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Preface

It would be hard to persuade a new student beginning particle physics in

2007 that there once was a time when there was not yet a Standard Model.

How else, would he object, could one explain all known features of strong,

electro-magnetic and weak interactions? The absence of Flavour Chang-

ing Neutral Currents (FCNC), the universality of weak charged current

interactions, the smallness of the K0 − K̄0 mixing, the existence of the

∆++ resonance, the apparently infinitely rising neutrino cross-section, the

∆I = 1
2 rule in weak decays, the hadron spectroscopy respecting the eight-

fold way, CP violation... How could you live for such a long time with all

these problems without inventing the Standard Model which solves them

all?

Of course, shall we older people answer, it took more than ten years from

the original idea of the existence of the W boson [1] to the realization that

an experimentally successful model with weak isospin symmetry [2] would

imply the existence, not only of Neutral Weak Currents but also of charmed

particles [3, 4], and a few more years for ’t Hooft [5] to demonstrate that

such a model would constitute a mathematical consistent theory. This we

believe is the main answer to our student’s surprise: the solution of the puz-

zle required i) two new experimental discoveries, that of Neutral Currents

and that of Charm; and ii) a theoretical breakthrough, the renormalization

of the Gauge Theory.

The dam broke in 1973 with the observation of Neutral Currents. The

sequence of events that followed this discovery is really breathtaking: charm

in 1974, tau lepton in 1975, beauty in 1977, direct observation of the W

and Z bosons in 1983. The model was soon universally accepted, especially

when more precise verifications of its quantitative predictions were made in

atoms [6] and in electron nucleon scattering [7]. For the last 25 years the

vii
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Model has met a long series of experimental verifications, proving itself an

unbelievably successful scheme.

So successful the model is, that it would be perhaps even harder to

persuade the aforementioned beginner physicist that a time could well come

when there will be no more a Standard Model. Why should one abandon

such a successful scheme, after all?

As a matter of fact, it has been argued by many respectable physicists

that, although the Standard Model is in contradiction with no known ex-

perimental result in particle physics today, it certainly leaves several funda-

mental questions unanswered; among these, the fact that it requires as ar-

bitrary input so many different particle masses. Also, the observed baryon-

anti-baryon asymmetry in the Universe is very hard to explain within its

framework. Furthermore, the role and the nature of the Higgs particle

or even its existence are far from being clarified. Without entering now

the details of these deep questions, we feel that, in analogy with the pre-

Standard Model situation, a solution to these problems would require a new

extraordinary combination of i) experimental discoveries, and ii) theoretical

breakthroughs.

The aim of this book is to illustrate, in a pedagogical way, the most

precise experimental verifications of the Standard Model to date. These

were obtained by the thorough study of the two massive resonances, whose

role in the model turns out to be crucial : the Z and the W bosons.

As we shall see, the results of campaigns of experiments at LEP and

SLC, as well as at pp̄ colliders, have established in a definitive way many

features of the Model, and probed it with an unprecedented accuracy. The

main results of these investigations will be discussed in detail in this book,

with special emphasis on precise measurements of several quantities sensi-

tive to electroweak radiative corrections.

This last point, on one hand, provided beautiful confirmation of the

validity of the theoretical scheme. On the other hand, the sensitivity of

Electroweak radiative corrections to virtual particles, albeit too massive to

be directly accessible to experimental observation, has led to the predic-

tion of the top quark mass, well before this particle was observed directly

in pp̄ collisions. One must honestly say that a major building block of

the Standard Model is still missing, since the Higgs boson has not yet been

discovered in direct searches. However, once the top quark mass was exper-

imentally known, the interest of radiative corrections as indirect probes of

unknown effects was considerably enhanced, since the only remaining open

question, at least in the framework of the Standard Model, would be that
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of the Symmetry Breaking mechanism. In fact, from a combined analysis

of several independent measurements, it has become possible to reach two

fundamental conclusions. The first one is that, if the unknown mechanism

of symmetry breaking were different from that advocated by the Standard

Model, its visible manifestations would be practically indistinguishable at

the available level of precision. The second conclusion is that, if the Stan-

dard Model is correct, the Higgs boson must be relatively light, i.e. well

accessible to the next generation of colliders.

This book begins with a short introduction to weak interactions. The

main virtues of Fermi theory are reviewed, together with its main defi-

ciencies that led to the introduction of the intermediate massive vector

bosons. The essential features of the Standard Model, in particular the

Higgs mechanism, are subsequently quickly summarized. The discussion of

specific processes is organized in the book in the following way: in the first

part, we discuss the physics of the Z boson, starting with the tree level cal-

culation of electron-positron annihilation into fermion pairs, e+e− → ff̄ ,

given in Chapter 2. This contains the expressions of total cross-sections,

angular distributions, Z partial decay widths. Particles polarization effects,

especially longitudinal polarization, are given.

Since this is one of the main motivations of precision electroweak mea-

surements, it is natural to continue in Chapter 3 with a pedagogical de-

scription of the virtual electroweak radiative effects. A one-loop treatment

is given here, working in the approximation of massless final fermions, with

goal to provide understanding of the structure of these virtual effects, and

of why and how they are sensitive to heavy physics, symmetry breaking

and possibly new particles. A particular attention is given to the run-

ning of αQED , as this constitutes an important source of uncertainty. The

specially relevant case of massive final fermions is treated in detail in Chap-

ter 4, with emphasis on bb̄ production. The main results of Chapters 3 and 4

are summarized in a table that concludes the description of the one-loop

treatment.

After a short description of the main experimental tools for Z and W

physics, i.e. high energy colliders and detectors, the detailed discussion of

the high-precision tests of the electroweak theory starts in Chapter 6. This

Chapter describes what constitutes arguably the most unique achievement

of LEP: the measurement of the Z lineshape. A discussion of the global

strategy, including the estimate of real radiation of photons, that plays a

very important rôle in this particular set of measurements, is followed by a
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detailed account of the measurements of cross-sections, including luminos-

ity monitoring and Z decay event selection. The first historical result of

LEP and SLC, the determination of the number of light neutrino species, is

described and commented. From the lineshape one obtains precise determi-

nations of the Z mass and width, that will probably remain unchallenged

for some time, and a complete set of Z leptonic and inclusive hadronic par-

tial widths. In Chapter 7 the main experimental issues involving Z decays

to heavy quarks are discussed. The necessary tools related to beauty and

charm quark tagging are introduced. These sophisticated methods allow,

for instance, the precise determination of the partial Z decay into bb̄ and

of the b and c quark asymmetries, whose rôle for the high precision tests

turns out to be particularly relevant. In Chapter 8 we come to some of the

observables that are most sensitive to Electroweak Radiative Corrections

involving the Higgs boson, in particular we shall consider the longitudinal

polarization asymmetry, measured at the SLC, the τ lepton polarization

and the unpolarized forward-backward asymmetries of leptons and quarks.

Chapter 8 ends with a summary of all measurements of the leptons and

quarks couplings.

In the following Chapter (Chapter 9), the focus moves from the Z boson

to the W boson. After a description of W production processes at colliders,

a discussion is given of one of the most important parameters measurable

at these machines, the W mass. In fact, the production of W bosons opens

the possibility of performing direct tests of the sector of the electroweak

interactions related to gauge boson-gauge boson couplings. The precision

measurements of the triple gauge couplings required by the model are here

discussed in some detail.

In the final Chapters of the book, the direct production of the top quark

and of the Higgs boson are discussed; results are compared to bounds from

electroweak precision tests. After a brief review of top physics, mostly de-

voted to its discovery and to the measurement of its mass at the Tevatron

(Chapter 10), a detailed description of the searches for the Higgs boson at

LEP is given in Chapter 11. This is followed by a discussion about the

indirect bounds on the Higgs boson mass, and by the results of a model-

independent analysis of electroweak data. A short conclusive Chapter 12

discusses the outlook for further improvements in the domain of high pre-

cision tests at future colliders.

R. Tenchini

C. Verzegnassi
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Chapter 1

The Standard Model of Electroweak

Interactions

1.1 Weak interactions in the original Fermi approach

For a long period of time, weak interactions were described by the so called

Fermi theory, that was essentially based on the use of an effective four-

fermion interaction Lagrangian L, with a weak coupling constant to be

conventionally called GF . This Lagrangian was able to incorporate and ex-

plain in a remarkably satisfactory way the major part of the experimental

features of weak interactions for several years after its proposal. In partic-

ular, it was possible to give an operative meaning to the coupling constant

GF by relating it rigorously to the experimentally measured muon weak

decay. Given this operative definition of GF , and following the Galilean

“provando e riprovando” philosophy, an impressive number of theoretical

successful predictions were given for processes describable by charged weak

fermion currents. The latter quantities had two special features, a) their

formal expression was similar to that of the electromagnetic current, i.e.

terms transforming like Lorentz four-vectors were involved, and b) a spe-

cial combination of vector and axial vector terms was required to meet the

experimental existing evidence. This was officially called the V-A form,

and corresponded to the typical expression, e.g. for a lepton component `,

J
(W )
α,` = ψ̄ν`

γα(1 − γ5)ψ` (1.1)

where ν` is the `-type neutrino 1. Analogous expressions for quarks were

eventually introduced and successfully developed. As one notices imme-

diately, the effective fermion currents, that generalize Eq. (1.1), can be

identically re-expressed in terms of left-handed fermion fields defined as

1The conventions of Ref. [8] are followed in this book. The representations of the γ and
Pauli matrices can be found in Section 2.1.

1
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ψfL =
1

2
(1 − γ5)ψf (1.2)

since

J
(W )
α,` = 2ψ̄ν`

γαψ`L ≡ 2J
(+)
α,` (1.3)

where we have used the definition

J
(+)
α,` ≡ ψ̄ν`Lγαψ`L

and the identity γα(1 − γ5) = 1
2 (1 + γ5)γα(1 − γ5). One defines also right-

handed fields as

ψfR =
1

2
(1 + γ5)ψf . (1.4)

For massless fermions, the definitions of Eqs. (1.2),(1.4) also correspond

to the two different spin orientations. This point will be discussed in Sec-

tion 2.2.

What we can say at this stage is that a large amount of weak interaction

processes can be satisfactorily described assuming that charged weak cur-

rents exist that are exclusively made of left-handed fermion fields. In terms

of these currents, the effective Fermi Lagrangian is conventionally written

in the form:

LW (x) = −GF√
2

∑

i,j

J
(W )
α,i (x)J

(W )α†
j (x) + h.c. . (1.5)

Clearly, the possible existence of weak interaction processes, related to neu-

tral weak currents, is not taken into account by the Fermi Lagrangian. Low

energy charged current processes, however, are satisfactorily described by

Eq. (1.5). As already mentioned the muon decay is a particularly relevant

example. The matrix element of the process µ−(p) → e−(k)ν̄e(q1)νµ(q2) ,

where p is the four momentum of the decaying muon and k, q1, q2 the four

momenta of the electron and two neutrinos, respectively, can be computed

from Eq. (1.5) as

M =

√

1

2
GF J

(W )
α,µ J

(W )α†
e . (1.6)

The matrix element squared, gives (the detailed calculation can be found

in [9])
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Σ|M |2 = 64G2
F (pαq

α
1 )(kβq

β
2 ) (1.7)

leading to the muon decay width

dΓ =
Σ|M |2
4mµ

dΦ(3) (1.8)

where the last term is the three-body phase space. Integrating over the

neutrino four momenta yields the energy (E) spectrum of the electron

dΓ(y)dy =
G2

Fm
5
µ

96π3
(3 − 2y)y2dy (1.9)

where y = E/Emax = 2 E
mµ

is the fractional electron energy. Equation (1.9)

is experimentally verified with high precision. Indeed the most general form

that can be computed assuming Lorentz invariance is [10]

dΓ(y)dy =
G2

Fm
5
µ

16π3
[(1 − y) − 2

9
ρ(3 − 4y)]y2dy (1.10)

that is reduced to Eq. (1.9) if ρ, usually called Michel parameter, equals

0.75. The experimental measurements give ρ = 0.7518 ± 0.0028 [11] in

agreement with the Fermi Lagrangian. The decay of polarized muons has

been also studied by accurate experiments. The electron angular distribu-

tion can be studied as a function of the direction of the emitted electron

~n with respect to the muon polarization ~η (both vectors are unit vectors).

Defining cosθ = ~n · ~η the electron angular distribution, integrated over the

electron energy can be written as

dΓ(cosθ)

Γ
=

1

2
(1 − 1

3
ξcosθ)dθ (1.11)

with the asymmetry parameter ξ = 1 for the Fermi Lagrangian. The mea-

surement gives [12] ξ = 1.005 ± 0.009 in agreement with the expectation.

Finally the total decay width can be computed by integrating Eq. (1.9)

yielding

Γ =
G2

Fm
5
µ

192π3
(1.12)

that gives the operative definition of GF , measured by the muon lifetime:

the muon decays through µ → e−ν̄eνµ with ≈ 100% branching ratio and
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τµ = 1
Γ . The experimental result for the muon lifetime is actually very

precise [13]

τµ = (2197.03± 0.04) ns

and a meaningful definition of GF requires Quantum-ElectroDynamic ra-

diative corrections to be computed. These are due to the emission of real

photons and to damping effects (vertex corrections) associated with virtual

photons [14] and modify Eq. (1.12) by a factor ≈ (1 + α
2π [ 254 − π2]), where

α ≡ e2/4π is the fine-structure constant. The QED correction to the muon

decay rate is relevant (about 0.4%) and has been accurately computed to

the second order in Feynman diagrams (two-loop corrections) in the frame-

work of the Fermi Lagrangian [15]. Equation (1.12) is modified as

Γ =
G2

Fm
5
µ

192π3
F

(

m2
e

m2
µ

)

[1 + ∆Q] , (1.13)

where F (x) is a phase-space term taking into account the finite electron

mass

F (x) = 1 − 8x+ 8x3 − x4 − 12x2 lnx (1.14)

and ∆Q represents the radiative corrections. Equation( 1.13) gives

GF = 1.16637(1)× 10−5 GeV−2 . (1.15)

The 9 × 10−6 relative error on GF from the input quantities is dominated

by the experimental uncertainty on τµ.

In spite of its success in describing the muon decay and other low energy

phenomena as the β decay, the Fermi Lagrangian fails at high energy. Tak-

ing, as an example, νe(k1)+ e(p1) → νe(k2)+ e(p2) scattering (k1, p1, k2, p2

indicate the four momenta of the initial and final state neutrinos and elec-

trons) from crossing symmetry the matrix element of the process can be

readily computed from Eq. (1.6), giving

Σ|M |2 = 64G2
F (p1αk

α
1 )(p2βk

β
2 ) (1.16)

and the related cross section is computed from

dσ =
Σ|M |2
4(k1p1)

dΦ(2) (1.17)

where Φ(2) represent the two-body phase space.

In the centre-of-mass frame Eq. (1.17) yields
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dσ

dΩ
=
G2

F

4π2

(s−m2
e)

2

s
(1.18)

where s is the squared centre-of-mass energy. The integration over the

angles, neglecting the electron mass, yields

σ =
G2

F

π
s . (1.19)

In the laboratory frame, assuming the target electron at rest, s =

2meEν , showing that the cross section grows linearly with the neutrino

energy, as experimentally verified. Equation (1.19), however, is bound to

violate unitarity constraints, as can be seen by relating it to the maxi-

mal cross section expected by the optical theorem. Since, as shown by

Eq. (1.18), the reaction occurs in s-wave, the optical theorem gives

σtot =
4π

k
Imfl=0 . (1.20)

where k =
√

s
2 and fl=0 is the s-wave scattering amplitude, usually

parametrized as 1
2ik (ηe2iε − 1), with ε as a real phase and the inelastic-

ity η bounded by 0 ≤ η ≤ 1. On gets

σtot ≤
2π

k2
(η + 1) ≤ 4π

k2
(1.21)

which compared to Eq. (1.19) yields

G2
F

π
s ≤ 4π

k2
=

16π

s
(1.22)

showing that unitary is violated at s = 4π
GF

, corresponding to a centre-of-

mass energy of the neutrino of about 500 GeV and a very large neutrino

energy (500 TeV) in the laboratory frame.

In conclusion the Fermi Lagrangian satisfactorily describes charged-

current processes at low energy, but violates unitarity, which is intimately

related to the fact that Fermi theory is not renormalizable. The description

of weak interactions at high energies requires therefore a new theoretical

scheme, that should also be able to incorporate neutral current processes.

A picture that will satisfy these two mandatory requirements will be that

with intermediate vector bosons, discussed in the following Section.
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1.2 Weak interactions and the intermediate vector bosons

From a purely formal point of view, the possibility of describing charged

weak interactions as if they were mediated by the exchange of charged spin

one bosons appears as a natural consequence of the validity of the assumed

parameterization Eq. (1.5). The latter can be actually considered as the ef-

fective parameterization, valid in the limit of negligible momentum transfer,

of the lowest order corresponding charged vector boson (CVB) formulation

derivable from the Lagrangian:

LCV B(x) = − g√
2

∑

i

[

J
(+)
α,i (x)W+α(x) + h.c.

]

(1.23)

where W+
α is the field operator describing a charged spin one boson and

g is its weak coupling to left-handed fermions. The condition that fixes

the aforementioned equivalence is that the original “normalization” of the

Fermi description is reproduced by the intermediate vector boson formu-

lation Eq. (1.23). In particular, the value of the muon lifetime calculated

in the latter formalism at lowest order via W exchange (formally, at zero

momentum transfer) must be numerically equal to the experimental value.

This is, in turn, related to the definition (i.e. to the numerical value) of GF

given by Eq. (1.15). In terms of this precisely defined quantity, the nor-

malization condition that makes the intermediate vector boson description

acceptable is, as one can easily verify [9, 16], that:

GF√
2

=
g2

8m2
W

. (1.24)

Equation (1.24) will be of paramount importance for the remaining part

of this book, and we shall make this point evident, very frequently, in the

next Sections. At this preliminary stage we shall only stress the fact that,

for the moment, the equality that is written only implies the parameters

of a certain Lagrangian L(g,mW ) and a quantity derived from L at lowest

order. In other words, all quantities in Eq. (1.24) should be considered

for the moment as bare ones, and we shall return to this point later on.

Independently of this feature, the fundamental consequence that is derived

from Eq. (1.24) is that, if one wants to adopt an equivalent formulation to

the description of weak charged interactions that postulates the exchange

of charged vector bosons, these particles must be massive, mW 6= 0, if the

(reasonable) phenomenological requirement of reproducing the finite value

of the muon lifetime (with a non trivially vanishing g) is satisfied.
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Keeping in mind this very strong phenomenological constraint, one can

now return to the expression of the Lagrangian Eq. (1.23) and simply real-

ize the fact that it looks like an almost obvious generalization of the QED

interaction Lagrangian, with the electric charge e replaced by g, the fermion

fields replaced by their left-handed counterparts and the photon replaced

by the W± bosons. It appears in a sense almost natural and aestheti-

cally motivated to postulate that the Lagrangian of the weak interactions

has gauge invariance [16], like QED, with (at least) two Wα gauge bosons,

electrically charged, whose presence guarantees the invariance of the La-

grangian under transformations of a certain gauge group to be identified.

Since each gauge boson is associated to one of the group generators, the

candidate group should have two generators at this stage, a requirement

that has no realistic known solution. The nearest possibility is provided

by a local SU(2) group, which has three generators, T1, T2, T3 two of which

can be combined to produce two charged generators T± = (T1 ± iT2) which

might be associated with W±. From the commutation relations obeyed by

SU(2) generators, [Ti, Tj ] = iεijkTk the third generator T3 can be expressed

as the commutator of the charged generators, T+, T− :

[T+, T−] = T+T− − T−T+ = 2T3 . (1.25)

If this picture turned out to be correct, a first candidate symmetry

group of weak interactions would therefore be a local SU(2) group, whose

non Abelian nature is summarized by the commutation relation Eq. (1.25).

From the expression of charged currents given in Eq. (1.3) one can derive

the expressions of the corresponding charges (supposedly, SU(2) generators)

finding

T+ =
1

2

∫

J
(W )
0,` (x)d3x =

1

2

∫

2ψ̄ν`
γ0(1 − γ5)ψ`d

3x , (1.26)

T− = (T+)† (1.27)

and from Eq. (1.25) one has

T3 =
1

4

∫

ψ̄ν`
γ0(1 − γ5)ψν`

− ψ̄`γ0(1 − γ5)ψ`d
3x , (1.28)

This shows that T3 will not change the electric charge and will be conse-

quently associated with an electrically neutral vector boson, to be coupled

in an extended Lagrangian with neutral fermion currents. In order to gen-

eralize in a consistent way the phenomenology of the charged component
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of the interaction, the involved fermions, supposedly transforming as suit-

able irreducible representations of the symmetry group, should be of pure

left-handed type. For this reason, the candidate symmetry group should

be called SU(2)L, and the corresponding generators T+
L , T

−
L and T3L.

A very important statement, to be made at this precise point, is that

the postulated electrically neutral gauge boson to be associated with T3L

cannot be the photon if the assumed scenario only contains the fields of

Eq. (1.3). Actually a different scheme existed in which additional heavy

leptons were postulated, so that the commutator of the overall T+ and T−

reproduced the electric charge [17]. Without neutral currents, that model

was abandoned after the discovery of the latter ones in 1973, also because

suitable heavy leptons were not observed. The fact that the new neutral

gauge boson is not the photon is an immediate consequence of the commu-

tation relation Eq. (1.25) since, as one can easily verify, the commutator of

the charges (generators) associated with the fermion currents J
(+)
α , J

(−)
α is

not the electric charge but some different, electrically neutral, quantity. At

this stage, this unknown gauge boson will be called W3, and considered as

a technical requirement of the theoretical proposal.

From a purely aesthetical point of view, it appears certainly attractive

to endow weak interactions with gauge invariance e.g. of the previous type.

In a sense, this would lead in a natural way to the beautiful idea that there

should exist a kind of unification between weak and electromagnetic inter-

actions, the latter ones being invariant with respect to a U(1) gauge group.

Leaving the discussion of electro-weak unification to the next Subsections,

we now concentrate our attention on this possibility and accept the idea

of a SU(2)L (non Abelian) gauge symmetry. One obvious and unavoid-

able problem is that such a symmetry cannot be exact , unlike the similar

case of QED, since its candidate gauge bosons must be massive. Therefore,

one must necessarily assume that SU(2)L is, from the beginning, a broken

symmetry.

The simplest possibility of an explicit symmetry breaking, that would

correspond to the addition “by hand” of an extra non invariant mass term

to the Lagrangian ∼ m2
W WαW

α, is immediately ruled out since it would

lead to a tough theoretical difficulty, given the fact that the associated field

theory would become non renormalizable, and the canonical perturbative

calculations would loose any sense. Technically speaking, this would be an

immediate consequence of the expression of the W propagator, that would
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become:

i Pµν(q) = −i (gµν − qµqν/m
2
W )

q2 −m2
W + iε

(1.29)

and would approach a constant, rather than vanishing, in the limit q → ∞.

This means that one must find a way of giving a mass to the SU(2)L gauge

bosons without breaking explicitly the symmetry. One appealing solution

mechanism that achieves this goal is the combination of spontaneous sym-

metry breaking with the Higgs mechanism.

In the next Section we shall choose a particularly simple and relevant

example to show very briefly the main, interesting features of this deservedly

famous topics.

1.3 The Higgs mechanism in the local SU(2) gauge

symmetry case

We consider the example (that will be very useful to understand the main

features of the Standard Model, to be discussed in the next Section) of

a system of complex scalar fields, invariant with respect to a certain local

SU(2) group. The simplest case is provided by a system consisting of a cou-

ple of such fields, transforming under SU(2) as a doublet. In a conventional

notation, the scalar doublet will be associated to a column:

S ≡
∣

∣

∣

∣

Su

Sd

∣

∣

∣

∣

(1.30)

where Su, Sd are complex scalar fields. By hypothesis, S will transform

under a general local SU(2) transformation as a SU(2) doublet i.e.

S′ = e−i[ακ(x) τκ
2 ]S (1.31)

where τκ are the three Pauli matrices, that express the effect of the SU(2)

generators Tκ in the irreducible doublet representation.

Although this is not in principle necessary, let us consider the simplest

case of infinitesimal transformations and let us replace ακ(x) by εκ(x) in

this limiting situation. Then, neglecting O(ε2) effects, Eq. (1.31) can be

read as:

S′ ≡
∣

∣

∣

∣

S′
u

S′
d

∣

∣

∣

∣

=
[

1 − iεκ(x)
τκ
2

]

S =

∣

∣

∣

∣

Su

Sd

∣

∣

∣

∣

− iεκ(x)
τκ
2

∣

∣

∣

∣

Su

Sd

∣

∣

∣

∣

. (1.32)

From the known expressions of the Pauli matrices one then easily de-

rives:
∣

∣

∣

∣

S′
u

S′
d

∣

∣

∣

∣

=

∣

∣

∣

∣

Su

Sd

∣

∣

∣

∣

− i

2

{

ε1(x)

∣

∣

∣

∣

Sd

Su

∣

∣

∣

∣

+ ε2(x)

∣

∣

∣

∣

−iSd

iSu

∣

∣

∣

∣

+ ε3(x)

∣

∣

∣

∣

Su

−Sd

∣

∣

∣

∣

}

. (1.33)
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Equation (1.33) shows how the scalar doublet changes under the most

general infinitesimal transformation belonging to the local SU(2) group. In

particular, one can see the effect of each single independent transformation

εκ(x) related to the corresponding generator Tκ of the group.

In a quantum field theory, where the fields are local operators, the effect

of an infinitesimal (κ) transformation of the group on a given field can also

be identically represented as the action of the associated generator Tκ in

the form

S′ ≡ eiεκ(x)TκSe−iεκ(x)Tκ (1.34)

that can also be written as:

S′ − S ' iεκ(x)[Tκ, S] ≡ δS(κ) (1.35)

(no summation on the index κ). Equating this expression to Eq. (1.33) one

formally gets:

[T1, S] ≡
∣

∣

∣

∣

[T1, Su]

[T1, Sd]

∣

∣

∣

∣

= −1

2

∣

∣

∣

∣

Sd

Su

∣

∣

∣

∣

(1.36)

[T2, S] = −1

2

∣

∣

∣

∣

−iSd

iSu

∣

∣

∣

∣

(1.37)

[T3, S] = −1

2

∣

∣

∣

∣

Su

−Sd

∣

∣

∣

∣

. (1.38)

Equations (1.33)–(1.38) remain valid when one “sandwiches” their left-

and right-hand members into the vacuum state and considers the scalar

fields expectation values in the vacuum (vev). When such an operation is

performed, on realizes that, provided that at least one of the “basic” vevs

〈Su〉0, 〈Sd〉0 is different from zero, all the three commutators of Eqs. (1.36)–

(1.38), that express the change of 〈S〉0 under the three independent in-

finitesimal transformations, are non vanishing. This means that, under the

condition that either 〈Su〉0 or 〈Sd〉0 is not vanishing, none of the three

generators T1,2,3 can annihilate the vacuum:

Tκ|0〉 6= 0 , κ = 1, 2, 3 . (1.39)

In particular, since the fields are supposedly complex, it will be sufficient

to require that one of the components of either Su or Sd has non vanishing

vev. Defining conventionally:

Su ≡ s2 + is1 (1.40)
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Sd ≡ s0 + is3 (1.41)

one usually assumes that 〈s0〉0 6= 0 and defines the real quantity:

〈s0〉0 ≡ 1√
2
v (1.42)

so that

〈S〉0 =
1√
2

∣

∣

∣

∣

O

v

∣

∣

∣

∣

. (1.43)

Starting from Eqs. (1.40)–(1.43), one can now return to Eqs. (1.36)–

(1.38) and derive the following equalities (as a consequence of the reality

of v), just by taking the expectation values in the vacuum of all involved

members:

〈[T1, s1]〉0 = − i

2
〈s0〉0 (1.44)

〈[T2, s2]〉0 =
i

2
〈s0〉0 (1.45)

〈[T3, s3]〉0 = − i

2
〈s0〉0 . (1.46)

Until now, no assumption has been made concerning the invariance of

the system with respect to the chosen group, and only the formal property

of transforming like a doublet has been imposed on S. If one now wishes to

postulate a symmetry of the system with respect to the SU(2) local group

transformations, and wants at the same time to retain a non vanishing vev

like in Eq. (1.42), one sees that the immediate consequence will be that the

realization of the symmetry will be of a rather particular kind. Actually,

it will still be possible to impose the invariance of the Lagrangian under

the group transformations; but for the vacuum this will not be possible,

since owing to Eq. (1.39) all the three independent local SU(2) transfor-

mations will change it. This situation is conventionally defined as that of

a spontaneously broken symmetry. More precisely, this definition is used

when at least one of the generators has this property. In our case, all three

generators have it. One should stress at this point the fact that this is not

a general feature of the chosen group, but indeed of the assumed doublet

representation, and would not remain valid in other situations (like for in-

stance one in which the scalar fields are supposed to transform like a real

triplet).

Having seen that a possible local SU(2) symmetry of the considered

system must be spontaneously broken if the vacuum “hosts” a scalar field,
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we now reconsider the three Eqs. (1.44)–(1.46). If the symmetry had been

a global one (corresponding to the case of constant ε1,2,3), these equations

would have been the starting point for the rigorous derivation of a theo-

rem, due to Goldstone, whose conclusion would have been the predicted

existence of three massless Goldstone bosons corresponding to the three

fields s1, s2, s3 . This can be seen e.g. by inserting a complete set of physi-

cal states into the left-hand members of Eqs. (1.44)–(1.46) and associating

a conserved current to each generator; we defer to Ref. [18] for a rigorous

proof. This conclusion would not be correct in the case of a local symmetry

that we are considering.

Let us therefore and finally consider the requirement of local symmetry

in more detail. If the SU(2) symmetry were of global type the traditional

choice for the Lagrangian would be

LG = (∂µS)†(∂µS) − V (S) (1.47)

where

V (S) = −µ2(S†S) + λ(S†S)2 . (1.48)

The Lagrangian Eq. (1.47) is manifestly invariant under a global SU(2)

group, but also manifestly non invariant under the gauge generalization. To

achieve an invariant Lagrangian, the known prescription is that of adding

to the system three spin one gauge bosons A1
µ, A

2
µ, A

3
µ with prescribed

transformation properties under the group, and to replace systematically

the ordinary derivative ∂µ by the covariant derivative Dµ, the latter being

defined in the chosen system as:

DµS =
(

∂µ − ig
τκ
2
Aκ

µ

)

S (1.49)

where g is by definition the local SU(2) coupling constant. The same

coupling will also appear in the transformation law obeyed by the gauge

bosons Ai
µ in order to make the term (DµS)†(DµS) gauge invariant. The

full local SU(2) invariant Lagrangian will be finally written as:

LL = (DµS)†(DµS) − V (S) − 1

4
F κ

µνF
µν
κ (1.50)

with

F κ
µν = ∂µA

κ
ν − ∂νA

κ
µ + gεκ`mAl

µA
m
ν . (1.51)

Until now, no special requirement has been imposed upon the scalar

field S. As one sees immediately, this situation would correspond, in the
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classical analogue, to a minimum of the potential for conventional negative

values of µ2 in Eq. (1.48). But for positive µ2 values, the picture is quite

different, and the classical minimum would correspond to

〈S†S〉0 =
1

2

µ2

λ
. (1.52)

The simplest way of meeting Eq. (1.52) is to take

〈S〉0 =
1√
2

∣

∣

∣

∣

0

v

∣

∣

∣

∣

(1.53)

where

v =

√

µ2

λ
(1.54)

that corresponds to the assumed configuration Eq. (1.43), and generates

consequently spontaneous symmetry breaking.

The canonical way of treating the system proceeds now by replacing

the original field S by a “shifted” field S̃ that will be by definition more

convenient for perturbative expansions:

S̃ ≡ S − 〈S〉0 . (1.55)

In terms of this shifted field, the product of covariant derivatives in

Eq. (1.50) becomes then:

(DµS)†(DµS) = (∂µS̃)†(∂µS̃) +
g2

4
AµκA

µ
κ〈S†S〉0 − gIm

[

〈S†〉0τκAµκ∂
µS̃
]

−gIm
[

S̃†τκAµκ∂
µS̃
]

+
g2

4
AµκA

µ
κ

[

S̃†S̃ + 2Re(S̃†〈S〉0)
]

=
1

2

(gv

2

)2

AµκA
µ
κ +O(S̃2, AµS̃, AµS̃

2, A2
µS̃, A

2
µS̃

2) (1.56)

(the properties of the Pauli matrices have been used). One realizes immedi-

ately that the three gauge bosons have acquired a (equal) mass, as a direct

consequence of the assumed existence of a non vanishing scalar field vev,

and that

MA =
1

2
gv . (1.57)

Independently of this rather surprising fact, one would still expect to

find three massless scalars in the overall Lagrangian. With this aim, one

looks for all possible quadratic terms in the shifted fields, rewriting the

potential V (S) Eq. (1.48), and finds:

V (S) = −µ2
[

(S̃ + 〈S〉0)†(S̃ + 〈S〉0)
]

+ λ
[

(S̃ + 〈S〉0)†(S̃ + 〈S〉0)
]2
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= −µ2S̃†S̃ + λ
[

2S̃†S̃〈S†S〉0 + 4(ReS̃†〈S〉0)2
]

+non quadratic terms . (1.58)

Using the assumed Eq. (1.52) one sees that the first two terms in the

quadratic expression cancel exactly, leaving the residual term:

VQuad = 4λ(ReS̃†〈S〉0)2 = 4λ
[

Re
(

S̃†
u〈Su〉0 + S̃†

d〈Sd〉0
)]2

= 4λ [s̃0〈s0〉0 + s̃1〈s1〉0 + s̃2〈s2〉0 + s̃3〈s3〉0]2 . (1.59)

A glance to Eq. (1.59) shows that, provided that at least one of the four vev

of the original fields is non vanishing, as assumed, there will always be one

and only one massive shifted field, by definition the linear combination that

appears in Eq. (1.59). In the simplest case that is normally adopted, only

〈s0〉 is different from zero and the associated shifted field s̃0 will remain

massive:

VQuad = 4λs̃20〈s0〉2 = µ22s̃20 (1.60)

whilst the remaining three field s̃1,2,3, being associated to vanishing s1,2,3

vevs, will be massless. The residual massive field
√

2s̃0 ≡ (1/
√

2)(S̃d+S̃†
d) is

called the Higgs boson field. For what concerns the three remaining fields,

the impression at this stage, as announced, is that the standard Goldstone

theorem prediction is verified.

The fact that invalidates this conclusion is provided by the existence of

the third term in Eq. (1.56). Assuming for simplicity the existence of one

single non vanishing vev = 〈s0〉0 like in Eqs. (1.42), (1.43) one derives that

this term becomes:

−gIm
[

〈S†〉0τκAµκ∂
µS̃
]

= −g〈s0〉0 [Aµ1∂
µs̃1 +Aµ2∂

µs̃2 −Aµ3∂
µs̃3] .

(1.61)

This mixing between the gauge bosons and the candidate Golstone

bosons introduces an unwanted complication in the Lagrangian, that would

make the physical interpretation of the associated masses far from being

clean. Since the origin of the mixing terms is deeply related with the intro-

duction (in the covariant derivative) of the gauge bosons, typical features

of the local gauge theory that is being considered, one would think that

the gauge freedom that is available should be able, somehow, to cure this

intrinsic disease, which is in fact exactly the case. The procedure in this
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direction consists of rewriting the scalar doublet in the so called polar form:

S(x) ≡ e
i
v
[τκs̃′

κ(x)]

∣

∣

∣

∣

∣

O
v+s̃′

0(x)√
2

∣

∣

∣

∣

∣

(1.62)

retaining the spontaneous symmetry breaking scheme of Eq. (1.43), so that

〈s̃0,1,2,3〉0 = 0. Once the polar representation Eq. (1.62) is adopted, one

removes completely the three fields s̃′1,2,3 by means of a special gauge trans-

formation:

Su(x) = e−
i
v
[τκs̃′

κ(x)]S(x) =
1√
2

∣

∣

∣

∣

O

v + s̃′0(x)

∣

∣

∣

∣

. (1.63)

This remarkable gauge, in which the scalar doublet is represented by

one residual real scalar field, is called the unitary gauge. When one moves

to it, it becomes necessary to transform also the original gauge fields Aµ in

a way that is fixed by known prescriptions, Aµ → A
(u)
µ . At the end of this

canonical game, one is left with a Lagrangian of the following form:

L = (DµSu)†(DµSu) − 2µ2 s̃
′2
0

2
− λvs̃′30 − λ

4
s̃′40 +

1

4
µ2v2

= ∂µ
s̃′0√
2
∂µ s̃

′
0√
2

+
1

2

(gv

2

)2

Aκ
µuA

µκ
u +

vg2

2
√

2
Aκ

µuA
µκ
u

s̃′0√
2

+
g2

4
Aκ

µuA
µκ
u

s̃′20
2

− 2µ2 s̃
′2
0

2
− λvs̃′30 − λ

4
s̃′40 +

1

4
µ2v2 . (1.64)

This transformed Lagrangian, that is by assumption perfectly equivalent

to the starting one Eq. (1.50), describes now a physical system consisting

of three massive gauge boson of common equal mass MAu = (1/2)gv and

of one massive scalar field s̃′0/
√

2 of mass

m =
√

2µ . (1.65)

As expected, no ambiguous bilinear mixing with the gauge bosons survives

(naively, the transformed quantity Eq. (1.61) is now zero given the intrin-

sic reality of Su). All the three candidate Goldstone bosons scalars have

totally disappeared. As one says, they have been “eaten” by the corre-

sponding gauge bosons, and for this reason they are usually called would-be

Goldstone bosons. This remarkable mechanism is generally called the Higgs

mechanism, and the surviving massive scalar field s̃′0/
√

2 , that corresponds

to the “cartesian coordinate” s̃0 of the original doublet S, is called the Higgs

scalar field, with a Higgs scalar as its associated elementary particle.

This rather long discussion has been performed as a useful introduction

to the following presentation of the main features of the Standard Model.
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Before entering this next topics, we want to stress two points that deserve,

at this stage, special attention. The first one is the fact that, in the consid-

ered example, the generation of mass for the gauge bosons was so to say,

a “private business” between the latter ones and the scalar doublet. No

fermions were present in the system, and one guesses that their addition,

necessary to describe a realistic physical situation, will not add extra fea-

tures or modify the previously discussed mechanism. The second point is

the fact that, although the physically meaningful situation is only achieved

in the unitary gauge, each other gauge is, by definition, able to reach the

same results for observable quantities. In other words, one expects to find

the same predictions for physical observables both in the unitary gauge and

in other gauges where, however, the unphysical would be Goldstone bosons

will be surviving. This point will be particularly important, and discussed

in great detail, in the Section that will be devoted to the practical calcula-

tions within the Standard Model at the so called one-loop level.

After this statement, we are now ready to begin a short review of the

Standard Model of electroweak interactions.

1.4 Unification of weak and electromagnetic interactions in

the Standard Model

1.4.1 The SU(2) × U(1) description of electroweak

interactions

We have summarized in the previous Sections the motivations that led to

believe that a promising symmetry group for weak interactions should be a

spontaneously broken local SU(2)L. We have seen in the previous Section

that for a symmetry of this type, a doublet of complex scalar fields guar-

antees an equal mass generation for all the three gauge bosons, without

any internal theoretical difficulty, via the Higgs mechanism. The main the-

oretical ingredients for a tentative description of weak interactions would

be therefore, at this point, ready and only an addition of suitable fermion

fields to the Lagrangian Eq. (1.50) would seem necessary. The new, extra

feature that makes the theoretical construction more ambitious and appeal-

ing is the realization that, with a modest and almost unavoidable effort,

one can enlarge the symmetry group of the weak interactions so that elec-

tromagnetic interactions are also incorporated. In such a way a beautiful

unification of the two phenomena would be achieved, since both kinds of

forces would be the result of exchange of gauge bosons, carriers of their
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interaction and manifestation of two local gauge groups under which the

physical system would be symmetric.

Clearly, from the very beginning, if such an ambitious program were suc-

cessful, the realization of the two symmetries related to the two interactions

should be quite different, for the simple reason that photons must evidently

remain massless. Therefore, the associated symmetry will be allowed to re-

main realized without the introduction of any spontaneous breaking mech-

anism. Keeping this in mind, the construction of the enlarged symmetry

group is, so to say, relatively simple to understand.

First of all, the simplest candidate symmetry group must accommodate

only one extra gauge boson, precisely the photon. Therefore only one more

symmetry generator should be added to the three previously defined ones

T+
L , T

+
L , T3L. There is no simple group available with four generators. But

one can form the so called direct product of the already accepted SU(2)L

with another local group having the mathematical property of a U(1) (one

generator). The resulting candidate symmetry group should thus be of the

form SU(2)L × U(1).

To learn something more on the nature of this extra U(1), one can

start from the mathematical requirement that the associated generator

must commute with those of SU(2)L, in order to build a proper direct

product. The simplest possibility is then to start from the lightest couple

of left-handed neutrino and electron that must appear in the weak current

Eq. (1.1). In a picture that has a SU(2)L symmetry, the immediate choice is

that of grouping them into a SU(2)L doublet, to be conventionally denoted

as `1L:

`1L =

∣

∣

∣

∣

ψν`L

ψ`L

∣

∣

∣

∣

. (1.66)

The ordering in the doublet corresponds to values of T3L(≡ I3L) = +(1/2)

(neutrino) and −(1/2) (electron). This is motivated by the requirement

that e.g. T+ raises at the some time by one unity both the value of T3L

(mathematical requirement) and that of Q (by its definition).

It is now straightforward to realize that, for both members of the `1L

doublet, the value of (Q−T3L) is the same. In a group theoretical language,

this corresponds to the fact that the quantity (Q−T3L) commutes with the

generators of SU(2)L. It appear thus reasonable to define the desired U(1)

generator as:

YL ≡ 2(Q− T3L) (1.67)

where the subscript L is dictated by the presence of T3L in the r.h.s of

Eq. (1.67). Note the presence of the (arbitrary) factor 2. This is due to the
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fact that in this way the relationship between the local gauge group gener-

ators YL and T3L is formally identical with that relating the corresponding

strong interaction quantities Y (hypercharge) and T3 (third component of

the isospin).

We can now investigate in more detail the main features of the candidate

symmetry group Ge.w. of electroweak interactions, by definition chosen as:

Ge.w. ≡ SU(2)L × U(1)YL
. (1.68)

The first relevant question to be answered is that of which elementary

particles will have to be accommodated from the beginning in the proper

invariant Lagrangian, and with which transformation properties under the

group. Two main classification criteria occur at this point, dictated by

rather different motivations.

The first requirement in that the elementary fermion fields involved in

the generalized electroweak interactions description have definite chirality,

i.e. either left-handed or right-handed fields will appear in the irreducible

representations. Since one wants to generate the charged weak current,

phenomenologically forced to be of purely left-handed type, from a covari-

ant derivative of the type of Eq. (1.49) acting on fermions, it is reasonably

clear that left-handed leptons and quarks, transforming as SU(2)L dou-

blets, will have to be inserted in a proper way in the Lagrangian as a

generalization of the example given by Eq. (1.66). On the other hand one

knows from the starting assumption that a proper description of the con-

ventional electromagnetic interactions must be provided. Since the related

force does not differentiate left-handed from right-handed fermions, it is

evident that the latter ones will have to be included in the Lagrangian as

well. In order not to interfere with the desired structure of the charged

weak interactions, they will have to be “neutral” under SU(2)L i.e. they

will transform with respect to this group as singlets. For what concerns the

other group U(1)YL
, the transformation properties of both left- and right-

handed fermions will be dictated by the values of their weak hypercharge

YL, as fixed from Eq. (1.67).

Note that, in the conventional approach, the assignment of YL for

fermions (both left- and right-handed ones) is done to ensure the correct

phenomenological electric charges. The value of YL is taken to be be equal

to one for the Higgs doublet, and follows from Eq. (1.67) for any other field

of the model. In fact, without giving details of this statement, we can say

that a self-consistent description requires the appearance in the Lagrangian

of a number of fermion families, differing essentially because of the different
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masses of the components, and such that, within each family, the sum of

the electric charges of all the basic leptons and quarks components is ex-

actly vanishing (this guarantees the absence of unwanted anomalies [22]).

By assumption, the behavior of an elementary fermion in the presence of

electroweak interactions is completely determined by its SU(2)L × U(1)YL

quantum number (I3L, YL) and not by its mass, therefore it is sufficient to

consider the features of that component of the full Lagrangian that corre-

sponds to a single family to derive the main properties of the model. In

particular, we shall now consider the first, lightest family. This will consist

of the following basic fermions (Tab. 1.1):

a) A doublet of left-handed neutrino and electron (νeL, eL) transform-

ing under SU(2)L as a doublet (overall electric charge = −1).

b) A doublet of left-handed up and down (uL, dL) quarks with anal-

ogous SU(2)L behavior, each quark appearing in three different

color states (the quarks’ color will determine their properties under

strong interactions, but not that under electroweak interactions).

This makes a total of six left-handed quark states, with overall

electric charge = +1.

c) One right-handed electron eR, by definition a SU(2)L singlet, re-

quired by the properties of the electromagnetic interactions (overall

electric charge = −1).

d) Two right-handed up and down uR, dR quarks, SU(2)L singlets

and in three color states each (overall electric charge = +1), which

makes six more states.

Table 1.1 Values of I3L

and YL for the charged
fermion fields (first fam-
ily).

I3L YL

ψνeL +1/2 −1
ψeL −1/2 −1
ψeR 0 −2
ψuL +1/2 +1/3
ψdL −1/2 +1/3
ψuR 0 +4/3
ψdR 0 −2/3

These fifteen fermion fields are sufficient to generate a model with all
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the desired properties, as we shall immediately show. Clearly, the so called

family replication will involve the muon family and the τ family with their

neutrinos and quarks. This will be discussed later. We want to stress at this

point the fact that there is no right-handed neutrino (in each family). This

will lead to fundamental theoretical consequences (massless neutrinos), as

we will see. From a theoretical point of view, there is no motivation to

exclude such an elementary component from the beginning, only a “min-

imality” requirement of the theoretical picture. In fact, the commonly

accepted version of the model without right-handed neutrinos in also called

minimal Standard Model.

We are now ready to begin the illustration of the main features of the

model that has been proposed. This will be done in the forthcoming pages.

1.4.2 Gauge boson masses in the SU(2)L × U(1)YL
scheme

From all our previous considerations, we are now ready to accept the idea

that, given a family like that discussed in the last Subsection, a promis-

ing candidate to describe its electroweak interactions appears to be a La-

grangian L with local SU(2)L × U(1)YL
gauge invariance spontaneously

broken in the Higgs mode by a doublet of complex scalars, whose only

physical residual particle will be that associated with the real Higgs scalar

fields. Given this prescription, it is relatively simple to derive the formal

expression of L. In the commonly accepted version, this consists of four

separate pieces, whose discussion can be separately performed. We shall

use the convention denomination

−L = LSG + LFG + LGG + LFS (1.69)

(S,G,F denote here the Higgs, the gauge bosons, the fermions respectively)

and begin to investigate the properties of the first term. This is essen-

tially the modification of the Lagrangian of Eqs. (1.47), (1.48), with the

requirement of SU(2)L and of additional U(1)YL
invariance. In practice,

this means that the normal derivative Eq. (1.47) have to be modified and

becomes the so called covariant derivative

DµS =

(

∂µ − ig
τκ
2
Aκ

µ − ig′
1

2
Bµ

)

S (1.70)

where the new gauge field Bµ is associated with the U(1)YL
group, Aκ

µ, κ =

1, 2, 3, are the three gauge bosons associated with SU(2)L and g, g′ are by

definition the coupling constants of the two groups.
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The transformation properties of Aκ
µ, Bµ under the corresponding

groups are orthogonal. Under infinitesimal transformations of SU(2)L, A
κ
µ

changes (κ = 1, 2, 3), while Bµ is unchanged. Under infinitesimal U(1)YL

transformations ∼ eiη(x)YL/2, Aµ is unaffected while Bµ becomes

B′
µ = Bµ − 1

g′
∂µη(x) . (1.71)

The factor 1/2 that follows g′ is the value of the weak hypercharge YL/2

of the scalar doublet, fixed by Eq. (1.67) and by the requirement that Su,d

[Eq. (1.30)] have electric charge +1 and zero respectively.

The gauge bosons mass generation will be produced by the term

(DµS)†(DµS), belonging to the scalar-gauge component of the Lagrangian

= LSG. We can repeat essentially the derivation of Section 1.3 and compute

the product in the unitary gauge, obtaining:

(DµS)†u(DµS)u = ∂µ
s̃′0√
2
∂µ s̃

′
0√
2

+
1

2

[

v2 + 2
√

2v
s̃′0√
2

+ 2
s̃′20
2

]

×
[

g2

4

(

A1
µ,uA

µ1
u +A2

µ,uA
µ2
u

)

+
1

4

(

gA3
µ,u − g′Bµ

)2
]

(1.72)

where Aκ
µ,u are the gauge fields in the unitary gauge (Bµ is not affected by

the SU(2)L transformation).

A glance to Eq. (1.72) immediately shows that, for what concerns the

(1,2) indexes, the situation has remained the same as in the pure SU(2)L

invariant case represented by Eq. (1.64). One defines in a conventional way

the charged gauge bosons W+,−
µ as:

W±
µ =

1√
2

[

A1
µ,u ∓ iA2

µ,u

]

. (1.73)

The residual neutral scalar field s̃′0/
√

2 is the conventionally defined

Higgs field and will be denoted by a corresponding symbol = H from now

on. For what concerns the charged gauge boson component, Eq. (1.72) can

be consequently written in the form:

(DµS)†u(DµS)u = m2
WW+

µ W
−µ +W+

µ W
−µ

[√
2mW gH +

g2

2
H2

]

(1.74)

that corresponds to a charged gauge boson W , of a mass

mW =
gv

2
(1.75)
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interacting with the Higgs scalar in a way that corresponds to the two terms

in the square bracket in the r.h.s. of Eq. (1.74).

For what concerns the neutral gauge boson sector, the situation is now

quite different from that corresponding to the pure SU(2)L invariance,

Eq. (1.64). One notices that, as a consequence of the presence of the extra

U(1)YL
symmetry, corresponding to a not vanishing g′ coupling, the original

symmetry between A1
µ, A

2
µ and A3

µ has disappeared. Moreover, neither A3
µ

nor Bµ can be thought of as mass eigenstates, owing to the bilinear mixing

term that contains them in Eq. (1.72). In fact, at first sight one can already

conclude that there will only be one massive state, corresponding to the

linear combination of A3
µ,u, Bµ whose square appears in that equation.

The situation can be better understood introducing a (non diagonal) 2×
2 mass matrix in the so called (A3

µ, Bµ) base and writing the corresponding

bilinear term as:

v2g2

8

(

A3
µ,u − g′

g
Bµ

)2

=
v2

8
|A3

µ,uBµ|
∣

∣

∣

∣

g2 −gg′
−gg′ g′2

∣

∣

∣

∣

∣

∣

∣

∣

A3
µ,u

Bµ

∣

∣

∣

∣

≡ 1

2
|A3

µ,uBµ|[M2
3,B ]

∣

∣

∣

∣

A3
µ,vu

Bµ

∣

∣

∣

∣

(1.76)

where M2
3,B is a non diagonal mass matrix, by definition given by the

expression:

M2
3,B =

v2

4

∣

∣

∣

∣

g2 −gg′
−gg′ g′2

∣

∣

∣

∣

≡
∣

∣

∣

∣

m2
3 −m3mB

−m3mB m2
B

∣

∣

∣

∣

(1.77)

where m3,B = gv/2, g′v/2 are not to be interpreted as rigorous mass terms,

but only as parameters of the Lagrangian.

The situation summarised by Eq. (1.76) can be re-expressed by saying

that on one hand A3
µ, Bµ are intrinsically associated with the two indepen-

dent symmetry groups SU(2)L, U(1)YL
, i.e. they are transforming indepen-

dently and with definite prescriptions under the two groups [in particular,

A3
µ belongs to a SU(2)L triplet, together with A1,2

µ , while Bµ is transformed

like in Eq. (1.71)]. But on the other hand A3
µ, Bµ are not the proper mass

eigenstates: the latter ones should appear in the Lagrangian quadratically,

and without mixing terms.

To determine the proper mass eigenstates is straightforward. One knows

from elementary matrix theory that, given a non diagonal matrix M2
3,B like

that of Eq. (1.77), there always exists a unitary matrix D that diagonalises

M2
3,B via a similarity transformation

DM2
3,BD

† ≡ M2 =

∣

∣

∣

∣

m2
Z O

O m2
A

∣

∣

∣

∣

. (1.78)
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By definition, the transformation Eq. (1.78) conserves both the determinant

and the trace of M2
3,B . Since the determinant of M2

3,B is vanishing, this

leads to the (expected) conclusion that either mZ or mA must be zero.

Setting e.g. mA = O, m2
Z is then given by the trace of M2

3,b i.e.

m2
Z =

v2

4
(g2 + g′2) . (1.79)

The formal expression of the D matrix is fixed by the requirement of

being unitary (and real), which leaves only one free parameter, an angle to

be called θW (the Weinberg angle)

D =

∣

∣

∣

∣

cos θW − sin θW

sin θW cos θW

∣

∣

∣

∣

, DD† = D†D = 1 (1.80)

with θW being related to g, g′ by the property:

tgθW =
mB

m3
=
g′

g
(1.81)

that can be re-expressed by saying that:

cos2 θW =
1

1 + g′2/g2
=

g2

g2 + g′2
≡ 1 − sin2 θW . (1.82)

The final step is now to rewrite Eq. (1.76) in the perfectly identical form:

|A3
µ,uBµ|[M2

3,B]

∣

∣

∣

∣

A3
µ,u

Bµ

∣

∣

∣

∣

≡
[

|A3
µ,u, Bµ|D†] [DM2

3,BD
†]
[

D

∣

∣

∣

∣

A3
µ,u

Bµ

∣

∣

∣

∣

]

≡ |ZµAµ| [M2]

∣

∣

∣

∣

Zµ

Aµ

∣

∣

∣

∣

∣

∣

∣

∣

Zµ

Aµ

∣

∣

∣

∣

≡
[

D

∣

∣

∣

∣

A3
µ,u

Bµ

∣

∣

∣

∣

]

. (1.83)

Evidently, the states Zµ, Aµ are the desired mass eigenstates, the first

one belonging to the eigenvalue given by Eq. (1.79), the second one belong-

ing to the vanishing value MA = 0. In terms of A3
µ,u, Bµ their expression

is given by Eq. (1.83). We can write it in terms of the parameter θW

Eqs. (1.80), (1.81) as:

Zµ = cos θWA3
µ,u − sin θWBµ

Aµ = sin θWA3
µ,u + cos θWBµ . (1.84)

The massive spin one boson, linear combination of the SU(2)L and of

the U(1)YL
gauge bosons, is conventionally called the Z boson. As one sees,

its field is proportional to the combination (A3
µ,u−(g′/g)Bµ) as instinctively

expected from the previous discussion. The value of its mass Eq. (1.79) is

different from the that of the W mass Eq. (1.75), but the two quantities

are strictly connected by a relationship that will be particularly relevant in

the model. This will be discussed in the forthcoming Subsection.
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1.4.3 The (W, Z) mass relationship and the ρ0 parameter

The values of the (W,Z) masses Eqs. (1.75), (1.78) have been obtained by

assuming that the local SU(2)L×U(1)YL
gauge symmetry is spontaneously

broken by a set S of complex scalar fields transforming under SU(2)L as a

doublet Eq. (1.31). Keeping this last feature in mind, we can consequently

write the following identity, valid under the previously assumed circum-

stances:

m2
W

m2
Z cos2 θW

= 1 (1.85)

where Eq. (1.82) has been used. Using the definition of the parameters

m3,mB Eq. (1.77), Eq. (1.85) can be rewritten as:

m2
W

m2
Z cos2 θW

=
m2

W (1 + tg2θW )

m2
Z

=
1

m2
Z

[

m2
W +

m2
Wm2

B

m2
3

]

=
m2

W

m2
3

[

m2
3 +m2

B

m2
Z

]

=
m2

W

m2
3

= 1 (1.86)

where the invariance of the matrix trace m2
3 +m2

B = m2
Z has been used.

In the conventional notation one defines the ρ0 parameter of a sponta-

neously broken SU(2)L × U(1)YL
gauge as

m2
W

m2
Z cos2 θW

=
m2

W

m2
3

≡ ρ0 (1.87)

even when the spontaneous breakdown is not due to the a not vanishing

vev produced by a scalar SU(2)L doublet. In this case, in principle, ρ0

could be different from one.

One can re-express the fact that ρ0 = 1 when the spontaneous break-

down in generated by a SU(2)L doublet in the following way. Imagine

that in the covariant derivative Eq. (1.70) the SU(2)L interaction ∼ g is

turned on at a preliminary stage, with the YL interaction ∼ g′ still switched

off. Then the mass generation proceeds as in the pure SU(2)L case illus-

trated in Section 1.3, leading to Eq. (1.64) and to an equal quadratic term

∼ (A1
µA

µ1

+ A2
µA

µ2

+ A3
µA

µ3

). The introduction of YL adds extra terms

∼ BµB
µ and A3

µB
µ, without modifying the ∼ v2A3

µA
µ3

coefficient. This

means that the value of the parameter defined as m2
3 in Eq. (1.77) is to-

tally fixed by the SU(2)L component of the covariant derivative Eq. (1.70),

and for a discussion of this quantity one can safely assume that g′ = 0. A

consequence of Eq. (1.64) then is the fact that, under this condition, the

manifest symmetry of the scalar-gauge component of the Lagrangian with
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respect to “rotations” in the 3d-space of the vectors A1
µ, A

2
µ, A

3
µ [a O(3)

group, mathematically equivalent to a SU(2) group], is translated into the

fact that, even after switching on the hypercharge interaction, one will still

have the same m2
3, and in particular one will be left with

m2
3 = m2

W ⇒ ρ0 = 1 . (1.88)

The previous result can be actually derived from a property of the Higgs

sector of the model. In the case of a single scalar field, the scalar poten-

tial of Eq. (1.47) has a O(4) global symmetry. The presence of a vacuum

expectation value of the scalar field reduces this symmetry to O(3), which

is mathematically equivalent to SU(2). This residual global symmetry of

the Higgs sector, that automatically implies Eq. (1.88) (see e.g. [18]) is

called custodial SU(2) symmetry. Note that this residual symmetry is a

global one, not necessarily related to any of the usually encountered SU(2)

groups and, in general, not necessarily surviving in the model in case of dif-

ferent mechanisms of spontaneous symmetry breaking. In particular, one

can easily list a number of situations where the custodial symmetry is valid,

or not. We shall illustrate the simplest case of non validity, when the spon-

taneous breaking is generated by three real scalar fields, transforming under

SU(2)L as a triplet. This set can be represented by a three dimensional

vector column

~χ ≡

∣

∣

∣

∣

∣

∣

χ1

χ2

χ3

∣

∣

∣

∣

∣

∣

(1.89)

whose transformation under SU(2)L is fixed by formulae, analogous to

Eq. (1.31). To maintain the group invariance, the covariant derivative act-

ing on χ in the part of Lagrangian that contains it (that would be formally

identical to Eqs. (1.47), (1.48)) should be modified in the following way:

∂µ~χ→ Dµ~χ =
[

∂µ~χ− ig(~χ ∧ ~Aµ)
]

. (1.90)

Spontaneous symmetry breaking can be generated allowing one com-

ponent of χ to be “hosted” by the vacuum. Taking for instance 〈χ3〉0 ≡
(v3/

√
2) 6= 0, one has

〈~χ〉0 ≡ 1√
2

∣

∣

∣

∣

∣

∣

0

0

v3

∣

∣

∣

∣

∣

∣

. (1.91)
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This generates a vector boson mass term of the form:

(Dµ~χ)†(Dµ~χ) ⇒ g2 v
2
3

2
(A1

µA
µ1

+A2
µA

µ2

) = (gv3)
2W+

µ W
µ− (1.92)

where only the charged boson W has acquired a mass. For this type of

spontaneous symmetry breaking mechanism one would have therefore, for-

mally, no meaningful definition of the ρ0 parameter if the breaking were

only due to the scalar triplet. If the triplet were added to the conventional

scalar, a value of ρ0 different from (and clearly larger than) one would be

obtained, numerically dependent on the values of v3 and v.

The considered example can be generalised to other situations. From

the previous discussion, it is relatively simple to conclude that, whenever

the spontaneous breaking is generated by any combination of scalar fields

transforming under SU(2)L either as a doublet or as a singlet (the latter be-

ing unaffected by the transformations), the value of ρ0 will be equal to one:

this property is generally lost when scalars with different transformation

properties are added to the scenario.

This short discussion has been concentrated, and we shall return on it

later on, on some properties of the massive (W, Z) boson sector. We still

have to understand the physical meaning of the residual massless gauge

boson Aµ that appears in Eqs. (1.83), (1.84). In the forthcoming Subsection

we shall show that it can be identified with the photon. This will have a

fundamental consequence, since the Z couplings e.g. to the fermions will

be fixed in a way that will be experimentally testable.

1.4.4 Electroweak unification and weak neutral currents

From the previous discussion we have learned that, in the Minimal Stan-

dard Model, the proposed mechanism of spontaneous symmetry breaking

automatically generates a massless neutral gauge boson associated with the

field operator Aµ given by Eq. (1.84). Since one obviously wants to iden-

tify this massless particle with the photon, some extra condition must be

imposed. The most obvious requirement is that the couplings of Aµ to the

fermions are those of a photon, fixed by the fermions’ electric charge ac-

cording to the conventional QED prescriptions. To meet this requirement,

one must consider the interaction of fermions with the neutral gauge bosons

Zµ, Aµ. This is provided by the component LFG of the Lagrangian, that

describes the full interaction of fermions and gauge bosons, considering only

the neutral gauge bosons contribution. The latter is obtained by replacing

in the fermion field derivative terms of the Lagrangian ∼ iψ̄jγ
µ∂µψj (with
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j as the general fermion field index) the normal derivative by the covariant

derivative Dµ. For purposes of illustration, it will be sufficient to consider

e.g. the first fermion family and to be limited in the discussion to the lep-

ton contribution to the Lagrangian. This will originally contain two terms:

one is generated by the SU(2)L doublet represented as a vector column `1L

defined by Eq. (1.66),

`1L =

∣

∣

∣

∣

ψνeL

ψeL

∣

∣

∣

∣

,

with weak hypercharge YL = −1 (in order to produce the correct elec-

tric charges according to Eq. (1.67)); the second is generated by ψeR, the

right-handed electron, SU(2)L singlet (I3L = 0) with YL = −2. The cor-

responding interaction with the neutral gauge bosons will be contained in

the quantities

¯̀
1Lγ

µDµ`1L ≡ ¯̀
1Lγ

µ(∂µ − ig
τκ
2
Aκ

µ,u + ig′
1

2
Bµ)`1L (1.93)

and

ψ̄eRγ
µDµψeR ≡ ψ̄eRγ

µ(∂µ + ig′Bµ)ψeR . (1.94)

The charged component of the interaction entirely comes from the SU(2)L

doublet part of Eq. (1.93); it can be formally written as:

(charged)

LFG ≡ g√
2
(J

(+)
µ,1LW

+µ + J
(−)
µ,1LW

−µ) (1.95)

where

J
(+)
µ,1L ≡ (J

(−)
µ,1L)† = ψ̄νeLγµψeL . (1.96)

This is, as discussed previously, the expected reformulation of the Fermi

interaction in the SU(2)L language that can be easily generalized to the

first family quarks, and must satisfy the normalization condition Eq. (1.24)

to reproduce satisfactorily the known phenomenology of the charged weak

interaction sector. Its generalization to more than one family will be dis-

cussed at the end of the Chapter. The lepton-neutral gauge bosons inter-

action component will be written as:

(neutral)

LFG = i

[

¯̀
1Lγ

µ

(

−ig τ3
2
A3

µ,u + i
g′

2
Bµ

)

`1L + ψ̄eRγ
µig′BµψeR

]

= g
(

¯̀
1Lγ

µ τ3
2
`1L

)

A3
µ,u
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+g′
(

−1

2
¯̀
1Lγ

µ`1L − ψ̄eRγ
µψeR

)

Bµ . (1.97)

Defining the lepton weak isospin and weak hypercharge currents as:

J (3)
µ,e = ¯̀

1Lγµ(I3`1L) ≡ ¯̀
1Lγµ

τ3
2
`1L (1.98)

and

J (YL/2)
µ,e = ¯̀

1Lγµ

(

YL

2
`1L

)

+ ψ̄eRγµ

(

YL

2
ψeR

)

≡ −1

2
¯̀
1Lγµ`1L − ψ̄eRγµψeR

(1.99)

Eq. (1.97) can be rewritten as:

L(neutral)
FG = gJ (3)µ

e A3
µ,u + g′J (YL/2)µ

e Bµ

≡ gJ (3)µ
e [cos θWZµ + sin θWAµ]

+g′J (YL/2)µ
e [− sin θWZµ + cos θWAµ] . (1.100)

The contribution to Eq. (1.100) coming from Aµ can be written as

L(Aµ)
FG = g sin θWAµ

[

J (3)µ
e + J (YL/2)µ

e

]

(1.101)

since g′ cos θW = g sin θW from Eq. (1.81). The quantity in the square

bracket in Eq. (1.101) becomes, as one easily sees:

J (3)µ
e + J (YL/2)µ

e = −
[

ψ̄eLγ
µψeL + ψ̄eRγ

µψeR

]

= −ψ̄eγ
µψe ≡ J (Q)µ

e

(1.102)

where J (Q)µ is the (conventionally defined) electromagnetic current, that

associates to each j-fermion with electric charge Qj (in unities of |e|, the

positron charge) the term

J
(Q)µ
j ≡ Qjψ̄jγ

µψj ≡ Qj

[

ψ̄jLγ
µψjL + ψ̄jRγ

µψjR

]

(1.103)

and Eq. (1.102) is a natural consequence of the initial choice Q = I3L +

1/2YL, Eq. (1.67). Therefore we can write at this stage

L(Aµ)
FG =

(

g sin θW JµQ
`

)

Aµ . (1.104)

This term coincides with the conventional electromagnetic current – photon

interaction ≡ |e|JµQ
1` Aµ provided that one fixes the condition:

|e| ≡ g sin θW = g′ cos θW . (1.105)

In this way, one achieves a unification of weak and electromagnetic interac-

tions, in the sense that the same mechanism that is advocated to generate

the first type of forces Eq. (1.93) automatically produces (when Eq. (1.94)
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is added) also the second one, with the correct value of the electric charge

ensured by the constraint Eq. (1.105). One easily sees that the same formal

proof can be extended to the quarks of the first family (and also to each

remaining family), with a proper choice of the quarks weak hypercharges

fixed by Eq. (1.67). The conclusion is that one can write, in full generality,

for each j-family:

L(neutral)
FG,j = |e|J (Q)µ,jAµ + L(Z)

FG,j (1.106)

where J (Q)µ,j is the conventional electromagnetic current, whose expression

e.g. for the first family is

J (Q)µ,1 = −ψ̄eγ
µψe +

2

3

∑

i

ψ̄(ci)
u γµψ(ci)

u − 1

3

∑

i

ψ̄
(ci)
d γµψ

(ci)
d (1.107)

(a sum over the color index ci, i = 1, 2, 3 is understood) while analogous

expressions describe the corresponding current for the second and third

family, with the replacement of ‘e’ by ‘µ, τ ’ and of ‘u, d’ by ‘c, s’ and ‘t, b’

respectively. Note that this component of the neutral Lagrangian is per-

fectly known, and no extra arbitrary parameters must be included into the

construction.

The genuinely weak new component of the neutral Lagrangian is in fact

that containing the Zµ field. This can be rewritten (always considering

the first family for simplicity) in the following way, from the definition

Eq. (1.100):

L(Z)
FG,1 = Zµ

[

g cos θW J
(3)µ
1 − g′ sin θW (J

(Q)µ
1 − J

(3)µ
1 )

]

(1.108)

where J
(3)µ
1 is the weak isospin current of the first family, that generalizes

Eq. (1.98):

J
(3)µ
1 = ¯̀

1Lγ
µ τ3

2
`1L +

∑

i

q̄
(ci)
1L γµ τ3

2
q
(ci)
1L , (1.109)

q
(ci)
1L is a SU(2)L(u, d) quark doublet, i.e.:

q
(ci)
1L ≡

∣

∣

∣

∣

∣

∣

∣

ψ
(ci)
uL

ψ
(ci)
dL

∣

∣

∣

∣

∣

∣

∣

(1.110)

and a sum over the color index ci, i = 1, 2, 3 is understood. Using Eq. (1.81),

Eq. (1.108) acquires the conventional expression:

L(Z)
FG,1 =

|e|
sin θW cos θW

[J
µ(Z)
1 Zµ] (1.111)
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where

J
µ(Z)
1 = Jµ3

1 − sin2 θWJµQ
1 (1.112)

is the weak neutral current, associated to the massive gauge boson Zµ, and

representing a completely new theoretical input of the Standard Model with

respect to the previous Fermi theory.

To better appreciate the genuinely new features of the Z current

Eq. (1.112) with respect to those of the electromagnetic one, it is useful

to write its expression in terms of the left- and right-handed fermion fields.

For the first family this gives:

J
µ(Z)
1 =

1

2
ψ̄νLγ

µψνL + ψ̄eLγ
µψeL

(

−1

2
+ sin2 θW

)

+ψ̄uLγ
µψuL

(

1

2
− 2

3
sin2 θW

)

+ψ̄dLγ
µψdL

(

−1

2
+

1

3
sin2 θW

)

+ψ̄eRγ
µψeR

(

sin2 θW

)

+ψ̄uRγ
µψuR

(

−2

3
sin2 θW

)

+ψ̄dRγ
µψdR

(

1

3
sin2 θW

)

(1.113)

(a summation over the color index for u, d quarks is not explicitly indicated

but understood). Denoting by a conventional fermions index j = ν, e, u, d

the four fermion fields of the first family, Eq. (1.113) can be rewritten as:

J
µ(Z)
1 =

∑

j

(

gLjψ̄jLγ
µψjL + gRjψ̄jRγ

µψjR

)

. (1.114)

In particular, one has:

gLν =
1

2
; gRν = 0 (1.115)

gLe = −1

2
+ sin2 θW ; gRe = sin2 θW (1.116)

gLu =
1

2
− 2

3
sin2 θW ; gRu = −2

3
sin2 θW (1.117)

gLd = −1

2
+

1

3
sin2 θW ; gRd =

1

3
sin2 θW (1.118)
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that corresponds, for a general fermion f of given chirality, left-isospin and

charge, to the rule for its coupling gf with the Z boson:

gf ≡ I3L,f − sin2 θWQf . (1.119)

It is convenient to write here the expressions of the vector (gV ) and axial

(gA) couplings defined as gV = gL + gR and gA = gL − gR, respectively, as

they will be often used in this book. One has

gV ≡ I3L − 2 sin2 θWQf , (1.120)

gA ≡ I3L (1.121)

corresponding to

gV ν =
1

2
; gAν =

1

2
(1.122)

gV e = −1

2
+ 2 sin2 θW ; gAe = −1

2
(1.123)

gV u =
1

2
− 4

3
sin2 θW ; gAu =

1

2
(1.124)

gV d = −1

2
+

2

3
sin2 θW ; gAd =

1

2
. (1.125)

Equations (1.115)–(1.118) can be generalized to the fermions of the

second and third family with the obvious replacements that were already

mentioned as we shall show in more detail in the final part of this Subsec-

tion. From their expressions several fundamental conclusions can be drawn,

a couple of which appear to us specially relevant. More precisely:

a) showing a completely different attitude with respect to the photon,

the Z couples in a different way with fermions of opposite chiral-

ity. This intrinsic asymmetry will lead to several experimentally

testable predictions related to the processes of production and/or

decay of a Z from/into couples of equal fermions with opposite

chirality. In particular, the existence of longitudinal polarisation

asymmetries, to be exhaustively investigated in the forthcoming

Sections, will be predicted and shown to play a specially relevant

theoretical rôle.

b) one sees from Eqs. (1.111), (1.113) that all the Z interactions with

different fermions are described by only one new theoretical pa-

rameter, the Weinberg angle θW . A variety of theoretical predic-

tions concerning production and decay of a Z into different fermion
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couples will be strongly correlated in the model, without apparent

room for theoretical explanations of possible experimental disagree-

ments.

An almost unavoidable consequence of the two previous points is that

a process in which the Z boson were very copiously produced, so that

an exhaustive series of measurements of all its various couplings with the

existing fermions could be performed with the highest possible accuracy,

would represent a stringent test of the model, at least for what concerns the

fermions neutral weak interaction sector. The most immediate possibility

of achieving these conditions is provided by the annihilation of an electron–

positron couple at the resonant energy, that corresponds tomZ , the Z mass.

To carry on this program, a preliminary knowledge of this parameter mZ

is required. As a matter of fact in the Standard Model the value of mZ

(and also, that of mW ) is, at least in first approximation, predicted. This

will be discussed in the next Subsection.

1.4.5 Numerical prediction for the gauge boson masses in

the Minimal Standard Model

In the Minimal Standard Model (MSM), the quantities mW ,mZ (mass

parameters ofW± and Z in the proposed electroweak Lagrangian) are given

by Eqs. (1.75), (1.79) in terms of three different electroweak parameters

(g, g′ and v). However, the ratio m2
W /m2

Z can be expressed in terms of the

Weinberg angle only, since one has from Eq. (1.85)

m2
W

m2
Z

= cos2 θW . (1.126)

Even at this preliminary stage, where no discussion has been given on

the experimental determination of sin2 θW / cos2 θW , it is clear that the ratio

of Eq. (1.126) will be in principle fixed e.g. by measuring the couplings of

the Z boson to fermions, as shown by Eqs. (1.115)–(1.118). A possibility

of this type would be available by identifying e.g. an experimental process

that could only proceed via Z exchange. Twenty-five years ago, a realistic

proposal was that of looking for the reaction

νµe
− ⇒ νµe

− (1.127)

that would be allowed, to lowest order in the Feynman diagrams correspond-

ing to the MSM Lagrangian, thanks to a t-channel Z exchange depicted in

Fig. 1.1.
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e- e-

Z

νµ

νµ

Fig. 1.1 Elastic electron- muonic neutrino scattering via t-channel Z exchange.

Also, neutrino–nucleon scattering experiments would be explained to

lowest order by W and Z exchange. In fact, the fundamental experimen-

tal discovery that led the community of physicists to consider the MSM

with special attention was that of the existence of (weak) neutral currents

in processes of the kind neutrino-fermion scattering. From those glorious

experiments [23], a preliminary value of sin2 θW was derived, such that, in

the early eighties, one could write [24]:

sin2 θW ' 0.22 (1.128)

and thus one would predict the numerical result

m2
W ' (0.78)m2

Z . (1.129)

The final piece of information still needed to produce a next and testable

prediction is provided, in the MSM, by the (fundamental) equation (1.24)

that can be rewritten, for our purposes, in the more convenient form:

m2
W =

√
2

8GF
g2 =

√
2

8GF

e2

sin2 θW

. (1.130)

Using the experimental values of e2, GF and the neutral current result

Eq. (1.128) a value of mW can be derived, that is:

mW ' 79 GeV (1.131)

with mZ consequently fixed by Eq. (1.129)

mZ ' 90 GeV . (1.132)

Clearly, Eqs. (1.131), (1.132) are a clear, and brave, theoretical prediction

that represents a “necessary” condition for the survival of the model. In



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

34 The Physics of the Z and W Bosons

this spirit, it is undeniable that the discovery of W and Z by the UA(1) and

UA(2) experiments in 1983 [25, 26] gave the next, enormous experimental

support to the theoretical belief in the validity of the MSM. It should be

reminded that the result of combinations of those memorable measurements

was:

mW = 80.8± 2.7 (1.133)

mZ = 92.9± 1.6 (1.134)

that agrees, within the experimental errors of the time, with the correspond-

ing theoretical predictions. Thus, after 1983, it was clear that, in order to

perform an extremely rigorous test of the model, electron–positron colli-

sions at a c.m. energy of approximately 90 GeV were the first choice, and

that the next possibility was to produce in electron–positron annihilation

a pair of W bosons at c.m. energy of approximately 160 GeV, almost

twice as large. The first part of this book will be completely devoted to an

illustration, and to a discussion, of the large research program that is com-

monly classified as that of “Physics of the Z resonance”, based on the study

of electron–positron annihilations at the c.m. resonant energy that corre-

sponds to the physical Z boson mass. The production of W pairs in e+e−

collisions will be illustrated in Chapter 9. But before entering these dedi-

cated Chapters, we feel that a few general remarks about the kind of test

that these collisions represent for the MSM would be appropriate. These

will be presented in the next Section for what concerns the Z resonance

production.

1.5 Z physics as a test of the MSM

Strictly speaking, accepting the validity of the MSM leads to postulat-

ing that the electroweak component of the Lagrangian which describes the

strong and electroweak interactions of the known elementary particles has

the form given by Eq. (1.69), where F,G, S denote respectively the fermion,

gauge and scalar field operators. For the purposes of the following discus-

sion, it will be convenient to indicate the electroweak Lagrangian of the

MSM with a corresponding apex, writing:

L(MSM)
E.W. = L(MSM)

SG + L(MSM)
FG + L(MSM)

GG + L(MSM)
FS . (1.135)

It is reasonable to assume that, to a very good approximation, electron–

positron collisions at the resonant energy
√

(pe + p′e)
2 = mZ can be de-

scribed by Feynman diagrams where one Z is exchanged in the s chan-
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e-

e+

Z

f

f
−

Fig. 1.2 Electron-positron annihilation into a fermion (f) antifermion pair via s-channel
Z exchange.

nel. The simplest final state to be considered corresponds to a fermion–

antifermion couple (two leptons or two quarks), represented as in Fig. 1.2

In this approximate treatment, evidently any measurement of this pro-

cess for arbitrary f would represent a test, not of the full structure of the

Lagrangian Eq. (1.135), but rather of the pure neutral component of the

fermion-gauge boson component L(MSM)
FG . Clearly, any theoretical model

of different nature, but of identical fermion-gauge boson component, would

give in first approximation the same predictions on the Z peak for electron–

positron annihilation. This would not be automatically true at the level of

a more refined theoretical treatment where also higher order effects, corre-

sponding to less elementary Feynman diagrams, would be included. It is

at this precise point that the renormalizability of the model plays a fun-

damental rôle, making a systematic calculation performable. In particular,

as a first consequence of t’Hooft’s memorable effort [5], the complete set

of the so called one-loop electroweak effects has been computed, making

a tentative test of the remaining components of the MSM Lagrangian, in

principle, realizable.

Without entering the details of this statement, that will be fully illus-

trated in the next Chapters, let us give a few illustrative examples. At the

simplest level of Feynman diagrams involving corrections to the Z propa-

gator, one can understand that parameters (the ZWW couplings) provided

by L(MSM)
GG will affect the Feynman diagram represented in Fig. 1.3.

Similarly,parameters provided by the L(MSM)
SG component (the ZZH cou-

pling) will in principle enter e.g. Fig. 1.4 while a possible influence of the
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e-

e+

Z

W

W

Z

f

f
−

Fig. 1.3 Example of a Feynman diagram, involving the ZWW couplings, that con-
tributes the process e+e− → ff̄ .

e-

e+

Z

Z

H

Z

f

f
−

Fig. 1.4 Example of a Feynman diagram, involving the ZZH couplings, that contributes
the process e+e− → ff̄ .

L(MSM)
FS component is depicted in Fig. 1.5.

All the effects represented in Figs. 1.3–1.5 are classified as one-loop cor-

rections to the leading effect of Fig. 1.2, and one expects (and verifies) that

their relative size should be small (typically, of the percent order). The

effectiveness of very high precision measurements becomes now clear: in

principle, theoretical models with identical LFG but different remaining

components might be accepted or discarded, depending on the small pre-

dicted one-loop effect. As we shall see in the Chapter 11, in some special

cases it will be indeed possible to draw negative indications on alternative
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e-

e+

Z
f
−

f
−

f

f

H

Fig. 1.5 Example of a Feynman diagram, involving the Hff̄ couplings, that contributes
the process e+ e− → f f̄ .

models from a special subset of very high precision measurements. This will

be particularly relevant for a class of models that propose an alternative

solution to the mass generation problem that does not require the existence

of the Higgs scalar. For the moment, we can anticipate that their validity

is still an open problem, whose final answer would be obviously provided

by the discovery of the Higgs scalar. This is, in fact, the main still open

experimental question to be understood, to which we shall devote the brief

discussion of the forthcoming Subsection.

1.5.1 The Higgs scalar mass in the MSM

In the MSM there is no theoretical prediction concerning the mass mH

of the Higgs scalar. Contrary to the case of the weak gauge bosons W,Z

whose experimental discovery represented a first spectacular confirmation

of the model, mH remains a free parameter in the scheme. The prediction

in the scalar sector would rather be given, once the Higgs were discovered

with a certain value for its mass, for the quartic scalar interactions whose

coupling λ is fixed by mH and v by Eq. (1.54), (1.55). Clearly, this lack of

theoretical indications on mH represents a not small experimental problem.

As a matter of fact, at a more delicate theoretical level, a number of

reasonable arguments exists that sets, at least, limits , in the form of upper

bounds. Without entering a detailed discussion, it seems fair to say that
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the reasonable expectation exists that the Higgs scalar should be relatively

light, i.e. of a mass below the ' 1 TeV limit. A particularly simple example

is the following. From Eqs. (1.75) and (1.130) one derives v = 2− 1
4 G

− 1
2

F '
250 GeV. From Eqs. (1.65) and (1.54) mH =

√
2λv is obtained. Imposing

λ ≤ 1 (that would correspond, roughly, to reliability of the perturbative

expansion) fixes the limit mH ≤ 350 GeV.

Keeping in mind the fact that alternative solutions are still, in princi-

ple, allowed, it is undeniable that the enormous success of the MSM for

what concerns the predictions that were testable on Z resonance provides

a strong support to the belief that the Higgs should indeed exist. Let us

therefore conclude this Section by reviewing the features of the MSM that

were testable (and tested) at CERN and SLAC. This will require a brief

preliminary discussion, that takes into account several important facts that

have until now not been considered.

1.5.2 A more complete formulation of the MSM

In the short presentation of the MSM that has been given in this Chapter,

we have omitted a number of points that should be now mentioned, in order

to understand the main features of some of the forthcoming discussions.

To be more precise, we have neglected:

1) the inclusion of strong interactions when the final state is a couple

of quarks;

2) the masses of leptons and quarks;

3) the generalization of the treatment to the next fermion families

(family replication).

For the purposes of the remaining part of this book, the brief following

summary should be sufficient, although necessarily qualitative.

1.5.2.1 Inclusion of strong interactions

The accepted description of the strong interactions of quarks has an ex-

act SU(3)c gauge symmetry and eight massless gluons, carriers of the in-

teraction between the colored quarks [29]. It seems attractive and nat-

ural to propose a description of electroweak and strong interactions in

which all these forces are generated by the same mechanism of emission

of gauge bosons. The complete Lagrangian is supposed to have an enlarged

SU(3)c⊗SU(2)L⊗SU(1)YL local gauge symmetry, where by assumption all
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the generators of the SU(3)c group commute with those of SU(2)L⊗U(1)YL
.

It can be obtained by adding to the already defined electroweak component

Eq. (1.135) the genuinely strong term. The latter is given by the following

expression:

Ls =

3
∑

ci=1

N
∑

j=1

q̄
(ci)
j iγµDµq

(ci)
j − 1

2
TrGµν,GG

µν
G (1.136)

where N is the number of different quark flavours (two in the first family,

where the two lightest u, d quarks appear), ci is the color index and the

eight SU(3) generators are each one in correspondence with one gluon field

(spin one) operator, to be denoted as Aa
µG. These fields enter the covariant

derivative Dµ as:

Dµ = ∂µ − igs

8
∑

a=1

Aa
µG

λa

2
(1.137)

where gs is the SU(3)c (strong) coupling and λa are the Gell-Mann 3 × 3

matrices that satisfy the commutation relations of the SU(3) algebra:

[

λa

2
,
λb

2

]

= i

8
∑

c=1

fabcλ
c

2
. (1.138)

The 3 × 3 matrix Gµν,G is formally defined as:

Gµν,G =

8
∑

a=1

(

∂µA
a
ν,G − ∂νA

a
µ,G

) λa

2

−igs

8
∑

a,b=1

[

Aa
µ,G

λa

2
, Ab

ν,G

λb

2

]

(1.139)

and to compute the trace in Eq. (1.136) one needs the condition:

Tr(λaλb) = 2δab . (1.140)

Two comments are relevant at this point. The first one is that the

first term of Ls, describing the quark-gluon interaction, can be identically

rewritten in terms of the conventional chiral fields as:

∑

ci

N
∑

j=1

q̄
(ci)
j iγµDµq

(ci)
j ≡

∑

ci

N
∑

j=1

[

q̄
(ci)
jL iγµDµq

(ci)
jL + q̄

(ci)
jR iγµDµq

(ci)
jR

]

.

(1.141)
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Considering for the moment the first family u, d quarks, Eq. (1.141) can

be rewritten using the notation of Eq. (1.110) i.e.:

Ls =
3
∑

ci=1



q̄
(ci)
1,L iγ

µDµq
(ci)
1,L +

∑

j

q̄
(ci)
jR iγµDµq

(ci)
jR



− 1

2
TrGµν,GG

µν
G

(1.142)

where q1,L is the SU(2)L left-handed quark doublet defined in Eq. (1.110)

and qjR ≡ uR, dR are the SU(2)L right-handed quark singlets. One sees

that the term Eq. (1.142) that describes the strong interactions of the

quarks of the first family, and is by construction SU(3)c symmetric, has

also automatically the same SU(2)L ⊗ U(1)Y local symmetry of the cor-

responding electroweak interactions, being built by quark terms that are

all singlets under the electroweak symmetry group (the gluons too are by

definition meeting this requirement). This means that the delicate mech-

anisms that are ensured by SU(2)L ⊗ U(1)YL
gauge invariance will not be

altered by the inclusion of strong interactions.

1.5.2.2 Masses of leptons and quarks

Quite generally, any j-th fermion mass term in the Lagrangian is by defini-

tion proportional to the product q̄jqj ≡ q̄jLqjR+q̄jRqjL, where qj is the field

operator associated to the j-th fermion. The constant that multiplies q̄jqj
is conventionally called the bare (or Lagrangian, or current) mass ≡ mj .

In a formulation that starts from a Lagrangian that is supposedly SU(2)L

invariant, terms of the form mj q̄jqj cannot appear since, as discussed in

this Subsection, they would explicitly break the symmetry. The problem is

therefore that of generating fermion mass terms without explicitly breaking

SU(2)L.

One natural and elegant possibility in the MSM is provided by the ob-

servation that, in the original Lagrangian, there would be room for a sym-

metric term that is formally written as a Yukawa type interaction between

the fermions and the scalars of the model. In fact, given the nature of the

scalar fields, that transform like an SU(2)L doublet (S in the notation of

Eq. (1.30)), we see that the assumed local SU(2)L ⊗ U(1)YL
gauge invari-

ance allows the presence in the electroweak Lagrangian (for the moment,

within the first family) of the following fermion-scalar component (LFS in

the notation of Eq. (1.69)):

LFS =
[

fe
¯̀
1LSψeR + fdq̄1LSψdR + fuq̄1LŜψuR

]

+ ‘hermitian conjugate’

(1.143)
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where `1L, q1L are given by Eqs. (1.66), (1.110) and

Ŝ ≡ iτ2S
+ =

∣

∣

∣

∣

S+
d

−S+
u

∣

∣

∣

∣

=

∣

∣

∣

∣

s0 − is3
−s2 + is1

∣

∣

∣

∣

(1.144)

has the same transformation properties under SU(2)L as S (a doublet), but

an opposite value YL = −1 (for S, YL = +1).

The introduction of Ŝ is motivated by the requirement that the addi-

tional Lagrangian of Eq. (1.143) has YL = 0, which is automatic for the

first two terms is the r.h.s. of that equation where S appears. On the con-

trary, a term ∼ q̄1LSψuR would have overall weak hypercharge YL = +2,

as one can derive from inspection of Table 1.1 (Subsection 1.4.1, the values

of YL for the ψ̄s operators are opposite to those of the associated ψs). We

see therefore that q̄1LŜψuR has the correct value YL = 0. Note that, a

priori, this would have been also true for a term of the kind fν
¯̀
1LŜψνR if

a right-handed neutrino field had been introduced, with does not happen

in the minimal version of the model.

The mechanism for generating fermion masses is now evident. The

spontaneous breakdown of the symmetry generates a not vanishing v.e.v.

of the scalar field. Assuming as we did in the previous discussions that

〈s0〉0 ≡ (1/
√

2)v, we obtain immediately after moving to the shifted fields

S̃ = S − 〈S〉0, Eq. (1.55), that mass terms will remain in the Lagrangian.

Denoting by LS̃F an expression identical to that of LSF with the formal

replacement S → S̃, we have in fact that;

LSF = LS̃F +
v√
2
[fe(ψ̄eLψeR + ψ̄eRψeL)

+ fu(ψ̄uLψuR + ψ̄uRψuL) + fd(ψ̄dLψdR + ψ̄dRψdL)] (1.145)

which means a generation of charged fermion masses:

me =
v√
2
fe ; mu,d =

v√
2
fu,d (1.146)

while, as a consequence of the assumed absence of a right-handed neutrino

field, the neutrino remains massless in the model.

The previous formal derivation has only shown that in the MSM it is

possible to generate fermion masses in a “natural” way, i.e. by exploiting

the same mechanism that was able to provide masses to the W and Z

bosons. The big difference is that in the fermion case the various masses

are arbitrary parameters of the model, whose addition is not forbidden, but

certainly not theoretically motivated. The precise values of the fermion

masses (forgetting for the moment the extra complication of a meaningful

definition of a “quark mass”) have to be put in by hand.
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Leaving aside this undeniably not fully satisfactory fermion mass gener-

ation, a short remark might be worthwhile. The final physically acceptable

panel with massive W,Z and fermions is the result of a series of theoret-

ical assumptions that include: 1) the assumed mechanism of spontaneous

SU(2)L ⊗ U(1)YL
symmetry breaking; 2) the existence of a scalar doublet

“hosted” by the vacuum and 3) the introduction in the complete Lagrangian

(including in this definition also that of the strong interaction component

Ls, Eq. (1.142)) of a specific, Yukawa type, interaction Eq. (1.143). We

wish to conclude this Subsection with a discussion of the third point.

1.5.2.3 Family replication

Until now we have only considered one family of fermions i.e. 15 chiral par-

ticles corresponding to the lightest leptons (the electron and its associated

electron neutrino νe) and quarks (u, d with three colors each). Experimen-

tally, one knows nowadays that at least two more sets of fermions exist

that can be formally grouped assigning them to a second and third family

whose behavior under the electroweak symmetry group is identical to that

of the first family, the only difference being represented by their masses,

that seem to increase regularly leading to a second family (with the muon,

the muonic neutrino, the quarks c and s) “heavier” than the first and to a

third family (with the tau, the tau neutrino, the t and b quarks) “heavier”

than the second one. In principle, this does not represent a problem since

we have seen in the last Subsection that masses are put in by hand. There

is, though, a more subtle theoretical disease that we try to summarize,

again for self-consistency purposes, ignoring a more rigorous and historical

discussion of experimental and theoretical glorious issues (Cabibbo angle,

flavour changing neutral currents) that were already known before the final

assessment of the MSM and that we shall exhibit as a byproduct of the

following presentation.

