duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and, it could mean an increase in efficiency or security.

Python - Access List Items

Access Items

List items are indexed and you can access them by referring to the index number:

Example

Print the second item of the list:

thislist = ["apple"
, "banana"
, "cherry"
]

print
(thislist[1
])

Note: The first item has index 0.

Negative Indexing

Negative indexing means start from the end

-
1
 refers to the last item, -
2
 refers to the second last item etc.

Example

Print the last item of the list:

thislist = ["apple"
, "banana"
, "cherry"
]

print
(thislist[-1
])

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new list with the specified items.

Example

Return the third, fourth, and fifth item:

thislist = ["apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
]

print
(thislist[2
:5
])

Note: The search will start at index 2 (included) and end at index 5 (not included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example

This example returns the items from the beginning to, but NOT included, "kiwi":

thislist = ["apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
]

print
(thislist[:4
])

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry" and to the end:

thislist = ["apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
]

print
(thislist[2
:])

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the list:

Example

This example returns the items from "orange" (-4) to, but NOT included. "mango" (-1):

thislist = ["apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
]

print
(thislist[-4
:-1
])

Check if Item Exists

To determine if a specified item is present in a list use the i
n
 keyword:

Example

Check if "apple" is present in the list:

thislist = ["apple"
, "banana"
, "cherry"
]

if
 "apple"
 in
 thislist:

 print
("Yes, 'apple' is in the fruits list"
)

Python - Change List Items

Change Item Value

To change the value of a specific item, refer to the index number:

Example

Change the second item:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist[1
] = "blackcurrant"

print
(thislist)

Change a Range of Item Values

To change the value of items within a specific range, define a list with the new values, and refer to the range of index numbers where you want to insert the new values:

Example

Change the values "banana" and "cherry" with the values "blackcurrant" and "watermelon":

thislist = ["apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "mango"
]

thislist[1
:3
] = ["blackcurrant"
, "watermelon"
]

print
(thislist)

If you insert more
 items than you replace, the new items will be inserted where you specified, and the remaining items will move accordingly:

Example

Change the second value by replacing it with two
 new values:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist[1
:2
] = ["blackcurrant"
, "watermelon"
]

print
(thislist)

Note: The length of the list will change when the number of items inserted does not match the number of items replaced.

If you insert less
 items than you replace, the new items will be inserted where you specified, and the remaining items will move accordingly:

Example

Change the second and third value by replacing it with one
 value:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist[1
:3
] = ["watermelon"
]

print
(thislist)

Insert Items

To insert a new list item, without replacing any of the existing values, we can use the insert(
)
 method.

The insert(
)
 method inserts an item at the specified index:

Example

Insert "watermelon" as the third item:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.insert(2
, "watermelon"
)

print
(thislist)

Python - Add List Items

Append Items

To add an item to the end of the list, use the append(
)
 method:

Example

Using the append(
)
 method to append an item:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.append("orange"
)

print
(thislist)

Insert Items

To insert a list item at a specified index, use the insert(
)
 method.

The insert(
)
 method inserts an item at the specified index:

Example

Insert an item as the second position:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.insert(1
, "orange"
)

print
(thislist)

Note: As a result of the examples above, the lists will now contain 4 items.

Extend List

To append elements from another list
 to the current list, use the extend(
)
 method.

Example

Add the elements of tropica
l
 to thislis
t
:

thislist = ["apple"
, "banana"
, "cherry"
]

tropical = ["mango"
, "pineapple"
, "papaya"
]

thislist.extend(tropical)

print
(thislist)

The elements will be added to the end
 of the list.

Add Any Iterable

The extend(
)
 method does not have to append lists
, you can add any iterable object (tuples, sets, dictionaries etc.).

Example

Add elements of a tuple to a list:

thislist = ["apple"
, "banana"
, "cherry"
]

thistuple = ("kiwi"
, "orange"
)

thislist.extend(thistuple)

print
(thislist)

Python - Remove List Items

Remove Specified Item

The remove(
)
 method removes the specified item.

Example

Remove "banana":

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.remove("banana"
)

print
(thislist)

Remove Specified Index

The pop(
)
 method removes the specified index.

Example

Remove the second item:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.pop(1
)

print
(thislist)

If you do not specify the index, the pop(
)
 method removes the last item.

Example

Remove the last item:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.pop()

print
(thislist)

The de
l
 keyword also removes the specified index:

Example

Remove the first item:

thislist = ["apple"
, "banana"
, "cherry"
]

del
 thislist[0
]

print
(thislist)

The de
l
 keyword can also delete the list completely.

Example

Delete the entire list:

thislist = ["apple"
, "banana"
, "cherry"
]

del
 thislist

Clear the List

The clear(
)
 method empties the list.

The list still remains, but it has no content.

Example

Clear the list content:

thislist = ["apple"
, "banana"
, "cherry"
]

thislist.clear()

print
(thislist)

Python - Loop Lists

Loop Through a List

You can loop through the list items by using a fo
r
 loop:

Example

Print all items in the list, one by one:

thislist = ["apple"
, "banana"
, "cherry"
]

for
 x in
 thislist:

 print
(x)

Learn more about fo
r
 loops in our Python For Loops Chapter.

Loop Through the Index Numbers

You can also loop through the list items by referring to their index number.

Use the range(
)
 and len(
)
 functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thislist = ["apple"
, "banana"
, "cherry"
]

for
 i in
 range
(len
(thislist)):

 print
(thislist[i])

The iterable created in the example above is [0, 1, 2
]
.

Using a While Loop

You can loop through the list items by using a whil
e
 loop.

Use the len(
)
 function to determine the length of the list, then start at 0 and loop your way through the list items by refering to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a whil
e
 loop to go through all the index numbers

thislist = ["apple"
, "banana"
, "cherry"
]

i = 0

while
 i < len
(thislist):

 print
(thislist[i])

 i = i + 1

Learn more about whil
e
 loops in our Python While Loops Chapter.

Looping Using List Comprehensive

List Comprehensive offers the shortest syntax for looping through lists:

Example

A short hand fo
r
 loop that will print all items in a list:

thislist = ["apple"
, "banana"
, "cherry"
]

[print
(x) for
 x in
 thislist]

Learn more about list comprehensive in the next chapter: List Comprehensive.

Python - List Comprehension

List Comprehension

List comprehension offers a shorter syntax when you want to create a new list based on the values of an existing list.

Example:

Based on a list of fruits, you want a new list, containing only the fruits with the letter "a" in the name.

Without list comprehension you will have to write a fo
r
 statement with a conditional test inside:

Example

fruits = ["apple"
, "banana"
, "cherry"
, "kiwi"
, "mango"
]

newlist = []

for
 x in
 fruits:

 if
 "a"
 in
 x:

 newlist.append(x)

print
(newlist)

With list comprehension you can do all that with only one line of code:

Example

fruits = ["apple"
, "banana"
, "cherry"
, "kiwi"
, "mango"
]

newlist = [x for
 x in
 fruits if
 "a"
 in
 x]

print
(newlist)

The Syntax

newlist = [expression
 for
 item
 in
 iterable
 if
 condition
 == True
]

The return value is a new list, leaving the old list unchanged.

Condition

The condition
 is like a filter that accepts only the items that valuates to Tru
e
.

Example

Only accept items that are not "apple":

newlist = [x for
 x in
 fruits if
 x != "apple"
]

The condition if
 x !=
 "apple"
 will return Tru
e
 for all elements other than "apple", making the new list contain all fruits except "apple".

The condition
 is optional and can be omitted:

Example

With no i
f
 statement:

newlist = [x for
 x in
 fruits]

Iterable

The iterable
 can be any iterable object, like a list, tuple, set etc.

Example

You can use the range(
)
 function to create an iterable:

newlist = [x for
 x in
 range
(10
)]

Same example, but with a condition:

Example

Accept only numbers lower than 5:

newlist = [x for
 x in
 range
(10
) if
 x < 5
]

Expression

The expression
 is the current item in the iteration, but it is also the outcome, which you can manipulate before it ends up like a list item in the new list:

Example

Set the values in the new list to upper case:

newlist = [x.upper() for
 x in
 fruits]

You can set the outcome to whatever you like:

Example

Set all values in the new list to 'hello':

newlist = ['hello'
 for
 x in
 fruits]

The expression
 can also contain conditions, not like a filter, but as a way to manipulate the outcome:

Example

Return "orange" instead of "banana":

newlist = [x if
 x != "banana"
 else
 "orange"
 for
 x in
 fruits]

The expression
 in the example above says:

"Return the item if is not banana, if it is banana return orange".

Python - Sort Lists

Sort List Alphanumerically

List objects have a sort(
)
 method that will sort the list alphanumerically, ascending, by default:

Example

Sort the list alphabetically:

thislist = ["orange"
, "mango"
, "kiwi"
, "pineapple"
, "banana"
]

thislist.sort()

print
(thislist)

Example

Sort the list numerically:

thislist = [100
, 50
, 65
, 82
, 23
]

thislist.sort()

print
(thislist)

Sort Descending

To sort descending, use the keyword argument reverse = Tru
e
:

Example

Sort the list descending:

thislist = ["orange"
, "mango"
, "kiwi"
, "pineapple"
, "banana"
]

thislist.sort(reverse = True
)

print
(thislist)

Example

Sort the list descending:

thislist = [100
, 50
, 65
, 82
, 23
]

thislist.sort(reverse = True
)

print
(thislist)

Customize Sort Function

You can also customize you own function by using the keyword argument key =
 functio
n
.

The function will return a number that will be used to sort the list (the lowest number first):

Example

Sort the list based on how close the number is to 50:

def
 myfunc(n):

 return
 abs
(n - 50
)

thislist = [100
, 50
, 65
, 82
, 23
]

thislist.sort(key = myfunc)

print
(thislist)

Case Insensitive Sort

By default the sort(
)
 method is case sensitive, resulting in all capital letters being sorted after lower case letters:

Example

Case sensitive sorting can give an unexpected result:

thislist = ["banana"
, "Orange"
, "Kiwi"
, "cherry"
]

thislist.sort()

print
(thislist)

Luckily we can use built-in functions as key functions when sorting a list.

So if you want a case-insensitive sort function, use str.lower as a key function:

Example

Perform a case-insensitive sort of the list:

thislist = ["banana"
, "Orange"
, "Kiwi"
, "cherry"
]

thislist.sort(key = str
.lower)

print
(thislist)

Reverse Order

What if you want to reverse the order of a list, regardless of the alphabet?

The reverse(
)
 method reverses the current sorting order of the elements.

Example

Reverse the order of the list items:

thislist = ["banana"
, "Orange"
, "Kiwi"
, "cherry"
]

thislist.reverse()

print
(thislist)

Python - Copy Lists

Copy a List

You cannot copy a list simply by typing list2 = list
1
, because: list
2
 will only be a reference
 to list
1
, and changes made in list
1
 will automatically also be made in list
2
.

There are ways to make a copy, one way is to use the built-in List method copy(
)
.

Example

Make a copy of a list with the copy(
)
 method:

thislist = ["apple"
, "banana"
, "cherry"
]

mylist = thislist.copy()

print
(mylist)

Another way to make a copy is to use the built-in method list(
)
.

Example

Make a copy of a list with the list(
)
 method:

thislist = ["apple"
, "banana"
, "cherry"
]

mylist = list
(thislist)

print
(mylist)

Python - Join Lists

Join Two Lists

There are several ways to join, or concatenate, two or more lists in Python.

One of the easiest ways are by using the +
 operator.

Example

Join two list:

list1 = ["a"
, "b"
, "c"
]

list2 = [1
, 2
, 3
]

list3 = list1 + list2

print
(list3)

Another way to join two lists are by appending all the items from list2 into list1, one by one:

Example

Append list2 into list1:

list1 = ["a"
, "b"
 , "c"
]

list2 = [1
, 2
, 3
]

for
 x in
 list2:

 list1.append(x)

print
(list1)

Or you can use the extend(
)
 method, which purpose is to add elements from one list to another list:

Example

Use the extend(
)
 method to add list2 at the end of list1:

list1 = ["a"
, "b"
 , "c"
]

list2 = [1
, 2
, 3
]

list1.extend(list2)

print
(list1)

Python - List Methods

List Methods

Python has a set of built-in methods that you can use on lists.

	
Method

	
Description

	
append()

	
Adds an element at the end of the list

	
clear()

	
Removes all the elements from the list

	
copy()

	
Returns a copy of the list

	
count()

	
Returns the number of elements with the specified value

	
extend()

	
Add the elements of a list (or any iterable), to the end of the current list

	
index()

	
Returns the index of the first element with the specified value

	
insert()

	
Adds an element at the specified position

	
pop()

	
Removes the element at the specified position

	
remove()

	
Removes the item with the specified value

	
reverse()

	
Reverses the order of the list

	
sort()

	
Sorts the list

Python List Exercises

Test Yourself With Exercises

Now you have learned a lot about lists, and how to use them in Python.

Are you ready for a test?

Try to insert the missing part to make the code work as expected:

Exercise:

Print the second item in the fruit
s
 list.

fruits = ["apple", "banana", "cherry"]

print()

Python Tuples

mytuple = ("apple"
, "banana"
, "cherry"
)

Tuple

Tuples are used to store multiple items in a single variable.

Tuple is one of 4 built-in data types in Python used to store collections of data, the other 3 are List, Set, and Dictionary, all with different qualities and usage.

A tuple is a collection which is ordered and unchangeable.

Tuples are written with round brackets.

Example

Create a Tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

print
(thistuple)

Tuple Items

Tuple items are ordered, unchangeable, and allow duplicate values.

Tuple items are indexed, the first item has index [0
]
, the second item has index [1
]
 etc.

Ordered

When we say that tuples are ordered, it means that the items have a defined order, and that order will not change.

Unchangeable

Tuples are unchangeable, meaning that we cannot change, add or remove items after the tuple has been created.

Allow Duplicates

Since tuple are indexed, tuples can have items with the same value:

Example

Tuples allow duplicate values:

thistuple = ("apple"
, "banana"
, "cherry"
, "apple"
, "cherry"
)

print
(thistuple)

Tuple Length

To determine how many items a tuple has, use the len(
)
 function:

Example

Print the number of items in the tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

print
(len
(thistuple))

Create Tuple With One Item

To create a tuple with only one item, you have to add a comma after the item, otherwise Python will not recognize it as a tuple.

Example

One item tuple, remember the commma:

thistuple = ("apple"
,)

print
(type
(thistuple))

#NOT a tuple

thistuple = ("apple"
)

print
(type
(thistuple))

Tuple Items - Data Types

Tuple items can be of any data type:

Example

String, int and boolean data types:

tuple1 = ("apple"
, "banana"
, "cherry"
)

tuple2 = (1
, 5
, 7
, 9
, 3
)

tuple3 = (True
, False
, False
)

A tuple can contain different data types:

Example

A tuple with strings, integers and boolean values:

tuple1 = ("abc"
, 34
, True
, 40
, "male"
)

type()

From Python's perspective, tuples are defined as objects with the data type 'tuple':

<class 'tuple'>

Example

What is the data type of a tuple?

mytuple = ("apple"
, "banana"
, "cherry"
)

print
(type
(mytuple))

The tuple() Constructor

It is also possible to use the tuple(
)
 constructor to make a tuple.

Example

Using the tuple() method to make a tuple:

thistuple = tuple(("apple"
, "banana"
, "cherry"
)) # note the double round-brackets

print
(thistuple)

Python Collections (Arrays)

There are four collection data types in the Python programming language:

●
 List is a collection which is ordered and changeable. Allows duplicate members.

●
 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

●
 Set is a collection which is unordered and unindexed. No duplicate members.

●
 Dictionary is a collection which is unordered and changeable. No duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and, it could mean an increase in efficiency or security.

Python - Access Tuple Items

Access Tuple Items

You can access tuple items by referring to the index number, inside square brackets:

Example

Print the second item in the tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

print
(thistuple[1
])

Note: The first item has index 0.

Negative Indexing

Negative indexing means start from the end.

-
1
 refers to the last item, -
2
 refers to the second last item etc.

Example

Print the last item of the tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

print
(thistuple[-1
])

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new tuple with the specified items.

Example

Return the third, fourth, and fifth item:

thistuple = ("apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
)

print
(thistuple[2
:5
])

Note: The search will start at index 2 (included) and end at index 5 (not included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example

This example returns the items from the beginning to, but NOT included, "kiwi":

thistuple = ("apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
)

print
(thistuple[:4
])

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry" and to the end:

thistuple = ("apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
)

print
(thistuple[2
:])

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the tuple:

Example

This example returns the items from index -4 (included) to index -1 (excluded)

thistuple = ("apple"
, "banana"
, "cherry"
, "orange"
, "kiwi"
, "melon"
, "mango"
)

print
(thistuple[-4
:-1
])

Check if Item Exists

To determine if a specified item is present in a tuple use the i
n
 keyword:

Example

Check if "apple" is present in the tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

if
 "apple"
 in
 thistuple:

 print
("Yes, 'apple' is in the fruits tuple"
)

Python - Update Tuples

Tuples are unchangeable, meaing that you cannot change, add, or remove items once the tuple is created.

But there are some workarounds.

Change Tuple Values

Once a tuple is created, you cannot change its values. Tuples are unchangeable, or immutable as it also is called.

But there is a workaround. You can convert the tuple into a list, change the list, and convert the list back into a tuple.

Example

Convert the tuple into a list to be able to change it:

x = ("apple"
, "banana"
, "cherry"
)

y = list
(x)

y[1
] = "kiwi"

x = tuple
(y)

print
(x)

Add Items

Once a tuple is created, you cannot add items to it.

Example

You cannot add items to a tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

thistuple.append("orange"
) # This will raise an error

print
(thistuple)

Just like the workaround for changing
 a tuple, you can convert it into a list, add your item(s), and convert it back into a tuple.

Example

Convert the tuple into a list, add "orange", and convert it back into a tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

y = list
(thistuple)

y.append("orange"
)

thistuple = tuple
(y)

Remove Items

Note: You cannot remove items in a tuple.

Tuples are unchangeable, so you cannot remove items from it, but you can use the same workaround as we used for changing and adding tuple items:

Example

Convert the tuple into a list, remove "apple", and convert it back into a tuple:

thistuple = ("apple"
, "banana"
, "cherry"
)

y = list
(thistuple)

y.remove("apple"
)

thistuple = tuple
(y)

Or you can delete the tuple completely:

Example

The de
l
 keyword can delete the tuple completely:

thistuple = ("apple"
, "banana"
, "cherry"
)

del
 thistuple

print
(thistuple) #this will raise an error because the tuple no longer exists

Python - Unpack Tuples

Unpacking a Tuple

When we create a tuple, we normally assign values to it. This is called "packing" a tuple:

Example

Packing a tuple:

fruits = ("apple"
, "banana"
, "cherry"
)

But, in Python, we are also allowed to extract the values back into variables. This is called "unpacking":

Example

Unpacking a tuple:

fruits = ("apple"
, "banana"
, "cherry"
)

(green, yellow, red) = fruits

print
(green)

print
(yellow)

print
(red)

Note: The number of variables must match the number of values in the tuple, if not, you must use an asterix to collect the remaining values as a list.

Using Asteri
x
*

If the number of variables is less than the number of values, you can add an *
 to the variable name and the values will be assigned to the variable as a list:

Example

Assign the rest of the values as a list called "red":

fruits = ("apple"
, "banana"
, "cherry"
, "strawberry"
, "raspberry"
)

(green, yellow, *red) = fruits

print
(green)

print
(yellow)

print
(red)

If the asterix is added to another variable name than the last, Python will assign values to the variable until the number of values left matches the number of variables left.

Example

Add a list of values the "tropic" variable:

fruits = ("apple"
, "mango"
, "papaya"
, "pineapple"
, "cherry"
)

(green, *tropic, red) = fruits

print
(green)

print
(tropic)

print
(red)

Python - Loop Tuples

Loop Through a Tuple

You can loop through the tuple items by using a fo
r
 loop.

Example

Iterate through the items and print the values:

thistuple = ("apple"
, "banana"
, "cherry"
)

for
 x in
 thistuple:

 print
(x)

Learn more about fo
r
 loops in our Python For Loops Chapter.

Loop Through the Index Numbers

You can also loop through the tuple items by referring to their index number.

Use the range(
)
 and len(
)
 functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thistuple = ("apple"
, "banana"
, "cherry"
)

for
 i in
 range
(len
(thistuple)):

 print
(thistuple[i])

Using a While Loop

You can loop through the list items by using a whil
e
 loop.

Use the len(
)
 function to determine the length of the tuple, then start at 0 and loop your way through the tuple items by refering to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a whil
e
 loop to go through all the index numbers:

thistuple = ("apple"
, "banana"
, "cherry"
)

i = 0

while
 i < len
(thistuple):

 print
(thistuple[i])

 i = i + 1

Learn more about whil
e
 loops in our Python While Loops Chapter.

Python - Join Tuples

Join Two Tuples

To join two or more tuples you can use the +
 operator:

Example

Join two tuples:

tuple1 = ("a"
, "b"
 , "c"
)

tuple2 = (1
, 2
, 3
)

tuple3 = tuple1 + tuple2

print
(tuple3)

Multiply Tuples

If you want to multiply the content of a tuple a given number of times, you can use the *
 operator:

Example

Multiply the fruits tuple by 2:

fruits = ("apple"
, "banana"
, "cherry"
)

mytuple = fruits * 2

print
(mytuple)

Python - Tuple Methods

Tuple Methods

Python has two built-in methods that you can use on tuples.

	
Method

	
Description

	
count()

	
Returns the number of times a specified value occurs in a tuple

	
index()

	
Searches the tuple for a specified value and returns the position of where it was found

Python Sets

myset = {"apple"
, "banana"
, "cherry"
}

Set

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the other 3 are List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is both unordered
 and unindexed
.

Sets are written with curly brackets.

Example

Create a Set:

thisset = {"apple"
, "banana"
, "cherry"
}

print
(thisset)

Note: Sets are unordered, so you cannot be sure in which order the items will appear.

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by index or key.

Unchangeable

Sets are unchangeable, meaning that we cannot change the items after the set has been created.

Once a set is created, you cannot change its items, but you can add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Example

Duplicate values will be ignored:

thisset = {"apple"
, "banana"
, "cherry"
, "apple"
}

print
(thisset)

Get the Length of a Set

To determine how many items a set has, use the len(
)
 method.

Example

Get the number of items in a set:

thisset = {"apple"
, "banana"
, "cherry"
}

print
(len
(thisset))

Set Items - Data Types

Set items can be of any data type:

Example

String, int and boolean data types:

set1 = {"apple"
, "banana"
, "cherry"
}

set2 = {1
, 5
, 7
, 9
, 3
}

set3 = {True
, False
, False
}

A set can contain different data types:

Example

A set with strings, integers and boolean values:

set1 = {"abc"
, 34
, True
, 40
, "male"
}

type()

From Python's perspective, sets are defined as objects with the data type 'set':

<class 'set'>

Example

What is the data type of a set?

myset = {"apple"
, "banana"
, "cherry"
}

print
(type
(myset))

The set() Constructor

It is also possible to use the set(
)
 constructor to make a set.

Example

Using the set() constructor to make a set:

thisset = set(("apple"
, "banana"
, "cherry"
)) # note the double round-brackets

print
(thisset)

Python Collections (Arrays)

There are four collection data types in the Python programming language:

●
 List is a collection which is ordered and changeable. Allows duplicate members.

●
 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

●
 Set is a collection which is unordered and unindexed. No duplicate members.

●
 Dictionary is a collection which is unordered and changeable. No duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and, it could mean an increase in efficiency or security.

Python - Add Set Items

Add Items

Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add(
)
 method.

Example

Add an item to a set, using the add(
)
 method:

thisset = {"apple"
, "banana"
, "cherry"
}

thisset.add("orange"
)

print
(thisset)

Add Sets

To add items from another set into the current set, use the update(
)
 method.

Example

Add elements from tropica
l
 and thisse
t
 into newse
t
:

thisset = {"apple"
, "banana"
, "cherry"
}

tropical = {"pineapple"
, "mango"
, "papaya"
}

thisset.update(tropical)

print
(thisset)

Add Any Iterable

The object in the update(
)
 method does not have be a set, it can be any iterable object (tuples, lists, dictionaries et,).

Example

Add elements of a list to at set:

thisset = {"apple"
, "banana"
, "cherry"
}

mylist = ["kiwi"
, "orange"
]

thisset.update(mylist)

print
(thisset)

Python - Remove Set Items

Remove Item

To remove an item in a set, use the remove(
)
, or the discard(
)
 method.

Example

Remove "banana" by using the remove(
)
 method:

thisset = {"apple"
, "banana"
, "cherry"
}

thisset.remove("banana"
)

print
(thisset)

Note: If the item to remove does not exist, remove(
)
 will raise an error.

Example

Remove "banana" by using the discard(
)
 method:

thisset = {"apple"
, "banana"
, "cherry"
}

thisset.discard("banana"
)

print
(thisset)

Note: If the item to remove does not exist, discard(
)
 will NOT raise an error.

You can also use the pop(
)
, method to remove an item, but this method will remove the last
 item. Remember that sets are unordered, so you will not know what item that gets removed.

The return value of the pop(
)
 method is the removed item.

Example

Remove the last item by using the pop(
)
 method:

thisset = {"apple"
, "banana"
, "cherry"
}

x = thisset.pop()

print
(x)

print
(thisset)

Note: Sets are unordered
, so when using the pop(
)
 method, you do not know which item that gets removed.

Example

The clear(
)
 method empties the set:

thisset = {"apple"
, "banana"
, "cherry"
}

thisset.clear()

print
(thisset)

Example

The de
l
 keyword will delete the set completely:

thisset = {"apple"
, "banana"
, "cherry"
}

del
 thisset

print
(thisset)

Python - Loop Sets

Loop Items

You can loop through the set items by using a fo
r
 loop:

Example

Loop through the set, and print the values:

thisset = {"apple"
, "banana"
, "cherry"
}

for
 x in
 thisset:

 print
(x)

Python - Join Sets

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the union(
)
 method that returns a new set containing all items from both sets, or the update(
)
 method that inserts all the items from one set into another:

Example

The union(
)
 method returns a new set with all items from both sets:

set1 = {"a"
, "b"
 , "c"
}

set2 = {1
, 2
, 3
}

set3 = set1.union(set2)

print
(set3)

Example

The update(
)
 method inserts the items in set2 into set1:

set1 = {"a"
, "b"
 , "c"
}

set2 = {1
, 2
, 3
}

set1.update(set2)

print
(set1)

Note: Both union(
)
 and update(
)
 will exclude any duplicate items.

Keep ONLY the Duplicates

The intersection_update(
)
 method will keep only the items that are present in both sets.

Example

Keep the items that exist in both set x
, and set y
:

x = {"apple"
, "banana"
, "cherry"
}

y = {"google"
, "microsoft"
, "apple"
}

x.intersection_update(y)

print
(x)

The intersection(
)
 method will return a new
 set, that only contains the items that are present in both sets.

Example

Return a set that contains the items that exist in both set x
, and set y
:

x = {"apple"
, "banana"
, "cherry"
}

y = {"google"
, "microsoft"
, "apple"
}

z = x.intersection(y)

print
(z)

Keep All, But NOT the Duplicates

The symmetric_difference_update(
)
 method will keep only the elements that are NOT present in both sets.

Example

Keep the items that are not present in both sets:

x = {"apple"
, "banana"
, "cherry"
}

y = {"google"
, "microsoft"
, "apple"
}

x.symmetric_difference_update(y)

print
(x)

The symmetric_difference(
)
 method will return a new set, that contains only the elements that are NOT present in both sets.

Example

Return a set that contains all items from both sets, except items that are present in both:

x = {"apple"
, "banana"
, "cherry"
}

y = {"google"
, "microsoft"
, "apple"
}

z = x.symmetric_difference(y)

print
(z)

Python - Set Methods

	
Method

	
Description

	
add()

	
Adds an element to the set

	
clear()

	
Removes all the elements from the set

	
copy()

	
Returns a copy of the set

	
difference()

	
Returns a set containing the difference between two or more sets

	
difference_update()

	
Removes the items in this set that are also included in another, specified set

	
discard()

	
Remove the specified item

	
intersection()

	
Returns a set, that is the intersection of two other sets

	
intersection_update()

	
Removes the items in this set that are not present in other, specified set(s)

	
isdisjoint()

	
Returns whether two sets have a intersection or not

	
issubset()

	
Returns whether another set contains this set or not

	
issuperset()

	
Returns whether this set contains another set or not

	
pop()

	
Removes an element from the set

	
remove()

	
Removes the specified element

	
symmetric_difference()

	
Returns a set with the symmetric differences of two sets

	
symmetric_difference_update()

	
inserts the symmetric differences from this set and another

	
union()

	
Return a set containing the union of sets

	
update()

	
Update the set with the union of this set and others

Python Dictionaries

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

Dictionary

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is unordered, changeable and does not allow duplicates.

Dictionaries are written with curly brackets, and have keys and values:

Example

Create and print a dictionary:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

print
(thisdict)

Dictionary Items

Dictionary items are unordered, changeable, and does not allow duplicates.

Dictionary items are presented in key:value pairs, and can be referred to by using the key name.

Example

Print the "brand" value of the dictionary:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

print
(thisdict["brand"
])

Unordered

When we say that dictionaries are unordered, it means that the items does not have a defined order, you cannot refer to an item by using an index.

Changeable

Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary has been created.

Duplicates Not Allowed

Dictionaries cannot have two items with the same key:

Example

Duplicate values will overwrite existing values:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964
,

 "year"
: 2020

}

print
(thisdict)

Dictionary Length

To determine how many items a dictionary has, use the len(
)
 function:

Example

Print the number of items in the dictionary:

print
(len
(thisdict))

Dictionary Items - Data Types

The values in dictionary items can be of any data type:

Example

String, int, boolean, and list data types:

thisdict = {

 "brand"
: "Ford"
,

 "electric"
: False
,

 "year"
: 1964
,

 "colors"
: ["red"
, "white"
, "blue"
]

}

type()

From Python's perspective, dictionaries are defined as objects with the data type 'dict':

<class 'dict'>

Example

Print the data type of a dictionary:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

print
(type
(thisdict))

Python Collections (Arrays)

There are four collection data types in the Python programming language:

●
 List is a collection which is ordered and changeable. Allows duplicate members.

●
 Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

●
 Set is a collection which is unordered and unindexed. No duplicate members.

●
 Dictionary is a collection which is unordered and changeable. No duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and, it could mean an increase in efficiency or security.

Python - Access Dictionary Items

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square brackets:

Example

Get the value of the "model" key:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

x = thisdict["model"
]

There is also a method called get(
)
 that will give you the same result:

Example

Get the value of the "model" key:

x = thisdict.get("model"
)

Get Keys

The keys(
)
 method will return a list of all the keys in the dictionary.

Example

Get a list of the keys:

x = thisdict.keys()

The list of the keys is a view
 of the dictionary, meaning that any changes done to the dictionary will be reflected in the keys list.

Example

Add a new item to the original dictionary, and see that the keys list gets updated as well:

car = {

"brand"
: "Ford"
,

"model"
: "Mustang"
,

"year"
: 1964

}

x = car.keys()

print
(x) #before the change

car["color"
] = "white"

print
(x) #after the change

Get Values

The values(
)
 method will return a list of all the values in the dictionary.

Example

Get a list of the values:

x = thisdict.values()

The list of the values is a view
 of the dictionary, meaning that any changes done to the dictionary will be reflected in the values list.

Example

Add a new item to the original dictionary, and see that the keys list gets updated as well:

car = {

"brand"
: "Ford"
,

"model"
: "Mustang"
,

"year"
: 1964

}

x = car.values()

print
(x) #before the change

car["year"
] = 2020

print
(x) #after the change

Get Items

The items(
)
 method will return each item in a dictionary, as tuples in a list.

Example

Get a list of the key:value pairs

x = thisdict.items()

The returned list is a view
 of the items of the dictionary, meaning that any changes done to the dictionary will be reflected in the items list.

Example

Add a new item to the original dictionary, and see that the items list gets updated as well:

car = {

"brand"
: "Ford"
,

"model"
: "Mustang"
,

"year"
: 1964

}

x = car.items()

print
(x) #before the change

car["year"
] = 2020

print
(x) #after the change

Check if Key Exists

To determine if a specified key is present in a dictionary use the i
n
 keyword:

Example

Check if "model" is present in the dictionary:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

if
 "model"
 in
 thisdict:

 print
("Yes, 'model' is one of the keys in the thisdict dictionary"
)

Python - Change Dictionary Items

Change Values

You can change the value of a specific item by referring to its key name:

Example

Change the "year" to 2018:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict["year"
] = 2018

Update Dictionary

The update(
)
 method will update the dictionary with the items from the given argument.

The argument must be a dictionary, or an iterable object with key:value pairs.

Example

Update the "year" of the car by using the update(
)
 method:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict.update({"year"
: 2020
})

Python - Add Dictionary Items

Adding Items

Adding an item to the dictionary is done by using a new index key and assigning a value to it:

Example

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict["color"
] = "red"

print
(thisdict)

Update Dictionary

The update(
)
 method will update the dictionary with the items from a given argument. If the item does not exist, the item will be added.

The argument must be a dictionary, or an iterable object with key:value pairs.

Example

Add a color item to the dictionary by using the update(
)
 method:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict.update({"color"
: "red"
})

Python - Remove Dictionary Items

Removing Items

There are several methods to remove items from a dictionary:

Example

The pop(
)
 method removes the item with the specified key name:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict.pop("model"
)

print
(thisdict)

Example

The popitem(
)
 method removes the last inserted item (in versions before 3.7, a random item is removed instead):

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict.popitem()

print
(thisdict)

Example

The de
l
 keyword removes the item with the specified key name:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

del
 thisdict["model"
]

print
(thisdict)

Example

The de
l
 keyword can also delete the dictionary completely:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

del
 thisdict

print
(thisdict) #this will cause an error because "thisdict" no longer exists.

Example

The clear(
)
 method empties the dictionary:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

thisdict.clear()

print
(thisdict)

Python - Loop Dictionaries

Loop Through a Dictionary

You can loop through a dictionary by using a fo
r
 loop.

When looping through a dictionary, the return value are the keys
 of the dictionary, but there are methods to return the values
 as well.

Example

Print all key names in the dictionary, one by one:

for
 x in
 thisdict:

 print
(x)

Example

Print all values
 in the dictionary, one by one:

for
 x in
 thisdict:

 print
(thisdict[x])

Example

You can also use the values(
)
 method to return values of a dictionary:

for
 x in
 thisdict.values():

 print
(x)

Example

You can use the keys(
)
 method to return the keys of a dictionary:

for
 x in
 thisdict.keys():

 print
(x)

Example

Loop through both keys
 and values
, by using the items(
)
 method:

for
 x, y in
 thisdict.items():

 print
(x, y)

Python - Copy Dictionaries

Copy a Dictionary

You cannot copy a dictionary simply by typing dict2 = dict
1
, because: dict
2
 will only be a reference
 to dict
1
, and changes made in dict
1
 will automatically also be made in dict
2
.

There are ways to make a copy, one way is to use the built-in Dictionary method copy(
)
.

Example

Make a copy of a dictionary with the copy(
)
 method:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

mydict = thisdict.copy()

print
(mydict)

Another way to make a copy is to use the built-in function dict(
)
.

