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Human Factors in Intelligent Vehicles addresses issues related 
to the analysis of human factors in the design and evaluation of 
intelligent vehicles for a wide spectrum of applications and over 
different dimensions. To commemorate the 8th anniversary of 
the IEEE ITS Workshop on Human Factors (http://hfiv.net) some 
recent works of authors active in the automotive human factors 
community have been collected in this book.  

Enclosed here are extended versions of papers and 
tutorials that were presented at the IEEE ITSS Workshop 
on “Human Factors in Intelligent Vehicles” and also 
included is additional deeper analysis along with detailed 
experimental and simulation results. 

The contributors cover autonomous vehicles as well 
as the frameworks for analyzing automation, modelling 
and methods for road users’ interaction such as intelligent 
user interfaces, including brain-computer interfaces and 
simulation and analysis tools related to human factors.
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Preface

Intelligent Vehicle technologies have experienced a great evolution/
advancement in the last couple of decades, turning vehicles themselves
into progressively more interactive elements in transportation and mobility
systems.

In addition, during the last few years, significant attention has been paid
to developing and implementing key technologies of future Intelligent Trans-
portation Systems (ITS) by integrating vehicular electronics that enhance
road safety and prevent traffic accidents. The fields of sensing, communi-
cation and control technologies play an increasingly crucial role for vehicle
safety and security, while research in transport continues among indus-
try engineers, practitioners, students and government agencies. However,
analyzing the impact of such technologies on driver traffic awareness and
behavior, specifically towards improving driving performance and reducing
road accidents, still demands improved tools and approaches.

While the feasibility of incorporating new technology-driven functional-
ity to vehicles has played a central role in automotive design, safety issues
related to interaction with the new in-vehicle systems have not always been
taken into consideration. A system that guarantees efficiency of use, comfort
and user satisfaction can contribute to a more conscious driving behavior that
would directly result from the adoption of intelligent vehicle technologies.

The collection of work presented in “Human Factors in Intelligent Vehi-
cles” (HFIV) aims to address issues related to the analysis of human factors
in the design and evaluation of intelligent vehicles for a wide spectrum
of applications and over different dimensions. To commemorate the 9th
anniversary of the IEEE ITS Workshop on Human Factors (http://hfiv.net),
that is promoted by the IEEE ITS Society’s Human Factors in Intelligent
Transportation Systems (HFITS) Technical Activities Sub-Committee, some
recent works of authors active in the automotive human factors community
have been gathered in this River Publishers book with the collaboration
of the Artificial Transportation Systems and Simulation (ATSS) Technical
Activities Sub-Committee.

xi

http://hfiv.net


xii Preface

The work presented in this collection is expected to disseminate knowl-
edge among the technical and scientific communities, practitioners and
students alike, and contribute to the development and enhancement of
state-of-the-art approaches.

This book serves as a platform for scientific knowledge exchange and
experience-sharing. Enclosed here are extended versions of manuscripts that
were presented at the IEEE ITSS Workshop on “Human Factors in Intelli-
gent Vehicles” and that contain additional developments in terms of deeper
analysis and detailed experimental/simulation results.

The various authors examine autonomous vehicles as well as the frame-
works for analyzing automation, modelling and methods for road users’ inter-
action such as intelligent user interfaces, including brain-computer interfaces
and simulation and analysis tools related to human factors.

The book is divided in the following seven chapters:

Chapter 1 “Continuous Game Theory Pedestrian Modelling Method for
Autonomous Vehicles”, co-authored by several researchers from Ibex
Automation Ltd and the universities of Leeds, Lincoln, and De Montfort
in the United Kingdom elaborates on game-theoretic predictive parameters.
The work shows how these parameters can be applied to pedestrians’ natural
and continuous motion during road-crossings to make predictions about their
interactions with the controllers of autonomous vehicles (AV) in a variety of
real-world settings.

Trust and perceived workload with regard to partially automated vehicles
and its correlation with information presentation in the vehicle is the topic
of Chapter 2, “The interface challenge for partially automated vehicles:
how driver characteristics affect information usage over time”. The authors
from the Universities of Warwick and Coventry in cooperation with Jaguar
Land Rover in the United Kingdom contribute to future human-machine-
interaction (HMI) design through a better understanding of how driver
characteristics can affect information use inside partially automated vehicles.

In Chapter 3 “A CNN Approach for Bi-Directional Brainwave Controller
for Intelligent Vehicles” brain-computer interfaces (BCI) are investigated as
frameworks to enable severely disabled people to drive vehicles. The authors
from the University Carlos III in Madrid, Spain review some of the most
sophisticated and relevant techniques in the classification of brain patterns
and propose a new method by using a low-cost helmet and convolutional



Preface xiii

neural networks (CNN). They showed the feasibility of their approach by
improving prediction results.

Chapter 4 titled “A-RCRAFT Framework for Analysing Automation: Appli-
cation to SAE J3016 Levels of Driving Automation” by authors from ICS-
IRIT at Toulouse University (France) analyses automation by delineating
some key concepts that are emphasized separately in the literature of automa-
tion design. This A-RCRAFT framework provides an analytical support
structure with the concepts of Allocation of Resources, Control Transitions,
Responsibility, Authority, and Functions and Tasks (A-RCRAFT). Examples
of how the framework can be used to analyse different options of driving
automation design according to the SAE J3016 levels of driving automation
are shown.

Autonomous vehicles (AV) and their impact on trust and pedestrian behavior
as well as the necessity of communication protocols are the topics of Chapter
5 “Autonomous Vehicles: Vulnerable Road User Response to Visual Informa-
tion Using an Analysis Framework for Shared Spaces”. The authors from the
Johannes Kepler University at Linz in Austria studied the effects of different
communication paradigms in shared spaces and developed an algorithm for
the analysis of pedestrian behavioral patterns such as the pose and distance
of the pedestrian.

“Intelligent Vehicles and Older Drivers” is the topic of Chapter 6. The authors
of the chapter, from the HumanLAB, DGIST (Daegu Gyeongbuk Institute of
Science and Technology) and Technical Center, Sonnet.AI in South Korea
elucidate the different human physiological resources involved in driving
tasks such as vision, hearing, cognition, and physical function and propose
intelligent-vehicle-based solutions that might compensate for the reduction
of these physical capabilities due to advancing age.

Finally, Chapter 7 “Integration model of multi-agent architectures for data
fusion-based active driving systems” presents an architecture model to inte-
grate new active safety systems into Human-In-the-Loop (HITL) driving
simulators. The authors from the Computer Science Department at the Uni-
versidad Carlos III in Madrid, Spain gathered data from several information
providers. A support system merged a variety of driver parameters with the
corresponding driving scene through a data fusion process, allowing this
procedure for a more realistic system performance for measuring human
factors elements in a driving context.



xiv Preface

Much appreciation is owed to all of the authors that have submitted their
contributions to this book and for sharing their novel visions, outstanding
research and significant results. The chapters included in this book have
benefited greatly from the laborious and time-consuming work of many
anonymous reviewers that have offered their expertise, suggestions and rec-
ommendations, and we therefore wish to thank them as well. We hope that
the readers will enjoy the content of this book as much as the editors did,
and that the scientific community and practitioners alike will find this work
stimulating and useful in promoting and developing the field of Human
Factors in Intelligent Vehicles.

Cristina Olaverri-Monreal
Fernando Garcı́a-Fernández

Rosaldo Rossetti
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Autonomous Vehicles (AVs) must interact with other road users. They must
understand and adapt to complex pedestrian behaviour, especially during
crossings where priority is not clearly defined. This includes feedback effects
such as modelling a pedestrian’s likely behaviours resulting from changes
in the AVs behaviour. For example, whether a pedestrian will yield if the
AV accelerates, and vice versa. To enable such automated interactions, it
is necessary for the AV to possess a statistical model of the pedestrian’s
responses to its own actions. A previous work demonstrated a proof-of-
concept method to fit parameters to a simplified model based on data from
a highly artificial discrete laboratory task with human subjects. The method
was based on LIDAR-based person tracking, game theory, and Gaussian
process analysis. The present study extends this method to enable analysis
of more realistic continuous human experimental data. It shows for the first
time how game-theoretic predictive parameters can be fit into pedestrians
natural and continuous motion during road-crossings, and how predictions
can be made about their interactions with AV controllers in similar real-world
settings.

1
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1.1 Introduction

Understanding pedestrian behaviour is now of upmost importance for
Autonomous Vehicles (AVs) [5]. The potential future deployment of AVs is
currently creating much enthusiasm [4, 43], as such vehicles would make
transportation more efficient [22]. Huge improvements have been made on
robotic localisation and mapping problems using simultaneous localisation
and mapping (SLAM) algorithms [6, 38], together with new, cheap sensors,
computation technologies, free and open-source software implementations
[20, 42]. ‘Self-driving’ cars can now localise themselves and navigate by
planning and controlling their routes on some roads, promising a future
society with a better mobility system with less accidents and traffic in
cities [22].

But before any fully self-driving revolution happens, AVs must share
space with and will be challenged by human drivers and pedestrians, who
are much harder to model and act upon than passive environments. Full
self-driving must include this ability as well as the now-mature localisation,
planning and routing technologies. Decades of research on human interaction
in Transport Psychology and Human Factors has not yet been translated into
robotic control systems, and many questions are still unanswered.

In most current ‘self-driving’ systems, for safety and legal reasons, pedes-
trians are considered as obstacles, such that the vehicle always stops for them.
But recent real-world AV studies have shown that pedestrians may then take
advantage of this predictable behaviour [27, 25, 5], pushing in front of them
for priority eventually in every negotiation, so that the vehicles then make no
progress. This has become known as the ‘freezing robot problem (FRP)’ [39].

Real human driving is massively more complex than simply mapping,
localising and path planning. It is considered an art form by advanced
practitioners such as members of the Institute for Advanced Motorists and
other advanced drivers such as high-speed police and ambulance drivers
[17]. In their training, these practitioners emphasise the human psychological
processes involved in reading and predicting the behaviours of other road
users as the most important skill of human drivers. Can you tell if a pedestrian
is assertive enough to risk stepping out in front of you from their body
language, their facial expressions, even their clothes and demographics? Road
users have different utility functions, ranging from timid pedestrians likely to
give way to all oncoming traffic, though to business-people late for a meeting
or patients for an urgent medical appointment becoming much more assertive
and risk-taking. Drivers must also consider the psychological effects of their
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Figure 1.1 Two agents negotiating for priority at an intersection.

own actions. Speeding up and slowing down are not just ways to control
one’s own progress, but also send information about our own personality
and risk preferences to pedestrians engaged in such negotiations for priority,
along with other possible signals including lateral road positing, and more
conventional signals such as flashing indicator lights and headlights, and
driver face and arm expressions.

To progress towards automation of such understandings, Fox et al. [18]
proposed and solved a simple game-theoretical mathematical model of the
unsigned road-crossing scenarios represented in Figures 1.1 and 1.7. This
model, based on the famous game of ‘chicken’, is called ‘sequential chicken’.
In this model, two agents – which may be pedestrians and/or vehicles –
compete for space at an unsigned intersection, using only their positions to
signal information to one another. Time, space and actions are discretised
and it is assumed that both players have equal utility functions and know this
to be the case. The model leaves open free parameters specifying the utility
function for human players. Camara et al. [11] then asked human subjects to
play sequential chicken as a board game, and developed a statistical method
to fit parameters to the mathematical model to describe and predict their
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behaviours. In [9], the same authors extended this experiment to the case
of human subjects playing a physical version of the board game, moving
their bodies between discrete squares on and near the road at discrete time
turns, integrating their positions into the sequential chicken model via LIDAR
sensors, support vector machines and Bayesian tracking.

Contributions: The present chapter is a methods study which presents a new,
full stack approach to measuring and modelling natural, continuous time and
continuous space pedestrian interactions. It shows how to infer pedestrian
preferences for time delays and collisions from their body motions as tracked
by LIDAR. Inferred parameters could then be used in AV controllers during
pedestrian interactions. First, pedestrian tracking is used to estimate the tra-
jectories of the agents involved in semi-structured human–human interactions
while playing the sequential chicken model. Second, optimal strategies are
computed using the game theory model in [18]. Lastly, parameters of the
interactions are inferred by comparison to optimal strategies, using Gaus-
sian process regression over the parameter space. This study is intended to
illustrate a proof-of-concept of this full-stack method: more detailed and
controlled experiments will be needed to obtain robust parameters results and
to learn about variations in parameters between different classes of pedes-
trians. The demonstrated method could also be used to model and measure
pedestrian/pedestrian, human–driver–vehicle/AV, and human–driver/human–
driver and AV/AV interactions as well as the primarily intended
pedestrian/AV case.

This work is part of the EU H2020 interACT project with a consortium of
European partners1 investigating on the future deployment of AVs in mixed
traffic environments with human drivers, cyclists and pedestrians. The overall
aims of the project are to understand the behaviour of other road users, and
how AVs could interact with them in a safe and efficient manner, and to
propose new external Human–Machine Interface (eHMI) solutions that could
facilitate the communication between AVs and people.

1.2 Related Work

1.2.1 Pedestrian Crossing Behaviour

A review on different approaches for pedestrian behaviour modelling is pro-
vided in [8]. Methods of pedestrian behaviour analysis are often performed

1https://www.interact-roadautomation.eu/
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via video recording, semi-structured interviews and VR recording. Previous
studies on pedestrian crossing behaviour can be found in [19, 29, 32]. For
example, Gorrini et al. [19] analysed video data of interaction between
pedestrians and vehicles at an unsignalized intersection using semi-automatic
tracking. Their study showed that pedestrian crossing behaviour can be
divided into three phases: approaching (stable speed), appraising (deceler-
ation due to evaluation of speed and distance of oncoming vehicles) and
crossing (acceleration). Papadimitriou et al. [29] compared observed and
declared behaviour of pedestrians at different crossing areas, as a method to
assess pedestrian risk-taking while crossing. They found that their observed
behaviour is in accordance with their declared behaviours from a ques-
tionnaire survey and they report that female and male participants have
similar crossing behaviour. Many studies such as [35] were focused on
the evaluation of speed, TTC (Time To Collision), gap acceptance and
communication means (e.g., eye contact and motion pattern) of the road
users. Some other studies (e.g., [15]) have suggested that for autonomous
vehicles, some apparently intuitive human communication styles might not
be necessary for interactions with pedestrians. Dey and Terken [15] showed
that facial communication cues such as eye contact do not play a major role
in pedestrian crossing behaviour, and that the motion pattern and behaviour
of vehicles are more important. The field study in [34] showed similar
results with an ‘unmanned’ vehicle, suggesting that the same results could be
found with autonomous vehicles. Risto et al. [33] showed that vehicle move-
ment is sufficient for indicating the intention of drivers and presented some
motion patterns of road users such as advancing, slowing early and stopping
short.

1.2.2 Game Theory

Game theory offers a framework for modelling conflict and cooperation
between rational decision-makers. It was developed in the 1940s by von
Neumann and Morgenstern [28]. Its core concept is (Nash) equilibrium
which is the pair of strategies (probability distributions over actions to be
played) such that none of the players would change their strategy if they
knew the other’s strategy. Previous studies in Transport Studies and highway
design have applied the game theory to several driver behaviour modelling
tasks, as reviewed in [16]. Kim et al. [21] developed a mixed-motive game
theory model for deciding the strategy chosen by two AVs equipped with
adaptive cruise control (ACC). Meng et al. [26] also used the game theory for
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modelling AV lane-changing maneuvers. Rakha et al. [30] proposed a game
theory approach for intersection conflicts management with reactive agents
(the automated vehicles) equipped with ACC systems and a manager agent is
used to decide the optimal strategy that increases the overall performance
of all the agents. This approach prevents crashes from occurring and it
also minimises the time delay in the intersection. Similar to our work, Ma
et al. [24] computed Nash equilibria using Fictitious Play. Their method
differs from ours in that not only their model takes into account pedestrians’
position from a single image but also used some visual features from their
appearance as part of the utility function to improve trajectory prediction.
Adkins [1] presented an algorithm for intersection management involving
up to four self-driving cars communicating with each other. Two motion
choices are available for each player (move forward or stop) and an optimised
solution using the game theory to solve the discrete intersection problem is
presented. Turnwald et al. [40] proposed a non-cooperative game theoretic
approach to human collision avoidance. Their method differs from ours in
that they used a motion capture system to record human motions, a Bootstrap
algorithm to compute the confidence intervals and applied a Dynamic Time
Warping (DTW) algorithm to measure similarity between the trajectories.
Variants of the game of chicken were proposed in [13, 27, 31] to solve
conflicts between agents at intersections. A cellular automata approach was
implemented in [31] and [13] for agents’ interactions while [27] focused on
the interaction between an AV and a pedestrian.

When multiple equilibria are present in games, standard game theory does
not specify how the players should choose the best one. In the above studies,
no method is proposed for the players to select which equilibrium to use.
Typically this is because Transport Studies seeks to describe macroscopic
flows of traffic rather than prescribe actions for individual vehicles, and
considers that any possible equilibrium is a good description of observed
data. For example in [27], the choice for the best solution depends on ‘local
social norms’ which assumes that drivers should have prior knowledge of
local customs. Unusually, [18] proposed a novel approach for optimal strat-
egy prescription, called meta-strategy convergence. This method begins by
choosing an equal-weighted mixture of strategies from all rational equilibria
(after removing dominated and asymmetric equilibria where possible). The
resulting strategies do not in general form an equilibrium themselves, but by
applying fictitious play until convergence, a single equilibrium is obtained
upon which it is argued that two rational players should agree without
communication. Most of the game theory models reviewed earlier outperform
non-game theoretic predictive models [13, 24, 30, 41].
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1.2.3 Pedestrian Tracking

Pedestrian tracking plays an important role in many commercial applications
but it is still a challenge for computer vision systems because of the multiple
uncertainties (e.g., occlusions) due to complex environments [7]. Tracking
of pedestrians requires the estimation of non-linear, non-Gaussian problems
due to human motion, pedestrian scales and posture changes. Monte Carlo
methods such as particle filtered-based approaches draw a set of samples
assigned to a target and perform the data association for multiple targets using
probabilistic techniques such as Nearest Neighbor (NN), Multiple Hypoth-
esis Tracking (MHT), JPDAF and PHD-filter [2, 7]. Pedestrian tracking
is composed of two steps: (i) a prediction step to determine the expected
position and motion state and (ii) an update step to refine the prediction using
sensor observations. Tracking has been previously combined with game the-
ory for multi-robot system coordination problems. For instance, Skrzypczyk
et al. [37] used non-cooperative games to control a team of mobile robots for
a target tracking. When multiple equilibria are present, an arbiter based on
the min-max method is used to fairly distribute costs among robots. Li et al.
[23] applied cooperative game theory to improve tracking performance for
a group of robots, allowing communication between the robots in order to
minimise tracking costs and maximise the interests of the overall system of
robots. Yan et al. [46] proposed a cooperative non-zero sum game approach
for the problem of multi-target tracking for a multi-robot system in dynamic
environment.

1.3 Methods

The present study demonstrates a method to fit parameters of the sequential
chicken model to continuous human behaviour collected from controlled
laboratory pedestrian–pedestrian interactions. The laboratory environment is
designed to enable the simplest possible mapping of continuous physical
human motions onto the model. Studying pedestrian–pedestrian interactions
in place of pedestrian–AV interactions allows us to collect twice as much
pedestrian data, and not require us to bias the experiment by involving an AV
programmed with its own preferences.

1.3.1 Human Experiment

Eighteen human volunteer subjects (University of Lincoln Computer Science
staff and students) were divided into nine pairs, one designated as player Y
and the other as player X . Each pair was asked to play a physical version of



8 Continuous Game Theory Pedestrian Modelling Method

Figure 1.2 Two participants playing the game of chicken during the experiment.

Figure 1.3 3D LIDAR output.

the sequential chicken game on a plus-maze shaped playing area drawn on
an indoor floor as shown in Figure 1.2. Player Y was starting from y = 6 m
and player X from x = 6 m such that they were both starting 6 m away from
the intersection. Players were instructed that their objective was to pass the
intersection as soon as possible, ‘as if they were trying to reach their office
entrance in a busy pedestrian area’, on hearing the command ‘go’ to begin,
given to both players at the same time. Each pair performed five interactions,
i.e., ‘games’. If both players walk at the same speed, then they collide with
each other. Otherwise, one of them must yield to allow the other to pass the
intersection point before them. Sometimes, both players try to yield at the
same time, which does not break the symmetry, forcing them to continue
negotiating one or more times. Players’ motions were recorded using a
Velodyne three-dimensional (3D) LIDAR. Figure 1.3 shows an example of
the LIDAR output during the games.
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1.3.2 Pedestrian Detection and Tracking

Pedestrian positions and velocities are provided by a robust Bayesian multi-
target tracking systems based on 3D LIDAR detections [47], suitable for
real-time, long-range tracking of multiple people in dynamic scenarios.
Non-overlapping clusters of adjacent points are extracted based on their
3D Euclidean distance. An adaptive threshold accounts for the variation in
shape and size of the human body in 3D LIDAR point clouds, which is a
function of the person’s distance from the sensor. Finally, clusters too large
or too small to be humans are discarded by the detector, which outputs
the distance and bearing of the cluster’s centroid projected on the floor.
The information from the detector is processed by a multi-target tracker,
including an efficient implementation of Unscented Kalman Filter (UKF) and
NN data association to deal with multiple detections simultaneously [3]. The
tracker estimates the 2D coordinates and velocities of each pedestrian using a
standard prediction-update recursive algorithm. The prediction step is based
on the following constant velocity model,

xk = xk−1 + ∆t ẋk−1

ẋk = ẋk−1

yk = yk−1 + ∆t ẏk−1

ẏk = ẏk−1

(1.1)

where xk and yk are the Cartesian coordinates of the target at time tk,
ẋk and ẏk are the respective velocities, and ∆t = tk − tk−1. (The symbols
x, y, t in this section are re–used to name different things than in the game
theory model sections.) The update step of the estimation uses a 2D polar
observation model to represent the position of a detected cluster,{

φk = tan−1(yk/xk)

γk =
√
x2k + y2k

(1.2)

where φk and γk are, respectively, the bearing and the distance of the cluster’s
centroid with respect to the sensor. More details can be found in [3, 47].

Figures 1.4 to 1.6 show the filtering process for pedestrian tracks. Like
all detection and tracking methods, the system sometimes produces false
positives and false negatives. To remove false positives, tracks were filtered to
exclude those including any locations outside the plus-maze area, as shown in
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Figure 1.4 Unfiltered tracks.

Figure 1.5 Filtered tracks.

Figure 1.6 Tracks assigned to players.

