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Preface

This book provides a basic, but rather comprehensive introduction to system reli-
ability theory and the main methods used in reliability analyses. System reliability
theory is used in many application areas. Some of these are illustrated in the book
as examples and problems.

Main Changes from the Second Edition

Readers who are familiar with the second edition (Rausand and Høyland 2004)
will find that the third edition is a major update and that most chapters have been
rewritten. The most significant changes include:

• A new Chapter 2 defining the study object and its functions and operating con-
text is included. System modeling by reliability block diagrams is introduced and
the concept of complexity is discussed.

• A new Chapter 3 defining and discussing the concepts of failure and fault,
together with several associated concepts is added. Two failure analysis
techniques are presented.

• New component importance metrics are included.
• The treatment of dependent failures is significantly extended.
• Section 8.8 on complex systems in the second edition is removed from the

chapter on Markov analysis where several new models are added.
• A new Chapter 12 on preventive maintenance is added. This chapter merges

aspects from the previous edition with new models and methods. The presenta-
tion is supplemented by Python scripts that are found on the book compan-
ion site.

• Chapters 11 and 13 in the second edition on life data analysis and Bayesian reli-
ability analysis are totally rewritten. The statistical program system R is exten-
sively used in the presentation.
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• Chapter 12 in the second edition on accelerated testing has been removed, but
parts of the chapter are moved to the chapter on reliability data analysis.

• The end of chapter problems have been revised and new problems are added.
• Most of the appendices are removed. The content is partly integrated in the text

and partly obsolete because of the use of R.
• An author index is provided.

Supplementary Information on the Internet

An immense amount of relevant information is today available on the Internet,
and many of the topics in this book may be found as books, reports, lecture notes,
or slides written by lecturers from many different universities. The quality of this
information is varying and ranging from very high to rather low, the terminology
is often not consistent, and it may sometimes be a challenge to read some of these
Internet resources. The reader is encouraged to search the Internet for alterna-
tive presentations and compare with the book. This way, new ideas and increased
insight may spring up.

With the abundance of free information on the Internet, it is pertinent to ask
whether a traditional book is really needed. We strongly believe that a book may
provide a more coherent knowledge and we have tried to write the book with this
in mind.

Intended Audience

The book is written primarily for engineers and engineering students, and the
examples and applications are related to technical systems. There are three groups
that constitute our primary audience:

• The book was originally written as a textbook for university courses in system
reliability at the Norwegian University of Science and Technology (NTNU) in
Trondheim. This third edition is based on experience gained from use of the
first two editions, at NTNU and many other universities, and also from using
the book in a wide range of short courses for industry.

• The second is to be a guide for engineers and consultants who carry out practical
system reliability analyses of technical systems.

• The third is to be a guide for engineers and consultants in areas where reliability
is an important aspect. Such areas include risk assessment, systems engineering,
maintenance planning and optimization, logistics, warranty engineering and
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management, life cycle costing, quality engineering, and several more. It may
be noted that several of the methods used in artificial intelligence and machine
learning are treated in this book.

Readers should have a basic course in probability theory. If not, you should get
hold of an introductory textbook in probability and statistics to study in parallel
with reading this book. A multitude of relevant lecture notes, slides, and reports
are also available on the Internet. Brief guidance to relevant sources is provided
on the book companion site.

Aims and Delimitation

The book is intended to give a thorough introduction to system reliability. Detailed
objectives and associated delimitations are found in Section 1.8. The study object
may range from a single component up to a rather complicated technical system.
The study object is delimited to items that are mainly based on mechanical, elec-
trical, or electronic technology. An increasing number of modern items have a
lot of embedded software. Functions that earlier were carried out by mechanical
and electromechanical technology are today software-based functions. A family
car that was built when the second edition was published is, for example, very dif-
ferent from a modern car, which is sometimes characterized as a “computer on
wheels.” Software reliability is different from hardware reliability in many ways
and we, therefore, consider pure software reliability to be outside the scope of the
book. Many software-based functions may, however, be treated with the methods
presented.

Many modern systems are getting more and more complex. Chapter 2 introduces
three categories of systems: simple, complicated, and complex systems. Complex
systems are here defined to be systems that do not meet all the requirements of
the Newtonian–Cartesian paradigm and therefore cannot be adequately analyzed
with traditional methods. The complexity theory and the approaches to study com-
plex systems is considered to be outside the scope of the book.

The objective of this book is to help the reader to understand the basic theory of
system reliability and to become familiar with the most commonly used analytical
methods. We have focused on producing reliability results by hand-calculation,
sometimes assisted by simple R and Python programs. When you carry out practi-
cal reliability analyses of large systems, you usually need some special computer
programs, such as fault tree analysis programs and simulation programs. A high
number of programs are available on the market. We do not present any of these
special programs in the book, but supply a list of the main vendors of such
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programs on the book companion site. To use a specific program, you need
to study the user manual. This book should help you understand the content of
such manuals and the sources of uncertainty of the results produced.

A wide range of theories and methods have been developed for system reliabil-
ity analysis. All these cannot be covered in an introductory text. When selecting
material to cover, we have focused on methods that:

• Are commonly used in industry or in other relevant application areas
• Give the analyst insights that increase her understanding of the system (such

that system weaknesses can be identified at an early stage of the analysis)
• Provide the analyst with genuine insight into system behavior
• Can be used for hand-calculation (at least for small systems)
• Can be explained rather easily to, and be understood by nonreliability engineers

and managers.

The authors have mainly been engaged in applications related to the offshore oil
and gas industry and many examples therefore come from this industry. The meth-
ods described and many of the examples are equally suitable for other industries
and application areas.

Authors

The first edition of the book (Høyland and Rausand 1994) was written with joint
efforts from Arnljot Høyland and Marvin Rausand. Arnljot sorrily passed away in
2002. The second edition (Rausand and Høyland 2004), was therefore prepared by
Marvin alone and represented a major update of the first edition. Marvin retired
from his professorship at NTNU in 2015 and when Wiley wanted an updated ver-
sion, he asked Anne Barros to help preparing this third edition. Due to unforeseen
practical constraints, Anne could not devote as much time to this project as she
wanted. Anne’s contribution to this edition is mainly related to Chapters 11 and
12, the end of chapter problems, in addition to reviewing and proposing improve-
ments to other chapters.
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About the Companion Website

System Reliability Theory: Models, Statistical Methods, and Applications is
accompanied by a companion website:

www.wiley.com/go/SystemReliabilityTheory3e

The book companion site is split into two sub-sites hosted by Wiley:

1. An open site that is accessible to all users of the book.
2. An instructor site for instructors/lecturers (i.e. not accessible for students and

general readers of the book).

The two sites contain a number of PDF files. These files have version numbers and
will be updated when required.

In addition to these two sites hosted by Wiley, we will maintain a GitHub site
for the book.
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Open Site

The open site contains:

1. A supplement to the book with comments to chapters, suggestions for further
reading, and general information about the subject area.

2. Slides to the various chapters (made with LaTeX/Beamer).
3. Control questions to each chapter.
4. Errata (list of misprints and minor errors – a more frequently updated errata

list may be found on the book’s GitHub site).

Instructor Site

The instructor site contains:

1. Solutions to end of chapter problems.
2. Suggested lecturing plans (what to cover, which problems to use, etc.).
3. Additional problems with solutions.
4. FAQ list.

GitHub Site

The GitHub site is open to all users – and should have a clear link from the Wiley
sites. The GitHub site will contain:

1. A brief description of the book.
2. Detailed R-scripts related to the book.
3. Detailed Python-scripts related to the book.
4. Errata list (see above under Open site).
5. FAQ related to the book – with our answers/comments.

The URL of the GitHub site is https://github.com/RausandBarros/Reliability
BookScripts

Contact Person

The contact person for the book companion site and the GitHub site is
Anne Barros (anne.barros@centralesupelec.fr)
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Introduction

1.1 What is Reliability?

Nowadays, nearly all of us depend on a wide range of technical products and
services in our everyday life. We expect our electrical appliances, cars, computers,
mobile phones, and so on, to function when we need them, and to be reliable for a
rather long time. We expect services, such as electricity, computer networks, and
transport, to be supplied without disruptions or delays. When a product, machin-
ery, or service fails, the consequences may sometimes be catastrophic. More often,
product flaws and service outages lead to customer dissatisfaction and expenses
for the supplier through warranty costs and product recalls. For many suppliers,
reliability has become a matter of survival.

There is no generally accepted definition of the reliability of a technical product.
The definition and interpretation of the term vary from industry to industry and
from user to user. For the purpose of this book, we choose a rather wide definition
of the reliability of a technical item.

Definition 1.1 (Reliability)
The ability of an item to perform as required in a stated operating context and for
a stated period of time. ◻

The term item is used to designate any technical system, subsystem, or com-
ponent. The items studied in this book are built of hardware parts, and to an
increasing degree, of software. When relevant, the user interface is part of the item,
but operators and other humans are not part of the items studied here.

The reliability concept is illustrated in Figure 1.1. The required performance
is determined by laws and regulations, standards, customer requirements and
expectations, and supplier requirements, and is usually stated in a specification
document, where delimitations of the operating context are stated. As long as

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Figure 1.1 The reliability concept.

the predicted performance at least fulfills the required performance, the item is
reliable – when it is used in the same operating context and for the period of time
stated in the required performance.

By operating context, we mean the environmental conditions the item is used in,
the usage patterns, and the loads it is subjected to, and how the item is serviced
and maintained.

Definition 1.1 is not new and is not created by us. Several authors and organi-
zations have used this, or a very similar definition of reliability, at least since the
1980s. A more thorough discussion of reliability and related concepts is given in
Section 1.3.

1.1.1 Service Reliability

A service is provided by a person, an organization, or a technical item to a person
or a technical item. The entity providing the service is called a service provider, and
the entity receiving the service is called a customer. Services can be provided on
a (i) continuous basis (e.g. electric power, computer networks), (ii) according to
a timetable (e.g. bus, rail, and air transport), or (iii) on demand (e.g. payment by
debit cards).

Many services are provided by a single service provider to a high number of
customers. A customer considers the service to be reliable when she receives the
service (e.g. electric power) with sufficient quality without outages. We define ser-
vice reliability as follows:

Definition 1.2 (Service reliability)
The ability of the service to meet its supply function with the required quality
under stated conditions for a specified period of time. ◻
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Several quantitative service reliability metrics have been defined, but they vary
between the different types of services.

1.1.2 Past and Future Reliability

In our daily language, the term “reliability” is used to describe both past and future
behavior. We may, for example, say that (i) “my previous car was very reliable”
and (ii) “I believe that my new car will be very reliable.” These two statements
are quite different. The first statement is based on experience with the car over a
certain period, whereas the second statement is a prediction of what will happen
in the future. We distinguish them by using two different terms.

Reliability (single word) is always used to describe the future performance of an
item. Because we cannot predict the future with certainty, we need to use prob-
abilistic statements when assessing the reliability.

Achieved reliability is used to describe the item’s past performance, which is
assumed to be known to the analyst. No probabilistic statements are therefore
involved. The achieved reliability is also called observed reliability.

The focus of this book is on reliability and the future performance. The achieved
reliability is most relevant in Chapter 14, where analysis of observed failure data
is discussed.

1.2 The Importance of Reliability

Several producers of technical items have struggled and even collapsed because of
item flaws and failures. To build a reputation for reliability is a long-term project,
but it may take a short time to lose this reputation. The main drivers for high
reliability are listed in Figure 1.2. Over the years, the reliability has improved for

Figure 1.2 Main drivers for
high reliability.
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almost all types of items, but at the same time, customers expect a higher and
higher reliability of the new items they buy. Current customers further expect
that possible failures in the warranty period are rectified without any cost to the
customer. To be attractive in the market, the suppliers have to offer a longer and
longer warranty period.

If items have flaws that affect safety, safety regulations may require all the flawed
items to be recalled for repair or modification. Such recalls are rather frequent
in the car industry, but are also common in many other industries. In addition
to excessive warranty costs and item recalls, flawed items lead to dissatisfied and
nonreturning customers.

1.2.1 Related Applications

Reliability considerations and reliability studies are important inputs to a num-
ber of related applications. Several of these applications have adopted the basic
terminology from reliability. Among the relevant applications are:

Risk analysis. The main steps of a quantitative risk analysis (QRA) are: (i) identifi-
cation and description of potential initiating events that may lead to unwanted
consequences, (ii) identification of the main causes of each initiating event and
quantification of the frequency of the initiating events, and (iii) identification
of the potential consequences of the initiating events and quantification of the
probabilities of each consequence. The three steps are shown in the bow-tie
model in Figure 1.3, where the main methods are indicated. The methods that
are covered in this book are marked with an ∗.

Maintenance planning. Maintenance and reliability are closely interlinked. High-
quality maintenance improves the operational reliability and high reliability
gives few failures and low maintenance cost. The close link is also visible in the
popular approach reliability-centered maintenance (RCM), which is discussed
in Chapter 9.

Quality. Quality management is increasingly focused, stimulated by the ISO
9000 series of standards. The concepts of quality and reliability are closely
connected. Reliability may in some respects be considered to be a quality
characteristic.

Life cycle costing. The life cycle cost (LCC) may be split into three types: (i) capital
expenditure (CAPEX), (ii) operational expenditure (OPEX), and (iii) risk expen-
diture (RISKEX). The main links to reliability are with types (ii) and (iii). The
OPEX is influenced by how regular the function/service is and the cost of main-
tenance. The RISKEX covers the cost related to accidents, system failures, and
insurance. LCC is also called total ownership cost.

Production assurance. Failures in a production system lead to downtime and
reduced production. To assure a regular production, the production system
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must have a high reliability. Production assurance is treated in the international
standard ISO 20815 and discussed in Chapter 6.

Warranty planning. A warranty is a formal commitment to deliver reliable items.
If failures and malfunctions are detected during a specified warranty period,
the supplier has to repair and/or compensate the failure. Unreliable items may
incur a high cost for the supplier.

Systems engineering. Reliability is one of the most important quality attributes of
many technical systems. Reliability assurance is therefore an important topic
during the systems engineering process. This is especially the case within the
nuclear power, the aviation, the aerospace, the car, and the process industries.

Environmental protection. Reliability studies are used to improve the design and
operational availability of many types of environmental protection systems.
Many industries have realized that a main part of the pollution from their plants
is caused by production irregularities and that consequently the reliability of
the plant is an important factor in order to reduce pollution. Environmental
risk analyses are carried out according to the procedure shown in Figure 1.3.

Technology qualification. Many customers require the producer of technical items
to verify that the item satisfies the agreed requirements. The verification is
carried out by following a technology qualification program (TQP) based on
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Figure 1.3 Main steps of risk analysis, with main methods. The methods covered in this
book are marked with ∗.
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Figure 1.4 Reliability as basis of other applications.

analysis and testing. This is especially the case within the aerospace, defense,
and petroleum industries (e.g. see DNV-RP-A203 2011).

Applications related to reliability are illustrated in Figure 1.4.

1.3 Basic Reliability Concepts

The main concept of this book is reliability as defined in Definition 1.1. The aim
of this section is to discuss and clarify this definition and to define related terms,
such as maintainability and maintenance, availability, quality, and dependability.

It is important that all main words are defined in an unambiguous way. We fully
agree with Kaplan (1990) who states: “When the words are used sloppily, concepts
become fuzzy, thinking is muddled, communication is ambiguous, and decisions
and actions are suboptimal.”

1.3.1 Reliability

Definition 1.1 says that reliability expresses “the ability of an item to perform as
required in a stated operating context and for a stated period of time.” We start by
clarifying the main words in this definition.

(1) Reliability is defined by using the word ability, which is not directly measur-
able. A quantitative evaluation of the item’s ability to perform must therefore
be based on one or more metrics, called reliability metrics. Several probabilistic
reliability metrics are defined and discussed in Section 1.4.

(2) Some authors use the word capability instead of ability in the definition of reli-
ability and claim that the term “capability” is more embracing, covering both
ability and capacity. Most dictionaries list ability and capability as synonyms.
We prefer the word “ability” because this is the word most commonly used.
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(3) The statement perform as required means that the item must be able to perform
one or more specified functions according to the performance criteria for these
function(s). Functions and performance criteria are discussed in Section 2.5.

(4) Many items can perform a high number of functions. To assess the reliability
(e.g. of a car), we must specify the required function(s) that are considered.

(5) To be reliable, the item must do more than meet an initial factory performance
or quality specification – it must operate satisfactorily for a specified period of
time in the actual operating context.

(6) The stated period of time may be a delimited time period, such as a mission
time, the time of ownership, and several more.

(7) The time may be measured by many different time concepts, such as calendar
time, time in operation, number of work cycles, and so on. For vehicles, the
time is often measured as the number of kilometers driven. For items that are
not operated continuously in the same mode, a more complicated time concept
may be needed.

Inherent and Actual Reliability
It may be useful to qualify the reliability of an item by adding a word, such as
inherent or actual. The inherent reliability is defined as follows:

Definition 1.3 (Inherent reliability)
The reliability of the item as designed and manufactured, which excludes effects
of operation, environment, and support conditions other than those assumed and
stated in the item requirements and specification. ◻

The inherent reliability is therefore the reliability of a brand new item that will
be used and maintained exactly according to the conditions described in the item
specification document or implicitly assumed. The inherent reliability is some-
times called built reliability or built-in reliability of the item.

The design and development team always attempts to adapt the item to the
actual operating context, but it is difficult, if not impossible, to account for all
the aspects in practical use. The actual reliability may consequently be different
from the inherent reliability that was determined before the item was put into use.
The actual reliability of an item is defined as follows:

Definition 1.4 (Actual reliability)
The reliability of the item in an actual operating context. ◻

The actual reliability is sometimes called operational reliability or functional
reliability.
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Software Reliability
Software reliability is different from hardware reliability. Hardware items gener-
ally deteriorate due to wear or other mechanisms and failures occur as a random
process. Software, on the other hand, does not deteriorate and faults or bugs
remain dormant and undetected until the software is modified or a specific
condition or trigger activates the bug – leading to item failure. Software bugs are
manifestations of mistakes done in specification, design, and/or implementation.
Reliability analysis of a software program is done by checking the code syntax
according to specific rules and by testing (debugging) the software for a variety of
input data. This process is not discussed further in this book. Interested readers
may consult ISO 25010.

1.3.2 Maintainability and Maintenance

Many items have to be maintained to perform as required. Two different concepts
are important, maintainability, and maintenance. Maintainability is a design fea-
ture of the item and indicates how easy it is to get access to the parts that are
to be maintained and how fast a specific maintenance task can be done. Mainte-
nance describes the actual work that is done to maintain an item. Maintainability
is defined as follows:

Definition 1.5 (Maintainability)
The ability of an item, under stated conditions of use, to be retained in, or restored
to, a state in which it can perform as required, when maintenance is performed
under stated conditions and using prescribed procedures and resources. ◻

Maintainability is further discussed in Chapter 9. Maintenance is defined as
follows:

Definition 1.6 (Maintenance)
The combination of all technical and management actions during the life cycle
of an item intended to retain the item in, or restore it to, a state in which it can
perform as required (IEV 192-06-01). ◻

Hardware maintenance is discussed in more detail in Chapters 9 and 12. Soft-
ware maintenance is not treated in this book.

1.3.3 Availability

Availability measures the degree to which an item is able to operate at some
future time t or during a future time interval (t1, t2), and is in this book regarded
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as a reliability metric. The availability of an item depends on the reliability,
recoverability, and maintainability of the item, and also on the maintenance
support performance. Recoverability is the item’s ability to recover from a failure,
without repair. Maintenance support is the resources that are available for
maintenance, such as workshops, qualified personnel, and tools. Availability is
discussed in Chapters 6, 11, and 13.

1.3.4 Quality

The term “quality” is closely related to reliability and is defined as follows:

Definition 1.7 (Quality)
The totality of features and characteristics of a product or service that bear on its
ability to satisfy stated or implied needs. ◻

Quality is sometimes defined as conformity to specifications and a quality defect
is referred to as a nonconformity. According to common usage, quality denotes
the conformity of the item to its specification as manufactured, whereas reliability
denotes its ability to continue to comply with its specification over its useful life.
With this interpretation, reliability may be considered as an extension of quality
into the time domain.

1.3.5 Dependability

Dependability is a more recent concept that embraces the concepts of reliabil-
ity, maintainability, and availability, and in some cases also safety and security.
Dependability has, especially, become known through the important series of stan-
dards IEC 60300 “Dependability management.” The IEV defines dependability as
follows:

Definition 1.8 (Dependability)
The ability (of an item) to perform as and when required (IEV 192-01-01). ◻

Another commonly used definition is “Trustworthiness of a system such that
reliance can justifiably be placed on the service it delivers” (Laprie 1992).

Remark 1.1 (Translating the word “dependability”)
Many languages, such as Norwegian and Chinese, do not have words that can dis-
tinguish reliability and dependability, and reliability and dependability are there-
fore translated to the same word. ◻



�

� �

�

10 1 Introduction

1.3.6 Safety and Security

General safety is outside the scope of this book, and we deal only with the safety
aspects of a specified technical item and define safety as follows:

Definition 1.9 (Safety)
Freedom from unacceptable risk caused by the technical item. ◻

This definition is a rephrasing of definition IEV 351-57-05. The concept safety
is mainly used related to random hazards, whereas the concept security is used
related to deliberate hostile actions. We define security as:

Definition 1.10 (Security)
Dependability with respect to prevention of deliberate hostile actions. ◻

The deliberate hostile action can be a physical attack (e.g. arson, sabotage, and
theft) or a cyberattack. The generic categories of attacks are called threats and the
entity using a threat is called a threat actor, a threat agent, or an adversary. Arson
is therefore a threat, and an arsonist is a threat actor. The threat actor may be a
disgruntled employee, a single criminal, a competitor, a group, or even a country.
When a threat actor attacks, he seeks to exploit some weaknesses of the item. Such
a weakness is called a vulnerability of the item.

Remark 1.2 (Natural threats)
The word “threat” is also used for natural events, such as avalanche, earthquake,
flooding, landslide, lightning, tsunami, and volcano eruption. We may, for
example, say that earthquake is a threat to our item. Threat actors are not involved
for this type of threats. ◻

1.3.7 RAM and RAMS

RAM, as an acronym for reliability, availability, and maintainability, is often used,
for example, in the annual RAM Symposium.1 RAM is sometimes extended to
RAMS where S is added to denote safety and/or security. The RAMS acronym is,
for example, used in the railway standard IEC 62278.

Remark 1.3 (Broad interpretation of reliability)
In this book, the term “reliability” is used quite broadly, rather similar to RAM as
defined above. The same interpretation is used by Birolini (2014). ◻

1 RAM Symposium: www.rams.org.



�

� �

�

1.4 Reliability Metrics 11

1.4 Reliability Metrics

Throughout this book, it is assumed that the time-to-failure and the repair time
of an item are random variables with probability distributions that describe the
future behavior of the item. The future behavior may be evaluated based on one
or more reliability metrics. A reliability metric is a “quantity” that is derived from
the reliability model and is, as such, not directly measurable. When performance
data become available, we may estimate or predict quantitative values for each
reliability metric.

A single reliability metric is not able to tell the whole truth. Sometimes, we
need to use several reliability metrics to get a sufficiently clear picture of how
reliable an item is.

1.4.1 Reliability Metrics for a Technical Item

Common reliability metrics for an item include

(1) The mean time-to-failure (MTTF)
(2) The number of failures per time unit (failure frequency)
(3) The probability that the item does not fail in a time interval (0, t] (survivor

probability)
(4) The probability that the item is able to function at time t (availability at time t)

These and several other reliability metrics are given a mathematical precise
definition in Chapter 5, and are discussed and exemplified in all the subsequent
chapters.

Example 1.1 (Average availability and downtime)
Consider the electricity supply, which is supposed to be available at any time. The
achieved average availability Aav of the supply is quantified as

Aav =
Uptime

Total time
= 1 − Downtime

Total time

If we consider a period of one year, the total time is approximately 8760 hours. The
downtime is the time, during the specified time period, the service is not available.
The relationship between the average availability and the length of the downtime
is illustrated in Table 1.1. ◻
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Table 1.1 Availability and downtime.

90 36.5 d
99 3.65 d
99.9 8.76 h
99.99 52 min
99.999 5 min

1.4.2 Reliability Metrics for a Service

A wide range of service reliability metrics have been defined, but these vary sig-
nificantly between the application areas. The most detailed metrics are available
for electric power supply (e.g. see IEEE Std. 1366 2012).

Example 1.2 (Airline reliability and availability)
Airline passengers are mainly concerned about whether the journey will be safe
and whether the aircraft will take off and land on the scheduled times. The second
concern is, by airlines, expressed by the dispatch reliability, which is defined as the
probability that a scheduled departure takes place within a specified time after
the scheduled departure time. Many airlines use a 15-minutes margin between
actual and scheduled departure time for a flight to be considered as having
departed on time. The achieved dispatch reliability indicator for a (past) period is
reported as the percentage of all departures that departed on time.

Dispatch reliability =
No. of departures on time

No. of departures + cancelations
For technical items, the airlines are mainly using the reliability metrics listed in
Section 1.4.1 ◻

1.5 Approaches to Reliability Analysis

Three main branches of reliability can be distinguished:

• Hardware reliability
• Software reliability
• Human reliability

The present book is concerned with hardware items (existing or in design)
that may or may not have embedded software. Within hardware reliability, two
different approaches may be used: the physical approach and/or the systems
approach.
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1.5.1 The Physical Approach to Reliability

In the physical approach, the strength of a technical item is modeled as a random
variable S. The item is exposed to a load L that is also modeled as a random variable.
The distributions of the strength and the load at a specific time t are shown in
Figure 1.5. A failure will occur as soon as the load is higher than the strength. The
survival probability R of the item is defined as the probability that the strength is
greater than the load,

R = Pr(S > L)

where Pr(A) is the probability of event A.
The load may vary with time and be modeled as a time-dependent variable L(t).

The item may deteriorate with time, due to failure mechanisms, such as, corro-
sion, erosion, and fatigue. The strength of the item will therefore also be a function
of time, S(t). A possible realization of S(t) and L(t) is shown in Figure 1.6. The
time-to-failure T of the item is the (shortest) time until S(t) < L(t),

T = min{t; S(t) < L(t)}

and the survivor probability R(t) of the item may be defined as

R(t) = Pr(T > t)

The physical approach is mainly used for reliability analyses of structural ele-
ments, such as beams and bridges. The approach is therefore often called structural
reliability analysis (Melchers 1999). A structural element, such as a leg on an off-
shore platform, may be exposed to loads from waves, current, and wind. The loads
may come from different directions, and the load must therefore be modeled as a
vector L(t). In the same way, the strength will also depend on the direction and
has to be modeled as a vector S(t). The models and the analysis therefore become
complicated. The physical approach is not pursued further in this book.