Example

Make a copy of a dictionary with the dict(
)
 function:

thisdict = {

 "brand"
: "Ford"
,

 "model"
: "Mustang"
,

 "year"
: 1964

}

mydict = dict
(thisdict)

print
(mydict)

Python - Nested Dictionaries

Nested Dictionaries

A dictionary can contain dictionaries, this is called nested dictionaries.

Example

Create a dictionary that contain three dictionaries:

myfamily = {

 "child1"
 : {

 "name"
 : "Emil"
,

 "year"
 : 2004

 },

 "child2"
 : {

 "name"
 : "Tobias"
,

 "year"
 : 2007

 },

 "child3"
 : {

 "name"
 : "Linus"
,

 "year"
 : 2011

 }

}

Or, if you want to add three dictionaries into a new dictionary:

Example

Create three dictionaries, then create one dictionary that will contain the other three dictionaries:

child1 = {

 "name"
 : "Emil"
,

 "year"
 : 2004

}

child2 = {

 "name"
 : "Tobias"
,

 "year"
 : 2007

}

child3 = {

 "name"
 : "Linus"
,

 "year"
 : 2011

}

myfamily = {

 "child1"
 : child1,

 "child2"
 : child2,

 "child3"
 : child3

}

Python Dictionary Methods

Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

	
Method

	
Description

	
clear()

	
Removes all the elements from the dictionary

	
copy()

	
Returns a copy of the dictionary

	
fromkeys()

	
Returns a dictionary with the specified keys and value

	
get()

	
Returns the value of the specified key

	
items()

	
Returns a list containing a tuple for each key value pair

	
keys()

	
Returns a list containing the dictionary's keys

	
pop()

	
Removes the element with the specified key

	
popitem()

	
Removes the last inserted key-value pair

	
setdefault()

	
Returns the value of the specified key. If the key does not exist: insert the key, with the specified value

	
update()

	
Updates the dictionary with the specified key-value pairs

	
values()

	
Returns a list of all the values in the dictionary

Python If ... Else

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

●
Equals: a == b

●
Not Equals: a != b

●
Less than: a < b

●
Less than or equal to: a <= b

●
Greater than: a > b

●
Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if statements" and loops.

An "if statement" is written by using the i
f
 keyword.

Example

If statement:

a = 33

b = 200

if
 b > a:

 print
("b is greater than a"
)

In this example we use two variables, a
 and b
, which are used as part of the if statement to test whether b
 is greater than a
. As a
 is 3
3
, and b
 is 20
0
, we know that 200 is greater than 33, and so we print to screen that "b is greater than a".

Indentation

Python relies on indentation (whitespace at the beginning of a line) to define scope in the code. Other programming languages often use curly-brackets for this purpose.

Example

If statement, without indentation (will raise an error):

a = 33

b = 200

if
 b > a:

print
("b is greater than a"
) # you will get an error

Elif

The eli
f
 keyword is pythons way of saying "if the previous conditions were not true, then try this condition".

Example

a = 33

b = 33

if
 b > a:

 print
("b is greater than a"
)

elif
 a == b:

 print
("a and b are equal"
)

In this example a
 is equal to b
, so the first condition is not true, but the eli
f
 condition is true, so we print to screen that "a and b are equal".

Else

The els
e
 keyword catches anything which isn't caught by the preceding conditions.

Example

a = 200

b = 33

if
 b > a:

 print
("b is greater than a"
)

elif
 a == b:

 print
("a and b are equal"
)

else
:

 print
("a is greater than b"
)

In this example a
 is greater than b
, so the first condition is not true, also the eli
f
 condition is not true, so we go to the els
e
 condition and print to screen that "a is greater than b".

You can also have an els
e
 without the eli
f
:

Example

a = 200

b = 33

if
 b > a:

 print
("b is greater than a"
)

else
:

 print
("b is not greater than a"
)

Short Hand If

If you have only one statement to execute, you can put it on the same line as the if statement.

Example

One line if statement:

if
 a > b: print
("a is greater than b"
)

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you can put it all on the same line:

Example

One line if else statement:

a = 2

b = 330

print
("A"
) if
 a > b else
 print
("B"
)

This technique is known as Ternary Operators, or Conditional Expressions.

You can also have multiple else statements on the same line:

Example

One line if else statement, with 3 conditions:

a = 330

b = 330

print
("A"
) if
 a > b else
 print
("="
) if
 a == b else
 print
("B"
)

And

The an
d
 keyword is a logical operator, and is used to combine conditional statements:

Example

Test if a
 is greater than b
, AND if c
 is greater than a
:

a = 200

b = 33

c = 500

if
 a > b and c > a:

 print
("Both conditions are True"
)

Or

The o
r
 keyword is a logical operator, and is used to combine conditional statements:

Example

Test if a
 is greater than b
, OR if a
 is greater than c
:

a = 200

b = 33

c = 500

if
 a > b or a > c:

 print
("At least one of the conditions is True"
)

Nested If

You can have i
f
 statements inside i
f
 statements, this is called nested
 i
f
 statements.

Example

x = 41

if
 x > 10
:

 print
("Above ten,"
)

 if
 x > 20
:

 print
("and also above 20!"
)

 else
:

 print
("but not above 20."
)

The pass Statement

i
f
 statements cannot be empty, but if you for some reason have an i
f
 statement with no content, put in the pas
s
 statement to avoid getting an error.

Example

a = 33

b = 200

if
 b > a:

 pass

Python While Loops

Python Loops

Python has two primitive loop commands:

●
whil
e
 loops

●
fo
r
 loops

The while Loop

With the whil
e
 loop we can execute a set of statements as long as a condition is true.

Example

Print i as long as i is less than 6:

i = 1

while
 i < 6
:

 print
(i)

 i += 1

Note: remember to increment i, or else the loop will continue forever.

The whil
e
 loop requires relevant variables to be ready, in this example we need to define an indexing variable, i
, which we set to 1.

The break Statement

With the brea
k
 statement we can stop the loop even if the while condition is true:

Example

Exit the loop when i is 3:

i = 1

while
 i < 6
:

 print
(i)

 if
 i == 3
:

 break

 i += 1

The continue Statement

With the continu
e
 statement we can stop the current iteration, and continue with the next:

Example

Continue to the next iteration if i is 3:

i = 0

while
 i < 6
:

 i += 1

 if
 i == 3
:

 continue

 print
(i)

The else Statement

With the els
e
 statement we can run a block of code once when the condition no longer is true:

Example

Print a message once the condition is false:

i = 1

while
 i < 6
:

 print
(i)

 i += 1

else
:

 print
("i is no longer less than 6"
)

Python For Loops

Python For Loops

A fo
r
 loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a string).

This is less like the fo
r
 keyword in other programming languages, and works more like an iterator method as found in other object-orientated programming languages.

With the fo
r
 loop we can execute a set of statements, once for each item in a list, tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple"
, "banana"
, "cherry"
]

for
 x in
 fruits:

 print
(x)

The fo
r
 loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":

for
 x in
 "banana"
:

 print
(x)

The break Statement

With the brea
k
 statement we can stop the loop before it has looped through all the items:

Example

Exit the loop when x
 is "banana":

fruits = ["apple"
, "banana"
, "cherry"
]

for
 x in
 fruits:

 print
(x)

 if
 x == "banana"
:

 break

Example

Exit the loop when x
 is "banana", but this time the break comes before the print:

fruits = ["apple"
, "banana"
, "cherry"
]

for
 x in
 fruits:

 if
 x == "banana"
:

 break

 print
(x)

The continue Statement

With the continu
e
 statement we can stop the current iteration of the loop, and continue with the next:

Example

Do not print banana:

fruits = ["apple"
, "banana"
, "cherry"
]

for
 x in
 fruits:

 if
 x == "banana"
:

 continue

 print
(x)

The range() Function

To loop through a set of code a specified number of times, we can use the range(
)
 function,

The range(
)
 function returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for
 x in
 range
(6
):

 print
(x)

Note that range(6
)
 is not the values of 0 to 6, but the values 0 to 5.

The range(
)
 function defaults to 0 as a starting value, however it is possible to specify the starting value by adding a parameter: range(2, 6
)
, which means values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for
 x in
 range
(2
, 6
):

 print
(x)

The range(
)
 function defaults to increment the sequence by 1, however it is possible to specify the increment value by adding a third parameter: range(2, 30, 3
)
:

Example

Increment the sequence with 3 (default is 1):

for
 x in
 range
(2
, 30
, 3
):

 print
(x)

Else in For Loop

The els
e
 keyword in a fo
r
 loop specifies a block of code to be executed when the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for
 x in
 range
(6
):

 print
(x)

else
:

 print
("Finally finished!"
)

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

adj = ["red"
, "big"
, "tasty"
]

fruits = ["apple"
, "banana"
, "cherry"
]

for
 x in
 adj:

 for
 y in
 fruits:

 print
(x, y)

The pass Statement

fo
r
 loops cannot be empty, but if you for some reason have a fo
r
 loop with no content, put in the pas
s
 statement to avoid getting an error.

Example

for
 x in
 [0
, 1
, 2
]:

 pass

Python Functions

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

Creating a Function

In Python a function is defined using the de
f
 keyword:

Example

def
 my_function():

 print
("Hello from a function"
)

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def
 my_function():

 print
("Hello from a function"
)

my_function()

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the function is called, we pass along a first name, which is used inside the function to print the full name:

Example

def
 my_function(fname):

 print
(fname + " Refsnes"
)

my_function("Emil"
)

my_function("Tobias"
)

my_function("Linus"
)

Arguments
 are often shortened to args
 in Python documentations.

Parameters or Arguments?

The terms parameter
 and argument
 can be used for the same thing: information that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments. Meaning that if your function expects 2 arguments, you have to call the function with 2 arguments, not more, and not less.

Example

This function expects 2 arguments, and gets 2 arguments:

def
 my_function(fname, lname):

 print
(fname + " "
 + lname)

my_function("Emil"
, "Refsnes"
)

If you try to call the function with 1 or 3 arguments, you will get an error:

Example

This function expects 2 arguments, but gets only 1:

def
 my_function(fname, lname):

 print
(fname + " "
 + lname)

my_function("Emil"
)

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your function, add a *
 before the parameter name in the function definition.

This way the function will receive a tuple
 of arguments, and can access the items accordingly:

Example

If the number of arguments is unknown, add a *
 before the parameter name:

def
 my_function(*kids):

 print
("The youngest child is "
 + kids[2
])

my_function("Emil"
, "Tobias"
, "Linus"
)

Arbitrary Arguments
 are often shortened to *args
 in Python documentations.

Keyword Arguments

You can also send arguments with the key
 = value
 syntax.

This way the order of the arguments does not matter.

Example

def
 my_function(child3, child2, child1):

 print
("The youngest child is "
 + child3)

my_function(child1 = "Emil"
, child2 = "Tobias"
, child3 = "Linus"
)

The phrase Keyword Arguments
 are often shortened to kwargs
 in Python documentations.

Arbitrary Keyword Arguments, **kwargs

If you do not know how many keyword arguments that will be passed into your function, add two asterisk: *
*
 before the parameter name in the function definition.

This way the function will receive a dictionary
 of arguments, and can access the items accordingly:

Example

If the number of keyword arguments is unknown, add a double *
*
 before the parameter name:

def
 my_function(**kid):

 print
("His last name is "
 + kid["lname"
])

my_function(fname = "Tobias"
, lname = "Refsnes"
)

Arbitrary Kword Arguments
 are often shortened to **kwargs
 in Python documentations.

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without argument, it uses the default value:

Example

def
 my_function(country = "Norway"
):

 print
("I am from "
 + country)

my_function("Sweden"
)

my_function("India"
)

my_function()

my_function("Brazil"
)

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list, dictionary etc.), and it will be treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a List when it reaches the function:

Example

def
 my_function(food):

 for
 x in
 food:

 print
(x)

fruits = ["apple"
, "banana"
, "cherry"
]

my_function(fruits)

Return Values

To let a function return a value, use the retur
n
 statement:

Example

def
 my_function(x):

 return
 5
 * x

print
(my_function(3
))

print
(my_function(5
))

print
(my_function(9
))

The pass Statement

functio
n
 definitions cannot be empty, but if you for some reason have a functio
n
 definition with no content, put in the pas
s
 statement to avoid getting an error.

Example

def
 myfunction():

 pass

Recursion

Python also accepts function recursion, which means a defined function can call itself.

Recursion is a common mathematical and programming concept. It means that a function calls itself. This has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a function which never terminates, or one that uses excess amounts of memory or processor power. However, when written correctly recursion can be a very efficient and mathematically-elegant approach to programming.

In this example, tri_recursion(
)
 is a function that we have defined to call itself ("recurse"). We use the k
 variable as the data, which decrements (
-
1
) every time we recurse. The recursion ends when the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find out is by testing and modifying it.

Example

Recursion Example

def tri_recursion(k):

 if
(k > 0
):

​
result = k + tri_recursion(k - 1
)

​
print(result)

 else
:

​
result = 0

 return
 result

print("\n\nRecursion Example Results"
)

tri_recursion(6
)

Python Lambda

A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one expression.

Syntax

lambda arguments
 : expression

The expression is executed and the result is returned:

Example

Add 10 to argument a
, and return the result:

x = lambda
 a : a + 10

print
(x(5
))

Lambda functions can take any number of arguments:

Example

Multiply argument a
 with argument b
 and return the result:

x = lambda
 a, b : a * b

print
(x(5
, 6
))

Example

Summarize argument a
, b
, and c
 and return the result:

x = lambda
 a, b, c : a + b + c

print
(x(5
, 6
, 2
))

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous function inside another function.

Say you have a function definition that takes one argument, and that argument will be multiplied with an unknown number:

def
 myfunc(n):

 return
 lambda
 a : a * n

Use that function definition to make a function that always doubles the number you send in:

Example

def
 myfunc(n):

 return
 lambda
 a : a * n

mydoubler = myfunc(2
)

print
(mydoubler(11
))

Or, use the same function definition to make a function that always triples
 the number you send in:

Example

def
 myfunc(n):

 return
 lambda
 a : a * n

mytripler = myfunc(3
)

print
(mytripler(11
))

Or, use the same function definition to make both functions, in the same program:

Example

def
 myfunc(n):

 return
 lambda
 a : a * n

mydoubler = myfunc(2
)

mytripler = myfunc(3
)

print
(mydoubler(11
))

print
(mytripler(11
))

Use lambda functions when an anonymous function is required for a short period of time.

Python Arrays

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

Arrays

Note: This page shows you how to use LISTS as ARRAYS, however, to work with arrays in Python you will have to import a library, like the NumPy library.

Arrays are used to store multiple values in one single variable:

Example

Create an array containing car names:

cars = ["Ford"
, "Volvo"
, "BMW"
]

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look like this:

car1 = "Ford"

car2 = "Volvo"

car3 = "BMW"

However, what if you want to loop through the cars and find a specific one? And what if you had not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number
.

Example

Get the value of the first array item:

x = cars[0
]

Example

Modify the value of the first array item:

cars[0
] = "Toyota"

The Length of an Array

Use the len(
)
 method to return the length of an array (the number of elements in an array).

Example

Return the number of elements in the car
s
 array:

x = len
(cars)

Note: The length of an array is always one more than the highest array index.

Looping Array Elements

You can use the for i
n
 loop to loop through all the elements of an array.

Example

Print each item in the car
s
 array:

for
 x in
 cars:

 print
(x)

Adding Array Elements

You can use the append(
)
 method to add an element to an array.

Example

Add one more element to the car
s
 array:

cars.append("Honda"
)

Removing Array Elements

You can use the pop(
)
 method to remove an element from the array.

Example

Delete the second element of the car
s
 array:

cars.pop(1
)

You can also use the remove(
)
 method to remove an element from the array.

Example

Delete the element that has the value "Volvo":

cars.remove("Volvo"
)

Note: The list's remove(
)
 method only removes the first occurrence of the specified value.

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

	
Method

	
Description

	
append()

	
Adds an element at the end of the list

	
clear()

	
Removes all the elements from the list

	
copy()

	
Returns a copy of the list

	
count()

	
Returns the number of elements with the specified value

	
extend()

	
Add the elements of a list (or any iterable), to the end of the current list

	
index()

	
Returns the index of the first element with the specified value

	
insert()

	
Adds an element at the specified position

	
pop()

	
Removes the element at the specified position

	
remove()

	
Removes the first item with the specified value

	
reverse()

	
Reverses the order of the list

	
sort()

	
Sorts the list

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

Python Classes and Objects

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword clas
s
:

Example

Create a class named MyClass, with a property named x:

class
 MyClass:

 x = 5

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print
(p1.x)

The __init__() Function

The examples above are classes and objects in their simplest form, and are not really useful in real life applications.

To understand the meaning of classes we have to understand the built-in __init__() function.

All classes have a function called __init__(), which is always executed when the class is being initiated.

Use the __init__() function to assign values to object properties, or other operations that are necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class
 Person:

 def
 __init__(self, name, age):

 self.name = name

​
self.age = age

p1 = Person("John"
, 36
)

print
(p1.name)

print
(p1.age)

Note: The __init__(
)
 function is called automatically every time the class is being used to create a new object.

Object Methods

Objects can also contain methods. Methods in objects are functions that belong to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class
 Person:

 def
 __init__(self, name, age):

 self.name = name

​
self.age = age

 def
 myfunc(self):

 print
("Hello my name is "
 + self.name)

p1 = Person("John"
, 36
)

p1.myfunc()

Note: The sel
f
 parameter is a reference to the current instance of the class, and is used to access variables that belong to the class.

The self Parameter

The sel
f
 parameter is a reference to the current instance of the class, and is used to access variables that belongs to the class.

It does not have to be named sel
f
 , you can call it whatever you like, but it has to be the first parameter of any function in the class:

Example

Use the words mysillyobject
 and abc
 instead of self
:

class
 Person:

 def
 __init__(mysillyobject, name, age):

 mysillyobject.name = name

​
mysillyobject.age = age

 def
 myfunc(abc):

 print
("Hello my name is "
 + abc.name)

p1 = Person("John"
, 36
)

p1.myfunc()

Modify Object Properties

You can modify properties on objects like this:

Example

Set the age of p1 to 40:

p1.age = 40

Delete Object Properties

You can delete properties on objects by using the de
l
 keyword:

Example

Delete the age property from the p1 object:

del
 p1.age

Delete Objects

You can delete objects by using the de
l
 keyword:

Example

Delete the p1 object:

del
 p1

The pass Statement

clas
s
 definitions cannot be empty, but if you for some reason have a clas
s
 definition with no content, put in the pas
s
 statement to avoid getting an error.

Example

class
 Person:

 pass

Python Inheritance

Inheritance allows us to define a class that inherits all the methods and properties from another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called derived class.

Create a Parent Class

Any class can be a parent class, so the syntax is the same as creating any other class:

Example

Create a class named Perso
n
, with firstnam
e
 and lastnam
e
 properties, and a printnam
e
 method:

class
 Person:

 def
 __init__(self, fname, lname):

 self.firstname = fname

​
self.lastname = lname

 def
 printname(self):

​
print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname method:

x = Person("John"
, "Doe"
)

x.printname()

Create a Child Class

To create a class that inherits the functionality from another class, send the parent class as a parameter when creating the child class:

Example

Create a class named Studen
t
, which will inherit the properties and methods from the Perso
n
 class:

class
 Student(Person):

 pass

Note: Use the pas
s
 keyword when you do not want to add any other properties or methods to the class.

Now the Student class has the same properties and methods as the Person class.

Example

Use the Studen
t
 class to create an object, and then execute the printnam
e
 method:

x = Student("Mike"
, "Olsen"
)

x.printname()

Add the __init__() Function

So far we have created a child class that inherits the properties and methods from its parent.

We want to add the __init__(
)
 function to the child class (instead of the pas
s
 keyword).

Note: The __init__(
)
 function is called automatically every time the class is being used to create a new object.

Example

Add the __init__(
)
 function to the Studen
t
 class:

class
 Student(Person):

 def
 __init__(self, fname, lname):

 #add properties etc.

When you add the __init__(
)
 function, the child class will no longer inherit the parent's __init__(
)
 function.

Note: The child's __init__(
)
 function overrides the inheritance of the parent's __init__(
)
 function.

To keep the inheritance of the parent's __init__(
)
 function, add a call to the parent's __init__(
)
 function:

Example

class
 Student(Person):

 def
 __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

Now we have successfully added the __init__() function, and kept the inheritance of the parent class, and we are ready to add functionality in the __init__(
)
 function.

Use the super() Function

Python also has a super(
)
 function that will make the child class inherit all the methods and properties from its parent:

Example

class
 Student(Person):

 def
 __init__(self, fname, lname):

 super
().__init__(fname, lname)

By using the super(
)
 function, you do not have to use the name of the parent element, it will automatically inherit the methods and properties from its parent.

Add Properties

Example

Add a property called graduationyea
r
 to the Studen
t
 class:

class
 Student(Person):

 def
 __init__(self, fname, lname):

 super
().__init__(fname, lname)

​
self.graduationyear = 2019

In the example below, the year 201
9
 should be a variable, and passed into the Studen
t
 class when creating student objects. To do so, add another parameter in the __init__() function:

Example

Add a yea
r
 parameter, and pass the correct year when creating objects:

class
 Student(Person):

 def
 __init__(self, fname, lname, year):

 super
().__init__(fname, lname)

​
self.graduationyear = year

x = Student("Mike"
, "Olsen"
, 2019
)

Add Methods

Example

Add a method called welcom
e
 to the Studen
t
 class:

class
 Student(Person):

 def
 __init__(self, fname, lname, year):

 super
().__init__(fname, lname)

​
self.graduationyear = year

 def
 welcome(self):

 print
("Welcome"
, self.firstname, self.lastname, "to the class of"
, self.graduationyear)

If you add a method in the child class with the same name as a function in the parent class, the inheritance of the parent method will be overridden.

Python Iterators

An iterator is an object that contains a countable number of values.

An iterator is an object that can be iterated upon, meaning that you can traverse through all the values.

Technically, in Python, an iterator is an object which implements the iterator protocol, which consist of the methods __iter__(
)
 and __next__(
)
.

Iterator vs Iterable

Lists, tuples, dictionaries, and sets are all iterable objects. They are iterable containers
 which you can get an iterator from.

All these objects have a iter(
)
 method which is used to get an iterator:

Example

Return an iterator from a tuple, and print each value:

mytuple = ("apple"
, "banana"
, "cherry"
)

myit = iter
(mytuple)

print
(next
(myit))

print
(next
(myit))

print
(next
(myit))

Even strings are iterable objects, and can return an iterator:

Example

Strings are also iterable objects, containing a sequence of characters:

mystr = "banana"

myit = iter
(mystr)

print
(next
(myit))

print
(next
(myit))

print
(next
(myit))

print
(next
(myit))

print
(next
(myit))

print
(next
(myit))

Looping Through an Iterator

We can also use a fo
r
 loop to iterate through an iterable object:

Example

Iterate the values of a tuple:

mytuple = ("apple"
, "banana"
, "cherry"
)

for
 x in
 mytuple:

 print
(x)

Example

Iterate the characters of a string:

mystr = "banana"

for
 x in
 mystr:

 print
(x)

The fo
r
 loop actually creates an iterator object and executes the next() method for each loop.

Create an Iterator

To create an object/class as an iterator you have to implement the methods __iter__(
)
 and __next__(
)
 to your object.

As you have learned in the Python Classes/Objects chapter, all classes have a function called __init__(
)
, which allows you to do some initializing when the object is being created.

The __iter__(
)
 method acts similar, you can do operations (initializing etc.), but must always return the iterator object itself.

The __next__(
)
 method also allows you to do operations, and must return the next item in the sequence.

Example

Create an iterator that returns numbers, starting with 1, and each sequence will increase by one (returning 1,2,3,4,5 etc.):

class
 MyNumbers:

 def
 __iter__(self):

​
self.a = 1

 return
 self

 def
 __next__(self):

 x = self.a

​
self.a += 1

 return
 x

myclass = MyNumbers()

myiter = iter(myclass)

print
(next
(myiter))

print
(next
(myiter))

print
(next
(myiter))

print
(next
(myiter))

print
(next
(myiter))

StopIteration

The example above would continue forever if you had enough next() statements, or if it was used in a fo
r
 loop.

To prevent the iteration to go on forever, we can use the StopIteratio
n
 statement.

In the __next__(
)
 method, we can add a terminating condition to raise an error if the iteration is done a specified number of times:

Example

Stop after 20 iterations:

class
 MyNumbers:

 def
 __iter__(self):

​
self.a = 1

 return
 self

 def
 __next__(self):

 if
 self.a <= 20
:

 ​
x = self.a

 self.a += 1

 return
 x

 else
:

 raise
 StopIteration

myclass = MyNumbers()

myiter = iter(myclass)

for
 x in
 myiter:

 print
(x)

Python Scope

A variable is only available from inside the region it is created. This is called scope.

Local Scope

A variable created inside a function belongs to the local scope
 of that function, and can only be used inside that function.

Example

A variable created inside a function is available inside that function:

def
 myfunc():

 x = 300

 print
(x)

myfunc()

Function Inside Function

As explained in the example above, the variable x
 is not available outside the function, but it is available for any function inside the function:

Example

The local variable can be accessed from a function within the function:

def
 myfunc():

 x = 300

 def
 myinnerfunc():

 print
(x)

 myinnerfunc()

myfunc()

Global Scope

A variable created in the main body of the Python code is a global variable and belongs to the global scope.

Global variables are available from within any scope, global and local.

Example

A variable created outside of a function is global and can be used by anyone:

x = 300

def
 myfunc():

 print
(x)

myfunc()

print
(x)

Naming Variables

If you operate with the same variable name inside and outside of a function, Python will treat them as two separate variables, one available in the global scope (outside the function) and one available in the local scope (inside the function):

Example

The function will print the local x
, and then the code will print the global x
:

x = 300

def
 myfunc():

 x = 200

 print
(x)

myfunc()

print
(x)

Global Keyword

If you need to create a global variable, but are stuck in the local scope, you can use the globa
l
 keyword.

The globa
l
 keyword makes the variable global.

Example

If you use the globa
l
 keyword, the variable belongs to the global scope:

def
 myfunc():

 global
 x

 x = 300

myfunc()

print
(x)

Also, use the globa
l
 keyword if you want to make a change to a global variable inside a function.

Example

To change the value of a global variable inside a function, refer to the variable by using the globa
l
 keyword:

x = 300

def
 myfunc():

 global
 x

 x = 200

myfunc()

print
(x)

Python Modules

What is a Module?

Consider a module to be the same as a code library.

A file containing a set of functions you want to include in your application.

Create a Module

To create a module just save the code you want in a file with the file extension .p
y
:

Example

Save this code in a file named mymodule.py

def
 greeting(name):

 print
("Hello, "
 + name)

Use a Module

Now we can use the module we just created, by using the impor
t
 statement:

Example

Import the module named mymodule, and call the greeting function:

import
 mymodule

mymodule.greeting("Jonathan"
)

Note: When using a function from a module, use the syntax: module_name.function_name
.

Variables in Module

The module can contain functions, as already described, but also variables of all types (arrays, dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {

 "name"
: "John"
,

 "age"
: 36
,

 "country"
: "Norway"

}

Example

Import the module named mymodule, and access the person1 dictionary:

import
 mymodule

a = mymodule.person1["age"
]

print
(a)

Naming a Module

You can name the module file whatever you like, but it must have the file extension .py

Re-naming a Module

You can create an alias when you import a module, by using the a
s
 keyword:

Example

Create an alias for mymodul
e
 called m
x
:

import
 mymodule as
 mx

a = mx.person1["age"
]

print
(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you like.

Example

Import and use the platfor
m
 module:

import
 platform

x = platform.system()

print
(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a module. The dir(
)
 function:

Example

List all the defined names belonging to the platform module:

import
 platform

x = dir
(platform)

print
(x)

Note: The dir() function can be used on all
 modules, also the ones you create yourself.

Import From Module

You can choose to import only parts from a module, by using the fro
m
 keyword.

Example

The module named mymodul
e
 has one function and one dictionary:

def
 greeting(name):

 print
("Hello, "
 + name)

person1 = {

 "name"
: "John"
,

 "age"
: 36
,

 "country"
: "Norway"

}

Example

Import only the person1 dictionary from the module:

from
 mymodule import
 person1

print
 (person1["age"
])

Note: When importing using the fro
m
 keyword, do not use the module name when referring to elements in the module. Example: person1["age"
]
, not mymodule.person1["age"]

Python Datetime

Python Dates

A date in Python is not a data type of its own, but we can import a module named datetim
e
 to work with dates as date objects.

Example

Import the datetime module and display the current date:

import
 datetime

x = datetime.datetime.now()

print
(x)

Date Output

When we execute the code from the example above the result will be:

2020-12-15 00:09:56.598812

The date contains year, month, day, hour, minute, second, and microsecond.

The datetim
e
 module has many methods to return information about the date object.

Here are a few examples, you will learn more about them later in this chapter:

Example

Return the year and name of weekday:

import
 datetime

x = datetime.datetime.now()

print
(x.year)

print
(x.strftime("%A"
))

Creating Date Objects

To create a date, we can use the datetime(
)
 class (constructor) of the datetim
e
 module.

The datetime(
)
 class requires three parameters to create a date: year, month, day.

Example

Create a date object:

import
 datetime

x = datetime.datetime(2020
, 5
, 17
)

print
(x)

The datetime(
)
 class also takes parameters for time and timezone (hour, minute, second, microsecond, tzone), but they are optional, and has a default value of 0
, (
Non
e
 for timezone).

The strftime() Method

The datetim
e
 object has a method for formatting date objects into readable strings.

The method is called strftime(
)
, and takes one parameter, forma
t
, to specify the format of the returned string:

Example

Display the name of the month:

import
 datetime

x = datetime.datetime(2018
, 6
, 1
)

print
(x.strftime("%B"
))

A reference of all the legal format codes:

	
Directive

	
Description

	
Example

	

	
%a

	
Weekday, short version

	
Wed

	

	
%A

	
Weekday, full version

	
Wednesday

	

	
%w

	
Weekday as a number 0-6, 0 is Sunday

	
3

	

	
%d

	
Day of month 01-31

	
31

	

	
%b

	
Month name, short version

	
Dec

	

	
%B

	
Month name, full version

	
December

	

	
%m

	
Month as a number 01-12

	
12

	

	
%y

	
Year, short version, without century

	
18

	

	
%Y

	
Year, full version

	
2018

	

	
%H

	
Hour 00-23

	
17

	

	
%I

	
Hour 00-12

	
05

	

	
%p

	
AM/PM

	
PM

	

	
%M

	
Minute 00-59

	
41

	

	
%S

	
Second 00-59

	
08

	

	
%f

	
Microsecond 000000-999999

	
548513

	

	
%z

	
UTC offset

	
+0100

	

	
%Z

	
Timezone

	
CST

	

	
%j

	
Day number of year 001-366

	
365

	

	
%U

	
Week number of year, Sunday as the first day of week, 00-53

	
52

	

	
%W

	
Week number of year, Monday as the first day of week, 00-53

	
52

	

	
%c

	
Local version of date and time

	
Mon Dec 31 17:41:00 2018

	

	
%x

	
Local version of date

	
12/31/18

	

	
%X

	
Local version of time

	
17:41:00

	

	
%%

	
A % character

	
%

	

Python Math

Python has a set of built-in math functions, including an extensive math module, that allows you to perform mathematical tasks on numbers.

Built-in Math Functions

The min(
)
 and max(
)
 functions can be used to find the lowest or highest value in an iterable:

Example

x = min
(5
, 10
, 25
)

y = max
(5
, 10
, 25
)

print
(x)

print
(y)

The abs(
)
 function returns the absolute (positive) value of the specified number:

Example

x = abs
(-7.25
)

print
(x)

The pow(
x
,
 y
)
 function returns the value of x to the power of y (xy
).

Example

Return the value of 4 to the power of 3 (same as 4 * 4 * 4):

x = pow
(4
, 3
)

print
(x)

The Math Module

Python has also a built-in module called mat
h
, which extends the list of mathematical functions.

To use it, you must import the mat
h
 module:

import
 math

When you have imported the mat
h
 module, you can start using methods and constants of the module.

The math.sqrt(
)
 method for example, returns the square root of a number:

Example

import
 math

x = math.sqrt(64
)

print
(x)

The math.ceil(
)
 method rounds a number upwards to its nearest integer, and the math.floor(
)
 method rounds a number downwards to its nearest integer, and returns the result:

Example

import
 math

x = math.ceil(1.4
)

y = math.floor(1.4
)

print
(x) # returns 2

print
(y) # returns 1

The math.p
i
 constant, returns the value of PI (3.14...):

Example

import
 math

x = math.pi

print
(x)

Complete Math Module Reference

In our Math Module Reference you will find a complete reference of all methods and constants that belongs to the Math module.

Python JSON

JSON is a syntax for storing and exchanging data.

JSON is text, written with JavaScript object notation.

JSON in Python

Python has a built-in package called jso
n
, which can be used to work with JSON data.

Example

Import the json module:

import
 json

Parse JSON - Convert from JSON to Python

If you have a JSON string, you can parse it by using the json.loads(
)
 method.

The result will be a Python dictionary.

Example

Convert from JSON to Python:

import
 json

some JSON:

x = '{ "name":"John", "age":30, "city":"New York"}'

parse x:

y = json.loads(x)

the result is a Python dictionary:

print
(y["age"
])

Convert from Python to JSON

If you have a Python object, you can convert it into a JSON string by using the json.dumps(
)
 method.

Example

Convert from Python to JSON:

import
 json

a Python object (dict):

x = {

 "name"
: "John"
,

 "age"
: 30
,

 "city"
: "New York"

}

convert into JSON:

y = json.dumps(x)

the result is a JSON string:

print
(y)

You can convert Python objects of the following types, into JSON strings:

●
dict

●
list

●
tuple

●
string

●
int

●
float

●
True

●
False

●
None

Example

Convert Python objects into JSON strings, and print the values:

import
 json

print
(json.dumps({"name"
: "John"
, "age"
: 30
}))

print
(json.dumps(["apple"
, "bananas"
]))

print
(json.dumps(("apple"
, "bananas"
)))

print
(json.dumps("hello"
))

print
(json.dumps(42
))

print
(json.dumps(31.76
))

print
(json.dumps(True
))

print
(json.dumps(False
))

print
(json.dumps(None))

When you convert from Python to JSON, Python objects are converted into the JSON (JavaScript) equivalent:

	
Python

	
JSON

	
dict

	
Object

	
list

	
Array

	
tuple

	
Array

	
str

	
String

	
int

	
Number

	
float

	
Number

	
True

	
true

	
False

	
false

	
None

	
null

Example

Convert a Python object containing all the legal data types:

import
 json

x = {

 "name"
: "John"
,

 "age"
: 30
,

 "married"
: True
,

 "divorced"
: False
,

 "children"
: ("Ann"
,"Billy"
),

 "pets"
: None,

 "cars"
: [

​
{"model"
: "BMW 230"
, "mpg"
: 27.5
},

​
{"model"
: "Ford Edge"
, "mpg"
: 24.1
}

]

}

print
(json.dumps(x))

Format the Result

The example above prints a JSON string, but it is not very easy to read, with no indentations and line breaks.