Figure 1.5. Due to occasional false positives with tracks, and false negatives
missing tracks, filtering resulted in a collection of 14 games, from 6 different
pairs of players, having good and complete tracks for both players together,
that are used in the rest of the analysis.
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1.3.3 Sequential Chicken Model

In sequential chicken, two agents called Y andX are driving straight towards
each other at right angles as in Figure 1.1, such that they will collide unless
one of them yields to the other. The sequential chicken model operates on
discrete space as in Figure 1.7; discrete times (‘turns’) during which the
agents can adjust their discrete speeds, simultaneously selecting between
speeds of either 1 square per turn or 2 squares per turn, at each turn. Both
agents want to pass the intersection as soon as possible to avoid travel
delays, but if they collide, they are both bigger losers as they both receive
a negative utility Ucrash. Otherwise if the players pass the intersection, each
receives a time delay penalty −TUtime, where T is the time from the start
of the game and Utime represents the value of saving one turn of travel
time. The model assumes that the two players choose their actions (speeds)
aY , aX ∈ {1, 2} simultaneously, then implement them simultaneously, at
each of several discrete-time turns. There is no lateral motion (positioning
within the lanes of the roads) or communication between the agents other
than via their visible positions. The game is symmetric, as both players are
assumed to know that they have the same utility functions (Ucrash, Utime),
hence they both have the same optimal strategies. These optimal strategies are
derivable from the game theory together with meta-strategy convergence, via
recursion [18]. Sequential chicken can be viewed as a sequence of one-shot
sub-games, whose payoffs are the expected values of new games resulting
from the actions, and are solvable by standard game theory.

Discretised locations of the players can be represented by (y, x, t) at
discretised turn t and their discretised actions aY , aX ∈ {1, 2} for speed
selection. Similar to the approach used in [10], discretisations are obtained
from the continuous data by quantizing continuous position into about 0.1 m

Figure 1.7 Sequential chicken game.
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locations every 0.09 s turn, by averaging over all locations during that
interval; and quantizing actions into SLOW or FAST between each pair of
quantised locations according to whether the location change is greater or
lower than a 1 m/s threshold.

The new state at turn t + 1 is given by (y + aY , x + aX , t + 1). Define
vy,x,t = (vYy,x,t, v

X
y,x,t) as the value (expected utility, assuming all players play

optimally) of the game for state (y, x, t). As in the standard game theory the
value of each 2× 2 payoff matrix can then be written as,

vy,x,t = v

([
v(y − 1, x− 1, t+ 1) v(y − 1, x− 2, t+ 1)
v(y − 2, x− 1, t+ 1) v(y − 2, x− 2, t+ 1)

])
, (1.3)

which can be solved using dynamic programming assuming meta-strategy
convergence equilibrium selection. Under some approximations based on the
temporal gauge invariance described in [18], we may remove the dependen-
cies on the time t in our implementation so that only the locations (y, x) are
required in computation of vy,x and optimal strategy selection.

In the sequential chicken model, if the two players play optimally, then
there must exist a non-zero probability for a collision to occur. Intuitively,
if we consider an AV to be one player that always yields, it will make no
progress as the other player will always take advantage over it, hence there
must be some threats of collision [18].

1.3.4 Gaussian Process Parameter Posterior Analysis

We use Gaussian processes regression [45] to fit the posterior belief over the
behavioural parameters of interest, θ = (Ucrash, Utime) from the observed
data, D. Under the sequential chicken model, M , these are

P (θ|M,D) =
P (D|θ,M)P (θ|M)∑
θ′ P (D|θ′,M)P (θ′|M)

. (1.4)

We assume a flat prior over θ so that,

P (θ|M,D) ∝ P (D|θ,M), (1.5)

which is the data likelihood, given by,

P (D|θ,M) =
∏
game

∏
turn

P (dgame,turn
Y |y, x, θ,M ′)P (dgame,turn

X |y, x, θ,M ′), (1.6)

where dgame,turn
player are the observed action choices, and y and x are the observed

player locations at each turn of each game. Here M ′ is a noisy version of
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the optimal sequential chicken model M , which plays actions from M with
probability (1− s) and maximum entropy random actions (0.5 probability of
each speed) with probability s. This modification is necessary to allow the
model to fit data where human players have made deviations from optimal
strategies which would otherwise occur in the data with probability zero.
Real humans are unlikely to be perfectly optimal at anytime as they may
make mistakes of perception and decision-making. This is a common method
to weaken psychological models to allow non-zero probabilities for such
mistakes if present.

For a given value of θ, we may compute the optimal strategy for
the game by dynamic programming as in Algorithm 1. Optimal strategies
are in general probabilistic, and prescribe the P (dgame,turn

Y |y, x, θ,M),
P (dgame,turn

X |y, x, θ,M) terms to compute the above data likelihood. We then
use a Gaussian process with a Radial Basis Function (RBF) kernel to smooth
the likelihood function over all values of θ beyond a sample whose values
are computed explicitly. In practice, this is performed in the log domain to
avoid numerical computation problems with small probabilities. The resulting
Gaussian process is then read as the (un-normalized, log) posterior belief over
the behavioural parameters θ = {Utime, Ucrash} of interest.

Algorithm 1 Optimal solution computation
for Ucrash in range(Ucrashmin , Ucrashmax ) do

2: for Utime in range(Utimemin , Utimemax ) do
S← strategy matrix(NY ×NX × 2) for P (player X chooses speed 2|y, x)

4: loglik = 0
for each game in data do

6: for each turn in game do
loglik =

∏
game

∏
turn

(1− s)P (dgame,turn
Y |y, x, θ,M)P (dgame,turn

X |y, x, θ,M) + s(
1

2
)

8: end for
end for

10: Store loglik(Ucrash, Utime)
end for

12: end for
maxloglik← max of loglik(Ucrash, Utime)

1.4 Results

After applying Gaussian process regression and optimising s to maximise
the likelihood at the Maximum A Posteriori (MAP) point of θ, the posterior
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Figure 1.8 Gaussian process log-posterior over behavioural parameters.

Figure 1.9 Slice through the Gaussian process showing standard deviation log-posterior
confidence.

distribution over θ = {Ucrash, Utime} is shown in Figure 1.8. The MAP
estimate of the parameters is then around Ucrash = −220, Utime = 465,
at s = 0.11. The −44 : 93 ' −1 : 2 ratio in the utilities means that
assuming the noisy model M ′ the subjects value about a 1/2 turn time delay
equally to a crash, and the s value means that the subjects make mistakes
from optimal behaviour in 11% of actions. Significance of the results can be
seen by inspection of the thin standard deviation widths of 1D slices through
the 2D posterior as in Figure 1.9. We can only see a small deviation when
Ucrash is too small or too large.

The behavioural parameter (θ ' −1
2 ) shows that participants were having

higher preferences for time saving rather than for collision avoidance, which
is similar to the findings in [9, 11]. As in these studies, the high ratio may be
explained by the artificial laboratory nature of the environment: subjects want
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to win the game and know there is no significant negative utility for collisions
as the laboratory environment is designed to be safe. The method is now well
developed enough to move to the real world for future studies, and we expect
to see lower ratios there, where the cost of collisions with vehicles and other
pedestrians is much higher.

1.5 Discussion

The results shown are from a small sample of data and are intended as a proof-
of-concept of the proposed method. This shows how a full stack of real-time
detection and tracking, and game theoretic modelling can work together to
understand and predict continuous pedestrian interactions with another road
user. The data used here is from pedestrian–pedestrian interactions and is
only from a small sample of 14 interactions. Previous work performed this on
highly artificial discrete time, turn taking human experiments. This is the first
time that a method now exists for more natural continuous data as would be
found in real-world AV interactions. The key concept in moving from discrete
to continuous data is that we were able to discretise both players actions into
just two discrete categories, SLOW and FAST, which enables the sequential
chicken model to then operate with minimal changes.

Future work could now make use of this method, firstly to collect and
analysis much larger experimental pedestrian–pedestrian data sets; and sec-
ondly to deploy a model trailed from this data as a controller in a real
AV. It is possible that when trained on larger data sets, the model might
show different preferences for different types of pedestrians. For example,
real-time detectable features such as age [36], gender [48], body pose [12],
activity recognition [14], gait [44] and style of dress might give information
about pedestrian intention and behavioural preferences, which if found from
training data could then be used to refine real-time AVs pedestrian predictions
and active speed controls. This method could then possibly enable new
AV online-learning algorithms that adapt to the environment or passenger’s
preferences.
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Understanding how best to present information inside a partially automated
vehicle is a prevalent challenge in Human–Machine Interface (HMI) design.
To date little is known about how characteristics around trust, driving experi-
ence and cognitive workload specifically affect the types of information that
should be presented in an automated vehicle. It is also unknown how these
requirements change with increasing familiarity with the system.This two-
part driving simulator study aimed to understand how trust and perceived
workload changed with increasing exposure to a partially automated vehicle
and how this corelated with information usage. Forty-four participants expe-
rienced nine partially automated simulated driving scenarios over the course
of three or five consecutive sessions across the two studies. Eye tracking was
used to record the information observed. Participants were asked to complete
the Jian Trust Questionnaire, Driver Behaviour Questionnaire (DBQ) and
the Driver Activity Load Index (DALI). Significant changes to trust and
perceived workload were observed. Workload was found to decrease with
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lower fixations to information around the monitoring task.Drivers who were
more prone to lapses or errors (as measured by the DBQ) tended towards less
cognitively demanding information (skill based). This study has contributed
to a better understanding of how driver characteristics can affect information
use inside partially automated vehicles and such factors must be considered
in future HMI design.

2.1 Introduction

Partially automated vehicles (NHTSA Levels 2–4) are increasing in preva-
lence both in research and in commercial availability [1]. In such vehicles,
particularly at the lower levels of automation, passengers will be required
to monitor the automated process in the event that control must be handed
back to the human driver. There has been increasing evidence to suggest that
humans are not efficient at monitoring automated processes [2–4] and this
can promote riskier driving behaviour inside vehicles [5].

Appropriately designed Human–Machine Interfaces (HMI)have been
shown to play an important role in mitigating these challenges drivers could
face in partially automated systems [6, 7]. One of the underlying reasons for
this is trust and how successfully the HMI can support the driver in helping
them place the right level of trust in the vehicle’s capabilities [8].

In partially automated vehicles today, HMI designers have attempted to
address the problem by providing the driver with many different types of
information [9], however, there is a consensus that this approach can cause
cognitive overload and create the conditions for vehicle accidents [10–12].

Further, different drivers place different levels of trust in partially auto-
mated vehicles and have different driving styles. The process of trust devel-
opment is also dynamic and changes over time [13]. Furthermore,it has been
found that information requirements do vary between drivers [14] and these
requirements change over time as the driver becomes more accustomed to the
system [15]. There are models that recognize the differences in cognitive pro-
cessing between different drivers. Models such as Skills, Rules, Knowledge
(SRK) [16]; Strategic, Manoeuvring, Control [17] and Primary, Secondary,
Tertiary [18] all attempt to categorize the cognitive processes that occur in the
user in response to different types of information. There would appear to be an
opportunity to understand how the information presented to the driver can be
adapted over time to match driver preferences. Having the right information
presented at the appropriate time could help build and maintain trust in the
vehicle, which consequently promotes the driver’s ‘appropriate use’ of par-
tially automated vehicles. There appeared to be a dearth of literature that has
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considered the idea of an adaptive interface, with some preliminary studies
supporting the idea that it helped reduce the driver’s workload [12, 19]. In a
review into the adaptive interfaces for complex systems, it was concluded that
more research was required into user–centric design in adaptive systems [20].

This study aims to understand how trust and perceived workload and
a driver’s driving behaviour relate to the information they require inside a
partially automated vehicle over multiple exposures to the partially auto-
mated system. This makes this study unique in that it evaluates changes in
information requirements over time and not just from a single exposure to an
automated vehicle simulator trial.

2.2 Method

To understand how information requirements are affected by trust, perceived
workload and a driver’s driving behaviour, a two part study design was used.

2.2.1 Study Design

Both Parts 1 and 2 used a longitudinal within-subjects design over either five
(Part 1) or three days (Part 2). A summary of the two study parts can be seen in
Table 2.1. The participants were placed into a driving simulator and presented
with two to three, 5–13 minutes partially automated driving scenarios. At the
same time, an interface with nine pieces of information representing various
aspects of the vehicle’s sensors and intentions was displayed (Table 2.3).

In Part 1, the participants were given the Jian Trust Questionnaire and
DBQ (Driver Behaviour Questionnaire). In Part 2, the participants were
given the Jian Trust Questionnaire and DALI (Driver Activity Load Index)
questionnaires. A more detailed summary of each questionnaire can be found
in Section 2.2.5. A summary of the study design can be seen in Table 2.1.

It was found in the first study (5–day design) that fixations exhibited most
change on days 1, 3 and 5. Furthermore, because the number of simulations
remained consistent (Nine simulations per participant), the 3 day design
in Part 2 enabled the flexibility to ensure more participants were able to
complete all nine simulations.

2.2.2 Participants

A total of 44 participants took part in the study, recruited through advertising
(using social media and flyers) at the Warwick University campus and the
local area. A detailed breakdown of the participants can be seen in Table 2.2.
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Table 2.1 Summary of study design
Session

Study Part 1 Part 2
Date July 2018 March 2019
Number of Participants 17 27

Simulation 9 scenarios over 5 days 9 scenarios over 3 days

Information 9 information types 9 information types

Measurement SMI Glasses Tobii Pro 2

Scenario Steady State Partially
Automated

Steady State Partially
Automated

Questionnaires Jian Trust&Driver Behaviour
Questionnaire

Jian Trust&Driver Activity
Load Index

Table 2.2 Breakdown of participant demographics
Information Part 1 Part 2
Gender 8 (Male), 9 (Female) 14 (Male), 13 (Female)

Age 2 (18-24), 11 (25-34), 1
(66-64), 3 (65 or older)

10 (18-24), 13 (25-34), 1
(41-50), 3 (71-80)

During Part 1, three participants had to withdraw from the study, as a
result, these participants were omitted from the results. All participants in
Part 2 were able to complete all their sessions.

2.2.3 Interface Design

Across both Parts 1 and 2 of the study, the same interface and information
was presented to the participants.

First the information that would be displayed had to be chosen. Standards
such as BS EN ISO 15008:2017 [21] and UNECE 121 [22] were reviewed.
These define the minimal information requirements for vehicles today and
other factors such as legibility, image quality, etc. However, to narrow down
the amount of information presented, they were then categorized against
Rasmussen’s Skills, Rules, Knowledge (SRK) model [16]. The SRK model
proposed that information is acted on by users in different ways. In this paper,
this model was used to categorize the information into its expected cognitive
workload. Skill–based information is acted on intuitively and requires little
cognitive processing from the driver. Rule–based information is slightly
more complex, requiring the driver to understand the information and recall
on previous behaviour or experience. Knowledge–based information is the



2.2 Method 25

Table 2.3 Information categorised by SRK
Skills Rules Knowledge
Automated Driving Indicator Battery Charge Level Hazard Sensor Display

Road Signs Action Explanation Vehicle Warnings

Traffic Conditions Navigation Energy Usage

Figure 2.1 Final interface presented to the participants.

most cognitively demanding, requiring the driver to interpret the information,
develop a mental model of what is presented and then relate the information
to the real world conditions.

Using the SRK [16] and the methodologies used in [15], a method-
ologically derived shortlist of information types was developed. The final
categorizations were then decided upon by a group of academics from WMG,
University of Warwick and industry HMI experts. The final categorizations
are shown in Table 2.3.

The interface displayed (forday one, session one) to the participants can
be seen in Figure 2.1.

The interface was then displayed on a 10.5” iPad Pro. The information
displayed on the screen would update in real time, according to the conditions
in the simulation.

The interface was prototyped using tachistoscopic presentation to under-
stand if any of the icons were visually more salient than others. This led
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Figure 2.2 WMG 3xD development simulator.

to the redesign of some of the icons- namely the hazard sensor, which was
changed from a photo–realistic vehicle to a generic red arrow. Visual salience
is primarily guided by the relative similarity (or dissimilarity) of the icons’
attributes [23], hence the interface was also designed such that all animations
animated at the same frames per second value to balance the animation
salience. It was also considered that any effects of imbalanced icon salience
would be mitigated by the longitudinal study design.

2.2.4 Driving Scenario

The driving scenario in both Parts 1 and 2 of the study was presented on the
WMG Development simulator and using XPI Simulation software. This was
a three screen immersive setup. This study only focused on the steady–state
portions of both Parts 1 and 2. The scenarios varied between rural, urban and
motor way environments. The simulation setup can be seen in Figure 2.2.

2.2.5 Procedure

Procedurally, both Parts 1 and 2 were the same with the only differences
being the number of trial days and the driving scenarios presented. In this
study, a total of three questionnaires were presented to the participants for
completion:

• The Jian Trust Questionnaire [24] is an established method of determin-
ing the trust a participant has in an automated system, measured on a
seven–point Likert scale. This was completed three times in both Parts 1
and 2 of the study at the end of the simulator sessions. As a result of Part
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1’s 5–day design, the questionnaire was given on alternate sessions (1,
3 and 5). This was to avoid questionnaire fatigue. Part 2’s 3–day design
meant the questionnaire was given on all days. The result was a set of
three results per study.

• The DBQ [25] classifies different driving behaviours into errors, lapses
and violations. Errors are defined as being unintentional but having
potentially dangerous consequences. Lapses are unintentional and of no
serious consequence whereas violations are intentional actions that are
dangerous. Each of these is measured on a five-point Likert scale. The
DBQ was completed only in Part 1 of the study and only once in the
trial week before beginning the simulation. This was because the DBQ
is concerned with the participants’ past driving experience and this will
not have changed over the course of the five study days.

• The DALI [26] is a measure of perceived workload that has been adapted
from the NASA TLX questionnaire, but is more suited for the context of
vehicle workload. The DALI was given to the participants only during
Part 2 and at the end of every simulation session (hence three times in
the trial week).

Participants were brought into the simulator room and given a briefing on
the experimental procedure. They were told that the simulator was a partially
automated vehicle and were given an explanation of the capabilities of the
vehicle. They were told to observe the simulated scenario as if they were
the driver of the vehicle in partially automated driving mode and to use the
information presented to them in any way that made them feel comfortable in
the vehicle.

Participants were fitted with wearable eye tracking glasses. In Part 1, SMI
glasses were used which recorded at 30 Hz. In Part 2, the Tobii Pro 2 glasses
were used and recorded at 100 Hz. In both cases,the glasses meant that the
participants were not obliged to keep their head in a particular reference frame
and were free to move their head. For this paper’s analysis, fixations of 200 ms
or longer were used. Fixations below 200 ms are not long enough to assume
cognitive processing of the information [27–29], hence this was used as the
minimum fixation threshold.

Part 1 investigated how trust and driver behaviour could affect infor-
mation requirements. Part 2 also investigated information requirements but
looked at the effect of trust and perceived workload using the DALI.Across
both Parts 1 and 2, the scheduled meeting time for the daily sessions were
kept consistent for each participant.
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2.2.6 Data Analysis

The aim of this study was to understand how the driver’s trust, perceived
workload and driving behaviour relate to their information requirements
inside a partially automated vehicle. For comparisons within the measures
of trust, DBQ and DALI, either the Repeated Measures ANOVA or the non-
parametric Wilcoxon Test was used depending on whether the assumption
of normality was violated by the data. For the analysis of the relationship
between measures, the Pearson or non-parametric Spearman correlation tests
were used accordingly.

2.2.6.1 Trust (Parts 1 and 2)
Trust was captured three times during the trial week. To simplify analysis,
distrust scores were reversed and converted to a trust score (by taking away
the result from seven). These scores were then averaged to create a combined
trust score and the results are presented in Table 2.4 (where 1 is very low trust
and 7 is very high trust). Trust was then correlated against the fixations, DBQ
and DALI.

2.2.6.2 DBQ (Part 1 only)
The DBQ was split into errors, lapses and violations. The results are listed
in Table 2.5. This result was then correlated against fixations and trust but
not the DALI (as DALI was only presented in Part 2). However, because
the DBQ was only captured once at the start of the trial week, the results
were correlated against the total number of fixations for the week for each
participant to each piece of information.

2.2.6.3 DALI (Part 2 only)
The DALI measured perceived workload based on six factors (effort of
attention, visual demand, auditory demand, temporal demand, interference
and situations stress) [26] (where 0 is no cognitive workload and 100 is
maximum cognitive workload). The DALI was captured three times during
the trial week. Table 2.6 shows the DALI results for the trial week. This was
then correlated against fixations and trust but not the DBQ.

2.3 Results

In the following tables, all significant results are denoted with an asterix (*).
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Table 2.4 Trust results from Parts 1 and 2
Measure

Trust Results 1 2 3
N 44 44 44

Mean 4.54 4.81 4.87

Std. Dev. 1.02 1.02 1.14

Table 2.5 DBQ results from Part 1
Measures

DBQ Results Lapses Violations Errors
N 17 17 17

Mean 1.43 0.91 0.61

Std. Dev 0.480 0.730 0.430

2.3.1 Trust Results (Parts 1 and 2)

Table 2.4 indicates that the participants’ trust increased as the week pro-
gressed. The data violated the assumption of normality, hence a Wilcoxon
Signed Ranks test was used and revealed that there were significant differ-
ences between session one and two (Z = −2.984, p = 0.003) and session
one and three (Z = −2.897, p = 0.004). There was no significant difference
between day two and three.

2.3.2 DBQ Results (Part 1 only)

As shown in Table 2.5, of the participants sampled, errors were the least
common driver behaviour (m = 0.61), followed by violations (m = 0.91)
and then lapses (m = 1.43). Looking at the standard deviation, violations had
the highest variation between the participants (sd = 0.730). The data was not
normally distributed; hence the non-parametric Wilcoxon Signed Ranks test
was used.

The test reported a significant difference between the lapse and violation
scores (Z = −2.465, p = 0.014), and the lapse and error scores (Z =
−3.631, p = 0.000). There was no significant difference observed between
the violation and error scores. Lapses were the most common driving mistake
the participants made in their driving experience, more so than both violations
and errors, which showed no statistical difference between them. According
to the aforementioned definitions from [25], it would then be reasonable to
expect that lapses were significantly more common than violations or errors.
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Table 2.6 DALI results from Part 2
Measures

DBQ Results 1 2 3
N 27 27 27

Mean 49.9 45.5 39.5

Std. Dev. 19.6 19.9 19.4

2.3.3 DALI Results (Part 2 only)

The results indicate that the perceived workload decreased as the week pro-
gressed (Table 2.6). Data was normally distributed, so a Repeated Measures
ANOVA was carried out. The analysis found that between sessions 1 and 2
(p = 0.028) and session 1 and 3 (p = 0.01) there was a significant drop in
the perceived workload. There was no significant difference between session
2 and 3.

2.3.4 Fixations

2.3.4.1 Fixations and Trust (Parts 1 and 2)
Table 2.7 shows the correlation between trust and fixations to the information
on the surrogate display.

No significant correlations were found between the fixations to the
information icons and trust.

2.3.4.2 Fixations and DBQ (Part 1 only)
Table 2.8 shows the correlation between the driver behaviour questionnaire
results and fixations to the information on the surrogate display.

There were significant correlations found between the driver behaviour
scores and particular pieces of information. Lapses were found to correlate
negatively with fixations towards the navigation information (Figure ??,
Table 2.2) presented on the display (r = −0.541, p = 0.025) but positively
with road signs (r = 0.484, p = 0.049). Violations were found to positively
correlate with traffic information (r = 0.482, p = 0.050). Errors were found
to positively correlate with both traffic information (r = 0.555, p = 0.021)
and the automated driving indicator (r = 0.564, p = 0.018).

