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Preface

It would be hard to persuade a new student beginning particle physics in
2007 that there once was a time when there was not yet a Standard Model.
How else, would he object, could one explain all known features of strong,
electro-magnetic and weak interactions? The absence of Flavour Chang-
ing Neutral Currents (FCNC), the universality of weak charged current
interactions, the smallness of the K — K© mixing, the existence of the
ATT resonance, the apparently infinitely rising neutrino cross-section, the
Al = % rule in weak decays, the hadron spectroscopy respecting the eight-
fold way, CP violation... How could you live for such a long time with all
these problems without inventing the Standard Model which solves them
all?

Of course, shall we older people answer, it took more than ten years from
the original idea of the existence of the W boson [1] to the realization that
an experimentally successful model with weak isospin symmetry [2] would
imply the existence, not only of Neutral Weak Currents but also of charmed
particles [3, 4], and a few more years for 't Hooft [5] to demonstrate that
such a model would constitute a mathematical consistent theory. This we
believe is the main answer to our student’s surprise: the solution of the puz-
zle required i) two new experimental discoveries, that of Neutral Currents
and that of Charm; and ii) a theoretical breakthrough, the renormalization
of the Gauge Theory.

The dam broke in 1973 with the observation of Neutral Currents. The
sequence of events that followed this discovery is really breathtaking: charm
in 1974, tau lepton in 1975, beauty in 1977, direct observation of the W
and Z bosons in 1983. The model was soon universally accepted, especially
when more precise verifications of its quantitative predictions were made in
atoms [6] and in electron nucleon scattering [7]. For the last 25 years the
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viii The Physics of the Z and W Bosons

Model has met a long series of experimental verifications, proving itself an
unbelievably successful scheme.

So successful the model is, that it would be perhaps even harder to
persuade the aforementioned beginner physicist that a time could well come
when there will be no more a Standard Model. Why should one abandon
such a successful scheme, after all?

As a matter of fact, it has been argued by many respectable physicists
that, although the Standard Model is in contradiction with no known ex-
perimental result in particle physics today, it certainly leaves several funda-
mental questions unanswered; among these, the fact that it requires as ar-
bitrary input so many different particle masses. Also, the observed baryon-
anti-baryon asymmetry in the Universe is very hard to explain within its
framework. Furthermore, the role and the nature of the Higgs particle
or even its existence are far from being clarified. Without entering now
the details of these deep questions, we feel that, in analogy with the pre-
Standard Model situation, a solution to these problems would require a new
extraordinary combination of i) experimental discoveries, and ii) theoretical
breakthroughs.

The aim of this book is to illustrate, in a pedagogical way, the most
precise experimental verifications of the Standard Model to date. These
were obtained by the thorough study of the two massive resonances, whose
role in the model turns out to be crucial : the Z and the W bosons.

As we shall see, the results of campaigns of experiments at LEP and
SLC, as well as at pp colliders, have established in a definitive way many
features of the Model, and probed it with an unprecedented accuracy. The
main results of these investigations will be discussed in detail in this book,
with special emphasis on precise measurements of several quantities sensi-
tive to electroweak radiative corrections.

This last point, on one hand, provided beautiful confirmation of the
validity of the theoretical scheme. On the other hand, the sensitivity of
Electroweak radiative corrections to virtual particles, albeit too massive to
be directly accessible to experimental observation, has led to the predic-
tion of the top quark mass, well before this particle was observed directly
in pp collisions. One must honestly say that a major building block of
the Standard Model is still missing, since the Higgs boson has not yet been
discovered in direct searches. However, once the top quark mass was exper-
imentally known, the interest of radiative corrections as indirect probes of
unknown effects was considerably enhanced, since the only remaining open
question, at least in the framework of the Standard Model, would be that
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of the Symmetry Breaking mechanism. In fact, from a combined analysis
of several independent measurements, it has become possible to reach two
fundamental conclusions. The first one is that, if the unknown mechanism
of symmetry breaking were different from that advocated by the Standard
Model, its visible manifestations would be practically indistinguishable at
the available level of precision. The second conclusion is that, if the Stan-
dard Model is correct, the Higgs boson must be relatively light, i.e. well
accessible to the next generation of colliders.

This book begins with a short introduction to weak interactions. The
main virtues of Fermi theory are reviewed, together with its main defi-
ciencies that led to the introduction of the intermediate massive vector
bosons. The essential features of the Standard Model, in particular the
Higgs mechanism, are subsequently quickly summarized. The discussion of
specific processes is organized in the book in the following way: in the first
part, we discuss the physics of the Z boson, starting with the tree level cal-
culation of electron-positron annihilation into fermion pairs, ete™ — ff,
given in Chapter 2. This contains the expressions of total cross-sections,
angular distributions, Z partial decay widths. Particles polarization effects,
especially longitudinal polarization, are given.

Since this is one of the main motivations of precision electroweak mea-
surements, it is natural to continue in Chapter 3 with a pedagogical de-
scription of the virtual electroweak radiative effects. A one-loop treatment
is given here, working in the approximation of massless final fermions, with
goal to provide understanding of the structure of these virtual effects, and
of why and how they are sensitive to heavy physics, symmetry breaking
and possibly new particles. A particular attention is given to the run-
ning of agep, as this constitutes an important source of uncertainty. The
specially relevant case of massive final fermions is treated in detail in Chap-
ter 4, with emphasis on bb production. The main results of Chapters 3 and 4
are summarized in a table that concludes the description of the one-loop
treatment.

After a short description of the main experimental tools for Z and W
physics, i.e. high energy colliders and detectors, the detailed discussion of
the high-precision tests of the electroweak theory starts in Chapter 6. This
Chapter describes what constitutes arguably the most unique achievement
of LEP: the measurement of the Z lineshape. A discussion of the global
strategy, including the estimate of real radiation of photons, that plays a
very important role in this particular set of measurements, is followed by a
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detailed account of the measurements of cross-sections, including luminos-
ity monitoring and Z decay event selection. The first historical result of
LEP and SLC, the determination of the number of light neutrino species, is
described and commented. From the lineshape one obtains precise determi-
nations of the Z mass and width, that will probably remain unchallenged
for some time, and a complete set of Z leptonic and inclusive hadronic par-
tial widths. In Chapter 7 the main experimental issues involving Z decays
to heavy quarks are discussed. The necessary tools related to beauty and
charm quark tagging are introduced. These sophisticated methods allow,
for instance, the precise determination of the partial Z decay into bb and
of the b and ¢ quark asymmetries, whose role for the high precision tests
turns out to be particularly relevant. In Chapter 8 we come to some of the
observables that are most sensitive to Electroweak Radiative Corrections
involving the Higgs boson, in particular we shall consider the longitudinal
polarization asymmetry, measured at the SLC, the 7 lepton polarization
and the unpolarized forward-backward asymmetries of leptons and quarks.
Chapter 8 ends with a summary of all measurements of the leptons and
quarks couplings.

In the following Chapter (Chapter 9), the focus moves from the Z boson
to the W boson. After a description of W production processes at colliders,
a discussion is given of one of the most important parameters measurable
at these machines, the W mass. In fact, the production of W bosons opens
the possibility of performing direct tests of the sector of the electroweak
interactions related to gauge boson-gauge boson couplings. The precision
measurements of the triple gauge couplings required by the model are here
discussed in some detail.

In the final Chapters of the book, the direct production of the top quark
and of the Higgs boson are discussed; results are compared to bounds from
electroweak precision tests. After a brief review of top physics, mostly de-
voted to its discovery and to the measurement of its mass at the Tevatron
(Chapter 10), a detailed description of the searches for the Higgs boson at
LEP is given in Chapter 11. This is followed by a discussion about the
indirect bounds on the Higgs boson mass, and by the results of a model-
independent analysis of electroweak data. A short conclusive Chapter 12
discusses the outlook for further improvements in the domain of high pre-
cision tests at future colliders.

R. Tenchini
C. Verzegnassi
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Chapter 1

The Standard Model of Electroweak
Interactions

1.1 Weak interactions in the original Fermi approach

For a long period of time, weak interactions were described by the so called
Fermi theory, that was essentially based on the use of an effective four-
fermion interaction Lagrangian £, with a weak coupling constant to be
conventionally called Gp. This Lagrangian was able to incorporate and ex-
plain in a remarkably satisfactory way the major part of the experimental
features of weak interactions for several years after its proposal. In partic-
ular, it was possible to give an operative meaning to the coupling constant
GF by relating it rigorously to the experimentally measured muon weak
decay. Given this operative definition of G, and following the Galilean
“provando e riprovando” philosophy, an impressive number of theoretical
successful predictions were given for processes describable by charged weak
fermion currents. The latter quantities had two special features, a) their
formal expression was similar to that of the electromagnetic current, i.e.
terms transforming like Lorentz four-vectors were involved, and b) a spe-
cial combination of vector and axial vector terms was required to meet the
experimental existing evidence. This was officially called the V-A form,
and corresponded to the typical expression, e.g. for a lepton component ¢,

JS,/I;) = 1Lljf)/a(]- - 75)1#4 (1].)

L. Analogous expressions for quarks were

where vy is the /-type neutrino
eventually introduced and successfully developed. As one notices imme-
diately, the effective fermion currents, that generalize Eq. (1.1), can be

identically re-expressed in terms of left-handed fermion fields defined as

I The conventions of Ref. [8] are followed in this book. The representations of the v and
Pauli matrices can be found in Section 2.1.
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(1 —=s)¢¢ (1.2)

N =

VL =
since
Jé N 2wup"/aw€L = 2J(§) (13)

where we have used the definition

JS} = Yy, LYaer

and the identity 7,(1 —v;5) = 5(1 + v5)7a(1 —v5). One defines also right-
handed fields as

Yrn =5

For massless fermions, the definitions of Egs. (1.2),(1.4) also correspond
to the two different spin orientations. This point will be discussed in Sec-
tion 2.2.

What we can say at this stage is that a large amount of weak interaction
processes can be satisfactorily described assuming that charged weak cur-
rents exist that are exclusively made of left-handed fermion fields. In terms

14 75)¢ - (1.4)

of these currents, the effective Fermi Lagrangian is conventionally written
in the form:

L ZJ(W )" () + hee. (1.5)

Clearly, the possible existence of weak interaction processes, related to neu-
tral weak currents, is not taken into account by the Fermi Lagrangian. Low
energy charged current processes, however, are satisfactorily described by
Eq. (1.5). As already mentioned the muon decay is a particularly relevant
example. The matrix element of the process p1~(p) — e~ (k)7e(q1)vu(q2) ,
where p is the four momentum of the decaying muon and k, g1, g2 the four
momenta of the electron and two neutrinos, respectively, can be computed

from Eq. (1.5) as
M = fa JI) JWet (1.6)

The matrix element squared, gives (the detailed calculation can be found
in [9])
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SIM|? = 64G%(paqf) (kpdh) (1.7)

leading to the muon decay width

2
T ae® (1.8)

where the last term is the three-body phase space. Integrating over the
neutrino four momenta yields the energy (FE) spectrum of the electron

2 05

m
92 (3 - 2y)y°dy (1.9)

where y = E/Eqx = 2£ is the fractional electron energy. Equation (1.9)
is experimentally verlﬁed with high precision. Indeed the most general form

dl'(y)dy =

that can be computed assuming Lorentz invariance is [10]

2,5

Gim
Ay = S (1= y) o3 - w)lyPdy (110)

that is reduced to Eq. (1.9) if p, usually called Michel parameter, equals
0.75. The experimental measurements give p = 0.7518 & 0.0028 [11] in
agreement with the Fermi Lagrangian. The decay of polarized muons has
been also studied by accurate experiments. The electron angular distribu-
tion can be studied as a function of the direction of the emitted electron
71 with respect to the muon polarization 77 (both vectors are unit vectors).
Defining cosf = 1 - 1] the electron angular distribution, integrated over the
electron energy can be written as

dl'(cosf) 1

1 3
with the asymmetry parameter £ =1 for the Fermi Lagrangian. The mea-
surement gives [12] £ = 1.005 £ 0.009 in agreement with the expectation.
Finally the total decay width can be computed by integrating Eq. (1.9)
yielding

1- %fcosﬂ)d@ (1.11)

GZim}
= ® 1.12
19273 (1.12)
that gives the operative definition of G, measured by the muon lifetime:

the muon decays through p — e~ v, with ~ 100% branching ratio and
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Ty = % The experimental result for the muon lifetime is actually very

precise [13]
T, = (2197.03 £ 0.04) ns

and a meaningful definition of G requires Quantum-ElectroDynamic ra-
diative corrections to be computed. These are due to the emission of real
photons and to damping effects (vertex corrections) associated with virtual
photons [14] and modify Eq. (1.12) by a factor ~ (1 + 2 [2 — 7?]), where
a = €% /4t is the fine-structure constant. The QED correction to the muon
decay rate is relevant (about 0.4%) and has been accurately computed to
the second order in Feynman diagrams (two-loop corrections) in the frame-
work of the Fermi Lagrangian [15]. Equation (1.12) is modified as
o G%mi
19273

F <:§> 1+ AQ], (1.13)

where F'(x) is a phase-space term taking into account the finite electron
mass

F(z)=1-8z+8z% —2* —122%Inx (1.14)
and AQ represents the radiative corrections. Equation( 1.13) gives
Gr =1.16637(1) x 107> GeV 2. (1.15)

The 9 x 107 relative error on G from the input quantities is dominated
by the experimental uncertainty on 7.

In spite of its success in describing the muon decay and other low energy
phenomena as the 8 decay, the Fermi Lagrangian fails at high energy. Tak-
ing, as an example, v. (k1) +e(p1) — ve(k2) + e(p2) scattering (k1, p1, k2, p2
indicate the four momenta of the initial and final state neutrinos and elec-
trons) from crossing symmetry the matrix element of the process can be
readily computed from Eq. (1.6), giving

SIM|? = 64G % (prakf) (p2sky) (1.16)
and the related cross section is computed from

_ XM
~ A(kipy)

where &) represent the two-body phase space.
In the centre-of-mass frame Eq. (1.17) yields

do do® (1.17)
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d G2 (s — m2)2
do _ Gr (s=me)” (1.18)
dQ)  4n? s
where s is the squared centre-of-mass energy. The integration over the
angles, neglecting the electron mass, yields

2
o= %8. (1.19)

o
In the laboratory frame, assuming the target electron at rest, s =
2meFE,, showing that the cross section grows linearly with the neutrino
energy, as experimentally verified. Equation (1.19), however, is bound to
violate unitarity constraints, as can be seen by relating it to the maxi-
mal cross section expected by the optical theorem. Since, as shown by
Eq. (1.18), the reaction occurs in s-wave, the optical theorem gives

4
Otot = ?Imflzo . (120)
where k = é and fj—g is the s-wave scattering amplitude, usually

parametrized as iz (ne?’® — 1), with € as a real phase and the inelastic-

ity n bounded by 0 <7 < 1. On gets

2ie

2 47
Otot < ﬁ(ﬁ‘*‘ 1) < 2 (1.21)
which compared to Eq. (1.19) yields
G% 47 167
P QP 1.22
T 5= k2 S ( )

showing that unitary is violated at s = é—’;, corresponding to a centre-of-

mass energy of the neutrino of about 500 GeV and a very large neutrino
energy (500 TeV) in the laboratory frame.

In conclusion the Fermi Lagrangian satisfactorily describes charged-
current processes at low energy, but violates unitarity, which is intimately
related to the fact that Fermi theory is not renormalizable. The description
of weak interactions at high energies requires therefore a new theoretical
scheme, that should also be able to incorporate neutral current processes.
A picture that will satisfy these two mandatory requirements will be that
with intermediate vector bosons, discussed in the following Section.
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1.2 Weak interactions and the intermediate vector bosons

From a purely formal point of view, the possibility of describing charged
weak interactions as if they were mediated by the exchange of charged spin
one bosons appears as a natural consequence of the validity of the assumed
parameterization Eq. (1.5). The latter can be actually considered as the ef-
fective parameterization, valid in the limit of negligible momentum transfer,
of the lowest order corresponding charged vector boson (CVB) formulation
derivable from the Lagrangian:

Lovp(x) = Z {J W+a( )+ h.C.} (1.23)

where W is the field operator describing a charged spin one boson and
g is its weak coupling to left-handed fermions. The condition that fixes
the aforementioned equivalence is that the original “normalization” of the
Fermi description is reproduced by the intermediate vector boson formu-
lation Eq. (1.23). In particular, the value of the muon lifetime calculated
in the latter formalism at lowest order via W exchange (formally, at zero
momentum transfer) must be numerically equal to the experimental value.
This is, in turn, related to the definition (i.e. to the numerical value) of G
given by Eq. (1.15). In terms of this precisely defined quantity, the nor-
malization condition that makes the intermediate vector boson description
acceptable is, as one can easily verify [9, 16], that:

Cr _ 9—22 . (1.24)

V2 8miy,

Equation (1.24) will be of paramount importance for the remaining part
of this book, and we shall make this point evident, very frequently, in the
next Sections. At this preliminary stage we shall only stress the fact that,
for the moment, the equality that is written only implies the parameters
of a certain Lagrangian £(g, mw ) and a quantity derived from £ at lowest
order. In other words, all quantities in Eq. (1.24) should be considered
for the moment as bare ones, and we shall return to this point later on.
Independently of this feature, the fundamental consequence that is derived
from Eq. (1.24) is that, if one wants to adopt an equivalent formulation to
the description of weak charged interactions that postulates the exchange
of charged vector bosons, these particles must be massive, myy # 0, if the
(reasonable) phenomenological requirement of reproducing the finite value
of the muon lifetime (with a non trivially vanishing g) is satisfied.
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Keeping in mind this very strong phenomenological constraint, one can
now return to the expression of the Lagrangian Eq. (1.23) and simply real-
ize the fact that it looks like an almost obvious generalization of the QED
interaction Lagrangian, with the electric charge e replaced by g, the fermion
fields replaced by their left-handed counterparts and the photon replaced
by the W¥ bosons. It appears in a sense almost natural and aestheti-
cally motivated to postulate that the Lagrangian of the weak interactions
has gauge invariance [16], like QED, with (at least) two W, gauge bosons,
electrically charged, whose presence guarantees the invariance of the La-
grangian under transformations of a certain gauge group to be identified.
Since each gauge boson is associated to one of the group generators, the
candidate group should have two generators at this stage, a requirement
that has no realistic known solution. The nearest possibility is provided
by a local SU(2) group, which has three generators, T1, Ta, T5 two of which
can be combined to produce two charged generators T+ = (T £4T5,) which
might be associated with W*. From the commutation relations obeyed by
SU(2) generators, [T}, T;] = i€”* T}, the third generator T3 can be expressed
as the commutator of the charged generators, T, T~ :

[T+, 77| =T T~ =T T+ =2T; . (1.25)

If this picture turned out to be correct, a first candidate symmetry
group of weak interactions would therefore be a local SU(2) group, whose
non Abelian nature is summarized by the commutation relation Eq. (1.25).
From the expression of charged currents given in Eq. (1.3) one can derive
the expressions of the corresponding charges (supposedly, SU(2) generators)
finding

1 1 -
T+ = 5/Jéfl}” (v)d3z = 5/2%70(1 — s )bed’x (1.26)

T— =TT (1.27)
and from Eq. (1.25) one has

T5 = i/%ﬁuﬂo(l - 75)77/111@ - l/;z’yo(l — ’Ys)@/idex, (1.28)

This shows that T3 will not change the electric charge and will be conse-
quently associated with an electrically neutral vector boson, to be coupled
in an extended Lagrangian with neutral fermion currents. In order to gen-
eralize in a consistent way the phenomenology of the charged component
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of the interaction, the involved fermions, supposedly transforming as suit-
able irreducible representations of the symmetry group, should be of pure
left-handed type. For this reason, the candidate symmetry group should
be called SU(2)r, and the corresponding generators 77", T; and T3,

A very important statement, to be made at this precise point, is that
the postulated electrically neutral gauge boson to be associated with Ts,
cannot be the photon if the assumed scenario only contains the fields of
Eq. (1.3). Actually a different scheme existed in which additional heavy
leptons were postulated, so that the commutator of the overall T+ and T~
reproduced the electric charge [17]. Without neutral currents, that model
was abandoned after the discovery of the latter ones in 1973, also because
suitable heavy leptons were not observed. The fact that the new neutral
gauge boson is not the photon is an immediate consequence of the commu-
tation relation Eq. (1.25) since, as one can easily verify, the commutator of
the charges (generators) associated with the fermion currents J(g+), Jé_) is
not the electric charge but some different, electrically neutral, quantity. At
this stage, this unknown gauge boson will be called W3, and considered as
a technical requirement of the theoretical proposal.

From a purely aesthetical point of view, it appears certainly attractive
to endow weak interactions with gauge invariance e.g. of the previous type.
In a sense, this would lead in a natural way to the beautiful idea that there
should exist a kind of unification between weak and electromagnetic inter-
actions, the latter ones being invariant with respect to a U(1) gauge group.
Leaving the discussion of electro-weak unification to the next Subsections,
we now concentrate our attention on this possibility and accept the idea
of a SU(2)r (non Abelian) gauge symmetry. One obvious and unavoid-
able problem is that such a symmetry cannot be exact , unlike the similar
case of QED, since its candidate gauge bosons must be massive. Therefore,
one must necessarily assume that SU(2), is, from the beginning, a broken
symmetry.

The simplest possibility of an explicit symmetry breaking, that would
correspond to the addition “by hand” of an extra non invariant mass term
to the Lagrangian ~ m3, W,W<, is immediately ruled out since it would
lead to a tough theoretical difficulty, given the fact that the associated field
theory would become non renormalizable, and the canonical perturbative
calculations would loose any sense. Technically speaking, this would be an
immediate consequence of the expression of the W propagator, that would
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become: ,

i Pu(q) = —i (ggg - Z;L%qvi ”ZZV) (1.29)
and would approach a constant, rather than vanishing, in the limit ¢ — oo.
This means that one must find a way of giving a mass to the SU(2), gauge
bosons without breaking explicitly the symmetry. One appealing solution
mechanism that achieves this goal is the combination of spontaneous sym-

metry breaking with the Higgs mechanism.

In the next Section we shall choose a particularly simple and relevant
example to show very briefly the main, interesting features of this deservedly
famous topics.

1.3 The Higgs mechanism in the local SU(2) gauge
symmetry case

We consider the example (that will be very useful to understand the main
features of the Standard Model, to be discussed in the next Section) of
a system of complex scalar fields, invariant with respect to a certain local
SU(2) group. The simplest case is provided by a system consisting of a cou-
ple of such fields, transforming under SU(2) as a doublet. In a conventional
notation, the scalar doublet will be associated to a column:

S’LL
P
where S, 54 are complex scalar fields. By hypothesis, S will transform
under a general local SU(2) transformation as a SU(2) doublet i.e.

§' = el %] g (1.31)
where 7, are the three Pauli matrices, that express the effect of the SU(2)
generators T, in the irreducible doublet representation.

Although this is not in principle necessary, let us consider the simplest
case of infinitesimal transformations and let us replace ay(z) by €.(z) in
this limiting situation. Then, neglecting O(e?) effects, Eq. (1.31) can be
read as:

S = (1.30)

S! T, S, Te | S
T= T = (1 — e (n) = = |7 —de ()= |7 1.32
S s [ i€ (33)2}5 ‘Sd i€ (33)2 S, (1.32)
From the known expressions of the Pauli matrices one then easily de-
rives:
Sl Su ) Sd —ZSd Su
wl| _ _ v (L.
s, ‘Sd 5 {el(x) s, + e2(x) iS. + e3(x) s, } (1.33)
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Equation (1.33) shows how the scalar doublet changes under the most
general infinitesimal transformation belonging to the local SU(2) group. In
particular, one can see the effect of each single independent transformation
€x(x) related to the corresponding generator T}, of the group.

In a quantum field theory, where the fields are local operators, the effect
of an infinitesimal (k) transformation of the group on a given field can also
be identically represented as the action of the associated generator T, in
the form

S/ = eie,{(r)TN Se—ie,{(z)T,.i (134)
that can also be written as:
S — 8~ ien(x)[Tm S] = 55(,{) (1.35)

(no summation on the index k). Equating this expression to Eq. (1.33) one
formally gets:

|, sd | 18
[TbS]—‘[Tl’Sd] =3l (1.36)
_ 1| -5,
2.51=-3| g, (1.37)
1] S,
[Tg,S]_—§}_Sd . (1.38)

Equations (1.33)—(1.38) remain valid when one “sandwiches” their left-
and right-hand members into the vacuum state and considers the scalar
fields expectation values in the vacuum (vev). When such an operation is
performed, on realizes that, provided that at least one of the “basic” vevs
(Su)o, (Sa)o is different from zero, all the three commutators of Egs. (1.36)—
(1.38), that express the change of (S)o under the three independent in-
finitesimal transformations, are non vanishing. This means that, under the
condition that either (S,)o or (S4)o is not vanishing, none of the three
generators 77 o 3 can annihilate the vacuum:

T,.0) £ 0 , K=1,2,3. (1.39)

In particular, since the fields are supposedly complex, it will be sufficient
to require that one of the components of either S, or Sy has non vanishing
vev. Defining conventionally:

Sy = 8o + 181 (1.40)
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Sq = sg + is3 (141)
one usually assumes that (sg)o # 0 and defines the real quantity:
1
(so)o = 7Y (1.42)
so that
1|0

(1.43)

Starting from Egs. (1.40)—(1.43), one can now return to Egs. (1.36)—
(1.38) and derive the following equalities (as a consequence of the reality
of v), just by taking the expectation values in the vacuum of all involved
members:

([T, s1])o = —%<50>0 (1.44)
([T2, s2])o = %<50>0 (1.45)
(ITs, sslho =~ 500 - (1.46)

Until now, no assumption has been made concerning the invariance of
the system with respect to the chosen group, and only the formal property
of transforming like a doublet has been imposed on S. If one now wishes to
postulate a symmetry of the system with respect to the SU(2) local group
transformations, and wants at the same time to retain a non vanishing vev
like in Eq. (1.42), one sees that the immediate consequence will be that the
realization of the symmetry will be of a rather particular kind. Actually,
it will still be possible to impose the invariance of the Lagrangian under
the group transformations; but for the vacuum this will not be possible,
since owing to Eq. (1.39) all the three independent local SU(2) transfor-
mations will change it. This situation is conventionally defined as that of
a spontaneously broken symmetry. More precisely, this definition is used
when at least one of the generators has this property. In our case, all three
generators have it. One should stress at this point the fact that this is not
a general feature of the chosen group, but indeed of the assumed doublet
representation, and would not remain valid in other situations (like for in-
stance one in which the scalar fields are supposed to transform like a real
triplet).

Having seen that a possible local SU(2) symmetry of the considered
system must be spontaneously broken if the vacuum “hosts” a scalar field,
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we now reconsider the three Eqgs. (1.44)—(1.46). If the symmetry had been
a global one (corresponding to the case of constant €1 2 3), these equations
would have been the starting point for the rigorous derivation of a theo-
rem, due to Goldstone, whose conclusion would have been the predicted
existence of three massless Goldstone bosons corresponding to the three
fields s1, s2, s3 . This can be seen e.g. by inserting a complete set of physi-
cal states into the left-hand members of Eqs. (1.44)—(1.46) and associating
a conserved current to each generator; we defer to Ref. [18] for a rigorous
proof. This conclusion would not be correct in the case of a local symmetry
that we are considering.

Let us therefore and finally consider the requirement of local symmetry
in more detail. If the SU(2) symmetry were of global type the traditional
choice for the Lagrangian would be

Lo = (0,9)(0"S) - V(S) (1.47)
where
V(S) = —p?(STS) + A(STS)%. (1.48)

The Lagrangian Eq. (1.47) is manifestly invariant under a global SU(2)
group, but also manifestly non invariant under the gauge generalization. To
achieve an invariant Lagrangian, the known prescription is that of adding
to the system three spin one gauge bosons A}, A2, A3 with prescribed
transformation properties under the group, and to replace systematically
the ordinary derivative 9, by the covariant derivative D, the latter being
defined in the chosen system as:

D,S = (aH - z‘g%"A;) S (1.49)

where ¢ is by definition the local SU(2) coupling constant. The same
coupling will also appear in the transformation law obeyed by the gauge
bosons A, in order to make the term (D,S)!(D"S) gauge invariant. The
full local SU(2) invariant Lagrangian will be finally written as:

1 K v
Ly = (D,S)(D"S) —V(S) — ZFWF;f (1.50)
with
Ff, = 0,A5 — 0,A% + ge"'™ Al AT (1.51)

Until now, no special requirement has been imposed upon the scalar
field S. As one sees immediately, this situation would correspond, in the
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classical analogue, to a minimum of the potential for conventional negative
values of 12 in Eq. (1.48). But for positive p? values, the picture is quite
different, and the classical minimum would correspond to

12
STe)y = =2 . 1.52
(58)0 = 22 (152
The simplest way of meeting Eq. (1.52) is to take
1 (0
Sho=— 1.53
S10= |, (1.53)
where
112
=4/ = 1.54
v=y/& (150

that corresponds to the assumed configuration Eq. (1.43), and generates
consequently spontaneous symmetry breaking.

The canonical way of treating the system proceeds now by replacing
the original field S by a “shifted” field S that will be by definition more
convenient for perturbative expansions:

S=58-(S). (1.55)

In terms of this shifted field, the product of covariant derivatives in
Eq. (1.50) becomes then:

~ ~ 2 ~
(D,8)T(D"S) = (8,5)t (8" 3) + gZAMAF,;(STS)o —gIm [<ST>OTNAMNaﬂs}

—gIm | §17. 4,0 5] + %AMA*,: 515+ 2Re(ST(5)0)]

1 rgv\2 &2 & G2 428 42 &2
=3 (7) A Al +0(52, 4,8, A,5°, A28, A25?) (1.56)
(the properties of the Pauli matrices have been used). One realizes immedi-
ately that the three gauge bosons have acquired a (equal) mass, as a direct
consequence of the assumed existence of a non vanishing scalar field vev,
and that
1
My = 9V - (1.57)
Independently of this rather surprising fact, one would still expect to
find three massless scalars in the overall Lagrangian. With this aim, one
looks for all possible quadratic terms in the shifted fields, rewriting the

potential V(S) Eq. (1.48), and finds:

V(S) = 2[5+ (S0 + (5)0)] + 2[5 +(800)(3 + (5]
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= 12575+ \ [2815(5T8)0 + 4(ReS*T<S>O)2]

+non quadratic terms . (1.58)

Using the assumed Eq. (1.52) one sees that the first two terms in the
quadratic expression cancel exactly, leaving the residual term:

Vouad = 4A(ReS1(S)0)? = 4 [Re (Sg<su>0 n S;<sd>o)r

= 4X[30(s0)0 + 51(51)0 + 52(s2)0 + §3(s3)0]” . (1.59)

A glance to Eq. (1.59) shows that, provided that at least one of the four vev
of the original fields is non vanishing, as assumed, there will always be one
and only one massive shifted field, by definition the linear combination that
appears in Eq. (1.59). In the simplest case that is normally adopted, only
(so) is different from zero and the associated shifted field §p will remain
massive:

Vouad = 4282 (s0)? = p?2852 (1.60)

whilst the remaining three field 5; 2 3, being associated to vanishing 5123
vevs, will be massless. The residual massive field v/259 = (1/v/2)(Sq+S]) is
called the Higgs boson field. For what concerns the three remaining fields,
the impression at this stage, as announced, is that the standard Goldstone
theorem prediction is verified.

The fact that invalidates this conclusion is provided by the existence of
the third term in Eq. (1.56). Assuming for simplicity the existence of one
single non vanishing vev = (sg)o like in Eqgs. (1.42), (1.43) one derives that
this term becomes:

—gIm [<ST>QTNAMN(9M§ = —g<$0>0 [AM18“§1 + AN26“§2 - AM36M53] .
(1.61)
This mixing between the gauge bosons and the candidate Golstone
bosons introduces an unwanted complication in the Lagrangian, that would
make the physical interpretation of the associated masses far from being
clean. Since the origin of the mixing terms is deeply related with the intro-
duction (in the covariant derivative) of the gauge bosons, typical features
of the local gauge theory that is being considered, one would think that
the gauge freedom that is available should be able, somehow, to cure this
intrinsic disease, which is in fact exactly the case. The procedure in this
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direction consists of rewriting the scalar doublet in the so called polar form:

(0]

v+54 (@)
V2

retaining the spontaneous symmetry breaking scheme of Eq. (1.43), so that

(30,1,2,3)0 = 0. Once the polar representation Eq. (1.62) is adopted, one

removes completely the three fields §’172,3 by means of a special gauge trans-

S(x) = evldk@)] (1.62)

formation:

1|0

— ool (2)] -

Su(z) =e~ S(x) 75 | v+ 8)(2)

This remarkable gauge, in which the scalar doublet is represented by
one residual real scalar field, is called the unitary gauge. When one moves

to it, it becomes necessary to transform also the original gauge fields 4, in

(1.63)

a way that is fixed by known prescriptions, A, — AS”L). At the end of this
canonical game, one is left with a Lagrangian of the following form:

~/2 hY 1
L= (DS (D"8,) — 2u2 20 — xwif — §g4+ ~p*0?
2 4 4
— 8# SO au / 1 (_) ANUAZN + AHHAZH 56
\/— \/— 2 1% \/— o \/—
5¢ 25 ~62 3 Aga 1 02
+L AfmAg“ — 2022 — w3 4~g + 1 . (1.64)

This transformed Lagrangian, that is by assumption perfectly equivalent
to the starting one Eq. (1.50), describes now a physical system consisting
of three massive gauge boson of common equal mass M4, = (1/2)gv and
of one massive scalar field 3)/v/2 of mass

m=\2pu. (1.65)

As expected, no ambiguous bilinear mixing with the gauge bosons survives
(naively, the transformed quantity Eq. (1.61) is now zero given the intrin-
sic reality of S,). All the three candidate Goldstone bosons scalars have
totally disappeared. As one says, they have been “eaten” by the corre-
sponding gauge bosons, and for this reason they are usually called would-be
Goldstone bosons. This remarkable mechanism is generally called the Higgs
mechanism, and the surviving massive scalar field 5/ V2, that corresponds
to the “cartesian coordinate” §g of the original doublet S, is called the Higgs
scalar field, with a Higgs scalar as its associated elementary particle.

This rather long discussion has been performed as a useful introduction
to the following presentation of the main features of the Standard Model.
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Before entering this next topics, we want to stress two points that deserve,
at this stage, special attention. The first one is the fact that, in the consid-
ered example, the generation of mass for the gauge bosons was so to say,
a “private business” between the latter ones and the scalar doublet. No
fermions were present in the system, and one guesses that their addition,
necessary to describe a realistic physical situation, will not add extra fea-
tures or modify the previously discussed mechanism. The second point is
the fact that, although the physically meaningful situation is only achieved
in the unitary gauge, each other gauge is, by definition, able to reach the
same results for observable quantities. In other words, one expects to find
the same predictions for physical observables both in the unitary gauge and
in other gauges where, however, the unphysical would be Goldstone bosons
will be surviving. This point will be particularly important, and discussed
in great detail, in the Section that will be devoted to the practical calcula-
tions within the Standard Model at the so called one-loop level.

After this statement, we are now ready to begin a short review of the
Standard Model of electroweak interactions.

1.4 Unification of weak and electromagnetic interactions in
the Standard Model

1.4.1 The SU(2) x U(1) description of electroweak
interactions

We have summarized in the previous Sections the motivations that led to
believe that a promising symmetry group for weak interactions should be a
spontaneously broken local SU(2)r,. We have seen in the previous Section
that for a symmetry of this type, a doublet of complex scalar fields guar-
antees an equal mass generation for all the three gauge bosons, without
any internal theoretical difficulty, via the Higgs mechanism. The main the-
oretical ingredients for a tentative description of weak interactions would
be therefore, at this point, ready and only an addition of suitable fermion
fields to the Lagrangian Eq. (1.50) would seem necessary. The new, extra
feature that makes the theoretical construction more ambitious and appeal-
ing is the realization that, with a modest and almost unavoidable effort,
one can enlarge the symmetry group of the weak interactions so that elec-
tromagnetic interactions are also incorporated. In such a way a beautiful
unification of the two phenomena would be achieved, since both kinds of
forces would be the result of exchange of gauge bosons, carriers of their
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interaction and manifestation of two local gauge groups under which the
physical system would be symmetric.

Clearly, from the very beginning, if such an ambitious program were suc-
cessful, the realization of the two symmetries related to the two interactions
should be quite different, for the simple reason that photons must evidently
remain massless. Therefore, the associated symmetry will be allowed to re-
main realized without the introduction of any spontaneous breaking mech-
anism. Keeping this in mind, the construction of the enlarged symmetry
group is, so to say, relatively simple to understand.

First of all, the simplest candidate symmetry group must accommodate
only one extra gauge boson, precisely the photon. Therefore only one more
symmetry generator should be added to the three previously defined ones
Tzr , Tzr , T31,. There is no simple group available with four generators. But
one can form the so called direct product of the already accepted SU(2),
with another local group having the mathematical property of a U(1) (one
generator). The resulting candidate symmetry group should thus be of the
form SU(2)r x U(1).

To learn something more on the nature of this extra U(1), one can
start from the mathematical requirement that the associated generator
must commute with those of SU(2), in order to build a proper direct
product. The simplest possibility is then to start from the lightest couple
of left-handed neutrino and electron that must appear in the weak current
Eq. (1.1). In a picture that has a SU(2) 1, symmetry, the immediate choice is
that of grouping them into a SU(2), doublet, to be conventionally denoted
as élLZ
’@[JwL
VoL
The ordering in the doublet corresponds to values of Tsr, (= Is) = +(1/2)
(neutrino) and —(1/2) (electron). This is motivated by the requirement
that e.g. T raises at the some time by one unity both the value of T5p,
(mathematical requirement) and that of @ (by its definition).

It is now straightforward to realize that, for both members of the ¢1,
doublet, the value of (Q —T3y,) is the same. In a group theoretical language,
this corresponds to the fact that the quantity (Q —Ts1) commutes with the
generators of SU(2)r. It appear thus reasonable to define the desired U(1)
generator as:

0y = (1.66)

YL = 2(@ — TgL) (167)
where the subscript L is dictated by the presence of T3; in the r.h.s of
Eq. (1.67). Note the presence of the (arbitrary) factor 2. This is due to the
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fact that in this way the relationship between the local gauge group gener-
ators Y7, and T3y, is formally identical with that relating the corresponding
strong interaction quantities Y (hypercharge) and T3 (third component of
the isospin).

We can now investigate in more detail the main features of the candidate
symmetry group G, of electroweak interactions, by definition chosen as:

Ge.w, = SU(Q)L X U(I)YL . (168)

The first relevant question to be answered is that of which elementary
particles will have to be accommodated from the beginning in the proper
invariant Lagrangian, and with which transformation properties under the
group. Two main classification criteria occur at this point, dictated by
rather different motivations.

The first requirement in that the elementary fermion fields involved in
the generalized electroweak interactions description have definite chirality,
i.e. either left-handed or right-handed fields will appear in the irreducible
representations. Since one wants to generate the charged weak current,
phenomenologically forced to be of purely left-handed type, from a covari-
ant derivative of the type of Eq. (1.49) acting on fermions, it is reasonably
clear that left-handed leptons and quarks, transforming as SU(2); dou-
blets, will have to be inserted in a proper way in the Lagrangian as a
generalization of the example given by Eq. (1.66). On the other hand one
knows from the starting assumption that a proper description of the con-
ventional electromagnetic interactions must be provided. Since the related
force does not differentiate left-handed from right-handed fermions, it is
evident that the latter ones will have to be included in the Lagrangian as
well. In order not to interfere with the desired structure of the charged
weak interactions, they will have to be “neutral” under SU(2)y, i.e. they
will transform with respect to this group as singlets. For what concerns the
other group U(1)y, , the transformation properties of both left- and right-
handed fermions will be dictated by the values of their weak hypercharge
Y1, as fixed from Eq. (1.67).

Note that, in the conventional approach, the assignment of Y; for
fermions (both left- and right-handed ones) is done to ensure the correct
phenomenological electric charges. The value of Y7, is taken to be be equal
to one for the Higgs doublet, and follows from Eq. (1.67) for any other field
of the model. In fact, without giving details of this statement, we can say
that a self-consistent description requires the appearance in the Lagrangian
of a number of fermion families, differing essentially because of the different
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masses of the components, and such that, within each family, the sum of
the electric charges of all the basic leptons and quarks components is ex-
actly vanishing (this guarantees the absence of unwanted anomalies [22]).
By assumption, the behavior of an elementary fermion in the presence of
electroweak interactions is completely determined by its SU(2)r x U(1)y,
quantum number (I3, Y7,) and not by its mass, therefore it is sufficient to
consider the features of that component of the full Lagrangian that corre-
sponds to a single family to derive the main properties of the model. In
particular, we shall now consider the first, lightest family. This will consist
of the following basic fermions (Tab. 1.1):

a)

b)

A doublet of left-handed neutrino and electron (v.y,, er,) transform-
ing under SU(2)r, as a doublet (overall electric charge = —1).

A doublet of left-handed up and down (ur, dr) quarks with anal-
ogous SU(2); behavior, each quark appearing in three different
color states (the quarks’ color will determine their properties under
strong interactions, but not that under electroweak interactions).
This makes a total of six left-handed quark states, with overall
electric charge = +1.

One right-handed electron eg, by definition a SU(2)y, singlet, re-
quired by the properties of the electromagnetic interactions (overall
electric charge = —1).

Two right-handed up and down ugr, dg quarks, SU(2); singlets
and in three color states each (overall electric charge = +1), which
makes six more states.

Table 1.1 Values of I3y,
and Y7 for the charged
fermion fields (first fam-
ily).

I3p YL
Yo +1/2 -1
weL _1/2 —1
weR 0 -2
Yur,  +1/2 +1/3
Yar,  —1/2  +1/3
"puR 0 +4/3
Yar 0 —2/3

These fifteen fermion fields are sufficient to generate a model with all



20 The Physics of the Z and W Bosons

the desired properties, as we shall immediately show. Clearly, the so called
family replication will involve the muon family and the 7 family with their
neutrinos and quarks. This will be discussed later. We want to stress at this
point the fact that there is no right-handed neutrino (in each family). This
will lead to fundamental theoretical consequences (massless neutrinos), as
we will see. From a theoretical point of view, there is no motivation to
exclude such an elementary component from the beginning, only a “min-
imality” requirement of the theoretical picture. In fact, the commonly
accepted version of the model without right-handed neutrinos in also called
minimal Standard Model.

We are now ready to begin the illustration of the main features of the
model that has been proposed. This will be done in the forthcoming pages.

1.4.2 Gauge boson masses in the SU(2)r X U(1)y, scheme

From all our previous considerations, we are now ready to accept the idea
that, given a family like that discussed in the last Subsection, a promis-
ing candidate to describe its electroweak interactions appears to be a La-
grangian £ with local SU(2) x U(1)y, gauge invariance spontaneously
broken in the Higgs mode by a doublet of complex scalars, whose only
physical residual particle will be that associated with the real Higgs scalar
fields. Given this prescription, it is relatively simple to derive the formal
expression of £. In the commonly accepted version, this consists of four
separate pieces, whose discussion can be separately performed. We shall
use the convention denomination

—L=Lsg+ Lrg+ Lgg+ Lrs (1.69)

(S,G,F denote here the Higgs, the gauge bosons, the fermions respectively)
and begin to investigate the properties of the first term. This is essen-
tially the modification of the Lagrangian of Eqgs. (1.47), (1.48), with the
requirement of SU(2);, and of additional U(1)y, invariance. In practice,
this means that the normal derivative Eq. (1.47) have to be modified and
becomes the so called covariant derivative

D,S = (aM - ig%AZ - ig'%BN) S (1.70)

where the new gauge field B, is associated with the U(1)y, group, AR

1,2, 3, are the three gauge bosons associated with SU(2) ., and g, ¢’ are by
definition the coupling constants of the two groups.

R =
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The transformation properties of Aj, B, under the corresponding
groups are orthogonal. Under infinitesimal transformations of SU(2)r, Af;
changes (k = 1,2,3), while B, is unchanged. Under infinitesimal U(1)y,
transformations ~ e"®Y2/2 A is unaffected while B,, becomes

B, =B, - é@lm(x) . (L.71)

The factor 1/2 that follows ¢’ is the value of the weak hypercharge Y7, /2
of the scalar doublet, fixed by Eq. (1.67) and by the requirement that S, 4
[Eq. (1.30)] have electric charge +1 and zero respectively.

The gauge bosons mass generation will be produced by the term
(D,S)T(D*S), belonging to the scalar-gauge component of the Lagrangian
= Lgsg. We can repeat essentially the derivation of Section 1.3 and compute
the product in the unitary gauge, obtaining:

(D,S)I(D"S), = So gufo 4 1 [02 - 2\/505—6 + 25—52
1 u #\/5 \/5 2 \/5 2
2
|G At )
1 3 / 2

where A}, , are the gauge fields in the unitary gauge (B, is not affected by
the SU(2), transformation).

A glance to Eq. (1.72) immediately shows that, for what concerns the
(1,2) indexes, the situation has remained the same as in the pure SU(2)y,
invariant case represented by Eq. (1.64). One defines in a conventional way
the charged gauge bosons W; T as:

1

WE=—

ko2

The residual neutral scalar field 56/ V2 is the conventionally defined

Higgs field and will be denoted by a corresponding symbol = H from now
on. For what concerns the charged gauge boson component, Eq. (1.72) can

[Allt’u ¥ ZAZU} ) (1.73)

be consequently written in the form:
2
(DuS)L(D*S)y = m3y WHW 4 WHW |V 2mywgH + %H2 (1.74)

that corresponds to a charged gauge boson W, of a mass
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interacting with the Higgs scalar in a way that corresponds to the two terms
in the square bracket in the r.h.s. of Eq. (1.74).

For what concerns the neutral gauge boson sector, the situation is now
quite different from that corresponding to the pure SU(2); invariance,
Eq. (1.64). One notices that, as a consequence of the presence of the extra
U(1)y, symmetry, corresponding to a not vanishing ¢’ coupling, the original
symmetry between A}“ Ai and Az has disappeared. Moreover, neither Ai
nor B, can be thought of as mass eigenstates, owing to the bilinear mixing
term that contains them in Eq. (1.72). In fact, at first sight one can already
conclude that there will only be one massive state, corresponding to the
linear combination of Az’u, B,, whose square appears in that equation.

The situation can be better understood introducing a (non diagonal) 2 x
2 mass matrix in the so called (Az, B,,) base and writing the corresponding

bilinear term as:

2
Ve (s g —flA3 B,| 9 99| | A
8 1, g 1% - 8 Hau K _gg/ g/2 BH
Ao

1
= 5143, Bul M )

5 (1.76)

where M% p is a non diagonal mass matrix, by definition given by the

expression:
2

9° —g9'
_gg/ g/2
where ms g = gv/2, g'v/2 are not to be interpreted as rigorous mass terms,
but only as parameters of the Lagrangian.

The situation summarised by Eq. (1.76) can be re-expressed by saying
that on one hand Az, B,, are intrinsically associated with the two indepen-
dent symmetry groups SU(2)r, U(1)y,, i.e. they are transforming indepen-
dently and with definite prescriptions under the two groups [in particular,
Az belongs to a SU(2)y, triplet, together with Allf, while B, is transformed
like in Eq. (1.71)]. But on the other hand Az, B,, are not the proper mass
etgenstates: the latter ones should appear in the Lagrangian quadratically,
and without mixing terms.

To determine the proper mass eigenstates is straightforward. One knows
from elementary matrix theory that, given a non diagonal matrix Mg g like
that of Eq. (1.77), there always exists a unitary matrix D that diagonalises
M3 5 via a similarity transformation

m§ —msmp

—msmp m2B

2
2 =Y

= 1.
tp =2 (1.77)

2
myz

DM3 gD = M? = | mi

(1.78)
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By definition, the transformation Eq. (1.78) conserves both the determinant
and the trace of M3 5. Since the determinant of M3 5 is vanishing, this
leads to the (expected) conclusion that either mz or m4 must be zero.
Setting e.g. ma = O, m7 is then given by the trace of M3, i.e.
2
my = %(92 +97). (1.79)
The formal expression of the D matrix is fixed by the requirement of
being unitary (and real), which leaves only one free parameter, an angle to
be called Oy (the Weinberg angle)
p= | 8w =simnbwl - ph_ pip—1 (1.80)
sin Oy cos Oy
with Oy being related to g, ¢’ by the property:

/

tgby = 8 =9 (1.81)
ms )
that can be re-expressed by saying that:
1 g°

=1—sinfy . (1.82)

2 _ _
cos” O = 1+92%/g2 g2+ g~
The final step is now to rewrite Eq. (1.76) in the perfectly identical form:

A3 B, |[M? Apu| = A% B,|D'| [DM2 ,D'] |D A
| w,u P«H 3,B] B — [| JIR TR M| }[ 3,B }
Z
= |Z, Al [M?] AZ
3
iﬂ = [D'Aéw ] . (1.83)
iz Iz

Evidently, the states Z,,, A, are the desired mass eigenstates, the first
one belonging to the eigenvalue given by Eq. (1.79), the second one belong-
ing to the vanishing value M4 = 0. In terms of A3,
is given by Eq. (1.83). We can write it in terms of the parameter Oy
Egs. (1.80), (1.81) as:

Z,, = cos GWAi,u —sinfw B,

B,, their expression

A, =sin GWAi’u +cosbw B, . (1.84)
The massive spin one boson, linear combination of the SU(2)r and of
the U(1)y, gauge bosons, is conventionally called the Z boson. As one sees,
its field is proportional to the combination (A3 ,—(g'/g)B,) as instinctively
expected from the previous discussion. The value of its mass Eq. (1.79) is
different from the that of the W mass Eq. (1.75), but the two quantities
are strictly connected by a relationship that will be particularly relevant in
the model. This will be discussed in the forthcoming Subsection.
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1.4.3 The (W, Z) mass relationship and the po parameter

The values of the (W, Z) masses Eqgs. (1.75), (1.78) have been obtained by
assuming that the local SU(2)r, x U(1)y, gauge symmetry is spontaneously
broken by a set S of complex scalar fields transforming under SU(2)1, as a
doublet Eq. (1.31). Keeping this last feature in mind, we can consequently
write the following identity, valid under the previously assumed circum-
stances:
m2

=1 (1.85)

m3, cos? Oy

where Eq. (1.82) has been used. Using the definition of the parameters
ms, mp Eq. (1.77), Eq. (1.85) can be rewritten as:

wh_md () L[, mdmd
m? cos? Oy m?% m% |V 2
2 2 4 2 2
_ miy [m3+mB]:mW:1 (1.56)

where the invariance of the matrix trace m% + m% = m?% has been used.
In the conventional notation one defines the pg parameter of a sponta-
neously broken SU(2);, x U(1)y, gauge as
m? m?
7m2z (302/2 . = m—vé/ = po (1.87)
even when the spontaneous breakdown is not due to the a not vanishing
vev produced by a scalar SU(2); doublet. In this case, in principle, po
could be different from one.

One can re-express the fact that pg = 1 when the spontaneous break-
down in generated by a SU(2); doublet in the following way. Imagine
that in the covariant derivative Eq. (1.70) the SU(2), interaction ~ g is
turned on at a preliminary stage, with the Y7, interaction ~ ¢’ still switched
off. Then the mass generation proceeds as in the pure SU(2);, case illus-
trated in Section 1.3, leading to Eq. (1.64) and to an equal quadratic term
~ (A}LA“1 + AiA“2 + AiA“S). The introduction of Y7, adds extra terms
~ B,B" and AiB“, without modifying the ~ vazA“3 coefficient. This
means that the value of the parameter defined as m3 in Eq. (1.77) is to-
tally fixed by the SU(2)r, component of the covariant derivative Eq. (1.70),
and for a discussion of this quantity one can safely assume that ¢’ = 0. A
consequence of Eq. (1.64) then is the fact that, under this condition, the
manifest symmetry of the scalar-gauge component of the Lagrangian with
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respect to “rotations” in the 3d-space of the vectors A}“ Ai, Ai [a O(3)
group, mathematically equivalent to a SU(2) group], is translated into the
fact that, even after switching on the hypercharge interaction, one will still

have the same m3, and in particular one will be left with
mi=mi = po=1. (1.88)

The previous result can be actually derived from a property of the Higgs
sector of the model. In the case of a single scalar field, the scalar poten-
tial of Eq. (1.47) has a O(4) global symmetry. The presence of a vacuum
expectation value of the scalar field reduces this symmetry to O(3), which
is mathematically equivalent to SU(2). This residual global symmetry of
the Higgs sector, that automatically implies Eq. (1.88) (see e.g. [18]) is
called custodial SU(2) symmetry. Note that this residual symmetry is a
global one, not necessarily related to any of the usually encountered SU(2)
groups and, in general, not necessarily surviving in the model in case of dif-
ferent mechanisms of spontaneous symmetry breaking. In particular, one
can easily list a number of situations where the custodial symmetry is valid,
or not. We shall illustrate the simplest case of non validity, when the spon-
taneous breaking is generated by three real scalar fields, transforming under
SU(2)y, as a triplet. This set can be represented by a three dimensional
vector column

x!
X=X (1.89)
%

whose transformation under SU(2);, is fixed by formulae, analogous to
Eq. (1.31). To maintain the group invariance, the covariant derivative act-

ing on x in the part of Lagrangian that contains it (that would be formally
identical to Eqs. (1.47), (1.48)) should be modified in the following way:

OuX = DuX = |0uX — ig(T A Ap)] (1.90)

Spontaneous symmetry breaking can be generated allowing one com-
ponent of x to be “hosted” by the vacuum. Taking for instance (xs3)o =

(v3/v/2) # 0, one has

(1.91)
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This generates a vector boson mass term of the form:
2
(D) (D'X) = P2 (ALA + AZAY) = (gua) Wi WH (1.92)

where only the charged boson W has acquired a mass. For this type of
spontaneous symmetry breaking mechanism one would have therefore, for-
mally, no meaningful definition of the py parameter if the breaking were
only due to the scalar triplet. If the triplet were added to the conventional
scalar, a value of pg different from (and clearly larger than) one would be
obtained, numerically dependent on the values of v3 and v.

The considered example can be generalised to other situations. From
the previous discussion, it is relatively simple to conclude that, whenever
the spontaneous breaking is generated by any combination of scalar fields
transforming under SU(2), either as a doublet or as a singlet (the latter be-
ing unaffected by the transformations), the value of pg will be equal to one:
this property is generally lost when scalars with different transformation
properties are added to the scenario.

This short discussion has been concentrated, and we shall return on it
later on, on some properties of the massive (W, Z) boson sector. We still
have to understand the physical meaning of the residual massless gauge
boson A, that appears in Egs. (1.83), (1.84). In the forthcoming Subsection
we shall show that it can be identified with the photon. This will have a
fundamental consequence, since the Z couplings e.g. to the fermions will
be fixed in a way that will be experimentally testable.

1.4.4 Electroweak unification and weak neutral currents

From the previous discussion we have learned that, in the Minimal Stan-
dard Model, the proposed mechanism of spontaneous symmetry breaking
automatically generates a massless neutral gauge boson associated with the
field operator A,, given by Eq. (1.84). Since one obviously wants to iden-
tify this massless particle with the photon, some extra condition must be
imposed. The most obvious requirement is that the couplings of A, to the
fermions are those of a photon, fixed by the fermions’ electric charge ac-
cording to the conventional QED prescriptions. To meet this requirement,
one must consider the interaction of fermions with the neutral gauge bosons
Z,, A,. This is provided by the component Lrg of the Lagrangian, that
describes the full interaction of fermions and gauge bosons, considering only
the neutral gauge bosons contribution. The latter is obtained by replacing
in the fermion field derivative terms of the Lagrangian ~ z'&jwa,,wj (with
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j as the general fermion field index) the normal derivative by the covariant
derivative D,,. For purposes of illustration, it will be sufficient to consider
e.g. the first fermion family and to be limited in the discussion to the lep-
ton contribution to the Lagrangian. This will originally contain two terms:
one is generated by the SU(2);, doublet represented as a vector column £;,
defined by Eq. (1.66),

¢l/(3 L
"r/)eL

with weak hypercharge Y;, = —1 (in order to produce the correct elec-
tric charges according to Eq. (1.67)); the second is generated by v.g, the
right-handed electron, SU(2), singlet (Is;, = 0) with Y, = —2. The cor-
responding interaction with the neutral gauge bosons will be contained in

b =

)

the quantities

~ = . Th 4w 1

A€1L"/NDM€1L = élL’yu(au — ZQEA#’M + ZQI§BN)€1L (193)
and

1Lel’%’)ﬂuD;ﬂbeR = ’JJeR"/H (au + ig/Bu)'@[JeR . (194)

The charged component of the interaction entirely comes from the SU(2),
doublet part of Eq. (1.93); it can be formally written as:

(charged) g

Lrc = BNV + W) (1.95)
where
J;(;rl)L = (Jl(;,:L)L)T = "Z)ueL'Y,u¢eL . (196)

This is, as discussed previously, the expected reformulation of the Fermi
interaction in the SU(2);, language that can be easily generalized to the
first family quarks, and must satisfy the normalization condition Eq. (1.24)
to reproduce satisfactorily the known phenomenology of the charged weak
interaction sector. Its generalization to more than one family will be dis-
cussed at the end of the Chapter. The lepton-neutral gauge bosons inter-
action component will be written as:

(neutral)

- T g - ‘
Lrg =1 |:€1L’YM (—ZQEBAZ,U + Z%BN) Ui+ YerY"i9' Butber

=9 (ZlL"/HT_QB‘glL) AP
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1- _

+g/ <_§€1L7H€1L - 1/)8R7#1/)8R> B,u . (197)

Defining the lepton weak isospin and weak hypercharge currents as:

- - T
J,Sgg =lipyu(Islin) = binvu §€1L (1.98)
and
- Y, - Y, 1- -

ij/é/z) =01Y <7L‘€1L) + YerVu <7LweR> = _§€1L7uélL — YeRVuWer
(1.99)

Eq. (1.97) can be rewritten as:
Lo = g as | 4 g /g,

= gJH [cos Oy Z,, + sin O A,,]

+g/ JYE/DE [ sinfyw Z,, + cosOw A, . (1.100)
The contribution to Eq. (1.100) coming from A, can be written as
£ = gsinfy A, [Je(?’)“ + JéYL/Qﬂ (1.101)

since g’ cosfy = gsinfy from Eq. (1.81). The quantity in the square
bracket in Eq. (1.101) becomes, as one easily sees:
Je(s)u + JéYL/Z)M — WeL,yuweL + @eR’Y“%aR} — —7/;e’7“¢e = JéQ)u
(1.102)
where J(@*# is the (conventionally defined) electromagnetic current, that
associates to each j-fermion with electric charge @; (in unities of |e], the
positron charge) the term

J;Q)M = Qv = Q; [V jL + ViRV ViR] (1.103)
and Eq. (1.102) is a natural consequence of the initial choice Q = I3y, +
1/2Y;, Eq. (1.67). Therefore we can write at this stage

£l = (gsinow J9) A, (1.104)

This term coincides with the conventional electromagnetic current — photon
interaction = |e|J{}QAH provided that one fixes the condition:

le| = gsinfy = g’ cos Oy . (1.105)

In this way, one achieves a unification of weak and electromagnetic interac-
tions, in the sense that the same mechanism that is advocated to generate
the first type of forces Eq. (1.93) automatically produces (when Eq. (1.94)
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is added) also the second one, with the correct value of the electric charge
ensured by the constraint Eq. (1.105). One easily sees that the same formal
proof can be extended to the quarks of the first family (and also to each
remaining family), with a proper choice of the quarks weak hypercharges
fixed by Eq. (1.67). The conclusion is that one can write, in full generality,
for each j-family:

neutral i A
Lo = |e| J QI A, + £, (1.106)

where J(@)#7 is the conventional electromagnetic current, whose expression
e.g. for the first family is

_ 2 —( e 1 “(c; ci
T = —hertibe + 3 300 — 230 (1107)

(a sum over the color index ¢;, ¢ = 1,2, 3 is understood) while analogous
expressions describe the corresponding current for the second and third
family, with the replacement of ‘e’ by ‘u, 7" and of ‘u,d’ by ‘c,s’ and ‘t,’
respectively. Note that this component of the neutral Lagrangian is per-
fectly known, and no extra arbitrary parameters must be included into the
construction.

The genuinely weak new component of the neutral Lagrangian is in fact
that containing the Z, field. This can be rewritten (always considering
the first family for simplicity) in the following way, from the definition
Eq. (1.100):

E%Zg,l =Z, [g cos HWJl(S)” -q sin9W(J1(Q)” - Jl(?’)“) (1.108)

where J1(3)“ is the weak isospin current of the first family, that generalizes

Eq. (1.98):

3 7 73 e T3 (¢;
Jl( o €1L7“5€1L + ;(AL)W”E(AL) ) (1.109)
¢\%) is a SU(2) 1 (u, d) quark doublet, i.e.:
(i) wq(fi)
G = o (1.110)
dL

and a sum over the color index ¢;,7 = 1,2, 3 is understood. Using Eq. (1.81),
Eq. (1.108) acquires the conventional expression:

o o~ ld ey 1.111
FG,1 sin GW coS GW[ 1 M] ( )
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where
TP = g8 in? gy JE9 (1.112)

is the weak neutral current, associated to the massive gauge boson Z,,, and
representing a completely new theoretical input of the Standard Model with
respect to the previous Fermi theory.

To better appreciate the genuinely new features of the Z current
Eq. (1.112) with respect to those of the electromagnetic one, it is useful
to write its expression in terms of the left- and right-handed fermion fields.
For the first family this gives:

1

_ _ 1 .
J = §¢VL’7”¢VL + ery ter <—§ + sin? 9w)

- 1 2
FYury ur (5 —3 sin’ 9W)

- 1 1
+ar v Yar (—5 + 3 sin? 9W>

+YerY"Ver (sin® O )
_ 2
+VurY* Vur —gsin 0w
— 1
+YarY"ar (§ sin® 9W> (1.113)

(a summation over the color index for u, d quarks is not explicitly indicated
but understood). Denoting by a conventional fermions index j = v, e, u,d
the four fermion fields of the first family, Eq. (1.113) can be rewritten as:
7 _ _
T = > (90" bsn + gribirY"bir) - (1.114)

J

In particular, one has:

1
1 ) s 2
JLe = ) +sin” 60w ;. gre =sin” Oy (1.116)
1 2 2
gru=75"73 sin® 0w 5 gru = -3 sin? Oy (1.117)
1 1 1
grd = —=+ = sin? Ow; gri= 5 sin® Ow (1.118)

2 3 3
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that corresponds, for a general fermion f of given chirality, left-isospin and
charge, to the rule for its coupling gy with the Z boson:

ngI:gL,f—Sing owa . (1.119)

It is convenient to write here the expressions of the vector (gv ) and axial

(ga) couplings defined as gv = g1, + gr and g4 = g, — gr, respectively, as
they will be often used in this book. One has

gv = I3 — 2sin? 0w Qy (1.120)
ga = I3 (1.121)
corresponding to
1 1
v= = v == 1.122
v =55 gar =g (1.122)
1 . 9 1
Ve = 3 +2sin° 0w 5 gac = 9 (1.123)
1 4 1
Gvu = 3 gsin2 Ow ; gaw= 3 (1.124)
1 2 1
gvi=—5+3 sin? Oy ;  gaqg = 3 (1.125)

Equations (1.115)—(1.118) can be generalized to the fermions of the
second and third family with the obvious replacements that were already
mentioned as we shall show in more detail in the final part of this Subsec-
tion. From their expressions several fundamental conclusions can be drawn,
a couple of which appear to us specially relevant. More precisely:

a) showing a completely different attitude with respect to the photon,
the Z couples in a different way with fermions of opposite chiral-
ity. This intrinsic asymmetry will lead to several experimentally
testable predictions related to the processes of production and/or
decay of a Z from/into couples of equal fermions with opposite
chirality. In particular, the existence of longitudinal polarisation
asymmetries, to be exhaustively investigated in the forthcoming
Sections, will be predicted and shown to play a specially relevant
theoretical role.

b) one sees from Eqs. (1.111), (1.113) that all the Z interactions with
different fermions are described by only one new theoretical pa-
rameter, the Weinberg angle fy. A variety of theoretical predic-
tions concerning production and decay of a Z into different fermion
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couples will be strongly correlated in the model, without apparent
room for theoretical explanations of possible experimental disagree-
ments.

An almost unavoidable consequence of the two previous points is that
a process in which the Z boson were very copiously produced, so that
an exhaustive series of measurements of all its various couplings with the
existing fermions could be performed with the highest possible accuracy,
would represent a stringent test of the model, at least for what concerns the
fermions neutral weak interaction sector. The most immediate possibility
of achieving these conditions is provided by the annihilation of an electron—
positron couple at the resonant energy, that corresponds to mz, the Z mass.
To carry on this program, a preliminary knowledge of this parameter mz
is required. As a matter of fact in the Standard Model the value of myz
(and also, that of my) is, at least in first approximation, predicted. This
will be discussed in the next Subsection.

1.4.5 Numerical prediction for the gauge boson masses in
the Minimal Standard Model

In the Minimal Standard Model (MSM), the quantities my/, mz (mass
parameters of W+ and Z in the proposed electroweak Lagrangian) are given
by Egs. (1.75), (1.79) in terms of three different electroweak parameters
(9,9’ and v). However, the ratio m¥,/m?% can be expressed in terms of the
Weinberg angle only, since one has from Eq. (1.85)
2
W cos? Ow . (1.126)

2
mz

Even at this preliminary stage, where no discussion has been given on
the experimental determination of sin Oy / cos? Oy, it is clear that the ratio
of Eq. (1.126) will be in principle fixed e.g. by measuring the couplings of
the Z boson to fermions, as shown by Eqgs. (1.115)—(1.118). A possibility
of this type would be available by identifying e.g. an experimental process
that could only proceed via Z exchange. Twenty-five years ago, a realistic
proposal was that of looking for the reaction

Ve = vue” (1.127)

that would be allowed, to lowest order in the Feynman diagrams correspond-
ing to the MSM Lagrangian, thanks to a t-channel Z exchange depicted in
Fig. 1.1.
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Fig. 1.1 Elastic electron- muonic neutrino scattering via t-channel Z exchange.

Also, neutrino—nucleon scattering experiments would be explained to
lowest order by W and Z exchange. In fact, the fundamental experimen-
tal discovery that led the community of physicists to consider the MSM
with special attention was that of the existence of (weak) neutral currents
in processes of the kind neutrino-fermion scattering. From those glorious
experiments [23], a preliminary value of sin? By was derived, such that, in
the early eighties, one could write [24]:

sin? yy ~ 0.22 (1.128)
and thus one would predict the numerical result
miy ~ (0.78)m?% . (1.129)

The final piece of information still needed to produce a next and testable
prediction is provided, in the MSM, by the (fundamental) equation (1.24)
that can be rewritten, for our purposes, in the more convenient form:

2 V2 2 V2 e’
mW == g - 5 .
8Gr 8 G'r sin® Oy
Using the experimental values of €2, Gy and the neutral current result
Eq. (1.128) a value of myy can be derived, that is:

mw ~ 79 GeV (1.131)

(1.130)

with my consequently fixed by Eq. (1.129)
myz =~ 90 GeV . (1.132)

Clearly, Eqgs. (1.131), (1.132) are a clear, and brave, theoretical prediction

that represents a “necessary” condition for the survival of the model. In
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this spirit, it is undeniable that the discovery of W and Z by the U A(1) and
UA(2) experiments in 1983 [25, 26] gave the next, enormous experimental
support to the theoretical belief in the validity of the MSM. It should be
reminded that the result of combinations of those memorable measurements
was:
my = 80.8 + 2.7 (1.133)
my =92.9+1.6 (1.134)

that agrees, within the experimental errors of the time, with the correspond-
ing theoretical predictions. Thus, after 1983, it was clear that, in order to
perform an extremely rigorous test of the model, electron—positron colli-
sions at a c.m. energy of approximately 90 GeV were the first choice, and
that the next possibility was to produce in electron—positron annihilation
a pair of W bosons at c.m. energy of approximately 160 GeV, almost
twice as large. The first part of this book will be completely devoted to an
illustration, and to a discussion, of the large research program that is com-
monly classified as that of “Physics of the Z resonance”, based on the study
of electron—positron annihilations at the c.m. resonant energy that corre-
sponds to the physical Z boson mass. The production of W pairs in eTe™
collisions will be illustrated in Chapter 9. But before entering these dedi-
cated Chapters, we feel that a few general remarks about the kind of test
that these collisions represent for the MSM would be appropriate. These
will be presented in the next Section for what concerns the Z resonance
production.

1.5 Z physics as a test of the MSM

Strictly speaking, accepting the validity of the MSM leads to postulat-
ing that the electroweak component of the Lagrangian which describes the
strong and electroweak interactions of the known elementary particles has
the form given by Eq. (1.69), where F, G, S denote respectively the fermion,
gauge and scalar field operators. For the purposes of the following discus-
sion, it will be convenient to indicate the electroweak Lagrangian of the
MSM with a corresponding apex, writing:

Lo = £56™" + L5 + L™ + L™ (135)

It is reasonable to assume that, to a very good approximation, electron—

positron collisions at the resonant energy +/(pe + p.)? = myz can be de-
scribed by Feynman diagrams where one Z is exchanged in the s chan-
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Fig. 1.2 Electron-positron annihilation into a fermion (f) antifermion pair via s-channel
Z exchange.

nel. The simplest final state to be considered corresponds to a fermion—
antifermion couple (two leptons or two quarks), represented as in Fig. 1.2

In this approximate treatment, evidently any measurement of this pro-
cess for arbitrary f would represent a test, not of the full structure of the
Lagrangian Eq. (1.135), but rather of the pure neutral component of the
fermion-gauge boson component ﬁ(MSM). Clearly, any theoretical model
of different nature, but of identical fermion-gauge boson component, would
give in first approximation the same predictions on the Z peak for electron—
positron annihilation. This would not be automatically true at the level of
a more refined theoretical treatment where also higher order effects, corre-
sponding to less elementary Feynman diagrams, would be included. It is
at this precise point that the renormalizability of the model plays a fun-
damental role, making a systematic calculation performable. In particular,
as a first consequence of t"Hooft’s memorable effort [5], the complete set
of the so called one-loop electroweak effects has been computed, making
a tentative test of the remaining components of the MSM Lagrangian, in
principle, realizable.

Without entering the details of this statement, that will be fully illus-
trated in the next Chapters, let us give a few illustrative examples. At the
simplest level of Feynman diagrams involving corrections to the Z propa-
gator, one can understand that parameters (the ZWW couplings) provided
by E(MS ) will affect the Feynman diagram represented in Fig. 1.3.

Similarly,parameters provided by the E( SM) component (the ZZ H cou-
pling) will in principle enter e.g. Fig. 1.4 Whlle a possible influence of the
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Fig. 1.3 Example of a Feynman diagram, involving the ZWW couplings, that con-
tributes the process ete™ — ff.

Fig. 1.4 Example of a Feynman diagram, involving the ZZ H couplings, that contributes
the process ete™ — ff.

E%%SM) component is depicted in Fig. 1.5.

All the effects represented in Figs. 1.3-1.5 are classified as one-loop cor-
rections to the leading effect of Fig. 1.2, and one expects (and verifies) that
their relative size should be small (typically, of the percent order). The
effectiveness of very high precision measurements becomes now clear: in
principle, theoretical models with identical Lpg but different remaining
components might be accepted or discarded, depending on the small pre-
dicted one-loop effect. As we shall see in the Chapter 11, in some special
cases it will be indeed possible to draw negative indications on alternative
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Fig. 1.5 Example of a Feynman diagram, involving the Hf f couplings, that contributes
the process e + e— — ff.

models from a special subset of very high precision measurements. This will
be particularly relevant for a class of models that propose an alternative
solution to the mass generation problem that does not require the existence
of the Higgs scalar. For the moment, we can anticipate that their validity
is still an open problem, whose final answer would be obviously provided
by the discovery of the Higgs scalar. This is, in fact, the main still open
experimental question to be understood, to which we shall devote the brief
discussion of the forthcoming Subsection.

1.5.1 The Higgs scalar mass in the MSM

In the MSM there is no theoretical prediction concerning the mass mg
of the Higgs scalar. Contrary to the case of the weak gauge bosons W, Z
whose experimental discovery represented a first spectacular confirmation
of the model, my remains a free parameter in the scheme. The prediction
in the scalar sector would rather be given, once the Higgs were discovered
with a certain value for its mass, for the quartic scalar interactions whose
coupling A is fixed by my and v by Eq. (1.54), (1.55). Clearly, this lack of
theoretical indications on m g represents a not small experimental problem.

As a matter of fact, at a more delicate theoretical level, a number of
reasonable arguments exists that sets, at least, limits , in the form of upper
bounds. Without entering a detailed discussion, it seems fair to say that
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the reasonable expectation exists that the Higgs scalar should be relatively
light, i.e. of a mass below the ~ 1 TeV limit. A particularly simple example
is the following. From Egs. (1.75) and (1.130) one derives v = 273 G2 ~
250 GeV. From Egs. (1.65) and (1.54) mpy = v/2)\v is obtained. Imposing
A < 1 (that would correspond, roughly, to reliability of the perturbative
expansion) fixes the limit mpy < 350 GeV.

Keeping in mind the fact that alternative solutions are still, in princi-
ple, allowed, it is undeniable that the enormous success of the MSM for
what concerns the predictions that were testable on Z resonance provides
a strong support to the belief that the Higgs should indeed exist. Let us
therefore conclude this Section by reviewing the features of the MSM that
were testable (and tested) at CERN and SLAC. This will require a brief
preliminary discussion, that takes into account several important facts that
have until now not been considered.

1.5.2 A more complete formulation of the MSM

In the short presentation of the MSM that has been given in this Chapter,

we have omitted a number of points that should be now mentioned, in order

to understand the main features of some of the forthcoming discussions.
To be more precise, we have neglected:

1) the inclusion of strong interactions when the final state is a couple
of quarks;

2) the masses of leptons and quarks;

3) the generalization of the treatment to the next fermion families
(family replication).

For the purposes of the remaining part of this book, the brief following
summary should be sufficient, although necessarily qualitative.

1.5.2.1 Inclusion of strong interactions

The accepted description of the strong interactions of quarks has an ex-
act SU(3). gauge symmetry and eight massless gluons, carriers of the in-
teraction between the colored quarks [29]. It seems attractive and nat-
ural to propose a description of electroweak and strong interactions in
which all these forces are generated by the same mechanism of emission
of gauge bosons. The complete Lagrangian is supposed to have an enlarged
SU(3).®SU(2)L®@SU(1)Yr, local gauge symmetry, where by assumption all



The Standard Model of Electroweak Interactions 39

the generators of the SU(3). group commute with those of SU(2),®@U(1)y, .
It can be obtained by adding to the already defined electroweak component
Eq. (1.135) the genuinely strong term. The latter is given by the following
expression:
3 N ‘ o
L= ¢"iy"D,gi™ ~ 5 TG aGE (1.136)
ci=1 j=1

where N is the number of different quark flavours (two in the first family,
where the two lightest u,d quarks appear), ¢; is the color index and the
eight SU(3) generators are each one in correspondence with one gluon field
(spin one) operator, to be denoted as Af, . These fields enter the covariant
derivative D, as:

8
. W A
D, =8, —igs ZAHG? (1.137)
a=1

where g is the SU(3). (strong) coupling and \* are the Gell-Mann 3 x 3
matrices that satisfy the commutation relations of the SU(3) algebra:

PUD Ul AT
[7,7}:221”75. (1.138)
c=1

The 3 x 3 matrix G, is formally defined as:

8
a a )\a
Gu.c = Z (8MAV7G — 51/14”,(;) -5
a=1
8
) u 2@ /\b
—igs Yy { G Afi)G?} (1.139)
a,b=1

and to compute the trace in Eq. (1.136) one needs the condition:
Tr(A*\°) =259 (1.140)

Two comments are relevant at this point. The first one is that the
first term of L, describing the quark-gluon interaction, can be identically
rewritten in terms of the conventional chiral fields as:

N N
S a iy Dud™ =30 a5 i Dl + ) v Dl |

ci j=1 ci j=1

(1.141)
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Considering for the moment the first family wu, d quarks, Eq. (1.141) can

be rewritten using the notation of Eq. (1.110) i.e.:
3
£,= 3 |6 Dudl) + 3 a5 i Dudl) | — 3T GG
ci=1 J
(1.142)

where ¢;, 1 is the SU(2) left-handed quark doublet defined in Eq. (1.110)
and ¢jr = ugr,dgr are the SU(2)r right-handed quark singlets. One sees
that the term Eq. (1.142) that describes the strong interactions of the
quarks of the first family, and is by construction SU(3). symmetric, has
also automatically the same SU(2)r ® U(1)y local symmetry of the cor-
responding electroweak interactions, being built by quark terms that are
all singlets under the electroweak symmetry group (the gluons too are by
definition meeting this requirement). This means that the delicate mech-
anisms that are ensured by SU(2); ® U(1)y, gauge invariance will not be
altered by the inclusion of strong interactions.

1.5.2.2 Masses of leptons and quarks

Quite generally, any j-th fermion mass term in the Lagrangian is by defini-
tion proportional to the product q;q; = ¢;1.9;r+3jrq;1, Where g; is the field
operator associated to the j-th fermion. The constant that multiplies g;q;
is conventionally called the bare (or Lagrangian, or current) mass = m;.
In a formulation that starts from a Lagrangian that is supposedly SU(2),
invariant, terms of the form m;g;q; cannot appear since, as discussed in
this Subsection, they would explicitly break the symmetry. The problem is
therefore that of generating fermion mass terms without explicitly breaking
SU(2) L.

One natural and elegant possibility in the MSM is provided by the ob-
servation that, in the original Lagrangian, there would be room for a sym-
metric term that is formally written as a Yukawa type interaction between
the fermions and the scalars of the model. In fact, given the nature of the
scalar fields, that transform like an SU(2) doublet (S in the notation of
Eq. (1.30)), we see that the assumed local SU(2)r ® U(1)y, gauge invari-
ance allows the presence in the electroweak Lagrangian (for the moment,
within the first family) of the following fermion-scalar component (Lpg in
the notation of Eq. (1.69)):

Lrs = [feglLS¢eR + faqirSvar + fuq1L‘§¢uR:| + ‘hermitian conjugate’
(1.143)
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where ¢11,, q11, are given by Egs. (1.66), (1.110) and

Si
_SJ-
has the same transformation properties under SU(2), as S (a doublet), but
an opposite value Yy, = —1 (for S, Y, = +1).

The introduction of S is motivated by the requirement that the addi-
tional Lagrangian of Eq. (1.143) has Yz, = 0, which is automatic for the
first two terms is the r.h.s. of that equation where S appears. On the con-
trary, a term ~ @17,5%,r would have overall weak hypercharge Y, = +2,
as one can derive from inspection of Table 1.1 (Subsection 1.4.1, the values
of Y7, for the v, operators are opposite to those of the associated 15). We
see therefore that ¢y nguR has the correct value Y;, = 0. Note that, a
priori, this would have been also true for a term of the kind fl,la ngl,R if
a right-handed neutrino field had been introduced, with does not happen
in the minimal version of the model.

The mechanism for generating fermion masses is now evident. The
spontaneous breakdown of the symmetry generates a not vanishing v.e.v.
of the scalar field. Assuming as we did in the previous discussions that
(s0)0 = (1/v/2)v, we obtain immediately after moving to the shifted fields
S =5 —(S)o, Eq. (1.55), that mass terms will remain in the Lagrangian.
Denoting by Lz, an expression identical to that of Lgr with the formal
replacement S — S, we have in fact that;

% [fe (’JJeL ’Q/JeR + 1Le]’%weL)

+ fu(VurVur + Yurtbur) + fi(YarVar + Yaribar)] (1.145)

which means a generation of charged fermion masses:

So — ng
—89 + 151

S =imSt = = (1.144)

Lsp = EgF +

v v
Me = —=fo; Mud=—=Ffu 1.146
\/if d \/if d ( )

while, as a consequence of the assumed absence of a right-handed neutrino
field, the neutrino remains massless in the model.

The previous formal derivation has only shown that in the MSM it is
possible to generate fermion masses in a “natural” way, i.e. by exploiting
the same mechanism that was able to provide masses to the W and Z
bosons. The big difference is that in the fermion case the various masses
are arbitrary parameters of the model, whose addition is not forbidden, but
certainly not theoretically motivated. The precise values of the fermion
masses (forgetting for the moment the extra complication of a meaningful
definition of a “quark mass”) have to be put in by hand.
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Leaving aside this undeniably not fully satisfactory fermion mass gener-
ation, a short remark might be worthwhile. The final physically acceptable
panel with massive W, Z and fermions is the result of a series of theoret-
ical assumptions that include: 1) the assumed mechanism of spontaneous
SU(2), ® U(1)y, symmetry breaking; 2) the existence of a scalar doublet
“hosted” by the vacuum and 3) the introduction in the complete Lagrangian
(including in this definition also that of the strong interaction component
Ls, Eq. (1.142)) of a specific, Yukawa type, interaction Eq. (1.143). We
wish to conclude this Subsection with a discussion of the third point.

1.5.2.3  Family replication

Until now we have only considered one family of fermions i.e. 15 chiral par-
ticles corresponding to the lightest leptons (the electron and its associated
electron neutrino v.) and quarks (u,d with three colors each). Experimen-
tally, one knows nowadays that at least two more sets of fermions exist
that can be formally grouped assigning them to a second and third family
whose behavior under the electroweak symmetry group is identical to that
of the first family, the only difference being represented by their masses,
that seem to increase regularly leading to a second family (with the muon,
the muonic neutrino, the quarks ¢ and s) “heavier” than the first and to a
third family (with the tau, the tau neutrino, the ¢ and b quarks) “heavier”
than the second one. In principle, this does not represent a problem since
we have seen in the last Subsection that masses are put in by hand. There
is, though, a more subtle theoretical disease that we try to summarize,
again for self-consistency purposes, ignoring a more rigorous and historical
discussion of experimental and theoretical glorious issues (Cabibbo angle,
flavour changing neutral currents) that were already known before the final
assessment of the MSM and that we shall exhibit as a byproduct of the
following presentation.

Let us first assume the existence of N fermion families grouped, for
what concerns SU(2)r ® U(1), as an exact replication of the first. Let us
introduce an index ¢ for family, variable from 1 to V. For each i-th family,
we shall define the left-handed lepton doublet as ¢! and the right-handed

leptons are zb%%:

() (W)
) 1f/)uL )
£ = W) (1.147)
PO
lr

with the convention that ¢ = 1,2, 3 correspond to electron, muon and tau
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families (so that e.g. ¢£2L) = Yuur, wﬁ) = Yur, ¢Sg) = trg...). Analo-
gously, we shall define the quark doublets and singlets of each family as
follows:

i)™
g™ = wR, ) (1.148)
¢(i)(W)
dr,

(color indexes are omitted now) with the convention that u()(2):®3) corre-
spond to the usual up (1), charm (2) and top (3) and d+(2)) to the usual
down (1), strange (2) and bottom (3) flavour indexes.