The json.dumps(
)
 method has parameters to make it easier to read the result:

Example

Use the inden
t
 parameter to define the numbers of indents:

json.dumps(x, indent=4
)

You can also define the separators, default value is (", ", ": "), which means using a comma and a space to separate each object, and a colon and a space to separate keys from values:

Example

Use the separator
s
 parameter to change the default separator:

json.dumps(x, indent=4
, separators=(". "
, " = "
))

Order the Result

The json.dumps(
)
 method has parameters to order the keys in the result:

Example

Use the sort_key
s
 parameter to specify if the result should be sorted or not:

json.dumps(x, indent=4
, sort_keys=True
)

Python RegEx

A RegEx, or Regular Expression, is a sequence of characters that forms a search pattern.

RegEx can be used to check if a string contains the specified search pattern.

RegEx Module

Python has a built-in package called r
e
, which can be used to work with Regular Expressions.

Import the r
e
 module:

import
 re

RegEx in Python

When you have imported the r
e
 module, you can start using regular expressions:

Example

Search the string to see if it starts with "The" and ends with "Spain":

import
 re

txt = "The rain in Spain"

x = re.search("^The.*Spain$"
, txt)

RegEx Functions

The r
e
 module offers a set of functions that allows us to search a string for a match:

	
Function

	
Description

	
findall

	
Returns a list containing all matches

	
search

	
Returns a Match object if there is a match anywhere in the string

	
split

	
Returns a list where the string has been split at each match

	
sub

	
Replaces one or many matches with a string

Metacharacters

Metacharacters are characters with a special meaning:

	
Character

	
Description

	
Example

	

	
[]

	
A set of characters

	
"[a-m]"

	

	
\

	
Signals a special sequence (can also be used to escape special characters)

	
"\d"

	

	
.

	
Any character (except newline character)

	
"he..o"

	

	
^

	
Starts with

	
"^hello"

	

	
$

	
Ends with

	
"world$"

	

	
*

	
Zero or more occurrences

	
"aix*"

	

	
+

	
One or more occurrences

	
"aix+"

	

	
{}

	
Exactly the specified number of occurrences

	
"al{2}"

	

	
|

	
Either or

	
"falls|stays"

	

	
()

	
Capture and group

	
	

Special Sequences

A special sequence is a \
 followed by one of the characters in the list below, and has a special meaning:

	
Character

	
Description

	
Example

	

	
\A

	
Returns a match if the specified characters are at the beginning of the string

	
"\AThe"

	

	
\b

	
Returns a match where the specified characters are at the beginning or at the end of a word

(the "r" in the beginning is making sure that the string is being treated as a "raw string")

	
r"\bain"

r"ain\b"

	

	
\B

	
Returns a match where the specified characters are present, but NOT at the beginning (or at the end) of a word

(the "r" in the beginning is making sure that the string is being treated as a "raw string")

	
r"\Bain"

r"ain\B"

	

	
\d

	
Returns a match where the string contains digits (numbers from 0-9)

	
"\d"

	

	
\D

	
Returns a match where the string DOES NOT contain digits

	
"\D"

	

	
\s

	
Returns a match where the string contains a white space character

	
"\s"

	

	
\S

	
Returns a match where the string DOES NOT contain a white space character

	
"\S"

	

	
\w

	
Returns a match where the string contains any word characters (characters from a to Z, digits from 0-9, and the underscore _ character)

	
"\w"

	

	
\W

	
Returns a match where the string DOES NOT contain any word characters

	
"\W"

	

	
\Z

	
Returns a match if the specified characters are at the end of the string

	
"Spain\Z"

	

Sets

A set is a set of characters inside a pair of square brackets [
]
 with a special meaning:

	
Set

	
Description

	

	
[arn]

	
Returns a match where one of the specified characters (
a
, r
, or n
) are present

	

	
[a-n]

	
Returns a match for any lower case character, alphabetically between a
 and n

	

	
[^arn]

	
Returns a match for any character EXCEPT a
, r
, and n

	

	
[0123]

	
Returns a match where any of the specified digits (
0
, 1
, 2
, or 3
) are present

	

	
[0-9]

	
Returns a match for any digit between 0
 and 9

	

	
[0-5][0-9]

	
Returns a match for any two-digit numbers from 0
0
 and 59

	

	
[a-zA-Z]

	
Returns a match for any character alphabetically between a
 and z
, lower case OR upper case

	

	
[+]

	
In sets, +
, *
, .
, |
, (
)
, $
,
{
}
 has no special meaning, so [+
]
 means: return a match for any +
 character in the string

	

The findall() Function

The findall(
)
 function returns a list containing all matches.

Example

Print a list of all matches:

import
 re

txt = "The rain in Spain"

x = re.findall("ai"
, txt)

print
(x)

The list contains the matches in the order they are found.

If no matches are found, an empty list is returned:

Example

Return an empty list if no match was found:

import
 re

txt = "The rain in Spain"

x = re.findall("Portugal"
, txt)

print
(x)

The search() Function

The search(
)
 function searches the string for a match, and returns a Match object if there is a match.

If there is more than one match, only the first occurrence of the match will be returned:

Example

Search for the first white-space character in the string:

import
 re

txt = "The rain in Spain"

x = re.search("\s"
, txt)

print
("The first white-space character is located in position:"
, x.start())

If no matches are found, the value Non
e
 is returned:

Example

Make a search that returns no match:

import
 re

txt = "The rain in Spain"

x = re.search("Portugal"
, txt)

print
(x)

The split() Function

The split(
)
 function returns a list where the string has been split at each match:

Example

Split at each white-space character:

import
 re

txt = "The rain in Spain"

x = re.split("\s"
, txt)

print
(x)

You can control the number of occurrences by specifying the maxspli
t
 parameter:

Example

Split the string only at the first occurrence:

import
 re

txt = "The rain in Spain"

x = re.split("\s"
, txt, 1
)

print
(x)

The sub() Function

The sub(
)
 function replaces the matches with the text of your choice:

Example

Replace every white-space character with the number 9:

import
 re

txt = "The rain in Spain"

x = re.sub("\s"
, "9"
, txt)

print
(x)

You can control the number of replacements by specifying the coun
t
 parameter:

Example

Replace the first 2 occurrences:

import
 re

txt = "The rain in Spain"

x = re.sub("\s"
, "9"
, txt, 2
)

print
(x)

Match Object

A Match Object is an object containing information about the search and the result.

Note: If there is no match, the value Non
e
 will be returned, instead of the Match Object.

Example

Do a search that will return a Match Object:

import
 re

txt = "The rain in Spain"

x = re.search("ai"
, txt)

print
(x) #this will print an object

The Match object has properties and methods used to retrieve information about the search, and the result:

.span(
)
 returns a tuple containing the start-, and end positions of the match.

.strin
g
 returns the string passed into the function

.group(
)
 returns the part of the string where there was a match

Example

Print the position (start- and end-position) of the first match occurrence.

The regular expression looks for any words that starts with an upper case "S":

import
 re

txt = "The rain in Spain"

x = re.search(r"\bS\w+"
, txt)

print
(x.span())

Example

Print the string passed into the function:

import
 re

txt = "The rain in Spain"

x = re.search(r"\bS\w+"
, txt)

print
(x.string)

Example

Print the part of the string where there was a match.

The regular expression looks for any words that starts with an upper case "S":

import
 re

txt = "The rain in Spain"

x = re.search(r"\bS\w+"
, txt)

print
(x.group())

Note: If there is no match, the value Non
e
 will be returned, instead of the Match Object.

Python PIP

What is PIP?

PIP is a package manager for Python packages, or modules if you like.

Note: If you have Python version 3.4 or later, PIP is included by default.

What is a Package?

A package contains all the files you need for a module.

Modules are Python code libraries you can include in your project.

Check if PIP is Installed

Navigate your command line to the location of Python's script directory, and type the following:

Example

Check PIP version:

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>pip --version

Download a Package

Downloading a package is very easy.

Open the command line interface and tell PIP to download the package you want.

Navigate your command line to the location of Python's script directory, and type the following:

Example

Download a package named "camelcase":

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>pip install camelcase

Now you have downloaded and installed your first package!

Using a Package

Once the package is installed, it is ready to use.

Import the "camelcase" package into your project.

Example

Import and use "camelcase":

import
 camelcase

c = camelcase.CamelCase()

txt = "hello world"

print
(c.hump(txt))

Remove a Package

Use the uninstal
l
 command to remove a package:

Example

Uninstall the package named "camelcase":

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>pip uninstall camelcase

The PIP Package Manager will ask you to confirm that you want to remove the camelcase package:

Uninstalling camelcase-02.1:

 Would remove:

​
c:\users\Your Name
\appdata\local\programs\python\python36-32\lib\site-packages\camecase-0.2-py3.6.egg-info

​
c:\users\Your Name
\appdata\local\programs\python\python36-32\lib\site-packages\camecase*

Proceed (y/n)?

Press y
 and the package will be removed.

List Packages

Use the lis
t
 command to list all the packages installed on your system:

Example

List installed packages:

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>pip list

Result:

Package ​
Version

camelcase ​
0.2

mysql-connector 2.1.6

pip ​
18.1

pymongo ​
3.6.1

setuptools ​
39.0.1

Python Try Except

The tr
y
 block lets you test a block of code for errors.

The excep
t
 block lets you handle the error.

The finall
y
 block lets you execute code, regardless of the result of the try- and except blocks.

Exception Handling

When an error occurs, or exception as we call it, Python will normally stop and generate an error message.

These exceptions can be handled using the tr
y
 statement:

Example

The tr
y
 block will generate an exception, because x
 is not defined:

try
:

 print
(x)

except
:

 print
("An exception occurred"
)

Since the try block raises an error, the except block will be executed.

Without the try block, the program will crash and raise an error:

Example

This statement will raise an error, because x
 is not defined:

print
(x)

Many Exceptions

You can define as many exception blocks as you want, e.g. if you want to execute a special block of code for a special kind of error:

Example

Print one message if the try block raises a NameErro
r
 and another for other errors:

try
:

 print
(x)

except
 NameError:

 print
("Variable x is not defined"
)

except
:

 print
("Something else went wrong"
)

Else

You can use the els
e
 keyword to define a block of code to be executed if no errors were raised:

Example

In this example, the tr
y
 block does not generate any error:

try
:

 print
("Hello"
)

except
:

 print
("Something went wrong"
)

else
:

 print
("Nothing went wrong"
)

Finally

The finall
y
 block, if specified, will be executed regardless if the try block raises an error or not.

Example

try
:

 print
(x)

except
:

 print
("Something went wrong"
)

finally
:

 print
("The 'try except' is finished"
)

This can be useful to close objects and clean up resources:

Example

Try to open and write to a file that is not writable:

try
:

 f = open
("demofile.txt"
)

 f.write("Lorum Ipsum"
)

except
:

 print
("Something went wrong when writing to the file"
)

finally
:

 f.close()

The program can continue, without leaving the file object open.

Raise an exception

As a Python developer you can choose to throw an exception if a condition occurs.

To throw (or raise) an exception, use the rais
e
 keyword.

Example

Raise an error and stop the program if x is lower than 0:

x = -1

if
 x < 0
:

 raise
 Exception("Sorry, no numbers below zero"
)

The rais
e
 keyword is used to raise an exception.

You can define what kind of error to raise, and the text to print to the user.

Example

Raise a TypeError if x is not an integer:

x = "hello"

if
 not type
(x) is int
:

 raise
 TypeError("Only integers are allowed"
)

Python User Input

User Input

Python allows for user input.

That means we are able to ask the user for input.

The method is a bit different in Python 3.6 than Python 2.7.

Python 3.6 uses the input(
)
 method.

Python 2.7 uses the raw_input(
)
 method.

The following example asks for the username, and when you entered the username, it gets printed on the screen:

Python 3.6

username = input
("Enter username:"
)

print
("Username is: "
 + username)

Python 2.7

username = raw_input("Enter username:"
)

print
("Username is: "
 + username)

Python String Formatting

To make sure a string will display as expected, we can format the result with the format(
)
 method.

String format()

The format(
)
 method allows you to format selected parts of a string.

Sometimes there are parts of a text that you do not control, maybe they come from a database, or user input?

To control such values, add placeholders (curly brackets {
}
) in the text, and run the values through the format(
)
 method:

Example

Add a placeholder where you want to display the price:

price = 49

txt = "The price is {} dollars"

print
(txt.format
(price))

You can add parameters inside the curly brackets to specify how to convert the value:

Example

Format the price to be displayed as a number with two decimals:

txt = "The price is {:.2f} dollars"

Check out all formatting types in our String format() Reference.

Multiple Values

If you want to use more values, just add more values to the format() method:

print
(txt.format
(price, itemno, count))

And add more placeholders:

Example

quantity = 3

itemno = 567

price = 49

myorder = "I want {} pieces of item number {} for {:.2f} dollars."

print
(myorder.format
(quantity, itemno, price))

Index Numbers

You can use index numbers (a number inside the curly brackets {0
}
) to be sure the values are placed in the correct placeholders:

Example

quantity = 3

itemno = 567

price = 49

myorder = "I want {0} pieces of item number {1} for {2:.2f} dollars."

print
(myorder.format
(quantity, itemno, price))

Also, if you want to refer to the same value more than once, use the index number:

Example

age = 36

name = "John"

txt = "His name is {1}. {1} is {0} years old."

print
(txt.format
(age, name))

Named Indexes

You can also use named indexes by entering a name inside the curly brackets {carname
}
, but then you must use names when you pass the parameter values txt.format(carname = "Ford"
)
:

Example

myorder = "I have a {carname}, it is a {model}."

print
(myorder.format
(carname = "Ford"
, model = "Mustang"
))

Python
 File Handling

Python File Open

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting files.

File Handling

The key function for working with files in Python is the open(
)
 function.

The open(
)
 function takes two parameters; filename
, and mode
.

There are four different methods (modes) for opening a file:

"r
"
 - Read - Default value. Opens a file for reading, error if the file does not exist

"a
"
 - Append - Opens a file for appending, creates the file if it does not exist

"w
"
 - Write - Opens a file for writing, creates the file if it does not exist

"x
"
 - Create - Creates the specified file, returns an error if the file exists

In addition you can specify if the file should be handled as binary or text mode

"t
"
 - Text - Default value. Text mode

"b
"
 - Binary - Binary mode (e.g. images)

Syntax

To open a file for reading it is enough to specify the name of the file:

f = open
("demofile.txt"
)

The code above is the same as:

f = open
("demofile.txt"
, "rt"
)

Because "r
"
 for read, and "t
"
 for text are the default values, you do not need to specify them.

Note: Make sure the file exists, or else you will get an error.

Python File Open

Open a File on the Server

Assume we have the following file, located in the same folder as Python:

demofile.txt

Hello! Welcome to demofile.txt

This file is for testing purposes.

Good Luck!

To open the file, use the built-in open(
)
 function.

The open(
)
 function returns a file object, which has a read(
)
 method for reading the content of the file:

Example

f = open
("demofile.txt"
, "r"
)

print
(f.read())

If the file is located in a different location, you will have to specify the file path, like this:

Example

Open a file on a different location:

f = open
("D:\\myfiles\welcome.txt"
, "r"
)

print
(f.read())

Read Only Parts of the File

By default the read(
)
 method returns the whole text, but you can also specify how many characters you want to return:

Example

Return the 5 first characters of the file:

f = open
("demofile.txt"
, "r"
)

print
(f.read(5))

Read Lines

You can return one line by using the readline(
)
 method:

Example

Read one line of the file:

f = open
("demofile.txt"
, "r"
)

print
(f.readline())

By calling readline(
)
 two times, you can read the two first lines:

Example

Read two lines of the file:

f = open
("demofile.txt"
, "r"
)

print
(f.readline())

print
(f.readline())

By looping through the lines of the file, you can read the whole file, line by line:

Example

Loop through the file line by line:

f = open
("demofile.txt"
, "r"
)

for
 x in
 f:

 print
(x)

Close Files

It is a good practice to always close the file when you are done with it.

Example

Close the file when you are finish with it:

f = open
("demofile.txt"
, "r"
)

print
(f.readline())

f.close()

Note: You should always close your files, in some cases, due to buffering, changes made to a file may not show until you close the file.

Python File Write

Write to an Existing File

To write to an existing file, you must add a parameter to the open(
)
 function:

"a
"
 - Append - will append to the end of the file

"w
"
 - Write - will overwrite any existing content

Example

Open the file "demofile2.txt" and append content to the file:

f = open
("demofile2.txt"
, "a"
)

f.write("Now the file has more content!"
)

f.close()

#open and read the file after the appending:

f = open
("demofile2.txt"
, "r"
)

print
(f.read())

Example

Open the file "demofile3.txt" and overwrite the content:

f = open
("demofile3.txt"
, "w"
)

f.write("Woops! I have deleted the content!"
)

f.close()

#open and read the file after the appending:

f = open
("demofile3.txt"
, "r"
)

print
(f.read())

Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open(
)
 method, with one of the following parameters:

"x
"
 - Create - will create a file, returns an error if the file exist

"a
"
 - Append - will create a file if the specified file does not exist

"w
"
 - Write - will create a file if the specified file does not exist

Example

Create a file called "myfile.txt":

f = open
("myfile.txt"
, "x"
)

Result: a new empty file is created!

Example

Create a new file if it does not exist:

f = open
("myfile.txt"
, "w"
)

Python Delete File

Delete a File

To delete a file, you must import the OS module, and run its os.remove(
)
 function:

Example

Remove the file "demofile.txt":

import
 os

os.remove("demofile.txt"
)

Check if File exist:

To avoid getting an error, you might want to check if the file exists before you try to delete it:

Example

Check if file exists, then
 delete it:

import
 os

if
 os.path.exists("demofile.txt"
):

 os.remove("demofile.txt"
)

else
:

 print
("The file does not exist"
)

Delete Folder

To delete an entire folder, use the os.rmdir(
)
 method:

Example

Remove the folder "myfolder":

import
 os

os.rmdir("myfolder"
)

Note: You can only remove empty
 folders.

NumPy Introduction

What is NumPy?

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform, and matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely.

NumPy stands for Numerical Python.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to process.

NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.

The array object in NumPy is called ndarra
y
, it provides a lot of supporting functions that make working with ndarra
y
 very easy.

Arrays are very frequently used in data science, where speed and resources are very important.

Data Science: is a branch of computer science where we study how to store, use and analyze data for deriving information from it.

Why is NumPy Faster Than Lists?

NumPy arrays are stored at one continuous place in memory unlike lists, so processes can access and manipulate them very efficiently.

This behavior is called locality of reference in computer science.

This is the main reason why NumPy is faster than lists. Also it is optimized to work with latest CPU architectures.

Which Language is NumPy written in?

NumPy is a Python library and is written partially in Python, but most of the parts that require fast computation are written in C or C++.

github: enables many people to work on the same codebase.

NumPy Getting Started

Installation of NumPy

If you have Python and PIP already installed on a system, then installation of NumPy is very easy.

Install it using this command:

C:\Users\Your Name
>pip install numpy

If this command fails, then use a python distribution that already has NumPy installed like, Anaconda, Spyder etc.

Import NumPy

Once NumPy is installed, import it in your applications by adding the impor
t
 keyword:

import
 numpy

Now NumPy is imported and ready to use.

Example

import
 numpy

arr = numpy.array([1
, 2
, 3
, 4
, 5
])

print
(arr)

NumPy as np

NumPy is usually imported under the n
p
 alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the a
s
 keyword while importing:

import
 numpy as
 np

Now the NumPy package can be referred to as n
p
 instead of nump
y
.

Example

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

print
(arr)

Checking NumPy Version

The version string is stored under __version_
_
 attribute.

Example

import
 numpy as
 np

print
(np.__version__)

NumPy Creating Arrays

Create a NumPy ndarray Object

NumPy is used to work with arrays. The array object in NumPy is called ndarra
y
.

We can create a NumPy ndarra
y
 object by using the array(
)
 function.

Example

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

print
(arr)

print
(type
(arr))

type(): This built-in Python function tells us the type of the object passed to it. Like in above code it shows that ar
r
 is numpy.ndarra
y
 type.

To create an ndarra
y
, we can pass a list, tuple or any array-like object into the array(
)
 method, and it will be converted into an ndarra
y
:

Example

Use a tuple to create a NumPy array:

import
 numpy as
 np

arr = np.array((1
, 2
, 3
, 4
, 5
))

print
(arr)

Dimensions in Arrays

A dimension in arrays is one level of array depth (nested arrays).

nested array: are arrays that have arrays as their elements.

0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array.

Example

Create a 0-D array with value 42

import
 numpy as
 np

arr = np.array(42
)

print
(arr)

1-D Arrays

An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array.

These are the most common and basic arrays.

Example

Create a 1-D array containing the values 1,2,3,4,5:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

print
(arr)

2-D Arrays

An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix or 2nd order tensors.

NumPy has a whole sub module dedicated towards matrix operations called numpy.mat

Example

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
]])

print
(arr)

3-D arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

These are often used to represent a 3rd order tensor.

Example

Create a 3-D array with two 2-D arrays, both containing two arrays with the values 1,2,3 and 4,5,6:

import
 numpy as
 np

arr = np.array([[[1
, 2
, 3
], [4
, 5
, 6
]], [[1
, 2
, 3
], [4
, 5
, 6
]]])

print
(arr)

Check Number of Dimensions?

NumPy Arrays provides the ndi
m
 attribute that returns an integer that tells us how many dimensions the array have.

Example

Check how many dimensions the arrays have:

import
 numpy as
 np

a = np.array(42
)

b = np.array([1
, 2
, 3
, 4
, 5
])

c = np.array([[1
, 2
, 3
], [4
, 5
, 6
]])

d = np.array([[[1
, 2
, 3
], [4
, 5
, 6
]], [[1
, 2
, 3
], [4
, 5
, 6
]]])

print
(a.ndim)

print
(b.ndim)

print
(c.ndim)

print
(d.ndim)

Higher Dimensional Arrays

An array can have any number of dimensions.

When the array is created, you can define the number of dimensions by using the ndmi
n
 argument.

Example

Create an array with 5 dimensions and verify that it has 5 dimensions:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
], ndmin=5
)

print
(arr)

print
('number of dimensions :'
, arr.ndim)

In this array the innermost dimension (5th dim) has 4 elements, the 4th dim has 1 element that is the vector, the 3rd dim has 1 element that is the matrix with the vector, the 2nd dim has 1 element that is 3D array and 1st dim has 1 element that is a 4D array.

NumPy Array Indexing

Access Array Elements

Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the second has index 1 etc.

Example

Get the first element from the following array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
])

print
(arr[0
])

Example

Get the second element from the following array.

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
])

print
(arr[1
])

Example

Get third and fourth elements from the following array and add them.

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
])

print
(arr[2
] + arr[3
])

Access 2-D Arrays

To access elements from 2-D arrays we can use comma separated integers representing the dimension and the index of the element.

Example

Access the 2nd element on 1st dim:

import
 numpy as
 np

arr = np.array([[1
,2
,3
,4
,5
], [6
,7
,8
,9
,10
]])

print
('2nd element on 1st dim: '
, arr[0
, 1
])

Example

Access the 5th element on 2nd dim:

import
 numpy as
 np

arr = np.array([[1
,2
,3
,4
,5
], [6
,7
,8
,9
,10
]])

print
('5th element on 2nd dim: '
, arr[1
, 4
])

Access 3-D Arrays

To access elements from 3-D arrays we can use comma separated integers representing the dimensions and the index of the element.

Example

Access the third element of the second array of the first array:

import
 numpy as
 np

arr = np.array([[[1
, 2
, 3
], [4
, 5
, 6
]], [[7
, 8
, 9
], [10
, 11
, 12
]]])

print
(arr[0
, 1
, 2
])

Example Explained

arr[0, 1, 2
]
 prints the value 6
.

And this is why:

The first number represents the first dimension, which contains two arrays:

[[1, 2, 3], [4, 5, 6]]

and:

[[7, 8, 9], [10, 11, 12]]

Since we selected 0
, we are left with the first array:

[[1, 2, 3], [4, 5, 6]]

The second number represents the second dimension, which also contains two arrays:

[1, 2, 3]

and:

[4, 5, 6]

Since we selected 1
, we are left with the second array:

[4, 5, 6]

The third number represents the third dimension, which contains three values:

4

5

6

Since we selected 2
, we end up with the third value:

6

Negative Indexing

Use negative indexing to access an array from the end.

Example

Print the last element from the 2nd dim:

import
 numpy as
 np

arr = np.array([[1
,2
,3
,4
,5
], [6
,7
,8
,9
,10
]])

print
('Last element from 2nd dim: '
, arr[1
, -1
])

NumPy Array Slicing

Slicing arrays

Slicing in python means taking elements from one given index to another given index.

We pass slice instead of index like this: [
start
:
end
]
.

We can also define the step, like this: [
start
:
end
:
step
]
.

If we don't pass start its considered 0

If we don't pass end its considered length of array in that dimension

If we don't pass step its considered 1

Example

Slice elements from index 1 to index 5 from the following array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[1
:5
])

Note: The result includes
 the start index, but excludes
 the end index.

Example

Slice elements from index 4 to the end of the array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[4
:])

Example

Slice elements from the beginning to index 4 (not included):

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[:4
])

Negative Slicing

Use the minus operator to refer to an index from the end:

Example

Slice from the index 3 from the end to index 1 from the end:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[-3
:-1
])

STEP

Use the ste
p
 value to determine the step of the slicing:

Example

Return every other element from index 1 to index 5:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[1
:5
:2
])

Example

Return every other element from the entire array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

print
(arr[::2
])

Slicing 2-D Arrays

Example

From the second element, slice elements from index 1 to index 4 (not included):

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
, 5
], [6
, 7
, 8
, 9
, 10
]])

print
(arr[1
, 1
:4
])

Note: Remember that second element
 has index 1.

Example

From both elements, return index 2:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
, 5
], [6
, 7
, 8
, 9
, 10
]])

print
(arr[0
:2
, 2
])

Example

From both elements, slice index 1 to index 4 (not included), this will return a 2-D array:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
, 5
], [6
, 7
, 8
, 9
, 10
]])

print
(arr[0
:2
, 1
:4
])

NumPy Data Types

Data Types in Python

By default Python have these data types:

●
 string
s
 - used to represent text data, the text is given under quote marks. eg. "ABCD"

●
 intege
r
 - used to represent integer numbers. eg. -1, -2, -3

●
 floa
t
 - used to represent real numbers. eg. 1.2, 42.42

●
boolea
n
 - used to represent True or False.

●
 comple
x
 - used to represent a number in complex plain. eg. 1.0 + 2.0j, 1.5 + 2.5j

Data Types in NumPy

NumPy has some extra data types, and refer to data types with one character, like i
 for integers, u
 for unsigned integers etc.

Below is a list of all data types in NumPy and the characters used to represent them.

●
i
 - integer

●
b
 - boolean

●
u
 - unsigned integer

●
f
 - float

●
c
 - complex float

●
m
 - timedelta

●
M
 - datetime

●
O
 - object

●
S
 - string

●
U
 - unicode string

●
 V
 - fixed chunk of memory for other type (void)

Checking the Data Type of an Array

The NumPy array object has a property called dtyp
e
 that returns the data type of the array:

Example

Get the data type of an array object:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
])

print
(arr.dtype)

Example

Get the data type of an array containing strings:

import
 numpy as
 np

arr = np.array(['apple'
, 'banana'
, 'cherry'
])

print
(arr.dtype)

Creating Arrays With a Defined Data Type

We use the array(
)
 function to create arrays, this function can take an optional argument: dtyp
e
 that allows us to define the expected data type of the array elements:

Example

Create an array with data type string:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
], dtype='S'
)

print
(arr)

print
(arr.dtype)

For i
, u
, f
, S
 and U
 we can define size as well.

Example

Create an array with data type 4 bytes integer:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
], dtype='i4'
)

print
(arr)

print
(arr.dtype)

What if a Value Can Not Be Converted?

If a type is given in which elements can't be casted then NumPy will raise a ValueError.

ValueError: In Python ValueError is raised when the type of passed argument to a function is unexpected/incorrect.

Example

A non integer string like 'a' can not be converted to integer (will raise an error):

import
 numpy as
 np

arr = np.array(['a'
, '2'
, '3'
], dtype='i'
)

Converting Data Type on Existing Arrays

The best way to change the data type of an existing array, is to make a copy of the array with the astype(
)
 method.

The astype(
)
 function creates a copy of the array, and allows you to specify the data type as a parameter.

The data type can be specified using a string, like 'f
'
 for float, 'i
'
 for integer etc. or you can use the data type directly like floa
t
 for float and in
t
 for integer.

Example

Change data type from float to integer by using 'i
'
 as parameter value:

import
 numpy as
 np

arr = np.array([1.1
, 2.1
, 3.1
])

newarr = arr.astype('i'
)

print
(newarr)

print
(newarr.dtype)

Example

Change data type from float to integer by using in
t
 as parameter value:

import
 numpy as
 np

arr = np.array([1.1
, 2.1
, 3.1
])

newarr = arr.astype(int
)

print
(newarr)

print
(newarr.dtype)

Example

Change data type from integer to boolean:

import
 numpy as
 np

arr = np.array([1
, 0
, 3
])

newarr = arr.astype(bool
)

print
(newarr)

print
(newarr.dtype)

NumPy Array Copy vs View

The Difference Between Copy and View

The main difference between a copy and a view of an array is that the copy is a new array, and the view is just a view of the original array.

The copy owns
 the data and any changes made to the copy will not affect original array, and any changes made to the original array will not affect the copy.

The view does not own
 the data and any changes made to the view will affect the original array, and any changes made to the original array will affect the view.

COPY:

Example

Make a copy, change the original array, and display both arrays:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

x = arr.copy()

arr[0
] = 42

print
(arr)

print
(x)

The copy SHOULD NOT be affected by the changes made to the original array.

VIEW:

Example

Make a view, change the original array, and display both arrays:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

x = arr.view()

arr[0
] = 42

print
(arr)

print
(x)

The view SHOULD be affected by the changes made to the original array.

Make Changes in the VIEW:

Example

Make a view, change the view, and display both arrays:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

x = arr.view()

x[0
] = 31

print
(arr)

print
(x)

The original array SHOULD be affected by the changes made to the view.

Check if Array Owns it's Data

As mentioned above, copies owns
 the data, and views does not own
 the data, but how can we check this?

Every NumPy array has the attribute bas
e
 that returns Non
e
 if the array owns the data.

Otherwise, the bas
e
 attribute refers to the original object.

Example

Print the value of the base attribute to check if an array owns it's data or not:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
])

x = arr.copy()

y = arr.view()

print
(x.base)

print
(y.base)

The copy returns Non
e
.

The view returns the original array.

NumPy Array Shape

Shape of an Array

The shape of an array is the number of elements in each dimension.

Get the Shape of an Array

NumPy arrays have an attribute called shap
e
 that returns a tuple with each index having the number of corresponding elements.

Example

Print the shape of a 2-D array:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
], [5
, 6
, 7
, 8
]])

print
(arr.shape)

The example above returns (2, 4
)
, which means that the array has 2 dimensions, and each dimension has 4 elements.

Example

Create an array with 5 dimensions using ndmi
n
 using a vector with values 1,2,3,4 and verify that last dimension has value 4:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
], ndmin=5
)

print
(arr)

print
('shape of array :'
, arr.shape)

What does the shape tuple represent?

Integers at every index tells about the number of elements the corresponding dimension has.

In the example above at index-4 we have value 4, so we can say that 5th (4 + 1 th) dimension has 4 elements.

NumPy Array Reshaping

Reshaping arrays

Reshaping means changing the shape of an array.

The shape of an array is the number of elements in each dimension.

By reshaping we can add or remove dimensions or change number of elements in each dimension.

Reshape From 1-D to 2-D

Example

Convert the following 1-D array with 12 elements into a 2-D array.

The outermost dimension will have 4 arrays, each with 3 elements:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
, 10
, 11
, 12
])

newarr = arr.reshape(4
, 3
)

print
(newarr)

Reshape From 1-D to 3-D

Example

Convert the following 1-D array with 12 elements into a 3-D array.

The outermost dimension will have 2 arrays that contains 3 arrays, each with 2 elements:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
, 10
, 11
, 12
])

newarr = arr.reshape(2
, 3
, 2
)

print
(newarr)

Can We Reshape Into any Shape?

Yes, as long as the elements required for reshaping are equal in both shapes.

We can reshape an 8 elements 1D array into 4 elements in 2 rows 2D array but we cannot reshape it into a 3 elements 3 rows 2D array as that would require 3x3 = 9 elements.

Example

Try converting 1D array with 8 elements to a 2D array with 3 elements in each dimension (will raise an error):

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
])

newarr = arr.reshape(3
, 3
)

print
(newarr)

Returns Copy or View?

Example

Check if the returned array is a copy or a view:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
])

print
(arr.reshape(2
, 4
).base)

The example above returns the original array, so it is a view.

Unknown Dimension

You are allowed to have one "unknown" dimension.

Meaning that you do not have to specify an exact number for one of the dimensions in the reshape method.

Pass -
1
 as the value, and NumPy will calculate this number for you.

Example

Convert 1D array with 8 elements to 3D array with 2x2 elements:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
])

newarr = arr.reshape(2
, 2
, -1
)

print
(newarr)

Note: We can not pass -
1
 to more than one dimension.

Flattening the arrays

Flattening array means converting a multidimensional array into a 1D array.

We can use reshape(-1
)
 to do this.

Example

Convert the array into a 1D array:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
]])

newarr = arr.reshape(-1
)

print
(newarr)

Note: There are a lot of functions for changing the shapes of arrays in numpy flatte
n
, rave
l
 and also for rearranging the elements rot9
0
, fli
p
, flipl
r
, flipu
d
 etc. These fall under Intermediate to Advanced section of numpy.

NumPy Array Iterating

Iterating Arrays

Iterating means going through elements one by one.

As we deal with multi-dimensional arrays in numpy, we can do this using basic fo
r
 loop of python.

If we iterate on a 1-D array it will go through each element one by one.

Example

Iterate on the elements of the following 1-D array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
])

for
 x in
 arr:

 print
(x)

Iterating 2-D Arrays

In a 2-D array it will go through all the rows.

Example

Iterate on the elements of the following 2-D array:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
]])

for
 x in
 arr:

 print
(x)

If we iterate on a n
-D array it will go through n-1th dimension one by one.

To return the actual values, the scalars, we have to iterate the arrays in each dimension.

Example

Iterate on each scalar element of the 2-D array:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
]])

for
 x in
 arr:

 for
 y in
 x:

 print
(y)

Iterating 3-D Arrays

In a 3-D array it will go through all the 2-D arrays.

Example

Iterate on the elements of the following 3-D array:

import
 numpy as
 np

arr = np.array([[[1
, 2
, 3
], [4
, 5
, 6
]], [[7
, 8
, 9
], [10
, 11
, 12
]]])

for
 x in
 arr:

 print
(x)

To return the actual values, the scalars, we have to iterate the arrays in each dimension.

Example

Iterate down to the scalars:

import
 numpy as
 np

arr = np.array([[[1
, 2
, 3
], [4
, 5
, 6
]], [[7
, 8
, 9
], [10
, 11
, 12
]]])

for
 x in
 arr:

 for
 y in
 x:

 for
 z in
 y:

​
 print
(z)

Iterating Arrays Using nditer()

The function nditer(
)
 is a helping function that can be used from very basic to very advanced iterations. It solves some basic issues which we face in iteration, lets go through it with examples.