2.3.4.3 Fixations and DALI (Part 2 only)
Table 2.9 shows the correlation between the DALI workload measure and
fixations to the information on the surrogate display.
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Table 2.7 Correlation between trust and fixations
Trust

Correlation Icon Measure 1 Measure 2 Measure 3
N – 44 44 44

Action Explanation 0.068 −0.07 0.072

Auto Indicator −0.103 −0.244 −0.161

Battery 0.073 −0.281 −0.235

Energy Usage −0.122 −0.06 −0.253

Hazard Scanner −0.04 0 −0.252

Navigation −0.049 −0.08 −0.199

Road Signs −0.144 −0.264 −0.267

Traffic 0.049 −0.078 −0.21

Vehicle Warnings −0.029 −0.184 −0.075

Table 2.8 Correlation between DBQ and fixations
DBQ

Correlation Icon Lapses Violations Errors
N – 17 17 17

Action Explanation 0.037 0.035 0.230

Automated Driving Indicator 0.374 0.285 0.564∗

Battery Charge Level 0.114 0.224 0.406

Energy Usage −0.037 −0.228 0.306

Hazard Scanner −0.152 −0.142 −0.088

Navigation −0.541∗ 0.095 −0.296

Road Signs 0.484∗ 0.298 0.447

Traffic 0.149 0.482∗ 0.555∗

Vehicle Warning −0.037 −0.228 0.306



32 The Interface Challenge for Partially Automated Vehicles

Table 2.9 Correlation between DALI and fixations
DALI

Correlation Icon Measure 1 Measure 2 Measure 3
N – 27 27 27

Action Explanation −0.042 0.1 0.096

Automated Driving Indicator 0.27 0.218 0.064

Battery Charge Level 0.221 0.106 0.26

Energy Usage 0.083 −0.121 0.021

Hazard Scanner −0.024 −0.105 0.042

Navigation 0.136 0.215 −0.013

Road Signs 0.468∗ 0.236 0.269

Traffic −0.17 −0.121 0.016

Vehicle Warning −0.069 −0.108 0.12

There was one significant correlation between the DALI score for the
first session and the fixations to the Road Signs information (r = 0.468, p =
0.014). All other correlations were non-significant.

2.3.5 Between trust, DBQ and DALI

2.3.5.1 Trust and DBQ (Part 1 only)
The goal was to understand if a driver’s driving behaviours in vehicles today
would affect their predisposition to trust an automated system. This correla-
tion was only applicable to Part 1 of the study. The results are presented in
Table 2.10.

The results found three significant interactions. On the first day, trust had
a significant negative correlation with the lapse (r = −.551, p = 0.022) and
error scores (r = −0.526, p = 0.030). On the fifth day, trust correlated
negatively with the lapse score (r = −0.487, p = 0.047). The results
would suggest that on the first day of using a partially automated system,
the participants who had experienced more lapses and errors in their driving,
were less likely to trust the automated system.
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Table 2.10 Correlation between driver behaviour and trust
DBQ

Correlation Lapses Violations Errors
N 17 17 17

Trust 1 −0.551∗ −0.230 −0.526∗

Trust 2 −0.360 −0.039 −0.449

Trust 3 −0.487∗ −0.165 −0.410

Table 2.11 Correlation between DALI and trust
Correlation DALI
N 27

Trust 1 −0.434*

Trust 2 −0.413*

Trust 3 −0.450*

2.3.5.2 Trust and DALI (Part 2 only)
The goal of this correlation was to understand the relationship between the
trust a participant places in the partially automated vehicle and their perceived
workload. This correlation was only applicable to Part 2 of the study. The
results are presented in Table 2.11.

The results found that trust had a significant negative correlation with the
DALI perceived workload measure on all days (Trust 1, r = −0.434, p =
0.024; Trust 2, r = −0.413, p = 0.032; Trust 3, r = −0.450, p = 0.018).

2.4 Discussion

This two part study aimed to characterize the participants’ based on their trust
in partially automated vehicles, driving behaviour and perceived workload
to understand if this affected the information they used. Information was
categorized according to the SRK model to ensure the information presented
during the study was cognitively balanced and representative.

2.4.1 Fixations

2.4.1.1 Fixations and Trust (Parts 1 and 2)
The results indicated that there was no relationship between the level of trust
in the partially automated system and fixations to any particular piece of
information on the interface. The implication here is that no single piece of
information can be relied on to influence driver trust in partially automated
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vehicles. However, trust did significantly increase after the first day, but it
would appear that this was a result of the steady–state performance of the
vehicle and not the information presented to them. The key takeaway of this
result is that whether a participant exhibits a high or low trust does not appear
to affect their usage of information inside a partially automated vehicle during
steady–state driving. Rather, it would appear that increasing exposure is the
most effective method of trust calibration.It may come down to individual
preferences as to how information is utilized and acted upon[14], but it would
be inaccurate to base any information adaptation or design decisions on the
trust level of a participant for steady–state driving.

An important next step in this area would be to understand the effect of an
emergency scenario on trust and if there are particular pieces of information
that are then relied on by drivers to recalibrate any consequent change in trust.

However, it is important to note that trust is still an important measure in
the design of partially automated vehicles as a whole, as discussed later in
this paper.

2.4.1.2 Fixations and DBQ (Part 1 only)
The results only found positive correlations between skill based information
elements of the display and each of the three aspects of the DBQ. The
other significant negative correlation was the Navigation (r = −0.541, p =
0.025) (a rule based information); meaning a participant with a higher lapse
score, used Navigation more. This could be because they felt the skill–based
information was able to meet their information requirements and Navigation
became redundant. Skill–based information like the Automated Driving Indi-
cator can provide a simple confirmatory icon to tell the driver everything is
working as it should, without the driver needing to compare the Navigation
information with what the vehicle is actually doing.

Looking more generally at the DBQ, those drivers who scored higher
appear to rely more on skill–based information,i.e information that is more
intuitive and requires less cognitive processing. If there was a way to catego-
rize drivers and identify those who are more prone to error as measured by
the DBQ, this could be a good case for adapting the information provided to
those drivers with more skill based, less cognitively demanding information.

2.4.2 Fixations and DALI (Part 2 only)

With respect to the DALI and fixations, only the Road Signs on the first day
of trials showed a significant effect (r = 0.468, p = 0.014). This meant
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that the participants who used the Road Signs information more, subjectively
reported a higher perceived workload.Raw fixation results would indicate the
Road Sign information was commonly used by the participants to monitor the
road condition and confirm the vehicle’s sensors were accurately perceiving
the road ahead. This would then suggest that the monitoring task does
cause perceived workload to increase, confirming this previously observed
effect [30, 31].

Furthermore, although information was categorized according to cog-
nitive demand using the SRK model [16], the prototyping and subsequent
redesign of icons was intended to balance the visual saliency and hence
achieve an equitable cognitive demand across all the information. This may
explain why only one piece of information was correlated with perceived
workload.

2.4.3 Between Trust, DBQ and DALI

The final aspect of analysis was to compare the Jian trust rating with both
the DBQ and the DALI. In the previous section, the results suggested that
trust was not a driving factor behind the information used inside a partially
automated vehicle. However, it remains an important factor in other aspects
as discussed here.

2.4.3.1 Trust and DBQ (Part 1 only)
Between the DBQ and Jian Trust, the results found significant negative cor-
relations between trust and lapses on days one and three (r-day 1 = −0.551,
p = 0.022; r-day 2 = −0.487, p = 0.047). The error scores displayed a
significant correlation with trust (r = −0.526, p = 0.030) but only on day
one. These results indicate that drivers who are more prone to errors and
lapses, have a lower propensity to trust the automated system.Notably, drivers
more prone adverse driving behaviour are also those who are more likely
to benefit from the enhanced safety features of partially automated vehicles.
However, these results indicate that those drivers are less likely to trust the
system and hence not use it.This lack of trust could also be indicative of
the driver showing awareness of their own shortcomings when the vehicle
enters automated driving mode and consequently not trusting the system.
However, it is interesting to note how the correlations between trust and
lapses/errors became weaker as the week progressed. This would suggest that
the participants’ previous driving experiences became less relevant to their
use of the automated vehicle with increased exposure.
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2.4.3.2 Trust and DALI (Part 2 only)
The final aspect was to compare the DALI workload rating against trust. The
results found a significant negative correlation on all days indicating that as
trust increased in the partially automated system, the perceived workload
went down. This effect has been observed before [10, 11, 32, 33] and the
results from this study confirm the effect that if mental workload is reduced,
then it is likely trust in the automated system will increase in partially
automated vehicles. Of all the factors investigated in this study, workload had
the biggest effect on the level of trust drivers placed in the system. However
it should be noted that the goal should not be to minimize workload as under
loading can reduce situational awareness and have a negative impact on how
safely the partial automation is used [34]. On the contrary, too high a work-
load can reduce the experience and safety of the vehicle [35]. Comparing this
to the fixation behaviour where there was no correlation between workload
and information use, this suggests there needs to be more investigation into
how cognitive workload may be more appropriately managed.

2.5 Conclusion

This study used a unique longitudinal within-subjects design to test how trust,
driver behaviour and perceived workload relate to information requirements
inside partially automated vehicles. This study found that trust increased
significantly by the end of the trial week. Conversely, workload significantly
decreased by the end of the week.This study has also shown how trust is
more influenced by increasing exposure to a partially automated system than
the information presented, as a participant’s trust level was found to have no
correlation to information fixations. However, that is not to say that trust is
not an important measure as it was found to significantly negatively correlate
with the perceived workload experienced by drivers. Increased workload may
lower the user experience of the automated system, hence, trust remains
an important measure. Drivers who may be more prone to adverse driving
behaviour may rely more on skill–based information. These drivers are also
less likely to trust a partially automated vehicle. Further, the DBQ has shown
to be potentially effective at predicting a driver’s propensity to trust a partially
automated vehicle, but the correlation strength of this relationship decreases
with increasing exposure to the automated system.

This work has raised important implications for the design of future
interfaces in automated vehicles. Namely, the effect of behavioural factors
such as trust, workload and information usage have been shown to play a role
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in how the system is used. As supported by this research, future work must
consider looking at how information presented inside partially automated
vehicles can be adapted to match these driver trust and behaviour profiles,
and also consider how these information requirements change over time.
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Our brain is the main factor for the accomplishment of any task in the daily
life of the human being, therefore, the patterns of mental thought, which are
represented in the neuronal signals, can be used to improve the life of both
healthy and disabled users.

Brain–Computer Interfaces (BCI) are used for the reading of brain waves.
These sensors allow communication between a computer and the human
brain. With them, brain activity readings are obtained to analyse patterns of
electrical activity, or elecroencephalogram (EEG), that reflect certain brain
orders.

In this work we review some of the most sophisticated and relevant
techniques in the classification of these patterns to control. We propose a
new method of classifying brain patterns with the use of a low-cost helmet
and convolutional neural networks (CNN). The results obtained are very
significant since on the one hand they demonstrate the improvement of the
prediction with this type of networks, and on the other they indicate us that it
is preferable to train a model by subject, although not completely necessary.

3.1 Introduction

In the last few years, the technology applied to improve vehicle safety
and driving assistance has advanced enormously, reaching the stage of new
models capable of driving certain routes without a driver managing the
controls.

41
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These developments are carried out in parallel with the implementation of
new technologies that allow people with different disabilities to drive, such
as special controls for people who cannot use the pedals of the vehicle.

This work aims to provide an efficient (both in computational cost and
monetary cost) and effective solution to implement a brainwave controller
for route decision in a vehicle with automated control.

Brain–Computer Interfaces (BCI) has the potential to enable severely dis-
abled people to drive different machines such as computers or manipulators
by brain activity rather than physical means. Many technological advances
have occurred recently towards developing devices which allow people to use
some machine through muscle control, which may not be useful for totally
paralysed people. Therefore, BCI methods are the main alternative for this
people to communicate with any electronic device.

The BCI is based on the detection of brain electrical activity, produced
by brain waves, in order to control a machine or device with thoughts after a
certain calibration. Electroencephalography (EEG) measures voltage fluctua-
tions resulting from ionic current flows within the neurons of the brain. The
first International Meeting on BCI technology took place in Renserlaerville
(NY), in June 1999 and was organised by the BCI research team at the
Wadsworth Center of the NY State Department of Health and State University
of New York. Different approaches to the training of subjects in the control
of EEG signals, and some techniques to record these waves were discussed.

3.1.1 Human Brain

The study of the human brain has been one of the fields of research that have
most attracted the attention of scientists for thousands of years. It is known
that the Egyptians, more than 5,000 years ago, made the first discoveries in
the field of neuroscience, practised diagnoses related to neurological condi-
tions and performed simple operations. Since then, medical techniques have
improved considerably, and today, other sciences such as engineering and
physics are interested in the functioning of the brain and its possible practical
applications.

The human brain is divided into different lobes, each lobe is specialised in
certain activities such as the use of memory, motor activity or the resolution
of logical problems.

• Frontal Lobe: It is in charge of cognitive task, maintaining the neces-
sary attention for solving problems and planning tasks.
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• Parietal Lobe: It deals with the visual control and tactile perception by
controlling some variables such as temperature and pressure.
• Temporal Lobe: Various tasks are associated with it, including the abil-

ity of long-term memory, emotional responses and auditory perception.
• Occipital Lobe: It is in charge of processing visual stimuli, giving shape

and colour to objects and detecting movement.

3.1.2 Brainwaves Features

The brain is the organ in charge of processing and executing the signals of
the central nervous system. This system collects information from different
nerves and is transmitted through neurons to the brain, which analyses it
and sends various orders through other neurons. Communication between the
neurons that make up this system is carried out through synapses, a biological
process by which electrical activity (EEG, Figure 3.1) is generated from the
reaction of chemical substances produced by the emitting neuron.

The first advance made in the construction of the brain map came from
the hand of the German neurologist Hans Berger, who in 1924 deduced
the existence of brain waves, soon after managed to prove his theory by
electrodes inserted in the cerebral cortex of a subject with which it was
possible to detect electrical oscillations in the brain, thus creating the first
human encephalogram (EEG, Figure 3.2).

Since this first discovery on the cerebral waves, the relation between
diverse actions like the resolution of mathematical operations or to sleep, and
the cerebral activity was studied.

Figure 3.1 Golgi stained pyramidal neuron in the hippocampus of an epileptic patient. 40
times magnification. (Source: MethoxyRoxy CC).
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Figure 3.2 Electrical signals generated by brain activity. (Source: About Kids Health).

Brainwaves are classified depending on which frequency they are modu-
lated:

• Delta: 0.5–2.75 Hz
• Theta: 3.5–6.75 Hz
• Low Alpha: 7.5–9.25 Hz
• High Alpha: 10–11.75 Hz
• Low Beta: 13–16.75 Hz
• High Beta: 18–29.75 Hz
• Low Gamma: 31–39.75 Hz
• Mid Gamma: 41–49.75 H

These waves relate to movement and the level of attention in a certain
task [1].

3.1.3 BCI Research

In 2001, Guger et al. developed a BCI model to classify EEG patterns while
subjects thought of the left- and right-hand movements[2], this model has
an accuracy between 70% and 95%. An adaptive auto-regressive model
(AAR) [3] and linear discriminant analysis (LDA) [4] were developed. It
was tested with a BCI helmet covering the motor and somatosensory zones
(C3 and C4 of 10-20 Standard Disposition, shown in Figure 3.3). In 2003,
they also published a data set for a contest to develop a model capable of
recognising brain patterns, to be tested by BCI headsets[5].

In 2008, Xu et al. combined the discrete wavelet transformation (DWT)
with auto-regressive model to analyse the Graz data set, they achieved the
classification accuracy of 90% [6]. The method has 6 statistical wavelet
coefficients and 6 AAR coefficients for each channel, giving a total of 24
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Figure 3.3 10–20 Standard Disposition. (Source: Christopher B. under CC License).

Figure 3.4 Flow chart of the data processing. (Source: Xu in [6]).

features for a motor imagery task. These parameters were selected as inputs
of LDA classifier. The results show the Daubechies order 10 gave the best
performance and the recognition rate is as high as 90.0%. The results indicate
that method of combining DWT with AR model is capable of extracting more
useful information from the simultaneously acquired motor imagery EEG.

One of the most promising experiments in this field was developed by
the DARPA (Defense Advanced Research Projects Agency) at the end of
2012 [7]. A group of researchers managed to get a middle-aged quadriplegic
woman to move a robotic arm with great precision. In order to do this,
they implanted two 96-channel intracortical sensors (Figure 3.5, up). The
information that this device sends to the computer is immense and after
approximately 13 weeks, the subject was able to handle the arm in any spatial
direction, and even grab and handle simple objects.

This work proposes a new approach based on the work developed in [8],
which aims to provide a solution to decide the direction in an automated
vehicle using neural networks and a cost-efficient BCI helmet.

The methodology followed in this study suggests the use of neural
networks for the estimation of the direction to which it is intended to go.
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Figure 3.5 Up: 96-channel intracortical sensor. Down: Functional magnetic resonance
imaging. (Source: in [7]).

The configuration of the network consists of 7 neurons for the first layer,
3 for the second and 2 neurons for the third and last layer. The experiments
were carried out on a wide group of subjects, of different ages and gender.

For the training tests the data set is divided into 80% to train the network,
and 20% for validation. The results obtained for this first experiment show
some hope for the possibility of its use as a sense estimator, since 83.33% of
success was obtained when people thought of going to the left, and 75.00%
of success when it was required to go to the right.

For the validation tests a total of 50 samples were collected, the algorithm
was able to recognise 63% of the cases correctly, which means that it was not
a fully robust system.

These results may be due to changing conditions between simulation and
field tests, as well as the subjects’ own perception of right and left.

That is why two new approaches have been developed: the first uses
the same methodology as in [8] but treating each individual independently,
without mixing the wave patterns of the group, on the other hand a new
methodology is made based on the CNN to solve both the problem of classi-
fication in group and individual. In summary, our key contributions are: (a) a
comparison between the general method developed in [8] and an individual
method using the same architecture; (b) a novel CNN-based approach for
both individual and general data set and (c) a fair comparison between these
two architectures.

The work presented in this paper is divided into several sections: Section 2
explains the hardware system used, Section 3 describes the processing of
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Figure 3.6 Mindwave Neurosky Sensor [9].

the data and the methodology used for classification, Section 4 presents the
experiments carried out, as well as the results obtained and to conclude, a
brief conclusion and proposals for future work are presented in Section 5.

3.2 Setup Overview

This section describes the hardware system used to obtain the brainwave data
and the vehicle in which the system has been tested.

3.2.1 Brainwave Sensor

A low-cost sensor developed by Neurosky is used to read brain waves.
The Mindwave Mobile (Figure 3.6) is a brainwave headset that can send
readings via Bluetooth and contains two sensors: one in the left ear for signal
reference and another located on the forehead for reading the waves. To
obtain the amplitude of the different brain waves, the device has a microchip
that processes the raw signal by using a Fast Fourier Transform (FFT). The
brainwaves amplitudes oscillate from 0 to 255 [9].

This sensor has a sampling rate of 1.0 [Hz], it means that the system is
going to need some seconds to have an output. The need of a better sensor to
obtain a faster response is discussed in section 5.

3.2.2 Vehicle Platform

To carry out the experiments on a real platform, an electric golf cart is
used, which is equipped with multiple sensors on board, such as the LIDAR
sensor, stereo camera, GPS and control over its movement. Figure 2 shows
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Figure 3.7 Research platform “iCab”.

this vehicle, which is part of the Intelligent Campus Automobile (‘iCab’)
project [10] [11].

3.3 Methodology

3.3.1 Data Reading

First step is to acquire the data from the Mindwave Mobile sensor. In order
to do this, we use the ROS driver developed in [12], modifying the output to
obtain the type of waves needed, since the initial driver just provide us the
attention and meditation level without the values of the waves.

A Python script has been coded; hence, the ThinkGear Communications
Protocol must be used to decode signals’ values. This communication proto-
col is used to connect the sensor to the PC via Bluetooth. Thus a message is
obtained with the 8 basic brain waves, in packages of 24-bytes each.

3.3.2 Data Filtering

Once the waves have been decoded, these data must be filtered. This is an
essential step to eliminate repeated samples (Figure 3.8), as it is sampled at a
frequency greater than twice the sending frequency.

3.3.3 Input Processing

Once filtered (Figure 3.9), the data has to be converted to the input format of
the classifier. Part of the acquired waves, as well as variations of these waves,
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Figure 3.8 Example of raw data obtained from the brainwave sensor.

Figure 3.9 Neural Net input example.

are converted into the specific format of each classifier, which is specified in
the methodology of these classifiers. Both approaches use the following as
inputs: attention level, attentions derivative, beta wave, beta wave derivative,
beta wave envelope and low and high beta waves.
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To obtain the derivatives of the waves (d(Wx)), the behaviour of the
entire wave is analysed to determine when it is increasing or decreasing,
according to:

d(Wx) =

1, if Wx(t) < Wx(t+ 1)
0, if Wx(t) = Wx(t+ 1)
−1, if Wx(t) > Wx(t+ 1)

(3.1)

The values obtained by the sensor for low beta and high beta waves are
interpolated with a cubic interpolation algorithm as it provides a correct
adjustment with low computational consumption. On the other hand, the
envelope curve of the waves is calculated and the average is calculated to
obtain a single beta wave:

EnvBeta(t) =
EnvLowBeta(t) + EnvHighBeta(t)

2
(3.2)

3.3.4 NN Classifier

The implementation is similar to the one developed in [8], this method
consists in the use of neural networks that are modelled as a multi-layer
perceptron based on Quasi-Newton optimisation for the logarithmic cost
function described in:

V (f(x), y) = −y · ln(f(x)− (1− y) · ln(1− f(x)) (3.3)

The activation function for the hidden layers of the implemented networks
is the Rectified Linear Unit Function (RELU):

f(x) = max(0, x) (3.4)

The structure of the neural network consists of an input layer, three hidden
layers and an output layer with a single neuron. This network is modelled
using Scikit-Learn, a Machine Learning library for Python [13]. The proposed
algorithm consists of four different neural networks, two for each direction.
The output of each classifier generates two classes:

• C0: if the subject is not sufficiently concentrated.
• C1 : if the level of attention is sufficient to be thinking about the motion.

Furthermore, each classifier returns one output for each instance of
reading, however, to obtain a robust result, a reading of several samples is
required. Thus, the output of each classifier is predicted by comparing, for
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each sample obtained, the probability of belonging to a certain class (3.5)
and the error ratio (3.6), which depends directly on the level of attention:

Distancesense =
∑
i=0

P (xi|C0)− P (xi|C1) (3.5)

Errorsense =
Numberfailures
Numbersamples

(3.6)

The final result has three possible states:

1. NULL: the result cannot be classified.
2. LEFT: the subject is thinking left.
3. RIGHT: the subject is thinking right.

3.3.5 CNN Classifier

Instead of solving the classification problem by treating the data as discrete
as in [8], a CNN architecture developed in PyTorch will be used. The values
of each sampled variable reach values ranging from 0 to 255, so they can be
processed as if they were pixels of a greyscale image, except for the derivative
values that can be interpreted as binary pixel values. Taking into account this
new form of data, it can be fed as an input for a CNN network, so this input
has the form of an image of 1 × 20 × 7, 20 for the number of samples per
session and 7 for the number of waves sampled.