The lepton and quark particle fields that appear in Egs. (1.147) and
(1.148) are by definition those that have definite transformation properties
under the electroweak gauge group SU(2) ,®@U(1)y, , i.e. definite I%, I3z, Y7,
quantum numbers. They are usually called the gauge fields. This mathe-
matical property is enclosed into the upper index W (= weak), that refers
to the fact that the SU(2) structure (doublets and singlets) of the consid-
ered fields is fixed. In the construction of any quantity that is supposedly
a scalar under SU(2)r ® U(1)y, , these gauge fields will be necessarily used
as starting objects to be combined with other different gauge eigenstates
(like the scalar doublet S) to obtain the desired scalar, in the some spirit
that led to the construction of the Yukawa term Eq. (1.143) for the first
family.

To better understand the extra complication that arises when more than
one family of fermions is supposed to get masses in the model, let us first
consider the pure quark sector of the Lagrangian. For N families, the most
immediate and allowed generalization of Eq. (1.143) has then the following
form:

L) =59 + iy (1.149)

where the quark component can be written as:

N
ﬁ(N) Z [Gii/q?‘W)S@bé}’(W)+éii/q5)<w)ﬁwg;g<w>} (1.150)

i,i'=1

+‘hermitian conjugate’ (= h.c.)

where we have introduced the most general N x N matrices G, G on which
no stringent particular constraint is set by the requirement that Eq. (1.150)
is SU(2)L ® U(1)y, invariant. After spontaneous symmetry breaking, the
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following quark mass Lagrangian will be generated from the usual mecha-
nism:
N v T@OW)  @NW) | A T@OW) )W
£6dn = 75 D [t R + G YW e ]

i

(1.151)
Defining
MY = LG MW= _Lé, 1.152
23 \/5 kX% \/5 ( )
and introducing the N-dimensional column vectors ¢("):
HWw
¢uL R ;L),(R :
w : w :
dur=| i |i Wip=| (1.153)
(N)(W) (N)(W)
VuL R dL,R

we can rewrite Eq. (1.151) as
Lo = ¢<W>M<u o) + 85 MO g + e,

I [Mqu%(”’) + M@)o Mgy 3)(W)} + .. (1.154)

showing that, a priori, the presence of not diagonal terms ~
&g)(W)wg)(W), i # i/, cannot be excluded by the mechanism. In other
words, the quark gauge eigenstates, that appear necessarily as the building
block of the electroweak interactions, are not physical mass eigenstates and,
as such, loose meaning from the point of view of observational properties.

This situation in the MSM is not actually new. We have already met
the case of the gauge eigenstates W3, B that were not mass eigenstates. We
expect therefore to be able also in this new case to replace the gauge quarks
with the massive ones by means of a suitable matrix transformation. This
can actually be done, in full generality.

The mathematical ingredients that must be involved are relatively sim-
ple. It is known that, given a general and non diagonal N x N matrix = M,
it is always possible to find two unitary matrices Uy, Us such that

UyMUs = M (1.155)
is both diagonal and real.
Defining the four matrices required to diagonalize M), M (D) as
v = UsY = U
(1.156)
Ul =v, ;U = vt
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we shall have that
U MWUL = mM® (1.157)

ViMDVE = M (1.158)

with M®)-(") diagonal and real. Then, we see that the physical quarks will
be obtained from the gauge eigenstates by rewriting Eq. (1.154) using the
unitarity property UrU;” = U Ur = 1 (similarly for Ug, Vz and Vg):

o M@ + 0 M) + he.
= égY)Uf(ULM(“)Ug)UR%R +h.c.
= Y MY + Yo MPyp + hec.

= P MMty + P MPy, (1.159)

(MP) are now real diagonal matrices) where v, , are N-dimensional col-
umn vectors whose elements are by definition the physical (mass eigen-
states) quarks. These will be denoted in the following way:

1
U
UpLR=| (1.160)

N
T

1)
dL,R
YnL,R =] (1.161)
(N)
¢dL7R

where the physical quark fields are indicated by the same symbols 1/)(Li?R
as in Eqs. (1.148), (1.153) but without the upper W index that specifies
the gauge eigenstates. Thus, 1/)7(})’(2)7(3)
up, charm, top flavour quarks, and analogously for the down type (1,2,3)
indexes (down, strange and bottom). In matrix form, the relationship be-
tween the physical and the gauge quarks will be expressed as follows:

will now correspond to the physical

YpL,R = UL7R¢£VK)1vg (1.162)
YnL.R = VL,R¢£¢‘/LV7)R : (1.163)

Having defined the physical quarks, it is now useful to express the var-
ious terms of the electroweak Lagrangian in terms of these quantities. For
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what concerns the residual interaction with the scalar doublet S, general-
ization of what was called L in Eq. (1.145), it is straightforward to verify
that in the unitary gauge one has:

1 _ _
Lop=—H [in MMy + 5y MP, (1.164)

where H is the physical Higgs scalar. Thus, the Higgs scalar automatically
interacts with the physical quarks.

Let us consider now the gauge-fermion interaction in the quark sector
that is originally expressed in terms of the gauge fields. We want to express
it in terms of the physical fields in the general case.

Consider the charged current interaction first. From Eqgs. (1.95), (1.96)
one can generalize the definition of J l(fl)L

(charged) _ n(charged) (charged) g (+)
Lrg™ = L™+ L™ = % (765 + 7)) W e
(1.165)
where
3
—(2) (W ) (W (W w
I =3 g0y, g0 = g0, 400 (1.166)

=1

Equation (1.166) can also be rewritten in terms of the physical quarks as:

Jl(:(—]) = 1LPL7N [ULVZF]wnL = &pLVMUdJTLL (1167)
(color indexes are omitted now) where
U=UV, (1.168)

is a unitary N x N matrix, in principle complex and determined by (N —1)2
real independent parameters. In fact, the unitarity condition

UapUg., = UapUls = Sap(a, B,y = 1,.,., N) (1.169)

imposes N2 conditions, reducing the number of parameters from 2N? to
NZ2| in particular leaving N(N — 1)/2 moduli and N(N +1)/2 phases. One
can then change (2N — 1) relative phases of the 2N fields that appear
in Eq. (1.167) absorbing a corresponding number of U phases, remaining
therefore with N(N — 1)/2 moduli and (N — 1)(N — 2)/2 phases (total=
(N —1)%) in U (for a detailed explanation see [18])

If N were equal to 2, the only possible form for U would then be:

cosf,. sinf,.

—sinf, cosf, (1.170)

Un=2) =
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that reproduces the Cabibbo parameterization [27], with 6. to be experi-
mentally determined.
Consider next the case N = 3. The U matrix then depends on 4 pa-
rameters, that can be classified as 3 (real) moduli and one phase.
Actually, any unitary 3 x 3 matrix can be cast in the form:

U=U0,U8My, (1.171)
where
10 0 e 0 0
U =07 0]; Uy=|0 €% 0 (1.172)
00 e 0 0 en

and UKM is the so called Cabibbo-Kobayashi-Maskawa matriz [28], that
can be written in the form:
C1 S51C3 S$183

UEM = | —s1¢5 [crcacs — €5983] [c1cass + € sacs] (1.173)

—$182 [c182¢3 — €i60283] [c18283 + €i60263]
where s;, ¢; = sinf;, cosf; and § is a certain phase. Then U, o are reab-
sorbed by a redefinition of the field relative phases, and in the final expres-
sion UXM remains as a generalization of the Cabibbo matrix in the case
N = 3, with the four parameters 61, 03, 03, § to be determined experimen-
tally.

The existence of a phase § # 0 is of paramount theoretical relevance
since it can be shown that, in connection with this fact, there will be in the
electroweak Lagrangian the presence of CP wiolation. This will be caused
by those terms in the CK M matrix where § appears.

To understand this statement, one must recall the transformation prop-
erties of a general fermion field under C (charge conjugation) and P (parity),
that can be found for instance in Ref. [30]. Given the latter ones, one can
compute the transformation of the Lagrangian (Eq. (1.165)) and verify that
for N > 3 the presence of phases makes CP invariance fail. With these con-
ventions and notations, we can consequently expect CP violation in those
processes where the matrix elements U£%732733 are involved provided that
0, the CP wiolating phase, is different from zero. In practice, anticipating
an experimental determination that will be exploited in the following part
of the book, one finds that the CKM matrix is “essentially” diagonal, in
the sense that

|U11| = |Uaz| = |Usg| >> |Uik|,i # k. (1.174)
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We now come to the neutral current sector of the weak interaction.
Repeating exactly the some procedure as in the charged case, one easily
sees that all the current components can be written in the form:

1L;DLP)/;J,[UL[]Zr]'@[JpL ) ’JJpRPYu [URUIJ{r]wa )
(1.175)

7ZnL’Y;L [VLV;]wnL ; &nR'Y,u [VRV}%_]"r/)nR

and thus, from the unitarity of (U, V)t r these currents are automatically
diagonal (i.e. not flavour changing) in the physical fields.

Similar results are obtained in the lepton sector. Without repeating
again the full procedure, one can treat it as a special case of Eq. (1.150)
with C:'ij =0, (since no ¢I(j'i1)%(W) are included, m, =0).

This means that the diagonalization of G = 0 can be achieved with
any couple of matrices Uy, Uy in particular with U®) = V(¢). Then both
the charged current (UX:¢ = 1) and the neutral one are automatically
diagonal in the physical fields denoted without the upper W index (i.e.
&ueL%ﬂ/)eL,&uuL’Yu¢uLﬂ/;wL7M/)rL etc.), and the various lepton numbers
are separately conserved.

A final point concerns the strong interaction component of the MSM
represented by Eq. (1.136). As one sees immediately, the quark gluon in-
teraction is automatically diagonal also in the physical quarks, and can
simply be rewritten in terms of the mass eigenstates with no formal change
of the interaction. The mass eigenstates are also, therefore, the quarks that
are involved in the strong sector of the model.

After this remarks we are now in a position to discuss in a realistic way
the tests of the MSM that can be provided at the Z resonance.

1.5.3 Tests of the MSM at LEP1/SLC

We can now return to the investigation of the kind of tests of the MSM that
can be provided by accurate measurements of the observable properties of
the process of electron-positron annihilation on top of Z resonance. For
this purpose it will be useful to write again the overall expression of the
complete Lagrangian that describes strong and electroweak interactions in
the MSM. This will read:

LOSM) — p(MSM) y p(MSM) (1.176)

where the strong component ﬁgMSM) is given by Eq. (1.136) and the elec-
troweak component L w. can be written in the form of Eq. (1.135) as the
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sum of four terms

LOMSM) _ p(MSM) | p(MEM) | pOISM) | (MSM) (1.177)

corresponding to the interactions between scalars and gauge boson (SG),
fermions and gauge bosons (F'G), gauge bosons-gauge bosons (GG) and
fermions with scalars (F'S). The first quantity coincides with the first
terms written in the r.h.s. of Eq. (1.50):

LM — (D,S)!(D*S) - V(S) (1.178)

and in fact it contains also the self-interaction of the scalar fields (for con-
ventional reasons). The fermion-gauge boson terms will be expressed as
from Eqgs. (1.95), (1.97) i.e.:

charged S g
E%G ged)(MSM) _ 7 (J(+) J(TQ;)W'H‘ + h.c. (1.179)
(neutral)(MSM) _ (Q) () AP |€| J(Z) J(Z) VAL

Lra |e|(J”’€ A sin Oy cos GW( + )

(1.180)
with the understanding that
E%MGSM) Eg:(‘:garged)(MSM + E;éutral)(MSM) ) (1181)
In Eqgs. (1.179), (1.180) we have used the definitions:
(J;) = &VCL’-Y;LL/)EL + 1r/i)uML'}/,tﬂr/),uL + 1r/i)uTL’)/;ﬂr/)‘rL + - (1182)
J,S:Z) = Z Z ¢Z(,CLL [Y;LUZJ%(:LLJ (1.183)
ci=114,5=1
Jﬁg) = — [Yevpthe + Yurptu + Vrvpthr + -] (1.184)
3

59— 5 [t daoet]

c;i=1

1 1 , L
J/S7Z[) = |:§wucL7p1r/)ueL + <_§ + Sln2 GW) : 1/)3L7p¢eL + Sln2 0W¢eR7p¢eRj|
+(;U'7T"') (1.186)

b 12 . 11
Jéi) = |:wuLA/p¢uL (5 3 sin? 9W> + YarYpPar <_§ + 3 sin? 9W>
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_ 2 . _ 1 .
+YurYpWur (— 3 sin? 9W> + YarYpYar (§ sin? 9w>}
(e, 8,t,b01) . (1.187)

Here v, = ¥pr + Ypr and ¥, = 1 + Vg, the chiral quantities being
defined by Egs. (1.160), (1.161). A (diagonal) sum over the color index ¢;
is explicitly written (the Lagrangian must be a SU(3). scalar); the number
of families N is left free for the moment.

The gauge boson-gauge boson term contains the SU(2), component al-
ready appearing in Eq. (1.50), with the addition of the U(1)y, contribution;

1
O — ZF"‘ FHr — 2B, B (1.188)
where F}j, is defined by Eq. (1.51) (x denotes the SU(2)r, spin one vector
Wlsl))(2)7(3)) a.nd
By, = 0,B, — 9,B, (1.189)

where B, is the U(1)y, gauge boson. The expression of E(GMGSM)
of the mass eigenstates Z,,, A, is straightforward and will not be explicitly
shown.

in terms

The fermion-scalar term E(MSM) has been exhaustively discussed in the
previous Subsection. It can be taken from Eq. (1.149), the leptonic part
being defined with the pure ~ S term (no right-handed neutrinos) and
the physical charged lepton field operators in the formal expression, the
diagonal mass matrix being an obvious modification of Eq. (1.161), with
the ‘d’ index replaced by a ‘¢’ = charged lepton one, and

v

Me,pr = NG

where G corresponds to G, Eq. (1.150).

Given the overall expression of the Lagrangian, let us consider the pro-
cess of electron-positron annihilation at the Z mass energy (on top of Z
resonance). To the lowest order in a perturbation expansion, this is de-
scribed by the Feynman diagram of Fig. (1.2). In this approximation, any
measurement on Z resonance represents a test of the assumed form of the
pure Z component of the neutral part of the Lagrangian E%%SM), second
term in the r.h.s. of Eq. (1.180). Let us assume for the moment that such
an approximate lowest order description is “satisfactory”, and let us see
what general theoretical assumptions can be tested in this way.

4 4 4
610,69, 64)]
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1.5.4 Universality of weak interactions and number of
fermion families

A first fundamental consequence of the assumed theoretical framework is
the property of universality of the fermion-gauge boson interactions. This
corresponds to the fact that the couplings to W+, W~ and Z of fermions
belonging to different families only depend on their weak isospin and charge,
but not on the flavour or on other typical features of the families. Strictly
speaking, for what concerns the W1~ couplings, the previous statement
ignores the fermion family mixing, discussed in Subsection 1.5.2. In first
approximation we shall here assume that the CKM matrix is essentially
diagonal, as anticipated in that Subsection, since our main interest in con-
centrated on the Z couplings.

In particular, the Z interacts with the fermions in a way that is specified
by Egs. (1.111), (1.114), (1.119) and one predicts the same couplings with
e.g. electrons, muons and taus (analogously, with the three kinds of neutri-
nos and with the different flavour kinds of up-type and down-type quarks).
Modulo small and calculable kinematical effects due to different masses,
the decays of Z into e.g. different charged leptons (or neutrinos, or quarks)
should be identical for the same (I3z,, Qf) quantum numbers.

If should be stressed that this universality prediction is indeed a conse-
quence of the assumed theoretical scheme and, more precisely, of the non
Abelian nature of the SU(2); component of the symmetry group. To be
more specific, let us suppose that a second doublet of left-handed fermions
is added to a first one in the original Lagrangian. The form of the covari-
ant derivative that acts on this doublet is then forced to contain the same
SU(2) 1, coupling g that appeared in the first doublet, if one wishes to realize
the symmetry with the same set of gauge bosons, that transform under the
group in the same way. In other words, assuming that the second doublet is
coupled to the SU(2) gauge bosons with strength = hg (g is the strength
of the first doublet), one finds that necessarily h = 1 as a consequence of the
non Abelian nature of SU(2),. Note that this fact would not be true for an
Abelian group like e.g. the QED U(1). In this case, if one charged fermion
couples with the photon with a strength e, any other charged fermion can
couple to the (same) photon with strength he and arbitrary h.

Given the relevance of this universality property, we shall now try to
sketch a qualitative proof. Consider first the case of two charged fermions
f1, fa of electric charge ‘e’ and ‘he’ respectively. The generator of the U(1)
QED symmetry group is @, the electric charge. Under a transformation of
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the group, f1,2 become:

fl=e (f{ = fleie(z)) (1.190)

fé _ e—ihs(m)fQ (fé _ f2eihe(x)) (1.191)

where €(z) is a real space-time dependent phase.
The covariant derivatives on f; o will be:

Dufl = (8N + i@AH) f1 (1192)

Dufg = (BM + iheAM) fa. (1.193)

From the requirement of U(1) invariance of the terms fiy*D, f1 and
f2" D, f2 one derives the U(1) transformation properties of A,,, that must
be by definition the same in the two cases. Actually, one has that imposing

ADufi) = AiDufr (1.194)
gives for the U(1) transformed field
1
AL(@) = A(@) + —Due() (1.195)
and the same condition is derived by imposing that
F5(Dyufo) = f2Dyufo (1.196)

independently of h. Let us show this in the particularly simple case of an
infinitesimal transformation, for which e~"¢(®) ~ (1 — ihe(x)).
We find then:

fo(Dyuf2)' =~ fo(1 +ihe(x)) (8, + iheA,(x)) (1 — ihe(x)) f2

f2 [0y + ihe Al (x) — ih(Dye(x))] fa
+fah’e [A;L(x)e(a:) — e(m)AL(a})} + O(€%)

= f2 [0, + iheA,(2)] fa (1.197)

(the last equality follows by the requirement that fo(D,f2)' = foD,f2).
Equation (1.197) leads to the condition (1.195) A}, = A, + (1/e)due(x)
that does not depend on h, since all the residual terms of the equality are
linear in h, that can be consequently factorized and eliminated. This is a
consequence of an exact cancellation of the two terms that are quadratic
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in h in Eq. (1.197), which in term is due to the Abelian nature of the U(1)
group.

Let us repeat the treatment for two SU(2); doublets, denoted by the
symbols 1 and ¥. Assuming a SU(2), coupling of strength g, hg respec-
tively one will have in this case

W) = e 2 @)y, (1.198)

W = e~ th5 &)y, (1.199)

where the Pauli 7; matrices satisfy the commutation relations of the asso-
ciated SU(2) [, generators:

Ti T . T,

[5 : 5]} =i €ijny (1.200)
that exhibits the non Abelian nature of the SU(2)r, group. For the covariant
derivatives, we shall have now

7 A
Dy = <8ﬂ - z‘gTz“> U1 (1.201)
Dty = (aﬂ - z‘hg”?“) ba . (1.202)

Considering again infinitesimal transformations, one finds by imposing
the invariance of the term ﬁlDM@/Jl that the SU(2);, transformed gauge
bosons fields must be (i = 1,2, 3):

L
A= Ay = S Ouei(@) + €juei (@) A7 (1.203)

In the case of Eq. (1.202), one is led to the following equality from the
requirement of SU(2)y, invariance of the quantity ¥oD,,1bs:

G (O — ihg 5 AL) o = B2 [0, — ihg o Al — ih s (9€i() |
- Ti 11 Tj T T ok
—iah?g | FA5 T () — Drej () AL o

+0(e%) . (1.204)

As one sees, the residual quadratic term in h is now not vanishing be-
cause of the SU(2) 1, commutation relation Eq. (1.200), contrary to the U(1)
case Eq. (1.197). Taking Eq. (1.200) into account gives in fact:

All(x) = Aj (x) — éau(ei(ff) + hegje; () Al (1.205)
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Fig. 1.6 Example of gluon (A%) exchange in ¢g production.

from which, to guarantee SU(2), invariance with the same triplet of gauge
bosons, one must necessarily set h = 1.

In conclusion, the couplings of Z to the fermions will be fixed by only one
unknown parameter : the Weinberg quantity sin® 6y, with fermions of each
family universally coupled as from Eqs. (1.186), (1.187). This prediction
(and the value of sin? @) can be at first sight checked (and derived) by

+€_ measurements on Z resonance.

e

Another very important issue concerns the (a priori free) number of
families N. Clearly only those fermions that are sufficient light to be pro-
duced in couples by an ete™ energy equal to mz would be “seen” on Z
resonance. Therefore, “heavy” families would escape observation, with the
exception of their neutrinos, if the assumed pattern of massless neutrinos
is maintained.

Qualitatively, one can imagine that measuring the properties of the Z
decays the number of invisible decays into neutrinos can be counted. This is
undoubtedly another very important feature of the model that can directly
measured.

The previous discussion was assuming the validity of a lowest order
description of eTe™ annihilation on top of Z resonance, corresponding to
the tree diagram represented in Fig. 1.2. But the fundamental property of
being renormalisable allows to perform in the MSM calculations of higher
order effects, in particular of Feynman diagram at the next one-loop level
like e.g. those of electroweak type represented in Figs. 1.3-1.5. Also, for a
final quark-antiquark states, higher order diagrams involving strong gluon
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exchange will have to be retained, like e.g. that represented in Fig. 1.6.

Clearly, these higher order effects will allow to provide tests of the re-
maining parts of the Lagrangian, as already discussed . These tests will be
necessarily less stringent than those related to the lowest order Z exchange,
given the fact that the extra effects to be predicted will be necessarily rel-
atively smaller than the leading one.

Nevertheless, in some particular cases they will be not only not negli-
gible, but also in a specific sense very predictive. We shall return on this
point in great detail in the forthcoming Chapters.

This final discussion concludes Chapter 1 that was devoted to a brief,
self-contained summary of some of the main features of the MSM. In the
next Chapter, we shall begin to illustrate which experimental quantities
can be actually measured on Z resonance, and what are the related the-
oretical predictions at the one loop level to be compared with the various
experimental results.
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Chapter 2

Z Physics at Tree Level

This Chapter introduces a number of measurable quantities in ete~ anni-
hilation and the basic technique that is necessary to calculate them. Since
parity violation plays a crucial role in electroweak interactions, we derive
chirality amplitudes directly without using trace theorems. Although the
latter ones provide a general framework for performing calculations, the
decomposition that we shall describe here highlights suitably the Standard
Model separation into left-handed and right-handed fermions. The property
of asymmetries and of polarization observables at the Z pole to offer in-
formations from parity violation effects rather than from Z+ interference is
also easier to understand in this way. This Chapter is organized as follows.
In Section 2.1, the basic expressions for spinors are recalled. The differen-
tial cross section for the process ete™ — u*p~ via photon exchange, for
the four possible combinations of initial and final state helicities is given in
Section 2.2. This allows the general expression of polarized and of unpolar-
ized cross sections to be derived. The Z propagator is then introduced in
Section 2.3 in an effective way, leading to the general expression for the Z-
mediated cross sections. The magnitudes of the photon and of the Z cross
sections are compared. The important calculation of the Z — f f process is
then described, for massless fermions, in Section 2.4. The massless-fermion
hypothesis will allow a simplification of the cross section formula previously
derived. The different couplings of the Z to left and right-handed fermions
lead to a large number of parity violating effects. The angular asymme-
tries and the polarization asymmetries are described in Section 2.5 where
it is also shown that these observables, that are related to parity violation
can be expressed in terms of one single parameter, the electroweak mixing
angle. Moving away from the Z peak, general expressions including Z-~y
interference will be given in Section 2.6.

57
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2.1 Conventions, spinors and basic cross sections

The e~ e™ initial state is defined by the electron-positron four-momenta £
and ("

= (00, 0) = (£°,0,0,0) (2.1)
o0 = (0 —¢) = (£°,0,0,—¢) (2.2)
00 =\/02 +m?. (2.3)

This corresponds to the experimental situation at LEP and SLC, with
head-on collisions in the centre of mass frame, although, due to energy
spread or slight momentum asymmetries, small boosts might have to be
considered occasionally. The centre-of-mass squared energy is

5= (0" + 02 = 4(0°)% (2.4)

The aim of the following discussion is mostly that of arriving in a sim-
ple way to the definition of those quantities that will be relevant for our
description of the physics at the Z pole. In this spirit, we shall assume
the preliminary knowledge of some basic ingredients of the mathematical
features of relativistic fermions. There exist excellent review books on the
topics, in particular we shall adopt the notations and conventions of Re-
nard [31] and proceed in a very quick way to the aimed results.

The spin state of a fermion can be described by the polarization four-
vector & as follows. In the fermion rest frame, r, choosing as usual the
system i = ¢ = 1, so that £}, = (m,,0,0,0), the polarization four-vector
¢, has the form £, = (0,£,), where &, is a unit 3-vector aligned with the
electron spin. By definition, £, always satisfies the two constraints:

E-0=0; & =—1. (2.5)

The spinor u(¥,§) is related to the free-electron wave function e (x),
solution of the Dirac equation, by the usual expression

1 1 .
Yee(x) = W\/TTO exp (—il - x) u(l,§). (2.6)

In the rest frame r, choosing the Z axis as the quantization one for
the electron spin and calling (x+) the 2-component spinors eigenstates of
10 '
0, =

0-1
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o.xT = +xT (2.7)
“=faf =i

| =] (28)

the electron states with spin along the positive and the negative Z axis are
described by

1
ur 2Me X;‘ =2m, 8 = u(ﬂr,éz) (2.9)
0
0
urr = v2me XO_ ' =V2m, (1) = u(l", —éz) (2.10)
0
where
€ =(0,0,0,1) (2.11)
and the normalization is such that
au = ulyou = 2m, (2.12)
where
0= ") (2.13)

—

In a general frame, the four-vector ¢,, = (¢,, £) can be obtained from the

rest frame vector éz via a Lorentz transformation with coefficients a”

o
£, = aZ€£ (2.14)

and the corresponding value of the polarization vector will be, similarly,
& = azgg . (2.15)

From the canonical transformation properties of spinors under a Lorentz
transformation one derives the expression of the general spinors with po-
larization &,

ﬂ + Me

U’(& 6) = mlﬂ (216)
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B {4+ me
u(l,—§) = —2me(€o mn me)uu (2.17)

where § = 4#4,, = 4°40 — 5 . /. The three 7 matrices can be represented by

) 0 o
= ! 2.18
i ' —0; 0 ( )
indicating with o;, ¢+ = 1, 2, 3, the Pauli matrices,
01 0—i 10
= = = =0,. 21
01 }10 , 02 i O ,03 ‘0_1} g ( 9)

Equations (2.16) and (2.17) are a direct consequence of Dirac equation
(f — me)u(l, ) = 0. Expressing u(¢,£) with 2-component spinors,

u(¢,§) = (Z), (2.20)
a relationship between ¢ and x is obtained: ¢ = éoi f; -X -

A more convenient classification of the spin states of the fermions at
high energies is given in terms of their helicity A. This is defined as the
spin (5) component along the direction of the 3-momentum, and for spin 3
fermions has the expression

(2.21)

The helicity takes discrete values and \ = ﬁ:% for spin % particles. It is
not Lorentz invariant if the particle mass is different from zero: a Lorentz
transformation can reverse the direction of [, hence the sign of helicity.
Assuming, however, that the direction of 7'is not changed by the Lorentz
boost, the helicity corresponds to the eigenvalues of o, in the rest frame of
the particle (Eq. (2.7)).

The expressions of the Dirac spinors with four-momentum ¢ and helicity
A= :l:% are then the following ones (choosing the direction of 7 as the Z
axis):

1
1 X+ 0

u(l, A= —|—§) =vVlb+me| | = Ve +me| 4 (2.22)
lo+me Lo+me

0
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u(l,\ = —l) =\ lo + me

2

0
- 1
X ‘ = lo + me ol - 2:23)

7 +Me X—
0 ¢
Lo+me

U-spinors are related in the conventional scheme to the annihilation of
the incoming fermions, while the creation of fermions will be described by
the barred spinors @ = uf+, . For anti-fermions, the analogous operation
are described by the v (annihilation) and v (creation) spinors. For the latter
ones, one can repeat the previous analysis and obtain the expressions of the
two states with four-momentum ¢’ and helicity ' = :I:%7 having chosen the

three-momentum ¢ in the negative -Z direction and |[¢/| = |£], €} = £, :
_
Lo+me
A 1 x4+ 0
vl N =+3) = Vil +me o;T: = \/lo + me |22y
0
0
1 - — £
v/, N = —5) = —\/lo+me ZO*;C”iX ‘ = Vlo + m. ZD*’”E) . (2.25)
-1

The previous short summary has been mostly given for self-consistency
reasons, since we shall need the various equations that have been written
to derive several relevant features of electron-positron annihilation in the
quickest and simplest way. A detailed illustration of the considered prop-
erties can be found in Ref. [31].

2.2 Chiral fermions and polarized cross sections in the
one-photon exchange

The previously defined helicity is affected by a problem: it is not a fully
Lorentz invariant quantity. Roughly, one defines then a new, Lorentz in-
variant quantity that coincides with helicity in the limit of very high energy
when masses can be neglected. This quantity is called chirality and we will
briefly summarize its main properties.
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The chirality operators are
1

L1429 =P (2.26)
%(1 — ) =Pyr . (2.27)

One easily sees that they satisfy projector conditions, since Pr? = Pk,
PL? = Pr, PrPL = PLPr = 0.
One defines, then, the following chiral spinors:

1 0
0 1

ur(l) =Vl ||| us(t) = Vo ol (2.28)
0 -1
0 -1
-1 0

va(l) = V| o [ o) =V | | (2.29)
-1 0

with (¢ = 60,[ + 0 = 0,0 along Z). The previous spinors are eigenstates
of the chirality projectors, since :

Prur(l) = ugr(l) ; Prur(f) = (2.30)
Prur(l) =0; Prur(l) = ( ) (2.31)
Pror(l') = vr(l') ; Pror() = (2.32)
Prur(l') =0; Prop(l) = UL(él)- (2.33)

In the common language, uy, vy are called “left-handed” spinors and
upR,vr “right-handed” spinors. To better understand their physical mean-
ing, we shall use the formal high energy identities

1
Jim u(l, £= ) = ur(r) () (2.34)
L0 0
1 /
lohm vl += ) =vrr) (L) (2.35)

e

which are derived from Egs. (2.22)—(2.25). Thus, in the high energy limit,
the chiral spinors are essentially identical with the helicity spinors. One
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can quantify the difference between the corresponding states by making a
power expansion in the small % parameter. This gives, formally :

w(l, 4 1) = un() + 02
2 Loy
and similarly for three remaining helicity eigenstates, with the various O(7*)
that can be easily computed. Given the value of the electron mass, for the
electron energies of several GeV size that occur at LEP1 the difference be-
tween the helicity eigenstates and the corresponding chirality partners is
indeed miserable and one can, in practice, neglect it. The same approxima-
tion will be normally used for the final fermion/anti-fermion states. A word
of caution must at this point be spent concerning the adopted convention,
to avoid a possible source of confusion. In our notation, up 1, describes elec-
trons with spin components along the positive (R) or negative (L) Z axis
and vg, 1, describes positrons which follow the identical spin convention. (In
the original definition, Eqs. (2.24)—(2.25), the quantization was given along
the negative Z axis.)

We are now ready to derive a first important property of e™e™ anni-
hilation in the Standard Model framework. With this aim, we need the
expression of the all the barred spinors 4y, g, v, r. With our choice of 7
they read

) (2.36)

ir=ufy =0|10-10)| (2.37)

ip =0 |0101]| (2.38)

or =1l |0-101] (2.39)

o, =l |-10-10] . (2.40)

Let us consider now the case of ete™ — p+pu~ via a photon exchange.

From the conventional Feynman rules we have in the initial state four terms
that correspond to the four possible initial () helicity configurations, i.e.,

eset = T =t ug (2.41)
eet = Jh = vpytur (2.42)
eet = M = oyt ug (2.43)
e—et = T = Tryrur . (2.44)

Using our chosen v* representation (Eq. (2.18)) one easily obtains that
it =J=0. (2.45)
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In other words, the initial currents vanishes in the case of total spin 0,
leaving only the two configurations with total spin 1. For the latter ones
one obtains infact :

Jhi = vry"ur = (0, 26y, —2il, 0) (2.46)
T = opytur, = (0,200, —2il,,0) . (2.47)

If one considers now the final state u+ ™ one realizes that they also can
only appear in the two configurations

il = apyrop (2.48)
T = apytg (2.49)
. Actually, for final state fermions, whose centre-of-mass 3-momentum
p’ makes in general a certain non-zero angle 6 with respect the electron

3-momentum p, the previous statement can be simply derived from the
general expression of the electromagnetic current

o™ = (@) (@) = () [Pr + Prlvu[PL + Prlv(z) (2.50)
where Pr 1 are defined in Eq (2.26),(2.27). From the anti-commutation
property v5y, = —7Yu¥s on then recovers the known result

Jom = P(@) Ly (@) L + (@) RYu(2) R (2.51)

where Yr 1 = Pr,rt .

Moving to the u, v spinors leaves then the chirality initial and final eigen-
states in the combinations of Eqgs. (2.46),(2.47),(2.48),(2.49) for any value
of the final muon angle #. In general the expression of Eqgs. (2.48),(2.49)
will not be as simple as that of the initial electron current, that remain
fixed by Egs. (2.46),(2.47).

A useful situation to be considered at this point is that of forward
scattering, 8 = 0. In this case the expression of the final currents can be
computed using the same spinors representation that we have so patiently
derived, and whose utility will soon become evident. It is then simple to
see that

Jid = (0, —2¢, 2i4o, 0) (2.52)
JiF = (0,26, 260, 0) . (2.53)
From the conventional Feynman rules, the expression of the invariant

scattering amplitude for a certain transition is given, at the lowest Born
level by the formula

2JN»fngJV7i

Mfi = (—ie) s

(2.54)
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where s = 4¢3 is the squared centre-of-mass energy. We can therefore
define, in full generality, four different scattering amplitudes, i.e.,

Mrr, Mrr, MpRr, MRy, (2.55)

that correspond to the four combinations J*ippJ, 1, J* grrJ. rE,
Ji Y ey TP RRI DL

The corresponding differential cross section, proportional to the square
of the scattering amplitude and to known phase space factors, will be called

dory dogpr dorgr dogrr
Q7 dQ 7 dQ T dQ
Collecting Egs. (2.46),(2.47),(2.52),(2.53) and (2.54) one easily sees that,
at =0

~ M. (2.56)

Mpr(0=0)=Mgr,(0=0)=0 (2.57)
while

Mp(0=0)= Mgrr(0 =0) = 2¢>. (2.58)

The correct proportionality factor between j—g and |M|? can be derived

in a straightforward way, following, e.g., Ref. [31]. For our purposes, we
shall be limited to quote the relevant final formula
o |MP
dQ  16s(2m)2
Combining Eq. (2.59) with Eq. (2.58) we obtain the desired information:

(2.59)

2 62

dorr _ dorr 0=0) =2 (wherea = 4—). (2.60)
S ™

9 = O =
dQ) ( ) dQ
It is now straightforward to derive correspondingly simple expressions for

the backward configuration, # = w. Here one simply and intuitively ex-
changes the final indexes with respect to the forward situation and finds:

dO'LL dURR

o (0=m) = =2 =m)=0, (2.61)
dULR( =) = dURL(QZﬂ_):a_g (2.62)
a0 a0 s '

The previous Egs. (2.60),(2.62) give the expressions of the differential
cross sections for an initial state with spin one and a final state with 3-
momentum parallel and antiparallel. To derive the expressions for a general
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angle 6, one can follow the procedure of projecting onto an axis situated at
that angle. We shall not perform here the explicit derivation, but will give
the final result, which appears to be a natural extension of the two cases
0=0,0=m,ie.

dorr _dURR _Oé2 1+ cosé 2
-t (1) o
dO’LR _dURL _042 1—cosf 2
o =70 0= <T) ' (2:64)

In all those cases where the polarization of the final state are not mea-
sured, one gives the expression for the averaged unpolarized differential
cross section, i.e.:

-1l a0 taa tan T an | T 1 (Lrees’). (2:65)

Integrating over # and ¢ one then obtains the well known expression
(v = photon exchange)

do 1 dO’LL dURR dO’LR dO’RL] _lag

2
octe I (s) = %W% (2.66)
Our brief summary of the main features of e*e™ scattering in the one-
photon-exchange description is now completed. In the same spirit of relaxed
technicalities we shall now move, in next Section, to the extension of the
previous formulae to the description of the scattering via a single Z boson

exchange.

2.3 Interaction involving a Z boson

We consider now the process ete™ — ptpu~ via exchange of a Z boson,
retaining the reasonable approximation of treating electrons and muons as
massless. In fact, in all processes that we shall describe, the final states will
be always of the type “light-fermion light-antifermion”, and considered as
essentially massless, with the possible unique exception of bb production,
that will be separately treated in Chapter 4. One immediate problem that
we have to face is that, strictly speaking, at this stage of the book the
Z boson properties have not been yet well defined, which might introduce
some confusion to the reader. To proceed in a reasonably consistent was,
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we shall follow an heuristic approach where the Z boson is only defined, for
the moment, as a massive particle of spin one, with different couplings to
left-handed and right-handed fermions that are described by ~ v, vector
currents (similarly to the photon ones). Calling g%, the coupling constants
to the i-th fermion of chirality A = L, R (that remains related to the helicity
in our high energy configuration), the derivation of the matrix elements
for the process is completely analogous to that presented for the photon
exchange, since the possible allowed initial chiralities are obviously not
changed, and for the final pair the pseudovector current allows the same
chiral combination of the vector one. In fact, the main difference between
the photon and the Z exchange is represented by the form of the respective
propagators. Here, a clarifying discussion is requested. Rigorously, we
are at this step illustrating the process of electron-positron at the lowest
order. At this Born level, we should therefore simply replace the bare
photon propagator with the bare Z propagator, inserting in particular a
~ (s —m?%) term in the denominator. As well known, this is not the final
and meaningful replacement, and we shall discuss thoroughfully in the next
Section the correct procedure. As a tolerable compromise, we shall therefore
introduce here an effective denominator Dy defined as

Dz = (s —m%)? + m3I'%(s) (2.67)

calling, for the moment, I'z(M?) the Z width. We hope that the inaccu-
rate treatment will be tolerated by the reader, since it will be completely
explained, as we anticipated, in next Section, and since, for a qualitative
understanding of the features that we want to derive now, it seems to us
an acceptable and unavoidable “ansatz”.

After these premises, the derivation of the chiral cross sections can now
proceed reasonably clearly, following the steps illustrated in the previous
Section. In particular one finds:

dJLL

700 :9%69%“D;(5)< 5 ) e (2.68)
ngR (0) = 9hed, DZS(S) <1 +§OSH)2 8%: ;V : (2.69)
dgézR (9) = 9797 DZS(S) (1 _;059>2 S;z% (2.70)
dggL (0) = giegiupzs(s) (1 _;059>2 S%s;v 7 (2.71)
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where sy = sinfy and ¢y = cosfy are the sinus and cosinus of the
Weinberg angle, respectively, defined by Eq.( 1.82). From the previous ex-
pressions one can derive by integration the cross sections for all the allowed
configurations of initial and final polarizations. In particular, in the case of
unpolarized initial and final states, one finds the average value

do _1ldopry dogr | dopLr | dorr
dQ 4| d9 dQ) ds) ds)

1 S et

= 65,0 (2.72)
x {[1+cos®0] [(97c + 9Re) (97, + 97,.)]
+ 2cos0 [(97. — 9%) (97, — Tru)] }
and integrating over the angles gives
o8 ) = 2 I (2 B gh] . (2T3)
1D, 3

Note that, differently from the (parity conserving) one-photon exchange,
in the differential cross section a term proportional to cosf appears. This
will have fundamental experimental consequences, in particular related to
the measurement of the forward-backward asymmetry discussed in Chap-
ter 8. At the Z resonance centre-of-mass energy, s = M2, one has

1 et
— . 2.74
i (21

et

14n
oy = -

e
© T () = 5 [(9he + 9Re) (920 + 97
to be compared with the corresponding photon-mediated expression,
Eq. (2.66)

+e— +,,-
O_’Yee—nu“u(s)

_ 47r a?
3"
At this point of the book, we cannot yet quote numerical values for
'z, 9(1,R)(e,n)- This will be done later in the book; we can anticipate,
though, that at the Z resonance the Z mediated cross section (to be cor-
rectly computed, i.e. beyond the simple Born level) will be approximately
50 times larger than the photon-mediated one, for final muon states (and
even larger for final hadronic ones). Note that we did not consider, in this
Section, possible Z~ interference cross sections. The reason will become
transparent in next Section, where we shall define, and compute at Born
level, those very important quantities that are called Z partial widths.

(2.75)
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2.4 Computation of Z partial widths

For the purpose of testing the Standard Model with high precision, a spe-
cially relevant role is played by the various decay rates of the produced Z
boson. We proceed now to calculate the rate of decay into a pair of muons,
Z — ptu~ , following the same methods that were employed in the pre-
vious Subsections. The theoretical expression for the partial width will be
assumed to be known and we limit ourselves to writing it, for a general
fermion-antifermion pair, as

r d 2 AU My |? 2.76
o= 8L [ apgiaay = MR @

The matrix element is obtained from the Interaction Lagrangian defined
in Chapter 1, i.e.,

e

Lrp= “Mﬁwﬁ+%%w%y (2.77)

sin? Oy cos? Oy

The transition amplitude will be written as

e

Mf = i {ginfLL + g};JMfRR} (2.78)

sin? Oy cos? Oy
where J,rr, 1 are defined similarly to Eqs. (2.42),(2.43), and € is the Z
polarization vector. The latter is defined as to meet the properties e/p,, =
0, e”e;, = 1, where p,, is the Z four-momentum.

The next steps that allow to derive the expression of the decay width are
technical details that can be easily worked out from existing literature [8].

Briefly, one arrives at the following fundamental formula:

1 e V2GEm3,

FZH;},*;,L [gL,u + gR,u] T[ %,u + ggR,u] : (279)

247 chW

This formula can be easily extended to any producible final lepton-
antilepton or quark-antiquark pair, remembering that in the latter case a
multiplication by the number of colours must be performed. Its numerical
value is fixed by those of the electric charge, of the Z mass, of the left
and right fermion couplings and of sin? fy,. Although we did not describe
yet the complete determination of all these parameters, we anticipate for
the reader’s convenience the different results, still assuming that all the
produced fermions are massless, and show them in Table 2.1.
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Table 2.1 Partial decay widths of the Z bo-
son for various fermion species at tree level.
QCD corrections are not included. A value
of sin2 Oy = 0.23 has been used.

Fermion Ly ;7 (MeV)
v 166
1 83
u quark 288
d quark 367
Total= 3v+3e+2u+3d 2424

The previous Table allows to understand, at least qualitatively, the
statement given in the previous Section concerning the fact that the Z-
mediated cross section is so much bigger than the photon-mediated one, at
the Z resonance energy s = m%. A word of caution is still necessary since
the Table contains the results at the tree level, in particular without en-
closing the important one-loop QCD effects, that will increase the hadronic
widths by approximately 4 percent, and the total width by about 70 MeV.

Starting from Eq. (2.79) one can now return to the expression of the
unpolarized Z-mediated cross section and rewrite it in the more frequently
used way:

s 127",
7wt (8) = M3% (s — M2)2+ M3T%(s) -

(2.80)

An important point must now be stressed before closing this Section.
From our previous formulae we can conclude that, at the Z peak (s = m?%),
the Z-mediated cross section Eq. (2.74) dominates the photon-mediated
one Eq. (2.66). In principle, the cross section might also contain a v Z
interference term, which does not appear in our formulae. Actually, in this
preliminary qualitative discussion, we defined an effective Z denominator
Dz(s) in Eq. (2.67). A rigori, we should have started from an effective Z
propagator and from an effective tree level expression of the neutral current
matrix element. The latter would have been written in the form:

2 2

€ € eI
Myers = — T g | + :
At e Juv |7 sty ey (s — M2) +imzTz(s)

JE. (2.81)

At the Z peak, the second term is purely imaginary. Thus the cross
section, proportional to the squared modulus of Eq. 2.81, only contains
the squared photon and the the squared Z contributions, and the v Z
interference term vanishes. This fact is no longer true when one moves
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away from the the Z peak, in which case the v Z interference term must
be retained in the expression of the complete cross section. Although one
expects that, in the vicinity of the Z peak, the single Z term is by far
the dominant one, the rigorous calculation will have to take into account
the extra small not single Z terms. This point will be discussed in detail
in the final Section of this Chapter. Before doing that, a description of
those other extremely important quantities that are the angular and the
polarization asymmetries of the process, based on the formalism developed
in this Section and in the previous ones, will be given.

2.5 Angular and polarization asymmetries

The various formulae that we have derived in the previous Sections in case
of Z exchange for the differential and total cross sections are characterized
by a fundamental feature, the parity violation of the intrinsic interaction.
Contrary to the case of the parity conserving photon exchange, one sees that
the expression of the unpolarized differential cross section, Eq. (2.72), as
already stressed, contains a term proportional to the cosine of the scattering
angle 6. One notices that the coefficient of the cosine would vanish if the
lepton left and right couplings were identical, as in the electromagnetic
case. But the parity violation makes the two couplings different, therefore
producing three essential consequences that we are now going to list.

The first consequence is the possibility of defining another not vanishing
measurable quantity, called longitudinal polarization asymmetry, Ap g, and
defined as :

=0
App=—"*~—"2=%2 (2.82)
er €r
where O s O, are the total cross section for production of a final muon-
antimuons pair from a left(right)handed electron, obtained with a sum over
the possible positron polarizations. In other terms:

s et 4 9 , 9 9
O =O0LL+OLR= mmgﬂgm(gm +9r,) (2.83)
s et

4
Dy (s) stk gﬂg?{e (Q%u + gzzm) . (2.84)
wlw

Using the expressions of the chiral couplings, one is led to the final
“canonical” expression:

0,- =ORR+tORL =
R
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2 2
9Le — YRe
App = F55—=¢. (2.85)
Gie + Ghe
The second consequence is the possibility of defining a not vanishing
measurable quantity, called (unpolarized) forward-backward asymmetry

App. Technically, this is defined as :

0=m/2 do f
6=0 dcos@ =m/2 dcos@
App = A / . (2.86)

6=0 dcos0 +f 7r/2 dcose

To introduce the third consequence of the parity-violating nature of the
Z boson, we must make a general premise. The reader might have the
impression, at this point, that a certain lack of democracy exists at the Z
pole between the initial state couplings and the final state ones, for which
until now no experimental quantity has been proposed that provides their
separate measurement. Actually, this impression is false. At the Z peak two
quantities can be defined that do fill this democratic ambition. Denoting by
f the final fermion of the produced pair, one can first consider a quantity
originally called [32] polarized forward-backward asymmetry and defined
as:

ot _ Ferte = %ense) = Oerin ~ Oeqpn) (2.87)
FB- +0,-, +0,-, +0,- ’
F erfr er B erfB
where fr and fp indicate forward and backward outgoing fermions, respec-
tively. (We are assuming for the moment a polarization degree of the beam
= 1, and will come back on this point in Chapter 8.) At the Z peak one
may easily verify that

ol L Rf
AfF’pB = —72f D) (288)
gLf ng

showing that Eq. (2.87) is only dependent on the final state couplings, as
we anticipated. Denoting the analogue of Eq. (2.85) for a fermion f

2 9
Ay = Lt IR (2.89)
915 + IRy

one finds that
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o 3
Alpol TAs- (2.90)

A second possibility is to define
Af = (UfF,R - UfF,L) - (UfB,L - UfB,R) Ofr — 9f1

= = 2.91
pol Ofpr T O0fpy T 0fsr + 05, Otot ( )

where R and L indicate here the chirality of the final state fermion. One
can see that, at the Z pole,

Al = A (2.92)

pol

A very important conclusion stems from the observation that ratio of
Eq. (2.85) can be expressed, using Eq. (1.116), in terms of one single param-
eter, the square of the sinus of the Weinberg angle sin? fy,. Moving from
this observation, it is tempting to verify whether this feature survives in the
remaining asymmetries. Actually for a transition from electron-positron to
a ff pair, one has:

Al = ZAeAf (2.93)

as one can see by integrating in the forward and backward hemispheres
(Eq. 2.86) the eTe™ — Z — ff differential cross section.

From the general expression of the fermion chiral couplings given in
Chapter 1, one realizes that each Ay can be expressed in terms of the
single parameter sin? fy. Thus, in conclusion, it appears that all the con-
sidered asymmetries, that are not vanishing as a consequence of the parity
violation intrinsic in the Z exchange, can be expressed in terms of the gen-
uine weak parameter sin” @y, Although we proved this statement at the
simple tree level, we shall see in the forthcoming Chapter 3 that this fea-
ture will be generalized to the one-loop level, leading to the definition of
the phenomenological parameter sin® Ow,ers that will play a fundamental
role in the complete analysis of the available data, to be compared with
the corresponding predictions of the Standard Model. Before moving to
that, next Section provides a compact review on how the vZ interference
modifies the asymmetries when the centre-of-mass energy is not equal to

— m2
s=m3.
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2.6 Asymmetries in the vicinity of the Z pole

Experimentally the asymmetries defined in the previous Section are mea-
sured at centre-of-mass energies close to the Z resonance that, normally,
do not correspond exactly to the Z pole. The formulae discussed in this
Section are useful to derive corrections, originating from the Z+ interfer-
ence, to the experimental data and, more in general, to describe the energy
dependence of the asymmetries in the vicinity of the Z pole.

The differential cross section for ff production with polarized beam can
be computed with the matrix element given in Eq. (2.81). For a detailed
calculation we refer, again, to [31]. To describe the experimental data
presented in next Chapters the cross section is given for unpolarized initial
positrons colliding with longitudinally polarized electrons with polarization
P.. The production of a fermion f with helicity A (2A = £1) at an angle
0 with respect to the direction of the incoming e~ can be written in the
following way:

2
(s,cos80,\; P.) = %(S)ch (2.94)
s

x {[(1 4 cos®0) G1(s) + 2cos Ga(s)]
— 2X [(1 + cos® ) Gu(s) +2cosf Gs(s)]
— P. ([(1 + cos®0) Gz(s) +2cost Ga(s)]
— 2X\[(1 + cos® ) Ga(s) +2cosf G1(s)])}

g
dcosf

where the value of N/ is one for leptons and three for quarks, while

= Q2Q% +2QcQrgvegv,Xv2(s) + (5. + 93.) (95, + 93, )xz2(5)
=2QcQfgac9asxrz(8) +4Gvegacgvs9arxzz(s)

= 2QcQ19409vsX22(8) + 29v.gac (97, + 93 ,)X22(5)
=2QcQfgvegarxyz(s) + 2(gv. + 95)9v 19arxz2(s) -

(
Gaof
Gs(
G4(8

The couplings gy and g4 are related to the chiral couplings by gy = g +9r

and g4 = gr — gr and

s(s —m%) + s°Tz/mzS(Aa)

(s —m%)? + s°T% /m,

s2

Xzz(s) = Fé(s) (s — m2Z)2 i 82F2Z/m2z

2
GFmZ

2v/27a(s)

Xvz(s) = Fa(s)

FG(S) =
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where «(s) indicates the energy-dependent fine-structure constant incor-
porating higher-order photonic corrections discussed in next Chapter. For
completeness the effect of the imaginary parts of these corrections on the
Z~ interference, related to the photon-self energy and indicated as S(Aa),
are also included. The coefficient Fg at the Z pole is Fg(m%) ~ 1.407. The
total cross section is obtained by summing on the helicities of the outgoing
fermion, giving

o(s) = === NI (Ga(s) = P.Ga(s)) - (2.95)

In Egs. (2.94) and (2.95) the electron polarization is defined P, = +1 for
100% right-handed electron polarization and P, = —1 for 100% left-handed
electron polarization.

The asymmetries defined in this Chapter can be computed using the
differential cross section given by Eq. (2.94) as

Apr(s) = —28
ero- 3
Arp(s) = 3?8
Aun(s) = G4

Ay =3 2

The energy dependence of the ratios G;/G1 near the Z pole is given by:

5 5 —m?2
gjgsi = AeAf+S§FG(1mQZ) [( - z) TI;—ZZ%(Aa)}

s 5 —m2
gjgsi B Ae+S§FG(17nQZ) {( s 2, ,I;Z (Aa)] (2.96)
Ga(s) o f 1 (s —m3) F_Z% N

where the asymmetries Ay are defined by Eq. (2.89) and the coefficients Sif
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are:

2Q€Qf

s = Gacfar — GveGv A

2 = T )2, § g, s T vedvrdeds)
2Qle

ST = Gve(gas — gv A 2.97

ST g, T T T evrAr) (2.97)
2Qle

sl = Gvi(gac — gveAe)-

Ul e e iy EASACA S el

Table 2.2 shows the numerical values of these functions.

Table 2.2 Numerical values of the couplings and of their
functions computed assuming sin? y = 0.2316.

f gvs gas Ay B 4 s]
e, T -0.036 -0.5 0.143 7.92 0.56 0.56
u,c,t +0.191 +0.5 0.667 4.62 1.75 0.24
d,s,b -0.346 -0.5 0.935 1.78 1.22 0.04

The brief review of the relevant expressions of the experimental ob-
servables, at the tree level accuracy, is now completed. It will represent
a sufficient basis for deriving the more meaningful one-loop expressions of
Chapter 3.



Chapter 3

Z Physics at One Loop for Final
Leptonic States

We now arrive to the heart of Z pole physics: electroweak radiative correc-
tions. Their accurate calculation, resulting from a remarkable theoretical
effort of the late 80s [33], was motivated by two equally fundamental rea-
sons. The first one was the evident desire of testing the renormalizability of
the Glashow-Salam-Weinberg model. This could be done by checking that
the shift between the simple tree level predictions and the corresponding
calculations at the next order of the perturbative expansion was consistent
with the wealth of measured quantities. If this had turned out to be the
case, the MSM would have acquired the same respectability as its “ances-
tor”, QED theory, the measurements at the Z pole playing a crucial role in
this respect, essentially analogous to that of the fundamental measurements
of the muon’s g—2 in the QED case.

The second, perhaps more fascinating reason, is a genuine feature of
the MSM that does not have any correspondence in QED and is, actually,
deeply related to the non Abelian component (SU(2)) of its postulated
symmetry group. In fact, as it was pointed out long ago by Veltman and
Maiani [34] , the higher order corrections to the tree level predictions of the
MSM can be sensitive to the existence of heavy particles, i.e. of particles
that could not be directly produced at the energy scale of the process
under consideration. This fascinating possibility of “communicating” with
undiscovered matter is completely lacking in QED, where heavy objects
are decoupled from measured quantities as a consequence of a theorem due
to Appelquist and Carazzone [35], deeply related to the vector nature of
the electromagnetic current associated with the photon. The consequences
of this sensitivity to heavy objects are, indeed, fundamental and twofold.
Essentially, one must decide whether the theoretical wish is simply that of
achieving a fully satisfactory, overall test of the MSM or, more ambitiously,
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that of providing strong support for the existence of possible more complete,
or more theoretically appealing, competitor models, to be generally defined
as of new physics type.

For what concerns the first issue of testing the model, the sensitivity to
heavy matter has indeed led to one spectacular result, i.e. to the predic-
tion of a very large top mass that was later confirmed by its experimental
discovery at Fermilab [36]. In the case of the still lacking Higgs boson, the
theoretical sensitivity to a possibly large mass is unfortunately (and acci-
dentally) less powerful, being screened as originally pointed out by Veltman
[37].

Still, interesting theoretical predictions can be derived, given the fact
that several quantities have been measured which are sensitive to the Higgs
mass. In particular, a widespread feeling exists that the Higgs boson should
not be too “far away”, i.e. within the reach of dedicated experiments in
the near future.

In the case of searches of signals of new physics origin, the discussion be-
comes unavoidably less immediate and would require a long specific Chap-
ter, which will not appear in this book. Here we can, though, anticipate
that the final picture that has been reached, after several years of discus-
sions and debates, is one where no evidence for any sort of deviations from
the MSM predictions can be claimed. A significant réle in this context, as
we shall see, was actually played by the study of a particular decay of the
Z boson, that into a bb couple, where in the theoretical prediction a size-
able contribution proportional to the squared top mass was involved. Even
in this case, therefore, electroweak radiative corrections turned out to be
an essential ingredient for a rigorous understanding of the hidden physical
reality to be investigated.

This Chapter will be devoted to a general discussion of higher order
radiative effects, with particular emphasis on those previously mentioned.
The discussion will be complete at the one loop level and will deal with all
the Z peak observables and, for reasons that will be fully explained, with
the W mass. Although we shall try to avoid by as much as (realistically)
possible to enter into fine details, the discussion will unavoidably become
at times rather technical. For this reason we shall now provide, purely for
the reader’s convenience, a brief preliminary description of the main topics
that will be reviewed.
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Definition of physical input parameters and
removal of infinities

From the description of the standard SU(2)r x U(1)y, model given in
Chapter 1, it is clear that the calculation of the physical process ete™ — ff
requires, at tree level, the knowledge of 3 input parameters, for instance:

(1) the coupling constant g of the SU(2), group;

(2) the coupling constant g’ of the U(1)y, group;

(3) the mass myz of the intermediate vector boson Z (the photon mass
vanishes by construction).

Of course, as we have seen, other equivalent sets of parameters might
be used. One can replace g and ¢’ by the electric charge |e| = Vira =
99’ /\/ g%+ g%, and by sinfy = |e|/g; alternatively, one can exploit the
fact that, in the MSM, the masses of the W and Z bosons are related by
the equality my = myz cosfy . This leads to the possibility of choosing
a rather natural set of input parameters, i.e. the quantities «, my and
myz. We shall call natural a parameter for which it is relatively simple and
immediate to provide an operative definition, via a clearly defined physical
measurement. For the electric charge and for the boson masses, we assume
that this is intuitively possible (we shall discuss this statement in more
detail later on).

The embarrassing feature that arises as soon as the calculation of higher
order effects in the process ete™ — ff is performed is that, as one will
easily realize, several contributions to the scattering amplitude that must
be computed are infinite.

This difficulty is not unexpected for those who did numerical calcula-
tions in QED; in fact, one solution to this problem is essentially similar to
that given in that framework. As a first step, one can give a suitable oper-
ative definition of a chosen physical parameter, leading to a unambiguous
(numerical) experimental determination valid to all orders of the theoretical
estimate. The most immediate example is that of the electric charge, for
which one possible definition is related to the value of a measurable cross-
section (electron-muon, for instance) at zero momentum transfer. This
(necessarily finite) value must be reproduced by the corresponding theoret-
ical calculation. The latter, when performed beyond the tree level, will be
affected in general as we will see by certain infinities, produced by higher
order terms of the scattering amplitude; it will also contain some of the in-
put parameters of the Lagrangian (in the MSM case, a, my, mz), that are
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in the conventional terminology called bare parameters. It is obvious that
the particular combination of bare parameters and higher order infinities
that appears in the theoretical expression of a physical quantity will neces-
sarily be finite, and numerically fixed by the measured experimental value
of the physical quantity itself. It is also unavoidable to conclude that bare
parameters will contain suitable infinities, to cancel those coming from the
higher order effects. In the sneaky solution that is provided by the available
theoretical treatment of this problem, both in the bare parameters and in
the higher order effects one separates an infinite part from a finite one. The
infinite parts of the bare parameters and of the higher order effects cancel
out, leaving a finite residual component fixed by the experimental value of
the physical quantity that has been used as an “infinity-killer”. The impor-
tant point is that, quite generally, a certain bareparameter will differ from
its corresponding physical one. This will be the case in the MSM both for
the bare charge a and for the bare masses my,myz. The corresponding
physical parameters will be defined in an operative way, discussed in this
Chapter, fixed by ‘simple’ and intuitive prescriptions.

One should have clearly understood at this point that in the MSM one
can use three physical measurements, those of the electric charge and of the
W and Z mass, to “kill” three possible infinities coming from higher order
terms by reabsorbing them, as one commonly states, in the three bare corre-
sponding («, my, mz) parameters. But this would not be the final solution
if infinities could proliferate endlessly. It is exactly at this precise moment
that the virtue of a renormalizable model shows up: in such type of models,
one actually knows that the overall number of “infinity killing” operations
requested to get finite theoretical predictions at all orders is finite. This will
necessarily happen in the MSM. In this Chapter, though, we shall not try
to provide complicated proofs of this “miracle”. We shall rather show, with
simple numerical examples, that, for what concerns physics on the Z peak,
the theoretical predictions for all experimentally measurable quantities be-
come finite, once the three aforementioned “killings” have been properly
carried through.

In the previous discussion, several fine details have been omitted. In
particular, it should be mentioned that our presentation of the removal of
infinities is neither unique, nor necessarily the most rigorous. It is, though,
in our opinion, simple and understandable; as a matter of fact, it follows
rather closely the original approach of Sirlin [38], defined “simple” by its
author. We shall devote Section 3.1 to our presentation of this essential
preliminary task.
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Choice of the most convenient set of input physical
parameters

The approach described above, based on the use of the physical squared
electric charge and of the W, Z masses as input parameters of the theoret-
ical calculations, has one important practical difficulty. For high precision
measurements, like those at the typical permil level performed on top of
the Z resonance, it is essential to start from adequately precise input pa-
rameters. The squared electric charge certainly meets this request, as it is
determined with a precision of ~ 1078. The Z mass, we will see, is nowa-
days measured with an accuracy of 2 x 107°. But the W mass is, even
today, “only” known with a relative precision of 5 x 10~4, not sufficiently
good at this extreme level of Z peak experiments.

Luckily, a way out to this difficulty exists and is provided by the fun-
damental Eq. (1.24) that becomes in the MSM scheme, using Eq. (1.105)

and Eq. (1.126):
GF o e
V3 2m, (L= mi,jm3) 31)

and allows, at tree level, to express my in terms of o, mz and of the Fermi

coupling Gp. Since the latter is known experimentally from the muon decay
with an accuracy of 9 x 1076, the unavoidable theoretical attitude is that of
replacing my via Eq. (3.1) and to use, as a proper set of input parameters,
that composed by «,mz and Gr. The obvious problem that will arise is
related to the appearance of infinities in the modifications of Eq. (3.1) at
higher order. This will be solved in the previously explained conventional
way, since the operative definition of the physical G will be intuitive and
immediate, and will lead as expected to the cancellation of the new infinities
that will arise and will be reabsorbed by the bare parameter Gp.

Having fixed the optimal set of parameters, it would be technically
possible to begin the operations that lead to theoretical predictions. The
first step in this direction is that of moving from the simplest t¢ree level to
the next order of perturbation theory, the so called one loop order, that
typically corresponds to the diagram replacement shown in Fig. 3.1.

As soon as the computational process is actually performed, one realizes
that, for pure convenience, i.e. practical purposes, the input parameter
represented by the physical charge, measured at zero momentum transfer
and defined conventionally from here on as «(0), can be safely replaced
by a conveniently defined effective charge a(g?), computed at ¢> = m%,
where mz will be the physical Z mass, different from the bare m (g, to be
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Fig. 3.1 Typical diagrams contributing to the process ete~ — ff at one loop.

defined in the following Section. Thus the final set of input parameters will
be, in fact, that composed by myz, Gr and a(m%). The actual definition
and the precise calculation of a(m?%) represent a very important theoretical
exercise, and we shall devote a part of this Chapter to a detailed discussion
of several of its most relevant features.

Calculation of the W mass

As a first example of full calculation at one loop, we shall derive the formula
that gives the physical W mass in terms of the parameters a(m?%), mz,Gr
and of electroweak radiative corrections, whose appearance “shifts” the
original tree level Eq. (3.1). As we shall see, the shift indeed goes in the
“right” direction. We shall give a rather detailed discussion of this impor-
tant formula, commonly known as Sirlin’s equation, that we shall write in
the form:

2 2
Mw (1 _ Mw
m2 m2

Z Z

)- ra(m3) .
V3Gr(1— ArW) '

where Ar" will be, in our conventions, the electroweak radiative correc-
tion. We shall provide in this Chapter an accurate estimate of some of its
components, in particular those due to self-energy diagrams with fermion
pairs (the second diagram on the r.h.s of Fig. 3.1). This will bring to light a
few important features of Ar", related to the kinds of physical effects that
can affect it in an observable way. As we shall show in the next parts of this
Chapter, some of these effects will also influence the physical observables
at the Z peak. More precisely, two of the three independent effects that
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affect Ar" will also be present, in different combinations, in all the Z peak
observables. This will relate in a deep and fruitful way the measurements
of the W mass and those performed at LEP1 and SLC.

Full treatment of Z peak observables at one loop and defi-
nition of the effective electroweak angle via the longitudinal
polarization asymmetry

This fundamental part of Chapter 3 will be first devoted to a general dis-
cussion of how one can provide a simple and fully gauge invariant effective
description of the process ete™ — ff at one loop at general squared c.m.
energy, in particular at the Z peak. From the discussion it will quite nat-
urally follow the idea of defining an effective energy dependent electroweak
parameter, the squared sine of the electroweak angle, to be called sin? Ow,efr
and to be estimated at m% for what concerns predictions at the Z reso-
nance. For this parameter, in contrast to a(m?%) whose definition in the
MSM is purely conventional, it will be possible to provide a simple and in-
tuitive operative definition, that relates it to a measurable quantity called
longitudinal polarization asymmetry Ay r. The role and the properties of
A r will be thoroughly discussed in this Chapter, and a detailed derivation
of the expression of the effective electroweak angle will be performed.

Definition of the effective Z lepton axial vector coupling:
the Z leptonic width. Introduction of the gauge invariant
parameters €1, €3 and €3

In this part of Chapter 3 we shall show that, in analogy with the effective
electroweak angle sin® Oy, one can give a convenient definition of the
effective axial Z-lepton coupling on Z resonance g4(m%). This can be done,
again, in a meaningful operative way by relating this parameter to the
partial decay width of the Z into leptons, either charged or neutral. In this
way, it will become natural to associate two of the outstanding theoretical
features of the MSM, the chiral nature of the Z — fermion interaction and
the purely left-handed nature of its neutrinos, with two perfectly defined
measurements, that of the longitudinal polarization asymmetry and that of
the Z partial width into neutrinos.

As a byproduct of this description, we shall show that the full dis-
cussion of electroweak radiative corrections for Z physics at one loop and
final leptonic states can be given in terms of two gauge-invariant param-
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eters, originally called €, e3 by Altarelli, Barbieri and Jadach [39]. The
same two parameters, together with a third one (e2), will appear in the
expression of the W mass.We shall derive this important result and con-
clude with a related discussion this long Chapter, that is only devoted to
the process of production of final lepton-antilepton states. The reason for
this choice is that, in such cases, only the purely electroweak component
of the MSM Lagrangian is effective, for which a conventional one-loop per-
turbative treatment is apparently fully adequate. The generalization of the
results obtained in Chapter 3 to the case of final hadronic states, where
the role of strong interactions must be carefully taken into account, will be
treated in Chapter 4.

3.1 Definition of physical input parameters and
removal of infinities at one loop in ete™ annihilation
on Z resonance

3.1.1 The theoretical description at tree level

For the specific case of electron-positron annihilation, the MSM description
at the lowest order in a perturbative expansion is only based on those Feyn-
man diagrams where either a Z or a photon () appear in vertices with two
fermions. To avoid unnecessary complications at the very beginning, let us
consider an annihilation process whose final state is a fermion-antifermion
couple different from electron-positron; in other words, we shall not con-
sider the so called Bhabha scattering for the moment. For general values
of the c.m. squared energy, defined as

(Per +pe-)* = ¢ = (ps +pf)° (3.3)
(pe+,pe_,pf,pf = positron, electron, fermion, antifermion 4-momentum)
the process is then described by the two Feynman diagrams where a Z and
a « are respectively exchanged in the s-channel.

In order to make meaningful theoretical predictions, one first writes the
expression of the invariant scattering amplitude following a set of conven-
tionally derived Feynman rules. If ff denotes the final fermion-antifermion
pair and 6 the scattering angle in the c.m. frame, the expression of the
invariant scattering amplitude in the MSM can be written as

A8(¢%,0) = A9 (g?,0) + AG D (¢2,0) (3.4)

where the two terms correspond respectively to Z and v exchange in the
s-channel, as shown in Fig. 3.2 (p.- .+ = P12 Py F = p3.4), and the ‘0’



Z Physics at One Loop for Final Leptonic States 85

fp4
—» — — +
Z
fp3
(\l/l)( ) (0)()
0)(Z Y,
Aef Aef

Fig. 3.2 Tree level Feynman diagrams description of the process ete™ — ff.

index on A,y is a reminder of the fact that the theoretical prediction is
performed at the lowest order in a perturbative expansion in the interaction
Lagrangian responsible for the fermion-gauge boson coupling.

The theoretical expression for the invariant scattering amplitude (whose
knowledge allows to compute differential and total cross-sections and scat-
tering asymmetries, as summarised in Chapter 2), is given by standard
Feynman rules and reads for the two components:

-t ..
AR, 0) =g [q—z} i (3.5)
0)(2) (2 w(z) | i (2)
Aef (q ’ 9) Z.]f |:q2 mZ:| jp,e (36)
where we have used the condensed notations:
jue |60|Qeve(p2)7}tu’8(pl) (37)
]#f leo| @t (P3)vuv s (Pa) (3.8)
Z leo ) O] - 29
]ue - 2SIH9W COSGW ( )’Yﬂ |:g 75gAe:| ue(pl) ( . )

(Z) leol

D (0) (0)
wf 2sin 9W COSs GW

s (P3)vp [gv ! 759Af:| vy (Pa) (3-10)

where Q. ¢ are the electron and fermion charges in unity of the positron
one (so that Q. = —1),

gg:)(;f = I3re,s — 2Qe,f sin” O (3.11)

9% s = Ispe.s (3.12)
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and 1 — cos? fyy = sin? Oy is defined in Eq. (1.82). The initial and fi-
nal fermions Dirac spinors ue, ve, g, vy have been previously defined in
Chapter 2.
The quantities g‘(}? 24 are given by the expressions
) =9 +a% i 9y =g —gi (3.13)
where g(LO,)R are defined by Eq. (1.116) and we have sticked to the definition
of the Lagrangian Eq. (1.111).

A few words of comment are at this point appropriate. All the couplings
that appear in Egs. (3.7), (3.13) are by definition bare quantities, appearing
in the definition of the Interaction Lagrangian. For this reason, they are
labeled by a ‘0’ index (the same notation should have been used in the
derivation of the MSM Lagrangian in Chapter 1, but was avoided not to
generate unnecessary complications.) Analogously, myz in Eq. (3.6) must
also be considered as a bare (Lagrangian) parameter. Equations (3.5), (3.6)
can be summarised by an (unorthodox) “thumb” Feynman rule, that asso-
ciates in the construction of the invariant scattering amplitude of Fig. 3.2
geometrical entities to corresponding quantities as follows:

i) to the eTe™, ff vertices with v or Z, the quantities (zgﬁé)( )) (initial

vertex) and (ij, (7) (Z)) (final vertex). Here p, v are Lorentz indexes.

ii) to the v, Z line of four-momentum ¢ the bare propagators sz Z)( ):

pom—— iP{?(q) . (3.14)
Z

gl/u _ P(»y)( ) : —i o
7

Note that, for the specific case of external massless fermions, one can sys-
tematically neglect from the beginning any hypothetical component ~ g,,q,
of the bare propagators, since its contribution to the scattering amplitude
would be (as a consequence of Dirac’s equation) proportional to the fermion
masses. In this particular case, one can identify therefore the bare prop-
agator with its ~ g,,, component. This simplification would not be valid
in a process where (some of) the external fermion masses could not be
neglected.

In general, the expression of Ag}) will contain four more indexes e.g.
A1, A2, A3, Ay that indicate the possible initial and final fermion polariza-
tions. We omit them for the moment since for unpolarized variables known
rules exist for summing and/or averaging over these quantities in the ex-
pressions of the various cross-sections. Note that the latter ones will be
obtained by computing the squared modulus of the scattering amplitude,
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and as a consequence of this there will be in the cross-sections three inde-
pendent Lorentz structures that could be indicated as (v,7), (Z, Z), (v, Z)
(or (Z, 7)? respectively and that correspond to the possible combinations
of the Ag} (7), AS})(Z) components in the squared expression.

In a theoretical treatment truncated at the lowest tree level, the bare
quantities have a precise meaning, since they can be directly related to
measurable observables, as shown in detail in Chapter 2.

As soon as the theoretical description becomes more ambitious, and cal-
culations are performed at next orders of perturbation theory, the original
meaning of bare quantities is generally lost. This will have drastic and pos-
itive consequences, that we shall now begin to explore systematically in the
case of the considered process of electron-positron annihilation. Here the
rigorous MSM description will be given at the next to the tree-level order,
the so called one loop level. In the following part of this Chapter we shall
begin to investigate the theoretical ingredients that are introduced in order
to carry on the required treatment.

3.1.2 Renormalizability and gauge transformations in the
MSM

One of the main and substantial differences between the ancient Fermi de-
scription of weak interactions (Eq. (1.5)) and the MSM is that the latter
one is a renormalizable quantum field theory. This fundamental property,
whose derivation is due to a memorable 't Hooft’s effort [5], has the con-
sequence that theoretical computations can be in principle performed at
any order of perturbation theory (leaving aside the practical difficulties e.g.
due to the increasing number of Feynman diagrams), leading to finite (i.e.
meaningful) predictions for physical (i.e. measurable) quantities.

The last sentence must be always and carefully taken into account. In
fact, renormalizability will guarantee the finiteness of the theoretical pre-
dictions for physical observables. In the theoretical available perturbative
framework the latter ones will be very often obtained as a sum of several
components, each one (or some ones) turning out to be infinite. The can-
cellation of the various infinities in the physical quantity will be a recurrent
feature in the MSM. In a sense, it will often turn out to be, rather than a
complication, a useful check of the validity of the final (finite) prediction
since every formally infinite component will leave a finite contribution to
the overall physical observable.

From a more technical point of view, the MSM is in fact a non Abelian,
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spontaneously broken gauge field theory. This has the consequence that, in
the process of its quantization and in the proof of its renormalizability, a
number of peculiar difficulties will arise, whose known existing solutions will
enforce the presence of certain unphysical entities, due to the addition of
corresponding unphysical terms to the Lagrangian Eq. (1.135), Chapter 1.
Without entering the details of this known theoretical approach, we shall
simply list these unphysical, but necessary, objects that are:

The ‘ghosts’

They correspond to complex scalar field operators that obey Fermi statistic,
and their appearance in any unbroken non Abelian gauge theory was first
proposed by Faddeev and Popov (FP) [40] to cure unpleasant diseases,
affecting the gauge bosons of the system, that might cause problems with
unitarity. In the MSM the extra complication arises of the spontaneous
breaking of the symmetry in the electroweak sector of the model. This will
leave in the final formulation four FP ghosts, one for each gauge boson, to
be conventionally called C*,C~,Cz, C,.

As a consequence, Feynman diagrams will appear and will have to be
computed with gauge boson-ghost-ghost couplings (the ghost do not inter-
act with fermions). In the process of e*e™ annihilation into a fermion pair,
one will encounter e.g. the diagram of Fig. 3.3 where a (C*, C™) pair is pro-
duced by a virtual Z, in formal correspondence with the analogue W+W~—
pair. The important point to be kept in mind is that, although all contri-
butions to observables like that of Fig. 3.3 must be accurately computed
and taken into account, the ghosts do not correspond to any physical par-
ticle; they are rather introduced as a convenient purely mathematical trick
to retain a physical request, that one does not want to abandon. One can

—hl

e+

Fig. 3.3 Ghost loop in the process ete™ — ff.



Z Physics at One Loop for Final Leptonic States 89

easily imagine at this point that their numerical contribution to a physical
quantity will have to be added to that of other unphysical entities that must
be retained in the MSM for mathematical convenience, and that the overall
unphysical contributions will cancel. This is precisely what happens, and
we shall illustrate this fact with a simple and meaningful example in the
following part of this Chapter, when discussing the properties of the photon
propagator. More specifically, the extra unphysical entities to be retained
are those already encountered in Chapter 1: the would be Goldstone bosons,
to be discussed now in some detail.

The ‘would be’ Goldstone bosons
We already met in Chapter 1 the three scalar fields s, $2, §3 that would
generate the unpleasant mixing term Eq. (1.61). In the same Chapter we
have seen that these scalars can be reabsorbed by the corresponding gauge
boson fields A}“ Ai, Ai in the so called unitary gauge. But the price to pay,
as discussed in Chapter 1, is that the renormalizability of the theory in this
gauge is at first sight not achievable, owing to the form of the gauge boson
propagator Eq. (1.29). Thus, the simultaneous elimination of both the
unphysical scalars and of their mixing terms leads to a serious mathematical
difficulty. This is not a problem at the tree level, but becomes such as soon
as calculations at higher order, that involve unavoidably integrals of gauge
boson propagators, begin to occur.

Loosely speaking, the solution proposed by 't Hooft appears as kind of
a (clever) compromise, in which the would-be Goldstone bosons are allowed
to remain, but their mizing is eliminated. At a qualitative level, it is not
difficult to understand the logics of this procedure. In the mixing defined
by Eq. (1.61), a sum of unwanted terms of the form Ag)aﬂéj, j=12,3
appears. In a completely rigorous way, since it is the Action, i.e. the
integration of the Interaction Lagrangian over the full space-time, that has
a physical meaning, and the field operators are assumed vanishing at the
(infinite) contour of integration, one can make the replacement:

+oo +oo
/ (AD9"5;)de = / [au(A%)—gj(auA{L) dw

(3.15)
+oo )
- / —5;(0" AD)da

so that, effectively, one can write the Lagrangian part of Eq. (1.61) as the
sum of terms ~ 5; (GNAS)). This is still, formally, of the previous mixing
type. But in any local gauge theory it is possible to impose a condition
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on the divergence of a gauge boson field. In fact, from the request of
gauge invariance, one can always make a transformation of A , whose
form for infinitesimal transformations is given in Eq. (1.203) for the SU(2)L
case. This means that a (huge) set of different gauge fields exists that are
absolutely equivalent for what concerns the physics of the system where
they appear, and we can call generically “gauge” each particular choice of
the fields. Starting for simplicity from Eq. (1.203), it is relatively easy to
see that one can choose the 3 arbitrary components of €(z) so that the
divergences of the transformed fields satisfy a suitable condition, and one
can decide to restrict the (huge) set of different equivalent gauge fields to a
subset where the chosen suitable condition on the divergences is satisfied.
This suitable condition is then called a gauge fizing condition, since it clearly
reduces the set of equivalent gauges.

In the case of the effective surviving mixing terms ~ 5; (GNAE;)) it will
be therefore possible, if so wished, to “bargain” the component 8“Af,j)
with a suitable gauge fixing condition. Although this statement is certainly
oversimplified, it is not surprising that, in order to avoid the replacement
of a mixing term with a new term of the same nature, the immediate
possibility is that of imposing the divergence of the gauge field A(J) to
become proportlonal to the scalar §;, so that the mixing terms ~ §; 5”A
are replaced by ~ SJ (which is a priori perfectly acceptable). This explains,
in this qualitative way, the choice of the gauge fizing condition:

AP =600 (VE) = ~GmalVE) =123 (310
where the vev(sg)o is that generated by the spontaneous symmetry breaking
mechanism in the simplified version Eq. (1.53) for the considered SU(2),
case, and the 3 real parameters §;, all varying between zero and infinity,
define an infinite subset of “gauges”, each one specified by the values of the
three parameters. The generalization to the MSM case with Wlf Wi Zy
is straightforward.

After imposing the gauge fixing conditions Eq. (3.16), we return to the
original component of the Lagrangian that contains the mixing terms and
write it in the equivalent way:

3

OZ A(J)a“ = g(s())oZéj&“Ag) (317)
J=1 J

(where the equality is an effective one, i.e. for what concerns the integrated

Lagrangian).
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Next, we perform a “trick” that is often played in gauge theories, adding
to Eq. (3.17) a quantity that is identically vanishing in the previously de-
fined class of gauges. This quantity is usually called gauge fizing (gf)
Lagrangian, and its formal expression is:

ng = Z (%) (6“,4}87) +fjg<80>0§j)2 . (318)
J

Adding Eq. (3.18) to Eq. (3.17) we obtain a quantity that is identical to
Eq. (3.17), but whose formal expression reads:
g(s0)o Z 50" AP + Loy

’ (3.19)

1 ~
=3 5 AP~ lema(vVE )
These two terms must now be added to the original corresponding quadratic
terms (the first two on the r.h.s.) of Eq. (1.56). This produces the overall
quadratic (A4, §;) component:

3
ﬁquad (A;(j)v g]) = E |:§m?4AE£)A#(J)
j=1

o (0" A0 + 3(0,%5,) (0 V25,

}ii _
~.

- SR (3.20)

In the conventional field theory formalism, the first two terms describe three
vector particles whose propagators are:

; —1 i—1
iP{1)(q) = prp—y {gw + %] : (3.21)
These modified propagators vanish in the “infinite ¢” limit as ~ 1/¢? like in
the familiar case of the QED photon propagator, leading to a much softer
kind of possible residual divergences after ¢g-integration. Naively, one would
hope that from this feature the desired renomalizability property should
follow. Actually, this fact was proved by ’t Hooft [5]. For this reason, the
set of gauges where the gauge-fixing conditions Eq. (3.16) are satisfied are
called renormalizable {-gauges or R¢ gauges.

An important remark is appropriate now: the proof given by ’t Hooft is
valid for every choice of the gauge parameters £;, even in the limit £; — oo.
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In this limit the gauge boson propagators Eq. (3.21) are re-transformed in
those of the unitary gauge Eq. (1.63). The conclusion is that, contrary to
naive expectations, even in the unitary gauge the MSM must be renormal-
izable. The only technical problem is that calculations in that gauge are
formally more complicated, since “harder” infinities must be canceled.

The last two terms of Eq. (3.20) have also an immediate field-theory
interpretation: they describe 3 real scalars, \/§§j, whose squared masses
are §jm?4, and whose propagators are consequently:

i
q* — &mA
where m? is the squared mass of the associated gauge boson (when moving
to the concrete SM case, there will be W+, W™, Z indexes for masses and
scalar fields).

At this point, an apparently embarrassing picture appears: theoretical
predictions seem to be based on properties of pseudo-particles, that can be
eliminated in the special unitary gauge!

The answer to this problem is that it is only an apparent one. In fact, by
definition, physical quantities must not depend on the choice of gauge: they
must be gauge-independent. In terms of our parametrisation, this means
that the final meaningful predictions will not have to depend on the ¢;

parameters. Since these quantities appear in the propagators of the 5; and
(4)
n

iPY)(q) = (3.22)

of their associated gauge bosons A,;’, a number of delicate cancellations will
have to occur between the possible contributions to observable quantities
generated by Feynman diagrams where §; and Af,j) are exchanged.

The same kind of philosophy must be adopted whenever contributions
from the ghost fields also appear.

Without entering a detailed discussion, the main features of these enti-
ties is that they can only be coupled in trilinear vertices ~ (ACC) to the
gauge bosons, and always appear as a closed internal loop in our eTe™ con-
sidered process, like in the one-loop diagram of Fig. 3.3. The propagator of
the three ghosts associated to W+, W~ and Z also depends on the choice
of gauge, and reads:

—1i
q* — §m3
that also (as expected) disappears in the unitary gauge (note the opposite
sign with respect to Eq. (3.22). Clearly, the overall contribution to any
physical observable, including also (when necessary) the ghost term, must
be &;-independent.

iPY)(q) = (3.23)
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Again, although this request might appear as an extra complication, one
should consider it rather as a powerful test that must be passed by the final
prediction for a physical quantity: the cancellation of the £;-dependence.