Iterating on Each Scalar Element

In basic fo
r
 loops, iterating through each scalar of an array we need to use n
 fo
r
 loops which can be difficult to write for arrays with very high dimensionality.

Example

Iterate through the following 3-D array:

import
 numpy as
 np

arr = np.array([[[1
, 2
], [3
, 4
]], [[5
, 6
], [7
, 8
]]])

for
 x in
 np.nditer(arr):

 print
(x)

Iterating Array With Different Data Types

We can use op_dtype
s
 argument and pass it the expected datatype to change the datatype of elements while iterating.

NumPy does not change the data type of the element in-place (where the element is in array) so it needs some other space to perform this action, that extra space is called buffer, and in order to enable it in nditer(
)
 we pass flags=['buffered'
]
.

Example

Iterate through the array as a string:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
])

for
 x in
 np.nditer(arr, flags=['buffered'
], op_dtypes=['S'
]):

 print
(x)

Iterating With Different Step Size

We can use filtering and followed by iteration.

Example

Iterate through every scalar element of the 2D array skipping 1 element:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
], [5
, 6
, 7
, 8
]])

for
 x in
 np.nditer(arr[:, ::2
]):

 print
(x)

Enumerated Iteration Using ndenumerate()

Enumeration means mentioning sequence number of somethings one by one.

Sometimes we require corresponding index of the element while iterating, the ndenumerate(
)
 method can be used for those usecases.

Example

Enumerate on following 1D arrays elements:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
])

for
 idx, x in
 np.ndenumerate(arr):

 print
(idx, x)

Example

Enumerate on following 2D array's elements:

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
, 4
], [5
, 6
, 7
, 8
]])

for
 idx, x in
 np.ndenumerate(arr):

 print
(idx, x)

NumPy Joining Array

Joining NumPy Arrays

Joining means putting contents of two or more arrays in a single array.

In SQL we join tables based on a key, whereas in NumPy we join arrays by axes.

We pass a sequence of arrays that we want to join to the concatenate(
)
 function, along with the axis. If axis is not explicitly passed, it is taken as 0.

Example

Join two arrays

import
 numpy as
 np

arr1 = np.array([1
, 2
, 3
])

arr2 = np.array([4
, 5
, 6
])

arr = np.concatenate((arr1, arr2))

print
(arr)

Example

Join two 2-D arrays along rows (axis=1):

import
 numpy as
 np

arr1 = np.array([[1
, 2
], [3
, 4
]])

arr2 = np.array([[5
, 6
], [7
, 8
]])

arr = np.concatenate((arr1, arr2), axis=1
)

print
(arr)

Joining Arrays Using Stack Functions

Stacking is same as concatenation, the only difference is that stacking is done along a new axis.

We can concatenate two 1-D arrays along the second axis which would result in putting them one over the other, ie. stacking.

We pass a sequence of arrays that we want to join to the stack(
)
 method along with the axis. If axis is not explicitly passed it is taken as 0.

Example

import
 numpy as
 np

arr1 = np.array([1
, 2
, 3
])

arr2 = np.array([4
, 5
, 6
])

arr = np.stack((arr1, arr2), axis=1
)

print
(arr)

Stacking Along Rows

NumPy provides a helper function: hstack(
)
 to stack along rows.

Example

import
 numpy as
 np

arr1 = np.array([1
, 2
, 3
])

arr2 = np.array([4
, 5
, 6
])

arr = np.hstack((arr1, arr2))

print
(arr)

Stacking Along Columns

NumPy provides a helper function: vstack()
 to stack along columns.

Example

import
 numpy as
 np

arr1 = np.array([1
, 2
, 3
])

arr2 = np.array([4
, 5
, 6
])

arr = np.vstack((arr1, arr2))

print
(arr)

Stacking Along Height (depth)

NumPy provides a helper function: dstack(
)
 to stack along height, which is the same as depth.

Example

import
 numpy as
 np

arr1 = np.array([1
, 2
, 3
])

arr2 = np.array([4
, 5
, 6
])

arr = np.dstack((arr1, arr2))

print
(arr)

NumPy Splitting Array

Splitting NumPy Arrays

Splitting is reverse operation of Joining.

Joining merges multiple arrays into one and Splitting breaks one array into multiple.

We use array_split(
)
 for splitting arrays, we pass it the array we want to split and the number of splits.

Example

Split the array in 3 parts:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
])

newarr = np.array_split(arr, 3
)

print
(newarr)

Note: The return value is an array containing three arrays.

If the array has less elements than required, it will adjust from the end accordingly.

Example

Split the array in 4 parts:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
])

newarr = np.array_split(arr, 4
)

print
(newarr)

Note: We also have the method split(
)
 available but it will not adjust the elements when elements are less in source array for splitting like in example above, array_split(
)
 worked properly but split(
)
 would fail.

Split Into Arrays

The return value of the array_split(
)
 method is an array containing each of the split as an array.

If you split an array into 3 arrays, you can access them from the result just like any array element:

Example

Access the splitted arrays:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
])

newarr = np.array_split(arr, 3
)

print
(newarr[0
])

print
(newarr[1
])

print
(newarr[2
])

Splitting 2-D Arrays

Use the same syntax when splitting 2-D arrays.

Use the array_split(
)
 method, pass in the array you want to split and the number of splits you want to do.

Example

Split the 2-D array into three 2-D arrays.

import
 numpy as
 np

arr = np.array([[1
, 2
], [3
, 4
], [5
, 6
], [7
, 8
], [9
, 10
], [11
, 12
]])

newarr = np.array_split(arr, 3
)

print
(newarr)

The example above returns three 2-D arrays.

Let's look at another example, this time each element in the 2-D arrays contains 3 elements.

Example

Split the 2-D array into three 2-D arrays.

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
], [7
, 8
, 9
], [10
, 11
, 12
], [13
, 14
, 15
], [16
, 17
, 18
]])

newarr = np.array_split(arr, 3
)

print
(newarr)

The example above returns three 2-D arrays.

In addition, you can specify which axis you want to do the split around.

The example below also returns three 2-D arrays, but they are split along the row (axis=1).

Example

Split the 2-D array into three 2-D arrays along rows.

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
], [7
, 8
, 9
], [10
, 11
, 12
], [13
, 14
, 15
], [16
, 17
, 18
]])

newarr = np.array_split(arr, 3
, axis=1
)

print
(newarr)

An alternate solution is using hsplit(
)
 opposite of hstack()

Example

Use the hsplit(
)
 method to split the 2-D array into three 2-D arrays along rows.

import
 numpy as
 np

arr = np.array([[1
, 2
, 3
], [4
, 5
, 6
], [7
, 8
, 9
], [10
, 11
, 12
], [13
, 14
, 15
], [16
, 17
, 18
]])

newarr = np.hsplit(arr, 3
)

print
(newarr)

Note: Similar alternates to vstack(
)
 and dstack(
)
 are available as vsplit(
)
 and dsplit(
)
.

NumPy Searching Arrays

Searching Arrays

You can search an array for a certain value, and return the indexes that get a match.

To search an array, use the where(
)
 method.

Example

Find the indexes where the value is 4:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 4
, 4
])

x = np.where(arr == 4
)

print
(x)

The example above will return a tuple: (array([3, 5, 6],)

Which means that the value 4 is present at index 3, 5, and 6.

Example

Find the indexes where the values are even:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
])

x = np.where(arr%2
 == 0
)

print
(x)

Example

Find the indexes where the values are odd:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
])

x = np.where(arr%2
 == 1
)

print
(x)

Search Sorted

There is a method called searchsorted(
)
 which performs a binary search in the array, and returns the index where the specified value would be inserted to maintain the search order.

The searchsorted(
)
 method is assumed to be used on sorted arrays.

Example

Find the indexes where the value 7 should be inserted:

import
 numpy as
 np

arr = np.array([6
, 7
, 8
, 9
])

x = np.searchsorted(arr, 7
)

print
(x)

Example explained: The number 7 should be inserted on index 1 to remain the sort order.

The method starts the search from the left and returns the first index where the number 7 is no longer larger than the next value.

Search From the Right Side

By default the left most index is returned, but we can give side='right
'
 to return the right most index instead.

Example

Find the indexes where the value 7 should be inserted, starting from the right:

import
 numpy as
 np

arr = np.array([6
, 7
, 8
, 9
])

x = np.searchsorted(arr, 7
, side='right'
)

print
(x)

Example explained: The number 7 should be inserted on index 2 to remain the sort order.

The method starts the search from the right and returns the first index where the number 7 is no longer less than the next value.

Multiple Values

To search for more than one value, use an array with the specified values.

Example

Find the indexes where the values 2, 4, and 6 should be inserted:

import
 numpy as
 np

arr = np.array([1
, 3
, 5
, 7
])

x = np.searchsorted(arr, [2
, 4
, 6
])

print
(x)

The return value is an array: [1 2 3
]
 containing the three indexes where 2, 4, 6 would be inserted in the original array to maintain the order.

NumPy Sorting Arrays

Sorting Arrays

Sorting means putting elements in an ordered sequence
.

Ordered sequence
 is any sequence that has an order corresponding to elements, like numeric or alphabetical, ascending or descending.

The NumPy ndarray object has a function called sort(
)
, that will sort a specified array.

Example

Sort the array:

import
 numpy as
 np

arr = np.array([3
, 2
, 0
, 1
])

print
(np.sort(arr))

Note: This method returns a copy of the array, leaving the original array unchanged.

You can also sort arrays of strings, or any other data type:

Example

Sort the array alphabetically:

import
 numpy as
 np

arr = np.array(['banana'
, 'cherry'
, 'apple'
])

print
(np.sort(arr))

Example

Sort a boolean array:

import
 numpy as
 np

arr = np.array([True
, False
, True
])

print
(np.sort(arr))

Sorting a 2-D Array

If you use the sort() method on a 2-D array, both arrays will be sorted:

Example

Sort a 2-D array:

import
 numpy as
 np

arr = np.array([[3
, 2
, 4
], [5
, 0
, 1
]])

print
(np.sort(arr))

NumPy Filter Array

Filtering Arrays

Getting some elements out of an existing array and creating a new array out of them is called filtering
.

In NumPy, you filter an array using a boolean index list
.

A boolean index list
 is a list of booleans corresponding to indexes in the array.

If the value at an index is Tru
e
 that element is contained in the filtered array, if the value at that index is Fals
e
 that element is excluded from the filtered array.

Example

Create an array from the elements on index 0 and 2:

import
 numpy as
 np

arr = np.array([41
, 42
, 43
, 44
])

x = [True
, False
, True
, False
]

newarr = arr[x]

print
(newarr)

The example above will return [41, 43
]
, why?

Because the new filter contains only the values where the filter array had the value Tru
e
, in this case, index 0 and 2.

Creating the Filter Array

In the example above we hard-coded the Tru
e
 and Fals
e
 values, but the common use is to create a filter array based on conditions.

Example

Create a filter array that will return only values higher than 42:

import
 numpy as
 np

arr = np.array([41
, 42
, 43
, 44
])

Create an empty list

filter_arr = []

go through each element in arr

for
 element in
 arr:

 # if the element is higher than 42, set the value to True, otherwise False:

 if
 element > 42
:

 filter_arr.append(True
)

 else
:

​
filter_arr.append(False
)

newarr = arr[filter_arr]

print
(filter_arr)

print
(newarr)

Example

Create a filter array that will return only even elements from the original array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

Create an empty list

filter_arr = []

go through each element in arr

for
 element in
 arr:

 # if the element is completely divisble by 2, set the value to True, otherwise False

 if
 element % 2
 == 0
:

 filter_arr.append(True
)

 else
:

​
filter_arr.append(False
)

newarr = arr[filter_arr]

print
(filter_arr)

print
(newarr)

Creating Filter Directly From Array

The above example is quite a common task in NumPy and NumPy provides a nice way to tackle it.

We can directly substitute the array instead of the iterable variable in our condition and it will work just as we expect it to.

Example

Create a filter array that will return only values higher than 42:

import
 numpy as
 np

arr = np.array([41
, 42
, 43
, 44
])

filter_arr = arr > 42

newarr = arr[filter_arr]

print
(filter_arr)

print
(newarr)

Example

Create a filter array that will return only even elements from the original array:

import
 numpy as
 np

arr = np.array([1
, 2
, 3
, 4
, 5
, 6
, 7
])

filter_arr = arr % 2
 == 0

newarr = arr[filter_arr]

print
(filter_arr)

print
(newarr)

Random Numbers in NumPy

What is a Random Number?

Random number does NOT mean a different number every time. Random means something that can not be predicted logically.

Pseudo Random and True Random.

Computers work on programs, and programs are definitive set of instructions. So it means there must be some algorithm to generate a random number as well.

If there is a program to generate random number it can be predicted, thus it is not truly random.

Random numbers generated through a generation algorithm are called pseudo random
.

Can we make truly random numbers?

Yes. In order to generate a truly random number on our computers we need to get the random data from some outside source. This outside source is generally our keystrokes, mouse movements, data on network etc.

We do not need truly random numbers, unless its related to security (e.g. encryption keys) or the basis of application is the randomness (e.g. Digital roulette wheels).

In this tutorial we will be using pseudo random numbers.

Generate Random Number

NumPy offers the rando
m
 module to work with random numbers.

Example

Generate a random integer from 0 to 100:

from
 numpy import
 random

x = random.randint(100
)

print
(x)

Generate Random Float

The random module's rand(
)
 method returns a random float between 0 and 1.

Example

Generate a random float from 0 to 1:

from
 numpy import
 random

x = random.rand()

print
(x)

Generate Random Array

In NumPy we work with arrays, and you can use the two methods from the above examples to make random arrays.

Integers

The randint(
)
 method takes a siz
e
 parameter where you can specify the shape of an array.

Example

Generate a 1-D array containing 5 random integers from 0 to 100:

from
 numpy import
 random

x=random.randint(100
, size=(5
))

print
(x)

Example

Generate a 2-D array with 3 rows, each row containing 5 random integers from 0 to 100:

from
 numpy import
 random

x = random.randint(100
, size=(3
, 5
))

print
(x)

Floats

The rand(
)
 method also allows you to specify the shape of the array.

Example

Generate a 1-D array containing 5 random floats:

from
 numpy import
 random

x = random.rand(5
)

print
(x)

Example

Generate a 2-D array with 3 rows, each row containing 5 random numbers:

from
 numpy import
 random

x = random.rand(3
, 5
)

print
(x)

Generate Random Number From Array

The choice(
)
 method allows you to generate a random value based on an array of values.

The choice(
)
 method takes an array as a parameter and randomly returns one of the values.

Example

Return one of the values in an array:

from
 numpy import
 random

x = random.choice([3
, 5
, 7
, 9
])

print
(x)

The choice(
)
 method also allows you to return an array
 of values.

Add a siz
e
 parameter to specify the shape of the array.

Example

Generate a 2-D array that consists of the values in the array parameter (3, 5, 7, and 9):

from
 numpy import
 random

x = random.choice([3
, 5
, 7
, 9
], size=(3
, 5
))

print
(x)

Random Data Distribution

What is Data Distribution?

Data Distribution is a list of all possible values, and how often each value occurs.

Such lists are important when working with statistics and data science.

The random module offer methods that returns randomly generated data distributions.

Random Distribution

A random distribution is a set of random numbers that follow a certain probability density function
.

Probability Density Function: A function that describes a continuous probability. i.e. probability of all values in an array.

We can generate random numbers based on defined probabilities using the choice(
)
 method of the rando
m
 module.

The choice(
)
 method allows us to specify the probability for each value.

The probability is set by a number between 0 and 1, where 0 means that the value will never occur and 1 means that the value will always occur.

Example

Generate a 1-D array containing 100 values, where each value has to be 3, 5, 7 or 9.

The probability for the value to be 3 is set to be 0.1

The probability for the value to be 5 is set to be 0.3

The probability for the value to be 7 is set to be 0.6

The probability for the value to be 9 is set to be 0

from
 numpy import
 random

x = random.choice([3
, 5
, 7
, 9
], p=[0.1
, 0.3
, 0.6
, 0.0
], size=(100
))

print
(x)

The sum of all probability numbers should be 1.

Even if you run the example above 100 times, the value 9 will never occur.

You can return arrays of any shape and size by specifying the shape in the siz
e
 parameter.

Example

Same example as above, but return a 2-D array with 3 rows, each containing 5 values.

from
 numpy import
 random

x = random.choice([3
, 5
, 7
, 9
], p=[0.1
, 0.3
, 0.6
, 0.0
], size=(3
, 5
))

print
(x)

NumPy ufuncs

What are ufuncs?

ufuncs stands for "Universal Functions" and they are NumPy functions that operates on the ndarra
y
 object.

Why use ufuncs?

ufuncs are used to implement vectorization
 in NumPy which is way faster than iterating over elements.

They also provide broadcasting and additional methods like reduce, accumulate etc. that are very helpful for computation.

ufuncs also take additional arguments, like:

wher
e
 boolean array or condition defining where the operations should take place.

dtyp
e
 defining the return type of elements.

ou
t
 output array where the return value should be copied.

What is Vectorization?

Converting iterative statements into a vector based operation is called vectorization.

It is faster as modern CPUs are optimized for such operations.

Add the Elements of Two Lists

list 1: [1, 2, 3, 4]

list 2: [4, 5, 6, 7]

One way of doing it is to iterate over both of the lists and then sum each elements.

Example

Without ufunc, we can use Python's built-in zip(
)
 method:

x = [1
, 2
, 3
, 4
]

y = [4
, 5
, 6
, 7
]

z = []

for
 i, j in
 zip
(x, y):

 z.append(i + j)

print
(z)

NumPy has a ufunc for this, called add(x, y
)
 that will produce the same result.

Example

With ufunc, we can use the add(
)
 function:

import
 numpy as
 np

x = [1
, 2
, 3
, 4
]

y = [4
, 5
, 6
, 7
]

z = np.add(x, y)

print
(z)

Create Your Own ufunc

How To Create Your Own ufunc

To create you own ufunc, you have to define a function, like you do with normal functions in Python, then you add it to your NumPy ufunc library with the frompyfunc(
)
 method.

The frompyfunc(
)
 method takes the following arguments:

1.
functio
n
 - the name of the function.

2.
input
s
 - the number of input arguments (arrays).

3.
output
s
 - the number of output arrays.

Example

Create your own ufunc for addition:

import
 numpy as
 np

def
 myadd(x, y):

 return
 x+y

myadd = np.frompyfunc(myadd, 2
, 1
)

print
(myadd([1
, 2
, 3
, 4
], [5
, 6
, 7
, 8
]))

Check if a Function is a ufunc

Check the type
 of a function to check if it is a ufunc or not.

A ufunc should return <class 'numpy.ufunc'
>
.

Example

Check if a function is a ufunc:

import
 numpy as
 np

print
(type
(np.add))

If it is not a ufunc, it will return another type, like this built-in NumPy function for joining two or more arrays:

Example

Check the type of another function: concatenate():

import
 numpy as
 np

print
(type
(np.concatenate))

If the function is not recognized at all, it will return an error:

Example

Check the type of something that does not exist. This will produce an error:

import
 numpy as
 np

print
(type
(np.blahblah))

To test if the function is a ufunc in an if statement, use the numpy.ufun
c
 value (or np.ufun
c
 if you use np as an alias for numpy):

Example

Use an if statement to check if the function is a ufunc or not:

import
 numpy as
 np

if
 type
(np.add) == np.ufunc:

 print
('add is ufunc'
)

else
:

 print
('add is not ufunc'
)

Python Matplotlib

What is Matplotlib?

Matplotlib is a low level graph plotting library in python that serves as a visualization utility.

Matplotlib was created by John D. Hunter.

Matplotlib is open source and we can use it freely.

Matplotlib is mostly written in python, a few segments are written in C, Objective-C and Javascript for Platform compatibility.

Matplotlib Getting Started

Installation of Matplotlib

If you have Python and PIP already installed on a system, then installation of Matplotlib is very easy.

Install it using this command:

C:\Users\Your Name
>pip install matplotlib

If this command fails, then use a python distribution that already has Matplotlib installed, like Anaconda, Spyder etc.

Import Matplotlib

Once Matplotlib is installed, import it in your applications by adding the import
 modul
e
 statement:

import
 matplotlib

Now Matplotlib is imported and ready to use:

Checking Matplotlib Version

The version string is stored under __version_
_
 attribute.

Example

import
 matplotlib

print
(matplotlib.__version__)

Note: two underscore characters are used in __version_
_
.

Matplotlib Pyplot

Pyplot

Most of the Matplotlib utilities lies under the pyplo
t
 submodule, and are usually imported under the pl
t
 alias:

import
 matplotlib.pyplot as
 plt

Now the Pyplot package can be referred to as pl
t
.

Example

Draw a line in a diagram from position (0,0) to position (6,250):

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

xpoints = np.array([0
, 6
])

ypoints = np.array([0
, 250
])

plt.plot(xpoints, ypoints)

plt.show()

Matplotlib Plotting

Plotting x and y points

The plot(
)
 function is used to draw points (markers) in a diagram.

By default, the plot(
)
 function draws a line from point to point.

The function takes parameters for specifying points in the diagram.

Parameter 1 is an array containing the points on the x-axis.

Parameter 2 is an array containing the points on the y-axis.

If we need to plot a line from (1, 3) to (8, 10), we have to pass two arrays [1, 8] and [3, 10] to the plot function.

Example

Draw a line in a diagram from position (1, 3) to position (8, 10):

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

xpoints = np.array([1
, 8
])

ypoints = np.array([3
, 10
])

plt.plot(xpoints, ypoints)

plt.show()

Plotting Without Line

To plot only the markers, you can use shortcut string notation
 parameter 'o', which means 'rings'.

Example

Draw two points in the diagram, one at position (1, 3) and one in position (8, 10):

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

xpoints = np.array([1
, 8
])

ypoints = np.array([3
, 10
])

plt.plot(xpoints, ypoints, 'o'
)

plt.show()

Multiple Points

You can plot as many points as you like, just make sure you have the same number of points in both axis.

Example

Draw a line in a diagram from position (1, 3) to (2, 8) then to (6, 1) and finally to position (8, 10):

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

xpoints = np.array([1
, 2
, 6
, 8
])

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(xpoints, ypoints)

plt.show()

Default X-Points

If we do not specify the points in the x-axis, they will get the default values 0, 1, 2, 3, (etc. depending on the length of the y-points.

So, if we take the same example as above, and leave out the x-points, the diagram will look like this:

Example

Plotting without x-points:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
, 5
, 7
])

plt.plot(ypoints)

plt.show()

Matplotlib Markers

Markers

You can use the keyword argument marke
r
 to emphasize each point with a specified marker:

Example

Mark each point with a circle:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, marker = 'o'
)

plt.show()

Example

Mark each point with a star:

...

plt.plot(ypoints, marker = '*'
)

...

Marker Reference

You can choose any of these markers:

	
Marker

	
Description

	
'o'

	
Circle

	

	
'*'

	
Star

	

	
'.'

	
Point

	

	
','

	
Pixel

	

	
'x'

	
X

	

	
'X'

	
X (filled)

	

	
'+'

	
Plus

	

	
'P'

	
Plus (filled)

	

	
's'

	
Square

	

	
'D'

	
Diamond

	

	
'd'

	
Diamond (thin)

	

	
'p'

	
Pentagon

	

	
'H'

	
Hexagon

	

	
'h'

	
Hexagon

	

	
'v'

	
Triangle Down

	

	
'^'

	
Triangle Up

	

	
'<'

	
Triangle Left

	

	
'>'

	
Triangle Right

	

	
'1'

	
Tri Down

	

	
'2'

	
Tri Up

	

	
'3'

	
Tri Left

	

	
'4'

	
Tri Right

	

	
'|'

	
Vline

	

	
'_'

	
Hline

	

	
	
	

Format Strings
 fmt

You can use also use the shortcut string notation
 parameter to specify the marker.

This parameter is also called fm
t
, and is written with this syntax:

marker
|
line
|
color

Example

Mark each point with a circle:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, 'o:r'
)

plt.show()

The marker value can be anything from the Marker Reference above.

The line value can be one of the following:

Line Reference

	
Line Syntax

	
Description

	
'-'

	
Solid line

	

	
':'

	
Dotted line

	

	
'--'

	
Dashed line

	

	
'-.'

	
Dashed/dotted line

	

	
	
	

Note: If you leave out the line
 value in the fmt parameter, no line will be plottet.

The short color value can be one of the following:

Color Reference

	
Color Syntax

	
Description

	
'r'

	
Red

	

	
'g'

	
Green

	

	
'b'

	
Blue

	

	
'c'

	
Cyan

	

	
'm'

	
Magenta

	

	
'y'

	
Yellow

	

	
'k'

	
Black

	

	
'w'

	
White

	

	
	
	

Marker Size

You can use the keyword argument markersiz
e
 or the shorter version, m
s
 to set the size of the markers:

Example

Set the size of the markers to 20:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, marker = 'o'
, ms = 20
)

plt.show()

Marker Color

You can use the keyword argument markeredgecolo
r
 or the shorter me
c
 to set the color of the edge
 of the markers:

Example

Set the EDGE color to red:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, marker = 'o'
, ms = 20
, mec = 'r'
)

plt.show()

You can use the keyword argument markerfacecolo
r
 or the shorter mf
c
 to set the color inside the edge of the markers:

Example

Set the FACE color to red:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, marker = 'o'
, ms = 20
, mfc = 'r'
)

plt.show()

Use both
 the me
c
 and mf
c
 arguments to color of the entire marker:

Example

Set the color of both the edge
 and the face
 to red:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, marker = 'o'
, ms = 20
, mec = 'r'
, mfc = 'r'
)

plt.show()

Or any of the 140 supported color names.

Example

Mark each point with the color named "hotpink":

...

plt.plot(ypoints, marker = 'o'
, ms = 20
, mec = 'hotpink'
, mfc = 'hotpink'
)

...

Matplotlib Line

Line

You can use the keyword argument linestyl
e
, or shorter l
s
, to change the style of the plotted line:

Example

Use a dotted line:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, linestyle = 'dotted'
)

plt.show()

Example

Use a dashed line:

plt.plot(ypoints, linestyle = 'dashed'
)

Result:

Shorter Syntax

The line style can be written in a shorter syntax:

linestyl
e
 can be written as l
s
.

dotte
d
 can be written as :
.

dashe
d
 can be written as -
-
.

Example

Shorter syntax:

plt.plot(ypoints, ls = ':'
)

Line Styles

You can choose any of these styles:

	
Style

	
Or

	
'solid' (default)

	
'-'

	

	
'dotted'

	
':'

	

	
'dashed'

	
'--'

	

	
'dashdot'

	
'-.'

	

	
'None'

	
'' or ' '

	

	
	
	

Line Color

You can use the keyword argument colo
r
 or the shorter c
 to set the color of the line:

Example

Set the line color to red:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, color = 'r'
)

plt.show()

You can also use Hexadecimal color values:

Example

Plot with a beautiful green line:

...

plt.plot(ypoints, c = '#4CAF50'
)

...

Or any of the 140 supported color names.

Example

Plot with the color named "hotpink":

...

plt.plot(ypoints, c = 'hotpink'
)

...

Line Width

You can use the keyword argument linewidt
h
 or the shorter l
w
 to change the width of the line.

The value is a floating number, in points:

Example

Plot with a 20.5pt wide line:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

ypoints = np.array([3
, 8
, 1
, 10
])

plt.plot(ypoints, linewidth = '20.5'
)

plt.show()

Multiple Lines

You can plot as many lines as you like by simply adding more plt.plot(
)
 functions:

Example

Draw two lines by specifying a plt.plot(
)
 function for each line:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y1 = np.array([3
, 8
, 1
, 10
])

y2 = np.array([6
, 2
, 7
, 11
])

plt.plot(y1)

plt.plot(y2)

plt.show()

You can also plot many lines by adding the points for the x- and y-axis for each line in the same plt.plot(
)
 function.

(In the examples above we only specified the points on the y-axis, meaning that the points on the x-axis got the the default values (0, 1, 2, 3).)

The x- and y- values come in pairs:

Example

Draw two lines by specifiyng the x- and y-point values for both lines:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x1 = np.array([0
, 1
, 2
, 3
])

y1 = np.array([3
, 8
, 1
, 10
])

x2 = np.array([0
, 1
, 2
, 3
])

y2 = np.array([6
, 2
, 7
, 11
])

plt.plot(x1, y1, x2, y2)

plt.show()

Matplotlib Subplots

Display Multiple Plots

With the subplots(
)
 function you can draw multiple plots in one figure:

Example

Draw 2 plots:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

#plot 1:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(1
, 2
, 1
)

plt.plot(x,y)

#plot 2:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(1
, 2
, 2
)

plt.plot(x,y)

plt.show()

The subplots() Function

The subplots(
)
 function takes three arguments that describes the layout of the figure.

The layout is organized in rows and columns, which are represented by the first
 and second
 argument.

The third argument represents the index of the current plot.

plt.subplot(1
, 2
, 1
)

#the figure has 1 row, 2 columns, and this plot is the
 first
 plot.

plt.subplot(1
, 2
, 2
)

#the figure has 1 row, 2 columns, and this plot is the
 second
 plot.

So, if we want a figure with 2 rows an 1 column (meaning that the two plots will be displayed on top of each other instead of side-by-side), we can write the syntax like this:

Example

Draw 2 plots on top of each other:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

#plot 1:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(2
, 1
, 1
)

plt.plot(x,y)

#plot 2:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(2
, 1
, 2
)

plt.plot(x,y)

plt.show()

You can draw as many plots you like on one figure, just descibe the number of rows, columns, and the index of the plot.

Example

Draw 6 plots:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(2
, 3
, 1
)

plt.plot(x,y)

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(2
, 3
, 2
)

plt.plot(x,y)

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(2
, 3
, 3
)

plt.plot(x,y)

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(2
, 3
, 4
)

plt.plot(x,y)

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(2
, 3
, 5
)

plt.plot(x,y)

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(2
, 3
, 6
)

plt.plot(x,y)

plt.show()

Title

You can add a title to each plot with the title(
)
 function:

Example

2 plots, with titles:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

#plot 1:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(1
, 2
, 1
)

plt.plot(x,y)

plt.title("SALES"
)

#plot 2:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(1
, 2
, 2
)

plt.plot(x,y)

plt.title("INCOME"
)

plt.show()

Super Title

You can add a title to the entire figure with the suptitle(
)
 function:

Example

Add a title for the entire figure:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

#plot 1:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([3
, 8
, 1
, 10
])

plt.subplot(1
, 2
, 1
)

plt.plot(x,y)

plt.title("SALES"
)

#plot 2:

x = np.array([0
, 1
, 2
, 3
])

y = np.array([10
, 20
, 30
, 40
])

plt.subplot(1
, 2
, 2
)

plt.plot(x,y)

plt.title("INCOME"
)

plt.suptitle("MY SHOP"
)

plt.show()

The observation in the example above is the result of 13 cars passing by.

The X-axis shows how old the car is.

The Y-axis shows the speed of the car when it passes.

Are there any relationships between the observations?

It seems that the newer the car, the faster it drives, but that could be a coincidence, after all we only registered 13 cars.

Compare Plots

In the example above, there seems to be a relationship between speed and age, but what if we plot the observations from another day as well? Will the scatter plot tell us something else?

Example

Draw two plots on the same figure:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

#day one, the age and speed of 13 cars:

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

plt.scatter(x, y)

#day two, the age and speed of 15 cars:

x = np.array([2
,2
,8
,1
,15
,8
,12
,9
,7
,3
,11
,4
,7
,14
,12
])

y = np.array([100
,105
,84
,105
,90
,99
,90
,95
,94
,100
,79
,112
,91
,80
,85
])

plt.scatter(x, y)

plt.show()

Note: The two plots are plotted with two different colors, by default blue and orange, you will learn how to change colors later in this chapter.

By comparing the two plots, I think it is safe to say that they both gives us the same conclusion: the newer the car, the faster it drives.

Colors

You can set your own color for each scatter plot with the colo
r
 or the c
 argument:

Example

Set your own color of the markers:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

plt.scatter(x, y, color = 'hotpink'
)

x = np.array([2
,2
,8
,1
,15
,8
,12
,9
,7
,3
,11
,4
,7
,14
,12
])

y = np.array([100
,105
,84
,105
,90
,99
,90
,95
,94
,100
,79
,112
,91
,80
,85
])

plt.scatter(x, y, color = '#88c999'
)

plt.show()

Color Each Dot

You can even set a specific color for each dot by using an array of colors as value for the c
 argument:

Note: You cannot
 use the colo
r
 argument for this, only the c
 argument.

Example

Set your own color of the markers:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

colors = np.array(["red"
,"green"
,"blue"
,"yellow"
,"pink"
,"black"
,"orange"
,"purple"
,"beige"
,"brown"
,"gray"
,"cyan"
,"magenta"
])

plt.scatter(x, y, c=colors)

plt.show()

ColorMap

The Matplotlib module has a number of available colormaps.

A colormap is like a list of colors, where each color has a value that ranges from 0 to 100.

This colormap is called 'viridis' and as you can see it ranges from 0, which is a purple color, and up to 100, which is a yellow color.

How to Use the ColorMap

You can specify the colormap with the keyword argument cma
p
 with the value of the colormap, in this case 'viridis
'
 which is one of the built-in colormaps available in Matplotlib.

In addition you have to create an array with values (from 0 to 100), one value for each of the point in the scatter plot:

Example

Create a color array, and specify a colormap in the scatter plot:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

colors = np.array([0
, 10
, 20
, 30
, 40
, 45
, 50
, 55
, 60
, 70
, 80
, 90
, 100
])

plt.scatter(x, y, c=colors, cmap='viridis'
)

plt.show()

You can include the colormap in the drawing by including the plt.colorbar(
)
 statement:

Example

Include the actual colormap:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

colors = np.array([0
, 10
, 20
, 30
, 40
, 45
, 50
, 55
, 60
, 70
, 80
, 90
, 100
])

plt.scatter(x, y, c=colors, cmap='viridis'
)

plt.colorbar()

plt.show()

Available ColorMaps

You can choose any of the built-in colormaps:

[image: Name Reverse Accent Accent_r Blues Blues_r BrBG BrBG_r BuGn BuGn_r BuPu BuPu_r CMRmap CMRmap_r Dark2 Dark2_r GnBu GnBu_r Greens Greens_r Greys Greys_r OrRd OrRd_r]

[image: Oranges Oranges_r PRGn PRGn_r Paired Paired_r Pastel1 Pastel1_r Pastel2 Pastel2_r PiYG PiYG_r PuBu PuBu_r PuBuGn PuBuGn_r PuOr PuOr_r PuRd PuRd_r Purples Purples_r RdBu RdBu_r]

[image: RdGy RdGy_r RdPu RdPu_r RdYlBu RdYlBu_r RdYlGn RdYlGn_r Reds Reds_r Set1 Set1_r Set2 Set2_r Set3 Set3_r Spectral Spectral_r Wistia Wistia_r YlGn YlGn_r YlGnBu YlGnBu_r]

[image: YlOrBr YlOrBr_r YlOrRd YlOrRd_r afmhot afmhot_r autumn autumn_r binary binary_r bone bone_r brg brg_r bwr bwr_r cividis cividis_r cool cool_r coolwarm coolwarm_r copper copper_r]

[image: cubehelix cubehelix_r flag flag_r gist_earth gist_earth_r gist_gray gist_gray_r gist_heat gist_heat_r gist_ncar gist_ncar_r gist_rainbow gist_rainbow_r gist_stern gist_stern_r gist_yarg gist_yarg_r gnuplot gnuplot_r gnuplot2 gnuplot2_r gray gray_r]

[image: hot hot_r hsv hsv_r inferno inferno_r jet jet_r magma magma_r nipy_spectral nipy_spectral_r ocean ocean_r pink pink_r plasma plasma_r prism prism_r rainbow rainbow_r seismic seismic_r]

[image: spring spring_r summer summer_r tab10 tab10_r tab20 tab20_r tab20b tab20b_r tab20c tab20c_r terrain terrain_r twilight twilight_r twilight_shifted twilight_shifted_r viridis viridis_r winter winter_r]

Size

You can change the size of the dots with the s
 argument.