In this paper, we are not going to use a deep CNN, as the purpose is to
create a low-cost computational solution for a low-cost sensor. Therefore, two
different architectures have been tested: MindNet 1 and MindNet 2.

3.3.5.1 MindNet 1
The first CNN-based solution consists of a simple network (Figure 3.10)
composed of a 1× 20× 7 input, a 2D convolutional layer, a max pool layer,
followed by two fully connected layers: the first of 540 × 64 and the second
of 64× 2, and a Log-Softmax layer (3.7) for classification.

LogSoftmax(xi) = log

(
exp(xi)∑
j exp(xj)

)
(3.7)

A NLLLoss (3.8) cost function has been used for parameter optimisation,
whereby the loss tends to −1. It is a function for the classification of
problems with ‘C’ classes, the entry for the function is a tensor containing
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Figure 3.10 MindNet 1 CNN-Architecure.

the logarithmic values of the probability of belonging to each class:

l(x, y) =
N∑

n=1

(
ln∑N

n=1wyn

)
(3.8)

An AdaDelta model [14] has been used as an optimiser with an epoch
equal to 200.

3.3.5.2 MindNet 2
Due to new studies carried out on the use of batch normalization layers in
which it is stated that each neuron can learn certain characteristics more
independently of the result of the others [15], and that brain patterns can
be difficult to identify, it has been decided to implement these layers in a
new neuronal architecture (Figure 3.11). This network consists of an input
of 1x20x7, followed by two blocks composed of a convolutional layer and
a BatchNorm layer, then go through a module fully connected without
Log-Softmax layer because as a cost function is used the Cross Entropy
Loss function that combines a Log-Softmax layer (3.7) next to the NLLoss
equation (3.8).

AdaDelta model is used again as optimiser with an epoch of 200.

3.4 Experimental Works and Results

This section presents the experiments carried out both for the general
classifier and for the individual classifiers, as well as the results obtained.

These experiments allow us to create some data sets, presented in
Table 3.1, so that various approaches can be tested on them.
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Figure 3.11 MindNet 2 CNN-Architecure.

Table 3.1 Generated data set
Data set Samples Subjects Age Range
General 481 34 21–50

Individual 576 2 19–22

Figure 3.12 Animated arrow scene.

3.4.1 General Classifier

As described in the work [8], the experiment carried out consists of obtaining
a single classifier for a varied group of people.

To obtain the data set, several subjects are required to wear the BCI
helmet to read their brain waves while thinking in the direction (left or right)
followed by an animated arrow, displayed on a screen, while pressing a key
with their hand in the direction of the arrow. This process takes a minute and
a half and takes place in both directions. For this experiment, the subject must
be focused on moving the arrow with his mind, without knowing that he is
moving by himself. Thus, the thought is reinforced in only one of the senses.

To make it easier for the subjects to concentrate on their thoughts about
moving to the left or right, they are shown an arrow in an HTML application
(Figure 3.12) that moves in one direction or the other while pressing a key
with the hand corresponding to the direction of the arrow.
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Table 3.2 Results for general classifier
Classifier Train Score Real Test Score
NN 79,17% 63,5%

MindNet 1 65,00% 70,00%

MindNet 2 75.00% 70,00%

A total of 481 samples were obtained from 34 subjects between the ages
of 21 and 50, of different genders, both left-handed and right-handed. Once
the data is obtained, it is divided into 80% for network training and 20% for
validation.

To test the success of the classifiers, more experiments were conducted
using the ‘iCab’ platform. They were carried out in an uncontrolled environ-
ment where subjects thought of the route the vehicle should take. Totally, 51
new samples to be classified were obtained, distributed in such a way that
they can be used in the three classifiers presented.

The results obtained are shown in Table 3.2. This table indicates how
the precision of prediction increases when using convolutional networks as
opposed to the use of simple neural networks. However, it is not a good
enough approach to be implemented as a real solution, so an individual data
set will be tested.

3.4.2 Individual Classifier

In spite of having improved the classification of the sense in which a subject
thinks, a new experiment is carried out to test whether training a model for
each subject reaches a level of prediction that can be really useful.

For consistent training data, the experiments were carried out on different
days and under different conditions: in an empty room and a room with
people talking around. No other applications such as the animated arrow from
the previous experiment (Figure 3.12) were needed to induce concentration
on the subject, since, being a single person, he or she must focus on one
sense or another depending on his or her sensations. In addition to these
new conditions, the session time has been reduced to 30 s, instead of the
minute and a half of the previous experiment, this is done in consideration of
decreasing the time that the subject has to be concentrated, since the longer
the exposure time, the greater the fatigue and the greater the distraction.

The results of this experiment have produced a total of 576 samples,
which, as in the previous experiment, are divided into 80% for training and
20% for validation.
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Table 3.3 Results for individual classifier
Classifier Train Score Real Test Score
NN 90,00% 83,33%

MindNet 1 87,00% 93,00%

MindNet 2 85,17% 98,00%

Table 3.4 Computational time
Data Acquisition Time [s] NN [ms] CNN [ms]
General 90,00 727,44 2,62

Individual 30,00 720,68 2,57

The success levels for an individual classifier show that training a model
independently for each person is an improvement to be taken into account.

The results obtained show how the system is capable of correctly clas-
sifying a high percentage of thoughts, equivalent to the results of the work
described earlier. These results demonstrate that the use of convolutional
networks instead of basic networks allow to extract better characteristics to
detect the pattern of each individual.

3.4.3 Computational Time

Two metrics have been compared to obtain the real computational time cost:
the time needed to acquire the data and the inference time, it means the time
needed to process the data obtained and give a result.

It is shown that the use of the novel CNN approach with a model for
each subject is a faster solution, reducing significantly the calculation time in
comparison to the basic NN approach [8].

3.5 Conclusion and Future Work

This paper reviews some of the techniques used in the BCI field. All of them
use very expensive sensors with multiple channels that map brain activity
with good resolution.

This study develops a new methodology for predicting route decisions
with low-cost BCI sensors. Three different approaches are compared: the
first based on the work done in [8] and the other two based on the use of
convolutional networks.

The use of a convolutional architecture to classify the samples collected
by a single sensor as if they were images gives better results (98.00%
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accuracy, Table 3.3) in a shorter time (Table 3.4), thus increasing the robust-
ness of the systems to real levels of usability and close to much more
expensive systems.

For future work it is proposed to use a different helmet, which has more
sensors and a faster sampling rate, in order to be integrated optimally in the
control of a vehicle. This allows the classification of thoughts almost in real
time with greater accuracy, in addition to giving the user the ability to make
more movement decisions such as advance, stop or reverse.

References

[1] S. Sanei and J. A. Chambers. ”EEG signal processing.”John Wiley and
Sons, 2013.

[2] C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein and G.
Pfurtscheller. ”Rapid prototyping of an eeg-based brain-computer inter-
face (BCI).” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 2001.

[3] A. Schlgl, D. Flotzinger and G. Pfurtschelle. “Adaptive autoregressive
modeling used for single-trial eeg classification.”Biomed Technik, 1997.

[4] S. Hayki. Adaptive Filter Theory.Prentice-Hall, 1986.
[5] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer and G. Pfurtscheller.

“How many people are able to operate an eeg-based brain-computer
interface (BCI)?”IEEE transactions on neural systems and rehabilita-
tion engineering, 2003.

[6] B.-G. Xu and A.-G. Song. ”Pattern recognition of motor imagery eeg
using wavelet transform.” Journal of Biomedical Science and Engineer-
ing, 2008.

[7] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-
Kabara, D. J. Weber, A. J. McMorland, M. Velliste, M. L. Boninger
and A. B. Schwartz. “High-performance neuroprosthetic control by an
individual with tetraplegia.” The Lancet, 2012.

[8] A. Astudillo, F. M. Moreno, A. Hussein and F. Garcia. ”Cost-efficient
brainwave controller for automated vehicles route decisions.” IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC),
October 16-19, 2017, Yokohama, Japan.

[9] NeurosSky. “Thinkgear serial stream guide,”NeurosSky, 2015.
[10] P. Marin-Plaza, J. Beltran, A. Hussein, B. Musleh, D. Martin, A. de

la Escalera and J. M. Armingol. “Stereo vision-based local occupancy



References 57

grid map for autonomous navigation in ROS.”Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP), 2016.

[11] A. Hussein, P. Marin-Plaza, D. Martin, A. de la Escalera and J. M.
Armingol. “Autonomous off-road navigation using stereo-vision and
laser-rangefinder fusion for outdoor obstacles detection.” IEEE Intelli-
gent Vehicles Symposium (IV), 2016.

[12] S. Ataucuri. “Ros neural.”Google Summer of Code 2015, 2015.
[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duches-
nay. “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, 2011.

[14] M. D. Zeiler. ”ADADELTA: An Adaptive Learning Rate Method.”
arXiv:1212.5701 , 2012.

[15] F. D. ”Batch normalization in Neural Networks.”Towards Data Science,
2017.

[16] E. Astrand, C. Wardak and S. B. Hamed. “Selective visual attention
to drive cognitive brainmachine interfaces: from concepts to neuro-
feedback and rehabilitation applications.” Frontiers in Systems Neuro-
science, 2014.





4
A-RCRAFT Framework for Analysing

Automation: Application to SAE J3016
Levels of Driving Automation
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Automation can be considered as a design alternative that brings the benefits
of reducing the potential for human error and of increasing performance.
However, badly designed automation can have unexpected consequences
such as automation surprise and out-of-the-loop problems. These problems
can have a very negative impact on the overall performance of the cou-
ple human/system. Theories and frameworks have been proposed to help
automation designers to avoid automation issues. In this chapter, we analyse
automation by decomposing it into different concepts that are emphasized
separately in the literature of automation design. We present the A-RCRAFT
framework that provides support for the analysis of automation design in
terms of Allocation of Resources, of Control Transitions, of Responsibility, of
Authority, and of Functions and Tasks (A-RCRAFT). We illustrate how this
framework can be used to analyse different options of driving automation
design according to the SAE J3016 levels of driving automation.

4.1 Introduction

Currently, automation is one of the main means for supporting operators or
users using systems that feature increasing complexity. Automation makes
it possible to reduce overall tasks complexity and effort for operators by
allocating to the system tasks that were previously performed by the operator.

59
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In aviation domain, automation makes possible to reduce the number of
operators of flight crew from three to two. This reduction was possible by
allocating failure detection tasks and some flying tasks to automation (e.g.
the autopilot, the flight warning system or landing assistance). However,
if the workload of operators is reduced when automation works correctly,
in case of automation failure, extensive burden can be added to the flight
crew [17]. Indeed, issues introduced by badly design automation such as
complacency or out-of-the-loop problems have been identified by analysing
causes of some aircraft accidents (e.g. one of cause of the crash of the Boeing
737-400 Laguardia Airport is the deactivation of the auto-throttle and the
lack of awareness of the crew of this deactivation. This cause is identified in
the relative National Transportation Safety Board recommendations in 1990
[33]). Then, techniques, methods and recommendations to analyse and to
design interaction with automation have been proposed to deal with these
issues. Among these, the “Levels of Automation” framework [38] proposes
ten possible levels of automation (from level 0, where all the tasks are
allocated to the human, to level 10, where all the functions are allocated to
the system), as well as types of functions that can be performed by the human
or by the system (information acquisition, information analysis, decision
selection and action implementation) at a specified level of automation. This
framework aims to provide support for the analysis of the possible allocations
of tasks and functions between the operator and the system. Other types of
contributions to support automation design are automation concepts such as
the lumberjack analogy [43] or the automation conundrum [17] and they
aim to point out the potential issues that have to be addressed when design-
ing automation [26]. Some of them specifically aim to identify automation
philosophies their implications for design and operations, in order to provide
recommendations for the design of driving automation [52].

Existing approaches for the analysis of automation mainly focus on the
allocation of functions and deal with authority and responsibility only at a
high abstraction level. They do not provide explicit support for reasoning
about the quality of a given allocation of responsibility, authority, resources
and control transitions and makes the engineering of partly-autonomous sys-
tem cumbersome, leaving design decisions in the hands of the programmers.
We thus propose to go beyond the identification of allocation of functions
and tasks and to analyse automation by identifying several other types of
allocations that we gathered from the literature of automation design. We
propose the A-RCRAFT framework that provides support for the analy-
sis of automation design in terms of Allocation of Resources, of Control
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Transitions, of Responsibility, of Authority, and of Functions and Tasks (A-
RCRAFT). In previous work, we argued that authority and responsibility
should be taken into account at design time [6]. We identified three aspects
of automation that have to be identified at design time:

• what functions/tasks are allocated to the system and the human (alloca-
tion of functions and tasks),

• who can direct or prevent the execution of functions/tasks (i.e. planning)
and who initiate functions/tasks (authority)

• and who is responsible for the outcome of the execution of the func-
tions/tasks (responsibility).

The A-RCRAFT framework integrates two other aspects in addition to
the three aspects presented here above: the allocation of resources and the
allocation of control transition. For example, the explicit identification and
description of the A-RCRAFT enables to avoid that critical tasks or functions
(for which the consequences of an error or failure are catastrophic) as well
as authority and responsibility on these tasks or functions are allocated to the
actor (human or system) that is the less reliable for this task or function.

This chapter is structured as following. Next section (Section 2) defines
the Allocation of Resources, Control transitions, Responsibility, Authority,
and Functions and Tasks (A-RCRAFT) and presents the related work. Section
3 presents a qualitative analysis the Levels of Driving Automation of the SAE
[22] according to the A-RCRAFT concepts previously described. We show
that A-RCRAFT framework offers a conceptual background for the analysis
of command and control automation and driving automation.

4.2 A Framework for Automation Analysis: A-RCRAFT

This section presents the A-RCRAFT framework for the analysis of automa-
tion in terms of Allocation of: Resources, Control transitions, Responsibility,
Authority, Functions and Tasks. Each sub-section presents a concept of the A-
RCRAFT framework and how these concepts are addressed in the literature.
For each type of concept allocation in the framework, we first present the
previous work from which the concept comes from. Then, we propose a
definition illustrated by an example. We highlight the characteristics of the
analysis enabled by the description of this type of concept allocation. We
conclude each section by the identification of the output of the description
of the corresponding type of allocation. In the first sub-section, we define the
concept of Allocation of Functions and Tasks (A-RCRAFT). This sub-section
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is more detailed than the other ones because it introduces primary concepts
that are needed for the decomposition of allocation of resources, control
transition, responsibility and authority.

4.2.1 Allocation of Functions and Tasks

Existing approaches dealing with automation analysis usually focus on iden-
tifying tasks and functions that should be allocated to either the operator or
the system. These approaches provide support for the identification of which
functions are good candidate to be performed by the system and of which
tasks should be performed by the operator [7, 13, 15] and [50].

We define Allocation of Functions and Tasks as the identification of the
functions the system performs and of the tasks the human performs. Human
tasks are composed of the set of: perceptive, cognitive, motor and input
interactive tasks that the human performs. System functions are composed
of the set of: sense, analysis, selection and output functions that the system
performs.

For example, in civil aircraft cockpit, the pilot flying performs perceptive,
cognitive, motoric and interactive input tasks relative to fly the aircraft.
The pilot monitoring performs perceptive, cognitive, motoric and interactive
input tasks relative to manage systems. The flight warning system (FWS)
performs failure detection, analysis, selection of possible options for solving
the problem and display options relative to failure management.

Furthermore, we complete this definition by adding:

– the identification of the temporal ordering of the system functions, of the
human tasks and of the temporal ordering between system functions and
human tasks [28] [29].

– the identification of resources required by the human and by the system
to perform their functions and tasks [30], which are the devices, data and
objects.

Information processing decomposition of a function or a task
Information processing can be decomposed in several steps, whether they
are performed by the human or by the system. The Action Theory [35], the
Human Model Processor [10] or the SRK model [39] decompose human
information processing in several steps in order to support the analysis of the
different types of possible user actions (e.g. perceptive or cognitive actions for
the Human Model Processor). In an analogous way, several contributions to
automation analysis propose to identify different types of functions. Dearden
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Figure 4.1 Simple four-stage model of human information processing from [38].

Figure 4.2 Simple four-stage model of system information processing from [38].

et al. [12] propose four categories of functions: information, decision, action
and supervision. Kaber and Endsley [24] propose four generic types of
functions: monitoring (e.g., scanning visual displays), generating (producing
options or task strategies), selecting (choosing a particular option or strat-
egy) and implementing (carrying out the chosen option). Parasuraman et al.
[38] propose the equivalent for a system (see Figure 4.2) of a simplified
four stages model of human information processing (see Figure 4.1) to
decompose a function: information acquisition, information analysis, deci-
sion selection and action implementation. We use the information processing
decompositions of Parasuraman et al. [38] in the remainder of the chapter.

Analysis enabled by the identification of the Allocation of
Functions and Tasks
The description of the allocation of functions and tasks is necessary to
identify the optimal distribution of both functions and tasks between a
partly-autonomous system and a human.

The allocation of functions and tasks is also central to the automation
analysis because it provides support to migrate human tasks to be performed
by the system or to migrate system functions to be performed by the human
[28] [29]. More precisely, the allocation of functions and tasks enables to
describe functions that replace or enhance (e.g. a radar system performs a
function that humans are not capable to perform) or support partially or
entirely tasks performed by humans. Indeed, according to [51], not enough
functions allocated to human will lead to underload and boredom and thus
decreased performance while too many functions will lead to cognitive,
perceptive or motoric overload and increase stress and likelihood of user
errors.
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The output of the allocation of functions and tasks is:

– the description of the temporally ordered sets of functions that the
system should perform to support user goal

– the description of the temporally ordered sets of tasks that the user
should perform to reach her/his goal.

– The description of the temporal ordering between system functions and
user tasks, as well as of the data, objects and devices manipulated by
both the system and the user.

This implies that, during automation analysis, all the system functions
and all the human tasks have to be identified with the appropriate level of
abstraction in order to be able to describe the allocation of tasks and functions.
Such description can have the form of a task model as shown in [28–30].

Such descriptions enable to analyse automation according to the follow-
ing secondary concepts: resources (e.g. data, objects and devices required to
perform a function or task), control transition (e.g. temporal ordering between
system function and human task), responsibility (e.g. the influence of system
or human action on a resource) and authority (e.g. description of who can
trigger and/or delegate a tasks or function). These secondary concepts are
detailed in their respective section hereafter.

4.2.2 Allocation of Resources

In the same way that Norman emphasizes the problem of communication
feedback and feedforward with automation through civil aircraft examples
[36], Bradshaw et al. [9] alert about the potential issues of low observability
and low understandability caused by highly automated but silent systems.
Understandability is the ability to “form a mental model and predict future
system behaviour” [45]. Mental models are constructed from “the system
image” [35] (i.e. system perceivable outputs, appearance and documentation).
Explication of intention is the ability of the system to “display or says that
it will act in a particular way” [45]. Battiste et al. [4] highlights the need
of transparency for a good teamwork with automation. Jansson et al. [23]
define GMOC model for the design of automation in which observability
enhances the construction of mental model and the formulation of goals.
Woods highlights the importance to deal with the observability (interfaces
and feedback issues) problem when interacting with automated entity to avoid
automation surprise [49]. Starter and Woods [41] define observability as “the
ability of available feedback to actively support operators in monitoring
and staying ahead of system activities and transitions”. They precise that
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observability is not only information availability but depends on the cognitive
work needed to analyse information. More precisely than observability, the
term “transparency” is the extent to which a system allows the operator to
perceive and understand the information required for her/his activities and to
perceive and understand the behaviour of the system [4, 5]. Some existing
levels of automation integrate the concept of allocation of Information. For
example, the Levels of Automation of Parasuraman [38] indicate what type
of information is presented to the human and the frequency of informa-
tion exchanges. Some studies highlight the need of a shared understanding
through effective information exchanges from the system to the human and
from the human to the system. For example, Klien et al. [25] propose to
exchange information to maintain shared knowledge, goals and intentions
between the human and the system.

We extend the concept of allocation of Information and define Allocation
of Resources as the identification of the data, devices and objects required
to perform the system functions and the human tasks, which are exchanged
(or not) between the human(s) and system(s). For example, in civil aircraft
cockpits, active alarms, on-going processes and system data are software
objects in the system that are then provided by the system on output devices,
from which the pilot acquires information. In specific contexts, some of the
on-going alarms are not displayed to the user (e.g. while take-off). Data
provided to the human by the system can vary in term of frequency and in
term of type.

Analysis supported by the identification of the allocation of
resource
The description of the allocation of Resource provides support to analyse
the transparency of system activities. For example, if the human cannot
perceive any information from the system for a part of the activity or for its
behaviour, the system is not transparent for that part of the activity or for its
behaviour.

The description of the allocation of Resources also provides support to
analyse the understandability and explication of intention of system activities.
These properties are identified as trust attributes [45]. The description of types
of information exchanged enable understandability analysis [35]. Types of
information provided by the system enable the analysis of intention of system
property. Transparency and understandability properties are not restricted to
automation analysis but become critical as they enable awareness which is
necessary when human operates with automation [17].
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The output of the identification of allocation of Resources is the descrip-
tion of provided resources (data, objects and devices), of the parts of the
system concerned by these exchanges or the human concerned by these
exchanges, and of the resources not released by each part of the system or
by the human.

4.2.3 Allocation of Control Transitions

Lu et al. [27] propose a classification tree of control transitions based on
research in transitions of control for driving systems. Other studies propose
taxonomies of transitions of control for driving automation [47, 31, 48]. As
identified in the aviation domain (e.g. [42, 17]), control transitions can be an
issue during automation design as they require situation awareness, no mental
overload and avoiding out-of-the-loop problem. Adaptive automation has
been proposed to deal with human workload regulation and out-of-the-loop
problem [44]. The adaptive automation allows changes of the allocation of
functions and tasks depending on the environment or on the human conditions
[44]. Control transition taxonomies of [31] integrate the scheduling (sched-
uled, not scheduled) and [47] integrates time allowed to takeover (immediate
and not). Loer et al. [24] propose a model-checking technique to verify the
relevance of all possible temporal scheduling dynamic allocation of function
(transitions of control). [7, 13, 15] and [50] approaches provide support for
describing the possible transitions of control between the human and the sys-
tem. We propose a definition to allow the description of such control transi-
tions, regardless the field of automation analysis (aviation or driving automa-
tion), to be able to describe control transition whatever its implementation.