1.5.2 Systems Approach to Reliability

By the systems approach, all our information about the operational loads and
the strength of an item is incorporated in its probability distribution function

0

Strength

distribution

Load

distribution

"Failure area"

Figure 1.5 Load and the strength distributions at a specified time t.
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Failure

Time t
0

Strength, S(t)

Load, L(t)

Time to failure, T

Figure 1.6 Possible realization of the load and the strength of an item.

F(t) of the time-to-failure T. No explicit modeling of the loads and the strength
is carried out. Reliability metrics, such as the survivor probability and the mean
time-to-failure are deduced directly from the probability distribution function
F(t). Various approaches can be used to model the reliability of systems of several
components and to include maintenance and replacement of components. When
several components are combined into a system, the analysis is called a system
reliability analysis.

Quantitative results are based on information about the reliability of the com-
ponents. Such information comes from statistical data on past experience with
the same or similar components, laboratory testing, or from expert judgments.
This approach has similarities to actuarial assessments, and the systems approach
to reliability is, therefore, sometimes referred to as an actuarial approach. This
book is concerned with the systems approach to reliability.

System Models
In reliability studies of technical systems, we always have to work with models of
the systems. These models may be graphical (networks of different types) or math-
ematical. A mathematical model is necessary in order to be able to bring in data
and use mathematical and statistical methods to estimate reliability parameters.
For such models, two conflicting interests always apply:

(1) The model should be sufficiently simple to be handled by available mathemat-
ical and statistical methods.

(2) The model should be sufficiently “realistic” such that the deducted results are
of practical relevance.

We should always bear in mind that we are working with an idealized, simplified
model of the system. Furthermore, the results we derive are, strictly speaking, valid
only for the model, and are accordingly only “correct” to the extent that the model
is realistic.

The modeling situation is illustrated in Figure 1.7. Before we start developing
a model, we should clearly understand what type of decision the results from
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Study object

Rest of the world

Generic data

System model
Data 

for the analysis

Results

Input to decisions

&

Decisions

Other inputs

to decisions

Other inputs

to decisions

Simplification

limitations

Relevance?

uncertainty

Relevance?

Figure 1.7 The system reliability analysis process.

our analysis should provide input to, and also the required format of the input to
the decision. To estimate the system reliability from a model, we need input
data. The data will usually come from generic data sources, as discussed in
Chapter 16. The generic data may not be fully relevant for our system and may
have to be adjusted by expert judgment. This is especially the case when we are
introducing new technology. Some data may also come from the specific system.
When establishing the system model, we have to consider the type, amount, and
quality of the available input data. It has limited value to establish a very detailed
model of the system if we cannot find the required input data.

1.6 Reliability Engineering

Engineering deals with the design, building, and use of technical items. Reliability
engineering is an engineering discipline that provides support to the engineering
process. To be successful, reliability engineering must be integrated in the engi-
neering process and the reliability engineer(s) must take full part in the engineer-
ing team.
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Figure 1.8 The phases of a system development project (example).

An item development project is split into a number of phases. The number and
the title of these phases vary from industry to industry and also between companies
in the same industry. A typical set of phases is shown in Figure 1.8.

The phases in Figure 1.8 are arranged as a time axis, but iterations are usually
required, for example, to make a redesign after a defect has been revealed in a
later phase. Each phase is usually divided into stages, and many manufacturers
have procedures describing in detail which reliability analyses to carry out in each
stage together with procedures for the data flow.

Reliability engineering has its most important role in the three first phases in
Figure 1.8, but should be integrated in all phases.

1.6.1 Roles of the Reliability Engineer

The objective of reliability engineering is to identify, analyze, and mitigate failures
and operational problems during all phases of an item’s life cycle. The reliability
engineer has an important role in all these phases. Below, the roles of the relia-
bility engineer are listed briefly in the design and development phases and in the
operational phase.

Roles in Design and Development
A reliability engineer has her most important role in the specification, design, and
development phases of a new item. In these phases, the reliability engineer helps
the development team to

(1) Identify potential failures of suggested component and module concepts such
that failures may be designed out.

(2) Quantify the reliability of suggested system concepts.
(3) Provide input to decisions about modularization, stacking, and system lay-

out.
(4) Make tradeoffs between factors such as cost, functions, performance, relia-

bility, time to market, safety, and security.
(5) Identify weaknesses of the system design such that they can be corrected

before the system goes to manufacturing or to the customers.
(6) Clarify benefits and drawbacks related to redundancy of components and

modules.
(7) Identify causes and effects of possible failure modes.
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(8) Compare the LCC of design alternatives.
(9) Evaluate the cost of suggested warranty policies.

(10) Calculate the reliability of system options as input to choice between these.
(11) Plan and perform reliability acceptance or qualification testing (e.g. in a TQP

framework).

Roles in Normal Operation
The main role of the reliability engineer in normal operation is to track items
causing abnormally high maintenance cost and production losses or service out-
ages, then find ways to reduce these losses or high costs. The role of a reliability
engineer may vary from company to company, but the overall goal is always the
same: reduce maintenance costs as much as possible without interrupting system
operation.

Another main role of the reliability engineer in this phase is to collect, analyze,
and present reliability data. This topic is treated in detail in Chapter 14.

Reliability has to be designed and manufactured into an item. It is too late and
too costly to wait until the item is produced. Reliability considerations must be
integrated into all steps of the development process. This book presents the main
theory and many of the required methods and tools for reliability engineering,
but reliability engineering also requires a number of methods that are outside the
scope of this book. When to carry out an analysis, which data are available at this
stage, and how to update and use the results are central questions in reliability
engineering that are not covered in this book.

1.6.2 Timing of Reliability Studies

Reliability studies are carried out to provide input to decision-making related to
an item. The objectives and the scope of the reliability study are dependent on
the type of decision to be made. Before starting a reliability study, it is essential
to have a clear understanding of the decision and the data needed as input to the
decision-making. A reliability study to provide input to decisions on warranties
may, for example, be quite different from a reliability study to provide input to
decisions on safety barriers in a risk assessment.

It is very important that the reliability studies are planned and executed such
that the required results are available before the decision-making takes place!

1.7 Objectives, Scope, and Delimitations of the Book

The overall objective of this book is to give a thorough introduction to component
and system reliability analysis by the system reliability approach. More detailed
objectives are
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(1) To present and discuss the terminology and the main models used in system
reliability studies.

(2) To present the main analytical methods used in reliability engineering and
management.

(3) To present and discuss basic theory of maintenance and preventive mainte-
nance modeling and illustrate how these can be applied.

(4) To present the main theory and a selection of methods for reliability data anal-
ysis, which is also called survival analysis.

(5) To give an introduction to Bayesian probability and Bayesian data analysis.

The book does not specifically deal with how to engineer and manage a reliable
system. The main topics of the book are connected to how to define and quantify
reliability metrics and to predict the reliability of a system. Our aim is that the book
will be a valuable source as follows:

(a) A textbook for system reliability courses at university level.
(b) A handbook for reliability engineers in industry and consulting companies.
(c) A reference book for scientists and engineers in related disciplines.

The following delimitations apply:

• The study object is built of hardware parts based on mechanical, electrical,
or electronic technology, and may or may not have embedded software and
communication to/from the outside. In most cases, the study object has a
human/operator interface. Operators and third-party personnel are outside the
scope of the book. This means that human reliability, as such, is not covered.
The prime focus of the book is on hardware items.

• The reliability of purely software items is outside the scope of this book.
• Structural reliability issues are not covered in this book.
• The focus of the book is on components and rather simple systems. The theory

and methods presented may also be useful for analyzing complex systems, but
we have to realize that they may not be sufficient.

• Failures caused by deliberate hostile actions is covered rather rudimentarily.
• In the main part of the book, we assume that each item can have only two states,

functioning or failed. Multistate reliability is not covered properly.
• A general introduction to maintenance is not provided. The presentation

is delimited to aspects of maintenance that are directly relevant for system
reliability.

• The book provides a thorough introduction to system reliability analysis, but
does not cover reliability engineering and reliability management in a suffi-
cient way.
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1.8 Trends and Challenges

System reliability has been around since the 1940s. The relevance of reliability has
increased steadily and we clearly see trends and challenges that will increase the
relevance in the years to come. In this section, we briefly mention some of these
trends and challenges. An overall trend is that customers expect new items to be
BETTER, FASTER, and CHEAPER than the items they replace. More specific challenges
include

(1) Items get more and more complicated with a lot of embedded software.
Hardware functions are replaced with software-based functions. Because the
software-based functions are relatively cheap, many items are loaded with
“nice-to-have” function that may also fail.

(2) Most producers meet fierce international competition. To survive, this requires
reduced development costs, shorter time to market, and less time spent on
analyses and testing. New items have to be sufficiently reliable in the first con-
cept version.

(3) Customers require more and more of the items they purchase, related to func-
tions, quality, and reliability. The requirements are often changing rapidly.
Factors influencing item requirements are shown in Figure 1.9.

(4) There is an increasing focus on safety and environmental friendliness and
an increasing risk of item call-back if the items should have safety-related
defects.

(5) New items are increasingly made up of elements from a variety of subcontrac-
tors from many different countries, making it difficult for the main producer
to verify the item reliability.

More

functions

Increased

product liability

Reduced

development costs

Better 

performance

Longer

warranty period

Environmental

friendly

Shorter 

development time

More

safe and secure

Product

requirements

Figure 1.9 Factors that influence item requirements.
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(6) For some items, high-speed operation reduces the tolerance of deviations and
increases the consequences of failures, should they happen.

(7) There is an increasing focus on warranty. Companies have disappeared
because of excessive warranty costs.

(8) An increasing number of items are now connected to a cybernetwork and are
vulnerable to cyberattacks. Current challenges are related to the rapid devel-
opments of smart homes, smart cities, smart transport systems, the Internet
of Things (IoT), cyber-physical systems, systems of systems, and Industry 4.0.
Within few years, we expect to see many more new initiatives of similar nature.
This will make reliability analyses even more challenging.

1.9 Standards and Guidelines

A range of standards and guidelines stating requirements to reliability and safety
have been issued. Any reliability engineer needs to be familiar with the standards
and guidelines that are applicable within her subject areas.

1.10 History of System Reliability

This section highlights some achievements in the history of system reliability start-
ing from the 1930s. We realize that our presentation is biased because we put
too much focus on activities in Europe and in the United States. In addition, we
have included mainly events and books that have influenced our own learning
and understanding of system reliability. The development of reliability theory has
been strongly influenced by a series of accidents and catastrophic failures. Some
of these are mentioned, but you may find that we have missed many important
accidents.

Some of the achievements mentioned in this section may be difficult to compre-
hend fully at this stage, and it may therefore be wise to postpone the reading of
this section until you have delved deeper into the subject.

1930s

At the beginning of the 1930s, Walter Shewhart, Harold F. Dodge, and Harry G.
Romig laid down the theoretical basis for utilizing statistical methods in qual-
ity control of industrial products, but such methods were not used to any great
extent until the beginning of World War II. Products that were composed of a large
number of parts often failed, despite the fact that they were made of individual
high-quality components.
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An important achievement was made in the 1930s by the Swedish professor
Waloddi Weibull (1887–1979) during his studies of the strength of materials.
In Weibull (1939), he laid the basis for one of the most important probability
distributions in reliability theory, the Weibull distribution (Weibull 1951).

1940s

It is often claimed that the first quantitative system reliability assessment can be
attributed to Robert Lusser (1899–1969). He was a German engineer and aircraft
designer who took part in several well-known Messerschmitt and Heinkel designs
during World War II. During the war, a group in Germany was working under
Wernher von Braun developing the V-1 missile, but the 10 first V-1 missiles were
all fiascos. In spite of attempts to provide high-quality parts and careful attention
to details, all the first missiles either exploded on the launching pad or landed “too
soon” (in the English Channel). Robert Lusser was called in as a consultant. His
task was to analyze the missile system, and he quickly derived the product proba-
bility law of series components saying that the reliability of series system is equal to
the product of the reliabilities of the individual components that make up the sys-
tem. If the system comprises a large number of components, the system reliability
may therefore be low, even though the individual components have high reliabil-
ities. A young mathematician, Erich Pieruschka, assisted Wernher von Braun and
may have been as important as Lusser in developing Lusser’s law. Some authors
prefer to refer to Pieruschka’s law instead of Lusser’s law.

An important contribution to the subsequent reliability theory was made by the
Russian mathematician Boris V. Gnedenko (1912–1995) in his 1943 paper “On the
limiting distribution of the maximum term in a random series.”2 In this paper,
Gnedenko provided rigorous proofs and formulated three classes of limit distri-
butions, one of which was the Weibull distribution. Gnedenko was not the first
to define the three limit distribution classes, but the first to provide proofs. The
classes had earlier been defined by Fisher and Tippett (1928). The extreme value
theorem proved by Gnedenko is often referred to as the Fisher–Tippett–Gnedenko
theorem.

In the United States, attempts were made to compensate a low-system reliabil-
ity by improving the quality of the individual components. Better raw materials
and better designs for the products were demanded. A higher system reliability
was obtained, but extensive systematic analysis of the problem was probably not
carried out at that time.

After World War II, the development continued throughout the world as
increasingly more complicated products were produced, composed of an ever-

2 For a discussion of Gnedenko’s contribution, see Smith (1992).
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increasing number of components (e.g. television sets and electronic computers).
With automation, the need for complicated control and safety systems also
became steadily more pressing.

Several attempts to test and quantify the reliability of electronic components
began in the 1940s during World War II. The war activities clearly revealed
that electron (vacuum) tubes were the most failure-prone components in elec-
tronic systems (Denson 1998). Several groups tried to identify ways to improve
the reliability of electronic systems, and it was suggested that the reliability of the
components needed to be verified by testing before full-scale production.

In 1945, Milton A. Miner formulated the important Miner’s rule for fatigue
failures (Miner 1945). A similar rule was suggested by the Swedish engineer Nils
Arvid Palmgren (1890–1971) already in 1924 while studying the life length of
roller bearings. The rule is therefore also called the Palmgren–Miner’s rule and
the Miner–Palmgren’s rule.

In 1949, the Institute of Electrical and Electronic Engineers (IEEE) formed a
professional group on quality control as part of its Institute of Radio Engineers. The
group got more and more focused on reliability issues and changed name several
times. In 1979, the group got its current name, IEEE Reliability Society.

The first guideline on failure modes and effects analysis (FMEA) was issued in
1949 (MIL-P-1629 1949). This guideline was later developed into the military stan-
dard MIL-STD-1629A.

1950s

The Advisory Group on Reliability of Electronic Equipment (AGREE) was estab-
lished in 1950 to survey the field and identify and promote actions that could
provide more reliable electronic equipment. A big step forward was made by the
report AGREE (1957).

The 1950s saw much pioneering work in the reliability discipline. The Weibull
distribution was properly defined (Weibull 1951) and soon became popular and
several US military handbooks were issued. The statistical branch of reliability
theory was strongly enhanced by the paper “Life testing” (Epstein and Sobel 1953)
and some years later by the Kaplan–Meier estimate (Kaplan and Meier 1958).

The UK Atomic Energy Authority (UKAEA) was formed in 1954. It soon got
involved in performing safety and reliability assessments for outside bodies, due
to its competence in such work in the nuclear field.

In the middle of the 1950s, Bell Telephone Laboratories started to develop the
fault tree approach describing the possible causes of an undesired event, using
Boolean algebra.
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1960s

Reliability theory was significantly enhanced during the 1960s and several impor-
tant books were published, among which are Bazovsky (1961), Lloyd and Lipow
(1962), Barlow and Proschan (1965), and Shooman (1968).

In 1960, the first edition of the US military handbook MIL-HDBK-217F was
released, outlining an approach for reliability prediction of electronic equipment.

In 1962, the Bell Telephone Laboratories published a report on the safety of the
launch control system for the Minuteman intercontinental ballistic missile using
fault tree analysis. This report is considered to be the birth of fault tree analysis.
The same year, David R. Cox published his seminal book on renewal theory (Cox
1962).

In 1964, the “Reliability Engineering” handbook was published by Aeronautical
Radio, Incorporated (ARINC). This book (ARINC 1964) was one of the first books
describing engineering aspects of reliability theory. Another book on reliability
engineering was Ireson (1966).

In 1968, the Air Transport Association (ATA) issued a document titled “Main-
tenance Evaluation and Program Development.” This document gave rise to the
approach “maintenance steering group” (MSG). The first version, called MSG-1,
was used to ensure the safety of the new Boeing 747-100 aircraft. The MSG-1 pro-
cess used failure modes, effects, and criticality analysis (FMECA) and a decision
logic to develop scheduled maintenance. MSG-1 was later developed into MSG-2
and MSG-3, which is the current version.

The Reliability Analysis Center (RAC) was established in 1968 as a technical
information center for the US Department of Defense, and soon played a very
important role in the development of reliability theory and practice. The RAC
journal was widely distributed, presenting updated information about new
developments.

The military standard “Reliability program for systems and equipment” was
published in 1969 (MIL-STD-785A 1969).

One of the most influential researchers on reliability theory in the 1960s was
Zygmunt Wilhelm Birnbaum (1903–2000). He introduced a new importance metric
of component reliability (Birnbaum 1969), made a probabilistic version of Miner’s
rule for fatigue life (Birnbaum and Saunders 1968), and made many other signifi-
cant contributions.

1970s

A most important event for reliability in the 1970s was the release of the report
from the Reactor Safety Study in 1975 (NUREG-75/014). The study was made by a
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group of experts lead by professor Norman Rasmussen of MIT. A high number of
important methods were developed as part of – or inspired by – the Reactor Safety
Study.

The US Nuclear Regulatory Commission (NRC) was established the same year
(in 1975) and soon started to issue NRC Regulations, called NUREG.

The nuclear accident at Three Mile Island (TMI) near Harrisburg, PA occurred
in 1979. In light of the recent Reactor Safety Study, it had a great impact of the
development of system reliability theory.

In the early 1970s, several important results on network reliability were devel-
oped in Russia (e.g. see Lomonosov and Polesskii 1971). Many new books on sys-
tem reliability were published. Among these are Green and Bourne (1972), Barlow
and Proschan (1975), and Kapur and Lamberson (1977).

Analysis of reliability and lifetime data grew more important and the new book
Mann et al. (1974) provided help on theory and methods. An even more important
publication in this area was David R. Cox’s paper “Regression models and life tables
(with discussions)” (Cox 1972).

Based on the ideas of the MSG-approach (see 1960s), a new maintenance plan-
ning approach called “reliability-centered maintenance” (RCM) was introduced in
1978 (Nowlan and Heap 1978). The RCM approach was initially developed for the
defense industry, but is today used in many other applications and a high number
of standards and guidelines have been issued.

In Norway, the first major accident in the offshore oil and gas industry occurred
in 1977, the Bravo blowout in the Ekofisk field in the North Sea. This was a
shock for the Norwegian industry and the government. As a consequence of this
accident, a large research program, called “Safety Offshore” was launched by the
Norwegian Research Council. A high number of safety and reliability projects
were sponsored by the oil and gas industry. The first author of this book started
lecturing a course in system reliability at the Norwegian University of Science
and Technology (NTNU) in 1978.

The UKAEA Safety and Reliability Directorate (SRD), established in 1977,
became a very active unit with a strong influence on the development of reliability
theory, especially in Europe.

1980s

The 1980s started with a new journal Reliability Engineering, which had a great
influence on the further development of reliability theory. The first editor of the
journal was Frank R. Farmer (1914–2001), who made significant contributions in
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both risk and reliability theory. The title of the journal was later changed to Relia-
bility Engineering and System Safety.

The Offshore Reliability Data (OREDA) project was initiated in 1981 and the
first OREDA handbook was published in 1984. The same year another important
reliability data handbook, IEEE Std. 500 (1984) also entered the market.

Reliability data analysis became more important, and several books on this topic
were published in the early 1980s, the most influential may be Kalbfleisch and
Prentice (1980), Lawless (1982), Nelson (1982), and Cox and Oakes (1984).

Fault tree analysis got more standardized through the Fault Tree Handbook
that was published by the US NRC in 1981 (NUREG-0492). Bayesian probability
entered into the field of reliability promoted by the book Martz and Waller
(1982).

To strengthen the US semiconductor industry, the organization SEMATECH
was established in 1987. SEMATECH prepared and made available a range of
high-quality reliability guidelines that were studied far beyond the semiconductor
industry.

Several universities established education programs in safety and reliability dur-
ing the 1980s. Most notable were perhaps the programs provided by the Center of
Risk and Reliability at the University of Maryland and the NTNU.

Several catastrophic accidents occurred in the 1980s and clearly showed the
importance of risk and reliability. Among these were the capsizing of the Alexan-
der Kielland offshore platform in 1980, the gas disaster in Bhopal, India in 1984,
the fire and chemical spill at the Sandoz warehouse in Basel, Switzerland in 1986,
the Challenger space shuttle accident in 1986, and the explosion on the offshore
platform Piper Alpha in 1988. Several of these accidents prompted changes in leg-
islation, new requirements to risk and reliability analyses, and initiated a range of
research projects.

After 1990

The developments mentioned above continued and were strengthened in the years
after 1990. The topic of system reliability got more and more popular and a range of
new journals, new books, new education programs, new computer programs, new
organizations, and a variety of reliability conferences emerged. The first edition
of the current book was published in 1994, based on experience from reliability
courses at NTNU.

The industry started to integrate reliability in their system development
processes, often as part of a systems engineering framework. The topics of
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reliability qualification and technology readiness became more and more
important and requirements were integrated in contracts of specialized products.

The first edition of the important standard IEC 61508 “Functional safety of elec-
trical/electronic/programmable electronic safety-related systems” came in 1997
and required producers and users of safety-instrumented systems (SIS) to perform
detailed reliability assessments.

During this period, more and more software has been introduced in almost all
types of systems. Software quality and reliability are now an important part of most
system reliability assessments. More recently, security aspects have also entered
the scene.

The current survey has highlighted some few fragments of the history of
system reliability. A more thorough treatment of the history is given by Coppola
(1984), Denson (1998), and Knight (1991) and National Research Council (2015,
Annex D). A lot of valuable information may also be found by searching the
Internet.

1.11 Problems

1.1 Discuss the main similarities and differences between the concepts of quality
and reliability.

1.2 List some of the services you make use of in your daily life. Which factors
do you consider relevant in order to describe the reliability of each of these
services?

1.3 Section 1.2 lists several application areas that are related to, and use termi-
nology from reliability theory. Can you suggest some more application areas?

1.4 Discuss the main differences between hardware reliability and software reli-
ability. Do you consider the term “software quality” to be more or less rele-
vant than “software reliability”?

1.5 A stakeholder may be defined as a “person or organization that can affect, be
affected by, or perceive themselves to be affected by a decision or activity.”
Choose a specific item/system (e.g. a dangerous installation) and list the
main stakeholders of a system reliability analysis of this item/system.

1.6 Evaluate the maintainability of a modern mobile phone. Can you suggest
any design changes of the phone that will improve its maintainability?
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1.7 List some technical items for which you consider it beneficial to use the phys-
ical (i.e. load-strength) approach to reliability analysis.
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2

The Study Object and its Functions

2.1 Introduction

Our study object is usually a technical system, but can also be a single technical
component. A component is an item that is not broken down into its constituent
parts in a reliability analysis. This is contrary to a technical system, which is always
broken down into its constituent parts, be it subsystems, modules, or components.

This chapter defines, delimits, and classifies the study object. The system
boundary and its operating context are defined. The concepts of system functions
and their performance criteria are defined and discussed, and some simple
approaches to functional modeling and analysis are presented. This is followed by
a brief introduction to the Newtonian–Cartesian paradigm and its implications
for system analysis. Systems are classified as simple, complicated, or complex,
and it is argued why complex systems are outside the scope of this book. The
chapters end with an introduction to system structure modeling by reliability
block diagrams.

2.2 System and System Elements

A (technical) system may be defined as follows:

Definition 2.1 (System)
A set of interrelated elements that are organized to achieve one or more stated
purposes. ◻

The term “system” is derived from the Greek word systema, which means an orga-
nized relationship among functioning items. Aslaksen (2013) considers a system
as the combination of three related sets: (i) a set of elements  , (ii) a set I of

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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System

Subsystem 1

Component 1.1 Component 1.2 Component 2.1 Component 2.2

Subsystem 2

Indenture level 1:

Indenture level 2:

Indenture level 3:

Figure 2.1 System breakdown structure (simplified).

internal interactions between elements, and (iii) a set E of external interactions
between one or more elements and the external world (i.e. interactions that can
be observed from outside the system).

For the purpose of a reliability study, the system elements are usually classi-
fied as subsystems, subsubsystems, and so on, down to the component level. The
system elements may be organized by a system breakdown structure as shown (sim-
plified) in Figure 2.1. The levels of the hierarchy are called indenture levels, where
the first level is called indenture level 1, the next indenture level 2, and so on.1 The
number of levels required depends on the size of the system and the objectives of
the reliability study. The various subsystems may have different numbers of levels.

The lowest level in the system breakdown structure – and in the reliability
study – is called component. A component may itself be a system with many
parts, but is considered a black box in the study. A black box is an element that
is viewed in terms of its inputs and outputs, without concern about its internal
structure and functions. When investigating the causes of a component failure,
we sometimes need to study the states and conditions of the various parts of the
component.

Subsystems are also referred to as modules. In system maintenance, terms such
as maintanable item and least replaceable unit (LRU) are often used. A maintain-
able item is the lowest level in the system hierarchy that is specified for mainte-
nance. A plethora of notions is used in the literature. Among these are the follow-
ing: apparatus, component, element, equipment, instrument, item, module, part,
product, system, and subsystem.

2.2.1 Item

To simplify the notation, the element we are currently studying is referred to as the
item, whether it is a system, a subsystem, or a component. An item is defined as

1 IEV defines indenture level as the “level of subdivision within a system hierarchy” (IEV
192-01-05).
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Definition 2.2 (Item)
An entity that is able to perform at least one function of its own, under speci-
fied operational and environmental conditions and when the required energy and
controls are available. ◻

We use the term item, unless when it is important to stress that we study a system
consisting of subsystems, sub-subsystems, and so on.

2.2.2 Embedded Item

Embedded software is computer software that is written to control the technical
item. An embedded item is a combination of hardware and software that together
form a part of a larger item. An example of an embedded item is a microprocessor
that controls a car engine. An embedded item is designed to run on its own with-
out human intervention, and may be required to respond to events in real time.
Today, we find embedded items in almost all our electric household units, such as
refrigerators, washing machines, and ovens.