Just like colors, make sure the array for sizes has the same length as the arrays for the x- and y-axis:

Example

Set your own size for the markers:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

sizes = np.array([20
,50
,100
,200
,500
,1000
,60
,90
,10
,300
,600
,800
,75
])

plt.scatter(x, y, s=sizes)

plt.show()

Alpha

You can adjust the transparency of the dots with the alph
a
 argument.

Just like colors, make sure the array for sizes has the same length as the arrays for the x- and y-axis:

Example

Set your own size for the markers:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array([5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
])

y = np.array([99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
])

sizes = np.array([20
,50
,100
,200
,500
,1000
,60
,90
,10
,300
,600
,800
,75
])

plt.scatter(x, y, s=sizes, alpha=0.5
)

plt.show()

Combine Color Size and Alpha

You can combine a colormap with different sizes on the dots. This is best visualized if the dots are transparent:

Example

Create random arrays with 100 values for x-points, y-points, colors and sizes:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.random.randint(100
, size=(100
))

y = np.random.randint(100
, size=(100
))

colors = np.random.randint(100
, size=(100
))

sizes = 10
 * np.random.randint(100
, size=(100
))

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5
, cmap='nipy_spectral'
)

plt.colorbar()

plt.show()

Matplotlib Bars

Creating Bars

With Pyplot, you can use the bar(
)
 function to draw bar graphs:

Example

Draw 4 bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.bar(x,y)

plt.show()

The bar(
)
 function takes arguments that describes the layout of the bars.

The categories and their values represented by the first
 and second
 argument as arrays.

Example

x = ["APPLES"
, "BANANAS"
]

y = [400
, 350
]

plt.bar(x, y)

Horizontal Bars

If you want the bars to be displayed horizontally instead of vertically, use the barh(
)
 function:

Example

Draw 4 horizontal bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.barh(x, y)

plt.show()

Bar Color

The bar(
)
 and barh(
)
 takes the keyword argument colo
r
 to set the color of the bars:

Example

Draw 4 red bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.bar(x, y, color = "red"
)

plt.show()

Color Names

You can use any of the 140 supported color names.

Example

Draw 4 "hot pink" bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.bar(x, y, color = "hotpink"
)

plt.show()

Color Hex

Or you can use Hexadecimal color values:

Example

Draw 4 bars with a beautiful green color:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.bar(x, y, color = "#4CAF50"
)

plt.show()

Bar Width

The bar(
)
 takes the keyword argument widt
h
 to set the width of the bars:

Example

Draw 4 very thin bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.bar(x, y, width = 0.1
)

plt.show()

The default width value is 0.8

Note: For horizontal bars, use heigh
t
 instead of widt
h
.

Bar Height

The barh(
)
 takes the keyword argument heigh
t
 to set the height of the bars:

Example

Draw 4 very thin bars:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.array(["A"
, "B"
, "C"
, "D"
])

y = np.array([3
, 8
, 1
, 10
])

plt.barh(x, y, height = 0.1
)

plt.show()

Matplotlib Histograms

Histogram

A histogram is a graph showing frequency
 distributions.

It is a graph showing the number of observations within each given interval.

Example: Say you ask for the height of 250 people, you might end up with a histogram like this:

You can read from the histogram that there are approximately:

2 people from 140 to 145cm

5 people from 145 to 150cm

15 people from 151 to 156cm

31 people from 157 to 162cm

46 people from 163 to 168cm

53 people from 168 to 173cm

45 people from 173 to 178cm

28 people from 179 to 184cm

21 people from 185 to 190cm

4 people from 190 to 195cm

Create Histogram

In Matplotlib, we use the hist(
)
 function to create histograms.

The hist(
)
 function will use an array of numbers to create a histogram, the array is sent into the function as an argument.

For simplicity we use NumPy to randomly generate an array with 250 values, where the values will concentrate around 170, and the standard deviation is 10. Learn more about Normal Data Distribution
 in our Machine Learning Tutorial
.

Example

A Normal Data Distribution by NumPy:

import
 numpy as
 np

x = np.random.normal(170
, 10
, 250
)

print
(x)

The hist(
)
 function will read the array and produce a histogram:

Example

A simple pie chart:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

x = np.random.normal(170
, 10
, 250
)

plt.hist(x)

plt.show()

Matplotlib Pie Charts

Creating Pie Charts

With Pyplot, you can use the pie(
)
 function to draw pie charts:

Example

A simple pie chart:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

plt.pie(y)

plt.show()

Labels

Add labels to the pie chart with the labe
l
 parameter.

The labe
l
 parameter must be an array with one label for each wedge:

Example

A simple pie chart:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

plt.pie(y, lables = mylabels)

plt.show()

Start Angle

As mentioned the default start angle is at the x-axis, but you can change the start angle by specifying a startangl
e
 parameter.

The startangl
e
 parameter is defined with an angle in degrees, default angle is 0:

Example

Start the first wedge at 90 degrees:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

plt.pie(y, lables = mylabels, startangle = 90
)

plt.show()

Explode

Maybe you want one of the wedges to stand out? The explod
e
 parameter allows you to do that.

The explod
e
 parameter, if specified, and not Non
e
, must be an array with one value for each wedge.

Each value represents how far from the center each wedge is displayed:

Example

Pull the "Apples" wedge 0.2 from the center of the pie:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

myexplode = [0.2
, 0
, 0
, 0
]

plt.pie(y, lables = mylabels, explode = myexplode)

plt.show()

Shadow

Add a shadow to the pie chart by setting the shadow
s
 parameter to Tru
e
:

Example

Add a shadow:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

myexplode = [0.2
, 0
, 0
, 0
]

plt.pie(y, lables = mylabels, explode = myexplode, shadow = True
)

plt.show()

Colors

You can set the color of each wedge with the color
s
 parameter.

The color
s
 parameter, if specified, must be an array with one value for each wedge:

Example

Specify a new color for each wedge:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

mycolors = ["black"
, "hotpink"
, "b"
, "#4CAF50"
]

plt.pie(y, labels = mylabels, colors = mycolors)

plt.show()

You can use Hexadecimal color values
, any of the 140 supported color names
, or one of these shortcuts:

'r
'
 - Red

'g
'
 - Green

'b
'
 - Blue

'c
'
 - Cyan

'm
'
 - Magenta

'y
'
 - Yellow

'k
'
 - Black

'w
'
 - White

Legend

To add a list of explanation for each wedge, use the legend(
)
 function:

Example

Add a legend:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

plt.pie(y, labels = mylabels)

plt.legend()

plt.show()

Legend With Header

To add a header to the legend, add the titl
e
 parameter to the legen
d
 function.

Example

Add a legend with a header:

import
 matplotlib.pyplot as
 plt

import
 numpy as
 np

y = np.array([35
, 25
, 25
, 15
])

mylabels = ["Apples"
, "Bananas"
, "Cherries"
, "Dates"
]

plt.pie(y, labels = mylabels)

plt.legend(title = "Four Fruits:"
)

plt.show()

SciPy Introduction

What is SciPy?

SciPy is a scientific computation library that uses NumPy underneath.

SciPy stands for Scientific Python.

It provides more utility functions for optimization, stats and signal processing.

Like NumPy, SciPy is open source so we can use it freely.

SciPy was created by NumPy's creator Travis Olliphant.

Why Use SciPy?

If SciPy uses NumPy underneath, why can we not just use NumPy?

SciPy has optimized and added functions that are frequently used in NumPy and Data Science.

Which Language is SciPy Written in?

SciPy is predominantly written in Python, but a few segments are written in C.

SciPy Getting Started

Installation of SciPy

If you have Python and PIP already installed on a system, then installation of SciPy is very easy.

Install it using this command:

C:\Users\Your Name
>pip install scipy

If this command fails, then use a Python distribution that already has SciPy installed like, Anaconda, Spyder etc.

Import SciPy

Once SciPy is installed, import the SciPy module(s) you want to use in your applications by adding the from scipy import
 modul
e
 statement:

from
 scipy import
 constants

Now we have imported the constants
 module from SciPy, and the application is ready to use it:

Example

How many cubic meters are in one liter:

from
 scipy import
 constants

print
(constants.liter)

constants: SciPy offers a set of mathematical constants, one of them is lite
r
 which returns 1 liter as cubic meters.

You will learn more about constants in the next chapter.

Checking SciPy Version

The version string is stored under the __version_
_
 attribute.

Example

import
 scipy

print
(scipy.__version__)

Constants in SciPy

As SciPy is more focused on scientific implementations, it provides many built-in scientific constants.

These constants can be helpful when you are working with Data Science.

PI is an example of a scientific constant.

Example

Print the constant value of PI:

from
 scipy import
 constants

print
(constants.pi)

Constant Units

A list of all units under the constants module can be seen using the dir(
)
 function.

Example

List all constants:

from
 scipy import
 constants

print
(dir
(constants))

Unit Categories

The units are placed under these categories:

●
Metric

●
Binary

●
Mass

●
Angle

●
Time

●
Length

●
Pressure

●
Volume

●
Speed

●
Temperature

●
Energy

●
Power

●
Force

Metric (SI) Prefixes:

Return the specified unit in meter (e.g. cent
i
 returns 0.0
1
)

Example

from
 scipy import
 constants

print
(constants.yotta) #1e+24

print
(constants.zetta) #1e+21

print
(constants.exa) #1e+18

print
(constants.peta) #1000000000000000.0

print
(constants.tera) #1000000000000.0

print
(constants.giga) #1000000000.0

print
(constants.mega) #1000000.0

print
(constants.kilo) #1000.0

print
(constants.hecto) #100.0

print
(constants.deka) #10.0

print
(constants.deci) #0.1

print
(constants.centi) #0.01

print
(constants.milli) #0.001

print
(constants.micro) #1e-06

print
(constants.nano) #1e-09

print
(constants.pico) #1e-12

print
(constants.femto) #1e-15

print
(constants.atto) #1e-18

print
(constants.zepto) #1e-21

Binary Prefixes:

Return the specified unit in bytes (e.g. kib
i
 returns 102
4
)

Example

from
 scipy import
 constants

print
(constants.kibi) #1024

print
(constants.mebi) #1048576

print
(constants.gibi) #1073741824

print
(constants.tebi) #1099511627776

print
(constants.pebi) #1125899906842624

print
(constants.exbi) #1152921504606846976

print
(constants.zebi) #1180591620717411303424

print
(constants.yobi) #1208925819614629174706176

Mass:

Return the specified unit in kg (e.g. gra
m
 returns 0.00
1
)

Example

from
 scipy import
 constants

print
(constants.gram) ​
 #0.001

print
(constants.metric_ton) #1000.0

print
(constants.grain) #6.479891e-05

print
(constants.lb) #0.45359236999999997

print
(constants.pound)​
 #0.45359236999999997

print
(constants.oz) #0.028349523124999998

print
(constants.ounce) #0.028349523124999998

print
(constants.stone) #6.3502931799999995

print
(constants.long_ton) #1016.0469088

print
(constants.short_ton) #907.1847399999999

print
(constants.troy_ounce) #0.031103476799999998

print
(constants.troy_pound) #0.37324172159999996

print
(constants.carat) ​
 #0.0002

print
(constants.atomic_mass) #1.66053904e-27

print
(constants.m_u) #1.66053904e-27

print
(constants.u) #1.66053904e-27

Angle:

Return the specified unit in radians (e.g. degre
e
 returns 0.01745329251994329
5
)

Example

from
 scipy import
 constants

print
(constants.degree) #0.017453292519943295

print
(constants.arcmin) #0.0002908882086657216

print
(constants.arcminute) #0.0002908882086657216

print
(constants.arcsec) #4.84813681109536e-06

print
(constants.arcsecond) #4.84813681109536e-06

Time:

Return the specified unit in seconds (e.g. hou
r
 returns 3600.
0
)

Example

from
 scipy import
 constants

print
(constants.minute) #60.0

print
(constants.hour) ​
 #3600.0

print
(constants.day) ​
 #86400.0

print
(constants.week) ​
 #604800.0

print
(constants.year) #31536000.0

print
(constants.Julian_year) #31557600.0

Length:

Return the specified unit in meters (e.g. nautical_mil
e
 returns 1852.
0
)

Example

from
 scipy import
 constants

print
(constants.inch) ​
 #0.0254

print
(constants.foot) ​
​
 #0.30479999999999996

print
(constants.yard) ​
 ​
 #0.9143999999999999

print
(constants.mile) ​
 #1609.3439999999998

print
(constants.mil) ​
 #2.5399999999999997e-05

print
(constants.pt) #0.00035277777777777776

print
(constants.point) ​
 #0.00035277777777777776

print
(constants.survey_foot) ​
 #0.3048006096012192

print
(constants.survey_mile) ​
 #1609.3472186944373

print
(constants.nautical_mile) #1852.0

print
(constants.fermi) ​
 #1e-15

print
(constants.angstrom) ​
 #1e-10

print
(constants.micron) ​
 #1e-06

print
(constants.au) ​
 #149597870691.0

print
(constants.astronomical_unit) #149597870691.0

print
(constants.light_year) ​
 #9460730472580800.0

print
(constants.parsec) #3.0856775813057292e+16

Pressure:

Return the specified unit in pascals (e.g. ps
i
 returns 6894.75729316836
1
)

Example

from
 scipy import
 constants

print
(constants.atm)​
 #101325.0

print
(constants.atmosphere) #101325.0

print
(constants.bar) ​
 #100000.0

print
(constants.torr) ​
 #133.32236842105263

print
(constants.mmHg) #133.32236842105263

print
(constants.psi) #6894.757293168361

Area:

Return the specified unit in square meters(e.g. hectar
e
 returns 10000.
0
)

Example

from
 scipy import
 constants

print
(constants.hectare) #10000.0

print
(constants.acre) #4046.8564223999992

Volume:

Return the specified unit in cubic meters (e.g. lite
r
 returns 0.00
1
)

Example

from
 scipy import
 constants

print
(constants.liter) ​
 ​
 #0.001

print
(constants.litre) ​
​
 #0.001

print
(constants.gallon) ​
 #0.0037854117839999997

print
(constants.gallon_US) #0.0037854117839999997

print
(constants.gallon_imp) #0.00454609

print
(constants.fluid_ounce) #2.9573529562499998e-05

print
(constants.fluid_ounce_US) #2.9573529562499998e-05

print
(constants.fluid_ounce_imp) #2.84130625e-05

print
(constants.barrel) ​
 #0.15898729492799998

print
(constants.bbl) ​
 #0.15898729492799998

Speed:

Return the specified unit in meters per second (e.g. speed_of_soun
d
 returns 340.
5
)

Example

from
 scipy import
 constants

print
(constants.kmh) ​
 ​
 #0.2777777777777778

print
(constants.mph) ​
​
 #0.44703999999999994

print
(constants.mach) ​
 #340.5

print
(constants.speed_of_sound) #340.5

print
(constants.knot) ​
​
 #0.5144444444444445

Temperature:

Return the specified unit in Kelvin (e.g. zero_Celsiu
s
 returns 273.1
5
)

Example

from
 scipy import
 constants

print
(constants.zero_Celsius) #273.15

print
(constants.degree_Fahrenheit) #0.5555555555555556

Energy:

Return the specified unit in joules (e.g. calori
e
 returns 4.18
4
)

Example

from
 scipy import
 constants

print
(constants.eV) ​
 ​
 #1.6021766208e-19

print
(constants.electron_volt) #1.6021766208e-19

print
(constants.calorie) #4.184

print
(constants.calorie_th) #4.184

print
(constants.calorie_IT) #4.1868

print
(constants.erg) ​
 #1e-07

print
(constants.Btu) #1055.05585262

print
(constants.Btu_IT) ​
 #1055.05585262

print
(constants.Btu_th) ​
 #1054.3502644888888

print
(constants.ton_TNT)​
 #4184000000.0

Power:

Return the specified unit in watts (e.g. horsepowe
r
 returns 745.699871582270
1
)

Example

from
 scipy import
 constants

print
(constants.hp) ​
 #745.6998715822701

print
(constants.horsepower) #745.6998715822701

Force:

Return the specified unit in newton (e.g. kilogram_forc
e
 returns 9.8066
5
)

Example

from
 scipy import
 constants

print
(constants.dyn) ​
 #1e-05

print
(constants.dyne) ​
 #1e-05

print
(constants.lbf) ​
 #4.4482216152605

print
(constants.pound_force)​
 #4.4482216152605

print
(constants.kgf) ​
 #9.80665

print
(constants.kilogram_force) #9.80665

Optimizers in SciPy

Optimizers are a set of procedures defined in SciPy that either find the minimum value of a function, or the root of an equation.

Optimizing Functions

Essentially, all of the algorithms in Machine Learning are nothing more than a complex equation that needs to be minimized with the help of given data.

Roots of an Equation

NumPy is capable of finding roots for polynomials and linear equations, but it can not find roots for non
 linear equations, like this one:

x + cos(x)

For that you can use SciPy's optimze.roo
t
 function.

This function takes two required arguments:

fun
 - a function representing an equation.

x0
 - an initial guess for the root.

The function returns an object with information regarding the solution.

The actual solution is given under attribute x
 of the returned object:

Example

Find root of the equation x + cos(x
)
:

from
 scipy.optimize import
 root

from
 math import
 cos

def
 eqn(x):

 return
 x + cos(x)

myroot = root(eqn, 0
)

print
(myroot.x)

Note: The returned object has much more information about the solution.

Example

Print all information about the solution (not just x
 which is the root)

print
(myroot)

Minimizing a Function

A function, in this context, represents a curve, curves have high points
 and low points
.

High points are called maxima
.

Low points are called minima
.

The highest point in the whole curve is called global maxima
, whereas the rest of them are called local maxima
.

The lowest point in whole curve is called global minima
, whereas the rest of them are called local minima
.

Finding Minima

We can use scipy.optimize.minimize(
)
 function to minimize the function.

The minimize(
)
 function takes the following arguments:

fun
 - a function representing an equation.

x0
 - an initial guess for the root.

method
 - name of the method to use. Legal values:

'CG'

'BFGS'

'Newton-CG'

'L-BFGS-B'

'TNC'

'COBYLA'

'SLSQP'

callback
 - function called after each iteration of optimization.

options
 - a dictionary defining extra params:

{

​
"disp": boolean - print detailed description

​
"gtol": number - the tolerance of the error

 }

Example

Minimize the function x^2 + x +
 2
 with BFG
S
:

from
 scipy.optimize import
 minimize

def
 eqn(x):

 return
 x**2
 + x + 2

mymin = minimize(eqn, 0
, method='BFGS'
)

print
(mymin)

What is Sparse Data

Sparse data is data that has mostly unused elements (elements that don't carry any information).

It can be an array like this one:

[1, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0]

Sparse Data: is a data set where most of the item values are zero.

Dense Array: is the opposite of a sparse array: most of the values are not
 zero.

In scientific computing, when we are dealing with partial derivatives in linear algebra we will come across sparse data.

How to Work With Sparse Data

SciPy has a module, scipy.spars
e
 that provides functions to deal with sparse data.

There are primarily two types of sparse matrices that we use:

CSC - Compressed Sparse Column. For efficient arithmetic, fast column slicing.

CSR - Compressed Sparse Row. For fast row slicing, faster matrix vector products

We will use the CSR matrix in this tutorial.

CSR Matrix

We can create CSR matrix by passing an arrray into function scipy.sparse.csr_matrix(
)
.

Example

Create a CSR matrix from an array:

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([0
, 0
, 0
, 0
, 0
, 1
, 1
, 0
, 2
])

print
(csr_matrix(arr))

The example above returns:

(0, 5)
​
1

(0, 6)
​
1

(0, 8)
​
2

From the result we can see that there are 3 items with value.

The 1. item is in row 0
 position 5
 and has the value 1
.

The 2. item is in row 0
 position 6
 and has the value 1
.

The 3. item is in row 0
 position 8
 and has the value 2
.

Sparse Matrix Methods

Viewing stored data (not the zero items) with the dat
a
 property:

Example

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([[0
, 0
, 0
], [0
, 0
, 1
], [1
, 0
, 2
]])

print
(csr_matrix(arr).data)

Counting nonzeros with the count_nonzero(
)
 method:

Example

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([[0
, 0
, 0
], [0
, 0
, 1
], [1
, 0
, 2
]])

print
(csr_matrix(arr).count_nonzero())

Removing zero-entries from the matrix with the eliminate_zeros(
)
 method:

Example

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([[0
, 0
, 0
], [0
, 0
, 1
], [1
, 0
, 2
]])

mat = csr_matrix(arr)

mat.eliminate_zeros()

print
(mat)

Eliminating duplicate entries with the sum_duplicates(
)
 method:

Example

Eliminating duplicates by adding them:

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([[0
, 0
, 0
], [0
, 0
, 1
], [1
, 0
, 2
]])

mat = csr_matrix(arr)

mat.sum_duplicates()

print
(mat)

Converting from csr to csc with the tocsc(
)
 method:

Example

import
 numpy as
 np

from
 scipy.sparse import
 csr_matrix

arr = np.array([[0
, 0
, 0
], [0
, 0
, 1
], [1
, 0
, 2
]])

newarr = csr_matrix(arr).tocsc()

print
(newarr)

SciPy Graphs

Working with Graphs

Graphs are an essential data structure.

SciPy provides us with the module scipy.sparse.csgrap
h
 for working with such data structures.

Adjacency Matrix

Adjacency matrix is a nx
n
 matrix where n
 is the number of elements in a graph.

And the values represents the connection between the elements.

For a graph like this, with elements A, B and C, the connections are:

A & B are connected with weight 1.

A & C are connected with weight 2.

C & B is not connected.

The Adjency Matrix would look like this:

A B C

A:[0 1 2]

B:[1 0 0]

C:[2 0 0]

Below follows some of the most used methods for working with adjacency matrices.

Connected Components

Find all of the connected components with the connected_components(
)
 method.

Example

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 connected_components

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, 1
, 2
],

 [1
, 0
, 0
],

 [2
, 0
, 0
]

])

newarr = csr_matrix(arr)

print
(connected_components(newarr))

Dijkstra

Use the dijkstr
a
 method to find the shortest path in a graph from one element to another.

It takes following arguments:

1.
 return_predecessors: boolean (True to return whole path of traversal otherwise False).

2.
 indices: index of the element to return all paths from that element only.

3.
limit: max weight of path.

Example

Find the shortest path from element 1 to 2:

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 dijkstra

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, 1
, 2
],

 [1
, 0
, 0
],

 [2
, 0
, 0
]

])

newarr = csr_matrix(arr)

print
(dijkstra(newarr, return_predecessors=True
, indices=0
))

Floyd Warshall

Use the floyd_warshall(
)
 method to find shortest path between all pairs of elements.

Example

Find the shortest path between all pairs of elements:

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 floyd_warshall

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, 1
, 2
],

 [1
, 0
, 0
],

 [2
, 0
, 0
]

])

newarr = csr_matrix(arr)

print
(floyd_warshall(newarr, return_predecessors=True
))

Bellman Ford

The bellman_ford(
)
 method can also find the shortest path between all pairs of elements, but this method can handle negative weights as well.

Example

Find shortest path from element 1 to 2 with given graph with a negative weight:

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 bellman_ford

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, -1
, 2
],

 [1
, 0
, 0
],

 [2
, 0
, 0
]

])

newarr = csr_matrix(arr)

print
(bellman_ford(newarr, return_predecessors=True
, indices=0
))

Depth First Order

The depth_first_order(
)
 method returns a depth first traversal from a node.

This function takes following arguments:

1.
the graph.

2.
the starting element to traverse graph from.

Example

Traverse the graph depth first for given adjacency matrix:

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 depth_first_order

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, 1
, 0
, 1
],

 [1
, 1
, 1
, 1
],

 [2
, 1
, 1
, 0
],

 [0
, 1
, 0
, 1
]

])

newarr = csr_matrix(arr)

print
(depth_first_order(newarr, 1
))

Breadth First Order

The breadth_first_order(
)
 method returns a breadth first traversal from a node.

This function takes following arguments:

1.
the graph.

2.
the starting element to traverse graph from.

Example

Traverse the graph breadth first for given adjacency matrix:

import
 numpy as
 np

from
 scipy.sparse.csgraph import
 breadth_first_order

from
 scipy.sparse import
 csr_matrix

arr = np.array([

 [0
, 1
, 0
, 1
],

 [1
, 1
, 1
, 1
],

 [2
, 1
, 1
, 0
],

 [0
, 1
, 0
, 1
]

])

newarr = csr_matrix(arr)

print
(breadth_first_order(newarr, 1
))

SciPy Spatial Data

Working with Spatial Data

Spatial data refers to data that is represented in a geometric space.

E.g. points on a coordinate system.

We deal with spatial data problems on many tasks.

E.g. finding if a point is inside a boundary or not.

SciPy provides us with the module scipy.spatia
l
, which has functions for working with spatial data.

Triangulation

A Triangulation of a polygon is to divide the polygon into multiple triangles with which we can compute an area of the polygon.

A Triangulation with points
 means creating surface composed triangles in which all of the given points are on at least one vertex of any triangle in the surface.

One method to generate these triangulations through points is the Delaunay(
)
 Triangulation.

Example

Create a triangulation from following points:

import
 numpy as
 np

from
 scipy.spatial import
 Delaunay

import
 matplotlib.pyplot as
 plt

points = np.array([

 [2
, 4
],

 [3
, 4
],

 [3
, 0
],

 [2
, 2
],

 [4
, 1
]

])

simplices = Delaunay(points).simplices

plt.triplot(points[:, 0
], points[:, 1
], simplices)

plt.scatter(points[:, 0
], points[:, 1
], color='r'
)

plt.show()

Convex Hull

A convex hull is the smallest polygon that covers all of the given points.

Use the ConvexHull(
)
 method to create a Convex Hull.

Example

Create a convex hull for following points:

import
 numpy as
 np

from
 scipy.spatial import
 ConvexHull

import
 matplotlib.pyplot as
 plt

points = np.array([

 [2
, 4
],

 [3
, 4
],

 [3
, 0
],

 [2
, 2
],

 [4
, 1
],

 [1
, 2
],

 [5
, 0
],

 [3
, 1
],

 [1
, 2
],

 [0
, 2
]

])

hull = ConvexHull(points)

hull_points = hull.simplices

plt.scatter(points[:,0
], points[:,1
])

for
 simplex in
 hull_points:

 plt.plot(points[simplex,0
], points[simplex,1
], 'k-'
)

plt.show()

KDTrees

KDTrees are a datastructure optimized for nearest neighbor queries.

E.g. in a set of points using KDTrees we can efficiently ask which points are nearest to a certain given point.

The KDTree(
)
 method returns a KDTree object.

The query(
)
 method returns the distance to the nearest neighbor and
 the location of the neighbors.

Example

Find the nearest neighbor to point (1,1):

from
 scipy.spatial import
 KDTree

points = [(1
, -1
), (2
, 3
), (-2
, 3
), (2
, -3
)]

kdtree = KDTree(points)

res = kdtree.query((1
, 1
))

print
(res)

Distance Matrix

There are many Distance Metrics used to find various types of distances between two points in data science, Euclidean distsance, cosine distsance etc.

The distance between two vectors may not only be the length of straight line between them, it can also be the angle between them from origin, or number of unit steps required etc.

Many of the Machine Learning algorithm's performance depends greatly on distance metrices. E.g. "K Nearest Neighbors", or "K Means" etc.

Let us look at some of the Distance Metrices:

Euclidean Distance

Find the euclidean distance between given points.

Example

from
 scipy.spatial.distance import
 euclidean

p1 = (1
, 0
)

p2 = (10
, 2
)

res = euclidean(p1, p2)

print
(res)

Cityblock Distance (Manhattan Distance)

Is the distance computed using 4 degrees of movement.

E.g. we can only move: up, down, right, or left, not diagonally.

Example

Find the cityblock distance between given points:

from
 scipy.spatial.distance import
 cityblock

p1 = (1
, 0
)

p2 = (10
, 2
)

res = cityblock(p1, p2)

print
(res)

Cosine Distance

Is the value of cosine angle between the two points A and B.

Example

Find the cosine distsance between given points:

from
 scipy.spatial.distance import
 cosine

p1 = (1
, 0
)

p2 = (10
, 2
)

res = cosine(p1, p2)

print
(res)

Hamming Distance

Is the proportion of bits where two bits are difference.

It's a way to measure distance for binary sequences.

Example

Find the hamming distance between given points:

from
 scipy.spatial.distance import
 hamming

p1 = (True
, False
, True
)

p2 = (False
, True
, True
)

res = hamming(p1, p2)

print
(res)

SciPy Matlab Arrays

Working With Matlab Arrays

We know that NumPy provides us with methods to persist the data in readable formats for Python. But SciPy provides us with interoperability with Matlab as well.

SciPy provides us with the module scipy.i
o
, which has functions for working with Matlab arrays.

Exporting Data in Matlab Format

The savemat(
)
 function allows us to export data in Matlab format.

The method takes the following parameters:

1.
filename - the file name for saving data.

2.
mdict - a dictionary containing the data.

3.
 do_compression - a boolean value that specifies wheter to compress the reult or not. Default False.

Example

Export the following array as variable name "vec" to a mat file:

from
 scipy import
 io

import
 numpy as
 np

arr = np.arange(10
)

io.savemat('arr.mat'
, {"vec"
: arr})

Note: The example above saves a file name "arr.mat" on your computer.

To open the file, check out the "Import Data from Matlab Format" example below:

Import Data from Matlab Format

The loadmat(
)
 function allows us to import data from a Matlab file.

The function takes one required parameter:

filename - the file name of the saved data.

It will return a structured array whose keys are the variable names, and the corresponding values are the variable values.

Example

Import the array from following mat file.:

from
 scipy import
 io

import
 numpy as
 np

arr = np.array([0
, 1
, 2
, 3
, 4
, 5
, 6
, 7
, 8
, 9
,])

Export:

io.savemat('arr.mat'
, {"vec"
: arr})

Import:

mydata = io.loadmat('arr.mat'
)

print
(mydata)

Use the variable name "vec" to display only the array from the matlab data:

Example

...

print
(mydata['vec'
])

Note: We can see that the array originally was 1D, but on extraction it has increased one dimension.

In order to resolve this we can pass an additional argument squeeze_me=Tru
e
:

Example

Import:

mydata = io.loadmat('arr.mat'
, squeeze_me=True
)

print
(mydata['vec'
])

SciPy Interpolation

What is Interpolation?

Interpolation is a method for generating points between given points.

For example: for points 1 and 2, we may interpolate and find points 1.33 and 1.66.

Interpolation has many usage, in Machine Learning we often deal with missing data in a dataset, interpolation is often used to substitute those values.

This method of filling values is called imputation
.

Apart from imputation, interpolation is often used where we need to smooth the discrete points in a dataset.

How to Implement it in SciPy?

SciPy provides us with a module called scipy.interpolat
e
 which has many functions to deal with interpolation:

1D Interpolation

The function interp1d(
)
 is used to interpolate a distribution with 1 variable.

It takes x
 and y
 points and returns a callable function that can be called with new x
 and returns corresponding y
.

Example

For given xs and ys interpolate values from 2.1, 2.2... to 2.9:

from
 scipy.interpolate import
 interp1d

import
 numpy as
 np

xs = np.arange(10
)

ys = 2
*xs + 1

interp_func = interp1d(xs, ys)

newarr = interp_func(np.arange(2.1
, 3
, 0.1
))

print
(newarr)

Result:

[5.2 5.4 5.6 5.8 6. 6.2 6.4 6.6 6.8]

Note: that new xs should be in same range as of the old xs, meaning that we cant call interp_func(
)
 with values higher than 10, or less than 0.

Spline Interpolation

In 1D interpolation the points are fitted for a single curve
 whereas in Spline interpolation the points are fitted against a piecewise
 function defined with polynomials called splines.

The UnivariateSpline(
)
 function takes x
s
 and y
s
 and produce a callable funciton that can be called with new x
s
.

Piecewise function: A function that has different definition for different ranges.

Example

Find univariate spline interpolation for 2.1, 2.2... 2.9 for the following non linear points:

from
 scipy.interpolate import
 UnivariateSpline

import
 numpy as
 np

xs = np.arange(10
)

ys = xs**2
 + np.sin(xs) + 1

interp_func = UnivariateSpline(xs, ys)

newarr = interp_func(np.arange(2.1
, 3
, 0.1
))

print
(newarr)

Result:

[5.62826474 6.03987348 6.47131994 6.92265019 7.3939103 7.88514634

8.39640439 8.92773053 9.47917082]

Interpolation with Radial Basis Function

Radial basis function is a function that is defined corresponding to a fixed reference point.

The Rbf(
)
 function also takes x
s
 and y
s
 as arguments and produces a callable function that can be called with new x
s
.

Example

Interpolate following xs and ys using rbf and find values for 2.1, 2.2 ... 2.9:

from
 scipy.interpolate import
 Rbf

import
 numpy as
 np

xs = np.arange(10
)

ys = xs**2
 + np.sin(xs) + 1

interp_func = Rbf(xs, ys)

newarr = interp_func(np.arange(2.1
, 3
, 0.1
))

print
(newarr)

Result:

[6.25748981 6.62190817 7.00310702 7.40121814 7.8161443 8.24773402

8.69590519 9.16070828 9.64233874]

SciPy Statistical Significance Tests

What is Statistical Significance Test?

In statistics, statistical significance means that the result that was produced has a reason behind it, it was not produced randomly, or by chance.

SciPy provides us with a module called scipy.stat
s
, which has functions for performing statistical significance tests.

Here are some techniques and keywords that are important when performing such tests:

Hypothesis in Statistics

Hypothesis is an assumption about a parameter in population.

Null Hypothesis

It assumes that the observation is not stastically significant.

Alternate Hypothesis

It assumes that the observations are due to some reason.

Its alternate to Null Hypothesis.

Example:

For an assessment of a student we would take:

"student is worse than average"
 - as a null hypothesis, and:

"student is better than average"
 - as an alternate hypothesis.

One tailed test

When our hypothesis is testing for one side of the value only, it is called "one tailed test".

Example:

For the null hypothesis:

"the mean is equal to k",
 we can have alternate hypothesis:

"the mean is less than k",
 or:

"the mean is greater than k"

Two tailed test

When our hypothesis is testing for both side of the values.

Example:

For the null hypothesis:

"the mean is equal to k",
 we can have alternate hypothesis:

"the mean is not equal to k"

In this case the mean is less than, or greater than k, and both sides are to be checked.