We define Allocation of Control Transitions as the identification of
changes from an allocation of functions and tasks to another that can occur
under temporal constraint during the activity. For example, in civil aircraft
cockpit, while the pilot monitoring controls the tasks relative to manage
aircraft systems, the flight warning system can trigger an alarm that the
pilot monitoring must handle. Then, a control transition occurs. The pilot
monitoring on-going task is interrupted and she has to manage the alarm.
Another example in an automated car is that the system drives the car
while the human supervises the running car. Then, the system may ask the
human to resume driving within 2 minutes due to a traffic situation that the
system cannot handle. A control transition occurs: the human switches from
supervising task to driving task and the system no longer controls the driving
task. Control transition may also occur partially for a sub task or step by step
to lead to the full transition. For example, the car can hand over driving step
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by step: first it takes the longitudinal control, then the lateral control [47].
We can also imagine cases where the human take over only the longitudinal
control leaving the lateral control to the car (i.e. the cruise control). In that
case, the human and the car share the driving task and the control transition
occurred partially. The allocation of control transitions must be done with a
conscientious analysis of tasks, functions and resources humans and systems
exchange as control transitions may require the ability to understand and
respond to events. This is particularly the case for a type of control transition
where the system asks the human to resume a task like handover driving task
in autonomous or partly autonomous cars [31]. This example highlights that
control transitions can have temporal constraints. A control transition can be
scheduled (i.e. from that defined moment, human and system controls other
tasks and functions). The control transition can also have limited time on the
change of allocation of functions and tasks. For example, human is asked to
validate or not a proposition within a limited time (veto).

Analysis supported by the description of the allocation of
control transitions
The description of changes from an allocation of functions and tasks to
another provides support for the identification of possible intervention of the
human (or the system) during the task (or function) of the system (or of the
human). It also provides support for the identification of possible interruption
of the task (or function) of the human (or of the system) by the system (or
by the human). These identifications can be useful to prove the compliance
of a system design with certification specifications. In the case where the
automation should enable the crew to intervene manually in any function [16],
the description of the allocation of control transition can enable to verify that
there is at least one possible control transition for each system functions.

The output of control transition allocation is the description of each
possible changes of tasks and functions allocation and of their temporal
constraints.

4.2.4 Allocation of Responsibility

Whereas Responsibility is considered as a concept that has to be taken into
account at design time, the contributions that we have found do not explicitly
support the systematic analysis of allocation of responsibility. Flemisch et al.
[18] as well as Miller and Parasuraman [32] proposed a conceptual frame-
work that highlight the importance of analysing responsibility at design time.
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However, this framework for analysing responsibility is abstract which makes
it not useful for describing the activity at the task level.

We define Allocation of Responsibility as the identification of who can
cause a derivation of the expected result of the activity. The allocation of
responsibilities (between human and system) must make explicit the out-
comes that are relevant, and who (the user or the system) influences these
outcomes, in order to identify what actor should be accountable for the result
of an action [18]. For example, in civil aircraft cockpits, the pilot monitoring
has the responsibility to judge correctly the pertinence of alarms (spurious
or not). The wrong management of alarms may cause a derivation of the
expected result of the fly which is to travel safely from airport A to airport B.

Analysis supported by the description of the allocation of
responsibility
The analysis of the description of the allocation of responsibility provides
support for the identification of the actor who has been at the root cause of an
unwanted or unexpected outcome [6].

The output of the allocation of responsibilities consists in a list of both
all expected and actual outcomes when an activity is performed and identi-
fication of functions and tasks that can cause a deviation of these outcomes.
The comparison between actual outcomes and expected outcomes makes it
possible to identify these deviations (that could be errors on the user side or
failures on the system side).

4.2.5 Allocation of Authority

Whereas Authority is considered as a concept that has to be analysed at
design time, the contributions that we have found do not explicitly support the
systematic analysis of allocation of authority. Flemisch et al. [18] as well as
Miller and Parasuraman [32] proposed a conceptual framework that highlight
the importance of analysing authority at design time. Boy [8] proposed a
conceptual model to support the analysis of authority sharing amongst several
humans and systems. Gombolay et al. [21] considers that the identification of
“the right to make decisions” has to be done explicitly through allocation of
authority. Cummings and Bruni [11] proposed to extend Parasuraman infor-
mation processing model by adding a decision making component. However,
frameworks for analysing authority are abstract which makes them not useful
for describing the activity at the task level.
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We define Allocation of Authority as the identification of who can initiate
tasks or functions and who plans future tasks or functions that the human(s)
or system(s) will perform. For example, in civil aircraft cockpits, the pilot
monitoring can cancel an alarm if she judges it spurious. The pilot monitoring
expresses her authority by planning the system next task on suppressing
alarm. Another example in automated cars is that the system can initiate
a control transition of the driving task if it judges that the human drives
hazardously. The system expresses its authority by initiating a Control Tran-
sition (defined in sub-section 2.1.3) and planning the human next task on
supervision.

Analysis supported by the description of the allocation of
authority
The description of the allocation of authority provides support for the identi-
fication of the allocation of control transition. It makes it possible to identify
who can intervene in or interrupt the tasks (or functions) of the human or
of the system. The description of who can initiate or plan a task in addition
to the description of who can plan the tasks of the other entities (e.g. give
orders) and the allocation of tasks and functions provides support for the
definition of the relationship between the entities. For example, if the system
selects actions to perform (i.e. authority by planning future actions) and
implement them, and that the human can intervene during the execution
of these system functions (i.e. initiate a control transition), the relationship
between the entities is named “supervisory control” as defined in [17].

The output of the identification of the allocation of authority is the
description of what the system(s) and the human(s) can plan (e.g. orders or
decisions), and what functions or tasks they can initiate.

4.3 Qualitative Analysis of SAE J3016 Levels of Driving
Automation with A-RCRAFT

This section presents the results of the qualitative analysis of the SAE J3016
Recommended Practice “describes motor vehicle driving automation systems
that perform part or all of the dynamic driving task (DDT) on a sustained
basis” [22]. It also defines a taxonomy of six levels of automation ranging
from no automation to full automation of the driving task. In this section, we
present the results from the qualitative analysis of this taxonomy according to
the allocation of resources, control transitions, responsibility, authority, and
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allocation of functions and tasks (A-RCRAFT). We first present the main
target user tasks and system functions that are the focus of the SAE J3016
recommendations. We then decompose each level of automation according
to the A-RCRAFT framework. At last, we highlight the issues that the A-
RCRAFT framework enables to point out.

4.3.1 Scope of the SAE J3016 for the Human Tasks and System
Functions

The main tasks and functions for which the allocation between the human
and the system is specified in the SAE J3016 Recommended Practice [22]
are gathered under the term of Dynamic Driving Task (DDT). This term
gathers the following actions which, depending on the level of automation,
are performed by the human or by the system:

– Lateral vehicle motion control via steering (operational),
– Longitudinal vehicle motion control via acceleration and deceleration

(operational),
– Monitoring the driving environment via object and event detection,

recognition, classification, and response preparation (operational and
tactical),

– Object and event response execution (operational and tactical),
– Manoeuvre planning (tactical),
– Enhancing conspicuity via lighting, signalling and gesturing, etc. (tacti-

cal).

Crosswise to these tasks/functions, the SAE J3016 specifies a set of
tasks/function under the acronym OEDR that stands for Object and Event
Detection and Response.

In addition, the SAE J3016 explicitly label the part of the system that is
concerned to perform the driving tasks. It is named ADS (Automated Driving
System). And the SAE J3016 also explicitly recognize that a driving task may
be limited to an Operational Design Domain (ODD). Examples of ODD are:
fast lane, highway. . .

4.3.2 Decomposition of Levels of Driving Automation According
to A-RCRAFT

Table 4.1 presents the decomposition of the SAE J3016 levels of automa-
tions [22] according to the A-RCRAFT framework. The first and second
columns contain the Levels of Driving Automation (LDA) as defined in
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the SAE J3016, ranging from the lowest automation (Level 0) called “no
driving automation” to the highest automation (Level 5) called “full driving
automation”. The other columns describe the characteristics of each level of
automation, from the information available in the SAE J3016, according to
the A-RCRAFT concepts.

4.3.3 Results of the Analysis and Benefits from Using
A-RCRAFT

The decomposition of the SAE J3016 levels of automation according to the A-
RCRAFT framework enables to explicitly point out ambiguities and missing
data that may be confusing during automation analysis:

– The decomposition according to the Resource concept of A-RCRAFT
(column “Resources” in Table 1) enables to see that across all levels
there are very few descriptions about the information manipulated on the
human side, about the data and devices on the system side and about the
exchange of information and data between the human and the system.
For levels 1 and 2, there is no description of the information that the
user should have access. For these levels, there is no description of the
data that the system should have access to. For levels 3, 4 and 5, two
types of information that should be available to the user are described:
operational readiness of the automation, and request to intervene from
the system. For level 3, additional information should be made avail-
able to the user and is information about performance-relevant system
failures.

– The decomposition according to the Control Transition concept of A-
RCRAFT (column “Control Transition” in Table 1) enables to see that
possible control transitions are explicitly stated for the tasks of lateral
and longitudinal vehicle motion (for levels 1 and 2), as well as for
the entire DDT (for levels 3,4 and 5). There are explicit qualitative
recommendations about the possible time frames for the transitions only
for the disengagement of automation at levels 3, 4 and 5. At level 3,
the transition from the system to the user should be immediate whereas
there may be a delay at levels 4 and 5.

– The decomposition according to the Responsibility concept of A-
RCRAFT (column “Responsibility” in Table 1) enables to see that even
if automation levels are high, the human still has responsibilities. This
decomposition also enables to highlight that between level 3 and 4,
the human has the same responsibilities whereas the human has more
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information about the system state at level 3 than at level 4 (information
about performance relevant system failures at level 3). Having these
additional information, the human may better fulfil her responsibilities.
This is maybe implicitly taken into account in the recommendations
because for level 3 the system has to disengage immediately after
human requested (meaning that the human will for sure make no errors?)
whereas at level 4, the system may delay the human request (meaning
that the human could have taken a wrong decision as s/he does not have
a relevant mental model of the system current state?). In addition, this
decomposition also enables to highlight that the system and the human
have the same responsibilities at level 3. They both are responsible for
monitoring performance-relevant system failures and to act if necessary
(ask for disengagement from the human and ask for human intervention
on the system side).

– The decomposition according to the Authority concept of A-RCRAFT
(column “Authority” in Table 1) enables to see that the system has higher
authority at levels 4 and 5, which seems compliant with the fact that
it is getting more autonomous. At level 3, once the human requested
to disengage automation, the system has to give back immediately the
DDT task whereas for levels 4 and 5, the system can decide or not to
give back the DDT task to the human. For these two upper levels, it is
also interesting to note that even if the system is getting more authority,
it cannot force the human to take back the DDT task (user has authority
for accepting or not a fall back).

– The decomposition according to the Functions and Tasks concept of
A-RCRAFT (column “Functions and Tasks” in Table 1) enables to
explicitly describe the migration of the tasks from the human to the
system. From level 0 to level 2, the lateral and longitudinal motion
control is first assigned to the human and is then progressively assigned
to the system. From level 3 to 5, it is interesting to note that there is few
migration as the entire DDT task can be assigned to the system and to the
human. The few differences in terms of allocation of functions and tasks
concerns the additional task of monitoring performance-relevant failures
for the human at level 3, and the scope of the automation engagement
between levels 3, 4 and level 5 (ODD specific for levels 3, 4 and all
driving conditions for level 5).

Each of the concept is important for the analysis. To analyse the allo-
cation of functions and tasks is not enough to compare different levels of
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automation. For an equivalent allocation of functions and tasks between levels
of automation, the allocation of resources, control transition, responsibility
and authority can be different. For example, we have shown that the decom-
position according to the A-RCRAFT framework enables to highlight that
even if the differences in terms of allocation of functions and tasks are not
high between levels 3, 4 and 5, there are big differences in terms of allocation
of resources, control transition, responsibility and authority, as detailed in the
previous paragraphs (e.g. the authority on the fall back between level 3 and
level 4 and the information available to the user between level 3 and level 4).

4.4 Conclusion

Automation has been studied for many years and even though metaphors [19]
or frameworks [38, 12] have been proposed, the description of the allocation
of resources, control transition, authority, responsibility, and functions and
tasks between the human and the system is not explicitly supported together
in a single framework. This paper has introduced such a framework called
A-RCRAFT. It allows to systematically identify and describe the Allocation
of Function and Tasks, together with the Allocation of Resources, Control
Transition, Authority and Responsibility.

We have shown how A-RCRAFT framework can be fruitfully used to
analyse the SAE J3016 standard. In this context, this analysis has shown
that: (i) the allocation of resources between system and operator is poorly
described, (ii) there are partial description of the timeframe for control
transitions (only for the disengagement of automation), (iii) the human has
the same responsibilities between level 3 and level 4 whereas s/he is being
provided with less information at level 3, (iv) at the highest level of automa-
tion the human still has authority for specific tasks, v) there is a progressive
migration of the driving tasks from the lowest levels to the highest levels.

We have also applied the A-RCRAFT framework to the Parasuraman
et al. LoA [38] (not presented here due to space constraints) demonstrating
its ability to analyse automation aspects in various domains.

Even though we have demonstrated the utility of A-RCRAFT for
analysing levels of automation descriptions, it can be also used for automation
design of partly-autonomous interactive systems. Throughout the design pro-
cess, allocating the five dimensions of RCRAFT must be carefully considered
in order to ensure (i) the allocation of function or task to the best player,
(ii) the allocation of the resources to support adequate workload, (iii) the
careful design of control transitions especially in case of unexpected events,
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(iv) the understanding of authority sharing between the system and the
operator (especially by means of exploitation of control transitions), (v) the
understanding of where the responsibilities lay to comply with regulations
and law.

To support these design activities processes, techniques and tools are
needed. We have extended task modelling notations to support the iden-
tification and representation of authority and responsibility along with the
description of allocation of functions and tasks as well as of allocation of
resources [6]. We plan to work on a tool-supported process to support the
systematic identification and representation of the five dimensions of the
A-RCRAFT framework during automation design.
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Autonomous vehicles (AV) have attracted the attention of the scientific
community for a while. Since autonomous vehicles will directly impact
pedestrian behavior at crosswalks, it is necessary to create communication
protocols between the two that help build trust in the upcoming technology.
We studied the effects of different communication paradigms focusing on the
autonomous vehicle’s communication interface and developed an algorithm
for the analysis of pedestrian behavioral patterns. We describe how we deter-
mined the impact of AV on vulnerable road users (VRUs) in shared spaces by
analyzing specific parameters, such as the pose and distance of the pedestrian.
Results showed that communication with VRUs based on visual cues is not
necessarily required for shared spaces, in which informal traffic rules apply.

5.1 Introduction

Thanks to the advances of technology and development teams, both industrial
and academic, the field of intelligent transport systems (ITS) has grown expo-
nentially in the last decade. Within the field of intelligent vehicles, (AV) have
attracted particular interest within the research community. Further, AV can
be defined as robots capable of performing actions without the intervention of
humans [1]. In most cases these actions are based on driving from one point
A to another point B. In a controlled environment without any other road
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user, the implementation of driving from A to B would only require creating
control algorithms. However, the ultimate goal of AV is to be able to travel
in populated environments where there are both non autonomous vehicles
and vulnerable road users such as pedestrians or cyclists (or users that are not
protected by a vehicle, nor wear any protective artifacts, i.e. helmet and which
are exposed to different external and weather conditions [2]). Therefore, the
algorithms behind AV need to make sure that the intentions of all road users
are understood by all agents in the environment so that the appropriate action
is executed in each case.

In conventional situations in which vehicles are operated by humans,
pedestrians assume that drivers have no intention of colliding with each other
[3] and drivers assume that pedestrians perceive the danger posed by the
vehicle and act accordingly. Even so, there are cases where drivers interact
with pedestrians transmitting visual or auditory signals to indicate to the
pedestrians whether they can cross or not.

In line with this, there are several studies that focus on determining
pedestrian behavior patterns at pedestrian crossings with manually operated
vehicles. An example is the work developed by the authors of [4], which
sought to determine the parameters that affect pedestrians at crosswalks
from the perspective of both pedestrian and driver. Results showed that the
main factor that affects pedestrian behavior is the distance between them
and the vehicle, a finding which was corroborated by the results presented
in [5]. In another approach, the authors in [6] studied pedestrian behavior by
assessing the location of the vehicle and measuring the frequency at which the
pedestrian diverted their gaze from the road to the vehicle. The results showed
a higher frequency among the pedestrians at the edges and the middle of the
crossing.

When referring to AV, patterns regarding complexity and risk need to be
assessed by judging and anticipating the actions of the different actors in
the system and determine the rules for coexistence [7]. Similarly, protocols
must be created that allow interaction between AV and vulnerable road
users (VRUs) to generate a degree of confidence equal to manually driven
vehicles [8].

When it comes to the question of trust in AV versus conventional man-
ually operated vehicles, studies such as [9] and [10] provide an insight into
the exact protocols that exist that help create the foundation of trust between
pedestrians and drivers. In this study, the authors found that pedestrian
comfort increased when there was a reaction to the pedestrian observable in a
change in the way the vehicle was operated (slight speed change, headlights
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flashed) or from the driver themselves (hand wave). In an additional study
from the American League of Cyclists [11] a perceived increase of risk from
AV due to the absence of eye contact was found among pedestrians.

These factors such as perceived response from the vehicle/driver and
eye contact between pedestrian and driver provide an insight into building a
more trustworthy interaction between AV and pedestrians, particularly at the
level of the AV interface. In [12] the behavior of pedestrians exposed to an
autonomous vehicle with two different interfaces was studied in a controlled
environment. The first interface was based on a strip of light-emitting diode
that flashed when the vehicle was going to turn and the second interface
consisted of images projected by the AV onto the road surface in front or
near the vehicle that indicated if the vehicle was going to turn, accelerate or
decelerate. In this work they concluded that for the studied vehicle maneuver
(turning), the images helped the pedestrian to decide whether to cross or not,
but they did not find any difference in the level of confidence, acceptance and
the perceived AV intelligence between the two types of interfaces.

In the same line of research several interfaces that indicated to the
pedestrian whether they could cross or not were compared in [13]. The work
concluded that behavioral patterns depended mainly on the distance between
vehicles and pedestrians. Several other similar experiments have been made
to evaluate more advanced communication protocols and interfaces [14],
such as artificial eyes that followed pedestrians [15] or implicit forms of
communication such as motion patterns of the vehicle [16]. Furthermore, the
authors in [17] studied not only different communication interfaces, but also
the effects that vehicle size and interface display timing had on the reaction
of pedestrians.

Although these studies showed the advantages of using a communication
interface between pedestrians and AVs, there are studies that demonstrated
that interaction interfaces were not instrumental in a pedestrian’s decision to
cross. Moreover, the authors of [18] and [19] state that the reaction of pedes-
trians depend more on the distance between the vehicle and the pedestrian
than on the type of interface presented by the AV.

All of the studies mentioned earlier investigated the reaction of pedes-
trians to different interfaces in different ways. However, most of them were
based on qualitative data, simulations, or OZ paradigms in which subjects
in the experiment believed that the autonomy was real although the vehicle
was operated by a hidden human driver. Although the study of interaction
interfaces between pedestrians and AV is ongoing and extensive, the number
of studies using actual AV in real situations is quite limited.
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The study, classification and, in some cases, prediction of the actions
taken by pedestrians is a widely researched subject in ITS. There are studies
such as those of [20], [21], and [22] that attempt to classify the actions of
pedestrians in video sequences by using neural networks or Markov’s Hidden
Models. In other works the vehicle crossing situation is modeled as a game
where both vehicle and pedestrian are players whose goal is to cross first
without colliding with the other player [23].

Although all of these studies present interesting results regarding pedes-
trian behavior detection in crosswalks, most of them limit their focus to
the performance of vehicle control maneuvers in the event of the pedestrian
crossing in front of the AV, and/or lack validation in real situations.

To extend the knowledge in the field, in this work we seek to analyze the
reaction of pedestrians to an approaching autonomous vehicle without having
being informed about an experiment taking place. In doing so, we focus not
only on the design and execution of experiments to determine the reaction
of pedestrians, but also on the implementation of the most appropriate algo-
rithms to obtain relevant pedestrian behavior patterns in real, novel situations.
We seek to develop not only an experimental base with which we can analyze
pedestrians, but also to develop an analysis framework that can be used in
different experimental situations.

We focus on behavior patterns from the pedestrians that are most exposed
to the vehicles (are very close and/or directly in front) and therefore more at
risk. To this end, we investigate if communication from the side of the AV
affects pedestrian crossing behavior and formulate the following hypothesis:

H0 : There is no relationship between the measured pedestrian crossing
behavior and driverless vehicle communication signals.

To this end experiments were conducted in spaces that were shared by
VRUs and vehicles without traffic lights, road markings, or signs that indicate
the right-of-way such that cooperative action is required. This scenario is
applicable for cases such as last mile automatic delivery robots [24].

The following sections extend the publications in [25] and [24] and
contribute to the current research with the description of the algorithm for
performing the pedestrian analysis in Section 5.3.

5.2 Field Test Description

In our study we seek to obtain pedestrian behavioral patterns with regard
to AV that are equipped with communication interfaces to interact with
pedestrians. Behavioral patterns are deduced from the pedestrian’s body pose
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at the moment of crossing. In this way, we can classify the intention of
pedestrians to cross or not. The pedestrian’s body pose is determined based
on the approach described in [25], which we describe in detail in this chapter.

To conduct the experiments we used the autonomous vehicle iCab devel-
oped by the Intelligent Systems Laboratory (LSI) from the Universidad Car-
los III in Madrid, which is equipped with perception and control sensors and
operates without the need of a human driver [26]. In addition to the sensors,
the platform has an integrated touch screen that acts as a main communication
interface for surrounding pedestrians. The interface displays a message to
indicate whether a nearby pedestrian has been detected or not. This message
consists of an image which was developed as a node in the Robot Operating
System (ROS) framework using C++ as its programming language [27].

The vehicle drove autonomously through the central courtyard toward
an intersection that is frequently used by students of the university and
local residents of the community, since it connects two main streets. The
experiments were carried out for two days.

To analyze behavioral patterns we estimated body and head pose of the
pedestrians, the relative distance to the vehicle, vehicle speed, and the time
to collision (TTC) while the AV was moving. The data required for this
analysis was acquired by the sensors of the AV, which detected obstacles that
represented a potential future collision by taking into account the rotation
angle of iCab. This information was then sent as a Boolean value through
ROS to the interface node, which then displayed an image corresponding to
the value.

The acceptance and usability of two different visual paradigms (depicted
in Figure 5.1) was evaluated with this method. They are described as follows.

• Baseline: No image was shown.
• Red/Green Color: Based on conventional traffic signs, red indicated

stop/do not cross and green walk/cross.
• Open/Close Eyes: These images were designed to indicate to pedestri-

ans whether they had been “seen” (detected) or not.

Over the course of two days we recorded interactions between 135 pedes-
trians and the vehicle. In order to avoid influencing pedestrian behavior and to
emulate normal traffic situations, pedestrians were not made aware of the data
collection. Although the vehicle was driving autonomously, there was still an
external safety control that allowed the vehicle to be stopped in emergency
cases where there was a high probability of collision with pedestrians.
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Figure 5.1 Images displayed on the communication interface. (a) Open/closed eyes. (b)
Green/red color [27].

Figure 5.2 Example crossing situation where (a) corresponds to the vehicle displaying the
open eyes image to pedestrians and (b) the closed eyes image.
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Figure 5.3 Architecture of the analyzing algorithm, inputs being left image, right image,
intrinsic information of stereo camera, and vehicle speed. Each module corresponds to a
different algorithm used to extract the behavior information of pedestrians.