2.3 Boundary Conditions

A reliability study is always based on a range of assumptions and boundary
conditions. The most notable is the system boundary that specifies which items
are included in the study object and which are not. All systems are used in some
sort of environment that may influence and be influenced by the system. To
delimit the study object, a system boundary is drawn between the study object
and its environment. The inputs to and outputs from the study object are drawn
up, as shown in Figure 2.2. A slightly more detailed definition of the term system
boundary is

Study object

(with components)

Inputs Outputs

Environment System boundary:
- Physical

- Operational

- Other conditions

Operational conditions

Figure 2.2 A study object (system) and its boundary.
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Definition 2.3 (System boundary)
A system boundary is a boundary that separates the internal components and pro-
cesses of a system from external entities. Internal to its boundary, the system has
some degree of integrity, meaning the parts are working together, and this integrity
gives the system a degree of autonomy. ◻

All assumptions and boundary conditions should be clearly stated in the docu-
mentation of the reliability study. Examples include answers to questions, such as

• What are the objectives of the study?
• What level of detail is required?
• What are the environmental conditions for the system?
• How is the system operated?
• Which operational phases are to be included in the study (e.g. start-up, steady

state, maintenance, and disposal)?
• Which external stresses should be considered (e.g. earthquakes, lightning

strikes, and sabotage)?

2.3.1 Closed and Open Systems

The study object may be a closed or an open system. A closed system may be
defined as follows:

Definition 2.4 (Closed system)
A system where the interface to the environment is static and always according to
the assumptions specified. ◻

In a closed system, the required inputs are always available, and random distur-
bances in the environment that may influence the study object are nonexisting.
Most of the study objects considered in this book are closed systems. An open sys-
tem is defined as follows:

Definition 2.5 (Open system)
A system where disturbances in the environment may influence the study
object and where required system inputs and outputs may fluctuate or even be
blocked. ◻

Open system are generally much more difficult to analyze than closed systems.
Some open systems allow users to manipulate the system structure.
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2.4 Operating Context

Items are generally designed and built for an intended operating context that
should be clearly stated in the item specification and in the user documentation.
The operating context specifies how the item is to be operated and maintained,
limits to inputs, usage, and loads, and also which environmental conditions
the item is supposed to work in and to tolerate. The user manual of a washing
machine may, for example, specify intervals for the voltage and frequency of the
power supply, the pressure and temperature of the water supply, the type and
weight of laundry (e.g. clothes, carpets) put into the machine, the temperature in
the room where the machine is located, and the surface on which the machine is
placed. The operating context of the item is defined as follows:

Definition 2.6 (Operating context)
The environmental and operating conditions under which the item is (or is
expected to be) operating. ◻

In some applications, the concept of operations (CONOPS) document describes the
operating context of the item.

2.5 Functions and Performance Requirements

To be able to identify all potential item failures, the reliability engineer needs to
have a thorough understanding of the various functions of the item and the per-
formance criteria related to each function.

2.5.1 Functions

A function is a duty or an action the item has been designed to perform. A func-
tion requires one or more inputs to provide an output. The function is performed
by technical and other resources and will usually also require some control (e.g.
start signals). A function and its inputs and outputs are shown in Figure 2.3. The
function and its elements are illustrated in Example 2.1.

Example 2.1 (Flashlight)
Consider a simple flashlight. The main function of the flashlight is to produce
light. The required input is electric power coming from a battery. The resource
is the flashlight with battery. The function is controlled by switching on/off the
flashlight. ◻
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Inputs

Resources

Controls

OutputsFunction

A1

Figure 2.3 A function illustrated as
a functional block.

A function may be defined as follows:

Definition 2.7 (Function)
An activity, process, or transformation stated by a verb and a noun that describes
what must be accomplished. ◻

A function is an intended effect of an item and should be described such that each
function has a single definite purpose. It is recommended to give the functions
names that have a declarative structure, and say “what” is to be done rather than
“how.” The functions should preferably be expressed as a statement comprising a
verb plus a noun; for example, provide light, close flow, contain fluid, pump fluid,
and transmit signal. In practice, it is often difficult to specify a function with only
two words, and additional words may need to be added.

2.5.2 Performance Requirements

New products and systems are developed to fulfill a set of requirements. These
requirements are usually written into a requirement document. The requirements
may be based on (i) identified customer needs, (ii) manufacturer’s ideas to make
the product more competitive, and (iii) requirements in standards, laws, and reg-
ulations. The IEV defines the term “requirement” as follows:

Definition 2.8 (Requirement)
Need or expectation that is stated, generally implied or obligatory (IEV
192-01-13). ◻

A performance requirement is a specification of the performance criteria related
to a function. If, for example, the function is “pump water,” a performance
requirement may be that the output of water must be between 100 and 110 l/min.
Some functions may have several performance requirements. Performance
requirements are also referred to as functional requirements or performance
standards.
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2.5.3 Classification of Functions

A complicated item may have a high number of required functions. All functions
are not equally important, and a classification may therefore be an aid for iden-
tification and analysis purposes. One way of classifying functions is as follows:

Essential functions. These are the functions required to fulfill the intended purpose
of the item. The essential functions are simply the reasons for installing or using
the item. The essential function is sometimes reflected in the name of the item.
An essential function of a pump is, for example, to “pump fluid.”

Auxiliary functions. These are the functions that are required to support the essen-
tial functions. The auxiliary functions are usually less obvious than the essential
functions, but may in many cases be as important as the essential functions. Fail-
ure of an auxiliary function may in many cases be more safety-critical than a
failure of an essential function. An auxiliary function of a pump is, for example,
to “contain fluid.”

Protective functions. These functions are intended to protect people, equipment,
and the environment from damage and injury. The protective functions may be
classified as follows:
(a) Safety functions (i.e. to prevent hazardous events and/or to reduce conse-

quences to people, material assets, and the environment)
(b) Security functions (i.e. to prevent vulnerabilities, physical attacks, and

cyberattacks)
(c) Environment functions (e.g. anti-pollution functions)
(d) Hygiene functions (e.g. for items used in food production or in hospitals).

Information functions. These functions cover condition monitoring, various
gauges and alarms, communication monitoring, and so forth.

Interface functions. These functions apply to the interfaces between the item in
question and other items. The interfaces may be active or passive. A passive
interface is, for example, present when the item is a support or a base for
another item.

Superfluous functions. These functions are never used and are often found in elec-
tronic equipment that have a wide range of “nice to have” functions that are not
really necessary. Superfluous functions may further be found in systems that
have been modified several times. Superfluous functions may also be present
when the item has been designed for an operating context that is different from
the actual operating context. In some cases, failure of a superfluous function
may cause failure of other functions.

Some functions may belong to more than one class. For some applications, it may
further be relevant to classify functions as follows:
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(1) Online functions. These functions are operated either continuously or so often
that the user has current knowledge about their status. The termination of an
online function is called an evident or detected failure.

(2) Off-line functions. These functions are used intermittently or so infrequently
that their availability is not known by the user without some special check or
test. Some offline functions are not possible to test without damaging the item.
An example of an offline function is the essential function of the airbag sys-
tem of a car. Many protective functions are offline functions. The termination
of the ability to perform an offline function is called a hidden or undetected
failure.

2.5.4 Functional Modeling and Analysis

The objectives of a functional analysis are to

(1) Identify all the functions of the item.
(2) Identify the functions required in the various operating modes of the item.
(3) Provide a hierarchical decomposition of the item functions (see Section 2.5.5).
(4) Describe how each function is realized and provide the associated perfor-

mance requirements.
(5) Identify the interrelationships between the functions.
(6) Identify interfaces with other systems and with the environment.

Functional analysis is an important step in systems engineering (Blanchard and
Fabrycky 2011), and several analytical techniques have been developed. We briefly
mention two of these techniques: Function trees and SADT / IDEF 0.

2.5.5 Function Trees

For complicated systems, it is sometimes beneficial to illustrate the various
functions as a tree structure called a function tree. A function tree is a hierarchical
functional breakdown structure starting with a system function or a system
mission and illustrating the corresponding necessary functions on lower levels
of indenture. The function tree is created by asking how an already established
function is accomplished. This is repeated until functions on the lowest level
are reached. The diagram may also be developed in the opposite direction by
asking why a function is necessary. This is repeated until functions on the system
level are reached. Function trees may be represented in many different ways. An
example is shown in Figure 2.4.

A lower level function may be required by a number of main functions and may
therefore appear several places in the function tree.
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System function 1

Function 1.1 Function 1.2

Function

1.1.2

Function

1.1.1

Function

1.1.3

Function

1.1.1.1

Function

1.1.2.2

More level 3 functions

More level 4 functions

Function

1.2.1

Function

1.2.2

More level 3 functions

Function

1.2.1.1

Function

1.2.1.2

More level 4 functions

L
ev

el
 o

f 
in

te
n
d
u
re

More level 1 functions

More level 2 functions

Figure 2.4 Function tree (generic).

2.5.6 SADT and IDEF 0

A widely used approach to functional modeling was introduced by Douglas T.
Ross of Sof Tech Inc. in 1973, called the structured analysis and design technique
(SADT). The SADT approach is described, for example, in Lambert et al. (1999)
and Marca and McGowan (2006). In the SADT diagram each functional block is
modeled according to a structure of five main elements, as shown in Figure 2.3

Function. Definition of the function to be performed.
Inputs. The energy, materials, and information necessary to perform the function.
Controls. The controls and other elements that constrain or govern how the func-

tion is carried out.
Resources. The people, systems, facilities, or equipment necessary to carry out the

function.
Outputs. The result of the function. The outputs are sometimes split in two parts;

the wanted outputs from the function, and unwanted outputs.

The output of a functional block may be the input to another functional block,
or may act as a control of another functional block. This way the functional blocks
can be linked to become a functional block diagram. An illustration of an SADT
diagram for subsea oil and gas stimulation is shown in Figure 2.5. The diagram
was developed as part of a student project at NTNU (Ødegaard 2002).

When constructing an SADT model, we use a top-down approach as shown in
Figure 2.6. The top level represents a required system function. The functions nec-
essary to fulfill the system function are established as an SADT diagram at the next
level. Each function on this level is then broken down to lower level functions, and
so on, until the desired level of decomposition has been reached. The hierarchy is
maintained via a numbering system that organizes parent and child diagrams.
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Figure 2.6 Top-down approach
to establish an SADT model.

System

2
1

3

3.2
3.1
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The functional block in Figure 2.3 is also used in the Integrated definition
language (IDEF), which is based on SADT and developed for the US Air Force.
IDEF is divided into several modules. The module for modeling of system
functions is called IDEF 0 (e.g. see U.S. Air Force 1981; U.S. DoD 2001; Marca and
McGowan 2006).

For new systems, SADT and IDEF 0 may be used to define the requirements and
specify the functions and as a basis for suggesting a solution that meets the require-
ments and performs the functions. For existing systems, SADT and IDEF 0 can be
used to analyze the functions the system performs and to record the mechanisms
(means) by which these functions are accomplished.

2.6 System Analysis

The term analysis means to break down – or decompose – a system or problem
into its constituent components in order to get a better understanding of it. In a
system analysis, all the constituent components are studied individually. The word
“analysis” comes from an ancient Greek word that means “breaking up.” To be
able to analyze a system, the system must comply with the Newtonian–Cartesian
paradigm (see box).

2.6.1 Synthesis

A synthesis is an opposite process of an analysis and is concerned with the com-
bination of components and their properties to form a connected whole (i.e. a
system).

In a system reliability study, we usually need to apply both analysis and synthesis
to obtain a sufficient understanding of the system and its reliability.

The processes of system analysis and synthesis are illustrated in Figure 2.7.
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Figure 2.7 System analysis and synthesis.

2.7 Simple, Complicated, and Complex Systems

Most modern books on reliability theory and analysis seem to be concerned with
“complex systems,” but (almost) none of them define what they mean by the term
complex. In our understanding, we may classify a system into one out of three
categories:

Simple systems. A simple system is easy to understand and can be analyzed by
following a defined procedure or algorithm. Most simple systems have a rather
small number of components. Simple systems can generally be modeled by a
series–parallel RBD (see Section 2.8).

The Newtonian–Cartesian Paradigm

A paradigm is a worldview underlying the theories and methodologies of a
scientific subject. For system reliability, the Newtonian–Cartesian paradigm
has been, and still is, the most essential. The basis for this paradigm was
made by the French philosopher and scientist Réne Descartes (1596–1650)
and the English mathematician and physicist Sir Isaac Newton (1642–1726).

The paradigm is based on Newton’s three laws of forces and motion, his
theories on universal gravitation, and the unifying theory that is called Newto-
nian mechanics. Another important basis for the paradigm is Descartes’ theory

(Continued)
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(Continued)

of reductionism and his division between mind and matter, between mental
and physical processes. Reductionism implies that any system (or problem)
can be adequately understood by reducing it, or decomposing it, to a set of
its constituent components and by carefully and individually studying each
component. When all the components on the lowest level have been care-
fully studied, a synthesis process can be started. By combining the knowledge
about the components that feed into a module on the upper, next level, the
paradigm implies that all important properties of this module can be deduced
from the properties of its constituent components. This is then continued until
the system level is reached (see Figure 2.7).

The Newtonian–Cartesian paradigm sees the world as a number of discrete,
unchanging objects in an empty space. These objects interact in a linear, cause
and effect manner. The time is linear and universal and not affected by speed
or gravitation. The system behavior is deterministic, such that a particular
cause leads to a unique effect. The paradigm supports the analysis of sys-
tems with a finite number of (mainly) independent parts that interact in a
well-defined manner with relatively few interconnections.

The Newtonian–Cartesian paradigm is also called the Newtonian paradigm
and the mechanistic paradigm.

The Newtonian–Cartesian paradigm has had an enormous success and
most of our current knowledge about physical systems are based on this
paradigm. Much more information about the Newtonian–Cartesian paradigm
can be found by visiting a good library or searching the Internet.

Complicated systems. A complicated system has a high number of components
with a fair degree of interrelationships and interdependencies between the com-
ponents. By using current knowledge (e.g. by involving subject experts), we are
able to understand the relevant system properties and to analyze it.

Complex systems. In a complex system, the behavior of at least some of the
components or the interactions between them do not comply with the
requirements of the Newtonian–Cartesian paradigm. A complex system cannot
be adequately understood and analyzed by traditional approaches because the
system is something more than a sum of its components.

An emergent property is a system property that cannot be deduced from the
properties of the system components. In many cases, emergent properties lead
to unexpected system behavior that may be dangerous. A system is usually not
designed or built to be complex, but may develop into a complex system through
changes, coupling, and emergence.
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There is a considerable disagreement about how to delimit the concept of emer-
gence. Some authors interpret emergence very widely and say that “properties”
such as reliability, quality, and safety are emergent properties of a system.

Simple and complicated systems can be studied based on the Newtonian–
Cartesian paradigm, whereas complex systems cannot be adequately studied
within this paradigm. A new worldview called the complexity paradigm is
therefore being developed.

All the examples in this book are related to simple systems, but the theory and
methods presented may also be applied to complicated systems and many aspects
of complex systems. Complex systems as such are not studied in this book.

Remark 2.1 (Classical methods ⇒ waste of time?)
Finally, you may wonder if the effort you make to learn the theory and meth-
ods described in this book is a waste of time when your study object is complex.
According to Einstein and Infeld (1938), the development of new theory may be
compared with climbing a mountain. When you have come to a certain height,
you get a better overview, but you may realize that you need another strategy to
reach the summit. To have reached the present height is an achievement that gives
a good understanding of the further climbing efforts. ◻

2.8 System Structure Modeling

An early step of a system reliability study is to establish a model of the system
structure. The model defines the system boundary and the elements of the system
(i.e. inside the system boundary) and the interactions between these elements.
We also make assumptions about how the system is operated and the environ-
mental conditions and constraints that may affect the system elements and their
behavior. A range of system modeling techniques are presented in later chapters.
Here, we delimit the presentation to a rather simple approach – reliability block
diagrams.

2.8.1 Reliability Block Diagram

This section describes how a system function (SF) can be modeled by a relia-
bility block diagram (RBD). An RBD is a success-oriented graph with a single
source (a) and a single terminal (b). The nodes of the RBD are called blocks or
functional blocks. Each block represents a component function (or a combination
of two or more functions). We assume that the blocks are numbered 1, 2,… ,n,
where n is known. This numbering is for convenience. In practical applications, a
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combination of letters and digits are often used to identify component functions.
An RBD with n blocks is called an RBD of order n.

Each block is either functioning or failed, but the terms up and down are also
used. Intermediate states are not allowed. To block i (for i = 1, 2,… ,n) is con-
nected a binary state variable xi, defined as follows:

xi =
{

1 if block i is functioning (up)
0 if block i is failed (down)

. (2.1)

Observe that xi = 1 means that the specified function of block i is up. It does not
mean that all the functions of the component associated with block i are up.

Blocks are drawn as squares or rectangles, as shown is Figure 2.8 for component
function i. Connection between the end points (a) and (b) in Figure 2.8 means
that block i is functioning (i.e. xi = 1). It is possible to enter more information
into the block and include a brief description of the required component function.
An example is shown in Figure 2.9, where the component is a safety shutdown
valve that is installed in a pipeline. A label is used to identify the block.

An RBD with three blocks representing a system function, SF, is shown in
Figure 2.10. The system function, SF, is up if block 1 is functioning and either
block 2, block 3, or both are functioning.

The blocks in Figure 2.10 are connected by arcs. Arcs are also called edges. The
arcs are not directed, but directed arcs may sometimes be used to clarify the logic
of the diagram. The system function, SF, is up if there exists a path from (a) to (b)
through functioning blocks, otherwise, it is down. The RBD in Figure 2.10 is seen
to have two paths {1, 2} and {1, 3}.

System Structure
The RBD is not a physical layout diagram of the system, but a logic diagram that
shows how and when the system function, SF, is up. The sequence of failures is

Figure 2.8 Component function i shown as a block. (a)
i

(b)

Figure 2.9 Alternative representation of
the block in Figure 2.8 (a) (b)

SDV1

Valve is able to 
close and stop 
the flow

Label

Figure 2.10 A simple reliability block
diagram with three blocks. 2

3

1
(a) (b)
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2

3

1
(a) (b)

Figure 2.11 An alternative, and identical,
version of the RBD in Figure 2.10.

not important, and the RBD in Figure 2.10 is therefore equivalent to the RBD in
Figure 2.11. The RBD shows the structure of the system with respect to a specified
system function, SF. When discussing RBD, we talk about the structure instead of
the system. Separate RBDs have to be established for each system function.

Boolean Representation
Arranging several components along a path means connecting them by an
AND- operation and arranging several components in parallel paths represents
and OR-operation. In essence, a RBD is a graphical representation of a Boolean
expression. Boolean expressions are discussed further in Section 4.6. The system
function SF in Figure 2.10 is seen to be up if block 1 is up AND block 2 OR block 3
is up.

2.8.2 Series Structure

A series structure is functioning if and only if all the n blocks are functioning.
This means that the structure fails as soon as one block fails. The RBD of a series
structure of n blocks is shown in Figure 2.12. A path is seen to be available between
the end points (a) and (b) – and the system is functioning – if and only if all the
n blocks are functioning. The system function can be represented by the Boolean
expression: The series structure is functioning if block 1 AND block 2 AND · · · AND

block n are all functioning. As mentioned above, the sequence of the blocks in
Figure 2.12 is not important, and we might have drawn the RBD with the n blocks
in any sequence.

2.8.3 Parallel Structure

A parallel structure is functioning as long as at least one of its n blocks is able to
function. The RBD of a parallel structure is shown in Figure 2.13. For this struc-
ture, there are n different paths between the end points (a) and (b). The structure is
functioning if any one of these n paths is functioning. This means that the structure

1 2 3 n
(a) (b)

Figure 2.12 RBD for a series structure.
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is functioning if at least one of the n blocks is functioning. The parallel structure
can be represented by the Boolean expression: The parallel structure is functioning
if block 1 OR block 2 · · · OR block n is functioning.

2.8.4 Redundancy

Redundancy is a means to improve the reliability of a structure. Redundancy may
be defined as follows:

Definition 2.9 (Redundancy)
The provision of more than one means or parallel paths in a structure for perform-
ing a given function such that all means must fail before causing system failure.◻

The parallel structure in Figure 2.13 has redundancy because all the n blocks
have to fail to cause the specified system failure, SF. Because n blocks have to fail,
the system is said to have redundancy of order n.

Parallel or redundant paths can be installed for a single block, for a selection of
blocks, or for the entire system function, SF.

For hardware, redundancy may be achieved by installing one or more extra hard-
ware items in parallel with the initial item. The redundant items may be identical
or diverse. Adding redundancy increases the cost and makes the system more
complicated, but if the cost of failure is high, redundancy is often an attractive
option.

2.8.5 Voted Structure

A k-out-of-n (koon) voted structure is functioning as long as at least k of its n blocks
are functioning (k ≤ n). Observe that an noon voted structure is a series structure
and a 1oon structure is a parallel structure.

A 2oo3 voted structure is shown in Figure 2.14. Two different diagrams are
shown. The diagram to the left is a physical diagram that shows the 2oo3 logic,
whereas the RBD to the right is a series–parallel structure. In the RBD, we see

Figure 2.13 Parallel structure.
1

(a) (b)2

n
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2/3

1

2

3

1

1

2

2

3

3
(a)(a) (b) (b)

Figure 2.14 Voted structure 2oo3, (left) a physical diagram and (right) an RBD.

that the system is functioning when block 1 AND block 2 are functioning OR block
1 AND block 3 are functioning OR block 2 AND block 3 are functioning. Observe
that each block appears in two different places in this RBD. This shows that an
RBD is not a physical layout diagram, but a logical graph illustrating the specified
function of the system.

2.8.6 Standby Structure

Redundancy may either be active, in which case the redundant items operate
simultaneously in performing the same function (as for the parallel structure),
or standby, such that the redundant items are only activated when the primary
item fails. With standby redundancy, the standby items may be in cold standby or
in partly loaded standby. With cold standby, the redundant item is considered to
be as-good-as-new when activated. With partly loaded standby, the item may be
failed or worn when activated.

A simple standby structure with two blocks is shown in Figure 2.15. Initially,
block 1 is functioning. When block 1 fails, a signal is sent to the switch S to activate
block 2 and a repair action of block 1 may be started. The switch S may be auto-
matic, or a manual action to connect and start block 2. Depending on the operating
rules, block 1 may be activated again as soon as the repair action is completed, or
block 2 may run until it fails.

2.8.7 More Complicated Structures

Many of the structures, we study in this book, can be represented by a
series–parallel RBD. A simple example of such a structure is shown in Figure 2.16.

1

2

S
(b)(a)

Figure 2.15 Standby structure.
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2

2 4

4

51

6

3

3

7

8

11109

(a) (b)

Figure 2.16 RBD for a series–parallel structure.

Remark 2.2 (Series–parallel structures)
The term series–parallel structure is not used in the same way by all authors. Some
authors use the term to describe a series structure, where one or more of the blocks
have added redundancy, that is, have parallel paths. The same authors use the
term “parallel-series structure” to describe a parallel structure where two or more
blocks appear in at least one of the parallel paths. In this book, we use the term
series–parallel structure to describe a structure, where the blocks are arranged in
any combination of series and parallel structures (as indicated in Figure 2.16). ◻

2.8.8 Two Different System Functions

The fact that different system functions give rise to different RBDs is illustrated in
Example 2.2.

Example 2.2 (Pipeline with safety valves)
Consider a pipeline with two independent safety valves V1 and V2 that are phys-
ically installed in series, as shown in Figure 2.17a. The valves are supplied with
a spring loaded fail-safe-close hydraulic actuator. The valves are opened and held
open by hydraulic pressure and is closed automatically by spring force whenever
the hydraulic pressure is removed or lost. In normal operation, both valves are held
open. The essential function of the valve system is to act as a safety barrier, that is,
to close and “stop flow” in the pipeline in case of an emergency.

The two blocks in Figure 2.17b represent the valve function “stop flow” for valve
1 and 2, respectively. This means that each valve is able to close and stop the flow
in the pipeline. To achieve the system function “stop flow,” it is sufficient that at
least one of the individual valves can “stop flow.” The associated RBD is therefore
a parallel structure with respect to the system function “stop flow.”

The valves may close spuriously, that is, without a control signal, and stop the
flow in the pipeline. The two blocks in Figure 2.17c represent the valve function
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1

2

1 2

(a)

(b) (c)

Figure 2.17 Two safety valves in a pipeline: (a) physical layout, (b) RBD for the safety
barrier function, and (c) RBD for spurious closure.

“maintain flow” in the pipeline, for valves 1 and 2, respectively. Because the flow
in the pipeline stops when one of the valves closes, the system function “maintain
flow” is fulfilled only when both valves function with respect to the valve function
“maintain flow”. The associated RBD is therefore a series structure for the system
function “maintain flow.” ◻

Example 2.2 shows that two different functions of a single system give rise to two
different RBD. Observe also that the blocks in the two RBDs represent different
component functions in (b) and (c).

Remark 2.3 (Terminology problem)
Many authors use the term “component” instead of block. There is nothing wrong
with this terminology–and we also use it later in this book–but we have to be very
careful when, for example, saying that “component i is functioning.” In cases,
when it is not fully obvious, we should always add “with respect to the specified
function.” ◻

2.8.9 Practical Construction of RBDs

A specific system function, SF, usually requires a long range of subfunctions. For
the essential function of a car, for example, we need the functions of the engine, the
brakes, the steering, the ventilation, and many more. The RBD for the SF is then a
long series structure of the required subsystem functions, as shown in Figure 2.18.
Each of the required subfunctions may again need sub-subfunctions.

How many levels are required to depend on how complicated the system func-
tion is and the objectives of the analysis. RBDs are further discussed in Chapter 4.
Chapter 6 deals with quantitative reliability analysis based on RBDs.
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2.1 2.2 2.3
(a) (b)

1

Specified system function

Specified subsystem function

Specified sub-subsystem function

2 3 4 5
(a) (b)

2.3.2

2.3.3

2.3.1
(a) (b)

Level 1

Level 2

Level 3

Figure 2.18 Construction of the RBD in levels.

2.9 Problems

2.1 Identify and describe briefly the main subsystems of a family car and estab-
lish a system breakdown structure for the car.

2.2 Establish a function tree for a (domestic) refrigerator.

2.3 List the environmental, operating, and maintenance factors that should be
considered when defining the operating context of a family car.