Alpha value

Alpha value is the level of significance.

Example:

How close to extremes the data must be for null hypothesis to be rejected.

It is usually taken as 0.01, 0.05, or 0.1.

P value

P value tells how close to extreme the data actually is.

P value and alpha values are compared to establish the statistical significance.

If p value <= alpha we reject the null hypothesis and say that the data is statistically significant. otherwise we accept the null hypothesis.

T-Test

T-tests are used to determine if there is significant deference between means of two variables. and lets us know if they belong to the same distribution.

It is a two tailed test.

The function ttest_ind(
)
 takes two samples of same size and produces a tuple of t-statistic and p-value.

Example

Find if the given values v1 and v2 are from same distribution:

import
 numpy as
 np

from
 scipy.stats import
 ttest_ind

v1 = np.random.normal(size=100
)

v2 = np.random.normal(size=100
)

res = ttest_ind(v1, v2)

print
(res)

Result:

Ttest_indResult(statistic=0.40833510339674095, pvalue=0.68346891833752133)

If you want to return only the p-value, use the pvalu
e
 property:

Example

...

res = ttest_ind(v1, v2).pvalue

print
(res)

Result:

0.68346891833752133

KS-Test

KS test is used to check if given values follow a distribution.

The function takes the value to be tested, and the CDF as two parameters.

A CDF can be either a string or a callable function that returns the probability.

It can be used as a one tailed or two tailed test.

By default it is two tailed. We can pass parameter alternative as a string of one of two-sided, less, or greater.

Example

Find if the given value follows the normal distribution:

import
 numpy as
 np

from
 scipy.stats import
 kstest

v = np.random.normal(size=100
)

res = kstest(v, 'norm'
)

print
(res)

Result:

KstestResult(statistic=0.047798701221956841, pvalue=0.97630967161777515)

Statistical Description of Data

In order to see a summary of values in an array, we can use the describe(
)
 function.

It returns the following description:

1.
number of observations (nobs)

2.
minimum and maximum values = minmax

3.
mean

4.
variance

5.
skewness

6.
kurtosis

Example

Show statistical description of the values in an array:

import
 numpy as
 np

from
 scipy.stats import
 describe

v = np.random.normal(size=100
)

res = describe(v)

print
(res)

Result:

DescribeResult(

nobs=100,

minmax=(-2.0991855456740121, 2.1304142707414964),

mean=0.11503747689121079,

variance=0.99418092655064605,

skewness=0.013953400984243667,

kurtosis=-0.671060517912661

)

Normality Tests (Skewness and Kurtosis)

Normality tests are based on the skewness and kurtosis.

The normaltest(
)
 function returns p value for the null hypothesis:

"x comes from a normal distribution"
.

Skewness:

A measure of symmetry in data.

For normal distributions it is 0.

If it is negative, it means the data is skewed left.

If it is positive it means the data is skewed right.

Kurtosis:

A measure of whether the data is heavy or lightly tailed to a normal distribution.

Positive kurtosis means heavy tailed.

Negative kurtosis means lightly tailed.

Example

Find skewness and kurtosis of values in an array:

import
 numpy as
 np

from
 scipy.stats import
 skew, kurtosis

v = np.random.normal(size=100
)

print
(skew(v))

print
(kurtosis(v))

Result:

0.11168446328610283

-0.1879320563260931

Example

Find if the data comes from a normal distribution:

import
 numpy as
 np

from
 scipy.stats import
 normaltest

v = np.random.normal(size=100
)

print
(normaltest(v))

Result:

NormaltestResult(statistic=4.4783745697002848, pvalue=0.10654505998635538)

Machine Learning

Machine Learning is making the computer learn from studying data and statistics.

Machine Learning is a step into the direction of artificial intelligence (AI).

Machine Learning is a program that analyses data and learns to predict the outcome.

Where To Start?

In this tutorial we will go back to mathematics and study statistics, and how to calculate important numbers based on data sets.

We will also learn how to use various Python modules to get the answers we need.

And we will learn how to make functions that are able to predict the outcome based on what we have learned.

Data Set

In the mind of a computer, a data set is any collection of data. It can be anything from an array to a complete database.

Example of an array:

[99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

Example of a database:

	
Carname

	
Color

	
Age

	
Speed

	
AutoPass

	
BMW

	
red

	
5

	
99

	
Y

	
Volvo

	
black

	
7

	
86

	
Y

	
VW

	
gray

	
8

	
87

	
N

	
VW

	
white

	
7

	
88

	
Y

	
Ford

	
white

	
2

	
111

	
Y

	
VW

	
white

	
17

	
86

	
Y

	
Tesla

	
red

	
2

	
103

	
Y

	
BMW

	
black

	
9

	
87

	
Y

	
Volvo

	
gray

	
4

	
94

	
N

	
Ford

	
white

	
11

	
78

	
N

	
Toyota

	
gray

	
12

	
77

	
N

	
VW

	
white

	
9

	
85

	
N

	
Toyota

	
blue

	
6

	
86

	
Y

By looking at the array, we can guess that the average value is probably around 80 or 90, and we are also able to determine the highest value and the lowest value, but what else can we do?

And by looking at the database we can see that the most popular color is white, and the oldest car is 17 years, but what if we could predict if a car had an AutoPass, just by looking at the other values?

That is what Machine Learning is for! Analyzing data and predicting the outcome!

In Machine Learning it is common to work with very large data sets. In this tutorial we will try to make it as easy as possible to understand the different concepts of machine learning, and we will work with small easy-to-understand data sets.

Data Types

To analyze data, it is important to know what type of data we are dealing with.

We can split the data types into three main categories:

●
Numerical

●
Categorical

●
Ordinal

Numerical data are numbers, and can be split into two numerical categories:

●
 Discrete Data

- numbers that are limited to integers. Example: The number of cars passing by.

●
 Continuous Data

- numbers that are of infinite value. Example: The price of an item, or the size of an item

Categorical data are values that cannot be measured up against each other. Example: a color value, or any yes/no values.

Ordinal data are like categorical data, but can be measured up against each other. Example: school grades where A is better than B and so on.

By knowing the data type of your data source, you will be able to know what technique to use when analyzing them.

You will learn more about statistics and analyzing data in the next chapters.

Mean, Median, and Mode

What can we learn from looking at a group of numbers?

In Machine Learning (and in mathematics) there are often three values that interests us:

●
Mean - The average value

●
Median - The mid point value

●
Mode - The most common value

Example: We have registered the speed of 13 cars:

speed = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

What is the average, the middle, or the most common speed value?

Mean

The mean value is the average value.

To calculate the mean, find the sum of all values, and divide the sum by the number of values:

(99
+86
+87
+88
+111
+86
+103
+87
+94
+78
+77
+85
+86
) / 13
 = 89.77

The NumPy module has a method for this. Learn about the NumPy module in our NumPy Tutorial.

Example

Use the NumPy mean(
)
 method to find the average speed:

import
 numpy

speed = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

x = numpy.mean(speed)

print
(x)

Median

The median value is the value in the middle, after you have sorted all the values:

77
, 78
, 85
, 86
, 86
, 86
, 87
, 87
, 88
, 94
, 99
, 103
, 111

It is important that the numbers are sorted before you can find the median.

The NumPy module has a method for this:

Example

Use the NumPy median(
)
 method to find the middle value:

import
 numpy

speed = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

x = numpy.median(speed)

print
(x)

If there are two numbers in the middle, divide the sum of those numbers by two.

77
, 78
, 85
, 86
, 86
, 86, 87
, 87
, 94
, 98
, 99
, 103

(86
 + 87
) / 2
 = 86.5

Example

Using the NumPy module:

import
 numpy

speed = [99
,86
,87
,88
,86
,103
,87
,94
,78
,77
,85
,86
]

x = numpy.median(speed)

print
(x)

Mode

The Mode value is the value that appears the most number of times:

99
, 86
, 87
, 88
, 111
, 86
, 103
, 87
, 94
, 78
, 77
, 85
, 86
 = 86

The SciPy module has a method for this. Learn about the SciPy module in our SciPy Tutorial.

Example

Use the SciPy mode(
)
 method to find the number that appears the most:

from
 scipy import
 stats

speed = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

x = stats.mode(speed)

print
(x)

Chapter Summary

The Mean, Median, and Mode are techniques that are often used in Machine Learning, so it is important to understand the concept behind them.

Machine Learning - Standard Deviation

What is Standard Deviation?

Standard deviation is a number that describes how spread out the values are.

A low standard deviation means that most of the numbers are close to the mean (average) value.

A high standard deviation means that the values are spread out over a wider range.

Example: This time we have registered the speed of 7 cars:

speed = [86
,87
,88
,86
,87
,85
,86
]

The standard deviation is:

0.9

Meaning that most of the values are within the range of 0.9 from the mean value, which is 86.4.

Let us do the same with a selection of numbers with a wider range:

speed = [32
,111
,138
,28
,59
,77
,97
]

The standard deviation is:

37.85

Meaning that most of the values are within the range of 37.85 from the mean value, which is 77.4.

As you can see, a higher standard deviation indicates that the values are spread out over a wider range.

The NumPy module has a method to calculate the standard deviation:

Example

Use the NumPy std(
)
 method to find the standard deviation:

import
 numpy

speed = [86
,87
,88
,86
,87
,85
,86
]

x = numpy.std(speed)

print
(x)

Example

import
 numpy

speed = [32
,111
,138
,28
,59
,77
,97
]

x = numpy.std(speed)

print
(x)

Variance

Variance is another number that indicates how spread out the values are.

In fact, if you take the square root of the variance, you get the standard deviation!

Or the other way around, if you multiply the standard deviation by itself, you get the variance!

To calculate the variance you have to do as follows:

1. Find the mean:

(32
+111
+138
+28
+59
+77
+97
) / 7
 = 77.4

2. For each value: find the difference from the mean:

 32
 - 77.4
 = -45.4

111
 - 77.4
 = 33.6

138
 - 77.4
 = 60.6

 28
 - 77.4
 = -49.4

 59
 - 77.4
 = -18.4

 77
 - 77.4
 = - 0.4

 97
 - 77.4
 = 19.6

3. For each difference: find the square value:

(-45.4
)2
 = 2061.16

(33.6
)2
 = 1128.96

(60.6
)2
 = 3672.36

(-49.4
)2
 = 2440.36

(-18.4
)2
 = 338.56

(- 0.4
)2
 = 0.16

(19.6
)2
 = 384.16

4. The variance is the average number of these squared differences:

(2061.16
+1128.96
+3672.36
+2440.36
+338.56
+0.16
+384.16
) / 7
 = 1432.2

Luckily, NumPy has a method to calculate the variance:

Example

Use the NumPy var(
)
 method to find the variance:

import
 numpy

speed = [32
,111
,138
,28
,59
,77
,97
]

x = numpy.var(speed)

print
(x)

Standard Deviation

As we have learned, the formula to find the standard deviation is the square root of the variance:

√
1432.25
 = 37.85

Or, as in the example from before, use the NumPy to calculate the standard deviation:

Example

Use the NumPy std(
)
 method to find the standard deviation:

import
 numpy

speed = [32
,111
,138
,28
,59
,77
,97
]

x = numpy.std(speed)

print
(x)

Symbols

Standard Deviation is often represented by the symbol Sigma: σ

Variance is often represented by the symbol Sigma Square: σ
2

Chapter Summary

The Standard Deviation and Variance are terms that are often used in Machine Learning, so it is important to understand how to get them, and the concept behind them.

Machine Learning - Percentiles

What are Percentiles?

Percentiles are used in statistics to give you a number that describes the value that a given percent of the values are lower than.

Example: Let's say we have an array of the ages of all the people that lives in a street.

ages = [5
,31
,43
,48
,50
,41
,7
,11
,15
,39
,80
,82
,32
,2
,8
,6
,25
,36
,27
,61
,31
]

What is the 75. percentile? The answer is 43, meaning that 75% of the people are 43 or younger.

The NumPy module has a method for finding the specified percentile:

Example

Use the NumPy percentile(
)
 method to find the percentiles:

import
 numpy

ages = [5
,31
,43
,48
,50
,41
,7
,11
,15
,39
,80
,82
,32
,2
,8
,6
,25
,36
,27
,61
,31
]

x = numpy.percentile(ages, 75
)

print
(x)

Example

What is the age that 90% of the people are younger than?

import
 numpy

ages = [5
,31
,43
,48
,50
,41
,7
,11
,15
,39
,80
,82
,32
,2
,8
,6
,25
,36
,27
,61
,31
]

x = numpy.percentile(ages, 90
)

print
(x)

Machine Learning - Data Distribution

Data Distribution

Earlier in this tutorial we have worked with very small amounts of data in our examples, just to understand the different concepts.

In the real world, the data sets are much bigger, but it can be difficult to gather real world data, at least at an early stage of a project.

How Can we Get Big Data Sets?

To create big data sets for testing, we use the Python module NumPy, which comes with a number of methods to create random data sets, of any size.

Example

Create an array containing 250 random floats between 0 and 5:

import
 numpy

x = numpy.random.uniform(0.0
, 5.0
, 250
)

print
(x)

Histogram

To visualize the data set we can draw a histogram with the data we collected.

We will use the Python module Matplotlib to draw a histogram.

Learn about the Matplotlib module in our Matplotlib Tutorial.

Example

Draw a histogram:

import
 numpy

import
 matplotlib.pyplot as
 plt

x = numpy.random.uniform(0.0
, 5.0
, 250
)

plt.hist(x, 5
)

plt.show()

Histogram Explained

We use the array from the example above to draw a histogram with 5 bars.

The first bar represents how many values in the array are between 0 and 1.

The second bar represents how many values are between 1 and 2.

Etc.

Which gives us this result:

●
52 values are between 0 and 1

●
48 values are between 1 and 2

●
49 values are between 2 and 3

●
51 values are between 3 and 4

●
50 values are between 4 and 5

Note: The array values are random numbers and will not show the exact same result on your computer.

Big Data Distributions

An array containing 250 values is not considered very big, but now you know how to create a random set of values, and by changing the parameters, you can create the data set as big as you want.

Example

Create an array with 100000 random numbers, and display them using a histogram with 100 bars:

import
 numpy

import
 matplotlib.pyplot as
 plt

x = numpy.random.uniform(0.0
, 5.0
, 100000
)

plt.hist(x, 100
)

plt.show()

Machine Learning - Normal Data Distribution

Normal Data Distribution

In the previous chapter we learned how to create a completely random array, of a given size, and between two given values.

In this chapter we will learn how to create an array where the values are concentrated around a given value.

In probability theory this kind of data distribution is known as the normal data distribution
, or the Gaussian data distribution
, after the mathematician Carl Friedrich Gauss who came up with the formula of this data distribution.

Example

A typical normal data distribution:

import
 numpy

import
 matplotlib.pyplot as
 plt

x = numpy.random.normal(5.0
, 1.0
, 100000
)

plt.hist(x, 100
)

plt.show()

Note: A normal distribution graph is also known as the bell curve
 because of it's characteristic shape of a bell.

Histogram Explained

We use the array from the numpy.random.normal(
)
 method, with 100000 values, to draw a histogram with 100 bars.

We specify that the mean value is 5.0, and the standard deviation is 1.0.

Meaning that the values should be concentrated around 5.0, and rarely further away than 1.0 from the mean.

And as you can see from the histogram, most values are between 4.0 and 6.0, with a top at approximately 5.0.

Machine Learning - Scatter Plot

Scatter Plot

A scatter plot is a diagram where each value in the data set is represented by a dot.

The Matplotlib module has a method for drawing scatter plots, it needs two arrays of the same length, one for the values of the x-axis, and one for the values of the y-axis:

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

The x
 array represents the age of each car.

The y
 array represents the speed of each car.

Example

Use the scatter(
)
 method to draw a scatter plot diagram:

import
 matplotlib.pyplot as
 plt

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

plt.scatter(x, y)

plt.show()

Scatter Plot Explained

The x-axis represents ages, and the y-axis represents speeds.

What we can read from the diagram is that the two fastest cars were both 2 years old, and the slowest car was 12 years old.

Note: It seems that the newer the car, the faster it drives, but that could be a coincidence, after all we only registered 13 cars.

Random Data Distributions

In Machine Learning the data sets can contain thousands-, or even millions, of values.

You might not have real world data when you are testing an algorithm, you might have to use randomly generated values.

As we have learned in the previous chapter, the NumPy module can help us with that!

Let us create two arrays that are both filled with 1000 random numbers from a normal data distribution.

The first array will have the mean set to 5.0 with a standard deviation of 1.0.

The second array will have the mean set to 10.0 with a standard deviation of 2.0:

Example

A scatter plot with 1000 dots:

import
 numpy

import
 matplotlib.pyplot as
 plt

x = numpy.random.normal(5.0
, 1.0
, 1000
)

y = numpy.random.normal(10.0
, 2.0
, 1000
)

plt.scatter(x, y)

plt.show()

Scatter Plot Explained

We can see that the dots are concentrated around the value 5 on the x-axis, and 10 on the y-axis.

We can also see that the spread is wider on the y-axis than on the x-axis.

Machine Learning - Linear Regression

Regression

The term regression is used when you try to find the relationship between variables.

In Machine Learning, and in statistical modeling, that relationship is used to predict the outcome of future events.

Linear Regression

Linear regression uses the relationship between the data-points to draw a straight line through all them.

This line can be used to predict future values.

In Machine Learning, predicting the future is very important.

How Does it Work?

Python has methods for finding a relationship between data-points and to draw a line of linear regression. We will show you how to use these methods instead of going through the mathematic formula.

In the example below, the x-axis represents age, and the y-axis represents speed. We have registered the age and speed of 13 cars as they were passing a tollbooth. Let us see if the data we collected could be used in a linear regression:

Example

Start by drawing a scatter plot:

import
 matplotlib.pyplot as
 plt

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

plt.scatter(x, y)

plt.show()

Example

Import scip
y
 and draw the line of Linear Regression:

import
 matplotlib.pyplot as
 plt

from
 scipy import
 stats

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def
 myfunc(x):

 return
 slope * x + intercept

mymodel = list
(map
(myfunc, x))

plt.scatter(x, y)

plt.plot(x, mymodel)

plt.show()

Example Explained

Import the modules you need.

You can learn about the Matplotlib module in our Matplotlib Tutorial
.

You can learn about the SciPy module in our SciPy Tutorial
.

import
 matplotlib.pyplot as
 plt

from
 scipy import
 stats

Create the arrays that represent the values of the x and y axis:

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

Execute a method that returns some important key values of Linear Regression:

slope, intercept, r, p, std_err = stats.linregress(x, y)

Create a function that uses the slop
e
 and intercep
t
 values to return a new value. This new value represents where on the y-axis the corresponding x value will be placed:

def
 myfunc(x):

 return
 slope * x + intercept

Run each value of the x array through the function. This will result in a new array with new values for the y-axis:

mymodel = list
(map
(myfunc, x))

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of linear regression:

plt.plot(x, mymodel)

Display the diagram:

plt.show()

R for Relationship

It is important to know how the relationship between the values of the x-axis and the values of the y-axis is, if there are no relationship the linear regression can not be used to predict anything.

This relationship - the coefficient of correlation - is called r
.

The r
 value ranges from 0 to 1, where 0 means no relationship, and 1 means 100% related.

Python and the Scipy module will compute this value for you, all you have to do is feed it with the x and y values.

Example

How well does my data fit in a linear regression?

from
 scipy import
 stats

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

slope, intercept, r, p, std_err = stats.linregress(x, y)

print
(r)

Note: The result -0.76 shows that there is a relationship, not perfect, but it indicates that we could use linear regression in future predictions.

Predict Future Values

Now we can use the information we have gathered to predict future values.

Example: Let us try to predict the speed of a 10 years old car.

To do so, we need the same myfunc(
)
 function from the example above:

def
 myfunc(x):

 return
 slope * x + intercept

Example

Predict the speed of a 10 years old car:

from
 scipy import
 stats

x = [5
,7
,8
,7
,2
,17
,2
,9
,4
,11
,12
,9
,6
]

y = [99
,86
,87
,88
,111
,86
,103
,87
,94
,78
,77
,85
,86
]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def
 myfunc(x):

 return
 slope * x + intercept

speed = myfunc(10
)

print
(speed)

Bad Fit?

Let us create an example where linear regression would not be the best method to predict future values.

Example

These values for the x- and y-axis should result in a very bad fit for linear regression:

import
 matplotlib.pyplot as
 plt

from
 scipy import
 stats

x = [89
,43
,36
,36
,95
,10
,66
,34
,38
,20
,26
,29
,48
,64
,6
,5
,36
,66
,72
,40
]

y = [21
,46
,3
,35
,67
,95
,53
,72
,58
,10
,26
,34
,90
,33
,38
,20
,56
,2
,47
,15
]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def
 myfunc(x):

 return
 slope * x + intercept

mymodel = list
(map
(myfunc, x))

plt.scatter(x, y)

plt.plot(x, mymodel)

plt.show()

And the r
 for relationship?

Example

You should get a very low r
 value.

import
 numpy

from
 scipy import
 stats

x = [89
,43
,36
,36
,95
,10
,66
,34
,38
,20
,26
,29
,48
,64
,6
,5
,36
,66
,72
,40
]

y = [21
,46
,3
,35
,67
,95
,53
,72
,58
,10
,26
,34
,90
,33
,38
,20
,56
,2
,47
,15
]

slope, intercept, r, p, std_err = stats.linregress(x, y)

print
(r)

The result: 0.013 indicates a very bad relationship, and tells us that this data set is not suitable for linear regression.

Machine Learning - Polynomial Regression

Polynomial Regression

If your data points clearly will not fit a linear regression (a straight line through all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship between the variables x and y to find the best way to draw a line through the data points.

How Does it Work?

Python has methods for finding a relationship between data-points and to draw a line of polynomial regression. We will show you how to use these methods instead of going through the mathematic formula.

In the example below, we have registered 18 cars as they were passing a certain tollbooth.

We have registered the car's speed, and the time of day (hour) the passing occurred.

The x-axis represents the hours of the day and the y-axis represents the speed:

Example

Start by drawing a scatter plot:

import
 matplotlib.pyplot as
 plt

x = [1
,2
,3
,5
,6
,7
,8
,9
,10
,12
,13
,14
,15
,16
,18
,19
,21
,22
]

y = [100
,90
,80
,60
,60
,55
,60
,65
,70
,70
,75
,76
,78
,79
,90
,99
,99
,100
]

plt.scatter(x, y)

plt.show()

Example Explained

Import the modules you need.

You can learn about the NumPy module in our NumPy Tutorial.

You can learn about the SciPy module in our SciPy Tutorial.

import
 numpy

import
 matplotlib.pyplot as
 plt

Create the arrays that represent the values of the x and y axis:

x = [1
,2
,3
,5
,6
,7
,8
,9
,10
,12
,13
,14
,15
,16
,18
,19
,21
,22
]

y = [100
,90
,80
,60
,60
,55
,60
,65
,70
,70
,75
,76
,78
,79
,90
,99
,99
,100
]

NumPy has a method that lets us make a polynomial model:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

Then specify how the line will display, we start at position 1, and end at position 22:

myline = numpy.linspace(1
, 22
, 100
)

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of polynomial regression:

plt.plot(myline, mymodel(myline))

Display the diagram:

plt.show()

R-Squared

It is important to know how well the relationship between the values of the x- and y-axis is, if there are no relationship the polynomial regression can not be used to predict anything.

The relationship is measured with a value called the r-squared.

The r-squared value ranges from 0 to 1, where 0 means no relationship, and 1 means 100% related.

Python and the Sklearn module will compute this value for you, all you have to do is feed it with the x and y arrays:

Example

How well does my data fit in a polynomial regression?

import
 numpy

from
 sklearn.metrics import
 r2_score

x = [1
,2
,3
,5
,6
,7
,8
,9
,10
,12
,13
,14
,15
,16
,18
,19
,21
,22
]

y = [100
,90
,80
,60
,60
,55
,60
,65
,70
,70
,75
,76
,78
,79
,90
,99
,99
,100
]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

print
(r2_score(y, mymodel(x)))

Note: The result 0.94 shows that there is a very good relationship, and we can use polynomial regression in future predictions.

Predict Future Values

Now we can use the information we have gathered to predict future values.

Example: Let us try to predict the speed of a car that passes the tollbooth at around 17 P.M:

To do so, we need the same mymode
l
 array from the example above:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

Example

Predict the speed of a car passing at 17 P.M:

import
 numpy

from
 sklearn.metrics import
 r2_score

x = [1
,2
,3
,5
,6
,7
,8
,9
,10
,12
,13
,14
,15
,16
,18
,19
,21
,22
]

y = [100
,90
,80
,60
,60
,55
,60
,65
,70
,70
,75
,76
,78
,79
,90
,99
,99
,100
]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

speed = mymodel(17
)

print
(speed)

Bad Fit?

Let us create an example where polynomial regression would not be the best method to predict future values.

Example

These values for the x- and y-axis should result in a very bad fit for polynomial regression:

import
 numpy

import
 matplotlib.pyplot as
 plt

x = [89
,43
,36
,36
,95
,10
,66
,34
,38
,20
,26
,29
,48
,64
,6
,5
,36
,66
,72
,40
]

y = [21
,46
,3
,35
,67
,95
,53
,72
,58
,10
,26
,34
,90
,33
,38
,20
,56
,2
,47
,15
]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

myline = numpy.linspace(2
, 95
, 100
)

plt.scatter(x, y)

plt.plot(myline, mymodel(myline))

plt.show()

And the r-squared value?

Example

You should get a very low r-squared value.

import
 numpy

from
 sklearn.metrics import
 r2_score

x = [89
,43
,36
,36
,95
,10
,66
,34
,38
,20
,26
,29
,48
,64
,6
,5
,36
,66
,72
,40
]

y = [21
,46
,3
,35
,67
,95
,53
,72
,58
,10
,26
,34
,90
,33
,38
,20
,56
,2
,47
,15
]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3
))

print
(r2_score(y, mymodel(x)))

Machine Learning - Multiple Regression

Multiple Regression

Multiple regression is like linear regression, but with more than one independent value, meaning that we try to predict a value based on two or more variables.

Take a look at the data set below, it contains some information about cars.

[image: Car Model Volume Weight CO2]

	
Toyota

	
Aygo

	
1000

	
790

	
99

	
Mitsubishi

	
Space Star

	
1200

	
1160

	
95

	
Skoda

	
Citigo

	
1000

	
929

	
95

	
Fiat

	
500

	
900

	
865

	
90

	
Mini

	
Cooper

	
1500

	
1140

	
105

	
VW

	
Up!

	
1000

	
929

	
105

	
Skoda

	
Fabia

	
1400

	
1109

	
90

	
Mercedes

	
A-Class

	
1500

	
1365

	
92

	
Ford

	
Fiesta

	
1500

	
1112

	
98

	
Audi

	
A1

	
1600

	
1150

	
99

	
Hyundai

	
I20

	
1100

	
980

	
99

	
Suzuki

	
Swift

	
1300

	
990

	
101

	
Ford

	
Fiesta

	
1000

	
1112

	
99

	
Honda

	
Civic

	
1600

	
1252

	
94

	
Hundai

	
I30

	
1600

	
1326

	
97

	
Opel

	
Astra

	
1600

	
1330

	
97

	
BMW

	
1

	
1600

	
1365

	
99

	
Mazda

	
3

	
2200

	
1280

	
104

	
Skoda

	
Rapid

	
1600

	
1119

	
104

	
Ford

	
Focus

	
2000

	
1328

	
105

	
Ford

	
Mondeo

	
1600

	
1584

	
94

	
Opel

	
Insignia

	
2000

	
1428

	
99

	
Mercedes

	
C-Class

	
2100

	
1365

	
99

	
Skoda

	
Octavia

	
1600

	
1415

	
99

	
Volvo

	
S60

	
2000

	
1415

	
99

	
Mercedes

	
CLA

	
1500

	
1465

	
102

	
Audi

	
A4

	
2000

	
1490

	
104

	
Audi

	
A6

	
2000

	
1725

	
114

	
Volvo

	
V70

	
1600

	
1523

	
109

	
BMW

	
5

	
2000

	
1705

	
114

	
Mercedes

	
E-Class

	
2100

	
1605

	
115

	
Volvo

	
XC70

	
2000

	
1746

	
117

	
Ford

	
B-Max

	
1600

	
1235

	
104

	
BMW

	
2

	
1600

	
1390

	
108

	
Opel

	
Zafira

	
1600

	
1405

	
109

	
Mercedes

	
SLK

	
2500

	
1395

	
120

We can predict the CO2 emission of a car based on the size of the engine, but with multiple regression we can throw in more variables, like the weight of the car, to make the prediction more accurate.

How Does it Work?

In Python we have modules that will do the work for us. Start by importing the Pandas module.

import
 pandas

The Pandas module allows us to read csv files and return a DataFrame object.

df = pandas.read_csv("cars.csv"
)

Then make a list of the independent values and call this variable X
.

Put the dependent values in a variable called y
.

X = df[['Weight'
, 'Volume'
]]

y = df['CO2'
]

Tip: It is common to name the list of independent values with a upper case X, and the list of dependent values with a lower case y.

We will use some methods from the sklearn module, so we will have to import that module as well:

from
 sklearn import
 linear_model

From the sklearn module we will use the LinearRegression(
)
 method to create a linear regression object.

This object has a method called fit(
)
 that takes the independent and dependent values as parameters and fills the regression object with data that describes the relationship:

regr = linear_model.LinearRegression()

regr.fit(X, y)

Now we have a regression object that are ready to predict CO2 values based on a car's weight and volume:

#predict the CO2 emission of a car where the weight is 2300kg, and the volume is 1300cm
3
:

predictedCO2 = regr.predict([[2300
, 1300
]])

Example

See the whole example in action:

import
 pandas

from
 sklearn import
 linear_model

df = pandas.read_csv("cars.csv"
)

X = df[['Weight'
, 'Volume'
]]

y = df['CO2'
]

regr = linear_model.LinearRegression()

regr.fit(X, y)

#predict the CO2 emission of a car where the weight is 2300kg, and the volume is 1300cm
3
:

predictedCO2 = regr.predict([[2300
, 1300
]])

print
(predictedCO2)

Result:

[107.2087328]

We have predicted that a car with 1.3 liter engine, and a weight of 2300 kg, will release approximately 107 grams of CO2 for every kilometer it drives.

Coefficient

The coefficient is a factor that describes the relationship with an unknown variable.

Example: if x
 is a variable, then 2
x
 is x
 two times. x
 is the unknown variable, and the number 2
 is the coefficient.

In this case, we can ask for the coefficient value of weight against CO2, and for volume against CO2. The answer(s) we get tells us what would happen if we increase, or decrease, one of the independent values.

Example

Print the coefficient values of the regression object:

import
 pandas

from
 sklearn import
 linear_model

df = pandas.read_csv("cars.csv"
)

X = df[['Weight'
, 'Volume'
]]

y = df['CO2'
]

regr = linear_model.LinearRegression()

regr.fit(X, y)

print
(regr.coef_)

Result:

[0.00755095 0.00780526]

Result Explained

The result array represents the coefficient values of weight and volume.

Weight: 0.00755095

Volume: 0.00780526

These values tell us that if the weight increase by 1kg, the CO2 emission increases by 0.00755095g.

And if the engine size (Volume) increases by 1 cm3
, the CO2 emission increases by 0.00780526 g.

I think that is a fair guess, but let test it!

We have already predicted that if a car with a 1300cm3
 engine weighs 2300kg, the CO2 emission will be approximately 107g.

What if we increase the weight with 1000kg?

Example

Copy the example from before, but change the weight from 2300 to 3300:

import
 pandas

from
 sklearn import
 linear_model

df = pandas.read_csv("cars.csv"
)

X = df[['Weight'
, 'Volume'
]]

y = df['CO2'
]

regr = linear_model.LinearRegression()

regr.fit(X, y)

predictedCO2 = regr.predict([[3300
, 1300
]])

print
(predictedCO2)

Result:

[114.75968007]

We have predicted that a car with 1.3 liter engine, and a weight of 3300 kg, will release approximately 115 grams of CO2 for every kilometer it drives.

Which shows that the coefficient of 0.00755095 is correct:

107.2087328 + (1000 * 0.00755095) = 114.75968

Machine Learning - Scale

❮ Previous
Next ❯

Scale Features

When your data has different values, and even different measurement units, it can be difficult to compare them. What is kilograms compared to meters? Or altitude compared to time?

The answer to this problem is scaling. We can scale data into new values that are easier to compare.

Take a look at the table below, it is the same data set that we used in the multiple regression chapter, but this time the volume column contains values in liters
 instead of cm
3
 (1.0 instead of 1000).

[image: Car Model Volume Weight CO2]

	
Toyota

	
Aygo

	
1.0

	
790

	
99

	
Mitsubishi

	
Space Star

	
1.2

	
1160

	
95

	
Skoda

	
Citigo

	
1.0

	
929

	
95

	
Fiat

	
500

	
0.9

	
865

	
90

	
Mini

	
Cooper

	
1.5

	
1140

	
105

	
VW

	
Up!

	
1.0

	
929

	
105

	
Skoda

	
Fabia

	
1.4

	
1109

	
90

	
Mercedes

	
A-Class

	
1.5

	
1365

	
92

	
Ford

	
Fiesta

	
1.5

	
1112

	
98

	
Audi

	
A1

	
1.6

	
1150

	
99

	
Hyundai

	
I20

	
1.1

	
980

	
99

	
Suzuki

	
Swift

	
1.3

	
990

	
101

	
Ford

	
Fiesta

	
1.0

	
1112

	
99

	
Honda

	
Civic

	
1.6

	
1252

	
94

	
Hundai

	
I30

	
1.6

	
1326

	
97

	
Opel

	
Astra

	
1.6

	
1330

	
97

	
BMW

	
1

	
1.6

	
1365

	
99

	
Mazda

	
3

	
2.2

	
1280

	
104

	
Skoda

	
Rapid

	
1.6

	
1119

	
104

	
Ford

	
Focus

	
2.0

	
1328

	
105

	
Ford

	
Mondeo

	
1.6

	
1584

	
94

	
Opel

	
Insignia

	
2.0

	
1428

	
99

	
Mercedes

	
C-Class

	
2.1

	
1365

	
99

	
Skoda

	
Octavia

	
1.6

	
1415

	
99

	
Volvo

	
S60

	
2.0

	
1415

	
99

	
Mercedes

	
CLA

	
1.5

	
1465

	
102

	
Audi

	
A4

	
2.0

	
1490

	
104

	
Audi

	
A6

	
2.0

	
1725

	
114

	
Volvo

	
V70

	
1.6

	
1523

	
109

	
BMW

	
5

	
2.0

	
1705

	
114

	
Mercedes

	
E-Class

	
2.1

	
1605

	
115

	
Volvo

	
XC70

	
2.0

	
1746

	
117

	
Ford

	
B-Max

	
1.6

	
1235

	
104

	
BMW

	
2

	
1.6

	
1390

	
108

	
Opel

	
Zafira

	
1.6

	
1405

	
109

	
Mercedes

	
SLK

	
2.5

	
1395

	
120

It can be difficult to compare the volume 1.0 with the weight 790, but if we scale them both into comparable values, we can easily see how much one value is compared to the other.

There are different methods for scaling data, in this tutorial we will use a method called standardization.