5.3 Analyzing Algorithm

The study was based on two fundamental parts, the first being the performing
of experiments to evaluate the impact of the proposed interfaces on pedestrian
behavior. The second part consisted of the design of an algorithm capable
of analyzing the interactions so that an automatic analysis of pedestrian
reactions could be carried out. To this end we relied on the algorithms
previously proposed in [25].

The implemented algorithm used the camera and the speed of the
autonomous vehicle to be able to estimate the pose of the pedestrians in the
corresponding real coordinates and obtain their position. With this informa-
tion the behavior was classified into two main categories: crossing or not
crossing. The main architecture of this algorithm is depicted in Figure 5.3.

5.3.1 Pedestrian Detection and Pose Estimation

Pedestrian detection and pose estimation was performed using the OpenPose
library developed by the Carnegie Mellon University’s Perceptual Comput-
ing Lab and published in [28] and [29]. This library uses a convolutional,
feedback-based neuronal network that creates heatmaps of people’s pose key-
points. Moreover, the Part Affinity Fields (PAFs) network obtains a feature
representation that preserves the location and orientation of the limbs of the
poses. With the PAFs, the library is able to connect the keypoints to obtain an
optimal detection of the pose of a person limbs.

With this method it is possible to obtain up to 25 keypoints of the
pedestrian pose. These keypoints can be individually extracted according
to the pedestrians in a scenario, then used to calculate a Region of Interest
(ROI) that is represented by the bounding box of a particular pedestrian in
the camera image. Accordingly, we define the upper left corner of this box
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(x0,y0), width (w) and height (h) as

x0 = min(xki) (5.1)

y0 = min(yki) (5.2)

w = max(xki)−min(xki) (5.3)

h = max(yki)−min(yki) (5.4)

where xki is the x coordinate of the keypoint ki, yki the y coordinate in the
image and ki, the i the keypoint of the person’s pose where i ∈ [0, 24].

Although OpenPose allows for a largely accurate estimation of pose
keypoints in an image, there are cases in which the network identifies the
incorrect pose in areas where there are no pedestrians, or where a pose has
too few keypoints or is proportionally not likely to be a walking human.
We filtered the results for these errors, discarding poses with less than 20
keypoints or those detections whose bounding boxes width was greater than
the height (not likely to be a human pose). This process enabled us to obtain
more precise pose readings.

5.3.2 Distance Estimation via Stereo Cameras

To obtain the distance between pedestrians and the autonomous vehicle, the
stereo camera of the vehicle was used to calculate the depth information
of the image. This type of camera extracts two images of the environment,
similar to human eyes, which are separated by a given distance. With these
two images it is possible to obtain the disparity image of the environment,
which is computed internally by the vehicle using the algorithms of [30].

In order to effectively calculate the depth information of the environment,
it is necessary to calibrate the camera so that the images can be rectified.
This calibration allows the computation of the camera’s intrinsic parameters
such as the focal length (f ), the base pixels (c′x,c′y), and the distance between
the cameras (B). Having a rectified image, the disparity and the intrinsic
parameters of the camera, the real coordinates of the pedestrian are

X3D =
(x− c′x)B
d(x, y)

(5.5)

Y3D =
(y − c′y)B
d(x, y)

(5.6)

Z3D =
fB

d(x, y)
(5.7)
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Figure 5.4 Orientation of the (x,y,z) relative distance information from AV shown by the
axis in the image.

where (X3D, Y3D, Z3D) are a pedestrian’s relative 3D coordinates to the
vehicle, following the convention that is shown in Figure 5.4. The represen-
tation d(x, y) is the disparity value on pixel (x, y). For simplification of the
algorithm, the system was already calibrated before the experiments were
performed. Finally, to obtain the position of a pedestrian relative to a vehicle,
the 3D coordinates of the pose keypoints are averaged.

It should be noted that at this point, we also filter out and remove
detections whose depth Z3D is greater than 15 m. At such a distance, the
pose keypoints often present errors, in addition to the fact that for the use
case, pedestrians located outside of this range are of no interest, as the vehicle
is not an impediment for crossing.

5.3.3 Pedestrian tracking with DeepSort

Unlike in the previous study [25], the tracking algorithm used in this work
relied on [31], which is an extension of the Simple Online and Realtime
Tracking (SORT) algorithm [32]. In this algorithm a Kalman filter with a
state of eight variables is used to predict the location of the bounding box in
the next frame from the motion patterns of the detections.
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Having a prediction of a pedestrian’s position in the following frame and
the detections in that frame, the problem arises of matching the predictions
to detections, where it is necessary to estimate which tracking belongs to
a detection. For this purpose, the authors of DeepSort [33] used the square
distance of Mahalanobis, which takes into account the covariance of the
distributions, thus allowing a measurement of the distance between them.

At the same time, DeepSort proposes another distance that, together with
Mahalanobis, allows the calculation of the relationship between tracks and
detections. This second metric is obtained by computing appearance features
for the track and the detection and calculating the cosine of the angle between
both vectors [34]. The final metric is calculated as follows

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (5.8)

where ci,j is the metric proposed in DeepSort, λ a hyperparameter to associate
the cost of the appearance distance d(2)(i, j), and the distance between distri-
butions d(1)(i, j). The appearance features, on the other hand, are obtained
using a Convolutional Neuronal Network (CNN) and were trained on a
re-identification dataset.

Having the metric between the track and the detection, the Hungarian
algorithm is used to make the final match between them. In our case, the
detections are captured using OpenPose, unlike DeepSort developers who
used a custom neuronal network to detect pedestrians. Using OpenPose
detections as an input for DeepSort allow us to track pedestrian with also
their pose, maintaining an identification number for each pedestrian through
the frames of videos.

5.3.4 Face Detection

To determine whether or not the pedestrian has noticed the autonomous
vehicle, we implemented a face detection module by relying on the Haar-
Cascade classifier developed by [35], which is based on the determination of
the contrast between adjacent features using defined kernels. These features
take into account attributes of the face where a defined contrast exists, such
as the mouth area and eye area. In this way, pedestrian face representation is
the result of using different kernels from different areas of the image.

Haar-Cascade classifies the image by implementing a level detection in
different regions of the image. In other words, the classifier works in cascade
looking for areas that represent the nose, eyes, cheeks, etc. In the event that



5.3 Analyzing Algorithm 93

an initial attempt bears no results, the classifier discards the area and proceeds
with another.

We used the classifier provided by the OpenCV library, which is optimally
trained to detect frontal faces. In the context of our study, a frontal face
corresponds to pedestrians at least having the vehicle in their field of view.

Although the classifier detects the faces of people watching the vehicle,
it also obtained false positives, which were filtered using the points of the
OpenPose head pose to remove all face detections that did not have the head
pose point.

5.3.5 Velocity

With respect to the speed of the vehicle, the iCab AV has an optical encoder
that senses the speed of the wheels, which along with the physical dimen-
sions of the vehicle, allows for a calculation of the vehicle’s velocity. The
speed of the vehicle was transmitted using a ROS package through the topic
/icab1/velocity absolute to which the algorithm was subscribed.

5.3.6 Classification

As previously mentioned, the pedestrian pose was represented with 25 key-
points, which were classified using a fully connected neuronal network into
“crossing” or “not crossing.” A prediction of the intention of the pedestrian
to cross or not was not part of this work.

The classifier is based on a neural network with eight fully connected
layers, and a binary output layer for whether the pedestrian is walking or not
walking. Since the 25 keypoints obtained from the OpenPose library consist
of the (x, y) coordinates of each keypoint in the image and the probability p
of each point, the network input is a vector (1,75). However, before we can
obtain a classification of the pedestrian pose, we must normalize the pose to
eliminate the bias of the pedestrian’s position in the image. In this case, we
normalize the points in the following way

x̂ki =
xki − x0

w
(5.9)

ŷki =
yki − y0

h
(5.10)

where x̂ki and ŷki are the normalized values of the position (xki , yki) of the
keypoint ki.
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We trained this classifier with the JAAD dataset, which consists of
326 videos of situations where several pedestrians cross while a vehicle is
approaching. The decision to choose this dataset is based on the fact that it
has situations in various scenarios with different weather situations.

Before we could train the classifier, we had to perform a preprocessing
step of the dataset, since in our approach we used the pose keypoints to
determine the action of pedestrians. This preprocessing step consisted on
running OpenPose on the dataset videos to extract and record all pedestrians
pose keypoints with the corresponding dataset action label.

Initially, OpenPose presented errors in the JAAD dataset due to image
quality. In order to obtain precise estimates of pedestrian pose, a filter was
implemented in a script, which, depending on the extracted poses and bound-
ing boxes annotated in the dataset, discarded pedestrians in a given frame. The
filter discarded those poses that presented more than five keypoints beyond
the annotated bounding boxes in each frame. In the case that a pose was
valid, its keypoints were annotated in a csv file, together with the pedestrian’s
action and bounding box. Therefore, each sequence has a csv file associated
with pedestrian annotations, which will be combined in a final csv file to
obtain the labels to train the classifier.

After getting the poses of the JAAD dataset we obtained 11556 poses
from where 5962 are for crossing and 5594 for not. To train the model
we splitted this dataset into 20% so we have 9244 (4768 crossing/4475 not
crossing) poses as training set, and 2310 (1194 crossing/1119) as test set.

The model was trained with a GTX1070 with 200 epochs with a batch
size of 300. The accuracy results from training and testing are illustrated in
Figure 5.5, having the obtained model an accuracy of 98.76 % on the training
set and a 94.59 % on the test set.

5.3.7 Behavior Segmentation

To facilitate communication between all of these algorithms we used ROS.
This allows the interconnection of processes that communicate with each
other through messages using channels called topics. In our case, all the
information recorded by the sensors was encapsulated under ROS, which
in turn synchronizes the messages using headers with time stamps in each
message.

A ROS package was programmed to extract the recorded images by the
stereo camera, the intrinsic parameters information of the camera and the
speed of the vehicle, and communicate the modules explained earlier. The
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Figure 5.5 Result of the training of the model on JAAD Dataset.

estimation of the disparity occurred in a separate package that send these
data to the package.

This all resulted in the estimation of the pedestrian’s pose, their face
detection, their tracking, and their pose classification by obtaining a state S of
each pedestrian, which represented their spacial coordinates, actions, whether
or not they had seen the vehicle and the vehicle’s speed

S = (X3D, Y3D, Z3D, o, a, v) (5.11)

where X3D, Y3D, Z3D are the coordinates calculated section 5.3.2, o being
the information of whether or not the pedestrian observed the vehicle, a the
information of whether or not the pedestrian is walking, and v the speed of
the vehicle.

With this state it is possible to determine at any time from the video
whether the pedestrian is crossing or not. The action of the pedestrian is
initially recorded. Then if the pedestrian is walking, their position with
regards to the vehicle determines if a potential collision could occur. In the
case the pedestrian is walking, it is resolved that the pedestrian is crossing. If,
however, the pedestrian is stopped outside the driving path of the vehicle, it
is determined that the pedestrian is not crossing. Pedestrians who are walking
but not approaching the path of the vehicle are discarded because they are not
interacting with the vehicle closely enough to be exposed to any risk. In this
way, at all times we know the distance from the pedestrians to the vehicle, the
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collision time, whether the pedestrian saw the vehicle, and if the pedestrian
crossed or stopped. This information is recorded in a csv file.

5.4 Data Analysis

In order to test the hypothesis H0, the data acquired by the algorithms
explained in section 5.3 were analyzed using SPSS.

As described in section 5.2, the experiments were conducted on three
occasions with different methods of interface communication: baseline (no
interface), red/green color interface, and open/closed eyes interface. Based
on this and the pedestrian information acquired from the implemented
algorithms, two main categories were defined:

(1) Pedestrians who visualized the autonomous vehicle and the message and
stopped for a moment.

(2) Pedestrians who visualized the autonomous vehicle and the message and
continued without apparent change.

In order to test the categorical variables related to the interface shown
to the pedestrians, the Pearson χ2 test was performed. Subsequently, with
the data of the distance and collision time between the vehicle and the
pedestrians, the unpaired t-test was performed to determine if there was a
statistical relationship between these parameters and the interfaces shown to
pedestrians.

On the basis of the fact that visual contact plays an important role in
unmarked intersections, where the presence of such facilitates cooperative
actions while the evasion of visual contact is a way to dominate the other
in an interaction [36], [37]; data from the pedestrians who did not visualize
the vehicle was also analyzed. Specifically, the average distance and the
TTC at which these pedestrians crossed were calculated and compared with
the values obtained from the pedestrians who did visualize the autonomous
vehicle. The unpaired t-test was also applied to determine if there was a
difference in the behavior of these two groups of the pedestrians.

5.5 Results

5.5.1 Algorithm Result

We tested the reliability of the depth information obtained by the stereo
camera. For this purpose we compared the pedestrian position estimated by
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Table 5.1 Pedestrian behavior depending on the system display condition
Range Pedestrians RMSE
0 to 5 m 20 0.17 m

5 a 10 m 20 0.12 m

10 a 15 m 20 0.22 m

the algorithm with the information of the laser that was in the AV. To do this
we compute the root mean square error (RMSE) between the information of
both sensors by extracting the distance of 60 random pedestrians divided into
three groups. The results obtained are depicted in Table 5.1.

With regards to the assessment of the algorithm used to analyze the
behavior of the pedestrians, the individual outputs of each module were
evaluated frame by frame.

Results related to the estimation of the pose and the detection of the
pedestrians using OpenPose, showed a correct detection of 86.58% of the
pedestrians that took part in the experiments. From the 13.42% of errors
obtained by OpenPose, 10.43% were due to the fact that the pedestrians
were in groups far away from the autonomous vehicle. This causes the
library for the resolution of the camera to generate erroneous detections of
the pedestrians, associating erroneous extremities or generating non-uniform
poses.

These results improved when calculating the relative position of the
pedestrians with respect to the autonomous vehicle. In this case, the detec-
tions whose distance was greater than 15 m were discarded, obtaining
a pedestrian detection of 94.76%. This is taking into account that the
pedestrians of interest are those relatively close to and in front of the vehicle.

Results regarding the reliability of the depth information obtained by the
stereo camera were obtained by comparing the pedestrian position estimated
by the algorithm with the information of the laser that was in the AV. To
do this we computed the root mean square error (RMSE) between the infor-
mation of both sensors by extracting the distance of 60 random pedestrians
divided into three groups. The results obtained are shown in Table 5.1.

As can be seen, the RMSE for both the Z and X coordinates do not
exceed 1 m distance for the three groups, thereby indicating that the use of
the stereo camera and the distance calculation algorithm allow for an accurate
estimation of the relative position of pedestrians to the autonomous vehicle.

Regarding the implementation of DeepSort, we obtained a tracking of
80.98% of the pedestrians in the different videos. In 19.02% of cases, the
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Figure 5.6 Resulting images of each module of the analyzing algorithm. The first row
from the top of the image corresponds to the pose and detections obtained with OpenPose.
The second row corresponds to the filtered detections taking into account the distance to
pedestrians. The third row corresponds to the tracking where the numbers denote the ID of
each pedestrian in each frame. The fourth row corresponds to the classification: yellow for
pedestrian ID, green for pedestrians that are walking, and red for pedestrians that are stopped.

algorithm lost the pedestrian identification number either because it was
identified with another pedestrian or because a new one was assigned since it
could not get a match for a pedestrian. Despite the errors obtained by Deep-
Sort, it facilitated the re-identification of the pedestrians along the frames.
Error cases were solved by manually noting the cases where the algorithm
was wrong and correcting the IDs manually.

Finally, results from the pedestrian pose classification showed an accuracy
of 78.67% for all video recordings. These results were due to the fact that the
dataset used to generate the neuronal network presented several errors when
implementing OpenPose on it. These errors happened because of the quality
of the extracted image and the lack of temporal context of the images. In
spite of this, the classification allowed us to determine if the pedestrian had
crossed in all the cases, since it also takes into account the position of the
pedestrians along the entire sequence. The analysis algorithm could therefore
classify with an accuracy of 89.34%, whether the pedestrians crossed or not.
The individual results of each module are depicted in Figure 5.6, where each
row shows images of the individual output of each module.
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Table 5.2 Pedestrian behavior depending on the used interface
Baseline Green Color Open Eyes Red Color Closed Eyes

Walking 17 9 11 25 21

Stand 3 2 1 1 2
χ2 test (α =0.05)

Baseline vs. Baseline vs. Baseline vs.
Green Color Open Eyes Red Color

(1, N = 31) p (1, N = 32) p (1, N = 46) p

1.99 0.158 0.49 0.484 1.77 0.183
Green Color vs. Green Color vs. Red Color vs.

Open Eyes Red Color Closed Eyes
(1, N = 23) p (1, N = 27) p (1, N = 49) p

0.49 0.484 2.13 0.144 0.50 0.480
Open Eyes vs. Open Eyes vs. Baseline vs. Green Color vs.

Red Color Closed Eyes Closed Eyes Closed Eyes
(1, N = 38) p (1, N = 35) p (1, N = 43) p (1, N = 34) p

0.33 0.57 0.01 0.974 0.41 0.522 0.65 0.420

Table 5.3 Pedestrian distance to the vehicle as well as the TTC at the moment in which they
were crossing depending on the type of display showed

Metric Baseline Red/Green Color Opened/Closed Eyes
Mean SD Mean SD Mean SD

Distance(m) 6.14 3.56 7.38 3.48 6.88 2.76
TTC (s) 7.31 4.64 4.9 6.23 5.10 7.91
t-Test (α =0.05)

Baseline vs. Baseline vs. Red/Green Color vs.
Metric Red/Green Color Opened/Closed Eyes Opened/Closed Eyes

t(92) p t(92) p t(92) p

Distance(m) 1.27 0.20 0.85 0.39 0.67 0.55
TTC (s) 1.51 0.13 1.07 0.28 0.90 0.12

5.5.2 Field Tests Results

Regarding the results from the field test experiments, of the 135 pedestrians
92 (68.17%) looked at the vehicle directly, noticing the message shown on the
screen. The rest of the pedestrians (31.86%) walked along the road without
looking at the vehicle.

Table 5.2 shows the crossing behavior depending on the interface shown.
It presents the results of the Pearson χ2 test for independent samples for each
pair of conditions. The analysis shows that there is no statistically significant
relationship between the people who cross or not and the interface shown.

Results related to the distance to the vehicle/time to collision with
respect to the image displayed by the vehicle are depicted in Table 5.3.
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Table 5.4 Effect of eye contact on interaction with the AV
t-test (α=0.05)
Metric Without Eye Contact Eye Contact t-Test(α = 0.05)

Mean SD Mean SD t(133) p

Distance (m) 6.93 3.28 7.81 3.56 1.41 0.1599
TTC (s) 5.87 6.71 8.93 12.22 1.37 0.1726

Figure 5.7 Pedestrian distance to the vehicle (a) and TTC (b) depending on the used
interface at the moment of crossing.

The relationship between the image displayed and the distance at which the
pedestrians crossed and time to collision was not statistically significant.

Considering these results and the lack of statistical significance in the
relationship between the variables, we compared the number of the pedes-
trians who looked directly at the autonomous vehicle with the number of
those who did not and the TTC and distance to the vehicle. Results from this
analysis are depicted in Table 5.4.
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As it can be observed, the differences were not statistically significant. For
both types of the pedestrians the average distance to cross was similar, with a
higher TTC for the pedestrians who had visual contact with the autonomous
vehicle.

Finally, in Figure 5.7 a bar chart illustrates the distance at which the
pedestrians saw the vehicle and crossed, as well as the TTC in relation to the
interface shown. From these graphs it can be seen that most of the pedestrians
crossed at a distance between 5 and 9 m, in a TTC range of 2 to 8 s.

5.6 Conclusion, Discussion, and Future Work

To begin, it is worth noting that the pedestrians became quickly aware of
the AV and recognized the interface that displayed the messages. This was
confirmed by comments recorded from persons near the vehicle such as “the
car is looking at you” or “wow, this car can see me.”

Considering the particular results of the algorithms used, it can be seen
that the implementation of OpenPose for the detection has a high fidelity;
however, it is necessary to perform processes for filtering the poses due to
errors of estimation by the library. This filtering can be initially related to the
poses, taking into account the number of keypoints that are not null and the
size of the ROI that is calculated with them.

The use of a stereo camera allows to effectively extract the relative
position of the pedestrian with respect to the AV for VRUs less than 15 m
away. This provides reliable pedestrian detection by using the position as
another filtering parameter.

The DeepSort algorithm has a high accuracy in processing the recorded
videos of the experiment. However, it is important to note that the errors
obtained by the algorithm are due to a Kalmann filter that depends on the
movement of the pedestrian, which presents a conflict in images where the
camera moves. So it is necessary to calculate the absolute position of the
pedestrians with regard to the speed of the autonomous vehicle.

Regarding the classification, although the results obtained allow the clas-
sification of the pedestrian poses in most cases, these results can be improved
by using neuronal networks that take into account the temporary information
of the poses, where not only the current pose is considered, but also the poses
of the previous frames. In this way it is not only possible to obtain a more
accurate classification, but also to estimate future actions of the pedestrians
through prediction algorithms.
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The implementation of the modules presented provides a tool to semi-
automatically analyze experimental situations where the pedestrians seek to
cross while a vehicle approaches. This facilitates these kinds of experiments,
since a manual data extraction and processing makes the analysis difficult,
inexact, and tedious. With the approach presented here it is only necessary
to get the images from the stereo camera of the vehicles and their speed to
obtain in a csv file with the actions of the pedestrians.

The results reported regarding the field tests show that the differences
among the proportion of the pedestrians who crossed in front of the AV and
those who stopped did not depend on the displayed information, as they were
not statistically significant. Therefore, we could not reject the null hypothesis.

Furthermore, it was observed that a large number of the pedestrians
crossed when the closed-eye or red-eye message was displayed. This confirms
that that the type of display did not affect the distance at which the pedestrians
crossed or the TTC. This might be due to the settings of the experiment, in
which the vehicle could not exceed a velocity of 5 m/s due to safety reasons.

Since we did not obtain a statistically significant relationship between the
presence or absence of eye contact and the distance and the TTC, we could
not confirm whether eye contact facilitated cooperative actions between the
pedestrian and the vehicle in shared spaces,

During the experiments a large number of distracted pedestrians were
observed, either using the telephone or conversing. For safety reasons, in
many cases where there were distracted pedestrians we had to stop the
vehicle, which caused their curiosity. For this reason there is a large number
of the pedestrians in the data set who noticed the vehicle only when it stopped
suddenly near them.

Finally, from the results presented in Section 5.5, we can conclude that it
is not necessary to implement visual communication signals to interact with
VRUs in shared spaces where conventional traffic rules do not apply. This
confirms the results of [38], [18], and [39] who concluded that information
from communication interfaces are not determinant in defining pedestrian
behavior, the distance and speed of the vehicle being more decisive. There-
fore, future work will explore other types of signals, such as auditory. We will
also use sensors that allow the extraction of the 3D information of a wider
panorama of the environment, to obtain information from not only in front of
the vehicle, but also beside and behind of the AV. With this, we can obtain the
amount of the pedestrians who crossed behind the vehicle, for example.



References 103

Acknowledgment

This work was supported by the Austrian Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK) Endowed
Professorship for Sustainable Transport Logistics 4.0.