In fact, after having checked the gauge-independence of the physical
quantities, a choice of a certain gauge where the theoretical calculations
should be performed must be made. Quite often, and almost systematically
in this book, the choice £; = 1 is performed, corresponding to the so called
't Hooft-Feynman gauge. The immediate reason is that, in this gauge, the
expression of the gauge boson P, propagator is of purely ~ g, type, which
makes calculations, usually, much simpler.

A final important point must still be stressed. Almost regularly, the var-
ious observable quantities to be computed will be obtained, in the chosen
gauge, as a sum of several terms some (or all) of which will be formally in-
finite. Renormalizability ensures, though, that their sum in the observable
quantity will be finite. In practice, a delicate mechanism of cancellation
of infinities will be at work, and once again the finiteness of the final ex-
pression will be a (rather important) test of the accuracy of the theoretical
prediction.

It remains now to be seen which mechanisms of cancellation of infinities
will have to be used in the MSM. This will be shown in some detail in the
next Subsections.

3.1.3 Treatment of formally divergent quantities in eTe™
annthilation: the divergences at one loop

In this Subsection we shall illustrate the kind of infinities that are actually
met in the calculations of the contributions to the invariant scattering am-
plitude of the process eTe™ — ff at the next perturbative order after the
tree level, for what concerns the purely electroweak component of the inter-
action (in other words, strong interactions will be for the moment turned
off). In the current language, this level is called the one-loop level. In terms
of Feynman diagrams, it can be decomposed into three general and distinct
categories, that are usually classified as:

‘Self-energy’ effects
These correspond to two classes of diagrams, represented in Figs. 3.4 and
3.5. The first class is a generalization of the corresponding QED one,
with internal loops that include fermions, bosons, physical and unphysi-
cal scalars, ghosts.

The second class corresponds to another, typical, theoretical feature of
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Fig. 3.4 Self-energy Feynman diagrams at one loop for ete™ — ff (all combinations of
v and Z are allowed). The internal loop includes pairs of fermions, gauge bosons, physical
and unphysical scalars, ghosts in all possible allowed combinations; ¢ = p.+ +p.— is the
total c.m. energy.

Fig. 3.5 Tadpole diagrams contributing the Z self-energy. The internal loop includes
pairs of fermions, gauge bosons, physical and unphysical scalars in all possible allowed
combinations. The overall c.m. energy is denoted as q.

the MSM that leads to the so called tadpole graphs, where a Higgs scalar
“produced” and “disappears” like in Fig. 3.5.

In our description of eTe™ annihilation on Z resonance, we shall not
insist particularly on the previous tadpole diagrams. As one can guess, they
correspond to a theoretical trick rather than to a physical effect; actually,
their presence is essential for the purposes of giving e.g. a gauge-invariant
definition of the Z mass at one loop. We shall accept without proving it
that this task can be satisfactorily fulfilled , and will not return on Fig. 3.5
for the rest of this book.

‘Vertex’ effects

These correspond to diagrams of the kind represented in Fig. 3.6, with all

is

possible allowed virtual particles exchanges. Note that we include in this
category also the various external fermions self-energies diagrams. Note,
also, that we do not include the vertices with virtual photon exchange.
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These belong to the specific QED sector, and must be treated separately.
For our purposes of precision tests of the genuinely weak sector of the MSM,
they can be considered as perfectly “known” quantities.

Fig. 3.6 Examples of verter diagrams at one loop.

‘Box’ effects
These correspond to Fig. 3.7, with dots representing other possible dia-
grams with weak virtual bosons exchanges (but without photons for the
reasons previously exposed).

Fig. 3.7 Examples of box diagrams at one loop.
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We now consider, as a first illustrative example, the calculation of one
of the possible self-energy diagrams of Fig. 3.4, i.e. that with an initial and
final virtual Z line and a pair of charged virtual leptons L, L in the loop,
with mass my, and four-momenta x and K = k — q. Working in the 't Hooft
gauge and following conventional Feynman rules, moving from the right
(final fermions) to the left (initial electron-positron), we can compute this
contribution to the invariant scattering amplitude at one loop Al(}) (¢2,0).
Denoting the four-vector indexes of the four vertices from right (Zf f) to
left (ZeTe™) by Lorentz symbols v, p, o, i respectively, we can write this

contribution as:

. (z) (=g’
Ag) (¢,0)(Fig. 3.4) = wﬁ?)%
q= —my

) (—ig") . (z
x (1DW) (g)) -5 (3.24)
q my

_wn_ 1 (-H<Z><L) ) )
.]f q2 _m2Z ? Vi (q) q2 _mg.]l
where the L-component, of the Z self-energy iH&i)(L)(q) is pictorially de-
picted in Fig. 3.8 and, following the adopted Feynman rules, one has the
familiar trace (T'r) of Dirac matrices:

1% ) (¢?) (Fig. 3.8)

teo dik i]eol 1 1
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i(k+mp) ileo 1 .o 1

x (k2 —m?2) 2sinfyy cos Oy w73 +2sin" 6w ) + PRGEE
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From inspection of Eq. (3.25) one can conclude immediately that the
quantity to be computed is clearly infinite, since the integrand does not

L
Ao i
20 kg 2V

Fig. 3.8 Z self-energy diagram with a L, L fermion bubble and vector indexes v (right),
u (left); s, are the virtual L, L four-momenta.
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vanish sufficiently quickly with £ when x — co. More precisely, one notices
the presence of quadratic (~ &#/k*), linear (~ &/k*) and logarithmic (~
my /k*) divergent integrand expressions, whose contributions to physical
observables must be necessarily canceled, in a magic way that we shall
illustrate.

In conclusion, one must expect for the general self-energy diagram at
one loop the appearance of infinities. Let us examine now the situation
for vertices, considering as a representative case that corresponding to the
Feynman diagram of Fig. 3.9 where a couple of final charged leptons L, L
is produced via a s-channel Z and a W is exchanged in the final vertex:

L(pa)

Lp3)

Fig. 3.9 Vertex diagram with two final charged leptons and virtual W exchange; & is
the virtual vy, four-momentum.

In the {; = 1 gauge, the contribution of the diagram of Fig. 3.9 to the
invariant scattering amplitude at one loop can be written in a way formally
similar to that of Eq. (3.6) i.e.:

: . — — _Z Hy ..
ASL) (¢*,0)(Fig. 3.9) = {WL(Pa)FffL)UL(m} %wfg) (3.26)
where
+oo 4 :
(Z) s d*k i]eol
T Fig. 3.9) = 1-—
i} (Fig. 3.9) /_m o) 2\/§Sin9W7p( Vs)
(—ik) ileo| 1 1
v o o 2
X k2 2sinfy COSGWA/ 5 P (3.27)
Wk —a y 2\ PO
G el (i)

0'1_
- 0F avasmey "0

One sees, again, that the quantity Eq. (3.28) is formally infinite, owing
to the presence of terms ~ A& /x% that induce a logarithmic divergence.
Even in the general case of vertices, new cancellations will have therefore

K+ p3)? — m%v] .
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to be produced in some clever way by the renormalizability of the model,
for what concerns the contributions to observable quantities.

Finally, we move to the case of boz effects and consider as a typical
genuine weak contribution that corresponding to double W exchange with
production of two final charged (and different from electron-positron) lep-
tons L, L represented by the Feynman diagram of Fig. 3.10.

+
e(p2) L (p4)

€ (pd) L (p3)

Fig. 3.10 Double virtual W boz diagram with two final charged leptons L, L; x is the
W (=) 4-momentum.

The contribution to the invariant scattering amplitude from this quan-
tity can be written in a straightforward way, and corresponds to the fol-
lowing single integration (after taking into account all the four-momenta
conservations at the various vertices):

AU (¢, 0)(Fig. 3.10) = it (73)

oo gtk i|eg] (—i)(Ps — &)
x /700 (2m)4 Zﬁsinﬁwmt(l — ) (p3s — )2
g IO
e R o | )]

2v/2 sin Oy (k —p1)?
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ileo]

(—i)g"”
21/2 sin Oy

ryl/(l - 75) (FL2 — Mi)ue(ﬁl) .
(3.28)

As one sees, the contribution from Eq. (3.28) is, this time, finite since
the integrand behaves at worst as ~ #&/k® at infinity, which does not give
rise to divergent terms. This welcome simplification is valid in a general R,
gauge, with the exception of the unitary (§; — oo) one. Here the two W
propagators acquire each one an extra ~ sk factor in the numerator, and
the resulting contributions diverge, requiring a number of suitable extra
cancellations that would not be necessary in a “finite £” gauge.

Until now, we have been vaguely talking of “canceling infinities”. But
this delicate procedure must be performed in a totally unambiguous way
since, after the cancellation has been performed, a finite part will remain
that will correspond to the prediction for a certain observable. Clearly, a
convenient and clever algorithm should be adopted, to carry on this impor-
tant program. This will be illustrated in the following Subsection.

3.1.4 The dimensional regularization method

In any renormalizable quantum field theory based on perturbative expan-
sions, the problem generally arises of the unambiguous determination of
the “meaningful” finite component of a combination of several terms, that
are all formally infinite. Any computational scheme that succeeds in this
goal is called regularization scheme.

For the special case of eTe™ annihilation that we shall consider, a par-
ticularly convenient approach is provided by the so called dimensional reg-
ularization scheme, usually called the 't Hooft-Veltman scheme [41]. As
we shall explicitly show, this method will lead to a determination of the
relevant finite quantities that will be, thanks to a number of extra physical
requests, completely unambiguous in the considered case of the MSM pre-
dictions for ete™ annihilation at the Z resonance at one loop, for physical
quantities. We shall provide a few relevant examples of this statement,
without entering a general discussion of the method and of its applications
to other physical processes.

The main (and clever) idea of the dimensional regularization approach is
that in general the quantities that one must compute and that diverge, to be
specific those of Egs. (3.25) and (3.28), are infinite because the integration
in the virtual momentum & is performed in a four-dimensional space, and
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notoriously

+oo
1 1 1
4 _
/ﬂ“(zﬁﬁ)—w

If the same integrations were performed on a space of “suitably” smaller
dimension n < 4, they would lead to finite results for the previous terms
since e.g. it would be possible to choose n so that:

oo /111
7ood/€ §7E7F < 0.

This leads to the idea of transforming the dimension n into a complex
continuous variable and of defining the relevant integrals [ d"r (%, ---) as
analytic functions of n. Once these functions have been determined, the
final move is to define, for any given integrand in n dimensions I(k,n):

/d4:‘<&I(/€;4) = linalf/d"/d(n;n) (3.29)
where
n=4—c¢ (3.30)

and the arbitrary scale parameter p (with mass dimension), requested for
purely dimensional reasons, is expected to disappear from the expressions
of physical observables. In Eq. (3.29) I(k;n) represents the expression of
the original integrand when ‘4’ is replaced by ‘n’ in some expressions (e.g.
(27)* — (2m)™), with prescriptions that are fixed by the method.

In practice, for our purposes a limited number of divergent integrals will
have to be treated, and we give here the list of those final expressions that
we shall need, computed in the lim._ ¢+, i.e. moving from values n < 4, in
order of decreasing formal degree of divergence (with e =4 — n):

) Iue +oo dn/f/f,uﬁu
lim == 2 2 2
e—ot (2m)" o [6? —mi][(k + p)* —m3]
(3.31)
1
= W [pupuBﬂ(an m%7m§) - guuB22(p27 m%7mg)] )
) /146 +oo anLFLM
lim 2 2 2 2
e—ot (2m)" J_o [K? —mi][(k + p)? —mj]
(3.32)

7
= @PuBl(pgam?amg) ;
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) ‘ue +oo d"k
lim —— 5 5 5
e—0+ (2m)" J_o  [K? —mi][(k +p)? — m3]
(3.33)
)
= WBO(]DQ,W%W@ )
tim / - A"kt
=0+ (2m)" J_o [K2 = mi][(k + p)? = m3][(k + p+p')% — m]]
)
= 1672 [9w024(p2,p/27m%,m§7m§) — pupvCo1—
(3.34)

9,0, C22 — (pup), + pup;,)czﬂ .

Here p,p’ denote arbitrary four-momenta of external particles of the con-
sidered reaction; mq, mo, mg are masses of virtual exchanged particles.

The functions Bs1, Bag, By, By, Ca4 are infinite. In the dimensional reg-
ularization approach they can be expressed [42] as the sum of an infinite
part (to be canceled) and of a surviving finite term (that will contribute
the expressions of the relevant observables).

Taking the simplest example of the function By as an useful represen-
tative illustration, one finds in this case:

1 2,02 2
D
Bo(p?,m2,m2) = A —/ dzIn [w (3.35)
0 H
where
2
A= lirél (—) + (In4m —7) =0 (3.36)
€— €
Dz, p*, m3, m3) = m3(1 — o) + mdz — pPa(l - ) (3.37)

In Eq. (3.35) p is an arbitrary scale parameter and + is the so called Euler-
Mascheroni constant:

v=0.5772--- (3.38)
A number of comments on Eq. (3.35) are now appropriate:

i) The infinite part, A, is independent of four momenta and masses. The
inclusion in A of the finite constant (In4m — ) is a conventional pre-
scription. We shall not comment its possible interpretation since, in
all the cases that we shall illustrate, it will disappear from physical
quantities together with the genuinely infinite term 2/e.
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ii) The arbitrary scale parameter p that appears in the finite term will also
disappear in the physical observables, through the same mechanism
that will cancel the divergent term A. This is easily understandable
since (forgetting for the moment dimensional considerations) the term
~ Inp? in the finite part could be considered as an extra addition to
A, that disappears when A disappears.

For what concerns the remaining infinite functions, the expression of
the various B; is relatively simple. For By one finds the following result:

1
Bl(p27 m%amg) = _530(]927 m%vmg)

1 2 mi 2 m3
+2—p2 [m1<1—lnﬁ —m2 1—111?

1 2 2, 2
D
+(m? — m%)/o dxIn {—(%p ;L;nhmz)”

= —%A + pfinite) (3.39)

in which the divergent part is given by the first term = —(1/2)Bg on the
r.h.s. The remaining term is finite (and regular in the limit p? — 0, as it
must be from the definition Eq. (3.32)).

Similar, slightly more complicated expressions can be derived for the
remaining functions Baj, Bas (and Ch4). Without exhibiting the complete
formula for the moment, we only list the various divergent components. In
a self-explaining notation, we shall have:

1 nite
By (9%, mi, m3) = 2 A+ Byy™ (5%, mi, m3) (3.40)

1 finite
ng(p2,m%,m§) = ﬁ(p2 — 3m% — 3m§)A + 352 ¢ )(pQ,m%,mg) (3.41)

1 finite
Coa(p?, 9, mt,m3, m3) = S A+ O™ (%, 9% it md) . (3.42)

Equations (3.35)—(3.42) show us the nature of infinities (and related can-
cellations) that will be met in the dimensional regularization method, as
a consequence of the bad asymptotic behaviour in the integration variable
of the integrands that appear in the loop effects (ultraviolet divergences).
The remarkable simplicity of the resulting divergent expressions leads al-
ready to the feeling that the process of their cancellations will turn out to
be straightforward. This statement needs, though, some extra additional
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discussion, since the aforementioned cancellation would not be performable
without the additional contributions of new infinite quantities. These will
appear at one loop as the consequence of the presence in the Lagrangian
of bare parameters, whose original meaning is lost when one abandons the
lowest order of perturbation theory and moves to the next one-loop level.
This fact will have the tricky consequences that will be fully discussed in
the forthcoming Subsection 3.1.5.

3.1.5 Definition of physical parameters: renormalization of
mw, Mz

In any renormalizable quantum field theory all theoretical predictions for
observable quantities are finite, at any order of perturbation theory. This
is usually achieved by mutual cancellations of infinite quantities of the kind
explicitly shown in the previous Subsection 3.1.3. In general, though, the
process of cancellation is only successful if other infinities of a rather dif-
ferent kind are introduced in the game. This is the result of a process
in which all (or some) or the original parameters of the Lagrangian (bare
in the conventional definition) are replaced by new ones, the renormalized
ones, plus an infinite term whose task is that of contributing the cancella-
tion of infinities. In symbols, if we denote by Py a bare parameter of the
Lagrangian, for the moment completely unspecified, the usual procedure is
that of writing

Py =Pr+9Pr (3.43)

where Pg is finite and 0Pg generally infinite. Equation (3.43) defines the
process of renormalization of the parameter Py, that could be e.g. a mass,
or a charge, in the original Lagrangian.

It must be stressed that the choice of Pr (and, consequently, of 6 Pg) is
not unique. In fact, each choice defines a certain renormalization scheme.
The criteria that motivate a particular choice are normally based on con-
venience, or common sense. Once the scheme has been chosen, the infinite
quantity 0 Pr is uniquely fixed. The fundamental property of a renormal-
izable model is that a finite number of renormalizations of different bare
parameters is sufficient to guarantee finiteness for the relevant theoretical
calculations to each order of perturbation theory.

In what follows, we shall motivate in a qualitative way the choice of
renormalization scheme that we shall adopt. With this purpose, a good
starting point could be the observation that, when one abandons the lowest
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order (tree level) description and moves e.g. to one loop, the original and
characteristic property of a general bare parameter is usually lost. To be
more definite, let us consider a bare mass parameter of the Lagrangian,
for instance the Z mass myz defined by Eq. (1.79), which appears in the
Lagrangian Eq. (1.69). In full generality, m% can be defined as the pole in
the ¢? variable of the lowest order Z propagator Eq. (3.14) in the &; = 1
gauge. Alternatively, one can say that m?% is the value of ¢* corresponding
to which the real part of the denominator of the lowest order Z propagator
P,Sf)(q) vanishes in the §; = 1 gauge.

When one moves to the next perturbative one-loop level, it is easy to see
that the lowest order (Z) propagator is naturally replaced by a new expres-
sion that retains the same formal properties of the lowest order quantity.

This modified expression contains also the bare parameter m%. But now

m?% is no longer the zero of the real part of the modified propagator. To
verify this statement, a few technical details are now requested. First of
all, let us derive the formal expression of this “modified propagator”. A
glance to Eq. (3.25) shows that the one-loop Z self-energy contribution to
the invariant scattering amplitude can be written in a way formally identi-
cal with that of the corresponding lowest order Z exchange term Eq. (3.6),

with the replacement:
iP"MP) (q) = i PYPE)iML,, (q)i PTHZ) (3.44)

which can be alternatively written as:

g 1 2 1
e () — L 3.45
?-m% " ?—-mi ()qQ—mQZ (3.45)

with I1"#(%)(¢q) defined by Eq. (3.25) in the particular case of a charged
lepton pair contribution. Leaving aside the specific “bubble” that enters
Fig. 3.3, the most general expression of II"*(*) that can be considered at
one loop as due to the sum of all possible contributions represented by
Figs. 3.3 and 3.4 (i.e. different types of fermions or gauge bosons or scalars
or ghosts or tadpoles), must necessarily be (owing to its tensorial Lorentz
structure):

il (q) = —ilg" AP (¢*) + ¢"¢"BP (¢°)] - (3.46)

The (Lorentz scalar) functions A(q?), B(¢?) are usually called the trans-
verse (A) and the longitudinal (B) components of the self-energy tensor
II#. In the specific case of the electron-positron annihilation process on
top of resonance, for which the possible final fermion are always light (i.e.
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of a mass much smaller that that of the Z boson), the function B can be ne-
glected. In fact, its contribution to the scattering amplitude in Eq. (3.25),
owing to the contraction of ¢, = (p1 + p2)u = (P3 + pa)u, with the
Dirac v matrices and to the properties of the Dirac equation, is always
proportional to the electron or final fermion masses and thus, as one can
easily verify, completely negligible. As a consequence of this kinematical
simplification, one can rewrite Eq. (3.45) as:

gt

1 1
= g AD () . 3.47
qQ_mQZ qg_mQZ( )g (q )qg_mQZ ( )
For the total scattering amplitude at one loop, sum of Ag}) and Aé?, the
overall formal replacement is therefore the following:
Vi Vi A(Z) 2
g 9" {1 AP )} .

=
2 2
> —m3 q? —m7 > —m3

(3.48)

The self-energy tensor Eq. (3.25) and its components A, B are of order
leg|? at one loop, and within this one-loop approzimation (1 — O(e?) =
1/(1 + O(e?)) one finally has:

gt z 9" 1
= —pvu )|5:1 =
= i 2]
_ 9"
¢* + AD(q%) —m%
g

= 3.49
(¢ + ReAD) (¢2) — m%) +iImA2)(¢?) ( )

where we have used the fact that the transverse self-energy A(%)(¢?) is, in
general, a complex function (with an imaginary part not vanishing in the
timelike ¢? > 0 region).

As one sees from inspection, the new expression in the r.h.s. of
Eq. (3.49), that replaces the lowest order propagator, still contains m?%
as a bare parameter. But clearly, since in general ReA(%) (%) # O, the
value ¢> = m% does not correspond any longer to a zero of the real part
of the denominator, and the original lowest order interpretation of m?% is
therefore lost at the one loop level.

If one wishes to define a new and finite renormalized Z squared mass
such that its interpretation at one loop reproduces that of m?% at lowest

order, one has to define

my gy = my +omy (3.50)
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with the condition that, when ¢?> = m% in Eq. (3.49):
m% 4+ ReA %) (m%) — mzz(o) =0 (3.51)
that, combined with Eq. (3.50), means:
om% = ReA %) (m%) . (3.52)

The choice of Egs. (3.50)—(3.52) defines the so called on shell renormal-
ization scheme and, also, gives a physical clean meaning to the Z mass.
Naively, one understands that in correspondence to ¢ = m% there will be
a maximum in the squared modulus of the scattering amplitude, that is in
the measurable differential and total production cross sections.

An immediate consequence of Eq. (3.52) is that dm?% will be infi-
nite, if such will be ReA(#)(m%). To clarify this point, let us consider
Eq. (3.25) and generalize it so that is corresponds to a generic f f (fermion-
antifermion) bubble of couplings to Z= g%,f,gif defined by Egs. (3.11),
(3.12). We can then write:

() (2 —€5
il (q7) = — Ny

4 sin? Oy cos? Oy —oo (2m)* (K2 =mP)[(k — q)? —m7]

Too iy 1

X

N (0)=vur59%)
Tr { [%9\(/0} - %%ggﬂ (R +myg) |:A/M9Vf A %gAf}

X (/%—(j—l-mf}

—e? oo g4 1
= 0 N
452 Oyy cos? Oy [m (27)% (k2 —m3)[(k — q)* — m7]
{4(9‘(,0} + g(o) ) [Kukv + Kuky — Qb — Kuqu

~gun(? = 50)] + 49} — g5 Img | (3.53)

where Ny = 1 for leptons, 3 for quarks, takes into account the color factor.
From the definition Eq. (3.46), the expression of the relevant transverse
component (the coefficient of —ig,,,) turns out therefore to be:

-1 e?
(2)() 0
4 (g ) 1672 sin? 6, cos? 6,

< {6} + 9} [4® (Bar(¢®m3,m3) + Bi(g?,m3,m3))

Ny

2 2
—2Bas(q*, m3,m%)| — (gg?} —gf} )m?Bo(qQ,m?,m?)}

(3.54)
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This has an infinite component, that will be expressed in our convention
as:

2N 2 ,
A@D()(0) (42) = o Vs AL (02 L 02y o2 (0)}
(@) 1672 sin? Oy cos? Oy 3 (v +9a5") F9ay
(3.55)

A(Z)(f)(q2) will thus diverge for general ¢® values, in particular, at ¢> = m%

(numerically fixed in the on-shell scheme by the observed cross section
peak). The Z squared mass shift §m? defined by Eq. (3.52) will conse-
quently be infinite. The result of Z mass renormalization is therefore that
of introducing another infinite quantity in the game. Without entering the
details, we can repeat the derivation in the case of the W boson, where the
identical procedure will be that of defining a physical W mass starting from
the bare one Eq. (1.75)

m%v(o) =m3y + omiy (3.56)
with the on-shell condition
om2y = ReA™)(m%,) (3.57)
and AMW) defined starting from the W self-energy function:
e (q) = =i [g A () + ¢q* BWg?)| (3.58)

where the calculation of sI1"#(W)(q) can be performed following the same
rules that we have illustrated for the Z case, with obvious changes of cou-
plings, starting from a Feynman diagram like that of Fig. 3.3 with vir-
tual W’s replacing virtual v, Z. The expression that would correspond
to Eq. (3.25) can be derived in a straightforward way, and reads, for two
members f1, fo of a fermion doublet in the virtual bubble, of masses con-
ventionally defined as my,, my, for the Iy, = +(1/2), —(1/2) states:

T dik ileo]
i I (g) = —N / Tr{ 0
o D= T\ 2 s
i(l%—i_mfl) 7;|60| i(’%_(j—’_mfz)
— — =27 5 3.99
@ —m2) avasindw " W w—gp—may [ O
From Eq. (3.59) one derives the transverse component AM)()(¢?), that
reads:

[A/V — T '75]

Ny €

A(W)(f)(qz) = 3272 gin? Ow

(3.60)
2[(]2(321 ((]27 m?‘lvm?”g) + B (q27 m?ﬁ ) m?z)) - 2322(q27 m?ﬁ ) m?‘g )]



108 The Physics of the Z and W Bosons

whose infinite part is:

AW (F)(0) (12) — g Ny A ¢ 1, ., 2
@)= foragmzon |3~ 28 T8 (3.61)
so that AMW)()(¢?) diverges for general ¢? values, in particular for ¢* =
m¥,, which introduces another infinite squared mass shift ém, in the
scheme, following the definition Eq. (3.57). Thus, from W, Z mass renormal-
ization one has “gained” two more infinities, to use, expectedly, “against”
those coming from virtual four-momenta integrations of one-loop effects.

Two comments are now appropriate. The first one is related to the fact
that, in our oversimplified treatment of the W self-energy, we have assumed
that the W couplings to a fermion doublet are of the form ~ goy,(1—75) =
(leol/ sinfw )y, (1 — 7s5) for both leptons and quarks.

For quarks, this statement is not fully correct since, following our discus-
sion on the Cabibbo-Kobayashi-Maskawa matrix Eq. (1.173), the squared
matrix element |Uy, f2|?> should be enclosed. In fact, one should sum over
all the nine possible f; # fo combinations (i.e. wud, us, ub, cd, cs,---)
and isolate the various independent infinite, and finite, parts. In practice,
one easily realizes that, owing to the unitarity property of the Cabibbo-
Kobayashi-Maskawa matrix, it is sufficient to retain the three diagonal
doublets (ud, cs, tb) using the simplified expression of Eq. (3.25) (as we
shall do in the following), for all the relevant theoretical predictions. The
second comment is related to the fact that we have considered, in the defi-
nition of the physical Z, W masses, effects of self-energy type that are due
both to fermion and to non fermion virtual pairs (including ghosts and
tadpoles).

The important point is that, in the specific kinematical configurations
¢ = m%,m3,, the sum of all the ‘non fermion’ contributions, which
would be, at general ¢? values, gauge-dependent, is ‘miraculously’ gauge-
independent, exactly like the fermion contributions (that are always gauge
independent since no &; parameters appear in the fermion propagators).
We anticipate this claim, without proving it [43], because it makes it clear
that the definition of the physical Z, W masses that we have given at one
loop Egs. (3.50), (3.52), (3.56), (3.57), is, as one would correctly expect, a
gauge independent one. Operatively, the values of my,, myz are supposed
to be unambiguously fixed by the results of suitable experimental measure-
ments, to be discussed separately but qualitatively intuitive (e.g. mz will
be related to the peak of eTe™ cross sections, and my can be analogously
defined in experiments where W’s are produced and decay).
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In the electroweak Lagrangian, the list of bare parameters is not ex-
hausted by miy ), m% ). One still has e.g. sin? @y. But Eq.(1.85) shows
that this bare parameter can be expressed in terms of m%/v(o)v mgz(o) in the
MSM. Therefore, in the expression of the invariant scattering amplitude at
tree level Egs. (3.5)—(3.12), the only bare parameter to which a physically
meaning renormalized one has not yet been associated it the QED coupling
eo. If the process were considered within a pure QED scheme, i.e. with
weak interactions ignored, the renormalization of e (or, as normally done,
of ap = (e3/47)) would be a known procedure. Within the MSM one might
expect a few differences since other changed particles, different from the fa-
miliar QED fermions (e.g. W, W™, charged unphysical scalars, ghosts...)
appear.

In fact, this is exactly what happens: in particular, from the non-
Abelian nature of the symmetry group of the MSM, a number of essen-
tial differences with respect to the familiar QED case will be generated.
Since the properties and the correct definitions of the electric charge play a
prominent role for what concerns the physics at the Z resonance, we shall
devote the next Subsection 3.1.6 to a rather detailed discussion of these
topics.

3.1.6 Charge renormalization and definition in the MSM

In the previous Subsection we have illustrated an operative definition of
the physical Z mass. This is naturally related to a measurement of a cross
section at a particular squared four-momentum, to be identified with the
Z squared mass. The value of this parameter remains therefore fixed by
the empirical observation of a peak in a cross-section. This intuitively clear
definition remains valid to any order of perturbation theory, although we
have made explicit use of it in the limited case of a one loop treatment. As
an immediate consequence of the chosen definition, we have shown that the
numerical value of the “shift” between the bare and the physical squared Z
mass is exactly the gauge independent, formally infinite, value of the real
part of the transverse Z self-energy computed at the physical Z squared
mass.

The aim of this Subsection is twofold. First, we shall illustrate a defi-
nition of the physical electric charge which exhibits a number of analogies
with that of the Z mass. This will lead in a quite natural way to the identifi-
cation of the shift between the bare and the physical squared electric charge
with the value of a quantity that will be defined as the gauge-invariant
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transverse photon self-energy. This value will be computed at the physical
(zero) photon squared mass, and will turn out to be, formally, infinite. The
new infinite quantity thus achieved will be added to the previous infinite
(Z,W) mass “shifts” Subsection 3.1.5 and will manage together with them
to kill all the infinities produced by the various Feynman diagrams at one
loop that we have examined. This will lead, as wished, to finite predictions
for all the physical observables of our considered process, to be examined
in the rest of this Chapter. Our second aim will be that of suggesting the
possibility that the couplings of the Z boson with fermions may be defined
in an operative way that exhibits an essential analogy with the definition
of the physical electric charge. This will be fully explored in the following
Section 3.3, and will lead in a natural way to the operative definition of the
genuinely weak parameter of the MSM, the effective electroweak angle.

To proceed in a pedagogical way, we shall now divide this Subsec-
tion 3.1.6 into three separate parts where three different, but deeply cor-
related, topics will be discussed. We shall avoid as much as possible the
detailed analysis of a number of numerical calculations that are involved,
and only stress those features that seem to us most relevant,and under-
standable.

The photon self-energy in the MSM

One of the basic universal postulates in physics is the assumption that pho-
tons are massless, exactly like in the original celebrated Einstein’s proposal.
In a field theory language, this corresponds to the mathematical request
that the Lagrangian of a system where photons are involved, and interact
with some charged matter, has an exact (unbroken) U(1) gauge symmetry,
as already discussed in Chapter 1. This property would be destroyed by
the presence in the Lagrangian of a quadratic mass term ~ m2A4, A" (A,
represents the vector photon field), that is therefore, from the very begin-
ning, forbidden in the theoretical description. In other words, and using
the same language as in Subsection 3.1.5, the bare photon mass must be
equal to zero. An equivalent statement is that the lowest order photon
propagator P,,,)(q) Eq. (3.14) has a pole at ¢ = m?y =0, or that zero’ is
the value of ¢2 corresponding to which the full denominator of the photon
propagator in Eq. (3.14) vanishes.

The main difference with respect of the case of the Z mass is due to the
fact that, contrary to what discussed in Subsection 3.1.5, the same formal
property (of vanishing), that the photon mass has at the tree level, must
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remain true at the next orders of perturbation theory, in particular at the
one loop level. This means that, retaining the interpretation of the squared
mass of the photon at one loop as the value of ¢? corresponding to which
the modified photon propagator has a vanishing denominator (a pole), we
must impose that the photon transverse self-energy A(")(¢?) vanishes at
q?> = 0. In fact, defining the photon self-energy tensor in analogy with that
of the Z Eq. (3.46) i.e.:

) (g) = ~ilg™ A () + ¢"¢” BY () (5.62)

we would find, following exactly the various steps of Subsection 3.1.5, that
the relevant correspondence between tree level and one loop quantities,
represented in the Z case by Eq. (3.49), becomes now:

g g

77 T RATG AT 0

Imposing that ¢2 = 0 corresponds to a zero of the denominator of
Eq. (3.63) means therefore to require that:

ReAM(0) = 0 = ImA™(0) (3.64)

(the photon must remain a massless particle).

Equation (3.64) has a consequence that will be essential for our next
discussions. If we adopt for the general (W, Z,~---) transverse self-energy
the formal decomposition:

AD(g?) = AD(0) + ¢*FD(¢?) (3.65)

where the index (i) can correspond to a W, Z, v self-energy, but also to a
mized Z~ (or vZ) couple of virtual gauge bosons (in which case we shall
use the notation A?7) —or A% —) Eq. (3.64) implies that:

A(@?) = PFD (). (3.66)

Equation (3.66) will be fundamental, as it will represent the starting point of
our next definition of physical charge. For this reason, we shall now spend
some time to discuss the validity of the request imposed by Eq. (3.64),
showing a simple and illustrative numerical example.

In the explicit calculation of the photon self-energy, several contributions
arise that originate from different Feynman diagrams. It is convenient, at
this point, to make a clean separation between two classes of diagrams,
to be called for simplicity the fermionic (f) and the non fermionic (N f)
ones. The first class, represented diagrammatically in Fig. 3.11, includes
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Fig. 3.11 Photon self-energy diagram with virtual fermion-antifermion pair.

all those contributions due to a virtual fermion-antifermion (both leptons
and quarks) pair.

The second class in represented diagrammatically in Fig. 3.12. As one
sees, it includes both physical (i.e. W pairs) and unphysical (would be Gold-
stone bosons, ghosts) contributions. In any £ # oo gauge, the unphysical
terms cannot be ignored, and we shall show explicitly how relevant their
presence will be, working as usually in the 't Hooft £ =1 gauge.

W- H-
+ a oo
¥(@) ¥(@) %”\v/ ¥(@)
w* HY
(a) (b)
WH— ct
+ Wm + NN ‘ VAVAV VAl
v ~o_ -7 @) )RR )
H—+
(© (d)
/ - \\
w w HIIH
\\ /l
+ Vavab Vo + NN NNNTAN NN
C) a(@) (@) y(@)
(e) ®

Fig. 3.12 Non-fermionic contributions to the photon self-energy: (a) W pairs; (b) ‘would
be’ pairs; (¢) W-‘would be’ pairs; (d) ‘ghost’ pairs; (e), (f) ‘seagull’ diagrams.
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The separation into the two classes depicted in Figs. 3.11 and 3.12 cor-
responds to an essential difference: the contributions to A (¢?) from the
various fermion pairs components of Fig. 3.11 are all gauge-independent,
those from the various components of Fig. 3.12 are not. This is true both
for the separate diagrams and for their sum, with the only remarkable ex-
ception of the point ¢> = 0, where the contribution to A (0) of the sum
of all diagrams of Fig. 3.12 will manage to be gauge independent.

It is not difficult to understand qualitatively the reason of the aforemen-
tioned difference. The fermion propagators do not depend on the gauge
parameters &;, and consequently cannot induce any & dependence in the
photon propagator of Fig. 3.11, after integration over k, the virtual fermion
four-momentum. This is not true for the various graphs of Fig. 3.12 where
all the internal bubbles are £ dependent, and after x -integration this depen-
dence can partially “migrate” to the relevant transverse part of the photon
self-energy that will actually become, at general ¢ values, gauge (i.e. &)
dependent. This has a remarkable exception in the case ¢? = 0, for the sum
of all diagrams of Fig. 3.12.

To prove the last statement, one should compute all contributions of
that figure to A (0) at variable £, and verify the cancellation of the &-
dependent part. We shall proceed in a more modest, intuitive way, based
on our previous discussion according to which the condition A()(0) = 0
ensures that the photon remains massless, and thus that the theory re-
mains gauge-invariant. Turning this argument, gauge-invariance requires
that A()(0) should be necessarily zero. We shall check now whether this
request is fulfilled by Figs. 3.11, 3.12, “at least” in the 't Hooft gauge.

The calculation of the first contribution, Fig. 3.11, can be easily per-
formed in the dimensional regularization scheme. The starting point is the
formal expression of the relevant term. For a fermion f of electric charge
Qleo| and mass my, from conventional Feynman rules, one derives for the
ff component of the photon self-energy tensor = II*#(1)(") (¢2) Eq. (3.62):

Z-Hvu(f)('v)(q2) — _/ W
o ™

o0 4
dﬁQ?eg
(3.67)

u(’%+mf) v (I%—(jﬁ-’ﬂ’lf)

) T ar )

The trace (T'r) of the matrix contained in the square bracket can be easily
computed and the infinite part of Eq. (3.68) is determined following the
prescriptions given in Subsection 3.1.4. This leads in a straightforward way
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to the expression of the transverse self energy A (¢?) Eq. (3.62):

AN (g2) = g2 l {[A] - 6/01 drz(1—2)ln %32)}} (3.68)

where A is the infinite quantity defined by Eq. (3.36), u? is an arbitrary
scale parameter that must disappear in the theoretical expression of the
physical observables, and

Di(q?) = m?c —¢*z(1—2). (3.69)

i
1272

From Eq. (3.68) it is immediate to conclude that any fermionic contribution
to A (¢?) wanishes at ¢*> = 0. Since such contributions are separately
gauge independent, this is exactly what we expected to find.

The calculation of the six diagrams of Fig. 3.12 can also be easily per-
formed in our chosen approach, following the prescriptions given in this
Chapter. Without entering the detailed analysis of each separate term, we
list here in order the six relevant contributions, using the same notations
as in Fig. 3.12, i.e. Figs. 3.12(a)(f) correspond to A®)-(P).()--(0)(42):

_e2
A(a)(v)(q2) =T 02
s

X / dz {[A][9R? + ¢*(5 — 22(1 — )]

0
2 2
+ R? [7—9111 R—2 ] —¢*In R—2 [5—23;(1—35)}} (3.70)
A (2) = =D
1672
1 RQ
x/ dm{[A][2R2]+2R2 [1—111 —2]} (3.71)
0 w
AR (g2) = +e
)= 1672
1 R2
x/ da;{[A]pm%V]—zm%Vln F} (3.72)
0
2
(D)) (42) = 10
ANE) = 163
1 R2
x/ dx{[A][R2]+R2 [l—ln ?]} (3.73)
0
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2
©() (42) = T
AN = 162
1 m2
x/ dm{[A][Gm%V]+6m%V [1—1nu—gV]} (3.74)
0
AOO) (2) = +ej
1672

X /01 da {[A] [2mE,] + 2m3, [1 —In ”;—QVQV] } (3.75)
where
R (¢*) = miy — ¢*z(1 —x) . (3.76)

As one sees from the previous expression, all the separate six contributions
to the photon transverse self-energy are neither vanishing nor finite at ¢ =
0. When one computes the sum of all the terms, though, one finds the
following results for the overall non fermionic (Nf) function: (separate
contributions are denoted by the corresponding letter)

ANHE) (g2 — —¢ /
(¢* =0) = To.2 dx

< {[A][(9miv><a> T @m3)® — @) — ()@

— (om) — (2m}y) )

2\ (b)
+ my <7 91n —> ( —W>
2\ (0 2

+ (21nm—gV> (1—1 —W>

1 I

2\ (e) 2\ (B
- (6—61nm—gV) —<2—21nm—;V> H:o.
f 1

(3.77)

As one sees, the (due) vanishing of A(7)(0) is in this case (¢ = 1 gauge) the
final result of a “professionally” coordinated team work, where a bunch of
unphysical creatures (would be Goldstone bosons, ghosts...) combine their
efforts with that of the physical ones (Ws) to obtain the “meaningful”
results. This is in fact the reason why we have shown in some detail the
previous calculation, and for similar reasons we shall spend some time, in
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the first part of Chapter 4, to illustrate a similar situation, that arises in
the case where the final fermion state is a bb pair.

From the result of Eq. (3.77) we can only conclude, strictly speaking,
that the full transverse photon self-energy A (¢?), i.e. the sum of the
fermionic and of the non fermionic component, vanishes at ¢ = 0 in the
& = 1 gauge. To prove that this property remains valid in any gauge requires
a more formal calculation,that can be found elsewhere [43]. The conclusion
is that, indeed, A() (0) is vanishing and gauge-independent. This feature is
analogous to that of the Z, W transverse self-energies that are also (when
all the relevant contributions are included) gauge independent at the ¢>
value that corresponds to the physical squared mass of their related (Z, W)
gauge boson (in the photon case, this is exactly ¢?> = 0). As we shall explic-
itly show in the following part of this Chapter, all the previous transverse
self-energies become gauge dependent as soon as one moves away from the
physical squared mass value of ¢2. Note that the previous “exceptional”
gauge independence only applies to the function A(-(Z).(W) In particu-
lar, for the relevant case of the photon that we are now considering, this
property will not apply for the function F()(¢?), defined by Eq. (3.65),
at ¢> = 0. One can easily verify this statement by computing, in analogy
with what done for A()(0), the non fermionic contribution to F(*)(0) in a
general £ # oo gauge. We shall, as usually, provide an indirect argument
in the following part of this Chapter, when we shall define a generalized
gauge-invariant self-energy obtained by adding to the function F()(¢?) a
precisely fixed amount of vertex effects.

The main result that has been obtained in the previous paragraphs is
that it is possible to write the transverse photon self-energy in the form of
Eq. (3.66) i.e. without A)(0). This fact will be the basic point of our next
definition of physical charge.

Definition of the physical charge in the MSM

We have repeatedly stressed in this Chapter the fact that our chosen op-
erative definition of the Z mass is based on the measurement of a cross
section at the kinematical point that corresponds to the Z mass, where the
Z exchange dominates. This procedure is fairly clear and understandable,
and for this reason we shall adopt a similar definition of the electric charge
that is also based on the measurement of a cross-section at the kinematical
point that corresponds to the photon mass, i.e. at zero four momentum
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square. Although this is not the only conceivable valid definition of the
electric charge, we shall insist on it, to make our overall presentation of
physics at the Z resonance as homogeneous as possible.

Quite generally, the idea of identifying the electric charge with the result
of the measurement of an interaction between charged particles at zero mo-
mentum transfer has an obvious classical ancestor, since the measurement
of the electric force between two particles is, classically, the result of such a
static operation. At the quantum field theory level it is not difficult to re-
alize that an essentially similar definition survives. A rather simplified way
is that of considering the process of elastic scattering of an electron by a
“heavy” target, e.g. a muon. To the lowest order this is represented by the
Feynman diagrams of Fig. (3.13), where one photon or one Z is exchanged
in the ¢-channel. Here we shall denote by pe,p,,p., pL the initial and final
electron-muon four momenta, with

Pe +Dp =De + 1y (3.78)

and
t=(pe —po)? = (pu — },)° = K (3.79)

with & = pe — pi = P, — Du-

From conventional Feynman rules one can easily derive the expression
of the invariant scattering amplitude that corresponds to the photonic zero
order Fig. 3.12(a). Denoting this quantity as AEZ)(JH,, one finds:

AL = [t 1 et tp)] [ 2] = AOEAODO) )

(3.80)
where we have introduced two quantities, that correspond to the two
squared brackets on the r.h.s. of Eq. (3.80), and represent the compo-
nents of A due to the real external (E) structure and to the internal
(I) virtual exchanges. In this particularly simple case:
&

T

where eq is the bare electric charge that appears in the starting Lagrangian,
assumed to be that of the considered MSM. In practice Eq. (3.81) is the
contribution to the scattering amplitude coming from the bare charge and
the bare photon propagator P,,(x), which is the analogue of Eq. (3.14)
but in the k variable, where x is now the virtual photon four-momentum
of Fig. 3.13.

AOMO) (1) = (3.81)
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(@) (b)

Fig. 3.13 Elastic electron-muon scattering in (a) the one photon ¢-channel exchange
approximation. (b) the one Z t-channel exchange approximation.

From Eq. (3.81) we can derive an important property of the bare squared
charge e, or alternatively of the more commonly used ag = (e3/4), i.e.
that:

Aoy = tlir%[tA(O)(I ()] . (3.82)

In mathematical language this can be expressed by saying that the bare
e? = 4rayg is the residue of the function A (¢) at the pole at t = 0
(where AU (¢) becomes formally infinite,as shown by Eq. (3.81). Ap-
parently, this is a purely mathematical property, and little physical infor-
mation has been gained until now.

To realize that Eq. (3.82) can be viewed as a very meaningful definition
it is, though, sufficient to compute the expression of the differential cross
section for the considered process. In the approximate description that
corresponds to Fig. 3.13, defining the usual Mandelstam variables:

s=(pe+pu)? =, +1,)% t=(pe—p.)%

u=(pe—p})% s+t+u=2m2+2m (3.83)

one finds after some straightforward calculation the expression of the unpo-
larized differential cross section. Considering the separate purely photonic
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contribution, i.e. ignoring for the moment Z exchange, this reads:
(4mag)?  {[s — (m2 +m?2)] + st + 3%}
2 s = (me +mu)?l[s — (me —my,)?]

1 0
Edagl)(”) = dt . (3.84)

Equation (3.84) leads immediately to the following property:
oty [s — (m2 +m))?

= (471'(10) [S — (me T mﬂ)?][s _ (me — mu)2]

tl}(l) A dt (3.85)

Assuming s > m?2, mi, although this is not requested in principle, leads to

2
a simplified expression i.e.(neglecting terms of order m—;'i)

lim —t¢
tg% 47 dt

Equation (3.86) can be viewed as the desired operative definition of the
bare quantity a2. In fact, in the considered kinematical limit ¢ — 0, the
other contribution to the differential cross-section from Z exchange in the
t-channel is not of the form ~ 1/t? and thus vanishes when multiplied by
t2. Therefore one can identify in Eq. (3.86) the photon component with the
full differential cross section do(®) (v + Z exchange) and write

i it2 do(® - itzdg(O)(v)
t—04r  dt t—0 41 dt

The extrapolation process in the ¢ variable requested in Eq. (3.87) is in
principle a perfectly meaningful one, since the considered limit can be ob-

2
= (47ag)* = %(m@)(”(v)(t)) . (3.86)

= (4map)? . (3.87)

tained from measurements in the physical kinematical region (¢ < 0) of the
process. It involves the properties of the collision of two charged particles
in the region of vanishing four-momentum exchange, as one would naively
expect from the classical definition of electric charge. For the purposes of
our future discussion, Eq. (3.87) will provide a useful and understandable
operative definition.

Two important comments must be added at this point. The fact that
the differential cross section Eq. (3.84) becomes, formally, infinite at ¢ = 0
is expected, since in the non relativistic limit one simply recovers the well
known forward singularity of the Rutherford cross section. Actually, in the
practical calculations, suitable screening effects should be thus included.
Having clarified this feature, it remains obvious that the presence of an
infinite term ~ 1/t? in Eq. (3.84) is the consequence of the presence of an
infinite term ~ 1/t in the scattering amplitude. In fact, do ~ |Acy e |?
(spin sums and averages are understood). In particular, the relevant part
of AOU)(t) Eq. (3.80), that enters the definition of the bare charge, is only
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that which becomes infinite ~ 1/¢ when ¢ — 0, as summarized mathemati-
cally by Eq. (3.82).

After these premises, we may now propose a definition of the physical
electric charge. Following our general philosophy, we shall simply gener-

alize the tree level definition Eq. (3.87) and write, at the next one-loop

2

level(neglecting again ~ m2,m? terms):

(
lim ﬁﬁ% = (4ma)? . (3.88)
The previous definition is evidently an operative one. To proceed towards
a corresponding theoretical expression of the physical charge, one can first
remark that, at the considered one loop level, the expression of the scat-
tering amplitude (whose square generates the differential cross section) can

be separated in two parts i.e.

AW =AW A6 (3.89)

ep.e’p ep.e’p ep.e’ p’ ep.e’p’
where the first term on the r.h.s. represents all those contributions to the
amplitude that can be written in the form:

ADO)  — AOE)A) . 4DD) (3.90)

epe’ p
i.e. retaining the same ezxternal Lorentz structure as at the tree level,
Eq. (3.80), but with a modified internal function A,

In terms of Feynman diagrams, it is relatively easy to understand which
kind of virtual exchanges will contribute the photonic component Eq. (3.90).
Clearly, at least one of the internal particles will necessarily be a photon,
since the external Lorentz structure must be the same as that of the tree
level photon exchange i.e. AOFE)() Eq. (3.80). Examples of such diagrams
are shown in Fig. 3.14.

Looking at Fig. 3.14 it is immediate to understand that the exter-
nal structure of Figs. 3.14(b) and 3.14(c) is exactly the same as that of
Fig. 3.14(a). Actually this is not true for the following Figs. 3.14(d)—(g).
In these cases one must project from the involved W vertices the pho-
tonic Lorentz component ~ 7, and combine it with the remaining photon-
electron (or muon) vertex. The non photonic component of the W vertex
can be ignored for the present discussion.The reason will become clear, and
will be throughly discussed, in the forthcoming Section 3.3.

One important point can be understood from our previous discussion:
all the Feynman diagrams that we have depicted in Fig. 3.14 generate con-
tribution to A that are singular ~ 1/t in the limit ¢ — 0, exactly like
the tree level one of Fig. 3.14(a). Considering for instance the first three
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(d) (e)
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Fig. 3.14 Examples of Feynman diagrams contributing the photonic component of the
scattering amplitude A, ./, to the one-loop level. In (b) and (c) the fermionic (F) and
non fermionic (W,H,C) contributions to the photon self-energy are separately shown.

Figs. 3.14(a),(b),(c) and using the notation of Eq. (3.62) for the photon
transverse self-energy, it is clear from Eq. (3.63) that the overall contribu-
tion to the photonic component A from these figures is:

AW atbro) () AT 1

el Few oo IS
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where we have retained the definitions of Eqs. (3.68), (3.77) for the
fermionic and non fermionic component of the photon transverse self-
energy.

Equation (3.91) has been obtained by simply adding to the bare photon
propagator of Fig. 3.14(a) the similar expressions of Figs. 3.14(b),(c) that
lead to the modified one-loop formula Eq. (3.63). In a quite similar way,
one can take into account the contributions due to the remaining graphs
Figs. 3.14(d)—(g).

We shall discuss in detail in Section 3.3 the complete derivation of the
relevant expressions, that involves a preliminary discussion on how the re-
quest of gauge invariance fixes at one loop the combinations of self-energies
and vertices (and, generally, boxes) that must necessarily contribute each
observable quantity in gauge blocks. For the moment we shall be limited to
the intuitive observation that the extra contributions to A (¢) coming
from Figs. 3.14(d)—(g) will be necessarily of the form

Ao
AM@ M (dtetf+g) 3y = ZLH0r p(VIW)(7) (4 3.92
(1) = | ) CY:)
where the function F(V)W)(¥) (¢) represents the photonic component of the
various vertices, i.e. that multiplied by v¢7y,u,, where £ is the lepton in the
one-loop vertex.

At the one-loop level, making use of the known formal recipes (that in
this case consist of equating 1/1+0(a) to 1 —0(c)...) one has in conclusion
the total expressions of AN that corresponds to Fig. 3.14. This will
be written in the form:

ADDOG)@=(1) () = 4T

t
1

L+ FOO() + EADOI(E) + FVIG(7)

(3.93)

Equation (3.93) becomes clearly infinite ~ 1/t at ¢ = 0 since, as we guess
and shall show, the denominator on its r.h.s. is not vanishing at this point.
We shall assume now without proving it (but postponing the discussion to
Section 3.3) that no other contributions to the full scattering amplitude
become infinite ~ 1/t at ¢ = 0. We anticipate that, to fully understand
this statement, a rigorous definition of the gauge-invariant ‘gauge blocks’ is
requested. As we shall see, this will automatically eliminate the apparent
contribution from the mixed v — Z transverse self-energy, i.e. will cancel
it at the point ¢ = 0 after combination with the associated vertex in the
‘block’.
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We can now return to Eq. (3.88) where the definition of the physical
charge is given. From the previous discussion it is clear that the only
contribution that survives in the limit when ¢ — 0 for negligible lepton
masses is that from the function AN (whose square behaves like 1/t2).
We can therefore adjust the tree level expression Eq. (3.86) and conclude
that

1 daé})

D) _ 2
et g = W)
2
= [}ir%(tA(l)(”(”)(t) (3.94)
1
= (47map)?

1+ F(f)(v)(o) + F(Nf)(v)(o) + F(V)(W)(w)(o)]2

which can be recast in the form:
ap = afl + F(f)(v)(o) + F(Nf)(v)(o) + F(V)(W)('v)(o)] ) (3.95)

Equation (3.95) gives the desired connection between the bare and the phys-
ical electric charges. In the conventional notation one writes:

aozoc—&—éazoz[l—i-%l] (3.96)

with
da

oa _ [pih VA V)W)
= = [FO00) +F 0)+ F (0)} . (3.97)

The physical electric charge corresponds to the experimentally measured
fine-structure constant

1
137.03599911(46)

a=e’/in = (3.98)
Having defined the physical electric charge, we still have to compute the the-
oretical expression given by Eq. (3.97), that represents the ‘shift’ between
the meaningless (bare) and the meaningful (physical) quantities. From our
previous experience, we expect to find an infinite quantity. From our gen-
eral philosophy, we expect that this infinity is canceled by other infinities
in the theoretical expressions of the observables. We shall first compute,
formally, Eq. (3.97) in the forthcoming pages.
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Calculation of the charge shift in the MSM

We now proceed to the formal calculation of Eq. (3.97). This will involve
a number of relatively straightforward operations, to be carried on numer-
ically in the £ = 1 gauge as usually. The important point to be stressed
before entering the procedure is that the definition of the physical charge
a, being related to a measurable operation, must be obviously gauge inde-
pendent. Since the bare parameter ag cannot depend on &; , the shift da
will have to be gauge-independent as well. In order to enforce this request
in a simple way, it is convenient to separate Eq. (3.97) into two different
pieces, the first one coming from the fermion pairs contribution to the pho-
ton self-energy and the second one from the remaining graphsi.e. (W, H,C)
self-energies and W vertices. Thus, we shall write:

s 601 Toa 1D
_a:[_a} +{_ﬂ (3.99)
« « «
where
)
{%}z] — PG () (3.100)
and
S0 1)
{_] — FINDO)(0) 4 FOOWIG) (0 . (3.101)
[

It is obvious from the previous discussions that the first component
Eq. (3.100) will be automatically gauge-invariant, being the result of in-
tegration of fermion ¢;-independent propagators. For what concerns its
explicit expression, this can be easily derived from Eq. (3.68) summing
over the fermions of one generation and leaving the generation number Ny
unspecified (although Ny = 3 in the MSM). This gives:

sa]P) Q 32 Q@ m#

{E] = 54 [ENf} ~ 5 zf:Qﬁf 1nu—,j (3.102)
where in the second term on the r.h.s a sum over all charged fermions (that
includes the color factor for quarks) is understood. Note that the charge
that appears on the r.h.s. can be safely identified with the physical one
rather than with the bare one; this can be easily understood at the one
loop level (the difference would be of higher perturbative order).

As one sees, the fermionic charge shift is infinite, and has a p? dependent
finite term. We expect, and will verify soon our expectation, that both
disturbing features disappear in the expression of the physical observables.
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To compute the charge shift due to the (W, H, C') contributions to the
photon self-energy, Fig. 3.14(c), is also immediate from the given expres-
sions Eqs. (3.70)—(3.75). Summing all the terms one finds the result (we
shall now leave the notation £ = 1):

So] WO
{_] = F(Nf)(v)(o)k:l

£=1
le' 19 1
=—Al—-(=)-1+(=
et (7)1 (5)]
2 2
A B N R L
47 | [3 6 u? 3 u?

1 2
+ ——lnm—W—l
6 w2 3

o) 3a . miy,

where the contributions from the different diagrams of Fig. 3.14(c) have
been separately listed. One notices again the presence of an infinite and of
a finite scale dependent part, like in the fermion case. The infinite part is of
opposite sign (negative) with respect to that of the fermionic contribution
Eq. (3.102). This fact is not accidental, and will be rediscussed later on.

The last contribution depicted in Figs. 3.14(d),(e) is that coming from
the (WW) vertices. The calculation can be easily performed starting from
the expression given in Subsection 3.1.4. The result can be cast in the
following form:

(W vertex)
{5_0‘] = OO ()],

S P
o 200 . m?
= —A[-12]+ —In X
127 =121+ ir 12
= 16ralww(0) (3.104)

where we have introduced the auxiliary function:
9 g [T dR 1

) = Bt [ e
The derivation of Eq. (3.104) requires a couple of technical details, that we
shall summarize here briefly. The first step is that of computing the sum
of the one loop YW vertices of Fig. 3.14.

From its expression proportional to v,(1 —7s5) (since only left-handed
fermions are involved), only the photonic component ~ +, has to be

(3.105)
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projected out. This will produce the quantity defined as F(V)W)(0)(¢)
in Eq. (3.93), that will finally lead to the corresponding charge shift
Eq. (3.101). The remaining Lorentz non photonic component of the yW
vertex will then cancel the corresponding Lorentz structure of the vZ self
energy at ¢t = 0, which can thus be safely ignored.

One should still prove that the total charge shift defined by Egs. (3.99)-
(3.101) is indeed gauge independent. At this stage, the rigorous procedure
would be its evaluation in a general £ gauge. This would show that the &
dependent parts do cancel in the sum. We shall not perform this technical
proof here but rather leave it as a useful exercise to the interested reader,
suggesting to follow the procedure illustrated in [43].

In conclusion, the total charge shift acquires the following expression:

da « 32
— = —A|—N;—-22
o 127 {3 ! ]
L 2, 5, T 3.106

The procedure to be followed from now on is at this point clear. In the
theoretical expressions to be computed at one loop the bare Z, W masses
mzw and the bare charge ag that enter the various Feynman rules will
be replaced by the corresponding physical parameters and by the related
‘shifts’ defined by Eqs. (3.52), (3.57), and (3.106). The infinities and the
scale dependence thus introduced will have to cancel those produced by
the ultraviolet divergences of the one-loop integrals that are involved in the
expressions of the physical observables, leaving in all cases a finite scale
independent result expressed in terms of only physical parameters. The
next part of this Chapter will be devoted to some numerical illustrations of
the procedure. But before entering this sector, we shall briefly introduce a
subject that will turn out to be extremely useful in the following, i.e. that
of effective or ‘running’ QED coupling in the MSM.

3.1.7 The ‘running’ of agep tn the MSM

We shall now very briefly review, for the limited purpose of this book, the
concept of running coupling, that appears in the so-called Renormalization
Group (RG) approach, whose main details can be found elsewhere [44].

In this Subsection we shall show how the general features discussed in
that Chapter can be more concretely exhibited, with a simple calculation
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that exploits those made in the previous Subsection, considering the specific
case of the electromagnetic charge.

With this purpose we notice that, in the renormalization scheme that
we have adopted, the electric charge (in fact, its square) has been defined
choosing the scale ¢ = 0. Introducing a scale variable p with mass dimen-
sion, we would say that

a=alp=0). (3.107)
A priori, though, one could have given a different and quite respectable
definition of the electric charge using a different scale pg # 0, obtaining a
quantity to be called a(pg). More generally, one can imagine that an infinite

continuous set of definitions is possible, each one specified by a choice of
scale p. Defining the dimensionless parameter

h=1np/po (3.108)

the running « in the RG approach will be the quantity (pg is supposed to
be fixed)

a’(h;po) = a(p) (3.109)
such that
a(h = 0;po) = a(po) - (3.110)
This running coupling will satisfy the RG equation [44]:
d
270 (hipo) = Bla™) . (3.111)

The connection between the running «, that may be supposed to cor-
respond in any case to an acceptable definition (leading to a finite value)
and the bare quantity g is usually written in the form

ol (h;po) = alp) = Zoay . (3.112)

The quantity Zs is a (generally infinite) number. If its numerical calcu-
lation were performed using a cutoff A for the (divergent) integration in
the virtual four-momentum that usually appears (consider e.g. (3.68)), it
would contain typically logarithmic terms ~ In A. Being adimensional, it
will also necessarily only depend on A/p (and on the fixed bare ap). Thus
we shall write:

a(p) = 22 (%;cm) ap - (3.113)

In our treatment, strictly limited at the one loop level, dimensional regu-
larization has been used and infinities are expressed via the parameter A.
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Without entering the proof of this statement, we shall simply enunciate
here that the following formal correspondence exists between the two ap-
proaches:

Asomi (3.114)
p

We can now compute the § function at one loop using a rather simplified
approach. With this aim, we start from the obvious remark that the bare
parameter aq is p-independent, and write:

dag  d [a(p)} L da(p)  alp) dZy
g= 20 _ 4\~ — &2 3.115
dp  dp | Z» Zy dp  (Z2)? dp ( )
This can be rewritten as:
da(p) d d ( 1)
— =qa(p)—InZy = « ——InZ —— . 3.116

Introducing the adimensional variable h Eq. (3.108) finally gives (pdi;7 =

d \.
an )

d d
—a®(h;po) = | ———<InZz| af(h;po) (3.117)
dh a(md)
P
which is the RG Eq. (3.111) with:
R d R
Bla™)=|———InZy| ™. (3.118)

d (1n %)

To compute the 8 function, one must therefore isolate the coefficient of
the logarithmically divergent term ~ In A in Zs. Since, intuitively, this term
will be the same for every choice of the scale p, one can compute it in the
limiting case p = 0, which corresponds to the case that we have discussed
in this Chapter. That means that one can write, for what concerns the
divergent term:

a=a0) = Zs(p = 0)ag = ag [1 - %O‘] = ag [1 - (6_a)<f> B (5_04)(1\71‘)1

o o

(3.119)
having used Egs. (3.96), (3.99) and the usual one-loop approximations.
Forgetting for the moment dimensional rigor, we can write for the infinite
components:
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(c0)
Z5) (p=0) = [1 - %a] (3.120)
and, formally (In(1 —¢€) >~ —e---)
(c0)
o « 32
mzip=0=—|=| ~———InA|Z=N;—22 121
02fp=0=-[2] " =-Zua |2y o] e

where the formal correspondence Eq. (3.114) has been used in Eq. (3.106).
Generalization to the p # 0 case then gives:

4
d (ln %)
(3.122)

Using Eq. (3.122), the RG Eq. (3.111) can be solved obtaining the solution:

Baf) = alt [32

In Z2(p #0) ocR=6—7T 3 f—22} (' = a(p)) .

a(po)
. .
1- [% (2N;—21)In z—g] a(po)
Equation (3.123) gives the RG 'running’ of @ in the MSM. It deserves a

number of remarks, that we shall now expose in a very concise way. More
precisely:

o (h;po) = (3.123)

a) The expression of the § function Eq. (3.122) can be separated into
two distinct pieces. The first one ~ Ny is due to the fermion pairs
contribution. This is essentially the same that one would have in a
purely QED theory. As one notices, it is positive. The corresponding
expression of the 3 function does not lead therefore to an asymptotically
free behaviour in the RG approach. Since QED has a Abelian U(1)
symmetry, this is perfectly in agreement with what one expects [18].
Also, the second contribution to Eq. (3.122) is negative, and would lead
(if it were the only term) to an asymptotically free behaviour. We have
shown that this contribution is exactly that coming from the triple
~YWW gauge couplings, where the non Abelian features of the MSM
show up. One expects therefore [18] that is produces a negative effect
in the § function, as it does.

b) In the MSM, the overall sign of the § function Eq. (3.122), with Ny = 3,
is positive. Thus of will increase with increasing p. This will have
very interesting consequences in a more advanced approach based on
the concept of Grand Unification [46].
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¢) The quantity that multiplies a(pg) in the denominator of Eq. (3.123)
is the product of (In(p?/p)) with the coefficient of (aA) in the shift
(da/a) Eq. (3.106).

d) It is convenient to define the following quantity:

1 (32 P2 n
— | = —22 ) In— =A . 124
5 (Bv-2)wl e =" 120

From Eq. (3.123) one derives the physical interpretation of the previous
quantity. In fact:

R — a(p) — a(po)

which represents the relative shift of the running a when one moves
from the scale pg to the scale p.

e) In our previous treatment we have implicitly assumed that fermions are
massless. In the particular case of choice p = 0 one must be more careful
and treat correctly the mass terms, which remain the only residual scale
in this situation. In other words, the Z5 function will exhibit in this
case logarithms of fermion masses that will remain in the final finite
expressions, as we shall explicitly show.

Having defined the concept of RG-running «, we now introduce the
relevant (for our discussion of Z physics) concept of effective a. The sim-
plest way is that of considering the parametrization given in Eq. (3.91) for
the photonic component of the scattering amplitude that becomes singular
when ¢t — 0. To begin with, it is useful to retain only the (gauge invariant)
fermion pairs contributions to the photon self-energy, which means to work
in an essentially QED-type scheme. In this approximation we can write.

(I _Ara 1
AODOND) () = & TTFOOE ~ FOO[) (3.126)
having used Eqs. (3.96), (3.97) and having retained systematically at the
one-loop level the fermionic components.
Equation (3.126) can be formally rewritten introducing an effective cou-
pling that depends on the squared four-momentum that is involved in the
virtual photon exchange Figs. 3.14(a),(b). We shall write symbolically:

ADOOE) () = 2T (3.127)

t
where the effective coupling «(t) is defined as:

alt) = 1= [F(M(0) — PO ()]

(3.128)
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and « = «(0) is the physical coupling previously defined in this Chapter.

One notices immediately a formal analogy between the RG Eq. (3.123)
satisfied by the RG-running o (p) and the definition Eq. (3.128). Following
the interpretation given in Egs. (3.124), (3.125) we argue immediately that
it will be possible to introduce the quantity:

Aa(t)D = FOD(g) = FOM () = 20— a0)
a(t)
that will represent the fermion pairs contribution to the relative shift of
the effective squared charge from its physical value at the four-momentum
square t that is being considered.

It should be stressed that the relative shift Eq. (3.129) is not the RG
relative shift Eq. (3.125). There exists, though, an important analogy with
the RG treatment. To make evident this similarity, it is sufficient to consider
the change of the effective & when moving to the four momentum square ¢

(3.129)

from an arbitrary (different from zero) value to. Within the usual one-loop
approximations, one easily sees from Eq. (3.128) that

a(to)
alt) = 1= ADa(t, to)
where AV a(t,ty) = FO (ty) — FUO () is the analogue of the RG shift
Eq. (3.124). In the limit of large t, for ty > m%, its expression can be
simply computed from Eq. (3.68), obtaining:
a(to)
1 [L (22N/) In g] a

(3.130)

at) — (3.131)
127

where (usual one-loop situation) one can set o = «(tp) in the denominator.
Thus, in other words, the asymptotic behaviour of the effective coupling
Eq. (3.128) is ezactly that predicted by the corresponding purely fermionic
sector of the RG approach, Eq. (3.123). For this reason one often identifies
the effective o with the running one, in the QED-like fermionic approxi-
mation. But when bosonic components to Eq. (3.123) are considered, the
definition of an effective coupling, that has the same asymptotic behaviour
as the RG one, becomes more involved, since problems of gauge indepen-
dence must be carefully solved. We shall return on this point later on, at
the end of this Chapter. For the moment we conclude this discussion with
the definition of the effective coupling Eq. (3.128). This will turn out to be
of fundamental importance in the next Section 3.2, where the treatment of
eTe™ collisions of Z resonance will be finally given in full details. The start-
ing point will be the operative definitions of the three physical parameters
myz, my, a that have been given in this pedagogical Section 3.1.
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3.2 Theoretical description of the Z physics observables at
one loop in the MSM

3.2.1 Choice of the most convenient input parameters:
definition of the physical Gg

From now on, we shall concentrate our analysis on the process of electron-
positron annihilation on top of the Z resonance, i.e. at a c.m. energy
\/q_2 = myg, treated at the one-loop level, and we shall try to illustrate a
systematic procedure to derive theoretical predictions for all the measurable
observables of the process. In the framework that we have discussed until
now, we have at disposal at this point a basic input whose three parameters
are the physical electric charge «(0), the physical Z mass myz and the
analogous W quantity my,. This starting set will appear in all the finite
theoretical predictions at one loop , whose accuracy must be evidently ,at
least, at the level of the experimental one.

Actually,the numerical values of these input parameters are by definition
provided by their available experimental measurements. In particular, o/(0)
is determined nowadays with a relative precision of about 3 x 10~8. The Z
mass is assumed to be determined by looking at the so called lineshape of
the Z resonance in the annihilation process; this will lead, as we shall see,
to a relative precision of about 2 x 107°.

The situation is certainly worse for what concerns the experimental
value of my, for which at the beginning of LEP1, SLC operations the
available relative precision was of about 2 x 1073 (it is at the moment
around 0.5 x 1073). The latter point raises an immediate and pragmati-
cally unavoidable theoretical problem: in fact, the final ( actually reached)
experimental precision of LEP1 measurements of various observables was
expected to be at the one permil level. As a consequence of this remark-
able experimental precision, the intrinsic error induced by the use of my,
as input parameter for the theoretical predictions was evidently too dan-
gerously large. Fortunately, this problem can be avoided by resorting to
a celebrated formula generally known as Sirlin’s equation [38], that allows
to replace, in the theoretical predictions, my by the Fermi coupling G g
defined to lowest order by Eq. (1.24). Since the relative experimental ac-
curacy on G is of about 9 x 1079, the replacement is fully satisfactory for
what concerns Z resonance physics. Given the fundamental consequences
of Sirlin’s equation, we shall now devote the rest of this Chapter to a fairly
detailed derivation of its mains relevant features.
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Our starting point will be a clean definition of the physical parame-
ter to be associated with the bare quantity defined, strictly speaking, by
Eq. (1.24). Following the discussion that was given immediately after that
equation, we shall now rewrite it in the more appropriate way as:

0
Gy _ ¢ _ & _ ¢ 1 (3.132)
V2 8mi,  8mi,sin®fy  8miy, 1- T_;m)

2

z

where we have used the property that in the MSM cos? fyy = sin® Oy =
m¥, /m% Eq. (1.85).

Note that Eq. (3.132) is clearly an equality between bare parameters. To
transform it into a meaningful relationship between measurable quantities,
we have to define a physical parameter G that generalizes the bare 1.h.s
of Eq. (3.132). This is conventionally done by relating G to the muon
lifetime 7,,, measured in the weak decay 4 — e + v, + V., by means of
Eq. (1.13):

Gr = { [%] 1?3; [F (Z;)]l 1+ AQ]*}é (3.133)

where AQ is a pure QED correction that takes into account the muon and
electron photon vertex effects, calculable (and finite) in this particular case,
whose expression at one-loop reads [45]:

AQP® = o /271 4 2a/3nInm,, /m.][25/4 — 2] . (3.134)

The complete QED two-loop correction can be found in Ref. [15].

In the MSM, it is possible to compute the muon lifetime 7, in a con-
ventional way, i.e. upon integration on the final four-momenta of a quan-
tity proportional to the squared modulus of the invariant decay amplitude
A, — evp.

To proceed in strict analogy with the approach developed in Subsec-
tion 3.1.6, we shall introduce the tree level decay amplitude Aflol,e,,# Do
lated to the Feynman diagram shown in Fig. 3.15. Following the notations
of Eq. (3.80) we shall write:

Aftoleu# Ve (q2)

re-

%
8 (m?, —¢?)
—_ [ A(oxE)(W)} [ AOM W) (qz)} (3.135)

= ()1 — () (1 — 7 )u(e) [
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Ve e

wW(a)

M Vu

Fig. 3.15 Feynman diagram associated to the decay u — vyee to lowest order in the
MSM.

where the two quantities represent the external (F) and internal (I) struc-
ture of Fig. 3.15, and
2
AOMW) 2y = % 3.136
=S 130)
Note the choice of sign in A@ W) (¢?), that corresponds to the overall

minus one factorised in Eq. (3.135). This is formally due to the conventional
definition of the Fermi Lagrangian, that reads for leptons:

Gg) + AL
Lp = _W[J)\,ZJ 4 hC] (3137)
where
Ine = Puern(l — v5)tbe + (11, 7) (3.138)

Equating Eq. (3.135) to the corresponding expression obtained in the
Fermi formulation for the muon decay amplitude leads then to the corre-

spondence
G;?) g2
ZE _ AODW) (2 = = _J0 1
= (@ =0) (= g (3.139)
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having neglected the involved lepton masses as usually.

It is now relatively easy to realize that the tree level definition of G
Eq. (3.139) is identical, at the same lowest perturbative order, with the
operative definition via the muon lifetime expressed by Eq. (3.133). This
can be qualitatively understood by rewriting that equation in a less rigorous
way, i.e.:

1
G ~ —~ > el (3.140)
i

where the sum includes the standard operations (spin average, momentum
integration...) that now essentially affect the external amplitude compo-
nent, so that the final result relates G to the internal component as shown
by Eq. (3.139). Of course, the rigorous derivation can be performed, but it
will be omitted at this stage.

Having accepted the equality of the operative definition Eq. (3.133) and
of Eq. (3.139) at tree level, it becomes now reasonably simple to generalize
both expressions at the next one loop order. We shall proceed by steps,
trying to stress as much as possible a number of analogies with the previous
approach that we have used to derive the expression of the physical charge.

For what concerns the operative definition of the physical G,
Eq. (3.133) can be used at any order of perturbation theory. Once again
one sees that the definition of a physical quantity involves a measurement
of a well defined physical process. In the case of G, this is a decay rather
than a cross section, which represents the difference with respect to the
cases of the Z, W masses and of the electric charge. For what concerns the
involved squared four-momentum, this will be equal to the squared muon
mass, that we shall assume to be equal to zero, consistently with our overall
approach.

Having defined both the physical G via Eq. (3.133) and the bare one
via Eq. (3.139), we shall now write in full generality, as we did when we
wrote Eq. (3.96):

5GF] . (3.141)

GY =G +6Gr =Gr [1+—
Gr

To provide the theoretical expression of the shift G r, we shall work as
usually at the one loop level. In this approximation, the calculation of 6G g
will be then performed by adding a number of Feynman diagrams to the
simplest tree level one of Fig. 3.15, to obtain the value of the muon lifetime
in the MSM. Some of these diagrams are listed in Fig. 3.16, to make the
previous statement more quantitative.
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+(B)

© (d)

Fig. 3.16 examples of Feynman diagrams contributing the muon decay at one loop in
the MSM.

In full generality, we shall therefore write an expression for the shift
0GF that corresponds to four separate kinds of Feynman diagrams, and
reads:

6Gr = 3G + [5G + 561 + 661D (3.142)

where the first term on the r.h.s. is due to the set of fermion pairs contri-
butions to the W self-energy (Fig. 3.16(a)). The three remaining ones cor-
respond to self-energy diagrams with non fermionic pairs (Fig. 3.17(b)), to
Vertex diagrams (like Fig. 3.16(c)) and to Box diagrams (like Fig. 3.16(d)),
and of course all relevant diagrams should be included in Fig. 3.16. Note
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that we have grouped the last three terms in a single bracket. The reason
is that only their sum is gauge independent, and therefore these contri-
butions must be computed together (we shall return on this point, that
can be qualitatively understood from our previous discussions, at the end
of this Chapter). On the contrary, the fermion self-energy contribution is
separately gauge-independent. Since its calculation is relatively easy, and
quite similar to that of the corresponding part of the charge shift, we shall
now concentrate our attention on its explicit derivation.

Let us assume therefore, for an initial approximate approach, that one
loop contributions not due to fermion pairs can be safely ignored (turned
off). In this “fermion pairs self-energy dominance” spirit, the only difference
between the descriptions of the muon decay at tree level and at one loop
comes from the first diagram (a) of Fig. 3.16. Since its contribution to the
scattering amplitude is only affecting the internal component Eq. (3.136)
[and is only dependent on ¢?, unlike the box diagram of Fig. 3.16(d)],
the shift 5Gg) will be very simply obtained by computing the approximate
theoretical value that the physical Gy would acquire in this approximation.

If we denote by AM ) (¢?) the expression that the internal component
of the decay amplitude (Egs. (3.135), (3.136) at tree level) would acquire
at one loop owing to Fig. 3.16(a), and G%f) the corresponding approximate
theoretical expression of the physical G, it is now understandable that
the two quantities will be related by an equality that is the immediate
generalization of Eq. (3.139), i.e.:

P _
V2
(the external component of the scattering amplitude remains unchanged).

By a straightforward application of the rules that we have illustrated
e.g. with Eq. (3.49) we can now conclude that:

ADDD (2 = 0) (3.143)

PSR+ A (@) — 1y o lpmo | 8l g — ReACVTI (0)]
(3.144)
where A (¢?) is the fermion-pairs component of the W transverse self-
energy Eq. (3.58), that is purely real at ¢? = 0.
Equation (3.144) can be rewritten at one loop in the equivalent way:

G(f) _ _9(2) +g(2J

<AV (0)
9 | _ ReAU(D (0) [1 — ReA®D(©)
8miy (o) [ T e v

0
o\ — 93 Gy
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ReAM) (o
=GV 1+ 672() (3.145)
myy
where the bare W mass myy (o) has been replaced by the physical one my,
in the denominator ReA™))(0)/m?, (this is formally valid in the usual
one loop approximations).

From Eq. (3.145) we can finally derive the approximate shift as:
_gtp BeAD(0)
F m2 :
w
In our usual one-loop approximation the difference between the complete
theoretical expression of G and that obtained in the fermion-pairs contri-

bution approximation is (formally) of 0(a) like AM)(0), which allows us
finally to conclude that:

G;_(‘J) _ G;_Jf) = 5Gg) — (3.146)

AW (o
5G4 = —GFReig() . (3.147)
myy
Combining this equation with Egs. (3.141), (3.142) leads to the expres-
sion that will be used in the following, i.e.:

(f) (Nf,V,B)
(0) 0Gy 0GR
= 1
Gr Gr |1+ Gr + ar
AW AGWSV-B)
—Gp 1o B . 0) , AGE (3.148)
mW GF

where the last term corresponds to all the effects that are not fermion pairs
contributions the W self-energy.

Equation (3.148) is the analogue of Egs. (3.96), (3.97), (3.100) that
relate the bare and the physical charge. In particular, one finds from
Eq. (3.147) the (familiar) correspondence:

() (W)(f)
0Gr —R6A72(0) (3.149)
GF mW

which appears a generalization of Eq. (3.100).

An important comment at this point is that, within the one-loop ap-
proximation to which we shall stick, we have to retain the convention that
the definition of Gr Eq. (3.133) is by assumption freed from the photonic
QED muon and electron vertex effects. This means that, when computing
the decay amplitude A;(}lew; from the Feynman diagrams partially depicted
in Fig. 3.15, those corresponding to the aforementioned effects should not
be included in the summation.
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We have now concluded the discussion of all the operative definitions
of physical parameters that will be needed to develop the theoretical de-
scription of physics on Z resonance. In the forthcoming Subsection 3.2.2
we shall begin to illustrate the practical procedure that is followed. As
anticipated in the initial part of this Chapter, we shall proceed first of all
to the replacement of the physical input parameter myy by the physical in-
put parameter G, deriving the formula that is generally known as Sirlin’s
equation.

3.2.2 Derivation of Sirlin’s equation: introduction and
definition of the fundamental parameter Ar

At tree level, the possibility of replacing the bare W mass, myy (o), with a
combination of the bare parameters mz gy, €o, G;?)
quence of the fundamental equality Eq. (3.132). To transform this equality
into one for the corresponding physical quantities is relatively simple after
the discussions of this Chapter. With this purpose, one can simply rewrite
Eq. (3.132) using physical parameters and “shifts”. Proceeding step by
step, we begin by writing:

is an immediate conse-

GY _ Gr {1+ 5GF] B 4man
V2 V2 Gr 812 1— ™ (0)
W (0) m2Z(0)
e’ b
= 1+ —} (oo = 4mel) . (3.150)
Zm%/v(o)(l — m%/v(o)/mgz(o)) [ a 0

To eliminate the bare W,Z masses that enter Eq. (3.150) one uses
Egs. (3.56), (3.57) for m%/v(o); for m%/v(o)/mgz(o) one writes:

m?2 2 Sm2
1— ‘;V(O) =1- mvg—l—imgv = (at one loop)
MZ(0) mQZ + omy , ,
0 0
~1-Z2 (14 Tm - T2
mz my mz

2 2

m, " ReAW) (m?)) B ReA) (m%)
mz my my

) . (3.151)

The previous equation can be identically rewritten in a more useful way,
that is:

[1 - m%V@)] _ {1 _ %] _miy [ReA(W)(m%w - ReA(Z)(mQZ)}

2 - 2 2 2 2
™m0 my my My my

(3.152)
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This corresponds to the following renormalization prescription of the bare
parameter sin” Oy = 1 —m3, /m% (Eq. (1.85))

2
sin? Oy = ( - m_‘g,> + 62 sin? gy (3.153)
myz
where the quantity §(">%) sin? @y is defined as
ReA(W)(m%,V) B ReA@) (m?%)
miy my

L (3.154)

2
W2 sin? Oy, = _Mw [
mz

which is formally of O(«p) and, as one can easily verify from our previous
Eq. (3.55), Eq. (3.61), infinite.

Combining the previous formulae within the usual one loop approxima-
tions we are led to the following expression:

GF yiye;

— = 1+ A 1
V3 g A (8155)
where
A — da 0Gp ReAW) (m?)) n mi,
G m?2 2 miy
@ F w msy, (1 — mz)z)
AM) (m2 A@) (m2
x Re( (miy) _ (sz)ﬂ . (3.156)
myy myz

Equation (3.155) is the one-loop modification of Eq. (3.132) and is com-
monly known as Sirlin’s equation. It relates the four physical quantities
mw,Gp, mgz,a operatively defined in the previous part of this Chapter,
and involves a one-loop electroweak correction called Ar. Clearly, it can
be used to eliminate, if so wished, one of the four quantities (for instance,
myy) in terms of the three remaining ones and of Ar. Given the fundamen-
tal role that Eq. (3.155) will play in the following part of this Chapter, we
shall make a couple of comments that are appropriate at this stage.

The first comment is that Eq. (3.155) relates four physical parameters
i.e. Ggp,mw,mz,a. These must be, obviously, both finite and gauge-
independent. As a consequence, the same two properties will necessarily be
valid for the one-loop parameter Ar. We shall verify, at least partially, this
important statement in the following part of this Chapter.

The second comment is that Ar, as defined by Eq. (3.156), is a mixture
of effects that might be called of conventional QED type (like e.g. the
fermion pairs contribution to the electric charge shift da) and of effects
that might be called of genuinely weak type (like e.g. all those involving
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W, Z exchanges). Intuitively, the second, weak component, will be sensitive
to the deep theoretical features of the MSM, like the properties of the Higgs,
or the mass of the top quark, as we shall explicitly show. Thus, a clean
separation between the conventional and the genuine component of Ar will
be useful, and will be shown in detail in what follows.

To illustrate the previous statements with a concrete example, we shall
first proceed to compute the component of Ar that is only due to the exis-
tence of fermion pairs self-energy one-loop effects. Clearly, this component
is by construction gauge-independent. We shall now show that it is finite,
although the various terms that appear in the definition Eq. (3.156) are,
separately, infinite.