The standardization method uses this formula:

z = (x - u) / s

Where z
 is the new value, x
 is the original value, u
 is the mean and s
 is the standard deviation.

If you take the weight column from the data set above, the first value is 790, and the scaled value will be:

(790 - 1292.23) / 238.74 = -2.1

If you take the volume column from the data set above, the first value is 1.0, and the scaled value will be:

(1.0 - 1.61) / 0.38 = -1.59

Now you can compare -2.1 with -1.59 instead of comparing 790 with 1.0.

You do not have to do this manually, the Python sklearn module has a method called StandardScaler(
)
 which returns a Scaler object with methods for transforming data sets.

Example

Scale all values in the Weight and Volume columns:

import
 pandas

from
 sklearn import
 linear_model

from
 sklearn.preprocessing import
 StandardScaler

scale = StandardScaler()

df = pandas.read_csv("cars2.csv"
)

X = df[['Weight'
, 'Volume'
]]

scaledX = scale.fit_transform(X)

print
(scaledX)

Result:

Note that the first two values are -2.1 and -1.59, which corresponds to our calculations:

[[-2.10389253 -1.59336644]

[-0.55407235 -1.07190106]

[-1.52166278 -1.59336644]

[-1.78973979 -1.85409913]

[-0.63784641 -0.28970299]

[-1.52166278 -1.59336644]

[-0.76769621 -0.55043568]

[0.3046118 -0.28970299]

[-0.7551301 -0.28970299]

[-0.59595938 -0.0289703]

[-1.30803892 -1.33263375]

[-1.26615189 -0.81116837]

[-0.7551301 -1.59336644]

[-0.16871166 -0.0289703]

[0.14125238 -0.0289703]

[0.15800719 -0.0289703]

[0.3046118 -0.0289703]

[-0.05142797 1.53542584]

[-0.72580918 -0.0289703]

[0.14962979 1.01396046]

[1.2219378 -0.0289703]

[0.5685001 1.01396046]

[0.3046118 1.27469315]

[0.51404696 -0.0289703]

[0.51404696 1.01396046]

[0.72348212 -0.28970299]

[0.8281997 1.01396046]

[1.81254495 1.01396046]

[0.96642691 -0.0289703]

[1.72877089 1.01396046]

[1.30990057 1.27469315]

[1.90050772 1.01396046]

[-0.23991961 -0.0289703]

[0.40932938 -0.0289703]

[0.47215993 -0.0289703]

[0.4302729 2.31762392]]

Predict CO2 Values

The task in the Multiple Regression chapter was to predict the CO2 emission from a car when you only knew its weight and volume.

When the data set is scaled, you will have to use the scale when you predict values:

Example

Predict the CO2 emission from a 1.3 liter car that weighs 2300 kilograms:

import
 pandas

from
 sklearn import
 linear_model

from
 sklearn.preprocessing import
 StandardScaler

scale = StandardScaler()

df = pandas.read_csv("cars2.csv"
)

X = df[['Weight'
, 'Volume'
]]

y = df['CO2'
]

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()

regr.fit(scaledX, y)

scaled = scale.transform([[2300
, 1.3
]])

predictedCO2 = regr.predict([scaled[0
]])

print
(predictedCO2)

Result:

[107.2087328]

Machine Learning - Train/Test

Evaluate Your Model

In Machine Learning we create models to predict the outcome of certain events, like in the previous chapter where we predicted the CO2 emission of a car when we knew the weight and engine size.

To measure if the model is good enough, we can use a method called Train/Test.

What is Train/Test

Train/Test is a method to measure the accuracy of your model.

It is called Train/Test because you split the the data set into two sets: a training set and a testing set.

80% for training, and 20% for testing.

You train
 the model using the training set.

You test
 the model using the testing set.

Train
 the model means create
 the model.

Test
 the model means test the accuracy of the model.

Start With a Data Set

Start with a data set you want to test.

Our data set illustrates 100 customers in a shop, and their shopping habits.

Example

import
 numpy

import
 matplotlib.pyplot as
 plt

numpy.random.seed(2
)

x = numpy.random.normal(3
, 1
, 100
)

y = numpy.random.normal(150
, 40
, 100
) / x

plt.scatter(x, y)

plt.show()

Result:

The x axis represents the number of minutes before making a purchase.

The y axis represents the amount of money spent on the purchase.

Split Into Train/Test

The training
 set should be a random selection of 80% of the original data.

The testing
 set should be the remaining 20%.

train_x = x[:80
]

train_y = y[:80
]

test_x = x[80
:]

test_y = y[80
:]

Display the Training Set

Display the same scatter plot with the training set:

Example

plt.scatter(train_x, train_y)

plt.show()

Result:

It looks like the original data set, so it seems to be a fair selection:

Display the Testing Set

To make sure the testing set is not completely different, we will take a look at the testing set as well.

Example

plt.scatter(test_x, test_y)

plt.show()

Result:

The testing set also looks like the original data set:

Fit the Data Set

What does the data set look like? In my opinion I think the best fit would be a polynomial regression, so let us draw a line of polynomial regression.

To draw a line through the data points, we use the plot(
)
 method of the matplotlib module:

Example

Draw a polynomial regression line through the data points:

import
 numpy

import
 matplotlib.pyplot as
 plt

numpy.random.seed(2
)

x = numpy.random.normal(3
, 1
, 100
)

y = numpy.random.normal(150
, 40
, 100
) / x

train_x = x[:80
]

train_y = y[:80
]

test_x = x[80
:]

test_y = y[80
:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4
))

myline = numpy.linspace(0
, 6
, 100
)

plt.scatter(train_x, train_y)

plt.plot(myline, mymodel(myline))

plt.show()

The result can back my suggestion of the data set fitting a polynomial regression, even though it would give us some weird results if we try to predict values outside of the data set. Example: the line indicates that a customer spending 6 minutes in the shop would make a purchase worth 200. That is probably a sign of overfitting.

But what about the R-squared score? The R-squared score is a good indicator of how well my data set is fitting the model.

R2

Remember R2, also known as R-squared?

It measures the relationship between the x axis and the y axis, and the value ranges from 0 to 1, where 0 means no relationship, and 1 means totally related.

The sklearn module has a method called r2_score(
)
 that will help us find this relationship.

In this case we would like to measure the relationship between the minutes a customer stays in the shop and how much money they spend.

Example

How well does my training data fit in a polynomial regression?

import
 numpy

from
 sklearn.metrics import
 r2_score

numpy.random.seed(2
)

x = numpy.random.normal(3
, 1
, 100
)

y = numpy.random.normal(150
, 40
, 100
) / x

train_x = x[:80
]

train_y = y[:80
]

test_x = x[80
:]

test_y = y[80
:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4
))

r2 = r2_score(train_y, mymodel(train_x))

print
(r2)

Note: The result 0.799 shows that there is a OK relationship.

Bring in the Testing Set

Now we have made a model that is OK, at least when it comes to training data.

Now we want to test the model with the testing data as well, to see if gives us the same result.

Example

Let us find the R2 score when using testing data:

import
 numpy

from
 sklearn.metrics import
 r2_score

numpy.random.seed(2
)

x = numpy.random.normal(3
, 1
, 100
)

y = numpy.random.normal(150
, 40
, 100
) / x

train_x = x[:80
]

train_y = y[:80
]

test_x = x[80
:]

test_y = y[80
:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4
))

r2 = r2_score(test_y, mymodel(test_x))

print
(r2)

Note: The result 0.809 shows that the model fits the testing set as well, and we are confident that we can use the model to predict future values.

Predict Values

Now that we have established that our model is OK, we can start predicting new values.

Example

How much money will a buying customer spend, if she or he stays in the shop for 5 minutes?

print
(mymodel(5
))

Decision Tree

In this chapter we will show you how to make a "Decision Tree". A Decision Tree is a Flow Chart, and can help you make decisions based on previous experience.

In the example, a person will try to decide if he/she should go to a comedy show or not.

Luckily our example person has registered every time there was a comedy show in town, and registered some information about the comedian, and also registered if he/she went or not.

	
Age

	
Experience

	
Rank

	
Nationality

	
Go

	
36

	
10

	
9

	
UK

	
NO

	
42

	
12

	
4

	
USA

	
NO

	
23

	
4

	
6

	
N

	
NO

	
52

	
4

	
4

	
USA

	
NO

	
43

	
21

	
8

	
USA

	
YES

	
44

	
14

	
5

	
UK

	
NO

	
66

	
3

	
7

	
N

	
YES

	
35

	
14

	
9

	
UK

	
YES

	
52

	
13

	
7

	
N

	
YES

	
35

	
5

	
9

	
N

	
YES

	
24

	
3

	
5

	
USA

	
NO

	
18

	
3

	
7

	
UK

	
YES

	
45

	
9

	
9

	
UK

	
YES

Now, based on this data set, Python can create a decision tree that can be used to decide if any new shows are worth attending to.

How Does it Work?

First, import the modules you need, and read the dataset with pandas:

Example

Read and print the data set:

import
 pandas

from
 sklearn import
 tree

import
 pydotplus

from
 sklearn.tree import
 DecisionTreeClassifier

import
 matplotlib.pyplot as
 plt

import
 matplotlib.image as
 pltimg

df = pandas.read_csv("shows.csv"
)

print
(df)

To make a decision tree, all data has to be numerical.

We have to convert the non numerical columns 'Nationality' and 'Go' into numerical values.

Pandas has a map(
)
 method that takes a dictionary with information on how to convert the values.

{'UK': 0, 'USA': 1, 'N': 2}

Means convert the values 'UK' to 0, 'USA' to 1, and 'N' to 2.

Example

Change string values into numerical values:

d = {'UK'
: 0
, 'USA'
: 1
, 'N'
: 2
}

df['Nationality'
] = df['Nationality'
].map
(d)

d = {'YES'
: 1
, 'NO'
: 0
}

df['Go'
] = df['Go'
].map
(d)

print
(df)

Then we have to separate the feature
 columns from the target
 column.

The feature columns are the columns that we try to predict from
, and the target column is the column with the values we try to predict.

Example

X
 is the feature columns,
 y
 is the target column:

features = ['Age'
, 'Experience'
, 'Rank'
, 'Nationality'
]

X = df[features]

y = df['Go'
]

print
(X)

print
(y)

Now we can create the actual decision tree, fit it with our details, and save a .png file on the computer:

Example

Create a Decision Tree, save it as an image, and show the image:

dtree = DecisionTreeClassifier()

dtree = dtree.fit(X, y)

data = tree.export_graphviz(dtree, out_file=None, feature_names=features)

graph = pydotplus.graph_from_dot_data(data)

graph.write_png('mydecisiontree.png'
)

img=pltimg.imread('mydecisiontree.png'
)

imgplot = plt.imshow(img)

plt.show()

Result Explained

The decision tree uses your earlier decisions to calculate the odds for you to wanting to go see a comedian or not.

Let us read the different aspects of the decision tree:

Rank

Rank <= 6.
5
 means that every comedian with a rank of 6.5 or lower will follow the Tru
e
 arrow (to the left), and the rest will follow the Fals
e
 arrow (to the right).

gini = 0.49
7
 refers to the quality of the split, and is always a number between 0.0 and 0.5, where 0.0 would mean all of the samples got the same result, and 0.5 would mean that the split is done exactly in the middle.

samples = 1
3
 means that there are 13 comedians left at this point in the decision, which is all of them since this is the first step.

value = [6, 7
]
 means that of these 13 comedians, 6 will get a "NO", and 7 will get a "GO".

Gini

There are many ways to split the samples, we use the GINI method in this tutorial.

The Gini method uses this formula:

Gini = 1 - (x/n)
2
 - (y/n)
2

Where
 x
 is the number of positive answers("GO"),
 n
 is the number of samples, and
 y
 is the number of negative answers ("NO"), which gives us this calculation:

1 - (7 / 13)
2
 - (6 / 13)
2
 = 0.497

The next step contains two boxes, one box for the comedians with a 'Rank' of 6.5 or lower, and one box with the rest.

True - 5 Comedians End Here:

gini = 0.
0
 means all of the samples got the same result.

samples =
 5
 means that there are 5 comedians left in this branch (5 comedian with a Rank of 6.5 or lower).

value = [5, 0
]
 means that 5 will get a "NO" and 0 will get a "GO".

False - 8 Comedians Continue:

Nationality

Nationality <= 0.
5
 means that the comedians with a nationality value of less than 0.5 will follow the arrow to the left (which means everyone from the UK,), and the rest will follow the arrow to the right.

gini = 0.21
9
 means that about 22% of the samples would go in one direction.

samples =
 8
 means that there are 8 comedians left in this branch (8 comedian with a Rank higher than 6.5).

value = [1, 7
]
 means that of these 8 comedians, 1 will get a "NO" and 7 will get a "GO".

True - 4 Comedians Continue:

Age

Age <= 35.
5
 means that comedians at the age of 35.5 or younger will follow the arrow to the left, and the rest will follow the arrow to the right.

gini = 0.37
5
 means that about 37,5% of the samples would go in one direction.

samples =
 4
 means that there are 4 comedians left in this branch (4 comedians from the UK).

value = [1, 3
]
 means that of these 4 comedians, 1 will get a "NO" and 3 will get a "GO".

False - 4 Comedians End Here:

gini = 0.
0
 means all of the samples got the same result.

samples =
 4
 means that there are 4 comedians left in this branch (4 comedians not from the UK).

value = [0, 4
]
 means that of these 4 comedians, 0 will get a "NO" and 4 will get a "GO".

True - 2 Comedians End Here:

gini = 0.
0
 means all of the samples got the same result.

samples =
 2
 means that there are 2 comedians left in this branch (2 comedians at the age 35.5 or younger).

value = [0, 2
]
 means that of these 2 comedians, 0 will get a "NO" and 2 will get a "GO".

False - 2 Comedians Continue:

Experience

Experience <= 9.
5
 means that comedians with 9.5 years of experience, or less, will follow the arrow to the left, and the rest will follow the arrow to the right.

gini = 0.
5
 means that 50% of the samples would go in one direction.

samples =
 2
 means that there are 2 comedians left in this branch (2 comedians older than 35.5).

value = [1, 1
]
 means that of these 2 comedians, 1 will get a "NO" and 1 will get a "GO".

True - 1 Comedian Ends Here:

gini = 0.
0
 means all of the samples got the same result.

samples =
 1
 means that there is 1 comedian left in this branch (1 comedian with 9.5 years of experience or less).

value = [0, 1
]
 means that 0 will get a "NO" and 1 will get a "GO".

False - 1 Comedian Ends Here:

gini = 0.
0
 means all of the samples got the same result.

samples =
 1
 means that there is 1 comedians left in this branch (1 comedian with more than 9.5 years of experience).

value = [1, 0
]
 means that 1 will get a "NO" and 0 will get a "GO".

Predict Values

We can use the Decision Tree to predict new values.

Example: Should I go see a show starring a 40 years old American comedian, with 10 years of experience, and a comedy ranking of 7?

Example

Use predict() method to predict new values:

print
(dtree.predict([[40
, 10
, 7
, 1
]]))

Example

What would the answer be if the comedy rank was 6?

print
(dtree.predict([[40
, 10
, 6
, 1
]]))

Different Results

You will see that the Decision Tree gives you different results if you run it enough times, even if you feed it with the same data.

That is because the Decision Tree does not give us a 100% certain answer. It is based on the probability of an outcome, and the answer will vary.

Python MySQL

Python can be used in database applications.

One of the most popular databases is MySQL.

Install MySQL Driver

Python needs a MySQL driver to access the MySQL database.

In this tutorial we will use the driver "MySQL Connector".

We recommend that you use PIP to install "MySQL Connector".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

Download and install "MySQL Connector":

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>python -m pip install mysql-connector-python

Now you have downloaded and installed a MySQL driver.

Test MySQL Connector

To test if the installation was successful, or if you already have "MySQL Connector" installed, create a Python page with the following content:

demo_mysql_test.py:

import
 mysql.connector

If the above code was executed with no errors, "MySQL Connector" is installed and ready to be used.

Create Connection

Start by creating a connection to the database.

Use the username and password from your MySQL database:

demo_mysql_connection.py:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

 user="
yourusername
"
,

 password="
yourpassword
"

)

print(mydb)

Now you can start querying the database using SQL statements.

Python MySQL Create Database

Creating a Database

To create a database in MySQL, use the "CREATE DATABASE" statement:

Example

create a database named "mydatabase":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"

)

mycursor = mydb.cursor()

mycursor.execute("CREATE DATABASE mydatabase"
)

If the above code was executed with no errors, you have successfully created a database.

Check if Database Exists

You can check if a database exist by listing all databases in your system by using the "SHOW DATABASES" statement:

Example

Return a list of your system's databases:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

 user="
yourusername
"
,

 password="
yourpassword
"

)

mycursor = mydb.cursor()

mycursor.execute("SHOW DATABASES"
)

for
 x in
 mycursor:

 print
(x)

Or you can try to access the database when making the connection:

Example

Try connecting to the database "mydatabase":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

 user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

If the database does not exist, you will get an error.

Python MySQL Create Table

Creating a Table

To create a table in MySQL, use the "CREATE TABLE" statement.

Make sure you define the name of the database when you create the connection

Example

Create a table named "customers":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("CREATE TABLE customers (name VARCHAR(255), address VARCHAR(255))"
)

If the above code was executed with no errors, you have now successfully created a table.

Check if Table Exists

You can check if a table exist by listing all tables in your database with the "SHOW TABLES" statement:

Example

Return a list of your system's databases:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

 user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SHOW TABLES"
)

for
 x in
 mycursor:

 print
(x)

Primary Key

When creating a table, you should also create a column with a unique key for each record.

This can be done by defining a PRIMARY KEY.

We use the statement "INT AUTO_INCREMENT PRIMARY KEY" which will insert a unique number for each record. Starting at 1, and increased by one for each record.

Example

Create primary key when creating the table:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("CREATE TABLE customers (id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255), address VARCHAR(255))"
)

If the table already exists, use the ALTER TABLE keyword:

Example

Create primary key on an existing table:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("ALTER TABLE customers ADD COLUMN id INT AUTO_INCREMENT PRIMARY KEY"
)

Python MySQL Insert Into Table

Insert Into Table

To fill a table in MySQL, use the "INSERT INTO" statement.

Example

Insert a record in the "customers" table:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"

val = ("John"
, "Highway 21"
)

mycursor.execute(sql, val)

mydb.commit()

print(mycursor.rowcount, "record inserted."
)

Important!: Notice the statement: mydb.commit(
)
. It is required to make the changes, otherwise no changes are made to the table.

Insert Multiple Rows

To insert multiple rows into a table, use the executemany(
)
 method.

The second parameter of the executemany(
)
 method is a list of tuples, containing the data you want to insert:

Example

Fill the "customers" table with data:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"

val = [

 ('Peter'
, 'Lowstreet 4'
),

 ('Amy'
, 'Apple st 652'
),

 ('Hannah'
, 'Mountain 21'
),

 ('Michael'
, 'Valley 345'
),

 ('Sandy'
, 'Ocean blvd 2'
),

 ('Betty'
, 'Green Grass 1'
),

 ('Richard'
, 'Sky st 331'
),

 ('Susan'
, 'One way 98'
),

 ('Vicky'
, 'Yellow Garden 2'
),

 ('Ben'
, 'Park Lane 38'
),

 ('William'
, 'Central st 954'
),

 ('Chuck'
, 'Main Road 989'
),

 ('Viola'
, 'Sideway 1633'
)

]

mycursor.executemany(sql, val)

mydb.commit()

print
(mycursor.rowcount, "was inserted."
)

Get Inserted ID

You can get the id of the row you just inserted by asking the cursor object.

Note: If you insert more than one row, the id of the last inserted row is returned.

Example

Insert one row, and return the ID:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "INSERT INTO customers (name, address) VALUES (%s, %s)"

val = ("Michelle"
, "Blue Village"
)

mycursor.execute(sql, val)

mydb.commit()

print
("1 record inserted, ID:"
, mycursor.lastrowid)

Python MySQL Select From

Select From a Table

To select from a table in MySQL, use the "SELECT" statement:

Example

Select all records from the "customers" table, and display the result:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers"
)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print(x)

Note: We use the fetchall(
)
 method, which fetches all rows from the last executed statement.

Selecting Columns

To select only some of the columns in a table, use the "SELECT" statement followed by the column name(s):

Example

Select only the name and address columns:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT name, address FROM customers"
)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print
(x)

Using the fetchone() Method

If you are only interested in one row, you can use the fetchone(
)
 method.

The fetchone(
)
 method will return the first row of the result:

Example

Fetch only one row:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers"
)

myresult = mycursor.fetchone()

print
(myresult)

Python MySQL Where

Select With a Filter

When selecting records from a table, you can filter the selection by using the "WHERE" statement:

Example

Select record(s) where the address is "Park Lane 38": result:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address ='Park Lane 38'"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print(x)

Wildcard Characters

You can also select the records that starts, includes, or ends with a given letter or phrase.

Use the %
 to represent wildcard characters:

Example

Select records where the address contains the word "way":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address LIKE '%way%'"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print
(x)

Prevent SQL Injection

When query values are provided by the user, you should escape the values.

This is to prevent SQL injections, which is a common web hacking technique to destroy or misuse your database.

The mysql.connector module has methods to escape query values:

Example

Escape query values by using the placholder %
s
 method:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM customers WHERE address = %s"

adr = ("Yellow Garden 2"
,)

mycursor.execute(sql, adr)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print
(x)

Python MySQL Delete From By

Delete Record

You can delete records from an existing table by using the "DELETE FROM" statement:

Example

Delete any record where the address is "Mountain 21":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "DELETE FROM customers WHERE address = 'Mountain 21'"

mycursor.execute(sql)

mydb.commit()

print(mycursor.rowcount, "record(s) deleted"
)

Important!: Notice the statement: mydb.commit(
)
. It is required to make the changes, otherwise no changes are made to the table.

Notice the WHERE clause in the DELETE syntax: The WHERE clause specifies which record(s) that should be deleted. If you omit the WHERE clause, all records will be deleted!

Prevent SQL Injection

It is considered a good practice to escape the values of any query, also in delete statements.

This is to prevent SQL injections, which is a common web hacking technique to destroy or misuse your database.

The mysql.connector module uses the placeholder %
s
 to escape values in the delete statement:

Example

Escape values by using the placeholder %
s
 method:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "DELETE FROM customers WHERE address = %s"

adr = ("Yellow Garden 2"
,)

mycursor.execute(sql, adr)

mydb.commit()

print
(mycursor.rowcount, "record(s) deleted"
)

Python MySQL Drop Table

Delete a Table

You can delete an existing table by using the "DROP TABLE" statement:

Example

Delete the table "customers":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "DROP TABLE customers"

mycursor.execute(sql)

Drop Only if Exist

If the the table you want to delete is already deleted, or for any other reason does not exist, you can use the IF EXISTS keyword to avoid getting an error.

Example

Delete the table "customers" if it exists:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "DROP TABLE IF EXISTS customers"

mycursor.execute(sql)

Python MySQL Update Table

Update Table

You can update existing records in a table by using the "UPDATE" statement:

Example

Overwrite the address column from "Valley 345" to "Canyoun 123":

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "UPDATE customers SET address = 'Canyon 123' WHERE address = 'Valley 345'"

mycursor.execute(sql)

mydb.commit()

print(mycursor.rowcount, "record(s) affected"
)

Important!: Notice the statement: mydb.commit(
)
. It is required to make the changes, otherwise no changes are made to the table.

Notice the WHERE clause in the UPDATE syntax: The WHERE clause specifies which record or records that should be updated. If you omit the WHERE clause, all records will be updated!

Prevent SQL Injection

It is considered a good practice to escape the values of any query, also in update statements.

This is to prevent SQL injections, which is a common web hacking technique to destroy or misuse your database.

The mysql.connector module uses the placeholder %
s
 to escape values in the delete statement:

Example

Escape values by using the placholder %
s
 method:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "UPDATE customers SET address = %s WHERE address = %s"

val = ("Valley 345"
, "Canyon 123"
)

mycursor.execute(sql, val)

mydb.commit()

print
(mycursor.rowcount, "record(s) affected"
)

Python MySQL Limit

Limit the Result

You can limit the number of records returned from the query, by using the "LIMIT" statement:

Example

Select the 5 first records in the "customers" table:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers LIMIT 5"
)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print(x)

Start From Another Position

If you want to return five records, starting from the third record, you can use the "OFFSET" keyword:

Example

Start from position 3, and return 5 records:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

mycursor.execute("SELECT * FROM customers LIMIT 5 OFFSET 2"
)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print(x)

Python MySQL Join

Join Two or More Tables

You can combine rows from two or more tables, based on a related column between them, by using a JOIN statement.

Consider you have a "users" table and a "products" table:

users

{ id: 1, name: 'John', fav: 154},

{ id: 2, name: 'Peter', fav: 154},

{ id: 3, name: 'Amy', fav: 155},

{ id: 4, name: 'Hannah', fav:},

{ id: 5, name: 'Michael', fav:}

products

{ id: 154, name: 'Chocolate Heaven' },

{ id: 155, name: 'Tasty Lemons' },

{ id: 156, name: 'Vanilla Dreams' }

These two tables can be combined by using users' fa
v
 field and products' i
d
 field.

Example

Join users and products to see the name of the users favorite product:

import
 mysql.connector

mydb = mysql.connector.connect(

 host="localhost"
,

user="
yourusername
"
,

 password="
yourpassword
"
,

 database="mydatabase"

)

mycursor = mydb.cursor()

sql = "SELECT \

 users.name AS user, \

 products.name AS favorite \

 FROM users \

 INNER JOIN products ON users.fav = products.id"

mycursor.execute(sql)

myresult = mycursor.fetchall()

for
 x in
 myresult:

 print(x)

Note: You can use JOIN instead of INNER JOIN. They will both give you the same result.

LEFT JOIN

In the example above, Hannah, and Michael were excluded from the result, that is because INNER JOIN only shows the records where there is a match.

If you want to show all users, even if they do not have a favorite product, use the LEFT JOIN statement:

Example

Select all users and their favorite product:

sql = "SELECT \

 users.name AS user, \

 products.name AS favorite \

 FROM users \

 LEFT JOIN products ON users.fav = products.id"

RIGHT JOIN

If you want to return all products, and the users who have them as their favorite, even if no user have them as their favorite, use the RIGHT JOIN statement:

Example

Select all products, and the user(s) who have them as their favorite:

sql = "SELECT \

 users.name AS user, \

 products.name AS favorite \

 FROM users \

 RIGHT JOIN products ON users.fav = products.id"

Python MongoDB

Python can be used in database applications.

One of the most popular NoSQL database is MongoDB.

MongoDB

MongoDB stores data in JSON-like documents, which makes the database very flexible and scalable.

To be able to experiment with the code examples in this tutorial, you will need access to a MongoDB database.

PyMongo

Python needs a MongoDB driver to access the MongoDB database.

In this tutorial we will use the MongoDB driver "PyMongo".

We recommend that you use PIP to install "PyMongo".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

Download and install "PyMongo":

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>python -m pip install pymongo

Now you have downloaded and installed a mongoDB driver.

Test PyMongo

To test if the installation was successful, or if you already have "pymongo" installed, create a Python page with the following content:

demo_mongodb_test.py:

import
 pymongo

If the above code was executed with no errors, "pymongo" is installed and ready to be used.

Creating a Database

To create a database in MongoDB, start by creating a MongoClient object, then specify a connection URL with the correct ip address and the name of the database you want to create.

MongoDB will create the database if it does not exist, and make a connection to it.

Example

Create a database called "mydatabase":

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

Important: In MongoDB, a database is not created until it gets content!

MongoDB waits until you have created a collection (table), with at least one document (record) before it actually creates the database (and collection).

Check if Database Exists

Remember: In MongoDB, a database is not created until it gets content, so if this is your first time creating a database, you should complete the next two chapters (create collection and create document) before you check if the database exists!

You can check if a database exist by listing all databases in you system:

Example

Return a list of your system's databases:

print
(myclient.list_database_names())

Or you can check a specific database by name:

Example

Check if "mydatabase" exists:

dblist = myclient.list_database_names()

if
 "mydatabase"
 in
 dblist:

 print
("The database exists."
)

A collection in MongoDB is the same as a table in SQL databases.

Creating a Collection

To create a collection in MongoDB, use database object and specify the name of the collection you want to create.

MongoDB will create the collection if it does not exist.

Example

Create a collection called "customers":

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

Important: In MongoDB, a collection is not created until it gets content!

MongoDB waits until you have inserted a document before it actually creates the collection.

Check if Collection Exists

Remember: In MongoDB, a collection is not created until it gets content, so if this is your first time creating a collection, you should complete the next chapter (create document) before you check if the collection exists!

You can check if a collection exist in a database by listing all collections:

Example

Return a list of all collections in your database:

print
(mydb.list_collection_names())

Or you can check a specific collection by name:

Example

Check if the "customers" collection exists:

collist = mydb.list_collection_names()

if
 "customers"
 in
 collist:

 print
("The collection exists."
)

Insert Into Collection

To insert a record, or document
 as it is called in MongoDB, into a collection, we use the insert_one(
)
 method.

The first parameter of the insert_one(
)
 method is a dictionary containing the name(s) and value(s) of each field in the document you want to insert.

Example

Insert a record in the "customers" collection:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mydict = { "name"
: "John"
, "address"
: "Highway 37"
 }

x = mycol.insert_one(mydict)

Return the _id Field

The insert_one(
)
 method returns a InsertOneResult object, which has a property, inserted_i
d
, that holds the id of the inserted document.

Example

Insert another record in the "customers" collection, and return the value of the _i
d
 field:

mydict = { "name"
: "Peter"
, "address"
: "Lowstreet 27"
 }

x = mycol.insert_one(mydict)

print
(x.inserted_id)

If you do not specify an _i
d
 field, then MongoDB will add one for you and assign a unique id for each document.

In the example above no _i
d
 field was specified, so MongoDB assigned a unique _id for the record (document).

Insert Multiple Documents

To insert multiple documents into a collection in MongoDB, we use the insert_many(
)
 method.

The first parameter of the insert_many(
)
 method is a list containing dictionaries with the data you want to insert:

Example

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mylist = [

 { "name"
: "Amy"
, "address"
: "Apple st 652"
},

 { "name"
: "Hannah"
, "address"
: "Mountain 21"
},

 { "name"
: "Michael"
, "address"
: "Valley 345"
},

 { "name"
: "Sandy"
, "address"
: "Ocean blvd 2"
},

 { "name"
: "Betty"
, "address"
: "Green Grass 1"
},

 { "name"
: "Richard"
, "address"
: "Sky st 331"
},

 { "name"
: "Susan"
, "address"
: "One way 98"
},

 { "name"
: "Vicky"
, "address"
: "Yellow Garden 2"
},

 { "name"
: "Ben"
, "address"
: "Park Lane 38"
},

 { "name"
: "William"
, "address"
: "Central st 954"
},

 { "name"
: "Chuck"
, "address"
: "Main Road 989"
},

 { "name"
: "Viola"
, "address"
: "Sideway 1633"
}

]

x = mycol.insert_many(mylist)

#print list of the _id values of the inserted documents:

print
(x.inserted_ids)

The insert_many(
)
 method returns a InsertManyResult object, which has a property, inserted_id
s
, that holds the ids of the inserted documents.

Insert Multiple Documents, with Specified IDs

If you do not want MongoDB to assign unique ids for you document, you can specify the _id field when you insert the document(s).

Remember that the values has to be unique. Two documents cannot have the same _id.

Example

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mylist = [

 { "_id"
: 1
, "name"
: "John"
, "address"
: "Highway 37"
},

 { "_id"
: 2
, "name"
: "Peter"
, "address"
: "Lowstreet 27"
},

 { "_id"
: 3
, "name"
: "Amy"
, "address"
: "Apple st 652"
},

 { "_id"
: 4
, "name"
: "Hannah"
, "address"
: "Mountain 21"
},

 { "_id"
: 5
, "name"
: "Michael"
, "address"
: "Valley 345"
},

 { "_id"
: 6
, "name"
: "Sandy"
, "address"
: "Ocean blvd 2"
},

 { "_id"
: 7
, "name"
: "Betty"
, "address"
: "Green Grass 1"
},

 { "_id"
: 8
, "name"
: "Richard"
, "address"
: "Sky st 331"
},

 { "_id"
: 9
, "name"
: "Susan"
, "address"
: "One way 98"
},

 { "_id"
: 10
, "name"
: "Vicky"
, "address"
: "Yellow Garden 2"
},

 { "_id"
: 11
, "name"
: "Ben"
, "address"
: "Park Lane 38"
},

 { "_id"
: 12
, "name"
: "William"
, "address"
: "Central st 954"
},

 { "_id"
: 13
, "name"
: "Chuck"
, "address"
: "Main Road 989"
},

 { "_id"
: 14
, "name"
: "Viola"
, "address"
: "Sideway 1633"
}

]

x = mycol.insert_many(mylist)

#print list of the _id values of the inserted documents:

print
(x.inserted_ids)

In MongoDB we use the find and findOne methods to find data in a collection.

Just like the SELECT statement is used to find data in a table in a MySQL database.

Find One

To select data from a collection in MongoDB, we can use the find_one(
)
 method.

The find_one(
)
 method returns the first occurrence in the selection.

Example

Find the first document in the customers collection:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

x = mycol.find_one()

print
(x)

Find All

To select data from a table in MongoDB, we can also use the find(
)
 method.

The find(
)
 method returns all occurrences in the selection.

The first parameter of the find(
)
 method is a query object. In this example we use an empty query object, which selects all documents in the collection.

No parameters in the find() method gives you the same result as SELECT * in MySQL.

Example

Return all documents in the "customers" collection, and print each document:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

for
 x in
 mycol.find():

 print
(x)

Return Only Some Fields

The second parameter of the find(
)
 method is an object describing which fields to include in the result.

This parameter is optional, and if omitted, all fields will be included in the result.

Example

Return only the names and addresses, not the _ids:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

for
 x in
 mycol.find({},{ "_id"
: 0
, "name"
: 1
, "address"
: 1
 }):

 print
(x)

You are not allowed to specify both 0 and 1 values in the same object (except if one of the fields is the _id field). If you specify a field with the value 0, all other fields get the value 1, and vice versa:

Example

This example will exclude "address" from the result:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

for
 x in
 mycol.find({},{ "address"
: 0
 }):

 print
(x)

Example

You get an error if you specify both 0 and 1 values in the same object (except if one of the fields is the _id field):

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

for
 x in
 mycol.find({},{ "name"
: 1
, "address"
: 0
 }):

 print
(x)

Filter the Result

When finding documents in a collection, you can filter the result by using a query object.

The first argument of the find(
)
 method is a query object, and is used to limit the search.

Example

Find document(s) with the address "Park Lane 38":

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myquery = { "address"
: "Park Lane 38"
 }

mydoc = mycol.find(myquery)

for
 x in
 mydoc:

 print
(x)

Advanced Query

To make advanced queries you can use modifiers as values in the query object.

E.g. to find the documents where the "address" field starts with the letter "S" or higher (alphabetically), use the greater than modifier: {"$gt": "S"
}
:

Example

Find documents where the address starts with the letter "S" or higher:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myquery = { "address"
: { "$gt"
: "S"
 } }

mydoc = mycol.find(myquery)

for
 x in
 mydoc:

 print
(x)

Filter With Regular Expressions

You can also use regular expressions as a modifier.