Let us first assume the existence of N fermion families grouped, for

what concerns SU(2)L ⊗ U(1), as an exact replication of the first. Let us

introduce an index i for family, variable from 1 to N . For each i-th family,

we shall define the left-handed lepton doublet as `
(i)
L and the right-handed

leptons are ψ
(i)
`R:

`
(i)(W )
L ≡

∣

∣

∣

∣

∣

∣

∣

ψ
(i)(W )
νL

ψ
(i)(W )
`L

∣

∣

∣

∣

∣

∣

∣

ψ
(i)(W )
eR (1.147)

with the convention that i = 1, 2, 3 correspond to electron, muon and tau
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families (so that e.g. ψ
(2)
νL ≡ ψνµL, ψ

(2)
`L ≡ ψµL, ψ

(3)
`R = ψτR...). Analo-

gously, we shall define the quark doublets and singlets of each family as

follows:

q
(i)(W )
L ≡

∣

∣

∣

∣

∣

∣

∣

ψ
(i)(W )
uL

ψ
(i)(W )
dL

∣

∣

∣

∣

∣

∣

∣

ψ
(i)(W )
uR , ψ

(i)(W )
dR (1.148)

(color indexes are omitted now) with the convention that u(1),(2),(3) corre-

spond to the usual up (1), charm (2) and top (3) and d(1),(2),(3) to the usual

down (1), strange (2) and bottom (3) flavour indexes.

The lepton and quark particle fields that appear in Eqs. (1.147) and

(1.148) are by definition those that have definite transformation properties

under the electroweak gauge group SU(2)L⊗U(1)YL
, i.e. definite I2

L, I3L, YL

quantum numbers. They are usually called the gauge fields. This mathe-

matical property is enclosed into the upper index W (≡ weak), that refers

to the fact that the SU(2)L structure (doublets and singlets) of the consid-

ered fields is fixed. In the construction of any quantity that is supposedly

a scalar under SU(2)L ⊗U(1)YL
, these gauge fields will be necessarily used

as starting objects to be combined with other different gauge eigenstates

(like the scalar doublet S) to obtain the desired scalar, in the some spirit

that led to the construction of the Yukawa term Eq. (1.143) for the first

family.

To better understand the extra complication that arises when more than

one family of fermions is supposed to get masses in the model, let us first

consider the pure quark sector of the Lagrangian. For N families, the most

immediate and allowed generalization of Eq. (1.143) has then the following

form:

L(N)
FS ≡ L(N)

QS + L(N)
`S (1.149)

where the quark component can be written as:

L(N)
QS =

N
∑

i,i′=1

[

Gii′ q̄
(i)(W )
L Sψ

(i′)(W )
dR + Ĝii′ q̄

(i)(W )
L Ŝψ

(i′)(W )
uR

]

(1.150)

+‘hermitian conjugate’ (≡ h.c.)

where we have introduced the most general N ×N matrices G, Ĝ on which

no stringent particular constraint is set by the requirement that Eq. (1.150)

is SU(2)L ⊗ U(1)YL
invariant. After spontaneous symmetry breaking, the
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following quark mass Lagrangian will be generated from the usual mecha-

nism:

L(N)
QS,M ≡ v√

2

∑

i,i′

[

Gii′ ψ̄
(i)(W )
dL ψ

(i′)(W )
dR + Ĝii′ ψ̄

(i)(W )
uL ψ

i′)(W )
uR + h.c.

]

.

(1.151)

Defining

M
(d)
ii′ =

v√
2
Gii′ ; M

(u)
ii′ =

v√
2
Ĝii′ (1.152)

and introducing the N -dimensional column vectors φ(W ):

φ
(W )
uL,R ≡

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(1)(W )
uL,R

...

ψ
(N)(W )
uL,R

∣

∣

∣

∣

∣

∣

∣

∣

; ψ
(W )
dL,R =

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(1)(W )
dL,R

...

ψ
(N)(W )
dL,R

∣

∣

∣

∣

∣

∣

∣

∣

(1.153)

we can rewrite Eq. (1.151) as:

L(N)
QS,M = φ̄

(W )
uL M (u)φ

(W )
uR + φ̄

(W )
dL M (d)(W )φdR + h.c.

= ψ̄
(1)(W )
uL

[

M11ψ
(1)(W )
uR +M12ψ

(2)(W )
uR +M13ψ

(3)(W )
uR

]

+ ... (1.154)

showing that, a priori, the presence of not diagonal terms ∼
ψ̄

(i)(W )
L ψ

(i′)(W )
R , i 6= i′, cannot be excluded by the mechanism. In other

words, the quark gauge eigenstates, that appear necessarily as the building

block of the electroweak interactions, are not physical mass eigenstates and,

as such, loose meaning from the point of view of observational properties.

This situation in the MSM is not actually new. We have already met

the case of the gauge eigenstates W3, B that were not mass eigenstates. We

expect therefore to be able also in this new case to replace the gauge quarks

with the massive ones by means of a suitable matrix transformation. This

can actually be done, in full generality.

The mathematical ingredients that must be involved are relatively sim-

ple. It is known that, given a general and non diagonal N×N matrix = M ,

it is always possible to find two unitary matrices U1, U2 such that

U1MU2 ≡ M (1.155)

is both diagonal and real.

Defining the four matrices required to diagonalize M (u),M (d) as:

U
(u)
1 ≡ UL ; U

(u)
2 ≡ U+

R ,

U
(d)
1 ≡ VL ; U

(d)
2 ≡ V +

R

(1.156)
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we shall have that

ULM
(u)U+

R ≡ M(p) (1.157)

VLM
(d)V +

R ≡ M(n) (1.158)

with M(p),(n) diagonal and real. Then, we see that the physical quarks will

be obtained from the gauge eigenstates by rewriting Eq. (1.154) using the

unitarity property ULU
+
L = U+

LUL = 1 (similarly for UR, VL and VR):

φ̄
(W )
dL M (d)φ

(W )
dR + φ̄

(W )
uL M (u)φ

(W )
UR + h.c.

≡ φ̄
(W )
uL U+

L (ULM
(u)U+

R )URφuR + h.c.

≡ ψ̄nLM(n)ψnR + ψ̄pLM(p)ψpR + h.c.

≡ ψ̄nM(n)ψn + ψ̄pM(p)ψp (1.159)

(M(n,p) are now real diagonal matrices) where ψn,p are N -dimensional col-

umn vectors whose elements are by definition the physical (mass eigen-

states) quarks. These will be denoted in the following way:

ψpL,R ≡

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(1)
uL,R
...

ψ
(N)
uL,R

∣

∣

∣

∣

∣

∣

∣

∣

(1.160)

ψnL,R ≡

∣

∣

∣

∣

∣

∣

∣

∣

ψ
(1)
dL,R
...

ψ
(N)
dL,R

∣

∣

∣

∣

∣

∣

∣

∣

(1.161)

where the physical quark fields are indicated by the same symbols ψ
(i)
L,R

as in Eqs. (1.148), (1.153) but without the upper W index that specifies

the gauge eigenstates. Thus, ψ
(1),(2),(3)
u will now correspond to the physical

up, charm, top flavour quarks, and analogously for the down type (1,2,3)

indexes (down, strange and bottom). In matrix form, the relationship be-

tween the physical and the gauge quarks will be expressed as follows:

ψpL,R = UL,Rφ
(W )
uL,R (1.162)

ψnL,R = VL,Rφ
(W )
dL,R . (1.163)

Having defined the physical quarks, it is now useful to express the var-

ious terms of the electroweak Lagrangian in terms of these quantities. For
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what concerns the residual interaction with the scalar doublet S̃, general-

ization of what was called LS̃F in Eq. (1.145), it is straightforward to verify

that in the unitary gauge one has:

LS̃F =
1

v
H
[

ψ̄nM(n)ψn + ψ̄pM(p)ψp

]

(1.164)

where H is the physical Higgs scalar. Thus, the Higgs scalar automatically

interacts with the physical quarks.

Let us consider now the gauge-fermion interaction in the quark sector

that is originally expressed in terms of the gauge fields. We want to express

it in terms of the physical fields in the general case.

Consider the charged current interaction first. From Eqs. (1.95), (1.96)

one can generalize the definition of J
(+)
µ,1L:

L(charged)
FG = L(charged)

`G + L(charged)
qG =

g√
2

[(

J
(+)
µ,` + J (+)

µ,q

)

W+µ + h.c.
]

(1.165)

where

J (+)
µ,q =

3
∑

i=1

ψ̄
(i)(W )
uL γµψ

(i)(W )
dL ≡ ψ̄

(W )
uL γµψ

(W )
dL . (1.166)

Equation (1.166) can also be rewritten in terms of the physical quarks as:

J (+)
µ,q ≡ ψ̄pLγµ[ULV

+
L ]ψnL = ψ̄pLγµUψnL (1.167)

(color indexes are omitted now) where

U = ULV
+
L (1.168)

is a unitary N×N matrix, in principle complex and determined by (N−1)2

real independent parameters. In fact, the unitarity condition

UαβU
+
βγ ≡ UαβU

∗
γβ = δαβ(α, β, γ = 1, ., ., N) (1.169)

imposes N2 conditions, reducing the number of parameters from 2N 2 to

N2, in particular leaving N(N − 1)/2 moduli and N(N +1)/2 phases. One

can then change (2N − 1) relative phases of the 2N fields that appear

in Eq. (1.167) absorbing a corresponding number of U phases, remaining

therefore with N(N − 1)/2 moduli and (N − 1)(N − 2)/2 phases (total=

(N − 1)2) in U (for a detailed explanation see [18])

If N were equal to 2, the only possible form for U would then be:

U(N=2) ≡
∣

∣

∣

∣

cos θc sin θc

− sin θc cos θc

∣

∣

∣

∣

(1.170)
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that reproduces the Cabibbo parameterization [27], with θc to be experi-

mentally determined.

Consider next the case N = 3. The U matrix then depends on 4 pa-

rameters, that can be classified as 3 (real) moduli and one phase.

Actually, any unitary 3 × 3 matrix can be cast in the form:

U ≡ U1U
KMU2 (1.171)

where

U1 =

∣

∣

∣

∣

∣

∣

1 0 0

0 eiγ 0

0 0 eiε

∣

∣

∣

∣

∣

∣

; U2 =

∣

∣

∣

∣

∣

∣

eiα 0 0

0 eiβ 0

0 0 eiη

∣

∣

∣

∣

∣

∣

(1.172)

and UkM is the so called Cabibbo–Kobayashi–Maskawa matrix [28], that

can be written in the form:

UKM =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 s1c3 s1s3

−s1c2 [c1c2c3 − eiδs2s3] [c1c2s3 + eiδs2c3]

−s1s2 [c1s2c3 − eiδc2s3] [c1s2s3 + eiδc2c3]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.173)

where si, ci ≡ sin θi, cos θi and δ is a certain phase. Then U1,2 are reab-

sorbed by a redefinition of the field relative phases, and in the final expres-

sion UKM remains as a generalization of the Cabibbo matrix in the case

N = 3, with the four parameters θ1, θ2, θ3, δ to be determined experimen-

tally.

The existence of a phase δ 6= 0 is of paramount theoretical relevance

since it can be shown that, in connection with this fact, there will be in the

electroweak Lagrangian the presence of CP violation. This will be caused

by those terms in the CKM matrix where δ appears.

To understand this statement, one must recall the transformation prop-

erties of a general fermion field under C (charge conjugation) and P (parity),

that can be found for instance in Ref. [30]. Given the latter ones, one can

compute the transformation of the Lagrangian (Eq. (1.165)) and verify that

for N ≥ 3 the presence of phases makes CP invariance fail. With these con-

ventions and notations, we can consequently expect CP violation in those

processes where the matrix elements UKM
22,23,32,33 are involved provided that

δ, the CP violating phase, is different from zero. In practice, anticipating

an experimental determination that will be exploited in the following part

of the book, one finds that the CKM matrix is “essentially” diagonal, in

the sense that

|U11| ≈ |U22| ≈ |U33| >> |Uik|, i 6= k. (1.174)
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We now come to the neutral current sector of the weak interaction.

Repeating exactly the some procedure as in the charged case, one easily

sees that all the current components can be written in the form:

ψ̄pLγµ[ULU
+
L ]ψpL ; ψ̄pRγµ[URU

+
R ]ψpR ;

(1.175)

ψ̄nLγµ[VLV
+
L ]ψnL ; ψ̄nRγµ[VRV

+
R ]ψnR

and thus, from the unitarity of (U, V )L,R these currents are automatically

diagonal (i.e. not flavour changing) in the physical fields.

Similar results are obtained in the lepton sector. Without repeating

again the full procedure, one can treat it as a special case of Eq. (1.150)

with Ĝij ≡ 0, (since no ψ
(i)(W )
νR are included, mν ≡ 0).

This means that the diagonalization of Ĝ ≡ 0 can be achieved with

any couple of matrices U1, U2 in particular with U (ν) ≡ V (e). Then both

the charged current (UKM,` ≡ 1) and the neutral one are automatically

diagonal in the physical fields denoted without the upper W index (i.e.

ψ̄νeLγµψeL, ψ̄νµLγµψµL, ψ̄ντLγµψτL etc.), and the various lepton numbers

are separately conserved.

A final point concerns the strong interaction component of the MSM

represented by Eq. (1.136). As one sees immediately, the quark gluon in-

teraction is automatically diagonal also in the physical quarks, and can

simply be rewritten in terms of the mass eigenstates with no formal change

of the interaction. The mass eigenstates are also, therefore, the quarks that

are involved in the strong sector of the model.

After this remarks we are now in a position to discuss in a realistic way

the tests of the MSM that can be provided at the Z resonance.

1.5.3 Tests of the MSM at LEP1/SLC

We can now return to the investigation of the kind of tests of the MSM that

can be provided by accurate measurements of the observable properties of

the process of electron-positron annihilation on top of Z resonance. For

this purpose it will be useful to write again the overall expression of the

complete Lagrangian that describes strong and electroweak interactions in

the MSM. This will read:

L(MSM) = L(MSM)
s + L(MSM)

E.W. (1.176)

where the strong component L(MSM)
s is given by Eq. (1.136) and the elec-

troweak component LE.W. can be written in the form of Eq. (1.135) as the
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sum of four terms

L(MSM)
E.W. = L(MSM)

SG + L(MSM)
FG + L(MSM)

GG + L(MSM)
FS (1.177)

corresponding to the interactions between scalars and gauge boson (SG),

fermions and gauge bosons (FG), gauge bosons-gauge bosons (GG) and

fermions with scalars (FS). The first quantity coincides with the first

terms written in the r.h.s. of Eq. (1.50):

L(MSM)
SG = (DµS)†(DµS) − V (S) (1.178)

and in fact it contains also the self-interaction of the scalar fields (for con-

ventional reasons). The fermion-gauge boson terms will be expressed as

from Eqs. (1.95), (1.97) i.e.:

L(charged)(MSM)
FG =

g√
2

[

(J
(+)
µ,` + J

(+)
µ,Q)W+µ + h.c.

]

(1.179)

L(neutral)(MSM)
FG = |e|(J (Q)

ρ,` + J (Q)
ρ,q )Aρ +

|e|
sin θW cos θW

(J
(Z)
ρ,` + J (Z)

ρ,q )Zρ

(1.180)

with the understanding that

L(MSM)
FG = L(charged)(MSM)

FG + L(neutral)(MSM)
FG . (1.181)

In Eqs. (1.179), (1.180) we have used the definitions:

J
(+)
µ,` = ψ̄νeLγµψeL + ψ̄νµLγµψµL + ψ̄ντ LγµψτL + · · · (1.182)

J (+)
µ,q =

3
∑

ci=1

N
∑

i,j=1

ψ̄
(ci)
pL,iγµUijψ

(ci)
nL,j (1.183)

J
(Q)
ρ,` = −

[

ψ̄eγρψe + ψ̄µγρψµ + ψ̄τγρψτ + · · ·
]

(1.184)

J (Q)
ρ,q =

3
∑

ci=1

[

2

3
ψ̄(ci)

p γρψ
(ci)
p − 1

3
ψ̄(ci)

n γρψ
(ci)
n

]

(1.185)

J
(Z)
ρ,` =

[

1

2
ψ̄νeLγρψνeL +

(

−1

2
+ sin2 θW

)

· ψ̄eLγρψeL + sin2 θW ψ̄eRγρψeR

]

+(µ, τ · · · ) (1.186)

J (Z)
ρ,q =

[

ψ̄uLγρψuL

(

1

2
− 2

3
sin2 θW

)

+ ψ̄dLγρψdL

(

−1

2
+

1

3
sin2 θW

)
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+ψ̄uRγρψuR

(

−2

3
sin2 θW

)

+ ψ̄dRγρψdR

(

1

3
sin2 θW

)]

+(c, s, t, b · · · ) . (1.187)

Here ψp ≡ ψpL + ψpR and ψn = ψnL + ψnR, the chiral quantities being

defined by Eqs. (1.160), (1.161). A (diagonal) sum over the color index ci

is explicitly written (the Lagrangian must be a SU(3)c scalar); the number

of families N is left free for the moment.

The gauge boson-gauge boson term contains the SU(2)L component al-

ready appearing in Eq. (1.50), with the addition of the U(1)YL
contribution;

L(MSM)
GG = −1

4

3
∑

κ=1

F κ
µνF

µν,κ − 1

4
BµνB

µν (1.188)

where F κ
µν is defined by Eq. (1.51) (κ denotes the SU(2)L spin one vector

W
(1),(2),(3)
µ ) and

Bµν = ∂µBν − ∂νBµ (1.189)

where Bµ is the U(1)YL
gauge boson. The expression of L(MSM)

GG in terms

of the mass eigenstates Zµ, Aµ is straightforward and will not be explicitly

shown.

The fermion-scalar term L(MSM)
FS has been exhaustively discussed in the

previous Subsection. It can be taken from Eq. (1.149), the leptonic part

being defined with the pure ∼ S term (no right-handed neutrinos) and

the physical charged lepton field operators in the formal expression, the

diagonal mass matrix being an obvious modification of Eq. (1.161), with

the ‘d’ index replaced by a ‘`’ = charged lepton one, and

m`,µ,τ =
v√
2

[

G
(`)
11 , G

(`)
22 , G

(`)
33

]

where G(`) corresponds to G, Eq. (1.150).

Given the overall expression of the Lagrangian, let us consider the pro-

cess of electron-positron annihilation at the Z mass energy (on top of Z

resonance). To the lowest order in a perturbation expansion, this is de-

scribed by the Feynman diagram of Fig. (1.2). In this approximation, any

measurement on Z resonance represents a test of the assumed form of the

pure Z component of the neutral part of the Lagrangian L(MSM)
FG , second

term in the r.h.s. of Eq. (1.180). Let us assume for the moment that such

an approximate lowest order description is “satisfactory”, and let us see

what general theoretical assumptions can be tested in this way.
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1.5.4 Universality of weak interactions and number of

fermion families

A first fundamental consequence of the assumed theoretical framework is

the property of universality of the fermion-gauge boson interactions. This

corresponds to the fact that the couplings to W+,W− and Z of fermions

belonging to different families only depend on their weak isospin and charge,

but not on the flavour or on other typical features of the families. Strictly

speaking, for what concerns the W+,− couplings, the previous statement

ignores the fermion family mixing, discussed in Subsection 1.5.2. In first

approximation we shall here assume that the CKM matrix is essentially

diagonal, as anticipated in that Subsection, since our main interest in con-

centrated on the Z couplings.

In particular, the Z interacts with the fermions in a way that is specified

by Eqs. (1.111), (1.114), (1.119) and one predicts the same couplings with

e.g. electrons, muons and taus (analogously, with the three kinds of neutri-

nos and with the different flavour kinds of up-type and down-type quarks).

Modulo small and calculable kinematical effects due to different masses,

the decays of Z into e.g. different charged leptons (or neutrinos, or quarks)

should be identical for the same (I3L, Qf ) quantum numbers.

If should be stressed that this universality prediction is indeed a conse-

quence of the assumed theoretical scheme and, more precisely, of the non

Abelian nature of the SU(2)L component of the symmetry group. To be

more specific, let us suppose that a second doublet of left-handed fermions

is added to a first one in the original Lagrangian. The form of the covari-

ant derivative that acts on this doublet is then forced to contain the same

SU(2)L coupling g that appeared in the first doublet, if one wishes to realize

the symmetry with the same set of gauge bosons, that transform under the

group in the same way. In other words, assuming that the second doublet is

coupled to the SU(2)L gauge bosons with strength = hg (g is the strength

of the first doublet), one finds that necessarily h = 1 as a consequence of the

non Abelian nature of SU(2)L. Note that this fact would not be true for an

Abelian group like e.g. the QED U(1). In this case, if one charged fermion

couples with the photon with a strength e, any other charged fermion can

couple to the (same) photon with strength he and arbitrary h.

Given the relevance of this universality property, we shall now try to

sketch a qualitative proof. Consider first the case of two charged fermions

f1, f2 of electric charge ‘e’ and ‘he’ respectively. The generator of the U(1)

QED symmetry group is Q, the electric charge. Under a transformation of
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the group, f1,2 become:

f ′
1 = e−iε(x)f1

(

f̄ ′
1 = f̄1e

iε(x)
)

(1.190)

f ′
2 = e−ihε(x)f2

(

f̄ ′
2 = f̄2e

ihε(x)
)

(1.191)

where ε(x) is a real space-time dependent phase.

The covariant derivatives on f1,2 will be:

Dµf1 = (∂µ + ieAµ) f1 (1.192)

Dµf2 = (∂µ + iheAµ) f2 . (1.193)

From the requirement of U(1) invariance of the terms f̄1γ
µDµf1 and

f̄2γ
µDµf2 one derives the U(1) transformation properties of Aµ, that must

be by definition the same in the two cases. Actually, one has that imposing

f̄ ′
1(Dµf1)

′ = f̄1Dµf1 (1.194)

gives for the U(1) transformed field

A′
µ(x) = Aµ(x) +

1

e
∂µε(x) (1.195)

and the same condition is derived by imposing that

f̄ ′
2(Dµf2)

′ = f̄2Dµf2 (1.196)

independently of h. Let us show this in the particularly simple case of an

infinitesimal transformation, for which e−ihε(x) ' (1 − ihε(x)).

We find then:

f̄ ′
2(Dµf2)

′ ' f̄2(1 + ihε(x))
(

∂µ + iheA′
µ(x)

)

(1 − ihε(x))f2

= f̄2
[

∂µ + iheA′
µ(x) − ih(∂µε(x))

]

f2

+f̄2h
2e
[

A′
µ(x)ε(x) − ε(x)A′

µ(x)
]

+O(ε2)

≡ f̄2 [∂µ + iheAµ(x)] f2 (1.197)

(the last equality follows by the requirement that f̄2(Dµf2)
′ = f̄2Dµf2).

Equation (1.197) leads to the condition (1.195) A′
µ = Aµ + (1/e)∂µε(x)

that does not depend on h, since all the residual terms of the equality are

linear in h, that can be consequently factorized and eliminated. This is a

consequence of an exact cancellation of the two terms that are quadratic
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in h in Eq. (1.197), which in term is due to the Abelian nature of the U(1)

group.

Let us repeat the treatment for two SU(2)L doublets, denoted by the

symbols ψ1 and ψ2. Assuming a SU(2)L coupling of strength g, hg respec-

tively one will have in this case

ψ′
1 = e−i ~τ

2 ·~ε(x)ψ1 (1.198)

ψ′
2 = e−ih ~τ

2 ·~ε(x)ψ2 (1.199)

where the Pauli τi matrices satisfy the commutation relations of the asso-

ciated SU(2)L generators:
[ τi

2
,
τj
2

]

= i εijκ
τκ
2

(1.200)

that exhibits the non Abelian nature of the SU(2)L group. For the covariant

derivatives, we shall have now

Dµψ1 =

(

∂µ − ig
~τi ~Aµ

2

)

ψ1 (1.201)

Dµψ2 =

(

∂µ − ihg
~τi ~Aµ

2

)

ψ2 . (1.202)

Considering again infinitesimal transformations, one finds by imposing

the invariance of the term ψ̄1Dµψ1 that the SU(2)L transformed gauge

bosons fields must be (i = 1, 2, 3):

A′i
µ = Ai

µ − 1

g
∂µεi(x) + εijκεj(x)A

κ
µ . (1.203)

In the case of Eq. (1.202), one is led to the following equality from the

requirement of SU(2)L invariance of the quantity ψ̄2Dµψ2:

ψ̄2

(

∂µ − ihg
τi
2
Ai

µ

)

ψ2 = ψ̄2

[

∂µ − ihg
τi
2
A′i

µ − ih
τi
2

(∂µεi(x))
]

ψ2

−ψ̄2h
2g
[τκ

2
Aκ

µ

τj
2
εj(x) −

τj
2
εj(x)

τκ
2
Aκ

µ

]

ψ2

+O(ε2) . (1.204)

As one sees, the residual quadratic term in h is now not vanishing be-

cause of the SU(2)L commutation relation Eq. (1.200), contrary to the U(1)

case Eq. (1.197). Taking Eq. (1.200) into account gives in fact:

A′i
µ(x) = Ai

µ(x) − 1

g
∂µ(εi(x) + hεijεj(x)A

κ
µ (1.205)
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e-

e+

Z
q
−

q
−

q

q

g

Fig. 1.6 Example of gluon (Aa) exchange in qq̄ production.

from which, to guarantee SU(2)L invariance with the same triplet of gauge

bosons, one must necessarily set h = 1.

In conclusion, the couplings of Z to the fermions will be fixed by only one

unknown parameter : the Weinberg quantity sin2 θW , with fermions of each

family universally coupled as from Eqs. (1.186), (1.187). This prediction

(and the value of sin2 θW ) can be at first sight checked (and derived) by

e+e− measurements on Z resonance.

Another very important issue concerns the (a priori free) number of

families N . Clearly only those fermions that are sufficient light to be pro-

duced in couples by an e+e− energy equal to mZ would be “seen” on Z

resonance. Therefore, “heavy” families would escape observation, with the

exception of their neutrinos, if the assumed pattern of massless neutrinos

is maintained.

Qualitatively, one can imagine that measuring the properties of the Z

decays the number of invisible decays into neutrinos can be counted. This is

undoubtedly another very important feature of the model that can directly

measured.

The previous discussion was assuming the validity of a lowest order

description of e+e− annihilation on top of Z resonance, corresponding to

the tree diagram represented in Fig. 1.2. But the fundamental property of

being renormalisable allows to perform in the MSM calculations of higher

order effects, in particular of Feynman diagram at the next one-loop level

like e.g. those of electroweak type represented in Figs. 1.3–1.5. Also, for a

final quark-antiquark states, higher order diagrams involving strong gluon
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exchange will have to be retained, like e.g. that represented in Fig. 1.6.

Clearly, these higher order effects will allow to provide tests of the re-

maining parts of the Lagrangian, as already discussed . These tests will be

necessarily less stringent than those related to the lowest order Z exchange,

given the fact that the extra effects to be predicted will be necessarily rel-

atively smaller than the leading one.

Nevertheless, in some particular cases they will be not only not negli-

gible, but also in a specific sense very predictive. We shall return on this

point in great detail in the forthcoming Chapters.

This final discussion concludes Chapter 1 that was devoted to a brief,

self-contained summary of some of the main features of the MSM. In the

next Chapter, we shall begin to illustrate which experimental quantities

can be actually measured on Z resonance, and what are the related the-

oretical predictions at the one loop level to be compared with the various

experimental results.
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Chapter 2

Z Physics at Tree Level

This Chapter introduces a number of measurable quantities in e+e− anni-

hilation and the basic technique that is necessary to calculate them. Since

parity violation plays a crucial rôle in electroweak interactions, we derive

chirality amplitudes directly without using trace theorems. Although the

latter ones provide a general framework for performing calculations, the

decomposition that we shall describe here highlights suitably the Standard

Model separation into left-handed and right-handed fermions. The property

of asymmetries and of polarization observables at the Z pole to offer in-

formations from parity violation effects rather than from Zγ interference is

also easier to understand in this way. This Chapter is organized as follows.

In Section 2.1, the basic expressions for spinors are recalled. The differen-

tial cross section for the process e+e− → µ+µ− via photon exchange, for

the four possible combinations of initial and final state helicities is given in

Section 2.2. This allows the general expression of polarized and of unpolar-

ized cross sections to be derived. The Z propagator is then introduced in

Section 2.3 in an effective way, leading to the general expression for the Z-

mediated cross sections. The magnitudes of the photon and of the Z cross

sections are compared. The important calculation of the Z → f f̄ process is

then described, for massless fermions, in Section 2.4. The massless-fermion

hypothesis will allow a simplification of the cross section formula previously

derived. The different couplings of the Z to left and right-handed fermions

lead to a large number of parity violating effects. The angular asymme-

tries and the polarization asymmetries are described in Section 2.5 where

it is also shown that these observables, that are related to parity violation

can be expressed in terms of one single parameter, the electroweak mixing

angle. Moving away from the Z peak, general expressions including Zγ

interference will be given in Section 2.6.

57
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2.1 Conventions, spinors and basic cross sections

The e−e+ initial state is defined by the electron-positron four-momenta `µ

and `′µ:

`µ = (`0, `) = (`0, 0, 0, `) (2.1)

`′µ = (`0,−`) = (`0, 0, 0,−`) (2.2)

`0 =
√

`2 +m2
e . (2.3)

This corresponds to the experimental situation at LEP and SLC, with

head-on collisions in the centre of mass frame, although, due to energy

spread or slight momentum asymmetries, small boosts might have to be

considered occasionally. The centre-of-mass squared energy is

s = (`µ + `′µ)2 = 4(`0)2. (2.4)

The aim of the following discussion is mostly that of arriving in a sim-

ple way to the definition of those quantities that will be relevant for our

description of the physics at the Z pole. In this spirit, we shall assume

the preliminary knowledge of some basic ingredients of the mathematical

features of relativistic fermions. There exist excellent review books on the

topics, in particular we shall adopt the notations and conventions of Re-

nard [31] and proceed in a very quick way to the aimed results.

The spin state of a fermion can be described by the polarization four-

vector ξµ as follows. In the fermion rest frame, r, choosing as usual the

system ~ = c = 1, so that `rµ = (me, 0, 0, 0), the polarization four-vector

ξµ has the form ξr
µ = (0, ~ξr), where ~ξr is a unit 3-vector aligned with the

electron spin. By definition, ξµ always satisfies the two constraints:

ξ · ` = 0; ξ2 = −1. (2.5)

The spinor u(`, ξ) is related to the free-electron wave function ψlξ(x),

solution of the Dirac equation, by the usual expression

ψ`ξ(x) =
1

(2π)
3
2

1√
2`0

exp (−i` · x) u(`, ξ) . (2.6)

In the rest frame r, choosing the Z axis as the quantization one for

the electron spin and calling (χ±) the 2-component spinors eigenstates of

σz =

∣

∣

∣

∣

1 0

0 −1

∣

∣

∣

∣
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σzχ
± = ±χ± (2.7)

χ+ =

∣

∣

∣

∣

1

0

∣

∣

∣

∣

, χ− =

∣

∣

∣

∣

0

1

∣

∣

∣

∣

(2.8)

the electron states with spin along the positive and the negative Z axis are

described by

uI =
√

2me

∣

∣

∣

∣

χ+

0

∣

∣

∣

∣

=
√

2me

∣

∣

∣

∣

∣

∣

∣

∣

1

0

0

0

∣

∣

∣

∣

∣

∣

∣

∣

≡ u(`r, ξ̂Z) (2.9)

uII =
√

2me

∣

∣

∣

∣

χ−

0

∣

∣

∣

∣

=
√

2me

∣

∣

∣

∣

∣

∣

∣

∣

0

1

0

0

∣

∣

∣

∣

∣

∣

∣

∣

≡ u(`r,−ξ̂Z) (2.10)

where

ξ̂z = (0, 0, 0, 1) (2.11)

and the normalization is such that

ūu = u†γ0u = 2me (2.12)

where

γ0 = (
I 0

0 −I ) . (2.13)

In a general frame, the four-vector `µ = (`o, ~̀) can be obtained from the

rest frame vector `rµ via a Lorentz transformation with coefficients aν
µ

`µ = aν
µ`

r
ν (2.14)

and the corresponding value of the polarization vector will be, similarly,

ξµ = aν
µξ

r
ν . (2.15)

From the canonical transformation properties of spinors under a Lorentz

transformation one derives the expression of the general spinors with po-

larization ξµ

u(`, ξ) =
/̀+me

√

2me(`0 +me)
uI (2.16)
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u(`,−ξ) =
/̀+me

√

2me(`0 +me)
uII (2.17)

where /̀ = γµ`µ ≡ γ0`0 − ~γ · ~̀. The three ~γ matrices can be represented by

γi =

∣

∣

∣

∣

0 σi

−σi 0

∣

∣

∣

∣

(2.18)

indicating with σi, i = 1, 2, 3, the Pauli matrices,

σ1 =

∣

∣

∣

∣

0 1

1 0

∣

∣

∣

∣

, σ2 =

∣

∣

∣

∣

0 −i
i 0

∣

∣

∣

∣

, σ3 =

∣

∣

∣

∣

1 0

0 −1

∣

∣

∣

∣

≡ σz . (2.19)

Equations (2.16) and (2.17) are a direct consequence of Dirac equation

(/̀−me)u(`, ξ) = 0. Expressing u(`, ξ) with 2-component spinors,

u(`, ξ) = (
χ

φ
) , (2.20)

a relationship between φ and χ is obtained: φ = ~σ·~̀
`0+me

χ .

A more convenient classification of the spin states of the fermions at

high energies is given in terms of their helicity λ. This is defined as the

spin (~s) component along the direction of the 3-momentum, and for spin 1
2

fermions has the expression

λ =
~s · ~̀
|~̀|

=
1

2

`i

|~̀|

∣

∣

∣

∣

σi 0

0 σi

∣

∣

∣

∣

. (2.21)

The helicity takes discrete values and λ = ± 1
2 for spin 1

2 particles. It is

not Lorentz invariant if the particle mass is different from zero: a Lorentz

transformation can reverse the direction of ~̀, hence the sign of helicity.

Assuming, however, that the direction of ~̀ is not changed by the Lorentz

boost, the helicity corresponds to the eigenvalues of σz in the rest frame of

the particle (Eq. (2.7)).

The expressions of the Dirac spinors with four-momentum ` and helicity

λ = ± 1
2 are then the following ones (choosing the direction of ~̀ as the Z

axis):

u(`, λ = +
1

2
) =

√

`0 +me

∣

∣

∣

∣

χ+
`

`0+me
χ+

∣

∣

∣

∣

=
√

`0 +me

∣

∣

∣

∣

∣

∣

∣

∣

1

0
`

`0+me

0

∣

∣

∣

∣

∣

∣

∣

∣

(2.22)
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u(`, λ = −1

2
) =

√

`0 +me

∣

∣

∣

∣

χ−
− `

`0+me
χ−

∣

∣

∣

∣

=
√

`0 +me

∣

∣

∣

∣

∣

∣

∣

∣

0

1

0

− `
`0+me

∣

∣

∣

∣

∣

∣

∣

∣

. (2.23)

U-spinors are related in the conventional scheme to the annihilation of

the incoming fermions, while the creation of fermions will be described by

the barred spinors ū = u†γ0 . For anti-fermions, the analogous operation

are described by the v̄ (annihilation) and v (creation) spinors. For the latter

ones, one can repeat the previous analysis and obtain the expressions of the

two states with four-momentum `′ and helicity λ′ = ± 1
2 , having chosen the

three-momentum ~̀′ in the negative -Z direction and |~̀′| = |~̀|, `′0 = `0 :

v(`′, λ′ = +
1

2
) =

√

`0 +me

∣

∣

∣

∣

− `
`0+me

χ+

χ+

∣

∣

∣

∣

=
√

`0 +me

∣

∣

∣

∣

∣

∣

∣

∣

− `
`0+me

0

1

0

∣

∣

∣

∣

∣

∣

∣

∣

(2.24)

v(`′, λ′ = −1

2
) = −

√

`0 +me

∣

∣

∣

∣

`
`0+me

χ−
χ−

∣

∣

∣

∣

=
√

`0 +me

∣

∣

∣

∣

∣

∣

∣

∣

0

− `
`0+me

0

−1

∣

∣

∣

∣

∣

∣

∣

∣

. (2.25)

The previous short summary has been mostly given for self-consistency

reasons, since we shall need the various equations that have been written

to derive several relevant features of electron-positron annihilation in the

quickest and simplest way. A detailed illustration of the considered prop-

erties can be found in Ref. [31].

2.2 Chiral fermions and polarized cross sections in the

one-photon exchange

The previously defined helicity is affected by a problem: it is not a fully

Lorentz invariant quantity. Roughly, one defines then a new, Lorentz in-

variant quantity that coincides with helicity in the limit of very high energy

when masses can be neglected. This quantity is called chirality and we will

briefly summarize its main properties.
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The chirality operators are

1

2
(1 + γ5) ≡ PR (2.26)

1

2
(1 − γ5) ≡ PL . (2.27)

One easily sees that they satisfy projector conditions, since PR
2 = PR,

PL
2 = PL, PRPL = PLPR = 0.

One defines, then, the following chiral spinors:

uR(`) =
√

`0

∣

∣

∣

∣

∣

∣

∣

∣

1

0

1

0

∣

∣

∣

∣

∣

∣

∣

∣

, uL(`) =
√

`0

∣

∣

∣

∣

∣

∣

∣

∣

0

1

0

−1

∣

∣

∣

∣

∣

∣

∣

∣

, (2.28)

vR(`′) =
√

`′0

∣

∣

∣

∣

∣

∣

∣

∣

0

−1

0

−1

∣

∣

∣

∣

∣

∣

∣

∣

, vL(`′) =
√

`′0

∣

∣

∣

∣

∣

∣

∣

∣

−1

0

1

0

∣

∣

∣

∣

∣

∣

∣

∣

, (2.29)

with (`′0 = `0, ~̀+ ~̀′ = 0, ~̀ along Z). The previous spinors are eigenstates

of the chirality projectors, since :

PRuR(`) = uR(`) ; PRuL(`) = 0 (2.30)

PLuR(`) = 0 ; PLuL(`) = uL(`) (2.31)

PRvR(`′) = vR(`′) ; PRvL(`′) = 0 (2.32)

PLvR(`′) = 0 ; PLvL(`′) = uL(`′). (2.33)

In the common language, uL, vL are called “left-handed” spinors and

uR, vR “right-handed” spinors. To better understand their physical mean-

ing, we shall use the formal high energy identities

lim
`0
me

→∞
u(`,±1

2
) = uR(L)(`) (2.34)

lim
`0
me

→∞
v(`′,±1

2
) = vL(R)(`

′) (2.35)

which are derived from Eqs. (2.22)–(2.25). Thus, in the high energy limit,

the chiral spinors are essentially identical with the helicity spinors. One
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can quantify the difference between the corresponding states by making a

power expansion in the small m
`0

parameter. This gives, formally :

u(`,+
1

2
) = uR(`) +O(

m

`0
) (2.36)

and similarly for three remaining helicity eigenstates, with the variousO( m
`0

)

that can be easily computed. Given the value of the electron mass, for the

electron energies of several GeV size that occur at LEP1 the difference be-

tween the helicity eigenstates and the corresponding chirality partners is

indeed miserable and one can, in practice, neglect it. The same approxima-

tion will be normally used for the final fermion/anti-fermion states. A word

of caution must at this point be spent concerning the adopted convention,

to avoid a possible source of confusion. In our notation, uR,L describes elec-

trons with spin components along the positive (R) or negative (L) Z axis

and vR,L describes positrons which follow the identical spin convention. (In

the original definition, Eqs. (2.24)–(2.25), the quantization was given along

the negative Z axis.)

We are now ready to derive a first important property of e+e− anni-

hilation in the Standard Model framework. With this aim, we need the

expression of the all the barred spinors ūL,R, v̄L,R. With our choice of γ0

they read

ūR ≡ u+
Rγ0 =

√

`0
∣

∣1 0 −1 0
∣

∣ (2.37)

ūL =
√

`0
∣

∣0 1 0 1
∣

∣ (2.38)

v̄R =
√

`0
∣

∣0 −1 0 1
∣

∣ (2.39)

v̄L =
√

`0
∣

∣−1 0 −1 0
∣

∣ . (2.40)

Let us consider now the case of e+e− → µ+µ− via a photon exchange.

From the conventional Feynman rules we have in the initial state four terms

that correspond to the four possible initial (i) helicity configurations, i.e.,

e−⇒e
+
⇐ ⇒ Jµ,i

RL = v̄Lγ
µuR (2.41)

e−⇒e
+
⇒ ⇒ Jµ,i

RR = v̄Rγ
µuR (2.42)

e−⇐e
+
⇐ ⇒ Jµ,i

LL = v̄Lγ
µuL (2.43)

e−⇐e
+
⇒ ⇒ Jµ,i

LR = v̄Rγ
µuL . (2.44)

Using our chosen γµ representation (Eq. (2.18)) one easily obtains that

Jµ,i
RL = Jµ,i

LR = 0 . (2.45)
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In other words, the initial currents vanishes in the case of total spin 0,

leaving only the two configurations with total spin 1. For the latter ones

one obtains infact :

Jµ,i
RR ≡ v̄Rγ

µuR = (0,−2`0,−2i`0, 0) (2.46)

Jµ,i
LL ≡ v̄Lγ

µuL = (0, 2`0,−2i`0, 0) . (2.47)

If one considers now the final state µ+µ− one realizes that they also can

only appear in the two configurations

Jµ,f
RR ≡ ūRγ

µvR (2.48)

Jµ,f
LL ≡ ūLγ

µvL . (2.49)

Actually, for final state fermions, whose centre-of-mass 3-momentum
~p′ makes in general a certain non-zero angle θ with respect the electron

3-momentum ~p, the previous statement can be simply derived from the

general expression of the electromagnetic current

J e.m.
µ = ψ̄(x)γµψ(x) = ψ̄(x)[PR + PL]γµ[PL + PR]ψ(x) (2.50)

where PR,L are defined in Eq (2.26),(2.27). From the anti-commutation

property γ5γµ = −γµγ5 on then recovers the known result

J e.m.
µ = ψ̄(x)Lγµψ(x)L + ψ̄(x)Rγµψ(x)R (2.51)

where ψR,L = PR,Lψ .

Moving to the u, v spinors leaves then the chirality initial and final eigen-

states in the combinations of Eqs. (2.46),(2.47),(2.48),(2.49) for any value

of the final muon angle θ. In general the expression of Eqs. (2.48),(2.49)

will not be as simple as that of the initial electron current, that remain

fixed by Eqs. (2.46),(2.47).

A useful situation to be considered at this point is that of forward

scattering, θ = 0. In this case the expression of the final currents can be

computed using the same spinors representation that we have so patiently

derived, and whose utility will soon become evident. It is then simple to

see that

Jµ,f
RR = (0,−2`0, 2i`0, 0) (2.52)

Jµ,f
LL = (0, 2`0, 2i`0, 0) . (2.53)

From the conventional Feynman rules, the expression of the invariant

scattering amplitude for a certain transition is given, at the lowest Born

level by the formula

Mfi = (−ie)2 J
µ,fgµνJ

ν,i

s
(2.54)
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where s = 4`20 is the squared centre-of-mass energy. We can therefore

define, in full generality, four different scattering amplitudes, i.e.,

MLL,MRR,MLR,MRL (2.55)

that correspond to the four combinations Jµ,i
LLJµ

f
LL, Jµ,i

RRJµ
f

RR,

Jµ,i
LLJµ

f
RR, Jµ,i

RRJµ
f

LL.

The corresponding differential cross section, proportional to the square

of the scattering amplitude and to known phase space factors, will be called

dσLL

dΩ
,
dσRR

dΩ
,
dσLR

dΩ
,
dσRL

dΩ
≈ |MLL|2, ....... (2.56)

Collecting Eqs. (2.46),(2.47),(2.52),(2.53) and (2.54) one easily sees that,

at θ = 0

MLR(θ = 0) = MRL(θ = 0) = 0 (2.57)

while

MLL(θ = 0) = MRR(θ = 0) = 2e2 . (2.58)

The correct proportionality factor between dσ
dΩ and |M |2 can be derived

in a straightforward way, following, e.g., Ref. [31]. For our purposes, we

shall be limited to quote the relevant final formula

dσ

dΩ
=

|M |2
16s(2π)2

. (2.59)

Combining Eq. (2.59) with Eq. (2.58) we obtain the desired information:

dσLL

dΩ
(θ = 0) =

dσRR

dΩ
(θ = 0) =

α2

s
(whereα ≡ e2

4π
) . (2.60)

It is now straightforward to derive correspondingly simple expressions for

the backward configuration, θ = π. Here one simply and intuitively ex-

changes the final indexes with respect to the forward situation and finds:

dσLL

dΩ
(θ = π) =

dσRR

dΩ
(θ = π) = 0 , (2.61)

dσLR

dΩ
(θ = π) =

dσRL

dΩ
(θ = π) =

α2

s
. (2.62)

The previous Eqs. (2.60),(2.62) give the expressions of the differential

cross sections for an initial state with spin one and a final state with 3-

momentum parallel and antiparallel. To derive the expressions for a general
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angle θ, one can follow the procedure of projecting onto an axis situated at

that angle. We shall not perform here the explicit derivation, but will give

the final result, which appears to be a natural extension of the two cases

θ = 0, θ = π, i.e.:

dσLL

dΩ
(θ) =

dσRR

dΩ
(θ) =

α2

s

(

1 + cos θ

2

)2

, (2.63)

dσLR

dΩ
(θ) =

dσRL

dΩ
(θ) =

α2

s

(

1 − cos θ

2

)2

. (2.64)

In all those cases where the polarization of the final state are not mea-

sured, one gives the expression for the averaged unpolarized differential

cross section, i.e.:

dσ

dΩ
=

1

4

[

dσLL

dΩ
+
dσRR

dΩ
+
dσLR

dΩ
+
dσRL

dΩ

]

=
1

4

α2

s

(

1 + cos2 θ
)

. (2.65)

Integrating over θ and φ one then obtains the well known expression

(γ ≡ photon exchange)

σ e+e−→µ+µ−

γ (s) =
4

3
π
α2

s
. (2.66)

Our brief summary of the main features of e+e− scattering in the one-

photon-exchange description is now completed. In the same spirit of relaxed

technicalities we shall now move, in next Section, to the extension of the

previous formulae to the description of the scattering via a single Z boson

exchange.

2.3 Interaction involving a Z boson

We consider now the process e+e− → µ+µ− via exchange of a Z boson,

retaining the reasonable approximation of treating electrons and muons as

massless. In fact, in all processes that we shall describe, the final states will

be always of the type “light-fermion light-antifermion”, and considered as

essentially massless, with the possible unique exception of bb̄ production,

that will be separately treated in Chapter 4. One immediate problem that

we have to face is that, strictly speaking, at this stage of the book the

Z boson properties have not been yet well defined, which might introduce

some confusion to the reader. To proceed in a reasonably consistent was,
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we shall follow an heuristic approach where the Z boson is only defined, for

the moment, as a massive particle of spin one, with different couplings to

left-handed and right-handed fermions that are described by ≈ γµ vector

currents (similarly to the photon ones). Calling gi
λ the coupling constants

to the i-th fermion of chirality λ = L,R (that remains related to the helicity

in our high energy configuration), the derivation of the matrix elements

for the process is completely analogous to that presented for the photon

exchange, since the possible allowed initial chiralities are obviously not

changed, and for the final pair the pseudovector current allows the same

chiral combination of the vector one. In fact, the main difference between

the photon and the Z exchange is represented by the form of the respective

propagators. Here, a clarifying discussion is requested. Rigorously, we

are at this step illustrating the process of electron-positron at the lowest

order. At this Born level, we should therefore simply replace the bare

photon propagator with the bare Z propagator, inserting in particular a

≈ (s −m2
Z) term in the denominator. As well known, this is not the final

and meaningful replacement, and we shall discuss thoroughfully in the next

Section the correct procedure. As a tolerable compromise, we shall therefore

introduce here an effective denominator DZ defined as

DZ = (s−m2
Z)2 +m2

ZΓ2
Z(s) (2.67)

calling, for the moment, ΓZ(M2) the Z width. We hope that the inaccu-

rate treatment will be tolerated by the reader, since it will be completely

explained, as we anticipated, in next Section, and since, for a qualitative

understanding of the features that we want to derive now, it seems to us

an acceptable and unavoidable “ansatz”.

After these premises, the derivation of the chiral cross sections can now

proceed reasonably clearly, following the steps illustrated in the previous

Section. In particular one finds:

dσLL

dΩ
(θ) = g2

Leg
2
Lµ

s

DZ(s)

(

1 + cos θ

2

)2
e4

s4W c4W
, (2.68)

dσRR

dΩ
(θ) = g2

Reg
2
Rµ

s

DZ(s)

(

1 + cos θ

2

)2
e4

s4W c4W
, (2.69)

dσLR

dΩ
(θ) = g2

Leg
2
Rµ

s

DZ(s)

(

1 − cos θ

2

)2
e4

s4W c4W
, (2.70)

dσRL

dΩ
(θ) = g2

Reg
2
Lµ

s

DZ(s)

(

1 − cos θ

2

)2
e4

s4W c4W
, (2.71)
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where sW ≡ sin θW and cW ≡ cos θW are the sinus and cosinus of the

Weinberg angle, respectively, defined by Eq.( 1.82). From the previous ex-

pressions one can derive by integration the cross sections for all the allowed

configurations of initial and final polarizations. In particular, in the case of

unpolarized initial and final states, one finds the average value

dσ

dΩ
=

1

4

[

dσLL

dΩ
+
dσRR

dΩ
+
dσLR

dΩ
+
dσRL

dΩ

]

=
1

16

s

DZ(s)

e4

s4W c4W
(2.72)

×
{[

1 + cos2 θ
] [

(g2
Le + g2

Re)(g
2
Lµ + g2

Rµ)
]

+ 2 cos θ
[

(g2
Le − g2

Re)(g
2
Lµ − g2

Rµ)
]}

and integrating over the angles gives

σ e+e−→µ+µ−

Z (s) =
1

4

s

DZ

4π

3

[

(g2
Le + g2

Re)(g
2
Lµ + g2

Rµ)
]

. (2.73)

Note that, differently from the (parity conserving) one-photon exchange,

in the differential cross section a term proportional to cos θ appears. This

will have fundamental experimental consequences, in particular related to

the measurement of the forward-backward asymmetry discussed in Chap-

ter 8. At the Z resonance centre-of-mass energy, s = M 2
Z , one has

σ e+e−→µ+µ−

Z (s) =
1

4

4π

3

[

(g2
Le + g2

Re)(g
2
Lµ + g2

Rµ)
] 1

Γ2
Z

e4

s4W c4W
. (2.74)

to be compared with the corresponding photon-mediated expression,

Eq. (2.66)

σ e+e−→µ+µ−

γ (s) =
4

3
π
α2

M2
Z

. (2.75)

At this point of the book, we cannot yet quote numerical values for

ΓZ , g(L,R)(e,µ). This will be done later in the book; we can anticipate,

though, that at the Z resonance the Z mediated cross section (to be cor-

rectly computed, i.e. beyond the simple Born level) will be approximately

50 times larger than the photon-mediated one, for final muon states (and

even larger for final hadronic ones). Note that we did not consider, in this

Section, possible Zγ interference cross sections. The reason will become

transparent in next Section, where we shall define, and compute at Born

level, those very important quantities that are called Z partial widths.
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2.4 Computation of Z partial widths

For the purpose of testing the Standard Model with high precision, a spe-

cially relevant rôle is played by the various decay rates of the produced Z

boson. We proceed now to calculate the rate of decay into a pair of muons,

Z → µ+µ− , following the same methods that were employed in the pre-

vious Subsections. The theoretical expression for the partial width will be

assumed to be known and we limit ourselves to writing it, for a general

fermion-antifermion pair, as

Γf =
(2π)4

2
√
s

∫

dρf |Mf |2 =
1

16s

∫

dΩ|Mf |2 . (2.76)

The matrix element is obtained from the Interaction Lagrangian defined

in Chapter 1, i.e.,

LIf =
e

sin2 θW cos2 θW

Zµ
[

gf
Lψ̄

f
Lγµψ

f
L + gf

Rψ̄
f
Rγµψ

f
R

]

. (2.77)

The transition amplitude will be written as

Mf =
e

sin2 θW cos2 θW

εµ
[

gf
LJµ

f
LL + gf

RJµ
f

RR

]

(2.78)

where JµRR,LL are defined similarly to Eqs. (2.42),(2.43), and εµ is the Z

polarization vector. The latter is defined as to meet the properties εµpµ =

0 , εµε∗µ = 1, where pµ is the Z four-momentum.

The next steps that allow to derive the expression of the decay width are

technical details that can be easily worked out from existing literature [8].

Briefly, one arrives at the following fundamental formula:

ΓZ→µ+µ− =
1

24π

e2

s2W c2W
[g2

Lµ + g2
Rµ]mZ =

√
2GFm

3
Z

6π
[g2

Lµ + g2
Rµ] . (2.79)

This formula can be easily extended to any producible final lepton-

antilepton or quark-antiquark pair, remembering that in the latter case a

multiplication by the number of colours must be performed. Its numerical

value is fixed by those of the electric charge, of the Z mass, of the left

and right fermion couplings and of sin2 θW . Although we did not describe

yet the complete determination of all these parameters, we anticipate for

the reader’s convenience the different results, still assuming that all the

produced fermions are massless, and show them in Table 2.1.
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Table 2.1 Partial decay widths of the Z bo-
son for various fermion species at tree level.
QCD corrections are not included. A value
of sin2 θW = 0.23 has been used.

Fermion ΓZ→ff̄ (MeV)

ν 166
` 83
u quark 288
d quark 367

Total= 3ν+3e+2u+3d 2424

The previous Table allows to understand, at least qualitatively, the

statement given in the previous Section concerning the fact that the Z-

mediated cross section is so much bigger than the photon-mediated one, at

the Z resonance energy s = m2
Z . A word of caution is still necessary since

the Table contains the results at the tree level, in particular without en-

closing the important one-loop QCD effects, that will increase the hadronic

widths by approximately 4 percent, and the total width by about 70 MeV.

Starting from Eq. (2.79) one can now return to the expression of the

unpolarized Z-mediated cross section and rewrite it in the more frequently

used way:

σZ→µ+µ−(s) =
s

M2
Z

12πΓeΓµ

(s−M2
Z)2 +M2

ZΓ2
Z(s)

. (2.80)

An important point must now be stressed before closing this Section.

From our previous formulae we can conclude that, at the Z peak (s = m2
Z),

the Z-mediated cross section Eq. (2.74) dominates the photon-mediated

one Eq. (2.66). In principle, the cross section might also contain a γ Z

interference term, which does not appear in our formulae. Actually, in this

preliminary qualitative discussion, we defined an effective Z denominator

DZ(s) in Eq. (2.67). A rigori, we should have started from an effective Z

propagator and from an effective tree level expression of the neutral current

matrix element. The latter would have been written in the form:

Mλeλν = −Jµ
e gµν

[

e2

s
+

e2

s2W c2W

gλegλµ

(s−M2
Z) + imZΓZ(s)

]

Jν
f . (2.81)

At the Z peak, the second term is purely imaginary. Thus the cross

section, proportional to the squared modulus of Eq. 2.81, only contains

the squared photon and the the squared Z contributions, and the γ Z

interference term vanishes. This fact is no longer true when one moves
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away from the the Z peak, in which case the γ Z interference term must

be retained in the expression of the complete cross section. Although one

expects that, in the vicinity of the Z peak, the single Z term is by far

the dominant one, the rigorous calculation will have to take into account

the extra small not single Z terms. This point will be discussed in detail

in the final Section of this Chapter. Before doing that, a description of

those other extremely important quantities that are the angular and the

polarization asymmetries of the process, based on the formalism developed

in this Section and in the previous ones, will be given.

2.5 Angular and polarization asymmetries

The various formulae that we have derived in the previous Sections in case

of Z exchange for the differential and total cross sections are characterized

by a fundamental feature, the parity violation of the intrinsic interaction.

Contrary to the case of the parity conserving photon exchange, one sees that

the expression of the unpolarized differential cross section, Eq. (2.72), as

already stressed, contains a term proportional to the cosine of the scattering

angle θ. One notices that the coefficient of the cosine would vanish if the

lepton left and right couplings were identical, as in the electromagnetic

case. But the parity violation makes the two couplings different, therefore

producing three essential consequences that we are now going to list.

The first consequence is the possibility of defining another not vanishing

measurable quantity, called longitudinal polarization asymmetry, ALR, and

defined as :

ALR =
σe−

L
− σe−

R

σe−

L
+ σe−

R

(2.82)

where σe−

L
, σe−

R
are the total cross section for production of a final muon-

antimuons pair from a left(right)handed electron, obtained with a sum over

the possible positron polarizations. In other terms:

σe−

L
= σLL + σLR =

s

DZ(s)

e4

s4W c4W

4

3
πg2

Le(g
2
Lµ + g2

Rµ) (2.83)

σe−

R
= σRR + σRL =

s

DZ(s)

e4

s4W c4W

4

3
πg2

Re(g
2
Lµ + g2

Rµ) . (2.84)

Using the expressions of the chiral couplings, one is led to the final

“canonical” expression:
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ALR =
g2

Le − g2
Re

g2
Le + g2

Re

. (2.85)

The second consequence is the possibility of defining a not vanishing

measurable quantity, called (unpolarized) forward-backward asymmetry

AFB . Technically, this is defined as :

AFB =

∫ θ=π/2

θ=0
dσ

d cos θ −
∫ θ=π

θ=π/2
dσ

d cos θ
∫ θ=π/2

θ=0
dσ

d cos θ +
∫ θ=π

θ=π/2
dσ

d cos θ

. (2.86)

To introduce the third consequence of the parity-violating nature of the

Z boson, we must make a general premise. The reader might have the

impression, at this point, that a certain lack of democracy exists at the Z

pole between the initial state couplings and the final state ones, for which

until now no experimental quantity has been proposed that provides their

separate measurement. Actually, this impression is false. At the Z peak two

quantities can be defined that do fill this democratic ambition. Denoting by

f the final fermion of the produced pair, one can first consider a quantity

originally called [32] polarized forward-backward asymmetry and defined

as:

Af,pol
FB =

(σe−

L
fF

− σe−

R
fF

) − (σe−

L
fB

− σe−

R
fB

)

σe−

L
fF

+ σe−

R
fF

+ σe−

L
fB

+ σe−

R
fB

(2.87)

where fF and fB indicate forward and backward outgoing fermions, respec-

tively. (We are assuming for the moment a polarization degree of the beam

= 1, and will come back on this point in Chapter 8.) At the Z peak one

may easily verify that

Af,pol
FB =

3

4

g2
Lf − g2

Rf

g2
Lf + g2

Rf

(2.88)

showing that Eq. (2.87) is only dependent on the final state couplings, as

we anticipated. Denoting the analogue of Eq. (2.85) for a fermion f

Af =
g2

Lf − g2
Rf

g2
Lf + g2

Rf

, (2.89)

one finds that
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Af,pol
FB =

3

4
Af . (2.90)

A second possibility is to define

Af
pol =

(σfF,R
− σfF,L

) − (σfB,L
− σfB,R

)

σfF,R
+ σfF,L

+ σfB,R
+ σfB,L

=
σfR

− σfL

σtot
(2.91)

where R and L indicate here the chirality of the final state fermion. One

can see that, at the Z pole,

Af
pol = −Af . (2.92)

A very important conclusion stems from the observation that ratio of

Eq. (2.85) can be expressed, using Eq. (1.116), in terms of one single param-

eter, the square of the sinus of the Weinberg angle sin2 θW . Moving from

this observation, it is tempting to verify whether this feature survives in the

remaining asymmetries. Actually for a transition from electron-positron to

a ff̄ pair, one has:

Af
FB =

3

4
AeAf (2.93)

as one can see by integrating in the forward and backward hemispheres

(Eq. 2.86) the e+e− → Z → f f̄ differential cross section.

From the general expression of the fermion chiral couplings given in

Chapter 1, one realizes that each Af can be expressed in terms of the

single parameter sin2 θW . Thus, in conclusion, it appears that all the con-

sidered asymmetries, that are not vanishing as a consequence of the parity

violation intrinsic in the Z exchange, can be expressed in terms of the gen-

uine weak parameter sin2 θW . Although we proved this statement at the

simple tree level, we shall see in the forthcoming Chapter 3 that this fea-

ture will be generalized to the one-loop level, leading to the definition of

the phenomenological parameter sin2 θW,eff that will play a fundamental

rôle in the complete analysis of the available data, to be compared with

the corresponding predictions of the Standard Model. Before moving to

that, next Section provides a compact review on how the γZ interference

modifies the asymmetries when the centre-of-mass energy is not equal to

s = m2
Z .
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2.6 Asymmetries in the vicinity of the Z pole

Experimentally the asymmetries defined in the previous Section are mea-

sured at centre-of-mass energies close to the Z resonance that, normally,

do not correspond exactly to the Z pole. The formulae discussed in this

Section are useful to derive corrections, originating from the Zγ interfer-

ence, to the experimental data and, more in general, to describe the energy

dependence of the asymmetries in the vicinity of the Z pole.

The differential cross section for f f̄ production with polarized beam can

be computed with the matrix element given in Eq. (2.81). For a detailed

calculation we refer, again, to [31]. To describe the experimental data

presented in next Chapters the cross section is given for unpolarized initial

positrons colliding with longitudinally polarized electrons with polarization

Pe. The production of a fermion f with helicity λ (2λ = ±1) at an angle

θ with respect to the direction of the incoming e− can be written in the

following way:

dσ

d cos θ
(s, cos θ, λ;Pe) =

πα2(s)

4s
Nf

c (2.94)

×
{[

(1 + cos2 θ) G1(s) + 2 cos θ G2(s)
]

− 2λ
[

(1 + cos2 θ) G4(s) + 2 cos θ G3(s)
]

− Pe

([

(1 + cos2 θ) G3(s) + 2 cos θ G4(s)
]

− 2λ
[

(1 + cos2 θ) G2(s) + 2 cos θ G1(s)
])}

where the value of N f
c is one for leptons and three for quarks, while

G1(s) = Q2
eQ

2
f + 2QeQfgV egV fχγZ(s) + (g2

V e + g2
Ae)(g

2
V f

+ g2
Af

)χZZ(s)

G2(s) = 2QeQfgAegAfχγZ(s) + 4gV egAegV fgAfχZZ(s)

G3(s) = 2QeQfgAegV fχγZ(s) + 2gV egAe(g
2
V f

+ g2
Af

)χZZ(s)

G4(s) = 2QeQfgV egAfχγZ(s) + 2(g2
V e

+ g2
Ae

)gV fgAfχZZ(s) .

The couplings gV and gA are related to the chiral couplings by gV = gL+gR

and gA = gL − gR and

χγZ(s) = FG(s)
s(s−m2

Z) + s2ΓZ/mZ=(∆α)

(s−m2
Z)2 + s2Γ2

Z/m
2
Z

χZZ(s) = F 2
G(s)

s2

(s−m2
Z)2 + s2Γ2

Z/m
2
Z

FG(s) =
GFm

2
Z

2
√

2πα(s)
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where α(s) indicates the energy-dependent fine-structure constant incor-

porating higher-order photonic corrections discussed in next Chapter. For

completeness the effect of the imaginary parts of these corrections on the

Zγ interference, related to the photon-self energy and indicated as =(∆α),

are also included. The coefficient FG at the Z pole is FG(m2
Z) ' 1.407. The

total cross section is obtained by summing on the helicities of the outgoing

fermion, giving

σ(s) =
4πα2(s)

3s
Nf

c (G1(s) − PeG3(s)) . (2.95)

In Eqs. (2.94) and (2.95) the electron polarization is defined Pe = +1 for

100% right-handed electron polarization and Pe = −1 for 100% left-handed

electron polarization.

The asymmetries defined in this Chapter can be computed using the

differential cross section given by Eq. (2.94) as:

Apol(s) = −G4(s)

G1(s)

AFB
pol (s) = −3

4

G3(s)

G1(s)

AFB(s) =
3

4

G2(s)

G1(s)

ALR(s) =
G3(s)

G1(s)

Apol
FB(s) =

3

4

G4(s)

G1(s)
.

The energy dependence of the ratios Gi/G1 near the Z pole is given by:

G2(s)

G1(s)
= AeAf + Sf

2

1

FG(m2
Z)

[

(s−m2
Z)

s
+

ΓZ

mZ
=(∆α)

]

G3(s)

G1(s)
= Ae + Sf

3

1

FG(m2
Z)

[

(s−m2
Z)

s
+

ΓZ

mZ
=(∆α)

]

(2.96)

G4(s)

G1(s)
= Af + Sf

4

1

FG(m2
Z)

[

(s−m2
Z)

s
+

ΓZ

mZ
=(∆α)

]

where the asymmetries Af are defined by Eq. (2.89) and the coefficients Sf
i
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are:

Sf
2 =

2QeQf

(g2
V e + g2

Ae)(g
2
V f

+ g2
Af

)
(gAegAf − gV egV fAeAf )

Sf
3 =

2QeQf

(g2
V e

+ g2
Ae

)(g2
V f

+ g2
Af

)
gV e(gAf − gV fAf ) (2.97)

Sf
4 =

2QeQf

(g2
V e

+ g2
Ae

)(g2
V f

+ g2
Af

)
gV f(gAe − gV eAe).

Table 2.2 shows the numerical values of these functions.

Table 2.2 Numerical values of the couplings and of their
functions computed assuming sin2 θW = 0.2316.

f gV f gAf Af Sf
2 Sf

3 Sf
4

e, µ, τ -0.036 -0.5 0.143 7.92 0.56 0.56
u, c, t +0.191 +0.5 0.667 4.62 1.75 0.24
d, s, b -0.346 -0.5 0.935 1.78 1.22 0.04

The brief review of the relevant expressions of the experimental ob-

servables, at the tree level accuracy, is now completed. It will represent

a sufficient basis for deriving the more meaningful one-loop expressions of

Chapter 3.



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

Chapter 3

Z Physics at One Loop for Final

Leptonic States

We now arrive to the heart of Z pole physics: electroweak radiative correc-

tions. Their accurate calculation, resulting from a remarkable theoretical

effort of the late 80s [33], was motivated by two equally fundamental rea-

sons. The first one was the evident desire of testing the renormalizability of

the Glashow-Salam-Weinberg model. This could be done by checking that

the shift between the simple tree level predictions and the corresponding

calculations at the next order of the perturbative expansion was consistent

with the wealth of measured quantities. If this had turned out to be the

case, the MSM would have acquired the same respectability as its “ances-

tor”, QED theory, the measurements at the Z pole playing a crucial rôle in

this respect, essentially analogous to that of the fundamental measurements

of the muon’s g–2 in the QED case.

The second, perhaps more fascinating reason, is a genuine feature of

the MSM that does not have any correspondence in QED and is, actually,

deeply related to the non Abelian component (SU(2)) of its postulated

symmetry group. In fact, as it was pointed out long ago by Veltman and

Maiani [34] , the higher order corrections to the tree level predictions of the

MSM can be sensitive to the existence of heavy particles, i.e. of particles

that could not be directly produced at the energy scale of the process

under consideration. This fascinating possibility of “communicating” with

undiscovered matter is completely lacking in QED, where heavy objects

are decoupled from measured quantities as a consequence of a theorem due

to Appelquist and Carazzone [35], deeply related to the vector nature of

the electromagnetic current associated with the photon. The consequences

of this sensitivity to heavy objects are, indeed, fundamental and twofold.

Essentially, one must decide whether the theoretical wish is simply that of

achieving a fully satisfactory, overall test of the MSM or, more ambitiously,

77
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that of providing strong support for the existence of possible more complete,

or more theoretically appealing, competitor models, to be generally defined

as of new physics type.

For what concerns the first issue of testing the model, the sensitivity to

heavy matter has indeed led to one spectacular result, i.e. to the predic-

tion of a very large top mass that was later confirmed by its experimental

discovery at Fermilab [36]. In the case of the still lacking Higgs boson, the

theoretical sensitivity to a possibly large mass is unfortunately (and acci-

dentally) less powerful, being screened as originally pointed out by Veltman

[37].

Still, interesting theoretical predictions can be derived, given the fact

that several quantities have been measured which are sensitive to the Higgs

mass. In particular, a widespread feeling exists that the Higgs boson should

not be too “far away”, i.e. within the reach of dedicated experiments in

the near future.

In the case of searches of signals of new physics origin, the discussion be-

comes unavoidably less immediate and would require a long specific Chap-

ter, which will not appear in this book. Here we can, though, anticipate

that the final picture that has been reached, after several years of discus-

sions and debates, is one where no evidence for any sort of deviations from

the MSM predictions can be claimed. A significant rôle in this context, as

we shall see, was actually played by the study of a particular decay of the

Z boson, that into a bb̄ couple, where in the theoretical prediction a size-

able contribution proportional to the squared top mass was involved. Even

in this case, therefore, electroweak radiative corrections turned out to be

an essential ingredient for a rigorous understanding of the hidden physical

reality to be investigated.

This Chapter will be devoted to a general discussion of higher order

radiative effects, with particular emphasis on those previously mentioned.

The discussion will be complete at the one loop level and will deal with all

the Z peak observables and, for reasons that will be fully explained, with

the W mass. Although we shall try to avoid by as much as (realistically)

possible to enter into fine details, the discussion will unavoidably become

at times rather technical. For this reason we shall now provide, purely for

the reader’s convenience, a brief preliminary description of the main topics

that will be reviewed.
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Definition of physical input parameters and

removal of infinities

From the description of the standard SU(2)L × U(1)YL
model given in

Chapter 1, it is clear that the calculation of the physical process e+e− → ff̄

requires, at tree level, the knowledge of 3 input parameters, for instance:

(1) the coupling constant g of the SU(2)L group;

(2) the coupling constant g′ of the U(1)YL
group;

(3) the mass mZ of the intermediate vector boson Z (the photon mass

vanishes by construction).

Of course, as we have seen, other equivalent sets of parameters might

be used. One can replace g and g′ by the electric charge |e| ≡
√

4πα =

gg′/
√

g2 + g′2, and by sin θW = |e|/g; alternatively, one can exploit the

fact that, in the MSM, the masses of the W and Z bosons are related by

the equality mW = mZ cos θW . This leads to the possibility of choosing

a rather natural set of input parameters, i.e. the quantities α,mW and

mZ . We shall call natural a parameter for which it is relatively simple and

immediate to provide an operative definition, via a clearly defined physical

measurement. For the electric charge and for the boson masses, we assume

that this is intuitively possible (we shall discuss this statement in more

detail later on).

The embarrassing feature that arises as soon as the calculation of higher

order effects in the process e+e− → ff̄ is performed is that, as one will

easily realize, several contributions to the scattering amplitude that must

be computed are infinite.

This difficulty is not unexpected for those who did numerical calcula-

tions in QED; in fact, one solution to this problem is essentially similar to

that given in that framework. As a first step, one can give a suitable oper-

ative definition of a chosen physical parameter, leading to a unambiguous

(numerical) experimental determination valid to all orders of the theoretical

estimate. The most immediate example is that of the electric charge, for

which one possible definition is related to the value of a measurable cross-

section (electron-muon, for instance) at zero momentum transfer. This

(necessarily finite) value must be reproduced by the corresponding theoret-

ical calculation. The latter, when performed beyond the tree level, will be

affected in general as we will see by certain infinities, produced by higher

order terms of the scattering amplitude; it will also contain some of the in-

put parameters of the Lagrangian (in the MSM case, α,mW ,mZ), that are
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in the conventional terminology called bare parameters. It is obvious that

the particular combination of bare parameters and higher order infinities

that appears in the theoretical expression of a physical quantity will neces-

sarily be finite, and numerically fixed by the measured experimental value

of the physical quantity itself. It is also unavoidable to conclude that bare

parameters will contain suitable infinities, to cancel those coming from the

higher order effects. In the sneaky solution that is provided by the available

theoretical treatment of this problem, both in the bare parameters and in

the higher order effects one separates an infinite part from a finite one. The

infinite parts of the bare parameters and of the higher order effects cancel

out, leaving a finite residual component fixed by the experimental value of

the physical quantity that has been used as an “infinity-killer”. The impor-

tant point is that, quite generally, a certain bareparameter will differ from

its corresponding physical one. This will be the case in the MSM both for

the bare charge α and for the bare masses mW ,mZ . The corresponding

physical parameters will be defined in an operative way, discussed in this

Chapter, fixed by ‘simple’ and intuitive prescriptions.

One should have clearly understood at this point that in the MSM one

can use three physical measurements, those of the electric charge and of the

W and Z mass, to “kill” three possible infinities coming from higher order

terms by reabsorbing them, as one commonly states, in the three bare corre-

sponding (α,mW ,mZ) parameters. But this would not be the final solution

if infinities could proliferate endlessly. It is exactly at this precise moment

that the virtue of a renormalizable model shows up: in such type of models,

one actually knows that the overall number of “infinity killing” operations

requested to get finite theoretical predictions at all orders is finite. This will

necessarily happen in the MSM. In this Chapter, though, we shall not try

to provide complicated proofs of this “miracle”. We shall rather show, with

simple numerical examples, that, for what concerns physics on the Z peak,

the theoretical predictions for all experimentally measurable quantities be-

come finite, once the three aforementioned “killings” have been properly

carried through.

In the previous discussion, several fine details have been omitted. In

particular, it should be mentioned that our presentation of the removal of

infinities is neither unique, nor necessarily the most rigorous. It is, though,

in our opinion, simple and understandable; as a matter of fact, it follows

rather closely the original approach of Sirlin [38], defined “simple” by its

author. We shall devote Section 3.1 to our presentation of this essential

preliminary task.
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Choice of the most convenient set of input physical

parameters

The approach described above, based on the use of the physical squared

electric charge and of the W,Z masses as input parameters of the theoret-

ical calculations, has one important practical difficulty. For high precision

measurements, like those at the typical permil level performed on top of

the Z resonance, it is essential to start from adequately precise input pa-

rameters. The squared electric charge certainly meets this request, as it is

determined with a precision of ∼ 10−8. The Z mass, we will see, is nowa-

days measured with an accuracy of 2 × 10−5. But the W mass is, even

today, “only” known with a relative precision of 5 × 10−4, not sufficiently

good at this extreme level of Z peak experiments.

Luckily, a way out to this difficulty exists and is provided by the fun-

damental Eq. (1.24) that becomes in the MSM scheme, using Eq. (1.105)

and Eq. (1.126):

GF√
2

=
πα

2m2
W (1 −m2

W /m2
Z)

(3.1)

and allows, at tree level, to express mW in terms of α,mZ and of the Fermi

coupling GF . Since the latter is known experimentally from the muon decay

with an accuracy of 9×10−6, the unavoidable theoretical attitude is that of

replacing mW via Eq. (3.1) and to use, as a proper set of input parameters,

that composed by α,mZ and GF . The obvious problem that will arise is

related to the appearance of infinities in the modifications of Eq. (3.1) at

higher order. This will be solved in the previously explained conventional

way, since the operative definition of the physical GF will be intuitive and

immediate, and will lead as expected to the cancellation of the new infinities

that will arise and will be reabsorbed by the bare parameter GF .

Having fixed the optimal set of parameters, it would be technically

possible to begin the operations that lead to theoretical predictions. The

first step in this direction is that of moving from the simplest tree level to

the next order of perturbation theory, the so called one loop order, that

typically corresponds to the diagram replacement shown in Fig. 3.1.

As soon as the computational process is actually performed, one realizes

that, for pure convenience, i.e. practical purposes, the input parameter

represented by the physical charge, measured at zero momentum transfer

and defined conventionally from here on as α(0), can be safely replaced

by a conveniently defined effective charge α(q2), computed at q2 = m2
Z ,

where mZ will be the physical Z mass, different from the bare mZ(0), to be
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Fig. 3.1 Typical diagrams contributing to the process e+e− → ff̄ at one loop.

defined in the following Section. Thus the final set of input parameters will

be, in fact, that composed by mZ , GF and α(m2
Z). The actual definition

and the precise calculation of α(m2
Z) represent a very important theoretical

exercise, and we shall devote a part of this Chapter to a detailed discussion

of several of its most relevant features.

Calculation of the W mass

As a first example of full calculation at one loop, we shall derive the formula

that gives the physical W mass in terms of the parameters α(m2
Z),mZ , GF

and of electroweak radiative corrections, whose appearance “shifts” the

original tree level Eq. (3.1). As we shall see, the shift indeed goes in the

“right” direction. We shall give a rather detailed discussion of this impor-

tant formula, commonly known as Sirlin’s equation, that we shall write in

the form:

m2
W

m2
Z

(

1− m2
W

m2
Z

)

=
πα(m2

Z)√
2GF (1 − ∆rW )

(3.2)

where ∆rW will be, in our conventions, the electroweak radiative correc-

tion. We shall provide in this Chapter an accurate estimate of some of its

components, in particular those due to self-energy diagrams with fermion

pairs (the second diagram on the r.h.s of Fig. 3.1). This will bring to light a

few important features of ∆rW , related to the kinds of physical effects that

can affect it in an observable way. As we shall show in the next parts of this

Chapter, some of these effects will also influence the physical observables

at the Z peak. More precisely, two of the three independent effects that
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affect ∆rW will also be present, in different combinations, in all the Z peak

observables. This will relate in a deep and fruitful way the measurements

of the W mass and those performed at LEP1 and SLC.

Full treatment of Z peak observables at one loop and defi-

nition of the effective electroweak angle via the longitudinal

polarization asymmetry

This fundamental part of Chapter 3 will be first devoted to a general dis-

cussion of how one can provide a simple and fully gauge invariant effective

description of the process e+e− → ff̄ at one loop at general squared c.m.

energy, in particular at the Z peak. From the discussion it will quite nat-

urally follow the idea of defining an effective energy dependent electroweak

parameter, the squared sine of the electroweak angle, to be called sin2 θW,eff

and to be estimated at m2
Z for what concerns predictions at the Z reso-

nance. For this parameter, in contrast to α(m2
Z) whose definition in the

MSM is purely conventional, it will be possible to provide a simple and in-

tuitive operative definition, that relates it to a measurable quantity called

longitudinal polarization asymmetry ALR. The rôle and the properties of

ALR will be thoroughly discussed in this Chapter, and a detailed derivation

of the expression of the effective electroweak angle will be performed.

Definition of the effective Z lepton axial vector coupling:

the Z leptonic width. Introduction of the gauge invariant

parameters ε1, ε3 and ε2

In this part of Chapter 3 we shall show that, in analogy with the effective

electroweak angle sin2 θW,eff , one can give a convenient definition of the

effective axial Z-lepton coupling on Z resonance gA(m2
Z). This can be done,

again, in a meaningful operative way by relating this parameter to the

partial decay width of the Z into leptons, either charged or neutral. In this

way, it will become natural to associate two of the outstanding theoretical

features of the MSM, the chiral nature of the Z− fermion interaction and

the purely left-handed nature of its neutrinos, with two perfectly defined

measurements, that of the longitudinal polarization asymmetry and that of

the Z partial width into neutrinos.

As a byproduct of this description, we shall show that the full dis-

cussion of electroweak radiative corrections for Z physics at one loop and

final leptonic states can be given in terms of two gauge-invariant param-
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eters, originally called ε1, ε3 by Altarelli, Barbieri and Jadach [39]. The

same two parameters, together with a third one (ε2), will appear in the

expression of the W mass.We shall derive this important result and con-

clude with a related discussion this long Chapter, that is only devoted to

the process of production of final lepton-antilepton states. The reason for

this choice is that, in such cases, only the purely electroweak component

of the MSM Lagrangian is effective, for which a conventional one-loop per-

turbative treatment is apparently fully adequate. The generalization of the

results obtained in Chapter 3 to the case of final hadronic states, where

the rôle of strong interactions must be carefully taken into account, will be

treated in Chapter 4.

3.1 Definition of physical input parameters and

removal of infinities at one loop in e+e− annihilation

on Z resonance

3.1.1 The theoretical description at tree level

For the specific case of electron-positron annihilation, the MSM description

at the lowest order in a perturbative expansion is only based on those Feyn-

man diagrams where either a Z or a photon (γ) appear in vertices with two

fermions. To avoid unnecessary complications at the very beginning, let us

consider an annihilation process whose final state is a fermion-antifermion

couple different from electron-positron; in other words, we shall not con-

sider the so called Bhabha scattering for the moment. For general values

of the c.m. squared energy, defined as

(pe+ + pe−)2 ≡ q2 = (pf + pf̄ )2 (3.3)

(pe+ , pe− , pf , pf̄ = positron, electron, fermion, antifermion 4-momentum)

the process is then described by the two Feynman diagrams where a Z and

a γ are respectively exchanged in the s-channel.

In order to make meaningful theoretical predictions, one first writes the

expression of the invariant scattering amplitude following a set of conven-

tionally derived Feynman rules. If f f̄ denotes the final fermion-antifermion

pair and θ the scattering angle in the c.m. frame, the expression of the

invariant scattering amplitude in the MSM can be written as

A
(0)
ef (q2, θ) = A

(0)(Z)
ef (q2, θ) +A

(0)(γ)
ef (q2, θ) (3.4)

where the two terms correspond respectively to Z and γ exchange in the

s-channel, as shown in Fig. 3.2 (pe−,e+ = p1,2; pf,f̄ = p3,4), and the ‘0’
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+
γ

e+
p2 f

p4

f
p3e-

p1

e+
p2

e-
p1

Z
Aef

Aef

f
p4

f
p3

Aef
(0)(Z)

(0)

(0)(γ)

Fig. 3.2 Tree level Feynman diagrams description of the process e+e− → ff̄ .

index on Aef is a reminder of the fact that the theoretical prediction is

performed at the lowest order in a perturbative expansion in the interaction

Lagrangian responsible for the fermion-gauge boson coupling.

The theoretical expression for the invariant scattering amplitude (whose

knowledge allows to compute differential and total cross-sections and scat-

tering asymmetries, as summarised in Chapter 2), is given by standard

Feynman rules and reads for the two components:

A
(0)(γ)
ef (q2, θ) = ij

µ(γ)
f

[−i
q2

]

ij(γ)
µe (3.5)

A
(0)(Z)
ef (q2, θ) = ij

µ(Z)
f

[ −i
q2 −m2

Z

]

ij(Z)
µe (3.6)

where we have used the condensed notations:

j(γ)
µe = |e0|Qev̄e(~p2)γµue(~p1) (3.7)

j
(γ)
µf = |e0|Qf ūf (~p3)γµvf (~p4) (3.8)

jZ
µe =

|e0|
2 sin θW cos θW

v̄e(~p2)γµ

[

g
(0)
V e − γ5g

(0)
Ae

]

ue(~p1) (3.9)

j
(Z)
µf =

|e0|
2 sin θW cos θW

ūf (~p3)γµ

[

g
(0)
V f − γ5g

(0)
Af

]

vf (~p4) (3.10)

where Qe,f are the electron and fermion charges in unity of the positron

one (so that Qe = −1),

g
(0)
V e,f = I3Le,f − 2Qe,f sin2 θW (3.11)

g
(0)
Ae,f = I3Le,f (3.12)
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and 1 − cos2 θW ≡ sin2 θW is defined in Eq. (1.82). The initial and fi-

nal fermions Dirac spinors ue, ve, uf , vf have been previously defined in

Chapter 2.

The quantities g
(0)
V,A are given by the expressions

g
(0)
V = g

(0)
L + g

(0)
R ; g

(0)
A = g

(0)
L − g

(0)
R (3.13)

where g
(0)
L,R are defined by Eq. (1.116) and we have sticked to the definition

of the Lagrangian Eq. (1.111).

A few words of comment are at this point appropriate. All the couplings

that appear in Eqs. (3.7), (3.13) are by definition bare quantities, appearing

in the definition of the Interaction Lagrangian. For this reason, they are

labeled by a ‘0’ index (the same notation should have been used in the

derivation of the MSM Lagrangian in Chapter 1, but was avoided not to

generate unnecessary complications.) Analogously, mZ in Eq. (3.6) must

also be considered as a bare (Lagrangian) parameter. Equations (3.5), (3.6)

can be summarised by an (unorthodox) “thumb” Feynman rule, that asso-

ciates in the construction of the invariant scattering amplitude of Fig. 3.2

geometrical entities to corresponding quantities as follows:

i) to the e+e−, f̄f vertices with γ or Z, the quantities (ij
(γ)(Z)
µe ) (initial

vertex) and (ij
(γ),(Z)
νf ) (final vertex). Here µ, ν are Lorentz indexes.

ii) to the γ, Z line of four-momentum q the bare propagators iP
(γ,Z)
νµ (q):

−igνµ

q2
≡ iP (γ)

νµ (q) ; −i gνµ

q2 −m2
Z

≡ iP (Z)
νµ (q) . (3.14)

Note that, for the specific case of external massless fermions, one can sys-

tematically neglect from the beginning any hypothetical component ∼ qµqν
of the bare propagators, since its contribution to the scattering amplitude

would be (as a consequence of Dirac’s equation) proportional to the fermion

masses. In this particular case, one can identify therefore the bare prop-

agator with its ∼ gνµ component. This simplification would not be valid

in a process where (some of) the external fermion masses could not be

neglected.

In general, the expression of A
(0)
ef will contain four more indexes e.g.

λ1, λ2, λ3, λ4 that indicate the possible initial and final fermion polariza-

tions. We omit them for the moment since for unpolarized variables known

rules exist for summing and/or averaging over these quantities in the ex-

pressions of the various cross-sections. Note that the latter ones will be

obtained by computing the squared modulus of the scattering amplitude,
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and as a consequence of this there will be in the cross-sections three inde-

pendent Lorentz structures that could be indicated as (γ, γ), (Z,Z), (γ, Z)

(or (Z, γ)) respectively and that correspond to the possible combinations

of the A
(0)(γ)
ef , A

(0)(Z)
ef components in the squared expression.

In a theoretical treatment truncated at the lowest tree level, the bare

quantities have a precise meaning, since they can be directly related to

measurable observables, as shown in detail in Chapter 2.

As soon as the theoretical description becomes more ambitious, and cal-

culations are performed at next orders of perturbation theory, the original

meaning of bare quantities is generally lost. This will have drastic and pos-

itive consequences, that we shall now begin to explore systematically in the

case of the considered process of electron-positron annihilation. Here the

rigorous MSM description will be given at the next to the tree-level order,

the so called one loop level. In the following part of this Chapter we shall

begin to investigate the theoretical ingredients that are introduced in order

to carry on the required treatment.

3.1.2 Renormalizability and gauge transformations in the

MSM

One of the main and substantial differences between the ancient Fermi de-

scription of weak interactions (Eq. (1.5)) and the MSM is that the latter

one is a renormalizable quantum field theory. This fundamental property,

whose derivation is due to a memorable ’t Hooft’s effort [5], has the con-

sequence that theoretical computations can be in principle performed at

any order of perturbation theory (leaving aside the practical difficulties e.g.

due to the increasing number of Feynman diagrams), leading to finite (i.e.

meaningful) predictions for physical (i.e. measurable) quantities.

The last sentence must be always and carefully taken into account. In

fact, renormalizability will guarantee the finiteness of the theoretical pre-

dictions for physical observables. In the theoretical available perturbative

framework the latter ones will be very often obtained as a sum of several

components, each one (or some ones) turning out to be infinite. The can-

cellation of the various infinities in the physical quantity will be a recurrent

feature in the MSM. In a sense, it will often turn out to be, rather than a

complication, a useful check of the validity of the final (finite) prediction

since every formally infinite component will leave a finite contribution to

the overall physical observable.

From a more technical point of view, the MSM is in fact a non Abelian,
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spontaneously broken gauge field theory. This has the consequence that, in

the process of its quantization and in the proof of its renormalizability, a

number of peculiar difficulties will arise, whose known existing solutions will

enforce the presence of certain unphysical entities, due to the addition of

corresponding unphysical terms to the Lagrangian Eq. (1.135), Chapter 1.

Without entering the details of this known theoretical approach, we shall

simply list these unphysical, but necessary, objects that are:

The ‘ghosts’

They correspond to complex scalar field operators that obey Fermi statistic,

and their appearance in any unbroken non Abelian gauge theory was first

proposed by Faddeev and Popov (FP) [40] to cure unpleasant diseases,

affecting the gauge bosons of the system, that might cause problems with

unitarity. In the MSM the extra complication arises of the spontaneous

breaking of the symmetry in the electroweak sector of the model. This will

leave in the final formulation four FP ghosts, one for each gauge boson, to

be conventionally called C+, C−, CZ , Cγ .

As a consequence, Feynman diagrams will appear and will have to be

computed with gauge boson-ghost-ghost couplings (the ghost do not inter-

act with fermions). In the process of e+e− annihilation into a fermion pair,

one will encounter e.g. the diagram of Fig. 3.3 where a (C+, C−) pair is pro-

duced by a virtual Z, in formal correspondence with the analogue W+W−

pair. The important point to be kept in mind is that, although all contri-

butions to observables like that of Fig. 3.3 must be accurately computed

and taken into account, the ghosts do not correspond to any physical par-

ticle; they are rather introduced as a convenient purely mathematical trick

to retain a physical request, that one does not want to abandon. One can

e+

e– f

Z
C+

C–

f

Z

Fig. 3.3 Ghost loop in the process e+e− → ff̄ .
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easily imagine at this point that their numerical contribution to a physical

quantity will have to be added to that of other unphysical entities that must

be retained in the MSM for mathematical convenience, and that the overall

unphysical contributions will cancel. This is precisely what happens, and

we shall illustrate this fact with a simple and meaningful example in the

following part of this Chapter, when discussing the properties of the photon

propagator. More specifically, the extra unphysical entities to be retained

are those already encountered in Chapter 1: the would be Goldstone bosons,

to be discussed now in some detail.

The ‘would be’ Goldstone bosons

We already met in Chapter 1 the three scalar fields s̃1, s̃2, s̃3 that would

generate the unpleasant mixing term Eq. (1.61). In the same Chapter we

have seen that these scalars can be reabsorbed by the corresponding gauge

boson fields A1
µ, A

2
µ, A

3
µ in the so called unitary gauge. But the price to pay,

as discussed in Chapter 1, is that the renormalizability of the theory in this

gauge is at first sight not achievable, owing to the form of the gauge boson

propagator Eq. (1.29). Thus, the simultaneous elimination of both the

unphysical scalars and of their mixing terms leads to a serious mathematical

difficulty. This is not a problem at the tree level, but becomes such as soon

as calculations at higher order, that involve unavoidably integrals of gauge

boson propagators, begin to occur.

Loosely speaking, the solution proposed by ’t Hooft appears as kind of

a (clever) compromise, in which the would-be Goldstone bosons are allowed

to remain, but their mixing is eliminated. At a qualitative level, it is not

difficult to understand the logics of this procedure. In the mixing defined

by Eq. (1.61), a sum of unwanted terms of the form A
(j)
µ ∂µs̃j , j = 1, 2, 3

appears. In a completely rigorous way, since it is the Action, i.e. the

integration of the Interaction Lagrangian over the full space-time, that has

a physical meaning, and the field operators are assumed vanishing at the

(infinite) contour of integration, one can make the replacement:

∫ +∞

−∞
(A(j)

µ ∂µs̃j)dx ≡
∫ +∞

−∞

[

∂µ(A(j)
µ s̃j) − s̃j(∂

µAj
µ)
]

dx

(3.15)

=

∫ +∞

−∞
−s̃j(∂

µA(j)
µ )dx

so that, effectively, one can write the Lagrangian part of Eq. (1.61) as the

sum of terms ∼ s̃j(∂
µA

(j)
µ ). This is still, formally, of the previous mixing

type. But in any local gauge theory it is possible to impose a condition
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on the divergence of a gauge boson field. In fact, from the request of

gauge invariance, one can always make a transformation of A
(j)
µ , whose

form for infinitesimal transformations is given in Eq. (1.203) for the SU(2)L

case. This means that a (huge) set of different gauge fields exists that are

absolutely equivalent for what concerns the physics of the system where

they appear, and we can call generically “gauge” each particular choice of

the fields. Starting for simplicity from Eq. (1.203), it is relatively easy to

see that one can choose the 3 arbitrary components of ~ε(x) so that the

divergences of the transformed fields satisfy a suitable condition, and one

can decide to restrict the (huge) set of different equivalent gauge fields to a

subset where the chosen suitable condition on the divergences is satisfied.