2.4 List some information functions that are available in a modern car.

2.5 Identify the main functions of a family car and establish a function tree for
the car.

2.6 List some safety functions of a modern car. Are the identified functions
online or offline functions?

2.7 Identify and describe the functions of the front door of a house.



�

� �

�

52 2 The Study Object and its Functions

2.8 Describe the functions of a vacuum flask (thermos) and suggest relevant
performance criteria.

2.9 Describe briefly a system you consider to be complex.

2.10 Refer to the SADT functional block (see Figure 2.3) and list all the inputs,
controls, and resources you need to bake a pizza. The output from the func-
tion is the new-baked pizza. How would you set up the performance criteria
for your pizza?

2.11 Based on an Internet search, explain what is meant by a CONOPS and list
its main elements.

2.12 Based on an Internet search, list the main elements that are typically
included in a system requirements document (or a system requirements
specification).

2.13 Establish an RBD of the braking system of a family car.2

2.14 Consider a voted koon structure. The voting can be specified in two differ-
ent ways:
– As the number k out of the n components that need to function for the

system to function.
– As the number k of the n components that need to fail to cause system

failure.
In the first case, we often write koon:G (for “good”) and in the second case,
we write koon:F (for failed).
(a) Determine the number x such that a 2oo4:G structure corresponds to a

xoo4:F structure.
(b) Determine the number x such that a koon:G structure corresponds to

a xoon:F structure.

2.15 Are there any examples of standby redundancy in a family car? Justify your
answer.

References
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2 You may need to search the Internet to find technical information on the braking system.
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3

Failures and Faults

3.1 Introduction

Failure is the most important concept in any reliability study, where typical ques-
tions addressed include:

• How long time will the item, on the average, be able to operate until the first
failure occurs?

• What will the frequency of failures be? How many failures per year should we
expect?

• What is the probability that the item will operate without failure during a spec-
ified time interval?

• If an item is demanded, what is the probability that it will fail to perform as
required?

If we do not have a clear understanding of what a failure is, the reliability study
may be of limited value. The term failure is used frequently in our daily language
with many different interpretations and we also use a plethora of terms with sim-
ilar meaning. Among these terms are blunder, breakdown, bug, collapse, defect,
deficiency, error, fault, flaw, impairment, malfunction, mishap, mistake, and non-
conformance.

How the term failure is interpreted varies between professional disciplines.
Engineers working with quality, maintenance, warranty, safety, and reliability
may have quite different opinions about whether or not a particular event
constitutes a failure.

To perform a reliability study, it is important to understand thoroughly what is
meant by the term failure in the context of reliability. Several definitions of failure
have been proposed. IEV 192-03-01, for example, defines failure as “loss of the
ability to perform as required.”

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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This chapter is concerned with failures of single items only. Aspects related to
interactions between several items in a system are treated in Chapter 4. Before
continuing the discussion of failures, the concepts of states, transitions, and oper-
ational modes need to be introduced.

3.1.1 States and Transitions

At a given time, an item may be in one out of several states. The functions per-
formed in one state may be different from the functions performed in other states.
The item changes state by a transition. The transition may be automatic or manual
and may occur at a random time or as a result of a command. Complicated items
may have a high number of states and transitions.

Example 3.1 (Safety valve)
Consider a safety valve with a hydraulic fail-safe-close actuator. The valve is held
open by hydraulic pressure during normal operation. When a specific critical sit-
uation occurs, a closing signal is sent to the safety valve and the valve closes by
the force of the fail-safe actuator. The valve has two functioning states: open and
closed. Transitions between these two states are facilitated by the actuator. The
states and transitions are shown in Figure 3.1.

The essential function in state “open” is to provide a conduct for the
medium/fluid through the valve, and the essential function in state “closed” is to
stop the flow through the valve. An auxiliary function for both states is to contain
the fluid and thereby to prevent leakage to the environment. ◻

Remark 3.1 (States and transition)
The difference between states and transitions is clear and intuitive for many items,
but may be confusing for some items. The concepts of states and transition should
therefore be used with care. ◻

3.1.2 Operational Modes

A complicated item may have many operational modes, and one or more functions
for each operational mode. Operational modes may include normal operating

Closing

Opening

Open Closed

Figure 3.1 States and transitions for a
safety valve.
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modes, test modes, transition modes, and contingency modes induced by failures
or operator errors. The establishment of the different operational modes is
recommended for two reasons:

(1) It reveals functions that might be overlooked when focusing too much on the
essential functions.

(2) It provides a structured basis for identifying failure modes that are connected
to, and dependent on, the given operational mode.

Operational modes are therefore an aid in identifying both functions and failure
modes. Failure modes are discussed in Section 3.4.

3.2 Failures

Even if we are able to identify all the required functions of an item, we may not be
able to identify all the potential failures. This is because each function may fail in
several different ways. No formal procedure seems to exist that help us to identify
and classify all the potential failures.

In this section, we consider a specific item within its boundary in its intended
operating context. Failure is, in many applications, a complicated and confusing
concept. We try to shed some light on this concept and start by defining failure of
an item as:

Definition 3.1 (Failure of an item)
The termination of the ability of an item to perform as required. ◻

The following comments to Definition 3.1 may be given:

(a) Definition 3.1 is mainly a rephrasing of IEV’s definition of a failure: “loss of
ability to perform as required” (IEV 192-03-01), but the expression “loss of
” is replaced with the expression “the termination of” to make it even more
clear that a failure is an event that takes place at a certain point in time (e.g. at
time t0).

(b) In the context of reliability, the expression “ability to perform as required” does
not imply that all aspects of the item are perfect, but that the item must be able
to perform the functions that are required for a given purpose.

(c) The item may deteriorate as a slow process. Failure occurs when a required
function no longer fulfills its performance requirements, and it may not be any
significant change in performance when the threshold is passed, as shown in
Example 3.2.
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Functioning

state

Failed

state

Failure Figure 3.2 Failure as a transition from
a functioning state to a failed state.

(d) One user may interpret “as required” different from another user. A failure that
is important (and costly) in a warranty context may, for example, be irrelevant
in a risk assessment context.
The performance requirements for an item are usually available in the item
specification document and partly in the user’s manuals, but users seldom read
the specifications and the complete user’s manual.

(e) We use the verb fail to express that a failure occurs. When a failure occurs at
time t0, the item fails at time t0.

A failure may be interpreted as a transition from a functioning state to a failed
state, as shown in Figure 3.2. Example 3.2 illustrates that we may not always be
able to observe the failure event and the time t0 of the failure.

Example 3.2 (Car tires)
When a car is used, the tires wear and the tire tread depth is continuously reduced
and thereby the performance of the tires is degrading. When the depth becomes
smaller than a certain legal limit d0 (may be different in the different countries),
the tires have to be replaced. A failure occurs when the tread depth passes d0. In
this case, it is not possible to determine exactly the time of failure, and there is
no dramatic change of performance when the failure occurs, but the risk of water
planning and of puncture is considered to be unacceptable with a smaller depth
than d0. ◻

3.2.1 Failures in a State

It is sometimes useful to distinguish between failures that occur in a state from
failures that occur during a transition. The types of failures occurring in a state
are illustrated in Examples 3.3, 3.4, and 3.5.

Example 3.3 (Water pump)
Consider an electric driven water pump. The essential function of the pump is
to pump water at a certain rate. Assume that the target rate is 100 l/min, with
performance criterion saying that the rate need to be between 95 and 105 l/min. In
case of internal fouling, the pumping rate may decrease such that the performance
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Figure 3.3 Illustration of the difference between failure and fault for a degrading item.

criterion is no longer met. When the rate passes the lower threshold rate, a pump
failure occurs and the pump has to be stopped. The pump remains in this state
until it has been cleaned/repaired. This process is illustrated in Figure 3.3. ◻

Example 3.4 (Light bulb–continuously “on”)
Consider a light bulb that is always switched on. The function of the bulb is to
provide light. When the light bulb fails, the failure occurs in an operating state. If
someone is present and can observe the loss of light event, the precise time of the
failure can be recorded. ◻

Example 3.5 (Light bulb–“on” only on demand)
Reconsider a light bulb, similar to the one in Example 3.4, but assume that the
light bulb is very seldom switched on and that it each time is energized for a short
time period. The bulb may also fail in passive state (e.g. due to vibrations). A failure
in passive state is not observable and leaves a hidden fault. The hidden fault is not
revealed until the light bulb is switched on next time. The time t0 of the occurrence
of the failure is unknown. When we try to switch on the light and observe that it
has failed, we only know that the failure occurred in the time interval since the
preceding use of the light bulb. (In this example, we assume that the switch is
functioning without failure.) ◻

3.2.2 Failures During Transition

A failure during transition may either be caused by an existing hidden fault or an
erroneously performed transition, as illustrated in Examples 3.6 and 3.7.
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Example 3.6 (Lawn mower)
Consider a lawn mower with a petrol engine that is started by pulling a rope. To
start the lawn mower involves a transition from a passive to an active state of
the mower. A failure during this transition may be caused by an internal defect
(e.g. corrosion, or contaminated petrol), but may also be due to incorrect starting
procedure. ◻

Example 3.7 (Safety valve)
Reconsider the safety valve in Example 3.1 and assume that the valve is in fully
open state when an emergency occurs on the downstream side of the valve. The
valve receives a signal to close and the transition is initiated. Due to debris in
the valve cavity, the movement is stopped before the valve reaches the closed
state. ◻

3.3 Faults

The term fault is mentioned in Section 3.2, but without a proper definition. We
define a fault as:

Definition 3.2 (Fault of an item)
A state of an item, where the item is not able to perform as required. ◻

The duration of the fault may range from negligible to permanent. There are two
main types of faults.

Type 1 fault is a fault that occurs as a consequence of a failure. The failure causes
a transition from a functioning state into a fault, which is also called a failed
state. In Example 3.4, the failure of the light bulb left the bulb in a state where it
cannot give light. In this example, the bulb has to be replaced to function again.

Type 2 fault is a fault that is introduced in the item due to human error or mis-
judgment in the specification, design, manufacture, transportation, installation,
operation, or maintenance of the item. This type of fault enters the item with-
out any preceding item failure and is a dormant fault that remains hidden until
the item is activated or inspected. A type 2 fault is also called a systematic fault.
A software bug is a typical example of such a fault. Another example is faults
caused by design errors or installation errors.

3.4 Failure Modes

We define a failure mode of an item as:
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Definition 3.3 (Failure mode)
The manner in which a failure occurs, independent of the cause of the failure. ◻

A failure mode is a description of how a failure occurs but does not say anything
about why the failure occurred. Example 3.8 illustrates how the failure mode con-
cept is usually interpreted.

Example 3.8 (Failure modes of a sink faucet)
Consider a sink faucet used in a bathroom. The main functions of the faucet are
to open/close the water supply, to contain the water, and to regulate the water
temperature and flow. We consider only the faucet (the item) and assume that
cold and hot water are available.

The faucet may have a number of failure modes. Among these are:

(1) Fail to open (on demand) and supply water
(2) Fail to close (on demand) and stop the flow of water
(3) Leakage through the faucet (i.e. dripping)
(4) Leakage out (from faucet seals)
(5) Fail to regulate water flow
(6) Fail to regulate temperature

The faucet has two main states, closed and open. The first two failures (1 and 2)
occur during intended transitions between these states. The next two failure modes
(3 and 4) occur in a state. For these failure modes, the faucet is in a state where it
is leaking and not able to perform as required. The two last failure modes (5 and
6) may be interpreted to be somewhere between the two other types. ◻

Example 3.9 shows that a failure mode sometimes describes the “manner by
which a failure occurs” and sometimes the “manner by which a fault is present.”

Example 3.9 (Electric doorbell)
A simple doorbell system is shown in Figure 3.4. The pushbutton activates a switch
that closes a circuit from a battery to a solenoid that activates a clapper, which
again makes sound by hammering on a bell. When your finger is lifted from the
pushbutton, the switch should open, cut the circuit, and thereby stop the doorbell
sound. The following failure modes may be defined:

(1) No sound when the pushbutton is activated (by a finger.)
(2) Doorbell sound does not stop when finger is lifted from pushbutton.
(3) Doorbell sounds without activating the pushbutton.

A similar doorbell system is analyzed in NASA (2002). ◻
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+–

Battery

Pushbutton Switch Solenoid

Clapper

Bell

Figure 3.4 Doorbell and associated circuitry.

3.5 Failure Causes and Effects

A failure mode is generally caused by one or more failure causes and may result
in a failure effect, as shown in Figure 3.5.

3.5.1 Failure Causes

All failures have at least one cause. We define failure cause as follows.

Definition 3.4 (Failure cause)
Set of circumstances that leads to failure. ◻

The failure cause may originate during specification, design, manufacture, instal-
lation, operation, or maintenance of an item (IEV 192-03-11). The failure cause
may be an action, an event, a condition, a factor, a state, or a process that is – at
least partly – responsible for the occurrence of a failure. To be responsible for a
failure, the cause must be present before the failure occurs, and the presence of
the cause should increase the likelihood of the failure.

When studying several similar failures, we should see a positive correlation
between the presence of the cause and the occurrence of the failure(s), but
positive correlation is not a sufficient condition for claiming that something is a
cause of a failure. It is very easy to find correlated factors that are totally unrelated.
The correlation may, for example, be that the two factors are both caused by the
same third factor. Causality is a complicated philosophical subject. A lot more
information may be found by searching the Internet. The authors especially
recommend consulting (Pearl 2009).

Failure 

cause

Failure

mode

Failure

effect

Results in
Leads to

Caused by

Figure 3.5 Relation between failure causes, failure modes, and failure effects.
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Several failure analysis techniques have been developed to identify the causes
of a failure that has occurred. Among these are cause and effect analysis and root
cause analysis that are described in Section 3.7.

3.5.2 Proximate Causes and Root Causes

The term root cause is often used in analyses of failures that have occurred. The
term is defined in several standards, and each standard seems to have its own
particular definition. Before giving our preferred definition, we define the term
proximate cause, which is an immediately and (often) readily seen cause of a
failure.

Definition 3.5 (Proximate cause)
An event that occurred, or a condition that existed immediately before the failure
occurred, and, if eliminated or modified, would have prevented the failure. ◻

A proximate cause is also known as a direct cause. A proximate cause is often not
the real (or root) cause of a failure, as illustrated in Example 3.10.

Example 3.10 (Flashlight)
A flashlight is part of the safety equipment in a plant. During an emergency, the
flashlight is switched on, but does not give any light. A proximate (or direct) cause
is that the battery is dead. If we have access to the flashlight and the battery after
the emergency is over, it is straightforward to verify whether or not this was the
true proximate cause.

Any battery will sooner or later go dead and if the flashlight is an essential safety
equipment, it is part of the maintenance duties to test and, if necessary, replace bat-
teries at regular intervals. “The battery has not been tested/replaced at prescribed
intervals” is therefore a cause of the proximate cause. By asking “why?” this hap-
pened several times, we may get to the root cause of the failure. ◻

For the purpose of this book, we define a root cause as:

Definition 3.6 (Root cause)
One of multiple factors (events, conditions, or organizational factors) that con-
tributed to or created the proximate cause and subsequent failure and, if elimi-
nated, or modified would have prevented the failure. ◻

For some failure modes, it may be possible to identify a single root cause, but
most failure modes will have several contributing causes. All too often, failures
are attributed to a proximate cause, such as human error or technical failure.
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Figure 3.6 Relationship between failure cause, failure mode, and failure effect.

These are often merely symptoms, and not the root causes of the failure. Very
often, the root causes turn out to be much more, such as (i) process or pro-
gram deficiencies, (ii) system or organization deficiencies, (iii) inadequate or
ambiguous work instructions, and/or (iv) inadequate training.

To identify root causes of failures and to rectify these is important for any system
in the operational phase. It does not help only to correct the proximate causes
(such as to replace the battery of the flashlight in Example 3.10) when a failure
has occurred. This way, the same failure may recur many times. If, on the other
hand, the root cause is rectified, the failure may never recur. Root cause analysis
is briefly discussed in Section 3.7.

3.5.3 Hierarchy of Causes

The functions of a system may usually be split into subfunctions. Failure modes
at one level in the hierarchy may be caused by failure modes on the next lower
level. It is important to link failure modes on lower levels to the main top level
responses, in order to provide traceability to the essential system responses as the
functional structure is refined. This is shown in Figure 3.6 for a hardware structure
breakdown. Figure 3.6 is further discussed in Section 3.6.5.

3.6 Classification of Failures and Failure Modes

It is important to realize that a failure mode is a manifestation of the failure as seen
from the outside, that is, the nonfulfillment of one or more functions. “Internal
leakage” is thus a failure mode of a shutdown valve because the valve loses its
required function to “close flow,” whereas wear of the valve seal represents a cause
of failure and is hence not a failure mode of the valve.
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Failures and failure modes may be classified according to many different criteria.
We briefly mention some of these classifications.

3.6.1 Classification According to Local Consequence

Blache and Shrivastava (1994) classify failures according to the completeness of
the failure.

(1) Intermittent failure. Failure that results in the loss of a required function only
for a very short period of time. The item reverts to its fully operational standard
immediately after the failure.

(2) Extended failure. Failure that results in the loss of a required function that
will continue until some part of the item is replaced or repaired. An extended
failure may be further classified as:
(a) Complete failure. Failure that causes complete loss of a required function.
(b) Partial failure. Failure that leads to a deviation from accepted item perfor-

mance but do not cause a complete loss of the required function.
Both the complete failures and the partial failures may be further classified as:

(a) Sudden failure. Failure that could not be forecast by prior testing or exam-
ination.

(b) Gradual failure. Failure that could be forecast by testing or examination.
A gradual failure represents a gradual “drifting out” of the specified range
of performance values. The recognition of a gradual failure requires com-
parison of actual item performance with a performance requirement, and
may in some cases be a difficult task.

Extended failures may be split into four categories; two of these are given spe-
cific names:
(a) Catastrophic failures. A failure that is both sudden and complete.
(b) Degraded failure. A failure that is both partial and gradual (such as the

wear of the tires on a car).

The failure classification described above is shown in Figure 3.7, which is
adapted from Blache and Shrivastava (1994).

3.6.2 Classification According to Cause

Failures may be classified according to their causes as follows.

Primary Failures
A primary failure, also called a random hardware failure in IEC 61508, occurs
when the item is used in its intended operating context. In most cases, the primary
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Figure 3.7 Failure classification. Source: Adapted from Blache and Shrivastava (1994).

Primary
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Item
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State

Leads to

Random event Figure 3.8 A primary failure
leading to an item fault.

failure results in an item fault and a repair action is usually necessary to return the
item to a functioning state. Primary failures are generally random failures, where
the cause of failure can be attributed to aging and the properties of the item itself.
A primary failure is illustrated in Figure 3.8. Primary failures are the only category
of failures that we justifiably can claim compensation for under warranty. Primary
failures are not relevant for software.

Secondary Failures
A secondary failure, also called overstress or overload failure, is a failure caused
by excessive stresses outside the intended operating context of the item. Typical
stresses include shocks from thermal, mechanical, electrical, chemical, magnetic,
or radioactive energy sources, or erroneous operating procedures. The stresses
may be caused by neighboring items, the environment, or by users/system opera-
tors/plant personnel. Environmental stresses, such as lightning, earthquake, and
falling object, are sometimes called threats to the item. We may, for example, say
that lightning is a threat to a computer system and that heavy snowfall and storm
are threats to an electric power grid. The overstress event leads to a secondary fail-
ure with some probability p that depends on the stress level and on the vulnerability
of the item. Overloads of software systems may also be classified as secondary
failures.
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Figure 3.9 A secondary failure, caused by an overstress event, leading to an item fault.

A secondary failure usually leads to an item fault, and a repair action is
usually necessary to return the item to a functioning state. The structure of
a secondary failure is shown in Figure 3.9. Secondary failures are generally
random events, but it is the overstress event that is the main contributor to the
randomness.

Systematic Failures
A systematic failure is a failure due to a systematic cause that may be attributed to
a human error or misjudgment in the specification, design, manufacture, installa-
tion, operation, or maintenance of the item. A software bug is a typical example of
a systematic fault. After the error is made, the systematic cause remains dormant
and hidden in the item. Examples of systematic causes are given in Example 3.12.

A systematic failure occurs when a certain trigger or activation condition occurs.
The trigger can be a transient event that activates the systematic cause, but
can also be a long-lasting state such as environmental conditions, as illustrated
in Example 3.14. The trigger event is often a random event, but may also be
deterministic.

A systematic failure can be reproduced by deliberately applying the same trigger.
The term systematic means that the same failure will occur whenever the identified
trigger or activation condition is present and for all identical copies of the item.
A systematic cause can only be eliminated by a modification of the design or of
the manufacturing process, operational procedures, or other relevant factors (IEC
61508 2010). A systematic fault leading to a systematic failure by the “help” of
a trigger is shown in Figure 3.10. Systematic failures are often, but not always,
random events, but it is the trigger that is random, whereas the item failure is a
consequence of the trigger event.

Leads to

Forced event

Systematic

failure
Systematic

fault

Item

fault

Trigger

event

State State

&

Figure 3.10 A systematic fault leading to a systematic failure.
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Example 3.11 (Airbag system in a car)
A new car model was launched and a person driving such a car crashed into
another car. The airbags did not operate as intended and the driver was critically
injured. After the accident, it was found that the airbag system was not correctly
installed. Later, it was found that the same error was made for all cars of the same
type. The airbag failure was due to a systematic cause and all the cars of the same
type had the same systematic fault. All these cars had to be recalled for repair
and modification. There was nothing wrong with the airbag system as such and
the airbag system manufacturer could not be blamed for the accident (unless the
installation instructions were misleading or ambiguous). The car manufacturer
had to cover the consequences of the failure. For drivers and passengers, the cause
of the failure does not matter. A systematic failure has the same consequences as
a primary (random hardware) failure. ◻

Example 3.12 (Failure causes of a gas detection system)
A heavy (i.e. heavier than air) and dangerous gas is used in a chemical process. If a
gas leakage occurs, it is important to raise an alarm and shut down the process as
fast as possible. For this purpose, a safety-instrumented system (SIS) is installed,
with one or more gas detectors. The SIS has three main parts (i) gas detectors, (ii) a
logic solver that receives, interprets, and transmits signals, and (iii) a set of actuat-
ing items (e.g. alarms, shutdown valves, door closing mechanisms). The purpose
of the SIS is to give an automatic and rapid response to a gas leakage. Many more
details about SIS may be found in Chapter 13.

Assume that a gas leak has occurred without any response from the SIS. Possible
causes of the failure may include the following:

• A primary (i.e. random hardware) failure of the SIS.
• The installed gas detectors are not sensitive to this particular type of gas, or have

been mis-calibrated.
• The gas detectors have been installed high up on walls or in the ceiling (remem-

ber, the gas is heavier than air.)
• The gas detectors have been installed close to a fan (no gas will reach them.)
• The gas detectors have been inhibited during maintenance (and the inhibits

have not been removed.)
• The gas detector does not raise alarm due to a software bug. (Most modern gas

detectors have software-based self-testing features.)
• The gas detector is damaged by, for example, sand-blasting. (Has happened sev-

eral times in the offshore oil and gas industry.) ◻

Security Failures
A security failure is a failure caused by a deliberate human action. Many systems
are exposed to a number of threats. The threats may be related to physical actions
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or cyberattacks. Physical threats include arson, sabotage, theft, and many more.
A cyberattack is only relevant for systems that are connected to a cyber network
(e.g. Internet, or mobile phone network). A threat may be used by a threat actor
to attack the system. The system may have a number of vulnerabilities (i.e. weak-
nesses) that may be exploited by the threat actor to make a “successful” attack.

With the development of new technologies, such as cyber-physical systems, the
Internet of Things (IoT), smart-grids, smart cities, remote operation and mainte-
nance, and many more, cyberattacks come more frequently and we can now hardly
open a newspaper without articles about cyberattacks. Many of these attacks are
directed toward critical infrastructure and industrial control and safety systems.

The structure of a security failure is illustrated in Figure 3.11. A threat, a threat
actor, and a vulnerability are required “inputs” for a security failure. The threat
actor uses a threat to attack the system, and the threat inspires the threat actor.
The attack can only be successful if the system has one or more vulnerabilities.

A security failure is not a random event, but the consequence of a deliberate
action made by the threat actor. To reduce the likelihood of security failures, vul-
nerabilities should be identified and removed during system design.

Additional Types of Failures
When an item fails, the failure is often claimed to be caused by the control of the
item, the input/output to/from the item, or misuse of the item. These causes are
usually outside the boundary of the item and not something the manufacturer of
the item can be responsible for.

Control failures. A control failure is an item failure caused by an improper control
signal or noise, that is, due to factors outside the boundary of the item. A repair
action may or may not be required to return the item to a functioning state.
Failures caused by inadequate, or not followed operating procedures may also
be classified as control failures.

Input/output failures. An input/output failure is a failure caused by inadequate or
lacking item inputs or outputs, that is, due to factors outside the boundary of the
item. For a washing machine, the washing service is stopped due to inadequate
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Figure 3.11 The structure of a security failure.
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or lacking supply of electricity, water, or detergent, or due to inadequacies of the
drainage system. Input/output failures will stop the service provided by the item
but will usually not leave the item in a failed state. The item may not need any
repair after an input/output failure. Input/output failures tell very little about
the reliability of the item as such.

Misuse/mishandling failure. A misuse/mishandling failure is a failure that occurs
because the item is used for a purpose that it was not designed for, or is mis-
handled. The mishandling may be due to a human error or a deliberate action
such as sabotage. Some laws and standards (e.g. EU-2006/42/EC) require that
foreseeable misuse shall be considered and compensated for in the design and
development of the item, and be covered in the operating context of the item.

The categories of failures listed above are not fully mutually exclusive. Some
control failures may, for example, also be due to systematic causes.

Remark 3.2 (Functionally unavailable)
The US Nuclear Regulatory Commission (NRC) introduces the term functionally
unavailable for an item that is capable of operation, but where the function nor-
mally provided by the item is unavailable due to lack of proper input, lack of
support function from a source outside the component (i.e. motive power, actu-
ation signal), maintenance, testing, the improper interference of a person, and
so on.

The NRC-term is seen to cover failures/faults of several of the categories above,
most notably input/output and control failures. ◻

Failures Named According to the Cause of Failure
Failures are sometimes named according to (i) the main cause of the failure, such
as corrosion failure, fatigue failure, aging failure, calibration failure, systematic
failure, and so forth, (ii) the type of technology that fails, such as mechanical fail-
ure, electrical failure, interface failure, and software bug, and (iii) the life cycle
phase in which the failure cause originates, such as design failure, manufacturing
failure, and maintenance failure.

When using this type of labeling, we should remember that the failure descrip-
tion does not tell how the failure is manifested, that is, which failure mode that
occurs. The same failure mode may occur due to many different failure causes.