Following our notational convention, we shall call Ar(f) this component,
that will be given by the following expression:

(50D 6GD ReADW)(m2,)
« Gr m%/v
m%V A(f)(W)(m%,V) B A(f)(Z)(m%)
2 2 5 e 2 2
mz (1 —myy, /m7) My mz
AN (0) Re A(f)(W)(m%,V)

2 2
My My

m%V Re (A(f)(W)(m%V) B A(f)(Z)(m%))

Ar() =

_ F(f)(W)(o) +

2 2 2
m% (1 — 2 miy my
zZ m2Z

(3.157)

having used Egs. (3.100), (3.149) (A™)(¢?) is real, as one can easily
guess, at ¢ = 0) and having defined, in analogy with the remaining cases,
AUZ) (%) as the fermion pairs component of the Z self-energy.

We shall now show that the r.h.s. of Eq. (3.157) is finite. With this aim,
we shall explicitly compute the separate contributions that appear in the
square bracket on its r.h.s. Using Eqgs. (3.55), (3.61) and (3.68), it will be
sufficient to compute the overall effect for one single fermion family, since
the procedure will be identical for each additional family to be considered.
Also, we must consider lepton and quark contributions separately. Denoting
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by (e, ve) and (u, d) these general terms, we find for the lepton component:

A(e,vc)(oo) - A 6% _ 1 6% %
T 1272 m, \1672sin? thetaw 3

+m‘2/v/m22 ( e? ) (1 m?2 )
1— %Zm 1672 sin’ Oy cos2 By / \ 3 2m3,

4

2 2 2
_mw/mz ( €0 >

1— ™ \ 1672 sin? Oy cos? Oy
mz
1 mg
< (2027 + g\ + avr + ) — 5 (3.158)
3 2m7

where A is defined by Eq. (3.36).

To proceed with the calculation, one uses again the fact that, within
a one-loop approximation like the one that we are adopting, the physical
quantities (1 — m2,/m%), m¥,/m% can be identified, inside one-loop cor-
rections, with the bare parameters sin? @y, cos? fyy. This is due to the
presence of the overall multiplicative factor e3 appearing in Eq. (3.13), that
makes the difference between physical and bare parameters to be of order
eg, and therefore not contributing at this one-loop order. Then it is easy
to verify that the square bracket of Eq. (3.158), containing the charged
and neutral lepton contribution to the photon, W and Z self-energies, is
actually vanishing when one uses the expressions of the Z vector and axial
vector couplings to e and v, defined by Egs. (3.11) and (3.12). Note that,
contrary to what will be systematically done for the finite component of
Ar, the values of the relevant fermion masses have not been equated to
zero, since they appear now as coefficients of infinite terms, and a mutual
cancellation between the various different masses must be systematically
verified. In Eq. (3.158) this is easily checked, since the term proportional
to m? contains the difference

1 1 1 1
2 2 4 4
‘o <m%,[, cos? Oyym?, ) ‘0 mé, ::;%2‘/ m?, +0(eo) (e0)
zZ

i.e. it vanishes at one loop. Analogous procedures then lead to the cancel-
lation of the terms that are m? independent, and to the conclusion that, as
one should expect, the considered component of Ar is indeed finite. The
same result can be obtained in a rather straightforward way for the (u,d)
quark contribution, by computing its infinite part and checking that the
coefficient of A is, again, vanishing. We leave this as an exercise to the
interested reader.



Z Physics at One Loop for Final Leptonic States 143

Having verified the finiteness of the quantity Ar(f) that appears in
Eq. (3.157), the next important step is now that of computing the mean-
ingful finite component. This will be done in some detail in the following
part of this Chapter.

3.2.3 Calculation of Ar(F): identification of four classes of
physical effects

To proceed with the calculation, it is convenient to rewrite, using Eq. (3.65),
the expression for Ar(/) Eq. (3.157) in the following equivalent form:
miy/my  [AP () AW (0)]

ArtH) = Re {F(v) o B
@ (1 =miy/mZ) [ m5 miy

(1 —mi,/m7%)

m2. /m2 (f)
(m%V) _ #F(Z)(m%)} )

(1 —mjy/m3)

(3.159)
A first impression that one derives from a glance to the previous equation is
that several terms of different physical origin appear and contribute, as one
would naively guess. In fact, the considered process to which our procedure
has been applied is of typical electroweak nature. As a consequence, one
expects to be able to identify both genuinely QED and genuinely weak
features and effects. This feeling is certainly correct, but Eq. (3.159) does
not fully exhibit in the most evident way this property. To get a better
understanding of the previous statement, some formal reshuffling of the
equation is very useful. In particular, it is convenient to reintroduce the
(unphysical) W,SB) gauge boson, defined as in Eq. (1.84) in terms of the
physical Z and photon.

W = cosfw Z, + sin Oy A, (3.160)

and its transverse self-energy A®)(¢?), defined in complete analogy with
the corresponding Z, v, Z~ ones and formally identical to:

A®) (¢%) = cos? O AD) (¢2) + sin® Oy A (¢2) + 2sin By cos Oy AZY (¢2)

(3.161)
where the mixed Z — 7 self-energy A(47) (¢?) in the lepton pair case can
be immediately obtained from Eq. (3.25), by a simple replacement of one
Z-fermion vertex

el o0 g
2sin Oy cos By - VIVe TV IPTAe
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with the corresponding (—i|ep|y,) photon one, retaining in the second Z-
fermion vertex only the wvector coupling g‘(/og (analogous straightforward
rules lead to the expression of A(47)(¢?) in the quark pair case).

Since both the photon self-energy A (¢?) and the Z — v self-energy
AZ7(¢?) are vanishing at ¢> = 0 (only fermion pairs are considered), one
sees that the second term in the curly bracket of the r.h.s of Eq. (3.159)
can be written as

—m?, /m} {A<Z><o> AW (oq )

(1 —mi,/m%) m% mé,

2 Im2 ®3)(0) — A (0y1
- ng/ nz {A ©) QA (0)] (3.162)
(1 = miy /M) myy
(at one loop)
2 /.2
__—myy/my
= —>—2_-/A(0
(=m0
where we have introduced the notation
A® () — AM 1Y) TAh@ A
A0y = | 22O (0)} E{ O _ AT (0)} . (3.163)
myy myz myy

One easily verifies that the quantity A;(0) defined by the previous equation
is finite.

It is therefore quite natural to associate it to a well defined physical
phenomenon, that will necessarily be related to effects that act differently
within (self-energies of) the same SU(2)y, triplet (i.e. A®)(0), AM)(0)), in
a way that is energy (i.e. ¢?) independent. Remembering the discussion
given in Subsection 1.4.3 about the so called pg-parameter, one expects
that A1(0) will take into account custodial SU(2) violating effects, and for
this reason one often finds in the literature the notation Ap(0) for this
term (since, however, a certain amount of different quantities is sometimes
indicated by the same symbol Ap by different authors, we prefer to retain
our definition Eq. (3.161) in what follows, and whenever necessary we shall
work out the relationships with other notations). As an immediate example
of such a possible energy independent custodial SU(2) violating effect, we
can think of the contribution to A1(0) from a doublet of fermions of not
vanishing and definitely different mass, like a bottom quark-top quark pair,
that will be investigated in Subsection 3.2.5.

It is quite natural at this point to try to ensemble effects that might
be formally related to custodial SU(2) violations that are energy depen-
dent. An immediate possibility is that of adding and subtracting to Ar(f)
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Eq. (3.159) the term

(2miy /mZ — 1)

FOG (2
Ty L)

with F®)(¢?) defined bas in Eq. (3.65), and of defining the quantity
B3 = Rl (my ) — F) )|

mQ
_ Re [F(f)(W)(m‘?/V ) m2, Jm2 FO@ (m2 ) — ( _ m_vzv) FOO (m2)
zZ

— 2myy /mzy/1 —m¥, /mLFEY) (mg)] . (3.164)

One easily verifies again that Ay is finite. This supports the previ-
ous idea of relating it to physical effects, that we shall discuss in Subsec-
tion 3.2.5. Thus, Eq. (3.159) can be formally rewritten at this stage as:

miy /m5

ArtH) = Re {F(f)(’v)(()) _ A1(0)

(1 —miy, /m%)
(Zm%{//mQZ —1) (Zm‘Q/V/mQZ - 1)F(Ff(3)
(1 = miy, /m%) (1 —miy /m%)

mé, /m?% 9

—G_Z—Mﬂfﬂz)(mz)} (3.165)

Ag + (m%)

The last step of our process of separation of Ar(f) into “physically mean-
ingful” components starts from the qualitative statement that the two first
quantities that have been until now isolated, i.e. Aj; and As, describe
the consequences of the fact that W3 is different from the physical charged
bosons W+, W=, One would naively expect that Ar(/) also contains a com-
ponent that takes into account the extra fact that W3 is different from the
physical photon, to which it is related by Eq. (1.84). To make this state-
ment more quantitative, it is sufficient to rewrite the first, fourth and fifth
terms of Eq. (3.165) as follows:

2m, /m2 — 1) —m?2, /m? )
FO(0) + @miy/mz —1) FO(m2y_""W/Mz  5(2)(,,2

=9 %F(V)(m%) _ m%/VF(Z)(mQZ) n mw /mz(2m3, /m3, — 1)

= 5 :

mz mz V1= miy /M2

(f)
x F<Zv><m2z>} +[FO(©0) ~ FO ()] (3.166)
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We define now the quantity:
m? )]
Bafim) = e | " (£ ) — PO )
z
mw /mz

+—
V1—m3, /m?

and verify immediately that it is finite. For what concerns its physical

(2m?, /m% — 1)F<f><Zv>(m2Z)] (3.167)

interpretation, it is easy to realize that this quantity can also be written,
at any ¢, as:

f
1 ()

N

Loosely speaking, As reflects the fact that the unphysical gauge
boson field W3, is different from the photon field A, rescaled by a
1/4/1 —m¥, /m?% factor, which can be viewed as a consequence of the pres-
ence of the extra U(1)y, gauge boson field B, in Eq. (1.84). Clearly, this
has little to do with the custodial symmetry violation effects described by
A1, Ay. One consequently expects that As may be responding in a quite
different way (compared to Ajp2) to a given physical input, and we shall
provide illustrative examples of this statement in the following Subsections.

The quantity defined by Equation (3.166) can be, at this point,
expressed as the sum of Ag(m%) with the difference Re[F)()(0) —
FU(m%)]. The latter is exactly the shift due to fermion pairs Aa of
the effective a, Eq. (3.129), computed at four-momentum square = m?%.
We see therefore that the parameter Ar(f) can be written in conclusion as
a sum of four independent finite components, each one of rather different

As3(q?) = Re FO(g?) — F¥(q?) (3.168)

and understood physical origin, combined in the final expression as follows:
miy /m

(1 = miy/m%)

(2m3, /m3, — 1)

1= miy /m7)

At = {[Aa<m%>] - 144(0)]

)
+ [A2]+2[A3(m22)]} : (3.169)

As anticipated in the previous discussion, we recognize the existence of
three effects (those expressed by A1, Ag, As) that can be correctly classified
as of genuinely weak type. In fact, their existence is a direct consequence
of some specific physical property of the massive gauge bosons. On the
contrary, the fourth parameter Aa(m?%) is fully entitled to be classified as
of genuinely QED type, since it does not feel in any way the presence (or
absence) of the massive gauge partners of the photon. This has a practical
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consequence that is, in a sense, funny. In fact, it is clear that the interesting
features of Ar(/) (and of the full Ar in general) will not be contained in
Aca, but rather in the remaining component. For Ar(f) this means that the
weak (W) quantity

AFDOW = AP — Aa(m2) (3.170)

will be that for which theoretical predictions and accurate precision mea-
surements will have to be compared. On the other hand, it should be clear
already at this stage that the measurable quantity will be the full Ar (see
e.g. Eq. (3.155). This will be obtained adding to Ar(f) another component
where massive gauge bosons always enter (see Eq. (3.156). In full general-
ity, adding these new genuinely weak components to Ar(f) will lead to the
final separation:

AV = Ar — Aa(m%) . (3.171)

In order to derive, from the (assumed) measured value of Ar, that of the
interesting weak quantity Ar", it is thus necessary to have at our disposal
a theoretical estimate of Aa(m%) that is sufficiently precise and reliable to
compete with the experimental accuracy of the measurement of Ar. Thus,
the not-interesting component Aa(m?%) must be computed in a way that
is extremely accurate and, also, model-independent at the same time. We
shall devote the next Subsection 3.2.4 to a brief illustration of how this
computation is actually performed.

3.2.4 Numerical estimate of Aa(mzz)(f)

We now proceed to the numerical estimate of Aa(m%)), i.e. of the quan-
tity:

Aa(m%)P) = Re[FHD(0) — FOD (m2)] . (3.172)
To perform the practical calculation, the fermion pairs contribution to the
photon self-energy must be separated, for computational purposes, into its
lepton and its quark component. The first one can be derived in a rather

straightforward way from Eq. (3.68); using Eq. (3.66) immediately leads to
the results;

F([)(»y) 2y _ gA F(Z)('y)(ﬁnite) 2 3.173
(") =3-A+ () (3.173)
where, for the finite part, one obtains the following expression:

20 1

™ Jo

2 2
. — 1—
PO Enite) (g2) _ dz (1 — z)In [W (3.174)



148 The Physics of the Z and W Bosons

as it can be verified from the properties of the various functions defined by
Egs. (3.35), (3.37). One obtains therefore for the lepton component A«
(L 27 3= €, U7T):

Aa(q? (Z)——2aZ/ drz(l —x)In|l

Setting ¢ = m% > m? and retaining the dominant term inside the argu-
ment of the logarithm leads to the known expression:

¢zl —x) —x)

o (3.175)

20 5
Aa(m2)® =22 102 4,12 220 3.176
a(mz) 3 Me + my + mr 2 ( )
Inserting the experimental values of mz, me, m, and m, finally leads

to the result:

Aa(m2)® =0.0314 . (3.177)

Two comments are at this point appropriate and, in a sense, correlated. The
first one is the realization that, numerically, the one-loop correction that is
taken into account by Eq. (3.114) is “not small”. A relative three percent
represents in fact quite large an effect in situations where the experimen-
tal accuracy is supposed to be at the permil level, which will be the case
for measurements on Z resonance. The second comment is a qualitative
statement about the next estimate of the quark contribution to Aa(m%).
A priori, one can guess that its numerical value should be of a size compa-
rable with that of Eq. (3.177), which implies a relevant contribution. One
also sees from Eq. (3.175) that a large part of the effect is produced by
the smaller masses, and one consequently expects that a major role should
be played by exchanges of “light” (u,d, s,c,b) quarks. On this very pre-
cise point, a calculation like that performed for the leptons appears to be
from the beginning in serious trouble for two rather strong reasons. In first
place, the precise definition (and the value) of the light quark masses is
not unambiguously known. This would unavoidably lead to an intrinsic
theoretical error in the calculation, whose size would be rather difficult to
fix. Secondly, in the light quark diagrams, the extra correction due to gluon
exchanges cannot be ignored, and its perturbative estimate in such a region
of essentially “quasi zero” momentum transfer is certainly unreliable. This
leads to the conclusion that, for such an expectedly relevant contribution,
some different computational strategy should be utilized.

Luckily enough, a well known and general approach to this problem ex-
ists, based on the use of the old fashioned dispersion relations technique [8].
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This is essentially based on the assumption that the hadronic (quark) pho-

ton self-energy F("()(¢?) is an analytic function of the variable ¢ for

generalized complex ¢ values, so that the Cauchy theorem can be written
as:

1 F(h)(v)(qﬂ)

FWO)(g?) = —%751 2 3.178

(@) =5 gz Y ( )

where ¢ denotes a closed contour in the complex ¢ plane. By choosing the

closed contour ¢ as the infinite limit of a special finite circle surrounding

the real axis and cut along the positive ¢2 values, it is always possible to

express the real part of any analytic function that vanishes at infinity as

the integral over only the real axis of its imaginary part. Choosing this
function as 1/¢*[F™) (¢?) — F™)(0)]("), one therefore writes:

FO(g2) — F('Y)(())](h) 1 /°° dg® {F(V)(q’Q)—F(V)(O) "
m
q

Re =—-P
¢ 2 7% — ¢ 72

™

(3.179)
where P denotes the so called principal value of the integral, that avoids
the infinite at ¢’> = ¢? and ¢{? represents the threshold value after which
an imaginary part begins to develop. According to a sort of generalization
of the optical theorem, this imaginary part is then proportional to the
total cross section o of the process of electron-positron annihilation into
hadrons, so that the final expression is obtained:

Re[F(V)(QQ)_F(V)(O)](h) _ 1 P/OO dql2
e Ar2a 2 7% — 2

on(q?) (3.180)

with a physical threshold at g2 = 4m2. The evaluation of the hadronic
component AMa(m%) proceeds now from Eq. (3.180) using as a “the-
oretical” input the experimental values of the hadronic electron-positron
annihilation cross section, since one has:

21(h) = Re[p(™) D2y~ M2 p [T _dd” 2
Ba(m) ") = Re[FO(0) = FO ) = 2P [ e (d)
. (3.181)
and this equation is valid to all orders of strong interactions.
For practical (and, also, theoretical) purposes it is more useful to rewrite
Eq. (3.181) by replacing inside the integral the hadronic cross section by
the ratio R = oy, /o, of the hadronic to the muonic electron-positron

cross sections. Since one has, to lowest order in the QED coupling:
4 5 o

0u(0?) = Ocre- - (¢%) = 3m¢%a (3.182)



150 The Physics of the Z and W Bosons

one gets, to the considered one-loop level:

amZ o d 12
Aa(m3)® = 2 p /4 . mmw(q’?) . (3.183)

The usual approach to a numerical estimate of Eq. (3.183), consists of
a first separation of the contribution coming from “light” hadrons, thought
as composed by the five “light” (u,d,s,c,b) quarks, from the remaining
term usually identified with that produced by the top quark (no other
fermion families are present in the MSM). For what concerns the light
contribution, one understands from a glance to Eq. (3.182) that it will
be mainly produced by the relatively low energy region, e.g. for \/qu <
40 GeV, where experimental data with a related error are available; for
higher energies, a theoretical (e.g. QCD...) asymptotic fit must be used.
Clearly, this calculation will lead to a prediction whose error is mostly
given by that on the available experimental data below 40 GeV (in the
theoretical QCD fit the error is practically negligible). A proper estimate
of this error is quite important, since its size might damage, if it turned out
to be dangerously large, the accuracy of the MSM predictions. This explains
the great number of dedicated papers that were written, starting from the
original calculation [47] to the most recent work [48]. A complete list of
authors can be found in Ref. [49] with a table of all results and uncertainties,
that varied with time following the improvements of the relevant low energy
measurement of the ete™ hadronic cross section. The value used in this
book for Aa®) (m%), (5) = u,d, s, c,b, is

Aa(m2)®) = 0.02758 £ 0.00035 (3.184)

i.e. of the same size as the leptonic contribution Eq. (3.177).

Two comments are now relevant. The first one is that the main source
of error in Eq. (3.184) comes from the experimental error on the data in
the region 1 GeV < \/qT2 < 10 GeV. The second one is that the top-quark
contribution must still be added. This does not represent a problem, given
the fact that the value of the top mass is large, m; >~ 2myz, and its contri-
bution is consequently highly depressed in the integral. Note that in the
top case one can ascribe a meaning, and thus use an experimental value, to
the concept of top mass. This fact, and the smallness of the related contri-
bution (plus the large energy scale intrinsically associated to the top, that
makes strong interactions perturbatively treatable, and essentially negligi-
ble) lead to the conclusion that the top component can be computed by
using Eq. (3.175), with the insertion of a color (N; = 3) and of a charge
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(4/9) factor, but assuming this time m? > m?%, that produces the result:

2
Aa(m)toP) ~ — < "2 400004 (3.185)
Z T 1 m? T ’

much smaller than the error of Eq. (3.183) and thus totally negligible.

From a general theoretical point of view, this conclusion is predictable.
The top contribution to the photon self-energy at ¢> = m%
typical effect coming from a particle, of squared mass m? sufficiently larger
than the involved squared moment, to a purely vectorial self-energy. As
such, it must fulfill the request of the decoupling theorem of Appelquist and
Carazzone [35], according to which this type of effects behaves like ~ ¢2/m?
and thus decouples as actually shown by Eq. (3.185).

In conclusion, the theoretical statement that is nowadays available is

that the overall value of Aa(m%)\) is the following:

Aa(m%)) = 0.05901 + 0.00035 (3.186)

is in fact a

obtained as a sum of leptonic and (quark) hadronic contributions. This
corresponds to a value of the effective QED coupling Eq. (3.128):

[a(m%)] ™! = 128.9495 + 0.045 . (3.187)

It should be stressed that the contribution Eq. (3.186) to Ar is rather large,
almost six percent. This will affect the MSM predictions in a substantial
way. However, the induced theoretical error of the predictions will be sys-
tematically negligible. We shall discuss this point in detail in the final part
of this Book, and we shall assume its validity for the moment. In this spirit,
we shall consequently write Eq. (3.155), using Eq. (3.171), as follows:

Gr T
7 = S (L= il i) [1+ Aa(m%) + Ar'Y)
T

= D s [1+ Aa(mD)[1 + Ar']

_ 7ra(m2Z) "W
= T 1 = m3, i) 1+ Ar"] (3.188)

where the usual one-loop approximation has been used.

Equation (3.188) contains an implicit statement, that we anticipated
in the introduction to this Chapter. This may be essentially expressed by
saying that, if one wants to replace the input parameter mys by a “more
convenient” set that includes (almost unavoidably) the extremely precisely
determined G, the involved theoretical operation automatically involves
both the Z mass and the effective charge at the squared Z mass a(m?%).
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This set (Gr,mz,a(m%)) appears therefore as the natural one to be used

as the fixed input of the different theoretical predictions, and we shall adopt
this pragmatic attitude from now on.

The previous statement still requires a final “detail” to be fixed. This
is, as one can guess from Eq. (3.188), the precise determination (or the
theoretical expression at least) of the genuine weak parameter Ar". We
shall devote the next Subsection 3.2.5 to a detailed investigation of this
problem.

3.2.5 Determination of Ar" and calculation of the W
mass

3.2.5.1 Numerical estimate of A1(0)

As a first example of electroweak calculation at one loop, we shall now
compute the expression of the W mass. This can be obtained by Eq. (3.188)
once the value of Ar" has been determined. With this aim we shall first
consider, again, the fermion pairs contribution to self energies, Ar(HW,
Egs. (3.169), (3.170). The example will have two major motivations. The
first one will be the derivation of a clean prediction (for the W mass), that
can be considered as a crucial test of the MSM; the second one will be the
fact that, as we shall see soon, some of the parameters that enter Ar" will
also be involved in the expression of the various Z peak observables. In this
sense, the discussion that will be given in this Subsection 3.2.5 will remain
valid for the rest of this Chapter, that will be more strictly related with
physics at the Z resonance.

To make the previous discussion more concrete, we now begin by con-
sidering the contribution to A1(0) Eq. (3.163) from a fermion doublet, more
precisely from a pair of (u,d) quarks (u,d simply denote the states with
I3, = £1/2), whose masses m,,, mg will now be not ignored, but carefully
retained in the calculation. In fact, since A1 (0) is supposed to react to (cus-
todial) SU(2) violating effects, one expects that these can be originated e.g.
by a mass difference ~ m, — mgq inside the doublet, as we shall explicitly
verify.

The expression of A1(0) corresponding to one quark doublet (u,d) can
be derived from Egs. (3.54), (3.61), and reads:

3a
AP (0) =
10 8rm¥, (1 — m¥, /m%)
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1 2 2
m m

x/ dx{miln—;‘—kmflln—?d
0 K H

m?2 m?
—2[m2(1 — z) + xm?]In {F(l —x)+ xu—;} }

(3.189)

where the first two terms come from A(%)(0), the last one from A")(0),
and a factor 3 that takes into account the colour degree of freedom has
been inserted.

A glance to Eq. (3.189) immediately shows that it vanishes in the case
of equal quark masses, m, = mg. This confirms the discussion previously
given about the intrinsic sensitivity of A;(0) to custodial SU(2) violating
effects. In this spirit, it becomes clear that only situations of sizeable mass
difference should be relevant and potentially interesting. In fact, this can be
evidenced by performing the z-integration, which leads to the expression:

3
AL (0) =
1 (0) 8rmi, (1 — m¥, /m%)

1, 5, 9 m2m? m?
X |=(mi +mj)——+—1In— (3.190)

2 P mE —my)  mg

In the limit e.g. m?2 > m?2 this reads:

Alm>ma) gy e My (3.191)

T 167(1 — m, /m%) my,

One sees, and this point must be stressed, that Agmd) (0) develops a con-
tribution that is quadratic in the dominant fermion mass. This will remain
unchanged also if m2 > m#,. This property, first stressed by Veltman [34],
is orthogonal to the one met in the case of Aa(m?%) where the decoupling
theorem [35] was effective. The reason for this difference is the presence of
a non-vectorial (i.e. essentially of not purely QED type) component in the
Z, W self-energy, that leads to a genuinely weak violation of the theorem.
From a numerical point of view, one immediately realizes that
Eq. (3.191) can lead to an appreciable contribution in the case of a suffi-
ciently heavy quark mass. Writing, in first approximation, (1—m%,/m?%) ~
1/4, we obtain:
am?

5 -

Alme>ma) gy ~
(2 ) = 22

(3.192)

One sees that, unless m, > myz, the size of the term will be always less
than a/m ~ two permil (with an even worse situation in the lepton case,
as one can easily guess, due to the absence of the colour factor). The only
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remarkable exception to this negative statement is provided by the (top,
bottom) doublet contribution. Here, with m; ~ 2 myz, A;1(0) reaches the
one percent size, that will be relevant for Z resonance physics. This fact will
lead to the extremely interesting consequence that precision measurements
on top of the Z resonance where, we anticipate, A;(0) will be one of the
input parameters, will be sensitive to the actual value of the top mass, and
as such they will be, so to say, directly comparable with the independent
experimental measurement of this quantity, as we shall discuss in detail in
the final part of this Book.

One comment at this point is relevant, and concerns the naive expec-
tation that a similar feature might characterize the non fermionic virtual
contributions (to e.g. self-energies) where a Higgs boson is involved. If this
were the case, precious indications on the still unknown value of the Higgs
mass would be derived, that would be of great practical value for actual
searches. Unfortunately, at the considered one-loop level, this is not the
case. As first shown by Veltman [37], the virtual Higgs contribution at this
level is screened i.e. it is only of logarithmic type in the large Higgs mass
regime and thus very difficult to be practically detected. We shall return
on this point at the end of this Chapter, when a few relevant formulae will
be explicitly shown.

To conclude this Subsection 3.2.5.1, we have shown that the presence
of custodial SU(2) violations can lead to observable effects at the one-loop
level via Ago). In the next Subsection 3.2.5.2, we shall investigate in some
details the properties of one extra quantity, Az (m%), that will be much
less sensitive to custodial violations features, but whose role in the process
of precision tests of the MSM will also turn out to be rather crucial.

3.2.5.2  Numerical estimate of Az(m?%)

We shall now illustrate the main properties of Az(m%) by explicitly per-
forming the calculation of the contribution to this quantity coming from
a quark pair, to be generically indicated Eq. (3.190) by a (u,d) doublet.
Starting from the definition Eq. (3.167) and using Eq. (3.54), that can be
easily modified to provide the expressions of both FZ(¢?) and F(47)(¢?) by
simple changes of the fermion vertices, it is straightforward to obtain the
finite expression:

o
Am (1 —miy /mZ)

Az(mz) = —
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m?2 —m%z(l — x)
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(3.193)

We can consider now two quite different extreme situations. The first
one is that in which m, > mz > my, and corresponds (with the extra
request myz > my) to the non-decoupling case of the previous Subsection.
By approximation of the integrands with their dominant terms, we derive
in the considered limit:

(wdy, 2y a1 m_2 5 3
A mz) = 477(1—m%,vm22){[61 2 T3] 7|18

My, > My > My 5
S WL (3.194)
247 (1 - mvg) my,

m.Z

R

Numerically, for the top quark case with m; ~ 2my, the contribution
is well below the one permil, more than one order of magnitude smaller
than the corresponding contribution to A;(0) Eq. (3.192). This confirms
the expectation, already discussed in Subsection 3.2.5.2, that As(m?%) will
not react like A1(0) to custodial symmetry violating inputs. In fact, the
sensitivity of Az(m?%) to such situations is practically negligible.

The second interesting situation to be considered is that where m, =
mq > mz. We know from the previous discussions that both A, (m%)
and A1(0) will be totally unaffected in this case, owing to the decoupling
property of the first quantity and to the custodial symmetry peculiar con-
straints on the second one Eq. (3.189). For As, the numerical estimate of
Eq. (3.193) leads, on the contrary, to the conclusion:

A(md) 2 ~ «
s m2) = e T, )

(3.195)

My = Mg > My .

Numerically, this contribution is just above one permil, which does not
represent a remarkable effect. Still, and quite generally, this shows the
totally orthogonal nature of Az(m%) compared with A;(0). In principle,
the existence of a sizeable number of new super heavy quarks degenerate in
mass would be detectable in Az(m%), but not in A (0).

To conclude this qualitative study of the three parameters appearing in
Eq. (3.170), we still have to discuss the Ay term. This will be done in the
forthcoming part of the Section.
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3.2.5.3 Numerical estimate of Ag

From its definition Eq. (3.164) and from the expressions given in Egs. (3.54,
(3.61) it is again straightforward to derive the contribution of a general
(u,d) quark doublet to As, that reads:

3o
47(1 — m¥, /m%)
1

Agu,d) _

drz(l - z) m{ miﬂ_m%x(l —2) }

m2(1 —z) +m2z —miz(l — )

g
+/01dm(1—x)1n[ mg —mza(l — z) }

m2(1 —z) +m2z —miz(l — )

1 m2
—|—/ dx {(1 —T)—5 + xmgm%‘,]
0 My
m2(1 —x) +mizx — méz(l — z)
x In 5
m2(1 —z) +mix

—1/1d;v m—iln 1_7m2233(1—x)
2 Jo m%

2

2 1—
+ﬂln‘1— mze — ) } . (3.196)
mz My

In the limiting case m, > Mz w > mg that was already considered in the
previous part of the Section one finds the following expression:
—3a 1. m2 1
A(u)d) ~ _ 1 _u -
2 (1 —mi, m) |6 w2 T 12
my, > Mw,z > mg (3.197)

showing that the contribution carried by the energy dependent component
of the custodial symmetry violation ~ F®)(m2,) — FW)(m2,) is only of
logarithmic type and numerically, for m, = m; ~ 2mz, at the negligible
one permil level. For what concerns the second considered situation m, =
mq > Mz w that was not irrelevant for Az(m?%), one finds in this case:

—3a (m% —m,)
A(u,d) ~ /d 201 _ )2z W
2 2m(1 —m3, /m¥,) z2°(1-2) m2
My = Mg > MW7Z (3198)

showing that this contribution to A is indeed negligible. In fact, at least
within the MSM, A, seems to play a not particularly meaningful role, since
most of the possible considered one loop effects do not affect it in a sensible
way. On top of this, this parameter will not enter into the theoretical
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predictions for physics on Z resonance, as we shall immediately see. As a
consequence of these two facts, we shall not concentrate our attention on
it any longer in what follows.

Our discussion of the weak fermionic component of Ar is at this point
concluded. Keeping in mind the fact that we did not illustrate the calcula-
tion of the non fermionic component, we are now in a position to present
the derivation of the theoretical prediction for the W mass in the MSM.
This will be the subject of the forthcoming part of this Section.

3.2.5.4  Calculation of the W mass

Let us return to Eq. (3.188). By multiplying and dividing it by m?%, it is
possible to rewrite it in the more convenient way:

mi, ( m%,V) ~ ma(m%)

m?% m?% N V2mZGr

The Lh.s. of Eq. (3.199) is a quadratic expression in the adimensional
variable m%/v /m%. The r.h.s. contains the three input parameters that we
have decided to adopt, a(m2Z), Gr, myz, and the weak parameter Ar". The
latter will contain typical quantities of the MSM (of particular relevance,
the top mass) and also, as shown e.g. by Eq. (3.169), (3.189), (3.193),
(3.196), it will depend again in general on m#,/m%. Thus Eq. (3.199) is
not, rigorously, a second order equation in m%,V /m?%, and it must be solved

[1+ArY]. (3.199)

e.g. by recurrence. This does not represent a problem, but prevents us
from providing a simple algebraic solution. We can, though, derive an
approximate m%/v /m?2, solution that should be, intuitively, rather close to
the complete one. This approximate solution is defined c¢2 and satisfies the
equation:

ra(m})
\/§m2ZGF
with s3 = 1—cZ. Of the two solutions of Eq. (3.200), c3 will be chosen as that

which almost coincides with the actual experimental value of m%,V /m?, ~
0.77. This means that

cist = (3.200)

_ Ara(m3)
V2m%Gr

Numerically, using the experimental result for mz, one obtains the
value:

1+ 4/1 (3.201)

1
2—_

2 ~0.769 (3.202)
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or
2 _ 2
sg=1—c5~0.231. (3.203)

Clearly, Eq. (3.202) (or Eq. (3.203)) does not represent the complete MSM
prediction for the quantity m3,/m?%. This can be obtained, as we said, by
solving numerically Eq. (3.199) for given values of the free MSM parameters
(at the beginning of SLC, LEP1 operations: m;, mg). We shall not pursue
this operation here, but rather embed it into the final overall numerical fit to
be discussed at the end of this Book. The reason why we illustrated at this
stage the calculation of myy is that we were able in this way to introduce,
and to endow them with a clear physical meaning, a number of parameters
and of quantities that will be needed for the complete description of Physics
on Z resonance. This will start, in fact, in the forthcoming Section 3.3.

3.3 Formulation of Z physics at one loop: introduction of
the effective weak parameter sin’ Ow,er s

3.3.1 Operative definition of the electroweak mixing angle:
the longitudinal polarization asymmetry

We have already stressed in Chapter 1 the point that a fundamental dif-
ference between a photon and a Z boson is represented by the fact that
the latter couples in a different way with left-handed and right-handed
fermions. An immediate consequence of this is that, in a process that can
be described to a very good approximation as a pure s-channel Z exchange
from an initial to a final fermion-antifermion state, it will be possible to de-
fine and to measure an observable quantity, that would be vanishing if the
same process could be approximated by a pure s channel photon exchange.
This quantity, that has played from the very beginning a major role in the
development of the experimental strategies for testing the MSM on top of Z
resonance, is the so called longitudinal polarization asymmetry. If the con-
sidered process is that of annihilation of an initial electron-positron state,
with a left (right) handed electron = ey, g, into a final fermion-antifermion
(ff) pair, and O'(L{ %(q2) denote the respective cross sections at variable
squared c.m. energy ¢?, the longitudinal polarization asymmetry at the Z
peak is conventionally defined as:

G(Lf) (f)(

(m%) —og

2
AP (m%) = AY) QZ) : (3.204)
zZ

O'(Lf) (m%) + crg) (m
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We shall begin to investigate the most relevant theoretical features of this
observable at the simplest tree level approximation, since as we shall see
they remain essentially unchanged when one moves to the one-loop descrip-
tion. In particular, we shall make the initial approximation that, on top
of the Z resonance, the considered process can be described as a pure Z
exchange i.e. by only retaining the first Feynman diagram in Fig. 3.2. This
approximation corresponds, for what concerns the expression of any inte-
grated cross section, to neglecting the squared photon with respect to the
squared Z contribution (the yZ interference vanishes exactly on Z reso-
nance). This clearly introduces an error that can be exactly estimated, and
does not significantly modify any of the following conclusions.

In the described Z-dominance approximation, the expression of A(Lf})%
at tree level can be easily derived by straightforward application of our
relevant formulae shown in detail in Chapter 2. But for an easier and im-
mediate understanding of the main characteristic theoretical features of this
quantity, it may be useful to follow a less rigorous, more intuitive approach,
that is based on the following simple remark. Consider the process of res-
onant production and subsequent decay into an arbitrary final ff state of
a Z, that is created by a left (right) handed electron and by the corre-
sponding positron (whose chirality is uniquely fixed by that of the partner
electron in the model, see Eq. (1.114)). This process is described by a re-
lated cross section O'éf) g%(mzz); quite generally, this will be proportional to
the product of the squared Z-lepton left (right) coupling with an awkward,
complicated function that describes the subsequent decay of the Z into the
final ff fermionic state. Reabsorbing a universal normalization factor in
this function, one will consequently write:

o8 %) = ot hm) (3.205)

)

(the zero apex is a reminder of the fact that we are now working at the
lowest tree level).

The key observation is now represented by the fact that, once the Z is
produced by a polarized electron (with a strength proportional to g(LO’);), it
decays into the final state in a way that is independent of the initial electron
polarization. Otherwise stated, one will have that:

féf)(m%) _ fl({f)(m%) = f(f)(mgz) . (3.206)

The immediate consequence is that, no matter how complicated f(/ )(m2Z)
is, it will factorize and cancel in the ratio of Eq. (3.141), leaving as a final
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result
g(O)2 _ g(O)2
0 Lt R, __ 0
AQYD = L L =40 (3.207)
9re T 9Rr

i.e. the longitudinal polarization asymmetry (in the used approximation)
is actually independent of the final state, and only depends on the initial
lepton-Z couplings.

The previous conclusion has been reached to the lowest order in weak
and strong interactions in a Z dominance approximation. But, to lowest
order of weak interactions, one can immediately generalize it to all orders
for what concerns strong interactions affecting the final state. In fact, the
only consequence of these extra forces will be that of making the function
Y2 (m%) to become even more awkwardly complicated, without, though,
introducing in it any dependence on the initial electron polarization. To all
orders in the strong interactions and to the lowest order in the electroweak
ones, A g will be thus final state independent. In particular, it will be the
same for the production of final lepton pairs and for that of all possible
hadronic states, assumed to be the result of the initial creation of the five
possible elementary quark couples. This means that it will become possible
to measure a genuinely weak parameter like that of Eq. (3.207) by simply
counting the number of final hadronic states (of any possible flavor) pro-
duced by left handed and by right handed electrons, thus achieving a much
more enhanced statistics with respect to that provided by the analogous
measurement of the final leptonic states, with the consequent understand-
able benefit for what concerns the purely statistical experimental error.
This remarkable property will not be spoiled by strong interactions, but
rather from the consideration of possible higher order electroweak effects.
As a consequence of this fact, one would expect that is should essentially
survive at the considered one-loop level, which was explicitly shown in
Ref. [50].

Having listed the main theoretical reasons that privileged A g, from the
very beginning, as a rather special quantity for accurate tests of the MSM,
we now want to specify more precisely what particular genuinely weak
parameter would be fixed by its precise measurement. This can be imme-
diately seen by looking at Eq. (1.116), that allows to rewrite Eq. (3.207) as
follows:

) _ 2(1 - 4 sin® Ow)
LR 4 (1 — 4sin )2

(3.208)
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In full generality, we conclude that Eq. (3.208) can be viewed as one
that provides a realistic operative definition of the weak parameter that
essentially characterizes the MSM, i.e. sin?@y . In agreement with our
general treatment of input parameters, sin® @y, turns out to be fixed (mod-
ulo small calculable one photon exchange QED corrections) by a prescribed
measurement of cross sections, at a precisely defined value of the squared
four-momentum equal to the squared Z mass.

Although one should always interpret a tree level definition with some
care, a basic analogy with the corresponding QED situation remains, still,
impressive. We have actually seen e.g. from Eq. (3.87) and related discus-
sion that the genuine bare QED quantity ag can be, in principle, extracted
from a prescribed measurement of a (differential) cross section at the pre-
cisely defined value of the squared four-momentum equal to the squared
photon mass. This corresponds nicely to the situation occurring for sin? fyy .

The previous tree level analogy becomes even more interesting if we
now consider the way in which the physical QED coupling o was defined
at the next one-loop level. We have presented the example of Eq. (3.88),
showing that the same physical cross section, computed at one loop, defines
the physical charge «. This fact, and the underlying symmetry between
electric and weak parameters of the model, leads in an natural way to the
idea of introducing a physical or effective weak parameter, associated to the
bare quantity sin? 60y, to be called conventionally sin® ..y, operatively
defined at the one-loop level from the generalization of Eq. (3.208):

o o0 _ 201 4sin’fwery)
‘T(LE) N a%) 1+ (1 - 4 sin? 9W7eff)2

Arr = |q2:m"’z = (3.209)

A couple of points should be now stressed. The first one is that
Eq. (3.209) now prescribes a measurement of final leptonic states. In fact,
at the one loop level, the final state dependence of A(Lf% is not identically
vanishing, and in particular the expressions for leptonic and hadronic final
states are, in principle, different. This difference is, as previously stated,
small and calculable and in principle one can therefore use A(thd') to define
sin? Ow,ers as well. We shall return on this point later, but for the moment
we shall stick to the definition of Eq. (3.209). The second point is that the
definition of a physical sin®@w,css is rather arbitrary, much like the analo-
gous definition of the physical o. Actually, a number of different definitions
of the physical mixing angle exists in the literature; however, that provided
by Eq. (3.209) has become nowadays largely accepted. In view of this fact,
not to generate unnecessary confusion, we shall not try to make a list of
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comparisons with alternative definitions.

The next step of our approach is now evidently that of deriving the
theoretical expression of sin? 6y ;s in the MSM. This will be done, in the
forthcoming Subsection.

3.3.2 Calculation of sin® Ow.crs at one loop: fermion pairs
contributions to self-energies

We now proceed to the derivation of the MSM expression of the effective
parameter sin? Ow.err defined by Eq. (3.209). Following our systematic
criterion, we shall first work within a well defined set of approximations,
whose generalization to the complete situation will be intuitive and given
without a rigorous proof. As usually, we shall stick to the one-loop level.
At this order, we shall assume that, on top of the Z resonance, the pure
Z contributions to all cross sections, and consequently to all their ratios
like that defining Ap g, will be the largely dominant ones. Since any cross
section is expressed as the result of an operation that involves the squared
modulus of the scattering amplitude, we shall concentrate our attention
on the effective amplitude i.e. on those modifications of the pure Z ex-
change Feynman diagram at tree level that contribute effectively Apr at
one loop. To begin with, we shall be limited to the consideration of the
gauge invariant subset of diagrams that correspond to the fermion pairs
contributions to self-energies, exactly as we did in the treatment of Sirlin’s
equation. In terms of Feynman diagrams, they correspond to the following
Figure 3.17 and, in our notations, they involve the fermion pairs compo-
nents of the Z transverse self-energy function A% (¢?) and of the vZ
self-energy functions A (27 (¢2), A2)(42), evaluated in the case of in-
terest at ¢> = m%. Note that we have adopted a notation that defines the
mixed self-energies A7), A0Z) according to whether the incoming boson
is a Z(A¥) or a v(A"%). This distinction is purely conventional at
the self-energy level, but will acquire a more definite meaning when extra
non universal corrections (vertices and boxes) of possibly not separately
gauge-invariant type will be considered.

If the quantity to be estimated is Ay g, one extra simplification occurs.
In fact, one immediately realizes that the first two types of corrections cor-
responding to the diagrams (a) and (b) of Fig. 3.17 will cancel at one loop
in the involved ratio of cross sections. This is due to the fact that these
contributions will simply fall into components of the function f)(¢?) de-
fined by an immediate generalization of Egs. (3.205), (3.206), given the fact
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Fig. 3.17 Fermion (F) pairs self-energies modifications of the tree level Z exchange in
electron-positron annihilation: (a) Z self-energy (b) Zv self-energy (c) vZ self-energy.
The final state is a fermion-antifermion pair.

that the initial vertex has remained unchanged. This is not conversely true
for the contribution coming from the diagrams of (c) type, that modify the
initial leptonic vertex. We can therefore conclude that, for what concerns
the calculation of A(Lf 1% at one loop for an arbitrary final fermion-antifermion
state, an effective component of the scattering amplitude can be associated
with the two diagrams represented in Fig. 3.18 and conventionally defined
a8 Befeff

To compute this quantity, a simple possibility is provided by the fol-
lowing observation. As a consequence of the additional one-loop diagram
of Fig. 3.18, the overall effective amplitude can be written as the sum of
two terms. Following the prescriptions and the definitions of Egs. (3.5)—

_— +

(a) (b)

Fig. 3.18 Diagrams that contribute at one loop in the calculation of Ag})%.
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(3.12), (3.46) and (3.62) (with a straightforward replacement of the Z or
~ self-energy with the v — Z self-energy) leads to the expression:

W)
Acpers(a®) =
v leol o 0 0 -
|:(q2 _ m2Z) 2sin 0W coS GW ’Ue(p2)7 (gg/g '759543)”8(171)

i o A(F)(WZ)( 2) (2
+q—2|€0|Ue(P2)7”R€W (Pl)] Juf =

leol i

. /17e ﬁ l,L
2sin Oy cos Oy (¢% — mQZ) (Pa)y

2 sin Oy cos AFGZ) (g2 =\
L&) <1+ % ~ Re ¢ ) — 75950 “e(Pl)Jf?'
gVe

(3.210)

As one sees, the only difference between the tree level amplitude and the
effective one is that, in the latter, the vector Z-electron coupling ggfe) =
—%( 1 — 4sin? fy) has been replaced by the effective coupling

(0) (1)(f) (q ) (0) <1+ 2 sin Oy cos@WR A(f)(vz)(q2)

Gve = Ive eff Ive (0) € 2
Jve q
0) <1 _ 4sinfw cos b A(f)(VZ)(qQ))

(&
Ve (1 — 4sin? ) ¢

(3.211)
(

whilst the axial coupling g A) has remained unchanged. For what con-

cerns the expression of Ay g, it is now convenient to rewrite the tree level

Eq. (3.207) in terms of gg, and 91(4) This gives:

gg/oe)g,(fe) (3.212)
gg/ogz +g (0)2

From the previous discussion it is now clear that the new expression
at one loop will be obtained by simply replacing ggJ 8) with its modification
Eq. (3.211), by definition computed at ¢> = m%. Performing the usual
operations formally valid at one loop, and introducing for simplicity the

auxiliary variable

A5

vw =1 —4sin’® (3.213)
one arrives in a straightforward way to the following result:
) (0)
A(Ll})%(f) — 2gVe eff(mZ)gAe _
1 0
(9027 (m2)) + g )
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2g€/08)g1(£€) { _ 4sinbw cosfw (1 — U%V)R A(f)(WZ)(mzz)]
)

= e
(90 + 95 wo AR g
+‘small’ QED=
ORI 4sin Oy cos Oy (1 —v,) APV (m) (3.214)
= LR vw (1 +U12/‘/) m2Z . .

From this formula, by simply equating it to the operative definition given
in Eq. (3.209), we can now derive the expression of the fermion pairs com-
ponent of the self-energy contribution to sin®@yy.;s. This can be done
immediately by writing the formal generalization of Eq. (3.209):

o
W _ 201 —4sin® 03hss)
ADWD = — (3.215)
14 (1 —4sin” 6y, r)

Equating Eqgs. (3.215) and (3.214) and using Eq. (3.208) one is then led,
after a few straightforward steps, to the result

AN O Z) (12
sin? Oy = sin? 9‘(,{;’)6” — sin Oy cos GWRe# . (3.216)
z

A simpler attitude is that of realizing that, at the considered fermion pairs
contribution approximation level, the only crucial replacement is that of
the bare vector Z-lepton coupling, g%? ) = —% + 2sin? Oy, by the effective
coupling defined by Eq. (3.211). This can equally well be interpreted as a

replacement of sin? Ay with sin? 9‘(,{;’)6 ¢+ by simply defining:

AN Z) (12
g‘(/lg(gf)f (m%) = gg,oe) + 2sin Oy cos Oy Re — Yz (m3)
z
1 ADNOD) (2
= —= 4 2sin? Oy + 2sin Oy cos GWRe#
2 m
z
1
= —5 + 2sin? G%Lff (3.217)
from which , again, we find':
ADGD) (12
sin 0y, ; ; = sin® By + sin Oy cos GWRe# (3.218)
z

LA word of caution is now worthwhile. Equation (3.218) (or (3.216)) contain a quantity
Wers
approximation”, i.e. to the extent that all one loop contributions of different nature are
neglected. This means that, if one wants to eliminate in Eq. (3.218) the bare parameter
sin? Oy using e.g. Egs. (3.153), (3.154), only the fermion pairs contribution to Eq. (3.154)
should be retained, to guarantee a self-consistent procedure in this preliminary and

approximate treatment.

sin? @ meaningfully defined only in the “fermion pairs contribution to self-energies



166 The Physics of the Z and W Bosons

as in Eq. (3.216).

Equation (3.218) provides the formal definition of the component of the
effective electroweak mixing angle that takes fermion pairs contributions to
self-energy effects at one loop into account. We shall now show that it can
be rewritten in a more fashionable way, as a sum of physical parameters
and of quantities previously defined in this Chapter. As a first and manda-
tory step in this direction, we shall verify that the quantity defined by
Eq. (3.218) as the sum of a bare parameter and of a transverse self-energy,
both separately infinite, is actually finite. As we did in Subsection 3.2.2,
Eq. (3.158), we shall be limited to the consideration of the contribution to
sin? Oy, AO4) from a lepton family = (¢,v,). To compute its infinite part,
we shall use our previous equations (3.153), (3.154) and work consistently
following the comment given in the footnote after Eq. (3.218), i.e. only
retaining fermion pairs contributions on both sides of it. In this way, we
obtain from Eq. (3.218):

(f)
2o [y miv]  miy p [APmE) AT (miy)
SOy err = m2 + m2 e m2 m2
z z z w
AP OZ) (2
+ sin Oy cos HWRe# . (3.219)
z

The calculation of the coefficient of the infinite contribution from a (¢,v/)
family proceeds now in the known way, leading to the result:

sin? OV = A [e31927% sin® O]
mg 2 2 2 mz
X |3 —=6— + (1 —4sin” Oy ) — 4+ 4sin” Oy + 6—;
my my
+ 4sin? Gy (1 — sin? HW)} =0 (3.220)

(the terms in the square bracket correspond to the A(4), A) contribution).
Analogous conclusion, suggested as an useful exercise to the reader, can be
derived for the general contribution from a (u,d) quark couple.

Having checked that the definition of Eq. (3.218) is actually physically
acceptable (i.e. infinity free) we can rewrite Eq. (3.219) in the more under-
standable way:

sin2gl) . = {1 - %] +0(a) (3.221)
Wief f m2 .
Z
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where the finite O(«) one loop effect is fully given by the fermion pairs
contribution to transverse self-energies.

A first important conclusion that can be already drawn at this point
is the fact that the effective mixing angle is not equal to [1 — (m%,/m%)],
and will differ from that quantity as the result of the presence of one-
loop corrections. This is quite different from the situation met at the tree
level, where the same bare parameter sin” 6y was defined both by the bare
mass ratio, sin® Oy = [I — (m,/m%)], and by the bare expression of A(LOI){
Eq. (3.208). To give the previous conclusion a more quantitative content,
we return to Eq. (3.219) and, working consistently at the one-loop order

and using the definitions of Eq. (3.169), re-express it in the equivalent way:

+ [% (A1 (0) — Ag) — ( - %) Az (m )] .(3.222)

In the previous equation, an apparent dependence on the (unwanted)
parameter myy is exhibited. This can be eliminated exploiting the fact
that, at the one-loop level, one can write:

2
m 5  C2st w

_ W g2y Ar 3.223
{ m?% ] 0T 5 21 ( )

having used Egs. (3.204), (3.206). Inserting the previous equality in
Eq. (3.222), one obtains the final expression:

sin?0f), . = 2+ 263870_1 [As (m%) — @A (0)] (3.224)
and, inside A (0), Az (m%), W —c2 ~ 0.769.
Z

Equation (3.224) shows the expression of the effective mixing angle in
the MSM, in the approximation of only retaining the fermion pairs con-
tribution to self-energies at one loop. As anticipated in this Chapter, the
result does not depend on the As parameter. It will be numerically fixed
by the values of the input quantities a(m%), Gr, mz that determine s3,
and by those of the other parameters that appear at one loop, in partic-
ular the top mass m; that affects A1(0). Keeping in mind the fact that

we have only derived an approzimate expression of the weak mixing angle,



168 The Physics of the Z and W Bosons

we shall now perform in the next Subsections a systematic investigation of
the various relationships between sin® fyy s and the various experimental
observables at the Z peak, always retaining the same “fermion pairs dom-
inance” approximation. The reason, that we must anticipate, is the fact
that the set of formulae that we shall obtain in this way will be simple and
understandable and, more important, easily generalizable to the realistic
situation in which all the one-loop effects will be consistently taken into
account.

3.3.3 Relationship between sin® O%REff and mz

As the first example of the interconnection between the weak effective mix-
ing angle and the quantities that can be measured at the Z peak, we shall
now derive the formula that relates, at one loop, the value of the Z mass to
that of sin® fyy.;s. This derivation is rather simple if one starts from the
definition of ¢Zs3 Eq. (3.200) and rewrites it in the equivalent form:

, _a(mi)m 1
my=————.
z V2Gp s
The next step is provided by Eq. (3.224) that, in the usual one-loop
philosophy, can be rewritten as follows:

(3.225)

22 02 p(f 02 p(f
sgch = sin 9‘(,V’)eff (1 —sin 9‘(,V,)eff) 2

1+A1(0)—M1.

(3.226)

Combining the previous equations we can finally write the equality:
o} (m2Z) ™ 1

2
mZ =
V2Gp sin® 9‘(/{?6” (1 — sin? 0%7)61‘1‘)
1

l—i—Al(O)_#%nzZ)} |

X

(3.227)

Equation (3.227) is a simple relationship between different observables
that are measurable at the Z peak. It is fixed by the numerical values of
mz, Gr, a(m%) and by those of the two weak parameters A1(0), Az(m?%).
The third weak parameter A, does not appear, as we have anticipated.
We shall find the same properties in all the following examples that will be
provided for other observables in the following Subsections.
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3.3.4 The Z leptonic width at one loop in the ‘fermion
pairs’ approximation

A typical observable that can be measured with very high precision at the Z
peak is the Z partial decay width into a specific final fermion-antifermion
state. We shall now consider in some detail the derivation of the corre-
sponding MSM expression at one loop, as a useful illustrative example.
To begin with, we shall consider the simplest possible realistic case, that
of of a purely leptonic charged final state; the generalization to hadronic
production will be treated in the following Chapter.

We already derived in Chapter 2 the tree-level expression of the leptonic
width I'y, that we shall rewrite as:

)

mz

Gy (198212 + 19401 (3.228)
6mv/2

(we are now using bare parameters, and the identity of Eq. (3.127)).

To generalize the previous definition at one loop, several approaches
are possible. In this Subsection we shall continue to work in the spirit of
the previous part of this Book. To begin with, we shall redefine the Z
leptonic width at tree level by considering the corresponding expression
of the pure Z component of the cross section for the process of electron-
positron annihilation into a charged lepton-antilepton (££) pair at variable
squared c.m. energy ¢2, given in Chapter 2. For our purposes, we shall
write it as follows:

o (g2 127 O
. - . . . (3.229)
q (¢ —m3%) mz

The previous equality is a tree level one, and as such it must be handled
with some caution. It can, though, provide a useful operative definition if
it is rewritten as follows:

0@ (2 s [pOp©
lim %7(;1) 9 ()] = [ﬂ] (3.230)

q? —>m.2Z 127Tq mQZ

where Dg)) (¢?) = ¢®> — m% is the denominator that appears in the bare Z
propagator.
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Following the procedure already illustrated in this Chapter, when the
definition of the physical electric charge at one loop was just the generaliza-
tion of that given at tree level for the bare one, we shall define the physical
leptonic width at one loop as the simple generalization of Eq. (3.230), i.e.:

1)(2) (2
o q
m2 ‘ 1271'6](2 ) |D(Zl) (qQ) |2 = [

(M
. =t (3.231)
qc—my

2
myz

where D(Zl)(q2) is the denominator that appears in the physical Z propaga-

tor at one loop, that does not vanish at ¢*> = m%. This allows to rewrite

Eq. (3.231) in the more useful form:

) oM@ (g2) 1 rOr® 3912
2H?nz 127mg2 - (1) 21 (2 m2 : (3. )
a z q |Dy" (m3%) | Z

The Lh.s. of Eq. (3.232) is essentially the result of the process of squar-
ing the Z-component of the invariant scattering amplitude of the process
(summing and averaging over polarizations). This suggests that to derive
the quantity on the r.h.s. it will be sufficient to write the modified expres-
sion of the square of the Z component of the invariant scattering amplitude
at one loop, in the limit ¢> — m?%. This can be done starting from the
expression of that amplitude at tree level Eq. (3.6), that can be written in

the equivalent form:

2

0),(Z . 0 m
AO-2) (¢%,0) = [zx/ﬁG%)ti _Zm2 ]
z

X [ﬂz (P3) Y (g\(/(?g? - 7595;02) ve (Pa)

X Ve (P2) " (93)2 —vsgffe)) Ue (ﬁl)] . (3.233)

In this Section, we shall only consider those modifications of the scat-
tering amplitude at one loop that are due to the fermion pairs contribution
to self-energies. In the considered case of the Z component of A., , only
the corresponding effects on the bare Z propagator will have to be retained.
Quite generally, these can be divided into two distinct sets. The first one
is mot altering the “external” Lorentz structure of tree level Feynman dia-
gram, that appears in the second square bracket on the r.h.s. of Eq. (3.233),
and simply modifies the “internal” structure represented by the first square
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bracket on the r.h.s. of the same Equation. This corresponds to the inser-
tion of the Z self-energy diagrams like that shown in Fig. 3.7. The second
set also modifies the external structure and is given, in the approximation
that is being used, by the insertion of Z+ self-energy diagrams with a pho-
ton entering either the initial or the final vertex. The effect of the first
set of Feynman diagrams can be easily computed. By a straightforward
applications of the simple prescriptions that were given in this Chapter one
derives that:

m3, m3, + ReA®) (m3)

@?—m% ¢ —m% — ReA?) (m?)
. m% + ReA%) (m%)
¢® —m?% — ReA?) (m%) + AD) (¢?)

where the transverse self-energy function A(%) (qg) will have in general both

(3.234)

a real (Re A) and an imaginary (Im A) component.

The previous Equation can be rewritten, by straightforward repeated
applications of those allowed one- loop tricks that we have often illustrated
(that we suggest as useful exercise to the reader), in the more appealing

form:
m% m% ReA?) (m%)
3 2
¢*> —my D(Zl) (¢?) mz

A2) (q2) — A2) (0)

— m%Re <F(Z) (@) - F(QZ) (m%) )] (3.235)

q* — my
where the definition A(?) (¢%) = A® (0) + ¢?F?) (¢?) has been used and

D(Zl) (qQ) is the denominator of the physical Z propagator, whose explicit
expression is:

T 2
DY () = ¢ —m + i 2] (3.236)
mz
. Fz(qz) .
The real quantity ey s defined as:
I'y (q2) ImF?) (q2

"MZ 4 ReF(®) (@) + m%Re (F(Z)(q —E2) (m ))

q? —mZ
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= ImF® (qz) +0 ((12) ~ ImF\%) (qg) (3.237)

and is called the energy-dependent Z (total) width. One verifies imme-
diately that each contribution from a given fermion-antifermion pair FE
reproduces, modulo O (a?) terms, the partial Z width I'r into FF defined
in Chapter 2 at ¢> = m%.Thus one can safely omit at one-loop the ¢?
dependence and simply write I'z (= > I'r )in Eq. (3.236).

One still has to replace the bare coupling G;?) in Eq. (3.233) with the
physical one and perform the limit ¢*> — m?%. Using the expression of the
shift dGr Eq. (3.143) finally leads to the expression of the modification of
the Z component of the scattering amplitude due to the fermion pairs (f)
contribution to the Z transverse self-energy:

lim A4 (¢2,0) DY (m%) = iv2Grm?

q2 —my

X {1 + A (0) = mZ FWZ2) (mgz)}

x [ () Yy ] (3.238)

where F' (m%) denotes the ¢* derivative of F at ¢> = m% and the second
square bracket on the r.h.s. is still equal to the tree level one.We now
assume universality for the Z-charged lepton couplings so that I'. =I.
Then the Lh.s. of the previous equation is exactly that which produces
the internal shift of the partial width.This will be obtained by the simple
formal replacement:

672 672
X [1 + Ay (0) — mEWD2) (Mj)} . (3.239)

The second modification of the tree level partial width is due to the
change of the external structure, corresponding to the second square bracket
on the r.h.s. of Eq. (3.228) and due, in our approximation, to the inser-
tion of the vZ self-energy. Without entering a formal discussion, we can
easily guess what effect will arise. In fact, the role of the external struc-
ture, after spin summation and averaging, is that of generating the term
~ [gg,of + 95&)2} :i {1 + (1 — 4sin? 9w)2]. From the discussion given in

Subsection 3.3.2 we already know that the fermion pairs contribution to
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the vZ self-energy will simply generate at one loop the formal replace-
ment sin® fyy — sin? G%Lf £ where the latter parameter is defined e.g. by
Eq. (3.212). Therefore we can conclude that, within the fermion pairs ap-
proximation, the final expression of the Z charged leptonic width I'y will
be at one loop:

fO0 G
mgz 247+/2
X {1 + Ay (0) = mLFN@) (mgz)}

2
x {1 + (1-4sin?0if) ) ] . (3.240)

The previous equation gives the first example of the deep interconnec-
tion between different observables at the Z peak. It shows that the same
parameter sin® Ow,ers that is measured by the longitudinal polarization
asymmetry also enters the expression of the Z leptonic width, together
with a set of electroweak one-loop corrections to the tree level formula.
The latter ones will depend in general on some of the characteristic MSM
parameters (mg, mg-....), whose numerical values will have to be in agree-
ment with those of the various measured quantities in a suitable overall
numerical fit.

Given the relevance of this statement, we shall now devote the remaining
part of this Chapter to a more general analysis, that also includes those one-
loop effects (non fermionic contributions to self-energies, vertices, boxes)
that we have neglected until now. This will lead to the complete one-loop
expression of the fundamental parameter sin® fyy,. ;¢ and, also, to the gen-
eralization of all those equations that were written in the fermion pairs
contribution approximation. As we shall see, the final form of all the rele-
vant expressions will be obtained by an immediate and simple modification
of the “approximate” ones, that will be discussed in the forthcoming Sec-
tion.

3.4 The complete expression of sin? Ow,cys at one loop

Our derivation of the MSM expression of the physical observables at the Z
peak at one loop has only considered, until now, the addition to the tree
level Z exchange of those effects that are due to the fermion-pairs contri-
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butions to the gauge bosons self-energies. As a result of this procedure we
have obtained approximate formulae, whose numerical reliability still has
to be discussed. But, independently of this important “detail”, it must
be stressed that the approximation thus derived can be considered as a
physical one, since it is evidently gauge-invariant. This property, that must
be obviously a common feature of every theoretical prediction, is a simple
consequence of the fact that in the fermion propagators, that must be inte-
grated in their virtual four-momentum to obtain their contribution to the
transverse gauge bosons self-energies A w, ... (qg), there is no dependence
on the gauge-fixing parameters &; that can be transmitted to A.

The previous feature is no longer valid as soon as we consider contribu-
tions to the gauge bosons self-energies that involve a non fermionic loop (to
be generally called bosonic contributions). In the case of electron-positron
annihilation, the simplest representative example is that of a W bosons
bubble represented in Fig. 3.19.

The related complication can be summarized as follows: the Feynman
diagram of that Figure generates a contribution to the 7y, Z self-energies
that will be the result of an integration over a virtual four-momentum &
analogous to that of Eq. (3.26), but with the fermion propagators replaced
by the W ones that are of the form given in Eq. (3.17), with a {w depen-
dence in their longitudinal parts.Thus, in full generality, one expects for the
self-energy tensor HZf a dependence on &y from that integration.

The delicate point is the fact that the £ dependence of the longitudinal
components of the integrands “migrates” into (also) the transverse compo-
nent of the integrated function A, so that, using a self-explaining notation
in which (W, W) denotes the W pairs contribution:

Fig. 3.19 Self-energy diagram including a W+ W ~ pair.
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AWW(.2) — JWW)02) (2 g) (3.241)

Technically speaking, the reason of this “migration” is the fact that,
after x integration, a term of the form ~ k,k, can generate a Lorentz
tensor ~ g,, that contributes the transverse part of the self-energy. As a
consequence of this fact, there will be, in the expression of the invariant
scattering amplitude at one loop,some contributions from self-energies that
will not be gauge-invariant.Since the scattering amplitude must conversely
be the same in any arbitrary gauge, at any order of perturbation theory,
there will have to be necessarily, at the considered one-loop level, contri-
butions of different nature that add up to the previous ones and cancel the
previous ¢ dependence.

Clearly, the immediate candidate diagrams are those of vertex and of
box type, represented by Figs. 3.6 and 3.7. In particular, on pure intuitive
arguments, one expects that a gauge dependence is generated by diagrams
where two W’s are exchanged, like those represented in Fig. 3.19.

In fact, this feeling is correct, since one can easily verify that both dia-
grams do depend on the parameter £y. The next expectation is then that
there will be special “intelligent” combinations of transverse self-energies,
vertices and boxes that will make up physically meaningful gauge-invariant
“blocks”, calculable in any arbitrary gauge obtaining the same expressions,
exactly like in the case of the fermion pairs contribution to the transverse
self-energies.To determine such combinations represents a quite useful ex-
ercise. One clean way of obtaining these combinations is that of computing
rigorously all the separate Feynman diagrams, with their explicit £ depen-
dence; then its elimination is relatively straightforward. A simpler attitude
that we shall follow is that of showing how the “intelligent” combinations

@ (b)

Fig. 3.20 Vertex diagram (a) and box diagram (b) involving double W exchange, for a
final leptonic state.
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must be, on quite general grounds. Then they will be computed in a spe-
cial (£ = 1) gauge, and will lead to the requested physical predictions for
all the relevant observables. This will be done in the remaining part of this
Chapter.

3.4.1 A gauge-invariant classification of one-loop effects

The starting point of this discussion will be the consideration of the invari-
ant scattering amplitude for the process of electron-positron annihilation
into a charged lepton-antilepton ¢/ pair; the generalization to the case of a
final quark-antiquark pair will then be straightforward. As usually, we shall
work in the approximation of considering massless external fermions. At
the tree level the MSM expression is given by Egs. (3.5),(3.6) and consists
of the sum of two components that we shall call the vy and ZZ Lorentz
structures. These correspond to the two products jf(wjgl) and jf(Z)jgf)
whose terms are defined by Eqgs. (3.7)—(3.10) (f = ¢ now), and correspond
to the propagation of a photon and of a Z in the s-channel. Since we
shall not consider Bhabha scattering in this Chapter, these are the only

independent Lorentz structures at tree level.

The previous statement is no longer true when one moves to the next
one-loop level. The simplest example is provided by the two self-energy
diagrams represented in Fig. 3.21, that we shall conventionally indicate as
of “yZ” and of “Z~” type, following the order (from left to right) of the
initial and final state in the diagrams.

= =

Fig. 3.21 Self-energy diagrams (a) of “yZ” type and (b) of “Z~” type. The internal
loops represent both fermionic and bosonic contributions.

These contribute the scattering amplitude in the way that we write,
from our prescriptions, as follows:

AL (.0) + A7 (.0) -
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1 1
0 | A aon @) L iy
z
gk iA(VZ) 2 # i(2) 3.249
Yy, |:q2 (q ) q2 — mZ ]ey ( . )

(A0%) is the transverse vZ self-energy, for which the ordering of v, Z in-
dexes is irrelevant). The previous equation shows that two new Lorentz
structures ~ jf(z)jéz),]g #() 5 ( ) have now appeared. In the process that
we are considering, as a consequence of the assumed universality of elec-
troweak interactions, the two structures are identical. For final hadronic
states £ — f = u,d,s,c,b they will not coincide, and for this reason we

retain the apparently useless double leptonic index.

It is straightforward to verify that no new Lorentz structures are intro-
duced by the remaining one-loop diagrams. Consider first the remaining
self-energy diagrams represented in Fig. 3.21, that modify the photon and
the Z propagators.

These will simply act as multiplicative correction factors to the corre-
sponding tree-level vy and ZZ structures, since from an immediate appli-
cation of our rules we obtain from them the following contributions to the
scattering amplitude:

D e

Fig. 3.22 (c) Z self-energy and (d) ~ self-energy diagrams at one loop, with both
fermionic and bosonic pairs included.

(2) (.2

(1)() oz |1 AP (@) )] .

A (4, 0) = ijy lqg —Z <1 -t J&(3.243)
Ag; (d) (q 9) u(v) [q ( F(v)( ))} jéz) ) (3.244)

Note that in all Egs. (3.237), (3.238), (3.239) the transverse self-energies
contain all contributions i.e. both those from fermion pairs and those of
bosonic type, that implies in general a gauge-dependent contribution.
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The key and simple observation is now that, within the MSM and for
massless external fermions, also the remaining diagrams of vertex and box
type do not introduce extra Lorentz structures.For vertices, the two typical
diagrams are those depicted in Figs. 3.23-3.24, where the bubbles contain
all possible weak contributions (purely QED vertices have known features
and can be computed separately, together with other QED effects, in a
known way).

@ (h)

Fig. 3.23 Examples of vertex diagrams at one loop: (g) initial Z vertex, (h) initial ~
vertex.

We shall define their contribution to the scattering amplitude with the
following notations:

1

ou(Z
Aiﬁ)(g) (92,9) = Z];( )ﬁFg) (3.245)
q _mZ
h . 1
AW (¢2,0) =g ——10) (3.246)
q my

where the functions Fg), I‘éi) take into account vertices like those shown in
Fig. 3.10 and similar ones, and for the moment we only need the fact that,
under our assumptions, their only possible Lorentz decomposition will be:

T = a1l + asjl) (3.247)

IO = asj? + asjly) (3.248)
where a1 23,4 are certain functions that will depend on the bare parameters
of the MSM.

The previous equations are simply a consequence of the fact that, for
massless external fermions, any diagram of vertex type can only be a com-
bination of a vector ~ «,, and of an axial-vector ~ 7,75 Lorentz compo-
nent, owing to the form of the electroweak interaction Lagrangian of the
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MSM.This will generate an immediate decomposition of the I'¢,, functions
along two Lorentz vector and Lorentz axial-vector “axes”:

T4 = b1 (P2) Vuste (1) + bate (B2) YVutte (B1) (3.249)

L) = bave (52) YuYstie (1) + bale (F2) Yutie (1) (3.250)
where b 2 3 4 are other functions that also depend on the bare parameters.

To move from the decompositions of Egs. (3.249), (3.250) on the Lorentz
vector-axial vector components to those of Egs. (3.247), (3.248) along the
photon-Z ones is like a change of axes in a two-dimensional space. From the
expressions of j,(ﬂ), j,SZ) Eqgs. (3.7)—(3.10) one obtains easily the connections

between the a; and the b; functions, that reads:

1 [2sind 0
a] = —— SmW—OCOSWbl (3.251)
o] 91(45)
(0)
_ 1 Ive
az = —|60|Q€ l@bl +bo (3.252)
1 [2sind 0
a3 = —— bmW—OCOSW . (3.253)
leol gie)
(0)
1 9y
gy = ——— € b3 + b 3.254
0l lgggg Bt (3:254)

It is convenient at this point to introduce the projections of the I'c,
functions on the two photon and Z “axes” as from Egs. (3.247), (3.248).
Using the conventional notation for ordinary vectors, we shall write [51]:

a1,2 - (jéf)’(v)are,u(z)) (3255)

a3.4 = (jég))(v)areu('-)/)) . (3256)

Using the previous notations it is now possible to rewrite the considered
vertices contributions to the scattering amplitude in the following useful
way:
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W) (2 g\ _ .-1(2) 1 (2) r\| .z
A (a%,0) = ijy {m (Jéu)aFéu))} i

y 1 , ,
+ ZJE(Z) {m (Jél), Pgi))} i) (3.257)

N

D(h . 1 . )
A (g2 gy _ ) {m (]éf)’rgt))} i@

g 1 , ,
+ ZJZ(V) {m (Jéz),FgZ))] jéz) : (3.258)

From these equations one clearly sees how the overall effect of the ini-
tial vertex diagrams can be redistributed between the four independent
Lorentz structures of the process, and begins to understand which combi-
nations of self-energies and vertices will form the separate gauge-invariant
“blocks”. These will be precisely the combinations that fall into the same
Lorentz structure. In fact, the scattering amplitude must be, by definition,
independent of the considered gauge. This property must be valid for all the
independent Lorentz structures that we have defined. One can provide as
support of this statement a simple physical motivation, since there would
be no way that a possible gauge-dependence of a structure that only takes
into account e.g. photon exchanges were “cured” by another one that only
feels Z exchanges. In a strictly mathematical language, there is no possible
migration of &; factors from one of the considered Lorentz structures to any
different one.

In a perfectly analogous way, with obvious modifications, one can treat
the effect of the diagrams of final weak vertex type, represented in Fig. 3.24.

@) (h)
Fig. 3.24 Vertex diagrams at one loop: (¢’) final Z vertex, (h’) final v vertex.

The corresponding contribution to the scattering amplitude will be writ-
ten in the form:
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1
2 ey 00 (3.259)

AD()+() _ T Pt
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The final vertex functions I'} can be decomposed along their photon
and Z components exactly like in the case of the initial vertex ones. We
shall identify the relevant projections with the notations (j,,I')) and 7,
Z indexes on the corresponding quantities, and write the contribution of
Fig. 3.24 to the scattering amplitude in full analogy with Egs. (3.257),
(3.258) i.e.:

M(s") 2) 1 <Z> <Z> z
Aeg (q27 9) 7/]# 2 — m2 Jep 7P ]éu)
z
(2) 1 w) (2)
+Z] {m Zu ,F :|]e,u 3260)
(1) (n' 1 ( )
A, (n") (q2,9) ijt () LQ — m2Z Jéu) r v ]e#

y 1 ,
+ it {7(]2 — iz (jél),FZ})} 3. (3.261)

The previous notations are at this point purely conventional. We shall
provide a simple, illustrative and relevant example with a complete calcula-
tion of the projections in the special case of the Z,; vertex in Chapter 4, and
retain for the moment the abstract terminology that has been introduced.

The last contribution to be considered is that coming from weak boxes,
i.e.diagrams like those of Fig. 3.10 where W’s or Z’s are exchanged.In the
configuration of massless external fermions it is easy to realize that, in the
MSM, these diagrams can only contribute the four Lorentz structures that
we have defined, as one can directly verify by a numerical calculation.

Using a self-explaining notation, we shall therefore write the weak boxes
(w.b.) contribution to the scattering amplitude as:

(=) AG ) (63,0) = 317 [AS 5 (¢2.0)| 52
+ju(7) [AS;%) (q2 9)} ]éz)

+jp? {Aiiufz) (¢, 0)} iy
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+ip [AEZ'Zbﬁ (qz,ﬂ)} G (3.262)

The overall expression of the invariant scattering amplitude at one loop,
obtained as the sum of contributions from self-energies (s.e.), weak vertices
(w.v.) and weak boxes (w.b.), can be finally written as the sum of four
different, necessarily gauge-invariant, terms that correspond to the four
chosen Lorentz structures in the form:

(—Z) A(z)(s.e,—s—w.v.-&-w.b.) (qQ’G) _

A(2)
— 12 1 1— Ay (2.0) §12)
L g — mQZ q2 —m?2 ep
, 1 ~ .
+5 b (1- £ (q279))} iy

1(12)
mm[ 1Ay (qzﬁ)] ()
q2 m2

_j 3
£ qQ "
A(Z7)
e | L ALV (@0)| ) (3.263)
R ¢ “

The four functions that appear in the different square brackets are the
“intelligent” combinations of self-energies, vertices and boxes that were
mentioned in the introduction of Section 3.4. By construction, they must
be gauge-invariant. Their explicit expressions can be easily derived by
simply summing the various contributions explicitly, using the notations of
this Section. They read:

AD @D _ADE) (e
q2_m2Z q2_m2Z e - en

- (jé‘ @1y (Z)) — (= m%) A2 (4%,0) (3.264)
E (¢%.0) = FO (¢?) - (Jél’, FEY))

= (O T0) = 2l (42,6) (3.265)

A0 _ AP

z
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2 _ 2
¢ —my . .
- z (jét(Z),th(v)) — (- )Age be (¢2.0)  (3.266)

A7V (¢%6) _AYDD (@) @ -m} (542.150)
> q> @ e

= (D) — (¢ - m) AL (426 (3.267)

Note that the full dependence on the scattering angle # is produced by
the box components; self-energies and vertices are functions of ¢2 only.As
a consequence of this fact, one can already guess that at the Z peak the
relevant combinations will exhibit no # dependence.

A rather useful simplification arises now if we are strictly confined within
the one-loop approximation. In this case, one can rewrite Eq. (3.263) in the
equivalent, simple form that is strongly reminding the starting tree level
expression of Egs. (3.5)—(3.10):

1)(s.e.4+w.v.+w.b. .. 1
AL ) (2,0) = it [?( _ O (g, 9))} i)
A(2) (2
uz) |1 A (@ 0) | .y
— |1 - —=— 3.268
g qu —m% ( ¢ —m% Jeu ( )

where Fe(z), Ag) are given by Eqgs. (3.265), (3.264) and we have introduced
the modified one-loop quantities:

@ — el s T 2 g O] 0 (7) (3.2
Jeii STy m—— el [gve (¢*,0) - 759A6:|ue (P1) (3.269)

Wz ____ leol s W (2. 0) — mea®] oo (5
Je 2 sin Oy cos Oy - (P5) " [gw (4%,9) 759,44 ve (P1) -
(3.270)

The modified one-loop vector couplings are expressed in terms of the
previous gauge-invariant combinations in the following form:

(’YZ)
gg/e (q 9) = gv) — 2sin Oy cos O Q.

(3.271)

A (Z7)
gg,ll? (q2,9) = gs)l? — 2sin By cos Oy Qp

(3.272)
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Using the definition of the bare vector couplings Egs. (3.11), the previous
expressions can be rewritten in the equivalent final form:

g(vle),g (¢%,0) = Ispe,e — 2Qees2 4 (%, 0) (3.273)
where:
A(’YZ) 2’ 0
s2 (¢°,0) = sin® Oy + sin Oy cos ew% (3.274)
and
A2 2 9
s (¢%,0) = sin® Oy + sin Oy cos GWM . (3.275)

q2

The two functions s2, s? are by construction gauge-invariant.Assuming
lepton universality, they are obviously identical. This will not be true when
final hadronic states will be examined; in that case, £ will become a light
quark ¢ = u,d, s, ¢, b and the relevant quantity 53 will differ from s2, as we
shall show in detail in Chapter 4. In Eqs. (3.274)—(3.275) an extra sim-
plification can be introduced, once again related to the adopted one-loop
conventions. To the extent that cross sections or their ratios are consid-
ered, one must always compute the squared modulus of a component of the
scattering amplitude. The latter contains a real tree level ~ O (1) term and
a complex ~ O (a) one-loop correction, sum of a real and of an imaginary
term. In the squared modulus, the latter generates a higher perturbative
order compared to the product of the tree level with the real term; there-
fore, at this order, it can be consistently neglected in the expressions of the
various one-loop quantities. Also, in the same self-consistency spirit, all
those bare parameters that multiply a one-loop quantity will be systemat-
ically replaced by their physical corresponding ones. In particular, mQZ(O)
will become m?%. This allows to conclude that, at the Z peak ¢? = m%, the
6 dependence of 2, (¢?, 0) carried by the box contribution will completely
disappear and we shall be entitled to write:

52 (mQZ, 0) = 52 (mQZ) = sin? Oy

A(’YZ)

2
+ sin By cos Oy Re % - (jg;>,rgg> (m%))] (3.276)
zZ

and analogously:

52 (mgz, 9) = 52 (mzz) = sin? Oy
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+ sin Oy cos Oy Re
z

A0 ()2
et 2 m§ 2) _ (i) T (m2)) | B2m)

where the real part (Re) of the corrections appears.

The gauge-invariant quantities defined by the two last equations are
built of contributions to the involved self-energies A%) and vertices coming
from all the possible particles of the MSM, i.e. both fermions and bosons.
One immediately realizes that the approzimate definition of the effective
weak angle given previously in this Chapter in Eq. (3.218) was only taking
the fermion pairs contribution to self-energies in Eq. (3.277) into account(
final leptonic states were considered in that derivation). It appears thus
natural and immediate to consider Eq. (3.277) as the complete definition of
the effective electroweak angle, and write:

sin? Ow,ers = sg (mQZ) = sin® Oy

(v2) (mz)
+ sin Oy cos Ow Re EZT%Z — (jél),f‘gﬁ) (m%))] . (3.278)

Equation (3.278) is, at this point, just a formal definition. We shall
prove in the remaining part of this Chapter that the quantity there defined
retains the properties of its “fermion pairs approximation”, and enters all
the Z peak observables. This will be done in a pedagogical way, starting
with the simplest and most intuitive case of the Z peak leptonic asymme-
tries, to be illustrated in the forthcoming part of the Section.

3.4.2 Operative definition of sin? Ow,crr: the leptonic
asymmelries at the Z peak

From a formal point of view, a first check on the validity of the definition of
the effective electroweak angle given by Eq. (3.278) is that it is finite. This
implies the explicit calculation of all its infinite terms, to verify their overall
cancellation. The latter will be the result of a process that involves both
the infinite parts of the self-energy and of the vertex components of Agz)
and those of the bare parameter sin? fy that appears in the definition. For
the “fermion pairs approximation” Eq. (3.219) we have already verified that
the various infinite terms are actually mutually canceling, Eq. (3.220). To
verify the same result for the “non fermionic” (N f) component requires
the calculation of a number of diagrams analogous to that performed in
the case of the photon self-energy Egs. (3.70)—(3.75) since once again all
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the (physical and unphysical) particles of the MSM will contribute. The
W’s, would-be Goldstone bosons and ghosts will appear in the (yZ) self-
energy, in the Z vertex and, also, in the W and Z self-energies that enter
the renormalization of sin? @y, Eq. (3.154). This leads to a rather long list
of contributions and to the final expected cancellation of infinities, that is
recommended as a useful exercise to the reader but will not be shown here.

The next fundamental point is to relate the parameter sin? Ow,ery thus
defined to measurable quantities. For physics at the Z resonance, this can
be done in a quite simple way if one makes the first reasonable approxi-
mation of only retaining, in that configuration, the s-channel Z exchange.
In fact we have seen in the previous Subsection that in this case, at the
one-loop level, the only changes in the scattering amplitude with respect to
the tree level description consist of replacing the bare Z propagator with
the modified expression that appears in the second square bracket on the
r.h.s. of Eq. (3.268) and of replacing the bare Z-lepton wvector coupling gg/og
by its modified expression Eq. (3.271), while the axial Z coupling remains
unchanged. This “effective” description leads in a quite immediate way to
the derivation of corresponding expressions for all those observables that
are defined as ratios of cross sections. In fact, in such cases, the modifi-
cation of the Z propagator (that is 6 independent at ¢> = m?% ) acts as a
common multiplicative factor both in the numerator and in the denomina-
tor, and is consequently canceled in the ratio. Thus, the final expression
can be immediately obtained by taking that given at tree level, with the
simple replacement of the bare Z vector coupling with its one-loop modified
expression. Alternatively, one can consider the tree level ratio

(0)
e —1—4sin? o (3.279)
9Jae

and replace it with the modified expression:

9ve
g

=1 —4sin® Oyw,epy (3.280)

that corresponds to simply replacing the bare parameter sin? 6y with the
effective angle sin? Ow,ers in the tree level ratios.