This suitable condition is then called a gauge fixing condition, since it clearly

reduces the set of equivalent gauges.

In the case of the effective surviving mixing terms ∼ s̃j(∂
µA

(j)
µ ) it will

be therefore possible, if so wished, to “bargain” the component ∂µA
(j)
µ

with a suitable gauge fixing condition. Although this statement is certainly

oversimplified, it is not surprising that, in order to avoid the replacement

of a mixing term with a new term of the same nature, the immediate

possibility is that of imposing the divergence of the gauge field A
(j)
µ to

become proportional to the scalar s̃j , so that the mixing terms ∼ s̃j∂
µA

(j)
µ

are replaced by ∼ s̃2j (which is a priori perfectly acceptable). This explains,

in this qualitative way, the choice of the gauge fixing condition:

∂µA(j)
µ = −ξjg

〈s0〉√
2

(
√

2s̃j) = −ξjmA(
√

2s̃j)(j = 1, 2, 3) (3.16)

where the vev〈s0〉0 is that generated by the spontaneous symmetry breaking

mechanism in the simplified version Eq. (1.53) for the considered SU(2)L

case, and the 3 real parameters ξj , all varying between zero and infinity,

define an infinite subset of “gauges”, each one specified by the values of the

three parameters. The generalization to the MSM case with W+
µ ,W

−
µ , Zµ

is straightforward.

After imposing the gauge fixing conditions Eq. (3.16), we return to the

original component of the Lagrangian that contains the mixing terms and

write it in the equivalent way:

−g〈s0〉0
3
∑

j=1

[A(j)
µ ∂µs̃j ] = g〈s0〉0

∑

j

s̃j∂
µA(j)

µ (3.17)

(where the equality is an effective one, i.e. for what concerns the integrated

Lagrangian).
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Next, we perform a “trick” that is often played in gauge theories, adding

to Eq. (3.17) a quantity that is identically vanishing in the previously de-

fined class of gauges. This quantity is usually called gauge fixing (gf)

Lagrangian, and its formal expression is:

Lgf =
∑

j

(−1

2ξj

)

(

∂µA(j)
µ + ξjg〈s0〉0s̃j

)2

. (3.18)

Adding Eq. (3.18) to Eq. (3.17) we obtain a quantity that is identical to

Eq. (3.17), but whose formal expression reads:

g〈s0〉0
∑

j

s̃j∂
µA(j)

µ + Lgf

(3.19)

≡
∑

j

[

− 1

2ξj
(∂µA(j)

µ )2 − 1

2
(ξjmA)2(

√
2s̃j)

2

]

.

These two terms must now be added to the original corresponding quadratic

terms (the first two on the r.h.s.) of Eq. (1.56). This produces the overall

quadratic (Aµ, s̃j) component:

Lquad(A(j)
µ , s̃j) =

3
∑

j=1

[

1

2
m2

AA
(j)
µ Aµ(j)

− 1

2ξj
(∂µA(j)

µ )2 +
1

2
(∂µ

√
2s̃j)(∂

µ
√

2s̃j)

− 1

2
(ξjm

2
A)(

√
2s̃j)

2

]

. (3.20)

In the conventional field theory formalism, the first two terms describe three

vector particles whose propagators are:

iP (j)
µν (q) =

−i
q2 −m2

A

[

gµν +
(ξj − 1)qµqν
q2 − ξjm2

A

]

. (3.21)

These modified propagators vanish in the “infinite q” limit as ∼ 1/q2 like in

the familiar case of the QED photon propagator, leading to a much softer

kind of possible residual divergences after q-integration. Naively, one would

hope that from this feature the desired renomalizability property should

follow. Actually, this fact was proved by ’t Hooft [5]. For this reason, the

set of gauges where the gauge-fixing conditions Eq. (3.16) are satisfied are

called renormalizable ξ-gauges or Rξ gauges.

An important remark is appropriate now: the proof given by ’t Hooft is

valid for every choice of the gauge parameters ξj , even in the limit ξj → ∞.
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In this limit the gauge boson propagators Eq. (3.21) are re-transformed in

those of the unitary gauge Eq. (1.63). The conclusion is that, contrary to

naive expectations, even in the unitary gauge the MSM must be renormal-

izable. The only technical problem is that calculations in that gauge are

formally more complicated, since “harder” infinities must be canceled.

The last two terms of Eq. (3.20) have also an immediate field-theory

interpretation: they describe 3 real scalars,
√

2s̃j , whose squared masses

are ξjm
2
A, and whose propagators are consequently:

iP (j)(q) =
i

q2 − ξjm2
A

(3.22)

where m2
A is the squared mass of the associated gauge boson (when moving

to the concrete SM case, there will be W+,W−, Z indexes for masses and

scalar fields).

At this point, an apparently embarrassing picture appears: theoretical

predictions seem to be based on properties of pseudo-particles, that can be

eliminated in the special unitary gauge!

The answer to this problem is that it is only an apparent one. In fact, by

definition, physical quantities must not depend on the choice of gauge: they

must be gauge-independent. In terms of our parametrisation, this means

that the final meaningful predictions will not have to depend on the ξj

parameters. Since these quantities appear in the propagators of the s̃j and

of their associated gauge bosons A
(j)
µ , a number of delicate cancellations will

have to occur between the possible contributions to observable quantities

generated by Feynman diagrams where s̃j and A
(j)
µ are exchanged.

The same kind of philosophy must be adopted whenever contributions

from the ghost fields also appear.

Without entering a detailed discussion, the main features of these enti-

ties is that they can only be coupled in trilinear vertices ∼ (ACC) to the

gauge bosons, and always appear as a closed internal loop in our e+e− con-

sidered process, like in the one-loop diagram of Fig. 3.3. The propagator of

the three ghosts associated to W+,W− and Z also depends on the choice

of gauge, and reads:

iP (j)
c (q) =

−i
q2 − ξjm2

A

(3.23)

that also (as expected) disappears in the unitary gauge (note the opposite

sign with respect to Eq. (3.22). Clearly, the overall contribution to any

physical observable, including also (when necessary) the ghost term, must

be ξj-independent.



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

Z Physics at One Loop for Final Leptonic States 93

Again, although this request might appear as an extra complication, one

should consider it rather as a powerful test that must be passed by the final

prediction for a physical quantity: the cancellation of the ξj-dependence.

In fact, after having checked the gauge-independence of the physical

quantities, a choice of a certain gauge where the theoretical calculations

should be performed must be made. Quite often, and almost systematically

in this book, the choice ξj = 1 is performed, corresponding to the so called

’t Hooft-Feynman gauge. The immediate reason is that, in this gauge, the

expression of the gauge boson Pµν propagator is of purely ∼ gµν type, which

makes calculations, usually, much simpler.

A final important point must still be stressed. Almost regularly, the var-

ious observable quantities to be computed will be obtained, in the chosen

gauge, as a sum of several terms some (or all) of which will be formally in-

finite. Renormalizability ensures, though, that their sum in the observable

quantity will be finite. In practice, a delicate mechanism of cancellation

of infinities will be at work, and once again the finiteness of the final ex-

pression will be a (rather important) test of the accuracy of the theoretical

prediction.

It remains now to be seen which mechanisms of cancellation of infinities

will have to be used in the MSM. This will be shown in some detail in the

next Subsections.

3.1.3 Treatment of formally divergent quantities in e+e−

annihilation: the divergences at one loop

In this Subsection we shall illustrate the kind of infinities that are actually

met in the calculations of the contributions to the invariant scattering am-

plitude of the process e+e− → ff̄ at the next perturbative order after the

tree level, for what concerns the purely electroweak component of the inter-

action (in other words, strong interactions will be for the moment turned

off). In the current language, this level is called the one-loop level. In terms

of Feynman diagrams, it can be decomposed into three general and distinct

categories, that are usually classified as:

‘Self-energy’ effects

These correspond to two classes of diagrams, represented in Figs. 3.4 and

3.5. The first class is a generalization of the corresponding QED one,

with internal loops that include fermions, bosons, physical and unphysi-

cal scalars, ghosts.

The second class corresponds to another, typical, theoretical feature of
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e+

e–

f

f

γ,Z(q) γ,Z(q)

Fig. 3.4 Self-energy Feynman diagrams at one loop for e+e− → ff̄ (all combinations of
γ and Z are allowed). The internal loop includes pairs of fermions, gauge bosons, physical
and unphysical scalars, ghosts in all possible allowed combinations; q = pe+ + pe− is the
total c.m. energy.

e+

e–

f

f

Z(q)

H

Z(q)

Fig. 3.5 Tadpole diagrams contributing the Z self-energy. The internal loop includes
pairs of fermions, gauge bosons, physical and unphysical scalars in all possible allowed
combinations. The overall c.m. energy is denoted as q.

the MSM that leads to the so called tadpole graphs, where a Higgs scalar

is “produced” and “disappears” like in Fig. 3.5.

In our description of e+e− annihilation on Z resonance, we shall not

insist particularly on the previous tadpole diagrams. As one can guess, they

correspond to a theoretical trick rather than to a physical effect; actually,

their presence is essential for the purposes of giving e.g. a gauge-invariant

definition of the Z mass at one loop. We shall accept without proving it

that this task can be satisfactorily fulfilled , and will not return on Fig. 3.5

for the rest of this book.

‘Vertex’ effects

These correspond to diagrams of the kind represented in Fig. 3.6, with all

possible allowed virtual particles exchanges. Note that we include in this

category also the various external fermions self-energies diagrams. Note,

also, that we do not include the vertices with virtual photon exchange.
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These belong to the specific QED sector, and must be treated separately.

For our purposes of precision tests of the genuinely weak sector of the MSM,

they can be considered as perfectly “known” quantities.

e+

e–

f

f

γ,Z(q)
+ +

+ . . . 

e+

e–

f

f

γ,Z(q)

e+

e–

f

f

γ,Z(q)
+ +

e+

e–

f

f

γ,Z(q)

e+

e–

f

f

γ,Z(q)
+

+

+

e+

e–

f

f

γ,Z(q)

Fig. 3.6 Examples of vertex diagrams at one loop.

‘Box’ effects

These correspond to Fig. 3.7, with dots representing other possible dia-

grams with weak virtual bosons exchanges (but without photons for the

reasons previously exposed).

+ + . . . 

f

f

e+

e–

f

W

W

Z

Z
f

e+

e–

Fig. 3.7 Examples of box diagrams at one loop.
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We now consider, as a first illustrative example, the calculation of one

of the possible self-energy diagrams of Fig. 3.4, i.e. that with an initial and

final virtual Z line and a pair of charged virtual leptons L, L̄ in the loop,

with mass mL and four-momenta κ and κ̄ = κ− q. Working in the ’t Hooft

gauge and following conventional Feynman rules, moving from the right

(final fermions) to the left (initial electron-positron), we can compute this

contribution to the invariant scattering amplitude at one loop A
(1)
lf (q2, θ).

Denoting the four-vector indexes of the four vertices from right (Zf f̄) to

left (Ze+e−) by Lorentz symbols ν, ρ, σ, µ respectively, we can write this

contribution as:

A
(1)
ef (q2, θ)(Fig. 3.4) = ij

(Z)
νf

(−igνρ)

q2 −m2
Z

× (iΠ(Z)(L)
ρσ (q))

(−igσµ)

q2 −m2
Z

ij
(Z)
µl (3.24)

= j
ν(Z)
f

1

q2 −m2
Z

(

iΠ(Z)(L)
νµ (q)

) 1

q2 −m2
z

j
µ(Z)
l

where the L-component, of the Z self-energy iΠ
(Z)(L)
νµ (q) is pictorially de-

picted in Fig. 3.8 and, following the adopted Feynman rules, one has the

familiar trace (Tr) of Dirac matrices:

iΠ(Z)(L)
νµ (q2)(Fig. 3.8)

=

∫ +∞

−∞
− d4κ

(2π)4
Tr

{

i|e0|
2 sin θW cos θW

[

γν

(

−1

2
+ 2 sin2 θW

)

+
1

2
γνγ5

]

× i(κ̂+mL)

(κ2 −m2
L)

i|e0|
2 sin θW cos θW

[

γµ

(

−1

2
+ 2 sin2 θW

)

+
1

2
γµγ5

]

× i(κ̂− q̂ +mL)

[(κ− q)2 −m2
L]

}

; (κ̂ ≡ γρκρ) . (3.25)

From inspection of Eq. (3.25) one can conclude immediately that the

quantity to be computed is clearly infinite, since the integrand does not

Z(µ) Z(ν)
K = K – q

K
L

q q
L

Fig. 3.8 Z self-energy diagram with a L, L̄ fermion bubble and vector indexes ν (right),
µ (left); κ, κ̄ are the virtual L, L̄ four-momenta.
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vanish sufficiently quickly with κ when κ→ ∞. More precisely, one notices

the presence of quadratic (∼ κ̂κ̂/κ4), linear (∼ κ̂/κ4) and logarithmic (∼
mL/κ

4) divergent integrand expressions, whose contributions to physical

observables must be necessarily canceled, in a magic way that we shall

illustrate.

In conclusion, one must expect for the general self-energy diagram at

one loop the appearance of infinities. Let us examine now the situation

for vertices, considering as a representative case that corresponding to the

Feynman diagram of Fig. 3.9 where a couple of final charged leptons L, L̄

is produced via a s-channel Z and a W is exchanged in the final vertex:

e+
(p2)

e–

νL
L(p4)

L(p3)

νL(K)

Z(q)
W

(p1)

Fig. 3.9 Vertex diagram with two final charged leptons and virtual W exchange; κ is
the virtual νL four-momentum.

In the ξj = 1 gauge, the contribution of the diagram of Fig. 3.9 to the

invariant scattering amplitude at one loop can be written in a way formally

similar to that of Eq. (3.6) i.e.:

A
(1)
eL (q2, θ)(Fig. 3.9) =

[

iūL(~p3)Γ
(Z)
ν,LvL(~p4

] (−igµν)

q2 −m2
Z

ij(Z)
µe (3.26)

where

iΓ
(Z)
ν,L(Fig. 3.9) =

∫ +∞

−∞

d4κ

(2π)4
i|e0|

2
√

2 sin θW

γρ(1 − γ5)

× (−iκ̂)
κ2

i|e0|
2 sin θW cos θW

γν

(

1

2
− 1

2
γ5

)

(3.27)

× (−i)(κ̂− q̂)

(κ− q)2
i|e0|

2
√

2 sin θW

γσ(1 − γ5)
(−i)gρσ

|(κ+ p3)2 −m2
W ]

.

One sees, again, that the quantity Eq. (3.28) is formally infinite, owing

to the presence of terms ∼ κ̂κ̂/κ6 that induce a logarithmic divergence.

Even in the general case of vertices, new cancellations will have therefore
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to be produced in some clever way by the renormalizability of the model,

for what concerns the contributions to observable quantities.

Finally, we move to the case of box effects and consider as a typical

genuine weak contribution that corresponding to double W exchange with

production of two final charged (and different from electron-positron) lep-

tons L, L̄ represented by the Feynman diagram of Fig. 3.10.

W, k

W

νν

e

e L

L(p1)

(p2) (p4)

(p3)

+

-

(-)

(+)

e L

Fig. 3.10 Double virtual W box diagram with two final charged leptons L, L̄;κ is the
W (−) 4-momentum.

The contribution to the invariant scattering amplitude from this quan-

tity can be written in a straightforward way, and corresponds to the fol-

lowing single integration (after taking into account all the four-momenta

conservations at the various vertices):

A
(1)
ef (q2, θ)(Fig. 3.10) = iūL(~p3)

×
∫ +∞

−∞

d4κ

(2π)4
i|e0|

2
√

2 sin θW

γµ(1 − γ5)
(−i)(p̂3 − κ̂)

(p3 − κ)2

× i|e0|
2
√

2 sin θW

γρ(1 − γ5)vL(~p4)
(−i)gρσ

[(κ− q)2 −m2
W

× v̄e(~p2)
i|e0|

2
√

2 sin θW

γσ(1 − γ5)
(−i)(p̂1 − κ̂)

(κ− p1)2
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× i|e0|
2
√

2 sin θW

γν(1 − γ5)
(−i)gµν

(κ2 −M2
w)
ue(~p1) .

(3.28)

As one sees, the contribution from Eq. (3.28) is, this time, finite since

the integrand behaves at worst as ∼ κ̂κ̂/κ8 at infinity, which does not give

rise to divergent terms. This welcome simplification is valid in a general Rξ

gauge, with the exception of the unitary (ξj → ∞) one. Here the two W

propagators acquire each one an extra ∼ κκ factor in the numerator, and

the resulting contributions diverge, requiring a number of suitable extra

cancellations that would not be necessary in a “finite ξ” gauge.

Until now, we have been vaguely talking of “canceling infinities”. But

this delicate procedure must be performed in a totally unambiguous way

since, after the cancellation has been performed, a finite part will remain

that will correspond to the prediction for a certain observable. Clearly, a

convenient and clever algorithm should be adopted, to carry on this impor-

tant program. This will be illustrated in the following Subsection.

3.1.4 The dimensional regularization method

In any renormalizable quantum field theory based on perturbative expan-

sions, the problem generally arises of the unambiguous determination of

the “meaningful” finite component of a combination of several terms, that

are all formally infinite. Any computational scheme that succeeds in this

goal is called regularization scheme.

For the special case of e+e− annihilation that we shall consider, a par-

ticularly convenient approach is provided by the so called dimensional reg-

ularization scheme, usually called the ’t Hooft-Veltman scheme [41]. As

we shall explicitly show, this method will lead to a determination of the

relevant finite quantities that will be, thanks to a number of extra physical

requests, completely unambiguous in the considered case of the MSM pre-

dictions for e+e− annihilation at the Z resonance at one loop, for physical

quantities. We shall provide a few relevant examples of this statement,

without entering a general discussion of the method and of its applications

to other physical processes.

The main (and clever) idea of the dimensional regularization approach is

that in general the quantities that one must compute and that diverge, to be

specific those of Eqs. (3.25) and (3.28), are infinite because the integration

in the virtual momentum κ is performed in a four-dimensional space, and
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notoriously
∫ +∞

−∞
d4κ

(

1

κ2
,

1

κ3
,

1

κ4

)

= ∞ .

If the same integrations were performed on a space of “suitably” smaller

dimension n < 4, they would lead to finite results for the previous terms

since e.g. it would be possible to choose n so that:
∫ +∞

−∞
dnκ

(

1

κ2
,

1

κ3
,

1

κ4

)

<∞ .

This leads to the idea of transforming the dimension n into a complex

continuous variable and of defining the relevant integrals
∫

dnκ
(

1
κ2 , · · ·

)

as

analytic functions of n. Once these functions have been determined, the

final move is to define, for any given integrand in n dimensions I(κ, n):
∫

d4κI(κ; 4) = lim
n→4

µε

∫

dnκI(κ;n) (3.29)

where

n ≡ 4 − ε (3.30)

and the arbitrary scale parameter µ (with mass dimension), requested for

purely dimensional reasons, is expected to disappear from the expressions

of physical observables. In Eq. (3.29) I(κ;n) represents the expression of

the original integrand when ‘4’ is replaced by ‘n’ in some expressions (e.g.

(2π)4 → (2π)n), with prescriptions that are fixed by the method.

In practice, for our purposes a limited number of divergent integrals will

have to be treated, and we give here the list of those final expressions that

we shall need, computed in the limε→0+ , i.e. moving from values n < 4, in

order of decreasing formal degree of divergence (with ε = 4 − n):

lim
ε→0+

µε

(2π)n

∫ +∞

−∞

dnκκµκν

[κ2 −m2
1][(κ+ p)2 −m2

2]
(3.31)

=
i

16π2

[

pµpνB21(p
2,m2

1,m
2
2) − gµνB22(p

2,m2
1,m

2
2)
]

,

lim
ε→0+

µε

(2π)n

∫ +∞

−∞

dnκκµ

[κ2 −m2
1][(κ+ p)2 −m2

2]
(3.32)

=
i

16π2
pµB1(p

2,m2
1,m

2
2) ,
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lim
ε→0+

µε

(2π)n

∫ +∞

−∞

dnκ

[κ2 −m2
1][(κ+ p)2 −m2

2]
(3.33)

=
i

16π2
B0(p

2,m2
1,m

2
2) ,

lim
ε→0+

µε

(2π)n

∫ +∞

−∞

dnκκµκν

[κ2 −m2
1][(κ+ p)2 −m2

2][(κ+ p+ p′)2 −m2
3]

=
i

16π2

[

gµνC24(p
2, p′2,m2

1,m
2
2,m

2
3) − pµpνC21−

(3.34)

p′µp
′
νC22 − (pµp

′
ν + pνp

′
µ)C23

]

.

Here p, p′ denote arbitrary four-momenta of external particles of the con-

sidered reaction; m1,m2,m3 are masses of virtual exchanged particles.

The functions B21, B22, B1, B0, C24 are infinite. In the dimensional reg-

ularization approach they can be expressed [42] as the sum of an infinite

part (to be canceled) and of a surviving finite term (that will contribute

the expressions of the relevant observables).

Taking the simplest example of the function B0 as an useful represen-

tative illustration, one finds in this case:

B0(p
2,m2

1,m
2
2) = ∆ −

∫ 1

0

dx ln

[

D(x, p2,m2
1,m

2
2)

µ2

]

(3.35)

where

∆ = lim
ε→0+

(

2

ε

)

+ (ln 4π − γ) = ∞ (3.36)

D(x, p2,m2
1,m

2
2) = m2

1(1 − x) +m2
2x− p2x(1 − x) . (3.37)

In Eq. (3.35) µ is an arbitrary scale parameter and γ is the so called Euler-

Mascheroni constant:

γ = 0.5772 · · · (3.38)

A number of comments on Eq. (3.35) are now appropriate:

i) The infinite part, ∆, is independent of four momenta and masses. The

inclusion in ∆ of the finite constant (ln 4π − γ) is a conventional pre-

scription. We shall not comment its possible interpretation since, in

all the cases that we shall illustrate, it will disappear from physical

quantities together with the genuinely infinite term 2/ε.
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ii) The arbitrary scale parameter µ that appears in the finite term will also

disappear in the physical observables, through the same mechanism

that will cancel the divergent term ∆. This is easily understandable

since (forgetting for the moment dimensional considerations) the term

∼ lnµ2 in the finite part could be considered as an extra addition to

∆, that disappears when ∆ disappears.

For what concerns the remaining infinite functions, the expression of

the various Bs is relatively simple. For B1 one finds the following result:

B1(p
2,m2

1,m
2
2) = −1

2
B0(p

2,m2
1,m

2
2)

+
1

2p2

[

m2
1

(

1 − ln
m2

1

µ2

)

−m2
2

(

1 − ln
m2

2

µ2

)

+(m2
1 −m2

2)

∫ 1

0

dx ln

[

D(x, p2,m2
1,m

2
2)

µ2

]]

≡ −1

2
∆ +B

(finite)
1 (3.39)

in which the divergent part is given by the first term = −(1/2)B0 on the

r.h.s. The remaining term is finite (and regular in the limit p2 → 0, as it

must be from the definition Eq. (3.32)).

Similar, slightly more complicated expressions can be derived for the

remaining functions B21, B22 (and C24). Without exhibiting the complete

formula for the moment, we only list the various divergent components. In

a self-explaining notation, we shall have:

B21(p
2,m2

1,m
2
2) =

1

3
∆ +B

(finite)
21 (p2,m2

1,m
2
2) (3.40)

B22(p
2,m2

1,m
2
2) =

1

12
(p2 − 3m2

1 − 3m2
2)∆ +B

(finite)
22 (p2,m2

1,m
2
2) (3.41)

C24(p
2, p′2,m2

1,m
2
2,m

2
3) =

1

4
∆ + C

(finite)
24 (p2, p′2,m2

1,m
2
2,m

2
3) . (3.42)

Equations (3.35)–(3.42) show us the nature of infinities (and related can-

cellations) that will be met in the dimensional regularization method, as

a consequence of the bad asymptotic behaviour in the integration variable

of the integrands that appear in the loop effects (ultraviolet divergences).

The remarkable simplicity of the resulting divergent expressions leads al-

ready to the feeling that the process of their cancellations will turn out to

be straightforward. This statement needs, though, some extra additional
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discussion, since the aforementioned cancellation would not be performable

without the additional contributions of new infinite quantities. These will

appear at one loop as the consequence of the presence in the Lagrangian

of bare parameters, whose original meaning is lost when one abandons the

lowest order of perturbation theory and moves to the next one-loop level.

This fact will have the tricky consequences that will be fully discussed in

the forthcoming Subsection 3.1.5.

3.1.5 Definition of physical parameters: renormalization of

mW , mZ

In any renormalizable quantum field theory all theoretical predictions for

observable quantities are finite, at any order of perturbation theory. This

is usually achieved by mutual cancellations of infinite quantities of the kind

explicitly shown in the previous Subsection 3.1.3. In general, though, the

process of cancellation is only successful if other infinities of a rather dif-

ferent kind are introduced in the game. This is the result of a process

in which all (or some) or the original parameters of the Lagrangian (bare

in the conventional definition) are replaced by new ones, the renormalized

ones, plus an infinite term whose task is that of contributing the cancella-

tion of infinities. In symbols, if we denote by P0 a bare parameter of the

Lagrangian, for the moment completely unspecified, the usual procedure is

that of writing

P0 = PR + δPR (3.43)

where PR is finite and δPR generally infinite. Equation (3.43) defines the

process of renormalization of the parameter P0, that could be e.g. a mass,

or a charge, in the original Lagrangian.

It must be stressed that the choice of PR (and, consequently, of δPR) is

not unique. In fact, each choice defines a certain renormalization scheme.

The criteria that motivate a particular choice are normally based on con-

venience, or common sense. Once the scheme has been chosen, the infinite

quantity δPR is uniquely fixed. The fundamental property of a renormal-

izable model is that a finite number of renormalizations of different bare

parameters is sufficient to guarantee finiteness for the relevant theoretical

calculations to each order of perturbation theory.

In what follows, we shall motivate in a qualitative way the choice of

renormalization scheme that we shall adopt. With this purpose, a good

starting point could be the observation that, when one abandons the lowest
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order (tree level) description and moves e.g. to one loop, the original and

characteristic property of a general bare parameter is usually lost. To be

more definite, let us consider a bare mass parameter of the Lagrangian,

for instance the Z mass mZ defined by Eq. (1.79), which appears in the

Lagrangian Eq. (1.69). In full generality, m2
Z can be defined as the pole in

the q2 variable of the lowest order Z propagator Eq. (3.14) in the ξj = 1

gauge. Alternatively, one can say that m2
Z is the value of q2 corresponding

to which the real part of the denominator of the lowest order Z propagator

P
(Z)
µν (q) vanishes in the ξj = 1 gauge.

When one moves to the next perturbative one-loop level, it is easy to see

that the lowest order (Z) propagator is naturally replaced by a new expres-

sion that retains the same formal properties of the lowest order quantity.

This modified expression contains also the bare parameter m2
Z . But now

m2
Z is no longer the zero of the real part of the modified propagator. To

verify this statement, a few technical details are now requested. First of

all, let us derive the formal expression of this “modified propagator”. A

glance to Eq. (3.25) shows that the one-loop Z self-energy contribution to

the invariant scattering amplitude can be written in a way formally identi-

cal with that of the corresponding lowest order Z exchange term Eq. (3.6),

with the replacement:

iP νµ(Z)(q) ⇒ iP νρ(Z)iΠρσ(q)iP σµ(Z) (3.44)

which can be alternatively written as:

gνµ

q2 −m2
Z

⇒ 1

q2 −m2
Z

Πνµ(Z)(q)
1

q2 −m2
Z

(3.45)

with Πνµ(Z)(q) defined by Eq. (3.25) in the particular case of a charged

lepton pair contribution. Leaving aside the specific “bubble” that enters

Fig. 3.3, the most general expression of Πνµ(z), that can be considered at

one loop as due to the sum of all possible contributions represented by

Figs. 3.3 and 3.4 (i.e. different types of fermions or gauge bosons or scalars

or ghosts or tadpoles), must necessarily be (owing to its tensorial Lorentz

structure):

iΠνµ(Z)(q) ≡ −i[gνµA(Z)(q2) + qµqνB(Z)(q2)] . (3.46)

The (Lorentz scalar) functions A(q2), B(q2) are usually called the trans-

verse (A) and the longitudinal (B) components of the self-energy tensor

Πνµ. In the specific case of the electron-positron annihilation process on

top of resonance, for which the possible final fermion are always light (i.e.
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of a mass much smaller that that of the Z boson), the function B can be ne-

glected. In fact, its contribution to the scattering amplitude in Eq. (3.25),

owing to the contraction of qµ,ν = (p1 + p2)µ,ν = (p3 + p4)µ,ν with the

Dirac γ matrices and to the properties of the Dirac equation, is always

proportional to the electron or final fermion masses and thus, as one can

easily verify, completely negligible. As a consequence of this kinematical

simplification, one can rewrite Eq. (3.45) as:

gνµ

q2 −m2
Z

⇒ 1

q2 −m2
Z

(−)gνµA(Z)(q2)
1

q2 −m2
Z

. (3.47)

For the total scattering amplitude at one loop, sum of A
(0)
ef and A

(1)
ef , the

overall formal replacement is therefore the following:

gνµ

q2 −m2
Z

⇒ gνµ

q2 −m2
Z

[

1 − A(Z)(q2)

q2 −m2
Z

]

. (3.48)

The self-energy tensor Eq. (3.25) and its components A,B are of order

|e0|2 at one loop, and within this one-loop approximation (1 − O(e20) =

1/(1 +O(e20)) one finally has:

gνµ

q2 −m2
Z

≡ −P νµ(Z)|ξ=1 ⇒ gνµ

(q2 −m2
Z)

1
[

1 + A(Z)(q2)
q2−m2

Z

]

=
gνµ

q2 +A(Z)(q2) −m2
Z

=
gνµ

(q2 +ReA(Z)(q2) −m2
Z) + iImA(Z)(q2)

(3.49)

where we have used the fact that the transverse self-energy A(Z)(q2) is, in

general, a complex function (with an imaginary part not vanishing in the

timelike q2 > 0 region).

As one sees from inspection, the new expression in the r.h.s. of

Eq. (3.49), that replaces the lowest order propagator, still contains m2
Z

as a bare parameter. But clearly, since in general ReA(Z)(q2) 6= O, the

value q2 = m2
Z does not correspond any longer to a zero of the real part

of the denominator, and the original lowest order interpretation of m2
Z is

therefore lost at the one loop level.

If one wishes to define a new and finite renormalized Z squared mass

such that its interpretation at one loop reproduces that of m2
Z at lowest

order, one has to define

m2
Z(0) = m2

Z + δm2
Z (3.50)
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with the condition that, when q2 = m2
Z in Eq. (3.49):

m2
Z +ReA(Z)(m2

Z) −m2
Z(0) = O (3.51)

that, combined with Eq. (3.50), means:

δm2
Z = ReA(Z)(m2

Z) . (3.52)

The choice of Eqs. (3.50)–(3.52) defines the so called on shell renormal-

ization scheme and, also, gives a physical clean meaning to the Z mass.

Naively, one understands that in correspondence to q2 = m2
Z there will be

a maximum in the squared modulus of the scattering amplitude, that is in

the measurable differential and total production cross sections.

An immediate consequence of Eq. (3.52) is that δm2
Z will be infi-

nite, if such will be ReA(Z)(m2
Z). To clarify this point, let us consider

Eq. (3.25) and generalize it so that is corresponds to a generic f f̄ (fermion-

antifermion) bubble of couplings to Z= g
(0)
V f , g

(0)
Af defined by Eqs. (3.11),

(3.12). We can then write:

iΠ(Z)(f)
νµ (q2) =

−e20
4 sin2 θW cos2 θW

Nf

∫ +∞

−∞

d4κ

(2π)4
1

(κ2 −m2
f )[(κ− q)2 −m2

f ]

× Tr

{

[

γνg
(0)
V f − γνγ5g

(0)
Af

]

(κ̂+mf )

[

γµg
(0)−γµγ5g

(0)
Af

V f

]

× (κ̂− q̂ +mf}

=
−e20

4 sin2 θW cos2 θW

Nf

∫ +∞

−∞

d4κ

(2π)2
1

(κ2 −m2
f )[(κ− q)2 −m2

f ]

×
{

4(g
(0)2

V f + g
(0)2

Af ) [κµκν + κνκµ − qνκµ − κνqµ

−gνµ(κ2 − κq)
]

+ 4(g
(0)2

V f − g
(0)2

Af )m2
fgµν

}

(3.53)

where Nf = 1 for leptons, 3 for quarks, takes into account the color factor.

From the definition Eq. (3.46), the expression of the relevant transverse

component (the coefficient of −igνµ) turns out therefore to be:

A(Z)(f)(q2) =
−1

16π2

e20
sin2 θω cos2 θω

Nf

×
{

(g
(0)2

V f + g
(0)2

Af )
[

q2
(

B21(q
2,m2

f ,m
2
f ) +B1(q

2,m2
f ,m

2
f )
)

−2B22(q
2,m2

f ,m
2
f )
]

− (g
(0)2

V f − g
(0)2

Af )m2
fB0(q

2,m2
f ,m

2
f )
}

.

(3.54)
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This has an infinite component, that will be expressed in our convention

as:

A(Z)(f)(∞)(q2) =
e20Nf

16π2 sin2 θW cos2 θW

∆

[

q2

3
(g

(0)2
V f + g

(0)2
Af ) − 2m2

fg
(0)2

Af

]

.

(3.55)

A(Z)(f)(q2) will thus diverge for general q2 values, in particular, at q2 = m2
Z

(numerically fixed in the on-shell scheme by the observed cross section

peak). The Z squared mass shift δm2
Z defined by Eq. (3.52) will conse-

quently be infinite. The result of Z mass renormalization is therefore that

of introducing another infinite quantity in the game. Without entering the

details, we can repeat the derivation in the case of the W boson, where the

identical procedure will be that of defining a physical W mass starting from

the bare one Eq. (1.75)

m2
W (0) = m2

W + δm2
W (3.56)

with the on-shell condition

δm2
W = ReA(W )(m2

W ) (3.57)

and A(W ) defined starting from the W self-energy function:

iΠνµ(W )(q) = −i
[

gνµA(W )(q2) + qµqνB(W )q2)
]

(3.58)

where the calculation of iΠνµ(W )(q) can be performed following the same

rules that we have illustrated for the Z case, with obvious changes of cou-

plings, starting from a Feynman diagram like that of Fig. 3.3 with vir-

tual W ’s replacing virtual γ, Z. The expression that would correspond

to Eq. (3.25) can be derived in a straightforward way, and reads, for two

members f1, f2 of a fermion doublet in the virtual bubble, of masses con-

ventionally defined as mf1 ,mf2 for the I3L = +(1/2),−(1/2) states:

i Π(W )(f)
νµ (q) = −Nf

∫ +∞

−∞

d4κ

(2π)4
Tr

{

i|e0|
2
√

2 sin θW

[γν − γνγ5]

× i(κ̂+mf1)

(κ2 −m2
f1

)

i|e0|
2
√

2 sin θW

[γµ − γµγ5]
i(κ̂− q̂ +mf2)

[(κ− q)2 −m2
f2

]

}

. (3.59)

From Eq. (3.59) one derives the transverse component A(W )(f)(q2), that

reads:

A(W )(f)(q2) = − Nf

32π2

e20
sin2 θW

(3.60)

2[q2(B21(q
2,m2

f1
,m2

f2
) +B1(q

2,m2
f1
,m2

f2
)) − 2B22(q

2,m2
f1
,m2

f2
)]
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whose infinite part is:

A(W )(f)(∞)(q2) =
e20Nf

16π2 sin2 θW

∆

[

q2

3
− 1

2
(m2

f1
+m2

f2
)

]

(3.61)

so that A(W )(f)(q2) diverges for general q2 values, in particular for q2 =

m2
W , which introduces another infinite squared mass shift δm2

W in the

scheme, following the definition Eq. (3.57). Thus, fromW,Z mass renormal-

ization one has “gained” two more infinities, to use, expectedly, “against”

those coming from virtual four-momenta integrations of one-loop effects.

Two comments are now appropriate. The first one is related to the fact

that, in our oversimplified treatment of the W self-energy, we have assumed

that the W couplings to a fermion doublet are of the form ∼ g0γµ(1−γ5) =

(|e0|/ sin θW )γµ(1 − γ5) for both leptons and quarks.

For quarks, this statement is not fully correct since, following our discus-

sion on the Cabibbo-Kobayashi-Maskawa matrix Eq. (1.173), the squared

matrix element |Uf1f2|2 should be enclosed. In fact, one should sum over

all the nine possible f1 6= f2 combinations (i.e. ud, us, ub, cd, cs, · · · )
and isolate the various independent infinite, and finite, parts. In practice,

one easily realizes that, owing to the unitarity property of the Cabibbo-

Kobayashi-Maskawa matrix, it is sufficient to retain the three diagonal

doublets (ud, cs, tb) using the simplified expression of Eq. (3.25) (as we

shall do in the following), for all the relevant theoretical predictions. The

second comment is related to the fact that we have considered, in the defi-

nition of the physical Z,W masses, effects of self-energy type that are due

both to fermion and to non fermion virtual pairs (including ghosts and

tadpoles).

The important point is that, in the specific kinematical configurations

q2 = m2
Z ,m

2
W , the sum of all the ‘non fermion’ contributions, which

would be, at general q2 values, gauge-dependent, is ‘miraculously’ gauge-

independent, exactly like the fermion contributions (that are always gauge

independent since no ξj parameters appear in the fermion propagators).

We anticipate this claim, without proving it [43], because it makes it clear

that the definition of the physical Z,W masses that we have given at one

loop Eqs. (3.50), (3.52), (3.56), (3.57), is, as one would correctly expect, a

gauge independent one. Operatively, the values of mW ,mZ are supposed

to be unambiguously fixed by the results of suitable experimental measure-

ments, to be discussed separately but qualitatively intuitive (e.g. mZ will

be related to the peak of e+e− cross sections, and mW can be analogously

defined in experiments where W ’s are produced and decay).
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In the electroweak Lagrangian, the list of bare parameters is not ex-

hausted by m2
W (0),m

2
Z(0). One still has e.g. sin2 θW . But Eq.(1.85) shows

that this bare parameter can be expressed in terms of m2
W (0),m

2
Z(0) in the

MSM. Therefore, in the expression of the invariant scattering amplitude at

tree level Eqs. (3.5)–(3.12), the only bare parameter to which a physically

meaning renormalized one has not yet been associated it the QED coupling

e0. If the process were considered within a pure QED scheme, i.e. with

weak interactions ignored, the renormalization of e0 (or, as normally done,

of α0 ≡ (e20/4π)) would be a known procedure. Within the MSM one might

expect a few differences since other changed particles, different from the fa-

miliar QED fermions (e.g. W+,W−, charged unphysical scalars, ghosts...)

appear.

In fact, this is exactly what happens: in particular, from the non-

Abelian nature of the symmetry group of the MSM, a number of essen-

tial differences with respect to the familiar QED case will be generated.

Since the properties and the correct definitions of the electric charge play a

prominent rôle for what concerns the physics at the Z resonance, we shall

devote the next Subsection 3.1.6 to a rather detailed discussion of these

topics.

3.1.6 Charge renormalization and definition in the MSM

In the previous Subsection we have illustrated an operative definition of

the physical Z mass. This is naturally related to a measurement of a cross

section at a particular squared four-momentum, to be identified with the

Z squared mass. The value of this parameter remains therefore fixed by

the empirical observation of a peak in a cross-section. This intuitively clear

definition remains valid to any order of perturbation theory, although we

have made explicit use of it in the limited case of a one loop treatment. As

an immediate consequence of the chosen definition, we have shown that the

numerical value of the “shift” between the bare and the physical squared Z

mass is exactly the gauge independent, formally infinite, value of the real

part of the transverse Z self-energy computed at the physical Z squared

mass.

The aim of this Subsection is twofold. First, we shall illustrate a defi-

nition of the physical electric charge which exhibits a number of analogies

with that of the Z mass. This will lead in a quite natural way to the identifi-

cation of the shift between the bare and the physical squared electric charge

with the value of a quantity that will be defined as the gauge-invariant
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transverse photon self-energy. This value will be computed at the physical

(zero) photon squared mass, and will turn out to be, formally, infinite. The

new infinite quantity thus achieved will be added to the previous infinite

(Z,W ) mass “shifts” Subsection 3.1.5 and will manage together with them

to kill all the infinities produced by the various Feynman diagrams at one

loop that we have examined. This will lead, as wished, to finite predictions

for all the physical observables of our considered process, to be examined

in the rest of this Chapter. Our second aim will be that of suggesting the

possibility that the couplings of the Z boson with fermions may be defined

in an operative way that exhibits an essential analogy with the definition

of the physical electric charge. This will be fully explored in the following

Section 3.3, and will lead in a natural way to the operative definition of the

genuinely weak parameter of the MSM, the effective electroweak angle.

To proceed in a pedagogical way, we shall now divide this Subsec-

tion 3.1.6 into three separate parts where three different, but deeply cor-

related, topics will be discussed. We shall avoid as much as possible the

detailed analysis of a number of numerical calculations that are involved,

and only stress those features that seem to us most relevant,and under-

standable.

The photon self-energy in the MSM

One of the basic universal postulates in physics is the assumption that pho-

tons are massless, exactly like in the original celebrated Einstein’s proposal.

In a field theory language, this corresponds to the mathematical request

that the Lagrangian of a system where photons are involved, and interact

with some charged matter, has an exact (unbroken) U(1) gauge symmetry,

as already discussed in Chapter 1. This property would be destroyed by

the presence in the Lagrangian of a quadratic mass term ∼ m2
γAµA

µ (Aµ

represents the vector photon field), that is therefore, from the very begin-

ning, forbidden in the theoretical description. In other words, and using

the same language as in Subsection 3.1.5, the bare photon mass must be

equal to zero. An equivalent statement is that the lowest order photon

propagator Pνµ(γ)(q) Eq. (3.14) has a pole at q2 = m2
γ = 0, or that zero’ is

the value of q2 corresponding to which the full denominator of the photon

propagator in Eq. (3.14) vanishes.

The main difference with respect of the case of the Z mass is due to the

fact that, contrary to what discussed in Subsection 3.1.5, the same formal

property (of vanishing), that the photon mass has at the tree level, must
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remain true at the next orders of perturbation theory, in particular at the

one loop level. This means that, retaining the interpretation of the squared

mass of the photon at one loop as the value of q2 corresponding to which

the modified photon propagator has a vanishing denominator (a pole), we

must impose that the photon transverse self-energy A(γ)(q2) vanishes at

q2 = 0. In fact, defining the photon self-energy tensor in analogy with that

of the Z Eq. (3.46) i.e.:

iΠνµ(γ)(q) ≡ −i[gνµA(γ)(q2) + qµqνB(γ)(q2)] (3.62)

we would find, following exactly the various steps of Subsection 3.1.5, that

the relevant correspondence between tree level and one loop quantities,

represented in the Z case by Eq. (3.49), becomes now:

gνµ

q2
⇒ gνµ

[q2 +ReA(γ)(q2)] + iImA(γ)(q2)
. (3.63)

Imposing that q2 = 0 corresponds to a zero of the denominator of

Eq. (3.63) means therefore to require that:

ReA(γ)(0) = 0 = ImA(γ)(0) (3.64)

(the photon must remain a massless particle).

Equation (3.64) has a consequence that will be essential for our next

discussions. If we adopt for the general (W,Z, γ · · · ) transverse self-energy

the formal decomposition:

A(i)(q2) ≡ A(i)(0) + q2F (i)(q2) (3.65)

where the index (i) can correspond to a W,Z, γ self-energy, but also to a

mixed Zγ (or γZ) couple of virtual gauge bosons (in which case we shall

use the notation A(Zγ) − or A(γZ)−), Eq. (3.64) implies that:

A(γ)(q2) ≡ q2F (γ)(q2) . (3.66)

Equation (3.66) will be fundamental, as it will represent the starting point of

our next definition of physical charge. For this reason, we shall now spend

some time to discuss the validity of the request imposed by Eq. (3.64),

showing a simple and illustrative numerical example.

In the explicit calculation of the photon self-energy, several contributions

arise that originate from different Feynman diagrams. It is convenient, at

this point, to make a clean separation between two classes of diagrams,

to be called for simplicity the fermionic (f) and the non fermionic (Nf)

ones. The first class, represented diagrammatically in Fig. 3.11, includes
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γ(q) γ(q)

F(q–K)

F(K)

Fig. 3.11 Photon self-energy diagram with virtual fermion-antifermion pair.

all those contributions due to a virtual fermion-antifermion (both leptons

and quarks) pair.

The second class in represented diagrammatically in Fig. 3.12. As one

sees, it includes both physical (i.e. W pairs) and unphysical (would be Gold-

stone bosons, ghosts) contributions. In any ξ 6= ∞ gauge, the unphysical

terms cannot be ignored, and we shall show explicitly how relevant their

presence will be, working as usually in the ’t Hooft ξ = 1 gauge.

γ(q) γ(q)

W 
–

W+

+
γ(q) γ(q)

H–

H+

γ(q) γ(q)

W+,–

H–,+

++

+

γ(q) γ(q)

C+

C 
–

γ(q) q(q)

W W

+
γ(q) γ(q)

H H

(a) (b)

(c) (d)

(e) (f)

Fig. 3.12 Non-fermionic contributions to the photon self-energy: (a)W pairs; (b) ‘would
be’ pairs; (c) W -‘would be’ pairs; (d) ‘ghost’ pairs; (e), (f) ‘seagull’ diagrams.
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The separation into the two classes depicted in Figs. 3.11 and 3.12 cor-

responds to an essential difference: the contributions to A(γ)(q2) from the

various fermion pairs components of Fig. 3.11 are all gauge-independent,

those from the various components of Fig. 3.12 are not. This is true both

for the separate diagrams and for their sum, with the only remarkable ex-

ception of the point q2 = 0, where the contribution to A(γ)(0) of the sum

of all diagrams of Fig. 3.12 will manage to be gauge independent.

It is not difficult to understand qualitatively the reason of the aforemen-

tioned difference. The fermion propagators do not depend on the gauge

parameters ξi, and consequently cannot induce any ξ dependence in the

photon propagator of Fig. 3.11, after integration over κ, the virtual fermion

four-momentum. This is not true for the various graphs of Fig. 3.12 where

all the internal bubbles are ξ dependent, and after κ -integration this depen-

dence can partially “migrate” to the relevant transverse part of the photon

self-energy that will actually become, at general q2 values, gauge (i.e. ξ)

dependent. This has a remarkable exception in the case q2 = 0, for the sum

of all diagrams of Fig. 3.12.

To prove the last statement, one should compute all contributions of

that figure to A(γ)(0) at variable ξ, and verify the cancellation of the ξ-

dependent part. We shall proceed in a more modest, intuitive way, based

on our previous discussion according to which the condition A(γ)(0) = 0

ensures that the photon remains massless, and thus that the theory re-

mains gauge-invariant. Turning this argument, gauge-invariance requires

that A(γ)(0) should be necessarily zero. We shall check now whether this

request is fulfilled by Figs. 3.11, 3.12, “at least” in the ’t Hooft gauge.

The calculation of the first contribution, Fig. 3.11, can be easily per-

formed in the dimensional regularization scheme. The starting point is the

formal expression of the relevant term. For a fermion f of electric charge

Qf |e0| and mass mf , from conventional Feynman rules, one derives for the

ff̄ component of the photon self-energy tensor ≡ Πνµ(f)(γ)(q2) Eq. (3.62):

iΠνµ(f)(γ)(q2) = −
∫ +∞

−∞

d4κ

(2π)4
Q2

fe
2
0

(3.67)

× Tr

[

γν (κ̂+mf )

(κ2 −m2
f )
γν (κ̂− q̂ +mf )

[(κ− q)2 −m2
f ]

]

.

The trace (Tr) of the matrix contained in the square bracket can be easily

computed and the infinite part of Eq. (3.68) is determined following the

prescriptions given in Subsection 3.1.4. This leads in a straightforward way
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to the expression of the transverse self energy A(γ)(q2) Eq. (3.62):

A(f)(γ)(q2) = q2

[

Q2
fe

2
0

12π2

]

{

[∆] − 6

∫ 1

0

dx x(1 − x) ln

∣

∣

∣

∣

Df (q2)

µ2

∣

∣

∣

∣

}

(3.68)

where ∆ is the infinite quantity defined by Eq. (3.36), µ2 is an arbitrary

scale parameter that must disappear in the theoretical expression of the

physical observables, and

Df (q2) = m2
f − q2x(1 − x) . (3.69)

From Eq. (3.68) it is immediate to conclude that any fermionic contribution

to A(γ)(q2) vanishes at q2 = 0. Since such contributions are separately

gauge independent, this is exactly what we expected to find.

The calculation of the six diagrams of Fig. 3.12 can also be easily per-

formed in our chosen approach, following the prescriptions given in this

Chapter. Without entering the detailed analysis of each separate term, we

list here in order the six relevant contributions, using the same notations

as in Fig. 3.12, i.e. Figs. 3.12(a)–(f) correspond to A(a),(b),(c)...(f)(q2):

A(a)(γ)(q2) =
−e20
16π2

×
∫ 1

0

dx
{

[∆][9R2 + q2(5 − 2x(1 − x))]

+ R2

[

7 − 9 ln

∣

∣

∣

∣

R2

µ2

∣

∣

∣

∣

]

− q2 ln

∣

∣

∣

∣

R2

µ2

∣

∣

∣

∣

[5 − 2x(1 − x)]

}

(3.70)

A(b)(γ)(q2) =
−e20
16π2

×
∫ 1

0

dx

{

[∆][2R2] + 2R2

[

1 − ln

∣

∣

∣

∣

R2

µ2

∣

∣

∣

∣

]}

(3.71)

A(c)(γ)(q2) =
+e20
16π2

×
∫ 1

0

dx

{

[∆][2m2
W ] − 2m2

W ln

∣

∣

∣

∣

R2

µ2

∣

∣

∣

∣

}

(3.72)

A(d)(γ)(q2) =
+e20
16π2

×
∫ 1

0

dx

{

[∆][R2] +R2

[

1 − ln

∣

∣

∣

∣

R2

µ2

∣

∣

∣

∣

]}

(3.73)
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A(e)(γ)(q2) =
+e20
16π2

×
∫ 1

0

dx

{

[∆][6m2
W ] + 6m2

W

[

1 − ln
m2

W

µ2

]}

(3.74)

A(f)(γ)(q2) =
+e20
16π2

×
∫ 1

0

dx

{

[∆][2m2
W ] + 2m2

W

[

1 − ln
m2

W

µ2

]}

(3.75)

where

R2(q2) = m2
W − q2x(1 − x) . (3.76)

As one sees from the previous expression, all the separate six contributions

to the photon transverse self-energy are neither vanishing nor finite at q2 =

0. When one computes the sum of all the terms, though, one finds the

following results for the overall non fermionic (Nf) function: (separate

contributions are denoted by the corresponding letter)

A(Nf)(γ)(q2 = 0) =
−e20
16π2

∫ 1

0

dx

×
{

[∆][(9m2
W )(a) + (2m2

W )(b) − (2m2
W )(c) − (m2

W )(d)

− (6m2
W )(e) − (2m2

W )(f)]

+ m2
W

[

(

7 − 9 ln
m2

W

µ2

)(a)

+

(

2 − 2 ln
m2

W

µ2

)(b)

+

(

2 ln
m2

W

µ2

)(c)

−
(

1 − ln
m2

W

µ2

)(d)

−
(

6 − 6 ln
m2

W

µ2

)(e)

−
(

2 − 2 ln
m2

W

µ2

)(f)
]}

= 0 .

(3.77)

As one sees, the (due) vanishing of A(γ)(0) is in this case (ξ = 1 gauge) the

final result of a “professionally” coordinated team work, where a bunch of

unphysical creatures (would be Goldstone bosons, ghosts...) combine their

efforts with that of the physical ones (Ws) to obtain the “meaningful”

results. This is in fact the reason why we have shown in some detail the

previous calculation, and for similar reasons we shall spend some time, in
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the first part of Chapter 4, to illustrate a similar situation, that arises in

the case where the final fermion state is a bb̄ pair.

From the result of Eq. (3.77) we can only conclude, strictly speaking,

that the full transverse photon self-energy A(γ)(q2), i.e. the sum of the

fermionic and of the non fermionic component, vanishes at q2 = 0 in the

ξ = 1 gauge. To prove that this property remains valid in any gauge requires

a more formal calculation,that can be found elsewhere [43]. The conclusion

is that, indeed, A(γ)(0) is vanishing and gauge-independent. This feature is

analogous to that of the Z,W transverse self-energies that are also (when

all the relevant contributions are included) gauge independent at the q2

value that corresponds to the physical squared mass of their related (Z,W )

gauge boson (in the photon case, this is exactly q2 = 0). As we shall explic-

itly show in the following part of this Chapter, all the previous transverse

self-energies become gauge dependent as soon as one moves away from the

physical squared mass value of q2. Note that the previous “exceptional”

gauge independence only applies to the function A(γ),(Z),(W ). In particu-

lar, for the relevant case of the photon that we are now considering, this

property will not apply for the function F (γ)(q2), defined by Eq. (3.65),

at q2 = 0. One can easily verify this statement by computing, in analogy

with what done for A(γ)(0), the non fermionic contribution to F (γ)(0) in a

general ξ 6= ∞ gauge. We shall, as usually, provide an indirect argument

in the following part of this Chapter, when we shall define a generalized

gauge-invariant self-energy obtained by adding to the function F (γ)(q2) a

precisely fixed amount of vertex effects.

The main result that has been obtained in the previous paragraphs is

that it is possible to write the transverse photon self-energy in the form of

Eq. (3.66) i.e. without A(γ)(0). This fact will be the basic point of our next

definition of physical charge.

Definition of the physical charge in the MSM

We have repeatedly stressed in this Chapter the fact that our chosen op-

erative definition of the Z mass is based on the measurement of a cross

section at the kinematical point that corresponds to the Z mass, where the

Z exchange dominates. This procedure is fairly clear and understandable,

and for this reason we shall adopt a similar definition of the electric charge

that is also based on the measurement of a cross-section at the kinematical

point that corresponds to the photon mass, i.e. at zero four momentum
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square. Although this is not the only conceivable valid definition of the

electric charge, we shall insist on it, to make our overall presentation of

physics at the Z resonance as homogeneous as possible.

Quite generally, the idea of identifying the electric charge with the result

of the measurement of an interaction between charged particles at zero mo-

mentum transfer has an obvious classical ancestor, since the measurement

of the electric force between two particles is, classically, the result of such a

static operation. At the quantum field theory level it is not difficult to re-

alize that an essentially similar definition survives. A rather simplified way

is that of considering the process of elastic scattering of an electron by a

“heavy” target, e.g. a muon. To the lowest order this is represented by the

Feynman diagrams of Fig. (3.13), where one photon or one Z is exchanged

in the t-channel. Here we shall denote by pe, pµ, p
′
e, p

′
µ the initial and final

electron-muon four momenta, with

pe + pµ = p′e + p′µ (3.78)

and

t = (pe − p′e)
2 = (pµ − p′µ)2 ≡ κ2 (3.79)

with κ = pe − p′e = p′µ − pµ.

From conventional Feynman rules one can easily derive the expression

of the invariant scattering amplitude that corresponds to the photonic zero

order Fig. 3.12(a). Denoting this quantity as A
(0)(γ)
eµ,e′µ′ , one finds:

A
(0)(γ)
eµ,e′µ′ =

[

iū(p′µ)γνu(pµ)ū(p′e)γνu(pe)
]

[

e20
t

]

≡ [A(0)(E)(γ)][A(0)(I)(γ)(t)]

(3.80)

where we have introduced two quantities, that correspond to the two

squared brackets on the r.h.s. of Eq. (3.80), and represent the compo-

nents of A(0)(γ) due to the real external (E) structure and to the internal

(I) virtual exchanges. In this particularly simple case:

A(0)(I)(γ)(t) =
e20
t

(3.81)

where e0 is the bare electric charge that appears in the starting Lagrangian,

assumed to be that of the considered MSM. In practice Eq. (3.81) is the

contribution to the scattering amplitude coming from the bare charge and

the bare photon propagator Pνµ(κ), which is the analogue of Eq. (3.14)

but in the κ variable, where κ is now the virtual photon four-momentum

of Fig. 3.13.
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γ(K)

pe p'e

pµ p'µ

Z(K)

pe p'e

pµ p'µ

(a) (b)

Fig. 3.13 Elastic electron-muon scattering in (a) the one photon t-channel exchange
approximation. (b) the one Z t-channel exchange approximation.

From Eq. (3.81) we can derive an important property of the bare squared

charge e20, or alternatively of the more commonly used α0 ≡ (e20/4π), i.e.

that:

4πα0 = lim
t→0

[tA(0)(I)(γ)(t)] . (3.82)

In mathematical language this can be expressed by saying that the bare

e20 = 4πα0 is the residue of the function A(0)(I)(γ)(t) at the pole at t = 0

(where A(0)(I)(γ)(t) becomes formally infinite,as shown by Eq. (3.81). Ap-

parently, this is a purely mathematical property, and little physical infor-

mation has been gained until now.

To realize that Eq. (3.82) can be viewed as a very meaningful definition

it is, though, sufficient to compute the expression of the differential cross

section for the considered process. In the approximate description that

corresponds to Fig. 3.13, defining the usual Mandelstam variables:

s = (pe + pµ)2 = (p′e + p′µ)2; t = (pe − p′e)
2;

u = (pe − p′µ)2; s+ t+ u = 2m2
e + 2m2

µ (3.83)

one finds after some straightforward calculation the expression of the unpo-

larized differential cross section. Considering the separate purely photonic
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contribution, i.e. ignoring for the moment Z exchange, this reads:

1

4π
dσ(0)(γ)

eµ =
(4πα0)

2

t2

{

[s− (m2
e +m2

µ)]2 + st+ 1
2 t

2
}

[s− (me +mµ)2][s− (me −mµ)2]
dt . (3.84)

Equation (3.84) leads immediately to the following property:

lim
t→0

1

4π
t2
dσ

(0)(γ)
eµ

dt
= (4πα0)

2
[s− (m2

e +m2
µ)]2

[s− (me +mµ)2][s− (me −mµ)2]
. (3.85)

Assuming s� m2
e,m

2
µ, although this is not requested in principle, leads to

a simplified expression i.e.(neglecting terms of order
m2

e,µ

s ):

lim
t→0

1

4π
t2
dσ

(0)(γ)
eµ

dt
= (4πα0)

2 ≡
[

lim
t→0

(tA(0)(I)(γ)(t))
]2

. (3.86)

Equation (3.86) can be viewed as the desired operative definition of the

bare quantity α2
0. In fact, in the considered kinematical limit t → 0, the

other contribution to the differential cross-section from Z exchange in the

t-channel is not of the form ∼ 1/t2 and thus vanishes when multiplied by

t2. Therefore one can identify in Eq. (3.86) the photon component with the

full differential cross section dσ(0) (γ + Z exchange) and write

lim
t→0

1

4π
t2
dσ(0)

dt
≡ lim

t→0

1

4π
t2
dσ(0)(γ)

dt
= (4πα0)

2 . (3.87)

The extrapolation process in the t variable requested in Eq. (3.87) is in

principle a perfectly meaningful one, since the considered limit can be ob-

tained from measurements in the physical kinematical region (t ≤ 0) of the

process. It involves the properties of the collision of two charged particles

in the region of vanishing four-momentum exchange, as one would naively

expect from the classical definition of electric charge. For the purposes of

our future discussion, Eq. (3.87) will provide a useful and understandable

operative definition.

Two important comments must be added at this point. The fact that

the differential cross section Eq. (3.84) becomes, formally, infinite at t = 0

is expected, since in the non relativistic limit one simply recovers the well

known forward singularity of the Rutherford cross section. Actually, in the

practical calculations, suitable screening effects should be thus included.

Having clarified this feature, it remains obvious that the presence of an

infinite term ∼ 1/t2 in Eq. (3.84) is the consequence of the presence of an

infinite term ∼ 1/t in the scattering amplitude. In fact, dσ ' |Aeµ,e′µ′ |2
(spin sums and averages are understood). In particular, the relevant part

of A(0)(I)(t) Eq. (3.80), that enters the definition of the bare charge, is only
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that which becomes infinite ∼ 1/t when t→ 0, as summarized mathemati-

cally by Eq. (3.82).

After these premises, we may now propose a definition of the physical

electric charge. Following our general philosophy, we shall simply gener-

alize the tree level definition Eq. (3.87) and write, at the next one-loop

level(neglecting again ∼ m2
e,m

2
µ terms):

lim
t→0

1

4π
t2
dσ

(1)
eµ

dt
≡ (4πα)2 . (3.88)

The previous definition is evidently an operative one. To proceed towards

a corresponding theoretical expression of the physical charge, one can first

remark that, at the considered one loop level, the expression of the scat-

tering amplitude (whose square generates the differential cross section) can

be separated in two parts i.e.

A
(1)
eµ,e′µ′ = A

(1)(γ)
eµ,e′µ′ + [A

(1)
eµ,e′µ′ −A

(1)(γ)
eµ,e′µ′ ] (3.89)

where the first term on the r.h.s. represents all those contributions to the

amplitude that can be written in the form:

A
(1)(γ)
eµ,e′µ′ ≡ A(0)(E)(γ) · A(1)(I)(γ) (3.90)

i.e. retaining the same external Lorentz structure as at the tree level,

Eq. (3.80), but with a modified internal function A(1)(I)(γ).

In terms of Feynman diagrams, it is relatively easy to understand which

kind of virtual exchanges will contribute the photonic component Eq. (3.90).

Clearly, at least one of the internal particles will necessarily be a photon,

since the external Lorentz structure must be the same as that of the tree

level photon exchange i.e. A(0)(E)(γ) Eq. (3.80). Examples of such diagrams

are shown in Fig. 3.14.

Looking at Fig. 3.14 it is immediate to understand that the exter-

nal structure of Figs. 3.14(b) and 3.14(c) is exactly the same as that of

Fig. 3.14(a). Actually this is not true for the following Figs. 3.14(d)–(g).

In these cases one must project from the involved W vertices the pho-

tonic Lorentz component ∼ γµ and combine it with the remaining photon-

electron (or muon) vertex. The non photonic component of the W vertex

can be ignored for the present discussion.The reason will become clear, and

will be throughly discussed, in the forthcoming Section 3.3.

One important point can be understood from our previous discussion:

all the Feynman diagrams that we have depicted in Fig. 3.14 generate con-

tribution to A(I)(γ) that are singular ∼ 1/t in the limit t → 0, exactly like

the tree level one of Fig. 3.14(a). Considering for instance the first three
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γ
γγ

γ γ

pe p' e

pµ p' µ

pe p' e

pµ p' µ

(a)

pe p' e

pµ p' µ

(c)(b)

+ F F (W,H,C)+ +

γ

γ
νe

νµ

pe pep' e p' e

pµ pµp' µ p' µ

(d)

W W

W

W

W

W

(e)

+ ++

γ

pe p' e

pµ p' µ

(f)

γ

pe p' e

pµ p' µ
νµ

νe

(g)

+ + + . . .

Fig. 3.14 Examples of Feynman diagrams contributing the photonic component of the
scattering amplitude Aeµ,e′µ′ to the one-loop level. In (b) and (c) the fermionic (F) and
non fermionic (W,H,C) contributions to the photon self-energy are separately shown.

Figs. 3.14(a),(b),(c) and using the notation of Eq. (3.62) for the photon

transverse self-energy, it is clear from Eq. (3.63) that the overall contribu-

tion to the photonic component A(I)(γ) from these figures is:

A(1)(I)(γ)(a+b+c)(t) =
4πα0

t

[

1

1 + F (f)(γ)(t) + F (Nf)(γ)(t)

]

(3.91)
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where we have retained the definitions of Eqs. (3.68), (3.77) for the

fermionic and non fermionic component of the photon transverse self-

energy.

Equation (3.91) has been obtained by simply adding to the bare photon

propagator of Fig. 3.14(a) the similar expressions of Figs. 3.14(b),(c) that

lead to the modified one-loop formula Eq. (3.63). In a quite similar way,

one can take into account the contributions due to the remaining graphs

Figs. 3.14(d)–(g).

We shall discuss in detail in Section 3.3 the complete derivation of the

relevant expressions, that involves a preliminary discussion on how the re-

quest of gauge invariance fixes at one loop the combinations of self-energies

and vertices (and, generally, boxes) that must necessarily contribute each

observable quantity in gauge blocks. For the moment we shall be limited to

the intuitive observation that the extra contributions to A(1)(I)(γ)(t) coming

from Figs. 3.14(d)–(g) will be necessarily of the form

A(1)(I)(γ)(d+e+f+g)(t) =
4πα0

t
[−F (V )(W )(γ)(t)] (3.92)

where the function F (V )(W )(γ) (t) represents the photonic component of the

various vertices, i.e. that multiplied by v̄`γµu`, where ` is the lepton in the

one-loop vertex.

At the one-loop level, making use of the known formal recipes (that in

this case consist of equating 1/1+0(α) to 1−0(α)...) one has in conclusion

the total expressions of A(1)(I)(γ) that corresponds to Fig. 3.14. This will

be written in the form:

A(1)(I)(γ),(a)→(f)(t) =
4πα0

t

×
[

1

1 + F (f)(γ)(t) + F (Nf)(γ)(t) + F (V )(W )(γ)(t)

]

. (3.93)

Equation (3.93) becomes clearly infinite ∼ 1/t at t = 0 since, as we guess

and shall show, the denominator on its r.h.s. is not vanishing at this point.

We shall assume now without proving it (but postponing the discussion to

Section 3.3) that no other contributions to the full scattering amplitude

become infinite ∼ 1/t at t = 0. We anticipate that, to fully understand

this statement, a rigorous definition of the gauge-invariant ‘gauge blocks’ is

requested. As we shall see, this will automatically eliminate the apparent

contribution from the mixed γ − Z transverse self-energy, i.e. will cancel

it at the point t = 0 after combination with the associated vertex in the

‘block’.
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We can now return to Eq. (3.88) where the definition of the physical

charge is given. From the previous discussion it is clear that the only

contribution that survives in the limit when t → 0 for negligible lepton

masses is that from the function A(1)(I)(γ) (whose square behaves like 1/t2).

We can therefore adjust the tree level expression Eq. (3.86) and conclude

that

lim
t→0

1

4π
t2
dσ

(1)
eµ

dt
≡ (4πα)2

=
[

lim
t→0

(tA(1)(I)(γ)(t)
]2

(3.94)

= (4πα0)
2 1

[1 + F (f)(γ)(0) + F (Nf)(γ)(0) + F (V )(W )(γ)(0)]2

which can be recast in the form:

α0 = α[1 + F (f)(γ)(0) + F (Nf)(γ)(0) + F (V )(W )(γ)(0)] . (3.95)

Equation (3.95) gives the desired connection between the bare and the phys-

ical electric charges. In the conventional notation one writes:

α0 = α+ δα ≡ α

[

1 +
δα

α

]

(3.96)

with

δα

α
=
[

F (f)(γ)(0) + F (Nf)(γ)(0) + F (V )(W )(γ)(0)
]

. (3.97)

The physical electric charge corresponds to the experimentally measured

fine-structure constant

α ≡ e2/4π =
1

137.03599911(46)
. (3.98)

Having defined the physical electric charge, we still have to compute the the-

oretical expression given by Eq. (3.97), that represents the ‘shift’ between

the meaningless (bare) and the meaningful (physical) quantities. From our

previous experience, we expect to find an infinite quantity. From our gen-

eral philosophy, we expect that this infinity is canceled by other infinities

in the theoretical expressions of the observables. We shall first compute,

formally, Eq. (3.97) in the forthcoming pages.
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Calculation of the charge shift in the MSM

We now proceed to the formal calculation of Eq. (3.97). This will involve

a number of relatively straightforward operations, to be carried on numer-

ically in the ξ = 1 gauge as usually. The important point to be stressed

before entering the procedure is that the definition of the physical charge

α, being related to a measurable operation, must be obviously gauge inde-

pendent. Since the bare parameter α0 cannot depend on ξi , the shift δα

will have to be gauge-independent as well. In order to enforce this request

in a simple way, it is convenient to separate Eq. (3.97) into two different

pieces, the first one coming from the fermion pairs contribution to the pho-

ton self-energy and the second one from the remaining graphs i.e. (W,H,C)

self-energies and W vertices. Thus, we shall write:

δα

α
=

[

δα

α

](f)

+

[

δα

α

](Nf)

(3.99)

where
[

δα

α

](f)

= F (f)(γ)(0) (3.100)

and
[

δα

α

](Nf)

= F (Nf)(γ)(0) + F (V )(W )(γ)(0) . (3.101)

It is obvious from the previous discussions that the first component

Eq. (3.100) will be automatically gauge-invariant, being the result of in-

tegration of fermion ξi-independent propagators. For what concerns its

explicit expression, this can be easily derived from Eq. (3.68) summing

over the fermions of one generation and leaving the generation number Nf

unspecified (although Nf = 3 in the MSM). This gives:
[

δα

α

](f)

=
α

12π
∆

[

32

3
Nf

]

− α

3π

∑

f

Q2
f ln

m2
f

µ2
(3.102)

where in the second term on the r.h.s a sum over all charged fermions (that

includes the color factor for quarks) is understood. Note that the charge

that appears on the r.h.s. can be safely identified with the physical one

rather than with the bare one; this can be easily understood at the one

loop level (the difference would be of higher perturbative order).

As one sees, the fermionic charge shift is infinite, and has a µ2 dependent

finite term. We expect, and will verify soon our expectation, that both

disturbing features disappear in the expression of the physical observables.
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To compute the charge shift due to the (W,H,C) contributions to the

photon self-energy, Fig. 3.14(c), is also immediate from the given expres-

sions Eqs. (3.70)–(3.75). Summing all the terms one finds the result (we

shall now leave the notation ξ = 1):
[

δα

α

](W,H,C)

ξ=1

≡ F (Nf)(γ)(0)|ξ=1

=
α

12π
∆

[

−
(

19

2

)

− 1 +

(

1

2

)]

− α

4π

{[

1

3
− 19

6
ln
m2

W

µ2

]

+

[

1

3
ln
m2

W

µ2

]

+

[

−1

6
ln
m2

W

µ2
− 1

3

]}

=
α

12π
∆[−10] +

3α

4π
ln
m2

W

µ2
(3.103)

where the contributions from the different diagrams of Fig. 3.14(c) have

been separately listed. One notices again the presence of an infinite and of

a finite scale dependent part, like in the fermion case. The infinite part is of

opposite sign (negative) with respect to that of the fermionic contribution

Eq. (3.102). This fact is not accidental, and will be rediscussed later on.

The last contribution depicted in Figs. 3.14(d),(e) is that coming from

the (WW ) vertices. The calculation can be easily performed starting from

the expression given in Subsection 3.1.4. The result can be cast in the

following form:
[

δα

α

](W vertex)

ξ=1

≡ F (V )(W )(γ)(0)|ξ=1

=
α

12π
∆[−12] +

2α

4π
ln
m2

W

µ2

≡ 16παIWW (0) (3.104)

where we have introduced the auxiliary function:

IWW (q2) = lim
n→4

iµ4−n

∫ +∞

−∞

dnκ

(2π)n

1

(κ2 −m2
W )[(κ+ q)2 −m2

W ]
(3.105)

The derivation of Eq. (3.104) requires a couple of technical details, that we

shall summarize here briefly. The first step is that of computing the sum

of the one loop γW vertices of Fig. 3.14.

From its expression proportional to γµ(1 − γ5) (since only left-handed

fermions are involved), only the photonic component ∼ γµ has to be
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projected out. This will produce the quantity defined as F (V )(W )(γ)(t)

in Eq. (3.93), that will finally lead to the corresponding charge shift

Eq. (3.101). The remaining Lorentz non photonic component of the γW

vertex will then cancel the corresponding Lorentz structure of the γZ self

energy at t = 0, which can thus be safely ignored.

One should still prove that the total charge shift defined by Eqs. (3.99)–

(3.101) is indeed gauge independent. At this stage, the rigorous procedure

would be its evaluation in a general ξ gauge. This would show that the ξ

dependent parts do cancel in the sum. We shall not perform this technical

proof here but rather leave it as a useful exercise to the interested reader,

suggesting to follow the procedure illustrated in [43].

In conclusion, the total charge shift acquires the following expression:

δα

α
=

α

12π
∆

[

32

3
Nf − 22

]

+
α

12π

[

−4
∑

F

Q2
F ln

m2
F

µ2
+ 15 ln

m2
W

µ2

]

. (3.106)

The procedure to be followed from now on is at this point clear. In the

theoretical expressions to be computed at one loop the bare Z,W masses

mZ,W and the bare charge α0 that enter the various Feynman rules will

be replaced by the corresponding physical parameters and by the related

‘shifts’ defined by Eqs. (3.52), (3.57), and (3.106). The infinities and the

scale dependence thus introduced will have to cancel those produced by

the ultraviolet divergences of the one-loop integrals that are involved in the

expressions of the physical observables, leaving in all cases a finite scale

independent result expressed in terms of only physical parameters. The

next part of this Chapter will be devoted to some numerical illustrations of

the procedure. But before entering this sector, we shall briefly introduce a

subject that will turn out to be extremely useful in the following, i.e. that

of effective or ‘running’ QED coupling in the MSM.

3.1.7 The ‘running’ of αQED in the MSM

We shall now very briefly review, for the limited purpose of this book, the

concept of running coupling, that appears in the so-called Renormalization

Group (RG) approach, whose main details can be found elsewhere [44].

In this Subsection we shall show how the general features discussed in

that Chapter can be more concretely exhibited, with a simple calculation
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that exploits those made in the previous Subsection, considering the specific

case of the electromagnetic charge.

With this purpose we notice that, in the renormalization scheme that

we have adopted, the electric charge (in fact, its square) has been defined

choosing the scale t = 0. Introducing a scale variable p with mass dimen-

sion, we would say that

α ≡ α(p = 0) . (3.107)

A priori, though, one could have given a different and quite respectable

definition of the electric charge using a different scale p0 6= 0, obtaining a

quantity to be called α(p0). More generally, one can imagine that an infinite

continuous set of definitions is possible, each one specified by a choice of

scale p. Defining the dimensionless parameter

h = ln p/p0 (3.108)

the running α in the RG approach will be the quantity (p0 is supposed to

be fixed)

αR(h; p0) ≡ α(p) (3.109)

such that

α(h = 0; p0) ≡ α(p0) . (3.110)

This running coupling will satisfy the RG equation [44]:

d

dh
αR(h; p0) = β(αR) . (3.111)

The connection between the running α, that may be supposed to cor-

respond in any case to an acceptable definition (leading to a finite value)

and the bare quantity α0 is usually written in the form

αR(h; p0) ≡ α(p) = Z2α0 . (3.112)

The quantity Z2 is a (generally infinite) number. If its numerical calcu-

lation were performed using a cutoff Λ for the (divergent) integration in

the virtual four-momentum that usually appears (consider e.g. (3.68)), it

would contain typically logarithmic terms ∼ ln Λ. Being adimensional, it

will also necessarily only depend on Λ/p (and on the fixed bare α0). Thus

we shall write:

α(p) = Z2

(

Λ

p
;α0

)

α0 . (3.113)

In our treatment, strictly limited at the one loop level, dimensional regu-

larization has been used and infinities are expressed via the parameter ∆.
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Without entering the proof of this statement, we shall simply enunciate

here that the following formal correspondence exists between the two ap-

proaches:

∆ ⇒ 2 ln
Λ

p
. (3.114)

We can now compute the β function at one loop using a rather simplified

approach. With this aim, we start from the obvious remark that the bare

parameter α0 is p-independent, and write:

0 =
dα0

dp
=

d

dp

[

α(p)

Z2

]

=
1

Z2

dα(p)

dp
− α(p)

(Z2)2
dZ2

dp
. (3.115)

This can be rewritten as:

dα(p)

dp
= α(p)

d

dp
lnZ2 = α(p)





d

d
(

ln Λ
p

) lnZ2





(

−1

p

)

. (3.116)

Introducing the adimensional variable h Eq. (3.108) finally gives (p d
dp ≡

d
dh):

d

dh
αR(h; p0) =



− d

d
(

ln Λ
p

) lnZ2



αR(h; p0) (3.117)

which is the RG Eq. (3.111) with:

β(αR) =



− d

d
(

ln Λ
p

) lnZ2



αR . (3.118)

To compute the β function, one must therefore isolate the coefficient of

the logarithmically divergent term ∼ ln Λ in Z2. Since, intuitively, this term

will be the same for every choice of the scale p, one can compute it in the

limiting case p = 0, which corresponds to the case that we have discussed

in this Chapter. That means that one can write, for what concerns the

divergent term:

α ≡ α(0) ≡ Z2(p = 0)α0 = α0

[

1 − δα

α

]

= α0

[

1 −
(

δα

α

)(f)

−
(

δα

α

)(Nf)
]

(3.119)

having used Eqs. (3.96), (3.99) and the usual one-loop approximations.

Forgetting for the moment dimensional rigor, we can write for the infinite

components:
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Z
(∞)
2 (p = 0) =

[

1 − δα

α

](∞)

(3.120)

and, formally (ln(1 − ε) ' −ε · · · )

lnZ
(∞)
2 (p = 0) = −

[

δα

α

](∞)

' − α

6π
ln Λ

[

32

3
Nf − 22

]

(3.121)

where the formal correspondence Eq. (3.114) has been used in Eq. (3.106).

Generalization to the p 6= 0 case then gives:

β(αR) =



− d

d
(

ln Λ
p

) lnZ2(p 6= 0)



αR =
αR

6π

[

32

3
Nf − 22

]

(αR ≡ α(p)) .

(3.122)

Using Eq. (3.122), the RG Eq. (3.111) can be solved obtaining the solution:

αR(h; p0) =
α(p0)

1 −
[

1
12π

(

32
3 Nf − 21

)

ln p2

p2
0

]

α(p0)
. (3.123)

Equation (3.123) gives the RG ’running’ of α in the MSM. It deserves a

number of remarks, that we shall now expose in a very concise way. More

precisely:

a) The expression of the β function Eq. (3.122) can be separated into

two distinct pieces. The first one ∼ Nf is due to the fermion pairs

contribution. This is essentially the same that one would have in a

purely QED theory. As one notices, it is positive. The corresponding

expression of the β function does not lead therefore to an asymptotically

free behaviour in the RG approach. Since QED has a Abelian U(1)

symmetry, this is perfectly in agreement with what one expects [18].

Also, the second contribution to Eq. (3.122) is negative, and would lead

(if it were the only term) to an asymptotically free behaviour. We have

shown that this contribution is exactly that coming from the triple

γWW gauge couplings, where the non Abelian features of the MSM

show up. One expects therefore [18] that is produces a negative effect

in the β function, as it does.

b) In the MSM, the overall sign of the β function Eq. (3.122), with Nf = 3,

is positive. Thus αR will increase with increasing p. This will have

very interesting consequences in a more advanced approach based on

the concept of Grand Unification [46].
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c) The quantity that multiplies α(p0) in the denominator of Eq. (3.123)

is the product of (ln(p2/p2
0)) with the coefficient of (α∆) in the shift

(δα/α) Eq. (3.106).

d) It is convenient to define the following quantity:
[

1

12π

(

32

3
Nf − 22

)

ln
p2

p2
0

]

α(p0) ≡ ∆αR(p, p0) . (3.124)

From Eq. (3.123) one derives the physical interpretation of the previous

quantity. In fact:

∆αR(p, p0) ≡
α(p) − α(p0)

α(p)
(3.125)

which represents the relative shift of the running α when one moves

from the scale p0 to the scale p.

e) In our previous treatment we have implicitly assumed that fermions are

massless. In the particular case of choice p = 0 one must be more careful

and treat correctly the mass terms, which remain the only residual scale

in this situation. In other words, the Z2 function will exhibit in this

case logarithms of fermion masses that will remain in the final finite

expressions, as we shall explicitly show.

Having defined the concept of RG-running α, we now introduce the

relevant (for our discussion of Z physics) concept of effective α. The sim-

plest way is that of considering the parametrization given in Eq. (3.91) for

the photonic component of the scattering amplitude that becomes singular

when t→ 0. To begin with, it is useful to retain only the (gauge invariant)

fermion pairs contributions to the photon self-energy, which means to work

in an essentially QED-type scheme. In this approximation we can write.

A(1)(I)(γ)(f)(t) ≡ 4πα

t

1

1 + F (f)(γ)(t) − F (f)(γ)(0)
(3.126)

having used Eqs. (3.96), (3.97) and having retained systematically at the

one-loop level the fermionic components.

Equation (3.126) can be formally rewritten introducing an effective cou-

pling that depends on the squared four-momentum that is involved in the

virtual photon exchange Figs. 3.14(a),(b). We shall write symbolically:

A(1)(I)(γ)(F )(t) ≡ 4π

t
α(t) (3.127)

where the effective coupling α(t) is defined as:

α(t) =
α

1− [F (f)(γ)(0) − F (f)(γ)(t)]
(3.128)
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and α ≡ α(0) is the physical coupling previously defined in this Chapter.

One notices immediately a formal analogy between the RG Eq. (3.123)

satisfied by the RG-running αR(p) and the definition Eq. (3.128). Following

the interpretation given in Eqs. (3.124), (3.125) we argue immediately that

it will be possible to introduce the quantity:

∆α(t)(f) ≡ F (f)(γ)(0) − F (f)(γ)(t) =
α(t) − α(0)

α(t)
(3.129)

that will represent the fermion pairs contribution to the relative shift of

the effective squared charge from its physical value at the four-momentum

square t that is being considered.

It should be stressed that the relative shift Eq. (3.129) is not the RG

relative shift Eq. (3.125). There exists, though, an important analogy with

the RG treatment. To make evident this similarity, it is sufficient to consider

the change of the effective α when moving to the four momentum square t

from an arbitrary (different from zero) value t0. Within the usual one-loop

approximations, one easily sees from Eq. (3.128) that

α(t) =
α(t0)

1 − ∆(f)α(t, t0)
(3.130)

where ∆(f)α(t, t0) ≡ F (f)(γ)(t0)−F (f)(γ)(t) is the analogue of the RG shift

Eq. (3.124). In the limit of large t, for t0 � m2
F , its expression can be

simply computed from Eq. (3.68), obtaining:

α(t) −→ α(t0)

1 −
[

1
12π

(

32
3 Nf

)

ln t
t0

]

α
(3.131)

where (usual one-loop situation) one can set α = α(t0) in the denominator.

Thus, in other words, the asymptotic behaviour of the effective coupling

Eq. (3.128) is exactly that predicted by the corresponding purely fermionic

sector of the RG approach, Eq. (3.123). For this reason one often identifies

the effective α with the running one, in the QED-like fermionic approxi-

mation. But when bosonic components to Eq. (3.123) are considered, the

definition of an effective coupling, that has the same asymptotic behaviour

as the RG one, becomes more involved, since problems of gauge indepen-

dence must be carefully solved. We shall return on this point later on, at

the end of this Chapter. For the moment we conclude this discussion with

the definition of the effective coupling Eq. (3.128). This will turn out to be

of fundamental importance in the next Section 3.2, where the treatment of

e+e− collisions of Z resonance will be finally given in full details. The start-

ing point will be the operative definitions of the three physical parameters

mZ ,mW , α that have been given in this pedagogical Section 3.1.
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3.2 Theoretical description of the Z physics observables at

one loop in the MSM

3.2.1 Choice of the most convenient input parameters:

definition of the physical GF

From now on, we shall concentrate our analysis on the process of electron-

positron annihilation on top of the Z resonance, i.e. at a c.m. energy
√

q2 = mZ , treated at the one-loop level, and we shall try to illustrate a

systematic procedure to derive theoretical predictions for all the measurable

observables of the process. In the framework that we have discussed until

now, we have at disposal at this point a basic input whose three parameters

are the physical electric charge α(0), the physical Z mass mZ and the

analogous W quantity mW . This starting set will appear in all the finite

theoretical predictions at one loop , whose accuracy must be evidently ,at

least, at the level of the experimental one.

Actually,the numerical values of these input parameters are by definition

provided by their available experimental measurements. In particular, α(0)

is determined nowadays with a relative precision of about 3× 10−8. The Z

mass is assumed to be determined by looking at the so called lineshape of

the Z resonance in the annihilation process; this will lead, as we shall see,

to a relative precision of about 2 × 10−5.

The situation is certainly worse for what concerns the experimental

value of mW , for which at the beginning of LEP1, SLC operations the

available relative precision was of about 2 × 10−3 (it is at the moment

around 0.5 × 10−3). The latter point raises an immediate and pragmati-

cally unavoidable theoretical problem: in fact, the final ( actually reached)

experimental precision of LEP1 measurements of various observables was

expected to be at the one permil level. As a consequence of this remark-

able experimental precision, the intrinsic error induced by the use of mW

as input parameter for the theoretical predictions was evidently too dan-

gerously large. Fortunately, this problem can be avoided by resorting to

a celebrated formula generally known as Sirlin’s equation [38], that allows

to replace, in the theoretical predictions, mW by the Fermi coupling GF

defined to lowest order by Eq. (1.24). Since the relative experimental ac-

curacy on GF is of about 9× 10−6, the replacement is fully satisfactory for

what concerns Z resonance physics. Given the fundamental consequences

of Sirlin’s equation, we shall now devote the rest of this Chapter to a fairly

detailed derivation of its mains relevant features.
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Our starting point will be a clean definition of the physical parame-

ter to be associated with the bare quantity defined, strictly speaking, by

Eq. (1.24). Following the discussion that was given immediately after that

equation, we shall now rewrite it in the more appropriate way as:

G
(0)
F√
2

=
g2
0

8m2
W

=
e20

8m2
W sin2 θW

=
e20

8m2
W

1

(1 − m2
W

m2
Z

)
(3.132)

where we have used the property that in the MSM cos2 θW = sin2 θW ≡
m2

W /m2
Z Eq. (1.85).

Note that Eq. (3.132) is clearly an equality between bare parameters. To

transform it into a meaningful relationship between measurable quantities,

we have to define a physical parameter GF that generalizes the bare l.h.s

of Eq. (3.132). This is conventionally done by relating GF to the muon

lifetime τµ, measured in the weak decay µ → e + νµ + ν̄e, by means of

Eq. (1.13):

GF ≡
{

[

1

τµ

]

192π3

m5
µ

[

F

(

m2
e

m2
µ

)]−1

[1 + ∆Q]−1

}
1
2

(3.133)

where ∆Q is a pure QED correction that takes into account the muon and

electron photon vertex effects, calculable (and finite) in this particular case,

whose expression at one-loop reads [45]:

∆QO(α) = α/2π[1 + 2α/3π lnmµ/me][25/4− π2] . (3.134)

The complete QED two-loop correction can be found in Ref. [15].

In the MSM, it is possible to compute the muon lifetime τµ in a con-

ventional way, i.e. upon integration on the final four-momenta of a quan-

tity proportional to the squared modulus of the invariant decay amplitude

Aµ → eνν̄.

To proceed in strict analogy with the approach developed in Subsec-

tion 3.1.6, we shall introduce the tree level decay amplitude A
(0)
µ→eνµ ν̄e

, re-

lated to the Feynman diagram shown in Fig. 3.15. Following the notations

of Eq. (3.80) we shall write:

A
(0)
µ→eνµ ν̄e

(q2)

= − [iū(νµ)γµ(1 − γ5)u(µ)ū(νe)γ
µ(1 − γ5)u(e)]

[

g2
0

8 (m2
W − q2)

]

= −
[

A(0)(E)(W )
] [

A(0)(I)(W )
(

q2
)

]

(3.135)
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W(q)

νe e

µ νµ

Fig. 3.15 Feynman diagram associated to the decay µ → νµeν̄e to lowest order in the
MSM.

where the two quantities represent the external (E) and internal (I) struc-

ture of Fig. 3.15, and

A(0)(I)(W )
(

q2
)

=
−g2

0

8 (q2 −m2
W )

. (3.136)

Note the choice of sign in A(0)(I)(W )(q2), that corresponds to the overall

minus one factorised in Eq. (3.135). This is formally due to the conventional

definition of the Fermi Lagrangian, that reads for leptons:

LF = −G
(0)
F√
2

[J+
λ,`J

λ,` + h.c.] (3.137)

where

Jλ,` = ψ̄νeγλ(1 − γ5)ψe + (µ, τ) (3.138)

Equating Eq. (3.135) to the corresponding expression obtained in the

Fermi formulation for the muon decay amplitude leads then to the corre-

spondence

G
(0)
F√
2

= A(0)(I)(W )(q2 = 0)

(

≡ g2
0

8m2
W

)

(3.139)
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having neglected the involved lepton masses as usually.

It is now relatively easy to realize that the tree level definition of GF

Eq. (3.139) is identical, at the same lowest perturbative order, with the

operative definition via the muon lifetime expressed by Eq. (3.133). This

can be qualitatively understood by rewriting that equation in a less rigorous

way, i.e.:

G2
F ∼ 1

τµ
∼
∑

|Aµ→eνν̄ |2 (3.140)

where the sum includes the standard operations (spin average, momentum

integration...) that now essentially affect the external amplitude compo-

nent, so that the final result relates GF to the internal component as shown

by Eq. (3.139). Of course, the rigorous derivation can be performed, but it

will be omitted at this stage.

Having accepted the equality of the operative definition Eq. (3.133) and

of Eq. (3.139) at tree level, it becomes now reasonably simple to generalize

both expressions at the next one loop order. We shall proceed by steps,

trying to stress as much as possible a number of analogies with the previous

approach that we have used to derive the expression of the physical charge.

For what concerns the operative definition of the physical GF ,

Eq. (3.133) can be used at any order of perturbation theory. Once again

one sees that the definition of a physical quantity involves a measurement

of a well defined physical process. In the case of GF , this is a decay rather

than a cross section, which represents the difference with respect to the

cases of the Z,W masses and of the electric charge. For what concerns the

involved squared four-momentum, this will be equal to the squared muon

mass, that we shall assume to be equal to zero, consistently with our overall

approach.

Having defined both the physical GF via Eq. (3.133) and the bare one

via Eq. (3.139), we shall now write in full generality, as we did when we

wrote Eq. (3.96):

G
(0)
F = GF + δGF = GF

[

1 +
δGF

GF

]

. (3.141)

To provide the theoretical expression of the shift δGF , we shall work as

usually at the one loop level. In this approximation, the calculation of δGF

will be then performed by adding a number of Feynman diagrams to the

simplest tree level one of Fig. 3.15, to obtain the value of the muon lifetime

in the MSM. Some of these diagrams are listed in Fig. 3.16, to make the

previous statement more quantitative.
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γ

µ νµ

νe

(a)

F

e

e e

e

F

(W,q)

W

+ +

µ νµ

νµ

νµ
νµ

µ
µ µ

νe

νe νe

(b)

(c) (d)

e

(W,q)

(NF = W,Z,H...)

W

+ (B) + ...+ (V)
W 

W Z 
W 

     

Fig. 3.16 examples of Feynman diagrams contributing the muon decay at one loop in
the MSM.

In full generality, we shall therefore write an expression for the shift

δGF that corresponds to four separate kinds of Feynman diagrams, and

reads:

δGF = δG
(f)
F +

[

δG
(Nf)
F + δG

(V )
F + δG

(B)
F

]

(3.142)

where the first term on the r.h.s. is due to the set of fermion pairs contri-

butions to the W self-energy (Fig. 3.16(a)). The three remaining ones cor-

respond to self-energy diagrams with non fermionic pairs (Fig. 3.17(b)), to

Vertex diagrams (like Fig. 3.16(c)) and to Box diagrams (like Fig. 3.16(d)),

and of course all relevant diagrams should be included in Fig. 3.16. Note
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that we have grouped the last three terms in a single bracket. The reason

is that only their sum is gauge independent, and therefore these contri-

butions must be computed together (we shall return on this point, that

can be qualitatively understood from our previous discussions, at the end

of this Chapter). On the contrary, the fermion self-energy contribution is

separately gauge-independent. Since its calculation is relatively easy, and

quite similar to that of the corresponding part of the charge shift, we shall

now concentrate our attention on its explicit derivation.