Regular expressions can only be used to query
 strings
.

To find only the documents where the "address" field starts with the letter "S", use the regular expression {"$regex": "^S"
}
:

Example

Find documents where the address starts with the letter "S":

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myquery = { "address"
: { "$regex"
: "^S"
 } }

mydoc = mycol.find(myquery)

for
 x in
 mydoc:

 print
(x)

Sort the Result

Use the sort(
)
 method to sort the result in ascending or descending order.

The sort(
)
 method takes one parameter for "fieldname" and one parameter for "direction" (ascending is the default direction).

Example

Sort the result alphabetically by name:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mydoc = mycol.find().sort("name"
)

for
 x in
 mydoc:

 print
(x)

Sort Descending

Use the value -1 as the second parameter to sort descending.

sort("name", 1) #ascending

sort("name", -1) #descending

Example

Sort the result reverse alphabetically by name:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mydoc = mycol.find().sort("name"
, -1
)

for
 x in
 mydoc:

 print
(x)

Delete Document

To delete one document, we use the delete_one(
)
 method.

The first parameter of the delete_one(
)
 method is a query object defining which document to delete.

Note: If the query finds more than one document, only the first occurrence is deleted.

Example

Delete the document with the address "Mountain 21":

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myquery = { "address"
: "Mountain 21"
 }

mycol.delete_one(myquery)

Delete Many Documents

To delete more than one document, use the delete_many(
)
 method.

The first parameter of the delete_many(
)
 method is a query object defining which documents to delete.

Example

Delete all documents were the address starts with the letter S:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myquery = { "address"
: {"$regex"
: "^S"
} }

x = mycol.delete_many(myquery)

print
(x.deleted_count, " documents deleted."
)

Delete All Documents in a Collection

To delete all documents in a collection, pass an empty query object to the delete_many(
)
 method:

Example

Delete all documents in the "customers" collection:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

x = mycol.delete_many({})

print
(x.deleted_count, " documents deleted."
)

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using the drop(
)
 method.

Example

Delete the "customers" collection:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mycol.drop()

The drop(
)
 method returns true if the collection was dropped successfully, and false if the collection does not exist.

Delete Collection

You can delete a table, or collection as it is called in MongoDB, by using the drop(
)
 method.

Example

Delete the "customers" collection:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

mycol.drop()

The drop(
)
 method returns true if the collection was dropped successfully, and false if the collection does not exist.

Limit the Result

To limit the result in MongoDB, we use the limit(
)
 method.

The limit(
)
 method takes one parameter, a number defining how many documents to return.

Consider you have a "customers" collection:

Customers

{'_id': 1, 'name': 'John', 'address': 'Highway37'}

{'_id': 2, 'name': 'Peter', 'address': 'Lowstreet 27'}

{'_id': 3, 'name': 'Amy', 'address': 'Apple st 652'}

{'_id': 4, 'name': 'Hannah', 'address': 'Mountain 21'}

{'_id': 5, 'name': 'Michael', 'address': 'Valley 345'}

{'_id': 6, 'name': 'Sandy', 'address': 'Ocean blvd 2'}

{'_id': 7, 'name': 'Betty', 'address': 'Green Grass 1'}

{'_id': 8, 'name': 'Richard', 'address': 'Sky st 331'}

{'_id': 9, 'name': 'Susan', 'address': 'One way 98'}

{'_id': 10, 'name': 'Vicky', 'address': 'Yellow Garden 2'}

{'_id': 11, 'name': 'Ben', 'address': 'Park Lane 38'}

{'_id': 12, 'name': 'William', 'address': 'Central st 954'}

{'_id': 13, 'name': 'Chuck', 'address': 'Main Road 989'}

{'_id': 14, 'name': 'Viola', 'address': 'Sideway 1633'}

Example

Limit the result to only return 5 documents:

import
 pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/"
)

mydb = myclient["mydatabase"
]

mycol = mydb["customers"
]

myresult = mycol.find().limit(5
)

#print the result:

for
 x in
 myresult:

 print
(x)

Python Reference

Python Built in Functions

Python has a set of built-in functions.

[image: Function Description abs() Returns the absolute value of a number all() Returns True if all items in an iterable object are true any() Returns True if any item in an iterable object is true ascii() Returns a readable version of an object. Replaces none- ascii characters with escape character bin() Returns the binary version of a number bool() Returns the boolean value of the specified object]

[image: bytearray() Returns an array of bytes bytes() Returns a bytes object callable() Returns True if the specified object is callable, otherwise False chr() Returns a character from the specified Unicode code. classmethod() Converts a method into a class method compile() Returns the specified source as an object, ready to be executed complex() Returns a complex number delattr() Deletes the specified attribute (property or]

[image: method) from the specified object dict() Returns a dictionary (Array) dir() Returns a list of the specified object's properties and methods divmod() Returns the quotient and the remainder when argument1 is divided by argument2 enumerate() Takes a collection (e.g. a tuple) and returns it as an enumerate object eval() Evaluates and executes an expression exec() Executes the specified code]

[image: (or object) filter() Use a filter function to exclude items in an iterable object float() Returns a floating point number format() Formats a specified value frozenset() Returns a frozenset object getattr() Returns the value of the specified attribute (property or method) globals() Returns the current global symbol table as a dictionary hasattr() Returns True if the specified object has]

[image: the specified attribute (property/ method) hash() Returns the hash value of a specified object help() Executes the built- in help system hex() Converts a number into a hexadecimal value id() Returns the id of an object input() Allowing user input int() Returns an integer number isinstance() Returns True if a specified object is an instance of a specified object]

[image: issubclass() Returns True if a specified class is a subclass of a specified object iter() Returns an iterator object len() Returns the length of an object list() Returns a list locals() Returns an updated dictionary of the current local symbol table map() Returns the specified iterator with the specified function applied to each item max() Returns the largest item in an iterable]

[image: memoryview() Returns a memory view object min() Returns the smallest item in an iterable next() Returns the next item in an iterable object() Returns a new object oct() Converts a number into an octal open() Opens a file and returns a file object ord() Convert an integer representing the Unicode of the specified character pow() Returns the value of x to]

[image: the power of y print() Prints to the standard output device property() Gets, sets, deletes a property range() Returns a sequence of numbers, starting from 0 and increments by 1 (by default) repr() Returns a readable version of an object reversed() Returns a reversed iterator round() Rounds a numbers set() Returns a new set object]

[image: setattr() Sets an attribute (property/ method) of an object slice() Returns a slice object sorted() Returns a sorted list @staticmethod() Converts a method into a static method str() Returns a string object sum() Sums the items of an iterator super() Returns an object that represents the parent class tuple() Returns a tuple type() Returns the type of an object]

[image: vars() Returns the __dict__ property of an object zip() Returns an iterator, from two or more iterators]

Python String Methods

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the original string.

Method​
Description

capitalize()​
Converts the first character to upper case

casefold()​
Converts string into lower case

center()​
Returns a centered string

count()​
 Returns the number of times a specified value occurs in a string

encode()​
Returns an encoded version of the string

endswith()​
Returns true if the string ends with the specified value

expandtabs()​
Sets the tab size of the string

find()​
Searches the string for a specified value and returns the position of where it was found

format()​
Formats specified values in a string

format_map()​
Formats specified values in a string

index()​
Searches the string for a specified value and returns the position of where it was found

isalnum()​
Returns True if all characters in the string are alphanumeric

isalpha()​
Returns True if all characters in the string are in the alphabet

isdecimal()​
Returns True if all characters in the string are decimals

isdigit()​
Returns True if all characters in the string are digits

isidentifier()​
Returns True if the string is an identifier

islower()​
Returns True if all characters in the string are lower case

isnumeric()​
Returns True if all characters in the string are numeric

isprintable()​
Returns True if all characters in the string are printable

isspace()​
Returns True if all characters in the string are whitespaces

istitle()​
Returns True if the string follows the rules of a title

isupper()​
Returns True if all characters in the string are upper case

join()​
Joins the elements of an iterable to the end of the string

ljust()​
Returns a left justified version of the string

lower()​
Converts a string into lower case

lstrip()​
Returns a left trim version of the string

maketrans()​
Returns a translation table to be used in translations

partition()​
Returns a tuple where the string is parted into three parts

replace()​
Returns a string where a specified value is replaced with a specified value

rfind()​
Searches the string for a specified value and returns the last position of where it was found

rindex()​
Searches the string for a specified value and returns the last position of where it was found

rjust()​
Returns a right justified version of the string

rpartition()​
Returns a tuple where the string is parted into three parts

rsplit()​
Splits the string at the specified separator, and returns a list

rstrip()​
Returns a right trim version of the string

split()​
Splits the string at the specified separator, and returns a list

splitlines()​
Splits the string at line breaks and returns a list

startswith()​
Returns true if the string starts with the specified value

strip()​
 Returns a trimmed version of the string

swapcase()​
Swaps cases, lower case becomes upper case and vice versa

title()​
Converts the first character of each word to upper case

translate()​
Returns a translated string

upper()​
Converts a string into upper case

zfill()​
Fills the string with a specified number of 0 values at the beginning

Note: All string methods returns new values. They do not change the original string.

Learn more about strings in our Python Strings Tutorial.

Python List/Array Methods

Python List/Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method​
Description

append()​
Adds an element at the end of the list

clear()​
Removes all the elements from the list

copy()​
Returns a copy of the list

count()​
Returns the number of elements with the specified value

extend()​
Add the elements of a list (or any iterable), to the end of the current list

index()​
Returns the index of the first element with the specified value

insert()​
Adds an element at the specified position

pop()​
Removes the element at the specified position

remove()​
Removes the first item with the specified value

reverse()​
Reverses the order of the list

sort()​
Sorts the list

Python Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method​
Description

clear()​
Removes all the elements from the dictionary

copy()​
Returns a copy of the dictionary

fromkeys()​
Returns a dictionary with the specified keys and value

get()​
Returns the value of the specified key

items()​
Returns a list containing a tuple for each key value pair

keys()​
Returns a list containing the dictionary's keys

pop()​
Removes the element with the specified key

popitem()​
Removes the last inserted key-value pair

setdefault()​
Returns the value of the specified key. If the key does not exist: insert the key, with the specified value

update()​
Updates the dictionary with the specified key-value pairs

values()​
Returns a list of all the values in the dictionary

Python has two built-in methods that you can use on tuples.

Method​
Description

count()​
Returns the number of times a specified value occurs in a tuple

index()​
Searches the tuple for a specified value and returns the position of where it was found

Python Set Methods

Python has a set of built-in methods that you can use on sets.

Method​
Description

add()​
 Adds an element to the set

clear()​
Removes all the elements from the set

copy()​
Returns a copy of the set

difference()​
 Returns a set containing the difference between two or more sets

difference_update()​
Removes the items in this set that are also included in another, specified set

discard()​
Remove the specified item

intersection()​
Returns a set, that is the intersection of two other sets

intersection_update()​
Removes the items in this set that are not present in other, specified set(s)

isdisjoint()​
Returns whether two sets have a intersection or not

issubset()​
Returns whether another set contains this set or not

issuperset()​
Returns whether this set contains another set or not

pop()​
Removes an element from the set

remove()​
Removes the specified element

symmetric_difference()​
Returns a set with the symmetric differences of two sets

symmetric_difference_update()​
inserts the symmetric differences from this set and another

union()​
Return a set containing the union of sets

update()​
Update the set with the union of this set and others

Python File Methods

Python has a set of methods available for the file object.

Method​
Description

close()​
Closes the file

detach()​
Returns the separated raw stream from the buffer

fileno()​
Returns a number that represents the stream, from the operating system's perspective

flush()​
Flushes the internal buffer

isatty()​
Returns whether the file stream is interactive or not

read()​
Returns the file content

readable()​
Returns whether the file stream can be read or not

readline()​
Returns one line from the file

readlines()​
Returns a list of lines from the file

seek()​
Change the file position

seekable()​
Returns whether the file allows us to change the file position

tell()​
Returns the current file position

truncate()​
Resizes the file to a specified size

writable()​
Returns whether the file can be written to or not

write()​
Writes the specified string to the file

writelines()​
Writes a list of strings to the file

Python Keywords

Python has a set of keywords that are reserved words that cannot be used as variable names, function names, or any other identifiers:

Keyword​
Description

and​
A logical operator

as​
To create an alias

assert​
For debugging

break​
To break out of a loop

class​
To define a class

continue​
To continue to the next iteration of a loop

def​
To define a function

del​
To delete an object

elif​
Used in conditional statements, same as else if

else​
Used in conditional statements

except​
Used with exceptions, what to do when an exception occurs

False​
Boolean value, result of comparison operations

finally​
Used with exceptions, a block of code that will be executed no matter if there is an exception or not

for​
To create a for loop

from​
To import specific parts of a module

global​
To declare a global variable

if​
To make a conditional statement

import​
To import a module

in​
To check if a value is present in a list, tuple, etc.

is​
To test if two variables are equal

lambda​
To create an anonymous function

None​
Represents a null value

nonlocal​
To declare a non-local variable

not​
A logical operator

or​
A logical operator

pass​
A null statement, a statement that will do nothing

raise​
To raise an exception

return​
To exit a function and return a value

True​
Boolean value, result of comparison operations

try​
To make a try...except statement

while​
To create a while loop

with​
Used to simplify exception handling

yield​
To end a function, returns a generator

Python Built-in Exceptions

Built-in Exceptions

The table below shows built-in exceptions that are usually raised in Python:

	
Exception

	
Description

	
ArithmeticError

	
Raised when an error occurs in numeric calculations

	
AssertionError

	
Raised when an assert statement fails

	
AttributeError

	
Raised when attribute reference or assignment fails

	
Exception

	
Base class for all exceptions

	
EOFError

	
Raised when the input() method hits an "end of file" condition (EOF)

	
FloatingPointError

	
Raised when a floating point calculation fails

	
GeneratorExit

	
Raised when a generator is closed (with the close() method)

	
ImportError

	
Raised when an imported module does not exist

	
IndentationError

	
Raised when indendation is not correct

	
IndexError

	
Raised when an index of a sequence does not exist

	
KeyError

	
Raised when a key does not exist in a dictionary

	
KeyboardInterrupt

	
Raised when the user presses Ctrl+c, Ctrl+z or Delete

	
LookupError

	
Raised when errors raised cant be found

	
MemoryError

	
Raised when a program runs out of memory

	
NameError

	
Raised when a variable does not exist

	
NotImplementedError

	
Raised when an abstract method requires an inherited class to override the method

	
OSError

	
Raised when a system related operation causes an error

	
OverflowError

	
Raised when the result of a numeric calculation is too large

	
ReferenceError

	
Raised when a weak reference object does not exist

	
RuntimeError

	
Raised when an error occurs that do not belong to any specific expections

	
StopIteration

	
Raised when the next() method of an iterator has no further values

	
SyntaxError

	
Raised when a syntax error occurs

	
TabError

	
Raised when indentation consists of tabs or spaces

	
SystemError

	
Raised when a system error occurs

	
SystemExit

	
Raised when the sys.exit() function is called

	
TypeError

	
Raised when two different types are combined

	
UnboundLocalError

	
Raised when a local variable is referenced before assignment

	
UnicodeError

	
Raised when a unicode problem occurs

	
UnicodeEncodeError

	
Raised when a unicode encoding problem occurs

	
UnicodeDecodeError

	
Raised when a unicode decoding problem occurs

	
UnicodeTranslateError

	
Raised when a unicode translation problem occurs

	
ValueError

	
Raised when there is a wrong value in a specified data type

	
ZeroDivisionError

	
Raised when the second operator in a division is zero

Module Reference

Python has a built-in module that you can use to make random numbers.

The rando
m
 module has a set of methods:

	
Method

	
Description

	
seed()

	
Initialize the random number generator

	
Getstate()

	
Returns the current internal state of the random number generator

	
setstate()

	
Restores the internal state of the random number generator

	
getrandbits()

	
Returns a number representing the random bits

	
randrange()

	
Returns a random number between the given range

	
randint()

	
Returns a random number between the given range

	
choice()

	
Returns a random element from the given sequence

	
choices()

	
Returns a list with a random selection from the given sequence

	
shuffle()

	
Takes a sequence and returns the sequence in a random order

	
sample()

	
Returns a given sample of a sequence

	
random()

	
Returns a random float number between 0 and 1

	
uniform()

	
Returns a random float number between two given parameters

	
triangular()

	
Returns a random float number between two given parameters, you can also set a mode parameter to specify the midpoint between the two other parameters

	
betavariate()

	
Returns a random float number between 0 and 1 based on the Beta distribution (used in statistics)

	
expovariate()

	
Returns a random float number based on the Exponential distribution (used in statistics)

	
gammavariate()

	
Returns a random float number based on the Gamma distribution (used in statistics)

	
gauss()

	
Returns a random float number based on the Gaussian distribution (used in probability theories)

	
lognormvariate()

	
Returns a random float number based on a log-normal distribution (used in probability theories)

	
normalvariate()

	
Returns a random float number based on the normal distribution (used in probability theories)

	
vonmisesvariate()

	
Returns a random float number based on the von Mises distribution (used in directional statistics)

	
paretovariate()

	
Returns a random float number based on the Pareto distribution (used in probability theories)

	
weibullvariate()

	
Returns a random float number based on the Weibull distribution (used in statistics)

Python Requests Module

Example

Make a request to a web page, and print the response text:

import
 requests

x = requests.get('https://w3schools.com/python/demopage.htm'
)

print
(x.text)

Definition and Usage

The request
s
 module allows you to send HTTP requests using Python.

The HTTP request returns a Response Object with all the response data (content, encoding, status, etc).

Download and Install the Requests Module

Navigate your command line to the location of PIP, and type the following:

C:\Users\Your Name
\AppData\Local\Programs\Python\Python36-32\Scripts>pip install requests

Syntax

requests.methodname(params)

Methods

	
Method

	
Description

	
delete(url
, args
)

	
Sends a DELETE request to the specified url

	
get(url
, params, args
)

	
Sends a GET request to the specified url

	
head(url
, args
)

	
Sends a HEAD request to the specified url

	
patch(url
, data, args
)

	
Sends a PATCH request to the specified url

	
post(url
, data, json, args
)

	
Sends a POST request to the specified url

	
put(url
, data, args
)

	
Sends a PUT request to the specified url

	
request(method
, url
, args
)

	
Sends a request of the specified method to the specified url

Python statistics Module

Python statistics Module

Python has a built-in module that you can use to calculate mathematical statistics of numeric data.

The statistic
s
 module was new in Python 3.4.

Statistics Methods

Method
​
 Description

statistics.harmonic_mean()​
Calculates the harmonic mean (central location) of the given data

statistics.mean()​
Calculates the mean (average) of the given data

statistics.median()​
Calculates the median (middle value) of the given data

statistics.median_grouped()​
Calculates the median of grouped continuous data

statistics.median_high()​
Calculates the high median of the given data

statistics.median_low()​
Calculates the low median of the given data

statistics.mode()​
Calculates the mode (central tendency) of the given numeric or nominal data

statistics.pstdev()​
Calculates the standard deviation from an entire population

statistics.stdev()​
Calculates the standard deviation from a sample of data

statistics.pvariance()​
Calculates the variance of an entire population

statistics.variance()​
Calculates the variance from a sample of data

Python math Module

Python has a built-in module that you can use for mathematical tasks.

The mat
h
 module has a set of methods and constants.

Math Methods

Method​
Description

math.acos()​
Returns the arc cosine of a number

math.acosh()​
Returns the inverse hyperbolic cosine of a number

math.asin()​
Returns the arc sine of a number

math.asinh()​
Returns the inverse hyperbolic sine of a number

math.atan()​
Returns the arc tangent of a number in radians

math.atan2()​
Returns the arc tangent of y/x in radians

math.atanh()​
Returns the inverse hyperbolic tangent of a number

math.ceil()​
Rounds a number up to the nearest integer

math.comb()​
Returns the number of ways to choose k items from n items without repetition and order

math.copysign()​
Returns a float consisting of the value of the first parameter and the sign of the second parameter

math.cos()​
Returns the cosine of a number

math.cosh()​
Returns the hyperbolic cosine of a number

math.degrees()​
Converts an angle from radians to degrees

math.dist()​
Returns the Euclidean distance between two points (p and q), where p and q are the coordinates of that point

math.erf()​
Returns the error function of a number

math.erfc()​
Returns the complementary error function of a number

math.exp()​
Returns E raised to the power of x

math.expm1()​
Returns Ex - 1

math.fabs()​
Returns the absolute value of a number

math.factorial()​
Returns the factorial of a number

math.floor()​
Rounds a number down to the nearest integer

math.fmod()​
Returns the remainder of x/y

math.frexp()​
Returns the mantissa and the exponent, of a specified number

math.fsum()​
Returns the sum of all items in any iterable (tuples, arrays, lists, etc.)

math.gamma()​
Returns the gamma function at x

math.gcd()​
Returns the greatest common divisor of two integers

math.hypot()​
Returns the Euclidean norm

math.isclose()​
Checks whether two values are close to each other, or not

math.isfinite()​
Checks whether a number is finite or not

math.isinf()​
Checks whether a number is infinite or not

math.isnan()​
Checks whether a value is NaN (not a number) or not

math.isqrt()​
Rounds a square root number downwards to the nearest integer

math.ldexp()​
Returns the inverse of math.frexp() which is x * (2**i) of the given numbers x and i

math.lgamma()​
Returns the log gamma value of x

math.log()​
Returns the natural logarithm of a number, or the logarithm of number to base

math.log10()​
Returns the base-10 logarithm of x

math.log1p()​
Returns the natural logarithm of 1+x

math.log2()​
Returns the base-2 logarithm of x

math.perm()​
Returns the number of ways to choose k items from n items with order and without repetition

math.pow()​
Returns the value of x to the power of y

math.prod()​
Returns the product of all the elements in an iterable

math.radians()​
Converts a degree value into radians

math.remainder()​
Returns the closest value that can make numerator completely divisible by the denominator

math.sin()​
Returns the sine of a number

math.sinh()​
Returns the hyperbolic sine of a number

math.sqrt()​
Returns the square root of a number

math.tan()​
Returns the tangent of a number

math.tanh()​
Returns the hyperbolic tangent of a number

math.trunc()​
Returns the truncated integer parts of a number

Math Constants

Constant​
Description

math.e​
Returns Euler's number (2.7182...)

math.inf​
Returns a floating-point positive infinity

math.nan​
Returns a floating-point NaN (Not a Number) value

math.pi​
Returns PI (3.1415...)

math.tau​
Returns tau (6.2831...)

Python cmath Module

Python has a built-in module that you can use for mathematical tasks for complex numbers.

The methods in this module accepts int, float, and complex numbers. It even accepts Python objects that has a __complex__() or __float__() method.

The methods in this module almost always return a complex number. If the return value can be expressed as a real number, the return value has an imaginary part of 0.

The cmath module has a set of methods and constants.

cMath Methods

Method
​
Description

cmath.acos(x)​
Returns the arc cosine value of x

cmath.acosh(x)​
Returns the hyperbolic arc cosine of x

cmath.asin(x)​
Returns the arc sine of x

cmath.asinh(x)​
Returns the hyperbolic arc sine of x

cmath.atan(x)​
Returns the arc tangent value of x

cmath.atanh(x)​
Returns the hyperbolic arctangent value of x

cmath.cos(x)​
Returns the cosine of x

cmath.cosh(x)​
Returns the hyperbolic cosine of x

cmath.exp(x)​
Returns the value of Ex, where E is Euler's number (approximately 2.718281...), and x is the number passed to it

cmath.isclose()​
Checks whether two values are close, or not

cmath.isfinite(x)​
Checks whether x is a finite number

cmath.isinf(x)​
Check whether x is a positive or negative infinty

cmath.isnan(x)​
Checks whether x is NaN (not a number)

cmath.log(x[, base])​
Returns the logarithm of x to the base

cmath.log10(x)​
Returns the base-10 logarithm of x

cmath.phase()​
Return the phase of a complex number

cmath.polar()​
Convert a complex number to polar coordinates

cmath.rect()​
Convert polar coordinates to rectangular form

cmath.sin(x)​
Returns the sine of x

cmath.sinh(x)​
Returns the hyperbolic sine of x

cmath.sqrt(x)​
Returns the square root of x

cmath.tan(x)​
Returns the tangent of x

cmath.tanh(x)​
Returns the hyperbolic tangent of x

cMath Constants

Constant
​
Description

cmath.e​
Returns Euler's number (2.7182...)

cmath.inf​
Returns a floating-point positive infinity value

cmath.infj​
Returns a complex infinity value

cmath.nan​
Returns floating-point NaN (Not a Number) value

cmath.nanj​
Returns coplext NaN (Not a Number) value

cmath.pi​
Returns PI (3.1415...)

cmath.tau​
Returns tau (6.2831...)

How to Remove Duplicates From a Python List

Learn how to remove duplicates from a List in Python.

Example

Remove any duplicates from a List:

mylist = ["a"
, "b"
, "a"
, "c"
, "c"
]

mylist = list(dict
.fromkeys(mylist))

print
(mylist)

Example Explained

First we have a List that contains duplicates:

A List with Duplicates

mylist = ["a"
, "b"
, "a"
, "c"
, "c"
]

mylist = list(dict
.fromkeys(mylist))

print
(mylist)

Create a dictionary, using the List items as keys. This will automatically remove any duplicates because dictionaries cannot have duplicate keys.

Create a Dictionary

mylist = ["a"
, "b"
, "a"
, "c"
, "c"
]

mylist = list(dict
.fromkeys(mylist))

print
(mylist)

Then, convert the dictionary back into a list:

Convert Into a List

mylist = ["a"
, "b"
, "a"
, "c"
, "c"
]

mylist = list(dict
.fromkeys(mylist))

print
(mylist)

Now we have a List without any duplicates, and it has the same order as the original List.

Print the List to demonstrate the result

Print the List

mylist = ["a"
, "b"
, "a"
, "c"
, "c"
]

mylist = list(dict
.fromkeys(mylist))

print
(mylist)

Create a Function

If you like to have a function where you can send your lists, and get them back without duplicates, you can create a function and insert the code from the example above.

Example

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Example Explained

Create a function that takes a List as an argument.

Create a Function

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Create a dictionary, using this List items as keys.

Create a Dictionary

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Convert the dictionary into a list.

Convert Into a List

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Return the list

Return List

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Call the function, with a list as a parameter:

Call the Function

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

Print the result:

Print the Result

def
 my_function(x):

 return
 list
(dict
.fromkeys(x))

mylist = my_function(["a"
, "b"
, "a"
, "c"
, "c"
])

print
(mylist)

How to Reverse a String in Python

Learn how to reverse a String in Python.

There is no built-in function to reverse a String in Python.

The fastest (and easiest?) way is to use a slice that steps backwards, -
1
.

Example

Reverse the string "Hello World":

txt = "Hello World"
[::-1
]

print
(txt)

Example Explained

We have a string, "Hello World", which we want to reverse:

The String to Reverse

txt = "Hello World"
 [::-1
]

print
(txt)

Create a slice that starts at the end of the string, and moves backwards.

In this particular example, the slice statement [::-1
]
 means start at the end of the string and end at position 0, move with the step -
1
, negative
 one, which means one step backwards.

Slice the String

txt = "Hello World"
 [::-1
]

print
(txt)

Now we have a string tx
t
 that reads "Hello World" backwards.

Print the String to demonstrate the result

Print the List

txt = "Hello World"
[::-1
]

print
(txt)

Create a Function

If you like to have a function where you can send your strings, and return them backwards, you can create a function and insert the code from the example above.

Example

def
 my_function(x):

 return
 x[::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

Example Explained

Create a function that takes a String as an argument.

Create a Function

def
 my_function(x):

 return
 x[::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

Slice the string starting at the end of the string and move backwards.

Slice the String

def
 my_function(x):

 return
 x [::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

Return the backward String

Return the String

def
 my_function(x):

 return
 x[::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

Call the function, with a string as a parameter:

Call the Function

def
 my_function(x):

 return
 x[::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

Print the result:

Print the Result

def
 my_function(x):

 return
 x[::-1
]

mytxt = my_function("I wonder how this text looks like backwards"
)

print
(mytxt)

How to Add Two Numbers in Python

Learn how to add two numbers in Python.

Use the +
 operator to add two numbers:

Example

x = 5

y = 10

print
(x + y)

Add Two Numbers with User Input

In this example, the user must input two numbers. Then we print the sum by calculating (adding) the two numbers:

Example

x = input
("Type a number: "
)

y = input
("Type another number: "
)

sum
 = int
(x) + int
(y)

print
("The sum is: "
, sum
)

The End

OEBPS/image_rsrcT1X.jpg
Car Model Volume Weight CO2

OEBPS/image_rsrcT1W.jpg
Car Model Volume Weight CO2

OEBPS/image_rsrcT1Z.jpg
bytearray()

bytes()

callable()

chr()

classmethod()

compile()

complex()

delattr()

Returns an array of bytes
Returns a bytes object

Returns True if the
specified object is callable,
otherwise False

Returns a character from
the specified Unicode code.

Converts amethod into a
class method

Returns the specified
source as an object, ready
to be executed

Returns a complex number

Deletes the specified
attribute (property or

OEBPS/image_rsrcT1Y.jpg
Function

abs()

all()

any()

ascii()

bin()

bool()

Description

Returns the absolute value
of anumber

Returns True if all items in
an iterable object are true

Returns True if any item in
an iterable object is true

Returns a readable version
of an object. Replaces
none-ascii characters with
escape character

Returns the binary version
of anumber

Returns the boolean value
of the specified object

OEBPS/image_rsrcT21.jpg
filter()

float()

format()
frozenset()

getattr()

globals()

hasattr()

(or object)

Use a filter function
to exclude items in an
iterable object

Returns a floating point
number

Formats a specified value
Returns a frozenset object

Returns the value of
the specified attribute
(property or method)

Returns the current
global symbol table as a
dictionary

Returns True if the
specified object has

OEBPS/image_rsrcT20.jpg
dict()

dir()

divmod()

enumerate()

eval()

exec()

method) from the specified
object

Returns a dictionary
(Array)

Returns a list of the
specified object's
properties and methods

Returns the quotient
and the remainder when
argument1 is divided by
argument2

Takes a collection (e.g. a
tuple) and returns it as an
enumerate object

Evaluates and executes an
expression

Executes the specified code

OEBPS/image_rsrcT22.jpg
hash()

help()

hex()

id()
input()
int()

isinstance()

the specified attribute
(property/method)

Returns the hash value of a
specified object

Executes the built-in help
system

Converts a number into a
hexadecimal value

Returns the id of an object
Allowing user input
Returns an integer number

Returns True if a specified
object is an instance of a
specified object

OEBPS/image_rsrcT1T.jpg
cubehelix cubehelix_r

flag flag r
gist_earth gist_earth_r
gist_gray gist_gray_r
gist_heat gist_heat_r
gist_ncar gist_ncar_r
gist_rainbow gist_rainbow_r
gist_stern gist_stern_r
gist_yarg gist_yarg_r
gnuplot gnuplot_r
gnuplot2 gnuplot2_r

gray gray_r

OEBPS/image_rsrcT1V.jpg
spring spring_r

summer summer_r
tab10 tab10_r
tab20 tab20_r
tab20b tab20b_r
tab20c tab20c_r
terrain terrain_r
twilight twilight_r

twilight_shifted twilight_shifted_r
viridis viridis_r

winter winter_r

OEBPS/image_rsrcT1U.jpg
hot

hsv
inferno
jet
magma
nipy_spectral
ocean
pink
plasma
prism
rainbow

seismic

hot_r
hsv_r
inferno_r
jet_r
magma_r
nipy_spectral_r
ocean_r
pink_r
plasma_r
prism_r
rainbow_r

seismic_r

OEBPS/image_rsrcT27.jpg
vars() Returns the __dict__
property of an object

zip() Returns an iterator, from
two or more iterators

OEBPS/image_rsrcT1S.jpg
Y1OrBr YIOrBr r

YIOrRd YIOrRd_r
afmhot afmhot_r
autumn autumn_r
binary binary_r
bone bone_r

brg brg r

bwr bwr_r
cividis cividis_r
cool cool_r
coolwarm coolwarm_r

copper copper_r

OEBPS/image_rsrcT1K.jpg
Python Tutorial, File Handling, Python NumPy,'
Python Matplotlib, Python SciPy, Machine
Learning, Python MySQL,Python MySQL, Python
Reference, Module Reference, Python Examples

OEBPS/image_rsrcT1P.jpg
Oranges
PRGn
Paired
Pastell
Pastel2
PiYG
PuBu
PuBuGn
PuOr
PuRd
Purples

RdBu

Oranges_r
PRGn_r
Paired_r
Pastell_r
Pastel2_r
PiYG_r
PuBu_r
PuBuGn_r
PuOr_r
PuRd_r
Purples_r

RdBu_r

OEBPS/image_rsrcT24.jpg
memoryview()

min()

next()

object()

oct()

open()

ord()

pow()

Returns a memory view
object

Returns the smallest item
in an iterable

Returns the nextitem in an
iterable

Returns a new object

Converts a number into an
octal

Opens a file and returns a
file object

Convert an integer
representing the Unicode
of the specified character

Returns the value of x to

OEBPS/image_rsrcT1R.jpg
RdGy
RdPu
RdAY1Bu
RdAY1Gn
Reds
Setl
Set2
Set3
Spectral
Wistia
YIGn

YIGnBu

RdGy_r
RdPu_r
RdAY1Bu_r
RAYIGn_r
Reds_r
Setl_r
Set2_r
Set3_r
Spectral_r
Wistia_r
YIGn_r

YIGnBu_r

OEBPS/image_rsrcT23.jpg
issubclass()

iter()

len()

list()

locals()

map()

max()

Returns True if a specified
classis asubclass of a
specified object

Returns an iterator object

Returns the length of an
object

Returns a list

Returns an updated
dictionary of the current
local symbol table

Returns the specified
iterator with the specified
function applied to each
item

Returns the largest item in
an iterable

OEBPS/image_rsrcT1M.jpg
Text Type:

Numeric Types:

Sequence Types:

Mapping Type:
Set Types:
Boolean Type:

Binary Types:

str

int, float, complex
list, tuple, range
dict

set, frozenset

bool

bytes, bytearray,
memoryview

OEBPS/image_rsrcT26.jpg
setattr()

slice()
sorted()

@staticmethod()

str()

sum()

super()

tuple()

type()

Sets an attribute (property/
method) of an object

Returns a slice object
Returns a sorted list

Converts amethod into a
static method

Returns a string object

Sums the items of an
iterator

Returns an object that
represents the parent class

Returns a tuple

Returns the type of an
object

OEBPS/image_rsrcT1N.jpg
Name Reverse

Accent Accent_r
Blues Blues_r
BrBG BrBG_r
BuGn BuGn_r
BuPu BuPu_r
CMRmap CMRmap_r
Dark2 Dark2_r
GnBu GnBu_r
Greens Greens_r
Greys Greys_r

OrRd OrRd_r

OEBPS/image_rsrcT25.jpg
print()

property()

range()

repr()

reversed()
round()

set()

the power of y

Prints to the standard
output device

Gets, sets, deletes a
property

Returns a sequence of
numbers, starting from 0
and increments by 1 (by
default)

Returns a readable version
of an object

Returns a reversed iterator
Rounds a numbers

Returns a new set object