The previous conclusion is valid if one neglects the QED photon ex-
change at the Z resonance. Intuitively, given the scarce numerical rele-
vance of that term, one expects that the prescription that was given remains
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valid modulo “small and calculable” QED corrections, which is actually the
case. These terms will be indicated from now on using the notation: “small
QED”. With this convention, we shall now list the effective expressions of
the various relevant (i.e. measurable) leptonic asymmetries at the Z peak,
starting from the tree level ones that can be found in Chapter 2. More
precisely, we shall consider the following quantities:

a) The longitudinal polarization asymmetry Apg.

This was already defined in Eq. (3.209). Keeping in mind the previous
discussion, and that given after Eq. (3.209), we shall write its one-loop
expression as follows:

A(le)%(e) (q2 = m2Z) = A, + ‘small QED(LR)’

1-— 48in2 ew)eff
1+ (1—4sin® Oy epy)

=2

~ +‘small QED(LR)’ . (3.281)

Strictly speaking we are considering at this point leptonic final states
(in practice p*tp~ and 7777, since for the ete™ final state the t-channel
exchange is relevant). For hadronic final states one expects from the dis-
cussion given in Subsection 3.3.1 to find “essentially” the same expression,
even after having taken into account the final-state strong interaction.

b) The p () forward-backward asymmetry Ak g (ALg).

From the tree level expression of this observable derived in Chapter 2,
one derives immediately the “effective” A% 5 at one loop:

3
A (P =m%) = ZA% + ‘small QED(FB)’ (3.282)

where Ay = A, is defined by Eq. (3.281) and lepton universality is assumed.
The same expression holds for A% 5. Note that the small QED extra terms
in Eq. (3.281) and Eq. (3.282) are in principle different, which explains the
extra added symbols. Also, as a matter of fact, in the expression of the
forward-backward asymmetry one usually adds one more contribution from
the imaginary part of the scattering amplitude, which seems to contradict
our previous statement of ignoring it systematically. The pragmatic rea-
son is that, for pure accidental reasons that are a consequence of the small
numerical value of .A%, the real component of A% 5 is so small that the imag-
inary component, although of a higher perturbative order, cannot be safely
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neglected. This extra contribution is a number that has been computed [86]
and we shall include it in the discussion given in the final Chapter of this
book.

c) The T polarization asymmetry A;ol'

This quantity was defined at the tree level in Chapter 2 (Eq. 2.92), and
was given by the same expression that defined A,. Thus, even at one loop,
we shall continue to have, neglecting “small” QED corrections:

4™ (P=m}) = —A, = A . (3.283)

pol

The three previous leptonic asymmetries represent a set of realistic observ-
ables that all provide operative definitions of the same fundamental weak
parameter sin® Ow,ers. This can be therefore measured in a clean way using
the previous observables, since it is the only weak parameter that enters
their expressions. As argued previously, this can be viewed as a conse-
quence of having considered ratios of cross sections at the one-loop level,
which cancels the contribution from the modifies Z propagator. But at
the Z peak one can also define a number of observables that are not ratios
of cross sections. For these quantities the theoretical expression will be in
general less simple e.g. containing other genuinely weak parameters differ-
ent from sin? Ow,ers. The most immediate example is that of the leptonic
Z partial width, that was already examined in the fermion pairs approxi-
mation in Subsection 3.3.4. We shall derive in the forthcoming Section its
complete expression at one loop. This will then lead in a natural way to
the introduction and to the operative definition of a second genuinely weak
parameter, the Z -lepton effective axial vector coupling, as we shall show
in some detail.

3.5 A two-parameters description of Z physics for
final leptonic states

3.5.1 Complete expression of the Z leptonic width at
one-loop

We have already sketched in Subsection 3.3.4 the derivation of the ex-
pression of the Z leptonic width in the fermion pairs approximation. To
derive the complete one-loop formula requires a straightforward generaliza-
tion of that discussion, where essentially the Z self-energy is replaced by
its gauge-invariant generalization given by Eq. (3.264). To better clarify
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the procedure, it is convenient to rewrite the one-loop effective expression
of the Z component of the scattering amplitude, given in Eq. (3.268), in

the more explicit way:
L (AP @0
q¢* —my, q? —my,

X [ﬂz (P3) Y (982 —59'0) ) vg (P4)

ADW —ivaal)

X Ve (P2) v (9&) — 759, ) Ue (ﬁl)} (3.284)

where the modified Z vector couplings are defined in Eq. (3.273). Start-
ing from this expression, one simply reproduces the steps leading from
Eq. (3.228) to Eq. (3.240). The only difference will be the presence of non
fermionic contributions. They will affect the Z self-energy and also the
shift G of the vertex contributions to the generalization of the Z self-
energy in the “internal” modification (first square bracket on the Lh.s. of
Eq. (3.228)). Note that this quantity is not affected by boxes that disappear
at ¢> = m%. Moreover there will be an appearance in the second square
bracket on the Lh.s. of Eq. (3.228) of the complete sin® Oy . This can be
seen in the final expression, that reads:

mz 672
0Gr AP (0 .
X |:1 + G—F + T2Z() — mngeF(Z) (m2Z)

+ Re (35,140 () + Re (312117 (m) )
x g [14 (1= dsin® bueyy)”] (3.285)

where we have used the definition of sin® Oy given in Eq. (3.280).

In the previous equation, only real parts appear. This is not an ap-
proximation, since the imaginary component of the generalization of the Z
self-energy has been reabsorbed exactly in the definition of the Z width,
that is contained in the modified Z propagator and disappears from the
expression of the partial Z width. The shift of the Fermi coupling con-
tains a fermion pairs component and a bosonic one, as already exhibited in
Egs. (3.148),(3.149). The first one, summed to the fermion pairs component
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of A (0) produces the quantity A; (0) that appears in the approximate
Eq. (3.240).

The first square bracket on the r.h.s. of the previous equation contains
the unity and the weak parameter introduced in Ref. [39] and called ;.
(Other definitions of €7 exist that incorporate a QED factor that can be
factorized separately.) Following our prescription of ignoring for the mo-
ment such effects, we shall only retain the genuinely weak component of the
Z width. For what concerns the leptonic index ¢ that appears, assuming
as we did universality of weak interactions implies that one can identify
the two vertices that appear in Eq. (3.285), I'e = I',. This would not be
allowed if a final quark pair were considered, to be denoted as f f. Then the
contribution of I'y would be in principle different from that of I'., leading
to a different contribution (of non universal kind) to I'y.

In conclusion, the expression of the Z leptonic width will be, under the
previous assumptions, the following:

0y Gem?
T G 1k e g [+ (1= s By )]
§Gr AP (0 :
€1 = G—j + TQZ() — myRel'® (m%)
4 9Re [(jg(Z)’Fg(Z) (m2 ))} . (3.286)

The previous parameter (e1) is by construction a gauge-invariant quan-
tity. This can be split into a sum of two separately gauge-invariant compo-
nents. The first one is given by the fermion pairs approximation that has
been already extensively illustrated, and is of universal (self-energy) type.
The second one is given by the sum of the non fermionic contributions to
the self-energies that appear in its definition and of the Z- component of
the Zee vertex at ¢> = m%. These two terms must be added together,
since each one is separately gauge-dependent, so that only their sum has a

physical meaning.

A subtle question might arise at this point: how can the gauge-
dependence of the universal non fermionic contributions to a self-energy
be canceled by an essentially non universal quantity like a vertex? The
answer to this objection is that, between the diagrams that contribute a
vertex, there exists a subset of wniversal kind. Such are for example all
vertices with two W’s stemming from the Z. As one can see in detail,
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the cancellation of the gauge dependence of the self-energies in Eq. (3.286)
is provided by these universal components of the vertex. One guesses at
this point that the non-universal components of vertices might be in gen-
eral gauge-invariant themselves, and we shall return to this point in the
forthcoming Chapter.

In the fermion pair (“f”) approximation €; is given by the expression:

) = A1 (0) = myReFD@) (m%) . (3.287)

One easily realizes from the previous expressions that the dominant de-

pendence on the top mass of the complete parameter e; will be the quadratic

one of Ay (0), already derived in Eq. (3.191). In fact, it is straightforward

to verify that the derivative of the Z self-energy function F(%) has an my

dependence that vanishes in the large m; limit. In first approximation this
means that:

(top) _ 3« m?  3Grm?
€ 55 5 = > (3.288)
16msgcg my 8v/2m
For m; ~ 2m, this generates a relative effect in I'y of about one percent,
“large” and visible at an experimental accuracy of few permil. One sees
therefore in this simple preliminary example how fundamental the role of

the top mass is in the interpretation of the leptonic measurements at the Z

peak, and this will be shown in more detail in the discussion given in the
corresponding Chapter.

In the expression of the Z leptonic width one sees at this point two weak
parameters i.e. sin? Ou,err and €1. The first one has been endowed with
a clean operative definition from the leptonic asymmetries, and we would
like to ascribe an equally meaningful property to the second one. This can
be done with a simple redefinition of the second weak parameter; with this
purpose we first rewrite Eq. (3.286), using Eq. (3.279), in the equivalent
form:

Y Gemg [ (0)2
mgz 6mv/2

9ue (1+ 61)}

g (m3)

x |14 (3.289)

0)2
Ae
The last expression leads in a quite natural way to the idea of defining

the effective axial Z-lepton coupling, to be called g 4., as:
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€
gae=vVita ¢U~01+ %)gffg . (3.290)

Using systematically this parameter in Eq. (3.289), in particular in its
second square bracket, leads in the same natural way to the idea of intro-

ducing also an effective vector Z lepton coupling, to be called gy, and to
be defined as:

—Vitea ¢ (m3)~ (1—1—2)9(1) (m%) . (3.201)

In terms of these quantities we shall now write the final expression of
the Z leptonic width as:

Fél) Grmy | 5 2
my - 6 \/5 [ Ae + Ve}
G .
— 6F$_Z A [1+ (1= 4sin? Ouwes)] (3.292)

where the weak parameter sin®fyy.;; is defined in two equivalent ways,
ie.

(1)
1
sin® Owepp = 1 ll Ive Vz) ((0) )]
Jae
1 gVe]
=-|1- . 3.293
4 |: JAe ( )

In conclusion, all the considered leptonic observables at the Z peak
can be expressed in terms of the two weak parameters sin? Ow,ers and gae.
Both parameters are naturally and intrinsically related to one of the most
characteristic features of the MSM, the presence of a neutral massive Z
boson that is mixed with the photon and has extra axial couplings with
fermions. For both parameters, an operative definition can be given, and
we have already discussed that of the mixing angle. For the axial coupling,
a simple and consistent definition can be immediately provided. This is
given by the expression of the partial Z width into a neutrino-antineutrino
pair, that an immediate extension of our procedure allows to write as:

v 371_\/— Ae'

o _ Grmg (3.294)
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Note that one could use as well, as independent parameters of the model,
the couple of the effective Z lepton couplings, ga. and gy, defined by
Egs. (3.290), (3.291). Even in this case, the prescription for writing the
expressions of the various leptonic observables at one loop remains that of
writing the corresponding tree level expressions and of replacing there the

. O .
bare couplings g, with the effective ones.

The previous couples of weak parameters are perfectly satisfactory to
describe the leptonic observables at the Z peak, and we could conclude this
Chapter at this point, if the only topics to be illustrated were the MSM. For
a slightly more ambitious discussion, in which the possibility of evidencing
from high precision measurements possible small deviations from the MSM
predictions due to the presence of still undiscovered “new physics”, those
parameters did not represent the most “clever” choice at the time of the
beginning of the Z physics operations. The point is that all parameters
exhibit a quadratic dependence on the (at the time, unknown) top mass.
This is certainly a good feature if one tries to derive indications on m; from
precision measurements; it is also certainly a bad feature if one tries to
extract small extra new physics effects from these parameters, since they
would be obscured by the ignorance of the value of the top mass.

A clever compromise might be the introduction of a new couple of pa-
rameters, one of which retains the large quadratic dependence on m;, while
the second one does not. This idea led to the proposal [39] of a new weak
parameter, €3, to be used, together with €1, to provide an elegant descrip-
tion of the leptonic sector of Z physics. We shall review this proposal in
the last forthcoming part of this Chapter.

3.5.2 The Z peak leptonic observables in terms of the
€1, €3 parameters

One simple way of performing the useful change of parameters that was
mentioned is to start from the expression of the effective electroweak angle
given in Eq. (3.278).

This still contains the bare parameter sin? 6y, which can be eliminated
using Egs. (3.153), (3.154), obtaining the following equation:

2 2 A(W) 2 A(Z) 2
sin® Oyef s = [ L= m—vgv} — "W Re ng) - ng)
myz Z muy, my




194 The Physics of the Z and W Bosons

A(Y2) (2
+ sin By cos GWReLW . (3.295)
myz

The next step consists of eliminating the first square bracket on the
r.h.s. of the previous equation. This can be done using Eq. (3.223) and
introduces the quantities ¢3, s3 defined by Egs. (3.200), (3.201) and the weak
component of A, =AW defined by Eq. (3.171). Working systematically at
the one-loop level and exploiting the allowed known “tricks” leads, after
a number of steps that one can easily perform as a useful exercise, to the

relevant desired expression:

% I (3.296)
22—1 T aZ—1 |\

sin® Owepr =s5| 1—

The parameter €3 that appears in the square bracket is the m; smooth
quantity originally introduced in Ref. [39]. It is a gauge-invariant com-
bination of self-energies, of their derivatives and of vertices. To better
understand its relevant properties, we shall decompose it, as usually, into
the sum of its component coming from the fermion pairs contributions to
the self-energies (and to their derivatives), specified by an index (f), and
by the remaining component, that includes different (V f) contributions to
self energies (and to their derivatives), and to vertices. In this spirit, we
shall write:

€3 = [ Az (m%) —  cgmy ReZN(2) (mQZ)}

ANDGZ) (2
T R e L g
0 Z

5a(Nf)]

— &m% ReFWHE 2

+ :203 Re ( 'éi),FéZ) (m%)) — oS0 (26(2) —1) Re (jéz), Fg) (m%))]
(3.297)

where the non fermion pairs shift of the electric squared charge da(Nf)
is defined by Eqgs. (3.101),(3.92) and by the related discussion of Subsec-
tion 3.1.6.

To check that the overall expression Eq. (3.297) is finite is a straight-
forward useful exercise that was already performed for its fermion pairs
component. Very important for our purposes is the fact that, as one sees
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from the previous equation, the complete m; dependence of €3 will be con-
tained in the first square bracket on its r.h.s.. In particular, given the
already mentioned m; independence of the derivative F(Z) in the large my
limit, this dependence will be the smooth logarithmic one of Ag, i.e.:

« 1 m
€3 (large mt) >~ —mm In m—Z
T2
Mz
2
__mw Gr In 21 (3.298)

6v2 72 mz
having exploited Eq. (3.297).

We can thus conclude that one can describe the leptonic Z peak observ-
ables that we have considered in terms of two gauge-invariant parameters,
€1, €3, the first one of which is strongly (quadratically) m; dependent, while
the second one is smooth i.e. only logarithmically dependent. This fact will
have quite relevant consequences for the discussion of the validity of cer-
tain electroweak models alternative to the MSM, that will be mentioned in
Chapter 11. To compute the explicit dependence of all the observables on
€1, €3 is simple. We already know that of sin® 6y given in Eq. (3.296).
This leads immediately to the expressions of all the leptonic asymmetries,
that only depend on the effective electroweak angle. For the leptonic Z
width it is sufficient to start e.g. from Eq. (3.292) and to use Eq. (3.290).
This gives the following result:

F;l) o GF m2Z
mz 247/2

2.2
Vo SOCO
1 1+ 820
X[+ 61( + 1+u32cg—1>

(14 v9)

Vo 83
p. (8?%@)} (3.299)
where, using the value of a (m%) Eq. (3.187), one has:
vo =1 — 452 ~0.0756 . (3.300)

Numerically, using the value s ~ 0.231 given in Eq. (3.203), one ob-
tains:

2
L= ——Z (14 v]) [1+1.199¢; — 0.258¢3] . (3.301)
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This shows that the leptonic Z width is much more dependent on e
than on e3. The case of the asymmetries is different. The basic quantity
Ae Eq. (3.281) has actually the following expression:

A 20 [1+ o 4stct <1 8vg )

:l—i—vg 208—1 %_l—i—vg
452 1 2vg
- — - . 3.302
“ 2¢2 -1 (vo 1—|—v8)} ( )
Numerically, this gives:
Ae = 0.150[1 + 16.69¢; — 22.48¢3] . (3.303)

From the previous expression one immediately obtains that of the u, 7
forward-backward asymmetry A%, =342

3
App = TAZ = 0.01605 [1 + 33.37¢; — 44.96¢5] . (3.304)

One notices that, in the leptonic asymmetries, the weight of the m; —
smooth parameter ez is larger than that of the m; — sensitive one €,
contrary to the case of the Z leptonic width. Those observables will play
therefore a complementary réle with respect to that of the Z leptonic width.

An analogous situation occurs in the complete expression that relates
the Z mass to the effective electroweak angle and generalizes the approx-
imate one given by Eq. (3.227). This can be easily derived starting from
the definition of sin®Oy..r; Eq. (3.296), that can be reformulated in the
following way:

1
sin® Owepr (1 —sin® Owepr) = sich {1 —€+ 0—263:| . (3.305)
0

From the previous equation, using the definition of the product s3c3
given by Eq. (3.200) and working self-consistently at the one-loop level,
one obtains the complete relationship:

o (m3) = 1 1
Gpv2 sin®Oweps (1—sin® Oweps) LHer —

>
€0

m% = (3.306)
that appears the “obvious” generalization of the approximate Eq. (3.227).

Our analysis of the leptonic observables at the Z peak is now almost
concluded. In fact, a fundamental discussion is at the moment still missing.
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Until now, we have focused our attention on the role of the top mass in the
MSM predictions for the considered Z peak observables. A natural question
that arises at this point is that of the sensitivity of the previous observables
to the remaining still unknown MSM parameter, the Higgs mass mg. We
said at the beginning of this book that at the one-loop level the Higgs
effect is screened i.e. it is of only logarithmic type. This property must
be valid then in both ¢; and e3. Contrary, though, to the m; dependence,
the role of e3 in this case is now relevant. We shall devote the forthcoming
Subsection to a simple derivation of these important properties of the two
weak parameters. This will also have a pedagogical content since, once
again, we shall see how a physical result will be obtained from a common
effort where certain unphysical particles will be involved, that is recurrent
feature of the calculations performed in the £ = 1 't Hooft gauge.

3.5.3 Dependence of the weak parameters €1, €3 on the
Higgs mass

To compute the Higgs effect on Z peak leptonic observables is relatively
easy and also instructive. We shall perform here the explicit calculation
in the simpler case of the m; — smooth parameter e3. This can be done
starting from its definition Eq. (3.297) and noticing that, under our working
assumption of massless external fermions and taking into account the fact
that photons do not couple to a neutral particle like the Higgs, only the
contribution from the Z self-energy (and, in principle, from its derivative)
must be retained. In the 't Hooft gauge the relevant contributions will imply
not only the physical Higgs particle, but also its related neutral would-be
Goldstone boson sz defined in Chapter 1, Eq. (1.41). They correspond to
the two Feynman diagrams depicted in Fig. 3.25.

H.K H,-k’
Z.q Zq Zq Zq
) ./
Z,k-q _
S5, K-q
@ (b)

Fig. 3.25 Contribution to the Z self-energy from a physical Higgs (a) and from a Higgs-
would be pair (b).
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From the conventional Feynman rules valid in the MSM one derives in
a straightforward way the expression of the finite (i.e. not proportional to
A) part of F%) (¢?), corresponding to the two diagrams (a) and (b):

e
ReF#)(@) (¢%) (finite) = -2 m4Z 2F
T
1 2 2 2 2
m my (1 — ) +miz — ¢z (1 — x)
></ dz—Z In |—H . 1_Z > | (3.307)
0 q my (1 — ) +mzx
e
ReF#)®) (¢%) (finite) = V2 m4Z 2F
T

X/ldgg [_m_jzln'm%{(l—;r:)—kaZa:—qu(l—x)'
0 my (1 —2) + mzx
m (1 —xz)+miz— ¢z (1—z) m%i(1—z)+miz—q¢*x(l—1)
2¢>
z(l—1x) ln|m%{(1—x)—|—M§x
2 m2Z
At ¢> = m?% it is immediate to verify that the leading contribution in the
large my limit comes entirely from the unphysical diagram (b) where one
would-be Goldstone boson is also exchanged!! This result, that reproduces a
recurrent feature of calculations performed in the £ = 1 't Hooft gauge, can
be expressed saying that the contribution to e3 from the Higgs :egH) for
large Higgs masses (again, the derivative of the Z self-energy is depressed
in this limit) is:

In |

m2 (1 —x) + mx

- (3.308)

2

i) (large my) ~ % In Z—;’ (3.300)
which shows that the Higgs contribution to e3 is, particularly for my larger
than m;, well competitive with that of the top given in Eq. (3.298). This
is quite different from the case of €1, where the quadratic top contribution
Eq. (3.288) is faced with a Higgs term that again, as one can easily verify,

is “only” logarithmic and has the expression:

(H)

3G 2 2
€ (large mpy) ~ — Py 50 ), M

_— —_— . 3.310
42m2 ¢ an ( )

The previous discussion has shown that the two electroweak parameters
€1, €3 have quite different sensitivities to the most relevant MSM parame-
ters, m; and my. From a formal point of view, the two previous parameters
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are the generalization of the weak quantities A1, Ag introduced in Subsec-
tion 3.2.2. To conclude this Chapter in a satisfactory way, we shall now
define the quantity that generalizes the third weak parameter As also de-
fined in that Subsection, and discuss its role and its relevance within the
context of the MSM. Strictly speaking, this generalization will not have
connections with the description of physics at the Z peak that we have
provided until now. As we shall see, it will be, though, quite relevant for
what concerns the predictions that can be derived from those measurements
on the W mass. For this reason we shall include it in this Chapter although,
rigorously speaking, it does not “belong” to Z physics in a technical sense.

3.5.4 The €3 parameter and the complete expression of the
W mass

A relatively easy and self-consistent way of introducing the weak parameter
that generalizes the quantity Ao defined by Eq. (3.164) is that of starting
from the original, rigorous definition of the “weak” component Ar"V=Ar-
Aa (m%), that can be written in the usual one-loop approximations as:

b 0Grp AW (mi)

wo_ o _
A= e |G
2 [ AW) (2 AZ
+ E% ( mg/nW) m(zz Z)ﬂ “halm) . (o

One can now proceed using the previous definitions of the two weak
parameters €1, €3. After a few “steps and tricks” that can be omitted the
result is that the previous equation can be rewritten in the identical way:

2
cH 2¢2 — 1
A’I"W = ——61 + 2¢e3 + 0
55 83
The weak parameter ez was also introduced in Ref. [39]. It is a gauge-
inwvariant combination of self-energies and their derivatives, and vertices. In

€ . (3.312)

the conventional notations that we have introduced, its complete expression
is the following;:

2:RQ{F<W>(m3V) RFD) (m%) — s2FO) (m)

AVZ) 2 .
— 2500072(mZ) — cgmng(Z) (m2Z)
mz
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3Gy
Gr

+ 4c2 (F(Z)( 2), <Z))+2soco (r< ) (m3), jfg))} . (3.313)

To verify the finite nature of the previous expression is a useful rec-

— 52 ( FONIN (0) = POV (1m2 )) 4

ommended exercise. For what concerns its gauge-invariance, this is an
automatic consequence of the fact that, as we have already seen, all the
remaining quantities that enter Eq. (3.312) i.e. Ar", €, es enjoy this
property. Thus €5 can be viewed as a physical weak parameter, whose de-
pendence on the top and Higgs masses deserves to be investigated like we
did in the case of €1, €3. As one sees from its definition, the self-energy

fermion pairs component of eo= e(f ) i simply given by the expression:

egf) =Ny — EmZF@) (m%) . (3.314)

Therefore, the dependence of €5 on m; will be practically the same as

that of Ao, that we have shown Eq. (3.197) to be of logarithmic type, more
precisely of the form:

Gy, me (3.315)
2272 mg

Even “worse” is the dependence on m g that, in the large my limit, can
be practically ignored, as one can verify by a straightforward calculation.
For what concerns the latter parameter, the only information that can be
derived at this stage is therefore that provided by the two Z peak weak

parameters €, €3.

€2 (large my) ~ —

Starting from Eq. (3.312) and inserting it into Eq. (3.223) it is now
possible to derive the complete one-loop expression of the W mass in terms
of the three ¢;, that is:

82
mi, = m%ed [1 - 2030_ lArW]
2 252
2 2 0
= MzCy |:]_+22 161—62—m63:|
=m%ca [l + 1.430€; — €3 — 0.859¢3] (3.316)

(the numerical value of c3=0.769 given by Eq. (3.202) has been used). One
sees that all the three weak parameters enter the prediction of the W mass
with comparable weight.
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A final comment is at this point spontaneous. If we combine the previous
Eq. (3.316) with the expression of sin? 6, given by Eq. (3.305) we obtain
the following one-loop identity:

1 2
1 — sin® Oyepp = — W (3.317)
p my
where
s2
p = 1+ €1 — €2 — —363 . (3318)
Co

One sees that, at the one loop level, the tree level identity between bare
quantities 1 —sin20, = % typical of the MSM is transformed into a mean-
ingful equation, that gives an operative definition of a parameter (p), often
mentioned in the current literature with several possibly different defini-
tions. We have now completed the calculation of the fermionic and of the
Higgs contributions to €123 and the calculation of the fermionic contribu-
tions to Aa(m%). Before moving to the next Chapter, we feel that two
additional comments are worthwhile. The first one concerns the remain-
ing boson contributions. For what concerns Aa(m?%), their calculation has
been performed [52], and shows that they are indeed negligible, even at the
extremely accurate precision levels of LEP1. (The same conclusion applies
to the gauge boson contribution to Ar"'.) Following this information, we
shall therefore identify, from now on, the quantity Aa(mzz)(f ), that we have
computed, with the full parameter Aa(m?%). The second comment concerns
the possible relevance of those higher orders effects that we have system-
atically neglected. Infact, a calculation exists, of the two-loop electroweak
effect on Ay, [53]. The conclusion is that, for values of the top mass
in agreement with the measurements (Chapter 10), these two-loop effects
can be neglected. A different conclusion must be drawn for the contribu-
tion to Ay(,) coming from electroweak-strong interference. This has been
computed [54] and shows that the final value of A;(,y becomes, roughly

Ajo) = Agoy (1 — ) (3.319)

For a value of as /= 0.12 this effect must be properly taken into account.
These final remark conclude Chapter 3, in which the expressions of
those genuinely electroweak quantities that can be measured with extreme
precision at the Z peak (with the inclusion of the W mass) have been
derived at one loop in a rather detailed way. By definition, these quantities
are not affected by the strong interactions and therefore only allow leptons
in the final state. Since the variety of Z peak measurements also includes
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final hadronic states, we shall devote the next Chapter 4 to a detailed
analysis of those processes, whose inclusion in the final overall analysis will
turn out , for the reasons that we shall illustrate, quite relevant.



Chapter 4

Z Physics at One Loop for Final
Hadronic States

Until now, our treatment of Z physics at one loop has only been considering
the production of a (charged) lepton-antilepton pair. In the numerical
examples that were given, only contributions to the various observables
due to self-energy corrections were explicitly computed. These effects are
of universal type, since they do not depend on the nature of either the initial
or the final state. As one would guess, their calculation in the theoretical
expressions that describe quark-antiquark production (for instance,that of
the Z partial width into a quark-antiquark pair) is identical with that
performed for final leptonic pairs. All the conclusions and the features
that were stressed in Chapter 3 remain valid and do not require any extra
comment.

There are, obviously, significant theoretical differences between the cases
of lepton-antilepton and quark-antiquark production. For what concerns Z
physics at the one loop level, two main and quite relevant additional fea-
tures must be taken into account. The first one is of purely electroweak
origin, and is due to the role of not universal one loop effects, in particular
those that depend on the properties of the final state. From the discussion
given in Subsection 3.4.1, in particular from the expression provided by
Egs. (3.264)—(3.267), it is clear that the only new quantities to be consid-
ered will be the final vertices I"Jf (f now indicates the final quark of the
process), since all contributions from boxes are automatically canceled on
Z resonance.

Starting from the precise definition of I' ’Jﬁ Eq. (3.245), it is relatively easy
to perform the numerical calculation in the approximation of considering
massless quarks. However, the most spectacular theoretical consequences
appear in a rather special case where this approximation must be aban-
doned, that for Z physics corresponds to the production of a final bb pair.

203
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Here, vertex diagrams allow virtual top quarks to be exchanged. From the
theoretical calculation, a “large” electroweak contribution proportional to
the squared top mass (and also, not negligibly, to its logarithm) emerges.
This reminds the similar effect that appears in the self-energy correction
A1(0) Eq. (3.192), although the physical interpretation in the case of the
vertex is quite different (and uncorrelated to custodial symmetry viola-
tions). Given the relevance that this vertex contribution, we shall devote
the first part of this Chapter, Section 4.1, to its detailed calculation. In
particular, we shall discuss the relevance of the effect for the predicted the-
oretical value of the partial decay width of the Z into a bb pair I',. We
shall also review more quickly the theoretical predictions for a number of
unpolarized and polarized heavy quark pairs asymmetries , and stress the
relevant and measurable consequences of the presence of not universal one
loop effects that enter their theoretical expressions at the pure electroweak
one loop level.

The last sentence is a remainder of the fact that there is a second essen-
tial and relevant feature still to be taken in account for a final non leptonic
state: the presence of strong interactions. In the final part of this Chapter,
Section 4.2, we shall provide a short discussion of the strong interactions’
effect on final quark-antiquark pairs. This will be consistently described by
a running strong coupling a(g?), to be evaluated at the resonant squared
energy ¢ = m%. Rather than insisting on the conventional QCD features
that will appear in the calculation, that can be found in previous excellent
dedicated reviews [55], we shall concentrate our attention on the practical
consequences of the introduction in the theoretical description of a fourth
input parameter as(m%). This point, in particular the deep correlation
between the values of the strong coupling constant, of the top mass and of
the Higgs mass will be discussed in Chapter 11.

4.1 The réle of the Zbb vertex in Z physics

The theoretical expression of the partial Z decay width into a final quark-
antiquark pair, to be indicated as ff , exhibits a fundamental difference
with respect to the case of final lepton pairs. Understanding the origin
of this difference is relatively simple if one considers the relevant vertex
diagrams where virtual W, Z are exchanged, shown in Fig. 4.1.

At the Z peak, for final u, d, s, ¢ quarks, both the final physical fermion
f and the corresponding virtual one f; of Fig. 4.1 can be treated as if
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Fig. 4.1 Examples of vertex diagrams with W, Z exchange.

they were rigorously massless. This approximation must be abandoned
when the final quark is a b. Here the corresponding f; in the virtual W
diagram of Fig. 4.1 is a top quark, and one expects that in this case the
top mass will play a role. Furthermore, looking at the same diagram with
W exchange, one also expects that the top mass will only affect the left-
handed component of the Zbb coupling. This statement would be obvious
in the unitary gauge, where no other unphysical particles can be exchanged
in the considered Zbb vertex. Since the physical top mass effect must be
gauge-independent, the previous conclusions must remain valid in any other
“finite £” gauge, in particular in the £ =1 one where we shall perform the
numerical analysis.

After this general preliminary heuristic discussion, we now proceed in
the forthcoming Subsection to the explicit calculation of the Zbb vertex.

4.1.1 Calculation of the electroweak component of the Zbb
vertex

To understand the origin of the top mass dependence of the Zbb vertex
is relatively simple in the & = 1 t’Hooft gauge. The main point is that,
in this gauge, one must add to the graphs with W exchange Fig. 4.1 the
analogous ones with virtual contributions coming from diagrams where the
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Fig. 4.2 Zbb vertex diagrams with charged would-be Goldstone boson exchange.

unphysical charged would-be Goldstone bosons H+, H~ are exchanged, as
shown in Fig. 4.2.

Let us examine the contribution coming from the latter diagrams first.
From the Feynman rules valid in the MSM, the H f f vertex is given by the
following expression:

UKM

Hpf = 2990 (1= ) — e (14 99)] (4.1)
Zﬁmw

where UXM is the Cabibbo-Kobayashi-Maskawa matrix defined by
Eq. (1.173), and from the discussion given in Chapter 1 we can safely re-
tain only its diagonal elements that correspond to (u, d), (s, ¢), (b, t)
pairs. Given the values of the quark masses, to be compared with the pro-
cess scale myz, it is intuitively clear that the contribution of the charged
would-be Goldstone bosons to vertices with final u, d, s, ¢ quarks will be
negligible. This conclusion does not apply to the case of a final b, where the
term proportional to m; in the r.h.s. of Eq. (4.1) cannot be simply ignored.
A priori, we would therefore expect the appearance of terms proportional
to m? in the diagrams of Fig. 4.2.

Note that this conclusion might not be drawn now for the set of diagrams
of Fig. 4.1, since in the £ = 1 gauge the W propagator is purely transverse
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and cannot generate a ~ m? dependence (which would be allowed in the
unitary gauge, where H', H™ are absent but a longitudinal component of
the W propagator exists).

This short discussion leads naturally to the conclusion that the contri-
bution of diagrams that introduce couplings like that of Eq. (4.1) might
be the most relevant for the calculation of the Zbb vertex, and possibly
important for the calculation of the Z — bb partial width. We shall now
verify with a detailed calculation that this is actually the case.

Following our notations, we shall denote the four contributions of
Figs. 4.2(a)—(d) to the invariant scattering amplitude as Afb’b’c’d(qg). Each
contribution will be associated to a component of the Z;; vertex, according
to the definition given in Eq. (3.259) i.e.:

wbe Z’I‘Z’(Z)(‘Lb)c)d)(qQ)j(lZ)
Aghed(g?) = z

4.2
[q* —m3] 2
From the canonical Feynman rules valid in the MSM we can easily derive

the expression of the four vertices. For the first one we have:
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In writing Eq. (4.3), we have only retained the term proportional to
my in Eq. (4.1), assuming my = 0 and Uy Uy, = 1 from now on. All the
couplings that appear are, formally, bare ones. In practice, though, since
Eq. (4.1) is already at the one loop level, all those bare quantities that
will not be reabsorbed into either a j{f @ or a jl‘: ) structure will be safely
bargained with corresponding physical parameters. For this reason, the W
mass that appears can be identified with the physical one. This also applies
to the would-be Goldstone mass my (which in the t'"Hooft gauge coincides

with the W one, although we shall write m g in the following formulae).
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A glance to Eq. (4.3) shows that, as expected, the integral is formally
divergent, and therefore the by now familiar dimensional regularization
approach must be followed. After a few straightforward operations on the
various y matrices that appear in the numerator, one is led to the expression
(e=4—n):

a , 5 : gm?
A2y = lim # [(cos2 Ow — sin® Oy ) g?n;}
w

- k(- )u (]534-1%)
X T (pa)/ 5 (W—zﬁq) [(k +p3)’ _m%]

" (1 —5) vp (Pa) (4.4)

[(k +p3+pa)’ — m%{}

where g is the scale parameter involved in the approach, that will eventu-
ally disappear in the final physical expression.

For what concerns the divergent nature of the integral, this is only due
to the term proportional to k*k in the numerator. Equation (3.34) shows
that the (logarithmic) divergence will only be coming from the function
C54. The remaining components of the integral, both those corresponding
to the extra functions Ca; ,Cas , Cog defined by Eq. (3.34) and those coming
from the terms in the numerator that are not quadratic in the k-variable,
are finite. Moreover, one easily realizes that, at the end of a reasonable
number of “y—matrices reshufflings”, they give rise to terms in which either
a ps or a py can be glued to the external Dirac spinors, thus generating a
finite contribution proportional to m; that can be safely thrown away. The
conclusion is that the relevant part of Eq. (4.4) can be simply written as:

P,u(Z)a 2y _ _ 9o — o m(]_ -
b @) =g el (P3) ¥ (1 = v5) vp (Pa)
((3052 Oy — sin? HW) 9 m%

2 )
327 My,

xCoy (¢*; g, me, mpr) (4.5)

where ¢> = (p3 + p4)? and my, = 0 in all the finite expressions. Using
Eq. (3.42) to isolate the infinite component (=A ) of Ca4 , one writes at
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this point:

P,u(Z)a 2y _ _ go
b (@) 2 cos Oy

l(cos2 Ow — sin® O ) 2m_§]

2 0.2
327 My,

Up (P3) v (1 —5) vp (P1)

A in.
X {Z —|—C’§£ ) (qQ;mH,mt,mH)} (4.6)

where A is defined by Eq. (3.36).

The next contribution to be computed is that represented in Fig. 4.2(b).
Repeating the procedure that we have previously illustrated and using the
canonical Feynman rules at disposal, one is led to the following preliminary
expression:

2,2 15
Fu(Z)b 2y _ ;90— - 90 i Ho /dnk 1
y o (47) s o Uy (P3) 8mZ, m, (2r)" (1+1s)
k= my Y yLgLe + 7" VrgRe my — k
k2 —mj7 (k+p3)2—qu (k + ps +p4)2—mf
X (L —=1y5) vy (Pa) - (4.7

In the previous expression, only the component proportional to m; of
the coupling in Eq. (4.1) has been retained, as in the case of the first

contribution 1"2‘ (D)a The quantities in the square bracket are defined as
follows:
1—5,1+4+
YL,R = % ; (4.8)
1 2sin® Oy 2sin® Oy
gLt 5 3 Rt 3 (4.9)

according to Eq. (1.117).

Equation (4.7) is also affected by a logarithmic divergence, generated
by the component of the numerator that is proportional to kk . One major
difference with respect to the case of Eq. (4.3) is given by the fact that now
the finite components of the integral will not be proportional to my, due
to the lack of terms proportional to ps in the numerator. This leads to the
appearance of one new finite integral, not met in Subsection 3.1.4, defined
as:
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L1 1 1 1
d°k 172 2 2 5 2 5
(2m)" k? —=mi (k+ p3)” — m3 (k+ ps +pa)” —m3
)
1672
where ¢? = (p3 + p4)2. Note that this integral is finite,and one can work
with n = 4 from the beginning, finding in a straightforward way that:

Co (p3, P3¢ ma, ma, ms3) (4.10)

1 r 1
Co (7P 4" 1 ma, ma) :/0 dx/o dyax2 + by? +c;vy+dm+ey(11fl)
and |
a=pi; b=pi; c=q¢" —p5—pi;
d=mj—m3—pi; e=mi—m3+pi—q ;
f=m2 (4.12)

(a small imaginary part should be added to the denominator to avoid in-
tegration problems). In terms of the function Cy and of those defined by
Eq. (3.34) one finds after a small number of “tricks”:

b cos Oy 32w2mi,

X y (p3) Y yLvp (1) {m7g:Co (¢*;me, My, my)
1
+ gtk | —°Cas (¢°sme, mg, my) — 5t 2024 (q2§mt7mHamt):| }
(4.13)

(as usually, we set pZ = p? = m? = 0). Equation (4.13) can be rewritten
separating its infinite part from the finite one, as it was done with Eq. (4.4).
This leads to the final expression:

P#(Z)b(q2) _ go g(%th
b cos Oy 32m2mi,

— — 1 : )
Xy (P3) Y yLve (Pa) 3 sin? Oy A + “finite (4.14)

where the “finite” contribution comes from all the components of the curly
bracket in Eq. (4.13) that are not proportional to A (and contain Cp, Cag
and the finite term of Cay4, as defined by Eq. (3.34)).
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Adding Eq. (4.14) to Eq. (4.6) one obtains, for the sum of the two
Feynman diagrams Figs. 4.2(a),(b), the following expression:

2,2
pi@atdb 2y 90 DM = (5
b ( cos Oy 32w2mi, v (P3)
.2 2 .2
sin® Oy — cos” 0 sin” 0
Xy ypp (Pa) =W 1 S IW A bmg WA+ “finite”

(4.15)

where the first and the second coefficient of A inside the curly bracket
comes respectively from the first and second contribution to the vertex,
Fig. 4.2. One sees therefore that the sum of these two Feynman diagrams
is still divergent, and thus not yet physically meaningful (leaving aside for
the moment the extra question of gauge dependence on which we shall soon
return).

In fact, we still must add the last two contributions corresponding to
Fig. 4.2. To treat the latter ones consistently, we shall now provide a small
concise discussion. With this aim, let us assume that a certain meaning can
be given to the concept of “quark mass”, for instance identifying it (as one
normally does for “conventional” particles) with the position of the pole of
the complete quark propagator. For definiteness, let us consider the case
in which we are interested now, that of a b-quark. Its bare propagator,
conventionally depicted as in Fig. 4.3(a) is written, if p denotes its four-
momentum, as

7 D+ Mo
— =iG—p. (4.16)
P — mpo p Mo

Next, consider the modification of the quark propagator that is depicted
in Fig. 4.3(b). In our conventions, we shall associate Fig. 4.3(b) to the
quantity called iI'y rr. The latter will be then rewritten as follows:

Iy g = iﬁ5b7H. (4.17)

The calculation of I'y i proceeds formally via conventional Feynman
rules, leading to the preliminary expression:
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b(p) b t - b(p

> > ; > ; >
(a) (b)

Fig. 4.3 (a) bare b quark propagator with four-momentum p; (b) modification of the
bare b-propagator due to virtual H —,t¢ emission.

1
i = [ d* ——tgomy (1 +
bH / gomy (14 75) —=——— EW T
) —igomy (1 — 75) i
X i 5 5 5
k* —mg 2v/2mw (k—p)” —m3;
e _ 2,2 ]%
- ] /jfon gognt /dnk : YL
e=or @) 2miy S TR = m () ]
=1ip —MBl (]92'm2 mi) VL (4.18)
32m2m3, N

having exploited Eq. (3.32). We conclude that, once again,an infinite quan-
tity appears since:

2 2 [ A .
Op, i = —329((;)2 % [—5 + B{lmte (p27mf, qu)} (4.19)
as one sees from Eq. (3.39).

The divergent quantity 0,z can be naturally interpreted as a redefini-
tion of the bare quark mass at one loop. This can be done in strict analogy
with the case of the W, Z masses treated in Subsection 3.1.5. For our pur-
poses, it can be advantageous to consider the modification at one loop of
the expression that describes the propagation of a b quark originated at a
certain vertex (that can be one with a Z but also with one photon or one
W), to be called in full generality V#(O) At tree level the correspondence
will be given by the forthcoming graphical equation:

VERTEX — Ve __ ' (4.20)
D — My
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Adding the modification of Fig. 4.3 will lead to the modified expression:

VERT 4+E.S.E. — V”(O)A# {1 +ily H%
p

D —mpo — Mp,0
— (o) _ L -
D — Mpo + POp, 1 (p—mp) (1 + p.1r)
— v q g ] —— 421
VO = )| 5 (121)

where “E.S.E.” means external self-energy and we have defined a candidate
b mass

mp g = mpo (1 — 0p 1) (4.22)

which intuitively appears as a proper pole of the quark propagator, and the
tricks that are formally allowed at one loop (typically, 1 + 6 g = ﬁ)
have been extensively used.

The qualitative conclusion at this point is that one can reabsorb the
effect of the graph Fig. 4.3 into two different operations. The first one is
a redefinition of the quark mass; the second one is a formal modification
of the initial bare quark vertex (in our case, this will be the Zbb one) that
corresponds to the addition of a quantity

SVH = —vrOs, y (4.23)

to the bare vertex. Note, to avoid confusion, that this quantity must now
be computed following the conventional Feynman rules prescriptions; for a
Zbb vertex this gives:

n0) _ 90 0 0
Vo = 2 cos Oy o [gvb - 759,41;}
go m 0
= 4.24
cos Oy Y [’YLng + 'YRgRb} ( )
where g9, = —% + %sin2 Ow; g%, = %sin2 Ow .

Let us apply these qualitative conclusions to the two graphs represented
in Figs. 4.2(c), (d). Without proving it explicitly, we shall assume that the
shift &y, pr is the same in both cases. Also, from the conventional rules, we
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shall consider the half of the sum of the two contributions. This leads to
the conclusion that:

DLOD = iy () (VA 5] v (1) =

9> m;

AT — N — —_

p, (P3) cos&WA/ [(YL9Lb + YRIR,] [ 3272 m%‘/}

A inite =

XL [_5 + Bfinit (p%,mt,mH)] 0 (P)
2 2

_ N . g my

[COS ew] up, (p3) Yy oy (Pa) [_3%2 mgv]
1 1 1 ini
X [—5 + gsin HWQ] {—§A + B{m”e (p%,mt, mH)} . (4.25)

The overall Zbb vertex can now be explicitly computed adding Eq. (4.25)
to Eq. (4.15). One sees immediately that, when this operation is performed,
the overall coefficient of the infinite component A vanishes, since:

FZL(Z)(a+b+C+d) (infinite) _ ]-—\ZL(Z)(znfznzte)

2 2
__ 9 = \.nu Sy |9 My
con " 1) 7 () [32772 m%v]
x A KZSIDHWQ - Zcos0W2> — (551n0w2) + (Z — Esm@WQﬂ
—o. (4.26)

The sum of the four contributions is therefore finite, and is given by the
following expression:
(Z)(finite) _ pu(Z)
]-—\ZL mate — ]-—\ZL

2 2
_ 9 o L | gt my
cosﬂwub (p3) Y yLvp (1) [3%2 m‘g/v}
1 1 ini
| imite + (gsinow? = ) B @mmin)] (421

where the first finite term in the square bracket is defined by
Egs. (4.6),(4.14),(4.15) and the b mass has been systematically equated
to zero in all the (now finite) contributions.

We see that, as expected from the discussion given at the beginning of
this Chapter, the leading m; contribution of Fig. 4.2 to the Zbb vertex is
purely left-handed. The reader can verify that this property applies to all
four diagrams separately.
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Equation (4.27) is quite general and does not consider yet the (relevant)
situation m; >> myy. This case will be examined in detail in the following
Subsection; before doing that, we shall conclude this part of Chapter with
an illustration of how the projection procedure on the different Lorentz
structures actually proceeds in this specific case. With this purpose, it is
convenient to rewrite Eq. (4.27) in the condensed form:

ez _ _ 9 ay, (§3) Yy e (Ba) F (¢%, me, mw, mup ) (4.28)
cos Oy

where F(q?,....) corresponds to the finite terms contained in the square
brackets on the r. h. s. of Eq. (4.27). From Eq. (4.28) we can now derive
the expression that we need simply by readjusting it as follows:

g
FN(Z) (q ) mF (qQ,...)

X [ (P3) Y v5up (Pa) + U (P3) Y b (P4)]
= by (P3) Y50 (Pa) + bavtly, (P3) vH b (Pa) (4.29)
where we have used the definition of Eq. (3.248), with

9

— __F(¢? . 4.
2COS€W (q 7mtamW7mH) ( 30)

bip = —bap = —

For our derivation, we must now rewrite the Zbb vertex in the equivalent
way:

F“(Z) (¢?) = an (q2)j£¢(z) +az (¢?) jgt(v) (4.31)
where jb ) and ]b ) are defined by Eqs. (3.10), (3.8):

(2Z) _ leol

POV m () A (6%, — e g 5, 4.32
b 2 sin Oy cos Oy uy, (P3) [ng 75gAb} vy (P1) ( )
) _ L 7 (52) vHur (B,
gy = —gleolw (75) 7oy (B1) (4.33)
and g?,b = —% + %sin@WQ; 9211; = —%.

Using Egs. (3.250), (3.251) of Chapter 3 we can now derive the ex-
pressions of the projections of the Zbb vertex on the “Z” and “y” Lorentz
structures:

(Fu(z) ( 2) ,j{f(z)) = ay (qz)

4b
=1 sin Oy cos Oy = —2F (q mt,mw,mH) (4.34)
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(FH(Z) () 7]'5(7)) = ay, (¢?) =

0 sin 6
[(% - 1) blb} = oW
|eo| % cos Oy

—2 F (q2,mt,mw,mH) (4.35)

and in the last step of Eq. (4.35) we have exploited, as usually, the fact
that we are working at the one loop level which allows to replace the bare
parameters that are involved with corresponding physical quantities. In the
same spirit we shall replace systematically from now on, inside the function
F (qg, ), the bare parameter g3 by 4:—(2)"‘, with so defined by Eq. (3.200).

Equations (4.34), (4.35) with F given by Eq. (4.28) are all that we need
for our forthcoming discussion, that will proceed in the following Subsec-
tion.

4.1.2 Observable effects of the Zbb vertexr at the Z peak:
the large my limat

Until now, all our derivation has been quite general and no special assump-
tion has been made on the size of the top mass. The relevance of the Zbb
vertex becomes, however, enhanced when m; increases and becomes larger
than, say, myy, as it results from the available experimental measurement
(Chapter 10). In order to provide a satisfactory description of this impor-
tant effect, we shall consider from now on the extreme situation m; — oo,
and concentrate our attention on the leading m; terms in the asymptotic
m; expressions of those analytic functions that contribute the Zbb vertex
as e.g. from Eq. (4.27). As we shall see, two features become evident in the
considered configuration, whose combination makes it possible to consider
the Zbb vertex as the manifestation of a physical effect at the Z peak: first
of all, the effect is “large” at the level of the related experimental accuracy;
secondly, it is manifestly (although a priori not obviously) gauge-invariant.
To prove the first statement, it is sufficient to compute the limit of the finite
quantity F(m%,ms, mw,mg) in Eq. (4.28). In terms of the functions By,
Ca4, Ca3 that have been defined by Egs. (3.32), (3.34) this reads:

2

a m 1 1 inite
F (m2Z7mt;mW7mH) = SW—S%ﬁ { {—5 + 553] B{ ! (0;myg, mpr)

[C SO} szmte ((]2;mH7mt;mH) +m? |:l —

2
5 58(2)] Co (6% me, mr, my)
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2 1
+350 |4°Cas (4% me, mar, me) + 5 =

5 2057 (¢* me, mu, mt)} } .

(4.36)

The calculation of the leading term for large m; leads to the expression:

osz

mltir_x}OO F (mQZ; me, mw, mH) 8ms? mwzxv 3 + next — to — leading
(4.37)

where, for the moment, we do not consider the next-to-leading terms (that
will turn out to be not negligible, as we shall discuss later).

To get a feeling of the relevance of the expression written in Eq. (4.37)
for what concerns the modification of physical quantities, it is convenient to
write the complete theoretical expression of the partial width F(l) F(Zl) b
at one loop. By an immediate and straightforward generalizatlon of the
procedure that led to the derivation of the corresponding formula for the
leptonic width one is led to the following equation, valid in the approxima-

tion my = 0:

Gp
Fl(,l) = Ngcb, b76_ [1+ &1 [g% + 9¥1] = Nocnob
G 4 ’
TFE [1+ew [1+ <1 - 5512; (mzz)) (4.38)

(we did not yet include a small multiplicative purely QED correction 1+ % £)
where Ngcp,p is the strong interactions effect on the final bb pair, to be
discussed in the second part of this Chapter, and:

ey =€1 — 2Re (F“(Z) (m%),ji (Z))
+2Re (Fg(z) (m2Z) ,j{:(z))

NU
=1+ 2Re (rg<z) (m%) ,jé‘(z)) (4.39)

sg (mgz) = (sin Qw,eff)2

tsocoRe [ (Fff) (m3) m)) _ (rg‘(z)7 jgm)}

NU
= (sinBywess)? — socoRe (I‘”( ) (m3), 0 >) (4.40)
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where we have used the definitions of Eqs. (3.281), (3.286) and the usual
one loop approximations. These are supposed to be valid at the requested
level of accuracy, and do not need a special discussion in each separate
case to be considered. The latter statement is, on the opposite, not true
for another approximation that has been systematically adopted until now,
that of treating the final physical quarks as genuinely massless objects. In
the case of a Z partial width, taking into account the quark mass (assuming
that a proper definition can be given of this quantity) introduces a small
modification of the formulae that we have derived. For a “light” quark of a
mass much smaller than mz, neglecting terms of order m;l,
relevant expression by simply performing in Eq. (4.38) the single following
modification:

one obtains the

4m?2 4m?

2 2 b b
— 1—-—2(1—-—* 4.41
Jab JAb m2 ( m2 ) ( )

(the vectorial coupling remains unchanged at this level of accuracy), where
for the b mass a value of approximately 4.5 GeV can be taken, that is in-
tuitively related to that of the upsilon resonance. Numerically, the change
induced on T, is of approximately a (relative) one percent, that is com-
parable with the experimental accuracy and must consequently be taken
into account. This remark only applies, at the Z peak, to final bottom
pair production. For this reason we have not derived the general formula
valid for massive fermions from the beginning, since in all other cases the
zero mass approximation is perfectly valid. We shall return on this b mass
dependence later on, when treating other properties of bb production in this
Chapter.

In Egs. (4.39), (4.40) the symbol “NU” means “not universal”, and
denotes the fact that the only difference in this case between a final charged
lepton £ and a final quark b is the appearance in the vertex of non universal
terms. These are clearly exhibited by the ~ m? charged would-be H*~
contribution. In the relevant situation m; — oo we can then safely retain
the leading component of the effect, and write:

€1b (mt — OO) ~ g1+ 2a1p =1 — 4F (mQZ,mt)

xs% (mgz) (my — 00) ~ (sin Hw,eff)Q — S0Coaop

= (sin9W7eff)2 + 255 F (m%;me, mw,mp) . (4.42)
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From the value given in Eq. (4.37) we conclude that:
e @ mi
T urs2 me,

. @ 2 2
= €1~ 5o MMy (4.43)

2
2 a my

512, (mZ) ~ (sinﬁw,eff)2

" Sed e
Lo m

19.315 m?%,
having used the value of s3 given in Eq. (3.203).

Combining Egs. (4.43) and (4.44) with Eq. (4.38) we can compute in
leading m? order the relative shift on the partial width I'y. We stress that
we are now interested in the non-universal effect that is not present for
final leptonic or light quark states. With this aim, we shall not include the
universal component of €; and sin? Ow.esr already given by Eq. (3.288) and
Eq. (3.296), and call “NU” the remaining contributions, which give, after
a few one-loop tricks:

= (Sin GW,eff)g (444)

Pll)’mt(NU) B a mg
r} B 4rs3cd m%
2
1 1652 1- 4% o my
3 14 ( B %)2 16ms3ct m%,
~fpoami o mi (4.45)
n 2.32m%  15.46 m?% ’

where the first correction is generated by €1, and the (much smaller) second
one comes from s7 (m%). In correspondence with the experimental value
ms ~ 2my, a relative correction of about two percent appears in this first
rough estimate.

As a matter of fact, in a situation of large m;, a second term arises

2\ 2
in F that is of the form ~ (ln ::—5) , with a numerically large coefficient,
z

that practically doubles the previous ~ m? contribution. Leaving aside the

details of the derivation [56], one reaches the conclusion that relative non-
universal shifts of a few (~ 3 —4) percent appear in the expression of the
Z partial width T'y. This is, a priori, a quite sizeable effect that certainly
requires a proper treatment and a careful theoretical calculation.
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The previous conclusion would be acceptable provided that one could
claim that this large m; effect is a gauge-independent one. Since the overall
calculation was performed in the t’Hooft £ = 1 gauge, this statement is
not in principle obvious (in fact, we left in the theoretical expression the
notation my = &mwy as a remainder of this intrinsic £ dependence). It
turns out, though, that the large m; contribution that we have isolated
is actually gauge-independent. This can be proved in different ways; we
shall present here a simple and intuitive argument, mostly based on self-
consistency considerations. In fact, we have shown in Chapter 3 that, in
order to cancel the gauge-dependence of the universal self-energies, a pre-
cisely defined amount of boxes and vertices must be added to generate the
gauge-independent combinations, as shown e.g. by Eqgs. (3.263), (3.266).
At the Z peak, the box contribution is kinematically canceled, and the pre-
vious operation must be carried on by vertices. From the universality of
self-energies, it is clear that only the universal parts of the related vertices
can be (suitably) gauge dependent to perform the requested cancellation.
Thus, the non universal “NU” components of the vertices must be individ-
ually gauge-independent at the Z peak. This is evidently the case of the
components of the Zbb vertex that are depending on my, which proves our
statement. Given the large size of the effect, we can thus consider it as a
physical, observable one. In the forthcoming Subsection we shall provide,
an operative definition that relates it to measurable quantities.

4.1.3 Operative definition of the Zbb vertex at the Z peak:
the dpyv parameter

A simple way to provide an operative definition of the non-universal com-
ponent of the Zbb vertex that has been discussed until now, arises from the
observation that its effect, as already stated, only involves at the Z peak the
Z decay into a bb pair, and none of the remaining Z partial widths. Since
the latter quantities are, in principle, measurable, one immediate proposal
is that of considering ratios of the Z — bb width (I'y) with other “suitable”
ones. To specify the meaning of the word “suitable”, it is useful (anticipat-
ing the specific discussion to be given in this Subsection) to consider the
fact that I' is affected by strong interactions effects (generally treated in a
conventional QCD scheme), whose presence might obscure the electroweak
details that we are trying to isolate, particularly if residual sizeable theoret-
ical uncertainties were present in the QCD sector. To eliminate, or at least
to reduce drastically, the previous difficulty, a simple possibility is that of
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considering ratios of the Z — bb width with other hadronic Z widths. To a
very good approximation, to be discussed later on, the QCD effect in the
production of light quark-antiquark pairs at the Z peak can be treated in
the usual zero quark mass limit. In such a situation, the effect of the strong
interactions factorizes in the same way both in the numerator and in the
denominator (a fact that is somehow reminiscent of the similar property
of the longitudinal polarization asymmetry Ay g for final hadronic states),
and consequently disappears, leaving the ~ m; vertex effect unambiguously
defined. The simplest possibility in this spirit would then be measuring, as
originally proposed in Ref. [57], the non universal Zbb vertex from the ratio
of Ty to Ty (the Z decay width into a s§ pair) i.e.:

r
r_b =1+ 0y (4.46)

S

where the parameter d,y has the following expression:

2
1652 1- 20
2
3 1 (1 %)

which can be obtained combining Eqs. (4.34)—(4.40). Note that, in the ratio
of Eq. (4.46), the universal components of €1 3 cancel exactly, only leaving
the non-universal term.

Note also that, in Eq. (4.47), the b mass cannot be totally neglected,
as stated. Its effect of the observable quantities will be discussed later on.
Equations (4.46), (4.47) provide an operative definition of the quantity dpy .
This is directly proportional to F' (m%;m,) defined by Eq. (4.36). Using
Eq. (4.37) one can derive immediately the leading m; expression of dyy, and
write:

Sov = —F (m%;my) |4+ (4.47)

2
a 452 1— %0
oov 4rsdc? T+ TO 34 2\ 2
0% 1+ (1-48)
m2 13 m?\*
— + — (ln—;) + o (4.48)
Z 6 Z

where the coefficient of the logarithmic term, that makes the total con-
tribution quite competitive (roughly 4%), has been computed in previous
papers [56].
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From a strictly practical point of view, the Z — s5 decay cannot be
measured at the permil level of accuracy. A better quantity to be used in
order to define and measure Jdpy is actually the ratio ;—Z, where 'y, is the

full hadronic Z width i. e.
I'py=Ty+Tq+T+T.+1 (4.49)

whose experimental measurement can be performed with the required ac-
curacy. Intuitively, the same theoretical considerations about QCD cancel-
lations will remain valid for this ratio. For what concerns the electroweak
component, an elementary calculation leads to the following theoretical ex-
pression:
Iy s (1+6v)
Pp Tyu+Ta+Ts+Te+Ty

o Ty (T + )

o 2I', + Ty (3 + 6bV)

B 1+ dpv

34 2rua+ Gy

In deriving the final expression of Eq. (4.50) we have assumed:

1_‘u:Fc;Fal:]-—‘s (451)

Ry

(4.50)

and defined the ratio
Fu
T4
Note that, for what concerns the quantities that appear in Eq. (4.50),
the modifications due to quark mass differences in the QCD corrections are
totally negligible for the four lightest wu,d, s, ¢ quarks, that can be consis-
tently treated as massless. In the usual one-loop approximation philosophy,
we can rewrite Eq. (4.50) as follows:
T 1 1
e [1 TG (1 e zrudﬂ | (4.53)
The ratio 7,4 that enters Eq. (4.53) must be computed theoretically at
the one loop level. For what concerns its contribution inside the square
bracket on the r.h.s. of that equation, which multiplies the O («) parame-
ter dpy, it can be approximated by its lowest order expression. This corre-

= 'f‘ud . (4.52)

sponds to writing 11:—: in the following form:

r, {1+ (1- §83)2}
= rua = ] (140 (a)) (4.54)

w

SV
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and to only retaining the square bracket in the final expression. In this way
one is led to the theoretical formula:

I, 1 1
b~ 4y |1 —
T,  3ta2rg | T 2

o [1+0.7800 4.5
34 2rgg 1 107800 ] (4.55)

where the numerical value of s2 given in Eq. (3.203) has been used.

For what concerns the remaining r,4 contribution in Eq. (4.55), this
must be computed without approximations, starting from the definition
Eq. (4.54) that can be rewritten, using again Eq. (3.203), as:

Tua = 0.7759 [1 + O ()] . (4.56)

The O(a) term is expected, on general grounds, to be small. In fact,
the large~ m? contribution coming from the self-energy component A;(0)
is predominantly contained in 1,4 whose expression can be easily derived
by a generalization of Eq. (4.39), i.e.

NU
E1uq = €1+ 2Re (ngf) (m%), jjjff)) . (4.57)

One sees that the ~ m? contribution from A;(0) is the same in the two
parameters (the non universal vertex has no ~ m? components) and there-
fore, essentially, cancels out. This does not apply to the ~ m? contributions
from the si 4 barameters are defined by a generalization of Eq. (4.38) as

follows:
NU
524 (m%) = (sinbw,crp)” — socoRe (PZ,(dZ) (m%) ,jff,(;y)) . (4.58)

From the expression of (sin Gwyeff)Q given in Eq. (3.307) one can eval-

uate the ~ m? effect in the ratio that appears in the generalization of

Eq. (4.54):

- 5 g s2c2 2(me)
33 (mQZ))Q‘|( t) |:1+ (1—§Sg+§26%_0181)
2112 - 22 2(me)
) [ (1= 4o+ dgen) ™™
1.1473 (1 + 0.5894¢,)™?)
1.4787 (1 + 0.4123¢,)™)

0.7759 (1 + 0.1771g,) ™)
= 0.7759 (1 + 0.1771A1 (0))"™) . (4.59)
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One sees in conclusion that, as in the case of the €1, 4 ratio, the ~ mf

effect from the generalized weak angles is very diluted. This means that
the theoretical value of r,q to be used in Eq. (4.55) will be very stable
with respect to the input parameter m;. In practice, one expects that
the complete value, that can be computed by the existing programs [86],
does not differ significantly from the lowest order calculation =0.7759 that
appears in Eq. (4.56).

This long discussion should have illustrated, we hope in a reasonably
understandable way, the calculation of the Z — bb decay at the Z res-
onance. To conclude this subject, we still have to review a few peculiar
properties that make this quantity a rather special one. More precisely, the
two following facts should be stressed:

a) the parameter dpy, that represents a reasonable parametrization of the
Zbb effect, does not depend on the Higgs mass my. In fact, in the
conventional approach, the physical Higgs exchange in the vertex would
be proportional to the b mass and therefore vanishing, in first realistic
approximation;

b) the quadratic dependence of F Eq. (4.37) on m? has nothing to do
with the custodial symmetry violation ~ (mf —m?) that enters the
quantity A; (0) Egs. (3.190), (3.191) and therefore the parameter 1
Eq. (3.288).

The conclusion of the two previous observations is that the Zbb vertex,
as parametrized e.g. by the quantity dpy, represents a genuine and unique
“top mass indicator”, that only depends on the fundamental SM parameter
my. This should make it clear why the measurement of the Z partial width
into a bb pair has represented, in the long period of time that was devoted
to the measurements at the Z peak, a fundamental issue. In Chapter 10
we shall discuss the effect of the bb-production data on the determination
of the top mass.

To conclude this part of the Chapter, we still have to analyze the possible
sensitivity to the 8y parameter of the measurable Z — bb asymmetries,
in analogy with what we did in the case of production of a final charged
lepton pair when we examined the dependence on the custodial symmetry
breaking parameter A; (0). We shall see that, in the case of final bb pairs,
the relevant asymmetries are in practice insensitive to dpy. Having shown
this fact, we shall also discuss in a qualitative way the reason why this lack
of sensitivity has to be expected, on very general, and simple, grounds.
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The technical proof of our statement is based on the definition of the
Z — bb chiral asymmetry Ay defined in detail in Chapter 2 Eq. (2.89). At
tree level, this has the expression:

(0)2 (0)2 (0) (0)

A _ 9oL gbR —9_JvIba (4.60)
S LR UL bR

At one loop, following our general prescription illustrated in Chapter 3,
we shall write:

Al()l) _ 19155/) (m%) 915,4)0 = (12)2 : gzgv) (gnz)
glgv) (mz) + l(; ) 1+ 2 <g)7;lz) gl()14)
Iba
[ 45 )
s (m3)]”

~ 2
2
1+ [1 — 4 (sinOwepp)? — 3s2F (mzz;mt)]

x (1+ “QCD”) (4.61)

and moving from the first to the second equations and from the second to
the third line of the previous equation, Egs. (4.40) and (4.35) have been
exploited. In Eq. (4.61) a (small) calculable QCD correction has not been
explicitly written down. The reason is that we are now interested in the
particular electroweak ~ m? contribution appearing in F. In this spirit, we
can neglect the QCD contribution (to be discussed later) and approximate
F with Eq. (4.47). In this way, we obtain explicitly, using the numerical
value for s given in Eq. (3.203) and working “inside” the one loop level

where s2= (sin 9W7eff)2:

A _ 1 - 358
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[1+8 % }
a 1 4 99V
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=0.936 [1 + 0.0695,v/] . (4.62)
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One sees therefore from a comparison with Eq. (4.55) that the sensitivity
of the b asymmetry A to dpy is roughly ten times smaller than that of
the ratio g—z, whose relative experimental accuracy will be, as discussed
later, definitely better. Since the two relevant (polarization and forward-
backward) Z — bb asymmetries are simply defined in terms of A, from
the expressions given in Chapter 2, we can confirm the statement that,
in practice, these quantities are unaffected by the contribution of the Zbb
vertex within the MSM framework.

An intuitive understanding of this situation can be obtained by looking
at the tree level definitions of A, and I'p, Egs. (4.60) and (2.79). In the
case of I'y, the line of equation I', = constant in the plane of the “shifts”
d0gpv, 0gap would correspond to the relationship:

bA
STy =0 — dgpy = — LA 59,4 ~
9vv

1
3°0

For A, one would find the line of equation:

0A, =0 — dgpv = gz;_v5gbA
gvA
4 2
=(1- 580 5gbA >~ 0.7591,,4. (4.64)

The shifts produced by the Zbb vertex, that is of purely left-handed
type, obey on the other hand the condition:

dgbr =0 — dgpy = dgpa - (4.65)

This line is “almost” parallel to that of constant A, Eq. (4.64), and
“almost” orthogonal to that of constant 'y, Eq. (4.63). One understands
therefore why the Zbb vertex effect is practically irrelevant on A;, and much
stronger on I'p, a feeling that is numerically confirmed by our previous
detailed calculation.

This final discussion concludes the first part of this Chapter, devoted to
a meticulous derivation of the theoretical expressions that enter the elec-
troweak sector of the Z — bb decay. In the second part of the Chapter, as
announced, we shall try to incorporate in the simplest and useful way the
still lacking topics of the strong interaction effects, treated in the conven-
tional QCD approach.
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4.2 The role of strong interactions in Z physics

4.2.1 Strong interactions effects at the Z peak

Our discussion has been until now concentrated on the pure electroweak
features of the e + e— annihilation process on top of the Z resonance. With
this aim, we have analyzed in detail both the production of final (charged)
lepton-antilepton pairs and that of quark-antiquark pairs using the same
theoretical mechanisms (the special treatment of a final bb pair only differs
from the remaining cases because the top mass cannot be neglected in the
Zbb vertex). As often emphasized, we have worked consistently within a
perturbation theory expansion truncated at one loop, whose validity has
been discussed at the end of Chapter 3 for what concerns the pure elec-
troweak sector of the calculations.

When strong interactions of the final states must be estimated, the first
and immediate question that arises is that of whether their effect can be
taken into account in a way that is both (reasonably) simple and realistic.
In practice, the most favourable situation in which both conditions are
simultaneously met is one where perturbative QCD can be satisfactorily
used, with a strong coupling « sufficiently small to justify the truncation
of a power series that has a as the expansion parameter. We know from the
general QCD features that the preliminary request will be that the relevant
four-momentum square ¢2, identifiable in this case with the c. m. squared
energy of the electron-positron pair, is sufficiently larger than the squared
characteristic scale of strong interactions. Intuitively and conventionally,
this is identifiable with the nucleon squared mass m% ~ 1 GeV2. At the
Z peak, the value of ¢> = m% is two orders of magnitude larger than m32,,
and the possibility of using a perturbative expansion in a “small” effective
coupling as(m?%) appears, a priori, to be substantially reasonable.

The previous conclusion is, clearly, qualitative. Let us assume for the
moment that it is, at least in first approximation, correct and let us examine
the practical problems that would arise in the explicit calculation of QCD
corrections to a typical Z —peak electroweak process. The simplest example
that can be provided is that of the Z decay into a quark-antiquark pair.
We have already derived, in the first part of this Chapter, the theoretical
expression of the Z partial width, in the special case of a bb pair, and we have
shown in Fig. 4.2 a set of electroweak Feynman diagrams that contribute
at one loop. The detailed numerical discussion that we have given was also
motivated by the ambition of showing that the sum of the four diagrams was



228 The Physics of the Z and W Bosons

actually finite, in spite of the fact that all the separate contributions were
infinite. In all cases the divergences were of ultraviolet origin, i.e. due to
the bad behaviour of the (virtual) integrand in the asymptotic integration
variable (= k) region, as shown e.g. by Egs. (4.5), (4.8) and (4.20).

From a strictly formal point of view, the cancellation of the ultraviolet
divergences in the considered Z vertex was completely achieved within the
imwvariant scattering amplitude, to be more specific within linear one loop
expressions (vertices, in this case). This can be restated by saying that
the cancellation of the electroweak ultraviolet divergences at one loop in
the process represented in Fig. 4.2 is an “internal affair” between diagrams
with the same set of incoming and outgoing real particles (in our specific
case, electron-positron into quark-antiquark) and different types of virtual
exchanges , e.g. Fig. (4.2).

One would expect the same formal property to remain true when con-
sidering possible extra ultraviolet divergences of QCD origin affecting the
same physical process, e + e — ¢q at the Z peak. In terms of Feynman
diagrams, these effects are represented at one loop by Fig. 1.6. Without
entering the details of the QCD framework, we shall simply quote the rele-
vant expressions of the gluon propagator and of the gluon-quark vertex. In
our conventional notations, they read:

gluon propagator — P, (k) =

dab kyk
= _? Lo + (6 - 1) kgu (466)
Y
gluon-quark vertex — ng"m7 (4.67)

where a, b are color SU (3) indexes, a, b=1...8, and the remaining quantities
are defined as follows: A, are the Gell-mann matrices, i, j=1, 2, 3 are
the quark color indexes; ¢ is the SU(3) gauge parameter, whose role is
essentially similar to that of the electroweak gauge parameters {w, £z (we
shall not enter the discussion of the Faddeev-Popov ghosts in what follows
and simply state that in the considered process eTe™ — ¢ these unphysical
creatures can be safely ignored); g, is the strong coupling, % = .

The elimination of the gluon ultraviolet divergence in the Zqq vertex
proceeds along the conventional approach that we have exhaustively illus-
trated in the corresponding electroweak case in the first part of this Chapter.

The extra feature that we shall try to summarize will rather be the fact
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that the cancellation of the ultraviolet divergences in the gluon vertex is not
yet the final word for what concerns QCD divergences. Actually, another,
essentially different, kind of infinities arises in this case, that is deeply con-
nected with a characteristic property of the gluons. The latter ones are
supposed to be massless particles, exactly like the photons. As a conse-
quence of this feature, infrared divergences appear, exactly like in QED.
Since the cancellation of these infinities is achieved by a procedure that is
intrinsically different from those that we have previously examined, and a
number of important papers exists [29] where all the details of the proce-
dure are exhaustively discussed, we shall simply start from the pragmatic
statement that, in conclusion, the finite expression of the strong interaction
effect on the Z partial width into a massless quark pair, to lowest order in
the strong coupling o, can be written as:

Iy =Ty = [14+ 2] (4.68)
where ngzo represents the purely electroweak component of the partial
width.

Although Eq. (4.68) seems remarkably simple and attractive, it still
cannot be utilized to generate a meaningful theoretical prediction, i.e. one
directly comparable with an experimental measurement. The two main
difficulties that still persist are related to the following problems:

a) what can actually be measured at the Z peak is the fraction of Z’s
decaying into well defined types of hadrons. Equation (4.68) only gives
the fraction of Z’s decaying into well defined quarks. In the commonly
used theoretical description, the Z decay into quarks is the “first step”
of its hadronic decays. This is followed by the next transformation of
quarks into hadrons, via their hadronization process. The description
of the latter is less simple and general, and requires a separate dedi-
cated discussion of those non perturbative effects that are responsible
for the formation of the bound states. This discussion can be (and
has been) given, e.g. in the exhaustive analysis of [29]. However, the
unavoidable introduction of new ad hoc phenomenological parameters
makes the overall theoretical picture less favourable to the explicit goal
of a high precision test of the genuine electroweak sector of the SM,
that represents the main purpose of this book;

b) the numerical size of the one-loop effect in Eq. (4.68) depends on the
precise value to be assigned to the strong coupling as. Assuming that,
as one would intuitively guess, the proper quantity to be used is the
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running coupling o (¢°) computed at g2 = m3, (although, as we shall

discuss, this statement only makes sense if at least the next contribution
~ a2 is computed), the available value before the start of LEP1-SLC
operations would have been that obtained by previous different mea-

surements [58], roughly leading to a value
as (my) ~0.11£0.1. (4.69)

When inserted in Eq. (4.68), this leads to a relative effect of approx-
imately four percent, well above the conceivable permil experimental
limit. Under these conditions, that are a consequence of the fact that
the value of the strong coupling constant o (mgz) is more than ten
times larger than that of the corresponding QED coupling « (mzz),
the computation of the strong interaction effect at “only” one loop in
Eq. (4.68) appears evidently insufficient for the purposes of Z physics.
In fact, with a coefficient of the next ~ (%)2 of order one, which a
priori cannot be excluded, the second order contribution would be at
the few permil level, which represents a quite sizeable effect at the Z
peak. One sees therefore that the calculation of (at least) the next
term in the perturbative expansion in ay of Eq. (4.68) is practically
unavoidable from a strictly pragmatic point of view. As we shall see,
this calculation will be indeed theoretically fundamental, since it will
allow to clarify the meaning of the choice ¢*> = m?% at which to compute
the running parameter ag (qg).

Let us consider problem (a) first. A simple and realistic solution to this
difficulty can be found by observing that the relative effect of the strong
interactions in Eq. (4.68) is the same for all the five (assumed massless)
light quarks that can be produced at the Z peak. This means that the
theoretical expression of the partial Z width into the five light quarks,
I's =T+ g+ s+ .41, will automatically be given for what concerns the
strong interaction effect by the same simple formula found for the particular
quark pair, that is:

oy =g 1 2] (4.70)

™

Equation (4.70), unlike Eq. (4.68), can be realistically compared with
experiment. The simple reason is that the fraction of Z bosons decaying into
all possible kinematically allowed hadrons (that is measured at the Z peak)
is also equal to the fraction of Z bosons decaying into all possible allowed
quarks, no matter what the separate hadronization schemes are. Otherwise
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stated, the probability that all light quarks, after their production at the
Z peak, transform into all detectable hadrons, is equal to one. One sees
therefore that reasons of theoretical simplicity select the Z partial hadronic
width I's as a clean and promising observable to be used, if the final goal
is that of an unbiased test of the electroweak sector of the SM. In what
follows, we shall accept these qualitative arguments and insist on I's and
on its theoretical calculation.

The next step at this point becomes that of the computation of the
higher order coefficients in the oy expansion. Given the relevance of the
subject, we shall devote next Subsection to a summary of the results that
were obtained.

4.2.2 Higher order strong coupling contributions

In the calculation of the Z hadronic width beyond the lowest ~ a contri-
bution a number of extra complications arises. Before listing and (briefly)
discussing them, it is perhaps opportune to recall an important theoreti-
cal feature, that is deeply connected with the possibility of exploiting in a
not ambiguous way the notion of running strong coupling as (qz). A sim-
ple way of illustrating the problem is that of starting from the differential
renormalization group (RG) equation satisfied by «s. For our purposes, we
shall rewrite it as follows:

2
/fda;i(f) = —boa? (1°) (4.71)
i
where by = 33I227TNf

As one sees from Eq. (4.71), varying the scale 2 by an arbitrary amount,

u? — cp?, one can only reveal the change of o (/ﬂ) at the next order

2. If the theoretical expansion that one uses is truncated at the lowest

~ a; order, at a given scale u? = ¢ (=m?% in our case), it does not make

much sense to identify the running coupling «s with as (qg). This becomes
possible if the expansion is prolongated, at least to the next ~ a2 order.

When carrying on this task, (at least) two new difficulties arise, that

can be summarized as follows:

«

¢) in general, going beyond the lowest «, order, the terms of the per-
turbative QCD expansion may depend on the chosen renormalization
scheme. Of course, the sum of all the terms of the expansion must not
depend on the scheme for any chosen observable, but this property does
not necessarily apply to the individual terms. We shall adopt in what
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follows the commonly used attitude of performing QCD perturbative
expansions in the so called barred minimal subtracted (M S) scheme in
a kinematical configuration (¢> = m?%) where five quarks may be pro-
duced. The running coupling that will enter the theoretical formulae

should therefore, strictly speaking, be denoted as a§5)’(MS) (mQZ), but
for simplicity we shall write it as o, (m%);

d) in the calculation of higher order diagrams, an unavoidable dependence
on the top mass arises, in some formal analogy with the case of the
electroweak Zbb vertex Fig. 4.2.

It should be stressed at this point that, as already anticipated in this
Chapter, for what concerns the mass of the five (udscb) light quarks, the
approximation of setting it equal to zero in the computation of the QCD
expansion is quite satisfactory with one (predictable) exception provided by
the b-quark case. Here the value my, different from zero must be retained at
first order in ay, leading to contributions~ asﬂﬂz—g. The precise expression of
such terms can be found e.g. in [33]. For what concerns our Eq. (4.38), the
overall (i.e. including electroweak corrections as well) effect corresponds to
the following formal replacements to the lowest oz order:

2 .\ s < Adm?
_ v (Mp, o) — {1 + s 4 3&%} (4.72)
9vs (mb =0,a, = 0) m T Mz
91241) (mb,()és) 6m12) As
; =|1-+=
g4 (mp = 0,5 = 0) mz T
2 2
_ Gasmi <1+21nm—§>} | (4.73)
T my mz

One sees from Eqs. (4.72), (4.73) that the b mass corrections generate
in the Zbb width ~ (g%, + ¢%,), on top of the ~ 1 percent correction at
the electroweak lowest level, another one of approximately five permil at
the a order, both effects being sizeable at the Z peak.

The next step in our analysis is now the stud of the higher order aj
effects. Here we shall assume that, as intuitively suggested by the pre-
vious numerical estimate, all quark masses, including the b mass, can be
neglected. This leads to a numerical estimate that has been performed
up to the third perturbative order a?. The motivations for such an “ex-
tremely” accurate calculation will be discussed soon in this Chapter, and
one will see immediately why the theoretical attention was concentrated for
a rather long period on the last third perturbative order. Before entering
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this discussion, we now summarize the results that were obtained for the
second order terms.

To shorten the treatment, since we are assuming that all quark masses
can be neglected, we shall write directly the a? correction to the full Z
hadronic width I's, that is of “universal” type i.e. has the same expression
for each separate quark component. In the notation of a recent dedicated
Review [59] this has the form (for three quark families):

) 2
rl?) = pfee=0) |y 4 22 (;nZ) (1+0 (m}))
2 2 2 2
L %elma) | o (TZ)l . (4.74)
™ ™

The coefficient ¢y in Eq. (4.74) is exhibiting the m; dependence, em-
bodied in a function Is of m; that must be computed numerically, and is
related to co as follows:

1
Cy = — 5 5 Ig (mz,mt) (475)
123, [gv’q + gA,q}
where
I (m m)~925—1037m—22—0632 MY el (4.76)
2 TR = R N T myz '

Numerically, for m; ranging between 50 GeV and 200 GeV, I, varies
from ~ 6 to ~ 12. For values of a; in the range 0.11 — 0.12 this corresponds
to an overall a2 contribution that is negative and of the five permil size,
relevant at the Z peak accuracy level. This is perfectly in line with the qual-
itative expectation expressed at the beginning of this Chapter, when the
motivations in favour of a second order calculation were roughly explained.

From a numerical point of view, one notices that the relative size of the
second order a2 effect is roughly one tenth of the first order one. Naively,
one would expect a similar reduction factor for the following third order
term. Were this the case, the related contribution would be of a relative
size below the “visibility threshold ” that for I's5 could be fixed at the permil
level. Actually, one finds a coefficient numerically equal to —12.8 for the
:—E term [59], whose relative negative effect is below the one permil and, in
conclusion, not visible. This fact does not diminish the relevance of the hard
calculation and the consequent possibility of declaring the perturbative aj
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expansion at the Z peak officially fully under control, for what concerns
the theoretical estimate of the full hadronic Z width I's [60]. In the final
part of this book, we shall make use of this variable , whose relevance in
the overall numerical fit will be, least to say, remarkable.

As a matter of fact, there is another quantity that is measured at the Z
peak and plays a very relevant role in the final numerical analysis. This is
the forward-backward asymmetry for production of bb pairs, A% 5. Here the
role of strong interactions is less immediate to explain than in the previous
I's case. The simple reason is that in the case of A%, a precise definition of
scattering angle must be provided. This requires a series of technical steps
that we shall discuss in Chapter 8, leading to then general expression

b,(as b(as= Qs
AR = A= 1 - kb7} (4.77)

where

kp=1-— 2—7Tu (4.78)
3

and p = Qmizb This corresponds to a value of the %= coefficient of approxi-
mately 0.8. In terms of the corresponding effect on the asymmetry, whose
electroweak value is close to 0.10 (see Chapter 2), this produces a shift of
about 0.003. Since the final experimental accuracy will be of the two-three
permil level, one sees that the effect must be included. We shall return to
this point in Chapter 8 since the role of the forward-backward b-asymmetry
will turn out to be particularly relevant for the final averaged determination
of the Weinberg sin 0y angle.

In conclusion, for the two observables I's and App the strong interaction
effects can be and have been computed at the proper accuracy. For what
concerns the b partial width I'y, we have anticipated that the more practical
experimental quantity Ry :IE—Z Eq. (4.50) is in fact measured. For the latter,
the relevant strong interaction effect can be derived in a straightforward way
starting from the Equations that have been written in this Chapter for the
numerator and for the denominator. As one can guess, the effect is largely
diluted in the ratio, being essentially due to b-mass terms (mostly in the
numerator).