Let us assume therefore, for an initial approximate approach, that one

loop contributions not due to fermion pairs can be safely ignored (turned

off). In this “fermion pairs self-energy dominance” spirit, the only difference

between the descriptions of the muon decay at tree level and at one loop

comes from the first diagram (a) of Fig. 3.16. Since its contribution to the

scattering amplitude is only affecting the internal component Eq. (3.136)

[and is only dependent on q2, unlike the box diagram of Fig. 3.16(d)],

the shift δG
(f)
F will be very simply obtained by computing the approximate

theoretical value that the physical GF would acquire in this approximation.

If we denote byA(1)(I)(F )(q2) the expression that the internal component

of the decay amplitude (Eqs. (3.135), (3.136) at tree level) would acquire

at one loop owing to Fig. 3.16(a), and G
(f)
F the corresponding approximate

theoretical expression of the physical GF , it is now understandable that

the two quantities will be related by an equality that is the immediate

generalization of Eq. (3.139), i.e.:

G
(f)
F√
2

= A(1)(I)(f)(q2 = 0) (3.143)

(the external component of the scattering amplitude remains unchanged).

By a straightforward application of the rules that we have illustrated

e.g. with Eq. (3.49) we can now conclude that:

G
(f)
F =

−g2
0

8[q2 +A(W )(f)(q2) −m2
W (0)]q2=0

=
+g2

0

8[m2
W (0) −ReA(W )(Ff (0)]

(3.144)

where A(W )(f (q2) is the fermion-pairs component of the W transverse self-

energy Eq. (3.58), that is purely real at q2 = 0.

Equation (3.144) can be rewritten at one loop in the equivalent way:

G
(f)
F =

g2
0

8m2
W (0)

[

1 − ReA(W )(f)(0)
m2

W (0)

] =
G

(0)
F

[

1 − ReA(W )(f)(0)
m2

W

]
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= G
(0)
F

[

1 +
ReA(W )(f) (0)

m2
W

]

(3.145)

where the bare W mass mW (0) has been replaced by the physical one mW

in the denominator ReA(W )(f)(0)/m2
W (this is formally valid in the usual

one loop approximations).

From Eq. (3.145) we can finally derive the approximate shift as:

G
(0)
F −G

(f)
F ≡ δG

(f)
F = −G(f)

F

ReA(W )(f)(0)

m2
W

. (3.146)

In our usual one-loop approximation the difference between the complete

theoretical expression of GF and that obtained in the fermion-pairs contri-

bution approximation is (formally) of 0(α) like A(W )(0), which allows us

finally to conclude that:

δG
(f)
F = −GFRe

A(W )(f)(0)

m2
W

. (3.147)

Combining this equation with Eqs. (3.141), (3.142) leads to the expres-

sion that will be used in the following, i.e.:

G
(0)
F = GF

[

1 +
δG

(f)
F

GF
+
δG

(Nf,V,B)
F

GF

]

= GF

[

1 − ReA(W )(f)(0)

m2
W

+
∆G

(Nf,V,B)
F

GF

]

(3.148)

where the last term corresponds to all the effects that are not fermion pairs

contributions the W self-energy.

Equation (3.148) is the analogue of Eqs. (3.96), (3.97), (3.100) that

relate the bare and the physical charge. In particular, one finds from

Eq. (3.147) the (familiar) correspondence:

δG
(f)
F

GF
= −ReA

(W )(f)(0)

m2
W

(3.149)

which appears a generalization of Eq. (3.100).

An important comment at this point is that, within the one-loop ap-

proximation to which we shall stick, we have to retain the convention that

the definition of GF Eq. (3.133) is by assumption freed from the photonic

QED muon and electron vertex effects. This means that, when computing

the decay amplitude A
(1)
µ→eνν̄ from the Feynman diagrams partially depicted

in Fig. 3.15, those corresponding to the aforementioned effects should not

be included in the summation.
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We have now concluded the discussion of all the operative definitions

of physical parameters that will be needed to develop the theoretical de-

scription of physics on Z resonance. In the forthcoming Subsection 3.2.2

we shall begin to illustrate the practical procedure that is followed. As

anticipated in the initial part of this Chapter, we shall proceed first of all

to the replacement of the physical input parameter mW by the physical in-

put parameter GF , deriving the formula that is generally known as Sirlin’s

equation.

3.2.2 Derivation of Sirlin’s equation: introduction and

definition of the fundamental parameter ∆r

At tree level, the possibility of replacing the bare W mass, mW (0), with a

combination of the bare parameters mZ(0), e0, G
(0)
F is an immediate conse-

quence of the fundamental equality Eq. (3.132). To transform this equality

into one for the corresponding physical quantities is relatively simple after

the discussions of this Chapter. With this purpose, one can simply rewrite

Eq. (3.132) using physical parameters and “shifts”. Proceeding step by

step, we begin by writing:

G
(0)
F√
2

≡ GF√
2

[

1 +
δGF

GF

]

=
4πα0

8m2
W (0)

(

1 − m2
W (0)

m2
Z(0)

)

=
πα

2m2
W (0)(1 −m2

W (0)/m
2
Z(0))

[

1 +
δα

α

]

(α0 ≡ 4πe20) . (3.150)

To eliminate the bare W,Z masses that enter Eq. (3.150) one uses

Eqs. (3.56), (3.57) for m2
W (0); for m2

W (0)/m
2
Z(0) one writes:

1 −
m2

W (0)

m2
Z(0)

≡ 1 − m2
W + δm2

W

m2
Z + δm2

Z

= (at one loop)

= 1 − m2
W

m2
Z

(

1 +
δm2

W

m2
W

− δm2
Z

m2
Z

)

= 1 − m2
W

m2
Z

(

1 +
ReA(W )(m2

W )

m2
W

− ReA(Z)(m2
Z)

m2
Z

)

. (3.151)

The previous equation can be identically rewritten in a more useful way,

that is:
[

1 −
m2

W (0)

m2
Z(0)

]

=

[

1 − m2
W

m2
Z

]

− m2
W

m2
Z

[

ReA(W )(m2
W )

m2
W

− ReA(Z)(m2
Z)

m2
Z

]

.

(3.152)
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This corresponds to the following renormalization prescription of the bare

parameter sin2 θW = 1 −m2
W /m2

Z (Eq. (1.85))

sin2 θW =

(

1 − m2
W

m2
Z

)

+ δ(W,Z) sin2 θW (3.153)

where the quantity δ(W,Z) sin2 θW is defined as

δ(W,Z) sin2 θW = −m
2
W

m2
Z

[

ReA(W )(m2
W )

m2
W

− ReA(Z)(m2
Z)

m2
Z

]

(3.154)

which is formally of O(α0) and, as one can easily verify from our previous

Eq. (3.55), Eq. (3.61), infinite.

Combining the previous formulae within the usual one loop approxima-

tions we are led to the following expression:

GF√
2

=
πα

2m2
W (1 −m2

W /m2
Z)

[1 + ∆r] (3.155)

where

∆r =





δα

α
− δGF

GF
− ReA(W )(m2

W )

m2
W

+
m2

W

m2
Z

(

1 − m2
W

m2
Z

)

× Re

(

A(W )(m2
W )

m2
W

− A(Z)(m2
Z)

m2
Z

)]

. (3.156)

Equation (3.155) is the one-loop modification of Eq. (3.132) and is com-

monly known as Sirlin’s equation. It relates the four physical quantities

mW , GF ,mZ , α operatively defined in the previous part of this Chapter,

and involves a one-loop electroweak correction called ∆r. Clearly, it can

be used to eliminate, if so wished, one of the four quantities (for instance,

mW ) in terms of the three remaining ones and of ∆r. Given the fundamen-

tal rôle that Eq. (3.155) will play in the following part of this Chapter, we

shall make a couple of comments that are appropriate at this stage.

The first comment is that Eq. (3.155) relates four physical parameters

i.e. GF ,mW ,mZ , α. These must be, obviously, both finite and gauge-

independent. As a consequence, the same two properties will necessarily be

valid for the one-loop parameter ∆r. We shall verify, at least partially, this

important statement in the following part of this Chapter.

The second comment is that ∆r, as defined by Eq. (3.156), is a mixture

of effects that might be called of conventional QED type (like e.g. the

fermion pairs contribution to the electric charge shift δα) and of effects

that might be called of genuinely weak type (like e.g. all those involving
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W,Z exchanges). Intuitively, the second, weak component, will be sensitive

to the deep theoretical features of the MSM, like the properties of the Higgs,

or the mass of the top quark, as we shall explicitly show. Thus, a clean

separation between the conventional and the genuine component of ∆r will

be useful, and will be shown in detail in what follows.

To illustrate the previous statements with a concrete example, we shall

first proceed to compute the component of ∆r that is only due to the exis-

tence of fermion pairs self-energy one-loop effects. Clearly, this component

is by construction gauge-independent. We shall now show that it is finite,

although the various terms that appear in the definition Eq. (3.156) are,

separately, infinite.

Following our notational convention, we shall call ∆r(f) this component,

that will be given by the following expression:

∆r(f) =

[

δα(f)

α
− δG

(f)
F

GF
− ReA(f)(W )(m2

W )

m2
W

+
m2

W

m2
Z(1 −m2

W /m2
Z)
Re

(

A(f)(W )(m2
W )

m2
W

− A(f)(Z)(m2
Z)

m2
Z

)]

=

[

F (f)(γ)(0) +
A(f)(W )(0)

m2
W

−Re
A(f)(W )(m2

W )

m2
W

+
m2

W

m2
Z

(

1 − m2
W

m2
Z

)Re

(

A(f)(W )(m2
W )

m2
W

− A(f)(Z)(m2
Z)

m2
Z

)





(3.157)

having used Eqs. (3.100), (3.149) (A(W )(q2) is real, as one can easily

guess, at q2 = 0) and having defined, in analogy with the remaining cases,

A(f)(Z)(q2) as the fermion pairs component of the Z self-energy.

We shall now show that the r.h.s. of Eq. (3.157) is finite. With this aim,

we shall explicitly compute the separate contributions that appear in the

square bracket on its r.h.s. Using Eqs. (3.55), (3.61) and (3.68), it will be

sufficient to compute the overall effect for one single fermion family, since

the procedure will be identical for each additional family to be considered.

Also, we must consider lepton and quark contributions separately. Denoting
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by (e, νe) and (u, d) these general terms, we find for the lepton component:

∆(e,νe)(∞)
r = ∆

[

e20
12π2

− 1

m2
W

(

e20
16π2 sin2 thetaW

)

m2
W

3

+
m2

W /m2
Z

1 − m2
W

m2
Z

(

e20
16π2 sin2 θW cos2 θW

)(

1

3
− m2

e

2m2
W

)

−m
2
W /m2

Z

1 − m2
W

m2
Z

(

e20
16π2 sin2 θW cos2 θW

)

×
(

1

3
(g

(0)2
V e + g

(0)2
Ae + g

(0)2
V νe

+ g
(0)2
Aνe) −

m2
e

2m2
Z

)]

(3.158)

where ∆ is defined by Eq. (3.36).

To proceed with the calculation, one uses again the fact that, within

a one-loop approximation like the one that we are adopting, the physical

quantities (1 − m2
W /m2

Z),m2
W /m2

Z can be identified, inside one-loop cor-

rections, with the bare parameters sin2 θW , cos2 θW . This is due to the

presence of the overall multiplicative factor e20 appearing in Eq. (3.13), that

makes the difference between physical and bare parameters to be of order

e40, and therefore not contributing at this one-loop order. Then it is easy

to verify that the square bracket of Eq. (3.158), containing the charged

and neutral lepton contribution to the photon, W and Z self-energies, is

actually vanishing when one uses the expressions of the Z vector and axial

vector couplings to e and νe defined by Eqs. (3.11) and (3.12). Note that,

contrary to what will be systematically done for the finite component of

∆r, the values of the relevant fermion masses have not been equated to

zero, since they appear now as coefficients of infinite terms, and a mutual

cancellation between the various different masses must be systematically

verified. In Eq. (3.158) this is easily checked, since the term proportional

to m2
e contains the difference

e20

(

1

m2
W

− 1

cos2 θWm2
Z

)

= e20





1

m2
W

− 1
m2

W

m2
Z

m2
Z



+ 0(e40) = 0(e40)

i.e. it vanishes at one loop. Analogous procedures then lead to the cancel-

lation of the terms that are m2
e independent, and to the conclusion that, as

one should expect, the considered component of ∆r is indeed finite. The

same result can be obtained in a rather straightforward way for the (u, d)

quark contribution, by computing its infinite part and checking that the

coefficient of ∆ is, again, vanishing. We leave this as an exercise to the

interested reader.
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Having verified the finiteness of the quantity ∆r(f) that appears in

Eq. (3.157), the next important step is now that of computing the mean-

ingful finite component. This will be done in some detail in the following

part of this Chapter.

3.2.3 Calculation of ∆r(f): identification of four classes of

physical effects

To proceed with the calculation, it is convenient to rewrite, using Eq. (3.65),

the expression for ∆r(f) Eq. (3.157) in the following equivalent form:

∆r(f) = Re

{

F
(γ)
(0) − m2

W /m2
Z

(1 −m2
W /m2

Z)

[

A(Z)(0)

m2
Z

− A(W )(0)

m2
W

]

×+(2m2
W /m2

Z − 1)

(1 −m2
W /m2

Z)
F (W )(m2

W ) − m2
W /m2

Z

(1 −m2
W /m2

Z)
F (Z)(m2

Z)

}(f)

.

(3.159)

A first impression that one derives from a glance to the previous equation is

that several terms of different physical origin appear and contribute, as one

would naively guess. In fact, the considered process to which our procedure

has been applied is of typical electroweak nature. As a consequence, one

expects to be able to identify both genuinely QED and genuinely weak

features and effects. This feeling is certainly correct, but Eq. (3.159) does

not fully exhibit in the most evident way this property. To get a better

understanding of the previous statement, some formal reshuffling of the

equation is very useful. In particular, it is convenient to reintroduce the

(unphysical) W
(3)
µ gauge boson, defined as in Eq. (1.84) in terms of the

physical Z and photon.

W (3)
µ = cos θWZµ + sin θWAµ (3.160)

and its transverse self-energy A(3)(q2), defined in complete analogy with

the corresponding Z, γ, Zγ ones and formally identical to:

A(3)(q2) ≡ cos2 θWA(Z)(q2) + sin2 θWA(γ)(q2) + 2 sin θW cos θWA(Zγ)(q2)

(3.161)

where the mixed Z − γ self-energy A(Zγ)(q2) in the lepton pair case can

be immediately obtained from Eq. (3.25), by a simple replacement of one

Z-fermion vertex
(

i|e0|
2 sin θW cos θW

[γνg
(0)
V e − γνγ5g

(0)
Ae ]

)
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with the corresponding (−i|e0|γν) photon one, retaining in the second Z-

fermion vertex only the vector coupling g
(0)
V e (analogous straightforward

rules lead to the expression of A(Zγ)(q2) in the quark pair case).

Since both the photon self-energy A(γ)(q2) and the Z − γ self-energy

A(Zγ(q2) are vanishing at q2 = 0 (only fermion pairs are considered), one

sees that the second term in the curly bracket of the r.h.s of Eq. (3.159)

can be written as

−m2
W /m2

Z

(1 −m2
W /m2

Z)

[

A(Z)(0)

m2
Z

− A(W )(0)

m2
W

](f)

=
−m2

W /m2
Z

(1 −m2
W /M2

W )

[

A(3)(0) −A(W )(0)

m2
W

](f)

(3.162)

(at one loop)

≡ −m2
W /m2

Z

(1 −m2
W /m2

Z

∆1(0)

where we have introduced the notation

∆1(0) =

[

A(3)(0) −A(W )(0)

m2
W

](f)

≡
[

A(f)(Z)(0)

m2
Z

− A(f)(W )(0)

m2
W

]

. (3.163)

One easily verifies that the quantity ∆1(0) defined by the previous equation

is finite.

It is therefore quite natural to associate it to a well defined physical

phenomenon, that will necessarily be related to effects that act differently

within (self-energies of) the same SU(2)L triplet (i.e. A(3)(0), A(W )(0)), in

a way that is energy (i.e. q2) independent. Remembering the discussion

given in Subsection 1.4.3 about the so called ρ0-parameter, one expects

that ∆1(0) will take into account custodial SU(2) violating effects, and for

this reason one often finds in the literature the notation ∆ρ(0) for this

term (since, however, a certain amount of different quantities is sometimes

indicated by the same symbol ∆ρ by different authors, we prefer to retain

our definition Eq. (3.161) in what follows, and whenever necessary we shall

work out the relationships with other notations). As an immediate example

of such a possible energy independent custodial SU(2) violating effect, we

can think of the contribution to ∆1(0) from a doublet of fermions of not

vanishing and definitely different mass, like a bottom quark-top quark pair,

that will be investigated in Subsection 3.2.5.

It is quite natural at this point to try to ensemble effects that might

be formally related to custodial SU(2) violations that are energy depen-

dent. An immediate possibility is that of adding and subtracting to ∆r(f)
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Eq. (3.159) the term

(2m2
W /m2

Z − 1)

1 −m2
W /m2

Z)
F (f)(3)(m2

Z) ,

with F (3)(q2) defined bas in Eq. (3.65), and of defining the quantity

∆2 = Re[F (W )(m2
W ) − F (3)(m2

Z)](f)

≡ Re

[

F (f)(W )(m2
W ) −m2

W /m2
ZF

(f)(Z)(m2
Z) −

(

1 − m2
W

m2
Z

)

F (f)(γ)(m2
Z)

− 2mW /mZ

√

1 −m2
W /m2

ZF
(f)(Zγ)(m2

Z)

]

. (3.164)

One easily verifies again that ∆2 is finite. This supports the previ-

ous idea of relating it to physical effects, that we shall discuss in Subsec-

tion 3.2.5. Thus, Eq. (3.159) can be formally rewritten at this stage as:

∆r(f) = Re

{

F (f)(γ)(0) − m2
W /m2

Z

(1 −m2
W /m2

Z)
∆1(0)

+
(2m2

W /m2
Z − 1)

(1 −m2
W /m2

Z)
∆2 +

(2m2
W /m2

Z − 1)

(1 −m2
W /m2

Z)
F (Ff(3)(m2

Z)

− m2
W /m2

Z

(1 −m2
W /m2

Z)
F (f)(Z)(m2

Z)

}

(3.165)

The last step of our process of separation of ∆r(f) into “physically mean-

ingful” components starts from the qualitative statement that the two first

quantities that have been until now isolated, i.e. ∆1 and ∆2, describe

the consequences of the fact that W3 is different from the physical charged

bosons W+,W−. One would naively expect that ∆r(f) also contains a com-

ponent that takes into account the extra fact that W3 is different from the

physical photon, to which it is related by Eq. (1.84). To make this state-

ment more quantitative, it is sufficient to rewrite the first, fourth and fifth

terms of Eq. (3.165) as follows:

[

F (γ)(0) +
(2m2

W /m2
Z − 1)

(1 −m2
W /m2

Z)
F (3)(m2

Z)
−m2

W /m2
Z

(1 −m2
W /m2

Z)
F (Z)(m2

Z)

](f)

≡ 2

[

m2
W

m2
Z

F (γ)(m2
Z) − m2

W

m2
Z

F (Z)(m2
Z) +

mW /mZ(2m2
W /m2

Z − 1)
√

1 −m2
W /M2

z

× F (Zγ)(m2
Z)

](f)

+ [F (γ)(0) − F (γ)(m2
Z)](f) . (3.166)
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We define now the quantity:

∆3(m
2
Z) ≡ Re

[

m2
W

m2
Z

(

F (γ)(m2
Z) − F (Z)(m2

Z)
)(f)

+
mW /mZ

√

1 −m2
W /m2

Z

(2m2
W /m2

Z − 1)F (f)(Zγ)(m2
Z)

]

(3.167)

and verify immediately that it is finite. For what concerns its physical

interpretation, it is easy to realize that this quantity can also be written,

at any q2, as:

∆3(q
2) = Re

[

1
√

1 −m2
W /m2

Z

F (γ)(q2) − F (3)(q2)

](f)

. (3.168)

Loosely speaking, ∆3 reflects the fact that the unphysical gauge

boson field W3µ is different from the photon field Aµ rescaled by a

1/
√

1 −m2
W /m2

Z factor, which can be viewed as a consequence of the pres-

ence of the extra U(1)YL
gauge boson field Bµ in Eq. (1.84). Clearly, this

has little to do with the custodial symmetry violation effects described by

∆1,∆2. One consequently expects that ∆3 may be responding in a quite

different way (compared to ∆1,2) to a given physical input, and we shall

provide illustrative examples of this statement in the following Subsections.

The quantity defined by Equation (3.166) can be, at this point,

expressed as the sum of ∆3(m
2
Z) with the difference Re[F (f)(γ)(0) −

F (f)(γ)(m2
Z)]. The latter is exactly the shift due to fermion pairs ∆α of

the effective α, Eq. (3.129), computed at four-momentum square = m2
Z .

We see therefore that the parameter ∆r(f) can be written in conclusion as

a sum of four independent finite components, each one of rather different

and understood physical origin, combined in the final expression as follows:

∆r(f) =

{

[∆α(m2
Z )] − m2

W /m2
Z

(1 −m2
W /m2

Z)
[∆1(0)]

+
(2m2

W /m2
Z − 1)

1−m2
W /m2

Z)
[∆2] + 2[∆3(m

2
Z)]

}(f)

. (3.169)

As anticipated in the previous discussion, we recognize the existence of

three effects (those expressed by ∆1,∆2,∆3) that can be correctly classified

as of genuinely weak type. In fact, their existence is a direct consequence

of some specific physical property of the massive gauge bosons. On the

contrary, the fourth parameter ∆α(m2
Z ) is fully entitled to be classified as

of genuinely QED type, since it does not feel in any way the presence (or

absence) of the massive gauge partners of the photon. This has a practical
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consequence that is, in a sense, funny. In fact, it is clear that the interesting

features of ∆r(f) (and of the full ∆r in general) will not be contained in

∆α, but rather in the remaining component. For ∆r(f) this means that the

weak (W ) quantity

∆r(f)W ≡ ∆r(f) − ∆α(m2
Z) (3.170)

will be that for which theoretical predictions and accurate precision mea-

surements will have to be compared. On the other hand, it should be clear

already at this stage that the measurable quantity will be the full ∆r (see

e.g. Eq. (3.155). This will be obtained adding to ∆r(f) another component

where massive gauge bosons always enter (see Eq. (3.156). In full general-

ity, adding these new genuinely weak components to ∆r(f) will lead to the

final separation:

∆rW ≡ ∆r − ∆α(m2
Z) . (3.171)

In order to derive, from the (assumed) measured value of ∆r, that of the

interesting weak quantity ∆rW , it is thus necessary to have at our disposal

a theoretical estimate of ∆α(m2
Z) that is sufficiently precise and reliable to

compete with the experimental accuracy of the measurement of ∆r. Thus,

the not-interesting component ∆α(m2
Z ) must be computed in a way that

is extremely accurate and, also, model-independent at the same time. We

shall devote the next Subsection 3.2.4 to a brief illustration of how this

computation is actually performed.

3.2.4 Numerical estimate of ∆α(m2
Z)(f)

We now proceed to the numerical estimate of ∆α(m2
Z)(f), i.e. of the quan-

tity:

∆α(m2
Z)(f) = Re[F (f)(γ)(0) − F (f)(γ)(m2

Z)] . (3.172)

To perform the practical calculation, the fermion pairs contribution to the

photon self-energy must be separated, for computational purposes, into its

lepton and its quark component. The first one can be derived in a rather

straightforward way from Eq. (3.68); using Eq. (3.66) immediately leads to

the results;

F (`)(γ)(q2) =
α

3π
∆ + F (`)(γ)(finite)(q2) (3.173)

where, for the finite part, one obtains the following expression:

F (`)(γ)(finite)(q2) = −2α

π

∫ 1

0

dx x(1 − x) ln

[

m2
` − q2x(1 − γ)

µ2

]

(3.174)
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as it can be verified from the properties of the various functions defined by

Eqs. (3.35), (3.37). One obtains therefore for the lepton component ∆α

(1, 2, 3 = e, µ, τ):

∆α(q2)(`) = −2α

π

3
∑

`=1

∫ 1

0

dx x(1 − x) ln

∣

∣

∣

∣

1 − q2x(1 − x)

m2
`

∣

∣

∣

∣

. (3.175)

Setting q2 = m2
Z � m2

` and retaining the dominant term inside the argu-

ment of the logarithm leads to the known expression:

∆α(m2
Z)(`) =

2α

3π

[

ln
mZ

me
+ ln

mZ

mµ
+ ln

mZ

mτ
− 5

2

]

. (3.176)

Inserting the experimental values of mZ ,me,mµ and mτ finally leads

to the result:

∆α(m2
Z)(`) = 0.0314 . (3.177)

Two comments are at this point appropriate and, in a sense, correlated. The

first one is the realization that, numerically, the one-loop correction that is

taken into account by Eq. (3.114) is “not small”. A relative three percent

represents in fact quite large an effect in situations where the experimen-

tal accuracy is supposed to be at the permil level, which will be the case

for measurements on Z resonance. The second comment is a qualitative

statement about the next estimate of the quark contribution to ∆α(m2
Z ).

A priori, one can guess that its numerical value should be of a size compa-

rable with that of Eq. (3.177), which implies a relevant contribution. One

also sees from Eq. (3.175) that a large part of the effect is produced by

the smaller masses, and one consequently expects that a major rôle should

be played by exchanges of “light” (u, d, s, c, b) quarks. On this very pre-

cise point, a calculation like that performed for the leptons appears to be

from the beginning in serious trouble for two rather strong reasons. In first

place, the precise definition (and the value) of the light quark masses is

not unambiguously known. This would unavoidably lead to an intrinsic

theoretical error in the calculation, whose size would be rather difficult to

fix. Secondly, in the light quark diagrams, the extra correction due to gluon

exchanges cannot be ignored, and its perturbative estimate in such a region

of essentially “quasi zero” momentum transfer is certainly unreliable. This

leads to the conclusion that, for such an expectedly relevant contribution,

some different computational strategy should be utilized.

Luckily enough, a well known and general approach to this problem ex-

ists, based on the use of the old fashioned dispersion relations technique [8].
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This is essentially based on the assumption that the hadronic (quark) pho-

ton self-energy F (h)(γ)(q2) is an analytic function of the variable q2 for

generalized complex q2 values, so that the Cauchy theorem can be written

as:

F (h)(γ)(q2) =
1

2πi

∮

c

F (h)(γ)(q′2)

q′2 − q2
dq′2 (3.178)

where c denotes a closed contour in the complex q2 plane. By choosing the

closed contour c as the infinite limit of a special finite circle surrounding

the real axis and cut along the positive q2 values, it is always possible to

express the real part of any analytic function that vanishes at infinity as

the integral over only the real axis of its imaginary part. Choosing this

function as 1/q2[F (γ)(q2) − F (γ)(0)](h), one therefore writes:

Re

[

F (γ)(q2) − F (γ)(0)

q2

](h)

=
1

π
P

∫ ∞

q′2
0

dq′2

q′2 − q2
Im

[

F (γ)(q′2) − F (γ)(0)

q′2

](h)

(3.179)

where P denotes the so called principal value of the integral, that avoids

the infinite at q′2 = q2 and q′20 represents the threshold value after which

an imaginary part begins to develop. According to a sort of generalization

of the optical theorem, this imaginary part is then proportional to the

total cross section σh of the process of electron-positron annihilation into

hadrons, so that the final expression is obtained:

Re
[F (γ)(q2) − F (γ)(0)](h)

q2
=

1

4π2α
P

∫ ∞

4m2
π

dq′2

q′2 − q2
σh(q′2) (3.180)

with a physical threshold at q′20 = 4m2
π. The evaluation of the hadronic

component ∆(h)α(m2
Z) proceeds now from Eq. (3.180) using as a “the-

oretical” input the experimental values of the hadronic electron-positron

annihilation cross section, since one has:

∆α(m2
Z )(h) ≡ Re[F (γ)(0) − F (γ)(m2

Z)](h) =
m2

Z

4π2α
P

∫ ∞

4m2
π

dq′2

m2
Z − q′2

σh(q′2)

(3.181)

and this equation is valid to all orders of strong interactions.

For practical (and, also, theoretical) purposes it is more useful to rewrite

Eq. (3.181) by replacing inside the integral the hadronic cross section by

the ratio R(γ) ≡ σh/σµ of the hadronic to the muonic electron-positron

cross sections. Since one has, to lowest order in the QED coupling:

σµ(q′2) ≡ σe+e−→µ+µ−(q′2) =
4

3
πq′2α2 (3.182)
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one gets, to the considered one-loop level:

∆α(m2
Z)(h) =

αm2
Z

3π
P

∫ ∞

4m2
π

dq′2

q′2(m2
Z − q′2)

R(γ)(q′2) . (3.183)

The usual approach to a numerical estimate of Eq. (3.183), consists of

a first separation of the contribution coming from “light” hadrons, thought

as composed by the five “light” (u, d, s, c, b) quarks, from the remaining

term usually identified with that produced by the top quark (no other

fermion families are present in the MSM). For what concerns the light

contribution, one understands from a glance to Eq. (3.182) that it will

be mainly produced by the relatively low energy region, e.g. for
√

q′2 ≤
40 GeV, where experimental data with a related error are available; for

higher energies, a theoretical (e.g. QCD...) asymptotic fit must be used.

Clearly, this calculation will lead to a prediction whose error is mostly

given by that on the available experimental data below 40 GeV (in the

theoretical QCD fit the error is practically negligible). A proper estimate

of this error is quite important, since its size might damage, if it turned out

to be dangerously large, the accuracy of the MSM predictions. This explains

the great number of dedicated papers that were written, starting from the

original calculation [47] to the most recent work [48]. A complete list of

authors can be found in Ref. [49] with a table of all results and uncertainties,

that varied with time following the improvements of the relevant low energy

measurement of the e+e− hadronic cross section. The value used in this

book for ∆α(5)(m2
Z), (5) = u, d, s, c, b, is

∆α(m2
Z )(5) = 0.02758± 0.00035 (3.184)

i.e. of the same size as the leptonic contribution Eq. (3.177).

Two comments are now relevant. The first one is that the main source

of error in Eq. (3.184) comes from the experimental error on the data in

the region 1 GeV ≤
√

q′2 ≤ 10 GeV. The second one is that the top-quark

contribution must still be added. This does not represent a problem, given

the fact that the value of the top mass is large, mt ' 2mZ , and its contri-

bution is consequently highly depressed in the integral. Note that in the

top case one can ascribe a meaning, and thus use an experimental value, to

the concept of top mass. This fact, and the smallness of the related contri-

bution (plus the large energy scale intrinsically associated to the top, that

makes strong interactions perturbatively treatable, and essentially negligi-

ble) lead to the conclusion that the top component can be computed by

using Eq. (3.175), with the insertion of a color (Nt = 3) and of a charge
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(4/9) factor, but assuming this time m2
t � m2

Z , that produces the result:

∆α(m2
Z )(top) ' − α

15π

m2
Z

m2
t

' −0.00004 (3.185)

much smaller than the error of Eq. (3.183) and thus totally negligible.

From a general theoretical point of view, this conclusion is predictable.

The top contribution to the photon self-energy at q2 = m2
Z is in fact a

typical effect coming from a particle, of squared mass m2
t sufficiently larger

than the involved squared moment, to a purely vectorial self-energy. As

such, it must fulfill the request of the decoupling theorem of Appelquist and

Carazzone [35], according to which this type of effects behaves like ∼ q2/m2
t

and thus decouples as actually shown by Eq. (3.185).

In conclusion, the theoretical statement that is nowadays available is

that the overall value of ∆α(m2
Z )(f) is the following:

∆α(m2
Z)(f) = 0.05901± 0.00035 (3.186)

obtained as a sum of leptonic and (quark) hadronic contributions. This

corresponds to a value of the effective QED coupling Eq. (3.128):

[α(m2
Z)]−1 = 128.9495± 0.045 . (3.187)

It should be stressed that the contribution Eq. (3.186) to ∆r is rather large,

almost six percent. This will affect the MSM predictions in a substantial

way. However, the induced theoretical error of the predictions will be sys-

tematically negligible. We shall discuss this point in detail in the final part

of this Book, and we shall assume its validity for the moment. In this spirit,

we shall consequently write Eq. (3.155), using Eq. (3.171), as follows:

GF√
2

=
πα

2m2
W (1 −m2

W /m2
Z)

[1 + ∆α(m2
Z) + ∆rW ]

=
πα

2m2
W (1 −m2

W /m2
Z)

[1 + ∆α(m2
Z)][1 + ∆rW ]

=
πα(m2

Z)

2m2
W (1 −m2

W /m2
Z)

[1 + ∆rW ] (3.188)

where the usual one-loop approximation has been used.

Equation (3.188) contains an implicit statement, that we anticipated

in the introduction to this Chapter. This may be essentially expressed by

saying that, if one wants to replace the input parameter mW by a “more

convenient” set that includes (almost unavoidably) the extremely precisely

determined GF , the involved theoretical operation automatically involves

both the Z mass and the effective charge at the squared Z mass α(m2
Z).
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This set (GF ,mZ , α(m2
Z)) appears therefore as the natural one to be used

as the fixed input of the different theoretical predictions, and we shall adopt

this pragmatic attitude from now on.

The previous statement still requires a final “detail” to be fixed. This

is, as one can guess from Eq. (3.188), the precise determination (or the

theoretical expression at least) of the genuine weak parameter ∆rW . We

shall devote the next Subsection 3.2.5 to a detailed investigation of this

problem.

3.2.5 Determination of ∆rW and calculation of the W

mass

3.2.5.1 Numerical estimate of ∆1(0)

As a first example of electroweak calculation at one loop, we shall now

compute the expression of the W mass. This can be obtained by Eq. (3.188)

once the value of ∆rW has been determined. With this aim we shall first

consider, again, the fermion pairs contribution to self energies, ∆r(f)W ,

Eqs. (3.169), (3.170). The example will have two major motivations. The

first one will be the derivation of a clean prediction (for the W mass), that

can be considered as a crucial test of the MSM; the second one will be the

fact that, as we shall see soon, some of the parameters that enter ∆rW will

also be involved in the expression of the various Z peak observables. In this

sense, the discussion that will be given in this Subsection 3.2.5 will remain

valid for the rest of this Chapter, that will be more strictly related with

physics at the Z resonance.

To make the previous discussion more concrete, we now begin by con-

sidering the contribution to ∆1(0) Eq. (3.163) from a fermion doublet, more

precisely from a pair of (u, d) quarks (u, d simply denote the states with

I3L = ±1/2), whose masses mu,md will now be not ignored, but carefully

retained in the calculation. In fact, since ∆1(0) is supposed to react to (cus-

todial) SU(2) violating effects, one expects that these can be originated e.g.

by a mass difference ∼ mu −md inside the doublet, as we shall explicitly

verify.

The expression of ∆1(0) corresponding to one quark doublet (u, d) can

be derived from Eqs. (3.54), (3.61), and reads:

∆
(u,d)
1 (0) =

3α

8πm2
W (1 −m2

W /m2
Z)
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×
∫ 1

0

dx

{

m2
u ln

m2
u

µ2
+m2

d ln
m2

d

µ2

−2[m2
u(1 − x) + xm2

d] ln

[

m2
u

µ2
(1 − x) + x

m2
d

µ2

]}

(3.189)

where the first two terms come from A(Z)(0), the last one from A(W )(0),

and a factor 3 that takes into account the colour degree of freedom has

been inserted.

A glance to Eq. (3.189) immediately shows that it vanishes in the case

of equal quark masses, mu = md. This confirms the discussion previously

given about the intrinsic sensitivity of ∆1(0) to custodial SU(2) violating

effects. In this spirit, it becomes clear that only situations of sizeable mass

difference should be relevant and potentially interesting. In fact, this can be

evidenced by performing the x-integration, which leads to the expression:

∆
(u,d)
1 (0) =

3α

8πm2
W (1 −m2

W /m2
Z)

×
[

1

2
(m2

u +m2
d)−

m2
um

2
d

(m2
u −m2

d)
ln
m2

u

m2
d

]

. (3.190)

In the limit e.g. m2
u � m2

d this reads:

∆
(mu�md)
1 (0) ' 3α

16π(1 −m2
W /m2

Z)

m2
u

m2
W

. (3.191)

One sees, and this point must be stressed, that ∆
(u,d)
1 (0) develops a con-

tribution that is quadratic in the dominant fermion mass. This will remain

unchanged also if m2
u � m2

W . This property, first stressed by Veltman [34],

is orthogonal to the one met in the case of ∆α(m2
Z ) where the decoupling

theorem [35] was effective. The reason for this difference is the presence of

a non-vectorial (i.e. essentially of not purely QED type) component in the

Z,W self-energy, that leads to a genuinely weak violation of the theorem.

From a numerical point of view, one immediately realizes that

Eq. (3.191) can lead to an appreciable contribution in the case of a suffi-

ciently heavy quark mass. Writing, in first approximation, (1−m2
W /m2

Z) '
1/4, we obtain:

∆
(mu�md)
1 (0) ' α

π

m2
u

m2
Z

. (3.192)

One sees that, unless mu > mZ , the size of the term will be always less

than α/π ' two permil (with an even worse situation in the lepton case,

as one can easily guess, due to the absence of the colour factor). The only
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remarkable exception to this negative statement is provided by the (top,

bottom) doublet contribution. Here, with mt ' 2 mZ , ∆1(0) reaches the

one percent size, that will be relevant for Z resonance physics. This fact will

lead to the extremely interesting consequence that precision measurements

on top of the Z resonance where, we anticipate, ∆1(0) will be one of the

input parameters, will be sensitive to the actual value of the top mass, and

as such they will be, so to say, directly comparable with the independent

experimental measurement of this quantity, as we shall discuss in detail in

the final part of this Book.

One comment at this point is relevant, and concerns the naive expec-

tation that a similar feature might characterize the non fermionic virtual

contributions (to e.g. self-energies) where a Higgs boson is involved. If this

were the case, precious indications on the still unknown value of the Higgs

mass would be derived, that would be of great practical value for actual

searches. Unfortunately, at the considered one-loop level, this is not the

case. As first shown by Veltman [37], the virtual Higgs contribution at this

level is screened i.e. it is only of logarithmic type in the large Higgs mass

regime and thus very difficult to be practically detected. We shall return

on this point at the end of this Chapter, when a few relevant formulae will

be explicitly shown.

To conclude this Subsection 3.2.5.1, we have shown that the presence

of custodial SU(2) violations can lead to observable effects at the one-loop

level via ∆
(0)
1 . In the next Subsection 3.2.5.2, we shall investigate in some

details the properties of one extra quantity, ∆3

(

m2
Z

)

, that will be much

less sensitive to custodial violations features, but whose rôle in the process

of precision tests of the MSM will also turn out to be rather crucial.

3.2.5.2 Numerical estimate of ∆3(m
2
Z)

We shall now illustrate the main properties of ∆3(m
2
Z) by explicitly per-

forming the calculation of the contribution to this quantity coming from

a quark pair, to be generically indicated Eq. (3.190) by a (u, d) doublet.

Starting from the definition Eq. (3.167) and using Eq. (3.54), that can be

easily modified to provide the expressions of both F Z(q2) and F (Zγ)(q2) by

simple changes of the fermion vertices, it is straightforward to obtain the

finite expression:

∆3(m
2
Z) = − α

4π(1 −m2
W /m2

Z)
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×
{[∫ 1

0

dx x(1 − x) ln

∣

∣

∣

∣

m2
u −m2

Zx(1 − x)

m2
d −m2

Zx(1 − x)

∣

∣

∣

∣

]

+
3

2

[

m2
u

m2
Z

ln

∣

∣

∣

∣

1 − m2
Zx(1 − x)

m2
u

∣

∣

∣

∣

+
m2

d

m2
Z

ln

∣

∣

∣

∣

1 − m2
Zx(1 − x)

m2
d

∣

∣

∣

∣

]}

.

(3.193)

We can consider now two quite different extreme situations. The first

one is that in which mu � mZ � md, and corresponds (with the extra

request mZ � md) to the non-decoupling case of the previous Subsection.

By approximation of the integrands with their dominant terms, we derive

in the considered limit:

∆
(u,d)
3 (m2

Z) ' − α

4π (1 −m2
Wm2

Z)

{[

1

6
ln
m2

u

m2
Z

+
5

18

]

−
[

3

18

]}

mu � mZ � md

' −α
24π

(

1 − m2
W

m2
Z

) ln
m2

u

m2
Z

. (3.194)

Numerically, for the top quark case with mt ' 2mZ , the contribution

is well below the one permil, more than one order of magnitude smaller

than the corresponding contribution to ∆1(0) Eq. (3.192). This confirms

the expectation, already discussed in Subsection 3.2.5.2, that ∆3(m
2
Z) will

not react like ∆1(0) to custodial symmetry violating inputs. In fact, the

sensitivity of ∆3(m
2
Z) to such situations is practically negligible.

The second interesting situation to be considered is that where mu =

md � mZ . We know from the previous discussions that both ∆α(m2
Z)

and ∆1(0) will be totally unaffected in this case, owing to the decoupling

property of the first quantity and to the custodial symmetry peculiar con-

straints on the second one Eq. (3.189). For ∆3, the numerical estimate of

Eq. (3.193) leads, on the contrary, to the conclusion:

∆
(u,d)
3 (m2

Z) ' α

8π (1 −m2
W /m2

Z))
(3.195)

mu = md � mZ .

Numerically, this contribution is just above one permil, which does not

represent a remarkable effect. Still, and quite generally, this shows the

totally orthogonal nature of ∆3(m
2
Z) compared with ∆1(0). In principle,

the existence of a sizeable number of new super heavy quarks degenerate in

mass would be detectable in ∆3(m
2
Z), but not in ∆1(0).

To conclude this qualitative study of the three parameters appearing in

Eq. (3.170), we still have to discuss the ∆2 term. This will be done in the

forthcoming part of the Section.
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3.2.5.3 Numerical estimate of ∆2

From its definition Eq. (3.164) and from the expressions given in Eqs. (3.54,

(3.61) it is again straightforward to derive the contribution of a general

(u, d) quark doublet to ∆2, that reads:

∆
(u,d)
2 =

3α

4π(1 −m2
W /m2

Z)

×
{∫ 1

0

dx x(1 − x) ln

[

m2
u −m2

Zx(1 − x)

m2
u(1 − x) +m2

dx−m2
Wx(1 − x)

]

+

∫ 1

0

dx x(1 − x) ln

[

m2
d −m2

Zx(1 − x)

m2
u(1 − x) +m2

dx−m2
Wx(1 − x)

]

+

∫ 1

0

dx

[

(1 − x)
m2

u

m2
W

+ xm2
dm

2
W

]

× ln

[

m2
u(1 − x) +m2

dx−m2
Wx(1 − x)

m2
u(1 − x) +m2

dx

]

−1

2

∫ 1

0

dx

[

m2
u

m2
Z

ln

∣

∣

∣

∣

1 − m2
Zx(1 − x)

m2
u

∣

∣

∣

∣

+
m2

d

m2
Z

ln

∣

∣

∣

∣

1 − m2
Zx(1 − x)

m2
d

∣

∣

∣

∣

}

. (3.196)

In the limiting case mu �MZ,W � md that was already considered in the

previous part of the Section one finds the following expression:

∆
(u,d)
2 ' −3α

4π(1 −m2
W /m2

Z)

[

1

6
ln
m2

u

m2
Z

+
1

12

]

mu �MW,Z � md (3.197)

showing that the contribution carried by the energy dependent component

of the custodial symmetry violation ' F (3)(m2
W ) − F (W )(m2

W ) is only of

logarithmic type and numerically, for mu = mt ' 2mZ , at the negligible

one permil level. For what concerns the second considered situation mu =

md �MZ,W that was not irrelevant for ∆3(m
2
Z), one finds in this case:

∆
(u,d)
2 ' −3α

2π(1 −m2
W /m2

W )

∫

dx x2(1 − x)2
(m2

Z −m2
W )

m2
u

mu = md �MW,Z (3.198)

showing that this contribution to ∆2 is indeed negligible. In fact, at least

within the MSM, ∆2 seems to play a not particularly meaningful rôle, since

most of the possible considered one loop effects do not affect it in a sensible

way. On top of this, this parameter will not enter into the theoretical
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predictions for physics on Z resonance, as we shall immediately see. As a

consequence of these two facts, we shall not concentrate our attention on

it any longer in what follows.

Our discussion of the weak fermionic component of ∆r is at this point

concluded. Keeping in mind the fact that we did not illustrate the calcula-

tion of the non fermionic component, we are now in a position to present

the derivation of the theoretical prediction for the W mass in the MSM.

This will be the subject of the forthcoming part of this Section.

3.2.5.4 Calculation of the W mass

Let us return to Eq. (3.188). By multiplying and dividing it by m2
Z , it is

possible to rewrite it in the more convenient way:

m2
W

m2
Z

(

1− m2
W

m2
Z

)

=
πα(m2

Z)√
2m2

ZGF

[1 + ∆rW ] . (3.199)

The l.h.s. of Eq. (3.199) is a quadratic expression in the adimensional

variable m2
W /m2

Z . The r.h.s. contains the three input parameters that we

have decided to adopt, α(m2
Z), GF ,mZ , and the weak parameter ∆rW . The

latter will contain typical quantities of the MSM (of particular relevance,

the top mass) and also, as shown e.g. by Eq. (3.169), (3.189), (3.193),

(3.196), it will depend again in general on m2
W /m2

Z . Thus Eq. (3.199) is

not, rigorously, a second order equation in m2
W /m2

Z and it must be solved

e.g. by recurrence. This does not represent a problem, but prevents us

from providing a simple algebraic solution. We can, though, derive an

approximate m2
W /m2

Z solution that should be, intuitively, rather close to

the complete one. This approximate solution is defined c20 and satisfies the

equation:

c20s
2
0 =

πα(m2
Z)√

2m2
ZGF

(3.200)

with s20 ≡ 1−c20. Of the two solutions of Eq. (3.200), c20 will be chosen as that

which almost coincides with the actual experimental value of m2
W /m2

Z '
0.77. This means that

c20 =
1

2

[

1 +

√

1 − 4πα(m2
Z)√

2m2
ZGF

]

. (3.201)

Numerically, using the experimental result for mZ , one obtains the

value:

c20 ' 0.769 (3.202)
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or

s20 = 1 − c20 ' 0.231 . (3.203)

Clearly, Eq. (3.202) (or Eq. (3.203)) does not represent the complete MSM

prediction for the quantity m2
W /m2

Z . This can be obtained, as we said, by

solving numerically Eq. (3.199) for given values of the free MSM parameters

(at the beginning of SLC, LEP1 operations: mt,mH). We shall not pursue

this operation here, but rather embed it into the final overall numerical fit to

be discussed at the end of this Book. The reason why we illustrated at this

stage the calculation of mW is that we were able in this way to introduce,

and to endow them with a clear physical meaning, a number of parameters

and of quantities that will be needed for the complete description of Physics

on Z resonance. This will start, in fact, in the forthcoming Section 3.3.

3.3 Formulation of Z physics at one loop: introduction of

the effective weak parameter sin2 θW,eff

3.3.1 Operative definition of the electroweak mixing angle:

the longitudinal polarization asymmetry

We have already stressed in Chapter 1 the point that a fundamental dif-

ference between a photon and a Z boson is represented by the fact that

the latter couples in a different way with left-handed and right-handed

fermions. An immediate consequence of this is that, in a process that can

be described to a very good approximation as a pure s-channel Z exchange

from an initial to a final fermion-antifermion state, it will be possible to de-

fine and to measure an observable quantity, that would be vanishing if the

same process could be approximated by a pure s channel photon exchange.

This quantity, that has played from the very beginning a major rôle in the

development of the experimental strategies for testing the MSM on top of Z

resonance, is the so called longitudinal polarization asymmetry. If the con-

sidered process is that of annihilation of an initial electron-positron state,

with a left (right) handed electron ≡ eL,R, into a final fermion-antifermion

(ff̄) pair, and σ
(f)
L,R(q2) denote the respective cross sections at variable

squared c.m. energy q2, the longitudinal polarization asymmetry at the Z

peak is conventionally defined as:

A
(f)
LR(m2

Z) ≡ A
(f)
LR =

σ
(f)
L (m2

Z) − σ
(f)
R (m2

Z)

σ
(f)
L (m2

Z) + σ
(f)
R (m2

Z)
. (3.204)
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We shall begin to investigate the most relevant theoretical features of this

observable at the simplest tree level approximation, since as we shall see

they remain essentially unchanged when one moves to the one-loop descrip-

tion. In particular, we shall make the initial approximation that, on top

of the Z resonance, the considered process can be described as a pure Z

exchange i.e. by only retaining the first Feynman diagram in Fig. 3.2. This

approximation corresponds, for what concerns the expression of any inte-

grated cross section, to neglecting the squared photon with respect to the

squared Z contribution (the γZ interference vanishes exactly on Z reso-

nance). This clearly introduces an error that can be exactly estimated, and

does not significantly modify any of the following conclusions.

In the described Z-dominance approximation, the expression of A
(f)
LR

at tree level can be easily derived by straightforward application of our

relevant formulae shown in detail in Chapter 2. But for an easier and im-

mediate understanding of the main characteristic theoretical features of this

quantity, it may be useful to follow a less rigorous, more intuitive approach,

that is based on the following simple remark. Consider the process of res-

onant production and subsequent decay into an arbitrary final f f̄ state of

a Z, that is created by a left (right) handed electron and by the corre-

sponding positron (whose chirality is uniquely fixed by that of the partner

electron in the model, see Eq. (1.114)). This process is described by a re-

lated cross section σ
(f)
L,R(m2

Z); quite generally, this will be proportional to

the product of the squared Z-lepton left (right) coupling with an awkward,

complicated function that describes the subsequent decay of the Z into the

final ff̄ fermionic state. Reabsorbing a universal normalization factor in

this function, one will consequently write:

σ
(0)(f)
L,R (m2

Z) = g
(0)2

L,R`f
(f)
L,R(m2

Z) (3.205)

(the zero apex is a reminder of the fact that we are now working at the

lowest tree level).

The key observation is now represented by the fact that, once the Z is

produced by a polarized electron (with a strength proportional to g
(0)2

L,R), it

decays into the final state in a way that is independent of the initial electron

polarization. Otherwise stated, one will have that:

f
(f)
L (m2

Z) = f
(f)
R (m2

Z) ≡ f (f)(m2
Z) . (3.206)

The immediate consequence is that, no matter how complicated f (f)(m2
Z)

is, it will factorize and cancel in the ratio of Eq. (3.141), leaving as a final
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result

A
(0)(f)
LR =

g
(0)2

L,` − g
(0)2

R,`

g
(0)2

L,` + g
(0)2

R,`

≡ A
(0)
LR (3.207)

i.e. the longitudinal polarization asymmetry (in the used approximation)

is actually independent of the final state, and only depends on the initial

lepton-Z couplings.

The previous conclusion has been reached to the lowest order in weak

and strong interactions in a Z dominance approximation. But, to lowest

order of weak interactions, one can immediately generalize it to all orders

for what concerns strong interactions affecting the final state. In fact, the

only consequence of these extra forces will be that of making the function

f (f)(m2
Z) to become even more awkwardly complicated, without, though,

introducing in it any dependence on the initial electron polarization. To all

orders in the strong interactions and to the lowest order in the electroweak

ones, ALR will be thus final state independent. In particular, it will be the

same for the production of final lepton pairs and for that of all possible

hadronic states, assumed to be the result of the initial creation of the five

possible elementary quark couples. This means that it will become possible

to measure a genuinely weak parameter like that of Eq. (3.207) by simply

counting the number of final hadronic states (of any possible flavor) pro-

duced by left handed and by right handed electrons, thus achieving a much

more enhanced statistics with respect to that provided by the analogous

measurement of the final leptonic states, with the consequent understand-

able benefit for what concerns the purely statistical experimental error.

This remarkable property will not be spoiled by strong interactions, but

rather from the consideration of possible higher order electroweak effects.

As a consequence of this fact, one would expect that is should essentially

survive at the considered one-loop level, which was explicitly shown in

Ref. [50].

Having listed the main theoretical reasons that privileged ALR, from the

very beginning, as a rather special quantity for accurate tests of the MSM,

we now want to specify more precisely what particular genuinely weak

parameter would be fixed by its precise measurement. This can be imme-

diately seen by looking at Eq. (1.116), that allows to rewrite Eq. (3.207) as

follows:

A
(0)
LR =

2(1 − 4 sin2 θW )

1 + (1 − 4 sin2 θW )2
. (3.208)
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In full generality, we conclude that Eq. (3.208) can be viewed as one

that provides a realistic operative definition of the weak parameter that

essentially characterizes the MSM, i.e. sin2 θW . In agreement with our

general treatment of input parameters, sin2 θW turns out to be fixed (mod-

ulo small calculable one photon exchange QED corrections) by a prescribed

measurement of cross sections, at a precisely defined value of the squared

four-momentum equal to the squared Z mass.

Although one should always interpret a tree level definition with some

care, a basic analogy with the corresponding QED situation remains, still,

impressive. We have actually seen e.g. from Eq. (3.87) and related discus-

sion that the genuine bare QED quantity α0 can be, in principle, extracted

from a prescribed measurement of a (differential) cross section at the pre-

cisely defined value of the squared four-momentum equal to the squared

photon mass. This corresponds nicely to the situation occurring for sin2 θW .

The previous tree level analogy becomes even more interesting if we

now consider the way in which the physical QED coupling α was defined

at the next one-loop level. We have presented the example of Eq. (3.88),

showing that the same physical cross section, computed at one loop, defines

the physical charge α. This fact, and the underlying symmetry between

electric and weak parameters of the model, leads in an natural way to the

idea of introducing a physical or effective weak parameter, associated to the

bare quantity sin2 θW , to be called conventionally sin2 θW,eff , operatively

defined at the one-loop level from the generalization of Eq. (3.208):

ALR ≡ σ
(`)
L − σ

(`)
R

σ
(`)
L + σ

(`)
R

|q2=m2
Z
≡ 2(1 − 4 sin2 θW,eff )

1 + (1 − 4 sin2 θW,eff )2
. (3.209)

A couple of points should be now stressed. The first one is that

Eq. (3.209) now prescribes a measurement of final leptonic states. In fact,

at the one loop level, the final state dependence of A
(f)
LR is not identically

vanishing, and in particular the expressions for leptonic and hadronic final

states are, in principle, different. This difference is, as previously stated,

small and calculable and in principle one can therefore use A
(had.)
LR to define

sin2 θW,eff as well. We shall return on this point later, but for the moment

we shall stick to the definition of Eq. (3.209). The second point is that the

definition of a physical sin2θW,eff is rather arbitrary, much like the analo-

gous definition of the physical α. Actually, a number of different definitions

of the physical mixing angle exists in the literature; however, that provided

by Eq. (3.209) has become nowadays largely accepted. In view of this fact,

not to generate unnecessary confusion, we shall not try to make a list of
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comparisons with alternative definitions.

The next step of our approach is now evidently that of deriving the

theoretical expression of sin2 θW,eff in the MSM. This will be done, in the

forthcoming Subsection.

3.3.2 Calculation of sin2 θW,eff at one loop: fermion pairs

contributions to self-energies

We now proceed to the derivation of the MSM expression of the effective

parameter sin2 θW,eff defined by Eq. (3.209). Following our systematic

criterion, we shall first work within a well defined set of approximations,

whose generalization to the complete situation will be intuitive and given

without a rigorous proof. As usually, we shall stick to the one-loop level.

At this order, we shall assume that, on top of the Z resonance, the pure

Z contributions to all cross sections, and consequently to all their ratios

like that defining ALR, will be the largely dominant ones. Since any cross

section is expressed as the result of an operation that involves the squared

modulus of the scattering amplitude, we shall concentrate our attention

on the effective amplitude i.e. on those modifications of the pure Z ex-

change Feynman diagram at tree level that contribute effectively ALR at

one loop. To begin with, we shall be limited to the consideration of the

gauge invariant subset of diagrams that correspond to the fermion pairs

contributions to self-energies, exactly as we did in the treatment of Sirlin’s

equation. In terms of Feynman diagrams, they correspond to the following

Figure 3.17 and, in our notations, they involve the fermion pairs compo-

nents of the Z transverse self-energy function A(f)(Z)(q2) and of the γZ

self-energy functions A(f)(Zγ)(q2), A(f)(γZ)(q2), evaluated in the case of in-

terest at q2 = m2
Z . Note that we have adopted a notation that defines the

mixed self-energies A(Zγ), A(γZ) according to whether the incoming boson

is a Z(A(Zγ)) or a γ(A(γZ)). This distinction is purely conventional at

the self-energy level, but will acquire a more definite meaning when extra

non universal corrections (vertices and boxes) of possibly not separately

gauge-invariant type will be considered.

If the quantity to be estimated is ALR, one extra simplification occurs.

In fact, one immediately realizes that the first two types of corrections cor-

responding to the diagrams (a) and (b) of Fig. 3.17 will cancel at one loop

in the involved ratio of cross sections. This is due to the fact that these

contributions will simply fall into components of the function f (f)(q2) de-

fined by an immediate generalization of Eqs. (3.205), (3.206), given the fact
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Fig. 3.17 Fermion (F) pairs self-energies modifications of the tree level Z exchange in
electron-positron annihilation: (a) Z self-energy (b) Zγ self-energy (c) γZ self-energy.
The final state is a fermion-antifermion pair.

that the initial vertex has remained unchanged. This is not conversely true

for the contribution coming from the diagrams of (c) type, that modify the

initial leptonic vertex. We can therefore conclude that, for what concerns

the calculation of A
(f)
LR at one loop for an arbitrary final fermion-antifermion

state, an effective component of the scattering amplitude can be associated

with the two diagrams represented in Fig. 3.18 and conventionally defined

as A
(1)(f)
ef,eff .

To compute this quantity, a simple possibility is provided by the fol-

lowing observation. As a consequence of the additional one-loop diagram

of Fig. 3.18, the overall effective amplitude can be written as the sum of

two terms. Following the prescriptions and the definitions of Eqs. (3.5)–

+
γZ

(a) (b)

Z
F

F

Fig. 3.18 Diagrams that contribute at one loop in the calculation of A
(f)
LR.
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(3.12), (3.46) and (3.62) (with a straightforward replacement of the Z or

γ self-energy with the γ − Z self-energy) leads to the expression:

A
(1)(f)
ef,eff (q2) =

[

i

(q2 −m2
Z)

|e0|
2 sin θW cos θW

v̄e(~p2)γ
µ(g

(0)
V e − γ5g

(0)
Ae )ue(~p1)

+
i

q2
|e0|v̄e(~p2)γ

µRe
A(F )(γZ)(q2)

q2 −m2
Z

ue(~p1)

]

j
(Z)
µf =

|e0|
2 sin θW cos θW

i

(q2 −m2
Z)
v̄e(~p2)γ

µ

[

g
(0)
V e

(

1 +
2 sin θW cos θW

g
(0)
V e

Re
A(F )(γZ)(q2)

q2

)

− γ5g
(0)
Ae

]

ue(~p1)j
(Z)
µf .

(3.210)

As one sees, the only difference between the tree level amplitude and the

effective one is that, in the latter, the vector Z-electron coupling g
(0)
V e =

− 1
2 (1 − 4 sin2 θW ) has been replaced by the effective coupling

g
(0)
V e ⇒ g

(1)(f)
V e,eff (q2) = g

(0)
V e

(

1 +
2 sin θW cos θW

g
(0)
V e

Re
A(f)(γZ)(q2)

q2

)

= g
(0)
V e

(

1 − 4 sin θW cos θW

(1 − 4 sin2 θW )
Re

A(f)(γZ)(q2)

q2

)

(3.211)

whilst the axial coupling g
(0)
Ae has remained unchanged. For what con-

cerns the expression of ALR, it is now convenient to rewrite the tree level

Eq. (3.207) in terms of g
(0)
V e and g

(0)
Ae . This gives:

A
(0)
LR ≡ 2g

(0)
V eg

(0)
Ae

g
(0)2
V e + g

(0)2
Ae

. (3.212)

From the previous discussion it is now clear that the new expression

at one loop will be obtained by simply replacing g
(0)
V e with its modification

Eq. (3.211), by definition computed at q2 = m2
Z . Performing the usual

operations formally valid at one loop, and introducing for simplicity the

auxiliary variable

vW = 1 − 4 sin2 θW (3.213)

one arrives in a straightforward way to the following result:

A
(1)(f)
LR =

2g
(1)(f)
V e,eff (m2

Z)g
(0)
Ae

(g
(1)(f)
V e,eff (m2

Z))2 + g
(0)2

Ae
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=
2g

(0)
V eg

(0)
Ae

(g
(0)2

V e + g
(0)2
Ae )

[

1 − 4 sin θW cos θW

vW

(1 − v2
W )

(1 + v2
W )

Re
A(f)(γZ)(m2

Z)

m2
Z

]

+‘small’ QED=

≡ A
(0)
LR

[

1 − 4 sin θW cos θW

vW

(1 − v2
W )

(1 + v2
W )

Re
A(f)(γZ)(m2

Z)

m2
Z

]

. (3.214)

From this formula, by simply equating it to the operative definition given

in Eq. (3.209), we can now derive the expression of the fermion pairs com-

ponent of the self-energy contribution to sin2 θW,eff . This can be done

immediately by writing the formal generalization of Eq. (3.209):

A
(1)(f)
LR ≡

2(1 − 4 sin2 θ
(f)
W,eff )

1 + (1 − 4 sin2 θ
(f)
W,eff )2

. (3.215)

Equating Eqs. (3.215) and (3.214) and using Eq. (3.208) one is then led,

after a few straightforward steps, to the result

sin2 θW = sin2 θ
(f)
W,eff − sin θW cos θWRe

A(f)(γZ)(m2
Z)

m2
Z

. (3.216)

A simpler attitude is that of realizing that, at the considered fermion pairs

contribution approximation level, the only crucial replacement is that of

the bare vector Z-lepton coupling, g
(0)
V e = − 1

2 + 2 sin2 θW , by the effective

coupling defined by Eq. (3.211). This can equally well be interpreted as a

replacement of sin2 θW with sin2 θ
(f)
W,eff , by simply defining:

g
(1)(f)
V e,eff (m2

Z) ≡ g
(0)
V e + 2 sin θW cos θWRe

A(f)(γZ)(m2
Z)

m2
Z

= −1

2
+ 2 sin2 θW + 2 sin θW cos θWRe

A(f)(γZ)(m2
Z)

m2
Z

≡ −1

2
+ 2 sin2 θ

(f)
W,eff (3.217)

from which , again, we find1:

sin2 θ
(f)
W,eff = sin2 θW + sin θW cos θWRe

A(f)(γZ)(m2
Z)

m2
Z

. (3.218)

1A word of caution is now worthwhile. Equation (3.218) (or (3.216)) contain a quantity

sin2 θ
(f)
W,eff

, meaningfully defined only in the “fermion pairs contribution to self-energies
approximation”, i.e. to the extent that all one loop contributions of different nature are
neglected. This means that, if one wants to eliminate in Eq. (3.218) the bare parameter
sin2 θW using e.g. Eqs. (3.153), (3.154), only the fermion pairs contribution to Eq. (3.154)
should be retained, to guarantee a self-consistent procedure in this preliminary and
approximate treatment.
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as in Eq. (3.216).

Equation (3.218) provides the formal definition of the component of the

effective electroweak mixing angle that takes fermion pairs contributions to

self-energy effects at one loop into account. We shall now show that it can

be rewritten in a more fashionable way, as a sum of physical parameters

and of quantities previously defined in this Chapter. As a first and manda-

tory step in this direction, we shall verify that the quantity defined by

Eq. (3.218) as the sum of a bare parameter and of a transverse self-energy,

both separately infinite, is actually finite. As we did in Subsection 3.2.2,

Eq. (3.158), we shall be limited to the consideration of the contribution to

sin2 θW , A(γZ) from a lepton family ≡ (`, ν`). To compute its infinite part,

we shall use our previous equations (3.153), (3.154) and work consistently

following the comment given in the footnote after Eq. (3.218), i.e. only

retaining fermion pairs contributions on both sides of it. In this way, we

obtain from Eq. (3.218):

sin2 θ
(f)
W,eff =

[

1 − m2
W

m2
Z

]

+
m2

W

m2
Z

Re

[

A(Z)(m2
Z)

m2
Z

− A(W )(m2
W )

m2
W

](f)

+ sin θW cos θWRe
A(f)(γZ)(m2

Z)

m2
Z

. (3.219)

The calculation of the coefficient of the infinite contribution from a (`, ν`)

family proceeds now in the known way, leading to the result:

sin2 θ
(`,ν`)(∞)
W,eff = ∆

[

e20192π2 sin2 θW

]

×
{[

3 − 6
m2

e

m2
Z

+ (1 − 4 sin2 θW )2 − 4 + 4 sin2 θW + 6
m2

e

m2
Z

]

+ 4 sin2 θW (1 − sin2 θW )

}

= 0 (3.220)

(the terms in the square bracket correspond to the A(Z), A(W ) contribution).

Analogous conclusion, suggested as an useful exercise to the reader, can be

derived for the general contribution from a (u, d) quark couple.

Having checked that the definition of Eq. (3.218) is actually physically

acceptable (i.e. infinity free) we can rewrite Eq. (3.219) in the more under-

standable way:

sin2 θ
(f)
W,eff =

[

1 − m2
W

m2
Z

]

+O (α) (3.221)
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where the finite O(α) one loop effect is fully given by the fermion pairs

contribution to transverse self-energies.

A first important conclusion that can be already drawn at this point

is the fact that the effective mixing angle is not equal to [1 − (m2
W /m2

Z)],

and will differ from that quantity as the result of the presence of one-

loop corrections. This is quite different from the situation met at the tree

level, where the same bare parameter sin2 θW was defined both by the bare

mass ratio, sin2 θW = [1 − (m2
W /m2

Z)], and by the bare expression of A
(0)
LR

Eq. (3.208). To give the previous conclusion a more quantitative content,

we return to Eq. (3.219) and, working consistently at the one-loop order

and using the definitions of Eq. (3.169), re-express it in the equivalent way:

sin2 θ
(f)
W,eff =

[

1 − m2
W

m2
Z

]

+

[

m2
W

m2
Z

(∆1 (0) − ∆2) −
(

1 − m2
W

m2
Z

)

∆3

(

m2
Z

)

]

.(3.222)

In the previous equation, an apparent dependence on the (unwanted)

parameter mW is exhibited. This can be eliminated exploiting the fact

that, at the one-loop level, one can write:

[

1 − m2
W

m2
Z

]

= s20 +
c20s

2
0

2c20 − 1
∆rW (3.223)

having used Eqs. (3.204), (3.206). Inserting the previous equality in

Eq. (3.222), one obtains the final expression:

sin2 θ
(f)
W,eff = s20 +

s20
2c20 − 1

[

∆3

(

m2
Z

)

− c20∆1 (0)
]

(3.224)

and, inside ∆1 (0), ∆3

(

m2
Z

)

, one can safely set
m2

W

m2
Z

=c20 ' 0.769.

Equation (3.224) shows the expression of the effective mixing angle in

the MSM, in the approximation of only retaining the fermion pairs con-

tribution to self-energies at one loop. As anticipated in this Chapter, the

result does not depend on the ∆2 parameter. It will be numerically fixed

by the values of the input quantities α(m2
Z), GF , mZ that determine s20,

and by those of the other parameters that appear at one loop, in partic-

ular the top mass mt that affects ∆1(0). Keeping in mind the fact that

we have only derived an approximate expression of the weak mixing angle,
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we shall now perform in the next Subsections a systematic investigation of

the various relationships between sin2 θW,eff and the various experimental

observables at the Z peak, always retaining the same “fermion pairs dom-

inance” approximation. The reason, that we must anticipate, is the fact

that the set of formulae that we shall obtain in this way will be simple and

understandable and, more important, easily generalizable to the realistic

situation in which all the one-loop effects will be consistently taken into

account.

3.3.3 Relationship between sin2 θ
(f)
W,eff and mZ

As the first example of the interconnection between the weak effective mix-

ing angle and the quantities that can be measured at the Z peak, we shall

now derive the formula that relates, at one loop, the value of the Z mass to

that of sin2 θW,eff . This derivation is rather simple if one starts from the

definition of c20s
2
0 Eq. (3.200) and rewrites it in the equivalent form:

m2
Z =

α
(

m2
Z

)

π√
2GF

1

c20s
2
0

. (3.225)

The next step is provided by Eq. (3.224) that, in the usual one-loop

philosophy, can be rewritten as follows:

s20c
2
0 = sin2 θ

(f)
W,eff

(

1 − sin2 θ
(f)
W,eff

)

[

1 + ∆1 (0) − ∆3

(

m2
Z

)

c20

]

.

(3.226)

Combining the previous equations we can finally write the equality:

m2
Z =

α
(

m2
Z

)

π√
2GF

1

sin2 θ
(f)
W,eff

(

1 − sin2 θ
(f)
W,eff

)

× 1
[

1 + ∆1 (0) − ∆3(m2
Z)

c2
0

] . (3.227)

Equation (3.227) is a simple relationship between different observables

that are measurable at the Z peak. It is fixed by the numerical values of

mZ , GF , α(m2
Z) and by those of the two weak parameters ∆1(0), ∆3(m

2
Z).

The third weak parameter ∆2 does not appear, as we have anticipated.

We shall find the same properties in all the following examples that will be

provided for other observables in the following Subsections.
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3.3.4 The Z leptonic width at one loop in the ‘fermion

pairs’ approximation

A typical observable that can be measured with very high precision at the Z

peak is the Z partial decay width into a specific final fermion-antifermion

state. We shall now consider in some detail the derivation of the corre-

sponding MSM expression at one loop, as a useful illustrative example.

To begin with, we shall consider the simplest possible realistic case, that

of of a purely leptonic charged final state; the generalization to hadronic

production will be treated in the following Chapter.

We already derived in Chapter 2 the tree-level expression of the leptonic

width Γ`, that we shall rewrite as:

Γ
(0)
`

mZ
=

[

G
(0)
F m2

Z

6π
√

2

]

[

|g(0)
V ` |2 + |g(0)

A` |2
]

(3.228)

(we are now using bare parameters, and the identity of Eq. (3.127)).

To generalize the previous definition at one loop, several approaches

are possible. In this Subsection we shall continue to work in the spirit of

the previous part of this Book. To begin with, we shall redefine the Z

leptonic width at tree level by considering the corresponding expression

of the pure Z component of the cross section for the process of electron-

positron annihilation into a charged lepton-antilepton (` ¯̀) pair at variable

squared c.m. energy q2, given in Chapter 2. For our purposes, we shall

write it as follows:

σ
(0)(Z)
`

(

q2
)

q2
=

12π

(q2 −m2
Z)

2

[

Γ
(0)
e Γ

(0)
`

m2
Z

]

. (3.229)

The previous equality is a tree level one, and as such it must be handled

with some caution. It can, though, provide a useful operative definition if

it is rewritten as follows:

lim
q2→m2

Z

σ
(0)(Z)
`

(

q2
)

12πq2

[

D
(0)
Z

(

q2
)

]2

=

[

Γ
(0)
e Γ

(0)
`

m2
Z

]

(3.230)

where D
(0)
Z (q2) = q2 −m2

Z is the denominator that appears in the bare Z

propagator.
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Following the procedure already illustrated in this Chapter, when the

definition of the physical electric charge at one loop was just the generaliza-

tion of that given at tree level for the bare one, we shall define the physical

leptonic width at one loop as the simple generalization of Eq. (3.230), i.e.:

lim
q2→m2

Z

σ
(1)(Z)
`

(

q2
)

12πq2
|D(1)

Z

(

q2
)

|2 =

[

Γ
(1)
e Γ

(1)
`

m2
Z

]

(3.231)

where D
(1)
Z (q2) is the denominator that appears in the physical Z propaga-

tor at one loop, that does not vanish at q2 = m2
Z . This allows to rewrite

Eq. (3.231) in the more useful form:

lim
q2→m2

Z

σ
(1)(Z)
`

(

q2
)

12πq2
=

1

|D(1)
Z (m2

Z) |2

[

Γ
(1)
e Γ

(1)
`

m2
Z

]

. (3.232)

The l.h.s. of Eq. (3.232) is essentially the result of the process of squar-

ing the Z-component of the invariant scattering amplitude of the process

(summing and averaging over polarizations). This suggests that to derive

the quantity on the r.h.s. it will be sufficient to write the modified expres-

sion of the square of the Z component of the invariant scattering amplitude

at one loop, in the limit q2 → m2
Z . This can be done starting from the

expression of that amplitude at tree level Eq. (3.6), that can be written in

the equivalent form:

A
(0),(Z)
e`

(

q2, θ
)

=

[

i
√

2G
(0)
F

m2
Z

q2 −m2
Z

]

×
[

ū` (~p3) γµ

(

g
(0)
V ` − γ5g

(0)
A`

)

v` (~p4)

× v̄e (~p2) γ
µ
(

g
(0)
V e − γ5g

(0)
Ae

)

ue (~p1)
]

. (3.233)

In this Section, we shall only consider those modifications of the scat-

tering amplitude at one loop that are due to the fermion pairs contribution

to self-energies. In the considered case of the Z component of Ae` , only

the corresponding effects on the bare Z propagator will have to be retained.

Quite generally, these can be divided into two distinct sets. The first one

is not altering the “external” Lorentz structure of tree level Feynman dia-

gram, that appears in the second square bracket on the r.h.s. of Eq. (3.233),

and simply modifies the “internal” structure represented by the first square
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bracket on the r.h.s. of the same Equation. This corresponds to the inser-

tion of the Z self-energy diagrams like that shown in Fig. 3.7. The second

set also modifies the external structure and is given, in the approximation

that is being used, by the insertion of Zγ self-energy diagrams with a pho-

ton entering either the initial or the final vertex. The effect of the first

set of Feynman diagrams can be easily computed. By a straightforward

applications of the simple prescriptions that were given in this Chapter one

derives that:

m2
Z

q2 −m2
Z

=
m2

Z +ReA(Z)
(

m2
Z

)

q2 −m2
Z −ReA(Z) (m2

Z)

→ m2
Z +ReA(Z)

(

m2
Z

)

q2 −m2
Z −ReA(Z) (m2

Z) +A(Z) (q2)
(3.234)

where the transverse self-energy function A(Z)
(

q2
)

will have in general both

a real (Re A) and an imaginary (Im A) component.

The previous Equation can be rewritten, by straightforward repeated

applications of those allowed one- loop tricks that we have often illustrated

(that we suggest as useful exercise to the reader), in the more appealing

form:

m2
Z

q2 −m2
Z

→ m2
Z

D
(1)
Z (q2)

[

1 +
ReA(Z)

(

m2
Z

)

m2
Z

− Re

(

A(Z)
(

q2
)

−A(Z) (0)

q2

)

− m2
ZRe

(

F (Z)
(

q2
)

− F (Z)
(

m2
Z

)

q2 −m2
Z

)]

(3.235)

where the definition A(Z)
(

q2
)

= A(Z) (0) + q2F (Z)
(

q2
)

has been used and

D
(1)
Z

(

q2
)

is the denominator of the physical Z propagator, whose explicit

expression is:

D
(1)
Z

(

q2
)

= q2 −m2
Z + iq2

ΓZ

(

q2
)

mZ
. (3.236)

The real quantity
ΓZ(q2)

mZ
is defined as:

ΓZ

(

q2
)

mZ
=

ImF (Z)
(

q2
)

1 +ReF (Z) (q2) +m2
ZRe

(

F (Z)(q2)−F (Z)(m2
Z)

q2−m2
Z

)
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= ImF (Z)
(

q2
)

+O
(

α2
)

' ImF (Z)
(

q2
)

(3.237)

and is called the energy-dependent Z (total) width. One verifies imme-

diately that each contribution from a given fermion-antifermion pair F F̄

reproduces, modulo O
(

α2
)

terms, the partial Z width ΓF into F F̄ defined

in Chapter 2 at q2 = m2
Z .Thus one can safely omit at one-loop the q2

dependence and simply write ΓZ (=
∑

F ΓF )in Eq. (3.236).

One still has to replace the bare coupling G
(0)
F in Eq. (3.233) with the

physical one and perform the limit q2 → m2
Z . Using the expression of the

shift δGF Eq. (3.143) finally leads to the expression of the modification of

the Z component of the scattering amplitude due to the fermion pairs (f)

contribution to the Z transverse self-energy:

lim
q2→m2

Z

A
(1)
e`

(

q2, θ
)

D
(1)
Z

(

m2
Z

)

= i
√

2GFm
2
Z

×
[

1 + ∆1 (0) −m2
Z Ḟ

(f),(Z)
(

m2
Z

)

]

× [ū` (~p3) γµ........] (3.238)

where Ḟ
(

m2
Z

)

denotes the q2 derivative of F at q2 = m2
Z and the second

square bracket on the r.h.s. is still equal to the tree level one.We now

assume universality for the Z-charged lepton couplings so that Γe =Γ`.

Then the l.h.s. of the previous equation is exactly that which produces

the internal shift of the partial width.This will be obtained by the simple

formal replacement:

G
(0)
F m2

Z

6π
√

2
→ GFm

2
Z

6π
√

2

×
[

1 + ∆1 (0) −m2
Z Ḟ

(f),(Z)
(

M2
z

)

]

. (3.239)

The second modification of the tree level partial width is due to the

change of the external structure, corresponding to the second square bracket

on the r.h.s. of Eq. (3.228) and due, in our approximation, to the inser-

tion of the γZ self-energy. Without entering a formal discussion, we can

easily guess what effect will arise. In fact, the rôle of the external struc-

ture, after spin summation and averaging, is that of generating the term

'
[

g
(0)2
V ` + g

(0)2
A`

]

= 1
4

[

1 +
(

1 − 4 sin2 θW

)2
]

. From the discussion given in

Subsection 3.3.2 we already know that the fermion pairs contribution to
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the γZ self-energy will simply generate at one loop the formal replace-

ment sin2 θW → sin2 θ
(f)
W,eff , where the latter parameter is defined e.g. by

Eq. (3.212). Therefore we can conclude that, within the fermion pairs ap-

proximation, the final expression of the Z charged leptonic width Γ` will

be at one loop:

Γ
(1)(f)
`

mZ
=
GFm

2
Z

24π
√

2

×
[

1 + ∆1 (0) −m2
Z Ḟ

(f)(Z)
(

m2
Z

)

]

×
[

1 +
(

1 − 4 sin2 θ
(f)
W,eff

)2
]

. (3.240)

The previous equation gives the first example of the deep interconnec-

tion between different observables at the Z peak. It shows that the same

parameter sin2 θW,eff that is measured by the longitudinal polarization

asymmetry also enters the expression of the Z leptonic width, together

with a set of electroweak one-loop corrections to the tree level formula.

The latter ones will depend in general on some of the characteristic MSM

parameters (mt,mH ....), whose numerical values will have to be in agree-

ment with those of the various measured quantities in a suitable overall

numerical fit.

Given the relevance of this statement, we shall now devote the remaining

part of this Chapter to a more general analysis, that also includes those one-

loop effects (non fermionic contributions to self-energies, vertices, boxes)

that we have neglected until now. This will lead to the complete one-loop

expression of the fundamental parameter sin2 θW,eff and, also, to the gen-

eralization of all those equations that were written in the fermion pairs

contribution approximation. As we shall see, the final form of all the rele-

vant expressions will be obtained by an immediate and simple modification

of the “approximate” ones, that will be discussed in the forthcoming Sec-

tion.

3.4 The complete expression of sin2 θW,eff at one loop

Our derivation of the MSM expression of the physical observables at the Z

peak at one loop has only considered, until now, the addition to the tree

level Z exchange of those effects that are due to the fermion-pairs contri-
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butions to the gauge bosons self-energies. As a result of this procedure we

have obtained approximate formulae, whose numerical reliability still has

to be discussed. But, independently of this important “detail”, it must

be stressed that the approximation thus derived can be considered as a

physical one, since it is evidently gauge-invariant. This property, that must

be obviously a common feature of every theoretical prediction, is a simple

consequence of the fact that in the fermion propagators, that must be inte-

grated in their virtual four-momentum to obtain their contribution to the

transverse gauge bosons self-energies Aγ,W,Z...

(

q2
)

, there is no dependence

on the gauge-fixing parameters ξj that can be transmitted to A.

The previous feature is no longer valid as soon as we consider contribu-

tions to the gauge bosons self-energies that involve a non fermionic loop (to

be generally called bosonic contributions). In the case of electron-positron

annihilation, the simplest representative example is that of a W bosons

bubble represented in Fig. 3.19.

The related complication can be summarized as follows: the Feynman

diagram of that Figure generates a contribution to the γ, Z self-energies

that will be the result of an integration over a virtual four-momentum κ

analogous to that of Eq. (3.26), but with the fermion propagators replaced

by the W ones that are of the form given in Eq. (3.17), with a ξW depen-

dence in their longitudinal parts.Thus, in full generality, one expects for the

self-energy tensor Πγ,Z
µ,ν a dependence on ξW from that integration.

The delicate point is the fact that the ξ dependence of the longitudinal

components of the integrands “migrates” into (also) the transverse compo-

nent of the integrated function A, so that, using a self-explaining notation

in which (W,W ) denotes the W pairs contribution:

W

W
γ,Z γ,Z

Fig. 3.19 Self-energy diagram including a W+W− pair.
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A(W,W )(γ,Z) = A(W,W )(γ,Z)
(

q2, ξW
)

. (3.241)

Technically speaking, the reason of this “migration” is the fact that,

after κ integration, a term of the form ' κµκν can generate a Lorentz

tensor ' gµν that contributes the transverse part of the self-energy. As a

consequence of this fact, there will be, in the expression of the invariant

scattering amplitude at one loop,some contributions from self-energies that

will not be gauge-invariant.Since the scattering amplitude must conversely

be the same in any arbitrary gauge, at any order of perturbation theory,

there will have to be necessarily, at the considered one-loop level, contri-

butions of different nature that add up to the previous ones and cancel the

previous ξ dependence.

Clearly, the immediate candidate diagrams are those of vertex and of

box type, represented by Figs. 3.6 and 3.7. In particular, on pure intuitive

arguments, one expects that a gauge dependence is generated by diagrams

where two W ’s are exchanged, like those represented in Fig. 3.19.

In fact, this feeling is correct, since one can easily verify that both dia-

grams do depend on the parameter ξW . The next expectation is then that

there will be special “intelligent” combinations of transverse self-energies,

vertices and boxes that will make up physically meaningful gauge-invariant

“blocks”, calculable in any arbitrary gauge obtaining the same expressions,

exactly like in the case of the fermion pairs contribution to the transverse

self-energies.To determine such combinations represents a quite useful ex-

ercise. One clean way of obtaining these combinations is that of computing

rigorously all the separate Feynman diagrams, with their explicit ξ depen-

dence; then its elimination is relatively straightforward. A simpler attitude

that we shall follow is that of showing how the “intelligent” combinations

W

W

e

ee

e

(a) (b)

νeνeνe
γ,Z

W

W

Fig. 3.20 Vertex diagram (a) and box diagram (b) involving double W exchange, for a
final leptonic state.
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must be, on quite general grounds. Then they will be computed in a spe-

cial (ξ = 1) gauge, and will lead to the requested physical predictions for

all the relevant observables. This will be done in the remaining part of this

Chapter.

3.4.1 A gauge-invariant classification of one-loop effects

The starting point of this discussion will be the consideration of the invari-

ant scattering amplitude for the process of electron-positron annihilation

into a charged lepton-antilepton ` ¯̀ pair; the generalization to the case of a

final quark-antiquark pair will then be straightforward. As usually, we shall

work in the approximation of considering massless external fermions. At

the tree level the MSM expression is given by Eqs. (3.5),(3.6) and consists

of the sum of two components that we shall call the γγ and ZZ Lorentz

structures. These correspond to the two products j
µ(γ)
` j

(γ)
eµ and j

µ(Z)
` j

(Z)
eµ

whose terms are defined by Eqs. (3.7)–(3.10) (f = ` now), and correspond

to the propagation of a photon and of a Z in the s-channel. Since we

shall not consider Bhabha scattering in this Chapter, these are the only

independent Lorentz structures at tree level.

The previous statement is no longer true when one moves to the next

one-loop level. The simplest example is provided by the two self-energy

diagrams represented in Fig. 3.21, that we shall conventionally indicate as

of “γZ” and of “Zγ” type, following the order (from left to right) of the

initial and final state in the diagrams.

γ γZ Z

(a) (b)

Fig. 3.21 Self-energy diagrams (a) of “γZ” type and (b) of “Zγ” type. The internal
loops represent both fermionic and bosonic contributions.

These contribute the scattering amplitude in the way that we write,

from our prescriptions, as follows:

A
(1)(a)
e`

(

q2, θ
)

+A
(1)(b)
e`

(

q2, θ
)

=
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−ijµ(Z)
`

[

1

q2 −m2
Z

A(γZ)
(

q2
) 1

q2

]

j(γ)
eµ

−ijµ(γ)
`

[

1

q2
A(γZ)

(

q2
) 1

q2 −m2
Z

]

j(Z)
eµ (3.242)

(A(γZ) is the transverse γZ self-energy, for which the ordering of γ, Z in-

dexes is irrelevant). The previous equation shows that two new Lorentz

structures ' j
µ(Z)
` j

(γ)
eµ , j

µ(γ)
` j

(Z)
eµ have now appeared. In the process that

we are considering, as a consequence of the assumed universality of elec-

troweak interactions, the two structures are identical. For final hadronic

states ` → f = u, d, s, c, b they will not coincide, and for this reason we

retain the apparently useless double leptonic index.

It is straightforward to verify that no new Lorentz structures are intro-

duced by the remaining one-loop diagrams. Consider first the remaining

self-energy diagrams represented in Fig. 3.21, that modify the photon and

the Z propagators.

These will simply act as multiplicative correction factors to the corre-

sponding tree-level γγ and ZZ structures, since from an immediate appli-

cation of our rules we obtain from them the following contributions to the

scattering amplitude:

γ γZZ

(c) (d)

Fig. 3.22 (c) Z self-energy and (d) γ self-energy diagrams at one loop, with both
fermionic and bosonic pairs included.

A
(1)(c)
e`

(

q2, θ
)

= ij
µ(Z)
`

[

1

q2 −m2
Z

(

1 − A(Z)
(

q2
)

q2 −m2
Z

)]

j(Z)
eµ (3.243)

A
(1)(d)
e`

(

q2, θ
)

= ij
µ(γ)
`

[

1

q2

(

1 − F (γ)
(

q2
)

)

]

j(γ)
eµ . (3.244)

Note that in all Eqs. (3.237), (3.238), (3.239) the transverse self-energies

contain all contributions i.e. both those from fermion pairs and those of

bosonic type, that implies in general a gauge-dependent contribution.
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The key and simple observation is now that, within the MSM and for

massless external fermions, also the remaining diagrams of vertex and box

type do not introduce extra Lorentz structures.For vertices, the two typical

diagrams are those depicted in Figs. 3.23–3.24, where the bubbles contain

all possible weak contributions (purely QED vertices have known features

and can be computed separately, together with other QED effects, in a

known way).

γZ

(g) (h)

Fig. 3.23 Examples of vertex diagrams at one loop: (g) initial Z vertex, (h) initial γ
vertex.

We shall define their contribution to the scattering amplitude with the

following notations:

A
(1)(g)
e`

(

q2, θ
)

= ij
µ(Z)
`

1

q2 −m2
Z

Γ(Z)
eµ (3.245)

A
(1)(h)
e`

(

q2, θ
)

= ij
µ(γ)
`

1

q2 −m2
Z

Γ(γ)
eµ (3.246)

where the functions Γ
(γ)
eµ ,Γ

(Z)
eµ take into account vertices like those shown in

Fig. 3.10 and similar ones, and for the moment we only need the fact that,

under our assumptions, their only possible Lorentz decomposition will be:

Γ(Z)
eµ = a1j

(Z)
eµ + a2j

(γ)
eµ (3.247)

Γ(γ)
eµ = a3j

(Z)
eµ + a4j

(γ)
eµ (3.248)

where a1,2,3,4 are certain functions that will depend on the bare parameters

of the MSM.

The previous equations are simply a consequence of the fact that, for

massless external fermions, any diagram of vertex type can only be a com-

bination of a vector ' γµ and of an axial-vector ' γµγ5 Lorentz compo-

nent, owing to the form of the electroweak interaction Lagrangian of the



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

Z Physics at One Loop for Final Leptonic States 179

MSM.This will generate an immediate decomposition of the Γeµ functions

along two Lorentz vector and Lorentz axial-vector “axes”:

Γ(Z)
eµ = b1v̄e (~p2) γµγ5ue (~p1) + b2v̄e (~p2) γµue (~p1) (3.249)

Γ(γ)
eµ = b3v̄e (~p2) γµγ5ue (~p1) + b4v̄e (~p2) γµue (~p1) (3.250)

where b1,2,3,4 are other functions that also depend on the bare parameters.

To move from the decompositions of Eqs. (3.249), (3.250) on the Lorentz

vector-axial vector components to those of Eqs. (3.247), (3.248) along the

photon-Z ones is like a change of axes in a two-dimensional space. From the

expressions of j
(γ)
µ , j

(Z)
µ Eqs. (3.7)–(3.10) one obtains easily the connections

between the ai and the bi functions, that reads:

a1 = − 1

|e0|

[

2 sin θW cos θW

g
(0)
Ae

b1

]

(3.251)

a2 =
1

|e0|Qe

[

g
(0)
V e

g
(0)
Ae

b1 + b2

]

(3.252)

a3 = − 1

|e0|

[

2 sin θW cos θW

g
(0)
Ae

b3

]

(3.253)

a4 =
1

|e0|Qe

[

g
(0)
V e

g
(0)
Ae

b3 + b4

]

. (3.254)

It is convenient at this point to introduce the projections of the Γeµ

functions on the two photon and Z “axes” as from Eqs. (3.247), (3.248).

Using the conventional notation for ordinary vectors, we shall write [51]:

a1,2 =
(

j(Z),(γ)
eµ ,Γeµ(Z)

)

(3.255)

a3,4 =
(

j(Z),(γ)
eµ ,Γeµ(γ)

)

. (3.256)

Using the previous notations it is now possible to rewrite the considered

vertices contributions to the scattering amplitude in the following useful

way:
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A
(1)(g)
e`

(

q2, θ
)

= ij
µ(Z)
`

[

1

q2 −m2
Z

(

j(Z)
eµ ,Γ(Z)

eµ

)

]

j(Z)
eµ

+ ij
µ(Z)
`

[

1

q2 −m2
Z

(

j(γ)
eµ ,Γ

(Z)
eµ

)

]

j(γ)
eµ (3.257)

A
(1)(h)
e`

(

q2, θ
)

= ij
µ(γ)
`

[

1

q2 −m2
Z

(

j(Z)
eµ ,Γ(γ)

eµ

)

]

j(Z)
eµ

+ ij
µ(γ)
`

[

1

q2 −m2
Z

(

j(γ)
eµ ,Γ

(γ)
eµ

)

]

j(γ)
eµ . (3.258)

From these equations one clearly sees how the overall effect of the ini-

tial vertex diagrams can be redistributed between the four independent

Lorentz structures of the process, and begins to understand which combi-

nations of self-energies and vertices will form the separate gauge-invariant

“blocks”.These will be precisely the combinations that fall into the same

Lorentz structure. In fact, the scattering amplitude must be, by definition,

independent of the considered gauge.This property must be valid for all the

independent Lorentz structures that we have defined. One can provide as

support of this statement a simple physical motivation, since there would

be no way that a possible gauge-dependence of a structure that only takes

into account e.g. photon exchanges were “cured” by another one that only

feels Z exchanges. In a strictly mathematical language, there is no possible

migration of ξi factors from one of the considered Lorentz structures to any

different one.

In a perfectly analogous way, with obvious modifications, one can treat

the effect of the diagrams of final weak vertex type, represented in Fig. 3.24.