3.6.3 Failure Mechanisms

A failure mechanism is a physical, chemical, logical, or other process or mecha-
nism that may lead to failure. Examples of failure mechanisms include wear, cor-
rosion, fatigue, hardening, swelling, pitting, and oxidation. Failure mechanisms
are hence specific failure causes as shown in Figure 3.12.
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Figure 3.12 Failure causes and
mechanisms. A failure mechanism
is a specific type of failure cause.

Failure causes

Failure mechanisms

Each mechanism can have its root in different stages of the item’s life cycle.
Wear can, for instance, be a result of wrong material specification (design failure),
usage outside specification limits (misuse failure), poor maintenance, inadequate
lubrication (mishandling failure), and so on.

A failure mechanism may be seen as a process that leads to a failure cause.

3.6.4 Software Faults

An increasing number of item functions are being replaced by software-based
functions and a fair proportion of item failures are caused by software bugs. IEV
defines a software fault/bug as:

Definition 3.7 (Software fault/bug)
State of a software item that prevents it from performing as required (IEV
192-04-02). ◻

Combined with a particular demand or trigger, the software bug may lead to item
failure. Such a failure is a systematic failure and is sometimes called a software
failure (see Figure 3.10). If the trigger is a random event, the software failure is
random. Software bugs are difficult to reveal and software development projects
therefore include a detailed process for finding and correcting bugs. This process
is called debugging.

Software does not deteriorate and software bugs do not occur at random in the
operational phase. They have been programmed into the software and remain
until the software is modified. New software bugs are often introduced when new
patches or new versions of the software are installed to remove known bugs. The
same software failure occurs each time the same activation condition or trigger
occurs. If relevant activating conditions or triggers do not occur, the software bug
remains undetected. Installations of the same software may show very different
frequencies of software failures because the failure frequency is proportional to
the frequency of the occurrence of activating conditions or triggers.

3.6.5 Failure Effects

Failure effect is an undesired consequence of a failure mode. Failure effects may
be categorized as follows:

(1) Injuries or damage to personnel or to the public.
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(2) Damage to the environment.
(3) Damage to the system where the failure occurred.
(4) Material or financial loss.
(5) Interruptions of the system operation (e.g. loss of production, cancelled or

delayed transport means, interruptions of electric or water supply, interrup-
tion of computer/telephone network service.)

A failure mode may lead to many different failure effects, on the item where the
failure occurred, and on other items. Failure effects are classified as local effects,
next higher effects, and end effects. These effects are illustrated in Example 3.13.

Example 3.13 (Failure effects of brake pad failure)
Consider a (total) wear-out failure of a brake pad on the left front wheel of a car.
The local effect is that the braking effect on the left front wheel is strongly reduced
and that the brake disc may be damaged. The next higher effect is that the braking
effect of the car is uneven and not adequate. The end effect is that the car cannot
provide a safe drive and must be stopped. ◻

A general picture of the relationship between cause and effect is that each failure
mode can be caused by several different failure causes, leading to several different
failure effects. To get a broader understanding of the relationship between these
terms, the level of indenture being analyzed should be brought into account. This
is shown in Figure 3.6.

Figure 3.6 shows that a failure mode on the lowest level of indenture is one of
the failure causes on the next higher level of indenture, and the failure effect on
the lowest level equals the failure mode on the next higher level. The failure mode
“leakage from sealing” for the seal component is, for example, one of the possible
failure causes for the failure mode “internal leakage” for the pump, and the failure
effect (on the next higher level) “internal leakage” resulting from “leakage from
sealing” is the same as the failure mode “internal leakage” of the pump.

Failure effects are often classified according to their criticality as discussed in
Chapter 4.

3.7 Failure/Fault Analysis

A failure or fault analysis is a systematic investigation of a failure or a fault that
has occurred, in order to identify the root causes of the failure/fault and to propose
corrective actions needed to prevent future failures/faults of the same, or similar,
types.
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This section gives an introduction to two commonly used failure/fault analysis
techniques (i) cause and effect analysis and (ii) root cause analysis. Both tech-
niques are primarily used to analyze real failures/faults that have occurred, but
may also be used to analyze potential failures or faults.

3.7.1 Cause and Effect Analysis

Cause and effect analyses are frequently used in quality engineering to identify
and illustrate possible causes of quality problems. The same approach may also be
used in reliability engineering to find the potential causes for system failures or
faults. The cause and effect analysis is documented in a cause and effect diagram.

The cause and effect diagram, also called Ishikawa diagram (Ishikawa 1986),
was developed in 1943 by the Japanese professor Kaoru Ishikawa (1915–1989).
The diagram is used to identify and describe all the potential causes (or events)
that may result in a specified failure. Causes are arranged in a tree structure that
resembles the skeleton of a fish with the main causal categories drawn as bones
attached to the spine of the fish. The cause and effect diagram is therefore also
known as a fishbone diagram.

To construct a cause and effect diagram, we start with an item failure. The item
failure is briefly described, enclosed in a box and placed at the right end of the
diagram, as the “head of the fish.” The analysis is carried out by a team, using an
idea-generating technique, such as brainstorming. Failure causes are suggested by
the team and organized under headings such as

(1) Manpower
(2) Methods
(3) Materials
(4) Machinery
(5) Milieu (environment)

This is a common classification for failure/fault analysis and is referred to as the
5M approach, but other categories may also be used. The main structure of a 5M
cause and effect diagram is shown in Figure 3.13.

When the team members agree that an adequate amount of detail has been
provided under each major category, they analyze the diagram, and group the
causes. An important part of this analysis is to eliminate irrelevant causes from
the diagram and tidy it up. One should especially look for causes that appear in
more than one category. For those items identified as the “most likely causes,” the
team should reach consensus on listing those causes in priority order with the first
cause being the “most likely cause.”

Some cause and effect analyses also include an evaluation of how easy it is to
verify each of the identified causes in the diagram. Three classes are sometimes
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Car will not start
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Lack of training

Lack of servicing

Battery cables

corroded

Engine overheated

Battery dead

Starter failed

Too cold

Out of fuel Not pressing
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Figure 3.13 Cause and effect diagram for the event “car will not start.”

used: (i) very easy, (ii) somewhat easy, and (iii) not easy. A final step to propose
actions to rectify the identified causes, may or may not be included in the
analysis.

The cause and effects diagram cannot be used for quantitative analyses, but is
generally considered to be an excellent aid for problem solving, and to illustrate
the potential causes of an item failure/fault. Cause and effect analysis is also a rec-
ommended step in a more comprehensive root cause analysis (see Section 3.7.2).

Example 3.14 (Car will not start)
Consider a car that will not start after having been idle for a period. The causes
suggested by the team are shown in the cause and effect diagram in Figure 3.14. A
number of similar cause and event diagrams may be found on the Internet. ◻

3.7.2 Root Cause Analysis

A root cause analysis may be defined as:

Definition 3.8 (Root cause analysis)
A systematic investigation of a failure or a fault to identify its likely root causes,
such that they can be removed by design, process, or procedure changes. ◻

The root cause analysis is reactive, starting with (i) a failure that has hap-
pened, or (ii) a potential failure that has been identified. The root cause analysis
should continue until organizational factors have been identified, or until data
are exhausted. Root cause analysis may be used to investigate a wide range of
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undesired events, not only failures and faults but also our description is delimited
to failure/fault analysis.

The main steps of a root cause (failure) analysis are:

(1) Clearly define the failure or fault. Explain clearly what went wrong.
(2) Gather data/evidence. The evidence should provide answers to the following

questions:
● When did the failure occur?
● Where did it occur?
● What conditions were present prior to its occurrence?
● What controls or barriers could have prevented its occurrence but did not?
● What are the potential causes? (Make a preliminary list of likely causes).
● Which actions can prevent recurrence?

(3) Ask why and identify the true root cause associated with the defined fail-
ure/fault.

(4) Check the logic and eliminate items that are not causes.
(5) Identify corrective action(s) that will prevent recurrence of the fail-

ure/fault – and that address both proximate and root causes.
(6) Implement the corrective action(s).
(7) Observe the corrective actions to ensure effectiveness.
(8) If necessary, reexamine the root cause analysis.

The root cause analysis is done by a team using idea generation techniques,
such as brainstorming, and is often started by a cause and effect analysis link: (see
Section 3.7.1). To identify root causes, it is usually recommended to ask “why?”
at least five times for each main cause identified. The five whys are illustrated in
Figure 3.14.

The root causes must be thoroughly understood before corrective actions are
proposed. By correcting root causes, it is hoped that the likelihood of failure recur-
rence is minimized.

Example 3.15 (Car will not start)
Reconsider the car that will not start in Example 3.14. The following sequence of
five questions and answers may illustrate the analysis process.

(1) Why will not the car start?
Cause: The engine will not turn over.

Cause
Root
Cause Failure

Why?
Cause

Why?
Cause

Why?
Cause

Why?Why?

12345

Figure 3.14 Repeatedly asking why?
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(2) Why will the engine not turn over?
Cause: The battery is dead.

(3) Why is the battery dead?
Cause: The alternator is not functioning.

(4) Why is the alternator not functioning?
Cause: The belt is broken.

(5) Why is the alternator belt broken?
Cause: The belt was not replaced according to the manufacturer’s mainte-
nance schedule.

This example is strongly influenced by the presentation “Corrective action and
root cause analysis” by David S. Korcal (found on the Internet). ◻

Careful studies of failures that occur should add to our “lessons learned,” and
we therefore end this chapter optimistically by quoting Henry Ford (1863–1947):

Failure is the opportunity to begin again more intelligently.

3.8 Problems

3.1 Consider the exterior door of a family house. The door is locked/unlocked
by using a standard key.
(a) List all relevant functions of the door (including lock).
(b) List all relevant failure modes of the door.
(c) Classify the failure modes by using the classification system outlined

in this chapter.
(d) Do you consider it relevant to include misuse failures? If “yes,” provide

examples.

3.2 Consider a filter coffee maker/brewer that you are familiar with.
(a) List all potential failure modes of the coffee brewer.
(b) Identify potential causes of each failure mode.
(c) Identify potential effects of each failure mode.

3.3 Identify and describe possible failure modes of a (domestic) refrigerator.

3.4 Assume that your mobile phone is “dead.” Illustrate the possible causes of
this fault by a cause and effect diagram.

3.5 Consider a smoke detector used in a private home and list possible causes
of systematic faults of this detector.
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3.6 Explain the differences between the terms failure and fault. Illustrate you
explanation by practical examples.

3.7 Consider a domestic washing machine.
(a) Identify as many causes of potential failures as possible.
(b) Define categories of failure causes.
(c) Use these categories to classify the identified failure causes.

3.8 Suggest a technical system that can be divided into several levels of
indenture. If you cannot propose anything better, you may use a family
car. Assume that a specific component failure mode occurs in the system
and exemplify the relationships that are illustrated in Figure 3.6.

3.9 Reconsider the coffee maker in Problem 3.2. When you press the on/off
switch, no coffee is supplied.
(a) Analyze the “failure” by using a cause and effect diagram.
(b) Analyze the same “failure” by a root cause analysis.
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4

Qualitative System Reliability Analysis

4.1 Introduction

This chapter presents five different approaches/methods for qualitative system
reliability analysis.

(1) Failure modes, effects, and criticality analysis (FMECA). This is a common
approach to identify the potential failure modes of system components and
subsystems, to identify the causes of each failure mode, and to study the
effects these failure modes might have on the system. FMECA was developed
as a tool for designers, but it is frequently used as a basis for more detailed
reliability analyses and for maintenance planning.

(2) Fault tree analysis (FTA). A fault tree illustrates all possible combinations of
potential failures and events that may cause a specified system failure. Fault
tree construction is a deductive approach where we start with the specified sys-
tem failure and ask “what are the causes for this failure?” Failures and events
are combined through logic gates in a binary approach. The fault tree may be
evaluated quantitatively if we have access to probability estimates for the basic
events. Quantitative FTA is discussed in Chapter 6.

(3) Event tree analysis (ETA). ETA is an inductive method that starts with a system
deviation and identifies how this deviation may develop. The possible events
following the deviation will usually depend on the various barriers and safety
functions that are designed into the system. Quantitative ETA is discussed
briefly in Chapter 6.

(4) Reliability block diagrams (RBDs). RBDs were introduced in Section 2.8. In
this chapter, the structure of the RBD is described mathematically by structure
functions. Structure functions are used in the following chapters to calculate
system reliability indices. Further quantitative RBD analysis is discussed in
Chapter 6.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Fault or

deviation
Causes Consequences

Deductive

analysis

Inductive

analysis

Look

backward

Look

forward

Figure 4.1 Deductive versus inductive analysis of a fault or deviation in the study object.

Table 4.1 Deductive versus inductive methods.

Model/method Deductive Inductive

FMECA Δ Δ
Fault tree analysis X –
Event tree analysis – X
Reliability block diagrams X –
Bayesian networks X X

(5) Bayesian networks (BNs). A BN is a directed acyclic graph (DAG) that can
replace and extend traditional fault trees and event trees and accommodate
causal dependencies between items. Quantitative BN analysis is discussed in
Chapter 6.

4.1.1 Deductive Versus Inductive Analysis

The methods in this chapter start with a defined fault or deviation in the study
object. With this starting point, we may look backwards and try to identify the
causes of the fault or deviation. This is done by a deductive analysis that back-
wardly deduces the causes of the fault or deviation. Alternatively, we may start
with the same fault or deviation and look forward and try to figure out the poten-
tial consequences of the fault or deviation. This is done by an inductive analysis that
forwardly induces the consequences. The two approaches are illustrated schemat-
ically in Figure 4.1.

Some of the five methods listed above are deductive, others are inductive, and
some have elements (Δ) of both, as indicated in Table 4.1.

4.2 FMEA/FMECA

The first failure mode and effects analysis (FMEA) guideline was published as early
as 1949 (see Section 1.10), and FMEA is still the most commonly used method for
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potential failure analysis. FMEA reviews components, assemblies, and subsystems
to identify potential failure modes, their causes, and effects. For each component,
the failure modes and their resulting effects on the rest of the system are recorded
in a specific FMEA worksheet. There are numerous variants of such worksheets.
A typical example is shown in Figure 4.4.

An FMEA becomes a failure mode, effects, and criticality analysis (FMECA) if
criticality or priority is assigned to each failure mode effect. In the following, we
do not distinguish between FMEA and FMECA, and use the term “FMECA” for
both. More detailed information on how to conduct FMECA may be found in sev-
eral standards, such as IEC 60812 (2018), MIL-STD-1629A (1980), SAE ARP 5580
(2012), and SAE J1739 (2009).

4.2.1 Types of FMECA

FMECAs come in many flavors, depending on the study object and in which phase
of its life cycle the analysis is performed. The following four types are, for example,
used in the automotive industry (SAE J1739 2009):

(1) Concept FMECA analyzes new product concepts in the concept and early
design phases.

(2) Design FMECA analyzes products before they are released to production.
(3) Machinery FMECA analyzes special machinery (equipment and tools) that

allows for customized selection of component parts, machine structure, tool-
ing, bearings, coolants, and so on.

(4) Process FMECA analyzes manufacturing and assembly processes.

Additional Variants of FMECA
Several new variants of FMECA have been developed for specific purposes:

• Interface FMECA analyzes potential problems related to the interfaces between
components or subsystems.

• Software FMECA identifies and prevents potential bugs in software (e.g. see
Haapanen and Helminen 2002).

• FMEDA (failure modes, effects and diagnostic analysis) analyzes systems that
have built-in diagnostic testing and is especially applied to safety-instrumented
systems (e.g. see Goble and Brombacher 1999).

• FMVEA (failure modes, vulnerabilities, and effects analysis) identifies and
prevents system vulnerabilities that may be exploited by threat actors (e.g. see
Schmittner et al. 2014).

• CyberFMECA has a similar purpose as FMVEA.

A timeline of the development of FMECA and the additional variants listed above
is shown in Figure 4.2.
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FMEA FMECA

FMEDA

S-FME(C)A

CyberFMECA

FMVEA

Added criticality

(1949)

FMEA for software

FMEA for cyber 

systems/vulnerability

Added

diagnostics

Figure 4.2 Timeline of the development of FMECA variants (not in scale).

Hardware Versus Functional Approach
Two main approaches may be chosen for FMECA of technical items. These are

Hardware FMECA is used to analyze existing systems and system concepts. The
individual components on the lowest level in the system hierarchy are analyzed
to identify potential failure modes, their causes and effects. When the compo-
nents on the lowest level are analyzed, we move to the next upper level in the
hierarchy, and so on. Hardware FMECA is said to be carried out as a bottom-up
approach.

Functional FMECA is mainly used in the early design phases of a system. The anal-
ysis starts with a top-level system function, and we ask How can this function
conceivably fail, what could the causes be, and what could the consequences be?
The same procedure is followed for each functional failure. Functional FMECA
is said to be carried out as a top-down approach.

The rest of this section is delimited to presenting hardware FMECA used for
design analysis. Other applications are similar, and the reader should be able to
make the appropriate adjustments.

4.2.2 Objectives of FMECA

The objectives of a hardware FMECA in the design phase are the following: (IEEE
Std. 352):

(1) Assist in selecting design alternatives with high reliability and high safety
potential during the early design phase.

(2) Ensure that all conceivable failure modes and their effects on operational suc-
cess of the system have been considered.

(3) List potential failures and identify the magnitude of their effects.
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(4) Develop early criteria for test planning and the design of the test and checkout
systems.

(5) Provide a basis for quantitative reliability and availability analyses.
(6) Provide historical documentation for future reference to aid in analysis of field

failures and consideration of design changes.
(7) Provide input data for tradeoff studies.
(8) Provide basis for establishing corrective action priorities.
(9) Assist in the objective evaluation of design requirements related to redun-

dancy, failure detection systems, fail-safe characteristics, and automatic and
manual override.

FMECA is mainly a qualitative analysis and should be carried out by the design-
ers during the design phase of a system. The purpose is to identify design areas
where improvements are needed to meet reliability requirements. An updated
FMECA is an important basis for design reviews and inspections, and also for
maintenance planning.

4.2.3 FMECA Procedure

FMECA does not require any advanced analytical skills, but the analysts need to be
familiar with and understand the purpose of the study object and the constraints
under which it has to operate. FMECA is carried out as a sequence of seven main
steps, as shown in Figure 4.3. The number and content of the steps depend on the
application and the delimitations of the analysis. Further details for FMECA in
the automobile industry may be found in Ford (2004).

The various entries in the FMECA worksheet are best illustrated by going
through a specific worksheet column by column. We use the FMECA worksheet
in Figure 4.4 as an example.

(1) Reference. The name/tag of the item or reference to a drawing is given in the
first column.

(2) Function. The function(s) of the item is (are) described in this column.
(3) Operational mode. The item may have various operational modes,

for example, running or standby. Operational modes for an airplane include,
for example, taxi, take-off, climb, cruise, descent, approach, flare-out, and

What are the

functions and

performance

standards 

for the item? 

How can the 

item fail to

perform its

function(s)?

What can

be done to

prevent each

failure?

What are

the causes

for each

failure?

How can 

each failure

be detected?

In what way

does each 

failure 

matter?

What hap-

pens when 

each failure

occurs?

Figure 4.3 The mains steps of FMECA.
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Ref.
no Function

Opera-
tional 
mode

Failure
mode

Failure 
cause or

mechanism

Detection
of failure

On the
subsystem

On the
system
function

Failure
rate

Severity
ranking

Risk
reducing
measures Comments

Description of unit Description of failure Effect of failure

System:

Ref. drawing no.:

Performed by:

Date: Page:    of

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Figure 4.4 Example of an FMECA worksheet.

roll. In applications where it is not relevant to distinguish between
operational modes, this column may be omitted.

(4) Failure mode. For each component’s function and operational mode, all the
failure modes are identified and recorded. Observe that the failure modes
should be defined as nonfulfillment of the functional requirements of the
functions specified in column 2.

(5) Failure causes and mechanisms. The possible failure mechanisms (corrosion,
erosion, fatigue, etc.) that may produce the identified failure modes are
recorded in this column. Other failure causes should also be recorded.
To identify all potential failure causes, it may be useful to remember the
interfaces shown in Figure 2.2.

(6) Detection of failure. The way to detect each failure mode is then recorded.
Options include alarms, testing, human perception, and so forth. The ability
to detect a failure mode is sometimes rated.

(7) Effects on other components in the same subsystem. All the main effects of the
identified failure modes on other components in the subsystem are recorded.

(8) Effects on the function of the system. All the main effects of the identified
failure mode on the function of the system are then recorded. The resulting
operational status of the system after the failure may also be recorded, that
is, whether the system is functioning or not, or is switched over to another
operational mode.

Remark 4.1 (Safety and availability)
In some applications, it may be relevant to replace columns 7 and 8 by, for
example, Effect on safety and Effect on availability. ◻
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Table 4.2 Occurrence rating (example).

Frequent Once per 1 mo or more often
Probable Once per 1 yr
Occasional Once per 10 yr
Remote Once per 100 yr
Very unlikely Once per 1000 yr or more seldom

(9) Failure rate. Failure rates for each failure mode are then recorded. In many
cases, it is more suitable to classify the failure rate in classes, such as shown
in Table 4.2.

Observe that the failure rate with respect to a failure mode might be dif-
ferent for the various operational modes. The failure mode “Leakage to the
environment” for a valve may, as an example, be more likely when the valve
is closed and pressurized, than when the valve is open.

(10) Severity. The severity of a failure mode is the potential consequence of the fail-
ure, determined by the degree of injury, property damage, or system damage
that could ultimately occur. The ranking categories in Table 4.3 are some-
times used.

(11) Risk reduction measures. Possible actions to correct the failure and restore
the function or prevent serious consequences are recorded. Actions that are
likely to reduce the frequency of the failure modes may also be recorded.

(12) Comments. This column may be used to record pertinent information not
included in the other columns.

By combining the failure rate (column 9) and the severity (column 10), the crit-
icality of the different failure modes may be ranked. This ranking is shown in
Figure 4.5 as a risk matrix. In this example, the failure rate is classified into five

Table 4.3 Severity rating (example).

Catastrophic Any failure that could result in deaths or injuries or prevent
performance of the intended mission.

Critical Any failure that will degrade the system beyond acceptable
limits and create a safety hazard (cause death or injury if
corrective action is not immediately taken).

Major Any failure that will degrade the system beyond acceptable
limits but can be adequately counteracted or controlled by
alternate means.

Minor Any failure that does not degrade the overall performance
beyond acceptable limits – one of the nuisance variety.
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Failure rate

Frequent

Probable

Occasional

Remote

Very unlikely

Minor Major Critical Catastrophic

Severity group

(x)

(x)

(x)

(x)

Figure 4.5 Risk matrix of the different failure modes.

classes, and the severity is classified into four classes. The most critical failure
modes are represented by (x) in the upper right corner of the risk matrix, whereas
the least critical failure modes get (x) in the lower left corner of the risk matrix.
In practical analyses, (x) is replaced by an abbreviated indicator for the actual fail-
ure mode.

Risk Priority Number
In some application areas, for example in the automobile industry, it is common
to present the “risk” related to a failure mode as a risk priority number (RPN). The
RPN is calculated on the as the product of the severity (S), occurrence (O), and
detection (D) ratings.

RPN = S × O × D. (4.1)

The ratings are given as follows:

Severity (S). The severity rating is a numerical value, subjectively chosen as an
integer between 1 and 10 that assesses how severe the customer perceives the
effect of the failure.

Occurrence rate (O). The occurrence rating is a numerical value, subjectively cho-
sen as an integer between 1 and 10 that estimates the probability that the failure
mode will occur during the lifetime of the item.

Detection (D). The detection rating is a numerical value, subjectively chosen as
an integer between 1 and 10 that assesses the effectiveness of the controls to
prevent or detect the failure before the failure reaches the customer.

The RPN, as such, does not have any specific meaning, but the RPN (between
1 and 1000) may be used to rank the concerns in the design. In many applica-
tions, however, the severity should have higher priority than the RPN. RPNs are
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used only to prioritize potential design weaknesses for consideration of possible
design actions to reduce criticality and/or to make the design less sensitive to
manufacturing variation.

4.2.4 Applications

Many industries require FMECA to be integrated in the design process of technical
systems and that FMECA worksheets be part of the system documentation. This
is, for example a common practice for suppliers to the defense, the aerospace, and
the automobile industry. The same requirements are becoming more and more
usual within the offshore oil and gas industry.

FMECA gives the highest value when carried out during the design phase of
a system. The main objective of the analysis is to reveal weaknesses and poten-
tial failures at an early stage, to enable the designer to incorporate corrections
and barriers in the design. The results from FMECA may also be useful during
modifications of the system and for maintenance planning. Designers are trained
to think in terms of functions; how to design the system to meet specified func-
tional requirements. Through FMECA, designers are also “forced” to consider
potential failures. By early awareness of potential failures, many failures may be
designed-out of the system.

Many industries are introducing a reliability-centered maintenance (RCM) pro-
gram for maintenance planning. FMECA is one of the basic tools of RCM and is
further discussed in Chapter 9.

Because all failure modes, failure mechanisms, and symptoms are documented
in FMECA, this provides valuable information as a basis for fault diagnostic pro-
cedures and for a repairman’s checklists. FMECA is very effective when applied
to a system where system failures most likely are the results of single component
failures. During the analysis, each failure is considered individually as an inde-
pendent occurrence with no relation to other failures in the system. FMECA is not
suitable for analysis of systems with a fair degree of redundancy. For such systems,
FTA is a much better alternative. An introduction to FTA is given in Section 4.3. In
addition, FMECA is not well suited for analyzing systems where common cause
failures are considered to be a significant problem. Common cause failures are
discussed in Chapter 8.

A limitation of FMECA is further the inadequate attention generally given to
human errors. This is mainly due to the concentration on hardware failures.

Perhaps the worst drawback is that all component failures are examined and
documented, including those that do not have any significant consequences. For
large systems, especially systems with a high degree of redundancy, the amount of
unnecessary documentation work is a major disadvantage.



�

� �

�

88 4 Qualitative System Reliability Analysis

4.3 Fault Tree Analysis

FTA was introduced in 1962 at Bell Telephone Laboratories (see Section 1.10).
Today, FTA is one of the most commonly used techniques for risk and reliability
studies. In particular, FTA has been used with success to analyze safety systems
in nuclear power stations, such as in the Reactor Safety Study (NUREG-75/014,
1975).

A fault tree is a logic diagram that displays the relationships between a potential
system fault and the causes of this fault. In risk analysis, the system fault is often
a potential accident. The causes may be environmental conditions, human errors,
normal events (events that are expected to occur during the life span of the system),
and specific component failures. Observe that the potential system fault may, or
may not, occur sometime in the future.

FTA may be qualitative, quantitative, or both, depending on the objectives of the
analysis. Possible results from the analysis may, for example be

• A listing of the possible combinations of environmental factors, human errors,
normal events, and component faults that may result in the system fault.