Chapter 4 is at this point concluded. Its main results will be combined
in Chapter 11 with those obtained in Chapter 3. Since the overall number of
formulae and Equations is at this point rather large, we have summarized,
for the reader’s convenience, in Table 4.1 the most relevant expressions
derived in those two long and, hopefully, useful Chapters.
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As already mentioned, Chapters 1-4, have been devoted to a summary
of the considerable theoretical effort that was developed by several physi-
cists to indicate the best measurable quantities that would have provided
high precision tests of the Standard Model. In the following Chapters
the corresponding memorable experimental effort will analogously be sum-
marized and illustrated, starting with the discussion of the fundamental
measurement of the Z lineshape.



Table 4.1

Reference to most relevant formulae derived in Chapters 3 and 4.

Z leptonic width
effective axial Z-lepton coupling

effective vector Z-lepton coupling

sin? Ow,eff

longitudinal polarization asymmetry Ar g

Eq. (3.292)
Eq. (3.290)

Eq. (3.291)
Eq. (3.293)

Eq. (3.302)

mu and tau forward-backward asymmetry  Eq. (3.304)

tau polarization asymmetry
Ry
chiral b asymmetry A

‘W mass

Eq. (3.283)

Egs. (4.55) and (4.56)
Eq. (4.62)

Egs. (3.316) and (3.202)
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Chapter 5

Accelerators and Detectors for
Z and W Physics

The experimental results presented in next Chapters have been achieved
thanks to many years of successful operation of three major accelerators,
LEP, SLC, Tevatron, and of their detectors. Their main features are out-
lined below, together with some of the details that are necessary to under-
stand the rest of the book.

5.1 LEP

LEP, the CERN’s Large Electron Positron collider, was situated in the re-
gion between the Geneva lake and the Jura mountains, in the underground
tunnel now used for the Large Hadron Collider (LHC). It reached the high-
est energies in eTe™ collisions and it was characterized by a very precise
beam-energy calibration. The tunnel has a length of 26.7 kilometer and is
3.8-meter wide. Four large underground halls, located at a depth varying
between 50 and 150 meters, housed the ALEPH, DELPHI, .3 and OPAL
detectors. A sketch of LEP and its detectors can be seen in Fig. 5.1. The
accelerator was approximately circular, consisting of eight arcs of 2.8-km
length and eight straight sections. The electrons and positrons were ac-
celerated at 20 GeV by the CERN accelerators complex and injected into
LEP, where they were further accelerated at their maximum energy. The
beam energy was about 45 GeV for the Z run that took place in the years
1989-1995 (LEP1 phase) and reached the maximum energy of 104.5 GeV
in year 2000, after five years of operation above the WW threshold (LEP2
phase).

In the LEP1 phase the beams were accelerated by copper radio-
frequency (RF) cavities positioned in the straight sections on either side
of the experimental halls. The RF cavities were replaced by superconduct-

237
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ing cavities in the second, higher energy, LEP2 phase. The replacement
was required to compensate the higher energy loss per turn at LEP2, that
was about 2 GeV to be compared with 125 MeV at LEP1. The beams
were bended in the eight arcs by 3400 dipole magnets and focused by 800
quadrupoles and 500 sextupoles magnets. Electrons and positrons were
grouped in bunches and circulated in opposite directions with a frequency
of about 11 kHz. Typically four bunches were used at LEP, during the
LEP1 phase a fraction of data was delivered with 8 bunches and even with
bunch trains. Most of the LEP1 data was collected closely to the Z peak,
but a sizeable fraction of the data was also delivered at side centre-of-mass
energies, up to 3 GeV above and below the peak of the Z resonance. Such
energy scans were essential for the measurement of the Z lineshape. The
beams were colliding at the centre of the four experimental apparatus, in-
teracting in a region approximately 300 um wide along the LEP bending
radius, 60 pm wide in the vertical direction and 2 mm wide along the beam
direction. LEP achieved a record luminosity of 2.3 x 103'em~=2s~! during
the Z runs, and went above 1032¢m =251 in the LEP2 phase. The total in-
tegrated luminosity delivered at the Z was about 150 pb~! per experiment;
the four experiments collected a total statistics of more than 15 millions
hadronic Z decays and 1.7 millions leptonic Z decays. At LEP2 about 600
pb~1 per experiment were delivered, for a total of about ten thousand WW
interactions per experiment. The techniques employed to achieve an abso-
lute beam energy calibration with a precision of 2 x 107° are described in
Chapter 6.

5.2 SLC

The SLC (Stanford Linear Collider), operating from 1989 to 1998, was
the first example of a high energy linear collider and provided longitudinal
polarization of the electron beam. Its length was 3.2 kilometer and the
accelerator was running at a centre-of-mass energy in the vicinity of the Z
peak. The layout of SLC is shown in Fig. 5.2. Alternate bunches of electrons
and positrons were produced and, after damping in rings designed to reduce
the phase space, they were accelerated to 45.6 GeV in two separate arcs. A
single interaction point was provided, housing the Mark II detector in 1989
and subsequently, from 1990 onward, SLD. The luminous region had very
small dimensions, a few microns in the directions orthogonal to the beams.
The rate at the interaction point was low, about 120 Hz. The operation
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Fig. 5.1 A sketch of LEP with its experiments.

with polarized electron beams started in 1992, with the commissioning of
an electron gun based on a GaAs cathode hit by polarized laser light. After
1994 an electron-beam polarization of about 77% was achieved. At this
average polarization, about 150000 Z decays were recorded by the SLD
experiment, complemented by about 70000 Z decays collected at lower
beam polarization. More details about polarized beams at SLC are given
in Chapter 8.

5.3 Tevatron

The Tevatron is presently reaching the highest centre-of-mass energies in pp
collisions; at this accelerator the top quark was discovered. It is located at
Fermilab in Illinois, about 40 km east of Chicago. The use of antiprotons in
high energy colliders was pioneered at the CERN SppS. Both CERN SppS
and Fermilab proton synchrotrons had originally been constructed as fixed-
targed accelerators. The possibility of injecting high-intensity antiproton
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Fig. 5.2 The schematic layout of the SLC.

beams in the same storage ring was made possible in the early 1980s thanks
to a technique called stochastic cooling [61]. This technical breakthrough
allowed the discovery of the W and Z bosons at the SppS.

At the Tevatron 10® antiprotons with an energy of 8 GeV are made every
few seconds by bombarding a Nickel target with 102 120 GeV protons.
About 30000 pulses of antiprotons need to be collected and stored in an
accumulator before injection into the main accelerator. To produce a bunch
of antiprotons of limited spatial dimensions and low momentum spread
their six-dimensions phase space must be reduced (cooled) by nine order
of magnitudes. The Tevatron layout is shown in Fig. 5.3. Hydrogen ions
are produced by a ion source, injected into the Linac and then accelerated
to 8 GeV in the Booster. In the Main Injector they reach the energy of
120 GeV for antiproton production and of 150 GeV to fill the Tevatron
ring. Antiprotons of 8 GeV coming from the Accumulator are accelerated
to 150 GeV in the Main Injector, too. Both beams are then injected in the
Tevatron superconducting ring, a collider of 6-km circumference, to reach
an energy of 980 GeV. The beams collide in two experimental areas housing
the CDF and DO experiments.

The Tevatron collider started its operations in 1988. In the period 1992-
1995 (Run I) an integrated luminosity of about 110 pb~! was delivered to
the experiments. In Run I the Main Injector did not exist, a ring inside
the Tevatron tunnel was used. The number of bunches was six and the
beam energy 920 TeV. In 2002 the Main Injector and other upgrades were
operational, the number of bunches increased to 36 and the beam energy to
980 TeV. The peak instantaneous luminosity during Run II has exceeded
1032¢m=2s71. The Run II period is foreseen to end in 2009, with a target
integrated luminosity of 8 fb~1.
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Fig. 5.3 The schematic layout of the Tevatron Collider, for the Run II data-taking
period.

5.4 Beyond LEP, SLC and Tevatron: next colliders

The second half of 2007 will see the birth of the Large Hadron Collider
(LHC) at CERN. The LHC is presently being completed in the already-
existing 27 km LEP tunnel. It will provide head-on collisions of two proton
beams of 7 TeV each, with a design luminosity of 103*em=2s~!. The LHC
proton bunches are spaced 25 ns, yielding a collision rate of 40 MHz. The
aim of LHC is the search for the Higgs boson and for physics beyond the
Standard Model; nevertheless the large cross sections, at proton-proton
centre-of-mass energy of 14 TeV, and the high LHC luminosity will provide
huge rates of Standard Model (W,Z, top-quark) events.

In order to deliver eTe™ collisions at centre-of-mass energies higher than
LEP, while keeping electric power consumption to a manageable level, a lin-
ear collider is needed. The International Linear Collider (ILC), based on
high-field superconducting RF cavities, is presently being designed. The
electric field in the cavities will reach 25 MVolt/m, to be compared with 6
MVolt/m at LEP2. Even with these strong cavities, the accelerator length
will exceed 30 km. It should yield e*e™ collisions at a maximum centre-of-
mass energy from 500 to 800 GeV, with instantaneous luminosities around
103*em=2s71. Even higher centre-of-mass energies (3 TeV) could poten-
tially be reached with the CLIC accelerator, being designed at CERN.
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CLIC would receive its power from an intense low energy linac acting as
a driver and replacing the conventional RF cavities. The main features of
present and future accelerators are summarized in table 5.1.

Table 5.1 Present and future accelerators for W and Z physics. Expected param-
eters are given for future accelerators. For Tevatron the RUN II figures are shown.
Integrated luminosity is for experiment.

LEP SLC Tevatron LHC ILC CLIC
Beams ete™ ete™ pp pp ete™ ete™
C.o.m. energy (GeV) 89-209 91 1900 14000  500-800 3000
luminosity cm~=2s~1 1032 1029 1032 1034 1034 1034
Int. luminosity (pb=1) 750 8 8000 10° 10° 105

5.5 Detectors

Collider detectors follow a typical onion-like layout, covering large part
of the 47 solid angle (as an example see Fig. 5.5). They are composed of
several subsystems arranged in cylindrical structures, surrounding the beam
line and centered on the nominal beam crossing point. This is typically the
mid point of the straight section between the two final quadrupoles of the
accelerator. The main components of collider detectors are briefly described
in next paragraphs; detailed descriptions can be found elsewhere [62]. A
general introduction on particle detectors can be found in Ref. [63]; see
also [13] and references therein.

Charged particle tracking

Charged particle trajectories are measured in tracking devices by detect-
ing the particle ionization in the detector material at increasing distance
from the beam line; the result of the measurement is generally a set of
three-dimensional coordinates describing the trajectory. Tracking devices
are immersed in the axial magnetic field provided by a surrounding coil.
Charged particles are bent by the magnetic field and their three-momenta
can be measured by reconstructing the trajectory. The error on the mo-
mentum measurement is related to the geometry of the detectors and to
the magnetic field as follows. If the strength of the axial magnetic field
is B, the trajectory of a particle of momentum p, projected on a plane
orthogonal to the field, follows a circle of radius R = ZL where e is the
particle charge and pyr = pcos\ its transverse momentum (A represents
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the pitch angle with respect to the plane). If the tracking device is a cylin-
der of radius L the particle is bent by the magnetic field (Fig. 5.4) by an
angle ¢ with 2sin g = & = "'fL The deviation of the particle path from
a straight line is determmed by the sagitta of the circular trajectory, de-
fined as s = R — Rcos L R¢ , giving s = engL The uncertainty on the
measurement of the sagltta, 55 is a function of the uncertainty on the mea-
surements of the coordinates x; of the trajectory: ds = f(dx;). It follows

that

opr _ f(0z;)8pT
e (5.1)

Equation (5.1) shows that good momentum measurement requires large
tracking devices and high magnetic fields. Magnetic fields higher than 1
Tesla on large volumes can be obtained with superconducting coils. Equa-
tion (5.1) shows also that the uncertainty on transverse momentum grows
with the transverse momentum itself. In a real detector the uncertainty
on the sagitta measurement depends on the geometry and on the detector
resolution in measuring the spatial coordinates; it depends also on multi-
ple scattering, i.e. on multiple deflections of a particle in traversing the
detector medium, generally due to Coulomb scattering from nuclei. The
deflection caused by multiple scattering between two measurements of po-
sitions is proportional to the square root of the medium thickness, expressed
in radiation lengths (Xj), and proportional to the inverse of the particle
momentum (%) Multiple scattering adds to ds = f(dz;) a component
which is proportional to % and therefore adds to Eq. (5.1) a term inde-
pendent on the transverse momentum. In order to suppress the effect of
multiple scattering it is important to keep the material budget of tracking
devices as low as possible. The transverse momentum resolution of collider
tracking devices is generally parametrised as (Z)TT = (A X pr ® B), where ®
represents the sum in quadrature of the geometrical and multiple scattering
terms. For the experiments considered in this book typical values of the
two parameters are A ~ 1073(GeV/c)~! and B ~ 10~2. The momentum
p can be computed from the measurement of pr and of the pitch angle,
A. The latter one can be determined by measuring the coordinates of the
trajectory in direction parallel to the magnetic field.

An important aspect of charged particle tracking concerns the detection
of secondary vertices originating from the decay of long-lived particles; this
is discussed in details in Chapter 7.
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Fig. 5.4 Trajectory (bold line) of a charged particle in a cylindrical tracker of radius L,
immersed in a magnetic field B parallel to the beam line. The view orthogonal to the
beam line is shown. The curvature radius of the charged particle and the bending angle
are indicated by R and ¢, respectively. The sagitta is represented by the arrow s.

Calorimeters

Neutral particles cannot be measured by tracking devices and their de-
tection requires the formation of a shower, which is a destructive process.
The basic principles of shower development can be understood by consid-
ering a high energy photon, of energy Fj, impinging on a dense medium.
In this case an electromagnetic shower is formed and the basic parame-
ter regulating its development it’s the medium radiation length (Xg). The
probability that the photon converts into z;mzelectron—positron pair after
traversing a depth of thickness = is (1 —e™ %0 ), i.e. about 50% after one
radiation length. On average, the electron and positron will equally share
the primary photon energy (F7 = Ey/2) and their energy will decrease, on
average, to o = FE1/e = Fy/2e in next radiation length. At high energies
the electron and positron energy loss is caused, typically, by the emission of
a bremsstrahlung photon. The process continues until all particle energies
fall below a critical energy (E.) at which the main processes involved in
energy loss are no longer pair-creation and bremsstrahlung. For lead this
happens below 10 MeV. The critical energy is reached, on average, after

having crossed a thickness nX(, where n = In % /In2. This longitudinal
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position is called shower maximum and features an average of N =
particles.

Calorimeters are detectors made with dense material, with the capabil-
ity of detecting the charged particles belonging to the shower. If they are
dedicated to the measurement of electromagnetic showers, as the ones orig-
inating from photons and electrons/positrons, are called electromagnetic
calorimeters. The detection can take place by measuring the ionization,
or the Cherenkov light emitted by charged particles. The signal detected
by an homogeneous calorimeter is proportional to the total track length
T, that is the sum of all path lengths of electrons and positrons. In the
simplified scheme described in previous paragraph the total track length
is T ~ %Xo Yo 2 & %Xog—g showing that it is linearly related to the
initial photon energy. In real devices the drop in detection efficiency does
not necessarily correspond to the critical energy, still it is found that

T= F(g—i)Xog—Z (5.2)
where E,; represents the real detection threshold and F' is a function de-
pending on the medium (it essentially depends on the medium Z/A ratio).

The previous discussion shows that calorimetric measurements are es-
sentially a stochastic process and the measured energy fluctuates with the
fluctuation of the detected total track length. The latter one, in turn, is
proportional to the total charged particle yield (N.p) which, according to
Poisson statistics, fluctuates with ¢ = \/Ng,. Therefore the relative en-
ergy resolution of a calorimeter has a stochastic component described by
o(E)/E = A/VE, where E = Ej is the energy of the primary particle.
Similar arguments hold for sampling calorimeters, consisting of inactive
layers of dense materials interleaved with detector layers, typically made
with gas detectors. In sampling calorimeters only a fraction of the total
track length is detected, leading to additional sampling fluctuations. The
relative energy resolution of a calorimeter decreases with increasing the
energy of the primary particle; the resolution is eventually dominated by
detector non-uniformities and uncertainties on the calorimeter calibration,
adding a constant term to the stochastic component. The resolution effects
can be parametrised as

oB)___ A 45 (5.3)

E VE/GeV

where B is the constant term. Electromagnetic calorimeters for collider

detector have typical values of A ranging from a few % for homogeneous
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calorimeters to 10-20 % for sampling calorimeters. The constant term is
of the order of (typically less than) 1%. Another important parameter of
a calorimeter is its total thickness, as the shower longitudinal development
goes as In E. A thickness of about 20 X at collider energies is required for
shower containment.

Electromagnetic calorimeters are also used to measure the primary par-
ticle position, at its entrance into the calorimeter. The position resolution
depends on the transverse dimension of the shower, which scales with the
Moliere radius (Ryr = %Xo), and with the transverse granularity of
the calorimeter. The position resolution includes a stochastic term and
a constant term, similarly to Eq. (5.3). For high energy electrons and
photons position uncertainties of a few mm are obtained at collider detec-
tors. Calorimeter transverse granularity is also important to keep low the
frequency of overlapping showers caused by nearby particles (for instance
from two photons originating from the same 70 decay).

The previous discussion applies, strictly speaking, to electromagnetic
showers. Some general features can be extended, however, to hadronic
showers produced by charged or neutral hadrons. Hadronic showers devel-
ops through a variety of inelastic interactions and are subject to important
stochastic fluctuations. In hadronic interactions several secondaries, such
as pions, kaons, protons, neutrons, etc. can be produced. Subsequent
interactions lead to the formation of an hadronic cascade which can be de-
tected by a hadron calorimeter. Ounly part of the energy is visible in the
calorimeter: neutrinos and muons from pion and kaon decays escape the
calorimeter and a fraction of the energy is lost in nuclear excitation and
undetected low-energy nuclear fragments. When a neutral pion is created
in the hadronic cascade, the subsequent decay into two photons induces
the development of an electromagnetic shower. The response of detectors
to electromagnetic showers is different, as the fraction of detectable electro-
magnetic energy is larger, and this has an important effect on the stochastic
component of the calorimeter energy resolution. For hadron calorimeters
the A term in Eq. (5.3) ranges from 40% to 100% mainly depending on
the equalization of the electromagnetic component. The main parameter
regulating the hadronic shower is the nuclear interaction length (\;), which
is the mean free path for an hadron before the first inelastic interaction;
the probability that an inelastic interaction occurs after crossing a layer of
thickness z is (1 — e_%). As an example, for lead one interaction length
is about 17 cm, to be compared to 0.56 cm for one radiation length. The
longitudinal depth of hadronic showers depends on the energy, E, of the
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primary hadron and its proportional to In F; typically at least 7 interaction
lengths are required for detectors relevant to this book. Hadron calorime-
ters are very massive objects weighting thousands of tons. At colliders
iron is often used to incorporate the hadron calorimeter in the return yoke
of the solenoid; the hadron calorimeter is external to the electromagnetic
calorimeter and it acts also as a filter for muons. An important parameter
of hadron calorimeters is hermeticity: as neutrinos can only be detected as
missing energy or missing transverse energy (Chapter 9) it is important to
cover as much as possible the solid angle with sensitive detectors, in order
to limit the undetected energy of the event.

Particle identification

The combination of calorimeters and tracking devices provides impor-
tant information on the identification of particles. As already mentioned
calorimeters act as filters for muons since they are not destroyed by shower
formation; muons are generally detected by dedicated muon chambers
placed externally to the calorimeters. Electrons are characterized by elec-
tromagnetic showers matching, in position and energy, with charged tracks
measured by tracking devices. Isolated electromagnetic showers, instead,
are a signature for photons.

Pions and other charged hadrons are detected as tracks depositing a
limited amount of their energy in the electromagnetic calorimeter, accom-
panyed by a shower in the hadron calorimeter. The identification of neutral
hadrons is more complex. The detection of K9’s and A’s takes place from
their decay in a pair of charged particles forming a typical V-shaped dis-
placed vertex in the tracking device. Only a fraction of K%’s and A’s can
be detected, the detection efficiency depends on the momentum and the ge-
ometry of the central tracker. Measurement of K?’s and neutrons, instead,
involves searching for hadronic showers not associated to charged tracks.
Their identification is complicated by the presence of other hadrons: the
lateral extension of hadronic showers is considerably larger than the elec-
tromagnetic ones, and typically reaches tens of centimetres. It also depends
on other factors as the calorimeter noise.

The classification of charged hadrons in pions, kaons and protons is
highly valuable for the measurements described in Chapters 7 and 8. The
separation of charged hadrons with momentum p in individual species re-
quires the measurement of quantities related to 3, the particle velocity. In
addition to their main role, tracking devices can often measure the specific
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energy loss by ionization, dE/dxz. The dE/dx is described by a universal
function of 3, the Bethe-Bloch formula. Specific ionization measurements
allow statistical separation of pion to kaons at about 2 ¢ level, in the mo-
mentum range 2-20 GeV/c. The dE/dz measurement is also interesting
for low momentum electrons, typically up to a few GeV, as they can be
easily separated from other charged particles because of their relativistic
behaviour. A powerful technique to separate individual hadron species re-
lies on the measurement of the Cherenkov-light emission-angle, 8¢, related
to the velocity by the relation o = %, where n is the refractive index of
a transparent medium. This method allows a good statistical separation
of m/K/p up to a momentum of about 30 GeV/c, but the identification
efficiency is sensitive to the Cherenkov-photon statistics and to various

technical issues [13].

Forward detectors

The forward region is differently instrumented in eTe™ and hadron colliders.
In the first case precise forward calorimeters are employed to measure the
luminosity from the Bhabha scattering rate (luminosity monitors, treated
in Chapter 6). At hadron colliders forward calorimeters extend the coverage
to the high pseudo-rapidity region. (The pseudorapidity is defined as n =
—Intan(%), where 6 is the angle with respect to the beam line.) This
region is usually populated by soft interactions or, in high-pr interactions,
by hadronization products of the spectator quarks (underlying event). The
very forward region in hadron colliders is studied for diffractive physics,
and can provide information on the instantaneous luminosity.
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Fig. 5.5 Example of collider detector. Cut view of the LEP detector ALEPH with its
main elements: (1) the silicon vertex detector; (2) the inner tracking chamber; (3) the
time projection chamber; (4) the electromagnetic calorimeter; (5) the superconducting
coil; (6) the hadron calorimeter; (7) the muon chambers; (8) the luminosity monitors.
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Chapter 6

The Z Lineshape

The energy scan of the Z resonance provides two of the most important
parameters of the Minimal Standard Model: the mass of the Z vector
boson and its width. Experimentally, the cross sections at different ete™
center-of-mass energies around the Z peak are measured independently for
hadronic and leptonic Z decays. The latter can be further separated in
different lepton species, allowing the determination of four partial widths,
one for Z decays to hadrons and three for Z decays to electron pairs, muon
pairs and tau pairs, respectively.

In order to set the absolute scale of the scan a precise calibration of the
center-of-mass energy at the collision points is required. At LEP this was
done with a technique, called resonant depolarization, allowing a precision
of the order of one part over one hundred thousand. As a consequence, the
Z mass is one of the most precisely known physical quantities.

In this chapter we will describe the various ingredients of the measure-
ment of the Z lineshape, i.e. the centre-of-mass dependence of the hadronic
and leptonic cross sections. The important effects caused by initial state
radiation will be addressed. The luminosity determination and the LEP
energy calibration will be discussed. As we shall see the lineshape analysis
provides also a precise measurement of the strong coupling constant and
one of the most important measurements at LEP, the determination of the
number of light neutrino species.

There will be no attempt to separate different flavours in hadronic Z
decays, as quark flavour tagging allows to distinguish events in a statistical
way only. These studies are left to the next Chapter.

251
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6.1 Initial state radiation in eTe~ collisions

The simple Breit—Wigner shape of the Z resonance is distorted by the
radiation of photons by the electron and positron beams. The effect is size-
able: the production cross section at the peak is strongly reduced and the
resonance shape becomes asymmetric, as a result of the shift in effective
centre-of-mass energy. The main features of the treatment of initial state
radiation (ISR) in colliding e*e™ beams can be understood from the well
known properties of bremsstrahlung in elastic electron scattering [64] . The
two processes are related by crossing invariance: the emission of a photon
for an ete™ process with cross section independent of the centre-of-mass
energy can be directly related to the corresponding elastic scattering equa-
tions. In this case the tree level cross section, oy, is modified by radiation
of one real photon by the factor

5:2—a(1ni_1)/%":ﬂ/%" (6.1)

where s is the transfer momentum of the process i.e. the square centre-
of-mass energy for eTe™ collisions. The first term comes from the angular
integration over the photon emission angle and the second term represents
the typical bremsstrahlung spectrum, for the emission of a photon of energy
w, affected by the infrared divergence. The divergence is related to the fact
that the emission of a single real soft photon is unphysical [65] and an
infinite number of photons should be considered.

Experimentally a minimum photon energy is required for detection, or
for acceptance by the analysis cuts. By integrating between this minimum
energy, AFE , and the maximum possible energy, F, one gets

E
0=/FIn N (6.2)
In this scheme o = (1—4)oy is the cross section for the events where an ISR
photon is not detected (or accepted by the analysis cuts). If the emission of
ISR does not prevent the event to be accepted, AE = E and o is unaffected.
The difficulty of summing an infinite number of photons is overcome by
a procedure called exponentiation [66], where o = (1 — §)oyg is replaced by

o =e 0 , giving

o= (=)0 (6.3)
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a relation that, as anticipated, is valid only if the tree level cross section
does not vary with energy, which is not true for a resonance. The energy
dependence can be introduced by generalizing Eq. (6.3) to [67]

AE gy w
a:@A Y on(B —w). (6.4)

The integral can be carried out by taking a Breit-Wigner shape for the
resonance of mass myz and width I'z. By assuming AFE > I'; the integral
yields

(Vs —mgz)* + (Fz/z)Q)ﬂ/Q
m?% /4

Vs —mg
'z

o(s) = (

(2 +arctan(\/i;7/gbz)))oo(s). (6.5)

One can observe that the result does not depend upon AFE : the width

x (1+28°"——2

of the resonance acts as a natural cutoff and the emission of photons with
AFE > T'z is suppressed. The second term in Eq. (6.5) shows that the
radiative corrections induce an asymmetry in the shape of the resonance.

A complete calculation requires the addition of virtual and soft correc-
tions independent of the infrared singularity. For example at O(«) [68] the
corrected cross section is increased by

a,n? 17
fi= B+ ST - 10). (6.6)

At the Z pole 3 ~ 0.11 and §; ~ 10% yielding a reduction of 75% of
the peak cross section. The correction at the resonance is large because of
the suppression of hard photon emission leaving the colliding eTe™ system
with not enough energy to produce a Z.

For the LEP analysis of the Z lineshape the treatment of initial state
radiation has been improved by computing O (a?) [69] radiative corrections
complemented by soft photon corrections to all orders in exponentiated
form [71]. Figure 6.1 shows the theoretical prediction for the Z lineshape
through successive approximations.

6.2 The reduced cross sections

For the extraction of the Z parameters it is useful to employ cross sections
which are already corrected for the effect of initial state radiation. This can
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Fig. 6.1 Effect of QED initial state radiative corrections on the muon-pair production
cross section near the Z pole. Cross section without initial state radiation (dashed line),
O(a) exponentiated initial state radiation (dotted line), O(a?) exponentiated initial
state radiation (solid line).

be accomplished by fitting the measured cross sections using a formula that
convolutes a reduced cross section &, with a radiator function H(s, s’) :

os7(s) = /45 ds'H(s,s")G;7(s") . (6.7)

m}
The radiator function, peaking at s’ = s and with a long tail toward lower
values of s’ [70], incorporates all QED radiative effects described in the
previous Section.
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The & reduced cross section
sI'%,

(s —m)” + (32
is composed by three terms. The first represents the Z exchange; the
width of the relativistic Breit-Wigner distribution is energy-dependent to
take into account, in an approximate way, the dependence of the Z self-
energy (Eq. (3.235), (3.236)) near the resonance [72]. With respect to
the usual relativistic Breit-Wigner formula, where the second term in the
denominator is given by m%I'%, this ansatz gives a 34 MeV higher Z mass.
The second term, |y|?, corresponds to the photon exchange and is only
a few percent of the Z term. It can reliably be predicted by QED. The
interference term (y — Z) is the smallest one and is zero when s = m%. It
can either be fixed to the Standard Model prediction or fitted by using data
far from the resonance, where the sensitivity to the v — Z interference is
much higher. Particular care has to be taken in defining the reduced cross
section for Bhabha scattering, f = e, because the t-channel photon- and
Z-exchange diagrams have to be taken into account.

The peak cross section depends on the Z mass and width, on the Z par-
tial width to the initial state, I'¢, and the Z partial width to final fermions,
I's. It can be written as (Eq. (3.231)):

U;;,ak:(,?f# :12_;1“8_?%
1+ dgED my 'y 1+32

& ’(S) __ _peak

— O.ff 5 + u(,}/_ Z)n 4 uh/|2” (68)

(6.9)

where I'y represents the physical partial width of Z — f f and includes
by definition all radiative corrections. The convolution with the radiator
function in Eq. (6.7), however, takes already into account the initial state
radiation; in order to have a consistent definition for I'c and I'y the QED
final state radiative corrections dggp is removed in (6.9) from the initial
state width I'..

6.3 Luminosity

The precision measurement of the cross section, o; , of a given process @
requires the precise determination of the collider luminosity. Indeed a cross
section is measured through the relation

_ Ni_Ngk

I (6.10)

i



256 The Physics of the Z and W Bosons

where N; is the number of selected events of type ¢ corrected for the con-
tribution of background events N{, and ¢; is the selection efficiency. The
integrated luminosity L is required for the normalization.

The instantaneous luminosity of two colliding eTe™ beams of horizontal
dimension o, and vertical dimension ¢, can be written as

_ NbJrNbffrevkbg

040y

L (6.11)

where Nyt and Np_ are the number of electrons and positrons per bunch,
kp the number of bunches per beam, f,., the revolution frequency. The
& factor represents many systematic effects, due for instance to the offset
between the two beams, the beam dispersion, etc. To give an example at
LEP, with o, = 100pm, o, = 10um, ky = 4, frey = 11245.5Hz, N, =
Nyt = 3.10'2, instantaneous luminosities up to 1032cm =251 were achieved.

The above relation can be used only for a rough evaluation of the inte-
grated luminosity, because of the many systematic uncertainties. In practice
the only way to measure precisely the luminosity of a collider is by using
Eq. (6.10) with a process of known cross section.

At an eTe™ collider the Bhabha scattering process ete™ — ete™ is
chosen because the cross section is large and is dominated by ¢-channel
photon exchange, a well understood QED process. To obtain a precise
measurement of the luminosity, the background, lek, has to be small and
well known, the efficiency, ¢;, has to be high and under control, and the
cross section should be computed precisely from the theory.

At small scattering angle, 6 , the Bhabha cross section is given, at lowest
order QED, by the Rutherford formula:

dofp — 160* (1
a s \#*) "’

which integrated over the acceptance gives

g 16ma® (11
Toh s\ g2 02 :

min max

where 0,,;, and 6,,,, are the polar angles defining the inner and outer
acceptance, respectively, of the detector dedicated to the measurement of
luminosity.

Typical luminosity detectors for experiments at eTe
of two cylindrical calorimeters located at low angles at both sides of the

colliders consist
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interaction point. A tracking device in front can help in the position mea-
surement. If this is not available, fine granularity in the calorimeter is
mandatory.

To compute the expected cross section (ot") precisely, the position Ry
of the inner edge of the detector with respect to the beam needs to be
known. Since 6., ~ RT", where z is the distance of the detector from
the interaction point, one has

g ~ 2A9min ~ 2(

g amzn

Aan'n AZ
—). A2
T —) (6.12)

At LEP excellent mechanical precision of the order of 20 microns was
achieved in controlling the position of the inner edge of the detectors. For
typical values of R,,;, around 60 mm these 20 microns correspond to an
uncertainty in the luminosity AL/L ~ 2ARin/Rmin ~ 7-107% A much
lower precision, Az ~ lmm, was required for the knowledge of the posi-
tion with respect to the interaction point, as the luminosity detectors were
placed at few meters with respect to it.

The precise measurement of # requires both the detector position and
the position of the luminous region to be well understood. The luminosity
is measured by requiring two coincident signals from the two detectors,
placed symmetrically with respect to the interaction point. In this case, for
cylindrical detectors, a common radial displacement, AR, of the inner and
outer limits of the detectors (or of the beam itself) results in a reduction
of the acceptance (and, hence, of the measured luminosity) by

E 2AR 1 + R?nln/R?naz
o " Ropin \1— R2,_ R2

max

An appropriate choice of the event selection cuts can largely remove the
dependence of the luminosity on the relative position between the beams
interaction point and the detector, as proposed in [73]. If two different
fiducial regions are defined for the two luminosity detectors positioned at
the left and right sides with respect to the interaction point, the luminosity
measurement can be made independent of transverse misalignments. One
can show that this can be achieved if the difference in size between the
“loose” fiducial region and the “tight” fiducial region is at least bigger than
twice the maximum expected misalignment. The dependence on longitudi-
nal misalignments is also largely canceled if the definition of loose and tight
is changed from one side to the other side randomly on an event by event
basis. In order to have a reduced dependence on the detector simulation
the precise radial acceptance is normally defined by studying the energy
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asymmetry across calorimeter pad boundaries, or by taking advantage of a
tracker device positioned in front of a luminosity calorimeter.

Random coincidences of off-momentum beam particles can simulate a
Bhabha scattering signal. The rate of this kind of background can be
measured directly from the data using samples obtained through events
triggering only one of the two luminosity detectors, and studying acoplanar
coincidences. Backgrounds due to physical processes are small and below
the permil level at \/Zs) ~ myz. Their contribution to the systematic
error is very small. The overall experimental error obtained at LEP was
between 0.07% and 0.1% , depending on the experiment. The tolerances
in the mechanical structure was the cause of the largest uncertainty. Since
the geometrical uncertainties are not correlated among experiments, the
combined LEP experimental error was close to 0.05%.

A calculation of the theoretical cross section at the permil level is re-
quired to take advantage of the high experimental accuracy. Such a cal-
culation implies a careful treatment of radiative corrections. Since photon
radiation is collinear with the outgoing electrons and positrons, the elec-
tromagnetic showers originating from bremsstrahlung are superimposed to
the electron (or positron) shower in the luminosity calorimeter. This and
other acceptance effects have to be taken into account in the computa-
tion of the theoretical cross section. An uncertainty of 0.11% is estimated
for the overall precision of the Bhabha cross section calculation [74]. The
main component comes from missing sub-leading O(«? L) corrections, where
L =log(—t/m?).

6.4 Centre-of-mass energy calibration in ete™ collisions

A precise measurement of the average center-of-mass energy at the collision
points is required for three important electroweak parameters: the mass
and width of the Z boson, discussed in this chapter, and the W mass, as
measured in ete™ collisions, that will be discussed later.

The average energies of the electrons (positrons) going around the col-
lider (Epeqm ) is given by:

e
Ebeam) = =— Bd17
(Bbeam) 271'74

where B is the vertical magnetic field sampled by the beam, of electric
charge e, on its orbit. Therefore a precise knowledge of the sampled mag-
netic field is required for an accurate measurement of the centre-of-mass
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energy. At LEP each magnet was equipped with one-turn induction coil,
forming a closed electrical loop threading all the dipoles in one octant of the
accelerator. The magnetic field could be measured by applying a current
cycle (including a variation of the current sign) and integrating the induced
voltage in the flux loop. A reference magnet powered in series with the ac-
celerator dipoles was used for frequent monitoring, by using a rotating coil.
The flux loop measurements were checked by filling the machine with pro-
tons. Protons, in contrast to electrons, are not ultra-relativistic and their
velocity could be measured by the frequency of the RF acceleration voltage,
determining the momentum of positrons on the same orbit. These methods
allowed a relative energy error of about 3 - 1074,

An order of magnitude could be gained thanks to a method called res-
onant depolarization. The technique relies on the precession of the spin of
the electrons about the vertical bending field. The precession follows the
Thomas-BMT equation [75] :

as < 4
=0 1
p x S (6.13)
G=__° (14 av)B
Y

where the B field has been assumed to be transverse to the particle velocity;
e is the electron charge, m. is its mass, a the magnetic moment anomaly
and v the Lorentz factor. In an ete™ collider the average polarization
can be different from zero because the emission of synchrotron radiation
polarizes the beam in the vertical transverse direction (Sokolov-Ternov ef-
fect [76]). The amount of polarization depends on the bending radius of
the accelerator, on the beam energy and on several depolarizing effects. At
LEP a 10% vertical polarization was achieved when the beams were not
colliding after compensation of the magnetic fields of the solenoids and ac-
curate steering of the orbit in the vertical plane. The degree of polarization
of a beam can be measured with a laser by switching the polarization of
the laser light. Indeed the differential Compton scattering cross section
depends on the initial polarization of electrons and photons. The change in
rate of back-scattered photons when the circular polarization of the laser
light is switched from left to right measures the electron beam polariza-
tion (Compton polarimetry). The Compton polarimeter used at LEP had
a precision of about 2%.

The component of the spin vector parallel to the B field is conserved, as
can be seen from Eq. (6.13), therefore a vertical polarization is maintained,
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if no perturbation occurs. If an additional B field, directed along the radius
of the ring, is applied at a point along the orbit, the vertical spin vector
gets kicked toward the horizontal direction and start precessing a.y times
during one turn around the ring. If the additional radial B is made oscil-
lating with a frequency in phase with the precession, the electron spin can
be rotated to the horizontal plane after a number of turns. This is called
resonance condition (see Fig. 6.2). Because of stochastic synchrotron radi-
ation horizontal polarization is unstable in e*e™ colliders and its quickly
destroyed, i.e. the beam is depolarized by the resonance condition.

A

0.14 mrad

ol

Ly N

-.0002

0 1 2 3 Turns

Fig. 6.2 Resonance condition between the nominal spin precession with [v] = 0.5 and
the radial perturbation [ bl from the RF-magnet. In an ideal storage ring the polariza-
tion vector is initially along the vertical direction. After being tilted P precesses with v
about its direction. If the perturbation is in phase with the nominal spin precession (in
this example fgep = 0.5 X frev) the polarization vector is resonantly rotated away from
the vertical direction. (From Ref. [78].)

The a7y term is call spin tune and the time-averaged spin tune, vy, of
each electron is proportional to the average beam energy, Epeam:
aeE _ Ebeam
mec?  440.6486(1)[MeV]’

Vo = Qe =

where m. is the mass of the electron and c is the speed of light.

At LEP the resonance condition was induced by a radial oscillating
field from a coil. About 10% turns (= 1 second) were needed to bring the
polarization vector into the radial plane. The resonance condition between
the perturbing radial field and the nominal spin precession is faep = [V]* frev,
where fyep is the frequency of the oscillating field, fiev is the revolution
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Fig. 6.3 Width of the depolarizing resonance excited for energy calibration at LEP.

frequency of the particles, which is precisely known, and [v] denotes the non-
integer part of the spin tune. Its integer part is known accurately enough
from the setting of the bending field. The depolarization occurred slowly
compared to the revolution period and each electron sampled the whole
energy distribution during the process. For this reason the depolarizing
resonance was very narrow, about 0.1 MeV, and Epeq., could be determined
with a precision of ~ 200 KeV, as can be seen from Fig. 6.3.

The spurious effects that can induce systematic errors have been studied
theoretically and experimental bounds on the magnitude of each effect have
been established in dedicated experiments concluding that the upper bound
on the systematic error on a single measurement of Epcqp was 1.1 MeV.
The largest contribution to this error was due to the radial magnetic fields
sampled by the beam inside the quadrupoles and is not correlated between
two measurements done after different optimization of the machine.

The average beam energy could not be measured continuously since in
standard LEP running conditions the beams were not polarized. Indeed
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Table 6.1 Size (A) and error (o) of the effects changing
the LEP center-of-mass energy as a function of time, sep-
arated in three categories : (i) effects changing the dipole
field; (i7) effects changing the vertical quadrupole field
sampled by the orbit; (ii¢) effects changing the energy at
the interaction point.

Effect A o

Temperature variations ~ 3 MeV 0.3 MeV
Rise per fill ~ 3 MeV 1.0 MeV
Horizontal correctors setting ~ 1 MeV 0.4 MeV
Earth Tides (daily) ~ 10 MeV 0.1 MeV
Geological shifts (weeks) ~ 10 MeV 0.3 MeV
RF corrections ~ 10 MeV 0.5 MeV
Vertical collision offsets <1 MeV 0.3 MeV

the beam-beam interaction prevented the building up of the polarization.
Several quantities had to be monitored, such as currents in the magnets,
temperatures, measurement of magnetic fields, status of RF units, in order
to follow the evolution of the energy as a function of time. The main effects
are summarized in Table 6.1.

The magnetic field of the dipoles was monitored measuring the field of
few dipoles instrumented with a NMR. This allowed to discover an unex-
pected rise of the dipole magnetic field during fills, correlated to vagabond
currents that flow along the beam pipe mainly due to return currents of
electrical trains that do not go back to the power supply along the railtracks.

Another important effect was related to the tides of Lake Geneva and
even the earth tides | Indeed while earth was deformed by the gravitational
forces between earth and sun, the LEP diameter changed by a few mm with
a period of 12 hours. Since the length of the LEP orbit was constrained
by the synchronisation of radio-frequency (RF) the diameter variation was
effectively pushing the electrons and positrons off-center in the quadrupoles
where they received an extra deflection. A variation of 13um of the average
relative position of the beam with respect to the center of the quadrupole
magnets induced a change of Epeqm, of about 1 MeV. The effect was moni-
tored by measuring the variation of the position of the beams with respect
to the center of the quadrupoles using the beam position pickups.

A further correction was related to the beam dispersion. The energy
distribution of the particles in each bunch, at LEP was almost gaussian with
a spread (rms) of about 40 MeV at /s ~ my. The average center-of-mass
energy E,, is, to first approximation, the sum of the average beam energies
at the interaction point. A correlation between the transverse position of
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Fig. 6.4 Deviation from the beam mean energy in the LEP arcs.

the particles in the bunch and their energy (dispersion) may induce a shift
in E¢,,,. This correction is proportional to the offset of the centers of the two
bunches at collision point and to the difference between their dispersions.

It has to be mentioned that the mean beam energy is not constant as it
goes around the ring. At LEP for a 45 GeV beam the energy loss due to
synchrotron radiation in the arcs is about 125 MeV per turn. This energy
loss was compensated by the RF cavities placed symmetrically on either
side of L3 and OPAL interaction points (see Fig. 6.4).

Since the RF stations were symmetrically placed the average beam en-
ergy at the interaction points was close to Epeqm,- Deviations occurred if
the accelerating fields seen by the beam at the four RF stations were not
equal or because of misalignment errors of the RF stations with the inter-
action points. The alignment was carefully measured and the operating
status of the RF well monitored, implying a precision on these corrections
of a fraction of MeV.

In conclusion, after all the above mentioned effects were taken into ac-
count, the final LEP luminosity-weighted centre of mass energies for the
running at the Z pole were known with the amazing precision of two parts
in 10° at each collision point, allowing uncertainties on mz and I'z of about
1.5 MeV [77, 78].
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6.5 Selection of hadronic and leptonic Z decays

At eTe™ centre-of-mass energies around m z the production rate of Z bosons
is two order of magnitudes larger than other processes, within typical exper-
imental acceptance. The most important background comes from the inter-
action of two photons of low virtuality radiated from the colliding beams.
Such a background typically consists of low multiplicity events, with a total
visible energy much lower than \/(s) and can be easily distinguished from
the Z decays.

Most of Z decays consist in multihadronic events, produced by the frag-
mentation of ¢q pairs. They account for about 70% of the total cross
section and carry most of the weight in the lineshape analysis. As can
be seen in Fig. 6.5, where the sum of charged track momenta versus the
charged track multiplicity is shown, they show a large visible energy and
multiplicity in contrast to the two-photon background. They can also be
easily separated from the very low multiplicity leptonic Z decays. The
typical efficiency of selection cuts, based on the analysis of charged tracks,
is greater than 97% for multihadronic Z decays, with a contamination of
two-photon events and leptonic (mostly tau-pair) events of less than 1%.
The efficiency can be increased to values larger that 99% if the information
coming from calorimeters is added. The main cause of inefficiencies is due
to low-multiplicity hadronic decays going down the beam pipe. At LEP
each experiment accumulated about four million hadronic Z decays, cor-
responding to a statistical error below 0.1% on the hadronic cross section.
The most important systematic error is related to the understanding of the
two-photon background. Since the latter is not resonating it can be studied
by varying the selection criteria and measuring the effect of the variation
at different centre-of-mass energies.

Only about 10% of Z bosons decay to charged lepton pairs. However,
these events have very distinctive signatures, such as low multiplicity ac-
companied by large visible energy. The three classes (electron, muon and
tau pairs) can be separated by identifying the energy deposits in the elec-
tromagnetic calorimeter (electrons) and by their penetration through the
iron of hadron calorimeters (muons). The identification efficiency for elec-
tron and muon pair is typically larger than 95%. Tau pair events feature
two neutrinos (v,) produced in the decays of the two tau leptons. The two
v;’s are emitted essentially in opposite directions; this signature can be ex-
ploited by requiring events with large missing mass. Typical identification
efficiencies for tau pairs are around 85%. Another source of inefficiency
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Fig. 6.5 The sum of charged track momenta versus the track multiplicity, for various
final states at centre-of-mass energies around the Z peak.

is due to the geometrical acceptance, defined by a cut on the production
angle of the scattered lepton (), measured with respect to the direction of
the electron beam. The cut on |cosf| ranges from 0.8 to 0.95, depending
on the experiment. For eTe™ — eTe™ scattering it is useful to define an
asymmetric acceptance cut in order to reduce the effect of the t-channel
contribution that is particularly important for low values of 6. Indeed this
contribution has to be subtracted in order to extract the Z parameters;
the uncertainty on the subtraction is an important source of systematic
error. At LEP the ete™ — eTe™ scattering cross section is measured for
cosf < 0.7 . The two photon contamination is small and is essentially
affecting only the tau pair channel (about 2%). The cross contamination
among different lepton classes has to be taken into account when measuring
the individual cross sections; if lepton universality is assumed this source
of systematic uncertainty can be avoided by designing a common lepton
selection. At LEP each experiment collected about half million Z decays
into charged leptons.
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6.6 Measuring the Z lineshape parameters

In order to optimize sensitivity in the determination of the peak position
and the width of a resonance, data have to be collected on both peak sides,
where the cross section is approximatively at half maximum. At LEP most
of the integrated luminosity was collected at three scan points, namely at
peak and at the two sides, separated by about 1.8 GeV. The errors on
the Z mass and width depend on the measurement of the cross sections at
the two off-peak points. The statistical error on the cross section can be
made small by collecting enough integrated luminosity; in this condition the
errors on the two parameters are dominated by the knowledge of E_5 and
E42 , the luminosity-weighted center-of-mass energies at the two off-peak
points. One can write

Amg =~ 0.5A(E+2 + E_Q) (614)

AT, ~ FizA(EH —E_3) =0.71A(E;2 — E_») (6.15)
(B2 —E_s)

showing that the error on the mass depends on the error on the sum and the
error on the width depends on the error of the difference of centre-of-mass
energies. As discussed in Section 6.4 the energy of the accelerator was
measured at LEP with the amazing precision of 2 x 10~° | yielding an error
of 1.5 MeV on the Z mass. This error is given by the correlated centre-
of-mass energy error between the two off-peak points added in quadrature
to \/Li of their uncorrelated error. When the statistical error on the cross
sections is included a total error of 2 MeV on the Z mass is obtained. As
far as the width is concerned only the uncorrelated errors in £, and E_
contribute, yielding again an error of 1.5 MeV. The width is also affected
by the centre-of-mass energy spread (ecaps ~ 56 MeV) that modifies the

cross-section by

2

So ~ —0.5%6’3%@ : (6.16)
The energy spread causes an apparent reduction of the cross section of 1.1
permil at /s = mz and an apparent increase of 0.5 permil at +2 GeV
from the Z peak, increasing the apparent Z width by about 4 MeV. This
correction is determined with a precision of 2.5% from the machine optics,
giving a negligible systematic error. A total error of 2.5 MeV on the Z
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Table 6.2 Average line shape
parameters from the results of
the four LEP experiments as-
suming lepton universality. The
values of Re, Ry, R+ are also in-
dicated.

Parameter Average Value
mz(GeV)  91.187540.0021
I'z(GeV) 2.495240.0023
o .4 (mb) 41.54040.037

Ry 20.767+0.025
Re 20.80440.050
Ry 20.78540.033
R+ 20.76440.045

width is obtained when the statistical error and the uncertainty on the
background from non-resonating processes are taken into account.

As described in the previous Section the cross sections are measured
separately for the Z decay to hadrons and to the three lepton species.
The reduced cross sections are then extracted from the data by applying
the formalism described in Section 6.2. The experimentally-measured re-
duced cross sections are compared to Egs. (6.8), (6.9) and the lineshape
parameters are determined in a global fit to the data. Because of the larger
statistics the hadronic decays are dominating the measurements of the mass
and the width. In the global fit the decays into charged lepton pairs are
incorporated either by introducing in the reduced cross sections the three
leptonic partial widths (I'c, ', and ') or by assuming lepton universality.
This assumption implies three equal leptonic widths, after small correc-
tions for mass effects. With the current experimental precision, only the
correction for the tau is non-negligible (0.23%). When lepton universality
is assumed, a common leptonic width, Iy , is determined, corresponding
to the width of any single flavour as if it were massless. In this case four
parameters are needed to describe the centre-of-mass dependence of the
hadronic and leptonic cross sections. The set of parameters chosen for the
LEP measurements are the Z mass (mz), the Z width (I'z), the ratio of
hadronic to leptonic partial width Ry = T';, /Ty and the hadronic peak cross
section 02. The choice of these parameters is motivated by their small
correlations. If lepton universality is not assumed, Ry is replaced by three
analogous quantities, Re, Ry, R+.

The result of the four-parameter fit to the Z lineshape is given in ta-
ble 6.2. The values of R, R, and R, from the six-parameter fit, are also
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shown, demonstrating that the lineshape analysis does not unveil violation
of lepton universality. As can be seen in Figs. 6.6 and 6.7 !, the Z width
is sensitive to the values of the top and Higgs masses, while R;, being
a ratio of widths, is essentially independent of these parameters. Indeed
for Ry, the dependence on the top and Higgs masses originating from self-
energy effects cancels, leaving a small residual dependence coming from the
non-universal final state vertex correction (the same feature is discussed in
Subsection 4.1.3 for the Ry, case). Because of its dependence on the strong
coupling constant, Ry is an excellent variable for determining as(m%) by
assuming the validity of the electroweak theory to compute the ratio of
couplings of quarks and leptons to the Z. Using the measured value of Ry
one obtains:

as(m%) = 0.122 £ 0.004

where the formulas relating R, with the QCD prediction [79], known to
O(a?), have been used. The residual dependence on the Higgs mass, cal-
culated by varying Mgizes from 114 GeV to 1 TeV accounts for 0.002 on
the error on as(m%) .

The measurement by the four LEP collaborations of the hadronic cross
section as a function of the centre-of-mass energy is shown in Fig. 6.8.
Decays of the Z bosons to neutrino pairs accounts for about 20% of the
total decays, if three species (families) of light neutrino (i.e. much lighter
than %Z) are assumed. Within the Standard Model the ratio of the partial
Z decay width to a neutrino species (I',) over the partial decay width
to a lepton species (T'y) is T, /Ty = 1.991 £ 0.001. The small error in
the prediction for this ratio results from the large cancellations of the top
and Higgs mass dependences. As can be seen in Fig. 6.8 the hadronic
cross section at peak is strongly dependent on the number of light neutrino
families. Additional families yield a reduction of the peak cross section
and an increase of the total width of the resonance. On the other hand the
dependence of the hadronic peak cross section on other parameters, such as
the top mass, the Higgs mass or the strong-coupling constant is very small.
The hadronic peak cross section is an ideal variable to measure possible
Z decays to additional invisible modes or to probe deviations from the
Standard Model without the uncertainty related to the lack of knowledge
in some of its parameters. For example, a hypothetical extra heavy neutral
boson, Z’, mixing to the Z would modify the expected cross section at
peak. The main contribution to the error on the hadronic cross section

LSimilar figures for other observables can be found in Ref. [80].
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at peak is given by the theoretical error on the small-angle Bhabha cross
section used for the luminosity calculation (Section 6.3).
The width of the Z to invisible states , I';n,, can be written as

Lo =Tz — T, — 300.
The number of light neutrino families IV, can be obtained from the ratio of

the invisible width to the leptonic width, assuming that the invisible width
is only due to neutrino final states:

Tine Tz 127Rs 1 /9 r,
=2 _R-3=(—-)?-R—-3=N,-Z 6.17
Fe Fg ¢ (Ugadm%) ¢ Fg ( )

where the dependence on o), has been made explicit. Using the Standard
Model prediction for T', /Ty the result is

N, =2.984 £ 0.008

in agreement (within 2 o !) with the existence of 3 light neutrino families.

The number of light neutrino generations can be measured also from the
rate of single photon events above the Z peak. These events, showing only
a photon of energy

2
s—my

E., =
T2V)

in the apparatus, originate from the initial state radiation process ete™ —
yvv and their rate is proportional to the number of families. The result
obtained with this process [81] is in agreement with the lineshape analysis,
but its precision is one order of magnitude worst.

In conclusion from the analysis of the lineshape the following fundamen-
tal results are obtained:

e a precise measurement of the Z mass, a physical constant known with
the precision of 2 x 107° |

e a measurement of I'z , an observable sensitive to the top and Higgs
mass through one loop radiative corrections ,

e a measurement of the strong coupling constant with little theoretical
dependence, from the ratio between the hadronic to leptonic widths,
Re,

e the determination of the number of light neutrino families.

The study of observables sensitive to the top and Higgs mass through
loops continues in the next Chapters, with the measurement of the decay
width of the Z to bb pairs, the measurement of the electroweak mixing angle
(sin? @y ), and the measurement of the mass of the W boson.
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Fig. 6.8 The hadronic cross section, as a function of the centre-of-mass energy, from
the combination of the measurements of the four LEP experiments. The predicted cross
section assuming 2, 3 or 4 light neutrino families is shown.



Chapter 7

Z Decays to Heavy Quarks

The detailed study of Z decays to a pair of heavy quarks (cé or bb) con-
stitutes one of the important heritages of LEP and SLC. The relevance of
hadronic Z decays as a tool to test electroweak interactions has already
been stressed in Chapter 4. The Zbb vertex, in particular, plays an impor-
tant role in precision tests of the MSM as it is very sensitive to electroweak
corrections involving the top quark. A precise determination of the partial
width of Z decays to b quarks, R, = I'(Z — bb)/T(Z — hadrons), mea-
sures these corrections and constrains the main parameter that regulates
them, the mass of the top quark. The corresponding charm-quark quantity,
R. =T(Z — ¢¢)/T(Z — hadrons), is largely independent from electroweak
parameters and its measurement provides an important cross-check.

From the experimental point of view the presence of two heavy-flavoured
hadrons in the final state has important consequences. Such events have
distinctive properties, and can be experimentally disentangled from light-
quark Z decays on a statistical basis, i.e. samples with reasonably low con-
tamination from other Z decays can be selected. The data selection proce-
dure is called tagging: cuts are applied on suitable discriminating variables
and interesting events are selected with higher efficiency than background.
The quality of a tagging procedure is defined by two parameters: the ef-
ficiency of selecting interesting events and the purity, i.e. the fraction of
interesting events over the total. Heavy quark tagging is discussed in de-
tail in the present Chapter. This discussion is required to understand the
heavy quark measurements presented here and in Chapter 8, dedicated to
the measurement of asymmetries. Heavy quark tagging is described in the
typical experimental environment of ete™ colliders; many concepts, how-
ever, can be translated in the more difficult experimental condition typical
of hadron colliders as will be recalled at Chapter 10.
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Before discussing heavy-quark tagging and the partial widths measure-

+

ments, some general properties of hadronic events in eTe™ collisions are

briefly reviewed.

7.1 General properties of hadronic events at the Z

Hadronic events are characterized by high particle multiplicity: at the Z
resonance on average about twenty charged particles per event are pro-
duced (Fig. 6.5), accompanied by a similar number of neutral particles. As
the Z boson is considerably heavier than quarks, final state particles tend
to be relatively collimated around a specific axis, as shown in the event
represented in Fig. 7.1. The main axis of the event can be evaluated as the
direction of the unit vector n that maximises the thrust 7"
o Xl
Salwil
where p; represents the momentum of particle ¢ and the sum is calculated
over all reconstructed particles of the event. The thrust axis is taken as an
estimator of the quark-antiquark flight direction: a plane perpendicular to

(7.1)

the thrust axis and containing the interaction vertex, i.e. the point where
the Z is produced, divides the event in two halves (called hemispheres), of
which one typically contains the quark and the other the antiquark.

Emission of hard gluons in hadronic Z decays is a relatively frequent pro-
cess. Hemispheres containing hard gluons feature broader jets of particles
and can show a “multi-jet” structure. The value of T itself (0.5 < T < 1)
is an indicator of the presence of hard gluons: broader jets or multi-jet
events tend to yield a lower T. A satisfactory definition of jets requires
the introduction of jet clustering algorithms. Such algorithms are based on
iterative procedures and on the definition of a metric, i.e. a “distance” y;;
between particle ¢ and particle j. A widely used metric [88] is related to
the invariant mass of the two-particle system

2E¢EJ(1 — COS 9”)

vis

Yij (7.2)
where Ej;, E; are the particles’ energies and 6;; their opening angle. The
term EZ2,, is the square of the energy of all particles used in the event.
The iterative algorithm proceeds as follows: the pair of n particles with
the smallest value of y;; is replaced by a pseudoparticle (jetlet). The four-

momentum of the jetlet is recomputed according to a recombination scheme.
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Fig. 7.1 Display of a Z hadronic decay collected by ALEPH. The reconstructed particles
are clustered in two back-to-back “jets”.

In a widely used scheme (“E” scheme) the four momentum of the jetlet is
simply the sum of the four momenta of the two particles. The clustering
procedure is then iterated with n — 1 objects with the jetlet treated as
a new particle. The procedure is repeated until all y;; are larger than
a predefined value, Y.y, called jet resolution parameter. At the end of
the procedure N jets, with definite four-momentum, are obtained. The
term EZ;
values of y.,+ to be used when different sets of particles are employed in the
event reconstruction. In some of the measurements charged particles only
are used, as measured by tracking devices, accounting typically for about
65% of the visible energy at LEP. In most of the final LEP measurements,
however, jets were reconstructed using also neutral particles detected from
their energy deposits in the calorimeters (Chapter 5). In this case the visible
energy is much closer to the centre-of-mass energy. The N-jet rate depends

in Eq. (7.2) simply represents a normalization allowing similar

on the chosen value of y.;: as an example for hadronic Z decays 9yt = 0.01
yields about 65% of two-jet events, about 30% of three-jet events and 5%
of events with higher jet multiplicities.
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Fig. 7.2 Diagram of the b — £~ decay (a). Diagram of the ¢ — £T decay (b). Example
of a specific exclusive decay: B~ — D%~ 5, (c).

7.2 Tagging Z decays to b and ¢ quarks

A variety of methods have been used to select samples enriched in Z de-
cays to heavy quarks; the most important of such methods exploits the
nonzero lifetime of heavy-flavoured particles and the decay channels with
leptons (electrons or muons). A review of the different heavy quark tagging
methods is given below.

7.2.1 Lepton tagging

Heavy flavoured hadrons have sizable decay widths into final states con-
taining an electron or a muon and the corresponding neutrino. The decay
width into final states with a tau is suppressed by phase space, because of
the large tau mass; in addition, the identification of tau leptons in hadronic
environment is exceptionally challenging, therefore final states with tau lep-
tons are not interesting for b tagging (unless the tau subsequently decays to
an electron or a muon): in the following the word lepton is used to indicate
electrons or muons only. Diagrams for heavy quark semileptonic decays
are shown in Fig. 7.2; the light quarks inside the decaying hadron (spectator
quarks) remain available for the hadronization of the final state quark.
The average semileptonic branching ratios of b and ¢ hadrons produced
in Z decays BR(b — {) and BR(c — ¢) are both around 10%. The third
main source of leptons in heavy flavour Z decays is the cascade of b decaying
to ¢, with the ¢ hadron decaying semileptonically (Fig. 7.3): the branching
ratio BR(b — ¢ — /) is again around 10%, as almost all b decays yield a
charmed hadron in the final state. There are several other decay chains
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Fig. 7.3 The cascade b — ¢ — £+ decays.

@ (b) (©

Fig. 7.4 Other semileptonic decays: b—¢—+£¢~ (a), b—>7" — £~ (b), and
b— Jhp — 1L~ (c).

yielding an electron or a muon in the final state; the most relevant, with
branching ratios of the order of 1%, are the b decay chains b — cc,¢ —
£~ usually abbreviated as b — ¢ — ¢~, and b — 77 — ¢7; in addition, b
hadrons can produce a Ji) (or a ¢’), which in turn can decay into two
opposite-sign leptons b — JAap — £1¢~. The corresponding diagrams are
shown in Fig. 7.4. It should be noted that all the decay channels have the
correct correlation between the lepton charge and the parent quark charge,
except the b — ¢ — ¢* channel, that has the wrong correlation, and the
b — Jh) — €4~ channel, where if one lepton only is selected the charge
information is random.

The sources of leptons described so far are usually refereed to as prompt
leptons, i.e. leptons that are produced from the decay of a heavy hadron,
without any long-lived particle in the decay chain. A summary of the
prompt lepton sources with their abundance is shown in Table 7.1.
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Table 7.1 Sources of prompt leptons in
b and c¢ decays. The branching ratios
quoted refer to the b hadron and ¢ hadron
mixtures produced in the hadronization
of quarks from Z decays.

Source Branching ratio
b— 4~ 0.106 4 0.002
b—c— £t 0.081 + 0.002
b—c— 0~ 0.016 4+ 0.004
b—71" >~ 0.0042 + 0.0006
b— Jap — £T¢~  0.00072 & 0.00006
c— 0t 0.098 £ 0.003

Another important source of leptons are the decay in flight of pions
and kaons to muons. Charged pions are produced in large multiplicity in
events of any flavour from the hadronization of the primary quarks; they
are produced also in many decay channels of the heavy-flavoured particles
in b and ¢ events. The average energy of pions produced in Z decays is in
the GeV range, therefore the decay inside the tracking volume (typically
around 1 m diameter) is a relatively rare event; however, when such a decay
happens, the resulting muon is indistinguishable from a prompt muon in
the calorimeters and muon detectors of the experiment. The production of
kaons in the parton shower is suppressed by about a factor of 10 compared
to pions. However, kaons are produced in the hadronization of the primary
quarks in Z — s§ decays, and are frequently produced also in many decay
channels of b and ¢ hadrons. Charged kaons decay frequently to muons
and, less frequently, also to electrons. Although the production of kaons
in hadronic Z decays is overall almost a factor of 10 less copious than
the pion production, they have substantially higher mass, and therefore
higher probability of decaying inside the tracking volume. Overall, the
contributions of 7 — p and K — p decays to a sample of muon candidates
selected in hadronic Z decays are often of comparable size. Another source
of leptons is the conversion of photons in the detector material. The size of
such a source obviously depends on the detector, and is one of the reasons
why the material budget of tracking systems should be kept as low as
possible. Particularly relevant is the material close to the interaction region
(beam pipe and vertex detector), as photons converted near the primary
vertex of the event give rise to charged particles that appear to come from
the Z decay, and are therefore difficult to reject.

These sources of leptons are referred to as non-prompt leptons, and, as
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mentioned above, are virtually indistinguishable from prompt leptons in
the calorimeter system of the detector. However, it is possible to build
discriminating variables that can be used to reduce their contribution to
the sample of lepton candidates. If the tracking system provides some
measurement of the ionisation of the charged particles, such information can
be used to reject some K — p decays: if the decay happened sufficiently far
from the interaction point the average ionisation measured will be closer to
that expected for a kaon than to that expected for a muon. The criterion
is not effective for pion decays, as there is basically no difference in the
ionisation of pions and muons at the energies considered. Another useful
criterion is the quality of the measured trajectory: if there is a decay in flight
inside the tracking volume, the trajectory should contain a kink, giving a
poorer x2 of the fit used to determine the trajectory; in some cases the kink
can even be identified by reconstructing the two track segments separately;
this criterion is again more effective for kaon decays than for pion decays,
as the higher ¢g-value gives on average more pronounced kinks. Electrons
from photon conversions can be rejected by looking for tracks that fulfil
loose electron identification criteria and that form a good vertex with the
electron candidate, in a region of the detector with substantial material
density.

The third class of lepton candidates are fake leptons, i.e. hadrons that
fulfil the lepton identification criteria. A fake muon can be selected when
a pion produced in the hadronic shower inside the hadron calorimeter de-
cays to a muon, and this muon is sufficiently collimated with the parent
hadron that originated the shower (this mechanism is sometimes called
punch through). Alternatively, the hadron can profit from regions with
reduced material inside the calorimeters to cross them without interact-
ing and reach the muon detectors (sail through). For electrons, the mis-
identification can happen when a photon enters the calorimeter very close
to a charged particle, producing an electromagnetic shower that is geomet-
rically compatible with the incoming charged track. If the photon energy
is close enough to the charged particle energy (within the calorimeter res-
olution), the charged particle can be identified as an electron. For the
LEP detectors and SLD the hadron rejection is of the order of 1072, giving
low hadron contamination in the lepton samples, despite the initial un-
favourable ratio of hadrons to prompt leptons in hadronic events, of about
100:1.

The different sources of leptons can be discriminated on the basis of
their kinematic properties and of the topology of the jets to which they be-



280 The Physics of the Z and W Bosons

long. The discriminating variables typically provide also further rejection
against the background of fake leptons. Because of the large mass of b and ¢
hadrons, the radiation of gluons is suppressed in Z — bb and Z — c¢ events:
on average 70% of the beam energy is carried away by the heavy-flavoured
hadron in b events, and 50% in ¢ events, giving high-energy leptons in the
decay chain. Another important feature, especially for semileptonic b de-
cays, that is still a consequence of the high mass of the decaying hadron, is
that the lepton in primary (b — ¢7) decays tends to have a larger transverse
momentum with respect to the jet to which it belongs. The experiments
have optimised over the years the algorithms to cluster the reconstructed
particles into jets, and to calculate the transverse momentum of the lep-
ton candidates, in order to maximise the separation between primary and
cascade decays, that is crucial especially for the forward-backward asym-
metry measurements (because of the wrong charge information carried by
the lepton in b — ¢ — £ decays).

An example of discriminating variables between the different lepton
components is given in Fig. 7.5, from the ALEPH simulation. The two
variables shown are the lepton momentum and its transverse momentum
with respect to the jet axis, where the jet is re-clustered excluding the lep-
ton: b — ¢~ decays are characterised by a higher average momentum p and
transverse momentum p,, ¢ — £ decays have smaller p; and b — ¢ — £+
decays have small p and p . Selecting leptons with high p and p , a purity
of about 80% of primary b — £~ decays can be obtained, with an efficiency
around 25%), thus retaining about 6% of jets associated to b quarks from Z
decays [89].

The lifetime tag, discussed in the next Subsection, has an intrinsically
superior performance as a tool to select Z — bb decays and it is therefore
the main way to measurements of the partial widths. However the lepton
tag has two specific interesting features, that makes it competitive for the
measurement of forward-backward asymmetries:

e lepton identification mostly relies on calorimeters, and is typically effec-
tive in a wide angular range (| cos@ |< 0.95); the lifetime tag, instead,
is fully effective in a restricted angular range defined by the vertex de-
tector acceptance (typically | cosf |< 0.7), while the forward region
carries larger statistical weight in the asymmetry measurements;

e the lifetime tag does not provide any straightforward and effective way
of telling the quark charge, while in the lepton tag such information is
directly provided by the lepton charge.
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Fig. 7.5 Distribution in the (p,p ) plane of lepton candidates originating from b — £~
decays (a), from b — ¢ — £1 decays (b), from ¢ — £ decays (c), and of non-prompt or
fake leptons (d). The transverse momentum p is computed with respect to the jet axis,
after excluding the lepton from the jet. (Courtesy of Duccio Abbaneo).

For these reasons the identification of leptons in hadronic environment has
been the first method used for the measurement of the heavy flavour asym-
metries and one of the design requirements for the detectors.

From the discussion of this Section it appears evident that any lepton
selection will tag Z — bb decays more efficiently than Z — cé decays, for
two main reasons:
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1. the lepton yield in Z — bb events is roughly twice the yield of Z — cé
events, due to the presence of direct and cascade decays;

2. leptons from b decays (especially from b — ¢~ direct decays) have dis-
tinctive kinematic properties and can be efficiently separated from the back-
ground of fake and non-prompt leptons, while leptons from ¢ decays have
intermediate properties between b — £~ decays and background.
Therefore a lepton selection is not by itself a mean to select a high-purity
sample of Z — c¢ decays; nonetheless discriminating variables as those pre-
sented above can be used to select samples with different relative content
of Z — c¢ and Z — bb decays: a comparative analysis of such samples may
allow to extract R, and R, (or the b and ¢ forward-backward asymmetries),
at the same time.

7.2.2 Lifetime tagging

The most effective way of selecting Z — bb decays relies on the nonzero
lifetime of particles containing a b quark. The average lifetime of b hadrons
is around 1.5 ps, with small differences among the various species; combined
with the average boost at the Z cms energy (v = 6), it gives a decay
length of about 2.7 mm on average: (L) = (y8)cr, where 7 is the particle
mean lifetime. Such a distance is one order of magnitude larger than the
typical precision on the secondary vertex reconstruction, if the charged
decay products of the b hadron are within the vertex detector acceptance.
An example of good separation between the primary vertex of the event
and the b hadron decay vertex is shown in Fig. 7.6.

Alternatively, instead of identifying the b decay products and fitting
them to a common vertex, the b hadron can be tagged in a more inclusive
way by the presence of tracks that are incompatible with the primary vertex.
The impact parameter of a track is defined as the minimum distance of the
track from the primary vertex of the event; its sign is defined using the
direction of the jet to which the track belongs (taken as an estimator of the
b flight direction), as in the sketch of Fig. 7.7. The sign is considered as
positive when the track crosses the jet direction before the primary vertex
and negative otherwise. The impact parameter of a track is § = vy(ct sin ¢,
where ¢ is the lifetime of the parent particle and ¢ is the decay angle. As
the average decay angle is (sin@) = 1/8v, the average impact parameter
can be written as (§) = cr, where 7 is the parent particle mean lifetime.
Particles from b decays are expected to have a positive impact parameter
of about 450 pm, that is again about one order of magnitude larger than
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Table 7.2 Production fractions of the different b hadron
species in the hadronization of b quarks from Z de-
cays, along with their measured lifetimes and masses.
The fraction quoted for A, also accounts for heavier b

baryons.
Particle  Fraction Lifetime Mass
BO 0.388 1.542 £0.016 ps  5.279 GeV
B~ 0.388 1.674 £0.018 ps  5.279 GeV
Bs 0.106 1.461 £0.057 ps  5.370 GeV
Ay 0.118 1.229 £ 0.080 ps  5.624 GeV

34-07-02  9:1
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Fig. 7.6 Event with a reconstructed b decay vertex, recorded by the ALEPH detector.
The ellipses around the primary and the secondary vertexes represent the estimated

uncertainties in the reconstructed positions.

the resolution, if the track is measured in the vertex detector.

Charmed particles also have significant lifetime, typically around 0.5 ps,
except for the DT, that has a lifetime of about 1 ps. The hadronization
of charm quarks from Z decays produces a ratio of vector (D**,D*?) to
scalar (DF, D) to mesons of about 1.6. While the D** always decays to a
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primary
vertex

Fig. 7.7 Definition of the track impact parameter and of its sign.

Table 7.3 Production fractions of the different ¢ hadron
species in Z — cc events, along with their measured life-
times and masses. The fraction quoted for A. also ac-
counts for heavier ¢ baryons.

Particle  Fraction Lifetime Mass
Dt 0.234 1.051 £0.013 ps  1.869 GeV
DO 0.545 0.412 +0.003 ps  1.865 GeV
Dsg 0.125 0.490 +0.009 ps  1.968 GeV
Ac 0.096 0.200 + 0.006 ps  2.285 GeV

D (with a photon or a 7%), the D** decays to D* with a branching ratio
of about 32%, the rest decaying in the channel D7+, For this reason, in
terms of the weakly-decaying hadrons, Z — c¢ events contain many more
neutral than charged mesons, as shown in Table 7.3.

Charm events represents the largest background to b tagging. Addi-
tional discrimination between the two flavours can be achieved exploiting
the larger mass of b hadrons (Tables 7.2 and 7.3), and the larger charged
particle multiplicity of b hadron decays (about 5 charged particles on aver-
age) compared to ¢ hadron decays (about 2.2 charged particles).
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Also in light quark events there can be particles that do not originate,
or do not appear to originate from the primary vertex, and can therefore
be mistaken as decay products of heavy-flavoured particles. Such particles
can be:

- products of early decays of A, X%, K&, K+ or 77;

- electrons from photon conversions;

- electrons that radiate a bremsstrahlung photon early in the tracking sys-
tem, and therefore have a kink in their trajectory;

- similarly, pions that make a soft nuclear interaction in the tracking system,
and therefore have a kink in their trajectory.

Such sources of background can be reduced by identifying and rejecting
photon conversions, as well as A and Kg decays, and imposing cuts on the
quality of the reconstructed particle tracks.

The determination of the primary vertex

The first crucial step in building a lifetime tag is an accurate determination
of the Z decay point, usually called primary vertex of the event. This
applies both to algorithms based on the impact parameter significance of
individual tracks, and to algorithms based on the reconstruction of vertices
with significant separation from the primary vertex.

The luminous region depends on the optics of the accelerator, and can
vary with time. At LEP it had a typical size of about 10 gm in g, 100 um
inx and 1 cm in z. The position of the luminous region is determined using
chunks of events (typically 100) and calculating the impact parameter of the
tracks with respect to a nominal position. The information on the position
of the luminous region is then used as a constraint in the determination of
the primary vertex of each event of the chunk.

The reconstruction of the primary vertex in heavy flavour Z decays is
a non-trivial problem because of the presence of the decay products of the
heavy hadrons, that are actually not originating from the primary vertex.
A common solution consists in reconstructing jets (with a clustering param-
eter optimized for the purpose) and using only the projection of the tracks
on the plane orthogonal to the jet direction to measure the position of the
primary vertex: in the case of the decay of a heavy hadron, the effect due
to its nonzero lifetime is eliminated to the extent to which the jet direction
is a good approximation of its flight direction (see sketch of Fig. 7.8). The
precision can be further improved in a second step, by adding also the com-
ponent parallel to the jet direction for the tracks that are compatible with
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(@ (b)

Fig. 7.8 Tracks coming from the decay of a heavy hadron, represented with dashed
lines (a), appear to come from the Z decay point (b) when projected onto a plane
perpendicular to the hadron flight direction, represented with the dotted line. In the
analyses, the b hadron flight direction is approximated by the reconstructed jet direction.

the first determination of the primary vertex. The precision that can be
achieved with such an algorithm is about 50 pgm x 10 gm x 60 pm in the
Xy X z coordinates, where the precision in the y view is entirely dominated
by the constraint on the luminous region. In the final R, analyses, in or-
der to control some specific systematic effects, the LEP collaborations have
chosen to determine independently the position of the primary vertex in
the two event hemispheres (defined as usual using the thrust axis). Each of
the two determinations is degraded by about 30% in the = and z views, but
the loss of precision is more than compensated by a better understanding
of the correlations between the two hemispheres (see Subsection 7.3.1).

At SLC the beam spot was much narrower than at LEP. In the xy plane
the beam size was of the order of a micron, while the beam motion resulted
in a spread of about 7 pum. Such a value is considerably smaller than the
resolution that would be achieved by fitting the tracks to a common vertex
event by event. Therefore the average beam position (measured on about
30 events) was taken as estimate of the primary vertex in the zy plane. In
the z projection the beam spot was about 700 pum long. Event-by-event
reconstruction yields a precision of about 15 pum in light quark events, that
degrades to about 30 um in Z — bb events, due to the presence of heavy-



Z Decays to Heavy Quarks 287

flavoured particles.

Tagging with track impact parameters

The relevant variable that can be used to tag the presence of particles with
nonzero lifetime is the impact parameter significance S of the tracks of
reconstructed charged particles, that is the impact parameter defined as
in Fig. 7.7, divided by its estimated uncertainty. The uncertainty results
from the propagation of the estimated error on the primary vertex, and
the uncertainty on the track parameters, including the effect of multiple
scattering. The impact parameter resolution can be parametrized as an
asymptotic term, given by the precision and position of the reconstructed
coordinates closer to the primary vertex, a momentum-dependent term ac-
counting for the uncertainty due to multiple scattering, and a polar-angle
dependent term that accounts for the increase of the extrapolation length
from the interaction point to the vertex detector layers. At LEP the impact
parameter resolution for 45 GeV muons at cos ~ 0 was typically between
15 pm and 30 pm in the r¢ view, and between 10 pm and 100 ym in the 2
view. At SLD a resolution better than 10 ym was achieved in both views,
thanks to the smaller beam spot and a high precision vertex detector very
close to the interaction point.

Tracks that originate from the Z decay point are expected to have an
impact parameter significance normally distributed around zero, while the
presence of a few tracks with large and positive impact parameter signifi-
cance can be used as a tag of a Z decay to heavy quarks. The tracks that
populate the negative side of the impact parameter distribution constitutes
an important control sample that is used to measure the resolution directly
from the data and calibrate the tag. The negative side of the impact param-
eter distribution is fit with a functional form D(S) (typically a Gaussian
plus some exponential components), and then for a track with measured
positive impact parameter significance S, a variable P is defined as [90]:

-5
P(S) = [ D(x)dx . (7.3)

The variable P(S) has the physical meaning of the probability that a track
with positive impact parameter significance S originates from the primary
vertex (or, better, the probability that a track originating from the primary
vertex has an impact parameter significance larger than the measured one).
Tracks coming from the primary vertex have a flat distribution of P be-
tween 0 and 1. By construction P accounts for effects due to non-gaussian
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resolution tails in the data, as it is derived from D(S) that is measured on
the data.

Probabilities measured for different tracks can be combined: given a
group of IV tracks, the quantity

=0 7
with
N
n=1[»;. (7.5)
j=1

represents the probability that the N tracks are originating from the pri-
mary vertex (or that a group of N tracks originating from the primary
vertex have a set of impact parameters equally or more incompatible with
it). An example for all tracks in a given hemisphere is shown in Fig. 7.11.
This technique can be used to define tagging variables on set of tracks of
particular interest: typically in R; measurements the analysis is made on
hemispheres, for other applications individual jets are considered, or even
the whole event.

The performance of the method depends crucially on the use of sets of
well reconstructed tracks, with minimal tails on the negative S distribu-
tion. The analyses heavily relying on the impact parameter lifetime tag
are typically restricted to the acceptance of the vertex detector, and ap-
ply stringent quality cuts on the tracks considered, including rejection of
photon conversions and decays of long-lived particles, as discussed above.
Another important point is the optimization of the jet direction reconstruc-
tion, which is used to sign the impact parameter: signing errors give rise
to tails in the negative side of the impact parameter distribution, spoiling
the performance of the tag.

It is worth noting that such a tag implicitly takes advantage of the
larger decay multiplicity of b hadrons compared to ¢ hadrons, when the
probability of all tracks of a hemisphere (jet or event) are combined. As
for the lepton tag, the method is suitable for selecting high-purity Z — bb
samples, while ¢ events have intermediate properties between b events and
light quark background.

Decay length reconstruction

The impact parameter tag described above relies on the presence of tracks
that are measured to be incompatible with the Z decay point: no informa-
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tion is used about the compatibility of those tracks with the hypothesis of
coming from a common point in space: the decay point of the heavy hadron.
Such a fact on one side is indeed a limitation of the impact parameter tag,
but on the other hand it is also an advantage, because in fact in the vast
majority of b decays the decay products are not originating from a single
secondary vertex, but from two or even three vertices, often significantly
separated among them (some examples are shown in Fig. 7.6). The pres-
ence of such a variety of topologies is a severe limitation for the construction
of high-performance b tagging algorithm based on the reconstruction of the
b decay length. Nonetheless such algorithms have been developed by the
LEP experiments, and used successfully for R, analyses, in particular by
OPAL [91].

Tracks belonging to a jet are fit to a common vertex, after applying
quality cuts to reject badly measured tracks and decay products of long-
lived particles. The x2 of the fit is computed; then tracks are removed
in turn one by one, and the x2 difference in the vertex fit is evaluated,
selecting the track that gives the largest Ax?; if such Ayx? exceeds a given
threshold (Ax? > 4) the track is removed, the vertex is recomputed and
the procedure is reiterated. The procedure yields a good reconstructed
secondary vertex, unless too few tracks are left (less than four in the OPAL
analysis) in which case no vertex is found.

The distance between the secondary and the primary vertex, projected
along the jet direction, is taken to be the decay length of the heavy hadron.
When the secondary vertex appears to be behind the primary vertex, the
decay length is given a negative sign. The uncertainty on the measured
decay length is evaluated by propagating the fit uncertainty on the primary
and secondary vertices, and the decay length significance L/o, is used as
tagging variable.

Events without lifetime yield a symmetric distribution of measured de-
cay lengths, therefore the negative side of the distribution provides a mea-
surement of the resolution directly from the data.

The decay length tag is intrinsically more robust than the impact pa-
rameter method with respect to single badly measured tracks, because of
the requirement on the compatibility of the tracks forming the secondary
vertex. In addition it is less sensitive to a limited resolution in the jet di-
rection reconstruction, which in this case contributes to degrade the decay
length resolution but does not cause signing mistakes.

The efficiency is limited by the complicated topology of b decays, as
discussed above, and drops to zero for low charged multiplicity decays.
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Overall the performance remains lower than that of the impact parameter
tag.

At SLD the high precision tracking in the vicinity of the interaction
point allows efficient reconstruction of secondary vertices; the identifica-
tion of the b decay products, however, is exploited to calculate the mass of
the parent particle (rather than its decay length), which is used as discrim-
inating variable. The method is discussed below.

Mass tag

The large b hadron mass can be used to improve the discriminating power
between b and ¢ events. The most direct method consists in reconstructing
a secondary vertex, and calculating the invariant mass of the particles as-
signed to that vertex. In the case of a charm decay, the mass is in principle
limited to about 1.8 GeV, while the region between 1.8 GeV and 5 GeV
is mostly populated by b decays. This method was particularly effective
at SLD, thanks to the high precision tracking at small radii [92]. For an
evaluation of the decaying particle mass corrections are needed, because;

1. the vast majority of b decays proceed through a cascade decay to
charm: decay products of the charmed particle may be incompatible with
the secondary vertex;

2. neutral particles are not accounted for.

Decay products of secondary charmed particles in b cascade decays can
be recovered with a dedicated procedure: tracks that are inconsistent with
the primary vertex, and that pass within 1 mm (in space) from the axis
that contains the PV-SV axis are included in the secondary vertex.