γZ

(g') (h')

Fig. 3.24 Vertex diagrams at one loop: (g′) final Z vertex, (h′) final γ vertex.

The corresponding contribution to the scattering amplitude will be writ-

ten in the form:
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A
(1)(g′)+(h′)
e` = iΓ

µ(Z)
`

1

q2 −m2
Z

j(Z)
eµ + iΓ

µ(γ)
`

1

q2
j(γ)
eµ . (3.259)

The final vertex functions Γµ
` can be decomposed along their photon

and Z components exactly like in the case of the initial vertex ones. We

shall identify the relevant projections with the notations (jµ
` ,Γ

µ
` ) and γ,

Z indexes on the corresponding quantities, and write the contribution of

Fig. 3.24 to the scattering amplitude in full analogy with Eqs. (3.257),

(3.258) i.e.:

A
(1)(g′)
e`

(

q2, θ
)

= ij
µ(Z)
`

[

1

q2 −m2
Z

(

j
(Z)
`µ ,Γ

(Z)
`µ

)

]

j(Z)
eµ

+ ij
µ(Z)
`

[

1

q2 −m2
Z

(

j
(γ)
`µ ,Γ

(Z)
`µ

)

]

j(γ)
eµ (3.260)

A
(1)(h′)
e`

(

q2, θ
)

= ij
µ(γ)
`

[

1

q2 −m2
Z

(

j
(Z)
`µ ,Γ

(γ)
`µ

)

]

j(Z)
eµ

+ ij
µ(γ)
`

[

1

q2 −m2
Z

(

j
(γ)
`µ ,Γ

(γ)
`µ

)

]

j(γ)
eµ . (3.261)

The previous notations are at this point purely conventional. We shall

provide a simple, illustrative and relevant example with a complete calcula-

tion of the projections in the special case of the Zbb̄ vertex in Chapter 4, and

retain for the moment the abstract terminology that has been introduced.

The last contribution to be considered is that coming from weak boxes,

i.e.diagrams like those of Fig. 3.10 where W ’s or Z’s are exchanged.In the

configuration of massless external fermions it is easy to realize that, in the

MSM, these diagrams can only contribute the four Lorentz structures that

we have defined, as one can directly verify by a numerical calculation.

Using a self-explaining notation, we shall therefore write the weak boxes

(w.b.) contribution to the scattering amplitude as:

(−i)A(1)(w.b.)
e`

(

q2, θ
)

= j
µ(Z)
`

[

A
(w.b.)
e`,ZZ

(

q2, θ
)

]

j(Z)
eµ

+j
µ(γ)
`

[

A
(w.b.)
e`,γγ

(

q2, θ
)

]

j(γ)
eµ

+j
µ(Z)
`

[

A
(w.b.)
e`,γZ

(

q2, θ
)

]

j(γ)
eµ
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+j
µ(γ)
`

[

A
(w.b.)
e`,Zγ

(

q2, θ
)

]

j(Z)
eµ . (3.262)

The overall expression of the invariant scattering amplitude at one loop,

obtained as the sum of contributions from self-energies (s.e.), weak vertices

(w.v.) and weak boxes (w.b.), can be finally written as the sum of four

different, necessarily gauge-invariant, terms that correspond to the four

chosen Lorentz structures in the form:

(−i)A(1)(s.e.+w.v.+w.b.)
e`

(

q2, θ
)

=

= j
µ(Z)
`

[

1

q2 −m2
Z

(

1 − Â
(Z)
e`

(

q2, θ
)

q2 −m2
z

)]

j(Z)
eµ

+j
µ(γ)
`

[

1

q2

(

1 − F̂
(γ)
e`

(

q2, θ
)

)

]

j(γ)
eµ

−jµ(Z)
`

[

1

q2 −m2
Z

Â
(γZ)
e`

(

q2, θ
)

q2

]

j(γ)
eµ

−jµ(γ)
`

[

1

q2 −m2
Z

Â
(Zγ)
e`

(

q2, θ
)

q2

]

j(Z)
eµ . (3.263)

The four functions that appear in the different square brackets are the

“intelligent” combinations of self-energies, vertices and boxes that were

mentioned in the introduction of Section 3.4. By construction, they must

be gauge-invariant. Their explicit expressions can be easily derived by

simply summing the various contributions explicitly, using the notations of

this Section. They read:

Â
(Z)
e`

(

q2, θ
)

q2 −m2
Z

=
A(Z)

(

q2
)

q2 −m2
Z

−
(

j(Z)
eµ ,Γ(Z)

eµ

)

−
(

j
µ(Z)
` ,Γ

µ(Z)
`

)

−
(

q2 −m2
Z

)

A
(w.b.)
e`,ZZ

(

q2, θ
)

(3.264)

F̂
(γ)
e`

(

q2, θ
)

= F (γ)
(

q2
)

−
(

j(γ)
eµ ,Γ

(γ)
eµ

)

−
(

j
µ(γ)
` ,Γ

µ(γ)
`

)

− q2A
(w.b.)
e`,γγ

(

q2, θ
)

(3.265)

Â
(γZ)
e`

(

q2, θ
)

q2
=
A(γZ)

(

q2
)

q2
−
(

j(γ)
eµ ,Γ

(Z)
eµ

)
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−q
2 −m2

Z

q2

(

j
µ(Z)
` ,Γ

µ(γ)
`

)

−
(

q2 −m2
Z

)

A
(w.b.)
e`,γZ

(

q2, θ
)

(3.266)

Â
(Zγ)
e`

(

q2, θ
)

q2
=
A(γZ)

(

q2
)

q2
− q2 −m2

Z

q2

(

j(Z)
eµ ,Γ(γ)

eµ

)

−
(

j
µ(γ)
` ,Γ

µ(Z)
`

)

−
(

q2 −m2
Z

)

A
(w.b.)
e`,Zγ

(

q2, θ
)

. (3.267)

Note that the full dependence on the scattering angle θ is produced by

the box components; self-energies and vertices are functions of q2 only.As

a consequence of this fact, one can already guess that at the Z peak the

relevant combinations will exhibit no θ dependence.

A rather useful simplification arises now if we are strictly confined within

the one-loop approximation. In this case, one can rewrite Eq. (3.263) in the

equivalent, simple form that is strongly reminding the starting tree level

expression of Eqs. (3.5)–(3.10):

A
(1)(s.e.+w.v.+w.b.)
e`

(

q2, θ
)

= ij
µ(γ)
`

[

1

q2

(

1 − F̂
(γ)
e`

(

q2, θ
)

)

]

j(γ)
eµ

+ij
(1)µ(Z)
`

[

1

q2 −m2
Z

(

1 − Â
(Z)
e`

(

q2, θ
)

q2 −m2
Z

)]

j(1)(Z)
eµ (3.268)

where F̂
(γ)
e` , Â

(Z)
e` are given by Eqs. (3.265), (3.264) and we have introduced

the modified one-loop quantities:

j(1)(Z)
eµ = − |e0|

2 sin θW cos θW
v̄e (~p2) γµ

[

g
(1)
V e

(

q2, θ
)

− γ5g
(0)
Ae

]

ue (~p1) (3.269)

j
(1)µ(Z)
` = − |e0|

2 sin θW cos θW
ū` (~p3) γ

µ
[

g
(1)
V `

(

q2, θ
)

− γ5g
(0)
A`

]

v` (~p4) .

(3.270)

The modified one-loop vector couplings are expressed in terms of the

previous gauge-invariant combinations in the following form:

g
(1)
V e

(

q2, θ
)

= g
(0)
V e − 2 sin θW cos θWQe

Â
(γZ)
e`

q2
(3.271)

g
(1)
V `

(

q2, θ
)

= g
(0)
V ` − 2 sin θW cos θWQ`

Â
(Zγ)
e`

q2
. (3.272)
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Using the definition of the bare vector couplings Eqs. (3.11), the previous

expressions can be rewritten in the equivalent final form:

g
(1)
V e,`

(

q2, θ
)

= I3Le,` − 2Qe,`s
2
e,`

(

q2, θ
)

(3.273)

where:

s2e
(

q2, θ
)

= sin2 θW + sin θW cos θW

Â
(γZ)
e`

(

q2, θ
)

q2
(3.274)

and

s2`
(

q2, θ
)

= sin2 θW + sin θW cos θW

Â
(Zγ)
e`

(

q2, θ
)

q2
. (3.275)

The two functions s2e, s
2
` are by construction gauge-invariant.Assuming

lepton universality, they are obviously identical. This will not be true when

final hadronic states will be examined; in that case, ` will become a light

quark q = u, d, s, c, b and the relevant quantity s2q will differ from s2e, as we

shall show in detail in Chapter 4. In Eqs. (3.274)–(3.275) an extra sim-

plification can be introduced, once again related to the adopted one-loop

conventions. To the extent that cross sections or their ratios are consid-

ered, one must always compute the squared modulus of a component of the

scattering amplitude. The latter contains a real tree level ' O (1) term and

a complex ' O (α) one-loop correction, sum of a real and of an imaginary

term. In the squared modulus, the latter generates a higher perturbative

order compared to the product of the tree level with the real term; there-

fore, at this order, it can be consistently neglected in the expressions of the

various one-loop quantities. Also, in the same self-consistency spirit, all

those bare parameters that multiply a one-loop quantity will be systemat-

ically replaced by their physical corresponding ones. In particular, m2
Z(0)

will become m2
Z . This allows to conclude that, at the Z peak q2 = m2

Z , the

θ dependence of s2e,`

(

q2, θ
)

carried by the box contribution will completely

disappear and we shall be entitled to write:

s2e
(

m2
Z , θ
)

= s2e
(

m2
Z

)

= sin2 θW

+ sin θW cos θWRe

[

A
(γZ)
e`

(

m2
Z

)

m2
Z

−
(

j(γ)
eµ ,Γ

(Z)
eµ

(

m2
Z

)

)

]

(3.276)

and analogously:

s2`
(

m2
Z , θ
)

= s2`
(

m2
Z

)

= sin2 θW
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+ sin θW cos θWRe

[

A
(γZ)
e`

(

m2
Z

)

m2
Z

−
(

j
(γ)
`µ ,Γ

(Z)
`µ

(

m2
Z

)

)

]

(3.277)

where the real part (Re) of the corrections appears.

The gauge-invariant quantities defined by the two last equations are

built of contributions to the involved self-energiesA(γZ) and vertices coming

from all the possible particles of the MSM, i.e. both fermions and bosons.

One immediately realizes that the approximate definition of the effective

weak angle given previously in this Chapter in Eq. (3.218) was only taking

the fermion pairs contribution to self-energies in Eq. (3.277) into account(

final leptonic states were considered in that derivation). It appears thus

natural and immediate to consider Eq. (3.277) as the complete definition of

the effective electroweak angle, and write:

sin2 θW,eff = s2e
(

m2
Z

)

= sin2 θW

+ sin θW cos θWRe

[

A
(γZ)
e`

(

m2
Z

)

m2
Z

−
(

j(γ)
eµ ,Γ

(Z)
eµ

(

m2
Z

)

)

]

. (3.278)

Equation (3.278) is, at this point, just a formal definition. We shall

prove in the remaining part of this Chapter that the quantity there defined

retains the properties of its “fermion pairs approximation”, and enters all

the Z peak observables. This will be done in a pedagogical way, starting

with the simplest and most intuitive case of the Z peak leptonic asymme-

tries, to be illustrated in the forthcoming part of the Section.

3.4.2 Operative definition of sin2 θW,eff : the leptonic

asymmetries at the Z peak

From a formal point of view, a first check on the validity of the definition of

the effective electroweak angle given by Eq. (3.278) is that it is finite. This

implies the explicit calculation of all its infinite terms, to verify their overall

cancellation. The latter will be the result of a process that involves both

the infinite parts of the self-energy and of the vertex components of Â
(γZ)
e`

and those of the bare parameter sin2 θW that appears in the definition. For

the “fermion pairs approximation” Eq. (3.219) we have already verified that

the various infinite terms are actually mutually canceling, Eq. (3.220). To

verify the same result for the “non fermionic” (Nf) component requires

the calculation of a number of diagrams analogous to that performed in

the case of the photon self-energy Eqs. (3.70)–(3.75) since once again all
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the (physical and unphysical) particles of the MSM will contribute. The

W ’s, would-be Goldstone bosons and ghosts will appear in the (γZ) self-

energy, in the Z vertex and, also, in the W and Z self-energies that enter

the renormalization of sin2 θW Eq. (3.154). This leads to a rather long list

of contributions and to the final expected cancellation of infinities, that is

recommended as a useful exercise to the reader but will not be shown here.

The next fundamental point is to relate the parameter sin2 θW,eff thus

defined to measurable quantities. For physics at the Z resonance, this can

be done in a quite simple way if one makes the first reasonable approxi-

mation of only retaining, in that configuration, the s-channel Z exchange.

In fact we have seen in the previous Subsection that in this case, at the

one-loop level, the only changes in the scattering amplitude with respect to

the tree level description consist of replacing the bare Z propagator with

the modified expression that appears in the second square bracket on the

r.h.s. of Eq. (3.268) and of replacing the bare Z-lepton vector coupling g
(0)
V e

by its modified expression Eq. (3.271), while the axial Z coupling remains

unchanged. This “effective” description leads in a quite immediate way to

the derivation of corresponding expressions for all those observables that

are defined as ratios of cross sections. In fact, in such cases, the modifi-

cation of the Z propagator (that is θ independent at q2 = m2
Z ) acts as a

common multiplicative factor both in the numerator and in the denomina-

tor, and is consequently canceled in the ratio. Thus, the final expression

can be immediately obtained by taking that given at tree level, with the

simple replacement of the bare Z vector coupling with its one-loop modified

expression. Alternatively, one can consider the tree level ratio

g
(0)
V e

g
(0)
Ae

= 1 − 4 sin2 θW (3.279)

and replace it with the modified expression:

g
(1)
V e

g
(0)
Ae

= 1 − 4 sin2 θW,eff (3.280)

that corresponds to simply replacing the bare parameter sin2 θW with the

effective angle sin2 θW,eff in the tree level ratios.

The previous conclusion is valid if one neglects the QED photon ex-

change at the Z resonance. Intuitively, given the scarce numerical rele-

vance of that term, one expects that the prescription that was given remains
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valid modulo “small and calculable” QED corrections, which is actually the

case. These terms will be indicated from now on using the notation: “small

QED”. With this convention, we shall now list the effective expressions of

the various relevant (i.e. measurable) leptonic asymmetries at the Z peak,

starting from the tree level ones that can be found in Chapter 2. More

precisely, we shall consider the following quantities:

a) The longitudinal polarization asymmetry ALR.

This was already defined in Eq. (3.209). Keeping in mind the previous

discussion, and that given after Eq. (3.209), we shall write its one-loop

expression as follows:

A
(1)(`)
LR

(

q2 = m2
Z

)

= Ae + ‘small QED(LR)’

= 2
1 − 4 sin2 θW,eff

1 +
(

1 − 4 sin2 θw,eff

)2 + ‘small QED(LR)’ . (3.281)

Strictly speaking we are considering at this point leptonic final states

(in practice µ+µ− and τ+τ−, since for the e+e− final state the t-channel

exchange is relevant). For hadronic final states one expects from the dis-

cussion given in Subsection 3.3.1 to find “essentially” the same expression,

even after having taken into account the final-state strong interaction.

b) The µ (τ) forward-backward asymmetry A
µ
F B (Aτ

F B).

From the tree level expression of this observable derived in Chapter 2,

one derives immediately the “effective” Aµ
FB at one loop:

A
µ(1)
FB

(

q2 = m2
Z

)

=
3

4
A2

` + ‘small QED(FB)’ (3.282)

where A` = Ae is defined by Eq. (3.281) and lepton universality is assumed.

The same expression holds for Aτ
FB . Note that the small QED extra terms

in Eq. (3.281) and Eq. (3.282) are in principle different, which explains the

extra added symbols. Also, as a matter of fact, in the expression of the

forward-backward asymmetry one usually adds one more contribution from

the imaginary part of the scattering amplitude, which seems to contradict

our previous statement of ignoring it systematically. The pragmatic rea-

son is that, for pure accidental reasons that are a consequence of the small

numerical value of A2
` , the real component of Aµ

FB is so small that the imag-

inary component, although of a higher perturbative order, cannot be safely
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neglected. This extra contribution is a number that has been computed [86]

and we shall include it in the discussion given in the final Chapter of this

book.

c) The τ polarization asymmetry Aτ
pol.

This quantity was defined at the tree level in Chapter 2 (Eq. 2.92), and

was given by the same expression that defined A`. Thus, even at one loop,

we shall continue to have, neglecting “small” QED corrections:

A
τ(1)
pol

(

q2 = m2
Z

)

= −Aτ = −A` . (3.283)

The three previous leptonic asymmetries represent a set of realistic observ-

ables that all provide operative definitions of the same fundamental weak

parameter sin2 θW,eff . This can be therefore measured in a clean way using

the previous observables, since it is the only weak parameter that enters

their expressions. As argued previously, this can be viewed as a conse-

quence of having considered ratios of cross sections at the one-loop level,

which cancels the contribution from the modifies Z propagator. But at

the Z peak one can also define a number of observables that are not ratios

of cross sections. For these quantities the theoretical expression will be in

general less simple e.g. containing other genuinely weak parameters differ-

ent from sin2 θW,eff . The most immediate example is that of the leptonic

Z partial width, that was already examined in the fermion pairs approxi-

mation in Subsection 3.3.4. We shall derive in the forthcoming Section its

complete expression at one loop. This will then lead in a natural way to

the introduction and to the operative definition of a second genuinely weak

parameter, the Z -lepton effective axial vector coupling, as we shall show

in some detail.

3.5 A two-parameters description of Z physics for

final leptonic states

3.5.1 Complete expression of the Z leptonic width at

one-loop

We have already sketched in Subsection 3.3.4 the derivation of the ex-

pression of the Z leptonic width in the fermion pairs approximation. To

derive the complete one-loop formula requires a straightforward generaliza-

tion of that discussion, where essentially the Z self-energy is replaced by

its gauge-invariant generalization given by Eq. (3.264). To better clarify
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the procedure, it is convenient to rewrite the one-loop effective expression

of the Z component of the scattering amplitude, given in Eq. (3.268), in

the more explicit way:

A
(Z)(1)
e` = i

√
2G

(0)
F

[

1

q2 −m2
Z

(

1 − Â
(Z)
e`

(

q2, θ
)

q2 −m2
Z

)]

×
[

ū` (~p3) γµ

(

g
(1)
V ` − γ5g

(0)
A`

)

v` (~p4)

× v̄e (~p2) γ
µ
(

g
(1)
V e − γ5g

(0)
Ae

)

ue (~p1)
]

(3.284)

where the modified Z vector couplings are defined in Eq. (3.273). Start-

ing from this expression, one simply reproduces the steps leading from

Eq. (3.228) to Eq. (3.240). The only difference will be the presence of non

fermionic contributions. They will affect the Z self-energy and also the

shift δGF of the vertex contributions to the generalization of the Z self-

energy in the “internal” modification (first square bracket on the l.h.s. of

Eq. (3.228)). Note that this quantity is not affected by boxes that disappear

at q2 = m2
Z . Moreover there will be an appearance in the second square

bracket on the l.h.s. of Eq. (3.228) of the complete sin2 θW,eff . This can be

seen in the final expression, that reads:

Γ
(1)
`

mZ
=
GFm

2
Z

6π
√

2

×
[

1 +
δGF

GF
+
A(Z) (0)

m2
Z

−m2
ZReḞ

(Z)
(

m2
Z

)

+ Re
(

j(Z)
eµ ,Γ(Z)

eµ

(

m2
Z

)

)

+Re
(

j
µ(Z)
` ,Γ

µ(Z)
`

(

m2
Z

)

)]

× g
(0)2
Ae

[

1 +
(

1 − 4 sin2 θW,eff

)2
]

(3.285)

where we have used the definition of sin2 θW,eff given in Eq. (3.280).

In the previous equation, only real parts appear. This is not an ap-

proximation, since the imaginary component of the generalization of the Z

self-energy has been reabsorbed exactly in the definition of the Z width,

that is contained in the modified Z propagator and disappears from the

expression of the partial Z width. The shift of the Fermi coupling con-

tains a fermion pairs component and a bosonic one, as already exhibited in

Eqs. (3.148),(3.149). The first one, summed to the fermion pairs component
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of A(Z) (0) produces the quantity ∆1 (0) that appears in the approximate

Eq. (3.240).

The first square bracket on the r.h.s. of the previous equation contains

the unity and the weak parameter introduced in Ref. [39] and called ε1.

(Other definitions of ε1 exist that incorporate a QED factor that can be

factorized separately.) Following our prescription of ignoring for the mo-

ment such effects, we shall only retain the genuinely weak component of the

Z width. For what concerns the leptonic index ` that appears, assuming

as we did universality of weak interactions implies that one can identify

the two vertices that appear in Eq. (3.285), Γe = Γ`. This would not be

allowed if a final quark pair were considered, to be denoted as f f̄ . Then the

contribution of Γf would be in principle different from that of Γe, leading

to a different contribution (of non universal kind) to Γf .

In conclusion, the expression of the Z leptonic width will be, under the

previous assumptions, the following:

Γ
(1)
`

mZ
=
GFm

2
Z

6π
√

2
[1 + ε1] g

(0)2
Ae

[

1 +
(

1 − 4 sin2 θW,eff

)2
]

ε1 =
δGF

GF
+
A(Z) (0)

m2
Z

−m2
ZReḞ

(Z)
(

m2
Z

)

+ 2Re
[(

jµ(Z)
e ,Γµ(Z)

e

(

m2
Z

)

)]

. (3.286)

The previous parameter (ε1) is by construction a gauge-invariant quan-

tity. This can be split into a sum of two separately gauge-invariant compo-

nents. The first one is given by the fermion pairs approximation that has

been already extensively illustrated, and is of universal (self-energy) type.

The second one is given by the sum of the non fermionic contributions to

the self-energies that appear in its definition and of the Z- component of

the Zeē vertex at q2 = m2
Z . These two terms must be added together,

since each one is separately gauge-dependent, so that only their sum has a

physical meaning.

A subtle question might arise at this point: how can the gauge-

dependence of the universal non fermionic contributions to a self-energy

be canceled by an essentially non universal quantity like a vertex? The

answer to this objection is that, between the diagrams that contribute a

vertex, there exists a subset of universal kind. Such are for example all

vertices with two W ’s stemming from the Z. As one can see in detail,
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the cancellation of the gauge dependence of the self-energies in Eq. (3.286)

is provided by these universal components of the vertex. One guesses at

this point that the non-universal components of vertices might be in gen-

eral gauge-invariant themselves, and we shall return to this point in the

forthcoming Chapter.

In the fermion pair (“f ”) approximation ε1 is given by the expression:

ε
(f)
1 = ∆1 (0) −m2

ZReḞ
(f)(Z)

(

m2
Z

)

. (3.287)

One easily realizes from the previous expressions that the dominant de-

pendence on the top mass of the complete parameter ε1 will be the quadratic

one of ∆1 (0), already derived in Eq. (3.191). In fact, it is straightforward

to verify that the derivative of the Z self-energy function F (Z) has an mt

dependence that vanishes in the large mt limit. In first approximation this

means that:

ε
(top)
1 ' 3α

16πs20c
2
0

m2
t

m2
Z

=
3GFm

2
t

8
√

2π2
. (3.288)

Formt ' 2mZ , this generates a relative effect in Γ` of about one percent,

“large” and visible at an experimental accuracy of few permil. One sees

therefore in this simple preliminary example how fundamental the rôle of

the top mass is in the interpretation of the leptonic measurements at the Z

peak, and this will be shown in more detail in the discussion given in the

corresponding Chapter.

In the expression of the Z leptonic width one sees at this point two weak

parameters i.e. sin2 θw,eff and ε1. The first one has been endowed with

a clean operative definition from the leptonic asymmetries, and we would

like to ascribe an equally meaningful property to the second one. This can

be done with a simple redefinition of the second weak parameter; with this

purpose we first rewrite Eq. (3.286), using Eq. (3.279), in the equivalent

form:

Γ
(1)
`

mZ
=
GFm

2
Z

6π
√

2

[

g
(0)2
Ae (1 + ε1)

]

×
[

1 +
g
(1)2
V e

(

m2
Z

)

g
(0)2
Ae

]

. (3.289)

The last expression leads in a quite natural way to the idea of defining

the effective axial Z-lepton coupling, to be called gAe, as:
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gAe =
√

1 + ε1 g
(0)
Ae ≈ (1 +

ε1
2

)g
(0)
Ae . (3.290)

Using systematically this parameter in Eq. (3.289), in particular in its

second square bracket, leads in the same natural way to the idea of intro-

ducing also an effective vector Z lepton coupling, to be called gV e and to

be defined as:

gV e =
√

1 + ε1 g
(1)
V e

(

m2
Z

)

≈ (1 +
ε1
2

)g
(1)
V e

(

m2
Z

)

. (3.291)

In terms of these quantities we shall now write the final expression of

the Z leptonic width as:

Γ
(1)
`

mZ
=
GFm

2
Z

6π
√

2

[

g2
Ae + g2

V e

]

=
GFm

2
Z

6π
√

2
g2

Ae

[

1 +
(

1 − 4 sin2 θW,eff

)2
]

(3.292)

where the weak parameter sin2 θW,eff is defined in two equivalent ways,

i.e.:

sin2 θW,eff =
1

4

[

1 − g
(1)
V e

(

m2
Z

)

g
(0)
Ae

]

=
1

4

[

1 − gV e

gAe

]

. (3.293)

In conclusion, all the considered leptonic observables at the Z peak

can be expressed in terms of the two weak parameters sin2 θW,eff and gAe.

Both parameters are naturally and intrinsically related to one of the most

characteristic features of the MSM, the presence of a neutral massive Z

boson that is mixed with the photon and has extra axial couplings with

fermions. For both parameters, an operative definition can be given, and

we have already discussed that of the mixing angle. For the axial coupling,

a simple and consistent definition can be immediately provided. This is

given by the expression of the partial Z width into a neutrino-antineutrino

pair, that an immediate extension of our procedure allows to write as:

Γ(1)
ν =

GFm
2
Z

3π
√

2
g2

Ae . (3.294)
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Note that one could use as well, as independent parameters of the model,

the couple of the effective Z lepton couplings, gAe and gV e defined by

Eqs. (3.290), (3.291). Even in this case, the prescription for writing the

expressions of the various leptonic observables at one loop remains that of

writing the corresponding tree level expressions and of replacing there the

bare couplings g
(0)
A,V with the effective ones.

The previous couples of weak parameters are perfectly satisfactory to

describe the leptonic observables at the Z peak, and we could conclude this

Chapter at this point, if the only topics to be illustrated were the MSM. For

a slightly more ambitious discussion, in which the possibility of evidencing

from high precision measurements possible small deviations from the MSM

predictions due to the presence of still undiscovered “new physics”, those

parameters did not represent the most “clever” choice at the time of the

beginning of the Z physics operations. The point is that all parameters

exhibit a quadratic dependence on the (at the time, unknown) top mass.

This is certainly a good feature if one tries to derive indications on mt from

precision measurements; it is also certainly a bad feature if one tries to

extract small extra new physics effects from these parameters, since they

would be obscured by the ignorance of the value of the top mass.

A clever compromise might be the introduction of a new couple of pa-

rameters, one of which retains the large quadratic dependence on mt, while

the second one does not. This idea led to the proposal [39] of a new weak

parameter, ε3, to be used, together with ε1, to provide an elegant descrip-

tion of the leptonic sector of Z physics. We shall review this proposal in

the last forthcoming part of this Chapter.

3.5.2 The Z peak leptonic observables in terms of the

ε1, ε3 parameters

One simple way of performing the useful change of parameters that was

mentioned is to start from the expression of the effective electroweak angle

given in Eq. (3.278).

This still contains the bare parameter sin2 θW , which can be eliminated

using Eqs. (3.153), (3.154), obtaining the following equation:

sin2 θW,eff =

[

1 − m2
W

m2
Z

]

− m2
W

m2
Z

Re

[

A(W )
(

m2
W

)

m2
W

− A(Z)
(

m2
Z

)

m2
Z

]
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+ sin θW cos θWRe
Â

(γZ)
e`

(

m2
Z

)

m2
Z

. (3.295)

The next step consists of eliminating the first square bracket on the

r.h.s. of the previous equation. This can be done using Eq. (3.223) and

introduces the quantities c20, s
2
0 defined by Eqs. (3.200), (3.201) and the weak

component of ∆r=∆W
r defined by Eq. (3.171). Working systematically at

the one-loop level and exploiting the allowed known “tricks” leads, after

a number of steps that one can easily perform as a useful exercise, to the

relevant desired expression:

sin2 θW,eff = s20

[

1 − c20
2c20 − 1

ε1 +
1

2c20 − 1
ε3

]

. (3.296)

The parameter ε3 that appears in the square bracket is the mt smooth

quantity originally introduced in Ref. [39]. It is a gauge-invariant com-

bination of self-energies, of their derivatives and of vertices. To better

understand its relevant properties, we shall decompose it, as usually, into

the sum of its component coming from the fermion pairs contributions to

the self-energies (and to their derivatives), specified by an index (f), and

by the remaining component, that includes different (Nf) contributions to

self energies (and to their derivatives), and to vertices. In this spirit, we

shall write:

ε3 =
[

∆3

(

m2
Z

)

− c20m
2
Z ReŻ(f)(Z)

(

m2
Z

)

]

+

[

c0
s0

(

2c20 − 1
)

Re
A(Nf)(γZ)

(

m2
Z

)

m2
Z

− c20 ReF (Nf)(Z)
(

m2
Z

)

− c20m
2
Z ReḞ (Nf)(Z) + c20

δα(Nf)

α

]

+
[

2c20 Re
(

j(Z)
eµ ,Γ(Z)

eµ

(

m2
Z

)

)

− c0s0
(

2c20 − 1
)

Re
(

j(γ)
eµ ,Γ

(Z)
eµ

(

m2
Z

)

)]

(3.297)

where the non fermion pairs shift of the electric squared charge δα(Nf)

is defined by Eqs. (3.101),(3.92) and by the related discussion of Subsec-

tion 3.1.6.

To check that the overall expression Eq. (3.297) is finite is a straight-

forward useful exercise that was already performed for its fermion pairs

component. Very important for our purposes is the fact that, as one sees



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

Z Physics at One Loop for Final Leptonic States 195

from the previous equation, the complete mt dependence of ε3 will be con-

tained in the first square bracket on its r.h.s.. In particular, given the

already mentioned mt independence of the derivative Ḟ (Z) in the large mt

limit, this dependence will be the smooth logarithmic one of ∆3, i.e.:

ε3 (large mt) ' − α

12π

1
(

1 − m2
W

m2
Z

) ln
mt

mZ

= −m
2
W GF

6
√

2 π2
ln
mt

mZ
(3.298)

having exploited Eq. (3.297).

We can thus conclude that one can describe the leptonic Z peak observ-

ables that we have considered in terms of two gauge-invariant parameters,

ε1, ε3, the first one of which is strongly (quadratically) mt dependent, while

the second one is smooth i.e. only logarithmically dependent. This fact will

have quite relevant consequences for the discussion of the validity of cer-

tain electroweak models alternative to the MSM, that will be mentioned in

Chapter 11. To compute the explicit dependence of all the observables on

ε1, ε3 is simple. We already know that of sin2 θW,eff given in Eq. (3.296).

This leads immediately to the expressions of all the leptonic asymmetries,

that only depend on the effective electroweak angle. For the leptonic Z

width it is sufficient to start e.g. from Eq. (3.292) and to use Eq. (3.290).

This gives the following result:

Γ
(1)
`

mZ
=
GF m2

Z

24π
√

2

(

1 + v2
0

)

×
[

1 + ε1

(

1 + 8
v0

1 + v2
0

s20c
2
0

2c20 − 1

)

− ε3

(

8
v0

1 + v2
0

s20
2c20 − 1

)]

(3.299)

where, using the value of α
(

m2
Z

)

Eq. (3.187), one has:

v0 = 1 − 4s20 ' 0.0756 . (3.300)

Numerically, using the value s20 ' 0.231 given in Eq. (3.203), one ob-

tains:

Γ
(1)
`

mZ
=
GF m2

Z

24π
√

(2)

(

1 + v2
0

)

[1 + 1.199ε1 − 0.258ε3] . (3.301)
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This shows that the leptonic Z width is much more dependent on ε1
than on ε3. The case of the asymmetries is different. The basic quantity

Ae Eq. (3.281) has actually the following expression:

Ae =
2v0

1 + v2
0

[

1 + ε1
4s20c

2
0

2c20 − 1

(

1

v0
− 8v0

1 + v2
0

)

− ε3
4s20

2c20 − 1

(

1

v0
− 2v0

1 + v2
0

)]

. (3.302)

Numerically, this gives:

Ae = 0.150 [1 + 16.69ε1 − 22.48ε3] . (3.303)

From the previous expression one immediately obtains that of the µ, τ

forward-backward asymmetry A`
FB = 3

4A2
e:

A`
FB =

3

4
A2

e = 0.01695 [1 + 33.37ε1 − 44.96ε3] . (3.304)

One notices that, in the leptonic asymmetries, the weight of the mt −
smooth parameter ε3 is larger than that of the mt − sensitive one ε1,

contrary to the case of the Z leptonic width. Those observables will play

therefore a complementary rôle with respect to that of the Z leptonic width.

An analogous situation occurs in the complete expression that relates

the Z mass to the effective electroweak angle and generalizes the approx-

imate one given by Eq. (3.227). This can be easily derived starting from

the definition of sin2 θW,eff Eq. (3.296), that can be reformulated in the

following way:

sin2 θW,eff

(

1 − sin2 θW,eff

)

= s20c
2
0

[

1 − ε1 +
1

c20
ε3

]

. (3.305)

From the previous equation, using the definition of the product s20c
2
0

given by Eq. (3.200) and working self-consistently at the one-loop level,

one obtains the complete relationship:

m2
Z =

α
(

m2
Z

)

π

GF

√
2

1

sin2 θW,eff

(

1 − sin2 θW,eff

)

1

1 + ε1 − ε3
c2
0

(3.306)

that appears the “obvious” generalization of the approximate Eq. (3.227).

Our analysis of the leptonic observables at the Z peak is now almost

concluded. In fact, a fundamental discussion is at the moment still missing.
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Until now, we have focused our attention on the rôle of the top mass in the

MSM predictions for the considered Z peak observables. A natural question

that arises at this point is that of the sensitivity of the previous observables

to the remaining still unknown MSM parameter, the Higgs mass mH . We

said at the beginning of this book that at the one-loop level the Higgs

effect is screened i.e. it is of only logarithmic type. This property must

be valid then in both ε1 and ε3. Contrary, though, to the mt dependence,

the rôle of ε3 in this case is now relevant. We shall devote the forthcoming

Subsection to a simple derivation of these important properties of the two

weak parameters. This will also have a pedagogical content since, once

again, we shall see how a physical result will be obtained from a common

effort where certain unphysical particles will be involved, that is recurrent

feature of the calculations performed in the ξ = 1 ’t Hooft gauge.

3.5.3 Dependence of the weak parameters ε1, ε3 on the

Higgs mass

To compute the Higgs effect on Z peak leptonic observables is relatively

easy and also instructive. We shall perform here the explicit calculation

in the simpler case of the mt − smooth parameter ε3. This can be done

starting from its definition Eq. (3.297) and noticing that, under our working

assumption of massless external fermions and taking into account the fact

that photons do not couple to a neutral particle like the Higgs, only the

contribution from the Z self-energy (and, in principle, from its derivative)

must be retained. In the ’t Hooft gauge the relevant contributions will imply

not only the physical Higgs particle, but also its related neutral would-be

Goldstone boson s3 defined in Chapter 1, Eq. (1.41). They correspond to

the two Feynman diagrams depicted in Fig. 3.25.

Z, k’-q

Z,q Z,q Z,qZ,q

H,-k’H,k’

s   , k’-q~
3

(b)(a)

Fig. 3.25 Contribution to the Z self-energy from a physical Higgs (a) and from a Higgs-
would be pair (b).
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From the conventional Feynman rules valid in the MSM one derives in

a straightforward way the expression of the finite (i.e. not proportional to

∆) part of F (Z)
(

q2
)

, corresponding to the two diagrams (a) and (b):

ReF (Z)(a)
(

q2
)

(finite) = −
√

2
m2

ZGF

4π2

×
∫ 1

0

dx
m2

Z

q2
ln |m

2
H (1− x) +m2

Zx− q2x (1 − x)

m2
H (1 − x) +m2

Zx
| (3.307)

ReF (Z)(b)
(

q2
)

(finite) =
√

2
m2

ZGF

4π2

×
∫ 1

0

dx

[

−m
2
Z

q2
ln |m

2
H (1 − x) +m2

Zx− q2x (1 − x)

m2
H (1 − x) +m2

Zx
|

+
m2

H (1 − x) +m2
Zx− q2x (1 − x)

2q2
ln |m

2
H (1 − x) +m2

Zx− q2x (1 − x)

m2
H (1 − x) +m2

Zx
|

−x (1 − x)

2
ln |m

2
H (1 − x) +M2

zx

m2
Z

|
]

. (3.308)

At q2 = m2
Z it is immediate to verify that the leading contribution in the

large mH limit comes entirely from the unphysical diagram (b) where one

would-be Goldstone boson is also exchanged!! This result, that reproduces a

recurrent feature of calculations performed in the ξ = 1 ’t Hooft gauge, can

be expressed saying that the contribution to ε3 from the Higgs =ε
(H)
3 for

large Higgs masses (again, the derivative of the Z self-energy is depressed

in this limit) is:

ε
(H)
3 (large mH) ' GFm

2
W

12
√

2π2
ln
mH

mZ
(3.309)

which shows that the Higgs contribution to ε3 is, particularly for mH larger

than mt, well competitive with that of the top given in Eq. (3.298). This

is quite different from the case of ε1, where the quadratic top contribution

Eq. (3.288) is faced with a Higgs term that again, as one can easily verify,

is “only” logarithmic and has the expression:

ε
(H)
1 (large mH) ' −3GFm

2
W

4
√

2π2

s20
c20

ln
mH

mZ
. (3.310)

The previous discussion has shown that the two electroweak parameters

ε1, ε3 have quite different sensitivities to the most relevant MSM parame-

ters, mt and mH . From a formal point of view, the two previous parameters
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are the generalization of the weak quantities ∆1, ∆3 introduced in Subsec-

tion 3.2.2. To conclude this Chapter in a satisfactory way, we shall now

define the quantity that generalizes the third weak parameter ∆2 also de-

fined in that Subsection, and discuss its rôle and its relevance within the

context of the MSM. Strictly speaking, this generalization will not have

connections with the description of physics at the Z peak that we have

provided until now. As we shall see, it will be, though, quite relevant for

what concerns the predictions that can be derived from those measurements

on the W mass. For this reason we shall include it in this Chapter although,

rigorously speaking, it does not “belong” to Z physics in a technical sense.

3.5.4 The ε2 parameter and the complete expression of the

W mass

A relatively easy and self-consistent way of introducing the weak parameter

that generalizes the quantity ∆2 defined by Eq. (3.164) is that of starting

from the original, rigorous definition of the “weak” component ∆rW =∆r-

∆α
(

m2
Z

)

, that can be written in the usual one-loop approximations as:

∆rW = Re

[

δα

α
− δGF

GF
− A(W )

(

m2
W

)

m2
W

+
c20
s20

(

A(W )
(

m2
W

)

m2
W

− A(Z)
(

m2
Z

)

m2
Z

)]

− ∆α
(

m2
Z

)

. (3.311)

One can now proceed using the previous definitions of the two weak

parameters ε1, ε3. After a few “steps and tricks” that can be omitted the

result is that the previous equation can be rewritten in the identical way:

∆rW = − c
2
0

s20
ε1 + 2ε3 +

2c20 − 1

s20
ε2 . (3.312)

The weak parameter ε2 was also introduced in Ref. [39]. It is a gauge-

invariant combination of self-energies and their derivatives, and vertices. In

the conventional notations that we have introduced, its complete expression

is the following:

ε2 = Re
[

F (W )
(

m2
W

)

− c20F
(Z)
(

m2
Z

)

− s20F
(γ)
(

m2
Z

)

− 2s0c0
A(γZ)

(

m2
Z

)

m2
Z

− c20m
2
Z Ḟ

(Z)
(

m2
Z

)
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− s20

(

F (Nf,γ) (0) − F (Nf,γ)
(

m2
Z

)

)

+
δG

(V,B)
F

GF

+ 4c20

(

Γ
(Z)
µl

(

m2
Z

)

, j
(Z)
µl

)

+ 2s0c0

(

Γ
(Z)
µl

(

m2
Z

)

, j
(γ)
µl

)]

. (3.313)

To verify the finite nature of the previous expression is a useful rec-

ommended exercise. For what concerns its gauge-invariance, this is an

automatic consequence of the fact that, as we have already seen, all the

remaining quantities that enter Eq. (3.312) i.e. ∆rW , ε1, ε3 enjoy this

property. Thus ε2 can be viewed as a physical weak parameter, whose de-

pendence on the top and Higgs masses deserves to be investigated like we

did in the case of ε1, ε3. As one sees from its definition, the self-energy

fermion pairs component of ε2= ε
(f)
2 is simply given by the expression:

ε
(f)
2 = ∆2 − c20m

2
Z Ḟ

(Z),(f)
(

m2
Z

)

. (3.314)

Therefore, the dependence of ε2 on mt will be practically the same as

that of ∆2, that we have shown Eq. (3.197) to be of logarithmic type, more

precisely of the form:

ε2 (large mt) ' −GFm
2
W

2
√

2π2
ln
mt

mZ
. (3.315)

Even “worse” is the dependence on mH that, in the large mH limit, can

be practically ignored, as one can verify by a straightforward calculation.

For what concerns the latter parameter, the only information that can be

derived at this stage is therefore that provided by the two Z peak weak

parameters ε1, ε3.

Starting from Eq. (3.312) and inserting it into Eq. (3.223) it is now

possible to derive the complete one-loop expression of the W mass in terms

of the three εi, that is:

m2
W = m2

Zc
2
0

[

1 − s20
2c20 − 1

∆rW

]

= m2
Zc

2
0

[

1 +
c20

2c20 − 1
ε1 − ε2 −

2s20
2c20 − 1

ε3

]

= m2
Zc

2
0 [1 + 1.430ε1 − ε2 − 0.859ε3] (3.316)

(the numerical value of c20=0.769 given by Eq. (3.202) has been used). One

sees that all the three weak parameters enter the prediction of the W mass

with comparable weight.
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A final comment is at this point spontaneous. If we combine the previous

Eq. (3.316) with the expression of sin2 θweff given by Eq. (3.305) we obtain

the following one-loop identity:

1 − sin2 θweff =
1

ρ

m2
W

m2
Z

(3.317)

where

ρ =

[

1 + ε1 − ε2 −
s20
c20
ε3

]

. (3.318)

One sees that, at the one loop level, the tree level identity between bare

quantities 1−sin2θw =
m2

w

m2
z

typical of the MSM is transformed into a mean-

ingful equation, that gives an operative definition of a parameter (ρ), often

mentioned in the current literature with several possibly different defini-

tions. We have now completed the calculation of the fermionic and of the

Higgs contributions to ε1,2,3 and the calculation of the fermionic contribu-

tions to ∆α(m2
Z). Before moving to the next Chapter, we feel that two

additional comments are worthwhile. The first one concerns the remain-

ing boson contributions. For what concerns ∆α(m2
Z), their calculation has

been performed [52], and shows that they are indeed negligible, even at the

extremely accurate precision levels of LEP1. (The same conclusion applies

to the gauge boson contribution to ∆rW .) Following this information, we

shall therefore identify, from now on, the quantity ∆α(m2
Z )(f), that we have

computed, with the full parameter ∆α(m2
Z). The second comment concerns

the possible relevance of those higher orders effects that we have system-

atically neglected. Infact, a calculation exists, of the two-loop electroweak

effect on ∆1(o) [53]. The conclusion is that, for values of the top mass

in agreement with the measurements (Chapter 10), these two-loop effects

can be neglected. A different conclusion must be drawn for the contribu-

tion to ∆1(o) coming from electroweak-strong interference. This has been

computed [54] and shows that the final value of ∆1(o) becomes, roughly

∆1(o) → ∆1(o)(1 − αs) . (3.319)

For a value of αs ≈ 0.12 this effect must be properly taken into account.

These final remark conclude Chapter 3, in which the expressions of

those genuinely electroweak quantities that can be measured with extreme

precision at the Z peak (with the inclusion of the W mass) have been

derived at one loop in a rather detailed way. By definition, these quantities

are not affected by the strong interactions and therefore only allow leptons

in the final state. Since the variety of Z peak measurements also includes



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

202 The Physics of the Z and W Bosons

final hadronic states, we shall devote the next Chapter 4 to a detailed

analysis of those processes, whose inclusion in the final overall analysis will

turn out , for the reasons that we shall illustrate, quite relevant.
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Chapter 4

Z Physics at One Loop for Final

Hadronic States

Until now, our treatment of Z physics at one loop has only been considering

the production of a (charged) lepton-antilepton pair. In the numerical

examples that were given, only contributions to the various observables

due to self-energy corrections were explicitly computed. These effects are

of universal type, since they do not depend on the nature of either the initial

or the final state. As one would guess, their calculation in the theoretical

expressions that describe quark-antiquark production (for instance,that of

the Z partial width into a quark-antiquark pair) is identical with that

performed for final leptonic pairs. All the conclusions and the features

that were stressed in Chapter 3 remain valid and do not require any extra

comment.

There are, obviously, significant theoretical differences between the cases

of lepton-antilepton and quark-antiquark production. For what concerns Z

physics at the one loop level, two main and quite relevant additional fea-

tures must be taken into account. The first one is of purely electroweak

origin, and is due to the rôle of not universal one loop effects, in particular

those that depend on the properties of the final state. From the discussion

given in Subsection 3.4.1, in particular from the expression provided by

Eqs. (3.264)–(3.267), it is clear that the only new quantities to be consid-

ered will be the final vertices Γµ
f (f now indicates the final quark of the

process), since all contributions from boxes are automatically canceled on

Z resonance.

Starting from the precise definition of Γµ
f Eq. (3.245), it is relatively easy

to perform the numerical calculation in the approximation of considering

massless quarks. However, the most spectacular theoretical consequences

appear in a rather special case where this approximation must be aban-

doned, that for Z physics corresponds to the production of a final bb̄ pair.

203
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Here, vertex diagrams allow virtual top quarks to be exchanged. From the

theoretical calculation, a “large” electroweak contribution proportional to

the squared top mass (and also, not negligibly, to its logarithm) emerges.

This reminds the similar effect that appears in the self-energy correction

∆1(0) Eq. (3.192), although the physical interpretation in the case of the

vertex is quite different (and uncorrelated to custodial symmetry viola-

tions). Given the relevance that this vertex contribution, we shall devote

the first part of this Chapter, Section 4.1, to its detailed calculation. In

particular, we shall discuss the relevance of the effect for the predicted the-

oretical value of the partial decay width of the Z into a bb̄ pair Γb. We

shall also review more quickly the theoretical predictions for a number of

unpolarized and polarized heavy quark pairs asymmetries , and stress the

relevant and measurable consequences of the presence of not universal one

loop effects that enter their theoretical expressions at the pure electroweak

one loop level.

The last sentence is a remainder of the fact that there is a second essen-

tial and relevant feature still to be taken in account for a final non leptonic

state: the presence of strong interactions. In the final part of this Chapter,

Section 4.2, we shall provide a short discussion of the strong interactions’

effect on final quark-antiquark pairs. This will be consistently described by

a running strong coupling αs(q
2), to be evaluated at the resonant squared

energy q2 = m2
Z . Rather than insisting on the conventional QCD features

that will appear in the calculation, that can be found in previous excellent

dedicated reviews [55], we shall concentrate our attention on the practical

consequences of the introduction in the theoretical description of a fourth

input parameter αs(m
2
Z). This point, in particular the deep correlation

between the values of the strong coupling constant, of the top mass and of

the Higgs mass will be discussed in Chapter 11.

4.1 The rôle of the Zbb̄ vertex in Z physics

The theoretical expression of the partial Z decay width into a final quark-

antiquark pair, to be indicated as f f̄ , exhibits a fundamental difference

with respect to the case of final lepton pairs. Understanding the origin

of this difference is relatively simple if one considers the relevant vertex

diagrams where virtual W,Z are exchanged, shown in Fig. 4.1.

At the Z peak, for final u, d, s, c quarks, both the final physical fermion

f and the corresponding virtual one f1 of Fig. 4.1 can be treated as if
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e-

e+

Z
f
−
1

f
−

f1

f

Z,W

Fig. 4.1 Examples of vertex diagrams with W,Z exchange.

they were rigorously massless. This approximation must be abandoned

when the final quark is a b. Here the corresponding f1 in the virtual W

diagram of Fig. 4.1 is a top quark, and one expects that in this case the

top mass will play a rôle. Furthermore, looking at the same diagram with

W exchange, one also expects that the top mass will only affect the left-

handed component of the Zbb̄ coupling. This statement would be obvious

in the unitary gauge, where no other unphysical particles can be exchanged

in the considered Zbb̄ vertex. Since the physical top mass effect must be

gauge-independent, the previous conclusions must remain valid in any other

“finite ξ” gauge, in particular in the ξ = 1 one where we shall perform the

numerical analysis.

After this general preliminary heuristic discussion, we now proceed in

the forthcoming Subsection to the explicit calculation of the Zbb̄ vertex.

4.1.1 Calculation of the electroweak component of the Zbb̄

vertex

To understand the origin of the top mass dependence of the Zbb̄ vertex

is relatively simple in the ξ = 1 t’Hooft gauge. The main point is that,

in this gauge, one must add to the graphs with W exchange Fig. 4.1 the

analogous ones with virtual contributions coming from diagrams where the
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t
-
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b
-(d)

Fig. 4.2 Zbb̄ vertex diagrams with charged would-be Goldstone boson exchange.

unphysical charged would-be Goldstone bosons H+, H− are exchanged, as

shown in Fig. 4.2.

Let us examine the contribution coming from the latter diagrams first.

From the Feynman rules valid in the MSM, the Hff ′ vertex is given by the

following expression:

H−ff ′ =
−igUKM

ff ′

2
√

2mW

[mf (1 − γ5) −mf ′ (1 + γ5)] (4.1)

where UKM is the Cabibbo-Kobayashi-Maskawa matrix defined by

Eq. (1.173), and from the discussion given in Chapter 1 we can safely re-

tain only its diagonal elements that correspond to (u, d), (s, c), (b, t)

pairs. Given the values of the quark masses, to be compared with the pro-

cess scale mZ , it is intuitively clear that the contribution of the charged

would-be Goldstone bosons to vertices with final u, d, s, c quarks will be

negligible. This conclusion does not apply to the case of a final b, where the

term proportional to mt in the r.h.s. of Eq. (4.1) cannot be simply ignored.

A priori, we would therefore expect the appearance of terms proportional

to m2
t in the diagrams of Fig. 4.2.

Note that this conclusion might not be drawn now for the set of diagrams

of Fig. 4.1, since in the ξ = 1 gauge the W propagator is purely transverse
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and cannot generate a ≈ m2
t dependence (which would be allowed in the

unitary gauge, where H+, H− are absent but a longitudinal component of

the W propagator exists).

This short discussion leads naturally to the conclusion that the contri-

bution of diagrams that introduce couplings like that of Eq. (4.1) might

be the most relevant for the calculation of the Zbb̄ vertex, and possibly

important for the calculation of the Z → bb̄ partial width. We shall now

verify with a detailed calculation that this is actually the case.

Following our notations, we shall denote the four contributions of

Figs. 4.2(a)–(d) to the invariant scattering amplitude as Aa,b,c,d
lb (q2). Each

contribution will be associated to a component of the Zbb̄ vertex, according

to the definition given in Eq. (3.259) i.e.:

Aa,b,c,d
lb (q2) =

iΓ
µ(Z)(a,b,c,d)
b (q2)j

(Z)
µl

[q2 −m2
Z ]

. (4.2)

From the canonical Feynman rules valid in the MSM we can easily derive

the expression of the four vertices. For the first one we have:

Γ
µ(Z)a
b = iub (~p3)

∫

d4k

(2π)4

[

ig0mt (1 + γ5)

2
√

2mW

]

×i k̂ + p̂3 +mt
[

(p3 + k)
2 −m2

t

]

[−ig0mt (1 − γ5)

2
√

2mW

]

i

(k2 −m2
H)

×
[

−ig0
(

cos2 θW − sin2 θW

) (q − k)
µ

cos θW

]

× i
[

(k + p3 + p4)
2 −m2

H

]vb (~p4) +O

(

m2
b

m2
W

)

. (4.3)

In writing Eq. (4.3), we have only retained the term proportional to

mt in Eq. (4.1), assuming mb = 0 and UbtU
∗
bt = 1 from now on. All the

couplings that appear are, formally, bare ones. In practice, though, since

Eq. (4.1) is already at the one loop level, all those bare quantities that

will not be reabsorbed into either a j
µ(Z)
b or a j

µ(γ)
b structure will be safely

bargained with corresponding physical parameters. For this reason, the W

mass that appears can be identified with the physical one. This also applies

to the would-be Goldstone mass mH (which in the t’Hooft gauge coincides

with the W one, although we shall write mH in the following formulae).
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A glance to Eq. (4.3) shows that, as expected, the integral is formally

divergent, and therefore the by now familiar dimensional regularization

approach must be followed. After a few straightforward operations on the

various γ matrices that appear in the numerator, one is led to the expression

(ε = 4 − n):

Γ
µ(Z)a
b (q2) = lim

ε→0+

µε
0

(2π)
n

[

(

cos2 θW − sin2 θW

) g2
0m

2
t

2m2
W

]

× ub (~p3)

∫

dnk

2

(k − q)
µ

(k2 −m2
H)

(

p̂3 + k̂
)

[

(k + p3)
2 −m2

t

]

× (1 − γ5) vb (~p4)
[

(k + p3 + p4)
2 −m2

H

] (4.4)

where µ0 is the scale parameter involved in the approach, that will eventu-

ally disappear in the final physical expression.

For what concerns the divergent nature of the integral, this is only due

to the term proportional to kµk̂ in the numerator. Equation (3.34) shows

that the (logarithmic) divergence will only be coming from the function

C24. The remaining components of the integral, both those corresponding

to the extra functions C21 ,C22 , C23 defined by Eq. (3.34) and those coming

from the terms in the numerator that are not quadratic in the k-variable,

are finite. Moreover, one easily realizes that, at the end of a reasonable

number of “γ−matrices reshufflings”, they give rise to terms in which either

a p̂3 or a p̂4 can be glued to the external Dirac spinors, thus generating a

finite contribution proportional to mb that can be safely thrown away. The

conclusion is that the relevant part of Eq. (4.4) can be simply written as:

Γ
µ(Z)a
b (q2) = − g0

2 cos θW
ub (~p3) γ

µ (1 − γ5) vb (~p4)

×
[

(

cos2 θW − sin2 θW

)

32π2
g2

o

m2
t

m2
W

]

×C24

(

q2;mH ,mt,mH

)

(4.5)

where q2 = (p3 + p4)
2 and mb = 0 in all the finite expressions. Using

Eq. (3.42) to isolate the infinite component (=∆ ) of C24 , one writes at
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this point:

Γ
µ(Z)a
b (q2) = − g0

2 cos θW
ub (~p3) γ

µ (1 − γ5) vb (~p4)

×
[

(

cos2 θW − sin2 θW

)

32π2
g2

o

m2
t

m2
W

]

×
[

∆

4
+ C

(fin.)
24

(

q2;mH ,mt,mH

)

]

(4.6)

where ∆ is defined by Eq. (3.36).

The next contribution to be computed is that represented in Fig. 4.2(b).

Repeating the procedure that we have previously illustrated and using the

canonical Feynman rules at disposal, one is led to the following preliminary

expression:

Γ
µ(Z)b
b (q2) = −i g0

cos θW
ub (~p3)

g2
0m

2
t

8m2
W

lim
ε→0+

µε
0

(2π)
n

∫

dnk (1 + γ5)

×
[

k̂ −mt

k2 −m2
t

γµγLgLt + γµγRgRt

(k + p3)
2 −m2

H

mt − k̂

(k + p3 + p4)
2 −m2

t

]

× (1 − γ5) vb (~p4) . (4.7)

In the previous expression, only the component proportional to mt of

the coupling in Eq. (4.1) has been retained, as in the case of the first

contribution Γ
µ(Z)a
b . The quantities in the square bracket are defined as

follows:

γL,R =
1 − γ5, 1 + γ5

2
; (4.8)

gLt =
1

2
− 2 sin2 θW

3
; gRt = −2 sin2 θW

3
(4.9)

according to Eq. (1.117).

Equation (4.7) is also affected by a logarithmic divergence, generated

by the component of the numerator that is proportional to k̂k̂ . One major

difference with respect to the case of Eq. (4.3) is given by the fact that now

the finite components of the integral will not be proportional to mb, due

to the lack of terms proportional to p̂3 in the numerator. This leads to the

appearance of one new finite integral, not met in Subsection 3.1.4, defined

as:
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∫

d4k
1

(2π)4
1

k2 −m2
1

1

(k + p3)
2 −m2

2

1

(k + p3 + p4)
2 −m2

3

=

− i

16π2
C0

(

p2
3, p

2
4, q

2;m1,m2,m3

)

(4.10)

where q2 = (p3 + p4)
2
. Note that this integral is finite,and one can work

with n = 4 from the beginning, finding in a straightforward way that:

C0

(

p2
3, p

2
4, q

2;m1,m2,m3

)

=

∫ 1

0

dx

∫ x

0

dy
1

ax2 + by2 + cxy + dx+ ey + f
(4.11)

and

a = p2
4 ; b = p2

3 ; c = q2 − p2
3 − p2

4 ;

d = m2
2 −m2

3 − p2
4 ; e = m2

1 −m2
2 + p2

4 − q2 ;

f = m2
3 (4.12)

(a small imaginary part should be added to the denominator to avoid in-

tegration problems). In terms of the function C0 and of those defined by

Eq. (3.34) one finds after a small number of “tricks”:

Γ
µ(Z)b
b (q2) =

g0
cos θW

g2
0m

2
t

32π2m2
W

× ub (~p3) γ
µγLvb (~p4)

{

m2
t gtLC0

(

q2;mt,mH ,mt

)

+ gtR

[

−q2C23

(

q2;mt,mH ,mt

)

− 1

2
+ 2C24

(

q2;mt,mH ,mt

)

]}

(4.13)

(as usually, we set p2
3 = p2

4 = m2
b = 0). Equation (4.13) can be rewritten

separating its infinite part from the finite one, as it was done with Eq. (4.4).

This leads to the final expression:

Γ
µ(Z)b
b (q2) = − g0

cos θW

g2
0m

2
t

32π2m2
W

× ub (~p3) γ
µγLvb (~p4)

[

1

3
sin2 θW ∆ + “finite”

]

(4.14)

where the “finite” contribution comes from all the components of the curly

bracket in Eq. (4.13) that are not proportional to ∆ (and contain C0, C23

and the finite term of C24, as defined by Eq. (3.34)).
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Adding Eq. (4.14) to Eq. (4.6) one obtains, for the sum of the two

Feynman diagrams Figs. 4.2(a),(b), the following expression:

Γ
µ(Z)a+b
b (q2) =

g0
cos θW

g2
0m

2
t

32π2m2
W

ub (~p3)

×γµγLvb (~p4)

[

sin2 θW − cos2 θW

4
∆ − sin2 θW

3
∆ + “finite”

]

(4.15)

where the first and the second coefficient of ∆ inside the curly bracket

comes respectively from the first and second contribution to the vertex,

Fig. 4.2. One sees therefore that the sum of these two Feynman diagrams

is still divergent, and thus not yet physically meaningful (leaving aside for

the moment the extra question of gauge dependence on which we shall soon

return).

In fact, we still must add the last two contributions corresponding to

Fig. 4.2. To treat the latter ones consistently, we shall now provide a small

concise discussion. With this aim, let us assume that a certain meaning can

be given to the concept of “quark mass”, for instance identifying it (as one

normally does for “conventional” particles) with the position of the pole of

the complete quark propagator. For definiteness, let us consider the case

in which we are interested now, that of a b-quark. Its bare propagator,

conventionally depicted as in Fig. 4.3(a) is written, if p denotes its four-

momentum, as

i

p̂−mb0
= i

p̂+mb0

p2 −m2
b0

. (4.16)

Next, consider the modification of the quark propagator that is depicted

in Fig. 4.3(b). In our conventions, we shall associate Fig. 4.3(b) to the

quantity called iΓb,H . The latter will be then rewritten as follows:

iΓb,H = ip̂δb,H . (4.17)

The calculation of Γb,H proceeds formally via conventional Feynman

rules, leading to the preliminary expression:
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b(p)

(a)

b t

H
-

b(p)

(b)

Fig. 4.3 (a) bare b quark propagator with four-momentum p; (b) modification of the
bare b-propagator due to virtual H−, t emission.

iΓb,H =

∫

d4k
1

(2π)4
ig0mt (1 + γ5)

1

2
√

2mW

× i
k̂

k2 −m2
t

−igomt (1 − γ5)

2
√

2mW

i

(k − p)
2 −m2

H

= lim
ε→0+

µε
o

(2π)
n
−g2

om
2
t

2m2
W

∫

dnk
k̂

k2 −m2
t

γL
[

(k − p)
2 −m2

H

]

= ip̂

[

− g2
0m

2
t

32π2m2
W

B1

(

p2;m2
t ,m

2
H

)

γL

]

(4.18)

having exploited Eq. (3.32). We conclude that, once again,an infinite quan-

tity appears since:

δb,H = − g2
0

32 (π)
2

m2
t

m2
W

[

−∆

2
+Bfinite

1

(

p2,m2
t ,m

2
H

)

]

(4.19)

as one sees from Eq. (3.39).

The divergent quantity δb,H can be naturally interpreted as a redefini-

tion of the bare quark mass at one loop. This can be done in strict analogy

with the case of the W,Z masses treated in Subsection 3.1.5. For our pur-

poses, it can be advantageous to consider the modification at one loop of

the expression that describes the propagation of a b quark originated at a

certain vertex (that can be one with a Z but also with one photon or one

W ), to be called in full generality V µ(0). At tree level the correspondence

will be given by the forthcoming graphical equation:

VERTEX → V µ(0) i

p̂−mb,0
. (4.20)
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Adding the modification of Fig. 4.3 will lead to the modified expression:

VERT.+E.S.E. → V µ(0) i

p̂−mb,0

[

1 + iΓb,H
i

p̂−mb,0

]

= V µ(0) i

p̂−mb,0 + p̂δb,H
= V µ(0) i

(p̂−mb) (1 + δb,H)

=
[

V µ(0) (1 − δb,H)
] i

p̂−mb,H
(4.21)

where “E.S.E.” means external self-energy and we have defined a candidate

b mass

mb,H = mb,0 (1 − δb,H) (4.22)

which intuitively appears as a proper pole of the quark propagator, and the

tricks that are formally allowed at one loop (typically, 1 + δb,H = 1
1−δb,H

)

have been extensively used.

The qualitative conclusion at this point is that one can reabsorb the

effect of the graph Fig. 4.3 into two different operations. The first one is

a redefinition of the quark mass; the second one is a formal modification

of the initial bare quark vertex (in our case, this will be the Zbb̄ one) that

corresponds to the addition of a quantity

δV µ = −V µ(0)δb,H (4.23)

to the bare vertex. Note, to avoid confusion, that this quantity must now

be computed following the conventional Feynman rules prescriptions; for a

Zbb̄ vertex this gives:

V
µ(0)

Zbb̄
=

g0
2 cos θW

γµ
[

g0
V b − γ5g

0
Ab

]

=
g0

cos θW
γµ
[

γLgLb + γRg
0
Rb

]

(4.24)

where g0
Lb = − 1

2 + 1
3 sin2 θW ; g0

Rb = 1
3 sin2 θW .

Let us apply these qualitative conclusions to the two graphs represented

in Figs. 4.2(c), (d). Without proving it explicitly, we shall assume that the

shift δb,H is the same in both cases. Also, from the conventional rules, we
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shall consider the half of the sum of the two contributions. This leads to

the conclusion that:

Γ
µ(Z)(c+d)
b = −ūb (~p3)

[

V
µ(0)
Zbb̄

δb,H

]

vb (~p4) =

−ūb (~p3)
g0

cos θW
γµ [γLgL,b + γRgR,b]

[

− g2

32π2

m2
t

m2
W

]

×γL

[

−∆

2
+Bfinite

1

(

p2
3,mt,mH

)

]

vb (~p4)

=

[

g

cos θW

]

ūb (~p3) γ
µγLvb (~p4)

[

g2

32π2

m2
t

m2
W

]

×
[

−1

2
+

1

3
sin θW

2

][

−1

2
∆ +Bfinite

1

(

p2
3,mt,mH

)

]

. (4.25)

The overallZbb̄ vertex can now be explicitly computed adding Eq. (4.25)

to Eq. (4.15). One sees immediately that, when this operation is performed,

the overall coefficient of the infinite component ∆ vanishes, since:

Γ
µ(Z)(a+b+c+d)(infinite)
b = Γ

µ(Z)(infinite)
b

=
g

cos θW
ūb (~p3) γ

µγLvb (~p4)

[

g2

32π2

m2
t

m2
W

]

×∆

[(

1

4
sin θW

2 − 1

4
cos θW

2

)

−
(

1

3
sin θW

2

)

+

(

1

4
− 1

6
sin θW

2

)]

= 0. (4.26)

The sum of the four contributions is therefore finite, and is given by the

following expression:

Γ
µ(Z)(finite)
b = Γ

µ(Z)
b

=
g

cos θW
ūb (~p3) γ

µγLvb (~p4)

[

g2

32π2

m2
t

m2
W

]

×
[

finite+

(

1

3
sin θW

2 − 1

2

)

Bfinite
1 (0;mt,mH)

]

(4.27)

where the first finite term in the square bracket is defined by

Eqs. (4.6),(4.14),(4.15) and the b mass has been systematically equated

to zero in all the (now finite) contributions.

We see that, as expected from the discussion given at the beginning of

this Chapter, the leading mt contribution of Fig. 4.2 to the Zbb̄ vertex is

purely left-handed. The reader can verify that this property applies to all

four diagrams separately.
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Equation (4.27) is quite general and does not consider yet the (relevant)

situation mt >> mW . This case will be examined in detail in the following

Subsection; before doing that, we shall conclude this part of Chapter with

an illustration of how the projection procedure on the different Lorentz

structures actually proceeds in this specific case. With this purpose, it is

convenient to rewrite Eq. (4.27) in the condensed form:

Γ
µ(Z)
b =

g

cos θW
ūb (~p3) γ

µγLvb (~p4)F
(

q2,mt,mW ,mH

)

(4.28)

where F (q2, ....) corresponds to the finite terms contained in the square

brackets on the r. h. s. of Eq. (4.27). From Eq. (4.28) we can now derive

the expression that we need simply by readjusting it as follows:

Γ
µ(Z)
b

(

q2
)

=
g

2 cos θW
F
(

q2, ...
)

× [−ūb (~p3) γ
µγ5vb (~p4) + ūb (~p3) γ

µvb (~p4)]

= b1būb (~p3) γ
µγ5vb (~p4) + b2būb (~p3) γ

µvb (~p4) (4.29)

where we have used the definition of Eq. (3.248), with

b1b = −b2b = − g

2 cos θW
F
(

q2,mt,mW ,mH

)

. (4.30)

For our derivation, we must now rewrite the Zbb̄ vertex in the equivalent

way:

Γ
µ(Z)
b

(

q2
)

= a1b

(

q2
)

j
µ(Z)
b + a2b

(

q2
)

j
µ(γ)
b (4.31)

where j
µ(Z)
b and j

µ(γ)
b are defined by Eqs. (3.10), (3.8):

j
µ(Z)
b =

|e0|
2 sin θW cos θW

ūb (~p3) γ
µ
[

g0
V b − γ5g

0
Ab

]

vb (~p4) (4.32)

j
µ(γ)
b = −1

3
|e0|ūb (~p3) γ

µvb (~p4) (4.33)

and g0
V b = − 1

2 + 2
3 sin θW

2; g0
Ab = − 1

2 .

Using Eqs. (3.250), (3.251) of Chapter 3 we can now derive the ex-

pressions of the projections of the Zbb̄ vertex on the “Z” and “γ” Lorentz

structures:
(

Γ
µ(Z)
b

(

q2
)

, j
µ(Z)
b

)

= a1b

(

q2
)

=
4b1b

|e0|
sin θW cos θW = −2F

(

q2,mt,mW ,mH

)

(4.34)
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(

Γ
µ(Z)
b

(

q2
)

, j
µ(γ)
b

)

= a2b

(

q2
)

=

− 3

|e0|

[(

g0
V b

g0
Ab

− 1

)

b1b

]

= −2
sin θW

cos θW
F =

−2
s0
c0
F
(

q2,mt,mW ,mH

)

(4.35)

and in the last step of Eq. (4.35) we have exploited, as usually, the fact

that we are working at the one loop level which allows to replace the bare

parameters that are involved with corresponding physical quantities. In the

same spirit we shall replace systematically from now on, inside the function

F
(

q2, ...
)

, the bare parameter g2
0 by 4πα

s2
0

, with s0 defined by Eq. (3.200).

Equations (4.34), (4.35) with F given by Eq. (4.28) are all that we need

for our forthcoming discussion, that will proceed in the following Subsec-

tion.

4.1.2 Observable effects of the Zbb̄ vertex at the Z peak:

the large mt limit

Until now, all our derivation has been quite general and no special assump-

tion has been made on the size of the top mass. The relevance of the Zbb̄

vertex becomes, however, enhanced when mt increases and becomes larger

than, say, mW , as it results from the available experimental measurement

(Chapter 10). In order to provide a satisfactory description of this impor-

tant effect, we shall consider from now on the extreme situation mt → ∞,

and concentrate our attention on the leading mt terms in the asymptotic

mt expressions of those analytic functions that contribute the Zbb̄ vertex

as e.g. from Eq. (4.27). As we shall see, two features become evident in the

considered configuration, whose combination makes it possible to consider

the Zbb̄ vertex as the manifestation of a physical effect at the Z peak: first

of all, the effect is “large” at the level of the related experimental accuracy;

secondly, it is manifestly (although a priori not obviously) gauge-invariant.

To prove the first statement, it is sufficient to compute the limit of the finite

quantity F (m2
Z ,mt,mW ,mH) in Eq. (4.28). In terms of the functions B1,

C24, C23 that have been defined by Eqs. (3.32), (3.34) this reads:

F
(

m2
Z ,mt,mW ,mH

)

=
α

8πs20

m2
t

m2
W

{[

−1

2
+

1

3
s20

]

Bfinite
1 (0;mt,mH)

−
[

c20 − s20
]

Cfinite
24

(

q2;mH ,mt,mH

)

+m2
t

[

1

2
− 2

3
s20

]

C0

(

q2;mt,mH ,mt

)
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+
2

3
s20

[

q2C23

(

q2;mt,mH ,mt

)

+
1

2
− 2Cfinite

24

(

q2;mt,mH ,mt

)

]}

.

(4.36)

The calculation of the leading term for large mt leads to the expression:

lim
mt→∞

F
(

m2
Z ;mt,mW ,mH

)

=
α

8πs20

m2
t

m2
W

[

1

2
+ next− to− leading

]

(4.37)

where, for the moment, we do not consider the next-to-leading terms (that

will turn out to be not negligible, as we shall discuss later).

To get a feeling of the relevance of the expression written in Eq. (4.37)

for what concerns the modification of physical quantities, it is convenient to

write the complete theoretical expression of the partial width Γ
(1)
b =Γ

(1)

Z→bb̄

at one loop. By an immediate and straightforward generalization of the

procedure that led to the derivation of the corresponding formula for the

leptonic width one is led to the following equation, valid in the approxima-

tion mb = 0:

Γ
(1)
b = NQCD,b

GF√
2

m2
Z

6π
[1 + ε1b]

[

g2
Ab + g2

V b

]

= NQCD,b

×GF√
2

m2
Z

24π
[1 + ε1b]

[

1 +

(

1 − 4

3
s2b
(

m2
Z

)

)2
]

(4.38)

(we did not yet include a small multiplicative purely QED correction 1+ 3
4

α
π )

where NQCD,b is the strong interactions effect on the final bb̄ pair, to be

discussed in the second part of this Chapter, and:

ε1b = ε1 − 2Re
(

Γ
µ(Z)
l

(

m2
Z

)

, j
µ(Z)
l

)

+2Re
(

Γ
µ(Z)
b

(

m2
Z

)

, j
µ(Z)
b

)

= ε1 + 2Re
(

Γ
µ(Z)
b

(

m2
Z

)

, j
µ(Z)
b

)NU

(4.39)

s2b
(

m2
Z

)

= (sin θW,eff )
2

+s0c0Re
[(

Γ
(Z)
µl

(

m2
Z

)

, j
(γ)
µl

)

−
(

Γ
µ(Z)
b , j

µ(γ)
b

)]

= (sin θW,eff )2 − s0c0Re
(

Γ
µ(Z)
b

(

m2
Z

)

, j
µ(γ)
b

)NU

(4.40)
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where we have used the definitions of Eqs. (3.281), (3.286) and the usual

one loop approximations. These are supposed to be valid at the requested

level of accuracy, and do not need a special discussion in each separate

case to be considered. The latter statement is, on the opposite, not true

for another approximation that has been systematically adopted until now,

that of treating the final physical quarks as genuinely massless objects. In

the case of a Z partial width, taking into account the quark mass (assuming

that a proper definition can be given of this quantity) introduces a small

modification of the formulae that we have derived. For a “light” quark of a

mass much smaller than mZ , neglecting terms of order m4
q ,one obtains the

relevant expression by simply performing in Eq. (4.38) the single following

modification:

g2
A,b → g2

A,b

√

1 − 4m2
b

m2
Z

(1 − 4m2
b

m2
Z

) (4.41)

(the vectorial coupling remains unchanged at this level of accuracy), where

for the b mass a value of approximately 4.5 GeV can be taken, that is in-

tuitively related to that of the upsilon resonance. Numerically, the change

induced on Γb is of approximately a (relative) one percent, that is com-

parable with the experimental accuracy and must consequently be taken

into account. This remark only applies, at the Z peak, to final bottom

pair production. For this reason we have not derived the general formula

valid for massive fermions from the beginning, since in all other cases the

zero mass approximation is perfectly valid. We shall return on this b mass

dependence later on, when treating other properties of bb̄ production in this

Chapter.

In Eqs. (4.39), (4.40) the symbol “NU” means “not universal”, and

denotes the fact that the only difference in this case between a final charged

lepton ` and a final quark b is the appearance in the vertex of non universal

terms. These are clearly exhibited by the ' m2
t charged would-be H+,−

contribution. In the relevant situation mt → ∞ we can then safely retain

the leading component of the effect, and write:

ε1b (mt → ∞) ' ε1 + 2a1b = ε1 − 4F
(

m2
Z ;mt...

)

×s2b
(

m2
Z

)

(mt → ∞) ' (sin θW,eff )2 − s0c0a2b

= (sin θW,eff )
2

+ 2s20F
(

m2
Z ;mt,mW ,mH

)

. (4.42)
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From the value given in Eq. (4.37) we conclude that:

ε1b ' ε1 −
α

4πs20c
2
0

m2
t

m2
Z

= ε1 −
α

2.232
m2

tm
2
Z (4.43)

s2b
(

m2
Z

)

' (sin θW,eff )
2

+
α

8πc20

m2
t

m2
Z

= (sin θW,eff )2 +
α

19.315

m2
t

m2
Z

(4.44)

having used the value of s20 given in Eq. (3.203).

Combining Eqs. (4.43) and (4.44) with Eq. (4.38) we can compute in

leading m2
t order the relative shift on the partial width Γb. We stress that

we are now interested in the non-universal effect that is not present for

final leptonic or light quark states. With this aim, we shall not include the

universal component of ε1 and sin2 θW,eff already given by Eq. (3.288) and

Eq. (3.296), and call “NU” the remaining contributions, which give, after

a few one-loop tricks:

Γ
1,mt(NU)
b

Γ1
b

=

[

1 − α

4πs20c
2
0

m2
t

m2
Z

]

×






1 − 16s20

3

1 − 4s2
0

3

1 +
(

1 − 4s2
0

3

)2

α

16πs20c
2
0

mt

m2
Z







'
[

1 − α

2.32

m2
t

m2
Z

− α

15.46

m2
t

m2
Z

]

(4.45)

where the first correction is generated by ε1b and the (much smaller) second

one comes from s2b
(

m2
Z

)

. In correspondence with the experimental value

mt ' 2mZ , a relative correction of about two percent appears in this first

rough estimate.

As a matter of fact, in a situation of large mt, a second term arises

in F that is of the form ∼
(

ln
m2

t

m2
Z

)2

, with a numerically large coefficient,

that practically doubles the previous ∼ m2
t contribution. Leaving aside the

details of the derivation [56], one reaches the conclusion that relative non-

universal shifts of a few (∼ 3 − 4) percent appear in the expression of the

Z partial width Γb. This is, a priori, a quite sizeable effect that certainly

requires a proper treatment and a careful theoretical calculation.
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The previous conclusion would be acceptable provided that one could

claim that this large mt effect is a gauge-independent one. Since the overall

calculation was performed in the t’Hooft ξ = 1 gauge, this statement is

not in principle obvious (in fact, we left in the theoretical expression the

notation mH = ξmW as a remainder of this intrinsic ξ dependence). It

turns out, though, that the large mt contribution that we have isolated

is actually gauge-independent. This can be proved in different ways; we

shall present here a simple and intuitive argument, mostly based on self-

consistency considerations. In fact, we have shown in Chapter 3 that, in

order to cancel the gauge-dependence of the universal self-energies, a pre-

cisely defined amount of boxes and vertices must be added to generate the

gauge-independent combinations, as shown e.g. by Eqs. (3.263), (3.266).

At the Z peak, the box contribution is kinematically canceled, and the pre-

vious operation must be carried on by vertices. From the universality of

self-energies, it is clear that only the universal parts of the related vertices

can be (suitably) gauge dependent to perform the requested cancellation.

Thus, the non universal “NU” components of the vertices must be individ-

ually gauge-independent at the Z peak. This is evidently the case of the

components of the Zbb̄ vertex that are depending on mt, which proves our

statement. Given the large size of the effect, we can thus consider it as a

physical, observable one. In the forthcoming Subsection we shall provide,

an operative definition that relates it to measurable quantities.

4.1.3 Operative definition of the Zbb̄ vertex at the Z peak:

the δbV parameter

A simple way to provide an operative definition of the non-universal com-

ponent of the Zbb̄ vertex that has been discussed until now, arises from the

observation that its effect, as already stated, only involves at the Z peak the

Z decay into a bb̄ pair, and none of the remaining Z partial widths. Since

the latter quantities are, in principle, measurable, one immediate proposal

is that of considering ratios of the Z → bb̄ width (Γb) with other “suitable”

ones. To specify the meaning of the word “suitable”, it is useful (anticipat-

ing the specific discussion to be given in this Subsection) to consider the

fact that Γb is affected by strong interactions effects (generally treated in a

conventional QCD scheme), whose presence might obscure the electroweak

details that we are trying to isolate, particularly if residual sizeable theoret-

ical uncertainties were present in the QCD sector. To eliminate, or at least

to reduce drastically, the previous difficulty, a simple possibility is that of
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considering ratios of the Z → bb̄ width with other hadronic Z widths. To a

very good approximation, to be discussed later on, the QCD effect in the

production of light quark-antiquark pairs at the Z peak can be treated in

the usual zero quark mass limit. In such a situation, the effect of the strong

interactions factorizes in the same way both in the numerator and in the

denominator (a fact that is somehow reminiscent of the similar property

of the longitudinal polarization asymmetry ALR for final hadronic states),

and consequently disappears, leaving the ∼ mt vertex effect unambiguously

defined. The simplest possibility in this spirit would then be measuring, as

originally proposed in Ref. [57], the non universal Zbb̄ vertex from the ratio

of Γb to Γs (the Z decay width into a ss̄ pair) i.e.:

Γb

Γs
= 1 + δbV (4.46)

where the parameter δbV has the following expression:

δbV = −F
(

m2
Z ;mt

)






4 +

16s20
3

1 − 4s2
0

3

1 +
(

1 − 4s2
0

3

)2






(4.47)

which can be obtained combining Eqs. (4.34)–(4.40). Note that, in the ratio

of Eq. (4.46), the universal components of ε1,3 cancel exactly, only leaving

the non-universal term.

Note also that, in Eq. (4.47), the b mass cannot be totally neglected,

as stated. Its effect of the observable quantities will be discussed later on.

Equations (4.46), (4.47) provide an operative definition of the quantity δbV .

This is directly proportional to F
(

m2
Z ;mt

)

defined by Eq. (4.36). Using

Eq. (4.37) one can derive immediately the leading mt expression of δbV , and

write:

δbV = − α

4πs20c
2
0






1 +

4s20
3

1 − 4s2
0

3

1 +
(

1 − 4s2
0

3

)2







×
[

m2
t

m2
Z

+
13

6

(

ln
m2

t

m2
Z

)2

+ .....

]

(4.48)

where the coefficient of the logarithmic term, that makes the total con-

tribution quite competitive (roughly 4%), has been computed in previous

papers [56].
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From a strictly practical point of view, the Z → ss̄ decay cannot be

measured at the permil level of accuracy. A better quantity to be used in

order to define and measure δbV is actually the ratio Γb

Γh
, where Γh is the

full hadronic Z width i. e.

Γh = Γu + Γd + Γs + Γc + Γb (4.49)

whose experimental measurement can be performed with the required ac-

curacy. Intuitively, the same theoretical considerations about QCD cancel-

lations will remain valid for this ratio. For what concerns the electroweak

component, an elementary calculation leads to the following theoretical ex-

pression:

Rb ≡
Γb

Γh
=

Γs (1 + δbV )

Γu + Γd + Γs + Γc + Γb

=
Γd (1 + δbV )

2Γu + Γd (3 + δbV )

=
1 + δbV

3 + 2rud + δbV
. (4.50)

In deriving the final expression of Eq. (4.50) we have assumed:

Γu = Γc ; Γd = Γs (4.51)

and defined the ratio
Γu

Γd
= rud . (4.52)

Note that, for what concerns the quantities that appear in Eq. (4.50),

the modifications due to quark mass differences in the QCD corrections are

totally negligible for the four lightest u, d, s, c quarks, that can be consis-

tently treated as massless. In the usual one-loop approximation philosophy,

we can rewrite Eq. (4.50) as follows:

Γb

Γh
=

1

3 + 2rud

[

1 + δbV

(

1 − 1

3 + 2rud

)]

. (4.53)

The ratio rud that enters Eq. (4.53) must be computed theoretically at

the one loop level. For what concerns its contribution inside the square

bracket on the r.h.s. of that equation, which multiplies the O (α) parame-

ter δbV , it can be approximated by its lowest order expression. This corre-

sponds to writing Γu

Γd
in the following form:

Γu

Γd
= rud =

[

1 +
(

1 − 8
3s

2
0

)2
]

[

1 +
(

1 − 4
3s

2
0

)2
] (1 +O (α)) (4.54)
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and to only retaining the square bracket in the final expression. In this way

one is led to the theoretical formula:

Γb

Γh
=

1

3 + 2rud









1 + δbV









1 − 1

3 + 2
1+(1− 8

3 s2
0)

2

1+(1− 4
3 s2

0)
2

















=
1

3 + 2rud
[1 + 0.780δbV ] (4.55)

where the numerical value of s20 given in Eq. (3.203) has been used.

For what concerns the remaining rud contribution in Eq. (4.55), this

must be computed without approximations, starting from the definition

Eq. (4.54) that can be rewritten, using again Eq. (3.203), as:

rud = 0.7759 [1 +O (α)] . (4.56)

The O(α) term is expected, on general grounds, to be small. In fact,

the large∼ m2
t contribution coming from the self-energy component ∆1(0)

is predominantly contained in ε1u,d whose expression can be easily derived

by a generalization of Eq. (4.39), i.e.

ε1u,d = ε1 + 2Re
(

Γ
µ(Z)
u,d

(

m2
Z

)

, j
µ(Z)
u,d

)NU

. (4.57)

One sees that the ∼ m2
t contribution from ∆1(0) is the same in the two

parameters (the non universal vertex has no ∼ m2
t components) and there-

fore, essentially, cancels out. This does not apply to the ∼ m2
t contributions

from the s2u,d parameters are defined by a generalization of Eq. (4.38) as

follows:

s2u,d

(

m2
Z

)

= (sin θW,eff )
2 − s0c0Re

(

Γ
µ(Z)
u,d

(

m2
Z

)

, j
µ(γ)
u,d

)NU

. (4.58)

From the expression of (sin θW,eff )
2

given in Eq. (3.307) one can eval-

uate the ∼ m2
t effect in the ratio that appears in the generalization of

Eq. (4.54):

[

1 +
(

1 − 8
3s

2
u

(

m2
Z

))2

1 +
(

1 − 4
3s

2
d (m2

Z)
)2

](mt)

'

[

1 +
(

1 − 8
3s

2
0 + 8

3
s2
0c2

0

2c2
0−1

ε1

)2(mt)
]

[

1 +
(

1 − 4
3s

2
0 + 4

3

s2
0c2

0

2c2
0−1

ε1

)2(mt)
]

=
1.1473 (1 + 0.5894ε1)

(m)t)

1.4787 (1 + 0.4123ε1)
(mt)

= 0.7759 (1 + 0.1771ε1)
(mt)

= 0.7759 (1 + 0.1771∆1 (0))
(mt) . (4.59)
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One sees in conclusion that, as in the case of the ε1u,d ratio, the ∼ m2
t

effect from the generalized weak angles is very diluted. This means that

the theoretical value of rud to be used in Eq. (4.55) will be very stable

with respect to the input parameter mt. In practice, one expects that

the complete value, that can be computed by the existing programs [86],

does not differ significantly from the lowest order calculation =0.7759 that

appears in Eq. (4.56).

This long discussion should have illustrated, we hope in a reasonably

understandable way, the calculation of the Z → bb̄ decay at the Z res-

onance. To conclude this subject, we still have to review a few peculiar

properties that make this quantity a rather special one. More precisely, the

two following facts should be stressed:

a) the parameter δbV , that represents a reasonable parametrization of the

Zbb̄ effect, does not depend on the Higgs mass mH . In fact, in the

conventional approach, the physical Higgs exchange in the vertex would

be proportional to the b mass and therefore vanishing, in first realistic

approximation;

b) the quadratic dependence of F Eq. (4.37) on m2
t has nothing to do

with the custodial symmetry violation ∼
(

m2
t −m2

b

)

that enters the

quantity ∆1 (0) Eqs. (3.190), (3.191) and therefore the parameter ε1
Eq. (3.288).

The conclusion of the two previous observations is that the Zbb̄ vertex,

as parametrized e.g. by the quantity δbV , represents a genuine and unique

“top mass indicator”, that only depends on the fundamental SM parameter

mt. This should make it clear why the measurement of the Z partial width

into a bb̄ pair has represented, in the long period of time that was devoted

to the measurements at the Z peak, a fundamental issue. In Chapter 10

we shall discuss the effect of the bb̄-production data on the determination

of the top mass.

To conclude this part of the Chapter, we still have to analyze the possible

sensitivity to the δbV parameter of the measurable Z → bb̄ asymmetries,

in analogy with what we did in the case of production of a final charged

lepton pair when we examined the dependence on the custodial symmetry

breaking parameter ∆1 (0). We shall see that, in the case of final bb̄ pairs,

the relevant asymmetries are in practice insensitive to δbV . Having shown

this fact, we shall also discuss in a qualitative way the reason why this lack

of sensitivity has to be expected, on very general, and simple, grounds.
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The technical proof of our statement is based on the definition of the

Z → bb̄ chiral asymmetry Ab defined in detail in Chapter 2 Eq. (2.89). At

tree level, this has the expression:

A(0)
b =

g
(0)2
bL − g

(0)2
bR

g
(0)2
bL + g

(0)2
bR

= 2
g
(0)
bV g

(0)
bA

g
(0)2
bV + g

(0)2
bA

. (4.60)

At one loop, following our general prescription illustrated in Chapter 3,

we shall write:

A(1)
b = 2

g
(1)
bV

(

m2
Z

)

g
(0)
bA

g
(1)2
bV (m2

Z) + g
(0)2
bA

=
2

1 +
g
(1)2
bV (m2

Z)
g
(0)2
bA

g
(1)
bV

(

m2
Z

)

g
(0)
bA

= 2

[

1 − 4
3s

2
b

(

m2
Z

)]

1 +
[

1 − 4
3s

2
b (m2

Z)
]2

' 2

[

1 − 4
3 (sin θW,eff )

2 − 8
3s

2
0F
(

m2
Z ;mt

)

]

1 +
[

1 − 4
3 (sin θW,eff )2 − 8

3s
2
0F (m2

Z ;mt)
]2

× (1 + “QCD”) (4.61)

and moving from the first to the second equations and from the second to

the third line of the previous equation, Eqs. (4.40) and (4.35) have been

exploited. In Eq. (4.61) a (small) calculable QCD correction has not been

explicitly written down. The reason is that we are now interested in the

particular electroweak ∼ m2
t contribution appearing in F . In this spirit, we

can neglect the QCD contribution (to be discussed later) and approximate

F with Eq. (4.47). In this way, we obtain explicitly, using the numerical

value for s20 given in Eq. (3.203) and working “inside” the one loop level

where s20= (sin θW,eff )
2
:

A(1)(mt)
b = 2

1 − 4
3s

2
0

[

1 +
(

1 − 4
3s

2
0

)2
]

×
[

1 − 8

3
F
(

m2
Z ;mt

) s20
1 − 4

3s
2
0

1 −
(

1 − 4
3s

2
0

)2

1 +
(

1 − 4
3s

2
0

)2

]

= 2
1 − 4

3s
2
0

[

1 +
(

1 − 4
3s

2
0

)2
]

[

1 +
8

9

s40
1 − 4

3s
2
0

δbV

]

= 0.936 [1 + 0.069δbV ] . (4.62)
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One sees therefore from a comparison with Eq. (4.55) that the sensitivity

of the b asymmetry Ab to δbV is roughly ten times smaller than that of

the ratio Γb

Γh
, whose relative experimental accuracy will be, as discussed

later, definitely better. Since the two relevant (polarization and forward-

backward) Z → bb̄ asymmetries are simply defined in terms of Ab from

the expressions given in Chapter 2, we can confirm the statement that,

in practice, these quantities are unaffected by the contribution of the Zbb̄

vertex within the MSM framework.

An intuitive understanding of this situation can be obtained by looking

at the tree level definitions of Ab and Γb, Eqs. (4.60) and (2.79). In the

case of Γb, the line of equation Γb = constant in the plane of the “shifts”

δgbV , δgaB would correspond to the relationship:

δΓb = 0 → δgbV = − gbA

gbV
δgbA '

− 1

1− 4
3s

2
0

δgbA ' −1.4δgbA . (4.63)

For Ab, one would find the line of equation:

δAb = 0 → δgbV =
gbV

gbA
δgbA

=

(

1 − 4

3
s20

)

δgbA ' 0.7δgbA . (4.64)

The shifts produced by the Zbb̄ vertex, that is of purely left-handed

type, obey on the other hand the condition:

δgbR = 0 → δgbV = δgbA . (4.65)

This line is “almost” parallel to that of constant Ab Eq. (4.64), and

“almost” orthogonal to that of constant Γb Eq. (4.63). One understands

therefore why the Zbb̄ vertex effect is practically irrelevant on Ab, and much

stronger on Γb, a feeling that is numerically confirmed by our previous

detailed calculation.