References

[1] A. Hussein, F. Garcia, and C. Olaverri-Monreal, “ROS and Unity Based
Framework for Intelligent Vehicles Control and Simulation,” in 2018
IEEE International Conference on Vehicular Electronics and Safety
(ICVES). IEEE, 2018, pp. 1–6.

[2] C. Olaverri-Monreal, M. Pichler, G. Krizek, and S. Naumann, “Shadow
as route quality parameter in a pedestrian-tailored mobile application,”
IEEE Intelligent Transportation Systems Magazine, vol. 8, no. 4, pp.
15–27, 2016.

[3] A. Millard-Ball, “Pedestrians, Autonomous Vehicles, and Cities,” Jour-
nal of Planning Education and Research, vol. 38, no. 1, pp. 6–12, mar
2018. [Online]. Available: http://journals.sagepub.com/doi/10.1177/073
9456X16675674

[4] S. Schmidt and B. Färber, “Pedestrians at the kerb – Recognising the
action intentions of humans,” Transportation Research Part F: Traffic
Psychology and Behaviour, vol. 12, no. 4, pp. 300–310, jul 2009.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1369847809000102

[5] J. A. Oxley, E. Ihsen, B. N. Fildes, J. L. Charlton, and R. H. Day,
“Crossing roads safely: An experimental study of age differences in gap
selection by pedestrians,” Accident Analysis & Prevention, vol. 37, no. 5,
pp. 962–971, sep 2005. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0001457505000795

[6] H. Hamaoka, T. Hagiwara, M. Tada, and K. Munehiro, “A Study on
the behavior of pedestrians when confirming approach of right/left-
turning vehicle while crossing a crosswalk,” IEEE Intelligent Vehicles
Symposium, Proceedings, vol. 10, no. 2011, pp. 99–103, 2013.

[7] A. Allamehzadeh and C. Olaverri-Monreal, “Automatic and manual
driving paradigms: Cost-efficient mobile application for the assessment
of driver inattentiveness and detection of road conditions,” in 2016 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2016, pp. 26–31.

http://journals.sagepub.com/doi/10.1177/0739456X16675674
http://journals.sagepub.com/doi/10.1177/0739456X16675674
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S1369847809000102
https://www.sciencedirect.com/science/article/pii/S0001457505000795
https://www.sciencedirect.com/science/article/pii/S0001457505000795


104 Autonomous Vehicles

[8] A. Hussein, F. Garcia, J. M. Armingol, and C. Olaverri-Monreal,
“P2V and V2P communication for Pedestrian warning on the basis of
Autonomous Vehicles,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC2016). IEEE, 2016, pp. 2034–2039.

[9] T. Lagström and V. M. Lundgren, ” “AVIP-Autonomous vehi-
clesı́nteraction with pedestrians, Chalmers University of Technology.

[10] S. Yang, “Driver behavior impact on pedestrians’ crossing experience in
the conditionally autonomous driving context,” 2017. [Online]. Avail-
able: http://kth.diva-portal.org/smash/record.jsf?pid=diva2{%}3A1169
360{&}dswid=6775

[11] League of American Byciclist, “Autonomous and Connected Vehicles:
Implications for Bicyclists and Pedestrians.”

[12] C. G. Burns, L. Oliveira, P. Thomas, S. Iyer, and S. Birrell, “Pedestrian
decision-making responses to external human-machine interface designs
for autonomous vehicles,” in IEEE Intelligent Vehicles Symposium,
Proceedings, vol. 2019-June. Institute of Electrical and Electronics
Engineers Inc., jun 2019, pp. 70–75.

[13] M. Matthews, G. V. Chowdhary, and E. Kieson, “Intent Communication
between Autonomous Vehicles and Pedestrians,” Tech. Rep. [Online].
Available: https://arxiv.org/pdf/1708.07123.pdf

[14] K. Mahadevan, S. Somanath, and E. Sharlin, “Communicating Aware-
ness and Intent in Autonomous Vehicle-Pedestrian Interaction,” in Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems - CHI ’18. New York, New York, USA: ACM Press, 2018, pp.
1–12. [Online]. Available: http://dl.acm.org/citation.cfm?doid=317357
4.3174003

[15] C.-M. Chang, K. Toda, D. Sakamoto, and T. Igarashi, “Eyes on a Car: an
Interface Design for Communication between an Autonomous Car and
a Pedestrian,” 2017. [Online]. Available: https://doi.org/10.1145/3122
986.3122989

[16] M. Beggiato, C. Witzlack, S. Springer, and J. Krems, “The Right
Moment for Braking as Informal Communication Signal Between Auto-
mated Vehicles and Pedestrians in Crossing Situations,” 2018, pp.
1072–1081. [Online]. Available: http://link.springer.com/10.1007/97
8-3-319-60441-1{ }101

[17] K. de Clercq, A. Dietrich, J. P. Núñez Velasco, J. de Winter, and
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Driving is a complex psychomotor task requiring cognitive, sensory, and
physical resources. However, driving-related resources, such as vision, audi-
tion, cognition, and physical function, diminish with advancing age. Intelli-
gent vehicles could help older populations by compensating for age-related
difficulties. This chapter provides an in-depth review of previous research
related to older driver’s functional changes and the potential of intelligent
vehicles. In this review, we summarize older driver’s functional limitations
that may increase safety risk, and the possibility of compensating for their
limitations through the support of intelligent vehicles. Subsequently, age
differences in the acceptance and effectiveness of intelligent warning systems
are discussed, based on an on-road experimental study. The results revealed
significant age and gender differences, and suggest that it is essential to
assess age and gender differences in the effectiveness and acceptance of
new in-vehicle technologies designed to help older persons avoid unex-
pected adverse effects. The final section briefly recommends human–machine
interface design considerations for older drivers.

6.1 Introduction

As our global population is aging, maintaining road safety is one of the most
serious modern challenges. By 2050, the number of people aged 80 and
older is predicted to triple in the Organisation for Economic Co-operation
and Development (OECD) countries, and a third of the population will
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be older than 65 years [1]. Regev et al. [2] indicated that the youngest
and oldest drivers have much higher crash risk than drivers of other ages.
Among these at-risk age groups, older drivers’ increased risk is associated
with physical vulnerability and functional limitations in cognition, sensory
perception, and physical motor behavior [3, 4]. However, drivers aged over
60 often have high purchasing power; for example, people within this age
group purchased 23% of new passenger cars in the United States [5]. As
such, automotive designers must understand older drivers’ responses to driv-
ing demands and age differences in responses to intelligent vehicles. These
essential factors could help decide the direction of technology development
and policies that may help older drivers compensate for some of their
diminished driving capabilities. This chapter reviews older drivers’ safety
risk and age-related factors that may affect older drivers’ capability, how
intelligent vehicles can compensate for their deficits, the effects of intelligent
warning systems on driver behaviors, and design considerations for older
drivers.

6.2 Age-related Limitations in Driving

Age brings with it many capabilities, such as increased wisdom, experience,
and knowledge. However, limitations in functions that are related to driving,
i.e., vision, audition, cognition, and physical function, also increase in preva-
lence with advancing age [3]. Despite such age-related limitations, not all
older drivers are unsafe because driving judgment improves with experience,
which may compensate for diminished capacity [6]. However, judgment may
fail with severe consequences in situations with very high momentary mental
workload [7, 8]. This section introduces the details of age-related functional
limitations from the perspective of driving.

6.2.1 Vision and Audition

Vision is the primary sense utilized in driving; although the percentage
of driving-related information that is obtained visually has been subject to
debate [10], some researchers have suggested that 90% of such information is
obtained through visual input [9]. Adequate visual acuity and field of vision
are essential for safe driving, but visual impairment becomes significantly
more common with increasing age, as a normal part of the aging process
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Figure 6.1 Pure tone audiogram results by age groups (from [14]).

[3, 11]. Age-related changes in visual function generally begin from 35 to 45
years, and functional loss in the retina and visual nervous system occurs from
55 to 65 years. These changes lead to issues on peripheral vision, nighttime
visual acuity, sensitivity to glare, contrast sensitivity, and color vision [4,12].
Regarding audition, various estimates have suggested approximately 10% of
all middle-aged adults experience significant hearing loss. By age 65, this
percentage increases to more than 50% of all men and 30% of all women.
Usually, younger adults can detect pure tones with frequencies of up to 15,000
Hz, but older adults have difficulty detecting frequencies above 4,000 Hz [13].
Figure 6.1 shows the decreased ability of the older participants to detect audio
frequencies above 2,000 Hz [14].

6.2.2 Cognitive Function

It is common for a driver operating a motor vehicle to engage in many non-
driving tasks, such as talking and texting on a cell phone, and operating
navigational aids and entertainment systems [15]. Thus, the ability to manage
multiple tasks is an essential aspect of safe driving. However, the individual’s
capacity to manage multiple concurrent tasks generally decreases with age
[16, 17]. Older adults generally perform more poorly than younger adults at
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performing multiple concurrent tasks, such as driving while looking for street
signs [13]. Other previous studies have suggested that older drivers are worse
than younger drivers at maintaining speed under dual-task conditions [18,19].
The poorer performance of older drivers when engaged in multiple tasks
maybe caused by their reductions in divided attention, selective attention, and
speed of information processing.

6.2.3 Physical Function

Physical abilities, such as muscle strength, endurance, flexibility, and proprio-
ception, are required to control a vehicle. In general, an older adult may show
between 1.5 and 2 times longer respond time than a younger counterpart. The
movements of older adults tend to be less precise and more variable than
younger adults [13]. Reductions in flexibility, muscle strength, and motor
speed as a result of aging or age-related disease are essential factors that may
decrease driving ability. Reduced neck rotation may decrease the ability of
the driver to turn the head to see relevant stimuli in the periphery, an action
that is necessary for safe driving in complex traffic situations [3]. As shown
in Figure 6.2, [14] characterized the physical response of drivers by age to
different warning sounds. The upper part of the bars represents the accelerator
response time, while the lower part indicates the brake response time. The
average accelerator response time of older drivers was 170 ms longer than
that of drivers in their twenties. In addition to the decreased physical function
among older adults, physical fragility may increase the fatality rate for older
drivers involved in road traffic accidents [20].

6.3 How Can Intelligent Vehicles Help Older Drivers?

Intelligent Vehicles (IVs) could help alleviate some age-related functional
limitations. More specifically, Advanced Driver Assistance Systems (ADAS)
can provide useful assistance to older drivers by reducing the difficulties
resulting from diminished abilities in motion perception, peripheral vision,
and selective attention, and decreased speed of information processing and
decision-making [4,21,22]. The weaknesses of older drivers and the potential
ADAS features to help address their limitations, as proposed by [4], are
summarized in Table 6.1.
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Figure 6.2 Response time on different intensities by age groups (from [14]).

6.4 Intelligent Vehicles and Older Driver

Among the ADAS mentioned earlier, this section introduces the acceptance
and effectiveness of forward collision warning (FCW) and lane departure
warning (LDW). Many researchers have reported that FCW and LDW sys-
tems significantly improve driver safety [23–25]. Concerning older drivers’
acceptance of these systems, [26] showed that older adults are willing to
pay for new in-vehicle devices and rate the assistance system more highly
than do younger drivers. [27] reached the same conclusion based on results
of their simulator-based study of the behavioral effects of an in-car tutoring
system. The older adults (60–75 years old), as well as the younger drivers
(30–45 years old), committed fewer offenses when the system gave feedback
messages. Interestingly, while the older drivers were pleased with the warning
messages, the younger drivers disliked the system. Son et al. [28] investigated
the effects of age on the acceptance and effectiveness of FCW and LDW in
an instrumented vehicle. The research methods and findings are summarized
in this section. Although this chapter focuses on age difference in the use and
utility of IV, it is also important to consider gender differences.
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Table 6.1 Weaknesses, difficulties, and ADAS (adopted from [4])
Category Weakness Driving Difficulties ADAS
Sensory Peripheral Overlooking other road users while BSD1

Changes vision merging or changing lanes

Nighttime Difficulty seeing pedestrians and NV2

visual acuity other objects at night AFS3

Glare Temporary loss of visual information HMI4

sensitivity

Contrast Difficulty reading signs & displays, HMI
sensitivity and estimating depth & speed TSR5

Color Difficulty recognizing similar colors, HMI
vision and reading signs & displays

Motion Difficulty judging the movement of FCW6

perception road users and their approach speed

Hearing Difficulty recognizing high frequency sounds HMI

Cognitive Divided Driving task performance gets worse LDW7

Changes attention when performing multiple tasks HMI

Selective Overlooking traffic signs and signals TSR
attention

Speed of Reaction time increases as the traffic CNS8

processing complexity increases LDW

Conscious Difficulty driving in an unfamiliar CNS
tasks environment LDW

Physical Flexibility Overlooking fellow road users when BSD
Changes head & neck merging or changing lanes

dexterity Difficulty operating on instrument HMI
& strength panels LDW

1BSD: Blind Spot Detection
2NV: Night Vision
3AFS: Adaptive Front-lighting System
4HMI: Human–Machine Interface
5TSR: Traffic Sign Recognition
6FCW: Forward Collision Warning
7LDW: Lane Departure Warning
8CNS: Car Navigation System

6.4.1 Research Methods

Son et al. [28] conducted a between-subjects single-blind experiment, in
which the participants were divided into one group that was supported by
the FCW and LDW, and a second group that did not receive this support.
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All participants were instructed to drive as similarly as possible to their
daily driving style, and no constraints or penalties were used, except that the
participants should drive safely. A total of 52 participants were recruited: 26
younger drivers (25–35 years) and 26 young-old drivers (55–65 years). The
older group was relatively young, in part to maintain driving safety during the
on-road experiments.

6.4.2 Age Differences in the Acceptance of Assistive
Technologies

Son et al. [28] reported that the main effect of age on acceptance of the assis-
tive technologies was not significant for both FCW and LDW. However, there
was an apparent age-related trend in acceptance of the LDW. The young-old
age group reported higher acceptance of the LDW than did younger drivers.
This finding is consistent with the results of previous studies, in which older
drivers rated the assistance system more highly than did younger drivers [26],
and older drivers had a more positive attitude toward the ADAS services than
did younger drivers [29]. The acceptance difference between the FCW and
LDW may have originated from the difference in effectiveness of the ADAS.
The effectiveness differences are discussed in the following section.

6.4.3 Age Differences in Effectiveness of FCW

To analyze the drivers’ behavioral changes in response to the FCW system,
[28] selected three commonly used measures [23, 25]: the average number
of forward collision warnings received (FCWC), the average time headway
(TH) when the TH to the closest in-path vehicle was less than 2.5 s, and
the percentage of the journey during which the participants were closer
than 1.5 s to the closest vehicle (PJ1.5). The effectiveness measures of
the FCW system are summarized in Table 6.2. A mixed ANOVA yielded
a main effect of age (p < 0.05) and a significant interaction between
age and gender (p < 0.05) on PJ1.5. The effect of age was more pro-
nounced in female participants than in males, as shown in Figure 6.3. The
younger participants spent 22.34% of their driving time at headways of less
than 1.5 s, as opposed to 17.02% in the young-old group. The interaction
between gender and FCW assistance was also significant for average TH.
Male drivers maintained higher TH than did female drivers in the FCW-
supported condition. Interestingly, female drivers’ behavior became much
less safe in the FCW-supported condition. As shown in Table 6.2, their
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Table 6.2 Results for the effectiveness of the FCW by age and gender (from [28])
FCW ON FCW OFF

FCWC TH PJ1.5 FCWC TH PJ1.5
(n/min) (s) (%) (n/min) (s) (%)

Age
Younger 0.18 1.36 22.30 0.33 1.35 22.39

(0.39) (0.37) (16.46) (0.81) (0.39) (16.05)
Young-old 0.28 1.41 17.70 0.44 1.39 16.34

(0.76) (0.41) (15.18) (1.33) (0.43) (15.68)
Gender

Male 0.23 1.45 18.41 0.33 1.36 19.72
(0.71) (0.40) (15.19) (1.20) (0.40) (16.34)

Female 0.23 1.31 21.58 0.44 1.38 19.00
(0.48) (0.37) (16.63) (1.10) (0.43) (15.95)

Note: Average with standard deviation in parentheses.

Figure 6.3 Comparison of percent of journey less than 1.5 s by age and gender (from [28]).

Note: Error bars represent the standard error of the mean data.

average time headway decreased by 5.1% to 1.31 s compared with 1.38 s for
the non-supported control group of female drivers. This unexpected driving
behavior among females could have been due to women’s overestimation
of speed with increasing speeds [30]. The FCW system used in this study
generated a warning sound when the TH was shorter than 1.0 s. The low TH
warning criterion may have misled the female drivers to perceive safe TH
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Table 6.3 Results for the effectiveness measures of the LDW by age and gender (from [28])
FCW ON FCW OFF

LDWC (n/min) SDLP (m) LDWC (n/min) SDLP (m)
Age

Younger 1.38(1.62) 0.30(0.11) 1.79(2.33) 0.28(0.11)
Young-old 1.28(1.56) 0.27(0.10) 1.51(2.05) 0.27(0.09)

Gender
Male 1.38(1.82) 0.27(0.11) 2.31(2.64) 0.27(0.09)
Female 1.28(1.32) 0.29(0.10) 1.00(1.36) 0.28(0.10)

Note: Average with standard deviation in parentheses.

as shorter, i.e., below 1.5 s, which remained above the warning criterion. As
this study found significant age and gender differences in the effectiveness
of the FCW, the safety parameters of FCW systems, such as the FCW
threshold, should be set according to age and gender characteristics of the
driver.

6.4.4 Age Differences in Effectiveness of LDW

The average lane departure warning count (LDWC) and the standard devi-
ation of lane position (SDLP) were used to assess the effectiveness of the
LDW [23, 24, 31]. The LDWC represented the number of lane excursions
per minute that were executed without activating a turn signal. The SDLP
was calculated from the 0.1 Hz high-pass filtered lateral position data, after
removing lane changes. A mixed ANOVA indicated that the SDLP was
significantly higher for the younger group (M = 0.29 m, SD = 0.11) than
for the young-old group (M = 0.27 m, SD=0.09; p < 0.05). Although the
overall number of LDW decreased when activating LDW (Table 6.3), the
main effect of the LDW system on the SDLP was not significant. The results
of previous research on the effectiveness of the LDW systems have also been
mixed. Blaschke et al. [24] argued that the LDW systems are effective in
reducing lane deviations. However, [23] reported no significant decrease in
lane deviations, and suggested that the effect of the LDW system on lane
deviation was not notable, unless the driver was performing secondary tasks,
such as manipulating an infotainment system. The present study is consistent
with the results of [23]. In contrast, the current study revealed a significant
main effect of age on the SDLP. The younger drivers showed greater lane
deviation of 0.29 m compared with 0.27 m in the young-old age group. The
age difference in lane deviation could be attributed to the strong correlation
between lane deviation and the amount of time while attention is directed
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Figure 6.4 Comparison of lane departure warning count by age and gender (from [28]).

Note: Error bars represent the standard error of the mean data.

away from the road [32], and the observation that older drivers tend to check
their mirrors less frequently than do younger drivers [33, 34]. The results of
the current study also revealed a significant main effect of gender and a trend
toward an interaction between gender and the LDW support. The female
drivers’ number of warnings significantly increased by 28%, to 1.28 times
per minute, compared with once per minute in females who did not receive
the LDW support (Figure 6.4). This unintended effect could be attributed to
gender differences in confidence in their driving skills. Because women have
lower such confidence than men [35], they were more easily affected by the
LDW warning.

6.5 HMI Design for Older Drivers

6.5.1 Visual HMI Design

As mentioned in Section 1.2.1, older drivers’ visual limitations, such as
decreased contrast sensitivity and changes in color perception, must be
considered in visual HMI design. Regarding lower contrast sensitivity, the
contrast of interfaces must be increased in HMI design to maintain visibility
of information. When choosing a color, it is important to consider the yellow-
ing of the sclera of the eye, which changes color perception. Since blue light
is filtered, blues appear darker. Purple, which is a mixture of red and blue,
maybe perceived by older drivers as red [36]. In contrast, older adults are
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slower to shift attention from one location to another [13]. Thus, older drivers
looked at in-vehicle display for a longer duration and less frequently than do
younger drivers. In circumstances with relatively high visual demand, older
drivers’ mean duration of observing information displays often exceeded
1.6 s, while younger drivers’ duration remained below 1.6 s [32]. Thus,
visual HMI design should present the fewest items possible that must be
searched through to perform a task, and remove extraneous information that
might capture attention, such as scrolling display elements on a car navigation
display.

6.5.2 Audible HMI Design

When designing the audible HMI components for older drivers, it is rec-
ommended to use lower frequency sounds, combining with time-varying
sounds to convey urgency and criticality. It is also useful to provide a louder
option to compensate for older drivers’ diminished ability to perceive higher
frequency sounds. Specifically, [14] suggested that the frequency of safety
warning sounds should be around 3–4 kHz, and the tempo should be around
200 ms. Moreover, the frequency and tempo of other sounds used in cars
should be 1 kHz and 500 ms, respectively, to avoid confusing drivers, since
many older drivers have difficulties distinguishing safety warning sounds
from other general warning sounds.

6.5.3 Multiple-task Design

When younger and older adults are required to perform more than one task
at a time, such as driving and watching route guidance, older adults generally
performed more poorly than their younger counterparts. The magnitude of
the age difference increases with task complexity. However, when tasks are
relatively simple, older adults perform as well as young adults. Thus, when
designing new HMI operations, it is critical to not require the combined
performance of tasks, and to design procedures that are as simple as possible.
Regarding interaction types, [37] indicated that older drivers’ performance is
less affected by cognitive tasks than visual tasks. As a secondary task became
more difficult, greater age differences in driving performance were observed.
However, older drivers’ eye movements and physiological responses were not
significantly different from those of younger drivers. The basis of this result
could be older drivers’ lower awareness of the risks associated with cognitive
distraction. This suggests that drivers are not always aware of the detrimental
effects on their driving performance of engaging in secondary tasks [38] and
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often underestimate the risks involved in performing particular tasks [39].
Thus, interactions among age, non-driving task type, and difficulty should be
carefully considered when adopting new in-vehicle interfaces and assessing
HMI design.

6.6 Conclusions

At the population level, older drivers exhibit a higher fatality rate than
younger persons, which is associated with the diminished functional capacity
of the former. There is increasing concern regarding older drivers’ safety,
given the worldwide aging of populations, and IV could be a potential
solution to the issue of road safety. The analysis of older drivers’ weaknesses
and their relevance to road safety suggested that the ADAS systems could
compensate for older drivers’ limitations. Age differences in the acceptance
and effectiveness of the ADAS were reviewed through the results of an on-
road experiment. Females and younger drivers showed the lowest acceptance
rates, whereas males and young-old drivers were more likely to accept the
ADAS systems. From the perspective of effectiveness, the FCW system
significantly improved the TH safety margin of the male drivers. However, it
also encouraged the TH of the female drivers toward more dangerous driving.
The effectiveness of the LDW system was mixed between genders. The male
drivers improved their lane departure behavior, while the female drivers, who
rated near-lowest acceptance of the system, exhibited the opposite effect. The
results suggest that it is essential to consider age and gender differences in
the effectiveness and the acceptance of new in-vehicle technologies, to avoid
unexpected adverse effects on the driving behaviors of those of particular age
and gender. General recommendations for the HMI design for older drivers
were briefly summarized in terms of the audible and visual interface, and
multiple-task demand.
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Most of the time, a pipeline of Extract-Transform-Load (ETL) processes
composes a model that constitutes the core of new active safety systems
approaches. Nowadays, the inspection of driver behavior during the perfor-
mance of dynamic driving tasks is included in reasoning models to enhance
the ergonomics of active safety systems. Moreover, aspects concerning high
automation level such as Take-Over Request (TOR) requires monitoring
techniques for driving behavior analysis as well as surrounding predic-
tion to determine the driver’s vigilance level. Nonetheless, the integration
into Human-In-the-Loop (HITL) driving simulators to assess new models’
performance in a controlled environment becomes an arduous task.