The tracks selected are used to calculate the invariant mass of the ver-
tex. A further correction to the calculated mass is obtained by comparing
the direction of the total momentum with the direction of the PV-SV axis:
in general the two vectors are significantly acollinear, due to missing neu-
tral particles and possibly missing neutrinos. A kinematic correction to the
mass is defined, based on the transverse momentum P; of the reconstructed
momentum with respect to an axis tangent to the error boundaries of the
two reconstructed vertices (sketch of Fig. 7.9): P, represents the minimum
amount of transverse momentum needed to make the two vectors compat-
ible, so avoiding large corrections due to resolution effects that would in-
crease the contamination non-bb events. The corrected mass is then written

Meoyy = \/ M2+ P2+ | Py |, (7.6)

as
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Fig. 7.9 Definition of the “minimum P;” used to calculate the vertex corrected mass
at SLD. The b candidate momentum is compared with the vertex axis (dottet arrow).
A new vector tangent to the Primary Vertex and Secondary Vertex error boundaries is
defined (dashed arrow), and the transverse momentum of the b candidate with respect
to this axis is considered.

with M indicating the uncorrected mass. Hemispheres where Mo, > 2M
are rejected.

The corrected mass provides excellent separation between b, ¢ and uds
quarks,; as shown in Fig. 7.10, and is used in conjunction with the vertex mo-
mentum in the R, and R, analyses. The discrimination is further improved
by combining, through a neural network, additional information such as
the decay length and charged particle multiplicity of the reconstructed ver-
tex. Through this technique SLD was able to select inclusively high-purity
charm samples, an achievement that was not attainable for LEP detectors.

A different approach has been taken by ALEPH: tracks are ordered ac-
cording to their impact parameter significance and their invariant mass is
calculated. When such mass exceeds 1.8 GeV, the impact parameter sig-
nificance of the last track added is taken as the discriminating variable. In
the case of a charm decay, such a track is expected to be that of a fragmen-
tation particle, originating from the decay vertex. In the case of a b decay,
the last track added can be that of a b decay product, and therefore have a
significant impact parameter. The distribution of the discriminating vari-
able obtained is shown in Fig. 7.11b. This method is not necessarily more
powerful than the previous one in terms of discrimination between b and ¢
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Fig. 7.10 Distribution of the corrected mass for reconstructed secondary vertices at
SLD. Thanks to the precise tracking near the interaction point, this variable provides
excellent separation between b, ¢ and light quark events.

decays, but it is interesting if one needs to use the simulation to evaluate
the residual charm background: in the previous case such estimate is sensi-
tive to the details of the hadronization process (multiplicity and kinematic
properties of fragmentation particles), while in this case the background
mostly arises, as for the impact parameter tag, from the decay products of
long-lived particles, photon conversions, hadronic interactions etc.

This long discussion on lifetime tagging was motivated by the superior
performance of these methods compared to other ones (e.g lepton or event-
shape tagging). At LEP experiments, jets associated to b quarks originating
from Z decays were selected with efficiencies ranging from 20% to 30%, for
a purity of 98%. Even higher efficiencies (about 60%) were obtained at
SLD, for the same purity.
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Fig. 7.11 Lifetime and mass tagging. (a) Negative logarithm of the tagging probability
defined by Eq. (7.5) for all tracks in a given hemisphere. (b) Negative logarithm of the
tagging probability for the first track exceeding the charm mass (details are given in the
text); in the case of charm or light quark events this particles is expected to originate
from the primary vertex.

7.2.3 Reconstruction of charmed hadrons

Several charm states were reconstructed at LEP and SLC. Due to the small
branching ratios of the decay channels considered (typically of the order of
a few percent), this tagging technique was more useful at LEP, where larger
statistics were available, as a mean of tagging heavy flavour Z decays. In
Z — cc decays charm hadrons carry away a larger fraction of the beam en-
ergy compared to secondary charm hadrons from b decays in Z — bb events.
This property is often employed to obtain high-purity charm samples, by us-
ing the energy of the reconstructed charm state as a discriminating variable.
Other useful complementary variables are the lifetime of the reconstructed
particle, and the properties of the opposite hemisphere (lifetime tag, lepton
tag, event shape).

Reconstruction of ground state charmed hadrons

The reconstruction of ground state D mesons (D°, DT Dg) and of A,
baryons is typically performed in the “golden” channels D° — K=z,
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Dt — K 7ntnt, D7 — K Ktat (possibly with the K"K+ pair form-
ing the ¢ resonance), and A7 — pK~ 7", as such channels offer the best
background conditions. The reconstruction consists in the calculation of
the invariant mass of good quality charged tracks, typically complemented
with the available particle identification information (energy loss measure-
ment, information from Cerenkov or time of flight detectors, when present)
to improve the efficiency in the assignment of the pion and kaon masses to
the selected tracks.

The resulting mass spectra are shown in Fig. 7.12 in the case of the
ALEPH experiment. The selection of the events falling in the mass window
provides samples with a substantial amount of combinatorial background
(typically more than 50%), that can be estimated directly from the data
by fitting the sidebands with a polynomial. The signal of correctly re-
constructed hadrons contains contribution from Z — c¢é events, where the
charmed hadron is generated in the hadronization of the primary quark,
and from Z — bb events, where the reconstructed particle comes from the
decay of a b hadron. In the analyses the two components are disentangled
using information from the opposite hemisphere (typically lifetime tag), or
from the same hemisphere (e.g. lifetime and momentum of the reconstructed
particle).

Reconstruction of D* mesons

The reconstruction of D* mesons offers particularly clean samples, due to
the peculiar kinematics of the decay D** — D%+, The mass difference
between D* and DO is 145.5 MeV, very close to the kinematic threshold,
leaving only 6 MeV of g-value.

In the laboratory frame, the D* energy is limited by the beam energy,
giving a maximum boost of 7 & 20, which translates to a kinematic limit
for the momentum of the pion from the D* decay, usually denominated as
“soft pion” 7, of Pr, = 3 GeV. Therefore the experimental signature of
the D* — D7, decay is a track with momentum limited at 3 GeV, highly
collinear with the D? candidate (or with the axis of the jet to which it
belongs, reconstructed with a suitable clustering parameter).

The calculation of the mass difference between the reconstructed D* and
the reconstructed D gives a narrow peak with low background, as shown
in Fig. 7.13(a). The low background conditions are essentially due to the
fact that the signal is at the end of the phase space: random combinations
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Fig. 7.12 Reconstructed mass distributions for D® — K—zt, DT — K- xtxt,
Ds — K"KT7t and A — pK~nt from ALEPH. The fitted functions are the sum
of polynomials for the combinatorial background and Gaussian functions for the signals.

of tracks have little probability of being so collinear, and therefore tend to
give a larger measured mass difference. The method is effective even if the
DY is not fully reconstructed, as shown in Fig. 7.13(b) and 7.13(c). Due to
the fact that the D decay products are typically ultrarelativistic and well
collimated, the effect of the missing particle(s) largely cancels in the mass
difference, giving a moderate increase of the peak width.
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Fig. 7.13 Mass difference AM = m(D%7+)—m(D°) reconstructed by OPAL in different
channels. Fully reconstructed D® — K—n% candidates (a) give a narrow peak with small
background, while the channel D® — K~ 7tz ~ 7% (d) has equally good resolution but
higher combinatorial background, because of the higher multiplicity. The semileptonic
channel D — K~ £*u, (b) yields a broader signal peak because of the missing neutrino,
but the resolution on the mass difference is still sufficient to find a high-purity signal
region. Similarly for the channel D? — K—7t 70 (c), with the 7% not reconstructed. In
all four plots the solid histogram shows the estimated combinatorial background.

The technique can be pushed even further, by looking for a “soft pion”
signature without attempting any reconstruction of the D particle. A
sample enriched in pions from D* decays can be selected by searching for
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Fig. 7.14 Distribution of the squared transverse momentum with respect to the jet axis
at DELPHI for (a) inclusive pions, (b) pions from selected D*.

charged particles of momentum lower than 3 GeV and collinear with the
jet axis, as shown in Fig. 7.14.

The method has the advantage of being effective for any D° decay mode,
but requires the subtraction of a large background below the low p? peak,
complicated by the presence of the contribution from b hadron decays, that
produce a broad accumulation in the same region.

7.2.4 FEvent shape tagging

The hard fragmentation and the large mass of b quarks result in distinctive
topological properties of Z — bb decays, that can be exploited to define
global discriminating variables.

In b events gluon radiation is suppressed, and a large fraction of the
beam energy (70% on average) is carried away by the b hadron (and subse-
quently, its decay products). In light quark events, instead, many particles
are produced in the fragmentation process, with a soft momentum spec-
trum.

Due to the large b hadron mass, b decay products may have a relatively
large transverse momentum with respect to the b quark direction, while
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light quark events tend to produce more collimated jets.

In summary, b events tend to have two broad jets carrying a large frac-
tion of the beam energy, while light quark events typically show a softer
particle spectrum and particles have lower transverse momentum with re-
spect to the fragmenting partons.

A variety of discriminating variables have been defined by the experi-
ments to exploit the topological differences between b events and light quark
events; some of these variables rely on a few of the most energetic tracks
of the events, that in b events are typically b decay products: examples
are the invariant mass and sphericity of the three most energetic particles
of the leading jet in each hemisphere; other variables are defined using all
particles of a jet, of even on the whole hemisphere.

Event shape b tagging typically offers substantially worse performance
than lifetime tagging, and the purity of the selected samples is more diffi-
cult to estimate with the simulation, because the efficiency for selecting light
quark events depends on the details of the fragmentation process. If several
variables are defined, they tend to have substantial statistical correlations
(as they largely exploit the same information), and neural network tech-
niques are needed to combine them in a fully efficient way. Event shape
variables are typically used to complement lifetime tagging, especially in
techniques where the non-b background can be estimated directly from the
data (like multi-tag R; analyses).

7.2.5 Gluon splitting to heavy quarks

A special background to any type of b or ¢ tagging is represented by events
containing a gluon splitting to heavy quarks (Fig. 7.15). Such a process can
happen independently of the flavour of the event, yielding Z decays to light
quarks that actually contain heavy-flavoured hadrons. Therefore events
with a gluon splitting to heavy quarks represent an irreducible background
for the tagging of heavy flavour Z decays: their only peculiarity is that the
heavy-flavoured hadrons tend to be close in phase space (i.e. in the same
hemisphere, and possibly even in the same jet, depending on the clustering
parameter chosen) and have a much softer energy spectrum.

The background from ¢ — bb events at some point turned out to be
limiting the precision of the R, measurement; then the LEP collaborations
and SLD made an effort to measure the g — bb and g — c¢ rates from their
data samples, to improve the precision on the subtraction of such irreducible
background. Most of the measurements were aiming to identifying Z decays
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Fig. 7.15 In hadronic Z decays a hard gluon can split to a pair of heavy quarks (QQ)7
yielding heavy flavoured particles in events of any flavour.

to light quarks containing one gluon splitting to heavy quarks. The selection
was based on events with 3-jet topologies, where the softer jet was tagged
by a lepton, by lifetime, or by a D*, and it had large invariant mass, while
the two most energetic jets were not b- or c-tagged. The g — bb rate was
also measured in 4-jet topologies using a fine clustering parameter.

The world average of the available measurements [93] of the rate of Z
hadronic decays containing gluon splitting to heavy quarks are:

g — c¢ = 0.030 £ 0.004 , (7.7)
g — bb = 0.0025 & 0.0005 .

7.3 Ry, measurements

The large data samples collected by the LEP experiments and SLD, to-
gether with the high b tagging capability, yield R, measurements with a
statistical precision in the few permil range. Such a high statistical power
calls for extreme care in addressing possible systematic effects.

The breakthrough for achieving a good control of systematic effects has
been the use of the single/double tag method, discussed below in Subsec-
tion 7.3.1. All the analyses are based on a lifetime tag, sometimes enhanced
with information related to vertex mass or lepton transverse momentum.
Some experiments have enhanced the method to include other complemen-
tary tags (Subsection 7.3.2), obtaining a further gain in precision.

The experimental results measure the ratio of the production
cross sections op;/0had- The ratio of Z partial widths Ry, =
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I'(Z — bb)/T(Z — hadrons) is derived by applying small corrections to
account for photon exchange and v — Z interference (typically around
+0.0002). (The corrected quantity is often indicated as R in the experi-
mental papers.)

7.3.1 The single/double tag method

The so-called single/double tag methods take advantage of the fact that the
hadronization of the two b quarks from the z decay is largely uncorrelated.
Therefore it is useful to divide the event in two hemispheres, using the
thrust axis, and apply a tag (e.g. a lifetime tag) in each hemisphere. The
number of hemispheres that fulfil the tag N} and the number of events
where both hemispheres fulfil the tag NZ,,
preselected hadronic events N.,, and written in terms of the hemisphere
tagging efficiency and Z partial widths for the different quark flavours, as

follows

can be measured in a sample of

N}i =2 Nev [RbEb + Rcec + (]- - Rb - Rc)euds] ) (79)
N, = Ney [Roei(1 + pp) + Ree2 + (1 — Ry — Re)ely,] » (7.10)

where ¢, and €, are the heavy flavour hemisphere tagging efficiencies, and
€uds represents the average tagging efficiency for light quark hemispheres;
the sum of the partial widths to the five quark species is taken to be unity.
The parameter p, is a correction factor that accounts for possible correla-
tions between the b tagging efficiency in the two hemispheres, discussed in
detail below. In principle such a correction is present also for the charm
and the light quark terms, but in practice it can be neglected in all existing
analyses, because €, and €,4s are much smaller than €.

The Egs. (7.9) and (7.10) can be solved for Rj, and €;; the b tagging
efficiency is therefore measured directly from the data and it is not a source
of systematic error. Charm and light quark efficiencies, as well as the
hemisphere correlation correction, have to be estimated with the simulation.

It is instructive to introduce some approximations in the Eqs. (7.9)
and (7.10). Neglecting the charm and light quark contributions, solutions
for Ry and €, can be written as

Nt \? /N,
sz<1+pb>(2Nh) (N) | (7.11)

1 /Nt \ /2N,
~ ev A 7.12
RN (N)( Ni ) (7.12)
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The statistical error on R, is dominated by the double tagging fraction
N!,/Ney, that has the largest uncertainty (simply because it involves
smaller numbers). A shift in the values assumed for py, €. and €,qs trans-
lates to a shift in the measured value of Ry as follows:

ARy
—a-Ap, 7.13
o Pb (7.13)
ARy R, e. Ae.
=2 e e 7.14
Ry Ry €, €. ( )
ARb 1-— Rb - Rc €uds Aeuds
~ _uds . 7.15
Ry Ry €b  €Euds ( )

The relation (7.13) shows that the error on p directly reflects to a relative
shift in Rp; therefore a measurement of R, at a few permil level implies
that the hemisphere correlation correction must be controlled at the permil
level. The other two equations show that systematic effects due to €. and
€uds scale with the ratios between those efficiencies and the €, therefore
a tag with high efficiency and purity not only gives more statistical power
but also helps reducing the systematic uncertainties from the background
efficiencies estimated with the simulation.

Hemisphere-hemisphere correlations

Hemisphere-hemisphere correlations turn out to be the most challenging
source of systematic uncertainty.

Correlations may arise from many different effects. One simple example
of detector-related effect is the polar angle dependence of the tag efficiency,
especially relevant for lifetime tags, that have full performance only if the b
decay products are inside the vertex detector acceptance: the two b jets tend
to be back-to-back, and therefore tend to be both inside or both outside
the high performance region, which gives a positive correlation. Limiting
this effect is one of the reasons to restrict the lifetime-based analyses to
events well contained in the vertex detector. Also inefficient regions due to
detector failures may give rise to correlations, as the two b jets cannot both
cross the faulty detector: in this case the induced correlation is negative.

An example of physics source of correlation is the radiation of energetic
gluons in the final state: in events with substantial gluon emission both b
hadrons than to be less energetic, thus having both lower tagging proba-
bility than average, which gives a positive correlation. In about 2% of the
events a hard gluon is emitted, that produces the most energetic jet of the
event and dominates the calculation of the thrust axis; the two b jets are
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reconstructed in the same hemisphere, leading to a negative correlation.

The most complicated effects, however, arise through the reconstruc-
tion of the primary vertex. As discussed in Subsection 7.2.2, the precision
obtained in the determination of the primary vertex position is degraded
in heavy flavour events, due to the presence of particles that originate from
the heavy hadron decay points. The degradation has a large dependence
on the heavy flavour hadron momentum: in the case of energetic hadrons,
the fragmentation tracks are fewer and softer (and therefore less precisely
measured because of multiple scattering), and therefore the primary vertex
position measurement is less precise. As a result, an event that has in one
hemisphere a high-energy hadron, with higher-than-average tagging proba-
bility, will have the primary vertex determination spoiled, and therefore the
tagging probability for the other hemisphere lower than average; therefore
a negative correlation between the two hemispheres. Such an effect can
be as large as several percent, and cannot be reliably estimated with the
simulation, because it depends on the b hadron momentum spectrum as
well as on all other details of the fragmentation. With the increase of the
statistics collected, the experiments have decided to perform the primary
vertex determination separately in the two hemispheres, so avoiding this
kind of effects, at the expenses of some statistical power. The information
on the beam spot position can be safely used for both hemispheres, as it
has no interplay with the b hadron production and decay properties.

The different effects contributing to the hemisphere correlation correc-
tion cannot really be disentangled, as they are all correlated. However some
test variables can be defined, to check the accuracy of the simulation. First
of all one has to identify a variable that is related to the effect to be investi-
gated. For example, effects related to the variation of the tagging efficiency
in the different detector regions can be investigated using the polar and
azimuthal angle of the thrust axis. Effects related to gluon emission can be
studied using the jet momentum. A dependence of the tagging efficiency
in one hemisphere upon the variable calculated in the other hemisphere (or
on the variable itself, if defined on the whole event as in the case of the
thrust axis) is an indication of an underlying source of correlation.

The quantity

I Fo(0) €2 (1) ePP° (v) do
[ fo(v)esme (v)dv]®

is taken as an estimator of the contribution of the effect associated with the
variable v to the correlation correction. In the formula, fj(v) is the distri-
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bution of b hemispheres as a function of v, and “same” /“oppo” refer to the
same/opposite hemisphere where the variable v is calculated. The difficulty
is that the formula has to be evaluated on b events, and it is therefore not
directly accessible on data. An approximate procedure consists in estimat-
ing py in a data sample enriched in b events by applying a mild b tag cut;
the remaining udsc background as well as the bias introduced by the b tag
cut are corrected for with the simulation, allowing for large uncertainties
associated with such corrections; the result obtained gives an indication
of the size of the effect, and allows a comparison with the corresponding
quantity measured in simulated data.

Other sources of systematic uncertainty

The other sources of systematic uncertainty are related to the estimate of
the light quark and charm efficiencies from simulated data.

As discussed in Subsection 7.2.2; light quark events can be selected
because of mis-measured tracks, long-lived particles, photon conversions,
interactions with the detector material, or gluons splitting to heavy quarks,
that is by far the largest source. The experimental error on the rates g — bb
and g — cc is used to assess the associated uncertainties.

The charm background is much more relevant, and needs careful treat-
ment. The measured fractions of weakly-decaying ¢ hadrons (Table 7.3)
and their lifetimes are implemented in the simulation, and their experi-
mental errors are used to estimate the associated uncertainty. The de-
cay channels of the ¢ hadrons are also relevant, but unfortunately many
of them are rather poorly known. The decay properties that have the
largest impact on the tagging probability are the number of charged par-
ticles produced; therefore the inclusive measurement of the decay multi-
plicities from MARK IIT [94] are used. A special treatment is needed,
however, for the decay D — K°X, where the K© typically carries away a
large fraction of the energy, yielding a particularly low tagging probabil-
ity. For this specific channel the measured exclusive branching ratio is
used.

In order to solve Egs. (7.9) and (7.10), an input value is needed also for
R.. Typically the experiments use as input the Standard Model value, and
compute the dependence (derivative) of the measured R, value on the R,
input value, which is then used as input to a global fit to all the measured
heavy flavour electroweak observables [142].
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7.3.2 Multi-tag methods

The single/double tag method can be extended to include several mutu-
ally exclusive tags, having different efficiencies for the different flavours.
In the final ALEPH and DELPHI measurements [95] five tags were used:
one main b-tag with high efficiency and purity, two other complementary
b-tags (with lower performance), one c-tag and one uds-tag. For N tags,
there are N single-tag rates and N (NN + 1)/2 double tag rates to measure.
If events are divided in three flavour classes: b, ¢ and light quarks (as in the
single/double tag method), those observables can be expressed in terms of
Ry, Rc, 3N hemisphere tag efficiencies, and 3N (N + 1)/2 hemisphere cor-
relation corrections (one per flavour class and per tag combination). In the
actual measurements the charm and light quark efficiencies for the main
tag are estimated from the simulation, as well as the 45 correlations, while
the remaining 13 efficiencies are extracted from the fit to the 20 observ-
ables. The fact that the efficiencies of the complementary tags are extracted
from the data, allows to use fairly complicated algorithm, since an accurate
simulation of their performance is not required. The statistical power of
the method improves by about 10 — 20% compared to a single/double tag
method based on the main tag only. The increased statistical power can be
used to tighten the selection cut on the main tag, or to further restrict the
fiducial region where the analysis is performed, to reduce the systematic
uncertainty from background sources. The sensitivity to the hemisphere
correlation of the primary tag is also reduced compared to a single/double
tag method, however the uncertainties coming from the other correlation
coefficients have to be estimated.

7.3.3 Ry results

The combination of the R, measurements from SLD and the LEP experi-
ments [95] is performed with a global fit that includes the R, measurements
described below and the heavy-flavour forward-backward asymmetries de-
scribed in Subsection 8.3.2. This common procedure takes into account the
correlations among various measurements and treats in an optimal way the
systematic uncertainties [142]. The photon exchange and v — Z interference
corrections are applied by the individual experiments before the combina-
tion, as they can be slightly affected by the event selection cuts. The result
is

R, = 0.21629 £ 0.00066
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in agreement with the MSM expectation. Within the MSM this result
depends solely on the top mass and can be used to set an indirect limit on
its value (Section 10.3).

7.4 R. measurements

As previously discussed, charm events have intermediate properties between
b events and light quark events, for nearly all discriminating variables. As
a consequence, charm tags have significantly worse efficiency /purity figures
compared to b tags, and the R, analyses reach statistical precision in the
few percent range, rather than few permil.

Several methods have been employed by SLD and the LEP experiments
to measure R., that can be classified as follows:

e single-double tag methods, using the same tag in the two hemispheres
(as for the R}, analyses);

e single-double tag methods, using an exclusive tag in one hemisphere,
and an inclusive tag in the other hemispheres;

e charm counting analyses;

e measurements based on leptons.

The four types of analyses contribute with approximately equal weights in
the overall combination.

In general, in R, analyses the remaining b background is extracted from
the data by applying a b tagging in the hemisphere opposite to the selected
charm candidate; therefore R, results have typically a small dependence on
the assumed value of Ry.

As in the case of Ry, a small correction (= 0.0002) accounting for photon
exchange and v — Z interference has to be applied.

7.4.1 Single/double tag

This method is most effective at SLD, where the particularly favourable
experimental conditions allow a high performance c-tag to be obtained
(about 14% efficiency for 67% purity), with the method discussed in Sub-
section 7.2.2. The SLD result has approximately the same precision as the
combination of all the LEP analyses [96].

At LEP a single/double tag analysis has been performed by ALEPH
using a reconstructed D meson tag, and by DELPHI using a soft pion
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tag. The ALEPH analysis is severely limited by the statistics (the selection
yields 89% purity but only 2.5% efficiency), while the DELPHI analysis is
limited by the understanding of the background in the single-tag sample.

7.4.2 Inclusive/exclusive tag

As discussed in the above paragraph, the measurement of R. at LEP is
limited either by the systematic uncertainty in the composition of the single-
tag sample, if an inclusive tag is used, or by the poor statistics of the
double-tag sample, in the case of exclusive tags. An effective compromise
consists in using an exclusive tag for the single-tag sample, and combine it
with an inclusive tag for the double tag sample.

First, the rate of hemispheres with a reconstructed D** — D%t is mea-
sured. The D is reconstructed in the “golden” channel K~ 7+ plus possibly
other channel with known branching ratios. Unfolding the DY branching
ratios and the reconstruction efficiency (taken from the simulation) the mea-
sured rate can be written in terms of R. x P(c — D*) x BR(D** — Dzt).

Then, a sample of events enriched in charm is selected by requiring a
high energy fully reconstructed D* in one hemisphere, and the D* rate in
the opposite hemisphere is measured by selecting soft pions: such a rate
is proportional to P(c — D*) x BR(D*" — DY) (unfolding selection
efficiency and background), so that the ratio of the two measured rates
gives R..

The method still requires that the efficiencies and purities for the ex-
clusive reconstruction of the D*, and for the inclusive selection of 7y, are
correctly estimated with the simulation, while uncertainties in the fragmen-
tation of the charm quark cancel in the ratio.

7.4.3 Lepton analyses

The R, parameter can also be inferred from the measured rate of prompt
leptons in hadronic Z decays. Higher precision is obtained if the lepton yield
is analysed as a function of the lepton momentum and transverse momen-
tum, as such variables discriminate the different sources (Subsection 7.2.1).
The total lepton spectrum can be written as

Jf(papl_) = Rb Pb(papJ_)eb(p7pJ_)
+ R, Pc(p,pL)ﬁc(]%pL)
+ (]- - Rb - Rc) fuds(papl_) 3 (7]‘7)
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where P, .(p, p.) describe the total lepton yields in b and c events, e,(p, p1)
are the identification efficiencies, and f,q4s(p,p.) is the probability of se-
lecting a lepton candidate in light quark events.

The shape of the b contribution (including selection efficiency) can be
extracted from the data, by applying a b tag in one hemisphere, and study-
ing the lepton yield in the opposite hemisphere. Small corrections have to
be applied to subtract the residual non-b background, and to account for
distortions in the (p,p)) spectrum caused by the b-tag cut, through kine-
matic correlations between the b hadrons in the two hemispheres (discussed
in Subsection 7.3.1).

The shape of the light quark background can be also studied in the data,
by selecting samples of photon conversions and identified hadrons.

The (p,p.) shape of the charm contribution is obtained from a fit to
data collected at ete™ experiments above the charm production threshold.

Once the three shapes are known, a fit to the spectrum measured on the
data is performed leaving the normalization of the b and ¢ contributions free.
The normalization of the ¢ contribution can be written as R. x BR(c — ¢).
The inclusive ¢ — ¢T branching ratio is measured independently at LEP by
studying the lepton yield opposite to a high-energy D*.

7.4.4 Charm counting

The final state ¢ hadrons can be fully reconstructed at LEP, as shown in
Fig. 7.12, in particularly convenient decay channels. Taking as example
the DY — K~ 7t channel, the measured yield after background subtraction
can be written as R. f(DY) BR(D? — K~ 7 )epo_k—»+, where f(D?) is the
probability that a ¢ quark from the Z decay eventually produces a DY, and
€ is the selection efficiency. The subtraction of the b contribution and of
the combinatorial background is performed as explained in Subsection 7.2.3.
Folding the known value of the decay branching ratio and the reconstruction
efficiency estimated with the simulation, R, f(D°) can be extracted. If the
measurement is repeated for the four ¢ hadron species of Fig. 7.12, one
can assume that the four production probabilities add up to one, with a
small correction for the unmeasured charmed strange baryon yield. Such a
correction is taken to be 15% of the A, rate.
Imposing the constraint

fD%) + f(DT) 4+ f(Dg) +1.15+0.05f(A) =1, (7.18)

R, can be extracted from the four measured rates, deriving at the same
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time the production probabilities (Table 7.3), that are used to estimate the
¢ background in the R analyses.

7.4.5 Rg results

The R, results from SLD and the LEP experiments [96] are combined with
the procedure mentioned in Subsection 7.3.3, yielding

R, =0.1721 £ 0.00030

in agreement with the MSM expectation. Within the MSM this result is
essentially independent of parameters as the top, the Higgs mass or the
strong coupling constant, which cancel in the ratio.

The precise determinations of R, and R. presented in this Chapter are
compared to the MSM expectation in Fig. 7.16.

0.182
xU
0.173 1
68% CL
95% CL
0.164 \ T
0.214 0.216 0.218

Rb

Fig. 7.16 The 68% CL contour for R, and R. compared to the prediction of the MSM.
The star indicates the prediction of the SM for a top mass of 172 GeV, and the arrow the
direction of growing top mass. The size of the arrow corresponds to a top mass variation
of about 9 GeV. (Courtesy of the LEP Electroweak Working Group.)



Chapter 8

Asymmetries at the Z pole

A distinct feature of electroweak neutral interactions is the difference be-
tween right-handed and left-handed currents. This difference is regulated
by the Weinberg electroweak mixing angle sin? @y, that enters the vector
coupling of the Z to right-handed and left-handed fermions. The different
behaviour of the Z in presence of fermions of opposite chiral states has a
direct consequence on experimental data, causing measurable asymmetries
that can be used to determine the mixing angle and, using information from
the Z partial widths, the couplings themselves.

As a first example, if a polarized electron beam collides with unpolarized
positrons at a centre-of-mass energy equal to myz, the total cross section
will be different, and much higher, if left-handed polarization is used. The
relative difference between the two cross sections (o, and oy) is the left-
right asymmetry (Apg) introduced in Section 2.5, related to the right-
handed (gr.) and left-handed (gg.) electron couplings by

O, — 0 - 2 _ 2
L r _ 9Le — Y9Re :-Ae- (8.1)

- 2 P
Uez + O—eg 9Le + gRe

Arg =

As g, = 9‘/52& and g = 22594 one can see that A, depends on the
ratio between vector (gy.) and axial vector(g,.) coupling constants of the
electron:

2 gvefae 2 Gve/Gac
(gve)® 4 (940)* 1+ (gve/gac)®
The ratio of leptonic couplings is used for the operative definition of
sin? Ow,erf, the effective electroweak mixing angle, introduced in Sec-
tion 3.3:

Ao = (8.2)

1
sin® Oy efp = 1 (1 - %) . (8.3)

309
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In the reaction ete™ — Z — ff with unpolarized beams, the same ef-
fect causes the Z to be polarized along the direction of the beams. Indeed,
because of angular momentum conservation, left-handed (right-handed)
electrons interact with opposite-helicity positrons only (Eq. (2.45)) and
the different cross sections of the two processes cause parity violation and
a net Z polarization opposite to the direction of the electron beam. The
amount of polarization is exactly A.. The Z polarization, and therefore
A, can be measured by analysing the polarization of the fermion emitted
by the Z boson since, once again, angular momentum conservation relates
the two quantities. In practice this is possible only if the emitted fermion
is a tau lepton, by measuring the tau polarization in ete™ — Z — 77. Al-
ternatively, one can take advantage of parity violation in the decay of the
7, causing the emitted anti-fermion (f) being directed preferentially along
the direction of the Z spin, with the fermion (f) in the opposite direc-
tion. This effect originates a forward-backward asymmetry of the fermion
emission with respect to the initial electron beam. The forward-backward
asymmetry is defined as (Eq. (2.86))

App = 298 (8.4)

where o is the cross section for fermions emitted in the hemisphere cen-
tered along the direction of the electron beam, while op is for fermions in
the opposite hemisphere. The relationship between the forward-backward
asymmetry and the couplings is given by Eq. (2.93).

In next Sections the main issues related to the measurements of the left-
right asymmetry, of the tau polarization in Z decays and of the forward-
backward asymmetry are discussed in some detail. The various measure-
ments are compared in the last Section where combined values of sin? Ow,ef s
and of the lepton couplings are given.

8.1 Measurement of the left-right asymmetry (Argr)

The measurement of Ay requires the avalaibility of longitudinally polar-
ized beams. At SLC longitudinal polarization of the electron beam was
achieved by a circularly polarized laser source hitting a GaAs photocath-
ode [98], allowing SLC to be operated with an electron beam polarization
of about 75%. Since a fully polarized electron beam cannot be produced,
Eq. (8.1) has to be modified to take into account the average beam polar-
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Fig. 8.1 The schematic layout of the SLD compton polarimeter.
ization (P.), becoming
(8.5)

The main experimental issue, for a precise measurement of Ay g, is an accu-
rate determination of the beam polarization. This need could be overcome
if both electron and positron beams could be independently polarized. By
performing three independent measurements, the first with polarized elec-
trons and unpolarized positrons, the second with polarized positrons and
unpolarized electrons, and a third one with both polarized beams, Apgr
and the two beam-polarizations could be determined without the need of
external inputs. This scheme was originally proposed for LEP [97], but
never went into operation. The standard SLC operating cycle consisted of
two close electron bunches, the first of which was polarized, while the other
was used to produce unpolarized positrons. The sign of the electron polar-
ization was randomly chosen, so that the measurement was not affected by
time variations of the apparatus efficiency.

The SLD experiment monitored the longitudinal SLC-beam polarization
with a polarimeter based on Compton scattering of electrons by circularly
polarized light of a Nd:YAG laser beam. The measurement took place after
the interaction point, as shown in Fig. 8.1. The Compton cross sections
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for spin-parallel (j=3/2) and spin anti-parallel (j=1/2) interactions are dif-
ferent, and this difference is a function of the normalized scattered-photon
energy fraction (z). The difference can be written, in terms of z, as

do’/?  do'/?  do

= = (1= P PeA() (8.6)

where A(z) is the Compton asymmetry function [99]. The asymmetry

reaches its maximum at the kinematic endpoints (full forward- or back-
scattering). At SLD the Compton-scattered electrons were deflected by
the first beam line dipole after the interaction point and entered a thresh-
old Cerenkov detector segmented in seven cells transverse to the beam line
(Fig. 8.1). Many Compton interactions were produced at every laser pulse
and all channels of the polarimeter integrated the signal of several Comp-
ton scatters and background. The laser fired every 7th beam crossing (SLD
frequency was 120 Hz) and the other six were used to monitor the back-
ground in the Cerenkov counters. The laser beam polarization, typically
99.8%, was continuously monitored. The statistical accuracy on P, was of
+1% every three minutes. The relative systematic uncertainties [100, 101]
in the polarization measurement are summarized in Table 8.1. The last en-
try of this table is the uncertainty on the difference between the measured
polarization and the polarization at the interaction point (IP). The latter
is computed as Po(1+n), where 7 is a small correction. It is mainly due to
off-energy electrons which do not contribute to the effective luminosity and
to the small spin precession of the electron beam in the focusing elements
between the interaction point and the Compton polarimeter. The depo-
larization of the electron beam during the eTe™ collision was checked by
measuring the polarization with and without beam collisions and was found
to be negligible. To derive the left-right asymmetry, the mean luminosity-
weighted electron polarization

Nz
(Pe) = (1+n)NiZ > P, (8.7)
i=1

estimated from measurements of P, made when Z events were recorded was
used. The total contribution of the systematic uncertainty on the beam
polarization to the measurement of Arr was 0.52 % (high-statistics 1997/8
run); this is the main source of systematic uncertainty in the left-right
asymmetry measurement.

The asymmetry of the left-right rates was measured with a simple event
selection, since Apr does not depend on the final state as long as this
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Table 8.1 Relative (%) systematic uncertainties on the elec-
tron beam polarization at SLD in two data-taking periods.

Source of uncertainty 1994/5  1997/8
(%) (%)
Laser Polarization 0.2 0.1
Detector Linearity 0.5 0.2
Detector Calibration 0.29 0.40
Electronic Noise 0.20 0.20
Transport from polarimeter to SLD TP 0.17 0.15

is an s-channel process. Care must be only taken in rejecting Bhabha
scattering events, because of the t-channel contribution to ete™ — ete™ .
The event selection was focused on high-multiplicity events: at least four
charged tracks and at least 22 GeV of visible energy in the calorimeters were
required, with an energy imbalance (ratio of vector to scalar energy sum in
the calorimeter) less than 0.6. The total sample comprised approximately
537000 Z decays and was mostly made of hadronic events, with a small tau
contributions (~ 0.3%). The events produced with left-handed (Np) and
right-handed (Npg) polarization were counted and their asymmetry A,, =
(N — Nr)/(Np+ Ng) ~ 0.12 was measured. The measured asymmetry is
related to Ay by the following expression

Arr = Z;l;; + <7ie> [fo(Am — Ap) — AL + A%A'p
l Ecm.
—Ecm%AE — Ac + (PP, (8.8)

where a number of small corrections, listed below, are incorporated. In
Eq. (8.8) Ax indicates the left-right asymmetry of X, defined as Ax =
§£;§2 . The first term in the square bracket represents the correction
for the background: f3 is the background fraction and A; the background
left-right asymmetry. The second term represents the asymmetry of the in-
tegrated luminosity, while the third term takes into account the asymmetry
in the beam left and right absolute polarizations. The fourth term corrects
for the different centre-of-mass energies when left or right beams are used:
o (Ecm) is the derivative of the cross section with respect to E.,. The
fifth term represents the left-right asymmetry in selection efficiency: it is
totally negligible for an apparatus with symmetric acceptance in polar an-
gle. Finally, the last term corrects for possible longitudinal polarization of
the positron beam. This was measured with a dedicated experiment based
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on Moller scattering and found negligible. The sum of the corrections in
the square brackets of Eq. (8.8) gives [+0.16 £ 0.07]% for the 1997/8 high
luminosity run.

The left-right asymmetry depends on the centre-of-mass energy because
of the Z - v s-channel interference. The energy dependence can be computed
from Eq. (2.96) as

Apr(s) = Ae + 0.00002AE(MeV) + 0.00005 (8.9)

where AE is the difference between my and the actual centre-of-mass en-
ergy, while the constant term accounts for the correction due to the imagi-
nary part of A«. In order to apply the correction and compute the asym-
metry at the Z pole the centre-of-mass energy of the experiment must be
precisely known. SLC employed two energy spectrometers (one for the
electron and one for the positron beam) calibrated, through an energy
scan, to the precise measurement of myz at LEP. The measured average
offset was -46 MeV and the total centre-of-mass energy uncertainty 29
MeV. The measured left-right asymmetry is also corrected for the effect
of initial state radiation (the most sizeable QED correction, which lowers
the asymmetry as expected from Eq. (8.9)), for the effect of pure photon
exchange (which slightly dilutes the asymmetry) and for other higher or-
der QED/electroweak effects (as the already mentioned imaginary part of
Aqa). The total correction (including the centre-of-mass energy offset) is
0.00358 £ 0.00058, the error being essentially due to the uncertainty on the
beam energy. (The corrected measurement is indicated as A% p.) When
this uncertainty is added in quadrature to the uncertainty on the electron
beam polarization and the uncertainty on the corrections of Eq. (8.8) a
total systematic error on A9 ;, of 0.64 % is obtained.
The final result, including the statistical errors, is

A9 =0.15138 4 0.00216 (8.10)
sin? Oy = 0.23097 +.00027 (8.11)

giving the most precise measurement of the weak mixing angle.

8.2 Measurement of the tau polarization in Z decays

Each Z decay into an ff pair can be characterized by the direction and
the chiral state of the emitted fermion f. Defining as forward the hemi-
sphere where the electron beam is pointing, the events can be subdivided
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into four categories: F'R, BR, F'L and BL corresponding to right-handed
(R) or left-handed (L) fermions emitted in the forward (F) or backward
(B) direction. The forward-backward polarization asymmetry and the po-
larization asymmetry can be defined as:

FB_ Opr—OrL t 0L —0Opr
AEB — o~ (8.12)
_Opr+0pr—0Opr —0pr _ Or — 0L
Apol - Orot = (813)
Gtot

where o,,, is the total cross section, measured adding up the cross sections

FB
pol

depends on the polarization of the Z produced in the eTe™ collision while
is not sensitive to the flavour of the fermion emitted in the Z decay. The
polarization asymmetry A,,; corresponds to Eq. (2.91), depends only on
the chiral state of the fermions emitted in the decay of the Z and is not
sensitive to parity violation at production. Indeed, by means of the cross
sections given in Egs. 2.68-2.71 and integrating over the two hemispheres
one gets

of the four categories. The forward-backward polarization asymmetry A

Al =34, (8.14)
Apot = —Ay. (8.15)

For massless fermions the chiral states, defined in Section 2.2 using the
operators 1 iz 75 are equal to to the helicity states. For fermions with
masses much smaller than the Z mass this is still true, up to corrections

2
O(Z—é), justifying the use of the name “polarization” for these asymme-

tries. Experimentally, the two asymmetries require the measurement of the
polarization of the fermion and this can be done, statistically, only for the
channel Z — 7777,

The helicity of the two taus from Z de;:ay are nearly 100% anti-
correlated, again except for very small O(:—é) corrections. In order to
determine the two asymmetries defined by Egs. (8.13) and (8.12) it is con-
venient to measure the 7 polarization as a function of the angle (6) between
the 7= and the electron beam. The definition of the tau polarization for
any cosf bin is given by

p, =289 (8.16)

OR + oL
where o is the cross section to produce a right-handed 7~ and oy, is the
cross section to produce a left-handed 7—. The polarization asymmetry
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(Apor) is equal to the tau polarization measured on the entire cosé range
AL') is given by the
tau polarization measured in the forward and in the backward direction.

The dependence of the tau polarization on 6 is readily computed in
improved Born approximation at the Z pole from Eqs 2.68-2.71. The ratio
of the two equations

d(or —o0.) _ 3 ot

and the forward-backward polarization asymmetry (

Toosg~ — g0 A (14 cos” 6) + 24 cos ] (8.17)
% _ gg;ofé[u +cos? 0) + 24. A, cosb)] (8.18)

gives
Apor(1 + cos? 0) + AT cos 0
(14 cos?6) + £ App cosf

where App indicates the forward-backward asymmetry of the tau pairs.
All four LEP experiments have measured the two asymmetries by means
of a fit to the observed P-(cos ) distribution to Eq. (8.19). This procedure
gives better total error than measurements integrated over the hemispheres
by giving more weight to cosf bins with higher sensitivity. This fit allows
A and A, to be measured simultaneously and, assuming universality, gives
a determination of sin® Gy .

P, (cosb) =

(8.19)

The polarization of the 7 is measured exploiting the parity violation of
its weak decay [102], that is mediated by a pure V-A current. Five tau decay
channels, amounting to a branching ratio of about 90% are used (7 — 7y,
T — pv, T — aiv, T — evi, T — uvi). Tau decays to charged kaons,
having relatively low branching ratio, are included in the corresponding
pion channels. Tau decay modes with more than three pions in the final
states are not used in the measurement because the corresponding experi-
mental samples show a significant background contamination; furthermore
the description of their decays depends on model assumptions.

The principle of the polarization analysis is more easily understood by
taking the simplest channel, 7 — 7w . The tau decay in this channel, for the
two helicity cases, is sketched in Fig. 8.2. Because of the left-handedness
of the neutrino, in case of decays of right-handed taus, the pion is boosted
in the direction of the tau. The opposite is true for decays of left-handed
taus. It follows that the energy of the pion discriminates between the two
parent-tau helicity states. The tau differential decay width, given in term

of the scaled pion energy @, = ZZ—
1 dr
—— =1+ P, (22, — 1) (8.20)

I'dz,
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Fig. 8.2 The principle of the tau polarization analysis taking the 7 — 7w channel as an
example.

as can be shown by boosting into the laboratory frame the rest-frame decay
angular distribution of a spin 1/2 particle decaying into two particles of
spin 1/2 and spin 0, respectively. (The rest-frame angular distribution is
~ (1+ P; cos 6*), where 6* is the decay angle of the pion in the rest frame
of the tau.)

The measurement of the polarization uses two sets of reference decay
distributions, one for P, = —1 and one for P, = 1, obtained applying the
T — 7v selection cuts to simulated data. These are produced by generating
Monte Carlo events according to Eq. (8.20); each generated event is passed
through the full detector simulation. The tau polarization can be extracted
by performing a binned maximum likelihood fit of the measured distribu-
tions to the sum of the corresponding simulated distributions normalized
by the coefficients N(1 + P,) and N(1 — P;). Background events, mostly
coming from cross-contamination from other 7 decays passing the 7 — 7v
selection, are included in the simulated data. Since decay distributions of
a 7~ with given helicity are identical to those of a 7 with opposite he-
licity, the decay distributions of a 71 decaying at angle 6 can be simply
added to the distributions of the 7~ decaying at m — 6. Figure 8.3 illus-
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Fig. 8.3 Distribution of the normalized pion energy, x, for 7 — 7v decays selected by
the Aleph experiment. The dotted and dashed lines corresponds to the contributions of
left- and right-handed 7’s, respectively.

trates this procedure for a sample of 7 — 7 events collected by the Aleph
experiment. The departure of the positive- and negative-helicity reference
histogram from the simple linear behaviour given in Eq. (8.20) is due to the
selection cuts and to the smearing caused by the experimental resolution.
An excess of 7~ with negative helicity is clearly seen.

Multi-pion 7 — (2, 3)7v hadronic decays, going through vector (p) and
axial vectors (a1 ) resonances, are more complex and more than one variable
is needed to fully extract the information on the tau polarization. It has
been shown [103] that in each decay channel the tau polarization can be
measured in an optimal way by distributions showing a linear dependence
on the polarization. The tau decay products can be described by a vector
of n observables (x) distributed according to

W(n) = f(x) + Prg(x) (8.21)
where the f and g functions satisfies
/f(x)d”x =1, /g(x)d”x =0,f>0, and |g| < f. (8.22)

As demonstraded in [103] the optimal variable, giving maximal sensitivity
to the polarization is

w==—= (8.23)
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Fig. 8.4 Distribution of the w variable (see text) for for 7 — pv decays selected by the
Aleph experiment. The dotted and dashed lines corresponds to the contributions of left-
and right-handed 7’s, respectively.

which can be represented in the reduced form

W(w) = f(w)[1 + Prw]
= 21+ POW (@) + (1~ P)W~ () (8.24)

where the distributions for negative and positive helicities are indicated as
W~ and W, respectively. The distribution of the w variable for 7 — pv
decays is shown in Fig. 8.4; again a clear excess excess of 7~ with nega-
tive helicity is observed. The ideal sensitivity for the measurement of the
tau polarization in various channels is given in Table 8.2. (The sensitivity
is defined as ﬁ, where o is the relative statistical error expected for a
sample of N events.) Due to the undetected neutrinos the 7 direction can-
not be precisely reconstructed and all polarization estimators are defined
in the laboratory reference system. For events in which both 7’s decay to
hadrons, however, it is possible to make an approximated measurement of
the 7 direction [106] which is used to gain sensitivity, as shown in Table 8.2.
For 7 — fvv leptonic decays the only available information is the momen-
tum of the charged particle: they show reduced sensitivity because of two
undetected neutrinos.

The tau polarization measurement requires the selection of Z — 777~
events and the identification of the 7 decay channel. Typical signatures for
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Table 8.2 Ideal sensitivities for the polarization measure-
ment in the tau decay channels. Two cases, without and
with the measurement of the tau direction, are shown.

Channel Sensitivity Sensitivity
without tau direction  with tau direction

T — TV 0.58 0.58

T — pv 0.49 0.58

T — alv 0.45 0.58

T — v 0.22 -

the decay of the Z boson in two 7’s are

two very collimated jets almost back-to-back,
a small multiplicity of charge particles,
large missing energy,

unbalanced transverse momentum.

The last two features are due to the undetected neutrinos. The selected
tau events are divided into two hemispheres along the thrust axis and each
hemisphere is analysed to classify the tau decay. The individual tau decay
channels are first classified using the multiplicity of the charge particles
in the hemisphere. Pions, electrons and muons are separated thanks to
the particle identification capabilities of the detectors. Photon reconstruc-
tion and 7¥ identification is necessary to properly classify tau decays to
hadrons. Additional information is provided by the invariant mass of the
visible state. Pions are not separated from kaons since they have simi-
lar decay distributions. The main background consists of Z decays into
electron and muon pairs. It is normally rejected by applying cuts on the
hemisphere opposite to the tau under study in order to minimize the en-
ergy dependence of the efficiency. Typical selection efficiencies range from
60% to 80%. When both 7’s from the same Z decay are used in the po-
larization measurement the correlated decay distribution [104] has to be
used. The main background in the distributions used to measured the tau
polarization is the cross-contaminations among different channels. In the
v channel this is coming from tau decays into 27v with the photons from
the 70 decays unidentified, similarly in the 27v channel the main source of
background is from 7 decays with more than one 7°. The measurement of
the polarization is dominated by these two channel (7 — 7v and 7 — 27v)
because of their high sensitivity, large branching ratios and because they
can be selected with high purity (ranging from 80% to 95%).

It follows from the analysis procedure that the main systematic errors
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are related to inconsistency between data and Monte Carlo. The validity
of the Standard Model in describing tau decays has been checked by mea-
suring the tau decay parameters [13] and is assumed in the tau polarization
analyses. The decay distributions of 7 — 7v, 7 — pv and 7 — fvv are com-
pletely determined by Lorentz invariance. This is not true for the 7 — ajv
decay that depends on “structure functions” [105]. The dependence on
the model used for the simulation of this decay is taken into account by
varying the model parameters within the limits allowed by the data. This
systematic uncertainty is correlated among the various experiments and
has to be properly taken into account in combining the measurements. As
many kinematic variables used in the fit depend on the momentum, an
important source of systematic error is related to the momentum depen-
dence of the selection efficiency. Since the two main channels are affected
by the correctness of the photon reconstruction, the simulation of showers
in the electromagnetic calorimeter is another important source of system-
atics. Other source of uncertainties are related to the non-tau background
contamination (mainly Bhabha events) and to the cross talk among differ-
ent tau decay channels. The systematic uncertanties are more important
for the measurement of A,, than for Agf , since the latter is only af-
fected by sources that are at the same time forward-backward and charge
asymmetric.

The angular dependence of the tau polarization has been measured by
ALEPH [106], DELPHI [107], L3 [108] and OPAL [109], as can be seen in
Fig. 8.5. The experimental data are fitted to Eq. (8.19) in order to extract
Apor and Agf. The App term in Eq. (8.19) is small (~ 0.02) and treated
differently by different experiments. In some experiments is expressed in
the fitting formula in terms of A, and Apol , in others the measured App
value or the Standard Model is assumed. The corresponding uncertainties
have no effect on the final result. The LEP average [142] is

A = Apol = 0.1498 £ 0.0049 (8.25)
Ay = —Apol = 0.1439 = 0.0043. (8.26)

The correlation between Ae and A, is small (+1.2%). To the measure-
ments of A, and Apol a small correction is applied to take into account
the difference between the centre-of-mass energy and the Z pole, the effects
of the photon exchange, the Z —  interference and initial and final state
radiation. The correction amounts to ~ +0.005 in both cases and its un-
certainty (~ 0.0002) is smaller than in the A, case because of the precise
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Fig. 8.5 Angular distribution of the tau polarization measured by the four LEP ex-
perimets. The solid and dashed lines represents the result of fits without and with
the assumption of lepton universality, respectively. (Courtesy of the LEP Electroweak
Working Group.)

knowledge of the beam energy at LEP. Assuming lepton universality the
two measurements can be eventually combined, giving
Ay = 0.1465 £ 0.0033.

The error on this measurement is statistically dominated, the systematic
component is equal to 0.0015. The corresponding value of the effective weak
mixing angle is

sin? Oy 5 = 0.23159 4 0.00041.

The A, and A, measurements from the four LEP Collaborations are shown
in Fig. 8.6 and compared to the A, measurement of SLD.

8.3 Forward-backward asymmetries

The measurement of the forward-backward asymmetry (Eq. (8.4)) requires
the identification of the charge of the fermion and the measurement of its
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Fig. 8.6 Comparison of the Ae and A; measurements by the ALEPH (A), DELPHI
(D), L3 (L) and OPAL (O) experiments. The elipses give the standard error countours
(corresponding to 39% CL for a two-dimension gaussian). The combination of the four
experiments is represented by a star (central value) and a thicker elipse. The horizontal
band indicates the A measurement by SLD (S) from the left-right asymmetry; the
allowed range is given by plus and minus one standard deviation with respect to the
central value.

direction. App has been measured for individual lepton species (e, u, 7),
for heavy quarks (¢ and b) and inclusively for hadrons. Assuming lepton
universality the ratios of the couplings of the Z to charged leptons are equal,
therefore the asymmetries involving leptons provide a direct determination
of the effective mixing angle (Eq. (8.3)) using the relation App = 2 A.Ay,
where the fermion f in this case represents the final state lepton. The quark
29v4/9aq

1+(qu/gAq
subscript ¢ indicates the quark flavour. The ratio of quark couplings can

forward-backward asymmetries depends on Ay = where the

be expressed in terms of sin® fyy. sy and non-universal corrections as [84]:

Iva _q_ Qa2 L0 (8.27)
Gaq 3L,q

The residual vertex correction C;; can be computed assuming the Standard

Model. For udsc quarks it is small and has very little dependence on the

parameters of the model, while for b it depends on the top mass because

of the additional Z — bb vertex corrections (see Eq. (4.44)). It amounts to

+0.0014 for a top mass of 175 GeV. In case of quarks the term Ay is large
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and weakly dependent on sin? Ow,crr leaving most of the dependence on
the weak mixing angle to A, . It follows that for quarks Agp is essentially
linearly dependent on sin® 6y, while for leptons it shows a quadratic
dependence (Eq. (3.282)). The consequence of this behaviour is shown in
Table 8.3 where the magnitude of Arpp and its sensitivity to sin? Ow,esr is
given for leptons, for u-type and d-type quarks.

The forward-backward asymmetries can be determined either by mea-
suring the cross section in the forward and backward hemisphers and then
computing App = ZE=2E or by fitting the data to the differential angular

or+op

distribution
dN
dcosf
where 6 is the scattering angle of the fermion in the centre-of-mass sys-
tem and C'(cosf) is an acceptance function modifying the differential cross
section (Eq. (2.94)). The measurements can be divided in two classes:

= C(cosb) - (1 + cos? 6 + %AFB cos 9) (8.28)

e measurements where the selection of both fermions is required, as for
the leptonic asymmetries described in Section 8.3.1;

e measurements where at least one fermion must be tagged, as for the
measurement of heavy quark asymmetries described in Section 8.3.2.

In both cases the acceptance is a symmetric function, provided the selection
efficiency is charge- or forward-backward symmetric. This can be seen
by defining F'(cos @), the efficiency to detect a fermion at scattering angle
6. 1If the efficiency is charge-simmetric the same function, F', gives the
efficiency for anti-fermions. Hence for the first class of measurements one
has C(cos@) = F(cos0)F(—cosf) = C(—cosf), similarly for the second
class C(cosf) = F(cos) + F(—cos) = C(—cosf). Similar arguments
hold for forward-backward symmetric efficiencies.

The symmetry of the acceptance has important consequences. One can
see that in the (cosf)-dependent forward-backward asymmetry, defined as

dN_(cosf) — -2 (—cosh) 8 cos 6
A 9) = dcosf dcos@ = — —_ 8.29
ra{cosf) dcc])ZG(COSQ) + dféﬁe(— cosf) 3 re (14 cos6?) ( )

the C(cos ) acceptance cancels, showing that it is possible to make a mea-
surement independent on the acceptance by exploiting the differential an-
gular distribution. This is an important advantage over the simple counting
of forward and backward events, because it makes the measurement insen-
sitive to most intrumental effects, under the assumption of a given angular
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behaviour. Another advantage is a more accurate determination of Appg
since the whole angular distribution is used, and more weight is given to the
most sensitive angular regions. It is convenient to take advantage of these
properties by using an unbinned log-likelihood method to fit the data. If
L =[], P; is the likelihood function defined as product of event probabili-
ties P;, with the product extended to all events, one can write the negative
log-likelihood as

—Inl = —Zln?’i

=— ZlngC(cos@v) . (1 + cos? 0; + %AFB 00391')

- zi:ln gC(cos 0;) — Z:In (1 +cos?6; + gAFB cos 0¢>

where Eq. (8.28) has been used. The value of the App parameter giv-
ing the maximum likelihood does not depend on the angular correction,
therefore the first term in Eq. (8.30) can be ignored in the data analysis.
This unbinned likelihood method cannot be applied to Bhabha scattering,
since the presence of the t-channel requires a forward-backward asymmet-
ric term, computed from theory, to be added to Eq. (8.29). Because of
this additional term the acceptance does not decouple anymore from App
and the knowledge of the efficiency as a function of the scattering angle is
required.

The energy dependence near the Z peak, caused by the interference
between the photon and the Z exchange depends on the electric charge of
the final fermion and on its axial coupling and has very little dependence on
other electroweak parameters. This can be shown with Eq. (2.96), giving

f ~ AL 2 (S - m2Z) 371—0‘(8) 2Q€QngegAf

Ars(s) = Aen ) e, W+ A6, 2
The dependence is maximal for leptons (AAY% 5 /AEcyr ~ 0.00009/MeV ),
while the down-type quarks show the smallest energy dependence. This ef-
fect is corrected for using the precise energy determination of the LEP beam
energy, by running the measured asymmetry to my. All forward-backward
asymmetries are also corrected for the effect of initial state radiation, for
imaginary parts of the couplings (in particular for Im(Ac)), for the effect
of pure photon exchange and the presence of box diagrams. Specific cor-
rections, described later, are also applied for final state photon radiation
(leptons) and gluon emission (hadrons). The uncertainty of this correction
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Table 8.3 Magnitude of App and its sen-
sitivity on sin? Ow,efs for various fermion
species at the pole of the Z. The value of
0.2316 is used for sin? Ow,eff. For compari-
son the last line gives the magnitude and the
sensitivity for Apg.

ArB {,Sifi%
leptons .02 -1.7
u and ¢ quarks .07 -4.0
d, s and b quarks .10 -5.6
ArLr .15 -7.8

is, in all cases, much smaller than the present total error, dominated by the
statistical uncertainty for all measurements. The corrected asymmetry for
a fermion f will be indicated as A%’f; in the following pages.

The most important issues related to the lepton measurements are dis-
cussed next, before moving to quarks.

8.3.1 Lepton forward-backward asymmetries

The selection of eTe™ — ¢T¢~(y) events at LEP has been already de-
scribed in the Chapter dedicated to the measurement of the Z lineshape.
The forward-backward asymmetry is determined by fitting the data to
Eq. (8.28); 6 is defined by the scattering angle of the final-state negative
lepton. For tau leptons the direction is given by the sum of the momenta
of charge particles associated to the tau decays; the tau charge is measured
in the same way.

In the case of ete™ final state, the t-channel photon-exchange process in-
duces an important asymmetric correction and requires a careful treatment.
The contribution of this process is taken into account subtracting it from the
measured angular distribution. Semi-analytical calculations incorporating
leading-log photonic corrections, first-order non-log terms and first-order
weak corrections are available [85] and are used for this correction. The
t-channel influence is reduced by analysing the data in a restricted angular
region, typically in the —0.9 < cosf < +0.7 range. (Within this range the
t-channel contributes 12% to the total cross section, therefore calculations
with 1% precision yield an uncertainty of 0.1%.) In the fit of the subtracted
data to the form given by Eq. (8.28) an extended maximum-likelihood pro-
cedure is used, where the overall normalization is a free parameter of the
fit.
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The scattering angle of the final leptons in the laboratory system is
affected by initial- and final-state radiation; the main effect is due to hard
collinear radiation from one of the initial state leptons. The latter can be
corrected for by using the scattering angle in the effective centre-of-mass
system, that is

. cos[5(0- — Opr + 7]
cos " = T
cos[5 (0~ + g+ + 7]

(8.31)

where 0, and 0,4+ are the scattering angles of the lepton and anti-lepton,
respectively. In practice, since initial-state radiation (ISR) is forward-
backward symmetric, the use of (8.31) is not strictly required; it simpli-
fies, however, the definition of the acceptance, particularly for the ete™
final state. The ISR affects the observed asymmetry for another reason:
the steep dependence of the asymmetry on /s (Eq. (8.30)), changes the
effective centre-of-mass and therefore the observed asymmetry itself. As
photons produced in final-state radiation are not used in the definition
of the scattering angle, their effect is a small reduction of the observed
asymmetry. Semi-analytical programs can be used to correct for final-state
photon emission [86].

The asymmetries A%y (¢ = e, and 7) measured at LEP [82] are ex-
tracted with a fit to the measured App(s) using data collected near the
Z peak and at the off-peak points used to measure the Z lineshape. It
has been already stressed that, since the vector couplings of the leptons
are small, the slope of A%;(s) as a function of the beam energy is mainly
sensitive to the axial couplings. The fitting formula takes into account the
energy dependence of the asymmetry and the fit is done simultaneously with
the lineshape data to account for the effect of the energy uncertainty. In
the simultaneous fit of the lineshape data and A% ;(s) the axial couplings
are essentially determined by the lineshape and they are used to trans-
port the off-peak measurements of A% 5(s) to \/s = mz. In an alternative
method [83], the slope of the asymmetry is described by a free parameter.
This different approach allows to check the consistency in the determina-
tion of the axial couplings between the lineshape and the forward-backward
asymmetries.

The measurement of A%% is a rather straightforward measurement and
has low systematic uncertainties. For the ; and 7 channels the systematic
uncertainties are related to the applied corrections, to the presence of back-
ground and to possible detector asymmetries. Typical systematic errors
quoted by the LEP experiments are of the order of AArpp = 0.0005+0.001
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for muons and AAprp = 0.001 =+ 0.003 for taus, depending on the experi-
ment. For electrons, the theoretical uncertainty introduced in the treatment
of the t-channel terms (= 0.0014) has to be taken into account increasing
the typical error to AApp = 0.002. The uncertainty on the center-of-mass
energies gives a contribution of AA%’% = 0.0004, comparable to the exper-
imental systematics. This last two uncertainties are common to the four
experiments and have to be treated in a correlated way when averaging the
measurements.
The combination of the results of the four LEP experiments gives

A%S, = 0.0145 + 0.0025 (8.32)
A%E = 0.0169 + 0.0013, (8.33)
A%T = 0.0188 + 0.0017 . (8.34)

These measurements can be used to determine the ratios gv,/ga, for the
three charged leptons up to a common sign (Section 8.4.2). The three
measurement can be combined assuming lepton universality, giving

A%E = 0.0171 4 0.0010. (8.35)
This result can be converted into
sin Oy = 0.23099 & 0.00053.

The dependence of the asymmetries on the centre-of-mass energy,
A% (), is consistent with the expected value and sign of the lepton axial
couplings and it is shown in Fig. 8.7.

8.3.2 Heavy quark asymmetries
8.3.2.1 Lepton tagging

As discussed in Section 7.2.1 the presence of a lepton is a tag for Z — bb
or Z — cc events, while lepton kinematics can be used to discriminate the
different lepton sources, on a statistical basis.

The simplest approach consists in selecting high-p, leptons, which give
a high-purity sample of b events, with enhanced b — ¢~ content. Such a
sample can be used to measure the b asymmetry by fitting the polar angle
distribution of the thrust axis signed by the lepton charge' according to
Eq. (8.28).

IThe thrust axis is oriented towards the hemisphere containing the lepton if this is
negatively charged, towards the other hemisphere otherwise.




Asymmetries at the Z pole 329

ALEPH

oa b o 1995

05

L L L L L
892 89.4 912 913 93 932

Vs(GeV)

Fig. 8.7 Measurement of the forward-backward asymmetries for the three lepton species
at various centre-of-mass energies.

The sample selected through high-p, leptons is enhanced in b — £~ de-
cays (carrying the correct charge correlation between quark and tagging lep-
ton), yielding a visible forward-backward asymmetry in the oriented thrust
axis polar angle distribution, as shown in Fig. 8.8.

The observed asymmetry can be written in terms of the contributions
of the different components of the selected sample:

b. - b b b b b b
A%g = (1 - 2X)( r.s. W.S.)AFB + fbkgnbkgAFB

c—LlT 4e c c c
—f FB — fbkgnbkgAFB

+f A (8.36)
where f°. and f° . are the fractions of prompt leptons from b decays with
right /wrong charge correlation between the lepton charge and the b quark
charge, ngkg and 7, describe the (small) correlation between the charge
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Fig. 8.8 Polar angle distribution of the oriented thrust axis at the peak energy for the
ALEPH high-p, lepton analysis.The curve superimposed shows the result of the fit, that
is restricted to the range| cos € |< 0.9 to avoid regions with small detector acceptance.

of fake and non-prompt leptons and the charge of the primary quark in
b and c events, and the last term accounts for the contribution of light
quark background. The term (1 — 2Y) is introduced to correct for neutral
b meson mixing: B} and B? mesons oscillate between the B and the B
state, thus diluting the charge information carried by the final state lepton.
BY oscillations are fast compared to the BY lifetime, therefore a B? meson
arising from the hadronization of a b quark has 50% probability of decaying
as a B? and 50% probability of decaying as a B_g. Bg oscillations are much
slower, giving x4 =~ 0.18. The average mixing parameter for inclusive b
decays can therefore be expressed as:

X =0.5fs+xafa, (8.37)

where the values of f; and fy; are about 0.12 and .38, respectively.
High-p, leptons can be selected in both hemispheres, and the counting
of same sign and opposite sign pairs (Nos., Nss.) gives the possibility to
measure from the data the charge correlation in b events P, = (1—2%)(f2, —
fb ), once the small contribution from charm and light quark events has
been subtracted:
No.s.

_ _ p2 _ p2 .
Jos. = Noo ot Noo Py + (1 —=P,)" + c and uds corrections. (8.38)
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The analysis of the dilepton sample to evaluate Py, from the data, lowers
considerably the dependence of the measurement upon the knowledge of
semileptonic b decays (rates and kinematic properties), as well as b meson
mixing. It should be also noted that since the measurement makes use of
both forward negative leptons and backward positive leptons to tag forward
b quarks, the detector acceptance has nearly no effect on the extracted value
of the asymmetry: a sizeable effect could arise only in case of inefficiencies
that are both forward-backward asymmetric and different for positive and
negative leptons, which is very unlikely for LEP detectors.

The extraction of A% ; depends on the evaluation and on the modelling
of the charm component, and on the assumed value of A% . The branching
ratio ¢ — £7 is measured at LEP studying the lepton yield opposite to a
reconstructed high-energy D mesons; the modelling of semileptonic decays
relies on the study of DY and DT semileptonic decays performed by the
DELCO and MARK III experiments, at centre-of-mass energies below the
Z peak.

An extension of the high-p, lepton analysis consists in studying the
whole p; spectrum of lepton candidates, extracting A% 5 and A%y simul-
taneously. The sample is analysed in bins of p; (or other discriminating
variables) and polar angle, and in each bin the observed asymmetry is writ-
ten in terms of the b and ¢ asymmetries: the different b/c content of the
different bins gives sensitivity to both variables. Also in this case the sam-
ple composition as a function of the discriminating variable needs to be
estimated with the simulation, but the study of events with identified lep-
tons in both hemispheres gives information on Py, the charge correlation in
b events.

In the most precise analyses lifetime-based discriminating variables have
been used in conjunction with the lepton kinematics, to enhance the sep-
aration between the b and the c¢ constributions, gaining further statistical
power. The use of the lifetime introduces a significant complication in the
treatment of B meson mixing: BY oscillations are so fast that the proba-
bility of mixing can be assumed to be 50% independently of the value of
the lifetime variable, but B} oscillations have a period that is about twelve
times the b lifetime, therefore events with short lifetime are enhanced in
“non-oscillated” mesons, while events with long lifetime are enhanced in
“oscillated” mesons. The dependence of the effective mixing parameter Y
on the lifetime variable is relevant and needs to be treated correctly.
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8.3.2.2 Inclusive measurements

As discussed in Chapter 7, tagging methods based on lifetime have high per-
formance, but they do not provide information about the quark charge. In-
clusive methods have been developed to estimate the charge of the b quark,
to complement lifetime tags for the measurement of forward-backward
asymmetries.

The jet charge is usually defined as

. 21 %Pﬁi
Ei pﬁi ’

where p|; is the momentum of a particle parallel to the thrust axis, and the

sum runs over all charged particles in a hemisphere. Alternative definitions

@n (8.39)

can be constructed using the rapidity instead of the projected momentum,
or using the axis of the leading jet instead of the thrust axis, or restricting
the sum to the particles belonging to the leading jet. The parameter k can
be tuned to obtain high sensitivity to the quark charge, while keeping low
correlation between the charge of the two hemispheres (discussed below):
typical values are between 0.3 and 1.

In a pure sample of b events, the forward-backward asymmetry is pro-
portional to the mean charge flow between the two hemispheres

Qhp = (Q% — Q%) =6 AL (8.40)

where ¢ is a parameter called charge separation. At parton level d, (the
charge separation for a generic quark ¢) is equal to twice the quark charge,
but hadronization and decays lower its value, diluting the measured charge
flow. A precise determination of the forward-backward asymmetry requires
an eveluation of 6, with the lowest possible uncertainty. The advantage of
high-purity single-flavour samples, that in practice can be obtained for b
quarks only, lies on the possibility of measuring ¢, from the data, lowering
considerably the use of theoretical assumptions in the evaluatiuon of this
parameter, and therefore lowering its uncertainty. Hemispheres containing
the b or the b quark have average measured charge

(Qv) = /2 + (Ry) (8.41)
(Qp) = —0b/2— (Ry) , (8.42)
where Ry, and Ry are small corrections which account for interactions with

the detector material, that introduce a bias between positively and nega-
tively charged reconstructed particles. The total charge measured in the



Asymmetries at the Z pole 333

event is (Q%or) = (Ry — R3), which is very close to zero. The product of
the two hemisphere charges can be written as:
1 1
(QQ) = (@uQs) = — 702 — 50 (Ra) + (Ry) = (RyRy) . (3.43)
where the term (R;Rj) accounts for correlations between the charge mea-
surements in the two hemispheres, due to total charge conservation and
kinematic correlations between the b hadrons.
The charge separation d; can be measured by comparing the widths of
the distributions of the charge flow and of the total charge, as demonstrated
below:

o’ (Q%B) —0? (Q%OT) = <(Q%B)2> - <Q%B>2 - <(Q17)“OT)
= — Q@Y%) — Q%) + (Qhor)

~ 0 — Q) + Qo) (8.44)
The last expression relates §, to physical observables, having dropped the
corrections for material interactions and hemisphere correlations (intro-
duced above in Eq. (8.43)), that in the analyses are estimated with the
simulation. A sketch illustrating the physical meaning of the above quan-
tities is presented in Fig. 8.9.

In an asymmetry analysis, pure b samples cannot be selected, therefore
the above formalism has to be developed taking into account also the con-
tributions of the other flavours; for instance, the charge flow can be written
as

2 2

)+ (Q%or)
2

QFB = fb 5bAl})7'B + fc(scA%‘B + fuds 5uds A%(iBS ) (845)

where the fy, fe, fuds are the fraction of b, ¢ and light quark events in the
selected sample, and light quark have been, as usual, treated as a single
class.

In a simple approach, the sample composition as well as the charm and
light quark charge separations can be estimated with the simulation, dy
can be extracted from the data (using the simulation to subtract the non-b
contributions and correct for hemisphere correlations) and the b asymmetry
can be derived from the observed charge flow. In the more sophisticated
approaches double tagging techniques, similar to the ones employed for the
measurement of Ry can be used to derive most parameters from data. The
measurement of the b forward-backward asymmetry using these techniques,
as well as the measurement described before using semileptonic events, are
affected by systematic uncertainties much smaller than the statistical error
obtained at LEP.
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Fig. 8.9 Sketch showing the distributions of charge flow and total charge: the difference

in width between the two distribution is related to the charge separation, as explained
in the text.

8.3.2.3 Measurement of the jet charge asymmetry using all
flavours

As already mentioned, direct measurements of the charge separation for
non-b quark flavours are more difficult. Nevertheless charm samples se-
lected by requiring the presence of a D* meson can be employed to evaluate
0. with moderate model-dependence. Lifetime-tagged samples with varying
charm content can also be examined to infer the value of §.. The charm
charge separation is reduced by the presence of the soft pion in the D*
decay (section 7.2.3). The soft pion retains memory of the original charm
charge, but being low momentum it gets a low weight from the jet charge
definition, Eq. (8.39). Individual charge separations for lighter quarks can-
not be measured separately, however the average d,4s can be inferred from
the difference in width of the (Qr — Qp) and (Qr + @p) distributions, by
a procedure similar to the one based on Eq. (8.44). When b tagging is not
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used, Eq. (8.45) can be rewritten as:

Qrs = C Z 6AFBF C Z FgAeA

q=u,d... qud

qF - (8.46)

where C indicates the geometrical acceptance. This relation shows a linear
dependence on A, and, through this parameter, can be used to extract
sin? Ow,erf. Since the A, are only weakly dependent on sin? Ow,ers their
expected SMS value can be used; the same is done for F . The electroweak
mixing angle determined from Qpp using untagged hadronlc samples is
dominated by the systematic uncertanties on the charge separations, d,’s.
In particular detailed Monte Carlo studies are needed to disentangle the §,,
04 and d4 contributions, and the the simulation has to be carefully tuned
to the measured kaon and A production rates in order to have a realistic
description of strangeness production.

8.3.2.4 D meson measurements at LEP

Prompt D* produced in Z — c¢¢ decays can be be exploited to measure the
forward-backward asymmetry. These vector mesons give clear signatures,
since a narrow peak with low background can be obtained in the AM
distribution (Fig. 7.13). The D* charge is correlated with the one of the
parent ¢ quark charge. The background consists essentially of D* produced
in the b quark cascade of Z — bb events. This background can be suppressed
using the D* energy, which is higher for D* originating from Z — c¢ than
for charm mesons from b decays. The thrust axis direction, signed by the

* charge, is used and a log-likelihood fit to the angular distribution is
performed.

The amount of b background must be carefully monitored. The cor-
relation with the D* charge is opposite for Z — bb events, therefore the
presence of contaminating b’s considerably dilutes the observed asymme-
try. The b and ¢ components can be determined by a fit of the D* energy
distribution. The effect of b mixing on the b asymmetry needs to be ac-
counted for in a way which differs from an unbiased sample: the b — D*
process selects preferentially By hadrons, therefore the effective x param-
eter is dominated by x4. Sidebands of invariant mass peaks can be used
to evaluate the background asymmetry which is generally close to zero. In
order to evaluate the background from data and in an unbiased way, the
events mixing method is often used. This technique allows to evaluate the
background from data by taking the D meson and the slow pion forming
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the D* from opposite hemispheres or from different events. In this way the
contamination caused by partially reconstructed events is treated without
the need of Monte Carlo simulations.

8.3.2.5 Heavy quark asymmetries: combined results and QCD
corrections

The LEP measurements of b and ¢ forward-backward asymmetries from
semileptonic events, from inclusive samples and from D mesons [110] can
be combined to merge the experimental information in an optimal way.
The combination procedure follows a x2 minimisation and it is described in
Ref. [112]. The measurements of R;, and R, (Subsections 7.3.3, 7.4.5) are
included in the same procedure. Some measurements depend on parameters
determined analysing the same data, for example the semileptonic events
used to measure the b and ¢ asymmetries provide also information on the b
semileptonic branching ratios or on BB oscillations. These ancillary mea-
surements must be taken into account in the combination. The covariance
matrix used in the fit includes the statistical and systematic correlation
among various measurements. Statistical correlations exist for measure-
ments performed with the data collected by the same experiment. On the
other hand measurements of the same parameter by different experiments
are affect by common systematic uncertainties.

As mentioned at the introduction of this Section, the extraction of the
effective electroweak mixing angle requires the evaluation of the corrected b
and ¢ asymmetries A% and A%, from the measured asymmetries. Heavy
quark asymmetries are affected by radiative effects due to strong interac-
tions, as described in Subsection 4.2.2. They are related to virtual vertex
and gluon bremsstrahlung diagrams which modify the angular distribution
of the fermions emitted in the final state. The emission of an hard gluon,
for example, may scatter both b and b in the same hemisphere (forward or
backward): in such events the original electroweak asymmetry is destroyed.
The effect of such radiative effects is to lower the experimentally observed
asymmetry by a few percent, as can be seen from Eq. (4.77). Detailed
calculation based on perturbative QCD, including second-order corrections
for massless quarks and quark mass effects at first-order, are available [113].
An important ingredient of these theoretical calculations is the definition
of the b quark direction, which should closely match the experimental def-
inition based on thrust axis reconstruction. In practice experimental cuts
reduce considerably the QCD corrections [114]. For instance the momen-
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tum cut which is applied in lepton tagging selects events with reduced gluon
radiation. Furthermore in some cases the effect of hard gluon radiation is
automatically incorporated by analysis procedure. This is the case for the
inclusive measurements based on jet charge techniques, because the b charge
separation, measured with data, is an effective parameter that includes the
QCD smearing.

The present world averages for the b and ¢ forward-backward asymme-
tries at the Z pole, as given in [142], are:

A% = 0.0992 + 0.0016
A%S = 0.0707 + 0.0035 .

There is a +15% correlation between the two results. Both results are dom-
inated by the statistical uncertanties. In particular, for the b asymmetry,
the systematic uncertainties related to the QCD corrections is a factor three
lower than the statistical error.

The dependence of the b and ¢ asymmetries on the centre-of-mass en-
ergy, A% 5(s) and A% g(s), is regulated by the quark electric charge and its
axial coupling (Eq. (8.30)). Their observed energy dependence is shown in
Fig. 8.10 and compared to the MSM prediction. (The value of sin? Oy sy
given in Section 8.4 is used to normalize the vertical scale for the MSM
prediction). The different slope for b and ¢ quarks is due to the absolute
value of their electric charge, that is twice larger for up-type quarks. The
asymmetry is increasing in both cases because the two quark types have
opposite sign (and same absolute value) for the axial couplings.

8.3.2.6 HF asymmetries with polarized beams

The quark asymmetries discussed above, based on measurements employing
unpolarized beams, are probing the product of initial and final state cou-
plings, AcAq. On the other hand the polarized forward-backward asym-
metry (4%%(q)), defined by Eq. (2.87), is solely dependent on A,. The
polarized forward-backward asymmetry of b and ¢ quarks have been mea-
sured by SLD [111] using flavour tagging methods very similar to the ones
used for the unpolarized case. Inclusive samples of Z — bb events selected
thanks to the long b lifetime provide a precise determination of A using
jet-charge techniques. Semileptonic b and ¢ decays give a simultaneous de-
termination of Ay, A. through the analysis of their inclusive lepton spectra;
D and D* mesons have been used to measure A.. These measurements are
corrected for QCD effects, which are similar to the unpolarized case. The
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Fig. 8.10 Measurement of the b and ¢ forward-backward asymmetries as a function of
the centre-of-mass energy. The MSM expectation for the two quark types is shown.
(Courtesy of the LEP Electroweak Working Group [142].)

correction depends on the channel and on the tagging method and amounts

to a few percent.
The SLD results are combined [142], yielding:

Ap = 0.923 £0.020
A; = 0.670 £ 0.027.

The correlation between A, and A, is small (11%). The measurements are
consistent with the MSM predictions giving A4, = 0.935 and A, = 0.668,
respectively. These predictions have a small uncertainty (=~ 0.001 for
b quarks) because the quark A, parameters are only weakly dependent
on sin® Ow.err. Indeed, as can be seen by using Eq. (8.27), 64, =~
—0.63 (5sin2 9W7eff'
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8.4 Interpretations

8.4.1 The determinations of sin® Owcss

The measurements of the asymmetries presented in the previous Sec-
tions can be interpreted as a measurement of sin’ Ow,ers. For the lep-
tonic forward-backward asymmetries, for the measurements of A, and A-
from tau polarization, and for the measurement of AY . the interpreta-
tion requires the only assumption of lepton universality. The derivation of
sin® Oy ¢4 from hadronic measurements requires the knowledge of the A,
terms that, as already discussed, have only a mild dependence on sin® Ow,ef s
in the MSM. For this class of measurements the validity of the MSM for the
A, terms is assumed; this assumption is corroborated by the direct mea-
surements of Ay, A, using polarized beams, which agree with the MSM.

A compilation of the various results is shown in Fig. 8.11, where the
dependence of sin? @y ;s on the Higgs boson mass is also indicated. The
six results shown in the figure are obtained, respectively, from the lepton
forward-backward asymmetry, the tau polarization, the left-right asymme-
try, the b forward-backward asymmetry, the ¢ forward-backward asymmetry
and the jet charge asymmetry using all quark flavours. The average of the
six measurements gives:

sin? Oy = 0.23153 & 0.00016

with a x? of 11.8 for five degrees of freedom corresponding to a confidence
level of 3.7%. This confidence level is relatively low, because the most
precise determinations, based on A% r and on the b asymmetry are about
3 o apart. From the experimental point of view both measurements are
dominated by statistical errors, with accurate studies of the much lower
systematic uncertainties. On the other hand a departure of the b couplings
from their MSM expectation seems to be excluded by the precise measure-
ments of 4, and Ry. Therefore this discrepancy is assumed to be related
to a statistical fluctuation.

8.4.2 Extraction of the neutral current couplings

The couplings of the neutral current to leptons (¢ = e, 1, 7) can be deter-
mined using three ingredients:

e the leptonic partial widths,
e the A, parameters as determined by the leptonic asymmetries,
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Fig. 8.11 The determinations of sin? Ow,ef s from the measurements described in this
Chapter and their average. The measurements are, starting from the top, the lep-
ton forward-backward asymmetry, the tau polarization, the left-right asymmetry, the
b forward-backward asymmetry, the ¢ forward-backward asymmetry and the jet charge
asymmetry using all quark flavours. The results are compared to the MSM prediction,
as a function of the Higgs boson mass. The uncertainty due to a(m2Z) on the MSM
predictions is indicate by a band. The effect of varying the top mass within the range in-
dicated in the figure is added as two extra side bands. (Courtesy of the LEP Electroweak

Working Group [142].)

e the energy dependence of the leptonic forward-backward asymmetries.

The partial width of the decay Z — £T¢~, (Section 6.6) gives the sum of
the squares of the couplings using Eq. (2.79). The ratio of the vector and
axial couplings is given by the leptonic measurements of A, (Eq. (8.2)),
i.e. by the measurement of Ay g, of the tau polarization and of the leptonic
forward-backward asymmetries. The energy dependence of the asymmetries
(Eq. (8.30)) fixes the value of the axial couplings, up to a common sign.
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This last ingredient is required, since the widths and asymmetries do not
change if g, and g4, replace each other, as can be seen from Egs. (2.79)
and (8.2).

The measured vector and axial couplings to electron, muon and tau are
compared in Fig. 8.12 to test the hypothesis of lepton universality. The
measurements are in agreement and lepton universality is tested to less
than 0.1% for axial couplings and to a few percent for the smaller vector
couplings:

Zﬂ =0.961 £ 0.063 Z% = 1.0002 £ 0.00064
Ve °

ZVT =0.958 £0.030 % = 1.0019 £ 0.00073 .
Ve N

These results improves by two order of magnitudes the tests of neutral
currents lepton-universality available before the start of LEP and SLC,
based on ve and v scattering.

The b and ¢ quark couplings can be extracted with the same procedure
adopted for the lepton case, by using the measurements of Ry, R., the val-
ues of Ay, A, determined by the polarized heavy quark asymmetries, and
the energy dependence of the b and ¢ forward-backward asymmetries. With
this method the axial (vector) b couplings can be tested to a precision of
approximately 2% (3%). Similar precisions are obtained with the tests of
the ¢ couplings (the bounds in this case are somewhat weaker mainly be-
cause of the larger uncertainty on the measured value of R.). All couplings
are found to agree with the MSM.