This final discussion concludes the first part of this Chapter, devoted to

a meticulous derivation of the theoretical expressions that enter the elec-

troweak sector of the Z → bb̄ decay. In the second part of the Chapter, as

announced, we shall try to incorporate in the simplest and useful way the

still lacking topics of the strong interaction effects, treated in the conven-

tional QCD approach.
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4.2 The rôle of strong interactions in Z physics

4.2.1 Strong interactions effects at the Z peak

Our discussion has been until now concentrated on the pure electroweak

features of the e+e− annihilation process on top of the Z resonance. With

this aim, we have analyzed in detail both the production of final (charged)

lepton-antilepton pairs and that of quark-antiquark pairs using the same

theoretical mechanisms (the special treatment of a final bb̄ pair only differs

from the remaining cases because the top mass cannot be neglected in the

Zbb̄ vertex). As often emphasized, we have worked consistently within a

perturbation theory expansion truncated at one loop, whose validity has

been discussed at the end of Chapter 3 for what concerns the pure elec-

troweak sector of the calculations.

When strong interactions of the final states must be estimated, the first

and immediate question that arises is that of whether their effect can be

taken into account in a way that is both (reasonably) simple and realistic.

In practice, the most favourable situation in which both conditions are

simultaneously met is one where perturbative QCD can be satisfactorily

used, with a strong coupling αs sufficiently small to justify the truncation

of a power series that has αs as the expansion parameter. We know from the

general QCD features that the preliminary request will be that the relevant

four-momentum square q2, identifiable in this case with the c. m. squared

energy of the electron-positron pair, is sufficiently larger than the squared

characteristic scale of strong interactions. Intuitively and conventionally,

this is identifiable with the nucleon squared mass m2
N ' 1 GeV2. At the

Z peak, the value of q2 = m2
Z is two orders of magnitude larger than m2

N ,

and the possibility of using a perturbative expansion in a “small” effective

coupling αs(m
2
Z) appears, a priori, to be substantially reasonable.

The previous conclusion is, clearly, qualitative. Let us assume for the

moment that it is, at least in first approximation, correct and let us examine

the practical problems that would arise in the explicit calculation of QCD

corrections to a typical Z−peak electroweak process. The simplest example

that can be provided is that of the Z decay into a quark-antiquark pair.

We have already derived, in the first part of this Chapter, the theoretical

expression of the Z partial width, in the special case of a bb̄ pair, and we have

shown in Fig. 4.2 a set of electroweak Feynman diagrams that contribute

at one loop. The detailed numerical discussion that we have given was also

motivated by the ambition of showing that the sum of the four diagrams was
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actually finite, in spite of the fact that all the separate contributions were

infinite. In all cases the divergences were of ultraviolet origin, i.e. due to

the bad behaviour of the (virtual) integrand in the asymptotic integration

variable (= k) region, as shown e.g. by Eqs. (4.5), (4.8) and (4.20).

From a strictly formal point of view, the cancellation of the ultraviolet

divergences in the considered Z vertex was completely achieved within the

invariant scattering amplitude, to be more specific within linear one loop

expressions (vertices, in this case). This can be restated by saying that

the cancellation of the electroweak ultraviolet divergences at one loop in

the process represented in Fig. 4.2 is an “internal affair” between diagrams

with the same set of incoming and outgoing real particles (in our specific

case, electron-positron into quark-antiquark) and different types of virtual

exchanges , e.g. Fig. (4.2).

One would expect the same formal property to remain true when con-

sidering possible extra ultraviolet divergences of QCD origin affecting the

same physical process, e + e → qq̄ at the Z peak. In terms of Feynman

diagrams, these effects are represented at one loop by Fig. 1.6. Without

entering the details of the QCD framework, we shall simply quote the rele-

vant expressions of the gluon propagator and of the gluon-quark vertex. In

our conventional notations, they read:

gluon propagator → Pνµ (k) =

= −δab
k2

[

gνµ + (ξ − 1)
kνkµ

k2

]

(4.66)

gluon-quark vertex → igsγµ

λa
ij

2
(4.67)

where a, b are color SU(3) indexes, a, b=1...8, and the remaining quantities

are defined as follows: λa are the Gell-mann matrices, i, j=1, 2, 3 are

the quark color indexes; ξ is the SU(3) gauge parameter, whose rôle is

essentially similar to that of the electroweak gauge parameters ξW , ξZ (we

shall not enter the discussion of the Faddeev-Popov ghosts in what follows

and simply state that in the considered process e+e− → qq̄ these unphysical

creatures can be safely ignored); gs is the strong coupling,
g2

s

4π = αs.

The elimination of the gluon ultraviolet divergence in the Zqq̄ vertex

proceeds along the conventional approach that we have exhaustively illus-

trated in the corresponding electroweak case in the first part of this Chapter.

The extra feature that we shall try to summarize will rather be the fact
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that the cancellation of the ultraviolet divergences in the gluon vertex is not

yet the final word for what concerns QCD divergences. Actually, another,

essentially different, kind of infinities arises in this case, that is deeply con-

nected with a characteristic property of the gluons. The latter ones are

supposed to be massless particles, exactly like the photons. As a conse-

quence of this feature, infrared divergences appear, exactly like in QED.

Since the cancellation of these infinities is achieved by a procedure that is

intrinsically different from those that we have previously examined, and a

number of important papers exists [29] where all the details of the proce-

dure are exhaustively discussed, we shall simply start from the pragmatic

statement that, in conclusion, the finite expression of the strong interaction

effect on the Z partial width into a massless quark pair, to lowest order in

the strong coupling αs, can be written as:

Γ1,s
q = Γαs=0

q

[

1 +
αs

π

]

(4.68)

where Γαs=0
q represents the purely electroweak component of the partial

width.

Although Eq. (4.68) seems remarkably simple and attractive, it still

cannot be utilized to generate a meaningful theoretical prediction, i.e. one

directly comparable with an experimental measurement. The two main

difficulties that still persist are related to the following problems:

a) what can actually be measured at the Z peak is the fraction of Z’s

decaying into well defined types of hadrons. Equation (4.68) only gives

the fraction of Z’s decaying into well defined quarks. In the commonly

used theoretical description, the Z decay into quarks is the “first step”

of its hadronic decays. This is followed by the next transformation of

quarks into hadrons, via their hadronization process. The description

of the latter is less simple and general, and requires a separate dedi-

cated discussion of those non perturbative effects that are responsible

for the formation of the bound states. This discussion can be (and

has been) given, e.g. in the exhaustive analysis of [29]. However, the

unavoidable introduction of new ad hoc phenomenological parameters

makes the overall theoretical picture less favourable to the explicit goal

of a high precision test of the genuine electroweak sector of the SM,

that represents the main purpose of this book;

b) the numerical size of the one-loop effect in Eq. (4.68) depends on the

precise value to be assigned to the strong coupling αs. Assuming that,

as one would intuitively guess, the proper quantity to be used is the
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running coupling αs

(

q2
)

computed at q2 = m2
Z (although, as we shall

discuss, this statement only makes sense if at least the next contribution

∼ α2
s is computed), the available value before the start of LEP1-SLC

operations would have been that obtained by previous different mea-

surements [58], roughly leading to a value

αs

(

m2
Z

)

' 0.11± 0.1 . (4.69)

When inserted in Eq. (4.68), this leads to a relative effect of approx-

imately four percent, well above the conceivable permil experimental

limit. Under these conditions, that are a consequence of the fact that

the value of the strong coupling constant αs

(

m2
Z

)

is more than ten

times larger than that of the corresponding QED coupling α
(

m2
Z

)

,

the computation of the strong interaction effect at “only” one loop in

Eq. (4.68) appears evidently insufficient for the purposes of Z physics.

In fact, with a coefficient of the next ∼
(

αs

π

)2
of order one, which a

priori cannot be excluded, the second order contribution would be at

the few permil level, which represents a quite sizeable effect at the Z

peak. One sees therefore that the calculation of (at least) the next

term in the perturbative expansion in αs of Eq. (4.68) is practically

unavoidable from a strictly pragmatic point of view. As we shall see,

this calculation will be indeed theoretically fundamental, since it will

allow to clarify the meaning of the choice q2 = m2
Z at which to compute

the running parameter αs

(

q2
)

.

Let us consider problem (a) first. A simple and realistic solution to this

difficulty can be found by observing that the relative effect of the strong

interactions in Eq. (4.68) is the same for all the five (assumed massless)

light quarks that can be produced at the Z peak. This means that the

theoretical expression of the partial Z width into the five light quarks,

Γ5 = Γu+Γd+Γs+Γc+Γb, will automatically be given for what concerns the

strong interaction effect by the same simple formula found for the particular

quark pair, that is:

Γ1,s
5 = Γαs=0

5

[

1 +
αs

π

]

. (4.70)

Equation (4.70), unlike Eq. (4.68), can be realistically compared with

experiment. The simple reason is that the fraction of Z bosons decaying into

all possible kinematically allowed hadrons (that is measured at the Z peak)

is also equal to the fraction of Z bosons decaying into all possible allowed

quarks, no matter what the separate hadronization schemes are. Otherwise
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stated, the probability that all light quarks, after their production at the

Z peak, transform into all detectable hadrons, is equal to one. One sees

therefore that reasons of theoretical simplicity select the Z partial hadronic

width Γ5 as a clean and promising observable to be used, if the final goal

is that of an unbiased test of the electroweak sector of the SM. In what

follows, we shall accept these qualitative arguments and insist on Γ5 and

on its theoretical calculation.

The next step at this point becomes that of the computation of the

higher order coefficients in the αs expansion. Given the relevance of the

subject, we shall devote next Subsection to a summary of the results that

were obtained.

4.2.2 Higher order strong coupling contributions

In the calculation of the Z hadronic width beyond the lowest ∼ αs contri-

bution a number of extra complications arises. Before listing and (briefly)

discussing them, it is perhaps opportune to recall an important theoreti-

cal feature, that is deeply connected with the possibility of exploiting in a

not ambiguous way the notion of running strong coupling αs

(

q2
)

. A sim-

ple way of illustrating the problem is that of starting from the differential

renormalization group (RG) equation satisfied by αs. For our purposes, we

shall rewrite it as follows:

µ2 dαs

(

µ2
)

dµ2
= −b0α2

s

(

µ2
)

(4.71)

where b0 =
33−2Nf

12π .

As one sees from Eq. (4.71), varying the scale µ2 by an arbitrary amount,

µ2 → cµ2, one can only reveal the change of αs

(

µ2
)

at the next order

α2
s . If the theoretical expansion that one uses is truncated at the lowest

∼ αs order, at a given scale µ2 = q2 (=m2
Z in our case), it does not make

much sense to identify the running coupling αs with αs

(

q2
)

. This becomes

possible if the expansion is prolongated, at least to the next ∼ α2
s order.

When carrying on this task, (at least) two new difficulties arise, that

can be summarized as follows:

c) in general, going beyond the lowest αs order, the terms of the per-

turbative QCD expansion may depend on the chosen renormalization

scheme. Of course, the sum of all the terms of the expansion must not

depend on the scheme for any chosen observable, but this property does

not necessarily apply to the individual terms. We shall adopt in what
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follows the commonly used attitude of performing QCD perturbative

expansions in the so called barred minimal subtracted (MS) scheme in

a kinematical configuration (q2 = m2
Z) where five quarks may be pro-

duced. The running coupling that will enter the theoretical formulae

should therefore, strictly speaking, be denoted as α
(5),(MS)
s

(

m2
Z

)

, but

for simplicity we shall write it as αs

(

m2
Z

)

;

d) in the calculation of higher order diagrams, an unavoidable dependence

on the top mass arises, in some formal analogy with the case of the

electroweak Zbb̄ vertex Fig. 4.2.

It should be stressed at this point that, as already anticipated in this

Chapter, for what concerns the mass of the five (udscb) light quarks, the

approximation of setting it equal to zero in the computation of the QCD

expansion is quite satisfactory with one (predictable) exception provided by

the b-quark case. Here the value mb different from zero must be retained at

first order in αs, leading to contributions∼ αs
m2

b

m2
Z

. The precise expression of

such terms can be found e.g. in [33]. For what concerns our Eq. (4.38), the

overall (i.e. including electroweak corrections as well) effect corresponds to

the following formal replacements to the lowest αs order:

g2
V b (mb, αs)

g2
V b (mb = 0, αs = 0)

=

[

1 +
αs

π
+

3αs

π

4m2
b

m2
Z

]

(4.72)

g2
Ab (mb, αs)

g2
Ab (mb = 0, αs = 0)

=

[

1 − 6m2
b

m2
Z

+
αs

π

− 6αs

π

m2
b

m2
Z

(

1 + 2 ln
m2

b

m2
Z

)]

. (4.73)

One sees from Eqs. (4.72), (4.73) that the b mass corrections generate

in the Zbb̄ width ∼
(

g2
Ab + g2

V b

)

, on top of the ∼ 1 percent correction at

the electroweak lowest level, another one of approximately five permil at

the αs order, both effects being sizeable at the Z peak.

The next step in our analysis is now the stud of the higher order αs

effects. Here we shall assume that, as intuitively suggested by the pre-

vious numerical estimate, all quark masses, including the b mass, can be

neglected. This leads to a numerical estimate that has been performed

up to the third perturbative order α3
s . The motivations for such an “ex-

tremely” accurate calculation will be discussed soon in this Chapter, and

one will see immediately why the theoretical attention was concentrated for

a rather long period on the last third perturbative order. Before entering
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this discussion, we now summarize the results that were obtained for the

second order terms.

To shorten the treatment, since we are assuming that all quark masses

can be neglected, we shall write directly the α2
s correction to the full Z

hadronic width Γ5, that is of “universal” type i.e. has the same expression

for each separate quark component. In the notation of a recent dedicated

Review [59] this has the form (for three quark families):

Γ
(α2

s)
5 = Γ

(αs=0)
5

[

1 +
αs

(

m2
Z

)

π

(

1 +O
(

m2
b

))

+1.41
α2

s

(

m2
Z

)

π2
+ c2

α2
s

(

m2
Z

)

π2

]

. (4.74)

The coefficient c2 in Eq. (4.74) is exhibiting the mt dependence, em-

bodied in a function I2 of mt that must be computed numerically, and is

related to c2 as follows:

c2 = − 1

12Σq

[

g2
V,q + g2

A,q

]I2 (mZ ,mt) (4.75)

where

I2 (mZ ,mt) ' 9.25− 1.037
m2

Z

4m2
t

− 0.632
m4

Z

16m4
t

+ 6 ln
mt

mZ
. (4.76)

Numerically, for mt ranging between 50 GeV and 200 GeV, I2 varies

from ∼ 6 to ∼ 12. For values of αs in the range 0.11−0.12 this corresponds

to an overall α2
s contribution that is negative and of the five permil size,

relevant at the Z peak accuracy level. This is perfectly in line with the qual-

itative expectation expressed at the beginning of this Chapter, when the

motivations in favour of a second order calculation were roughly explained.

From a numerical point of view, one notices that the relative size of the

second order α2
s effect is roughly one tenth of the first order one. Naively,

one would expect a similar reduction factor for the following third order

term. Were this the case, the related contribution would be of a relative

size below the “visibility threshold ” that for Γ5 could be fixed at the permil

level. Actually, one finds a coefficient numerically equal to −12.8 for the
α3

s

π3 term [59], whose relative negative effect is below the one permil and, in

conclusion, not visible. This fact does not diminish the relevance of the hard

calculation and the consequent possibility of declaring the perturbative αs
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expansion at the Z peak officially fully under control, for what concerns

the theoretical estimate of the full hadronic Z width Γ5 [60]. In the final

part of this book, we shall make use of this variable , whose relevance in

the overall numerical fit will be, least to say, remarkable.

As a matter of fact, there is another quantity that is measured at the Z

peak and plays a very relevant rôle in the final numerical analysis. This is

the forward-backward asymmetry for production of bb̄ pairs, Ab
FB . Here the

rôle of strong interactions is less immediate to explain than in the previous

Γ5 case. The simple reason is that in the case of Ab
FB a precise definition of

scattering angle must be provided. This requires a series of technical steps

that we shall discuss in Chapter 8, leading to then general expression

A
b,(αs)
FB = A

b,(αs=0)
FB

[

1 − kb
αs

π

]

(4.77)

where

kb = 1 − 2π

3
µ (4.78)

and µ = 2mb

mZ
. This corresponds to a value of the αs

π coefficient of approxi-

mately 0.8. In terms of the corresponding effect on the asymmetry, whose

electroweak value is close to 0.10 (see Chapter 2), this produces a shift of

about 0.003. Since the final experimental accuracy will be of the two-three

permil level, one sees that the effect must be included. We shall return to

this point in Chapter 8 since the rôle of the forward-backward b-asymmetry

will turn out to be particularly relevant for the final averaged determination

of the Weinberg sin θW angle.

In conclusion, for the two observables Γ5 and AFB the strong interaction

effects can be and have been computed at the proper accuracy. For what

concerns the b partial width Γb, we have anticipated that the more practical

experimental quantity Rb =Γb

Γ5
Eq. (4.50) is in fact measured. For the latter,

the relevant strong interaction effect can be derived in a straightforward way

starting from the Equations that have been written in this Chapter for the

numerator and for the denominator. As one can guess, the effect is largely

diluted in the ratio, being essentially due to b-mass terms (mostly in the

numerator).

Chapter 4 is at this point concluded. Its main results will be combined

in Chapter 11 with those obtained in Chapter 3. Since the overall number of

formulae and Equations is at this point rather large, we have summarized,

for the reader’s convenience, in Table 4.1 the most relevant expressions

derived in those two long and, hopefully, useful Chapters.
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As already mentioned, Chapters 1–4, have been devoted to a summary

of the considerable theoretical effort that was developed by several physi-

cists to indicate the best measurable quantities that would have provided

high precision tests of the Standard Model. In the following Chapters

the corresponding memorable experimental effort will analogously be sum-

marized and illustrated, starting with the discussion of the fundamental

measurement of the Z lineshape.
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Table 4.1 Reference to most relevant formulae derived in Chapters 3 and 4.

Z leptonic width Eq. (3.292)
Γ
(1)
`

mZ
=

GF m2
Z

6π
√

2

[

g2Ae + g2V e

]

effective axial Z-lepton coupling Eq. (3.290) gAe =
√

1 + ε1g
(0)
Ae

effective vector Z-lepton coupling Eq. (3.291) gV e =
√

1 + ε1g
(1)
V e

(

m2
Z

)

sin2 θW,eff Eq. (3.293) sin2 θW,eff = 1
4

[

1 − g
(1)
V e(m2

Z)

g
(0)
Ae

]

longitudinal polarization asymmetry ALR Eq. (3.302) Ae = 2v0

1+v2
0
[1 + ε1

4s2
0c20

2c20−1
( 1

v0
− 8v0

1+v2
0
) − ε3

4s2
0

2c20−1
( 1

v0
− 2v0

1+v2
0
)]

mu and tau forward-backward asymmetry Eq. (3.304) A`
FB = 3

4
A2

e = 0.01695[1 + 33.37ε1 − 44.96ε3]

tau polarization asymmetry Eq. (3.283) Aτ
pol = −Aτ = −Ae

Rb Eqs. (4.55) and (4.56) Γb
Γh

= 1
3+2rud

[1 + 0.780δbV ] with rud = 0.7759[1 +O(α)]

chiral b asymmetry Ab Eq. (4.62) A(1)(mt)
b

= 0.936[1 + 0.069δbV ]

W mass Eqs. (3.316) and (3.202) m2
W = m2

Zc
2
0[1 + 1.430ε1 − ε2 − 0.859ε3] with c20 ' 0.769
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Chapter 5

Accelerators and Detectors for

Z and W Physics

The experimental results presented in next Chapters have been achieved

thanks to many years of successful operation of three major accelerators,

LEP, SLC, Tevatron, and of their detectors. Their main features are out-

lined below, together with some of the details that are necessary to under-

stand the rest of the book.

5.1 LEP

LEP, the CERN’s Large Electron Positron collider, was situated in the re-

gion between the Geneva lake and the Jura mountains, in the underground

tunnel now used for the Large Hadron Collider (LHC). It reached the high-

est energies in e+e− collisions and it was characterized by a very precise

beam-energy calibration. The tunnel has a length of 26.7 kilometer and is

3.8-meter wide. Four large underground halls, located at a depth varying

between 50 and 150 meters, housed the ALEPH, DELPHI, L3 and OPAL

detectors. A sketch of LEP and its detectors can be seen in Fig. 5.1. The

accelerator was approximately circular, consisting of eight arcs of 2.8-km

length and eight straight sections. The electrons and positrons were ac-

celerated at 20 GeV by the CERN accelerators complex and injected into

LEP, where they were further accelerated at their maximum energy. The

beam energy was about 45 GeV for the Z run that took place in the years

1989–1995 (LEP1 phase) and reached the maximum energy of 104.5 GeV

in year 2000, after five years of operation above the WW threshold (LEP2

phase).

In the LEP1 phase the beams were accelerated by copper radio-

frequency (RF) cavities positioned in the straight sections on either side

of the experimental halls. The RF cavities were replaced by superconduct-

237
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ing cavities in the second, higher energy, LEP2 phase. The replacement

was required to compensate the higher energy loss per turn at LEP2, that

was about 2 GeV to be compared with 125 MeV at LEP1. The beams

were bended in the eight arcs by 3400 dipole magnets and focused by 800

quadrupoles and 500 sextupoles magnets. Electrons and positrons were

grouped in bunches and circulated in opposite directions with a frequency

of about 11 kHz. Typically four bunches were used at LEP, during the

LEP1 phase a fraction of data was delivered with 8 bunches and even with

bunch trains. Most of the LEP1 data was collected closely to the Z peak,

but a sizeable fraction of the data was also delivered at side centre-of-mass

energies, up to 3 GeV above and below the peak of the Z resonance. Such

energy scans were essential for the measurement of the Z lineshape. The

beams were colliding at the centre of the four experimental apparatus, in-

teracting in a region approximately 300 µm wide along the LEP bending

radius, 60 µm wide in the vertical direction and 2 mm wide along the beam

direction. LEP achieved a record luminosity of 2.3 × 1031cm−2s−1 during

the Z runs, and went above 1032cm−2s−1 in the LEP2 phase. The total in-

tegrated luminosity delivered at the Z was about 150 pb−1 per experiment;

the four experiments collected a total statistics of more than 15 millions

hadronic Z decays and 1.7 millions leptonic Z decays. At LEP2 about 600

pb−1 per experiment were delivered, for a total of about ten thousand WW

interactions per experiment. The techniques employed to achieve an abso-

lute beam energy calibration with a precision of 2 × 10−5 are described in

Chapter 6.

5.2 SLC

The SLC (Stanford Linear Collider), operating from 1989 to 1998, was

the first example of a high energy linear collider and provided longitudinal

polarization of the electron beam. Its length was 3.2 kilometer and the

accelerator was running at a centre-of-mass energy in the vicinity of the Z

peak. The layout of SLC is shown in Fig. 5.2. Alternate bunches of electrons

and positrons were produced and, after damping in rings designed to reduce

the phase space, they were accelerated to 45.6 GeV in two separate arcs. A

single interaction point was provided, housing the Mark II detector in 1989

and subsequently, from 1990 onward, SLD. The luminous region had very

small dimensions, a few microns in the directions orthogonal to the beams.

The rate at the interaction point was low, about 120 Hz. The operation
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Fig. 5.1 A sketch of LEP with its experiments.

with polarized electron beams started in 1992, with the commissioning of

an electron gun based on a GaAs cathode hit by polarized laser light. After

1994 an electron-beam polarization of about 77% was achieved. At this

average polarization, about 150000 Z decays were recorded by the SLD

experiment, complemented by about 70000 Z decays collected at lower

beam polarization. More details about polarized beams at SLC are given

in Chapter 8.

5.3 Tevatron

The Tevatron is presently reaching the highest centre-of-mass energies in pp̄

collisions; at this accelerator the top quark was discovered. It is located at

Fermilab in Illinois, about 40 km east of Chicago. The use of antiprotons in

high energy colliders was pioneered at the CERN Spp̄S. Both CERN Spp̄S

and Fermilab proton synchrotrons had originally been constructed as fixed-

targed accelerators. The possibility of injecting high-intensity antiproton
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Fig. 5.2 The schematic layout of the SLC.

beams in the same storage ring was made possible in the early 1980s thanks

to a technique called stochastic cooling [61]. This technical breakthrough

allowed the discovery of the W and Z bosons at the Spp̄S.

At the Tevatron 108 antiprotons with an energy of 8 GeV are made every

few seconds by bombarding a Nickel target with 1012 120 GeV protons.

About 30000 pulses of antiprotons need to be collected and stored in an

accumulator before injection into the main accelerator. To produce a bunch

of antiprotons of limited spatial dimensions and low momentum spread

their six-dimensions phase space must be reduced (cooled) by nine order

of magnitudes. The Tevatron layout is shown in Fig. 5.3. Hydrogen ions

are produced by a ion source, injected into the Linac and then accelerated

to 8 GeV in the Booster. In the Main Injector they reach the energy of

120 GeV for antiproton production and of 150 GeV to fill the Tevatron

ring. Antiprotons of 8 GeV coming from the Accumulator are accelerated

to 150 GeV in the Main Injector, too. Both beams are then injected in the

Tevatron superconducting ring, a collider of 6-km circumference, to reach

an energy of 980 GeV. The beams collide in two experimental areas housing

the CDF and D0 experiments.

The Tevatron collider started its operations in 1988. In the period 1992-

1995 (Run I) an integrated luminosity of about 110 pb−1 was delivered to

the experiments. In Run I the Main Injector did not exist, a ring inside

the Tevatron tunnel was used. The number of bunches was six and the

beam energy 920 TeV. In 2002 the Main Injector and other upgrades were

operational, the number of bunches increased to 36 and the beam energy to

980 TeV. The peak instantaneous luminosity during Run II has exceeded

1032cm−2s−1. The Run II period is foreseen to end in 2009, with a target

integrated luminosity of 8 fb−1.
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Fig. 5.3 The schematic layout of the Tevatron Collider, for the Run II data-taking
period.

5.4 Beyond LEP, SLC and Tevatron: next colliders

The second half of 2007 will see the birth of the Large Hadron Collider

(LHC) at CERN. The LHC is presently being completed in the already-

existing 27 km LEP tunnel. It will provide head-on collisions of two proton

beams of 7 TeV each, with a design luminosity of 1034cm−2s−1. The LHC

proton bunches are spaced 25 ns, yielding a collision rate of 40 MHz. The

aim of LHC is the search for the Higgs boson and for physics beyond the

Standard Model; nevertheless the large cross sections, at proton-proton

centre-of-mass energy of 14 TeV, and the high LHC luminosity will provide

huge rates of Standard Model (W ,Z, top-quark) events.

In order to deliver e+e− collisions at centre-of-mass energies higher than

LEP, while keeping electric power consumption to a manageable level, a lin-

ear collider is needed. The International Linear Collider (ILC), based on

high-field superconducting RF cavities, is presently being designed. The

electric field in the cavities will reach 25 MVolt/m, to be compared with 6

MVolt/m at LEP2. Even with these strong cavities, the accelerator length

will exceed 30 km. It should yield e+e− collisions at a maximum centre-of-

mass energy from 500 to 800 GeV, with instantaneous luminosities around

1034cm−2s−1. Even higher centre-of-mass energies (3 TeV) could poten-

tially be reached with the CLIC accelerator, being designed at CERN.
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CLIC would receive its power from an intense low energy linac acting as

a driver and replacing the conventional RF cavities. The main features of

present and future accelerators are summarized in table 5.1.

Table 5.1 Present and future accelerators for W and Z physics. Expected param-
eters are given for future accelerators. For Tevatron the RUN II figures are shown.
Integrated luminosity is for experiment.

LEP SLC Tevatron LHC ILC CLIC

Beams e+e− e+e− pp̄ pp e+e− e+e−

C.o.m. energy (GeV) 89-209 91 1900 14000 500-800 3000
luminosity cm−2s−1 1032 1029 1032 1034 1034 1034

Int. luminosity (pb−1) 750 8 8000 105 105 105

5.5 Detectors

Collider detectors follow a typical onion-like layout, covering large part

of the 4π solid angle (as an example see Fig. 5.5). They are composed of

several subsystems arranged in cylindrical structures, surrounding the beam

line and centered on the nominal beam crossing point. This is typically the

mid point of the straight section between the two final quadrupoles of the

accelerator. The main components of collider detectors are briefly described

in next paragraphs; detailed descriptions can be found elsewhere [62]. A

general introduction on particle detectors can be found in Ref. [63]; see

also [13] and references therein.

Charged particle tracking

Charged particle trajectories are measured in tracking devices by detect-

ing the particle ionization in the detector material at increasing distance

from the beam line; the result of the measurement is generally a set of

three-dimensional coordinates describing the trajectory. Tracking devices

are immersed in the axial magnetic field provided by a surrounding coil.

Charged particles are bent by the magnetic field and their three-momenta

can be measured by reconstructing the trajectory. The error on the mo-

mentum measurement is related to the geometry of the detectors and to

the magnetic field as follows. If the strength of the axial magnetic field

is B, the trajectory of a particle of momentum p, projected on a plane

orthogonal to the field, follows a circle of radius R = pT

eB where e is the

particle charge and pT = p cosλ its transverse momentum (λ represents
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the pitch angle with respect to the plane). If the tracking device is a cylin-

der of radius L the particle is bent by the magnetic field (Fig. 5.4) by an

angle φ with 2 sin φ
2 = L

R = eBL
pT

. The deviation of the particle path from

a straight line is determined by the sagitta of the circular trajectory, de-

fined as s = R − R cos φ
2 ≈ Rφ2

8 , giving s = eBL2

8pT
. The uncertainty on the

measurement of the sagitta, δs is a function of the uncertainty on the mea-

surements of the coordinates xi of the trajectory: δs = f(δxi). It follows

that

δpT

pT
=
f(δxi)8pT

eBL2
. (5.1)

Equation (5.1) shows that good momentum measurement requires large

tracking devices and high magnetic fields. Magnetic fields higher than 1

Tesla on large volumes can be obtained with superconducting coils. Equa-

tion (5.1) shows also that the uncertainty on transverse momentum grows

with the transverse momentum itself. In a real detector the uncertainty

on the sagitta measurement depends on the geometry and on the detector

resolution in measuring the spatial coordinates; it depends also on multi-

ple scattering, i.e. on multiple deflections of a particle in traversing the

detector medium, generally due to Coulomb scattering from nuclei. The

deflection caused by multiple scattering between two measurements of po-

sitions is proportional to the square root of the medium thickness, expressed

in radiation lengths (X0), and proportional to the inverse of the particle

momentum ( 1
p ). Multiple scattering adds to δs = f(δxi) a component

which is proportional to 1
p and therefore adds to Eq. (5.1) a term inde-

pendent on the transverse momentum. In order to suppress the effect of

multiple scattering it is important to keep the material budget of tracking

devices as low as possible. The transverse momentum resolution of collider

tracking devices is generally parametrised as δpT

pT
= (A× pT ⊕B), where ⊕

represents the sum in quadrature of the geometrical and multiple scattering

terms. For the experiments considered in this book typical values of the

two parameters are A ≈ 10−3(GeV/c)−1 and B ≈ 10−2. The momentum

p can be computed from the measurement of pT and of the pitch angle,

λ. The latter one can be determined by measuring the coordinates of the

trajectory in direction parallel to the magnetic field.

An important aspect of charged particle tracking concerns the detection

of secondary vertices originating from the decay of long-lived particles; this

is discussed in details in Chapter 7.
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Fig. 5.4 Trajectory (bold line) of a charged particle in a cylindrical tracker of radius L,
immersed in a magnetic field B parallel to the beam line. The view orthogonal to the
beam line is shown. The curvature radius of the charged particle and the bending angle
are indicated by R and φ, respectively. The sagitta is represented by the arrow s.

Calorimeters

Neutral particles cannot be measured by tracking devices and their de-

tection requires the formation of a shower, which is a destructive process.

The basic principles of shower development can be understood by consid-

ering a high energy photon, of energy E0, impinging on a dense medium.

In this case an electromagnetic shower is formed and the basic parame-

ter regulating its development it’s the medium radiation length (X0). The

probability that the photon converts into an electron-positron pair after

traversing a depth of thickness x is (1 − e
− 7

9
x

X0 ), i.e. about 50% after one

radiation length. On average, the electron and positron will equally share

the primary photon energy (E1 = E0/2) and their energy will decrease, on

average, to E2 = E1/e = E0/2e in next radiation length. At high energies

the electron and positron energy loss is caused, typically, by the emission of

a bremsstrahlung photon. The process continues until all particle energies

fall below a critical energy (Ec) at which the main processes involved in

energy loss are no longer pair-creation and bremsstrahlung. For lead this

happens below 10 MeV. The critical energy is reached, on average, after

having crossed a thickness nX0, where n = ln E0

Ec
/ ln 2. This longitudinal
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position is called shower maximum and features an average of N = E0

Ec

particles.

Calorimeters are detectors made with dense material, with the capabil-

ity of detecting the charged particles belonging to the shower. If they are

dedicated to the measurement of electromagnetic showers, as the ones orig-

inating from photons and electrons/positrons, are called electromagnetic

calorimeters. The detection can take place by measuring the ionization,

or the Cherenkov light emitted by charged particles. The signal detected

by an homogeneous calorimeter is proportional to the total track length

T , that is the sum of all path lengths of electrons and positrons. In the

simplified scheme described in previous paragraph the total track length

is T ≈ 2
3X0

∑n
ν=1 2ν ≈ 4

3X0
E0

Ec
showing that it is linearly related to the

initial photon energy. In real devices the drop in detection efficiency does

not necessarily correspond to the critical energy, still it is found that

T = F (
Ed

Ec
)X0

E0

Ec
(5.2)

where Ed represents the real detection threshold and F is a function de-

pending on the medium (it essentially depends on the medium Z/A ratio).

The previous discussion shows that calorimetric measurements are es-

sentially a stochastic process and the measured energy fluctuates with the

fluctuation of the detected total track length. The latter one, in turn, is

proportional to the total charged particle yield (Nch) which, according to

Poisson statistics, fluctuates with σ =
√
Nch. Therefore the relative en-

ergy resolution of a calorimeter has a stochastic component described by

σ(E)/E = A/
√
E, where E = E0 is the energy of the primary particle.

Similar arguments hold for sampling calorimeters, consisting of inactive

layers of dense materials interleaved with detector layers, typically made

with gas detectors. In sampling calorimeters only a fraction of the total

track length is detected, leading to additional sampling fluctuations. The

relative energy resolution of a calorimeter decreases with increasing the

energy of the primary particle; the resolution is eventually dominated by

detector non-uniformities and uncertainties on the calorimeter calibration,

adding a constant term to the stochastic component. The resolution effects

can be parametrised as

σ(E)

E
=

A
√

E/GeV
⊕B (5.3)

where B is the constant term. Electromagnetic calorimeters for collider

detector have typical values of A ranging from a few % for homogeneous
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calorimeters to 10–20 % for sampling calorimeters. The constant term is

of the order of (typically less than) 1%. Another important parameter of

a calorimeter is its total thickness, as the shower longitudinal development

goes as lnE. A thickness of about 20 X0 at collider energies is required for

shower containment.

Electromagnetic calorimeters are also used to measure the primary par-

ticle position, at its entrance into the calorimeter. The position resolution

depends on the transverse dimension of the shower, which scales with the

Molière radius (RM = 21MeV
Ec

X0), and with the transverse granularity of

the calorimeter. The position resolution includes a stochastic term and

a constant term, similarly to Eq. (5.3). For high energy electrons and

photons position uncertainties of a few mm are obtained at collider detec-

tors. Calorimeter transverse granularity is also important to keep low the

frequency of overlapping showers caused by nearby particles (for instance

from two photons originating from the same π0 decay).

The previous discussion applies, strictly speaking, to electromagnetic

showers. Some general features can be extended, however, to hadronic

showers produced by charged or neutral hadrons. Hadronic showers devel-

ops through a variety of inelastic interactions and are subject to important

stochastic fluctuations. In hadronic interactions several secondaries, such

as pions, kaons, protons, neutrons, etc. can be produced. Subsequent

interactions lead to the formation of an hadronic cascade which can be de-

tected by a hadron calorimeter. Only part of the energy is visible in the

calorimeter: neutrinos and muons from pion and kaon decays escape the

calorimeter and a fraction of the energy is lost in nuclear excitation and

undetected low-energy nuclear fragments. When a neutral pion is created

in the hadronic cascade, the subsequent decay into two photons induces

the development of an electromagnetic shower. The response of detectors

to electromagnetic showers is different, as the fraction of detectable electro-

magnetic energy is larger, and this has an important effect on the stochastic

component of the calorimeter energy resolution. For hadron calorimeters

the A term in Eq. (5.3) ranges from 40% to 100% mainly depending on

the equalization of the electromagnetic component. The main parameter

regulating the hadronic shower is the nuclear interaction length (λI ), which

is the mean free path for an hadron before the first inelastic interaction;

the probability that an inelastic interaction occurs after crossing a layer of

thickness x is (1 − e
− x

λI ). As an example, for lead one interaction length

is about 17 cm, to be compared to 0.56 cm for one radiation length. The

longitudinal depth of hadronic showers depends on the energy, E, of the
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primary hadron and its proportional to lnE; typically at least 7 interaction

lengths are required for detectors relevant to this book. Hadron calorime-

ters are very massive objects weighting thousands of tons. At colliders

iron is often used to incorporate the hadron calorimeter in the return yoke

of the solenoid; the hadron calorimeter is external to the electromagnetic

calorimeter and it acts also as a filter for muons. An important parameter

of hadron calorimeters is hermeticity: as neutrinos can only be detected as

missing energy or missing transverse energy (Chapter 9) it is important to

cover as much as possible the solid angle with sensitive detectors, in order

to limit the undetected energy of the event.

Particle identification

The combination of calorimeters and tracking devices provides impor-

tant information on the identification of particles. As already mentioned

calorimeters act as filters for muons since they are not destroyed by shower

formation; muons are generally detected by dedicated muon chambers

placed externally to the calorimeters. Electrons are characterized by elec-

tromagnetic showers matching, in position and energy, with charged tracks

measured by tracking devices. Isolated electromagnetic showers, instead,

are a signature for photons.

Pions and other charged hadrons are detected as tracks depositing a

limited amount of their energy in the electromagnetic calorimeter, accom-

panyed by a shower in the hadron calorimeter. The identification of neutral

hadrons is more complex. The detection of K0
S ’s and Λ’s takes place from

their decay in a pair of charged particles forming a typical V-shaped dis-

placed vertex in the tracking device. Only a fraction of K0
S ’s and Λ’s can

be detected, the detection efficiency depends on the momentum and the ge-

ometry of the central tracker. Measurement of K0
L’s and neutrons, instead,

involves searching for hadronic showers not associated to charged tracks.

Their identification is complicated by the presence of other hadrons: the

lateral extension of hadronic showers is considerably larger than the elec-

tromagnetic ones, and typically reaches tens of centimetres. It also depends

on other factors as the calorimeter noise.

The classification of charged hadrons in pions, kaons and protons is

highly valuable for the measurements described in Chapters 7 and 8. The

separation of charged hadrons with momentum p in individual species re-

quires the measurement of quantities related to β, the particle velocity. In

addition to their main rôle, tracking devices can often measure the specific
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energy loss by ionization, dE/dx. The dE/dx is described by a universal

function of β, the Bethe-Bloch formula. Specific ionization measurements

allow statistical separation of pion to kaons at about 2 σ level, in the mo-

mentum range 2-20 GeV/c. The dE/dx measurement is also interesting

for low momentum electrons, typically up to a few GeV, as they can be

easily separated from other charged particles because of their relativistic

behaviour. A powerful technique to separate individual hadron species re-

lies on the measurement of the Cherenkov-light emission-angle, θC , related

to the velocity by the relation θC = 1
βn , where n is the refractive index of

a transparent medium. This method allows a good statistical separation

of π/K/p up to a momentum of about 30 GeV/c, but the identification

efficiency is sensitive to the Cherenkov-photon statistics and to various

technical issues [13].

Forward detectors

The forward region is differently instrumented in e+e− and hadron colliders.

In the first case precise forward calorimeters are employed to measure the

luminosity from the Bhabha scattering rate (luminosity monitors, treated

in Chapter 6). At hadron colliders forward calorimeters extend the coverage

to the high pseudo-rapidity region. (The pseudorapidity is defined as η =

− ln tan( θ
2 ), where θ is the angle with respect to the beam line.) This

region is usually populated by soft interactions or, in high-pT interactions,

by hadronization products of the spectator quarks (underlying event). The

very forward region in hadron colliders is studied for diffractive physics,

and can provide information on the instantaneous luminosity.
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Fig. 5.5 Example of collider detector. Cut view of the LEP detector ALEPH with its
main elements: (1) the silicon vertex detector; (2) the inner tracking chamber; (3) the
time projection chamber; (4) the electromagnetic calorimeter; (5) the superconducting

coil; (6) the hadron calorimeter; (7) the muon chambers; (8) the luminosity monitors.
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Chapter 6

The Z Lineshape

The energy scan of the Z resonance provides two of the most important

parameters of the Minimal Standard Model: the mass of the Z vector

boson and its width. Experimentally, the cross sections at different e+e−

center-of-mass energies around the Z peak are measured independently for

hadronic and leptonic Z decays. The latter can be further separated in

different lepton species, allowing the determination of four partial widths,

one for Z decays to hadrons and three for Z decays to electron pairs, muon

pairs and tau pairs, respectively.

In order to set the absolute scale of the scan a precise calibration of the

center-of-mass energy at the collision points is required. At LEP this was

done with a technique, called resonant depolarization, allowing a precision

of the order of one part over one hundred thousand. As a consequence, the

Z mass is one of the most precisely known physical quantities.

In this chapter we will describe the various ingredients of the measure-

ment of the Z lineshape, i.e. the centre-of-mass dependence of the hadronic

and leptonic cross sections. The important effects caused by initial state

radiation will be addressed. The luminosity determination and the LEP

energy calibration will be discussed. As we shall see the lineshape analysis

provides also a precise measurement of the strong coupling constant and

one of the most important measurements at LEP, the determination of the

number of light neutrino species.

There will be no attempt to separate different flavours in hadronic Z

decays, as quark flavour tagging allows to distinguish events in a statistical

way only. These studies are left to the next Chapter.

251
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6.1 Initial state radiation in e+e− collisions

The simple Breit–Wigner shape of the Z resonance is distorted by the

radiation of photons by the electron and positron beams. The effect is size-

able: the production cross section at the peak is strongly reduced and the

resonance shape becomes asymmetric, as a result of the shift in effective

centre-of-mass energy. The main features of the treatment of initial state

radiation (ISR) in colliding e+e− beams can be understood from the well

known properties of bremsstrahlung in elastic electron scattering [64] . The

two processes are related by crossing invariance: the emission of a photon

for an e+e− process with cross section independent of the centre-of-mass

energy can be directly related to the corresponding elastic scattering equa-

tions. In this case the tree level cross section, σ0, is modified by radiation

of one real photon by the factor

δ =
2α

π
(ln

s

m2
e

− 1)

∫

δω

ω
= β

∫

δω

ω
(6.1)

where s is the transfer momentum of the process i.e. the square centre-

of-mass energy for e+e− collisions. The first term comes from the angular

integration over the photon emission angle and the second term represents

the typical bremsstrahlung spectrum, for the emission of a photon of energy

ω, affected by the infrared divergence. The divergence is related to the fact

that the emission of a single real soft photon is unphysical [65] and an

infinite number of photons should be considered.

Experimentally a minimum photon energy is required for detection, or

for acceptance by the analysis cuts. By integrating between this minimum

energy, ∆E , and the maximum possible energy, E, one gets

δ = β ln
E

∆E
. (6.2)

In this scheme σ = (1−δ)σ0 is the cross section for the events where an ISR

photon is not detected (or accepted by the analysis cuts). If the emission of

ISR does not prevent the event to be accepted, ∆E = E and σ is unaffected.

The difficulty of summing an infinite number of photons is overcome by

a procedure called exponentiation [66], where σ = (1 − δ)σ0 is replaced by

σ = e−δσ0 , giving

σ = (
∆E

E
)βσ0 (6.3)
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a relation that, as anticipated, is valid only if the tree level cross section

does not vary with energy, which is not true for a resonance. The energy

dependence can be introduced by generalizing Eq. (6.3) to [67]

σ = β

∫ ∆E

0

dω

ω
(
ω

E
)βσ0(E − ω) . (6.4)

The integral can be carried out by taking a Breit-Wigner shape for the

resonance of mass mZ and width ΓZ . By assuming ∆E > ΓZ the integral

yields

σ(s) = (
(
√
s−mZ)2 + (ΓZ/2)2

m2
Z/4

)β/2

× (1 + 2β

√
s−mZ

ΓZ
(
π

2
+ arctan(

√
s−mZ

ΓZ/2
)))σ0(s) . (6.5)

One can observe that the result does not depend upon ∆E : the width

of the resonance acts as a natural cutoff and the emission of photons with

∆E > ΓZ is suppressed. The second term in Eq. (6.5) shows that the

radiative corrections induce an asymmetry in the shape of the resonance.

A complete calculation requires the addition of virtual and soft correc-

tions independent of the infrared singularity. For example at O(α) [68] the

corrected cross section is increased by

δ1 =
13

12
β +

α

π
(
π2

3
− 17

18
) . (6.6)

At the Z pole β ∼ 0.11 and δ1 ∼ 10% yielding a reduction of 75% of

the peak cross section. The correction at the resonance is large because of

the suppression of hard photon emission leaving the colliding e+e− system

with not enough energy to produce a Z.

For the LEP analysis of the Z lineshape the treatment of initial state

radiation has been improved by computing O
(

α2
)

[69] radiative corrections

complemented by soft photon corrections to all orders in exponentiated

form [71]. Figure 6.1 shows the theoretical prediction for the Z lineshape

through successive approximations.

6.2 The reduced cross sections

For the extraction of the Z parameters it is useful to employ cross sections

which are already corrected for the effect of initial state radiation. This can
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Fig. 6.1 Effect of QED initial state radiative corrections on the muon-pair production
cross section near the Z pole. Cross section without initial state radiation (dashed line),
O(α) exponentiated initial state radiation (dotted line), O(α2) exponentiated initial
state radiation (solid line).

be accomplished by fitting the measured cross sections using a formula that

convolutes a reduced cross section σ̂, with a radiator function H(s, s′) :

σff̄ (s) =

∫ s

4m2
f

ds′H(s, s′)σ̂ff̄ (s′) . (6.7)

The radiator function, peaking at s′ = s and with a long tail toward lower

values of s′ [70], incorporates all QED radiative effects described in the

previous Section.
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The σ̂ reduced cross section

σ̂ff̄ (s) = σpeak

ff̄
· sΓ2

Z

(s−m2
Z)

2
+
(

sΓZ

mZ

)2 + “(γ − Z)” + “|γ|2” (6.8)

is composed by three terms. The first represents the Z exchange; the

width of the relativistic Breit-Wigner distribution is energy-dependent to

take into account, in an approximate way, the dependence of the Z self-

energy (Eq. (3.235), (3.236)) near the resonance [72]. With respect to

the usual relativistic Breit-Wigner formula, where the second term in the

denominator is given by m2
ZΓ2

Z , this ansatz gives a 34 MeV higher Z mass.

The second term, |γ|2, corresponds to the photon exchange and is only

a few percent of the Z term. It can reliably be predicted by QED. The

interference term (γ − Z) is the smallest one and is zero when s = m2
Z . It

can either be fixed to the Standard Model prediction or fitted by using data

far from the resonance, where the sensitivity to the γ − Z interference is

much higher. Particular care has to be taken in defining the reduced cross

section for Bhabha scattering, f = e, because the t-channel photon- and

Z-exchange diagrams have to be taken into account.

The peak cross section depends on the Z mass and width, on the Z par-

tial width to the initial state, Γe, and the Z partial width to final fermions,

Γf . It can be written as (Eq. (3.231)):

σpeak

ff̄
= σ0

ff̄ (
1

1 + δQED
) =

12π

m2
Z

· ΓeΓf

Γ2
Z

· 1

1 + 3α
4π

. (6.9)

where Γf represents the physical partial width of Z → f f̄ and includes

by definition all radiative corrections. The convolution with the radiator

function in Eq. (6.7), however, takes already into account the initial state

radiation; in order to have a consistent definition for Γe and Γf the QED

final state radiative corrections δQED is removed in (6.9) from the initial

state width Γe.

6.3 Luminosity

The precision measurement of the cross section, σi , of a given process i

requires the precise determination of the collider luminosity. Indeed a cross

section is measured through the relation

σi =
Ni −N i

bk

εiL
. (6.10)
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where Ni is the number of selected events of type i corrected for the con-

tribution of background events N i
bk and εi is the selection efficiency. The

integrated luminosity L is required for the normalization.

The instantaneous luminosity of two colliding e+e− beams of horizontal

dimension σx and vertical dimension σy can be written as

L =
Nb+Nb−frevkbξ

σxσy
(6.11)

where Nb+ and Nb− are the number of electrons and positrons per bunch,

kb the number of bunches per beam, frev the revolution frequency. The

ξ factor represents many systematic effects, due for instance to the offset

between the two beams, the beam dispersion, etc. To give an example at

LEP, with σx = 100µm, σy = 10µm, kb = 4, frev = 11245.5Hz, Nb− =

Nb+ = 3.1012, instantaneous luminosities up to 1032cm−2s−1 were achieved.

The above relation can be used only for a rough evaluation of the inte-

grated luminosity, because of the many systematic uncertainties. In practice

the only way to measure precisely the luminosity of a collider is by using

Eq. (6.10) with a process of known cross section.

At an e+e− collider the Bhabha scattering process e+e− → e+e− is

chosen because the cross section is large and is dominated by t-channel

photon exchange, a well understood QED process. To obtain a precise

measurement of the luminosity, the background, N i
bk, has to be small and

well known, the efficiency, εi, has to be high and under control, and the

cross section should be computed precisely from the theory.

At small scattering angle, θ , the Bhabha cross section is given, at lowest

order QED, by the Rutherford formula:

dσth
bh

dΩ
=

16α2

s

(

1

θ4

)

,

which integrated over the acceptance gives

σth
bh ∼ 16πα2

s

(

1

θ2min

− 1

θ2max

)

,

where θmin and θmax are the polar angles defining the inner and outer

acceptance, respectively, of the detector dedicated to the measurement of

luminosity.

Typical luminosity detectors for experiments at e+e− colliders consist

of two cylindrical calorimeters located at low angles at both sides of the



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

The Z Lineshape 257

interaction point. A tracking device in front can help in the position mea-

surement. If this is not available, fine granularity in the calorimeter is

mandatory.

To compute the expected cross section (σth) precisely, the position Rmin

of the inner edge of the detector with respect to the beam needs to be

known. Since θmin ∼ Rmin

z , where z is the distance of the detector from

the interaction point, one has

∆σ

σ
' 2

∆θmin

θmin
' 2(

∆Rmin

Rmin
⊕ ∆z

z
) . (6.12)

At LEP excellent mechanical precision of the order of 20 microns was

achieved in controlling the position of the inner edge of the detectors. For

typical values of Rmin around 60 mm these 20 microns correspond to an

uncertainty in the luminosity ∆L/L ' 2∆Rmin/Rmin ' 7 · 10−4. A much

lower precision, ∆z ∼ 1mm, was required for the knowledge of the posi-

tion with respect to the interaction point, as the luminosity detectors were

placed at few meters with respect to it.

The precise measurement of θ requires both the detector position and

the position of the luminous region to be well understood. The luminosity

is measured by requiring two coincident signals from the two detectors,

placed symmetrically with respect to the interaction point. In this case, for

cylindrical detectors, a common radial displacement, ∆R, of the inner and

outer limits of the detectors (or of the beam itself) results in a reduction

of the acceptance (and, hence, of the measured luminosity) by

∆σ

σ
∝ 2∆R

Rmin

(

1 +R3
min/R

3
max

1 −R2
min/R

2
max

)

.

An appropriate choice of the event selection cuts can largely remove the

dependence of the luminosity on the relative position between the beams

interaction point and the detector, as proposed in [73]. If two different

fiducial regions are defined for the two luminosity detectors positioned at

the left and right sides with respect to the interaction point, the luminosity

measurement can be made independent of transverse misalignments. One

can show that this can be achieved if the difference in size between the

“loose” fiducial region and the “tight” fiducial region is at least bigger than

twice the maximum expected misalignment. The dependence on longitudi-

nal misalignments is also largely canceled if the definition of loose and tight

is changed from one side to the other side randomly on an event by event

basis. In order to have a reduced dependence on the detector simulation

the precise radial acceptance is normally defined by studying the energy
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asymmetry across calorimeter pad boundaries, or by taking advantage of a

tracker device positioned in front of a luminosity calorimeter.

Random coincidences of off-momentum beam particles can simulate a

Bhabha scattering signal. The rate of this kind of background can be

measured directly from the data using samples obtained through events

triggering only one of the two luminosity detectors, and studying acoplanar

coincidences. Backgrounds due to physical processes are small and below

the permil level at
√

(s) ≈ mZ . Their contribution to the systematic

error is very small. The overall experimental error obtained at LEP was

between 0.07% and 0.1% , depending on the experiment. The tolerances

in the mechanical structure was the cause of the largest uncertainty. Since

the geometrical uncertainties are not correlated among experiments, the

combined LEP experimental error was close to 0.05%.

A calculation of the theoretical cross section at the permil level is re-

quired to take advantage of the high experimental accuracy. Such a cal-

culation implies a careful treatment of radiative corrections. Since photon

radiation is collinear with the outgoing electrons and positrons, the elec-

tromagnetic showers originating from bremsstrahlung are superimposed to

the electron (or positron) shower in the luminosity calorimeter. This and

other acceptance effects have to be taken into account in the computa-

tion of the theoretical cross section. An uncertainty of 0.11% is estimated

for the overall precision of the Bhabha cross section calculation [74]. The

main component comes from missing sub-leading O(α2L) corrections, where

L = log(−t/m2
e).

6.4 Centre-of-mass energy calibration in e+e− collisions

A precise measurement of the average center-of-mass energy at the collision

points is required for three important electroweak parameters: the mass

and width of the Z boson, discussed in this chapter, and the W mass, as

measured in e+e− collisions, that will be discussed later.

The average energies of the electrons (positrons) going around the col-

lider (Ebeam) is given by:

〈Ebeam〉 =
e

2π

∮

B dl,

where B is the vertical magnetic field sampled by the beam, of electric

charge e, on its orbit. Therefore a precise knowledge of the sampled mag-

netic field is required for an accurate measurement of the centre-of-mass
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energy. At LEP each magnet was equipped with one-turn induction coil,

forming a closed electrical loop threading all the dipoles in one octant of the

accelerator. The magnetic field could be measured by applying a current

cycle (including a variation of the current sign) and integrating the induced

voltage in the flux loop. A reference magnet powered in series with the ac-

celerator dipoles was used for frequent monitoring, by using a rotating coil.

The flux loop measurements were checked by filling the machine with pro-

tons. Protons, in contrast to electrons, are not ultra-relativistic and their

velocity could be measured by the frequency of the RF acceleration voltage,

determining the momentum of positrons on the same orbit. These methods

allowed a relative energy error of about 3 · 10−4.

An order of magnitude could be gained thanks to a method called res-

onant depolarization. The technique relies on the precession of the spin of

the electrons about the vertical bending field. The precession follows the

Thomas-BMT equation [75] :

d~S

dt
= ~Ω × ~S (6.13)

~Ω = − e

γme
(1 + aγ) ~B

where the B field has been assumed to be transverse to the particle velocity;

e is the electron charge, me is its mass, a the magnetic moment anomaly

and γ the Lorentz factor. In an e+e− collider the average polarization

can be different from zero because the emission of synchrotron radiation

polarizes the beam in the vertical transverse direction (Sokolov-Ternov ef-

fect [76]). The amount of polarization depends on the bending radius of

the accelerator, on the beam energy and on several depolarizing effects. At

LEP a 10% vertical polarization was achieved when the beams were not

colliding after compensation of the magnetic fields of the solenoids and ac-

curate steering of the orbit in the vertical plane. The degree of polarization

of a beam can be measured with a laser by switching the polarization of

the laser light. Indeed the differential Compton scattering cross section

depends on the initial polarization of electrons and photons. The change in

rate of back-scattered photons when the circular polarization of the laser

light is switched from left to right measures the electron beam polariza-

tion (Compton polarimetry). The Compton polarimeter used at LEP had

a precision of about 2%.

The component of the spin vector parallel to the B field is conserved, as

can be seen from Eq. (6.13), therefore a vertical polarization is maintained,
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if no perturbation occurs. If an additional B field, directed along the radius

of the ring, is applied at a point along the orbit, the vertical spin vector

gets kicked toward the horizontal direction and start precessing aeγ times

during one turn around the ring. If the additional radial B is made oscil-

lating with a frequency in phase with the precession, the electron spin can

be rotated to the horizontal plane after a number of turns. This is called

resonance condition (see Fig. 6.2). Because of stochastic synchrotron radi-

ation horizontal polarization is unstable in e+e− colliders and its quickly

destroyed, i.e. the beam is depolarized by the resonance condition.

l (Tm)b
x

-.0002

0 1 2 3

.0002

PP
P

n0

0.14 mradP

Turns

Fig. 6.2 Resonance condition between the nominal spin precession with [ν] = 0.5 and
the radial perturbation

∫

bxl from the RF-magnet. In an ideal storage ring the polariza-

tion vector is initially along the vertical direction. After being tilted ~P precesses with ν
about its direction. If the perturbation is in phase with the nominal spin precession (in
this example fdep = 0.5 × frev) the polarization vector is resonantly rotated away from
the vertical direction. (From Ref. [78].)

The aeγ term is call spin tune and the time-averaged spin tune, ν0, of

each electron is proportional to the average beam energy, Ebeam:

ν0 = aeγ =
aeE

mec2
=

Ebeam

440.6486(1)[MeV]
,

where me is the mass of the electron and c is the speed of light.

At LEP the resonance condition was induced by a radial oscillating

field from a coil. About 104 turns (≈ 1 second) were needed to bring the

polarization vector into the radial plane. The resonance condition between

the perturbing radial field and the nominal spin precession is fdep = [ν]·frev,
where fdep is the frequency of the oscillating field, frev is the revolution
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Fig. 6.3 Width of the depolarizing resonance excited for energy calibration at LEP.

frequency of the particles, which is precisely known, and [ν] denotes the non-

integer part of the spin tune. Its integer part is known accurately enough

from the setting of the bending field. The depolarization occurred slowly

compared to the revolution period and each electron sampled the whole

energy distribution during the process. For this reason the depolarizing

resonance was very narrow, about 0.1 MeV, and Ebeam could be determined

with a precision of ∼ 200 KeV, as can be seen from Fig. 6.3.

The spurious effects that can induce systematic errors have been studied

theoretically and experimental bounds on the magnitude of each effect have

been established in dedicated experiments concluding that the upper bound

on the systematic error on a single measurement of Ebeam was 1.1 MeV.

The largest contribution to this error was due to the radial magnetic fields

sampled by the beam inside the quadrupoles and is not correlated between

two measurements done after different optimization of the machine.

The average beam energy could not be measured continuously since in

standard LEP running conditions the beams were not polarized. Indeed



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

262 The Physics of the Z and W Bosons

Table 6.1 Size (∆) and error (σ) of the effects changing
the LEP center-of-mass energy as a function of time, sep-
arated in three categories : (i) effects changing the dipole
field; (ii) effects changing the vertical quadrupole field
sampled by the orbit; (iii) effects changing the energy at
the interaction point.

Effect ∆ σ

Temperature variations ∼ 3 MeV 0.3 MeV
Rise per fill ∼ 3 MeV 1.0 MeV
Horizontal correctors setting ∼ 1 MeV 0.4 MeV

Earth Tides (daily) ∼ 10 MeV 0.1 MeV
Geological shifts (weeks) ∼ 10 MeV 0.3 MeV

RF corrections ∼ 10 MeV 0.5 MeV
Vertical collision offsets < 1 MeV 0.3 MeV

the beam-beam interaction prevented the building up of the polarization.

Several quantities had to be monitored, such as currents in the magnets,

temperatures, measurement of magnetic fields, status of RF units, in order

to follow the evolution of the energy as a function of time. The main effects

are summarized in Table 6.1.

The magnetic field of the dipoles was monitored measuring the field of

few dipoles instrumented with a NMR. This allowed to discover an unex-

pected rise of the dipole magnetic field during fills, correlated to vagabond

currents that flow along the beam pipe mainly due to return currents of

electrical trains that do not go back to the power supply along the railtracks.

Another important effect was related to the tides of Lake Geneva and

even the earth tides ! Indeed while earth was deformed by the gravitational

forces between earth and sun, the LEP diameter changed by a few mm with

a period of 12 hours. Since the length of the LEP orbit was constrained

by the synchronisation of radio-frequency (RF) the diameter variation was

effectively pushing the electrons and positrons off-center in the quadrupoles

where they received an extra deflection. A variation of 13µm of the average

relative position of the beam with respect to the center of the quadrupole

magnets induced a change of Ebeam of about 1 MeV. The effect was moni-

tored by measuring the variation of the position of the beams with respect

to the center of the quadrupoles using the beam position pickups.

A further correction was related to the beam dispersion. The energy

distribution of the particles in each bunch, at LEP was almost gaussian with

a spread (rms) of about 40 MeV at
√
s ' mZ . The average center-of-mass

energy Ecm is, to first approximation, the sum of the average beam energies

at the interaction point. A correlation between the transverse position of
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Fig. 6.4 Deviation from the beam mean energy in the LEP arcs.

the particles in the bunch and their energy (dispersion) may induce a shift

in Ecm. This correction is proportional to the offset of the centers of the two

bunches at collision point and to the difference between their dispersions.

It has to be mentioned that the mean beam energy is not constant as it

goes around the ring. At LEP for a 45 GeV beam the energy loss due to

synchrotron radiation in the arcs is about 125 MeV per turn. This energy

loss was compensated by the RF cavities placed symmetrically on either

side of L3 and OPAL interaction points (see Fig. 6.4).

Since the RF stations were symmetrically placed the average beam en-

ergy at the interaction points was close to Ebeam. Deviations occurred if

the accelerating fields seen by the beam at the four RF stations were not

equal or because of misalignment errors of the RF stations with the inter-

action points. The alignment was carefully measured and the operating

status of the RF well monitored, implying a precision on these corrections

of a fraction of MeV.

In conclusion, after all the above mentioned effects were taken into ac-

count, the final LEP luminosity-weighted centre of mass energies for the

running at the Z pole were known with the amazing precision of two parts

in 105 at each collision point, allowing uncertainties on mZ and ΓZ of about

1.5 MeV [77, 78].
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6.5 Selection of hadronic and leptonic Z decays

At e+e− centre-of-mass energies aroundmZ the production rate of Z bosons

is two order of magnitudes larger than other processes, within typical exper-

imental acceptance. The most important background comes from the inter-

action of two photons of low virtuality radiated from the colliding beams.

Such a background typically consists of low multiplicity events, with a total

visible energy much lower than
√

(s) and can be easily distinguished from

the Z decays.

Most of Z decays consist in multihadronic events, produced by the frag-

mentation of qq̄ pairs. They account for about 70% of the total cross

section and carry most of the weight in the lineshape analysis. As can

be seen in Fig. 6.5, where the sum of charged track momenta versus the

charged track multiplicity is shown, they show a large visible energy and

multiplicity in contrast to the two-photon background. They can also be

easily separated from the very low multiplicity leptonic Z decays. The

typical efficiency of selection cuts, based on the analysis of charged tracks,

is greater than 97% for multihadronic Z decays, with a contamination of

two-photon events and leptonic (mostly tau-pair) events of less than 1%.

The efficiency can be increased to values larger that 99% if the information

coming from calorimeters is added. The main cause of inefficiencies is due

to low-multiplicity hadronic decays going down the beam pipe. At LEP

each experiment accumulated about four million hadronic Z decays, cor-

responding to a statistical error below 0.1% on the hadronic cross section.

The most important systematic error is related to the understanding of the

two-photon background. Since the latter is not resonating it can be studied

by varying the selection criteria and measuring the effect of the variation

at different centre-of-mass energies.

Only about 10% of Z bosons decay to charged lepton pairs. However,

these events have very distinctive signatures, such as low multiplicity ac-

companied by large visible energy. The three classes (electron, muon and

tau pairs) can be separated by identifying the energy deposits in the elec-

tromagnetic calorimeter (electrons) and by their penetration through the

iron of hadron calorimeters (muons). The identification efficiency for elec-

tron and muon pair is typically larger than 95%. Tau pair events feature

two neutrinos (ντ ) produced in the decays of the two tau leptons. The two

ντ ’s are emitted essentially in opposite directions; this signature can be ex-

ploited by requiring events with large missing mass. Typical identification

efficiencies for tau pairs are around 85%. Another source of inefficiency
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Fig. 6.5 The sum of charged track momenta versus the track multiplicity, for various
final states at centre-of-mass energies around the Z peak.

is due to the geometrical acceptance, defined by a cut on the production

angle of the scattered lepton (θ), measured with respect to the direction of

the electron beam. The cut on | cos θ| ranges from 0.8 to 0.95, depending

on the experiment. For e+e− → e+e− scattering it is useful to define an

asymmetric acceptance cut in order to reduce the effect of the t-channel

contribution that is particularly important for low values of θ. Indeed this

contribution has to be subtracted in order to extract the Z parameters;

the uncertainty on the subtraction is an important source of systematic

error. At LEP the e+e− → e+e− scattering cross section is measured for

cos θ < 0.7 . The two photon contamination is small and is essentially

affecting only the tau pair channel (about 2%). The cross contamination

among different lepton classes has to be taken into account when measuring

the individual cross sections; if lepton universality is assumed this source

of systematic uncertainty can be avoided by designing a common lepton

selection. At LEP each experiment collected about half million Z decays

into charged leptons.
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6.6 Measuring the Z lineshape parameters

In order to optimize sensitivity in the determination of the peak position

and the width of a resonance, data have to be collected on both peak sides,

where the cross section is approximatively at half maximum. At LEP most

of the integrated luminosity was collected at three scan points, namely at

peak and at the two sides, separated by about 1.8 GeV. The errors on

the Z mass and width depend on the measurement of the cross sections at

the two off-peak points. The statistical error on the cross section can be

made small by collecting enough integrated luminosity; in this condition the

errors on the two parameters are dominated by the knowledge of E−2 and

E+2 , the luminosity-weighted center-of-mass energies at the two off-peak

points. One can write

∆mZ ≈ 0.5∆(E+2 + E−2) (6.14)

∆ΓZ ≈ ΓZ

(E+2 − E−2)
∆(E+2 − E−2) = 0.71∆(E+2 − E−2) (6.15)

showing that the error on the mass depends on the error on the sum and the

error on the width depends on the error of the difference of centre-of-mass

energies. As discussed in Section 6.4 the energy of the accelerator was

measured at LEP with the amazing precision of 2×10−5 , yielding an error

of 1.5 MeV on the Z mass. This error is given by the correlated centre-

of-mass energy error between the two off-peak points added in quadrature

to 1√
2

of their uncorrelated error. When the statistical error on the cross

sections is included a total error of 2 MeV on the Z mass is obtained. As

far as the width is concerned only the uncorrelated errors in E+ and E−
contribute, yielding again an error of 1.5 MeV. The width is also affected

by the centre-of-mass energy spread (εCMS ∼ 56 MeV) that modifies the

cross-section by

δσ ' −0.5
d2σ

dE2
ε2CMS . (6.16)

The energy spread causes an apparent reduction of the cross section of 1.1

permil at
√
s = mZ and an apparent increase of 0.5 permil at ±2 GeV

from the Z peak, increasing the apparent Z width by about 4 MeV. This

correction is determined with a precision of 2.5% from the machine optics,

giving a negligible systematic error. A total error of 2.5 MeV on the Z
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Table 6.2 Average line shape
parameters from the results of
the four LEP experiments as-
suming lepton universality. The
values of Re, Rµ, Rτ are also in-
dicated.

Parameter Average Value

mZ(GeV) 91.1875±0.0021
ΓZ(GeV) 2.4952±0.0023
σ0

had(nb) 41.540±0.037
R` 20.767±0.025

Re 20.804±0.050
Rµ 20.785±0.033
Rτ 20.764±0.045

width is obtained when the statistical error and the uncertainty on the

background from non-resonating processes are taken into account.

As described in the previous Section the cross sections are measured

separately for the Z decay to hadrons and to the three lepton species.

The reduced cross sections are then extracted from the data by applying

the formalism described in Section 6.2. The experimentally-measured re-

duced cross sections are compared to Eqs. (6.8), (6.9) and the lineshape

parameters are determined in a global fit to the data. Because of the larger

statistics the hadronic decays are dominating the measurements of the mass

and the width. In the global fit the decays into charged lepton pairs are

incorporated either by introducing in the reduced cross sections the three

leptonic partial widths (Γe, Γµ and Γτ ) or by assuming lepton universality.

This assumption implies three equal leptonic widths, after small correc-

tions for mass effects. With the current experimental precision, only the

correction for the tau is non-negligible (0.23%). When lepton universality

is assumed, a common leptonic width, Γ` , is determined, corresponding

to the width of any single flavour as if it were massless. In this case four

parameters are needed to describe the centre-of-mass dependence of the

hadronic and leptonic cross sections. The set of parameters chosen for the

LEP measurements are the Z mass (mZ), the Z width (ΓZ), the ratio of

hadronic to leptonic partial width R` = Γh/Γ` and the hadronic peak cross

section σ0
h. The choice of these parameters is motivated by their small

correlations. If lepton universality is not assumed, R` is replaced by three

analogous quantities, Re, Rµ, Rτ .

The result of the four-parameter fit to the Z lineshape is given in ta-

ble 6.2. The values of Re, Rµ and Rτ from the six-parameter fit, are also
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shown, demonstrating that the lineshape analysis does not unveil violation

of lepton universality. As can be seen in Figs. 6.6 and 6.7 1, the Z width

is sensitive to the values of the top and Higgs masses, while R`, being

a ratio of widths, is essentially independent of these parameters. Indeed

for R`, the dependence on the top and Higgs masses originating from self-

energy effects cancels, leaving a small residual dependence coming from the

non-universal final state vertex correction (the same feature is discussed in

Subsection 4.1.3 for the Rb case). Because of its dependence on the strong

coupling constant, R` is an excellent variable for determining αs(m
2
Z) by

assuming the validity of the electroweak theory to compute the ratio of

couplings of quarks and leptons to the Z. Using the measured value of R`

one obtains:

αs(m
2
Z) = 0.122± 0.004

where the formulas relating R` with the QCD prediction [79], known to

O(α3
s), have been used. The residual dependence on the Higgs mass, cal-

culated by varying MHiggs from 114 GeV to 1 TeV accounts for 0.002 on

the error on αs(m
2
Z) .

The measurement by the four LEP collaborations of the hadronic cross

section as a function of the centre-of-mass energy is shown in Fig. 6.8.

Decays of the Z bosons to neutrino pairs accounts for about 20% of the

total decays, if three species (families) of light neutrino (i.e. much lighter

than mZ

2 ) are assumed. Within the Standard Model the ratio of the partial

Z decay width to a neutrino species (Γν) over the partial decay width

to a lepton species (Γ`) is Γν/Γ` = 1.991 ± 0.001. The small error in

the prediction for this ratio results from the large cancellations of the top

and Higgs mass dependences. As can be seen in Fig. 6.8 the hadronic

cross section at peak is strongly dependent on the number of light neutrino

families. Additional families yield a reduction of the peak cross section

and an increase of the total width of the resonance. On the other hand the

dependence of the hadronic peak cross section on other parameters, such as

the top mass, the Higgs mass or the strong-coupling constant is very small.

The hadronic peak cross section is an ideal variable to measure possible

Z decays to additional invisible modes or to probe deviations from the

Standard Model without the uncertainty related to the lack of knowledge

in some of its parameters. For example, a hypothetical extra heavy neutral

boson, Z ′, mixing to the Z would modify the expected cross section at

peak. The main contribution to the error on the hadronic cross section
1Similar figures for other observables can be found in Ref. [80].
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at peak is given by the theoretical error on the small-angle Bhabha cross

section used for the luminosity calculation (Section 6.3).

The width of the Z to invisible states , Γinv , can be written as

Γinv = ΓZ − Γh − 3Γ`.

The number of light neutrino families Nν can be obtained from the ratio of

the invisible width to the leptonic width, assuming that the invisible width

is only due to neutrino final states:

Γinv

Γ`
=

ΓZ

Γ`
− R` − 3 = (

12πR`

σ0
hadm

2
Z

)1/2 − R` − 3 = Nν · Γν

Γ`
(6.17)

where the dependence on σ0
had has been made explicit. Using the Standard

Model prediction for Γν/Γ` the result is

Nν = 2.984± 0.008

in agreement (within 2 σ !) with the existence of 3 light neutrino families.

The number of light neutrino generations can be measured also from the

rate of single photon events above the Z peak. These events, showing only

a photon of energy

Eγ =
s−m2

Z

2
√

(s)

in the apparatus, originate from the initial state radiation process e+e− →
γνν̄ and their rate is proportional to the number of families. The result

obtained with this process [81] is in agreement with the lineshape analysis,

but its precision is one order of magnitude worst.

In conclusion from the analysis of the lineshape the following fundamen-

tal results are obtained:

• a precise measurement of the Z mass, a physical constant known with

the precision of 2 × 10−5 ,

• a measurement of ΓZ , an observable sensitive to the top and Higgs

mass through one loop radiative corrections ,

• a measurement of the strong coupling constant with little theoretical

dependence, from the ratio between the hadronic to leptonic widths,

R` ,

• the determination of the number of light neutrino families.

The study of observables sensitive to the top and Higgs mass through

loops continues in the next Chapters, with the measurement of the decay

width of the Z to bb̄ pairs, the measurement of the electroweak mixing angle

(sin2 θW ), and the measurement of the mass of the W boson.
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Fig. 6.8 The hadronic cross section, as a function of the centre-of-mass energy, from
the combination of the measurements of the four LEP experiments. The predicted cross
section assuming 2, 3 or 4 light neutrino families is shown.
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Chapter 7

Z Decays to Heavy Quarks

The detailed study of Z decays to a pair of heavy quarks (cc̄ or bb̄) con-

stitutes one of the important heritages of LEP and SLC. The relevance of

hadronic Z decays as a tool to test electroweak interactions has already

been stressed in Chapter 4. The Zbb̄ vertex, in particular, plays an impor-

tant rôle in precision tests of the MSM as it is very sensitive to electroweak

corrections involving the top quark. A precise determination of the partial

width of Z decays to b quarks, Rb = Γ(Z → bb̄)/Γ(Z → hadrons), mea-

sures these corrections and constrains the main parameter that regulates

them, the mass of the top quark. The corresponding charm-quark quantity,

Rc = Γ(Z → cc̄)/Γ(Z → hadrons), is largely independent from electroweak

parameters and its measurement provides an important cross-check.

From the experimental point of view the presence of two heavy-flavoured

hadrons in the final state has important consequences. Such events have

distinctive properties, and can be experimentally disentangled from light-

quark Z decays on a statistical basis, i.e. samples with reasonably low con-

tamination from other Z decays can be selected. The data selection proce-

dure is called tagging: cuts are applied on suitable discriminating variables

and interesting events are selected with higher efficiency than background.

The quality of a tagging procedure is defined by two parameters: the ef-

ficiency of selecting interesting events and the purity, i.e. the fraction of

interesting events over the total. Heavy quark tagging is discussed in de-

tail in the present Chapter. This discussion is required to understand the

heavy quark measurements presented here and in Chapter 8, dedicated to

the measurement of asymmetries. Heavy quark tagging is described in the

typical experimental environment of e+e− colliders; many concepts, how-

ever, can be translated in the more difficult experimental condition typical

of hadron colliders as will be recalled at Chapter 10.

273
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Before discussing heavy-quark tagging and the partial widths measure-

ments, some general properties of hadronic events in e+e− collisions are

briefly reviewed.

7.1 General properties of hadronic events at the Z

Hadronic events are characterized by high particle multiplicity: at the Z

resonance on average about twenty charged particles per event are pro-

duced (Fig. 6.5), accompanied by a similar number of neutral particles. As

the Z boson is considerably heavier than quarks, final state particles tend

to be relatively collimated around a specific axis, as shown in the event

represented in Fig. 7.1. The main axis of the event can be evaluated as the

direction of the unit vector n̂ that maximises the thrust T :

T =

∑

i | ~pi · n̂ |
∑

i | ~pi |
, (7.1)

where ~pi represents the momentum of particle i and the sum is calculated

over all reconstructed particles of the event. The thrust axis is taken as an

estimator of the quark-antiquark flight direction: a plane perpendicular to

the thrust axis and containing the interaction vertex, i.e. the point where

the Z is produced, divides the event in two halves (called hemispheres), of

which one typically contains the quark and the other the antiquark.

Emission of hard gluons in hadronicZ decays is a relatively frequent pro-

cess. Hemispheres containing hard gluons feature broader jets of particles

and can show a “multi-jet” structure. The value of T itself (0.5 ≤ T ≤ 1)

is an indicator of the presence of hard gluons: broader jets or multi-jet

events tend to yield a lower T . A satisfactory definition of jets requires

the introduction of jet clustering algorithms. Such algorithms are based on

iterative procedures and on the definition of a metric, i.e. a “distance” yij

between particle i and particle j. A widely used metric [88] is related to

the invariant mass of the two-particle system

yij =
2EiEJ (1 − cos θij)

E2
vis

(7.2)

where Ei, Ej are the particles’ energies and θij their opening angle. The

term E2
vis is the square of the energy of all particles used in the event.

The iterative algorithm proceeds as follows: the pair of n particles with

the smallest value of yij is replaced by a pseudoparticle (jetlet). The four-

momentum of the jetlet is recomputed according to a recombination scheme.
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Fig. 7.1 Display of a Z hadronic decay collected by ALEPH. The reconstructed particles
are clustered in two back-to-back “jets”.

In a widely used scheme (“E” scheme) the four momentum of the jetlet is

simply the sum of the four momenta of the two particles. The clustering

procedure is then iterated with n − 1 objects with the jetlet treated as

a new particle. The procedure is repeated until all yij are larger than

a predefined value, ycut, called jet resolution parameter. At the end of

the procedure N jets, with definite four-momentum, are obtained. The

term E2
vis in Eq. (7.2) simply represents a normalization allowing similar

values of ycut to be used when different sets of particles are employed in the

event reconstruction. In some of the measurements charged particles only

are used, as measured by tracking devices, accounting typically for about

65% of the visible energy at LEP. In most of the final LEP measurements,

however, jets were reconstructed using also neutral particles detected from

their energy deposits in the calorimeters (Chapter 5). In this case the visible

energy is much closer to the centre-of-mass energy. The N-jet rate depends

on the chosen value of ycut: as an example for hadronic Z decays ycut = 0.01

yields about 65% of two-jet events, about 30% of three-jet events and 5%

of events with higher jet multiplicities.
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Fig. 7.2 Diagram of the b → `− decay (a). Diagram of the c → `+ decay (b). Example
of a specific exclusive decay: B− → D0`−ν̄` (c).

7.2 Tagging Z decays to b and c quarks

A variety of methods have been used to select samples enriched in Z de-

cays to heavy quarks; the most important of such methods exploits the

nonzero lifetime of heavy-flavoured particles and the decay channels with

leptons (electrons or muons). A review of the different heavy quark tagging

methods is given below.

7.2.1 Lepton tagging

Heavy flavoured hadrons have sizable decay widths into final states con-

taining an electron or a muon and the corresponding neutrino. The decay

width into final states with a tau is suppressed by phase space, because of

the large tau mass; in addition, the identification of tau leptons in hadronic

environment is exceptionally challenging, therefore final states with tau lep-

tons are not interesting for b tagging (unless the tau subsequently decays to

an electron or a muon): in the following the word lepton is used to indicate

electrons or muons only. Diagrams for heavy quark semileptonic decays

are shown in Fig. 7.2; the light quarks inside the decaying hadron (spectator

quarks) remain available for the hadronization of the final state quark.

The average semileptonic branching ratios of b and c hadrons produced

in Z decays BR(b→ `) and BR(c→ `) are both around 10%. The third

main source of leptons in heavy flavour Z decays is the cascade of b decaying

to c, with the c hadron decaying semileptonically (Fig. 7.3): the branching

ratio BR(b→ c→ `) is again around 10%, as almost all b decays yield a

charmed hadron in the final state. There are several other decay chains
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Fig. 7.4 Other semileptonic decays: b → c̄ → `− (a), b→ τ− → `− (b), and
b → J/ψ → `+`− (c).

yielding an electron or a muon in the final state; the most relevant, with

branching ratios of the order of 1%, are the b decay chains b → cc̄, c̄ →
`−, usually abbreviated as b→ c̄→ `−, and b→ τ− → `−; in addition, b

hadrons can produce a J/ψ (or a ψ′), which in turn can decay into two

opposite-sign leptons b→ J/ψ → `+`−. The corresponding diagrams are

shown in Fig. 7.4. It should be noted that all the decay channels have the

correct correlation between the lepton charge and the parent quark charge,

except the b→ c→ `+ channel, that has the wrong correlation, and the

b→ J/ψ → `+`− channel, where if one lepton only is selected the charge

information is random.

The sources of leptons described so far are usually refereed to as prompt

leptons, i.e. leptons that are produced from the decay of a heavy hadron,

without any long-lived particle in the decay chain. A summary of the

prompt lepton sources with their abundance is shown in Table 7.1.
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Table 7.1 Sources of prompt leptons in
b and c decays. The branching ratios
quoted refer to the b hadron and c hadron
mixtures produced in the hadronization
of quarks from Z decays.

Source Branching ratio

b → `− 0.106 ± 0.002
b → c→ `+ 0.081 ± 0.002
b → c̄→ `− 0.016 ± 0.004
b → τ− → `− 0.0042 ± 0.0006
b → J/ψ → `+`− 0.00072 ± 0.00006

c→ `+ 0.098 ± 0.003

Another important source of leptons are the decay in flight of pions

and kaons to muons. Charged pions are produced in large multiplicity in

events of any flavour from the hadronization of the primary quarks; they

are produced also in many decay channels of the heavy-flavoured particles

in b and c events. The average energy of pions produced in Z decays is in

the GeV range, therefore the decay inside the tracking volume (typically

around 1 m diameter) is a relatively rare event; however, when such a decay

happens, the resulting muon is indistinguishable from a prompt muon in

the calorimeters and muon detectors of the experiment. The production of

kaons in the parton shower is suppressed by about a factor of 10 compared

to pions. However, kaons are produced in the hadronization of the primary

quarks in Z → ss̄ decays, and are frequently produced also in many decay

channels of b and c hadrons. Charged kaons decay frequently to muons

and, less frequently, also to electrons. Although the production of kaons

in hadronic Z decays is overall almost a factor of 10 less copious than

the pion production, they have substantially higher mass, and therefore

higher probability of decaying inside the tracking volume. Overall, the

contributions of π → µ and K → µ decays to a sample of muon candidates

selected in hadronic Z decays are often of comparable size. Another source

of leptons is the conversion of photons in the detector material. The size of

such a source obviously depends on the detector, and is one of the reasons

why the material budget of tracking systems should be kept as low as

possible. Particularly relevant is the material close to the interaction region

(beam pipe and vertex detector), as photons converted near the primary

vertex of the event give rise to charged particles that appear to come from

the Z decay, and are therefore difficult to reject.

These sources of leptons are referred to as non-prompt leptons, and, as
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mentioned above, are virtually indistinguishable from prompt leptons in

the calorimeter system of the detector. However, it is possible to build

discriminating variables that can be used to reduce their contribution to

the sample of lepton candidates. If the tracking system provides some

measurement of the ionisation of the charged particles, such information can

be used to reject some K → µ decays: if the decay happened sufficiently far

from the interaction point the average ionisation measured will be closer to

that expected for a kaon than to that expected for a muon. The criterion

is not effective for pion decays, as there is basically no difference in the

ionisation of pions and muons at the energies considered. Another useful

criterion is the quality of the measured trajectory: if there is a decay in flight

inside the tracking volume, the trajectory should contain a kink, giving a

poorer χ2 of the fit used to determine the trajectory; in some cases the kink

can even be identified by reconstructing the two track segments separately;

this criterion is again more effective for kaon decays than for pion decays,

as the higher q-value gives on average more pronounced kinks. Electrons

from photon conversions can be rejected by looking for tracks that fulfil

loose electron identification criteria and that form a good vertex with the

electron candidate, in a region of the detector with substantial material

density.

The third class of lepton candidates are fake leptons, i.e. hadrons that

fulfil the lepton identification criteria. A fake muon can be selected when

a pion produced in the hadronic shower inside the hadron calorimeter de-

cays to a muon, and this muon is sufficiently collimated with the parent

hadron that originated the shower (this mechanism is sometimes called

punch through). Alternatively, the hadron can profit from regions with

reduced material inside the calorimeters to cross them without interact-

ing and reach the muon detectors (sail through). For electrons, the mis-

identification can happen when a photon enters the calorimeter very close

to a charged particle, producing an electromagnetic shower that is geomet-

rically compatible with the incoming charged track. If the photon energy

is close enough to the charged particle energy (within the calorimeter res-

olution), the charged particle can be identified as an electron. For the

LEP detectors and SLD the hadron rejection is of the order of 10−3, giving

low hadron contamination in the lepton samples, despite the initial un-

favourable ratio of hadrons to prompt leptons in hadronic events, of about

100:1.

The different sources of leptons can be discriminated on the basis of

their kinematic properties and of the topology of the jets to which they be-
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long. The discriminating variables typically provide also further rejection

against the background of fake leptons. Because of the large mass of b and c

hadrons, the radiation of gluons is suppressed in Z → bb̄ and Z → cc̄ events:

on average 70% of the beam energy is carried away by the heavy-flavoured

hadron in b events, and 50% in c events, giving high-energy leptons in the

decay chain. Another important feature, especially for semileptonic b de-

cays, that is still a consequence of the high mass of the decaying hadron, is

that the lepton in primary (b→ `−) decays tends to have a larger transverse

momentum with respect to the jet to which it belongs. The experiments

have optimised over the years the algorithms to cluster the reconstructed

particles into jets, and to calculate the transverse momentum of the lep-

ton candidates, in order to maximise the separation between primary and

cascade decays, that is crucial especially for the forward-backward asym-

metry measurements (because of the wrong charge information carried by

the lepton in b→ c→ `+ decays).

An example of discriminating variables between the different lepton

components is given in Fig. 7.5, from the ALEPH simulation. The two

variables shown are the lepton momentum and its transverse momentum

with respect to the jet axis, where the jet is re-clustered excluding the lep-

ton: b→ `− decays are characterised by a higher average momentum p and

transverse momentum p⊥, c→ `+ decays have smaller p⊥ and b→ c→ `+

decays have small p and p⊥. Selecting leptons with high p and p⊥, a purity

of about 80% of primary b→ `− decays can be obtained, with an efficiency

around 25%, thus retaining about 6% of jets associated to b quarks from Z

decays [89].

The lifetime tag, discussed in the next Subsection, has an intrinsically

superior performance as a tool to select Z → bb̄ decays and it is therefore

the main way to measurements of the partial widths. However the lepton

tag has two specific interesting features, that makes it competitive for the

measurement of forward-backward asymmetries:

• lepton identification mostly relies on calorimeters, and is typically effec-

tive in a wide angular range (| cos θ |< 0.95); the lifetime tag, instead,

is fully effective in a restricted angular range defined by the vertex de-

tector acceptance (typically | cos θ |< 0.7), while the forward region

carries larger statistical weight in the asymmetry measurements;

• the lifetime tag does not provide any straightforward and effective way

of telling the quark charge, while in the lepton tag such information is

directly provided by the lepton charge.
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Fig. 7.5 Distribution in the (p,p⊥) plane of lepton candidates originating from b → `−

decays (a), from b → c→ `+ decays (b), from c→ `+ decays (c), and of non-prompt or
fake leptons (d). The transverse momentum p⊥ is computed with respect to the jet axis,
after excluding the lepton from the jet. (Courtesy of Duccio Abbaneo).

For these reasons the identification of leptons in hadronic environment has

been the first method used for the measurement of the heavy flavour asym-

metries and one of the design requirements for the detectors.

From the discussion of this Section it appears evident that any lepton

selection will tag Z → bb̄ decays more efficiently than Z → cc̄ decays, for

two main reasons:
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1. the lepton yield in Z → bb̄ events is roughly twice the yield of Z → cc̄

events, due to the presence of direct and cascade decays;

2. leptons from b decays (especially from b→ `− direct decays) have dis-

tinctive kinematic properties and can be efficiently separated from the back-

ground of fake and non-prompt leptons, while leptons from c decays have

intermediate properties between b→ `− decays and background.

Therefore a lepton selection is not by itself a mean to select a high-purity

sample of Z → cc̄ decays; nonetheless discriminating variables as those pre-

sented above can be used to select samples with different relative content

of Z → cc̄ and Z → bb̄ decays: a comparative analysis of such samples may

allow to extract Rb and Rc (or the b and c forward-backward asymmetries),

at the same time.

7.2.2 Lifetime tagging

The most effective way of selecting Z → bb̄ decays relies on the nonzero

lifetime of particles containing a b quark. The average lifetime of b hadrons

is around 1.5 ps, with small differences among the various species; combined

with the average boost at the Z cms energy (γ ≈ 6), it gives a decay

length of about 2.7 mm on average: 〈L〉 = 〈γβ〉cτ , where τ is the particle

mean lifetime. Such a distance is one order of magnitude larger than the

typical precision on the secondary vertex reconstruction, if the charged

decay products of the b hadron are within the vertex detector acceptance.

An example of good separation between the primary vertex of the event

and the b hadron decay vertex is shown in Fig. 7.6.

Alternatively, instead of identifying the b decay products and fitting

them to a common vertex, the b hadron can be tagged in a more inclusive

way by the presence of tracks that are incompatible with the primary vertex.

The impact parameter of a track is defined as the minimum distance of the

track from the primary vertex of the event; its sign is defined using the

direction of the jet to which the track belongs (taken as an estimator of the

b flight direction), as in the sketch of Fig. 7.7. The sign is considered as

positive when the track crosses the jet direction before the primary vertex

and negative otherwise. The impact parameter of a track is δ = γβct sinφ,

where t is the lifetime of the parent particle and φ is the decay angle. As

the average decay angle is 〈sinφ〉 = 1/βγ, the average impact parameter

can be written as 〈δ〉 = cτ , where τ is the parent particle mean lifetime.

Particles from b decays are expected to have a positive impact parameter

of about 450 µm, that is again about one order of magnitude larger than
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Table 7.2 Production fractions of the different b hadron
species in the hadronization of b quarks from Z de-
cays, along with their measured lifetimes and masses.
The fraction quoted for Λb also accounts for heavier b
baryons.

Particle Fraction Lifetime Mass

B0 0.388 1.542 ± 0.016 ps 5.279 GeV
B− 0.388 1.674 ± 0.018 ps 5.279 GeV
Bs 0.106 1.461 ± 0.057 ps 5.370 GeV
Λb 0.118 1.229 ± 0.080 ps 5.624 GeV

Fig. 7.6 Event with a reconstructed b decay vertex, recorded by the ALEPH detector.
The ellipses around the primary and the secondary vertexes represent the estimated
uncertainties in the reconstructed positions.

the resolution, if the track is measured in the vertex detector.

Charmed particles also have significant lifetime, typically around 0.5 ps,

except for the D+, that has a lifetime of about 1 ps. The hadronization

of charm quarks from Z decays produces a ratio of vector (D∗+,D∗0) to

scalar (D+,D0) to mesons of about 1.6. While the D∗0 always decays to a
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primary
vertex

jet direction

Fig. 7.7 Definition of the track impact parameter and of its sign.

Table 7.3 Production fractions of the different c hadron
species in Z → cc̄ events, along with their measured life-
times and masses. The fraction quoted for Λc also ac-
counts for heavier c baryons.