• The probability that the system fault will occur at a specified time or during a
specified time interval.

Only qualitative FTA is covered in this chapter. Quantitative FTA is discussed in
Chapter 6. FTA is thoroughly described in standards and guidelines (e.g. see IEC
61025 2006; NUREG-0492 1981; NASA 2002).

4.3.1 Fault Tree Symbols and Elements

FTA is a deductive method, based on a top-down approach starting with a spec-
ified system fault. The system fault is called the TOP event of the fault tree. The
analysis is started by assuming that the potential system fault has occurred (i.e.
exists). The immediate causal events A1,A2,… that, either alone or in combina-
tion, lead to the TOP event are identified and connected to the TOP event through
a logic gate. Next, we identify all potential causal events Ai,1,Ai,2,… that may lead
to event Ai for i = 1, 2,…. These events are connected to event Ai through a logic
gate. This procedure is continued deductively (i.e. backwards in the causal chain)
until we reach a suitable level of detail. The events on the lowest level are called the
basic events of the fault tree. Basic events may include component faults, human
errors, environmental conditions, and normal events. A simple fault tree is shown
in Figure 4.6. The main symbols used in the fault tree are shown and explained in
Table 4.4.
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TOP

a1,1 a3,1 a3,2a1,2

a2

A1

A1,1 A3,1 A3,2A1,2

A2 A3

TOP event

Logic OR-gate

Logic OR-gate Logic AND-gate

Intermediate event

Basic events

Basic event

Labels

Figure 4.6 A simple fault tree.

The fault tree in Figure 4.6 shows that the TOP event occurs when one of the
events A1,A2, or A3 occurs. These three events are connected to the TOP event by
a logic OR-gate. We may also read this as “TOP event occurs if event A1 occurs, OR

event A2 occurs, OR event A3 occurs.” Event A1 and event A3 are called intermediate
events because they are developed further by logic gates. Event A2 is a basic event.
The symbol in the circle is a label that uniquely identifies the basic event in the
fault tree. Event A1 is connected to its causal events A1,1 and A1,2 by an OR-gate
and we say that “event A1 occurs if event A1,1 OR event A1,2 occurs.” Event A3 is
connected to its causes, event A3,1 and event A3,2 by an AND-gate and we say that
“event A3 occurs if event A3,1 AND event A3,2 occur at the same time.”

Remark 4.2 (Terminology)
Observe that the method is called fault tree analysis and not failure tree analysis
and recall from Chapter 3 that fault is a state, whereas failure is an event. Also
observe that the fault tree construction is started by a potential (i.e. future) system
failure that we imagine has occurred. This means that we start with a system fault
and we ask “what could the causes be for this state to exist?” The fault state exists,
so the causes are also states, even though the term “event” is used to describe them
(TOP event, intermediate event, and basic event) ◻

FTA is a binary analysis. All events are assumed either to occur, or not to occur;
there are no intermediate states. In the basic version, the fault tree is static and
cannot accommodate any dynamic effects.
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Table 4.4 Fault tree symbols.

Symbol Description

Logic gates or-gate

A

E1 E2 E3

The OR-gate indicates that the output event A
occurs if any of the input events Ei occur

and-gate

A

E1 E2 E3

The AND-gate indicates that the output event A
occurs only when all the input events Ei occur
at the same time

Input events Basic event The Basic event represents a basic equipment
failure that requires no further development of
failure causes

Undeveloped event The undeveloped event represents an event
that is not examined further because
information is unavailable or because its
consequence is insignificant

Description Comment rectangle The Comment rectangle is for supplementary
information

Transfer symbols Transfer-out The Transfer-out symbol indicates that the
fault tree is developed further at the
occurrence of the corresponding Transfer-in
symbol

Transfer-in

The graphical layouts of the fault tree symbols depend on what standard we
follow. Table 4.4 shows the most commonly used fault tree symbols together with
a brief description. A number of more advanced fault tree symbols are available,
but they are not covered in this book. A thorough description may be found in, e.g.
see NUREG-0492 (1981) and NASA (2002).
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Observe that the fault tree symbols used in IEC 61025 (2006) are different
from the symbols in Table 4.4, but the meaning of the corresponding symbols are
the same.

An FTA is normally carried out in five steps1:

(1) Definition of the problem and the boundary conditions
(2) Construction of the fault tree
(3) Identification of minimal cut and/or path sets
(4) Qualitative analysis of the fault tree
(5) Quantitative analysis of the fault tree

Steps 1–4 are covered in this section and step 5 is discussed in Chapter 6.

4.3.2 Definition of the Problem and the Boundary Conditions

The first activity of FTA has two substeps:

• Definition of the TOP event to be analyzed.
• Definition of the boundary conditions for the analysis (see also Chapter 2).

It is important that the TOP event is given a clear and unambiguous definition.
If not, the analysis is often of limited value. As an example, the event description
“system breakdown” is far too general and vague. The description of the TOP event
should always give answer to the questions what, where, and when:

What: Describes the potential system failure that is to be studied, together with a
clear system failure mode description.

Where: Describes where the system failure mode may occur.
When: Describes when the system failure occurs (e.g. during normal operation).

To get a consistent analysis, it is important that the boundary conditions for
the analysis are carefully defined. General boundary conditions were discussed in
Chapter 2. Specific boundary conditions for the fault tree construction include the
following:

The initial conditions. What is the operational state of the system when the TOP
event is occurring? Is the system running on full/reduced capacity? Which
valves are open/closed, which pumps are running, and so on?

Boundary conditions with respect to external stresses. What type of external stresses
should be included in the analysis? By external stresses, we mean stresses from
war, sabotage, earthquake, lightning, and so on.

1 The procedure described below is influenced by CCPS (2008).
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The level of resolution. How far down in detail should we go to identify potential
causes for a failed state? Should we, for example, be satisfied when we have
identified the reason to be “valve fail to close,” or should we break it further
down to failures in the valve housing, valve stem, actuator, and so forth. When
determining the preferred level of resolution, we should remember that the
detailedness in the fault tree should be comparable to the detailedness of the
information available.

4.3.3 Constructing the Fault Tree

The fault tree construction always starts with the TOP event. Thereafter, all fault
events that are the immediate, necessary, and sufficient causes that result in the
TOP event are identified. These causes are connected to the TOP event via a logic
gate. It is important that the first level of causes under the TOP event is put up in
a structured way. This first level is often referred to as the TOP structure of the
fault tree. The TOP structure causes are often taken to be failures of the prime
modules of the system, or of the prime functions of the system. We then proceed,
level by level, until all fault events have been developed to the prescribed level of
resolution. The analysis is in other words deductive and is carried out by repeatedly
asking “What are the causes of this event?”

Rules for Fault Tree Construction
Let fault event denote any event in the fault tree, whether it is a basic event or an
event higher up in the tree.

Describe the fault events. Each basic event should be carefully described (what,
where, when) in a “comment rectangle.”

Evaluate the fault events. The fault events may be of different types, such as
technical failures, human errors, or environmental stresses. Each event should
be carefully evaluated. As explained in Section 3.6.3, technical failures may be
divided into groups, such as primary failures and secondary failures. Primary
failures of components are usually classified as basic events, whereas secondary
failures are classified as intermediate events that require a further investigation
to identify the prime reasons.
When evaluating a fault event, we ask the question, “Can this fault be a primary
failure?” If the answer is yes, we classify the fault event as a “normal” basic
event. If the answer is no, we classify the fault event as either an intermediate
event that has to be further developed, or as a “secondary” basic event. The
“secondary” basic event is often called an undeveloped event and represents a
fault event that is not examined further because information is unavailable or
because its consequence is insignificant.
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Complete the gates. All inputs to a specific gate should be completely defined and
described before proceeding to the next gate. The fault tree should be completed
in levels, and each level should be completed before beginning the next level.

Example 4.1 (Fire detector system)
Consider a simplified version of a fire detector system located in a production
room. (Observe that this system is not a fully realistic fire detector system.)

The fire detector system is divided into two parts, heat detection and smoke
detection. In addition, there is an alarm button that can be operated manually.
The fire detector system can be described schematically, as shown in Figures 4.7
and 4.8.

Heat detection. In the production room, there is a closed, pneumatic pipe circuit
with four identical fuse plugs, FP1, FP2, FP3, and FP4. These plugs let air out
of the circuit if they are exposed to temperatures higher than 72 ∘C. The pneu-
matic system has a pressure of three bars and is connected to a pressure switch
(pressostat) PS. If one or more of the plugs are activated, the switch will be acti-
vated and give an electrical signal to the start relay for the alarm and shutdown
system. In order to have an electrical signal, the DC-source, DC, must be intact.

Smoke detection. The smoke detection system consists of three optical smoke detec-
tors, SD1, SD2, and SD3; all are independent and have their own batteries. These
detectors are very sensitive and can give warning of fire at an early stage. In
order to avoid false alarms, the three smoke detectors are connected via a log-
ical 2oo3:G voting unit (VU). This means that at least two detectors must give
fire signal before the fire alarm is activated. If at least two of the three detectors
are activated, the 2oo3:G voting unit will give an electric signal to the start relay
(SR), for the alarm and shutdown system. Again, the DC voltage source, DC,
must be intact to obtain an electrical signal.

Manual activation. Together with the pneumatic pipe circuit with the four fuse
plugs, there is a manual switch MS that can be turned to relieve the pressure in
the pipe circuit. If the operator, OP, who should be continually present, notices
a fire, she can activate this switch. When the switch is activated, the pressure in

Heat detection

Smoke detection

Manual detection

Start

relay

Shutdown system

Fire alarm

Activation of fire

extinguishers

Figure 4.7 System overview of fire detector system.
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MSOP

PS

FP3

Temp

Temp

Temp

Shutdown of process, alarm, fire extinguishers

Figure 4.8 Schematic layout of the fire detector system.

the pipe circuit is relieved, and the pressure switch (PS), is activated and gives
an electric signal to the start relay, SR. Again, the DC source must be intact.

The start relay. When the start relay SR receives an electrical signal from the detec-
tion systems, it is activated and gives a signal to shut down the process and to
activate the alarm and the fire extinguishers.

Assume now that a fire starts. The fire detector system should detect and give
warning about the fire. Let the TOP event be “No signals from the start relay SR
when a fire condition is present.” A possible fault tree for this TOP event is shown
in Figure 4.9. ◻

Remark 4.3 (The fault tree is not unique)
Observe that a fault tree does not show the causes of all system faults of the sys-
tem. It only illustrates the causes of a specified fault, the TOP event. The fault tree
is usually dependent on the analyst. Two different analysts will, in most cases,
construct slightly different fault trees. ◻
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SD1 SD2 SD1 SD3 SD3SD2

Figure 4.9 Fault tree for the fire detector system in Example 4.1.

4.3.4 Identification of Minimal Cut and Path Sets

A fault tree provides valuable information about possible combinations of fault
events that will result in the TOP event. Such a combination of fault events is called
a cut set. In the fault tree terminology, a cut set is defined as follows:
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Definition 4.1 (Minimal cut set in fault tree)
A cut set in a fault tree is a set of basic events whose occurrence (at the same time)
ensures that the TOP event occurs. A cut set is said to be minimal if the set cannot
be reduced without losing its status as a cut set. ◻

The number of different basic events in a minimal cut set is called the order of the
cut set. For small and simple fault trees, it is feasible to identify the minimal sets
by inspection without any formal procedure/algorithm. For large or complicated
fault trees, we need an efficient algorithm.

4.3.5 MOCUS

MOCUS (method for obtaining cut sets) is an algorithm that can be used to find
the minimal cut sets of a fault tree. The algorithm is best explained by an example.
Consider the fault tree in Figure 4.10, where the gates are numbered from G0 to
G6. The example fault tree is adapted from Barlow and Lambert (1975).

The algorithm starts at the G0 gate representing the TOP event. If this is an
OR-gate, each input to the gate is written in separate rows. (The inputs may be new
gates). Similarly, if the G0 gate is an AND-gate, the inputs to the gate are written in
separate columns.

G0

21

3

G1

65 8

G2

4

G4

6 7

G3

G5 G6

Figure 4.10 Example of a fault
tree.
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In our example, G0 is an OR-gate, hence, we start with

1
G1
2

Because each of the three inputs, 1, G1, and 2 will cause the TOP event to occur,
each of them will constitute a cut set.

The idea is to successively replace each gate with its inputs (basic events and
new gates) until one has gone through the whole fault tree and is left with just the
basic events. When this procedure is completed, the rows in the established matrix
represent the cut sets in the fault tree.

Because G1 is an OR-gate: Because G2 is an AND-gate:
1 1

G2 G4,G5
G3 G3
2 2

Because G3 is an OR-gate: Because G4 is an OR-gate:
1 1

G4,G5 4,G5
3 5,G5

G6 3
2 G6

2

Because G5 is an OR-gate: Because G6 is an OR-gate:
1 1

4,6 4,6
4,7 4,7
5,6 5,6
5,7 5,7
3 3

G6 6
2 8

2
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We are then left with the following nine cut sets:

{1} {4,6}
{2} {4,7}
{3} {5,6}
{6} {5,7}
{8}

Because {6} is a cut set, {4,6} and {5,6} are not minimal. If we leave these out,
we are left with the following list of minimal cut sets:

{1}, {2}, {3}, {6}, {8}, {4,7}, {5,7}

In other words, five minimal cut sets of order 1 and two minimal cut sets of
order 2. The reason that the algorithm in this case leads to nonminimal cut sets is
that basic event 6 occurs several places in the fault tree.

In some situations, it may be of interest to identify the possible combinations
of components which by functioning secure that the system is functioning. Such
a combination of components (basic events) is called a path set. In the fault tree
terminology, a path set is defined as follows:

Definition 4.2 (Minimal path set in fault tree)
A path set in a fault tree is a set of basic events whose nonoccurrence (at the same
time) ensures that the TOP event does not occur. A path set is said to be minimal
if the set cannot be reduced without losing its status as a path set. ◻

The number of different basic events in a minimal path set is called the order
of the path set. To find the minimal path sets in the fault tree, we may start with
the so-called dual fault tree. This can be obtained by replacing all the AND-gates
in the original fault tree with OR-gates, and vice versa. In addition, we let the
events in the dual fault tree be complements of the corresponding events in the
original fault tree. The same procedure, as described above applied to the dual
fault tree, will now yield the minimal path sets.

For relatively “simple” fault trees, one can apply the MOCUS algorithm by hand.
More complicated fault trees require the use of a computer. A number of computer
programs for minimal cut (path) set identification are available. Some of these are
based on MOCUS, but faster algorithms have been developed.

4.3.6 Qualitative Evaluation of the Fault Tree

A fault tree may be evaluated qualitatively2 based on the minimal cut sets. The
criticality of a cut set obviously depends on the number of basic events in the cut

2 This section is influenced by CCPS (2008).
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Table 4.5 Criticality ranking of minimal cut sets of order 2.

Rank Basic event 1 (type) Basic event 2 (type)

1 Human error Human error
2 Human error Active equipment failure
3 Human error Passive equipment failure
4 Active equipment failure Active equipment failure
5 Active equipment failure Passive equipment failure
6 Passive equipment failure Passive equipment failure

set (i.e. the order of the cut set). A cut set of order one is usually more critical than
a cut set of order two, or more. When we have a cut set of order one, the TOP event
will occur as soon as the corresponding basic event occurs. When a cut set has two
basic events, both of these have to occur at the same time to cause the TOP event
to occur.

Another important factor is the type of basic events of a minimal cut set. We
may rank the criticality of the various cut sets according to the following ranking
of basic events:

(1) Human error
(2) Active equipment failure
(3) Passive equipment failure

This ranking is based on the assumption that human errors occur more frequently
than active equipment failures and that active equipment is more prone to fail-
ure than passive equipment (e.g. an active or running pump is more exposed to
failures than a passive standby pump). Based on this ranking, we get the ranking
in Table 4.5 of the criticality of minimal cut sets of order 2. (Rank 1 is the most
critical one.)

Example 4.2 (Offshore separator)
Consider a part of the processing section on an offshore oil and gas production
installation. A mixture of oil, gas, and water coming from the various wells is col-
lected in a wellhead manifold and led into two identical process trains. The gas,
oil, and water are separated in several separators. The gas from the process trains is
then collected in a compressor manifold and led to the gas export pipeline via com-
pressors. The oil is loaded onto tankers, and the water is cleaned and re-injected
into the reservoir. Figure 4.11 shows a simplified sketch of a section of one of the
process trains. The mixture of oil, gas, and water from the wellhead manifold is led
into the separator, where the gas is (partly) separated from the fluids. The process is
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controlled by a process control system that is not shown in the figure. If the process
control system fails, a separate process safety system should prevent a major acci-
dent. The rest of this example is limited to the process safety system. The process
safety system has three protection layers:

(1) On the inlet pipeline, there are installed two process shutdown (PSD) valves,
PSD1, and PSD2 in series. The valves are fail-safe close and are held open by
hydraulic (or pneumatic) pressure. When the hydraulic (or pneumatic) pres-
sure is bled off, the valves will close by the force of a precharged actuator. The
system supplying hydraulic (or pneumatic) pressure to the valve actuators is
not shown in Figure 4.11.

Two pressure switches, PS1 and PS2 are installed in the separator. If the pres-
sure in the separator increases above a set value, the pressure switches should
send a signal to a logic unit (LU). If the LU receives at least one signal from
the pressure switches, it will send a signal to the PSD valves to close.

(2) Two pressure safety valves (PSV) are installed to relieve the pressure in the sep-
arator in case the pressure increases beyond a specified high pressure. The PSV
valves, PSV1, and PSV2 are equipped with a spring-loaded actuator that may
be adjusted to a preset pressure.

PSD1 PSD2

Gas, oil, and

water inlet

Pressure

switches

LU

Gas outlet

PSV1 PSV2

To flare

Separator

Fluid outlet

RD

Figure 4.11 Sketch of a first stage gas separator.



�

� �

�

4.3 Fault Tree Analysis 101

(3) A rupture disc (RD) is installed on top of the separator as a last safety barrier.
If the other safety systems fail, the rupture disc will open and prevent the sep-
arator from rupturing or exploding. If the rupture disc opens, the gas will blow
out from the top of the separator and maybe into a blowdown system.

The reliability of the process safety system may be analyzed by different
approaches. We will here illustrate how a fault tree can be performed.

Fault Tree Analysis. The most critical situation will arise if the gas outlet line A is
suddenly blocked. The pressure in the separator will then rapidly increase and will
very soon reach a critical overpressure, if the process safety system does not func-
tion properly. A relevant TOP event is therefore “Critical overpressure in the first
stage separator.” We assume that the critical situation occurs during normal pro-
duction and that the fluid level in the separator is normal when the event occurs.
We may therefore disregard the fluid outlet line from the FTA. A possible fault tree
for this TOP event is shown in Figure 4.12. Chapter 6 deals with how to enter fail-
ure rates and other reliability parameters into the fault tree, and how to calculate
the probability Q0(t) of the TOP event when gas outlet is suddenly blocked.

Before constructing the fault tree in Figure 4.12, we have made a number of
assumptions. The assumptions should be recorded in a separate file and integrated
in the report from the analysis. The lowest level of resolution in the fault tree in
Figure 4.12 is a failure mode of a technical item. Some of these items are rather
complicated, and it might be of interest to break them down into subitems and
attribute failures to these. The valves may, for example be broken down into valve
body and actuator. These subitems may again be broken down to sub-subitems,
and so on. The failure of the pressure switches to give signal may be split into
two parts, individual failures and common cause failures that cause both pressure
switches to fail at the same time. A pressure switch may fail due to an inherent
component failure, or due to miscalibration by the maintenance crew. How far we
should proceed depends on the objective of the analysis. Anyway, the assumptions
made should be recorded. ◻

4.3.7 Dynamic Fault Trees

A dynamic fault tree (DFT) extends the traditional fault tree by taking certain
dynamic effects into account. A typical dynamic effect occurs when the output
event of a gate depends not only on the logical combination of its input events but
also on the order in which all the input events occur. To cater for relevant dynamic
effects, several new gates have to be introduced in addition to the AND and OR gates.
An example of such an effect occurs when a specific event (called a trigger) occurs
and causes otherwise independent events to occur at (almost) the same time. The
trigger event may, for example be a control system failure or a power failure.
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Figure 4.12 Fault tree for the first stage separator in Example 4.2.
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Analysis of DFTs is rather complicated and goes beyond the scope of this book.
Readers who want to pursue this topic may start by reading Chapter 8 of NASA
(2002). Quantitative DFT analysis is usually accomplished either by converting
the DFT to a Markov model (see Chapter 11) or by Monte Carlo simulation (see
Section 6.10.1). For further information, see Dugan (2000) and Xu et al. (2006).
DFT is not discussed further in this book.

4.4 Event Tree Analysis

In many accident scenarios, the initiating event, such as a ruptured pipeline, may
have a wide spectrum of possible outcomes, ranging from no consequences to a
disaster. In most well-designed systems, a number of safety functions, or barriers,
are provided to stop, or mitigate, the consequences of potential initiating events.
The safety functions may comprise technical equipment, human interventions,
emergency procedures, and combinations of these. Examples of technical safety
functions are fire and gas detection systems, emergency shutdown (ESD) systems,
automatic train stop systems, fire-fighting systems, fire walls, and evacuation sys-
tems. The consequences of the initiating event are determined by how the accident
progression is affected by subsequent failure or operation of these safety functions,
by human errors made in responding to the initiating event, and by various factors
such as weather conditions and time of the day.

The accident progression is best analyzed by an inductive method. The most
common method is event tree analysis (ETA). An event tree is a logic tree diagram
that starts from an initiating event and provides a systematic coverage of the time
sequence of event propagation to its potential outcomes or consequences. In the
development of the event tree, we follow each of the possible sequences of events
that result from assuming failure or success of the safety functions affected as the
accident propagates. Each event in the tree is conditional on the occurrence of the
previous events in the event chain. The outcomes of each event are most often
assumed to be binary (true or false – yes or no), but may also include multiple
outcomes (e.g. yes, partly, and no).

ETA is a natural part of most risk analyses but may also be used as a design tool to
demonstrate the effectiveness of protective systems in a plant. Event tree analyses
are also used for human reliability assessment, for example as part of the technique
for human error-rate prediction (THERP) technique (NUREG/CR-1278).

The ETA may be qualitative, quantitative, or both, depending on the objectives of
the analysis. In quantitative risk assessment application, event trees may be devel-
oped independently or follow on from FTA.
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Figure 4.13 A simple event tree for a dust explosion.

An ETA is usually carried out in six steps (CCPS 2008):

(1) Identification of a relevant initiating (hazardous) event that may give rise to
unwanted consequences.

(2) Identification of the safety functions that are designed to deal with the initiat-
ing event.

(3) Construction of the event tree.
(4) Description of the resulting accident event sequences.
(5) Calculation of probabilities/frequencies for the identified consequences.
(6) Compilation and presentation of the results from the analysis.

A simple event tree for a (dust) explosion is shown in Figure 4.13. Following
the initiating event explosion in Figure 4.13, fire may, or may not, break out. A
sprinkler system and an alarm system have been installed. These may, or may not,
function. Quantitative analysis of event trees is discussed in Section 6.8.

4.4.1 Initiating Event

Selection of a relevant initiating event is very important for the analysis. The initi-
ating event is usually defined as the first significant deviation from the normal
situation that may lead to a system failure or an accident. The initiating event
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may be a technical failure or some human error and may have been identified
by techniques such as FMECA. To be of interest for further analysis, the initiating
event must give rise to a number of consequence sequences. If the initiating event
gives rise to only one consequence sequence, FTA is a more suitable technique to
analyze the problem.

The initiating event is often identified and anticipated as a possible critical event
already in the design phase. In such cases, barriers and safety functions have usu-
ally been introduced to deal with the event.

Various analysts may define slightly different initiating events. For a safety anal-
ysis of, for example an oxidation reactor, one analyst may choose “Loss of cool-
ing water to the reactor” as a relevant initiating event. Another analyst may, for
example choose “Rupture of cooling water pipeline” as initiating event. Both of
these are equally correct.

4.4.2 Safety Functions

Safety functions (e.g. barriers, safety systems, procedures, and operator actions)
that respond to the initiating event may be thought of as the system’s defense
against the occurrence of the initiating event. Safety functions may be classified
in the following groups (CCPS 2008):

• Safety systems that automatically respond to the initiating event (e.g. automatic
shutdown systems)

• Alarms that alert the operator(s) when the initiating event occurs (e.g. fire alarm
systems)

• Operator procedures following an alarm
• Barriers or containment methods that are intended to limit the effects of the

initiating event

The analyst must identify all barriers and safety functions that have impact on
the consequences of an initiating event, in the sequence they are assumed to be
activated.

The possible event chains, and sometimes also the safety functions, may be
affected by various hazard contributing factors (events or states), such as

• Ignition or no ignition of a gas release
• Explosion or no explosion
• Time of the day
• Wind direction toward community or not
• Meteorological conditions
• Liquid/gas release contained or not
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4.4.3 Event Tree Construction

The event tree displays the chronological development of event chains, starting
with the initiating event and proceeding through successes and/or failures of the
safety functions that respond to the initiating event. The consequences are clearly
defined events that result from the initiating event.

The diagram is usually drawn from left to right, starting from the initiating event.
Each safety function or hazard contributing factor is called a node in the event tree
and is formulated either as an event description, or as a question, usually with two
possible outcomes (true or false – yes or no). At each node, the tree splits into
two branches: the upper branch signifying that the event description in the box
above that node is true, and a lower branch, signifying that it is false. If we formu-
late the description of each node such that the worst outcome will always be on
the upper branch, the consequences will usually be ranked in a descending order,
with the worst consequence highest up in the list.

The outputs from one event lead to other events. The development is continued
to the resulting consequences. If the diagram is too big to be drawn on a single page,
it is possible to isolate branches and draw them on different pages. The different
pages may be linked together by transfer symbols. Observe that for a sequence of
n events, there will be 2n branches of the tree. The number may in many cases be
reduced by eliminating impossible branches.

4.4.4 Description of Resulting Event Sequences

The last step in the qualitative part of the analysis is to describe the different event
sequences arising from the initiating event. One or more of the sequences may
represent a safe recovery and a return to normal operation or an orderly shutdown.
The sequences of importance, from a safety point of view, are those that result in
accidents.

The analyst must strive to describe the resulting consequences in a clear and
unambiguous way. When the consequences are described, the analyst may rank
them according to their criticality. The structure of the diagram, clearly showing
the progression of the accident, helps the analyst in specifying where additional
procedures or safety systems will be most effective in protecting against these acci-
dents.