The A, parameters for b and ¢ quarks can also be evaluated from the un-
polarized b and ¢ asymmetries using Eq. (2.86) and the value of A, derived
from A%%, from the tau polarization and from AY 5. This interpretation of

the heavy quark unpolarized asymmetries is bound to lead, however, to a
rather low value of Ay (0.881+0.017, compared to the MSM expectation of
0.935) because of the 3 o discrepancy between A%% and A9 , already men-
tioned in the discussion concerning the determination of sin? Gy .rs. As a
consequence a rather high (low) value of the axial (vector) b couplings is
obtained and the agreement with the MSM is marginal for both couplings.
It must be stressed, however, that this discrepancy is totally correlated with
the one seen in Fig. 8.11.

The measurements of the vector and axial couplings for various fermion
species are depicted in Fig. 8.13. The regions allowed by the experimental
measurements at 68% CL are shown. As expected the precision obtained
for the lepton measurements is impressive. With the scale used by this
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figure the three measurements are represented by three superimposed dots.
Considerable precision is obtained also for the heavy quark couplings. Con-
straints are obtained on the couplings of lighter quarks by measurements
of forward-backward asymmetries using kaons [115] and high-momentum
stable particles [116]. As the large uncertanties of these measurements do
not allow the study of the energy dependence, the contours indicating the
allowed regions are symmetric with respect to the line gy = gay. The con-
straints on neutrino couplings are computed from the measurement of the
invisible width (Section 6.6), assuming three neutrino families with iden-
tical neutral couplings. In this case the experimentally allowed region is
represented by a very thin ring.

0.032
[ Im=172. £3.0 GeV

M= 114..1000 GeV

-0.0351 |
> i
m -
-0.03 8- A
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68% CL

_0-041 T T r . T i i ' : ' ' : |
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9al

Fig. 8.12 The vector and axial couplings of the neutral current to electrons, muons
and taus. The 68% CL allowed regions are shown with dashed, dotted and dash-dotted
lines, respectively. The combination of the measurements from the three lepton species,
assuming lepton universality, is also shown (full line). The shaded area shows the MSM
prediction, within the allowed values for the top and Higgs boson masses. The uncer-
tainty on a(mz) is indicated by the small arrow. (Courtesy of the Lep Electroweak
Working Group.)
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Fig. 8.13 The vector and axial couplings of the neutral current to various fermion
species. The regions allowed by the experimental measurements (68% CL) are shown.
(Courtesy of the Lep Electroweak Working Group.)
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Chapter 9

Electroweak Measurements with
W Bosons

The discovery of the W boson in 1983 [25, 26] was the first experimental
evidence in favour of the model of Glashow, Weinberg and Salam [2]. Since
then W physics has played a growing role in tests of electroweak interac-
tions. The mass of the W is very sensitive to pure electroweak radiative
corrections, through the relation (Eq. (3.188))

My malmy) gy 9.1)
mZZ V2G

mi, (1

where a(m?%) is the fine structure constant evolved at ¢*> = myz (as ex-
plained in Subsection 3.2.4), mz and G come from precise measurements
of the Z mass and of the muon lifetime, and Ar" indicates the genuine
electroweak corrections. The relation can either be used to compare a di-
rect measurement of the W mass to the indirect value, computed with Ar"
taken from other observables, or to evaluate Ar" itself. The W mass has
been measured with increasing precision at the SppS , Tevatron and LEP
colliders, leading to a growing evidence for the need of radiative corrections,
beyond the pure QED effects that are incorporated in the effective a(m?).
This can be seen in Fig. 9.1 where the value of the W mass computed with
Eq. (9.1), and assuming Ar" = 0, is compared to the W mass world
average, over the years.

This Chapter starts with a description of W boson production and mass
measurement at hadron colliders, followed by W physics measurements at
LEP. The study of WW+~ and WW Z triple gauge couplings is the main
subject of the final Section.

345
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Fig. 9.1 The time evolution of the W mass World Average (Particle Data Group)
compared to the value extrapolated from Eq. (9.1) with Ar"W = 0, in the same years.
The areas represent the 68% CL contours. The difference has reached 12 ¢’s in year
2005, showing the need of genuine electroweak corrections to describe the experimental
data.

9.1 W mass measurement at hadron colliders

The main W production mechanism at hadron colliders is the ¢’ — W
Drell-Yan process shown in Fig. 9.2. The initial quarks can either be valence
or see quarks.

The study of W bosons at pp and pp colliders naturally leads to two dif-
ferent streams of investigation. One can use W (and Z) bosons to probe the
internal structure of the proton, i.e. to measure the momentum distribu-
tion of initial partons within the proton (anti-proton) target, the so-called
Parton Density Functions (PDF’s). A detailed treatment of this topic goes
beyond the scope of this book. The second stream of investigations is re-
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Fig. 9.2 An example of W production and decay through the Drell-Yan process.

lated to the electroweak properties of the W boson, in particular to its
mass.
The W production cross section at hadron colliders can be written as

1
G<h1h2):A dxldnggl(xl)fﬁg(xg)doDY(§) (92)

where f, (z1) ( f}y(22) ) represents the probability that quark a (b) carries
a fraction z; (72) of the initial hadron momentum and doPY (3) is the cross
section of the Drell-Yan subprocess at transfer momentum §. The f(z1)
function represents the PDF for quark a. For the subprocess ud — W+ —
et v the cross section is described by the Breit-Wigner ansatz

17 | N
S35 (VE-mw)2+ 1
where I'; and I are the partial and total width for the W decay. The factor
1/3 comes from the need of matching the colours of the initial quarks.
At the SppS collider (y/s = 540 GeV) the W production cross section
times the W — ev branching ratio was 0.3 nb , it is 2 nb at the Tevatron
(Vs = 2 TeV) (Fig. 9.3) and will be about 15 nb (/s = 14 TeV) at the
LHC.

The PDF’s in Eq. (9.2) are relevant at x1 ~ xo ~ " making valence
quarks less and less important at higher energy. At LHC, that is a pp
collider, the production through valence quarks will be absent.

The W production cross section has to be compared to the total pp (pp)
cross section, that is eight orders of magnitude larger at the Tevatron. Be-
cause of the large hadronic background W decays must be detected into the

doPY (3)

(9.3)
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Fig. 9.3 The W production cross section at pp colliders. The cross section is multiplied
by the W — ev branching ratio.

leptonic channels, by requiring an isolated lepton (electron or muon) with
high transverse momentum and large missing transverse energy due to the
undetected neutrino. At hadron colliders the longitudinal component of the
missing momentum cannot be measured because of the collision fragments,
directed along the beam axis, that are not detected. The W invariant mass
cannot be measured and is replaced by the transverse mass defined using
the transverse components of the momenta as

M"_/l;/ — \/(Eé:zpton +E%)2 ( lepton +pT 2 _ \/2 leptoin(l — cos ¢)

(9-4)
where ¢ is the angle between the lepton and the missing momentum mea-
sured on the transverse plane and (E%.)? = (ph)? + m? . The missing

transverse momentum is measured by taking into account the total trans-
verse momentum of the recoiling hadronic system, in addition to the lepton
information.

The transverse mass distribution peaks at =~ myy, as can be seen by the
differential cross section
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Fig. 9.4 Transverse mass distribution from high pr electrons collected by the DO ex-
periment at the Tevatron Collider.

do do dcost  do M,

_ _ RN VERY: -1 ]
dME, dcost dM{E,  dcost 2mw)(mw (Myy)™)~= (9:5)

where @ is the polar decay angle in the W decays frame and M, ~ Zpé,?p ton
has been used. The divergence in Eq. (9.5) translates in a relatively broad
Jacobian peak when the natural width of the W boson and the effect of de-
tector smearing, originating from finite energy and momentum resolutions
and from undetected particles, are taken into account (Fig. 9.4).

An important experimental source of systematic error in the measure-
ment of the W mass at hadron colliders is related to the determination of the
absolute energy scale. The momentum scale of tracking detectors can be de-
termined, using the known .J/v mass and selecting J/v — p*p~ decays, to
a typical precision of less than permil. Calorimeters can be calibrated with
high-energy electron pairs from Z decays, by computing the pair invariant
mass and then comparing to the Z mass precisely measured at LEP. The
comparison requires correcting for the electron bremsstrahlung in the track-
ing detectors. The uncertainty on the lepton energy scale gave systematic
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errors of about 80 MeV at the Tevatron for earlier data (Run I, Ref. [117])
and recently lowered to less than 30 MeV (Run II, Ref. [118]). The W mass
measurement is performed by fitting the data to distributions obtained with
Monte Carlo simulations at different masses. The modeling of the M,
distribution used for the fitting procedure is another source of systematic
uncertainty. Relevant inputs to the Monte Carlo models are the electron
energy and muon momentum resolutions, the response of the detector to the
recoiling hadronic system and the distributions of the W transverse and lon-
gitudinal momentum. Leptonic decays of the Z boson obtained during the
same experimental conditions can be used to calibrate the first two effects.
The latter is constrained using the measurement of the forward-backward
charge asymmetry in W decays. The average of the measurements of the
W mass from pp colliders is my = 80.429 £+ 0.039 GeV [118].

9.2 W production in ete™ collisions

At centre-of-mass energies greater than 2my ~ 161 GeV W pairs can be
produced in e*e™ collisions. Three diagrams, usually called CC03 diagrams
(CC stands for Charged Currents) contribute at Born level, as shown in
Fig. 9.5. The first two diagrams involve vertexes with three interacting
gauge bosons (Triple Gauge Couplings, or TGC’s) while the third represents
the exchange of a neutrino in the t channel. The Born-level matrix element
depends on the electron beam helicity (k) !, on the outgoing W’s helicities
(A=, A4), on the s;t Mandelstam variables and is given by

e? 1 1 cw 1
AL A )= —-Mib_ + €[~ — " geez———]2 —
M(K, y A5 S, ) 28%, tMl +e [8 ng Zs—M%] (M2 M3)
(9.6)
where J,,_=1 for left-handed electrons and zero otherwise, cyy = % ,

sw = +/1— C‘Q/V , and gecz is the Z-electron coupling. The expressions for
My, Mo, M3 can be found in [119]. For small values of the W velocity

08 =14/1-— 4mj", i.e. close to the WW threshold, the t-channel process
dominates:
My  Ms
— R ) 9.7
M My p (97)

1The positron beam helicity must be equal and with opposite sign.
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Fig. 9.5 Diagrams contributing to WW production at LEP.
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Fig. 9.6 Example of two diagrams contributing to 4f final states at LEP. The second
diagram represents an example of single-W production.

and the cross section for unpolarized beams and W’s can be computed as
[120]

do 3 1 2
dQ ~ 64r2s Z ZlM(ﬁ’Af’)\J”S’t”
Ry A, A
a? 1 3¢, — 1 2

showing the dominant term proportional to the W velocity entirely due to
the t-channel.

Above threshold Eq. (9.8) does not hold and a cross section computed
using the t-channel diagram only would grow as log(s) with increasing
centre-of-mass energy and eventually violate unitarity. The negative in-
terference with the WWZ and WW+~ processes yields, for LEP energies
above 180 GeV, a weakly increasing cross-section of about 17 pb~!. It
must be pointed out that a cross-section definition based only on the
three CC03 diagrams is not gauge invariant. The physical process is
ete™ — WTW~ — ffff where ffff indicates the final state made of
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four fermions. In principle all four fermion final states must be taken into
account, see for instance Fig. 9.6 for an example of two processes with iden-
tical final states (the second process is called single-W production and is
important for the study of TGC’s, described in the last Section). In prac-
tice in this context, within typical experimental cuts, the cross sections
computed with the full set of four fermion diagrams and the CCO03 only
turn out to be numerically very similar.

While at the Z pole decays of the Z boson can be selected in an es-
sentially background-free environment, eTe™ — W+W ™ events at higher
energies have to be separated from the dominant two-photon [121] and
two-fermion [122] processes (Fig. 9.7). The two-photon processes (as
ete™ — ggete™) have a large cross section but low visible energy in the
experimental apparatus and are characterized by low transverse momen-
tum particles. They can be rejected relatively easily by simple selection
cuts. The two-fermion events are mainly related to the radiative tail of the
Z resonance and consist in the production of an on-shell Z boson together
with the emission of a ISR photon of energy

2
s— Mz

2V/s

These eTe™ — ffv events are typically longitudinally unbalanced, since the
ISR photon is often lost along the beam line and the Z boson is boosted in
the laboratory frame. The visible energy in this case is close to the Z mass.
These features can be used to tag these events and considerably reduce
the background. Two-fermion events with the ISR photon emitted within
the apparatus acceptance can be rejected by detecting high energy isolated
photons.

Decays of W bosons to hadrons are twice as frequent as decays to lep-
tons. This is a consequence of quarks’ three colours and the top mass
being too large for the W to decay to the third quark family. Essen-
tially only W decays to ud and c5 are allowed (other allowed combi-
nations are suppressed by low CKM matrix elements) for a total of six
states when three colours are taken into account. Three kind of leptonic
decays are allowed (W — ev, uv, 7v), resulting in a branching ratio of 2/3
for the hadronic decays. Since W’s are produced in pairs, the four-fermion
ete™ — WTW™ — ffff events are classified in three topologies:

E, = (9.9)

e fully hadronic decays (ete™ — WTW™ — qqqq , about 45% of the
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Fig. 9.7 Cross sections for various processes at LEP. (Courtesy of Salvatore Mele.)

events), characterized by four jets in the apparatus ?;

e semileptonic decays (eTe™ — WHTW~= — qqlv , about 44% of the
events), with two jets, an high energy lepton and missing energy due
to the undetected neutrino;

e fully leptonic decays (eTe™ — WHTW~ — Iviv , about 11% of the
events), characterized by two high-energy acollinear leptons and miss-
ing energy.

Experimentally three different event selections correspond to the three
topologies. Fully hadronic decays are selected by requiring high multiplicity

2The label ¢ indicates a generic quark (or anti-quark).
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Fig. 9.8 The ete™ — WTW ™~ cross section as a function of the centre-of-mass energy.
The experimental measurements are compared to theoretical predictions. (Courtesy of
the LEP Electroweak Working Group).

events and four hadronic jets. Selections are based on event properties as
sphericity, jet angles, and other event-shape variables, often combined with
neural network techniques. Typical efficiencies are ~ 85% with background
contaminations of &~ 15%. Semileptonic decays selections are based on the
requirement of one isolated lepton, two reconstructed jets and missing mo-
mentum. The isolated lepton can be an electron, a muon or a tau, selected
as a low multiplicity jet. In this channels the typical selection efficiency is
~ 70% and the background contamination very low, of the order of a few
percent. Leptonic decays selections require low multiplicity events, with
two isolated acoplanar leptons with missing transverse momentum. The
lepton candidates can be low multiplicity jets to account for taus and final
state radiation. Efficiencies around 50% are obtained with low background
contamination (= 10%). While in events with one or two leptons can be fur-
ther classified according to the lepton species (for example semileptonic-tau
events or electron-muon leptonic decays) in fully hadronic decays the quark
flavours are not distinguished and all sub-channels are treated together.
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The cross sections of the various channels are computed in a com-
mon likelihood fit with poissonian statistics in order to take into ac-
count cross contaminations among channels (i.e. the fraction of event
of one kind selected in a different class). Backgrounds from non-four-
fermion events, as computed from Monte Carlo simulations, are subtracted
in the fit. The cross sections are corrected for the effect of non-WW
four-fermion events (see, for instance, the single-W process of Fig. 9.6).
The latter correction is of the order of 1%. The total cross section as
measured at LEP and compared to recent calculations [123] is shown in
Fig. 9.8. The measurements are a strong indication in favour of the exis-
tence of WWZ and WW+~ TGC’s. From the individual cross sections [124]
the W decay branching ratios can be computed. The hadronic branch-
ing ratio amounts to (67.48 £ 0.28)% in agreement with the Standard
Model expectation (67.51%). The individual leptonic branching ratios are
BR(W — e) = (10.65 £ 0.17)%, BR(W — p) = (10.59 + 0.15)%, and
BR(W — 7) = (11.44 £+ 0.22)%. The branching ratios of W into electron
and muon are in good agreement with the hypothesis of lepton universal-
ity, while the tau channel shows an higher value (2.8 standard deviations
higher, if electron and muon are combined together and correlations taken
into account). If the three leptonic channels are combined, assuming lepton
universality, the leptonic branching ratio is BR(W — £) = (10.84+0.09)%,
in agreement with the MSM expectation (10.83%).

9.3 W mass measurement in ete~ collisions

Data taken with ete™ collisions provide information on the the W mass
in two ways. At threshold the cross section itself is sensitive on the W
mass value, beyond threshold W bosons, and their invariant mass, can be
reconstructed from their decay products.

The total cross section at threshold is obtained by integrating Eq. (9.8)
over the angles, giving

a? 1
~ T 48+ 0(8%). (9.10)
4sy,
The linear dependence on the W velocity translates into a dependence
on the W mass, entirely due to the t channel neutrino exchange. The

contribution of diagrams involving trilinear couplings, that are tested with
limited precision and could be modified by new physics (see next chapter),
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is O(B%), keeping the model dependence small. Because of the limited
statistics collected by LEP experiments at the WW threshold the result
from this technique is affected by a rather large uncertainty. The cross
section from data taken at a centre-of-mass-energy of 161 GeV is 0 =
3.69 4 0.45 pb, corresponding to my = 80.40 £ 0.22 GeV/c?.

An order of magnitude in precision is gained with direct W reconstruc-
tion. The measurement is based on the WTW~ — qqqq and WTW~ —
qqlv channels ; information on the W mass can also be provided by the fully
leptonic [vlv channel, but the precision is limited by the lower branching
ratio and the presence of two undetected neutrinos. Jet reconstruction is
the first step of the measurement: two jets (four jets) are reconstructed
in the semileptonic (fully hadronic) channel. An iterative procedure (Sec-
tion 7.1) based on a metric, typically related to the invariant mass, is used
to build the jets. The closest particles are joined together to form a new
pseudoparticle (jetlet) and the process ends when only two (or four for fully
hadronic events) jets are left. In the procedure the four-momentum of the
new jetlet is normally computed from the sum of the two four-momenta of
the previous jetlets and the new object acquires a mass from the invariant
mass of the resulting four-momentum. The W mass is computed from the
invariant mass of the two-jet system:

mw = \/4E1EJ(1 — ﬁiﬁj COS(@)) + mf + mf (911)

where i and j refer to the two jets. In the fully hadronic channel there
are three possible pairs of two-jet combinations; a criterion is needed to
choose the best combination, based for instance on discarding clearly wrong
pairings (out of a large window around 80 GeV/c?) or on choosing the
largest value of the CC03 matrix element (Eq. (9.6)). If the latter criterion
is used the four vectors of the two jets and a nominal value of the W mass
are used as input.

e~ collisions the four momentum of the initial state is known

Since in e
the W mass resolution can be greatly improved by applying a constrained
kinematic fit to the four momenta of the reconstructed jets, leptons and

missing momentum. The constraint is

> (Ex, Py) = (/5,0,0,0) (9.12)

k
where the sum is over all reconstructed objects. A further constraint can
be applied by requiring the two W invariant masses to be equal, within
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the expected W width. In semileptonic decays the mass of the leptonically
decaying W is computed from the lepton and the missing momentum. In
the kinematic fitting the four momenta of the reconstructed objects are
allowed to vary within their expected uncertainties (hence, for example,
since the energy of a jet is less well measured than the energy of a lepton a
larger variation is allowed); typically a x? is constructed and the constraints
are imposed by Lagrange multipliers. As can be seen in Fig. 9.9 a sizeable
improvement can be obtained.

The kinematic fit can be applied if the centre-of-mass energy, i.e. the
beam energy of the accelerator, is precisely known. From Eq. (9.11) one
gets

5mW - 6Ebeam

mw Ebeam

(9.13)

showing that the uncertainty on the centre-of-mass energy directly reflects
on the mass uncertainty. At LEP the resonant depolarization technique,
described in Section 6.4 and allowing a relative precision of 10~°, worked
only for beam energies up to 60 GeV and extrapolations were needed to
calibrate the higher energies reached at LEP2. The extrapolation was con-
trolled by the extensive use of NMR probes in the LEP magnets and cross
checked in several ways. A special spectrometer was installed in the beam
line to directly measure the beam momentum; the energy loss by syn-
chrotron radiation, which is proportional to the fourth power of the beam
energy, was measured by the frequency of the accelerating field. Finally
the beam energy was measured directly with the data by means of Z ra-
diative returns (see Eq. (9.9)), i.e. two-fermion events where a real Z is
boosted in the laboratory system. In this events the opening angle of the
two fermions produced in the Z decay depends on the centre-of-mass en-
ergy. The final uncertainty on the LEP2 beam energy [125] was about 20
MeV (the exact value depends on the year of data taking), corresponding
to dmy ~ 17 MeV /c2.

Invariant mass distributions as measured at LEP, taking as an exam-
ple the semileptonic channel, are shown in Fig. 9.10. The Breit-Wigner
distribution of the W resonance is distorted by several effects:

the emission of Initial State Radiation (ISR),

phase space constraints, especially important at threshold,
detector resolution,

wrong particle assignment to the W'’s,
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e background contamination,
e selection cuts.

These effects need to be taken into account to extract the W mass from
the experimental distributions. The differential cross section as a function
of the two W masses (m12) can be written as

oy 9.14
m— gcco3 X p1 X p2 (9.14)
where H is a radiator similar to the one described for the Z lineshape
(Section 6.2) , occos is the Born level matrix element (Eq. (9.6)) and
p1,2 are the relativistic Breit-Wigner distributions for the two W bosons.
Detector effects can be taken into account by a resolution function and

included by a convolution integral as

d*o

cb:/dMl/dM2 G(Ml’MQ’ml’mQ)idmldmg

(9.15)

where G is the transfer resolution function. The W mass can be evaluated
by maximazing the likelihood

N
£ =] e, My;mw) (9.16)
i=1
running over all the N events, with M, 2 as measured masses and myy as free
parameter (and result) of the fit. The result is biased (because in practice
it is impossible to take analytically into account all effects) and the method
must be calibrated on Monte Carlo events. Alternatively the Monte Carlo
simulation can be directly used by generating simulated distribution with
various input W masses and by choosing the Monte Carlo sample that best
fits the data. This technique is free of bias (provided that the Monte Carlo
simulation includes all effects!) and calibrated by definition. Since the pro-
duction of an infinite number of Monte Carlo samples is impossible a finite
number of samples with a grid of input masses is used, and intermediate
W mass input values are interpolated. The interpolation takes place with a
technique called re-weighting. Each Monte Carlo event (7) is given a weight
(w;) that is 1 for all events in the grid, while for interpolated events is

_ [M(mw,pi, pb, 5, ph)| (9.17)

wi(mwy) = AL L
' |IM(miy™, pt, ph, s, pY)|
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where m{;" is the input values for the closest sample in the grid and p} is
the four vector of the fermion j in ete™ — WTW ™ — fifofsfs . Since
the typical mass resolution obtained with kinematic fits is 1-2 GeV/c? the
experimental distributions are sensitive to the W width, I'yy. Within the
Standard Model this is fixed by the W mass and the Fermi constant by the
relation Ty = 2923 ~ 2.1 GeV/c? . The methods discussed here are

24/(2)7

often generalized to a simultaneous measurement of two parameters: my
and FW .

The separation of the decay vertexes of the two W’s in ete™ —
WHW = — ffff is smaller than the typical hadronization scale (1 fm)
since 'y ~ 10Agcp. When both W’s are hadronically decaying intercon-
nection phenomena in the final state may link the decay products: final
hadrons cannot longer be labeled as belonging to the decay stream of a
specific W boson. The colour flow between two quarks originating from

two different W bosons is called colour reconnection, a phenomenon that
has been observed in b hadron decays as BY — J/WK?. Another effect
that can correlate hadrons from different W’s is the symmetrization of the
wave functions arising from Bose-Einstein statistics. It has been shown
[126] that both phenomena can lead to an important bias (O(100) GeV /c?)
in the measured W mass. The exact size of these effects is difficult to pre-
dict since they are non computable in perturbative QCD. Fortunately the
W mass shift is not the only effect of interconnection phenomena. Colour
reconnection modifies the flow of low momentum particles, especially in
the region between jets, while Bose—Einstein correlations bring same—sign
pions close in momentum phase space. The effects can be monitored with
distributions measured on experimental data.

The W mass measured in eTe™ collisions by LEP in the two channels
is [127, 143]

mw = 80.372 £ 0.036 (WTW ™ — qqlv)

my = 80.387 £ 0.059 (WJFW* — qqqq)
and the combined value is my = 80.376£0.033. The purely statistical error
for both channel is about 30 MeV /c?, the total error is larger for the gqqq
channel because of the systematic uncertainty related to colour reconnection
effects. The combination of the LEP measurements with the Tevatron
results obtained with the techniques described in Section 9.1 gives [118]

mw = 80.398 +0.025 . (9.18)
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Fig. 9.9 Effect of the kinematic fit on the W mass reconstruction at LEP2. (Courtesy
of Andrea Venturi.)

This result is compared to the W mass predicted by the one-loop calcula-
tions of Chapter 3, shown as a function of the Higgs mass, in Fig. 9.11.
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Fig. 9.10 Examples of invariant mass distributions used to measure the W mass at LEP.
The plots are made with semileptonic WW events. The first plot shows the three lepton
channels combined, while in the other plots the electron, muon and tau events are sepa-
rately shown. The points with error bars represents the data, while the histograms show
the simulation. The background contamination is indicated by the hatched histograms.
For each event the average of the two measured masses is used.

9.4 Triple gauge couplings

The presence of tree level triple gauge boson interactions is a distinct signa-
ture of the non—abelian nature of the Standard Model and a consequence of
its SU(2), x U(1)y gauge structure. The model predicts the same coupling
g for the interaction of weak bosons to matter and among themselves. The
existence of triple gauge couplings (TGC’s) is proved by the behaviour of
the eTe™ — WTIW™ total cross section (Fig. 9.8); its energy dependence
is consistent with the presence of both WW+~ and WW Z interactions and
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Fig. 9.11 Dependence on the Higgs mass of the prediction on myy. The hatched bands
shows the uncertainty on the prediction when varying other input parameters. These
are the top mass and the fine structure constant at the mz scale, respectively. The same
ranges as for Fig. 6.7 are used, for illustration only. The experimental measurements of
myy are indicated by the error bar.

of a universal g coupling. Triple gauge interactions are also seen in other
processes, such as single W production in eTe™ interactions (Fig. 9.6) or
associated W~ production at hadron colliders, both testing the W W+~ ver-
tex.

Triple gauge couplings do not only affect production rates, but also an-
gular distributions of emitted weak bosons and of their decay products.
Precision tests of triple gauge couplings, and of SU(2); x U(1)y predic-
tions, require detailed measurements of differential cross sections. Angular
distributions analyse different weak boson helicity states: since the longitu-
dinal component of the helicity is directly linked to the symmetry breaking
mechanism and to the mass generation these are fundamental tests of the
theory.

Neutral triple gauge boson couplings, as ZZZ, ZZ~ or Z~~, do not
exist in the Standard Model at tree level. The existence of anomalous
neutral couplings would affect processes as eTe™ — ZZ or eTe™ — Zn.
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No departure from the cross sections predicted by the Standard Model for
these processes has been detected, todate.

Next Subsection is dedicated to the measurement of the angular dif-
ferential cross sections and of the W polarization in the eTe™ — WTW ™~
channel. The general charged TGC analysis follows.

9.4.1 The ete™ — WTW™ angular analysis and the W
polarization

If initial state radiation and the finite W width are neglected, the ete™ —
WTW ™ process is described by 5 angles

e the angle Oy between the W™ and initial e~ in the WTW ™ rest frame;

e the polar 0% and azimuthal ¢} angles of the fermion in W= — f f
measured in the rest frame of its parent W —;

e the corresponding polar and azimuthal angles of the fermion in the W
rest frame.

In the semileptonic W+W = — gqlv channel the charge of the lepton iden-
tifies without ambiguities the W~. The missing momentum provides infor-
mation on the direction and energy of the undetected neutrino; kinematic
fitting is used to improve the measurement, similarly to what is done for the
measurement of the W mass. Since in W+W =~ — gqlv the quark and the
anti-quark from the hadronic W decay are not identified, there are two am-
biguous solutions both entering (with weight 0.5) the angular distributions
used for the measurements. Ambiguities are more important in the fully
hadronic and fully leptonic channels. In the first case jets are paired using
the method described for the W mass measurement (here the closeness to
the W mass can also be used); after pairing the charges of the charged parti-
cles associated to jets belonging to the individual W’s are weighted to form
a charge estimator (this is similar to the jet charge method employed for the
measurement of the b asymmetry, see Chapter 8). The correct charge can
be identified with purities of about 70-80 %. As far as the fully leptonic
channel is concerned the constraint that the two lv systems should have
an invariant mass consistent with the W mass helps in reconstructing the
neutrino momenta. The quadratic nature of the constraint, however, yield
a two-fold ambiguity: solutions obtained by flipping both neutrinos with
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respect to the plane defined by the two leptons are equally valid. Again,
both solutions enter the experimental distribution with equal weight. The
semileptonic channel is clearly the best suited for TGC analyses, providing
the highest sensitivity. All channels are used in the measurements based
on the effective lagrangian described in next Subsection, while semileptonic
decays only are used to determine the W polarization. Examples of angular
distributions in semileptonic WW decays are shown in Fig. 9.12.

In the W rest frame transversely polarized W~ bosons with helicity
+ have angular distributions (1 F 0059;2)2 ; the sign is reversed for W.
Longitudinally polarized W bosons feature a sin29;§ dependence. The W~
polarization can be measured by fitting the differential distribution

1 dN 3 2 3 12 3 . o
N deost; —P778(1+6059f) +P++8(1 costy) + poo sin” 0y (9.19)

with the p;; fraction representing the contributions from the three W helic-
ity states and N is the number of events in each bin. A similar distribution
is used for the W™ and the p;; from W bosons of opposite charge can be
combined if CP invariance is assumed. In practice Eq. (9.19) can be used
only for the leptonic decay, as the quark charge is not reconstructed p__
and p are summed and [cosf| is used for quarks. The helicity fractions
are measured as a function of the W~ scattering angle fy and agree with
the Standard Model expectations, as can be seen in Fig. 9.13. At LEP2 en-
ergies the expected average fraction of longitudinally polarized W bosons
is 24 %. The combined experimental result agree, within 2%, with this
expectation [128, 129)].

The fit can be generalized with the spin density matrix (SDM) formal-
ism. The matrix is defined as

FF}

where F; is the W~ helicity amplitude for helicity ¢ and has to be taken as
summed over the initial electron and positron beam helicities. An analogous
matrix can be defined for W™; the elements are the same if CP conservation
is assumed and their comparison sets limits on CP violation in TGC’s.
The spin density matrix is a hermitian tensor with unit trace, the diagonal
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Fig. 9.12 Examples of angular distributions in eTe™ — W1W ~ semileptonic events.
The first plot represents the cosine of the angle 0y between the W~ and initial e in
the W+ W~ rest frame. The cosine of the polar angle, 8, and of the azimuthal angle,
¢}, angles of the lepton measured in the rest frame of its parent W are shown in the
second and third plots, respectively. The last two plots show the same two angles for
the jets in the W hadronically decaying. The solid histograms show the Standard Model
simulation, while the two different dashing indicates the expectations for particular values
of an anomalous triple gauge couplings, A~. The data are from the Aleph experiment.

components corresponds to the helicity fractions of Eq. (9.19). For a generic
polarization vector € the SDM allows to compute the probability that the
W is in that specific polarization state by taking p;jeje;. The matrix
element can be computed by means of projection operators applied to the
differential cross section [130].
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9.4.2 The effective TGC lagrangian and the couplings

The most general form for an effective charged TGC lagrangian consistent
with Lorentz invariance involves 14 complex couplings, 7 for the WW~
vertex and 7 for the WWZ vertex [131]:

L=ig) (WI,WHVY —WIV,WH) +iky WIW, Vi

i\
+;—2V‘;W§NW#VV“ — QY WIW, (VY — 9"V H)
+g¥ T (W, W)V, + iRy WIW, T
AV gt e (9.21)
m2 Al
w

Some couplings are C- or P-violating while in the Standard Model C- and
P-conservation is predicted in triple gauge couplings. In Eq. (9.21) V#(=
VA1) stands either for the v or Z field, WH for the W~ field, W, =
0, Wy — 0, Wi, Vi = 0,V — 0V, Vi = Lepo VP and (A 9, B) =
A(0,B) — (0,A)B.

All couplings have been experimentally tested with the ete™ — WTW~
sample collected at LEP2. A fit of the total cross section and the angular
distributions described in the previous Subsection has been performed to
models where only one coupling at the time is allowed to vary, while all the
others were set to zero [132]. Bounds on several couplings can also be set
from precision measurements at the Z pole [133] . In most analyses C- and
P-conservation and electromagnetic gauge invariance is assumed and the
14 couplings are reduced to 5 : g%, Ky Kz, Ay, Az. Within the Standard
Model glz =ky =kz =1 and A, = Az = 0. The couplings can be related
to physical properties of the gauge bosons, for instance the W anomalous
magnetic moment (uy ) and the W anomalous electric quadrupole moment
(Qw) can be written as

Hw = W(1+’€7+)‘7)
e

= ——(ky — \y).

Qw ==Ky = Ay)

The requirement of local SU(2);, x U(1)y gauge invariance introduces
the further constraints

Arky = —Aka,ytangﬂw + Aglz
Ay =z (9.22)
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Fig. 9.13 W helicity fractions, p—_(—1), p++(+1), poo(0) , measured in four different
cosOyy bins. The Standard Model expectations are indicated.

with A indicating the deviation with respect to the Standard Model predic-
tion (A here is the electroweak mixing angle), leaving three independent
couplings: g7 ,K~,Ay. The three couplings have been measured at LEP
using ete™ — WHTW~ (Fig. 9.5) and ete™ — Wer (Fig. 9.6, second di-
agram) events. The second process, single W production, is very useful to
enhance sensitivity in the measurement of the W+ vertex. For this pur-
pose also the single photon eTe™ — yvv is useful. The analyses are based
on the measurement of the total cross sections and of angular distributions,
described in the previous Subsection for the WW case. The constraints ob-
tained from the LEP experiment’s [134] combination are shown in Fig. 9.14.

The three couplings are consistent with the Standard Model expecta-
tion, in particular the g# and k. measurements confirm the presence of
triple gauge interactions with the expected strength, with a precision of
~ 2%.



Electroweak Measurements with W Bosons 369

.
< 02 E ‘ ;—1.25 r
0,15 Foveveeesdiommmm b 12 [
g FE 0 SO S S
00 e
£ 11
005 - 1.05
0 1
0.5 o 0.95
E 09
-0.1 :
E : 0.85
0.5 A e 08 | | |
_0.2 E Il Il Il Il Il ‘ Il Il Il Il Il Il 0.75 L ‘ ‘ ‘
09 1 11 09 0.95 1 1.05 11
g]Z g]Z
g 27 § LEP Preliminary
115 = ‘
(AR B 95% cl.
1.05 I W 68% c.l.
[ X 2d fit resul
P
0.95 [~
09
0.85 - e
0.8 L Il Il Il Il Il ‘ Il Il Il Il Il Il

Fig. 9.14 The 68% and 95% confidence level contours allowed by LEP data for the
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Chapter 10

The Top Quark and Its Mass

Many electroweak observables described in this book, as the forward-
backward asymmetries at the Z peak or the W mass, are very sensitive
to the value of the mass of the top quark. This is because of the non-
decoupling property of the pure electroweak radiative corrections: the effect
of particle masses much larger than the electroweak scale (m; ~ 170 GeV)
instead of vanishing with some power of Z’LL—)Z( grows with mx. The contribu-
tion of the top quark mass to the Z self-energy, for instance, is proportional
to (7’:—;)2, to be compared with its contribution to the photon vacuum po-
larization (pure QED) that is ~ (:2)?. Not surprisingly, the top mass is
very relevant to draw conclusions from electroweak global fits; on the other
hand electroweak measurements can be used to predict rather precisely the
value of the top mass. There are reasons to believe that the top mass is a
fundamental parameter of the electroweak theory. This is suggested by the
closeness to unity of its coupling with the Higgs field (the Yukawa coupling)

Y, = V2t (10.1)
v
with v, the vacuum expectation value, ~ 246 GeV.

In this chapter, after reviewing the main properties of the top, the ex-
perimental issues related to the measurement of the mass of the most heavy
quark are discussed. The results are then compared with the predictions of
electroweak fits.

10.1 Top-quark properties

The top quark is the up-like (I3, = +1/2,Q = 2/3e) weak isospin partner
of the b quark. Many experimentally-measured b-quark properties show

371
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that the b quark is the down-like member of a doublet, requiring the exis-
tence of the top. The couplings of the b quark to the Z (Chapter 8) are
consistent with this picture, in particular the measurement of R would be
dramatically different with an isospin-singlet b quark since

[(Z — bb)ls=-1/2 1 3sin*0yw + Ssin*Ow
I(Z — bb)s=0 2 sintOy

~ 30 (10.2)

as can be seen from Eq. (1.118). The energy dependence of the b forward-
backward asymmetry precisely determine the electric charge of the b as
being @ = —1/3e. The existence of the top is also required by the cancel-
lation of triangular anomalies [22] that show divergences independent on
the fermion mass, but dependent on the couplings. The b quark requires a
partner for the cancellation to hold.

The top decays almost exclusively through charged-current weak inter-
action to a W boson and a b quark. Other charged currents decays are
negligible, as can be seen from the following argument. If CKM unitary is
assumed, |Vip|? + |Veo|? + [Vaup|? = 1, one gets |Vip| from the measurements
of |Vep| = (41.6 £0.6) x 1072 and |V,p| = (4.31 £ 0.30) x 103 [13]. The
decay fraction to Wb can then be computed from

BR(t — Wb) Vi |?
— = 0.99825 + 0.00005 10.3
BR(t —=Wgq)  |Vip]? + [Via]? + |Vis|? 103

where the denominator has been taken as unity, again from the assumption
of unitarity. Flavour changing neutral currents decays as t — c¢Z, ¢y, cg are
not expected in the Standard Model at tree level, loop calculations give
BR(t — ¢Z,cy,cg) ~ O(10713). Experimental evidence for top FCNC
would be a sign of new physics; direct searches gave, until now, negative
results [135].

The fact that the top quark should be much heavier than the b was
expected before electroweak measurements took place: from the frequency
of the Bng oscillations one could predict a top mass larger than 50 GeV
[136]. Indeed the oscillation occurs through box diagrams where the top
lines play an important role. A large top mass implies a very short lifetime,
since the top quark bW partial width is

Gr

8m/(2)

I(t—bW)= m3|Vip|* = 1.5 GeV /c2. (10.4)
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Fig. 10.1 Diagrams contributing to top production at hadron colliders: (a) quark an-
nihilation (b) and (c) gluon-gluon fusion (d) example of single-top production.

about one order of magnitude larger than the typical hadronization scale. It
follows that the top behaves as a free quark and decays before top hadrons
are formed. In the purely weak ¢t — bW decay only longitudinal and left-
handed W’s can be produced. Right-handed W’s are suppressed from he-
licity arguments: since the b mass can be neglected the b is essentially
produced as left-handed (because of the V-A structure of charged currents)
and the conclusion follows from angular momentum conservation. Since
the coupling to longitudinal W’s is related to the Yukawa coupling, a mea-
surement of the longitudinal-W decay-fraction in the top rest frame [137]

2
my

~ 70% (10.5)

is an important test of the Standard Model.

10.2 Direct measurement of the top mass

The top mass is too heavy for production via ete™ — tt at colliders such
as LEP or SLC, an ete™ centre-of-mass energy in excess of 350 GeV is re-
quired. The top was discovered in hadron collisions at the Tevatron in 1995
[36]. At hadron colliders the cross section can be written as a convolution
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of the parton density functions (PDF’s) for the (anti)protons (Section 9.1)
and the cross section for the hard process qg, gg — tt

1 1
o(s,m?) =3 / ey / s i (21, 12) f Lo (2, 12)6 a0 (8, e, 0 (422))
a,b

(10.6)
where a, b are the possible combinations of partons (quark-antiquark or glu-
ons), fi (x1, u?@) and fPy (22, u?@) represents the PDF’s at factorization scale
ufc and G, is the cross section for the hard subprocess. The latter depends
on the top mass, on § = x1x2s and on ay evaluated at the scale ,u%. The
scales are relevant for a proper evaluation of the higher order corrections.
The hard subprocess cross section is maximal at ~ 1.5 x threshold = 3my;
taking for simplicity x; ~ x2 one gets x; 2 ~ w At Tevatron ener-
gies the typical values of z; 2 fall in a range where quark PDF’s are much
larger than gluon PDF’s, on the contrary at LHC the gluons dominate. As
a consequence the dominant t# production mechanism in pp interactions at
1.8 TeV (2.0 TeV for Tevatron RUN II) is ¢g annihilation. This process
accounts for 90% (85% at RUN II) of the cross section (Fig. 10.1(a)), fol-
lowed by gluon gluon fusion (Fig. 10.1(b), 10.1(c)) essentially accounting
for the rest. At the LHC gluon gluon fusion will be the main production
process, about nine times larger than annihilation. Another relevant pro-
duction mechanism at hadron colliders is single-top production by weak in-
teraction, see for instance Fig. 10.1(d) or the corresponding cross-diagram
in the t-channel. The cross section for single-top is only a factor three
lower than pair production, but single top events are much more difficult
to detect. The tf cross section at the Tevatron is shown in Fig. 10.2 as a
function of centre-of-mass energy, QCD-based theoretical calculations are
in agreement with experimental measurements. The typical value for the
cross section at LHC is 800 pb~!, about two order of magnitudes larger.

As in the Standard Model all top decays include a W boson, the classifi-
cation of tf events at hadron colliders has some analogy with the W W~ se-
lection at ete™ machines, described in Chapter 9. Semileptonic, di-leptonic
and fully hadronic decays can be defined according to the decay mode of
the W, accounting for 45%, 11% and 44% of the events, respectively. The
analogy, however, stops here since ¢t decays must be selected from an over-
whelming hadronic background. The total proton-(anti)proton cross sec-
tion at Tevatron energies is about 80 mb, raising to 100 mb at the LHC.
Top identification is further complicated by the presence of low p; remnants
of the proton-(anti)proton interaction, caused by the partons not involved
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Fig. 10.2 Cross section for ¢£ production at the Tevatron Collider, as measured by the
DO experiment. The cross section is measured using various final states; for each final
state the total cross section is computed taking into account the expected final-state
branching ratio. Dots and squares show the result obtained with two different selections
of lepton+jet events (without or with b tagging), triangles are related to the dilepton
channel and stars to the fully-hadronic channel. The two bands show the expected cross
section, from two different QCD-based calculations. (Courtesy of Elizaveta Shabalina.)

in the hard process (underlying event) and by multiple final state inter-
actions. An additional difficulty, especially at high luminosity (LHC), is
due to interactions of other protons in the same bunch of beam-particles,
superimposed to the same event (pile up).

Top events must be selected with stringent criteria, taking advantage
of their distinctive signatures. The initial selection is based on the re-
quirement of high p; decay products, i.e. high energy jets and leptons
in the central part of the detector. The central part is normally referred
to as the low pseudorapidity region, with the pseudorapidity defined as
n= —ln(tang), where 6 is the angle with respect to the beam line. A typi-
cal variable that helps suppressing the QCD background is the scalar sum of
the transverse energy of all observed objects, where the transverse energy is
E¢ = E sinf. Other variables inspired by ete™ physics, as the eigenvalues
of Fox-Wolframm momenta, sphericity and acoplanarity are used to select
spherical events.

A powerful tool to suppress background, and to choose the correct jet
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combinations for the mass measurement, is b tagging. Most b tagging meth-
ods described in Chapter 7, in particular lifetime tagging and lepton tag-
ging, can be successfully applied at hadron colliders for top selection and
mass measurement. As for eTe™ colliders lifetime tagging, based on impact-
parameter measurements and secondary-vertex tagging, is more eflicient
than lepton tagging based on the detection of semileptonic b decays.

At hadron colliders jets are usually reconstructed with a cone algorithm.
The energy deposited in a cone of radius R = /An? + A¢? around a
starting direction (roughly defined using initial seeds) is summed up, the
direction is re-defined after the initial cone clustering and the process is
iterated until the algorithm converges. Typical values of R are around 0.5.
This method, differently from the one described in Sections 7.1, 9.3 does
not necessarily associate all particle in the events to jets.

As already anticipated, three main channels are defined for the mass
measurement:

e The lepton-plus-jet channel, where one W is required to decay to an
electron or muon and the other hadronically. The event is characterized
by four jets, a lepton and missing transverse energy. In this channel b
tagging is useful to reduce background and correctly identify the two
b-jets.

e The dilepton channel, where both W’s are leptonically decaying to elec-
tron or muons, and two jets, possibly tagged as b-jets, are detected.

e The fully-hadronic channel, characterized by six-jet events. In this
channel b tagging is mandatory, to suppress the large background from
QCD events and to reduce the number of three-jet combinations.

Since W decays to taus are not used for the mass measurement (they suffer
a larger background and have additional missing neutrinos) the lepton-plus-
jet-channel and the dilepton-channel yields are reduced to 30% and 5% of
the total, respectively.

The top mass is measured from kinematic properties of top-decay prod-
ucts, the most sensitive being the invariant mass of the three objects belong-
ing to the W — b system. Kinematic fitting techniques, already described
for the W mass measurement (Section 9.3), are employed to determine the
momentum and direction of neutrinos and to improve the measurement of
other decay products. At an hadron collider the four-vector of the initial
state is only partially known: the momenta of the initial partons involved in
the hard process are undetermined, hence momentum conservation can be
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applied only in a plane perpendicular to the beam axis (transverse plane).
Five constraints can be imposed:

e The total transverse momentum of the event must be equal to zero. As
the final state is ¢£ + X, all detected objects (i.e. all energy deposits
in the calorimeters) must be included in computing the total event
transverse momentum. Since the transverse momentum is defined by
the two components of the momentum on the transverse plane, these
two components are set to zero, yielding two constraints.

e The invariant mass of the two objects assumed to originate from a W
decays must equal the W mass. This constraint can be applied to both
W bosons, one for each top (anti-top) decay.

e The top and anti-top masses, reconstructed in the same event, are re-
quired to be the same. (The top natural width is one order of magnitude
smaller than the typical experimental resolution.)

In the semileptonic channel three constraints are used to determine
the three-momentum of the unmeasured neutrino. In practice the miss-
ing transverse momentum gives the neutrino transverse momentum, while
the momentum component along the beam axis is given by constraining the
invariant mass of the lepton-neutrino system to the W mass. The latter,
however, being a quadratic constraint yields two solutions for the neutrino
longitudinal momentum, resulting in a two-fold ambiguity. An additional
ambiguity arises from the choice of of the jet to assign to the lepton-neutrino
system to form the top candidate. If the two b-jets are identified the ad-
ditional ambiguity is two-fold, otherwise four possibilities have to be taken
into account. Without b identification there are also three possible choices
for the di-jet system to assign to the W hadronic decay, resulting in a to-
tal of 24 combinations. The reduction in combinatorial background (and in
background from non-tt events) obtained with b tagging can be appreciated
by comparing the invariant mass distributions shown in Fig. 10.3. The top
mass can be measured by comparing experimental distributions, similar to
the ones shown in the figure, to distributions computed with Monte Carlo
simulations with different top-mass hypotheses. The simulations include
an appropriate fraction of non-top background. A likelihood function can
be computed for each hypothesis; the measured top mass is given by the
maximum likelihood and the statistical error is determined by the mass
values giving A(Ln(Likelihood)) = 0.5, where A indicates the variation
with respect to the maximum. The sensitivity of the measurement can be
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enhanced by taking into account all kinematical properties of the event in
the construction of the likelihood [139].

Fully hadronic ¢t events have the advantage of a larger branching frac-
tion and can use all available constraints; the overwhelming multi-jet QCD
background, however, makes these events very difficult to detect. The use
of b tagging greatly helps in reducing the QCD background and the num-
ber of possible combinations. Even with one b-tagged jet, 30 different jet
combinations must be taken into account for the event reconstruction.

Di-leptonic events have the cleanest signature, but a small branch-
ing fraction and require the reconstruction of two un-measured neutrinos.
These events are underconstrained since the five possible constraints are
not enough to determine the six components of the neutrinos momenta.
Nevertheless methods have been developed to extract information on the
top mass. A widely used technique is based on the assumption of a par-
ticular top mass: the event can then be reconstructed, with a eightfold
ambiguity due to the two quadratic equations related to the W mass con-
straints and the two possible lepton-b pairing. Subsequently, the matrix
element corresponding to a tf event with that particular final state configu-
ration is computed and employed to construct a likelihood function, which
is then examined to determine the most probable value of the top mass.
Another method [140] relates the top mass to the invariant mass, m#, of the
b-lepton system. By observing that in the top rest frame, if the W width

m¢

is neglected, the b quark energy is “5*, one gets

2
m? = (m) + \Jmiy, + 4m2, (m2) + (m2)°. (10.7)

The combination of the results obtained by the CDF and DO experi-
ments in the various channels gives [141]

my = (170.9+ 1.1 4+ 1.5) GeV . (10.8)

The most important sources of systematic uncertainties are

e the jet energy scale, which is limited by the calibration of the calorime-
ters,

e the modeling of the signal shape in the invariant mass distributions
used for the measurement,

e the modeling of the background.
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Fig. 10.3 Examples of measured top mass distributions for lepton-multijet events at
the Tevatron Collider (Run II) from the CDF experiment [138]. The data sample cor-
responds to an integrated luminosity of approximately 318 pb—!. The four subsamples
are, respectively, (4) events with two b-tagged jets, (i) events with only one b-tagged
jet, (44i) events with only one b-tagged jet and a looser jet transverse energy threshold,
(iv) events without b-tagged jets and a tighter transverse energy threshold. The ex-
pected distributions for signal+background and background only are overlaid using, for
the signal, the measured top quark mass.

10.3 Electroweak constraints on the top mass

The electroweak observables described in this book feature radiative cor-
rections that can be parameterised as a function of the top mass, of the
logarithm of the Higgs mass, of a(m%) and as. The dependence of the
electroweak radiative corrections on the top mass is quadratic at one-
loop level. The tree-level W mass, for instance, is modified by the Ar"
term (Eq. (3.312)), whose top mass dependence is essentially given by

Eq. (3.288), i.e.

ArW(tor) ~ _C_(zJ M
s3 8v/2n2

The indirect determination of the top mass from electroweak observables

requires a proper treatment of mp, a(m%) and a,. This treatment is trivial

(10.9)
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for Ry: as already emphasized in Chapter 4 all other corrections cancel in
the I' ;5 to I'naq ratio leaving solely the quadratic dependence on the top
mass given by the Z — bb vertex. From the LEP measurement of R; one
gets

my = (150 £ 20) GeV /c? (10.10)

in fair agreement with the direct determination.

The uncertainty of this prediction can be decreased with a global fit of
the most relevant electroweak observables measured at LEP and SLC (Z-
pole asymmetries, Z-lineshape parameters, W mass). The common x? fit of
the measurements to their Standard Model predictions is performed [142]
by assuming that both statistical and systematic errors have a Gaussian
behaviour. The Standard Model predictions for the various observables are
computed using the very high precision measurements of Gy, mz and of the
fine structure constant, «(0). The correlation of the Z mass uncertainty
to some of the observables is taken into account, as well as correlations
among observables themselves. The fine structure constant is run to m?%,
this is done by using low-energy eTe™ data to compute the contribution of
the vacuum polarization due to hadrons, as described in Subsection 3.2.4.
The minimum of the x? is found by recomputing the Standard Model pre-
dictions of the observables with different values of the radiative corrections
parameters. The fit gives [143]

my = 178752 GeV/c? (10.11)
logyo(mur/GeV) = 2.14+552 (10.12)
a5 = 0.1190 £ 0.0028 (10.13)

in agreement with the direct measurement of the top mass, given by the
combination of the CDF and DO results described in the previous Section.
The direct and indirect determinations of the top mass in various years are
compared in Fig. 10.4. The m; and log(my/GeV) values obtained by the
fit are strongly correlated (the correlation coefficient is +0.86). This implies
that, by including the direct measurement of the top mass into the global
fit, a sizeable reduction of the log(m g /GeV) uncertainty is expected.
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Fig. 10.4 The time evolution of the top mass measured at the Tevatron, compared to the
value extrapolated from electroweak radiative corrections, in the same years. The areas
represent the 68% CL contours. (Courtesy of the LEP Electroweak Working Group.)
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Chapter 11

The Search for the Higgs Boson and
Tests of the Electroweak Interaction

The quest for the Higgs has been one of the main experimental activities
of the end-of-XXth-century high-energy physics. At the start of the new
millennium the largest experimental projects and the exploration of the
high energy frontier are still largely motivated by directly probing the Higgs
sector of the theory.

As described in Chapter 1 the requirement of local gauge invariance
together with the necessity of giving mass to the W and Z bosons leads,
within the Standard Model, to the Higgs mechanism. The electroweak sym-
metry is broken spontaneously and a new scalar is created, the Higgs boson.
The mass of the new scalar is not predicted by the electroweak theory, how-
ever, as seen in Subsection 1.5.1, there are reasonable expectations that the
scalar should be light, i.e. below about 1 TeV. For higher values the uni-
tarity bounds for the WW — WW process would be violated, furthermore
a perturbative approach would lose its validity.

If the SU(2) xU(1) symmetry is assumed, the precision electroweak mea-
surements described in this book, together with one-loop electroweak cal-
culations (Chapters 3 and 4), can be used to set a more stringent limit on
the Higgs mass, as anticipated in Section 10.3. In this Chapter we will see
that the global fit to electroweak observables yields

mpg < 144 GeV/c?

at 95% confidence level. This result indicates a relatively light Higgs boson;
nevertheless it should be reminded that the dependence of one-loop elec-
troweak corrections on the Higgs mass is logarithmic, hence a larger mass
cannot be ruled out.

The direct search for the Higgs boson is guided by an important property
of the implementation of the Higgs mechanism in most theoretical scenarios:

383
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the interactions terms defining the production and decay properties of the
Higgs can be predicted. In particular, in the Standard Model, the Higgs
coupling to fermions is proportional to the square of the fermion mass (my)
and the partial decay width is [144]

_ Ncggm?
I'(H =—p
where N, is equal to the number of coulors for quarks and is set to 1 for
leptons, while 3 is the center-of-mass velocity of the fermion in the Higgs
rest frame. Similarly the widths for the decay to W and Z gauge bosons

are [145]

2,3
Swrw)y = L ™Ma g _ 3.2
NH-WTW") = = V1—zw(1 acW—|—4xW) (11.1)
and
T(H — ZZ) S (1 + 3.2y (11.2)
— = — —_ —_ — .
64mmi, vz Tz Ttz

respectively, where xy = 4%;2’ and xy < 1 for allowed decays. The decay
of the Higgs boson to photon (or gluon) pairs goes through loops and is
suppressed by the a? (or a?) factor [9]. In Fig. 11.1 the decay branch-
ing fractions versus the Higgs mass are shown for Higgs masses below 200
GeV/c2. The tendency to decay into the pair of heaviest particles, among
the ones kinematically allowed, is clearly seen. In a wide region, between 10
to 130 GeV/c?, the decay to b quarks pairs is dominating, for higher masses
this role is taken by massive gauge bosons pairs. For low masses, below the
bb production threshold, decays to charm and tau pairs are dominant and,
for even lower masses the branching ratios to muon and electron pairs, as
well as to low multiplicity hadronic final states and 7, become important.

11.1 Search for the Higgs boson before LEP

The mass region below 5 GeV has been widely investigated before 1989 by
means of a variety of processes. The interference between possible long-
range muon-hadron interactions and pure QED in the X-ray transition of
muonic atoms has been used to set limits on Higgs mediated interactions,
in the mass region around 1 MeV/c? [146]. An Higgs boson with a mass
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Fig. 11.1 Higgs boson branching ratios as a function of its mass. (Courtesy of Patrick
Janot.)

of a few MeV/c? was also expected to affect the angular distribution of
neutron-nucleon scattering [147]. Indeed a very low mass scalar would con-
tribute with an interaction term similar to Coulomb scattering, normally
not present in neutron scattering. Other processes potentially able to pro-
duce a very low mass Higgs boson would have been nuclear 0F — 0F tran-
sitions. The decay of a new spin 0 particle in e*e™ pairs was searched in
0% — 0" nuclear decays and no evidence was found [148]. Particle decays, in
particular rare decays of pions [149], kaons [150], B mesons [151], J/¢ and
T [152] were used to set limits at higher masses . Unfortunately while the
Higgs coupling to quarks is predicted by the theory, sizeable uncertainties
are affecting meson decays through QCD effects. Therefore, while indi-
cating that the existence of a Higgs boson below 5 GeV was unlikely, the
interpretation of the results was not straightforward. The only region that
could be unambiguously excluded before LEP was the range 1.2 MeV to 52
MeV thanks to a beam dump experiment [153]. Electrons with an energy
of 1.6 GeV were sent to a tungsten target. The Higgs boson was expected
to be produced in the interaction of the electron beam with the target nu-
clei, in a process similar to the bremsstrahlung, called higgs-strahlung in
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the following. An Higgs boson of low mass is weakly interacting and has
a long lifetime, and it can exit a thick target stopping all electromagnetic
products. It is possible to detect it in the laboratory thanks to its subse-
quent decay to an eTe™ pair. As the electron higgs-strahlung cross section
is well known and Higgs production was not detected by the beam dump
experiment, the mass range covered by the experiment could be completely
excluded.

11.2 Higgs production at LEP

As seen in the previous paragraphs only a very limited mass region could
be explored before the advent of LEP and the interpretation of most results
was not easy. The scenario changed with LEP because Higgs bosons can be
copiously produced by higgs-strahlung from Z vector bosons. The coupling
to the Z is large and can be exactly computed: LEP experiments were able
to explore the mass range from 0 to 65 GeV/c? at LEP1 and extend the
search up to 115 GeV/c? at LEP2 . The Feynman diagrams responsible
for Z higgs-strahlung are shown in Fig. 11.2. At the Z resonance (LEP1)
the Higgs can be produced together with an off-shell Z (indicated as Z*
in the figure), with subsequent decays of the Z* into leptons and quarks
(Fig. 11.2(a)). At higher centre-of-mass energies (LEP2) the role of Z and
Z* is exchanged and Higgs bosons can be produced in association with real
Z's (Fig. 11.2(b)). In eTe™ collisions the Higgs bosons can also be produced
by WW or ZZ fusion, yielding a final state were the Higgs is produced in
association with a pair of neutrinos or electrons, respectively. This process
gives only a small contribution at LEP2 centre-of-mass energies, of some
relevance at the edge of the kinematic range reached by the higgs-strahlung
process.

11.3 Searching the Higgs at LEP1

The branching ratio of the Z to Higgs-fermion-antifermion is shown in
Fig. 11.3 as a function of the Higgs mass.

Since 18 million Z decays were collected by the four LEP experiments
thousands of Higgs bosons would have been produced at LEP1 for masses
lower than 50 GeV/c?. Dedicated analyses were designed for particular
mass ranges. Very low mass (and even mass-less!) Higgs can be inves-
tigated by selecting acoplanar lepton pairs originating from the Z* decay
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Fig. 11.2 Higgs-strahlung at LEP1 (a) and at LEP2 (b).

Z branching ratio
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Fig. 11.3 Branching Ratio of Z — Hff at the Z resonance.

(Fig. 11.4(a)). Indeed for Higgs masses below the ete™ threshold (2m.) the
Higgs decay width is so small that it would leave an apparatus of the size
of a typical LEP experiment before decaying. In this case the decay prod-
ucts of the recoiling Z* must be detected. Above the ete™ threshold the
acoplanar lepton selection is still useful to select Higgs candidates: Higgs
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decaying to lepton-antilepton accompanied by a Z* decaying to a neutrino-
antineutrino pair would be detected by such a search. To deal with higher
masses, where the Higgs can decay to hadron pairs, the search is general-
ized to acoplanar charged tracks pairs (Fig. 11.4(b)). The selection of low
multiplicity mono-jets (Fig. 11.4(c)) is useful to extend the search to Higgs
masses up to about 20 GeV/c?. Thanks to the high rate and the very dis-
tinctive signatures, LEP1 searches below 20 GeV/c? were easy and it was
possible to design analysis cuts aimed at rejecting all background, while
keeping an high efficiency for the potential Higgs signal. As can be seen
from Fig. 11.1, for Higgs masses above 10 GeV/c? most of Higgs decays
are to bb quark pairs: with increasing Higgs masses their hadronization
products gets more and more separated and tend to cluster into a pair of
separated jets. Therefore the selection of Higgs candidates for masses above
20 GeV/c? was based on the search for two jets recoiling against the Z*
decay products. The relevant topologies are sketched in Fig. 11.5. The
higher rate is given by the four jet topology (Fig. 11.5(c)), but at the Z
resonance the high background of hadronic Z decays makes this channel
much less sensitive than the acoplanar jet channel (Fig. 11.5(a), the Z*
yields two neutrinos and missing energy) and the two-jet and two-lepton
channel (Fig. 11.5(b), the Z* yields two leptons). The latters were used
for LEP1 searches: a total of 13 events were detected with an expected
background of 20.6 events [155], [156], [157] [158]. The main background
was due to in the missing energy channel where b tagging was used and to
four-fermion processes in the two-lepton channel. At the end of LEP1 the
combined 95% confidence level lower limit on the Higgs boson mass was
65.6 GeV/c? and the entire region below this limit could be excluded [159)].

Before describing the Higgs searches at LEP2, it is useful to briefly recall
the main methods to set Confidence Levels.

11.4 Setting confidence levels

When searches for a new phenomena yield a negative result, the problem
arises of setting statistically well defined confidence levels (CL) for exclusion
limits. The solution is straightforward for counting experiments with no
background as, for example, the Higgs searches at LEP1 for masses below
20 GeV/c?. In this case the probability of observing 0 events when s events
are expected is given by the Poisson distribution as e%. A signal hypothesis
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Fig. 11.4 Search of the Higgs boson at LEP1 in the low mass region: main topologies
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Fig. 11.5 Topologies used in the search of the Higgs boson at high masses at LEP.

is excluded at a certain confidence level CL when
1—-e*<CL. (11.3)

It turns out that for negative searches with no background all regions where
more than 3 signal events are expected can be excluded at 95% confidence
level.

The problem is slightly more complex when the expected background is
different from zero, as in the Higgs searches at LEP1 above 20 GeV/c2. In
this case one can define

_ . —(s+b) (S + b)l
Ly = (Y e 212 (11.4)
i=0
where s is the number of expected signal events, b the number of expected
background events and n the number of events observed by the experiment.
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In analogy with Eq. (11.3) one could use 1 — CLg1p < CL to define the
confidence level; this criterion, however, has a drawback since it may happen
that the number of observed events is lower than the expected background
because of statistical fluctuations, as in the final result of the Higgs searches
at LEP1 described in the previous Section. To avoid this problem a new
confidence level related to background only is defined as

CL, = é[e—“)(?—?in (11.5)

=0

and the ratio

CLerb
CL,; =
CLy
is used to set the exclusion limits. A signal hypothesis is therefore excluded
at a certain confidence level C'L when

(11.6)

1-CL;, <CL.

It turns out that C'L; is also a useful tool to analyse results where an
excess of events is observed. Indeed in this case 1—C'Ly, gives the probability
that the observed excess is due to a positive fluctuation of the background
and a very low value of this quantity gives evidence of a new phenomenon.

Often the analysis of the experiment requires more than simple counting
of events, as in the Higgs searches at LEP2 described in the next Section.
A shape term modifies the simple Poisson distribution when not only the
information concerning the number of events is used, but other variables
related to the properties of the collected events are used [154]. These can
be, for example, the invariant mass of the Higgs candidate decay prod-
ucts, or the b tagging probability of the jets originating from the Higgs
candidate. The additional information can be taken into account by using
the likelihood ratio Q = Lﬂb, where Lgyp is the likelihood for the sig-
nal+background hypothesis, while L; is the likelihood for the background
only hypothesis. One use as test statistic

Loy e O Lo sf (X)) + bfp(X))

Q= = 11 (11.7)

Ly et 1o bfs(X:)

where the functions fs and f, are the probability density functions that
a signal or background event will be found in a given final state with the
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set of properties (invariant masses, b tagging values, etc.) described by the
vector of values X;. The likelihood ratio is a function of the assumed Higgs
mass, which enters in @) through the cross section used to compute s. If
the terms fs and f, are neglected Eq. (11.7) reduces to the simple ratio
of Poisson probabilities to observe n events. The confidence levels can be
defined similarly to the simple Poisson-distribution case, the compatibility
of the experiment with a given hypothesis can be determined by calculating
the probability of obtaining a likelihood ratio smaller than the one observed.
In general the computation cannot be performed analytically and Monte
Carlo techniques are used to compute C'Ls and CL; from the observed
likelihood ratio.

11.5 Higgs searches at LEP2

As already mentioned, in eTe™ collisions above the Z resonance Higgs
production is dominated by the higgs-strahlung process of Fig. 11.2(b).
Since a real Z has to be produced in association with the Higgs boson
the production rate is sharply falling above the kinematic limit given by
mpy ~ /s —myz , as shown in Fig. 11.6.

Therefore at LEP2 the effort to reach the highest possible energy was
particularly important [159], with a record center-of-mass energy of 209
GeV that was exceeding any initial expectation. For Higgs boson masses
relevant at LEP2 (Fig. 11.1) the main decay channel is bb with a branching
ratio of about 74% for a mass of 115 GeV/c2. It follows that at LEP2 b
tagging (Chapter 7) was extremely relevant for Higgs searches and vertex
detectors were upgraded in the four LEP experiments to increase the sen-
sitivity of Higgs searches. The decay topologies can be classified in terms
of the Higgs and Z decays, as shown in Fig. 11.5:

e Four-jet channel. The Higgs is decaying to bb and the Z to a pair
of quarks. This is the dominant channel, the expected rate being
about 51%. Contrary to the LEP1 case this channel gives the high-
est sensitivity, when b tagging is used. The main backgrounds are from
four-fermion WW and ZZ production, two-fermion bb production with
emission of two-gluons and two-fermion ¢g production with an emitted
gluon splitting into a bb pair.

e Missing energy channel. The Z is decaying to a pair of neutrinos. At
the kinematic limit this channel has a contributions from WW and ZZ
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Fig. 11.6 Expected events as a function of the Higgs mass at /s = 206 GeV for an

integrated luminosity of ~ 200 pb—!. The dashed line shows the contribution of the
WW, ZZ fusion processes.

fusion. The expected rate is about 15%. The main backgrounds are
Z 7 production and the Z~vy process when the photons are at low angle
and undetected in the apparatus.

e Leptonic channel. The Z is decaying to a pair of electrons or muons.
This is in principle a very clean channel, but the rate is rather poor
(~ 5%). The main background is ZZ production.

Another channel used in LEP2 searches was H — 77 (BR ~ 7%). In
the tau selection both cases (H — bb,Z — 77) and (Z — bb,H — 77)
were considered, the total expected rate being ~ 7%. An important issue
concerns the Higgs mass reconstruction, which was performed in all decay
channels. Since in a eTe™ collider the total center-of-mass energy is known
and the total momentum of the event is zero, energy-momentum conserva-
tion can be imposed by means of a kinematic fit, improving considerably
the experimental resolution on the reconstructed Higgs mass. It has to be
stressed that the eTe™ — ZZ process represents an irreducible background.
For a mass my = myz the Higgs boson is indistinguishable from the Z on
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Fig. 11.7 Reconstructed Higgs mass at \/(s) ~ 206 GeV by the Aleph experiment.

an event-by-event basis and would have shown up at LEP2 by an excess
of events on the Z peak which is clearly visible in the mass distribution of
reconstructed Higgs candidates (Fig 11.7).

The final results of the four LEP experiments [161], [162], [163], [164],
were subject to a statistical analysis, following the concepts described in the
previous Section. The combined confidence level C'L; is given in Fig. 11.8,
showing that a Higgs boson mass below 114.4 GeV/c? is excluded at 95%
CL [165]. The expected 95% CL sensitivity, computed from Gedanken
experiments was 115.3 GeV /c2. The excluded region is about 1 GeV lower
than expected because of three events in the four jets channel seen by the
ALEPH experiment in the region around 115 GeV /c2.

11.6 The Higgs mass from electroweak fits

Electroweak radiative corrections depends logarithmically on the Higgs
mass, as discussed in Chapter 3. In analogy with the indirect determi-
nation of the top mass (Section 10.3), the W mass sensitivity is taken here
as an example. From Egs. (3.312), (3.309) and (3.310) one gets
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Fig. 11.8 Final signal confidence levels on the Higgs mass from the direct LEP search.
(Courtesy of the LEP Higgs Working Group.)
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where the superscript Higgs indicates that only the leading Higgs depen-
dence is shown. The above relation is valid for large Higgs mass only. The
general expression can be found in [52]; the dependence of the predicted
W mass as a function of the Higgs mass is shown in Fig. 9.11, where the
logarithmic behaviour is clearly seen.

Among the observables described in this book the effective electroweak
mixing angle, extracted from the LEP-pole asymmetries (Fig. 8.11), shows
the largest sensitivity on the Higgs mass. The experimental determination
of sin® Ow,ers and of the W mass are compared to the Standard Model pre-
diction in Fig. 11.9. The measurements are consistent with a light Higgs

ArWV (Higgs) (large mp) ~ (11.8)
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boson. In the same figure the tree-level prediction (with the running of «
included) is shown, providing a strong evidence of the need of genuine elec-
troweak radiative corrections to describe the data, as seen also in Fig. 9.1.

In Section 10.3 it has been shown that from a global fit of Z-pole ob-
servables [142] and the precise determination of the W mass the logarithm
of the Higgs mass can be constrained to a value corresponding to [143]
my = 137722% GeV/c?. Tt has also been observed that the direct determi-
nation of the top mass greatly helps in constraining the mass of the Higgs,
since the large quadratic term is fixed by the measurement. If the top mass
value given in Ref. [141] is used (m; = (170.9 &+ 1.8) GeV) one gets

my = 85757 GeV/c? |
corresponding to
my < 144 GeV/c?

at 95% CL. Figure 11.10 shows the variation of the y? value of this
global electroweak fit with respect to the y? value at the minimum, as
a function of the Higgs mass. When the limit from the direct search
(myg > 114.4 GeV/c?) is combined with the electroweak global fit in a com-
mon likelihood function, the upper bound increases to myg < 182 GeV /c2.
It is instructive to compare the direct measurements of the top and W
masses to values computed from the dependence of all other measurements,
when their dependence on electroweak radiative corrections are used. As
shown in Fig. 11.11 the direct and indirect determinations are consistent,
showing a success of the electroweak theory. In both cases a light Higgs
boson is favoured.

11.7 Model independent analysis of electroweak data

The bounds on the Higgs boson mass presented in the previous Section
were obtained assuming the validity of the Minimal Standard Model. The
impressive wealth of precision measurements collected in the past 25 years
and described in this book provide a test of the model at one-loop level
in perturbation theory. An example of such a test is given in Fig. 11.11
where direct measurements are found to match indirect determinations from
radiative corrections. Nevertheless is important to verify to which extent
the experimental measurements are consistent with alternative models and
to present the data in a model-independent form.
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In Chapter 3 and 4 it has been shown that there are four parameters
(e1,€2,€3,0py) related to the relevant loop corrections contributing beyond
tree level to the prediction of the measurements described in this book. The
first (¢1) and the third (e3) include the dominant m; and mpy dependences,
the second (g2) has a logarithmic dependence on the top mass and the last
one (dpy ) is related to the quadratic m; dependence of the Z — bb vertex
correction.

In order to describe the data in a model independent form it is useful to
relate the ¢ variables to measurable observables, sensitive to the dominant
contributions. The W mass, the lepton asymmetries (or sin® Ow,esf), the
Z leptonic width and R; are natural choices. Relating Ax’ and Ap to,
respectively, A% (¢) and I'y as

A p(0) — sin? Owepp = s3(1 — Ak)

1 Apy
r S e
¢ gA 2( + 5 )
(11.9)
one can define [167]
£1 = Apl
2
£2 = 3 Ap + %ATW — 252AK/
€% — S0

e3 = cgAp + (cf — s5) AR (11.10)

where Ar" includes the relation to the W mass. The b couplings can be
described by an alternative parameter €, that was introduced in Ref. [168]
and is related to the b width as follows

1 A
I'y — ga, 2—5 <1+%) (1—|—e’:‘b)

v,
gA,

The connection with the parameters of Chapter 4 reads, essentially

4 .
= (1 — § SlIl2 HW,eff + 65)/(1 + 61,).

12— 853+ 048 1
=_———= - 2 v~ = 11.11
€p 21 552~ gt bV A 50V ( )

from Eq. (4.39) and dp = (615 — €1) one can derive
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1 NU
Ep R 5(611, —¢1) =Re (I‘g(z) (m%) , jf(z)) . (11.12)

These “experimental” definitions of the e variables are identical, within
the MSM, to the definitions of Chapter 3 and 4. In other models, because
of the contributions of yet undiscovered particles, the vacuum polarization
terms could be different. The e5 and €3 variables, in particular, do not have
quadratic top mass contributions and have enhanced sensitivity to physics
beyond the MSM.

The experimental results presented in this book can be expressed, in
terms of the ¢ variables, as [142]

51—(554i10)><10 3
=(-89+12)x 1073

e3 = (5.34+£0.94) x 1073

ey = (—5.04+1.6) x 1073

in good agreement with the Standard Model expectations, as shown in
Fig. 11.12 for two of them. As expected from previous Section, a light
Higgs boson is preferred.
The experimental results can be compared to extensions of the Stan-
dard Model. The Minimal Supersymmetric Standard Model (MSSM) [166]
assumes the existence of supersymmetric partners of ordinary particles.
Supersymmetry transforms bosons in fermions and fermions in bosons. It
is a complete and consistent model, providing a framework for unification
of gauge interactions. In its minimal version two Higgs field doublets are
required, leading to five Higgs bosons (three are neutrals, two are charged
ones). The model has a large number of free parameters. The prediction of
this model for €; and €3 when its parameters are set to yield massive part-
ners of the ordinary fermions (i.e. massive sparticles) is shown in Fig. 11.13.
For this set of parameters the model predicts at least one light neutral
Higgs boson, and agrees with the experimental data, similarly to the MSM.
On the other hand simple versions of technicolor models [169], where the
Higgs boson is replaced by colour condensates, lead to large and positive
corrections to €3, disfavouring the models, as seen in Fig. 11.13. The Ry
measurement is also in disagreement with such models, since they imply a
large and negative correction to €, which is not observed.
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Fig. 11.11 The direct (LEP2, Tevatron) and indirect (LEP1, SLC) determinations of
the mass of the W boson (myy) and of the top quark (m¢). The 68% CL allowed regions
are indicated. The band represents the Standard Model expectations for different values
of the Higgs boson mass (my). (Courtesy of the LEP Electroweak Working Group.)
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Chapter 12

Conclusions and Perspectives

The authors of this book have described, for the benefit of the patient
readers, some relevant aspects of the physics of the W and Z bosons. It has
been shown that a gauge theory of electroweak interactions, also known as
the Standard Model of electroweak interactions, describes all experimental
features of W and Z physics. The experimental tests of the electroweak
theory, ongoing since 30 years, have reached their mature stage, thanks to
the precision measurements performed at LEP, SLC and Tevatron. Some
of these measurements are of unprecedented precision; as an example it
can be recalled that the mass of the Z boson is presently known with the
precision of ten part over a million and it is one of the most precisely
measured physical observables. As a consequence of this remarkable effort
the electroweak theory has been tested at the one-loop level.

At the time of writing this book the most important missing actor, from
the experimental point of view, is the Higgs boson. If the Standard Model
is assumed, however, its mass is constrained by existing measurements in
the region below ~ 200 GeV /c?, with good confidence level. Direct searches
at LEP have excluded the region below 114 GeV/c?, and some interesting
events have been detected at the edge of LEP sensitivity; if the Higgs
boson exists, it is unlikely that will escape detection at the Large Hadron
Collider (LHC), whose operations are due to start in summer 2008. The
LHC will collide two beams of protons of 7 TeV and is expected to collect
an integrated luminosity of 300 fb—! in 5 years. The Higgs boson would
be copiously produced by gluon-gluon fusion and detected by its decay to
WW® or ZZ™) if its mass is above 130 GeV/c2. For lower masses Higgs
detection will be more tricky, but its decay through the 4+ channel should
be feasible with adequate luminosity and well understood detectors.

Additional insight on the Higgs boson and its properties will be gained

403
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at a future high energy eTe™ linear collider. The International Linear
Collider (ILC), based on the TESLA technology is presently under study.
It is expected to reach a centre-of-mass energy of 800 GeV, collecting an
integrating luminosity of 500 f6=!. The main production mechanism would
be the higgs-strahlung process, allowing to study the mass region below 700
GeV/c?. At the ILC a precision measurement of the Higgs mass could be
performed by direct reconstruction from the decay products, reaching a
precision below 100 MeV for a wide mass range.

When the Higgs is discovered, matching its mass with electroweak in-
direct predictions will be important, and could potentially signal physics
beyond the Standard Model, unveiling itself through loop corrections. At
present one of the electroweak observables giving the best constraint on the
Higgs mass is the electroweak mixing angle. Additional information on this
parameter can potentially be gained at the LHC by using Z bosons pro-
duced at very high rate through the Drell-Yan mechanism. The electroweak
mixing angle could be measured by the forward-backward asymmetry of Z
decays to electron and muon pairs. Such a measurement requires the knowl-
edge of the initial quark direction; since at LHC the anti-quark can only
come from the sea, the Z are expected to be boosted in the same direction
as the incoming quark: therefore the Z boost gives a natural definition of
the quark direction. The analysis of this channel requires, however, a care-
ful study of the quark and anti-quark PDF’s and, while being potentially
promising because of the small statistical error, will be rather challenging
from the point of view of the systematic uncertainties. A sizeable step in
the knowledge of the electroweak mixing angle will have to wait for a high
luminosity run at the Z resonance with the ILC. Indeed with this machine
independent polarization of both beams is expected to be available, and
Apgr can be measured independently of any external measurement of po-
larization. This would probably shed light on the apparent inconsistency
between the determinations of sin? Ow,ers coming from App and from the
b forward-backward asymmetry.

The most important improvements in constraining the Higgs mass at
LHC are likely to come from precise measurements of the W and top masses.
The two observables are presently known with an uncertainty of 25 MeV /c?
and 1.8 GeV/2, respectively, and are giving similar contributions to the
Higgs mass constraint coming from the most recent electroweak fit. Im-
proved measurements of these two parameters will come with the final re-
sults of Tevatron Run II; the LHC should ultimately reach an uncertainty
of 10 MeV/c? on the W mass and of about 1 GeV/? on the top mass.
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Such a precision requires a detailed understanding of many systematic un-
certainties, as in both cases the statistical error will be very low thanks
to high cross sections (30 nb for W inclusive production, including the
branching ratio for W into electron and muon decays, and 830 pb for tt
production). In particular for the W mass the limiting factor is likely to
be the knowledge of the lepton energy scale, while a good control of the jet
energy scale will be particularly important for the top mass measurement.
A further increase of precision is expected at the ILC. The W mass could
potentially be measured with a 6 MeV error from a high-statistics WW
threshold scan, single W production at high energy could give additional
information (the Wev cross section at 500 GeV is 5 pb). The top mass
could be measured with very high precision by means a top-threshold scan
at 350 GeV, reaching an experimental precision of the order of one permil.

Lower energy experiments could have an impact to the global elec-
troweak fit through improved determination of the fine structure constant at
q?> = M%. This important ingredient is currently limited by the knowledge
of the hadron contribution to the vacuum polarization, which is computed
using lower energy eTe™ data. The error on the extrapolated Higgs mass
coming from present data is equivalent to an uncertainty of about 10 MeV
on the W mass. It will be an important source of error in electroweak fits
when W mass measurements reach a similar uncertainty. A set of measure-
ments of the ete™ hadronic cross section from the 77 threshold up to the
T resonance, resulting in a determination of the eTe™ cross section at 1%
level, would match an error of 1 MeV on the mass of the W boson.

Triple vector-boson couplings have been shown to exist and to be con-
sistent with Standard Model expectations. The ete™ — WTW~— and
eTe™ — Wev differential cross sections, measured at LEP, have determined
WWZ and WW+ couplings with a precision of about 1%. At LHC vector-
boson pair production, and in particular W+~ and W Z events, will allow
a completely independent measurement of WWZ and WWr triple gauge
couplings, without any hypothesis linking the two sectors. Typical observ-
ables will be the pt distribution of high energy photon or Z associated with
a semileptonic W decay. Good control of the shape of such distributions,
and reliable expectations including higher order terms (such as O(a;) and
O(a) radiative corrections) will be required. The precision is expected to
be better than LEP (in particular for Az and A, ) but unlikely to reach the
permil accuracy needed to test Standard Model loop contributions. Pro-
duction of W pairs and of single W at high energy in e*e™ collisions will be
thoroughly tested at future liner colliders. Detailed analyses of integrated
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cross sections and of angular distributions, using techniques similar to that
employed at LEP, will allow surpassing the 10~2 precision for all couplings,
challenging theoretical TGC calculations at one loop level.

The Large Hadron Collider will open a new window on electroweak
measurements thanks to the large yield of top quarks. Millions of tt events
are expected to be detected and analysed by ATLAS and CMS, comple-
mented by an equally large amount of single top events, thanks to the large
cross section of this electroweak-production channel (about 320 pb) at the
LHC. Beyond the measurement of the top mass, these sample will be used
to perform detailed studies of top properties. An important example is
the measurement of the fraction of longitudinally polarized W bosons in
top decays, precisely predicted by the electroweak theory. As longitudinal
W bosons are closely related to the mechanism of electroweak symmetry
breaking this is an important test of the theory. This test is particularly
interesting in single top events produced through W-gluon fusion, since in
this case the top is almost completely polarized, allowing precision measure-
ments of the helicity both at production and decay. Let’s finally mention
that another sector would be open if associated ttH production is detected,
allowing the direct measurement of the ttH Yukawa coupling. In conclusion
the top quark is likely to take soon the witness from W and Z bosons in
precision tests of the electroweak theory.

So far, we avoided to discuss the possibility that new physics, beyond
the Standard Model maybe soon discovered. In particular we have not
mentioned the fact that neutrinos are not massless, which nowadays is
commonly accepted [170], and we have only briefly mentioned the existing
proposals of Supersymmetric models. In fact, both Tevatron and LHC are
notoriously preparing a huge experimental effort aiming to produce, and
identify, supersymmetric particles. Although this topic is clearly beyond
the purpose of our book, we cannot avoid to mention the fact that one
of the main arguments in favour of Supersymmetry came from the failure
of the SU(5) prediction for the numerical relationship between the three
Standard Model couplings o, v, sin® Ow,ers at the Z peak. From the high
precision measurements of the three couplings, the SU(5) prediction, based
on the attractive idea of grand unification, had to be discarded. A possible
way out was the ad hoc introduction of a new set of supersymmetric part-
ners, modifying the renormalization group equation coefficients. Although
no experimental evidence of Supersymmetry has been nowadays reached,
a widespread hope exists in the physics community that LHC will make
this spectacular discovery. Then a new era of precision measurements of
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the discovered entities at the ILC would open, with a roéle versus LHC
quite similar to that assumed by LEP1 versus UA1, UA2. Whether this
fascinating scenario will be reached, is still not known. Perhaps, different
fundamental discoveries will be achieved at LHC. In any case the general
feeling is that the next decade appears to be, for the history of physics, an
exciting one.
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