Particle Fraction Lifetime Mass

D+ 0.234 1.051 ± 0.013 ps 1.869 GeV

D0 0.545 0.412 ± 0.003 ps 1.865 GeV
Ds 0.125 0.490 ± 0.009 ps 1.968 GeV
Λc 0.096 0.200 ± 0.006 ps 2.285 GeV

D0 (with a photon or a π0), the D∗+ decays to D+ with a branching ratio

of about 32%, the rest decaying in the channel D0π+. For this reason, in

terms of the weakly-decaying hadrons, Z → cc̄ events contain many more

neutral than charged mesons, as shown in Table 7.3.

Charm events represents the largest background to b tagging. Addi-

tional discrimination between the two flavours can be achieved exploiting

the larger mass of b hadrons (Tables 7.2 and 7.3), and the larger charged

particle multiplicity of b hadron decays (about 5 charged particles on aver-

age) compared to c hadron decays (about 2.2 charged particles).
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Also in light quark events there can be particles that do not originate,

or do not appear to originate from the primary vertex, and can therefore

be mistaken as decay products of heavy-flavoured particles. Such particles

can be:

- products of early decays of Λ, Σ+, K0
S, K+ or π+;

- electrons from photon conversions;

- electrons that radiate a bremsstrahlung photon early in the tracking sys-

tem, and therefore have a kink in their trajectory;

- similarly, pions that make a soft nuclear interaction in the tracking system,

and therefore have a kink in their trajectory.

Such sources of background can be reduced by identifying and rejecting

photon conversions, as well as Λ and K0
S decays, and imposing cuts on the

quality of the reconstructed particle tracks.

The determination of the primary vertex

The first crucial step in building a lifetime tag is an accurate determination

of the Z decay point, usually called primary vertex of the event. This

applies both to algorithms based on the impact parameter significance of

individual tracks, and to algorithms based on the reconstruction of vertices

with significant separation from the primary vertex.

The luminous region depends on the optics of the accelerator, and can

vary with time. At LEP it had a typical size of about 10 µm in y, 100 µm

in x and 1 cm in z. The position of the luminous region is determined using

chunks of events (typically 100) and calculating the impact parameter of the

tracks with respect to a nominal position. The information on the position

of the luminous region is then used as a constraint in the determination of

the primary vertex of each event of the chunk.

The reconstruction of the primary vertex in heavy flavour Z decays is

a non-trivial problem because of the presence of the decay products of the

heavy hadrons, that are actually not originating from the primary vertex.

A common solution consists in reconstructing jets (with a clustering param-

eter optimized for the purpose) and using only the projection of the tracks

on the plane orthogonal to the jet direction to measure the position of the

primary vertex: in the case of the decay of a heavy hadron, the effect due

to its nonzero lifetime is eliminated to the extent to which the jet direction

is a good approximation of its flight direction (see sketch of Fig. 7.8). The

precision can be further improved in a second step, by adding also the com-

ponent parallel to the jet direction for the tracks that are compatible with
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(a) (b)

Fig. 7.8 Tracks coming from the decay of a heavy hadron, represented with dashed
lines (a), appear to come from the Z decay point (b) when projected onto a plane
perpendicular to the hadron flight direction, represented with the dotted line. In the
analyses, the b hadron flight direction is approximated by the reconstructed jet direction.

the first determination of the primary vertex. The precision that can be

achieved with such an algorithm is about 50 µm × 10 µm × 60 µm in the

x×y×z coordinates, where the precision in the y view is entirely dominated

by the constraint on the luminous region. In the final Rb analyses, in or-

der to control some specific systematic effects, the LEP collaborations have

chosen to determine independently the position of the primary vertex in

the two event hemispheres (defined as usual using the thrust axis). Each of

the two determinations is degraded by about 30% in the x and z views, but

the loss of precision is more than compensated by a better understanding

of the correlations between the two hemispheres (see Subsection 7.3.1).

At SLC the beam spot was much narrower than at LEP. In the xy plane

the beam size was of the order of a micron, while the beam motion resulted

in a spread of about 7 µm. Such a value is considerably smaller than the

resolution that would be achieved by fitting the tracks to a common vertex

event by event. Therefore the average beam position (measured on about

30 events) was taken as estimate of the primary vertex in the xy plane. In

the z projection the beam spot was about 700 µm long. Event-by-event

reconstruction yields a precision of about 15 µm in light quark events, that

degrades to about 30 µm in Z → bb̄ events, due to the presence of heavy-
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flavoured particles.

Tagging with track impact parameters

The relevant variable that can be used to tag the presence of particles with

nonzero lifetime is the impact parameter significance S of the tracks of

reconstructed charged particles, that is the impact parameter defined as

in Fig. 7.7, divided by its estimated uncertainty. The uncertainty results

from the propagation of the estimated error on the primary vertex, and

the uncertainty on the track parameters, including the effect of multiple

scattering. The impact parameter resolution can be parametrized as an

asymptotic term, given by the precision and position of the reconstructed

coordinates closer to the primary vertex, a momentum-dependent term ac-

counting for the uncertainty due to multiple scattering, and a polar-angle

dependent term that accounts for the increase of the extrapolation length

from the interaction point to the vertex detector layers. At LEP the impact

parameter resolution for 45 GeV muons at cos θ ≈ 0 was typically between

15 µm and 30 µm in the rφ view, and between 10 µm and 100 µm in the z

view. At SLD a resolution better than 10 µm was achieved in both views,

thanks to the smaller beam spot and a high precision vertex detector very

close to the interaction point.

Tracks that originate from the Z decay point are expected to have an

impact parameter significance normally distributed around zero, while the

presence of a few tracks with large and positive impact parameter signifi-

cance can be used as a tag of a Z decay to heavy quarks. The tracks that

populate the negative side of the impact parameter distribution constitutes

an important control sample that is used to measure the resolution directly

from the data and calibrate the tag. The negative side of the impact param-

eter distribution is fit with a functional form D(S) (typically a Gaussian

plus some exponential components), and then for a track with measured

positive impact parameter significance S, a variable P is defined as [90]:

P(S) =

∫ −S

−∞
D(x)dx . (7.3)

The variable P(S) has the physical meaning of the probability that a track

with positive impact parameter significance S originates from the primary

vertex (or, better, the probability that a track originating from the primary

vertex has an impact parameter significance larger than the measured one).

Tracks coming from the primary vertex have a flat distribution of P be-

tween 0 and 1. By construction P accounts for effects due to non-gaussian
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resolution tails in the data, as it is derived from D(S) that is measured on

the data.

Probabilities measured for different tracks can be combined: given a

group of N tracks, the quantity

PN = Π

N−1
∑

j=0

(− lnΠ)j

j!
, (7.4)

with

Π =
N
∏

j=1

Pj , (7.5)

represents the probability that the N tracks are originating from the pri-

mary vertex (or that a group of N tracks originating from the primary

vertex have a set of impact parameters equally or more incompatible with

it). An example for all tracks in a given hemisphere is shown in Fig. 7.11.

This technique can be used to define tagging variables on set of tracks of

particular interest: typically in Rb measurements the analysis is made on

hemispheres, for other applications individual jets are considered, or even

the whole event.

The performance of the method depends crucially on the use of sets of

well reconstructed tracks, with minimal tails on the negative S distribu-

tion. The analyses heavily relying on the impact parameter lifetime tag

are typically restricted to the acceptance of the vertex detector, and ap-

ply stringent quality cuts on the tracks considered, including rejection of

photon conversions and decays of long-lived particles, as discussed above.

Another important point is the optimization of the jet direction reconstruc-

tion, which is used to sign the impact parameter: signing errors give rise

to tails in the negative side of the impact parameter distribution, spoiling

the performance of the tag.

It is worth noting that such a tag implicitly takes advantage of the

larger decay multiplicity of b hadrons compared to c hadrons, when the

probability of all tracks of a hemisphere (jet or event) are combined. As

for the lepton tag, the method is suitable for selecting high-purity Z → bb̄

samples, while c events have intermediate properties between b events and

light quark background.

Decay length reconstruction

The impact parameter tag described above relies on the presence of tracks

that are measured to be incompatible with the Z decay point: no informa-
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tion is used about the compatibility of those tracks with the hypothesis of

coming from a common point in space: the decay point of the heavy hadron.

Such a fact on one side is indeed a limitation of the impact parameter tag,

but on the other hand it is also an advantage, because in fact in the vast

majority of b decays the decay products are not originating from a single

secondary vertex, but from two or even three vertices, often significantly

separated among them (some examples are shown in Fig. 7.6). The pres-

ence of such a variety of topologies is a severe limitation for the construction

of high-performance b tagging algorithm based on the reconstruction of the

b decay length. Nonetheless such algorithms have been developed by the

LEP experiments, and used successfully for Rb analyses, in particular by

OPAL [91].

Tracks belonging to a jet are fit to a common vertex, after applying

quality cuts to reject badly measured tracks and decay products of long-

lived particles. The χ2 of the fit is computed; then tracks are removed

in turn one by one, and the χ2 difference in the vertex fit is evaluated,

selecting the track that gives the largest ∆χ2; if such ∆χ2 exceeds a given

threshold (∆χ2 > 4) the track is removed, the vertex is recomputed and

the procedure is reiterated. The procedure yields a good reconstructed

secondary vertex, unless too few tracks are left (less than four in the OPAL

analysis) in which case no vertex is found.

The distance between the secondary and the primary vertex, projected

along the jet direction, is taken to be the decay length of the heavy hadron.

When the secondary vertex appears to be behind the primary vertex, the

decay length is given a negative sign. The uncertainty on the measured

decay length is evaluated by propagating the fit uncertainty on the primary

and secondary vertices, and the decay length significance L/σL is used as

tagging variable.

Events without lifetime yield a symmetric distribution of measured de-

cay lengths, therefore the negative side of the distribution provides a mea-

surement of the resolution directly from the data.

The decay length tag is intrinsically more robust than the impact pa-

rameter method with respect to single badly measured tracks, because of

the requirement on the compatibility of the tracks forming the secondary

vertex. In addition it is less sensitive to a limited resolution in the jet di-

rection reconstruction, which in this case contributes to degrade the decay

length resolution but does not cause signing mistakes.

The efficiency is limited by the complicated topology of b decays, as

discussed above, and drops to zero for low charged multiplicity decays.
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Overall the performance remains lower than that of the impact parameter

tag.

At SLD the high precision tracking in the vicinity of the interaction

point allows efficient reconstruction of secondary vertices; the identifica-

tion of the b decay products, however, is exploited to calculate the mass of

the parent particle (rather than its decay length), which is used as discrim-

inating variable. The method is discussed below.

Mass tag

The large b hadron mass can be used to improve the discriminating power

between b and c events. The most direct method consists in reconstructing

a secondary vertex, and calculating the invariant mass of the particles as-

signed to that vertex. In the case of a charm decay, the mass is in principle

limited to about 1.8 GeV, while the region between 1.8 GeV and 5 GeV

is mostly populated by b decays. This method was particularly effective

at SLD, thanks to the high precision tracking at small radii [92]. For an

evaluation of the decaying particle mass corrections are needed, because;

1. the vast majority of b decays proceed through a cascade decay to

charm: decay products of the charmed particle may be incompatible with

the secondary vertex;

2. neutral particles are not accounted for.

Decay products of secondary charmed particles in b cascade decays can

be recovered with a dedicated procedure: tracks that are inconsistent with

the primary vertex, and that pass within 1 mm (in space) from the axis

that contains the PV-SV axis are included in the secondary vertex.

The tracks selected are used to calculate the invariant mass of the ver-

tex. A further correction to the calculated mass is obtained by comparing

the direction of the total momentum with the direction of the PV-SV axis:

in general the two vectors are significantly acollinear, due to missing neu-

tral particles and possibly missing neutrinos. A kinematic correction to the

mass is defined, based on the transverse momentum Pt of the reconstructed

momentum with respect to an axis tangent to the error boundaries of the

two reconstructed vertices (sketch of Fig. 7.9): Pt represents the minimum

amount of transverse momentum needed to make the two vectors compat-

ible, so avoiding large corrections due to resolution effects that would in-

crease the contamination non-bb̄ events. The corrected mass is then written

as

Mcorr =
√

M2 + P 2
t + | Pt | , (7.6)
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vertex axis

b hadron momentum

Min Pt

P.V.

S.V.
error adjusted

vertex axis

Fig. 7.9 Definition of the “minimum Pt” used to calculate the vertex corrected mass
at SLD. The b candidate momentum is compared with the vertex axis (dottet arrow).
A new vector tangent to the Primary Vertex and Secondary Vertex error boundaries is
defined (dashed arrow), and the transverse momentum of the b candidate with respect
to this axis is considered.

with M indicating the uncorrected mass. Hemispheres where Mcorr > 2M

are rejected.

The corrected mass provides excellent separation between b, c and uds

quarks, as shown in Fig. 7.10, and is used in conjunction with the vertex mo-

mentum in the Rb and Rc analyses. The discrimination is further improved

by combining, through a neural network, additional information such as

the decay length and charged particle multiplicity of the reconstructed ver-

tex. Through this technique SLD was able to select inclusively high-purity

charm samples, an achievement that was not attainable for LEP detectors.

A different approach has been taken by ALEPH: tracks are ordered ac-

cording to their impact parameter significance and their invariant mass is

calculated. When such mass exceeds 1.8 GeV, the impact parameter sig-

nificance of the last track added is taken as the discriminating variable. In

the case of a charm decay, such a track is expected to be that of a fragmen-

tation particle, originating from the decay vertex. In the case of a b decay,

the last track added can be that of a b decay product, and therefore have a

significant impact parameter. The distribution of the discriminating vari-

able obtained is shown in Fig. 7.11b. This method is not necessarily more

powerful than the previous one in terms of discrimination between b and c
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Fig. 7.10 Distribution of the corrected mass for reconstructed secondary vertices at
SLD. Thanks to the precise tracking near the interaction point, this variable provides
excellent separation between b, c and light quark events.

decays, but it is interesting if one needs to use the simulation to evaluate

the residual charm background: in the previous case such estimate is sensi-

tive to the details of the hadronization process (multiplicity and kinematic

properties of fragmentation particles), while in this case the background

mostly arises, as for the impact parameter tag, from the decay products of

long-lived particles, photon conversions, hadronic interactions etc.

This long discussion on lifetime tagging was motivated by the superior

performance of these methods compared to other ones (e.g lepton or event-

shape tagging). At LEP experiments, jets associated to b quarks originating

from Z decays were selected with efficiencies ranging from 20% to 30%, for

a purity of 98%. Even higher efficiencies (about 60%) were obtained at

SLD, for the same purity.
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ALEPH

Fig. 7.11 Lifetime and mass tagging. (a) Negative logarithm of the tagging probability
defined by Eq. (7.5) for all tracks in a given hemisphere. (b) Negative logarithm of the
tagging probability for the first track exceeding the charm mass (details are given in the
text); in the case of charm or light quark events this particles is expected to originate
from the primary vertex.

7.2.3 Reconstruction of charmed hadrons

Several charm states were reconstructed at LEP and SLC. Due to the small

branching ratios of the decay channels considered (typically of the order of

a few percent), this tagging technique was more useful at LEP, where larger

statistics were available, as a mean of tagging heavy flavour Z decays. In

Z → cc̄ decays charm hadrons carry away a larger fraction of the beam en-

ergy compared to secondary charm hadrons from b decays in Z → bb̄ events.

This property is often employed to obtain high-purity charm samples, by us-

ing the energy of the reconstructed charm state as a discriminating variable.

Other useful complementary variables are the lifetime of the reconstructed

particle, and the properties of the opposite hemisphere (lifetime tag, lepton

tag, event shape).

Reconstruction of ground state charmed hadrons

The reconstruction of ground state D mesons (D0, D+,Ds) and of Λc

baryons is typically performed in the “golden” channels D0 → K−π+,
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D+ → K−π+π+, Ds
+ → K−K+π+ (possibly with the K−K+ pair form-

ing the φ resonance), and Λ+
c → pK−π+, as such channels offer the best

background conditions. The reconstruction consists in the calculation of

the invariant mass of good quality charged tracks, typically complemented

with the available particle identification information (energy loss measure-

ment, information from Cerenkov or time of flight detectors, when present)

to improve the efficiency in the assignment of the pion and kaon masses to

the selected tracks.

The resulting mass spectra are shown in Fig. 7.12 in the case of the

ALEPH experiment. The selection of the events falling in the mass window

provides samples with a substantial amount of combinatorial background

(typically more than 50%), that can be estimated directly from the data

by fitting the sidebands with a polynomial. The signal of correctly re-

constructed hadrons contains contribution from Z → cc̄ events, where the

charmed hadron is generated in the hadronization of the primary quark,

and from Z → bb̄ events, where the reconstructed particle comes from the

decay of a b hadron. In the analyses the two components are disentangled

using information from the opposite hemisphere (typically lifetime tag), or

from the same hemisphere (e.g. lifetime and momentum of the reconstructed

particle).

Reconstruction of D∗ mesons

The reconstruction of D∗ mesons offers particularly clean samples, due to

the peculiar kinematics of the decay D∗+ → D0π+. The mass difference

between D∗ and D0 is 145.5 MeV, very close to the kinematic threshold,

leaving only 6 MeV of q-value.

In the laboratory frame, the D∗ energy is limited by the beam energy,

giving a maximum boost of γ ≈ 20, which translates to a kinematic limit

for the momentum of the pion from the D∗ decay, usually denominated as

“soft pion” πs, of Pπs
≈ 3 GeV. Therefore the experimental signature of

the D∗ → D0πs decay is a track with momentum limited at 3 GeV, highly

collinear with the D0 candidate (or with the axis of the jet to which it

belongs, reconstructed with a suitable clustering parameter).

The calculation of the mass difference between the reconstructed D∗ and

the reconstructed D0 gives a narrow peak with low background, as shown

in Fig. 7.13(a). The low background conditions are essentially due to the

fact that the signal is at the end of the phase space: random combinations
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Fig. 7.12 Reconstructed mass distributions for D0 → K−π+, D+ → K−π+π+,
Ds → K−K+π+ and Λc → pK−π+ from ALEPH. The fitted functions are the sum
of polynomials for the combinatorial background and Gaussian functions for the signals.

of tracks have little probability of being so collinear, and therefore tend to

give a larger measured mass difference. The method is effective even if the

D0 is not fully reconstructed, as shown in Fig. 7.13(b) and 7.13(c). Due to

the fact that the D0 decay products are typically ultrarelativistic and well

collimated, the effect of the missing particle(s) largely cancels in the mass

difference, giving a moderate increase of the peak width.
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Fig. 7.13 Mass difference ∆M = m(D0π+)−m(D0) reconstructed by OPAL in different
channels. Fully reconstructed D0 → K−π+ candidates (a) give a narrow peak with small
background, while the channel D0 → K−π+π−π+ (d) has equally good resolution but
higher combinatorial background, because of the higher multiplicity. The semileptonic
channel D0 → K−`+ν` (b) yields a broader signal peak because of the missing neutrino,
but the resolution on the mass difference is still sufficient to find a high-purity signal
region. Similarly for the channel D0 → K−π+π0 (c), with the π0 not reconstructed. In
all four plots the solid histogram shows the estimated combinatorial background.

The technique can be pushed even further, by looking for a “soft pion”

signature without attempting any reconstruction of the D0 particle. A

sample enriched in pions from D∗ decays can be selected by searching for
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Fig. 7.14 Distribution of the squared transverse momentum with respect to the jet axis
at DELPHI for (a) inclusive pions, (b) pions from selected D∗.

charged particles of momentum lower than 3 GeV and collinear with the

jet axis, as shown in Fig. 7.14.

The method has the advantage of being effective for any D0 decay mode,

but requires the subtraction of a large background below the low p2
⊥ peak,

complicated by the presence of the contribution from b hadron decays, that

produce a broad accumulation in the same region.

7.2.4 Event shape tagging

The hard fragmentation and the large mass of b quarks result in distinctive

topological properties of Z → bb̄ decays, that can be exploited to define

global discriminating variables.

In b events gluon radiation is suppressed, and a large fraction of the

beam energy (70% on average) is carried away by the b hadron (and subse-

quently, its decay products). In light quark events, instead, many particles

are produced in the fragmentation process, with a soft momentum spec-

trum.

Due to the large b hadron mass, b decay products may have a relatively

large transverse momentum with respect to the b quark direction, while
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light quark events tend to produce more collimated jets.

In summary, b events tend to have two broad jets carrying a large frac-

tion of the beam energy, while light quark events typically show a softer

particle spectrum and particles have lower transverse momentum with re-

spect to the fragmenting partons.

A variety of discriminating variables have been defined by the experi-

ments to exploit the topological differences between b events and light quark

events; some of these variables rely on a few of the most energetic tracks

of the events, that in b events are typically b decay products: examples

are the invariant mass and sphericity of the three most energetic particles

of the leading jet in each hemisphere; other variables are defined using all

particles of a jet, of even on the whole hemisphere.

Event shape b tagging typically offers substantially worse performance

than lifetime tagging, and the purity of the selected samples is more diffi-

cult to estimate with the simulation, because the efficiency for selecting light

quark events depends on the details of the fragmentation process. If several

variables are defined, they tend to have substantial statistical correlations

(as they largely exploit the same information), and neural network tech-

niques are needed to combine them in a fully efficient way. Event shape

variables are typically used to complement lifetime tagging, especially in

techniques where the non-b background can be estimated directly from the

data (like multi-tag Rb analyses).

7.2.5 Gluon splitting to heavy quarks

A special background to any type of b or c tagging is represented by events

containing a gluon splitting to heavy quarks (Fig. 7.15). Such a process can

happen independently of the flavour of the event, yielding Z decays to light

quarks that actually contain heavy-flavoured hadrons. Therefore events

with a gluon splitting to heavy quarks represent an irreducible background

for the tagging of heavy flavour Z decays: their only peculiarity is that the

heavy-flavoured hadrons tend to be close in phase space (i.e. in the same

hemisphere, and possibly even in the same jet, depending on the clustering

parameter chosen) and have a much softer energy spectrum.

The background from g → bb̄ events at some point turned out to be

limiting the precision of the Rb measurement; then the LEP collaborations

and SLD made an effort to measure the g → bb̄ and g → cc̄ rates from their

data samples, to improve the precision on the subtraction of such irreducible

background. Most of the measurements were aiming to identifying Z decays
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Fig. 7.15 In hadronic Z decays a hard gluon can split to a pair of heavy quarks (QQ̄),
yielding heavy flavoured particles in events of any flavour.

to light quarks containing one gluon splitting to heavy quarks. The selection

was based on events with 3-jet topologies, where the softer jet was tagged

by a lepton, by lifetime, or by a D∗, and it had large invariant mass, while

the two most energetic jets were not b- or c-tagged. The g → bb̄ rate was

also measured in 4-jet topologies using a fine clustering parameter.

The world average of the available measurements [93] of the rate of Z

hadronic decays containing gluon splitting to heavy quarks are:

g → cc̄ = 0.030± 0.004 , (7.7)

g → bb̄ = 0.0025± 0.0005 . (7.8)

7.3 Rb measurements

The large data samples collected by the LEP experiments and SLD, to-

gether with the high b tagging capability, yield Rb measurements with a

statistical precision in the few permil range. Such a high statistical power

calls for extreme care in addressing possible systematic effects.

The breakthrough for achieving a good control of systematic effects has

been the use of the single/double tag method, discussed below in Subsec-

tion 7.3.1. All the analyses are based on a lifetime tag, sometimes enhanced

with information related to vertex mass or lepton transverse momentum.

Some experiments have enhanced the method to include other complemen-

tary tags (Subsection 7.3.2), obtaining a further gain in precision.

The experimental results measure the ratio of the production

cross sections σbb̄/σhad. The ratio of Z partial widths Rb =
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Γ(Z → bb̄)/Γ(Z → hadrons) is derived by applying small corrections to

account for photon exchange and γ − Z interference (typically around

+0.0002). (The corrected quantity is often indicated as R0
b in the experi-

mental papers.)

7.3.1 The single/double tag method

The so-called single/double tag methods take advantage of the fact that the

hadronization of the two b quarks from the z decay is largely uncorrelated.

Therefore it is useful to divide the event in two hemispheres, using the

thrust axis, and apply a tag (e.g. a lifetime tag) in each hemisphere. The

number of hemispheres that fulfil the tag N t
h and the number of events

where both hemispheres fulfil the tag N t
ev , can be measured in a sample of

preselected hadronic events Nev, and written in terms of the hemisphere

tagging efficiency and Z partial widths for the different quark flavours, as

follows

N t
h = 2Nev [Rbεb +Rcεc + (1 −Rb −Rc)εuds] , (7.9)

N t
ev = Nev

[

Rbε
2
b(1 + ρb) +Rcε

2
c + (1 −Rb −Rc)ε

2
uds

]

, (7.10)

where εb and εc are the heavy flavour hemisphere tagging efficiencies, and

εuds represents the average tagging efficiency for light quark hemispheres;

the sum of the partial widths to the five quark species is taken to be unity.

The parameter ρb is a correction factor that accounts for possible correla-

tions between the b tagging efficiency in the two hemispheres, discussed in

detail below. In principle such a correction is present also for the charm

and the light quark terms, but in practice it can be neglected in all existing

analyses, because εc and εuds are much smaller than εb.

The Eqs. (7.9) and (7.10) can be solved for Rb and εb; the b tagging

efficiency is therefore measured directly from the data and it is not a source

of systematic error. Charm and light quark efficiencies, as well as the

hemisphere correlation correction, have to be estimated with the simulation.

It is instructive to introduce some approximations in the Eqs. (7.9)

and (7.10). Neglecting the charm and light quark contributions, solutions

for Rb and εb can be written as

Rb ≈ (1 + ρb)

(

N t
h

2Nev

)2(
Nev

N t
ev

)

, (7.11)

εb ≈ 1

1 + ρb

(

N t
ev

Nev

)(

2Nev

N t
h

)

. (7.12)
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The statistical error on Rb is dominated by the double tagging fraction

N t
ev/Nev, that has the largest uncertainty (simply because it involves

smaller numbers). A shift in the values assumed for ρb, εc and εuds trans-

lates to a shift in the measured value of Rb as follows:

∆Rb

Rb
≈ −∆ρb , (7.13)

∆Rb

Rb
≈ − Rc

Rb

εc
εb

∆εc
εc

, (7.14)

∆Rb

Rb
≈ − 1 −Rb −Rc

Rb

εuds

εb

∆εuds

εuds
. (7.15)

The relation (7.13) shows that the error on ρ directly reflects to a relative

shift in Rb; therefore a measurement of Rb at a few permil level implies

that the hemisphere correlation correction must be controlled at the permil

level. The other two equations show that systematic effects due to εc and

εuds scale with the ratios between those efficiencies and the εb, therefore

a tag with high efficiency and purity not only gives more statistical power

but also helps reducing the systematic uncertainties from the background

efficiencies estimated with the simulation.

Hemisphere-hemisphere correlations

Hemisphere-hemisphere correlations turn out to be the most challenging

source of systematic uncertainty.

Correlations may arise from many different effects. One simple example

of detector-related effect is the polar angle dependence of the tag efficiency,

especially relevant for lifetime tags, that have full performance only if the b

decay products are inside the vertex detector acceptance: the two b jets tend

to be back-to-back, and therefore tend to be both inside or both outside

the high performance region, which gives a positive correlation. Limiting

this effect is one of the reasons to restrict the lifetime-based analyses to

events well contained in the vertex detector. Also inefficient regions due to

detector failures may give rise to correlations, as the two b jets cannot both

cross the faulty detector: in this case the induced correlation is negative.

An example of physics source of correlation is the radiation of energetic

gluons in the final state: in events with substantial gluon emission both b

hadrons than to be less energetic, thus having both lower tagging proba-

bility than average, which gives a positive correlation. In about 2% of the

events a hard gluon is emitted, that produces the most energetic jet of the

event and dominates the calculation of the thrust axis; the two b jets are



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

302 The Physics of the Z and W Bosons

reconstructed in the same hemisphere, leading to a negative correlation.

The most complicated effects, however, arise through the reconstruc-

tion of the primary vertex. As discussed in Subsection 7.2.2, the precision

obtained in the determination of the primary vertex position is degraded

in heavy flavour events, due to the presence of particles that originate from

the heavy hadron decay points. The degradation has a large dependence

on the heavy flavour hadron momentum: in the case of energetic hadrons,

the fragmentation tracks are fewer and softer (and therefore less precisely

measured because of multiple scattering), and therefore the primary vertex

position measurement is less precise. As a result, an event that has in one

hemisphere a high-energy hadron, with higher-than-average tagging proba-

bility, will have the primary vertex determination spoiled, and therefore the

tagging probability for the other hemisphere lower than average; therefore

a negative correlation between the two hemispheres. Such an effect can

be as large as several percent, and cannot be reliably estimated with the

simulation, because it depends on the b hadron momentum spectrum as

well as on all other details of the fragmentation. With the increase of the

statistics collected, the experiments have decided to perform the primary

vertex determination separately in the two hemispheres, so avoiding this

kind of effects, at the expenses of some statistical power. The information

on the beam spot position can be safely used for both hemispheres, as it

has no interplay with the b hadron production and decay properties.

The different effects contributing to the hemisphere correlation correc-

tion cannot really be disentangled, as they are all correlated. However some

test variables can be defined, to check the accuracy of the simulation. First

of all one has to identify a variable that is related to the effect to be investi-

gated. For example, effects related to the variation of the tagging efficiency

in the different detector regions can be investigated using the polar and

azimuthal angle of the thrust axis. Effects related to gluon emission can be

studied using the jet momentum. A dependence of the tagging efficiency

in one hemisphere upon the variable calculated in the other hemisphere (or

on the variable itself, if defined on the whole event as in the case of the

thrust axis) is an indication of an underlying source of correlation.

The quantity

ρv
b =

∫

fb(v)ε
same
b (v)εoppo

b (v)dv
[∫

fb(v)εsame
b (v)dv

]2 − 1 , (7.16)

is taken as an estimator of the contribution of the effect associated with the

variable v to the correlation correction. In the formula, fb(v) is the distri-
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bution of b hemispheres as a function of v, and “same”/“oppo” refer to the

same/opposite hemisphere where the variable v is calculated. The difficulty

is that the formula has to be evaluated on b events, and it is therefore not

directly accessible on data. An approximate procedure consists in estimat-

ing ρv
b in a data sample enriched in b events by applying a mild b tag cut;

the remaining udsc background as well as the bias introduced by the b tag

cut are corrected for with the simulation, allowing for large uncertainties

associated with such corrections; the result obtained gives an indication

of the size of the effect, and allows a comparison with the corresponding

quantity measured in simulated data.

Other sources of systematic uncertainty

The other sources of systematic uncertainty are related to the estimate of

the light quark and charm efficiencies from simulated data.

As discussed in Subsection 7.2.2, light quark events can be selected

because of mis-measured tracks, long-lived particles, photon conversions,

interactions with the detector material, or gluons splitting to heavy quarks,

that is by far the largest source. The experimental error on the rates g → bb̄

and g → cc̄ is used to assess the associated uncertainties.

The charm background is much more relevant, and needs careful treat-

ment. The measured fractions of weakly-decaying c hadrons (Table 7.3)

and their lifetimes are implemented in the simulation, and their experi-

mental errors are used to estimate the associated uncertainty. The de-

cay channels of the c hadrons are also relevant, but unfortunately many

of them are rather poorly known. The decay properties that have the

largest impact on the tagging probability are the number of charged par-

ticles produced; therefore the inclusive measurement of the decay multi-

plicities from MARK III [94] are used. A special treatment is needed,

however, for the decay D → K0X , where the K0 typically carries away a

large fraction of the energy, yielding a particularly low tagging probabil-

ity. For this specific channel the measured exclusive branching ratio is

used.

In order to solve Eqs. (7.9) and (7.10), an input value is needed also for

Rc. Typically the experiments use as input the Standard Model value, and

compute the dependence (derivative) of the measured Rb value on the Rc

input value, which is then used as input to a global fit to all the measured

heavy flavour electroweak observables [142].
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7.3.2 Multi-tag methods

The single/double tag method can be extended to include several mutu-

ally exclusive tags, having different efficiencies for the different flavours.

In the final ALEPH and DELPHI measurements [95] five tags were used:

one main b-tag with high efficiency and purity, two other complementary

b-tags (with lower performance), one c-tag and one uds-tag. For N tags,

there are N single-tag rates and N(N + 1)/2 double tag rates to measure.

If events are divided in three flavour classes: b, c and light quarks (as in the

single/double tag method), those observables can be expressed in terms of

Rb, Rc, 3N hemisphere tag efficiencies, and 3N(N + 1)/2 hemisphere cor-

relation corrections (one per flavour class and per tag combination). In the

actual measurements the charm and light quark efficiencies for the main

tag are estimated from the simulation, as well as the 45 correlations, while

the remaining 13 efficiencies are extracted from the fit to the 20 observ-

ables. The fact that the efficiencies of the complementary tags are extracted

from the data, allows to use fairly complicated algorithm, since an accurate

simulation of their performance is not required. The statistical power of

the method improves by about 10 − 20% compared to a single/double tag

method based on the main tag only. The increased statistical power can be

used to tighten the selection cut on the main tag, or to further restrict the

fiducial region where the analysis is performed, to reduce the systematic

uncertainty from background sources. The sensitivity to the hemisphere

correlation of the primary tag is also reduced compared to a single/double

tag method, however the uncertainties coming from the other correlation

coefficients have to be estimated.

7.3.3 Rb results

The combination of the Rb measurements from SLD and the LEP experi-

ments [95] is performed with a global fit that includes the Rc measurements

described below and the heavy-flavour forward-backward asymmetries de-

scribed in Subsection 8.3.2. This common procedure takes into account the

correlations among various measurements and treats in an optimal way the

systematic uncertainties [142]. The photon exchange and γ−Z interference

corrections are applied by the individual experiments before the combina-

tion, as they can be slightly affected by the event selection cuts. The result

is

Rb = 0.21629± 0.00066
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in agreement with the MSM expectation. Within the MSM this result

depends solely on the top mass and can be used to set an indirect limit on

its value (Section 10.3).

7.4 Rc measurements

As previously discussed, charm events have intermediate properties between

b events and light quark events, for nearly all discriminating variables. As

a consequence, charm tags have significantly worse efficiency/purity figures

compared to b tags, and the Rc analyses reach statistical precision in the

few percent range, rather than few permil.

Several methods have been employed by SLD and the LEP experiments

to measure Rc, that can be classified as follows:

• single-double tag methods, using the same tag in the two hemispheres

(as for the Rb analyses);

• single-double tag methods, using an exclusive tag in one hemisphere,

and an inclusive tag in the other hemispheres;

• charm counting analyses;

• measurements based on leptons.

The four types of analyses contribute with approximately equal weights in

the overall combination.

In general, in Rc analyses the remaining b background is extracted from

the data by applying a b tagging in the hemisphere opposite to the selected

charm candidate; therefore Rc results have typically a small dependence on

the assumed value of Rb.

As in the case of Rb, a small correction (≈ 0.0002) accounting for photon

exchange and γ − Z interference has to be applied.

7.4.1 Single/double tag

This method is most effective at SLD, where the particularly favourable

experimental conditions allow a high performance c-tag to be obtained

(about 14% efficiency for 67% purity), with the method discussed in Sub-

section 7.2.2. The SLD result has approximately the same precision as the

combination of all the LEP analyses [96].

At LEP a single/double tag analysis has been performed by ALEPH

using a reconstructed D meson tag, and by DELPHI using a soft pion
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tag. The ALEPH analysis is severely limited by the statistics (the selection

yields 89% purity but only 2.5% efficiency), while the DELPHI analysis is

limited by the understanding of the background in the single-tag sample.

7.4.2 Inclusive/exclusive tag

As discussed in the above paragraph, the measurement of Rc at LEP is

limited either by the systematic uncertainty in the composition of the single-

tag sample, if an inclusive tag is used, or by the poor statistics of the

double-tag sample, in the case of exclusive tags. An effective compromise

consists in using an exclusive tag for the single-tag sample, and combine it

with an inclusive tag for the double tag sample.

First, the rate of hemispheres with a reconstructed D∗+ → D0π+ is mea-

sured. The D0 is reconstructed in the “golden” channel K−π+ plus possibly

other channel with known branching ratios. Unfolding the D0 branching

ratios and the reconstruction efficiency (taken from the simulation) the mea-

sured rate can be written in terms of Rc×P (c→ D∗)×BR(D∗+ → D0π+).

Then, a sample of events enriched in charm is selected by requiring a

high energy fully reconstructed D∗ in one hemisphere, and the D∗ rate in

the opposite hemisphere is measured by selecting soft pions: such a rate

is proportional to P (c → D∗) × BR(D∗+ → D0π+) (unfolding selection

efficiency and background), so that the ratio of the two measured rates

gives Rc.

The method still requires that the efficiencies and purities for the ex-

clusive reconstruction of the D∗, and for the inclusive selection of πs, are

correctly estimated with the simulation, while uncertainties in the fragmen-

tation of the charm quark cancel in the ratio.

7.4.3 Lepton analyses

The Rc parameter can also be inferred from the measured rate of prompt

leptons in hadronic Z decays. Higher precision is obtained if the lepton yield

is analysed as a function of the lepton momentum and transverse momen-

tum, as such variables discriminate the different sources (Subsection 7.2.1).

The total lepton spectrum can be written as

F(p, p⊥) = Rb Pb(p, p⊥)εb(p, p⊥)

+ Rc Pc(p, p⊥)εc(p, p⊥)

+ (1 −Rb −Rc) fuds(p, p⊥) , (7.17)
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where Pb,c(p, p⊥) describe the total lepton yields in b and c events, εb(p, p⊥)

are the identification efficiencies, and fuds(p, p⊥) is the probability of se-

lecting a lepton candidate in light quark events.

The shape of the b contribution (including selection efficiency) can be

extracted from the data, by applying a b tag in one hemisphere, and study-

ing the lepton yield in the opposite hemisphere. Small corrections have to

be applied to subtract the residual non-b background, and to account for

distortions in the (p, p⊥) spectrum caused by the b-tag cut, through kine-

matic correlations between the b hadrons in the two hemispheres (discussed

in Subsection 7.3.1).

The shape of the light quark background can be also studied in the data,

by selecting samples of photon conversions and identified hadrons.

The (p, p⊥) shape of the charm contribution is obtained from a fit to

data collected at e+e− experiments above the charm production threshold.

Once the three shapes are known, a fit to the spectrum measured on the

data is performed leaving the normalization of the b and c contributions free.

The normalization of the c contribution can be written as Rc ×BR(c→ `).

The inclusive c→ `+ branching ratio is measured independently at LEP by

studying the lepton yield opposite to a high-energy D∗.

7.4.4 Charm counting

The final state c hadrons can be fully reconstructed at LEP, as shown in

Fig. 7.12, in particularly convenient decay channels. Taking as example

the D0 → K−π+ channel, the measured yield after background subtraction

can be written as Rc f(D0) BR(D0 → K−π+)εD0→K−π+ , where f(D0) is the

probability that a c quark from the Z decay eventually produces a D0, and

ε is the selection efficiency. The subtraction of the b contribution and of

the combinatorial background is performed as explained in Subsection 7.2.3.

Folding the known value of the decay branching ratio and the reconstruction

efficiency estimated with the simulation, Rc f(D0) can be extracted. If the

measurement is repeated for the four c hadron species of Fig. 7.12, one

can assume that the four production probabilities add up to one, with a

small correction for the unmeasured charmed strange baryon yield. Such a

correction is taken to be 15% of the Λc rate.

Imposing the constraint

f(D0) + f(D+) + f(Ds) + 1.15± 0.05f(Λc) = 1 , (7.18)

Rc can be extracted from the four measured rates, deriving at the same
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time the production probabilities (Table 7.3), that are used to estimate the

c background in the Rb analyses.

7.4.5 R0
c results

The Rc results from SLD and the LEP experiments [96] are combined with

the procedure mentioned in Subsection 7.3.3, yielding

Rc = 0.1721± 0.00030

in agreement with the MSM expectation. Within the MSM this result is

essentially independent of parameters as the top, the Higgs mass or the

strong coupling constant, which cancel in the ratio.

The precise determinations of Rb and Rc presented in this Chapter are

compared to the MSM expectation in Fig. 7.16.

0.164

0.173

0.182

0.214 0.216 0.218

R b

R
c

68% C L

95% C L

m
t

S M

Fig. 7.16 The 68% CL contour for Rb and Rc compared to the prediction of the MSM.
The star indicates the prediction of the SM for a top mass of 172 GeV, and the arrow the
direction of growing top mass. The size of the arrow corresponds to a top mass variation
of about 9 GeV. (Courtesy of the LEP Electroweak Working Group.)
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Asymmetries at the Z pole

A distinct feature of electroweak neutral interactions is the difference be-

tween right-handed and left-handed currents. This difference is regulated

by the Weinberg electroweak mixing angle sin2 θW , that enters the vector

coupling of the Z to right-handed and left-handed fermions. The different

behaviour of the Z in presence of fermions of opposite chiral states has a

direct consequence on experimental data, causing measurable asymmetries

that can be used to determine the mixing angle and, using information from

the Z partial widths, the couplings themselves.

As a first example, if a polarized electron beam collides with unpolarized

positrons at a centre-of-mass energy equal to mZ , the total cross section

will be different, and much higher, if left-handed polarization is used. The

relative difference between the two cross sections (σL and σR) is the left-

right asymmetry (ALR) introduced in Section 2.5, related to the right-

handed (gLe) and left-handed (gRe) electron couplings by

ALR =
σe−

L
− σe−

R

σe−

L
+ σe−

R

=
g2

Le − g2
Re

g2
Le + g2

Re

≡ Ae . (8.1)

As gL = gV e+gAe

2 and gR = gV e−gAe

2 one can see that Ae depends on the

ratio between vector (gV e) and axial vector(gAe) coupling constants of the

electron:

Ae =
2 gV egAe

(gV e)2 + (gAe)2
=

2 gV e/gAe

1 + (gV e/gAe)2
. (8.2)

The ratio of leptonic couplings is used for the operative definition of

sin2 θW,eff , the effective electroweak mixing angle, introduced in Sec-

tion 3.3:

sin2 θW,eff ≡ 1

4

(

1 − gV `

gA`

)

. (8.3)

309
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In the reaction e+e− → Z → f f̄ with unpolarized beams, the same ef-

fect causes the Z to be polarized along the direction of the beams. Indeed,

because of angular momentum conservation, left-handed (right-handed)

electrons interact with opposite-helicity positrons only (Eq. (2.45)) and

the different cross sections of the two processes cause parity violation and

a net Z polarization opposite to the direction of the electron beam. The

amount of polarization is exactly Ae. The Z polarization, and therefore

Ae, can be measured by analysing the polarization of the fermion emitted

by the Z boson since, once again, angular momentum conservation relates

the two quantities. In practice this is possible only if the emitted fermion

is a tau lepton, by measuring the tau polarization in e+e− → Z → τ τ̄ . Al-

ternatively, one can take advantage of parity violation in the decay of the

Z, causing the emitted anti-fermion (f̄) being directed preferentially along

the direction of the Z spin, with the fermion (f) in the opposite direc-

tion. This effect originates a forward-backward asymmetry of the fermion

emission with respect to the initial electron beam. The forward-backward

asymmetry is defined as (Eq. (2.86))

AFB =
σF − σB

σF + σB
(8.4)

where σF is the cross section for fermions emitted in the hemisphere cen-

tered along the direction of the electron beam, while σB is for fermions in

the opposite hemisphere. The relationship between the forward-backward

asymmetry and the couplings is given by Eq. (2.93).

In next Sections the main issues related to the measurements of the left-

right asymmetry, of the tau polarization in Z decays and of the forward-

backward asymmetry are discussed in some detail. The various measure-

ments are compared in the last Section where combined values of sin2 θW,eff

and of the lepton couplings are given.

8.1 Measurement of the left-right asymmetry (ALR)

The measurement of ALR requires the avalaibility of longitudinally polar-

ized beams. At SLC longitudinal polarization of the electron beam was

achieved by a circularly polarized laser source hitting a GaAs photocath-

ode [98], allowing SLC to be operated with an electron beam polarization

of about 75%. Since a fully polarized electron beam cannot be produced,

Eq. (8.1) has to be modified to take into account the average beam polar-
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Fig. 8.1 The schematic layout of the SLD compton polarimeter.

ization (Pe), becoming

ALR =
1

Pe

σL − σR

σL + σR

. (8.5)

The main experimental issue, for a precise measurement of ALR, is an accu-

rate determination of the beam polarization. This need could be overcome

if both electron and positron beams could be independently polarized. By

performing three independent measurements, the first with polarized elec-

trons and unpolarized positrons, the second with polarized positrons and

unpolarized electrons, and a third one with both polarized beams, ALR

and the two beam-polarizations could be determined without the need of

external inputs. This scheme was originally proposed for LEP [97], but

never went into operation. The standard SLC operating cycle consisted of

two close electron bunches, the first of which was polarized, while the other

was used to produce unpolarized positrons. The sign of the electron polar-

ization was randomly chosen, so that the measurement was not affected by

time variations of the apparatus efficiency.

The SLD experiment monitored the longitudinal SLC-beam polarization

with a polarimeter based on Compton scattering of electrons by circularly

polarized light of a Nd:YAG laser beam. The measurement took place after

the interaction point, as shown in Fig. 8.1. The Compton cross sections
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for spin-parallel (j=3/2) and spin anti-parallel (j=1/2) interactions are dif-

ferent, and this difference is a function of the normalized scattered-photon

energy fraction (x). The difference can be written, in terms of x, as

dσ3/2

dx
− dσ1/2

dx
=
dσ

dx
(1 −PγPeA(x)) (8.6)

where A(x) is the Compton asymmetry function [99]. The asymmetry

reaches its maximum at the kinematic endpoints (full forward- or back-

scattering). At SLD the Compton-scattered electrons were deflected by

the first beam line dipole after the interaction point and entered a thresh-

old Cerenkov detector segmented in seven cells transverse to the beam line

(Fig. 8.1). Many Compton interactions were produced at every laser pulse

and all channels of the polarimeter integrated the signal of several Comp-

ton scatters and background. The laser fired every 7th beam crossing (SLD

frequency was 120 Hz) and the other six were used to monitor the back-

ground in the Cerenkov counters. The laser beam polarization, typically

99.8%, was continuously monitored. The statistical accuracy on Pe was of

±1% every three minutes. The relative systematic uncertainties [100, 101]

in the polarization measurement are summarized in Table 8.1. The last en-

try of this table is the uncertainty on the difference between the measured

polarization and the polarization at the interaction point (IP). The latter

is computed as Pe(1+ η), where η is a small correction. It is mainly due to

off-energy electrons which do not contribute to the effective luminosity and

to the small spin precession of the electron beam in the focusing elements

between the interaction point and the Compton polarimeter. The depo-

larization of the electron beam during the e+e− collision was checked by

measuring the polarization with and without beam collisions and was found

to be negligible. To derive the left-right asymmetry, the mean luminosity-

weighted electron polarization

〈Pe〉 = (1 + η)
1

NZ

NZ
∑

i=1

Pi , (8.7)

estimated from measurements of Pe made when Z events were recorded was

used. The total contribution of the systematic uncertainty on the beam

polarization to the measurement of ALR was 0.52 % (high-statistics 1997/8

run); this is the main source of systematic uncertainty in the left-right

asymmetry measurement.

The asymmetry of the left-right rates was measured with a simple event

selection, since ALR does not depend on the final state as long as this
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Table 8.1 Relative (%) systematic uncertainties on the elec-
tron beam polarization at SLD in two data-taking periods.

Source of uncertainty 1994/5 1997/8
(%) (%)

Laser Polarization 0.2 0.1
Detector Linearity 0.5 0.2
Detector Calibration 0.29 0.40
Electronic Noise 0.20 0.20
Transport from polarimeter to SLD IP 0.17 0.15

is an s-channel process. Care must be only taken in rejecting Bhabha

scattering events, because of the t-channel contribution to e+e− → e+e− .

The event selection was focused on high-multiplicity events: at least four

charged tracks and at least 22 GeV of visible energy in the calorimeters were

required, with an energy imbalance (ratio of vector to scalar energy sum in

the calorimeter) less than 0.6. The total sample comprised approximately

537000 Z decays and was mostly made of hadronic events, with a small tau

contributions (∼ 0.3%). The events produced with left-handed (NL) and

right-handed (NR) polarization were counted and their asymmetry Am =

(NL −NR)/(NL +NR) ∼ 0.12 was measured. The measured asymmetry is

related to ALR by the following expression

ALR =
Am

〈Pe〉
+

1

〈Pe〉
[fb(Am −Ab) −AL +A2

mAP

−Ecm
σ

′

(Ecm)

σ(Ecm)
AE −Aε + 〈Pe〉Pp] (8.8)

where a number of small corrections, listed below, are incorporated. In

Eq. (8.8) AX indicates the left-right asymmetry of X , defined as AX ≡
XL−XR

XL+XR
. The first term in the square bracket represents the correction

for the background: fb is the background fraction and Ab the background

left-right asymmetry. The second term represents the asymmetry of the in-

tegrated luminosity, while the third term takes into account the asymmetry

in the beam left and right absolute polarizations. The fourth term corrects

for the different centre-of-mass energies when left or right beams are used:

σ
′

(Ecm) is the derivative of the cross section with respect to Ecm. The

fifth term represents the left-right asymmetry in selection efficiency: it is

totally negligible for an apparatus with symmetric acceptance in polar an-

gle. Finally, the last term corrects for possible longitudinal polarization of

the positron beam. This was measured with a dedicated experiment based
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on Möller scattering and found negligible. The sum of the corrections in

the square brackets of Eq. (8.8) gives [+0.16± 0.07]% for the 1997/8 high

luminosity run.

The left-right asymmetry depends on the centre-of-mass energy because

of the Z - γ s-channel interference. The energy dependence can be computed

from Eq. (2.96) as

ALR(s) = Ae + 0.00002∆E(MeV ) + 0.00005 (8.9)

where ∆E is the difference between mZ and the actual centre-of-mass en-

ergy, while the constant term accounts for the correction due to the imagi-

nary part of ∆α. In order to apply the correction and compute the asym-

metry at the Z pole the centre-of-mass energy of the experiment must be

precisely known. SLC employed two energy spectrometers (one for the

electron and one for the positron beam) calibrated, through an energy

scan, to the precise measurement of mZ at LEP. The measured average

offset was -46 MeV and the total centre-of-mass energy uncertainty 29

MeV. The measured left-right asymmetry is also corrected for the effect

of initial state radiation (the most sizeable QED correction, which lowers

the asymmetry as expected from Eq. (8.9)), for the effect of pure photon

exchange (which slightly dilutes the asymmetry) and for other higher or-

der QED/electroweak effects (as the already mentioned imaginary part of

∆α). The total correction (including the centre-of-mass energy offset) is

0.00358± 0.00058, the error being essentially due to the uncertainty on the

beam energy. (The corrected measurement is indicated as A0
LR.) When

this uncertainty is added in quadrature to the uncertainty on the electron

beam polarization and the uncertainty on the corrections of Eq. (8.8) a

total systematic error on A0
LR of 0.64 % is obtained.

The final result, including the statistical errors, is

A0
LR = 0.15138± 0.00216 (8.10)

sin2 θW,eff = 0.23097± .00027 (8.11)

giving the most precise measurement of the weak mixing angle.

8.2 Measurement of the tau polarization in Z decays

Each Z decay into an f f̄ pair can be characterized by the direction and

the chiral state of the emitted fermion f . Defining as forward the hemi-

sphere where the electron beam is pointing, the events can be subdivided
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into four categories: FR, BR, FL and BL corresponding to right-handed

(R) or left-handed (L) fermions emitted in the forward (F ) or backward

(B) direction. The forward-backward polarization asymmetry and the po-

larization asymmetry can be defined as:

AFB
pol =

σF,R − σF,L + σB,L − σB,R

σtot
(8.12)

Apol =
σF,R + σB,R − σF,L − σB,L

σtot
=
σR − σL

σtot

(8.13)

where σtot is the total cross section, measured adding up the cross sections

of the four categories. The forward-backward polarization asymmetry AFB
pol

depends on the polarization of the Z produced in the e+e− collision while

is not sensitive to the flavour of the fermion emitted in the Z decay. The

polarization asymmetry Apol corresponds to Eq. (2.91), depends only on

the chiral state of the fermions emitted in the decay of the Z and is not

sensitive to parity violation at production. Indeed, by means of the cross

sections given in Eqs. 2.68-2.71 and integrating over the two hemispheres

one gets

AFB
pol = − 3

4Ae (8.14)

Apol = −Af . (8.15)

For massless fermions the chiral states, defined in Section 2.2 using the

operators 1 ± γ5

2 , are equal to to the helicity states. For fermions with

masses much smaller than the Z mass this is still true, up to corrections

O(
m2

f

m2
Z

), justifying the use of the name “polarization” for these asymme-

tries. Experimentally, the two asymmetries require the measurement of the

polarization of the fermion and this can be done, statistically, only for the

channel Z → τ+τ−.

The helicity of the two taus from Z decay are nearly 100% anti-

correlated, again except for very small O(
m2

f

m2
Z

) corrections. In order to

determine the two asymmetries defined by Eqs. (8.13) and (8.12) it is con-

venient to measure the τ polarization as a function of the angle (θ) between

the τ− and the electron beam. The definition of the tau polarization for

any cos θ bin is given by

Pτ =
σR − σL

σR + σL
, (8.16)

where σR is the cross section to produce a right-handed τ− and σL is the

cross section to produce a left-handed τ−. The polarization asymmetry
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(Apol) is equal to the tau polarization measured on the entire cos θ range

and the forward-backward polarization asymmetry (AFB
pol ) is given by the

tau polarization measured in the forward and in the backward direction.

The dependence of the tau polarization on θ is readily computed in

improved Born approximation at the Z pole from Eqs 2.68–2.71. The ratio

of the two equations

d(σR − σL)

d cos θ
= −3

8
σtot

f f̄ [Aτ (1 + cos2 θ) + 2Ae cos θ] (8.17)

d(σR + σL)

d cos θ
=

3

8
σtot

f f̄ [(1 + cos2 θ) + 2AeAτ cos θ] (8.18)

gives

Pτ (cos θ) =
Apol(1 + cos2 θ) + 8

3A
FB
pol cos θ

(1 + cos2 θ) + 8
3AFB cos θ

(8.19)

where AFB indicates the forward-backward asymmetry of the tau pairs.

All four LEP experiments have measured the two asymmetries by means

of a fit to the observed Pτ (cos θ) distribution to Eq. (8.19). This procedure

gives better total error than measurements integrated over the hemispheres

by giving more weight to cos θ bins with higher sensitivity. This fit allows

Ae and Aτ to be measured simultaneously and, assuming universality, gives

a determination of sin2 θW,eff .

The polarization of the τ is measured exploiting the parity violation of

its weak decay [102], that is mediated by a pure V-A current. Five tau decay

channels, amounting to a branching ratio of about 90% are used (τ → πν,

τ → ρν, τ → a1ν, τ → eνν̄, τ → µνν̄). Tau decays to charged kaons,

having relatively low branching ratio, are included in the corresponding

pion channels. Tau decay modes with more than three pions in the final

states are not used in the measurement because the corresponding experi-

mental samples show a significant background contamination; furthermore

the description of their decays depends on model assumptions.

The principle of the polarization analysis is more easily understood by

taking the simplest channel, τ → πν . The tau decay in this channel, for the

two helicity cases, is sketched in Fig. 8.2. Because of the left-handedness

of the neutrino, in case of decays of right-handed taus, the pion is boosted

in the direction of the tau. The opposite is true for decays of left-handed

taus. It follows that the energy of the pion discriminates between the two

parent-tau helicity states. The tau differential decay width, given in term

of the scaled pion energy xπ = Eπ

Ebeam
is

1

Γ

dΓ

dxπ
= 1 + Pτ (2xπ − 1) (8.20)
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τ−
⇒

τ−
⇐

ντ

⇒
π−

ντ

⇐
π−

Lab τ rest frame

Lab τ rest frame

Fig. 8.2 The principle of the tau polarization analysis taking the τ → πν channel as an
example.

as can be shown by boosting into the laboratory frame the rest-frame decay

angular distribution of a spin 1/2 particle decaying into two particles of

spin 1/2 and spin 0, respectively. (The rest-frame angular distribution is

∼ (1 + Pτ cos θ∗), where θ∗ is the decay angle of the pion in the rest frame

of the tau.)

The measurement of the polarization uses two sets of reference decay

distributions, one for Pτ = −1 and one for Pτ = 1, obtained applying the

τ → πν selection cuts to simulated data. These are produced by generating

Monte Carlo events according to Eq. (8.20); each generated event is passed

through the full detector simulation. The tau polarization can be extracted

by performing a binned maximum likelihood fit of the measured distribu-

tions to the sum of the corresponding simulated distributions normalized

by the coefficients N(1 + Pτ ) and N(1 − Pτ ). Background events, mostly

coming from cross-contamination from other τ decays passing the τ → πν

selection, are included in the simulated data. Since decay distributions of

a τ− with given helicity are identical to those of a τ+ with opposite he-

licity, the decay distributions of a τ+ decaying at angle θ can be simply

added to the distributions of the τ− decaying at π − θ. Figure 8.3 illus-



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

318 The Physics of the Z and W Bosons

0

1000

2000

0 0.25 0.5 0.75 1
x

ev
en

ts
/0

.0
5

ALEPH

Fig. 8.3 Distribution of the normalized pion energy, x, for τ → πν decays selected by
the Aleph experiment. The dotted and dashed lines corresponds to the contributions of
left- and right-handed τ ’s, respectively.

trates this procedure for a sample of τ → πν events collected by the Aleph

experiment. The departure of the positive- and negative-helicity reference

histogram from the simple linear behaviour given in Eq. (8.20) is due to the

selection cuts and to the smearing caused by the experimental resolution.

An excess of τ− with negative helicity is clearly seen.

Multi-pion τ → (2, 3)πν hadronic decays, going through vector (ρ) and

axial vectors (a1) resonances, are more complex and more than one variable

is needed to fully extract the information on the tau polarization. It has

been shown [103] that in each decay channel the tau polarization can be

measured in an optimal way by distributions showing a linear dependence

on the polarization. The tau decay products can be described by a vector

of n observables (x) distributed according to

W (η) = f(x) + Pτg(x) (8.21)

where the f and g functions satisfies
∫

f(x)dnx = 1,

∫

g(x)dnx = 0, f ≥ 0, and |g| ≤ f . (8.22)

As demonstraded in [103] the optimal variable, giving maximal sensitivity

to the polarization is

ω =
f(x)

g(x)
(8.23)
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Fig. 8.4 Distribution of the ω variable (see text) for for τ → ρν decays selected by the
Aleph experiment. The dotted and dashed lines corresponds to the contributions of left-
and right-handed τ ’s, respectively.

which can be represented in the reduced form

Ŵ (ω) = f̂(ω)[1 + Pτω]

=
1

2
[(1 + Pτ )Ŵ+(ω) + (1 − Pτ )Ŵ−(ω)] (8.24)

where the distributions for negative and positive helicities are indicated as

W− and W−, respectively. The distribution of the ω variable for τ → ρν

decays is shown in Fig. 8.4; again a clear excess excess of τ− with nega-

tive helicity is observed. The ideal sensitivity for the measurement of the

tau polarization in various channels is given in Table 8.2. (The sensitivity

is defined as 1
σ
√

N
, where σ is the relative statistical error expected for a

sample of N events.) Due to the undetected neutrinos the τ direction can-

not be precisely reconstructed and all polarization estimators are defined

in the laboratory reference system. For events in which both τ ’s decay to

hadrons, however, it is possible to make an approximated measurement of

the τ direction [106] which is used to gain sensitivity, as shown in Table 8.2.

For τ → `νν̄ leptonic decays the only available information is the momen-

tum of the charged particle: they show reduced sensitivity because of two

undetected neutrinos.

The tau polarization measurement requires the selection of Z → τ+τ−

events and the identification of the τ decay channel. Typical signatures for
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Table 8.2 Ideal sensitivities for the polarization measure-
ment in the tau decay channels. Two cases, without and
with the measurement of the tau direction, are shown.

Channel Sensitivity Sensitivity
without tau direction with tau direction

τ → πν 0.58 0.58
τ → ρν 0.49 0.58

τ → a1ν 0.45 0.58
τ → `νν̄ 0.22 -

the decay of the Z boson in two τ ’s are

• two very collimated jets almost back-to-back,

• a small multiplicity of charge particles,

• large missing energy,

• unbalanced transverse momentum.

The last two features are due to the undetected neutrinos. The selected

tau events are divided into two hemispheres along the thrust axis and each

hemisphere is analysed to classify the tau decay. The individual tau decay

channels are first classified using the multiplicity of the charge particles

in the hemisphere. Pions, electrons and muons are separated thanks to

the particle identification capabilities of the detectors. Photon reconstruc-

tion and π0 identification is necessary to properly classify tau decays to

hadrons. Additional information is provided by the invariant mass of the

visible state. Pions are not separated from kaons since they have simi-

lar decay distributions. The main background consists of Z decays into

electron and muon pairs. It is normally rejected by applying cuts on the

hemisphere opposite to the tau under study in order to minimize the en-

ergy dependence of the efficiency. Typical selection efficiencies range from

60% to 80%. When both τ ’s from the same Z decay are used in the po-

larization measurement the correlated decay distribution [104] has to be

used. The main background in the distributions used to measured the tau

polarization is the cross-contaminations among different channels. In the

πν channel this is coming from tau decays into 2πν with the photons from

the π0 decays unidentified, similarly in the 2πν channel the main source of

background is from τ decays with more than one π0. The measurement of

the polarization is dominated by these two channel (τ → πν and τ → 2πν)

because of their high sensitivity, large branching ratios and because they

can be selected with high purity (ranging from 80% to 95%).

It follows from the analysis procedure that the main systematic errors
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are related to inconsistency between data and Monte Carlo. The validity

of the Standard Model in describing tau decays has been checked by mea-

suring the tau decay parameters [13] and is assumed in the tau polarization

analyses. The decay distributions of τ → πν, τ → ρν and τ → `νν̄ are com-

pletely determined by Lorentz invariance. This is not true for the τ → a1ν

decay that depends on “structure functions” [105]. The dependence on

the model used for the simulation of this decay is taken into account by

varying the model parameters within the limits allowed by the data. This

systematic uncertainty is correlated among the various experiments and

has to be properly taken into account in combining the measurements. As

many kinematic variables used in the fit depend on the momentum, an

important source of systematic error is related to the momentum depen-

dence of the selection efficiency. Since the two main channels are affected

by the correctness of the photon reconstruction, the simulation of showers

in the electromagnetic calorimeter is another important source of system-

atics. Other source of uncertainties are related to the non-tau background

contamination (mainly Bhabha events) and to the cross talk among differ-

ent tau decay channels. The systematic uncertanties are more important

for the measurement of Apol than for AFB
pol , since the latter is only af-

fected by sources that are at the same time forward-backward and charge

asymmetric.

The angular dependence of the tau polarization has been measured by

ALEPH [106], DELPHI [107], L3 [108] and OPAL [109], as can be seen in

Fig. 8.5. The experimental data are fitted to Eq. (8.19) in order to extract

Apol and AFB
pol . The AFB term in Eq. (8.19) is small (∼ 0.02) and treated

differently by different experiments. In some experiments is expressed in

the fitting formula in terms of Apol and AFB
pol , in others the measured AFB

value or the Standard Model is assumed. The corresponding uncertainties

have no effect on the final result. The LEP average [142] is

Ae = −4

3
AFB

pol = 0.1498± 0.0049 (8.25)

Aτ = −Apol = 0.1439± 0.0043. (8.26)

The correlation between Ae and Aτ is small (+1.2%). To the measure-

ments of Apol and 4
3A

FB
pol a small correction is applied to take into account

the difference between the centre-of-mass energy and the Z pole, the effects

of the photon exchange, the Z − γ interference and initial and final state

radiation. The correction amounts to ∼ +0.005 in both cases and its un-

certainty (∼ 0.0002) is smaller than in the ALR case because of the precise
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Measured Pτ vs cosθτ
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Fig. 8.5 Angular distribution of the tau polarization measured by the four LEP ex-
perimets. The solid and dashed lines represents the result of fits without and with
the assumption of lepton universality, respectively. (Courtesy of the LEP Electroweak
Working Group.)

knowledge of the beam energy at LEP. Assuming lepton universality the

two measurements can be eventually combined, giving

A` = 0.1465± 0.0033.

The error on this measurement is statistically dominated, the systematic

component is equal to 0.0015. The corresponding value of the effective weak

mixing angle is

sin2 θW,eff = 0.23159± 0.00041.

The Ae and Aτ measurements from the four LEP Collaborations are shown

in Fig. 8.6 and compared to the Ae measurement of SLD.

8.3 Forward-backward asymmetries

The measurement of the forward-backward asymmetry (Eq. (8.4)) requires

the identification of the charge of the fermion and the measurement of its
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Fig. 8.6 Comparison of the Ae and Aτ measurements by the ALEPH (A), DELPHI
(D), L3 (L) and OPAL (O) experiments. The elipses give the standard error countours
(corresponding to 39% CL for a two-dimension gaussian). The combination of the four
experiments is represented by a star (central value) and a thicker elipse. The horizontal
band indicates the Ae measurement by SLD (S) from the left-right asymmetry; the
allowed range is given by plus and minus one standard deviation with respect to the
central value.

direction. AFB has been measured for individual lepton species (e, µ, τ),

for heavy quarks (c and b) and inclusively for hadrons. Assuming lepton

universality the ratios of the couplings of the Z to charged leptons are equal,

therefore the asymmetries involving leptons provide a direct determination

of the effective mixing angle (Eq. (8.3)) using the relation AFB = 3
4AeAf ,

where the fermion f in this case represents the final state lepton. The quark

forward-backward asymmetries depends on Af =
2gV q/gAq

1+(gV q/gAq)
2 where the

subscript q indicates the quark flavour. The ratio of quark couplings can

be expressed in terms of sin2 θW,eff and non-universal corrections as [84]:

gV q

gAq

= 1 − 2Qq

I3L,q
(sin2 θW,eff + Cq) . (8.27)

The residual vertex correction Cq can be computed assuming the Standard

Model. For udsc quarks it is small and has very little dependence on the

parameters of the model, while for b it depends on the top mass because

of the additional Z → bb̄ vertex corrections (see Eq. (4.44)). It amounts to

+0.0014 for a top mass of 175 GeV. In case of quarks the term Af is large
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and weakly dependent on sin2 θW,eff leaving most of the dependence on

the weak mixing angle to Ae . It follows that for quarks AFB is essentially

linearly dependent on sin2 θW,eff , while for leptons it shows a quadratic

dependence (Eq. (3.282)). The consequence of this behaviour is shown in

Table 8.3 where the magnitude of AFB and its sensitivity to sin2 θW,eff is

given for leptons, for u-type and d-type quarks.

The forward-backward asymmetries can be determined either by mea-

suring the cross section in the forward and backward hemisphers and then

computing AFB = σF −σB

σF +σB
, or by fitting the data to the differential angular

distribution

dN

d cos θ
= C(cos θ) ·

(

1 + cos2 θ +
8

3
AFB cos θ

)

(8.28)

where θ is the scattering angle of the fermion in the centre-of-mass sys-

tem and C(cos θ) is an acceptance function modifying the differential cross

section (Eq. (2.94)). The measurements can be divided in two classes:

• measurements where the selection of both fermions is required, as for

the leptonic asymmetries described in Section 8.3.1;

• measurements where at least one fermion must be tagged, as for the

measurement of heavy quark asymmetries described in Section 8.3.2.

In both cases the acceptance is a symmetric function, provided the selection

efficiency is charge- or forward-backward symmetric. This can be seen

by defining F (cos θ), the efficiency to detect a fermion at scattering angle

θ. If the efficiency is charge-simmetric the same function, F , gives the

efficiency for anti-fermions. Hence for the first class of measurements one

has C(cos θ) = F (cos θ)F (− cos θ) = C(− cos θ), similarly for the second

class C(cos θ) = F (cos θ) + F (− cos θ) = C(− cos θ). Similar arguments

hold for forward-backward symmetric efficiencies.

The symmetry of the acceptance has important consequences. One can

see that in the (cos θ)-dependent forward-backward asymmetry, defined as

AFB(cos θ) =
dN

d cos θ (cos θ) − dN
d cos θ (− cos θ)

dN
d cos θ (cos θ) + dN

d cos θ (− cos θ)
=

8

3
AFB

cos θ

(1 + cos θ2)
(8.29)

the C(cos θ) acceptance cancels, showing that it is possible to make a mea-

surement independent on the acceptance by exploiting the differential an-

gular distribution. This is an important advantage over the simple counting

of forward and backward events, because it makes the measurement insen-

sitive to most intrumental effects, under the assumption of a given angular
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behaviour. Another advantage is a more accurate determination of AFB

since the whole angular distribution is used, and more weight is given to the

most sensitive angular regions. It is convenient to take advantage of these

properties by using an unbinned log-likelihood method to fit the data. If

L =
∏

i Pi is the likelihood function defined as product of event probabili-

ties Pi, with the product extended to all events, one can write the negative

log-likelihood as

− lnL = −
∑

i

lnPi

= −
∑

i

ln
3

8
C(cos θi) ·

(

1 + cos2 θi +
8

3
AFB cos θi

)

= −
∑

i

ln
3

8
C(cos θi) −

∑

i

ln

(

1 + cos2 θi +
8

3
AFB cos θi

)

where Eq. (8.28) has been used. The value of the AFB parameter giv-

ing the maximum likelihood does not depend on the angular correction,

therefore the first term in Eq. (8.30) can be ignored in the data analysis.

This unbinned likelihood method cannot be applied to Bhabha scattering,

since the presence of the t-channel requires a forward-backward asymmet-

ric term, computed from theory, to be added to Eq. (8.29). Because of

this additional term the acceptance does not decouple anymore from AFB

and the knowledge of the efficiency as a function of the scattering angle is

required.

The energy dependence near the Z peak, caused by the interference

between the photon and the Z exchange depends on the electric charge of

the final fermion and on its axial coupling and has very little dependence on

other electroweak parameters. This can be shown with Eq. (2.96), giving

Af
FB(s) ' Af

FB(m2
Z)+

(s −m2
Z)

s

3πα(s)√
2GFm2

Z

2QeQfgAegAf

(g2
V e + g2

Ae)(g
2
V f

+ g2
Af

)
. (8.30)

The dependence is maximal for leptons (∆A`
FB/∆ECM ' 0.00009/MeV ),

while the down-type quarks show the smallest energy dependence. This ef-

fect is corrected for using the precise energy determination of the LEP beam

energy, by running the measured asymmetry to mZ . All forward-backward

asymmetries are also corrected for the effect of initial state radiation, for

imaginary parts of the couplings (in particular for Im(∆α)), for the effect

of pure photon exchange and the presence of box diagrams. Specific cor-

rections, described later, are also applied for final state photon radiation

(leptons) and gluon emission (hadrons). The uncertainty of this correction
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Table 8.3 Magnitude of AFB and its sen-
sitivity on sin2 θW,eff for various fermion
species at the pole of the Z. The value of
0.2316 is used for sin2 θW,eff . For compari-
son the last line gives the magnitude and the
sensitivity for ALR.

AFB
∂AF B

∂ sin2 θW,eff

leptons .02 -1.7
u and c quarks .07 -4.0
d, s and b quarks .10 -5.6

ALR .15 -7.8

is, in all cases, much smaller than the present total error, dominated by the

statistical uncertainty for all measurements. The corrected asymmetry for

a fermion f will be indicated as A0,f
FB in the following pages.

The most important issues related to the lepton measurements are dis-

cussed next, before moving to quarks.

8.3.1 Lepton forward-backward asymmetries

The selection of e+e− → `+`−(γ) events at LEP has been already de-

scribed in the Chapter dedicated to the measurement of the Z lineshape.

The forward-backward asymmetry is determined by fitting the data to

Eq. (8.28); θ is defined by the scattering angle of the final-state negative

lepton. For tau leptons the direction is given by the sum of the momenta

of charge particles associated to the tau decays; the tau charge is measured

in the same way.

In the case of e+e− final state, the t-channel photon-exchange process in-

duces an important asymmetric correction and requires a careful treatment.

The contribution of this process is taken into account subtracting it from the

measured angular distribution. Semi-analytical calculations incorporating

leading-log photonic corrections, first-order non-log terms and first-order

weak corrections are available [85] and are used for this correction. The

t-channel influence is reduced by analysing the data in a restricted angular

region, typically in the −0.9 ≤ cos θ ≤ +0.7 range. (Within this range the

t-channel contributes 12% to the total cross section, therefore calculations

with 1% precision yield an uncertainty of 0.1%.) In the fit of the subtracted

data to the form given by Eq. (8.28) an extended maximum-likelihood pro-

cedure is used, where the overall normalization is a free parameter of the

fit.
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The scattering angle of the final leptons in the laboratory system is

affected by initial- and final-state radiation; the main effect is due to hard

collinear radiation from one of the initial state leptons. The latter can be

corrected for by using the scattering angle in the effective centre-of-mass

system, that is

cos θ∗ =
cos[ 12 (θ`− − θ`+ + π]

cos[ 12 (θ`− + θ`+ + π]
(8.31)

where θ`− and θ`+ are the scattering angles of the lepton and anti-lepton,

respectively. In practice, since initial-state radiation (ISR) is forward-

backward symmetric, the use of (8.31) is not strictly required; it simpli-

fies, however, the definition of the acceptance, particularly for the e+e−

final state. The ISR affects the observed asymmetry for another reason:

the steep dependence of the asymmetry on
√
s (Eq. (8.30)), changes the

effective centre-of-mass and therefore the observed asymmetry itself. As

photons produced in final-state radiation are not used in the definition

of the scattering angle, their effect is a small reduction of the observed

asymmetry. Semi-analytical programs can be used to correct for final-state

photon emission [86].

The asymmetries A`
FB (` = e, µ and τ) measured at LEP [82] are ex-

tracted with a fit to the measured AFB(s) using data collected near the

Z peak and at the off-peak points used to measure the Z lineshape. It

has been already stressed that, since the vector couplings of the leptons

are small, the slope of A`
FB(s) as a function of the beam energy is mainly

sensitive to the axial couplings. The fitting formula takes into account the

energy dependence of the asymmetry and the fit is done simultaneously with

the lineshape data to account for the effect of the energy uncertainty. In

the simultaneous fit of the lineshape data and A`
FB(s) the axial couplings

are essentially determined by the lineshape and they are used to trans-

port the off-peak measurements of A`
FB(s) to

√
s = mZ . In an alternative

method [83], the slope of the asymmetry is described by a free parameter.

This different approach allows to check the consistency in the determina-

tion of the axial couplings between the lineshape and the forward-backward

asymmetries.

The measurement of A0,`
FB is a rather straightforward measurement and

has low systematic uncertainties. For the µ and τ channels the systematic

uncertainties are related to the applied corrections, to the presence of back-

ground and to possible detector asymmetries. Typical systematic errors

quoted by the LEP experiments are of the order of ∆AFB = 0.0005÷0.001
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for muons and ∆AFB = 0.001 ÷ 0.003 for taus, depending on the experi-

ment. For electrons, the theoretical uncertainty introduced in the treatment

of the t-channel terms (≈ 0.0014) has to be taken into account increasing

the typical error to ∆AFB ≈ 0.002. The uncertainty on the center-of-mass

energies gives a contribution of ∆A0,`
FB = 0.0004, comparable to the exper-

imental systematics. This last two uncertainties are common to the four

experiments and have to be treated in a correlated way when averaging the

measurements.

The combination of the results of the four LEP experiments gives

A0,e
FB = 0.0145± 0.0025 , (8.32)

A0,µ
FB = 0.0169± 0.0013 , (8.33)

A0,τ
FB = 0.0188± 0.0017 . (8.34)

These measurements can be used to determine the ratios gV `/gA` for the

three charged leptons up to a common sign (Section 8.4.2). The three

measurement can be combined assuming lepton universality, giving

A0,`
FB = 0.0171± 0.0010 . (8.35)

This result can be converted into

sin2 θW,eff = 0.23099± 0.00053.

The dependence of the asymmetries on the centre-of-mass energy,

A`
FB(s), is consistent with the expected value and sign of the lepton axial

couplings and it is shown in Fig. 8.7.

8.3.2 Heavy quark asymmetries

8.3.2.1 Lepton tagging

As discussed in Section 7.2.1 the presence of a lepton is a tag for Z → bb̄

or Z → cc̄ events, while lepton kinematics can be used to discriminate the

different lepton sources, on a statistical basis.

The simplest approach consists in selecting high-p⊥ leptons, which give

a high-purity sample of b events, with enhanced b→ `− content. Such a

sample can be used to measure the b asymmetry by fitting the polar angle

distribution of the thrust axis signed by the lepton charge1 according to

Eq. (8.28).
1The thrust axis is oriented towards the hemisphere containing the lepton if this is

negatively charged, towards the other hemisphere otherwise.
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Fig. 8.7 Measurement of the forward-backward asymmetries for the three lepton species
at various centre-of-mass energies.

The sample selected through high-p⊥ leptons is enhanced in b→ `− de-

cays (carrying the correct charge correlation between quark and tagging lep-

ton), yielding a visible forward-backward asymmetry in the oriented thrust

axis polar angle distribution, as shown in Fig. 8.8.

The observed asymmetry can be written in terms of the contributions

of the different components of the selected sample:

Aobs
FB = (1 − 2χ̄)(f b

r.s. − f b
w.s.)A

b
FB + f b

bkgη
b
bkgA

b
FB

−f c→`+Ac
FB − f c

bkgη
c
bkgA

c
FB

+fudsAuds
FB , (8.36)

where f b
r.s. and f b

w.s. are the fractions of prompt leptons from b decays with

right/wrong charge correlation between the lepton charge and the b quark

charge, ηb
bkg and ηc

bkg describe the (small) correlation between the charge
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Fig. 8.8 Polar angle distribution of the oriented thrust axis at the peak energy for the
ALEPH high-p⊥ lepton analysis.The curve superimposed shows the result of the fit, that
is restricted to the range| cos θ |< 0.9 to avoid regions with small detector acceptance.

of fake and non-prompt leptons and the charge of the primary quark in

b and c events, and the last term accounts for the contribution of light

quark background. The term (1 − 2χ̄) is introduced to correct for neutral

b meson mixing: B0
d and B0

s mesons oscillate between the B and the B

state, thus diluting the charge information carried by the final state lepton.

B0
s oscillations are fast compared to the B0

s lifetime, therefore a B0
s meson

arising from the hadronization of a b quark has 50% probability of decaying

as a B0
s and 50% probability of decaying as a B0

s . B0
d oscillations are much

slower, giving χd ≈ 0.18. The average mixing parameter for inclusive b

decays can therefore be expressed as:

χ̄ = 0.5 fs + χdfd , (8.37)

where the values of fs and fd are about 0.12 and .38, respectively.

High-p⊥ leptons can be selected in both hemispheres, and the counting

of same sign and opposite sign pairs (No.s., Ns.s.) gives the possibility to

measure from the data the charge correlation in b events Pb = (1−2χ̄)(f b
r.s.−

f b
w.s.), once the small contribution from charm and light quark events has

been subtracted:

fo.s. =
No.s.

No.s. +Ns.s.
= P2

b + (1 −Pb)
2

+ c and uds corrections. (8.38)
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The analysis of the dilepton sample to evaluate Pb from the data, lowers

considerably the dependence of the measurement upon the knowledge of

semileptonic b decays (rates and kinematic properties), as well as b meson

mixing. It should be also noted that since the measurement makes use of

both forward negative leptons and backward positive leptons to tag forward

b quarks, the detector acceptance has nearly no effect on the extracted value

of the asymmetry: a sizeable effect could arise only in case of inefficiencies

that are both forward-backward asymmetric and different for positive and

negative leptons, which is very unlikely for LEP detectors.

The extraction of Ab
FB depends on the evaluation and on the modelling

of the charm component, and on the assumed value of Ac
FB . The branching

ratio c→ `+ is measured at LEP studying the lepton yield opposite to a

reconstructed high-energy D mesons; the modelling of semileptonic decays

relies on the study of D0 and D+ semileptonic decays performed by the

DELCO and MARK III experiments, at centre-of-mass energies below the

Z peak.

An extension of the high-p⊥ lepton analysis consists in studying the

whole p⊥ spectrum of lepton candidates, extracting Ab
FB and Ac

FB simul-

taneously. The sample is analysed in bins of p⊥ (or other discriminating

variables) and polar angle, and in each bin the observed asymmetry is writ-

ten in terms of the b and c asymmetries: the different b/c content of the

different bins gives sensitivity to both variables. Also in this case the sam-

ple composition as a function of the discriminating variable needs to be

estimated with the simulation, but the study of events with identified lep-

tons in both hemispheres gives information on Pb, the charge correlation in

b events.

In the most precise analyses lifetime-based discriminating variables have

been used in conjunction with the lepton kinematics, to enhance the sep-

aration between the b and the c constributions, gaining further statistical

power. The use of the lifetime introduces a significant complication in the

treatment of B meson mixing: B0
s oscillations are so fast that the proba-

bility of mixing can be assumed to be 50% independently of the value of

the lifetime variable, but B0
d oscillations have a period that is about twelve

times the b lifetime, therefore events with short lifetime are enhanced in

“non-oscillated” mesons, while events with long lifetime are enhanced in

“oscillated” mesons. The dependence of the effective mixing parameter χ̄

on the lifetime variable is relevant and needs to be treated correctly.
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8.3.2.2 Inclusive measurements

As discussed in Chapter 7, tagging methods based on lifetime have high per-

formance, but they do not provide information about the quark charge. In-

clusive methods have been developed to estimate the charge of the b quark,

to complement lifetime tags for the measurement of forward-backward

asymmetries.

The jet charge is usually defined as

Qh =

∑

i qip
k
‖i

∑

i p
k
‖i

, (8.39)

where p‖i is the momentum of a particle parallel to the thrust axis, and the

sum runs over all charged particles in a hemisphere. Alternative definitions

can be constructed using the rapidity instead of the projected momentum,

or using the axis of the leading jet instead of the thrust axis, or restricting

the sum to the particles belonging to the leading jet. The parameter k can

be tuned to obtain high sensitivity to the quark charge, while keeping low

correlation between the charge of the two hemispheres (discussed below):

typical values are between 0.3 and 1.

In a pure sample of b events, the forward-backward asymmetry is pro-

portional to the mean charge flow between the two hemispheres

Qb
FB ≡ 〈Qb

F −Qb
B〉 = δbA

b
FB (8.40)

where δb is a parameter called charge separation. At parton level δq (the

charge separation for a generic quark q) is equal to twice the quark charge,

but hadronization and decays lower its value, diluting the measured charge

flow. A precise determination of the forward-backward asymmetry requires

an eveluation of δq with the lowest possible uncertainty. The advantage of

high-purity single-flavour samples, that in practice can be obtained for b

quarks only, lies on the possibility of measuring δq from the data, lowering

considerably the use of theoretical assumptions in the evaluatiuon of this

parameter, and therefore lowering its uncertainty. Hemispheres containing

the b or the b̄ quark have average measured charge

〈Qb〉 = δb/2 + 〈Rb〉 (8.41)

〈Qb̄〉 = −δb/2− 〈Rb̄〉 , (8.42)

where Rb and Rb̄ are small corrections which account for interactions with

the detector material, that introduce a bias between positively and nega-

tively charged reconstructed particles. The total charge measured in the
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event is 〈Qb
TOT 〉 = 〈Rb −Rb̄〉, which is very close to zero. The product of

the two hemisphere charges can be written as:

〈Qb
FQ

b
B〉 = 〈QbQb̄〉 = −1

4
δ2b − 1

2
δb (〈Rb〉 + 〈Rb̄〉) − 〈RbRb̄〉 , (8.43)

where the term 〈RbRb̄〉 accounts for correlations between the charge mea-

surements in the two hemispheres, due to total charge conservation and

kinematic correlations between the b hadrons.

The charge separation δb can be measured by comparing the widths of

the distributions of the charge flow and of the total charge, as demonstrated

below:

σ2
(

Qb
FB

)

− σ2
(

Qb
TOT

)

= 〈
(

Qb
FB

)2〉 − 〈Qb
FB〉2 − 〈

(

Qb
TOT

)2〉 + 〈Qb
TOT 〉

2

= −4〈Qb
FQ

b
B〉 − 〈Qb

FB〉2 + 〈Qb
TOT 〉

2

≈ δ2b − 〈Qb
FB〉2 + 〈Qb

TOT 〉
2
. (8.44)

The last expression relates δb to physical observables, having dropped the

corrections for material interactions and hemisphere correlations (intro-

duced above in Eq. (8.43)), that in the analyses are estimated with the

simulation. A sketch illustrating the physical meaning of the above quan-

tities is presented in Fig. 8.9.

In an asymmetry analysis, pure b samples cannot be selected, therefore

the above formalism has to be developed taking into account also the con-

tributions of the other flavours; for instance, the charge flow can be written

as

QFB = fb δbA
b
FB + fc δcA

c
FB + fuds δudsA

uds
FB , (8.45)

where the fb, fc, fuds are the fraction of b, c and light quark events in the

selected sample, and light quark have been, as usual, treated as a single

class.

In a simple approach, the sample composition as well as the charm and

light quark charge separations can be estimated with the simulation, δb

can be extracted from the data (using the simulation to subtract the non-b

contributions and correct for hemisphere correlations) and the b asymmetry

can be derived from the observed charge flow. In the more sophisticated

approaches double tagging techniques, similar to the ones employed for the

measurement of Rb can be used to derive most parameters from data. The

measurement of the b forward-backward asymmetry using these techniques,

as well as the measurement described before using semileptonic events, are

affected by systematic uncertainties much smaller than the statistical error

obtained at LEP.
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Fig. 8.9 Sketch showing the distributions of charge flow and total charge: the difference
in width between the two distribution is related to the charge separation, as explained
in the text.

8.3.2.3 Measurement of the jet charge asymmetry using all

flavours

As already mentioned, direct measurements of the charge separation for

non-b quark flavours are more difficult. Nevertheless charm samples se-

lected by requiring the presence of a D∗ meson can be employed to evaluate

δc with moderate model-dependence. Lifetime-tagged samples with varying

charm content can also be examined to infer the value of δc. The charm

charge separation is reduced by the presence of the soft pion in the D∗

decay (section 7.2.3). The soft pion retains memory of the original charm

charge, but being low momentum it gets a low weight from the jet charge

definition, Eq. (8.39). Individual charge separations for lighter quarks can-

not be measured separately, however the average δuds can be inferred from

the difference in width of the 〈QF −QB〉 and 〈QF +QB〉 distributions, by

a procedure similar to the one based on Eq. (8.44). When b tagging is not
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used, Eq. (8.45) can be rewritten as:

QFB = C

b
∑

q=u,d...

δqA
q
FB

Γqq̄

Γhad
= C

3

4

b
∑

q=u,d...

δqAeAq
Γqq̄

Γhad
(8.46)

where C indicates the geometrical acceptance. This relation shows a linear

dependence on Ae and, through this parameter, can be used to extract

sin2 θW,eff . Since the Aq are only weakly dependent on sin2 θW,eff their

expected SMS value can be used; the same is done for
Γqq̄

Γhad
. The electroweak

mixing angle determined from QFB using untagged hadronic samples is

dominated by the systematic uncertanties on the charge separations, δq’s.

In particular detailed Monte Carlo studies are needed to disentangle the δu,

δd and δs contributions, and the the simulation has to be carefully tuned

to the measured kaon and Λ production rates in order to have a realistic

description of strangeness production.

8.3.2.4 D meson measurements at LEP

Prompt D∗ produced in Z → cc̄ decays can be be exploited to measure the

forward-backward asymmetry. These vector mesons give clear signatures,

since a narrow peak with low background can be obtained in the ∆M

distribution (Fig. 7.13). The D∗ charge is correlated with the one of the

parent c quark charge. The background consists essentially of D∗ produced

in the b quark cascade of Z → bb̄ events. This background can be suppressed

using the D∗ energy, which is higher for D∗ originating from Z → cc̄ than

for charm mesons from b decays. The thrust axis direction, signed by the

D∗ charge, is used and a log-likelihood fit to the angular distribution is

performed.

The amount of b background must be carefully monitored. The cor-

relation with the D∗ charge is opposite for Z → bb̄ events, therefore the

presence of contaminating b’s considerably dilutes the observed asymme-

try. The b and c components can be determined by a fit of the D∗ energy

distribution. The effect of b mixing on the b asymmetry needs to be ac-

counted for in a way which differs from an unbiased sample: the b → D∗

process selects preferentially Bd hadrons, therefore the effective χ param-

eter is dominated by χd. Sidebands of invariant mass peaks can be used

to evaluate the background asymmetry which is generally close to zero. In

order to evaluate the background from data and in an unbiased way, the

events mixing method is often used. This technique allows to evaluate the

background from data by taking the D meson and the slow pion forming
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the D∗ from opposite hemispheres or from different events. In this way the

contamination caused by partially reconstructed events is treated without

the need of Monte Carlo simulations.

8.3.2.5 Heavy quark asymmetries: combined results and QCD

corrections

The LEP measurements of b and c forward-backward asymmetries from

semileptonic events, from inclusive samples and from D mesons [110] can

be combined to merge the experimental information in an optimal way.

The combination procedure follows a χ2 minimisation and it is described in

Ref. [112]. The measurements of Rb and Rc (Subsections 7.3.3, 7.4.5) are

included in the same procedure. Some measurements depend on parameters

determined analysing the same data, for example the semileptonic events

used to measure the b and c asymmetries provide also information on the b

semileptonic branching ratios or on BB̄ oscillations. These ancillary mea-

surements must be taken into account in the combination. The covariance

matrix used in the fit includes the statistical and systematic correlation

among various measurements. Statistical correlations exist for measure-

ments performed with the data collected by the same experiment. On the

other hand measurements of the same parameter by different experiments

are affect by common systematic uncertainties.

As mentioned at the introduction of this Section, the extraction of the

effective electroweak mixing angle requires the evaluation of the corrected b

and c asymmetries A0,b
FB and A0,c

FB , from the measured asymmetries. Heavy

quark asymmetries are affected by radiative effects due to strong interac-

tions, as described in Subsection 4.2.2. They are related to virtual vertex

and gluon bremsstrahlung diagrams which modify the angular distribution

of the fermions emitted in the final state. The emission of an hard gluon,

for example, may scatter both b and b̄ in the same hemisphere (forward or

backward): in such events the original electroweak asymmetry is destroyed.

The effect of such radiative effects is to lower the experimentally observed

asymmetry by a few percent, as can be seen from Eq. (4.77). Detailed

calculation based on perturbative QCD, including second-order corrections

for massless quarks and quark mass effects at first-order, are available [113].

An important ingredient of these theoretical calculations is the definition

of the b quark direction, which should closely match the experimental def-

inition based on thrust axis reconstruction. In practice experimental cuts

reduce considerably the QCD corrections [114]. For instance the momen-
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tum cut which is applied in lepton tagging selects events with reduced gluon

radiation. Furthermore in some cases the effect of hard gluon radiation is

automatically incorporated by analysis procedure. This is the case for the

inclusive measurements based on jet charge techniques, because the b charge

separation, measured with data, is an effective parameter that includes the

QCD smearing.

The present world averages for the b and c forward-backward asymme-

tries at the Z pole, as given in [142], are:

A0,b
FB = 0.0992± 0.0016

A0,c
FB = 0.0707± 0.0035 .

There is a +15% correlation between the two results. Both results are dom-

inated by the statistical uncertanties. In particular, for the b asymmetry,

the systematic uncertainties related to the QCD corrections is a factor three

lower than the statistical error.

The dependence of the b and c asymmetries on the centre-of-mass en-

ergy, Ab
FB(s) and Ac

FB(s), is regulated by the quark electric charge and its

axial coupling (Eq. (8.30)). Their observed energy dependence is shown in

Fig. 8.10 and compared to the MSM prediction. (The value of sin2 θW,eff

given in Section 8.4 is used to normalize the vertical scale for the MSM

prediction). The different slope for b and c quarks is due to the absolute

value of their electric charge, that is twice larger for up-type quarks. The

asymmetry is increasing in both cases because the two quark types have

opposite sign (and same absolute value) for the axial couplings.