Sometimes, we may find it beneficial to split the end consequences (outcomes)
of the ETA into various consequence categories as shown in Figure 4.14. In this
example, the following categories are used:

• Loss of lives
• Material damage
• Environmental damage
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Figure 4.14 Presentation of results from ETA.

Within each category, the consequences may be ranked. For the category “loss of
lives,” the subcategories 0, 1–2, 3–5, 6–20, and≥21 are proposed. For the categories
“material damage” and “environmental damage” the subcategories are negligible
(N), low (L), medium (M), and high (H). What is meant by these categories has
to be defined in each particular case. If we are unable to put the consequences
into a single group, we may give a probability distribution over the subcategories.
The outcome of an event chain may, for example be that nobody will be killed
with probability 50%, 1–2 persons will be killed with probability 40%, and 3–5 per-
sons will be killed with probability 10%. If we in addition are able to estimate the
frequency of the outcome it is straightforward to estimate the fatal accident rate3

(FAR) associated with the specified initiating event.

Example 4.3 (Offshore separator–event tree)
Reconsider the offshore separator in Example 4.2. The activation pressures for the
three protection layers of the process safety system are shown in Figure 4.15. We
get different consequences depending on whether or not the three protection sys-
tems are functioning, and the system is therefore suitable for ETA. The initiating
event is “blockage of the gas outlet line.” A possible event tree for this initiating
event is presented in Figure 4.16. The four outcomes are seen to give very different
consequences. The most critical outcome is “rupture or explosion of separator”
and may lead to total loss of the installation if the gas is ignited. The probability
of this outcome is, however, very low because the rupture disc is a very simple
and reliable item. The second most critical outcome is “gas flowing out of rup-
ture disc.” The criticality of this outcome depends on the design of the system, but
may for some installations be very critical, if the gas is ignited. The next outcome

3 FAR is a commonly used metric for personnel risk and is defined as the expected number of
fatalities per 108 hours of exposure.
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Figure 4.15 Activation pressures for the three protection layers of the process safety
system.
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Figure 4.16 An event tree for the initiating event “blockage of the gas outlet line.”

“gas relieved to flare” is usually a noncritical event, but this will lead to an eco-
nomic loss (CO2 tax) and production downtime. The last outcome is a controlled
shutdown that will only lead to production downtime.

In this case, ETA is seen to provide more detailed results than FTA. The two
analyses may be combined. The causes of failure of barrier 1 (PSDs do not close
flow into separator) are found in branch 1 of the fault tree in Figure 4.12. The
causes of failure of barrier 2 (PSVs do not relieve pressure) are found in branch 2
of the fault tree in Figure 4.12. ◻
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4.5 Fault Trees versus Reliability Block Diagrams

RBDs were introduced in Chapter 2 and provide roughly the same information as
fault trees. In some practical applications, we may choose whether to model the
system structure by a fault tree or by an RBD. When the fault tree is limited to only
OR-gates and AND-gates, both methods give the same result, and we may convert the
fault tree to an RBD, and vice versa.

Remark 4.4 (Terminology)
When block i in an RBD is functioning, this means that a specific function i of the
associated component is in order, for i = 1, 2,… ,n. Instead of saying “block i is
functioning” we will from now on say that “component i is functioning.” Even if
this change is not fully correct, it simplifies the presentation and it also brings our
presentation in line with most other textbooks on system reliability. ◻

In an RBD, connection through a block means that the associated component is
functioning. This again means that one, or a specified set, of failure modes of the
component is not occurring. In a fault tree, we may let a basic event be the occur-
rence of the same failure mode – or the same specified set of failure modes – for the
component. When the TOP event in the fault tree represents “system failure” and
the basic events are defined as above, it is easy to see, for instance, that a series
structure is equivalent to a fault tree where all the basic events are connected
through an OR-gate. The TOP event occurs and the series system fails, if either
component 1, OR component 2, OR component 3, OR · · · OR component n fails.

In the same way, a parallel structure may be represented as a fault tree where
all the basic events are connected through an AND-gate. The TOP event occurs (i.e.
the parallel structure fails), if component 1, AND component 2, AND component 3,
AND · · · AND component n fail. The relationships between some simple RBDs and
fault trees are shown in Figure 4.17.

Example 4.4 (Example 4.1 (cont.))
It is usually an easy task to convert a fault tree to an RBD. The RBD corresponding
to the fault tree for the fire detector system in Figure 4.8 is shown in Figure 4.18.
In this conversion, we start from the TOP event and replace the gates successively.
OR-gates are replaced by series structures of the “components” directly beneath
the gate, and AND-gates are replaced by a parallel structure of the “components”
directly beneath the gate. ◻

From Figure 4.18, we observe that some of the components are represented in
two different locations in the diagram. It should be emphasized that an RBD is
not a physical layout diagram for the system. It is a logic diagram, illustrating the
function of the system.
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Figure 4.17 Relationship between some simple RBDs and fault trees.
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Figure 4.18 RBD for the fire detector system.
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4.5.1 Recommendation

For most practical applications, we recommend to start by constructing a fault
tree instead of an RBD. When constructing a fault tree, we search for potential
causes of the TOP event and all intermediate events. We think in terms of faults
and will often reveal more potential fault causes than if we think in terms of func-
tions. The construction of a fault tree will give the analyst a better understanding
of the potential causes of fault. If the analysis is carried out in the design phase,
the analyst may rethink the design and operation of the system and take actions
to eliminate potential hazards.

When we establish an RBD, we think in terms of functions and will often over-
look auxiliary functions and equipment that is, or should be, installed to protect
the equipment, people, and/or the environment.

For further evaluation, it is often more natural to base these on an RBD. A fault
tree will therefore sometimes be converted to an RBD for qualitative and quanti-
tative analyses.

4.6 Structure Function

Consider a structure of n components.4 The structure is said to be of order n, and
the components are assumed to be numbered consecutively from 1 to n5.

Each component is assumed to have only two states, a functioning state and
a failed state. The same applies to the structure. The state of component i, i =
1, 2,… ,n can then be described by a binary6 state variable xi, where

xi =
{

1 if component i is functioning
0 if component i is in a failed state

, (4.2)

x = (x1, x2,… , xn) is called the state vector of the structure. Furthermore, we
assume that by knowing the states of all the n components, we also know whether
the structure is functioning or not.

Similarly, the state of the structure can be described by a binary function

𝜙(x) = 𝜙(x1, x2,… , xn),

where

𝜙(x) =
{

1 if the structure is functioning
0 if the structure is in a failed state

, (4.3)

4 Remember that the term “component” is used here to denote a specified function of the
component.
5 Sections 4.6 and 4.7 are influenced by Barlow and Proschan (1975).
6 In this context, a binary variable (function) is a variable (function) that can take only the two
values, 0 or 1.
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𝜙(x) is called the structure function or just the structure. Examples of simple struc-
tures are given in Sections 4.6.1–4.6.3.

4.6.1 Series Structure

A series structure is functioning if and only if all of its n components are function-
ing. The structure function is

𝜙(x) = x1 ⋅ x2 · · · xn =
n∏

i=1
xi, (4.4)

where
∏

is the multiplication sign. A series structure of order n is illustrated by
the RBD in Figure 2.12. Observe that the structure function of a series structure
may be written as

𝜙(x) =
n∏

i=1
xi = min

1≤i≤n
xi.

4.6.2 Parallel Structure

A parallel structure is functioning if at least one of its n components is functioning.
The structure function is

𝜙(x) = 1 − (1 − x1)(1 − x2) · · · (1 − xn) = 1 −
n∏

i=1
(1 − xi). (4.5)

A parallel structure of order n is illustrated by the RBD in Figure 2.13.
The expression on the right-hand side of (4.5) is often written as

∐n
i=1 xi, where

∐ is read “ip.”
Hence, a parallel structure of order 2 has structure function

𝜙(x1, x2) = 1 − (1 − x1)(1 − x2) =
2∐

i=1
xi.

The right-hand side may also be written as x1
∐ x2, where ∐ is the sign for logical

OR. Observe that

𝜙(x1, x2) = x1 + x2 − x1x2. (4.6)

Because x1 and x2 are binary variables, x1
∐ x2 will be equal to the maximum of the

xi’s. Similarly,

𝜙(x) =
n∐

i=1
xi = max

1≤i≤n
xi.
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Boolean Algebra

Boolean algebra is a branch of mathematics dealing with variables that are
true or false, usually denoted 1 and 0, respectively. Boolean algebra was intro-
duced by the English mathematician George Boole (1815–1864). The basic
operations are AND and OR. In the reliability literature, the AND-symbol is simply
written as a product and the OR-symbol is written as ∐.

AND ∶ x1 ⋅ x2 = min{x, y} = x1x2

OR ∶ x1
∐ x2 = max{x, y} = x1 + x2 − x1x2.

We also use Boolean algebra for events (sets in a sample space ), where the
AND-symbol is written ∩ and the OR-symbol is written ∪. The following rules
apply:

A ∪ B = B ∪ A A ∪ A = A
A ∩ B = B ∩ A A ∩ A = A
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) ∅ ∩ A = ∅
A ∪ (A ∩ B) = A ∅ ∪ A = A
A ∩ A = ∅ A ∪ (A ∩ B = A ∪ B
A ∪ A =  A ∩ (A ∪ B) = A ∩ B
A ∪ B = A ∩ B A ∩ B = A ∪ B,

where A is the negation of event A (i.e. A =  − A). Boolean algebra is com-
monly used when defining electronic systems.

4.6.3 koon:G Structure

A koon:G structure is functioning if and only if at least k of the n components are
functioning (i.e. are “good”). A series structure is therefore an noon:G structure,
and a parallel structure is a 1oon:G structure.

In the rest of this chapter, all the koon structures considered are koon:G struc-
tures. To simplify the notation, we omit the explicit reference to functioning
(i.e. “good”) components and simply write koon.

The structure function of a koon structure can be written as

𝜙(x) =
⎧⎪⎨⎪⎩

1 if
n∑

i=1
xi ≥ k

0 if
n∑

i=1
xi < k

, (4.7)
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where
∑

is the summation sign. As an example, consider a 2oo3 structure, as
shown in Figure 2.14. In this case, the failure of one component is tolerated,
whereas two or more component failures lead to system failure.

A three-engined airplane that can stay in the air if and only if at least two of its
three engines are functioning, is an example of a 2oo3 structure.

The structure function of the 2oo3 structure in Figure 2.14 may also be written as

𝜙(x) = x1x2
∐ x1x3

∐ x2x3

= 1 − (1 − x1x2)(1 − x1x3)(1 − x2x3)

= x1x2 + x1x3 + x2x3 − x2
1x2x3 − x1x2

2x3 − x1x2x2
3 + x2

1x2
2x2

3

= x1x2 + x1x3 + x2x3 − 2x1x2x3. (4.8)

(Observe that because xi is a binary variable, xk
i = xi for all i and k.)

Voted Structures in Safety Systems
The 2oo3 structures are typically used for safety systems such as gas detectors,
in which case at least two of the gas detectors must signal the presence of gas to
raise an alarm and/or to shut down a process. False alarm is often a problem with
such systems and too many false alarms may weaken the confidence in the system.
For a 2oo3 structure, at least two gas detectors have to raise simultaneous false
alarms to give a system alarm and to shut down the process. Because false alarms
are seldom events with a 2oo3 structure and because the 2oo3 structure has an
adequate reliability, the 2oo3 structure is usually a preferred configuration of gas
detectors. The 2/3 unit in Figure 2.14 is a LU (e.g. an electronic controller) that
counts the number of incoming signals and sends a signal out only when there are
at least two incoming signals. This is said to be a 2oo3 voting and the gas detector
system is often said to be a 2oo3 voted structure. Voted structures are discussed in
detail in Chapter 13.

4.6.4 Truth Tables

A truth table is a table listing all the possible values of the state variables x =
(x1, x2,… , xn) together with the resulting value of the Boolean function 𝜙(x). A
truth table for a 2oo3 structure is shown in Table 4.6.

Observe that the 2oo3 structure is functioning (state 1) for the last four combi-
nation of states in Table 4.6 and failed (state 0) for the first four combinations.

4.7 System Structure Analysis

We now present some general properties of system structures.
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Table 4.6 Truth table for a 2oo3
structure.

x1 x2 x3 𝝓(x)

0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

4.7.1 Single Points of Failure

One of the first questions to ask for any system is: “Are there any single points of
failure in the system?” A single point of failure is defined as follows:

Definition 4.3 (Single point of failure)
A component that by failing will cause the system to fail. ◻

When an RBD is established, it is easy to spot the single points of failure for that
particular RBD (that has been established for a particular system function). For a
complicated system with many system functions, it may be cumbersome to iden-
tify all single points of failure.

4.7.2 Coherent Structures

When establishing the structure of a system, it seems reasonable first to leave out
all components that do not have any effect on the functioning of the system. The
components we are left with are called relevant. The components that are not rel-
evant are called irrelevant.

If component i is irrelevant, then:

𝜙(1i, x) = 𝜙(0i, x) for all(⋅i, x), (4.9)

where (1i, x) represents a state vector, where the state of the ith component = 1,
(0i, x) represents a state vector, where the state of the ith component = 0, and (⋅i, x)
represents a state vector where the state of the ith component = 0 or 1. In more
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1

21

(a) (b)
Figure 4.19 Component 2 is irrelevant.

detail,

(1i, x) = (x1,… , xi−1, 1, xi+1,… , xn)

(0i, x) = (x1,… , xi−1, 0, xi+1,… , xn)

(⋅i, x) = (x1,… , xi−1, ⋅, xi+1,… , xn),

Figure 4.19 shows a system of order 2, where component 2 is irrelevant.

Remark 4.5 (Relevant and irrelevant components)
The notion “relevant/irrelevant” is sometimes misleading, as it is easy to find
examples of components of great importance for a system without being relevant
in the above sense. The RBD and the structure function are established for
a specific system function, for example “separate gas from oil and water” in
Example 4.2. To fulfill this system function, a number of components are required
to function, and therefore relevant in the above sense. The shutdown function of
the protection systems will be irrelevant with respect to this system function, as
the production will not be influenced by the protections system’s inability to shut
down the process in an emergency.

When we say that a component is irrelevant, this is always with respect to a
specific system function. The same component may be highly relevant with respect
to another system function.

Also remember that xi represents the state of a specific function (or, a specific
subset of functions) of a component. When we say that component i is irrelevant,
we in fact say that the specific function i of the physical component is irrelevant.
In Example 4.2, “spurious shutdowns” of the protection system will be relevant
for the system function “separate gas from oil and water,” whereas the shutdown
function of the same protection system will be irrelevant. ◻

Assume now that the system will not run worse than before if we replace a com-
ponent in a failed state with one that is functioning. This is obviously the same as
requiring that the structure function shall be nondecreasing in each of its argu-
ments. Let us now define what is meant by a coherent structure.

Definition 4.4 (Coherent structure)
A structure where all components are relevant and the structure function is non-
decreasing in each argument. ◻



�

� �

�

4.7 System Structure Analysis 117

All the systems that we have considered so far (except the one in Figure 4.19) are
coherent. One might get the impression that all systems of interest must be coher-
ent, but this is not the case. It is, for example easy to find systems where the failure
of one component prevents another component from failing. This complication is
discussed later.

4.7.3 General Properties of Coherent Structures

Coherent structures all have the three properties presented in this section.

Property 4.1
The structure function 𝜙(x) of a coherent structure is a binary function that can
only take the values 0 and 1. If 𝜙(𝟎) = 1, we must have that 𝜙(𝟎) = 𝜙(𝟏) = 1,
because a coherent structure is nondecreasing in each argument. This implies
that all the components in the structure are irrelevant, which contradicts the
assumption that the structure is coherent. Hence,

𝜙(𝟎) = 0. (4.10)

Similarly 𝜙(𝟏) = 0 implies that 𝜙(𝟎) = 0, that is, that all the components are irrel-
evant. This contradicts the assumption of coherence. Hence,

𝜙(𝟏) = 1. (4.11)

The two results (4.10) and (4.11) simply say that

• If all the components in a coherent structure are functioning, then the structure
is functioning.

• If all the components in a coherent structure are in a failed state, then the struc-
ture is in a failed state.

Property 4.2
Observe that

∏n
i=1 xi and

∐n
i=1 xi are both binary and assume that

∏n
i=1 xi = 0.

Because we already know that 𝜙(x) ≥ 0, we know that
∏n

i=1 xi ≤ 𝜙(x). Further
assume that

∐n
i=1 xi = 0, that is, x = 𝟎. Then according to (4.10), 𝜙(x) = 0, and

𝜙(x) ≤
∐n

i=1 xi. Finally, assume that
∐n

i=1 xi = 1. Because we already know that
𝜙(x) ≤ 1, we conclude that

n∏
i=1

xi ≤ 𝜙(x) ≤
n∐

i=1
xi. (4.12)

Property 4.2 says that any coherent structure is functioning at least as well as a
corresponding structure where all the n components are connected in series and
at most as well as a structure where all the n components are connected in parallel.
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Property 4.3
Observe that xi

∐ yi ≥ xi for all i. Because 𝜙 is coherent, 𝜙 is nondecreasing in each
argument and therefore𝜙(x ∐ y) ≥ 𝜙(x). In the same way,𝜙(x ∐ y) ≥ 𝜙(y). Because
𝜙(x) and 𝜙(y) are both binary, we have that

𝜙(x ∐ y) ≥ 𝜙(x) ∐
𝜙(y). (4.13)

Similarly, we know that xiyi ≤ xi for all i. Because 𝜙 is coherent, then 𝜙(x ⋅ y) ≤
𝜙(x) and 𝜙(x ⋅ y) ≤ 𝜙(y). Because 𝜙(x) and 𝜙(y) are binary, then

𝜙(x ⋅ y) ≤ 𝜙(x)𝜙(y). (4.14)

Let us interpret Property 4.3 in common language. Consider the structure in
Figure 4.20 with structure function 𝜙(x). Assume that we also have an identical
structure 𝜙(y) with state vector y. Figure 4.21 shows a structure with redundancy
at system level. The structure function for this structure is 𝜙(x) ∐

𝜙(y).
Next, consider the structure we get from Figure 4.20 when each pair xi, yi are

connected in parallel, see Figure 4.22. This figure shows a structure with redun-
dancy at component level. The structure function is 𝜙(x ∐ y).

2

3

1
(a) (b)

Figure 4.20 Example structure.

2

3

1

(a) (b)

2*

3*

1*

Figure 4.21 Redundancy at system
level.

2

3

1(a) (b)2*

3*

1*

Figure 4.22 Redundancy
at component level.
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According to (4.13), 𝜙(x ∐ y) ≥ 𝜙(x) ∐
𝜙(y). This means that

We obtain a “better” structure by introducing redundancy at the component
level than by introducing redundancy at the system level.

This principle is well known to designers and was discussed already by Shooman
(1968, pp. 281–289). The principle is not obvious when the system has two or more
failure modes, for example “fail to function” and “false alarm” of a fire detection
system.

4.7.4 Structures Represented by Paths and Cuts

A structure of order n consists of n components numbered from 1 to n. The set of
components is denoted by

C = {1, 2,… ,n}.

The concepts minimal path set and minimal cut set may be defined as follows:

Definition 4.5 (Minimal path set)
A path set P is a set of components in C that by functioning ensures that the struc-
ture is functioning. A path set is said to be minimal if it cannot be reduced without
losing its status as a path set. ◻

Definition 4.6 (Minimal cut set)
A cut set K is a set of components in C that by failing causes the structure to fail.
A cut set is said to be minimal if it cannot be reduced without losing its status as a
cut set. ◻

We illustrate the concepts minimal path set and minimal cut set by some simple
examples:

Example 4.5 Consider the RBD in Figure 4.20. The component set is C =
{1, 2, 3}. The structure has the following path and cut sets.

Path sets: Cut sets:
{1,2}∗ {1}∗
{1,3}∗ {2,3}∗
{1,2,3} {1,2}

{1,3}
{1,2,3}

The minimal path sets and cut sets are marked with an ∗.
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In this case, the minimal path sets are

P1 = {1, 2} and P2 = {1, 3},

whereas the minimal cut sets are

K1 = {1} and K2 = {2, 3}. ◻

Example 4.6 (Bridge structure)
Consider a bridge structure such as that given by the physical network in
Figure 4.23. The minimal path sets are

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5}, and P4 = {2, 3, 4}.

The minimal cut sets are

K1 = {1, 2}, K2 = {4, 5}, K3 = {1, 3, 5}, and K4 = {2, 3, 4}. ◻

Example 4.7 (2oo3 structure)
Consider the 2oo3 structure in Figure 2.14. The minimal path sets are

P1 = {1, 2}, P2 = {1, 3}, and P3 = {2, 3}.

The minimal cut sets are

K1 = {1, 2}, K2 = {1, 3}, and K3 = {2, 3}.

The 2oo3 structure may therefore be represented as a series structure of its minimal
cut parallel structures as shown in Figure 4.24. ◻

In these examples, the number of minimal cut sets coincides with the number
of minimal path sets. This is usually not the case.

2

3

41
(a) (b)

5

Figure 4.23 Bridge structure.

1
(a) (b)

2

1

2

2

3

1

2

1

3

Figure 4.24 2oo3 structure represented as a series structure of the minimal cut parallel
structures.
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Consider the following two views:

The lazy designer’s point of view. Consider a designer who wants to ensure that a
structure is functioning with the least possible design effort. What the designer
needs is a list of the minimal path sets from which one will be chosen for the
design.

The lazy saboteur’s point of view. Next, consider a saboteur who wants to bring the
structure into a failed state, again with the least possible effort on his or her part.
What the saboteur needs is a list of the minimal cut sets from which to choose
one for the sabotage plan.

Consider an arbitrary structure with minimal path sets P1,P2,… ,Pp and min-
imal cut sets K1,K2,… ,Kk. To the minimal path set Pj, we associate the binary
function

𝜌j(x) =
∏
i∈Pj

xi for j = 1, 2,… , s. (4.15)

Observe that 𝜌j(x) represents the structure function of a series structure com-
posed of the components in Pj. 𝜌j(x) is therefore called the jth minimal path series
structure.

Because we know that the structure is functioning if and only if at least one of
the minimal path series structures is functioning,

𝜙(x) =
p∐

j=1
𝜌j(x) = 1 −

p∏
j=1

[1 − 𝜌j(x)]. (4.16)

This structure may be interpreted as a parallel structure of the minimal path series
structures.

From (4.15) and (4.16), we get

𝜙(x) =
p∐

j=1

∏
i∈Pj

xi. (4.17)

Example 4.8 (Example 4.7 (cont.))
In the bridge structure in Figure 4.23, the minimal path sets were P1 = {1, 4}, P2 =
{2, 5}, P3 = {1, 3, 5}, and P4 = {2, 3, 4}. The corresponding minimal path series
structures are

𝜌1(x) = x1x4

𝜌2(x) = x2x5

𝜌3(x) = x1x3x5

𝜌4(x) = x2x3x4
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2

2 3
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31 5
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1 4

(a) (b)

Figure 4.25 The bridge structure
represented as a parallel structure
of the minimal path series
structures.

Accordingly, the structure function may be written as

𝜙(x) =
4∐

j=1
𝜌j(x) = 1 −

4∏
j=1

(1 − 𝜌j(x))

= 1 − (1 − 𝜌1(x))(1 − 𝜌2(x))(1 − 𝜌3(x))(1 − 𝜌4(x))

= 1 − (1 − x1x4)(1 − x2x5)(1 − x1x3x5)(1 − x2x3x4)

= x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x3x4x5 − x1x2x3x5

− x1x2x3x4 − x2x3x4x5 − x1x2x4x5 + 2x1x2x3x4x5.

(Remember that because xi is a binary variable, xk
i = xi for all i and k.)

Hence, the bridge structure can be represented by the RBD in Figure 4.25. ◻

Similarly, we can associate the following binary function to the minimal cut
set Kj

𝜅j(x) =
∐
i∈Kj

xi = 1 −
∏
i∈Kj

(1 − xi) for j = 1, 2,… , k. (4.18)

We see that 𝜅j(x) represents the structure function of a parallel structure com-
posed of the components in Kj. 𝜅j(x) is therefore called the jth minimal cut parallel
structure.

Because we know that the structure is failed if and only if at least one of the
minimal cut parallel structures is failed, then

𝜙(x) =
k∏

j=1
𝜅j(x). (4.19)

Hence, we can regard this structure as a series structure of the minimal cut parallel
structures. By combining (4.18) and (4.19) we get

𝜙(x) =
k∏

j=1

∐
i∈Kj

xi. (4.20)

Example 4.9 (Example 4.8 (cont.))
In the bridge structure, the minimal cut sets were K1 = {1, 2}, K2 = {4, 5}, K3 =
{1, 3, 5}, and K4 = {2, 3, 4}. The corresponding minimal cut parallel structures
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Figure 4.26 The bridge structure represented as a series structure of the minimal cut
parallel structures.

become

𝜅1(x) = x1
∐ x2 = 1 − (1 − x1)(1 − x2)

𝜅2(x) = x4
∐ x5 = 1 − (1 − x4)(1 − x5)

𝜅3(x) = x1
∐ x3

∐ x5 = 1 − (1 − x1)(1 − x3)(1 − x5)

𝜅4(x) = x2
∐ x3

∐ x4 = 1 − (1 − x2)(1 − x3)(1 − x4),

and we may find the structure function of the bridge structure by inserting these
expressions into (4.19). The bridge structure may therefore be represented by the
RBD in Figure 4.26. ◻

4.7.5 Pivotal Decomposition

The following identity holds for every structure function 𝜙(x):

𝜙(x) ≡ xi𝜙(1i, x) + (1 − xi)𝜙(0i, x) for all x. (4.21)

We can easily see that this identity is correct from the fact that

xi = 1 ⇒ 𝜙(x) = 𝜙(1i, x) and xi = 0 ⇒ 𝜙(x) = 𝜙(0i, x).

Pivotal decomposition is also known as Shannon expansion.7 In Chapter 6, we
introduce probabilities of the various states. The probabilistic version of the pivotal
decomposition Eq. (4.21) will then become nothing but the well-known law of total
probability from probability theory (see Section 6.2.4).

Example 4.10 (Bridge structure)
Consider the bridge structure in Figure 4.23. The structure function 𝜙(x) of
this structure can be determined by pivotal decomposition with respect to
component 3.

𝜙(x) = x3𝜙(13, x) + (1 − x3)𝜙(03, x).

Here, 𝜙(13, x) is the structure function of the structure in Figure 4.27,

𝜙(13, x) = (x1
∐ x2)(x4

∐ x5) = (x1 + x2 − x1x2)(x4 + x5 − x4x5),

7 Named after the US mathematician Claude E. Shannon (1916–2001), who is claimed to be
“the father of information theory.”
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(a) (b)
Figure 4.27 The structure 𝜙(13, x)
of the bridge structure.