This paper presents an architecture model to integrate new active safety
systems into the HITL driving simulators, indispensable for the assessment
of complex systems whose inputs come from heterogeneous data sources. A
mediation engine orchestrates the distributed multiagent architecture, gather-
ing data from information providers and feeding the required inputs for all
pipeline components which compose the data fusion based ADAS.

It deployed a support system whose reasoning process merges the driver’s
face orientation and gaze estimation with driving scene analysis in the
STISIM driving simulator. Ten drivers participated in an experimental pro-
cess based on performing a driving task with sudden and unexpected events
to assess the system performance and to measure aspects of human factors.
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7.1 Introduction

Data fusion in active driving safety designing is a crucial factor to achieve
functional human-centered approach that enhance the driving safety and
ergonomics. This imply that the driver’s characteristics, needs, capabilities,
and limitations command over all aspects of vehicle and environmental
design considerations [1]. This is applicable to different improvement and the
well-functioning aspects of support system. First, the mitigation of the driver
information load for driver support features, especially when the vehicle is
equipped with several of them. Second, in vehicles equipped with Automated
Driving Systems (ADS), the driver must supervise the performance of driving
automation system’s engagement to intervene in case of system failure.

Consequently, the monitor must assess several aspects of the drivers’
behaviors according to their chosen role during the performance of dynamic
driving task (DDT). Stanton et al. stated six relevant factors composing
the psychological model which defines the driver’s behavior in relation to
automated systems operation [2], Thus, the quality of the interaction process
initiated through feedback depends on and affects the state of the locus of
control, trust, stress, situation awareness, mental model, mental workload,
and task demands.

Currently, the driver modeling analyzes physical and physiological
aspects to determine signs of deprecated state of the psychological factors
cited above. In cases such as models that assess the driver’s situation aware-
ness, the complexity of the applied technique is transferred to the deployment
in the experimental platform due to the fact that in general, complex models
use information from heterogeneous data sources in relation to both the driver
and the environment.

Most of the time, the models under development are composed of a
mixture of both own- and third-party systems, developed in different plat-
forms and programming languages. Therefore, orchestrating the information
flows that feed the subsystems implies an excessive cost. This paper presents
the ideas and technical concepts for the deployment of models based on
multi-agent architectures that require data fusion techniques. This type of
deployment has the main advantage of flexibility because it allows the deploy-
ment of a specific test to be completely decoupled from the test platform. This
is extremely useful when different experimental processes are being carried
out in a driving simulator.

The main idea of this paper is the proposal of a highly scalable integration
model whose objective is to achieve an experimental platform that is able to
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host the functionality of multiple models, running without mutual exclusion
and maintaining levels of low dependencies between them.

This paper is an extended version of [3] and, it outlines the technical
concepts and insights about the applied designing patterns to deploy a flexible
platform for testing data fusion based active driving systems.

The remainder of the paper is organized as follows: Section 2 provides an
overview of the background and related work; Section 3 explains the integra-
tion model of the proposed architecture; Section 4 describes the experimental
setup process for conducting a driving trial with 10 drivers using a driving
simulator system; Section 5 exposes obtained results; and Section 6 remarks
the conclusions and suggests some future works guidelines.

7.2 Related Work

Data fusion is a crucial aspect of the ergonomics improvement of in-vehicle
safety systems. The development of safety systems that involves the pro-
cess pipelines has been studied in many contexts, including the robustness
enhancement of the environment knowledge, the driver’s aspects prediction
concerning environmental events, and the driver’s inspection to assess the
taking over request process.

The combination of data sources to enhance the environment knowledge
has been studied. Thus, the study conducted in [4] proposed a multiagent
architecture to coordinate the information about area profiling with its traffic
regulation, obstacles, and vehicle speed for implementing support system
features that provide high-level information about specific situations to the
driver. The authors in [5] proposed an ontology-based information map
constructed though the data gathering about all the existent entities, thus
defining a conceptual scene description which allows evaluating the entities’
interaction within a context.

Concerning data fusion of the driver’s physical aspects and environment
information, a study developed in a driving simulation environment proposed
a facial analysis approach based on time and frequency features extraction
from face landmarks combined with vehicle surrounding information for
predicting severe traffic crashes [6]. Other studies build their reasoning model
by the correlation of the driver’s eye gaze and environment events such as the
pedestrian presence to determine the driver’s attentiveness [7, 8]. Addition-
ally, prediction of driver’s intentions is a relevant research area which involves
data fusion. In [9], a cloud-evolving system is applied to determine the
driver’s actions by the analysis of driving controls and the vehicle dynamics.
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The study [10] exposes a probabilistic model which includes the driver’s gaze,
vehicle dynamics and controls to predict the driver’s behavior directly related
with the lane changing maneuver. Moreover, several studies combine the
driver’s physical and physiological aspects to evaluate the driver’s wellness.
For instance, fuzzy Bayesian networks have been applied to determine the
drowsiness by the analysis of variations of the driver’s eye state, electrocar-
diogram (ECG), photoplethysmography (PPG), the skin temperature, and the
vehicle speed [11].

Currently, the coming of the fourth automation level arouses different per-
spectives to assess the driver’s state during the take-over-request (TOR). Gold
et al. [12] described the driver’s take over process as a sequence of several
stages which transit from recovering the cognitive information process until
acting. In the last studies, the eye gaze movements are used for the driver’s
attention assessment, sustaining the takeover acceptance procedure after the
driver has conducted a non-driving related task [13, 14].

In summary, the work presented in this paper builds on the future perspec-
tives of active driving safety and automation features. The need for solutions
that reduce the integration cost of data-fusion based models in driving simu-
lators used as experimental platform is evident. Further, the model validation
will able to be improved, for instance, conducting simultaneous performance
assessments of different models.

7.3 Deployment Architecture

This section describes the technical details of the proposed integration archi-
tecture for the deployment and testing data-fusion models in simulation
environments. The proposed architecture encloses the main concepts: firstly,
the multiagent paradigm conceptualizes the different models dedicated to
analyzing involved aspects in a dynamic driving task. An agent is a distributed
system node that executes a machine-learning process to fulfill a stage of
a more complex task. Second, a mediation engine (broker) holds the inter-
action between the involved agents and oversees managing and routing the
information flows generated and consumed by all system agents.

Figure 7.1 depicts an overview of the involved agents that compose
monitors concerning the driver and environment according to information
flow directions, whereas the broker establishes the interaction pattern with
all the agents involved in the driver-centered safety feature. The agents are
classified according to the stages which compose the autonomous driving.
The sensoring agents gather the raw data from the driver, the car, and
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Figure 7.1 Integration model of distributed multi-agent system based on mediation engine.

the environment. In the case of human-in-the-loop driving simulators, the
plugged sensors are a physical and emulated devices mixture. The perception
agents enclose the machine learning models that use raw data. The cognition
agents manage knowledge bases that gather the perception information to
assess the DDT performance. Finally, the actuation agents oversee reporting
safety feedbacks to the driver or actuate the vehicle control in case of DDT
fallback.

As Figure 7.1 illustrated above, the broker is a server host that constitutes
the central part of the proposed integration model. The broker leads a Publish-
Subscribe Messaging System as an integration infrastructure, it takes charge
of the communication of all agents deployed, whose common goal is to
provide a safety feature. Therefore, the broker manages the receiving streams
from data providers and feeds the subscribers with the information that they
require at any moment. Figure 7.2 depicts the publish/subscribe mediation
protocol led by the broker. Moreover, it can observe three agent profiles:
producers that only write records to a broker’s specific topic, consumers
that only request records from broker topics, and dual agents that both read
and write broker records. Each topic defines the message identifier for the
producer’s publications, and they are defined for each producer.

The proposed integration model presents several advantages with respect
to monolithic integration architectures whereby point-to-point connections
establish the communication between different subsystems:

– Flexibility. The uncoupled model eliminates the code dependencies,
permitting the agent deployment regardless of its implementation.

– Scalability. The architecture allows the integration of new agents, incor-
porating analysis resources that enrich the driving scene definition, and
maintaining high throughput.
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Figure 7.2 Broker architecture integration pattern.

– Load balancing. The decentralizing and distribution of processes along
different resources stimulate the performance improvement, avoiding
the system overload.

– Support for additional tools. The architecture can also integrate col-
lecting data tools to consolidate data warehouse for training new models
and storing logs for result assessment.

Given the above-mentioned features, the integration architecture allows
creating pipelines for composing the safety feature stages, allowing the cre-
ation of more complex systems with no dependencies between the different
deployed systems.

7.4 Materials and Methods

7.4.1 Materials

Concerning the hardware systems, the STISIM Drive M300WS driving sim-
ulator system [15] with VDANL Drive capability was used. The computing
resources were the desktop computers Intel Core i7-3770 16 GB Ram with
an NVIDIA GeForce GTX 680 graphics card and, Intel Core i7-4790K 16 GB
with an NVIDIA GeForce GTX 960 graphics card, both connected to local area
network. As vision device, Microsoft Kinect v2 sensor was used. Figure 7.3
shows the driving simulation system on execution.

Concerning the software systems, for the implementation and the deploy-
ment of the cognitive layer agents, Java Agent Development Environment
(JADE) was used. Moreover, the cognitive layer was deployed in Apache
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Figure 7.3 Driving simulator system.

Tomcat 7 Application Server, allowing its connectivity via HTTP protocol.
The implementation of agents on driving simulation software was developed
using the STISIM Open Module capability and .NET Framework. The vision
software was implemented using Kinect Development Kit and EmguCV com-
puter vision library in C# programming language. The Scenario Definition
Language (SDL) provided by the STISIM was used for designing the study
cases.

7.4.2 Deployment Details

The architecture deployment on the driving simulation system has been
conducted employing different systems implemented in previous works,
but this time, these systems were implemented as agents involved on the
accomplishment of the functionality requirements of the proposed warning
system.

Figure 7.4 shows the decentralized deployment scheme based on the
proposed integration model. The support system behind this architecture is
integrated by different systems distributed in two computers where each
involved system interacts with the broker to publishing or read different
topics. The system has as objective to warn the driver in the face of occurrence
of five specific cases of use according to their attention over them. In this
case, the analysis of driver’s visual field determined the driver’s attention.
The integration of each agent inside the architecture deployment is specified
as follows.
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Figure 7.4 Decentralized deployment distributed on simulator system (dark gray) and
monitor and reasoning system (light gray).

The agents of the perception and information for the data treatment of the
simulated driving environment were implemented. In this work, LiDAR, Front
Camera were implemented by class model with extraction of the surround-
ing information accordingly with each technology restrictions. Moreover,
the algorithms’ behaviors which use those raw data for characterizing the
environment (Obstacle Detection, Pedestrian Detection and Road Detection)
were simulated.

For driver monitoring, the computer vision software was developed using
Microsoft Kinect V2 sensor. This system acts as an Information Tier agent
(Gaze Estimation), and its role is obtaining of the visual area where the
driver’s attention is focused. Figure 7.5 shows the results of this system,
where the driver’s pupil position detection (green circle) and the visual area
where the driver’s attention is focused (red text) can be observed.

The integrated cognitive model was a rule-based alarm system with com-
munication model based on web services [16]. In Figure 7.4, the cognitive
model is depicted as a substructure of agents where four kinds of agents can
be distinguished:

• The Ontology-Based Knowledge Fusion is the process leaded in charge
of asking the required information to the broker and structuring of
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Figure 7.5 Eye gaze system results: the pupil position (green circle), calibration point (red
point), and gaze area estimation (red text).

heterogeneous data. This agent provides an ontological representation
of all known aspects involved in the performance of the driving task.

• A set of agents that receive the ontology instance have the aim of
identifying the specific cases of use that comprise a driving risk situation
(Running over, Frontal Collision, Pedestrian not Visualized, Lateral
Collision, Rear Collision).

• The identification of each use case activates the Visual Awareness agent
actuation. This kind of agents relates the use case progress with the
driver’s visual perception spread by the Gaze Estimation Agent. Each
Visual Awareness agent is defined as a parametric model that contains
information about where the driver’s attention must focus to avoid the
incident according to the parameters of the risky driving situation.

• The Hazard Deliberator agent receives the signals from the Visual
Awareness agents, in the case of driver’s lack of attention has been
detected. This agent handles a knowledge base about the priority level
of each use case integrated into the system.

This priority level was established arbitrarily according to actors’ weak-
ness involved in the driving scene. In the event of driver’s inattention on at
least two use cases, the Hazard Deliberator agent will take the highest priority
hazard, writing its corresponding alarm code in the alarm topic. Finally, the
actuator is a virtual HCI deployed in the visualization system of the driving
simulator [16]. This agent integrates different feedbacks and it reads the topic
published by the Hazard Deliberator to trigger the appropriate alarm.
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Concerning simulation parameters, the simulation frame rate was set to
60 Hz to make easier the synchronization between distributed agents and to
avoid the bottlenecks in the slower systems.

7.4.3 Driving Trail Designing

In this subsection, the process conducted for performing a driving trial based
on case studies as an evaluation method of the proposed architecture is
described. This process is composed of several steps and it has been made
following a continuous improvement methodology. As explained later, the
cycle of life of this methodology is composed of some activities that can be
summarized as PDCA (plan-do-check-act).

The Plan activity consisted on the specification and the designing of
case studies. As the starting point, the generic definition of some critical
urban traffic situations, such as occluded pedestrians, override risk or frontal
collision risk were considered [4]. However, the case studies specification
requires the definition of concrete scenes in which these critical driving
situations happen and for which the warning ADAS system is necessary.
Table 7.1 summarizes the specification of four specific cases as the result of
an inductive process with other researchers. Each case study is defined later
through its identifier, the location features description, the involved actors,
and the actor’s action that produces the driving hazard.

In the Do activity were established and tested the parameters of case
studies. The primary parameter that should be set was distance with respect to
the driver’s car at which the case study happens to generate a hazardous, but

Table 7.1 Case STUDIES specification
Case Studies Description Scenography
Case 1 Pedestrian occluded by parked cars

crosses the roadway.
Residential areas with narrow streets
or/and commercial areas.

Case 2 Occluded pedestrian by a car which
is waiting for performing a left
turning maneuver crosses the
roadway.

Residential area with a lot of
intersections.

Case 3 Absent-minded pedestrian crosses
the roadway from the left or right
sidewalk.

At any urban area location.

Case 4 Parked car merges into traffic
improperly.

High volume of traffic (i.e.,
commercial areas and midtown)
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surmountable situation. For validating the correct outcome of the designed
study cases, each one of them was tested individually on the driving
simulation system.

The Check activity consisted on the assessment of the designed sce-
narios on the driving simulator system. For the evaluation of the driver’s
behavior on the designed scenarios, some persons had to face the driving
challenge. The evaluation with a small group of drivers revealed an aspect
of the driver’s attention for this experiment. Most of the drivers reflected an
excess of concentration when they drove in the simulator system, affecting
the experiment progress negatively. As mentioned earlier, the alarm system
based on the proposed architecture evaluates the driver’s perception toward a
specific hazard. Consequently, a drivers’ excess of concentration avoids the
correct assessment of the system.

At the Act activity were devised a plan for solving the underlying issue
of this experiment. As a result of this process, it mandated the need for
introducing a mechanism in the designed scenarios for dispersing the driver’s
concentration enough to test the alarm system in a divided attention way.
Hence, for correcting this issue, some divided attention events where included
in the driving scenarios. The challenge consists in that, during the driving
task, the driver must press the corresponding button from the dashboard when
a visual and sound notification appears.

Experimental Setup

Totally, 10 men and women with ages from 21 to 32 (24.6 ± 3.13), with
driving experience of more than 2 years and, between 6000 and 15000
km/year, performed the driving trial. The experiment consists of two sessions
performed on separate days.

At the first session, the dated participants give information for the study
about their driving skills. Then, a driving task of around 5 minutes is
performed by the participant as adaption period to the driving simulator
system. After that, each driver performed the driving task in the designed
scenario which includes the study cases and the divided attention challenge.
Finally, for collecting information about the user experience, the participants
answered a brief questionnaire about how they perceived their reaction time.

At the second session, with the implemented alarm system activated, each
participant faced with the driving challenge in the other designed scenario.
This scenario contains the equal number of situations with respect to the first
session scenario. However, driving situations happen in distinct locations and
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urban scenes. Finally, the participant answered a brief questionnaire about the
experience with the alarm system.

7.5 Results

For assessing the proposed architecture, in the experimental process was
collected qualitative and quantitative information about its performance.

The qualitative information was obtained from the questionnaires to
gather aspects only that are appreciated by the drivers. Table 7.2(a) shows a
comparison between information about the driver’s reaction time appreciation
in the study cases 2 and 3, in absence and presence of the warning system. In
this table we can notice that all the drivers could not react with time against
these study cases in the absence of the warning system. The study cases 2
and 3 were selected because they are the critical cases in which the driver’s
inattention can have the most tragic consequences. In the presence of the
warning system, the 95% of the answers reflect the impression of reacting
either just in time or with time against both study cases.

Table 7.2(b) shows the results of drivers’ system evaluation, having as
qualitative measures the system utility and the distraction level generated by
the system. In this table we can observe that the 80% of the drivers assess
the system usability between 4 and 5. About the distraction produced by the
system, the 40% of the drivers felt that had been disturbed by the warning
system during the driving task performance. The reason is that the tested
system does not consider the use case progress when it is identified and
whether the driver has overcome it or not.

The quantitative information obtained by objective factors in the face of
occurrence of all the study cases is explained later. Figure 7.6 shows the
comparative bar-plot with the accident rate happened both in the absence and
presence of the warning system, respectively. The subscripts here represent
the event occurrences of the same sort of study case. It can be observed the
reduction of the number of accidents in the study cases denoted as Case 2,
Case 31, Case 41 and Case 42. About the study cases in which the number
of accidents increased with alarm system (Case11, Case12, and Case33), the
drivers’ mental overload could be affected negatively during the driving in the
second scenario because they dealt with the driving task, the shared attention,
and understanding of the alarm system at the same time. Also, the positioning
of these events at the end of the scenario and the previous factor explained
earlier suggest the apparition of tiredness signs due to the performance of
three simultaneous tasks for 5 minutes.



7.5 Results 137

Table 7.2 Qualitative metrics as result of driver questionnaires (a) Reaction time apprecia-
tion for study cases 2 and 3 (b) Overall active safety system evaluation.

(a)
Without System With System

Reaction Time Appreciation Reaction Time Appreciation
Case Study No Time Just in Time With Time No Time Just in Time With Time
Case 2 60% 40% 0% 0% 50% 50%
Case 3 30% 70% 0% 10% 50% 40%

(b)
Value

Qualitative Measure 1 2 3 4 5
Utility 0% 0% 20% 50% 30%
Distracting 20% 30% 10% 40% 0%

Figure 7.6 Global results in terms of number of accidents.

Figure 7.7 shows a comparative box-plot between the reaction time
experimented by the drivers in absence and presence of the warning system
based on the proposed architecture. The reaction time was measured from the
event that was activated until the driver reacted with a specific action on the
driving controls, pressing the brake pedal most of the times. In this plot we
can notice the reduction of the reaction time at most times in terms of average
and dispersion. For the case study denoted as Case 31, we can observe an
increase of the measures, although the number of accidents for this case is
mainly mitigated. Therefore, this result reflects an early warning report by
the system before the events have been triggered.
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Figure 7.7 Comparative of reaction time measure along the study cases.

Figure 7.8 Comparative global accidents rate regarding its precedent incident case.

To evaluate the driving trials designing, information has been extracted
about the dependency between the consecutive events. Thus, Figure 7.8
shows in general terms how the driver is affected in having to cope up with the
event. As it can be observed, there is a slight difference between the different
posibilities. Figure 7.9 shows the elapsed time between consecutive events
regarding the casuistry about what happened. In general, the driving scenario
with the alarm system has a lower elapsed time in most of the cases and, for
the No-Incident/No-Incident case, even though it has greater elapsed time, the
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Figure 7.9 Comparative box-plot of obtained time between the consecutive events regarding
its precedent event.

global statistics shows a higher numbers of incidents than the driving scenario
conducted without the alarm system.

7.6 Discussion

Data fusion is a crucial aspect in the designing of active safety systems, and it
joins the present and the future perspectives of human-centered approaches.
However, on driving simulator environments, the deployment of model based
on fusion data is an arduous task.

In this work has been designed a decoupled architecture oriented to data
fusion in which intervene the multiagent systems and Publish-Subscribe Mes-
saging System. As a proof of concept, active safety system whose application
gathers information both from the driver’s monitor and from environment
to determine the driver’s attention was deployed on a decentralized basis. A
driving trail was conducted for measuring the driver’s reaction time and their
driving experience, both with and without the deployed support system.

The integration model presents a low latency on the communication
across the differently deployed agents. The result of our study evidences the
attenuation of the average and standard deviation of the drivers’ reaction time
in the presented cases of use, justifying both the usefulness of the tested
warning system and the proposed architecture in this work. Regarding the
results obtained from the number of accidents, in some circumstances, the use
cases immediacy makes impossible the driver ’s timely reaction; however, the
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utility of hierarchized ADAS systems leaded by the analysis of the driver’s
visual perception is also reflected.

As limitations of the presented work, the first approach of the integration
architecture was performed by using systems with continuous improvement
cycles of life. For this reason, experimental process was bounded to some
specific cases of use and promising results were obtained.

In future works, it will include different analysis models such as stress
detector and maneuver detection to increase the driver modeling perspective.
In addition, it will study other methods to achieve an improved driving simu-
lator experience in terms of visual distraction. Furthermore, the integration
model will be tested in another driving simulator system to validate the
proposed approach across different platforms.
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Human Factors in Intelligent Vehicles addresses issues related 
to the analysis of human factors in the design and evaluation of 
intelligent vehicles for a wide spectrum of applications and over 
different dimensions. To commemorate the 9th anniversary of 
the IEEE ITS Workshop on Human Factors (http://hfiv.net) some 
recent works of authors active in the automotive human factors 
community have been collected in this book.  

Enclosed here are extended versions of papers and 
tutorials that were presented at the IEEE ITSS Workshop 
on “Human Factors in Intelligent Vehicles” and also 
included is additional deeper analysis along with detailed 
experimental and simulation results. 

The contributors cover autonomous vehicles as well 
as the frameworks for analyzing automation, modelling 
and methods for road users’ interaction such as intelligent 
user interfaces, including brain-computer interfaces and 
simulation and analysis tools related to human factors.
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