8.3.2.6 HF asymmetries with polarized beams

The quark asymmetries discussed above, based on measurements employing

unpolarized beams, are probing the product of initial and final state cou-

plings, AeAq. On the other hand the polarized forward-backward asym-

metry (Apol
FB(q)), defined by Eq. (2.87), is solely dependent on Aq . The

polarized forward-backward asymmetry of b and c quarks have been mea-

sured by SLD [111] using flavour tagging methods very similar to the ones

used for the unpolarized case. Inclusive samples of Z → bb̄ events selected

thanks to the long b lifetime provide a precise determination of Ab using

jet-charge techniques. Semileptonic b and c decays give a simultaneous de-

termination of Ab,Ac through the analysis of their inclusive lepton spectra;

D and D∗ mesons have been used to measure Ac. These measurements are

corrected for QCD effects, which are similar to the unpolarized case. The
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Fig. 8.10 Measurement of the b and c forward-backward asymmetries as a function of
the centre-of-mass energy. The MSM expectation for the two quark types is shown.
(Courtesy of the LEP Electroweak Working Group [142].)

correction depends on the channel and on the tagging method and amounts

to a few percent.

The SLD results are combined [142], yielding:

Ab = 0.923± 0.020

Ac = 0.670± 0.027 .

The correlation between Ab and Ac is small (11%). The measurements are

consistent with the MSM predictions giving Ab = 0.935 and Ac = 0.668,

respectively. These predictions have a small uncertainty (≈ 0.001 for

b quarks) because the quark Aq parameters are only weakly dependent

on sin2 θW,eff . Indeed, as can be seen by using Eq. (8.27), δAb ≈
−0.63 δ sin2 θW,eff .
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8.4 Interpretations

8.4.1 The determinations of sin2 θW,eff

The measurements of the asymmetries presented in the previous Sec-

tions can be interpreted as a measurement of sin2 θW,eff . For the lep-

tonic forward-backward asymmetries, for the measurements of Ae and Aτ

from tau polarization, and for the measurement of A0
LR the interpreta-

tion requires the only assumption of lepton universality. The derivation of

sin2 θW,eff from hadronic measurements requires the knowledge of the Aq

terms that, as already discussed, have only a mild dependence on sin2 θW,eff

in the MSM. For this class of measurements the validity of the MSM for the

Aq terms is assumed; this assumption is corroborated by the direct mea-

surements of Ab,Ac using polarized beams, which agree with the MSM.

A compilation of the various results is shown in Fig. 8.11, where the

dependence of sin2 θW,eff on the Higgs boson mass is also indicated. The

six results shown in the figure are obtained, respectively, from the lepton

forward-backward asymmetry, the tau polarization, the left-right asymme-

try, the b forward-backward asymmetry, the c forward-backward asymmetry

and the jet charge asymmetry using all quark flavours. The average of the

six measurements gives:

sin2 θW,eff = 0.23153± 0.00016

with a χ2 of 11.8 for five degrees of freedom corresponding to a confidence

level of 3.7%. This confidence level is relatively low, because the most

precise determinations, based on A0
LR and on the b asymmetry are about

3 σ apart. From the experimental point of view both measurements are

dominated by statistical errors, with accurate studies of the much lower

systematic uncertainties. On the other hand a departure of the b couplings

from their MSM expectation seems to be excluded by the precise measure-

ments of Ab and Rb. Therefore this discrepancy is assumed to be related

to a statistical fluctuation.

8.4.2 Extraction of the neutral current couplings

The couplings of the neutral current to leptons (` = e, µ, τ) can be deter-

mined using three ingredients:

• the leptonic partial widths,

• the A` parameters as determined by the leptonic asymmetries,
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Fig. 8.11 The determinations of sin2 θW,eff from the measurements described in this
Chapter and their average. The measurements are, starting from the top, the lep-
ton forward-backward asymmetry, the tau polarization, the left-right asymmetry, the
b forward-backward asymmetry, the c forward-backward asymmetry and the jet charge
asymmetry using all quark flavours. The results are compared to the MSM prediction,
as a function of the Higgs boson mass. The uncertainty due to α(m2

Z ) on the MSM
predictions is indicate by a band. The effect of varying the top mass within the range in-
dicated in the figure is added as two extra side bands. (Courtesy of the LEP Electroweak
Working Group [142].)

• the energy dependence of the leptonic forward-backward asymmetries.

The partial width of the decay Z → `+`−, (Section 6.6) gives the sum of

the squares of the couplings using Eq. (2.79). The ratio of the vector and

axial couplings is given by the leptonic measurements of A` (Eq. (8.2)),

i.e. by the measurement of ALR, of the tau polarization and of the leptonic

forward-backward asymmetries. The energy dependence of the asymmetries

(Eq. (8.30)) fixes the value of the axial couplings, up to a common sign.
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This last ingredient is required, since the widths and asymmetries do not

change if gV ` and gA` replace each other, as can be seen from Eqs. (2.79)

and (8.2).

The measured vector and axial couplings to electron, muon and tau are

compared in Fig. 8.12 to test the hypothesis of lepton universality. The

measurements are in agreement and lepton universality is tested to less

than 0.1% for axial couplings and to a few percent for the smaller vector

couplings:

gV µ

gV e

= 0.961± 0.063
gAµ

gAe
= 1.0002± 0.00064

gV τ

gV e

= 0.958± 0.030
gAτ

gAe
= 1.0019± 0.00073 .

These results improves by two order of magnitudes the tests of neutral

currents lepton-universality available before the start of LEP and SLC,

based on νe and νµ scattering.

The b and c quark couplings can be extracted with the same procedure

adopted for the lepton case, by using the measurements of Rb, Rc, the val-

ues of Ab, Ac determined by the polarized heavy quark asymmetries, and

the energy dependence of the b and c forward-backward asymmetries. With

this method the axial (vector) b couplings can be tested to a precision of

approximately 2% (3%). Similar precisions are obtained with the tests of

the c couplings (the bounds in this case are somewhat weaker mainly be-

cause of the larger uncertainty on the measured value of Rc). All couplings

are found to agree with the MSM.

The Aq parameters for b and c quarks can also be evaluated from the un-

polarized b and c asymmetries using Eq. (2.86) and the value of Ae derived

from A0,`
FB , from the tau polarization and from A0

LR. This interpretation of

the heavy quark unpolarized asymmetries is bound to lead, however, to a

rather low value of Ab (0.881±0.017, compared to the MSM expectation of

0.935) because of the 3 σ discrepancy between A0,b
FB and A0

LR already men-

tioned in the discussion concerning the determination of sin2 θW,eff . As a

consequence a rather high (low) value of the axial (vector) b couplings is

obtained and the agreement with the MSM is marginal for both couplings.

It must be stressed, however, that this discrepancy is totally correlated with

the one seen in Fig. 8.11.

The measurements of the vector and axial couplings for various fermion

species are depicted in Fig. 8.13. The regions allowed by the experimental

measurements at 68% CL are shown. As expected the precision obtained

for the lepton measurements is impressive. With the scale used by this
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figure the three measurements are represented by three superimposed dots.

Considerable precision is obtained also for the heavy quark couplings. Con-

straints are obtained on the couplings of lighter quarks by measurements

of forward-backward asymmetries using kaons [115] and high-momentum

stable particles [116]. As the large uncertanties of these measurements do

not allow the study of the energy dependence, the contours indicating the

allowed regions are symmetric with respect to the line gV f = gAf . The con-

straints on neutrino couplings are computed from the measurement of the

invisible width (Section 6.6), assuming three neutrino families with iden-

tical neutral couplings. In this case the experimentally allowed region is

represented by a very thin ring.
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Fig. 8.12 The vector and axial couplings of the neutral current to electrons, muons
and taus. The 68% CL allowed regions are shown with dashed, dotted and dash-dotted
lines, respectively. The combination of the measurements from the three lepton species,
assuming lepton universality, is also shown (full line). The shaded area shows the MSM
prediction, within the allowed values for the top and Higgs boson masses. The uncer-
tainty on α(mZ ) is indicated by the small arrow. (Courtesy of the Lep Electroweak
Working Group.)
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Chapter 9

Electroweak Measurements with

W Bosons

The discovery of the W boson in 1983 [25, 26] was the first experimental

evidence in favour of the model of Glashow, Weinberg and Salam [2]. Since

then W physics has played a growing role in tests of electroweak interac-

tions. The mass of the W is very sensitive to pure electroweak radiative

corrections, through the relation (Eq. (3.188))

m2
W (1 − m2

W

m2
Z

) =
πα(m2

Z )√
2GF

(1 + ∆rW ) (9.1)

where α(m2
Z) is the fine structure constant evolved at q2 = mZ (as ex-

plained in Subsection 3.2.4), mZ and GF come from precise measurements

of the Z mass and of the muon lifetime, and ∆rW indicates the genuine

electroweak corrections. The relation can either be used to compare a di-

rect measurement of the W mass to the indirect value, computed with ∆rW

taken from other observables, or to evaluate ∆rW itself. The W mass has

been measured with increasing precision at the Spp̄S , Tevatron and LEP

colliders, leading to a growing evidence for the need of radiative corrections,

beyond the pure QED effects that are incorporated in the effective α(m2
Z).

This can be seen in Fig. 9.1 where the value of the W mass computed with

Eq. (9.1), and assuming ∆rW = 0 , is compared to the W mass world

average, over the years.

This Chapter starts with a description of W boson production and mass

measurement at hadron colliders, followed by W physics measurements at

LEP. The study of WWγ and WWZ triple gauge couplings is the main

subject of the final Section.

345
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Fig. 9.1 The time evolution of the W mass World Average (Particle Data Group)
compared to the value extrapolated from Eq. (9.1) with ∆rW = 0, in the same years.
The areas represent the 68% CL contours. The difference has reached 12 σ’s in year
2005, showing the need of genuine electroweak corrections to describe the experimental

data.

9.1 W mass measurement at hadron colliders

The main W production mechanism at hadron colliders is the qq̄′ → W

Drell-Yan process shown in Fig. 9.2. The initial quarks can either be valence

or see quarks.

The study of W bosons at pp̄ and pp colliders naturally leads to two dif-

ferent streams of investigation. One can use W (and Z) bosons to probe the

internal structure of the proton, i.e. to measure the momentum distribu-

tion of initial partons within the proton (anti-proton) target, the so-called

Parton Density Functions (PDF’s). A detailed treatment of this topic goes

beyond the scope of this book. The second stream of investigations is re-
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Fig. 9.2 An example of W production and decay through the Drell-Yan process.

lated to the electroweak properties of the W boson, in particular to its

mass.

The W production cross section at hadron colliders can be written as

σ(h1h2) =

∫ 1

0

dx1dx2f
a
h1(x1)f

b
h2(x2)dσ

DY (ŝ) (9.2)

where fa
h1(x1) ( f b

h2(x2) ) represents the probability that quark a (b) carries

a fraction x1 (x2) of the initial hadron momentum and dσDY (ŝ) is the cross

section of the Drell-Yan subprocess at transfer momentum ŝ. The f a
h1(x1)

function represents the PDF for quark a. For the subprocess ud̄→W+ →
e+ν the cross section is described by the Breit-Wigner ansatz

dσDY (ŝ) =
1

3

π

s

Γud̄Γeν

(
√
ŝ−mW )2 + Γ2

4

(9.3)

where Γi and Γ are the partial and total width for the W decay. The factor

1/3 comes from the need of matching the colours of the initial quarks.

At the Spp̄S collider (
√
s = 540 GeV) the W production cross section

times the W → eν branching ratio was 0.3 nb , it is 2 nb at the Tevatron

(
√
s = 2 TeV) (Fig. 9.3) and will be about 15 nb (

√
s = 14 TeV) at the

LHC.

The PDF’s in Eq. (9.2) are relevant at x1 ≈ x2 ≈ mW√
s

making valence

quarks less and less important at higher energy. At LHC, that is a pp

collider, the production through valence quarks will be absent.

The W production cross section has to be compared to the total pp̄ (pp)

cross section, that is eight orders of magnitude larger at the Tevatron. Be-

cause of the large hadronic backgroundW decays must be detected into the
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Fig. 9.3 The W production cross section at pp̄ colliders. The cross section is multiplied
by the W → eν branching ratio.

leptonic channels, by requiring an isolated lepton (electron or muon) with

high transverse momentum and large missing transverse energy due to the

undetected neutrino. At hadron colliders the longitudinal component of the

missing momentum cannot be measured because of the collision fragments,

directed along the beam axis, that are not detected. The W invariant mass

cannot be measured and is replaced by the transverse mass defined using

the transverse components of the momenta as

MT
W =

√

(Elepton
T +Eν

T )2 − (plepton
T + pν

T )2 =

√

2plepton
T pν

T (1 − cosφ)

(9.4)

where φ is the angle between the lepton and the missing momentum mea-

sured on the transverse plane and (Ei
T )2 = (pi

T )2 + m2
i . The missing

transverse momentum is measured by taking into account the total trans-

verse momentum of the recoiling hadronic system, in addition to the lepton

information.

The transverse mass distribution peaks at ≈ mW , as can be seen by the

differential cross section



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

Electroweak Measurements with W Bosons 349

mT (GeV)

nu
m

be
r 

of
 e

ve
nt

s

0

100

200

300

400

500

600

700

800

900

50 55 60 65 70 75 80 85 90 95 100

Fig. 9.4 Transverse mass distribution from high pT electrons collected by the D0 ex-
periment at the Tevatron Collider.

dσ

dMT
W

=
dσ

dcosθ

dcosθ

dMT
W

=
dσ

dcosθ
(
MT

W

2mW
)(m2

W − (MT
W )2)−

1
2 (9.5)

where θ is the polar decay angle in the W decays frame and MT
W ≈ 2plepton

T

has been used. The divergence in Eq. (9.5) translates in a relatively broad

Jacobian peak when the natural width of the W boson and the effect of de-

tector smearing, originating from finite energy and momentum resolutions

and from undetected particles, are taken into account (Fig. 9.4).

An important experimental source of systematic error in the measure-

ment of theW mass at hadron colliders is related to the determination of the

absolute energy scale. The momentum scale of tracking detectors can be de-

termined, using the known J/ψ mass and selecting J/ψ → µ+µ− decays, to

a typical precision of less than permil. Calorimeters can be calibrated with

high-energy electron pairs from Z decays, by computing the pair invariant

mass and then comparing to the Z mass precisely measured at LEP. The

comparison requires correcting for the electron bremsstrahlung in the track-

ing detectors. The uncertainty on the lepton energy scale gave systematic
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errors of about 80 MeV at the Tevatron for earlier data (Run I, Ref. [117])

and recently lowered to less than 30 MeV (Run II, Ref. [118]). The W mass

measurement is performed by fitting the data to distributions obtained with

Monte Carlo simulations at different masses. The modeling of the MT
W

distribution used for the fitting procedure is another source of systematic

uncertainty. Relevant inputs to the Monte Carlo models are the electron

energy and muon momentum resolutions, the response of the detector to the

recoiling hadronic system and the distributions of theW transverse and lon-

gitudinal momentum. Leptonic decays of the Z boson obtained during the

same experimental conditions can be used to calibrate the first two effects.

The latter is constrained using the measurement of the forward-backward

charge asymmetry in W decays. The average of the measurements of the

W mass from pp̄ colliders is mW = 80.429± 0.039 GeV [118].

9.2 W production in e+e− collisions

At centre-of-mass energies greater than 2mW ≈ 161 GeV W pairs can be

produced in e+e− collisions. Three diagrams, usually called CC03 diagrams

(CC stands for Charged Currents) contribute at Born level, as shown in

Fig. 9.5. The first two diagrams involve vertexes with three interacting

gauge bosons (Triple Gauge Couplings, or TGC’s) while the third represents

the exchange of a neutrino in the t channel. The Born-level matrix element

depends on the electron beam helicity (κ) 1, on the outgoing W’s helicities

(λ−, λ+), on the s,t Mandelstam variables and is given by

M(κ, λ−, λ+, s, t) =
e2

2s2W

1

t
M1δκ− + e2[

1

s
− cW
sW

geeZ
1

s−M2
Z

]2(M2 −M3)

(9.6)

where δκ−=1 for left-handed electrons and zero otherwise, cW = mW

mZ
,

sW =
√

1 − c2W , and geeZ is the Z-electron coupling. The expressions for

M1,M2,M3 can be found in [119]. For small values of the W velocity

β =

√

1 − 4
m2

W

s , i.e. close to the WW threshold, the t-channel process

dominates:

M2

M1
≈ M3

M1
≈ β (9.7)

1The positron beam helicity must be equal and with opposite sign.
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Fig. 9.5 Diagrams contributing to WW production at LEP.
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Fig. 9.6 Example of two diagrams contributing to 4f final states at LEP. The second
diagram represents an example of single-W production.

and the cross section for unpolarized beams and W’s can be computed as

[120]

dσ

dΩ
=

β

64π2s

∑

κ,λ−,λ+

1

4
|M(κ, λ−, λ+, s, t)|2

≈ α2

s

1

4s4W
β[1 + 4βcosθ

3c2W − 1

4c2W − 1
+ O(β2)] (9.8)

showing the dominant term proportional to the W velocity entirely due to

the t-channel.

Above threshold Eq. (9.8) does not hold and a cross section computed

using the t-channel diagram only would grow as log(s) with increasing

centre-of-mass energy and eventually violate unitarity. The negative in-

terference with the WWZ and WWγ processes yields, for LEP energies

above 180 GeV, a weakly increasing cross-section of about 17 pb−1. It

must be pointed out that a cross-section definition based only on the

three CC03 diagrams is not gauge invariant. The physical process is

e+e− → W+W− → ffff where ffff indicates the final state made of
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four fermions. In principle all four fermion final states must be taken into

account, see for instance Fig. 9.6 for an example of two processes with iden-

tical final states (the second process is called single-W production and is

important for the study of TGC’s, described in the last Section). In prac-

tice in this context, within typical experimental cuts, the cross sections

computed with the full set of four fermion diagrams and the CC03 only

turn out to be numerically very similar.

While at the Z pole decays of the Z boson can be selected in an es-

sentially background-free environment, e+e− → W+W− events at higher

energies have to be separated from the dominant two-photon [121] and

two-fermion [122] processes (Fig. 9.7). The two-photon processes (as

e+e− → qq̄e+e−) have a large cross section but low visible energy in the

experimental apparatus and are characterized by low transverse momen-

tum particles. They can be rejected relatively easily by simple selection

cuts. The two-fermion events are mainly related to the radiative tail of the

Z resonance and consist in the production of an on-shell Z boson together

with the emission of a ISR photon of energy

Eγ =
s−M2

Z

2
√
s

. (9.9)

These e+e− → ff̄γ events are typically longitudinally unbalanced, since the

ISR photon is often lost along the beam line and the Z boson is boosted in

the laboratory frame. The visible energy in this case is close to the Z mass.

These features can be used to tag these events and considerably reduce

the background. Two-fermion events with the ISR photon emitted within

the apparatus acceptance can be rejected by detecting high energy isolated

photons.

Decays of W bosons to hadrons are twice as frequent as decays to lep-

tons. This is a consequence of quarks’ three colours and the top mass

being too large for the W to decay to the third quark family. Essen-

tially only W+ decays to ud̄ and cs̄ are allowed (other allowed combi-

nations are suppressed by low CKM matrix elements) for a total of six

states when three colours are taken into account. Three kind of leptonic

decays are allowed (W → eν, µν, τν), resulting in a branching ratio of 2/3

for the hadronic decays. Since W’s are produced in pairs, the four-fermion

e+e− →W+W− → ffff events are classified in three topologies:

• fully hadronic decays (e+e− → W+W− → qqqq , about 45% of the
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Fig. 9.7 Cross sections for various processes at LEP. (Courtesy of Salvatore Mele.)

events), characterized by four jets in the apparatus 2;

• semileptonic decays (e+e− → W+W− → qqlν , about 44% of the

events), with two jets, an high energy lepton and missing energy due

to the undetected neutrino;

• fully leptonic decays (e+e− → W+W− → lνlν , about 11% of the

events), characterized by two high-energy acollinear leptons and miss-

ing energy.

Experimentally three different event selections correspond to the three

topologies. Fully hadronic decays are selected by requiring high multiplicity

2The label q indicates a generic quark (or anti-quark).
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Fig. 9.8 The e+e− →W+W− cross section as a function of the centre-of-mass energy.
The experimental measurements are compared to theoretical predictions. (Courtesy of
the LEP Electroweak Working Group).

events and four hadronic jets. Selections are based on event properties as

sphericity, jet angles, and other event-shape variables, often combined with

neural network techniques. Typical efficiencies are ≈ 85% with background

contaminations of ≈ 15%. Semileptonic decays selections are based on the

requirement of one isolated lepton, two reconstructed jets and missing mo-

mentum. The isolated lepton can be an electron, a muon or a tau, selected

as a low multiplicity jet. In this channels the typical selection efficiency is

≈ 70% and the background contamination very low, of the order of a few

percent. Leptonic decays selections require low multiplicity events, with

two isolated acoplanar leptons with missing transverse momentum. The

lepton candidates can be low multiplicity jets to account for taus and final

state radiation. Efficiencies around 50% are obtained with low background

contamination (≈ 10%). While in events with one or two leptons can be fur-

ther classified according to the lepton species (for example semileptonic-tau

events or electron-muon leptonic decays) in fully hadronic decays the quark

flavours are not distinguished and all sub-channels are treated together.
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The cross sections of the various channels are computed in a com-

mon likelihood fit with poissonian statistics in order to take into ac-

count cross contaminations among channels (i.e. the fraction of event

of one kind selected in a different class). Backgrounds from non-four-

fermion events, as computed from Monte Carlo simulations, are subtracted

in the fit. The cross sections are corrected for the effect of non-WW

four-fermion events (see, for instance, the single-W process of Fig. 9.6).

The latter correction is of the order of 1%. The total cross section as

measured at LEP and compared to recent calculations [123] is shown in

Fig. 9.8. The measurements are a strong indication in favour of the exis-

tence of WWZ and WWγ TGC’s. From the individual cross sections [124]

the W decay branching ratios can be computed. The hadronic branch-

ing ratio amounts to (67.48 ± 0.28)% in agreement with the Standard

Model expectation (67.51%). The individual leptonic branching ratios are

BR(W → e) = (10.65 ± 0.17)%, BR(W → µ) = (10.59 ± 0.15)%, and

BR(W → τ) = (11.44 ± 0.22)%. The branching ratios of W into electron

and muon are in good agreement with the hypothesis of lepton universal-

ity, while the tau channel shows an higher value (2.8 standard deviations

higher, if electron and muon are combined together and correlations taken

into account). If the three leptonic channels are combined, assuming lepton

universality, the leptonic branching ratio is BR(W → `) = (10.84±0.09)%,

in agreement with the MSM expectation (10.83%).

9.3 W mass measurement in e+e− collisions

Data taken with e+e− collisions provide information on the the W mass

in two ways. At threshold the cross section itself is sensitive on the W

mass value, beyond threshold W bosons, and their invariant mass, can be

reconstructed from their decay products.

The total cross section at threshold is obtained by integrating Eq. (9.8)

over the angles, giving

σ ≈ πα2

s

1

4s4W
4β + O(β3)]. (9.10)

The linear dependence on the W velocity translates into a dependence

on the W mass, entirely due to the t channel neutrino exchange. The

contribution of diagrams involving trilinear couplings, that are tested with

limited precision and could be modified by new physics (see next chapter),
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is O(β3), keeping the model dependence small. Because of the limited

statistics collected by LEP experiments at the WW threshold the result

from this technique is affected by a rather large uncertainty. The cross

section from data taken at a centre-of-mass-energy of 161 GeV is σ =

3.69± 0.45 pb, corresponding to mW = 80.40± 0.22 GeV/c2.

An order of magnitude in precision is gained with direct W reconstruc-

tion. The measurement is based on the W+W− → qqqq and W+W− →
qqlν channels ; information on the W mass can also be provided by the fully

leptonic lνlν channel, but the precision is limited by the lower branching

ratio and the presence of two undetected neutrinos. Jet reconstruction is

the first step of the measurement: two jets (four jets) are reconstructed

in the semileptonic (fully hadronic) channel. An iterative procedure (Sec-

tion 7.1) based on a metric, typically related to the invariant mass, is used

to build the jets. The closest particles are joined together to form a new

pseudoparticle (jetlet) and the process ends when only two (or four for fully

hadronic events) jets are left. In the procedure the four-momentum of the

new jetlet is normally computed from the sum of the two four-momenta of

the previous jetlets and the new object acquires a mass from the invariant

mass of the resulting four-momentum. The W mass is computed from the

invariant mass of the two-jet system:

mW =
√

4EiEj(1 − βiβj cos(θ)) +m2
i +m2

j (9.11)

where i and j refer to the two jets. In the fully hadronic channel there

are three possible pairs of two-jet combinations; a criterion is needed to

choose the best combination, based for instance on discarding clearly wrong

pairings (out of a large window around 80 GeV/c2) or on choosing the

largest value of the CC03 matrix element (Eq. (9.6)). If the latter criterion

is used the four vectors of the two jets and a nominal value of the W mass

are used as input.

Since in e+e− collisions the four momentum of the initial state is known

the W mass resolution can be greatly improved by applying a constrained

kinematic fit to the four momenta of the reconstructed jets, leptons and

missing momentum. The constraint is

∑

k

(Ek, ~Pk) = (
√
s, 0, 0, 0) (9.12)

where the sum is over all reconstructed objects. A further constraint can

be applied by requiring the two W invariant masses to be equal, within
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the expected W width. In semileptonic decays the mass of the leptonically

decaying W is computed from the lepton and the missing momentum. In

the kinematic fitting the four momenta of the reconstructed objects are

allowed to vary within their expected uncertainties (hence, for example,

since the energy of a jet is less well measured than the energy of a lepton a

larger variation is allowed); typically a χ2 is constructed and the constraints

are imposed by Lagrange multipliers. As can be seen in Fig. 9.9 a sizeable

improvement can be obtained.

The kinematic fit can be applied if the centre-of-mass energy, i.e. the

beam energy of the accelerator, is precisely known. From Eq. (9.11) one

gets

δmW

mW
≈ δEbeam

Ebeam
(9.13)

showing that the uncertainty on the centre-of-mass energy directly reflects

on the mass uncertainty. At LEP the resonant depolarization technique,

described in Section 6.4 and allowing a relative precision of 10−5, worked

only for beam energies up to 60 GeV and extrapolations were needed to

calibrate the higher energies reached at LEP2. The extrapolation was con-

trolled by the extensive use of NMR probes in the LEP magnets and cross

checked in several ways. A special spectrometer was installed in the beam

line to directly measure the beam momentum; the energy loss by syn-

chrotron radiation, which is proportional to the fourth power of the beam

energy, was measured by the frequency of the accelerating field. Finally

the beam energy was measured directly with the data by means of Z ra-

diative returns (see Eq. (9.9)), i.e. two-fermion events where a real Z is

boosted in the laboratory system. In this events the opening angle of the

two fermions produced in the Z decay depends on the centre-of-mass en-

ergy. The final uncertainty on the LEP2 beam energy [125] was about 20

MeV (the exact value depends on the year of data taking), corresponding

to δmW ≈ 17 MeV/c2.

Invariant mass distributions as measured at LEP, taking as an exam-

ple the semileptonic channel, are shown in Fig. 9.10. The Breit-Wigner

distribution of the W resonance is distorted by several effects:

• the emission of Initial State Radiation (ISR),

• phase space constraints, especially important at threshold,

• detector resolution,

• wrong particle assignment to the W ’s,
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• background contamination,

• selection cuts.

These effects need to be taken into account to extract the W mass from

the experimental distributions. The differential cross section as a function

of the two W masses (m1,2) can be written as

d2σ

dm1dm2
= H × σCCO3 × ρ1 × ρ2 (9.14)

where H is a radiator similar to the one described for the Z lineshape

(Section 6.2) , σCCO3 is the Born level matrix element (Eq. (9.6)) and

ρ1,2 are the relativistic Breit-Wigner distributions for the two W bosons.

Detector effects can be taken into account by a resolution function and

included by a convolution integral as

Φ =

∫

dM1

∫

dM2 G(M1,M2,m1,m2)
d2σ

dm1dm2
(9.15)

where G is the transfer resolution function. The W mass can be evaluated

by maximazing the likelihood

L =
N
∏

i=1

Φ(M1,M2;mW ) (9.16)

running over all the N events, withM1,2 as measured masses andmW as free

parameter (and result) of the fit. The result is biased (because in practice

it is impossible to take analytically into account all effects) and the method

must be calibrated on Monte Carlo events. Alternatively the Monte Carlo

simulation can be directly used by generating simulated distribution with

various input W masses and by choosing the Monte Carlo sample that best

fits the data. This technique is free of bias (provided that the Monte Carlo

simulation includes all effects!) and calibrated by definition. Since the pro-

duction of an infinite number of Monte Carlo samples is impossible a finite

number of samples with a grid of input masses is used, and intermediate

W mass input values are interpolated. The interpolation takes place with a

technique called re-weighting. Each Monte Carlo event (i) is given a weight

(wi) that is 1 for all events in the grid, while for interpolated events is

wi(mW ) =
|M(mW , pi

1, p
i
2, p

i
3, p

i
4)|

|M(mgen
W , pi

1, p
i
2, p

i
3, p

i
4)|

(9.17)
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where mgen
W is the input values for the closest sample in the grid and pi

j is

the four vector of the fermion j in e+e− → W+W− → f1f2f3f4 . Since

the typical mass resolution obtained with kinematic fits is 1–2 GeV/c2 the

experimental distributions are sensitive to the W width, ΓW . Within the

Standard Model this is fixed by the W mass and the Fermi constant by the

relation ΓW = 3GF

2
√

(2)π
m3

W ≈ 2.1 GeV/c2 . The methods discussed here are

often generalized to a simultaneous measurement of two parameters: mW

and ΓW .

The separation of the decay vertexes of the two W’s in e+e− →
W+W− → ffff is smaller than the typical hadronization scale (1 fm)

since ΓW ∼ 10ΛQCD. When both W’s are hadronically decaying intercon-

nection phenomena in the final state may link the decay products: final

hadrons cannot longer be labeled as belonging to the decay stream of a

specific W boson. The colour flow between two quarks originating from

two different W bosons is called colour reconnection, a phenomenon that

has been observed in b hadron decays as B0
d → J/ΨK0

s . Another effect

that can correlate hadrons from different W’s is the symmetrization of the

wave functions arising from Bose–Einstein statistics. It has been shown

[126] that both phenomena can lead to an important bias (O(100) GeV/c2)

in the measured W mass. The exact size of these effects is difficult to pre-

dict since they are non computable in perturbative QCD. Fortunately the

W mass shift is not the only effect of interconnection phenomena. Colour

reconnection modifies the flow of low momentum particles, especially in

the region between jets, while Bose–Einstein correlations bring same–sign

pions close in momentum phase space. The effects can be monitored with

distributions measured on experimental data.

The W mass measured in e+e− collisions by LEP in the two channels

is [127, 143]

mW = 80.372± 0.036 (W+W− → qqlν)

mW = 80.387± 0.059 (W+W− → qqqq)

and the combined value ismW = 80.376±0.033. The purely statistical error

for both channel is about 30 MeV/c2, the total error is larger for the qqqq

channel because of the systematic uncertainty related to colour reconnection

effects. The combination of the LEP measurements with the Tevatron

results obtained with the techniques described in Section 9.1 gives [118]

mW = 80.398± 0.025 . (9.18)
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Fig. 9.9 Effect of the kinematic fit on the W mass reconstruction at LEP2. (Courtesy
of Andrea Venturi.)

This result is compared to the W mass predicted by the one-loop calcula-

tions of Chapter 3, shown as a function of the Higgs mass, in Fig. 9.11.
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Fig. 9.10 Examples of invariant mass distributions used to measure the W mass at LEP.
The plots are made with semileptonic WW events. The first plot shows the three lepton
channels combined, while in the other plots the electron, muon and tau events are sepa-
rately shown. The points with error bars represents the data, while the histograms show
the simulation. The background contamination is indicated by the hatched histograms.
For each event the average of the two measured masses is used.

9.4 Triple gauge couplings

The presence of tree level triple gauge boson interactions is a distinct signa-

ture of the non–abelian nature of the Standard Model and a consequence of

its SU(2)L×U(1)Y gauge structure. The model predicts the same coupling

g for the interaction of weak bosons to matter and among themselves. The

existence of triple gauge couplings (TGC’s) is proved by the behaviour of

the e+e− → W+W− total cross section (Fig. 9.8); its energy dependence

is consistent with the presence of both WWγ and WWZ interactions and
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Fig. 9.11 Dependence on the Higgs mass of the prediction on mW . The hatched bands
shows the uncertainty on the prediction when varying other input parameters. These
are the top mass and the fine structure constant at the mZ scale, respectively. The same
ranges as for Fig. 6.7 are used, for illustration only. The experimental measurements of
mW are indicated by the error bar.

of a universal g coupling. Triple gauge interactions are also seen in other

processes, such as single W production in e+e− interactions (Fig. 9.6) or

associated Wγ production at hadron colliders, both testing the WWγ ver-

tex.

Triple gauge couplings do not only affect production rates, but also an-

gular distributions of emitted weak bosons and of their decay products.

Precision tests of triple gauge couplings, and of SU(2)L × U(1)Y predic-

tions, require detailed measurements of differential cross sections. Angular

distributions analyse different weak boson helicity states: since the longitu-

dinal component of the helicity is directly linked to the symmetry breaking

mechanism and to the mass generation these are fundamental tests of the

theory.

Neutral triple gauge boson couplings, as ZZZ, ZZγ or Zγγ, do not

exist in the Standard Model at tree level. The existence of anomalous

neutral couplings would affect processes as e+e− → ZZ or e+e− → Zγ.
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No departure from the cross sections predicted by the Standard Model for

these processes has been detected, todate.

Next Subsection is dedicated to the measurement of the angular dif-

ferential cross sections and of the W polarization in the e+e− → W+W−

channel. The general charged TGC analysis follows.

9.4.1 The e+e−
→ W+W − angular analysis and the W

polarization

If initial state radiation and the finite W width are neglected, the e+e− →
W+W− process is described by 5 angles

• the angle θW between the W− and initial e− in the W+W− rest frame;

• the polar θ∗f and azimuthal φ∗f angles of the fermion in W− → ff̄ ′

measured in the rest frame of its parent W−;

• the corresponding polar and azimuthal angles of the fermion in the W+

rest frame.

In the semileptonic W+W− → qqlν channel the charge of the lepton iden-

tifies without ambiguities the W−. The missing momentum provides infor-

mation on the direction and energy of the undetected neutrino; kinematic

fitting is used to improve the measurement, similarly to what is done for the

measurement of the W mass. Since in W+W− → qqlν the quark and the

anti-quark from the hadronic W decay are not identified, there are two am-

biguous solutions both entering (with weight 0.5) the angular distributions

used for the measurements. Ambiguities are more important in the fully

hadronic and fully leptonic channels. In the first case jets are paired using

the method described for the W mass measurement (here the closeness to

theW mass can also be used); after pairing the charges of the charged parti-

cles associated to jets belonging to the individual W’s are weighted to form

a charge estimator (this is similar to the jet charge method employed for the

measurement of the b asymmetry, see Chapter 8). The correct charge can

be identified with purities of about 70–80 %. As far as the fully leptonic

channel is concerned the constraint that the two lν systems should have

an invariant mass consistent with the W mass helps in reconstructing the

neutrino momenta. The quadratic nature of the constraint, however, yield

a two-fold ambiguity: solutions obtained by flipping both neutrinos with
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respect to the plane defined by the two leptons are equally valid. Again,

both solutions enter the experimental distribution with equal weight. The

semileptonic channel is clearly the best suited for TGC analyses, providing

the highest sensitivity. All channels are used in the measurements based

on the effective lagrangian described in next Subsection, while semileptonic

decays only are used to determine the W polarization. Examples of angular

distributions in semileptonic WW decays are shown in Fig. 9.12.

In the W rest frame transversely polarized W− bosons with helicity

± have angular distributions (1 ∓ cosθ∗f )2 ; the sign is reversed for W+.

Longitudinally polarized W bosons feature a sin2θ∗f dependence. The W−

polarization can be measured by fitting the differential distribution

1

N

dN

dcosθ∗f
= ρ−−

3

8
(1 + cosθ∗f )2 + ρ++

3

8
(1 − cosθ∗f )2 + ρ00

3

4
sin2θ∗f (9.19)

with the ρii fraction representing the contributions from the three W helic-

ity states and N is the number of events in each bin. A similar distribution

is used for the W+ and the ρii from W bosons of opposite charge can be

combined if CP invariance is assumed. In practice Eq. (9.19) can be used

only for the leptonic decay, as the quark charge is not reconstructed ρ−−
and ρ++ are summed and |cosθ∗f | is used for quarks. The helicity fractions

are measured as a function of the W− scattering angle θW and agree with

the Standard Model expectations, as can be seen in Fig. 9.13. At LEP2 en-

ergies the expected average fraction of longitudinally polarized W bosons

is 24 %. The combined experimental result agree, within 2%, with this

expectation [128, 129].

The fit can be generalized with the spin density matrix (SDM) formal-

ism. The matrix is defined as

ρij(s, cosθW ) =
FiF

∗
j

∑

i |Fi|2
(9.20)

where Fi is the W− helicity amplitude for helicity i and has to be taken as

summed over the initial electron and positron beam helicities. An analogous

matrix can be defined forW+; the elements are the same if CP conservation

is assumed and their comparison sets limits on CP violation in TGC’s.

The spin density matrix is a hermitian tensor with unit trace, the diagonal
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Fig. 9.12 Examples of angular distributions in e+e− → W+W− semileptonic events.
The first plot represents the cosine of the angle θW between the W− and initial e− in
the W+W− rest frame. The cosine of the polar angle, θ∗l , and of the azimuthal angle,
φ∗l , angles of the lepton measured in the rest frame of its parent W are shown in the
second and third plots, respectively. The last two plots show the same two angles for
the jets in the W hadronically decaying. The solid histograms show the Standard Model
simulation, while the two different dashing indicates the expectations for particular values
of an anomalous triple gauge couplings, λγ . The data are from the Aleph experiment.

components corresponds to the helicity fractions of Eq. (9.19). For a generic

polarization vector ~e the SDM allows to compute the probability that the

W is in that specific polarization state by taking ρije
∗
i ej . The matrix

element can be computed by means of projection operators applied to the

differential cross section [130].
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9.4.2 The effective TGC lagrangian and the couplings

The most general form for an effective charged TGC lagrangian consistent

with Lorentz invariance involves 14 complex couplings, 7 for the WWγ

vertex and 7 for the WWZ vertex [131]:

L = igV
1 (W †

µνW
µV ν −W †

µVµW
µν) + iκVW

†
µWνV

µν

+
iλV

m2
W

W †
λµW

µνV νλ − gV
4 W

†
µWν(∂µV ν − ∂νV µ)

+gV
5 ε

µνρσ(W †
µ

↔
∂ ρ Wν)Vσ + iκ̃VW

†
µWν Ṽ

µν

+
iλ̃V

m2
W

W †
λµW

µνṼ νλ . (9.21)

Some couplings are C- or P-violating while in the Standard Model C- and

P-conservation is predicted in triple gauge couplings. In Eq. (9.21) V µ(=

V µ†) stands either for the γ or Z field, W µ for the W− field, Wµν =

∂µWν − ∂νWµ, Vµν = ∂µVν − ∂νVµ, Ṽµν = 1
2εµνρσV

ρσ and (A
↔
∂ µ B) =

A(∂µB) − (∂µA)B.

All couplings have been experimentally tested with the e+e− →W+W−

sample collected at LEP2. A fit of the total cross section and the angular

distributions described in the previous Subsection has been performed to

models where only one coupling at the time is allowed to vary, while all the

others were set to zero [132]. Bounds on several couplings can also be set

from precision measurements at the Z pole [133] . In most analyses C- and

P-conservation and electromagnetic gauge invariance is assumed and the

14 couplings are reduced to 5 : gZ
1 , κγ , κZ , λγ , λZ . Within the Standard

Model gZ
1 = κγ = κZ = 1 and λγ = λZ = 0. The couplings can be related

to physical properties of the gauge bosons, for instance the W anomalous

magnetic moment (µW ) and the W anomalous electric quadrupole moment

(QW ) can be written as

µW =
e

2mW
(1 + κγ + λγ)

QW = − e

mW
(κγ − λγ).

The requirement of local SU(2)L × U(1)Y gauge invariance introduces

the further constraints

∆κZ = −∆κγtan
2θW + ∆gZ

1

λγ = λZ (9.22)
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cosθW bins. The Standard Model expectations are indicated.

with ∆ indicating the deviation with respect to the Standard Model predic-

tion (θW here is the electroweak mixing angle), leaving three independent

couplings: gZ
1 , κγ , λγ . The three couplings have been measured at LEP

using e+e− → W+W− (Fig. 9.5) and e+e− → W+eν (Fig. 9.6, second di-

agram) events. The second process, single W production, is very useful to

enhance sensitivity in the measurement of the WWγ vertex. For this pur-

pose also the single photon e+e− → γνν̄ is useful. The analyses are based

on the measurement of the total cross sections and of angular distributions,

described in the previous Subsection for the WW case. The constraints ob-

tained from the LEP experiment’s [134] combination are shown in Fig. 9.14.

The three couplings are consistent with the Standard Model expecta-

tion, in particular the gZ
1 and κγ measurements confirm the presence of

triple gauge interactions with the expected strength, with a precision of

∼ 2%.
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Fig. 9.14 The 68% and 95% confidence level contours allowed by LEP data for the
triple gauge couplings ∆gZ

1 ,∆κγ , λγ . In each of the three plots one coupling is fixed to
the Standard Model value, while the others are allowed to vary. (Courtesy of the LEP
Electroweak Working Group.)
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Chapter 10

The Top Quark and Its Mass

Many electroweak observables described in this book, as the forward-

backward asymmetries at the Z peak or the W mass, are very sensitive

to the value of the mass of the top quark. This is because of the non-

decoupling property of the pure electroweak radiative corrections: the effect

of particle masses much larger than the electroweak scale (mt ≈ 170 GeV)

instead of vanishing with some power of mZ

mX
grows with mX . The contribu-

tion of the top quark mass to the Z self-energy, for instance, is proportional

to ( mt

mZ
)2, to be compared with its contribution to the photon vacuum po-

larization (pure QED) that is ≈ (mZ

mt
)2. Not surprisingly, the top mass is

very relevant to draw conclusions from electroweak global fits; on the other

hand electroweak measurements can be used to predict rather precisely the

value of the top mass. There are reasons to believe that the top mass is a

fundamental parameter of the electroweak theory. This is suggested by the

closeness to unity of its coupling with the Higgs field (the Yukawa coupling)

Yt =
√

2
mt

v
(10.1)

with v, the vacuum expectation value, ≈ 246 GeV.

In this chapter, after reviewing the main properties of the top, the ex-

perimental issues related to the measurement of the mass of the most heavy

quark are discussed. The results are then compared with the predictions of

electroweak fits.

10.1 Top-quark properties

The top quark is the up-like (I3L = +1/2, Q = 2/3e) weak isospin partner

of the b quark. Many experimentally-measured b-quark properties show

371
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that the b quark is the down-like member of a doublet, requiring the exis-

tence of the top. The couplings of the b quark to the Z (Chapter 8) are

consistent with this picture, in particular the measurement of Rb would be

dramatically different with an isospin-singlet b quark since

Γ(Z → bb̄)I3=−1/2

Γ(Z → bb̄)I3=0
=

1 − 4
3sin

2θW + 8
9sin

4θW

4
9sin

4θW

≈ 30 (10.2)

as can be seen from Eq. (1.118). The energy dependence of the b forward-

backward asymmetry precisely determine the electric charge of the b as

being Q = −1/3e. The existence of the top is also required by the cancel-

lation of triangular anomalies [22] that show divergences independent on

the fermion mass, but dependent on the couplings. The b quark requires a

partner for the cancellation to hold.

The top decays almost exclusively through charged-current weak inter-

action to a W boson and a b quark. Other charged currents decays are

negligible, as can be seen from the following argument. If CKM unitary is

assumed, |Vtb|2 + |Vcb|2 + |Vub|2 = 1, one gets |Vtb| from the measurements

of |Vcb| = (41.6 ± 0.6) × 10−3 and |Vub| = (4.31 ± 0.30) × 10−3 [13]. The

decay fraction to Wb can then be computed from

BR(t→Wb)

BR(t→Wq)
=

|Vtb|2
|Vtb|2 + |Vtd|2 + |Vts|2

= 0.99825± 0.00005 (10.3)

where the denominator has been taken as unity, again from the assumption

of unitarity. Flavour changing neutral currents decays as t→ cZ, cγ, cg are

not expected in the Standard Model at tree level, loop calculations give

BR(t → cZ, cγ, cg) ≈ O(10−13). Experimental evidence for top FCNC

would be a sign of new physics; direct searches gave, until now, negative

results [135].

The fact that the top quark should be much heavier than the b was

expected before electroweak measurements took place: from the frequency

of the B0
dB̄

0
d oscillations one could predict a top mass larger than 50 GeV

[136]. Indeed the oscillation occurs through box diagrams where the top

lines play an important role. A large top mass implies a very short lifetime,

since the top quark bW partial width is

Γ(t→ bW ) =
GF

8π
√

(2)
m3

t |Vtb|2 ≈ 1.5 GeV/c2. (10.4)
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Fig. 10.1 Diagrams contributing to top production at hadron colliders: (a) quark an-
nihilation (b) and (c) gluon-gluon fusion (d) example of single-top production.

about one order of magnitude larger than the typical hadronization scale. It

follows that the top behaves as a free quark and decays before top hadrons

are formed. In the purely weak t → bW decay only longitudinal and left-

handed W ’s can be produced. Right-handed W ’s are suppressed from he-

licity arguments: since the b mass can be neglected the b is essentially

produced as left-handed (because of the V-A structure of charged currents)

and the conclusion follows from angular momentum conservation. Since

the coupling to longitudinal W ’s is related to the Yukawa coupling, a mea-

surement of the longitudinal-W decay-fraction in the top rest frame [137]

F(t→ W0b) =
m2

t

m2
t + 2M2

W

≈ 70% (10.5)

is an important test of the Standard Model.

10.2 Direct measurement of the top mass

The top mass is too heavy for production via e+e− → tt̄ at colliders such

as LEP or SLC, an e+e− centre-of-mass energy in excess of 350 GeV is re-

quired. The top was discovered in hadron collisions at the Tevatron in 1995

[36]. At hadron colliders the cross section can be written as a convolution



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

374 The Physics of the Z and W Bosons

of the parton density functions (PDF’s) for the (anti)protons (Section 9.1)

and the cross section for the hard process qq̄, gg → tt̄

σ(s,m2
t ) =

∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2f
a
h1(x1, µ

2
f )f b

h2(x2, µ
2
f )σ̂ab(ŝ,mt, αs(µ

2
r))

(10.6)

where a, b are the possible combinations of partons (quark-antiquark or glu-

ons), fa
h1(x1, µ

2
f ) and f b

h2(x2, µ
2
f ) represents the PDF’s at factorization scale

µ2
f and σ̂ab is the cross section for the hard subprocess. The latter depends

on the top mass, on ŝ = x1x2s and on αs evaluated at the scale µ2
r . The

scales are relevant for a proper evaluation of the higher order corrections.

The hard subprocess cross section is maximal at ≈ 1.5 × threshold = 3mt;

taking for simplicity x1 ∼ x2 one gets x1,2 ∼ 525 GeV√
s

. At Tevatron ener-

gies the typical values of x1,2 fall in a range where quark PDF’s are much

larger than gluon PDF’s, on the contrary at LHC the gluons dominate. As

a consequence the dominant tt̄ production mechanism in pp̄ interactions at

1.8 TeV (2.0 TeV for Tevatron RUN II) is qq̄ annihilation. This process

accounts for 90% (85% at RUN II) of the cross section (Fig. 10.1(a)), fol-

lowed by gluon gluon fusion (Fig. 10.1(b), 10.1(c)) essentially accounting

for the rest. At the LHC gluon gluon fusion will be the main production

process, about nine times larger than annihilation. Another relevant pro-

duction mechanism at hadron colliders is single-top production by weak in-

teraction, see for instance Fig. 10.1(d) or the corresponding cross-diagram

in the t-channel. The cross section for single-top is only a factor three

lower than pair production, but single top events are much more difficult

to detect. The tt̄ cross section at the Tevatron is shown in Fig. 10.2 as a

function of centre-of-mass energy, QCD-based theoretical calculations are

in agreement with experimental measurements. The typical value for the

cross section at LHC is 800 pb−1, about two order of magnitudes larger.

As in the Standard Model all top decays include a W boson, the classifi-

cation of tt̄ events at hadron colliders has some analogy with the W+W− se-

lection at e+e− machines, described in Chapter 9. Semileptonic, di-leptonic

and fully hadronic decays can be defined according to the decay mode of

the W, accounting for 45%, 11% and 44% of the events, respectively. The

analogy, however, stops here since tt̄ decays must be selected from an over-

whelming hadronic background. The total proton-(anti)proton cross sec-

tion at Tevatron energies is about 80 mb, raising to 100 mb at the LHC.

Top identification is further complicated by the presence of low pt remnants

of the proton-(anti)proton interaction, caused by the partons not involved
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Fig. 10.2 Cross section for tt̄ production at the Tevatron Collider, as measured by the
D0 experiment. The cross section is measured using various final states; for each final
state the total cross section is computed taking into account the expected final-state
branching ratio. Dots and squares show the result obtained with two different selections
of lepton+jet events (without or with b tagging), triangles are related to the dilepton
channel and stars to the fully-hadronic channel. The two bands show the expected cross
section, from two different QCD-based calculations. (Courtesy of Elizaveta Shabalina.)

in the hard process (underlying event) and by multiple final state inter-

actions. An additional difficulty, especially at high luminosity (LHC), is

due to interactions of other protons in the same bunch of beam-particles,

superimposed to the same event (pile up).

Top events must be selected with stringent criteria, taking advantage

of their distinctive signatures. The initial selection is based on the re-

quirement of high pt decay products, i.e. high energy jets and leptons

in the central part of the detector. The central part is normally referred

to as the low pseudorapidity region, with the pseudorapidity defined as

η = −ln(tan θ
2 ), where θ is the angle with respect to the beam line. A typi-

cal variable that helps suppressing the QCD background is the scalar sum of

the transverse energy of all observed objects, where the transverse energy is

Et = E sin θ. Other variables inspired by e+e− physics, as the eigenvalues

of Fox-Wolframm momenta, sphericity and acoplanarity are used to select

spherical events.

A powerful tool to suppress background, and to choose the correct jet
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combinations for the mass measurement, is b tagging. Most b tagging meth-

ods described in Chapter 7, in particular lifetime tagging and lepton tag-

ging, can be successfully applied at hadron colliders for top selection and

mass measurement. As for e+e− colliders lifetime tagging, based on impact-

parameter measurements and secondary-vertex tagging, is more efficient

than lepton tagging based on the detection of semileptonic b decays.

At hadron colliders jets are usually reconstructed with a cone algorithm.

The energy deposited in a cone of radius R =
√

∆η2 + ∆φ2 around a

starting direction (roughly defined using initial seeds) is summed up, the

direction is re-defined after the initial cone clustering and the process is

iterated until the algorithm converges. Typical values of R are around 0.5.

This method, differently from the one described in Sections 7.1, 9.3 does

not necessarily associate all particle in the events to jets.

As already anticipated, three main channels are defined for the mass

measurement:

• The lepton-plus-jet channel, where one W is required to decay to an

electron or muon and the other hadronically. The event is characterized

by four jets, a lepton and missing transverse energy. In this channel b

tagging is useful to reduce background and correctly identify the two

b-jets.

• The dilepton channel, where both W’s are leptonically decaying to elec-

tron or muons, and two jets, possibly tagged as b-jets, are detected.

• The fully-hadronic channel, characterized by six-jet events. In this

channel b tagging is mandatory, to suppress the large background from

QCD events and to reduce the number of three-jet combinations.

Since W decays to taus are not used for the mass measurement (they suffer

a larger background and have additional missing neutrinos) the lepton-plus-

jet-channel and the dilepton-channel yields are reduced to 30% and 5% of

the total, respectively.

The top mass is measured from kinematic properties of top-decay prod-

ucts, the most sensitive being the invariant mass of the three objects belong-

ing to the W − b system. Kinematic fitting techniques, already described

for the W mass measurement (Section 9.3), are employed to determine the

momentum and direction of neutrinos and to improve the measurement of

other decay products. At an hadron collider the four-vector of the initial

state is only partially known: the momenta of the initial partons involved in

the hard process are undetermined, hence momentum conservation can be



October 30, 2007 22:52 World Scientific Book - 9in x 6in bosons

The Top Quark and Its Mass 377

applied only in a plane perpendicular to the beam axis (transverse plane).

Five constraints can be imposed:

• The total transverse momentum of the event must be equal to zero. As

the final state is tt̄ + X , all detected objects (i.e. all energy deposits

in the calorimeters) must be included in computing the total event

transverse momentum. Since the transverse momentum is defined by

the two components of the momentum on the transverse plane, these

two components are set to zero, yielding two constraints.

• The invariant mass of the two objects assumed to originate from a W

decays must equal the W mass. This constraint can be applied to both

W bosons, one for each top (anti-top) decay.

• The top and anti-top masses, reconstructed in the same event, are re-

quired to be the same. (The top natural width is one order of magnitude

smaller than the typical experimental resolution.)

In the semileptonic channel three constraints are used to determine

the three-momentum of the unmeasured neutrino. In practice the miss-

ing transverse momentum gives the neutrino transverse momentum, while

the momentum component along the beam axis is given by constraining the

invariant mass of the lepton-neutrino system to the W mass. The latter,

however, being a quadratic constraint yields two solutions for the neutrino

longitudinal momentum, resulting in a two-fold ambiguity. An additional

ambiguity arises from the choice of of the jet to assign to the lepton-neutrino

system to form the top candidate. If the two b-jets are identified the ad-

ditional ambiguity is two-fold, otherwise four possibilities have to be taken

into account. Without b identification there are also three possible choices

for the di-jet system to assign to the W hadronic decay, resulting in a to-

tal of 24 combinations. The reduction in combinatorial background (and in

background from non-tt̄ events) obtained with b tagging can be appreciated

by comparing the invariant mass distributions shown in Fig. 10.3. The top

mass can be measured by comparing experimental distributions, similar to

the ones shown in the figure, to distributions computed with Monte Carlo

simulations with different top-mass hypotheses. The simulations include

an appropriate fraction of non-top background. A likelihood function can

be computed for each hypothesis; the measured top mass is given by the

maximum likelihood and the statistical error is determined by the mass

values giving ∆(Ln(Likelihood)) = 0.5, where ∆ indicates the variation

with respect to the maximum. The sensitivity of the measurement can be
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enhanced by taking into account all kinematical properties of the event in

the construction of the likelihood [139].

Fully hadronic tt̄ events have the advantage of a larger branching frac-

tion and can use all available constraints; the overwhelming multi-jet QCD

background, however, makes these events very difficult to detect. The use

of b tagging greatly helps in reducing the QCD background and the num-

ber of possible combinations. Even with one b-tagged jet, 30 different jet

combinations must be taken into account for the event reconstruction.

Di-leptonic events have the cleanest signature, but a small branch-

ing fraction and require the reconstruction of two un-measured neutrinos.

These events are underconstrained since the five possible constraints are

not enough to determine the six components of the neutrinos momenta.

Nevertheless methods have been developed to extract information on the

top mass. A widely used technique is based on the assumption of a par-

ticular top mass: the event can then be reconstructed, with a eightfold

ambiguity due to the two quadratic equations related to the W mass con-

straints and the two possible lepton-b pairing. Subsequently, the matrix

element corresponding to a tt̄ event with that particular final state configu-

ration is computed and employed to construct a likelihood function, which

is then examined to determine the most probable value of the top mass.

Another method [140] relates the top mass to the invariant mass, m2
bl of the

b-lepton system. By observing that in the top rest frame, if the W width

is neglected, the b quark energy is mt

2 , one gets

m2
t = 〈m2

bl〉 +

√

m4
W + 4m2

W 〈m2
bl〉 + 〈m2

bl〉
2
. (10.7)

The combination of the results obtained by the CDF and DO experi-

ments in the various channels gives [141]

mt = (170.9± 1.1± 1.5) GeV . (10.8)

The most important sources of systematic uncertainties are

• the jet energy scale, which is limited by the calibration of the calorime-

ters,

• the modeling of the signal shape in the invariant mass distributions

used for the measurement,

• the modeling of the background.
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Fig. 10.3 Examples of measured top mass distributions for lepton-multijet events at
the Tevatron Collider (Run II) from the CDF experiment [138]. The data sample cor-
responds to an integrated luminosity of approximately 318 pb−1. The four subsamples
are, respectively, (i) events with two b-tagged jets, (ii) events with only one b-tagged
jet, (iii) events with only one b-tagged jet and a looser jet transverse energy threshold,
(iv) events without b-tagged jets and a tighter transverse energy threshold. The ex-
pected distributions for signal+background and background only are overlaid using, for
the signal, the measured top quark mass.

10.3 Electroweak constraints on the top mass

The electroweak observables described in this book feature radiative cor-

rections that can be parameterised as a function of the top mass, of the

logarithm of the Higgs mass, of α(m2
Z) and αs. The dependence of the

electroweak radiative corrections on the top mass is quadratic at one-

loop level. The tree-level W mass, for instance, is modified by the ∆rW

term (Eq. (3.312)), whose top mass dependence is essentially given by

Eq. (3.288), i.e.

∆rW (top) ' − c
2
0

s20

3GFm
2
t

8
√

2π2
. (10.9)

The indirect determination of the top mass from electroweak observables

requires a proper treatment of mH , α(m2
Z) and αs. This treatment is trivial
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for Rb: as already emphasized in Chapter 4 all other corrections cancel in

the ΓZ→bb̄ to Γhad ratio leaving solely the quadratic dependence on the top

mass given by the Z → bb̄ vertex. From the LEP measurement of Rb one

gets

mt = (150± 20) GeV/c2 (10.10)

in fair agreement with the direct determination.

The uncertainty of this prediction can be decreased with a global fit of

the most relevant electroweak observables measured at LEP and SLC (Z-

pole asymmetries, Z-lineshape parameters,W mass). The common χ2 fit of

the measurements to their Standard Model predictions is performed [142]

by assuming that both statistical and systematic errors have a Gaussian

behaviour. The Standard Model predictions for the various observables are

computed using the very high precision measurements of GF , mZ and of the

fine structure constant, α(0). The correlation of the Z mass uncertainty

to some of the observables is taken into account, as well as correlations

among observables themselves. The fine structure constant is run to m2
Z ,

this is done by using low-energy e+e− data to compute the contribution of

the vacuum polarization due to hadrons, as described in Subsection 3.2.4.

The minimum of the χ2 is found by recomputing the Standard Model pre-

dictions of the observables with different values of the radiative corrections

parameters. The fit gives [143]

mt = 178+12
−9 GeV/c2 (10.11)

log10(mH/GeV) = 2.14+0.43
−0.35 (10.12)

αs = 0.1190± 0.0028 (10.13)

in agreement with the direct measurement of the top mass, given by the

combination of the CDF and D0 results described in the previous Section.

The direct and indirect determinations of the top mass in various years are

compared in Fig. 10.4. The mt and log(mH/GeV) values obtained by the

fit are strongly correlated (the correlation coefficient is +0.86). This implies

that, by including the direct measurement of the top mass into the global

fit, a sizeable reduction of the log(mH/GeV) uncertainty is expected.
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Fig. 10.4 The time evolution of the top mass measured at the Tevatron, compared to the
value extrapolated from electroweak radiative corrections, in the same years. The areas
represent the 68% CL contours. (Courtesy of the LEP Electroweak Working Group.)
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Chapter 11

The Search for the Higgs Boson and

Tests of the Electroweak Interaction

The quest for the Higgs has been one of the main experimental activities

of the end-of-XXth-century high-energy physics. At the start of the new

millennium the largest experimental projects and the exploration of the

high energy frontier are still largely motivated by directly probing the Higgs

sector of the theory.

As described in Chapter 1 the requirement of local gauge invariance

together with the necessity of giving mass to the W and Z bosons leads,

within the Standard Model, to the Higgs mechanism. The electroweak sym-

metry is broken spontaneously and a new scalar is created, the Higgs boson.

The mass of the new scalar is not predicted by the electroweak theory, how-

ever, as seen in Subsection 1.5.1, there are reasonable expectations that the

scalar should be light, i.e. below about 1 TeV. For higher values the uni-

tarity bounds for the WW →WW process would be violated, furthermore

a perturbative approach would lose its validity.

If the SU(2)×U(1) symmetry is assumed, the precision electroweak mea-

surements described in this book, together with one-loop electroweak cal-

culations (Chapters 3 and 4), can be used to set a more stringent limit on

the Higgs mass, as anticipated in Section 10.3. In this Chapter we will see

that the global fit to electroweak observables yields

mH < 144 GeV/c2

at 95% confidence level. This result indicates a relatively light Higgs boson;

nevertheless it should be reminded that the dependence of one-loop elec-

troweak corrections on the Higgs mass is logarithmic, hence a larger mass

cannot be ruled out.

The direct search for the Higgs boson is guided by an important property

of the implementation of the Higgs mechanism in most theoretical scenarios:

383
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the interactions terms defining the production and decay properties of the

Higgs can be predicted. In particular, in the Standard Model, the Higgs

coupling to fermions is proportional to the square of the fermion mass (mf )

and the partial decay width is [144]

Γ(H → ff̄) =
Ncg

2m2
f

32πm2
W

β3mH

where Nc is equal to the number of coulors for quarks and is set to 1 for

leptons, while β is the center-of-mass velocity of the fermion in the Higgs

rest frame. Similarly the widths for the decay to W and Z gauge bosons

are [145]

Γ(H →W+W−) =
g2m3

H

64πm2
W

√
1 − xW (1 − xW +

3

4
x2

W ) (11.1)

and

Γ(H → ZZ) =
g2m3

H

64πm2
W

√
1 − xZ(1 − xZ +

3

4
x2

Z) (11.2)

respectively, where xV = 4
M2

V

m2
H

and xV ≤ 1 for allowed decays. The decay

of the Higgs boson to photon (or gluon) pairs goes through loops and is

suppressed by the α2 (or α2
s) factor [9]. In Fig. 11.1 the decay branch-

ing fractions versus the Higgs mass are shown for Higgs masses below 200

GeV/c2. The tendency to decay into the pair of heaviest particles, among

the ones kinematically allowed, is clearly seen. In a wide region, between 10

to 130 GeV/c2, the decay to b quarks pairs is dominating, for higher masses

this role is taken by massive gauge bosons pairs. For low masses, below the

bb̄ production threshold, decays to charm and tau pairs are dominant and,

for even lower masses the branching ratios to muon and electron pairs, as

well as to low multiplicity hadronic final states and γγ, become important.

11.1 Search for the Higgs boson before LEP

The mass region below 5 GeV has been widely investigated before 1989 by

means of a variety of processes. The interference between possible long-

range muon-hadron interactions and pure QED in the X-ray transition of

muonic atoms has been used to set limits on Higgs mediated interactions,

in the mass region around 1 MeV/c2 [146]. An Higgs boson with a mass
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Fig. 11.1 Higgs boson branching ratios as a function of its mass. (Courtesy of Patrick
Janot.)

of a few MeV/c2 was also expected to affect the angular distribution of

neutron-nucleon scattering [147]. Indeed a very low mass scalar would con-

tribute with an interaction term similar to Coulomb scattering, normally

not present in neutron scattering. Other processes potentially able to pro-

duce a very low mass Higgs boson would have been nuclear 0+ − 0+ tran-

sitions. The decay of a new spin 0 particle in e+e− pairs was searched in

0+−0+ nuclear decays and no evidence was found [148]. Particle decays, in

particular rare decays of pions [149], kaons [150], B mesons [151], J/ψ and

Υ [152] were used to set limits at higher masses . Unfortunately while the

Higgs coupling to quarks is predicted by the theory, sizeable uncertainties

are affecting meson decays through QCD effects. Therefore, while indi-

cating that the existence of a Higgs boson below 5 GeV was unlikely, the

interpretation of the results was not straightforward. The only region that

could be unambiguously excluded before LEP was the range 1.2 MeV to 52

MeV thanks to a beam dump experiment [153]. Electrons with an energy

of 1.6 GeV were sent to a tungsten target. The Higgs boson was expected

to be produced in the interaction of the electron beam with the target nu-

clei, in a process similar to the bremsstrahlung, called higgs-strahlung in
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the following. An Higgs boson of low mass is weakly interacting and has

a long lifetime, and it can exit a thick target stopping all electromagnetic

products. It is possible to detect it in the laboratory thanks to its subse-

quent decay to an e+e− pair. As the electron higgs-strahlung cross section

is well known and Higgs production was not detected by the beam dump

experiment, the mass range covered by the experiment could be completely

excluded.

11.2 Higgs production at LEP

As seen in the previous paragraphs only a very limited mass region could

be explored before the advent of LEP and the interpretation of most results

was not easy. The scenario changed with LEP because Higgs bosons can be

copiously produced by higgs-strahlung from Z vector bosons. The coupling

to the Z is large and can be exactly computed: LEP experiments were able

to explore the mass range from 0 to 65 GeV/c2 at LEP1 and extend the

search up to 115 GeV/c2 at LEP2 . The Feynman diagrams responsible

for Z higgs-strahlung are shown in Fig. 11.2. At the Z resonance (LEP1)

the Higgs can be produced together with an off-shell Z (indicated as Z∗

in the figure), with subsequent decays of the Z∗ into leptons and quarks

(Fig. 11.2(a)). At higher centre-of-mass energies (LEP2) the role of Z and

Z∗ is exchanged and Higgs bosons can be produced in association with real

Z ′s (Fig. 11.2(b)). In e+e− collisions the Higgs bosons can also be produced

by WW or ZZ fusion, yielding a final state were the Higgs is produced in

association with a pair of neutrinos or electrons, respectively. This process

gives only a small contribution at LEP2 centre-of-mass energies, of some

relevance at the edge of the kinematic range reached by the higgs-strahlung

process.

11.3 Searching the Higgs at LEP1

The branching ratio of the Z to Higgs-fermion-antifermion is shown in

Fig. 11.3 as a function of the Higgs mass.

Since 18 million Z decays were collected by the four LEP experiments

thousands of Higgs bosons would have been produced at LEP1 for masses

lower than 50 GeV/c2. Dedicated analyses were designed for particular

mass ranges. Very low mass (and even mass-less!) Higgs can be inves-

tigated by selecting acoplanar lepton pairs originating from the Z∗ decay
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Fig. 11.2 Higgs-strahlung at LEP1 (a) and at LEP2 (b).

Fig. 11.3 Branching Ratio of Z → Hff̄ at the Z resonance.

(Fig. 11.4(a)). Indeed for Higgs masses below the e+e− threshold (2me) the

Higgs decay width is so small that it would leave an apparatus of the size

of a typical LEP experiment before decaying. In this case the decay prod-

ucts of the recoiling Z∗ must be detected. Above the e+e− threshold the

acoplanar lepton selection is still useful to select Higgs candidates: Higgs
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decaying to lepton-antilepton accompanied by a Z∗ decaying to a neutrino-

antineutrino pair would be detected by such a search. To deal with higher

masses, where the Higgs can decay to hadron pairs, the search is general-

ized to acoplanar charged tracks pairs (Fig. 11.4(b)). The selection of low

multiplicity mono-jets (Fig. 11.4(c)) is useful to extend the search to Higgs

masses up to about 20 GeV/c2. Thanks to the high rate and the very dis-

tinctive signatures, LEP1 searches below 20 GeV/c2 were easy and it was

possible to design analysis cuts aimed at rejecting all background, while

keeping an high efficiency for the potential Higgs signal. As can be seen

from Fig. 11.1, for Higgs masses above 10 GeV/c2 most of Higgs decays

are to bb̄ quark pairs: with increasing Higgs masses their hadronization

products gets more and more separated and tend to cluster into a pair of

separated jets. Therefore the selection of Higgs candidates for masses above

20 GeV/c2 was based on the search for two jets recoiling against the Z∗

decay products. The relevant topologies are sketched in Fig. 11.5. The

higher rate is given by the four jet topology (Fig. 11.5(c)), but at the Z

resonance the high background of hadronic Z decays makes this channel

much less sensitive than the acoplanar jet channel (Fig. 11.5(a), the Z∗

yields two neutrinos and missing energy) and the two-jet and two-lepton

channel (Fig. 11.5(b), the Z∗ yields two leptons). The latters were used

for LEP1 searches: a total of 13 events were detected with an expected

background of 20.6 events [155], [156], [157] [158]. The main background

was due to in the missing energy channel where b tagging was used and to

four-fermion processes in the two-lepton channel. At the end of LEP1 the

combined 95% confidence level lower limit on the Higgs boson mass was

65.6 GeV/c2 and the entire region below this limit could be excluded [159].

Before describing the Higgs searches at LEP2, it is useful to briefly recall

the main methods to set Confidence Levels.

11.4 Setting confidence levels

When searches for a new phenomena yield a negative result, the problem

arises of setting statistically well defined confidence levels (CL) for exclusion

limits. The solution is straightforward for counting experiments with no

background as, for example, the Higgs searches at LEP1 for masses below

20 GeV/c2. In this case the probability of observing 0 events when s events

are expected is given by the Poisson distribution as e−s. A signal hypothesis
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(a) (b)
(c)

Fig. 11.4 Search of the Higgs boson at LEP1 in the low mass region: main topologies
for the final state.

Fig. 11.5 Topologies used in the search of the Higgs boson at high masses at LEP.

is excluded at a certain confidence level CL when

1 − e−s ≤ CL . (11.3)

It turns out that for negative searches with no background all regions where

more than 3 signal events are expected can be excluded at 95% confidence

level.

The problem is slightly more complex when the expected background is

different from zero, as in the Higgs searches at LEP1 above 20 GeV/c2. In

this case one can define

CLs+b = (

n
∑

i=0

[e−(s+b) (s+ b)i

i!
]) (11.4)

where s is the number of expected signal events, b the number of expected

background events and n the number of events observed by the experiment.
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In analogy with Eq. (11.3) one could use 1 − CLs+b ≤ CL to define the

confidence level; this criterion, however, has a drawback since it may happen

that the number of observed events is lower than the expected background

because of statistical fluctuations, as in the final result of the Higgs searches

at LEP1 described in the previous Section. To avoid this problem a new

confidence level related to background only is defined as

CLb = (

n
∑

i=0

[e−(b) (b)
i

i!
]) (11.5)

and the ratio

CLs =
CLs+b

CLb
(11.6)

is used to set the exclusion limits. A signal hypothesis is therefore excluded

at a certain confidence level CL when

1 − CLs ≤ CL.

It turns out that CLb is also a useful tool to analyse results where an

excess of events is observed. Indeed in this case 1−CLb gives the probability

that the observed excess is due to a positive fluctuation of the background

and a very low value of this quantity gives evidence of a new phenomenon.

Often the analysis of the experiment requires more than simple counting

of events, as in the Higgs searches at LEP2 described in the next Section.

A shape term modifies the simple Poisson distribution when not only the

information concerning the number of events is used, but other variables

related to the properties of the collected events are used [154]. These can

be, for example, the invariant mass of the Higgs candidate decay prod-

ucts, or the b tagging probability of the jets originating from the Higgs

candidate. The additional information can be taken into account by using

the likelihood ratio Q = Ls+b

Lb
, where Ls+b is the likelihood for the sig-

nal+background hypothesis, while Lb is the likelihood for the background

only hypothesis. One use as test statistic

Q =
Ls+b

Lb
=
e−(s+b)

e−b

n
∏

i=0

sfs( ~Xi) + bfb( ~Xi)

bfb( ~Xi)
(11.7)

where the functions fs and fb are the probability density functions that

a signal or background event will be found in a given final state with the
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set of properties (invariant masses, b tagging values, etc.) described by the

vector of values ~Xi. The likelihood ratio is a function of the assumed Higgs

mass, which enters in Q through the cross section used to compute s. If

the terms fs and fb are neglected Eq. (11.7) reduces to the simple ratio

of Poisson probabilities to observe n events. The confidence levels can be

defined similarly to the simple Poisson-distribution case, the compatibility

of the experiment with a given hypothesis can be determined by calculating

the probability of obtaining a likelihood ratio smaller than the one observed.

In general the computation cannot be performed analytically and Monte

Carlo techniques are used to compute CLs and CLb from the observed

likelihood ratio.

11.5 Higgs searches at LEP2

As already mentioned, in e+e− collisions above the Z resonance Higgs

production is dominated by the higgs-strahlung process of Fig. 11.2(b).

Since a real Z has to be produced in association with the Higgs boson

the production rate is sharply falling above the kinematic limit given by

mH ∼ √
s−mZ , as shown in Fig. 11.6.

Therefore at LEP2 the effort to reach the highest possible energy was

particularly important [159], with a record center-of-mass energy of 209

GeV that was exceeding any initial expectation. For Higgs boson masses

relevant at LEP2 (Fig. 11.1) the main decay channel is bb̄ with a branching

ratio of about 74% for a mass of 115 GeV/c2. It follows that at LEP2 b

tagging (Chapter 7) was extremely relevant for Higgs searches and vertex

detectors were upgraded in the four LEP experiments to increase the sen-

sitivity of Higgs searches. The decay topologies can be classified in terms

of the Higgs and Z decays, as shown in Fig. 11.5:

• Four-jet channel. The Higgs is decaying to bb̄ and the Z to a pair

of quarks. This is the dominant channel, the expected rate being

about 51%. Contrary to the LEP1 case this channel gives the high-

est sensitivity, when b tagging is used. The main backgrounds are from

four-fermion WW and ZZ production, two-fermion bb̄ production with

emission of two-gluons and two-fermion qq̄ production with an emitted

gluon splitting into a bb̄ pair.

• Missing energy channel. The Z is decaying to a pair of neutrinos. At

the kinematic limit this channel has a contributions from WW and ZZ
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Fig. 11.6 Expected events as a function of the Higgs mass at
√
s = 206 GeV for an

integrated luminosity of ≈ 200 pb−1. The dashed line shows the contribution of the
WW , ZZ fusion processes.

fusion. The expected rate is about 15%. The main backgrounds are

ZZ production and the Zγγ process when the photons are at low angle

and undetected in the apparatus.

• Leptonic channel. The Z is decaying to a pair of electrons or muons.

This is in principle a very clean channel, but the rate is rather poor

(∼ 5%). The main background is ZZ production.

Another channel used in LEP2 searches was H → τ τ̄ (BR ∼ 7%). In

the tau selection both cases (H → bb̄,Z → τ τ̄ ) and (Z → bb̄,H → τ τ̄ )

were considered, the total expected rate being ∼ 7%. An important issue

concerns the Higgs mass reconstruction, which was performed in all decay

channels. Since in a e+e− collider the total center-of-mass energy is known

and the total momentum of the event is zero, energy-momentum conserva-

tion can be imposed by means of a kinematic fit, improving considerably

the experimental resolution on the reconstructed Higgs mass. It has to be

stressed that the e+e− → ZZ process represents an irreducible background.

For a mass mH = mZ the Higgs boson is indistinguishable from the Z on
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Fig. 11.7 Reconstructed Higgs mass at
√

(s) ∼ 206 GeV by the Aleph experiment.

an event-by-event basis and would have shown up at LEP2 by an excess

of events on the Z peak which is clearly visible in the mass distribution of

reconstructed Higgs candidates (Fig 11.7).

The final results of the four LEP experiments [161], [162], [163], [164],

were subject to a statistical analysis, following the concepts described in the

previous Section. The combined confidence level CLs is given in Fig. 11.8,

showing that a Higgs boson mass below 114.4 GeV/c2 is excluded at 95%

CL [165]. The expected 95% CL sensitivity, computed from Gedanken

experiments was 115.3 GeV/c2. The excluded region is about 1 GeV lower

than expected because of three events in the four jets channel seen by the

ALEPH experiment in the region around 115 GeV/c2.

11.6 The Higgs mass from electroweak fits

Electroweak radiative corrections depends logarithmically on the Higgs

mass, as discussed in Chapter 3. In analogy with the indirect determi-

nation of the top mass (Section 10.3), the W mass sensitivity is taken here

as an example. From Eqs. (3.312), (3.309) and (3.310) one gets
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Fig. 11.8 Final signal confidence levels on the Higgs mass from the direct LEP search.
(Courtesy of the LEP Higgs Working Group.)

∆rW (Higgs) (large mH) ' 11GFm
2
W

12
√

2π2
ln
mH

mZ
(11.8)

where the superscript Higgs indicates that only the leading Higgs depen-

dence is shown. The above relation is valid for large Higgs mass only. The

general expression can be found in [52]; the dependence of the predicted

W mass as a function of the Higgs mass is shown in Fig. 9.11, where the

logarithmic behaviour is clearly seen.

Among the observables described in this book the effective electroweak

mixing angle, extracted from the LEP-pole asymmetries (Fig. 8.11), shows

the largest sensitivity on the Higgs mass. The experimental determination

of sin2 θW,eff and of the W mass are compared to the Standard Model pre-

diction in Fig. 11.9. The measurements are consistent with a light Higgs
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boson. In the same figure the tree-level prediction (with the running of α

included) is shown, providing a strong evidence of the need of genuine elec-

troweak radiative corrections to describe the data, as seen also in Fig. 9.1.

In Section 10.3 it has been shown that from a global fit of Z-pole ob-

servables [142] and the precise determination of the W mass the logarithm

of the Higgs mass can be constrained to a value corresponding to [143]

mH = 137+228
−76 GeV/c2. It has also been observed that the direct determi-

nation of the top mass greatly helps in constraining the mass of the Higgs,

since the large quadratic term is fixed by the measurement. If the top mass

value given in Ref. [141] is used (mt = (170.9± 1.8) GeV) one gets

mH = 85+37
−27 GeV/c2 ,

corresponding to

mH < 144 GeV/c2

at 95% CL. Figure 11.10 shows the variation of the χ2 value of this

global electroweak fit with respect to the χ2 value at the minimum, as

a function of the Higgs mass. When the limit from the direct search

(mH > 114.4 GeV/c2) is combined with the electroweak global fit in a com-

mon likelihood function, the upper bound increases to mH < 182 GeV/c2.

It is instructive to compare the direct measurements of the top and W

masses to values computed from the dependence of all other measurements,

when their dependence on electroweak radiative corrections are used. As

shown in Fig. 11.11 the direct and indirect determinations are consistent,

showing a success of the electroweak theory. In both cases a light Higgs

boson is favoured.

11.7 Model independent analysis of electroweak data

The bounds on the Higgs boson mass presented in the previous Section

were obtained assuming the validity of the Minimal Standard Model. The

impressive wealth of precision measurements collected in the past 25 years

and described in this book provide a test of the model at one-loop level

in perturbation theory. An example of such a test is given in Fig. 11.11

where direct measurements are found to match indirect determinations from

radiative corrections. Nevertheless is important to verify to which extent

the experimental measurements are consistent with alternative models and

to present the data in a model-independent form.
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In Chapter 3 and 4 it has been shown that there are four parameters

(ε1, ε2, ε3, δbV ) related to the relevant loop corrections contributing beyond

tree level to the prediction of the measurements described in this book. The

first (ε1) and the third (ε3) include the dominant mt and mH dependences,

the second (ε2) has a logarithmic dependence on the top mass and the last

one (δbV ) is related to the quadratic mt dependence of the Z → bb̄ vertex

correction.

In order to describe the data in a model independent form it is useful to

relate the ε variables to measurable observables, sensitive to the dominant

contributions. The W mass, the lepton asymmetries (or sin2 θW,eff ), the

Z leptonic width and Rb are natural choices. Relating ∆κ′ and ∆ρ to,

respectively, A0
FB(`) and Γ` as

A0
FB(`) → sin2 θW,eff = s20(1 − ∆κ′)

Γ` → gAl
= −1

2
(1 +

∆ρl

2
)

(11.9)

one can define [167]

ε1 = ∆ρl

ε2 = c20∆ρl +
s20

c20 − s20
∆rW − 2s20∆κ

′

ε3 = c20∆ρl + (c20 − s20)∆κ
′ (11.10)

where ∆rW includes the relation to the W mass. The b couplings can be

described by an alternative parameter εb that was introduced in Ref. [168]

and is related to the b width as follows

Γb → gAb
= −1

2

(

1 +
∆ρl

2

)

(1 + εb)

gVb

gAb

= (1 − 4

3
sin2 θW,eff + εb)/(1 + εb).

The connection with the parameters of Chapter 4 reads, essentially

εb =
1

2

2 − 8
3s

2
0 + 16

9 s
4
0

1 + 8
3s

2
0 − 32

9 s
4
0

δbV ≈ 1

2
δbV ; (11.11)

from Eq. (4.39) and δbV = (ε1b − ε1) one can derive
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εb ≈
1

2
(ε1b − ε1) = Re

(

Γ
µ(Z)
b

(

m2
Z

)

, j
µ(Z)
b

)NU

. (11.12)

These “experimental” definitions of the ε variables are identical, within

the MSM, to the definitions of Chapter 3 and 4. In other models, because

of the contributions of yet undiscovered particles, the vacuum polarization

terms could be different. The ε2 and ε3 variables, in particular, do not have

quadratic top mass contributions and have enhanced sensitivity to physics

beyond the MSM.

The experimental results presented in this book can be expressed, in

terms of the ε variables, as [142]

ε1 = (5.54± 1.0) × 10−3

ε2 = (−8.9± 1.2) × 10−3

ε3 = (5.34± 0.94)× 10−3

εb = (−5.0± 1.6) × 10−3

in good agreement with the Standard Model expectations, as shown in

Fig. 11.12 for two of them. As expected from previous Section, a light

Higgs boson is preferred.

The experimental results can be compared to extensions of the Stan-

dard Model. The Minimal Supersymmetric Standard Model (MSSM) [166]

assumes the existence of supersymmetric partners of ordinary particles.

Supersymmetry transforms bosons in fermions and fermions in bosons. It

is a complete and consistent model, providing a framework for unification

of gauge interactions. In its minimal version two Higgs field doublets are

required, leading to five Higgs bosons (three are neutrals, two are charged

ones). The model has a large number of free parameters. The prediction of

this model for ε1 and ε3 when its parameters are set to yield massive part-

ners of the ordinary fermions (i.e. massive sparticles) is shown in Fig. 11.13.

For this set of parameters the model predicts at least one light neutral

Higgs boson, and agrees with the experimental data, similarly to the MSM.

On the other hand simple versions of technicolor models [169], where the

Higgs boson is replaced by colour condensates, lead to large and positive

corrections to ε3, disfavouring the models, as seen in Fig. 11.13. The Rb

measurement is also in disagreement with such models, since they imply a

large and negative correction to εb which is not observed.
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the mass of the W boson (mW ) and of the top quark (mt). The 68% CL allowed regions
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Fig. 11.13 The 39% CL contour for ε1 and ε3 compared to the prediction of the Minimal
Supersymmetric Standard Model (with massive supersymmetric particles) and to the
prediction of a simple technicolor model. (Courtesy of Manel Martinez.)
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Chapter 12

Conclusions and Perspectives

The authors of this book have described, for the benefit of the patient

readers, some relevant aspects of the physics of the W and Z bosons. It has

been shown that a gauge theory of electroweak interactions, also known as

the Standard Model of electroweak interactions, describes all experimental

features of W and Z physics. The experimental tests of the electroweak

theory, ongoing since 30 years, have reached their mature stage, thanks to

the precision measurements performed at LEP, SLC and Tevatron. Some

of these measurements are of unprecedented precision; as an example it

can be recalled that the mass of the Z boson is presently known with the

precision of ten part over a million and it is one of the most precisely

measured physical observables. As a consequence of this remarkable effort

the electroweak theory has been tested at the one-loop level.

At the time of writing this book the most important missing actor, from

the experimental point of view, is the Higgs boson. If the Standard Model

is assumed, however, its mass is constrained by existing measurements in

the region below ≈ 200 GeV/c2, with good confidence level. Direct searches

at LEP have excluded the region below 114 GeV/c2, and some interesting

events have been detected at the edge of LEP sensitivity; if the Higgs

boson exists, it is unlikely that will escape detection at the Large Hadron

Collider (LHC), whose operations are due to start in summer 2008. The

LHC will collide two beams of protons of 7 TeV and is expected to collect

an integrated luminosity of 300 fb−1 in 5 years. The Higgs boson would

be copiously produced by gluon-gluon fusion and detected by its decay to

WW (∗) or ZZ(∗) if its mass is above 130 GeV/c2. For lower masses Higgs

detection will be more tricky, but its decay through the γγ channel should

be feasible with adequate luminosity and well understood detectors.

Additional insight on the Higgs boson and its properties will be gained

403
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at a future high energy e+e− linear collider. The International Linear

Collider (ILC), based on the TESLA technology is presently under study.

It is expected to reach a centre-of-mass energy of 800 GeV, collecting an

integrating luminosity of 500 fb−1. The main production mechanism would

be the higgs-strahlung process, allowing to study the mass region below 700

GeV/c2. At the ILC a precision measurement of the Higgs mass could be

performed by direct reconstruction from the decay products, reaching a

precision below 100 MeV for a wide mass range.

When the Higgs is discovered, matching its mass with electroweak in-

direct predictions will be important, and could potentially signal physics

beyond the Standard Model, unveiling itself through loop corrections. At

present one of the electroweak observables giving the best constraint on the

Higgs mass is the electroweak mixing angle. Additional information on this

parameter can potentially be gained at the LHC by using Z bosons pro-

duced at very high rate through the Drell-Yan mechanism. The electroweak

mixing angle could be measured by the forward-backward asymmetry of Z

decays to electron and muon pairs. Such a measurement requires the knowl-

edge of the initial quark direction; since at LHC the anti-quark can only

come from the sea, the Z are expected to be boosted in the same direction

as the incoming quark: therefore the Z boost gives a natural definition of

the quark direction. The analysis of this channel requires, however, a care-

ful study of the quark and anti-quark PDF’s and, while being potentially

promising because of the small statistical error, will be rather challenging

from the point of view of the systematic uncertainties. A sizeable step in

the knowledge of the electroweak mixing angle will have to wait for a high

luminosity run at the Z resonance with the ILC. Indeed with this machine

independent polarization of both beams is expected to be available, and

ALR can be measured independently of any external measurement of po-

larization. This would probably shed light on the apparent inconsistency

between the determinations of sin2 θW,eff coming from ALR and from the

b forward-backward asymmetry.

The most important improvements in constraining the Higgs mass at

LHC are likely to come from precise measurements of theW and top masses.

The two observables are presently known with an uncertainty of 25 MeV/c2

and 1.8 GeV/2, respectively, and are giving similar contributions to the

Higgs mass constraint coming from the most recent electroweak fit. Im-

proved measurements of these two parameters will come with the final re-

sults of Tevatron Run II; the LHC should ultimately reach an uncertainty

of 10 MeV/c2 on the W mass and of about 1 GeV/2 on the top mass.
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Such a precision requires a detailed understanding of many systematic un-

certainties, as in both cases the statistical error will be very low thanks

to high cross sections (30 nb for W inclusive production, including the

branching ratio for W into electron and muon decays, and 830 pb for tt̄

production). In particular for the W mass the limiting factor is likely to

be the knowledge of the lepton energy scale, while a good control of the jet

energy scale will be particularly important for the top mass measurement.

A further increase of precision is expected at the ILC. The W mass could

potentially be measured with a 6 MeV error from a high-statistics WW

threshold scan, single W production at high energy could give additional

information (the Weν cross section at 500 GeV is 5 pb). The top mass

could be measured with very high precision by means a top-threshold scan

at 350 GeV, reaching an experimental precision of the order of one permil.

Lower energy experiments could have an impact to the global elec-

troweak fit through improved determination of the fine structure constant at

q2 = M2
Z . This important ingredient is currently limited by the knowledge

of the hadron contribution to the vacuum polarization, which is computed

using lower energy e+e− data. The error on the extrapolated Higgs mass

coming from present data is equivalent to an uncertainty of about 10 MeV

on the W mass. It will be an important source of error in electroweak fits

when W mass measurements reach a similar uncertainty. A set of measure-

ments of the e+e− hadronic cross section from the ππ threshold up to the

Υ resonance, resulting in a determination of the e+e− cross section at 1%

level, would match an error of 1 MeV on the mass of the W boson.

Triple vector-boson couplings have been shown to exist and to be con-

sistent with Standard Model expectations. The e+e− → W+W− and

e+e− →Weν differential cross sections, measured at LEP, have determined

WWZ and WWγ couplings with a precision of about 1%. At LHC vector-

boson pair production, and in particular Wγ and WZ events, will allow

a completely independent measurement of WWZ and WWγ triple gauge

couplings, without any hypothesis linking the two sectors. Typical observ-

ables will be the pt distribution of high energy photon or Z associated with

a semileptonic W decay. Good control of the shape of such distributions,

and reliable expectations including higher order terms (such as O(αs) and

O(α) radiative corrections) will be required. The precision is expected to

be better than LEP (in particular for λZ and λγ ) but unlikely to reach the

permil accuracy needed to test Standard Model loop contributions. Pro-

duction of W pairs and of single W at high energy in e+e− collisions will be

thoroughly tested at future liner colliders. Detailed analyses of integrated
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cross sections and of angular distributions, using techniques similar to that

employed at LEP, will allow surpassing the 10−3 precision for all couplings,

challenging theoretical TGC calculations at one loop level.

The Large Hadron Collider will open a new window on electroweak

measurements thanks to the large yield of top quarks. Millions of tt̄ events

are expected to be detected and analysed by ATLAS and CMS, comple-

mented by an equally large amount of single top events, thanks to the large

cross section of this electroweak-production channel (about 320 pb) at the

LHC. Beyond the measurement of the top mass, these sample will be used

to perform detailed studies of top properties. An important example is

the measurement of the fraction of longitudinally polarized W bosons in

top decays, precisely predicted by the electroweak theory. As longitudinal

W bosons are closely related to the mechanism of electroweak symmetry

breaking this is an important test of the theory. This test is particularly

interesting in single top events produced through W-gluon fusion, since in

this case the top is almost completely polarized, allowing precision measure-

ments of the helicity both at production and decay. Let’s finally mention

that another sector would be open if associated tt̄H production is detected,

allowing the direct measurement of the ttH Yukawa coupling. In conclusion

the top quark is likely to take soon the witness from W and Z bosons in

precision tests of the electroweak theory.

So far, we avoided to discuss the possibility that new physics, beyond

the Standard Model maybe soon discovered. In particular we have not

mentioned the fact that neutrinos are not massless, which nowadays is

commonly accepted [170], and we have only briefly mentioned the existing

proposals of Supersymmetric models. In fact, both Tevatron and LHC are

notoriously preparing a huge experimental effort aiming to produce, and

identify, supersymmetric particles. Although this topic is clearly beyond

the purpose of our book, we cannot avoid to mention the fact that one

of the main arguments in favour of Supersymmetry came from the failure

of the SU(5) prediction for the numerical relationship between the three

Standard Model couplings αs, α, sin
2 θW,eff at the Z peak. From the high

precision measurements of the three couplings, the SU(5) prediction, based

on the attractive idea of grand unification, had to be discarded. A possible

way out was the ad hoc introduction of a new set of supersymmetric part-

ners, modifying the renormalization group equation coefficients. Although

no experimental evidence of Supersymmetry has been nowadays reached,

a widespread hope exists in the physics community that LHC will make

this spectacular discovery. Then a new era of precision measurements of
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the discovered entities at the ILC would open, with a rôle versus LHC

quite similar to that assumed by LEP1 versus UA1, UA2. Whether this

fascinating scenario will be reached, is still not known. Perhaps, different

fundamental discoveries will be achieved at LHC. In any case the general

feeling is that the next decade appears to be, for the history of physics, an

exciting one.
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