4

5

1

2

(a) (b)
Figure 4.28 The structure 𝜙(03, x) of the
bridge structure.

where 𝜙(03, x) is the structure function of the structure in Figure 4.28,

𝜙(03, x) = x1x4
∐ x2x5 = x1x4 + x2x5 − x1x2x4x5.

Hence, the structure function of the bridge structure becomes

𝜙(x) = x3(x1 + x2 − x1x2)(x4 + x5 − x4x5)

+ (1 − x3)(x1x4 + x2x5 − x1x2x4x5). ◻

4.7.6 Modules of Coherent Structures

Consider the structure represented by the RBD in Figure 4.29. The structure may
be split into three modules as shown by Figure 4.30, where the modules I , II ,
and III are defined in Figure 4.31 The modules I , II , and III may now be
analyzed individually, and the results may be put together logically. Regarding this
logical connection, it is important that the partitioning into subsystems is done in
such a way that each single component never appears within more than one of the
modules.

The term coherent module may be defined verbally as follows.

3

4

52
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Figure 4.29 RBD.

I II III
(a) (b) Figure 4.30 Structure of modules.
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Figure 4.31 The three substructures.

Definition 4.7 (Coherent module – 1)
A coherent module (or subsystem) of a system is a subset of basic components
of that system that are organized into a coherent structure of their own and that
affect the system only through the performance of their components. Rephrasing:
A coherent module is an assembly of components that can by itself be treated as a
component of the system.8 ◻

A more formal definition is given in Definition 4.8. When this partitioning is
carried out in a specific way, described later, the procedure is called a modular
decomposition of the system. In the following, we denote a system (C, 𝜙), where C
is the set of components and 𝜙 the structure function. Let A represent a subset
of C,

A ⊆ C,

and Ac denote the complement of A with respect to C,

Ac = C − A.

We denote the elements in A by i1, i2,… , i
𝜈
, where i1 < i2 < · · · < i

𝜈
. Let xA be the

state vector corresponding to the elements in A:

xA = (xi1
, xi2

,… , xi
𝜈

),

and let

𝜒(xA) = 𝜒(xi1
, xi2

,… , xi
𝜈

),

be a binary function of xA. Obviously (A, 𝜒) can be interpreted as a structure.
In our example, C = {1, 2,… , 10}. Let us choose A = {5, 6, 7} and 𝜒(xA) =

(x5
∐ x6)(x5

∐ x7). (A, 𝜒), then represents the substructure II. With this notation, a
precise definition of a coherent module is

8 Adapted from Birnbaum and Esary (1965).
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Definition 4.8 (Coherent module – 2)
Let the coherent structure (C, 𝜙) be given and let A ⊆ C. Then (A, 𝜒) is said to be
a coherent module of (C, 𝜙), if 𝜙(x) can be written as a function of 𝜒(xA) and xAc ,
𝜓(𝜒(xA), xAc ), where 𝜓 is the structure function of a coherent structure. ◻

A is called a modular set of (C, 𝜙), and if in particular A ⊂ C, (A, 𝜒) is said to be a
proper module of (C, 𝜙).

What we actually do here is to consider all the components with index belong-
ing to A as one “component” with state variable 𝜒(xA). When we interpret the
structure in this way, the structure function is

𝜓(𝜒(xA), xAc ).

In our example, we choose A = {5, 6, 7}. Then

𝜓(𝜒(xA), xAc ) = 𝜒(x5, x6, x7)(
4∐

i=1
xi)(x8x9

∐ x8x10
∐ x9x10),

and because A ⊂ C, (A, 𝜒) is a proper module of (C, 𝜙). Now, let us define the con-
cept of modular decomposition.

Definition 4.9 (Modular decomposition)
A modular decomposition of a coherent structure (C, 𝜙) is a set of disjoint modules
(Ai, 𝜒i), i = 1,… , r, together with an organizing structure 𝜔, such that

(1) C = ∪r
i=1Ai; where Ai ∩ Aj = ∅ for i ≠ j

(2) 𝜙(x) = 𝜔[𝜒1(xA1 ), 𝜒2(xA2 ),… , 𝜒r(xAr )] ◻

The “finest” partitioning into modules that we can have, is obviously to let
each individual component constitute one module. The “coarsest” partitioning
into modules is to let the whole system constitute one module. To be of practical
use, a module decomposition should, if possible, be something between these
two extremes. A module that cannot be partitioned into smaller modules without
letting each components represent a module is called a prime module.

In our example, III represents a prime module. But II is not a prime module
because it may be described as in Figure 4.32. and, hence, can be partitioned into
two modules IIa and IIb as in Figure 4.33. This gives no guidance on how to deter-
mine individual prime modules in a system, but algorithms have been developed,

5

76

Figure 4.32 Module II.
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Figure 4.33 Two prime modules.
5

76

IIa
(a) (b)

IIb

for example by Chatterjee (1975), that can be used to find all the prime modules
in a fault tree or in an RBD.

In Chapter 6, we justify the fact that it is natural to interpret the state vector
as stochastic. In accordance with what we do in probability theory, we denote
the state variables with capital letters from the end of the alphabet, for example
X1,X2,… ,Xn. Occasionally, two or more of these can be stochastically dependent.
In such situations, it is advisable to try to “collect” the state variables in modules
in such a way that dependency occurs only within the modules. If one succeeds in
this, then the individual modules can be considered as being independent. This
makes the further analysis simpler. This is elaborated further in Chapter 6.

4.8 Bayesian Networks

A Bayesian network (BN) is a graphical modeling tool that is used in many different
application areas, including economy, medical diagnosis, and machine learning.
The BN approach can also be used for system reliability analysis as an alternative
to RBDs and fault trees. The term Bayesian network was coined by Judea Pearl in
1985, because the quantitative analyses of BNs are heavily based on Bayes’ for-
mula. Readers who are not familiar with Bayes’ formula may consult Chapter 15.

A BN is a directed acyclic graph (DAG). Acyclic means that the BN cannot con-
tain any cycles and “you” cannot come back to an earlier position. The network
is made up of nodes and directed arcs, sometimes called edges. A node describes
a state or condition, and an arc (or edge) indicates a direct influence. Because the
arcs are directed, they can represent cause–effect relationships. In this book, the
nodes are drawn as circles, and the directed arcs are drawn as arrows, but several
other symbols for nodes are used in the literature and in computer programs.

As a modeling tool for system reliability, the nodes of the BN represent item
states and the arcs illustrate how these states influence the states of other items.
The simplest possible BN with to nodes and a single arc is shown in Figure 4.34.
The directed arc from A to B indicates that A has a direct influence on B and that B
is directly influenced by A. The arc from A to B is sometimes written as ⟨A,B⟩ and
indicates that the state of B depends on the state of A.

In Figure 4.34, node A is called a parent node of node B, and node B is called a
child node of node A. A node with no parents is called a root node. In this figure, A
is therefore a root node. A node with no child (no descendant) is called a leaf node.



�

� �

�

128 4 Qualitative System Reliability Analysis

Child
node of A

Parent
node of B

Arc
A B

Figure 4.34 The main BN symbols.

A

B

C

A

B

CA B C

(a) (b) (c)

Figure 4.35 (a) Linear, (b) converging, and (c) diverging BN with three nodes.

In Figure 4.34, B is a leaf node. A BN (or a module of a BN) can be linear, converg-
ing, or diverging, as shown in Figure 4.35. The parents of a node X are sometimes
written as pa(X). The parents of node C in the converging BN in Figure 4.35, hence,
are pa(C) = {A,B}.

This section is delimited to the BN graph properties, whereas the probabilistic
properties are treated in Section 6.9.

4.8.1 Illustrative Examples

We illustrate the application of BNs through three simple examples, a series struc-
ture of two components, a parallel structure of two components, and a 2oo3 struc-
ture. Each node has two possible states: 1 (=functioning) and 0 (= failed). The
BN for a system of two components is shown in Figure 4.36 and is identical for a
series and a parallel structure. The states of the parent nodes, A and B, influence
the state of the child node, S. The structure of the influence is described by a truth
table, which is different for a series structure and a parallel structure. The structure
of the system is therefore determined by this truth table.

Example 4.11 (BN for a series structure)
Consider a series structure of two independent components A and B, illustrated
by the BN in Figure 4.36. The state of the system S is seen to be directly influenced

A

B

S

Figure 4.36 BN for a system S of two independent
components A and B.
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Table 4.7 Truth table for a series
structure of two components.

Components System state

A B S

0 0 0
0 1 0
1 0 0
1 1 1

by the state of component A and the state of component B. The two components
A and B are independent and do not directly influence each other.

The properties of the series structure are specified in the truth table in Table 4.7.
Table 4.7 shows that the system is functioning (S = 1) if and only if components A
and B are both functioning (i.e. have state 1). ◻

Example 4.12 (BN for a parallel structure)
Consider a parallel structure of two independent components A and B, illustrated
by the BN in Figure 4.36. The properties of the parallel structure are specified in
the truth table in Table 4.8. Table 4.8 shows that the system state is 1 if at least one
of the components is functioning. ◻

Example 4.13 (2oo3 structure)
Consider a 2oo3 structure of three components A, B, and C, illustrated by the BN
in Figure 4.37. The properties of the 2oo3 structure is specified by the truth table
in Table 4.9. Table 4.9 shows that the system state is 1 if at least two of the three
components are functioning. ◻

Table 4.8 Truth table for a parallel
structure of two components.

Components System state

A B S

0 0 0
0 1 1
1 0 1
1 1 1
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A

B

C

S

Figure 4.37 BN for a 2oo3 structure S of three
components A, B, and C.

Table 4.9 Truth table for the 2oo3 structure.

Components System state

A B C S

0 0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

A fault tree can directly be represented as a BN as illustrated by the simple
example in Figure 4.38.

BNs can replace any RBD or fault tree. The graph is easy to establish and shares
many of the positive features of RBDs and fault trees. As for RBDs and fault trees,
the BN of a complicated system may be built by combining BNs for simpler parts.
The resulting graph is intuitive and easy to communicate to people who are not
experts in reliability analysis.

Both RBDs and fault trees are forced into the pure Boolean logic as input events
can only be combined by AND and OR relations. The BN is more flexible because
each node can have more than two states and because direct influences from par-
ent nodes can be combined in more general ways. BNs can therefore be seen as an
extension of RBDs and fault trees for reliability analysis.

Another extension is that BNs may be used to model many other influences than
states of components. A BN may, for example be used to model how a machine
is influenced by maintenance M, humidity H, type of lubrication L, and so on.
To assess the influences, a limited number of values have to be specified for the
influencing variables (M, H, L, etc.).
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Figure 4.38 A simple
fault tree and the
corresponding BN.

T

M C

A B

T

A B

CM

Probabilistic Evaluation
As for RBDs and fault trees, node probabilities can be entered into the BN and
used to find the probability of system failure or function. Probabilistic evaluation
of BN is discussed in Chapter 6.

4.9 Problems

4.1 Assume that you have a bike and that the bike is important for you dur-
ing most seasons of the year. In this problem, you are asked to perform
a qualitative system reliability analysis considering the phases that were
introduced in Chapters 2 and 4:
(a) System familiarization, including assumptions and illustrations to sup-

port your definition of system and system boundaries and interfaces.
(b) Functional analysis, using one of the techniques presented in

Chapter 2.
(c) Failure analysis by FMECA as described in Section 4.2.3.
(d) Failure analysis by FTA as described in Section 4.3.3.
(e) For the FTA, you should identify the minimal cut sets and elaborate

briefly about what this information gives you in terms of prioritizing
for inspection and maintenance.

(f) Discuss briefly the value of information/insight you get from using
FMECA compared to using FTA.

4.2 Consider the subsea shutdown valve in Figure 4.39. The valve is a spring-
loaded, fail-safe close gate valve that is held open by hydraulic pressure. The
gate is a solid block with a cylindrical hole with the same diameter as
the pipeline. To open the valve, hydraulic pressure is applied on the upper



Lower stem

Gate

Upper stem

Flow
Open Hydraulic operator

Fail-safe closed

Mechanical override

Gate position indicatorLeak vent

Close

Figure 4.39 Hydraulically operated gate valve (Problem 4.2).
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side of the piston. The pressure forces the piston, the piston rod, and the
gate downwards until the hole in the gate is in line with the pipeline. When
the pressure is bled off, the spring forces the piston upwards until the hole
in the gate is no longer in contact with the pipeline conduct. The solid part
of the gate is now pressed against the seat seal and the valve is closed.
(a) Carry out FMECA of the shutdown valve by following the procedure

described in Section 4.2.3.

4.3 A loss-of-coolant accident (LOCA) is a serious accident in a nuclear power
plant, and several protection systems are installed to prevent and/or miti-
gate this type of accidents. One of these protection systems is the emergency
core cooling system (ECCS). The purpose of the ECCS is to remove resid-
ual heat from the reactor fuel rods in the event of a failure of the normal
reactor cooling system. The ECCS has several subsystems, and one of these
is the low-pressure coolant injection (LPCI) system. The main components
of an LPCI system are three pressure transmitters (PT), a logic solver (LS),
four low-pressure injection pumps (LPIPs), a refueling water storage tank
(RWST), piping, and a sump. Each pump (LPIP) is driven by a dedicated
diesel generator (EDG). In case of a LOCA incident, the reactor cooling
system is depressurized and will empty quickly. At this point, the core is
uncovered, and if no action is taken, the core will melt. In this situation,
the purpose of the LPCI is to inject water into the reactor vessel to flood
and cool the core. Refilling takes a few minutes. Three pressure transmit-
ters (PT) are installed to detect low pressure in the reactor cooling system.
When two of the three PTs detect low pressure, a signal to activate the LPCI
is sent from the logic solver to the LPIPs and the EDGs. If the LPCI fails to
refill and re-flood the tank, a severe accident (meltdown) will occur. Two
of the four LPIPs need to work in order to successfully refill and re-flood
the core. The piping and the sump are left out of the analysis.
(a) Establish an RBD for the LPCI with respect to the system’s main func-

tion as a safety barrier.
(b) List the minimal cut sets of the system. What do we mean by the order

of a minimal cut set?
(c) Construct a BN for the LPCI corresponding to a failure of its main func-

tion as a safety barrier.

4.4 Consider the RBD in Figure 4.40.
(a) Find the structure function of the structure by using pivotal decompo-

sition.
(b) Find all the minimal path sets and all the minimal cut sets of the struc-

ture represented by the RBD.
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(a) (b)
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Figure 4.40 RBD for Problem 4.4.

4.5 A structure has the following minimal path sets: P1 = {1, 4},P2 =
{2, 3},P3 = {2, 4}.
(a) Draw the corresponding RBD.
(b) Find the minimal cut sets of the structure.
(c) Establish the structure function for the structure.

4.6 In a chemical process plant, several compounds are mixed in a chemical
reactor. Consider the pipeline where one of these compounds is fed into
the reactor. If too much of this compound enters into the reactor, the mix-
ture will come out of balance and the pressure in the reactor will increase.
This is a very critical event and is controlled by the safety-instrumented
system (SIS) illustrated in Figure 4.41. Three flow transmitters are installed
in the pipeline. When at least two of the three flow transmitters detect and
alarm “high flow.” a signal is sent to the main logic solver that will trans-
mit a signal to close the two shutdown valves in the pipeline. In addition,
three pressure transmitters are installed in the reactor. When at least two of

Flow
transmitter 1

Logic
solver

Shutdown
valve 1

Shutdown
valve 2

Flow
transmitter 2

Flow
transmitter 3

Pressure
transmitter 1

Pressure
transmitter 2

Pressure
transmitter 3

2oo3

2oo3

1oo21oo2

Figure 4.41 RBD for Problem 4.6.
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the three pressure transmitters detect and alarm “high pressure,” a signal
enters the main logic solver that will transmit a signal to close the two shut-
down valves in the pipeline – and stop the flow of the compound into the
reactor. Any unplanned shutdown of the reactor may also lead to danger-
ous situations, and spurious shutdowns (i.e. caused by false alarms) should
therefore be avoided. The three flow transmitters are of the same type and
are, as illustrated in Figure 4.41, configured as a 2oo3 structure. In the same
way, the three pressure transmitters are of the same type and also config-
ured as a 2oo3 structure. The logic solver transmits a shutdown signal to the
valves if it receives a signal from either the flow transmitters or the pres-
sure transmitters. The main logic solver is therefore a 1oo2 configuration.
It is sufficient that one of the two shutdown valves (of the same type) is
able to close to stop the flow of the compound into the reactor. The shut-
down valves are therefore a 1oo2 structure. The 2oo3 votings for the flow
and pressure transmitters are physically modules of the logic solver, even if
they are drawn as separate entities in Figure 4.41. The two shutdown valves
are kept open in normal operation and should shut the flow in the pipeline
when high flow or high pressure is “detected” by the transmitters.
(a) Establish a RBD for the whole system with respect to the system’s main

function as a safety barrier.
(b) Determine all minimal cut sets.
(c) Construct a BN for the whole system corresponding to failure of its

main function as a safety barrier.

4.7 Figure 4.42 shows a sketch of the lubrication system on a ship engine. The
separator separates water from the oil lubricant. The separator is function-
ing satisfactorily only when the oil is heated to a specified temperature.
When the water content in the oil is too high, the quality of the lubrication
becomes too low, and this may lead to damage or breakdown of the engine.
The engine generally requires
● Sufficient throughput of oil/lubricant.
● Sufficient quality of the oil/lubricant.
The oil throughput is sufficient when at least one cooler is functioning, at
least one filter is open (i.e. not clogged), and the pump is functioning. In
addition, all necessary pipelines must be open, no valves must be uninten-
tionally closed, the lubrication channels in the engine must be open (not
clogged) and the lubrication system must not have significant leakages to
the environment. We assume that the probabilities of these “additional”
events are very low and that these events therefore may be neglected.
The quality of the oil is sufficient when
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Heater 1 Oil tank
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54Main engine
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Pump3
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Figure 4.42 Lubrication system on a ship engine (Problem 4.7).

● Both coolers are functioning (with full throughput) such that the tem-
perature of the oil to the engine is sufficiently low.

● None of the filters is clogged, and there is no holes in the filters.
● The separator system is functioning.
(a) Construct a fault tree with respect to the TOP event “Too low through-

put of oil/lubricant.”
(b) Construct a fault tree with respect to the TOP event “Too low quality

of the oil/lubricant.”

4.8 Use MOCUS to identify all the minimal cut sets of the fault tree in
Figure 4.9.

4.9 Show that
(a) If 𝜙 represents a parallel structure, then:

𝜙(x ∐ y) = 𝜙(x) ∐
𝜙(y).

(b) If 𝜙 represents a series structure, then:

𝜙(x ⋅ y) = 𝜙(x) ⋅ 𝜙(y).

4.10 The dual structure 𝜙
D(x) to a given structure 𝜙(x) is defined by

𝜙
D(x) = 1 − 𝜙(𝟏 − x),

where (𝟏 − x) = (1 − x1, 1 − x2,… , 1 − xn).
(a) Show that the dual structure of a koon structure is a (n − k + 1)oon

structure.
(b) Show that the minimal cut sets for 𝜙 are minimal path sets for 𝜙D, and

vice versa.
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Figure 4.43 RBD for
Problem 4.11.

2 3
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4.11 Determine the structure function of the structure in Figure 4.43 by applying
an appropriate modular decomposition.

4.12 Consider the fault tree in Figure 4.44.
(a) Use MOCUS to identify all the minimal path sets of the fault tree.
(b) Show that the system may be represented by the RBD in Figure 4.45.

4.13 Determine the structure function of the structure in Figure 4.46 by using
pivotal decomposition.

Figure 4.44 Fault tree for
Problem 4.12. TOP
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Figure 4.45 RBD for Problem 4.12.
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Figure 4.46 RBD for
Problem 4.13.
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Figure 4.47 RBD for Problem 4.14.

4.14 Determine the structure function of the structure in Figure 4.47.

4.15 Construct a BN corresponding to the fault tree in Figure 4.44. Record the
assumptions you make during the construction of the BN.

4.16 A list of the minimal cut sets of a structure or a fault tree can be used to
determine the corresponding minimal path sets. Describe how this can be
done and exemplify your approach by using the fault tree in Figure 4.12.
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5

Probability Distributions in Reliability Analysis

5.1 Introduction

This chapter introduces the main time-to-failure distributions and the main
probabilistic metrics for the reliability of a nonrepairable item. In some cases, the
item may be literarily nonrepairable, meaning that it is discarded when the first
failure occurs. In other cases, the item may be repaired, but we are not interested
in what happens to the item after the first failure.

First, we introduce five reliability metrics for a nonrepairable item and illus-
trate how these can be understood by using probability theory. The five reliability
metrics are

• The survivor function R(t)
• The failure rate function z(t)
• The mean time-to-failure (MTTF)
• The conditional survivor function
• The mean residual lifetime (MRL)

Thereafter, we introduce a number of probability distributions that may be used
to model the time-to-failure of a nonrepairable item. The following time-to-failure
distributions are covered:

• The exponential distribution
• The gamma distribution
• The Weibull distribution
• The normal distribution
• The lognormal distribution
• Three different extreme value distributions
• Time-to-failure distributions with covariates.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Next, three discrete distributions: the binomial, the geometric, and the Poisson
distributions are introduced. The chapter is concluded by a brief survey of some
broader classes of time-to-failure distributions.

5.1.1 State Variable

The state of the item at time t can be described by the state variable X(t), where

X(t) =
{

1 if the item is functioning at time t
0 if the item is in a failed state at time t

.

The state variable of a nonrepairable item is shown in Figure 5.1 and is a random
variable.

5.1.2 Time-to-Failure

The time-to-failure or lifetime of an item is the time elapsing from when the item
is put into operation until it fails for the first time. At least to some extent, the
time-to-failure is subject to chance variations. It is therefore natural to interpret
the time-to-failure as a random variable, T. We mainly use the term time-to-failure
but will also use the term lifetime in some cases. The connection between the state
variable X(t) and the time-to-failure T is shown in Figure 5.1. Unless stated other-
wise, it is always assumed that the item is new and in a functioning state when it
is started up at time t = 0.

Observe that the time-to-failure T is not always measured in calendar time. It
may also be measured by more indirect time concepts, such as

• Number of times a switch is operated.
• Number of kilometers driven by a car.
• Number of rotations of a bearing.
• Number of cycles for a periodically working item.

X(t)

0
t

1

Time-to-failure, T

Failure

Figure 5.1 The state variable and the time-to-failure of an item.
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From these examples, we observe that the time-to-failure may often be a discrete
variable. A discrete variable can, however, be approximated by a continuous vari-
able. Here, unless stated otherwise, we assume that the time-to-failure T is con-
tinuously distributed.

5.2 A Dataset

Consider an experiment where n identical and independent items are put into
operation at time t = 0. We leave the n items without intervention and observe
the times-to-failure of each item. The outcome of this experiment is the dataset
{t1, t2,… , tn}. Such a dataset is also called a historical dataset to point out that the
dataset stems from past operations of items and that the times are recorded and
known.

In probability and reliability theory, we accept that we cannot know in advance
which outcome will be obtained for a future experiment, and we therefore try to
predict the probability of occurrence for each possible outcome based on historical
data. These probabilities make sense when

(1) The past and future experiments can be considered identical and indepen-
dent (performed in the same way, under the same conditions, and without
any dependencies between the outcomes).

(2) The past experiments have been repeated a large number of times.

Some common trends and some variations in the historical dataset can often be
identified, and these allow us to make useful predictions with tractable uncertain-
ties for future experiments. Generally speaking, this requires three main steps:
(i) data analysis to extract relevant trends and variations, (ii) modeling to put rele-
vant information into a format that allows probability calculations for new items,
and (iii) quantification and probability calculation.

This section treats the last step, whereas data analysis is dealt with in Chapter 14.
Modeling of a single nonrepairable item is discussed in the current chapter, but this
is also a main topic in most of the chapters related to systems (i.e. several items
in interaction). Here, a brief overview is given to make the reader understand the
input that is provided from the data analysis and modeling phases for a single non-
repairable item. We present the quantities of interest that can be calculated, and
how. As an example, consider the dataset of the n = 60 observed times-to-failure
in Table 5.1.

5.2.1 Relative Frequency Distribution

From the dataset in Table 5.1, a histogram representing the number of failures
within specified time intervals may be constructed. This histogram is called the
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Table 5.1 Historical dataset.

23 114 125 459 468 472
520 558 577 616 668 678
696 700 724 742 748 761
768 784 785 786 792 811
818 845 854 868 870 871
878 881 889 892 912 935
964 965 970 971 976 1001

1006 1013 1020 1041 1048 1049
1065 1084 1102 1103 1139 1224
1232 1304 1310 1491 1567 1577

frequency distribution of the recorded times-to-failure. By dividing the number of
failures in each interval by the total number of failures, the relative number of fail-
ures that occur in the intervals is obtained. The resulting histogram is called the
relative frequency distribution. The histogram is made such that the area of each
bar is equal to the percentage of all the failures that occurred in that time interval,
the total area under the histogram is 100% (= 1).

The relative frequency distribution can be used to estimate and illustrate reliabil-
ity quantities, such as the empirical mean, the empirical standard deviation (SD),
and the probability of surviving a given time. The (empirical) mean is shown in
Figure 5.2a.

The histogram may in practice have one or more maximum values and some
reasonable standard deviation around these maximum values. Different failure
modes and/or different failure causes may lead to more than one maximum value.
The histogram in Figure 5.2 shows that the times-to-failure are spread around the
mean and that there are some early failures that occurred short time after start-up.

5.2.2 Empirical Distribution and Survivor Function

Another way to present the dataset in Table 5.1 is to construct an empirical survivor
function. This is done by sorting the times-to-failure, starting with the shortest and
ending with the longest time-to-failure. For each time-to-failure, the proportion
(i.e. percentage) of items that survived this time-to-failure is plotted. The obtained
function is obviously decreasing from 1 to 0. The proportion of items that survived
say, ti, can be used to estimate the probability that an item will survive time ti in a
future experiment. The empirical survivor function for the dataset in Table 5.1 is
shown in Figure 5.2b.
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Figure 5.2 Relative frequency distribution (histogram) (a) and empirical survivor
function (b) for the dataset in Table 5.1.

The empirical survivor function may be used to estimate the probabilities of
interest for future experiments, but it is more common to fit a continuous func-
tion to the empirical function and to use this continuous function in the reliability
studies.

5.3 General Characteristics of Time-to-Failure
Distributions

Assume that the time-to-failure T is a continuously distributed random variable
with probability density function f (t) and probability distribution function F(t).1

F(t) = Pr(T ≤ t) =
∫

t

0
f (u) du for t > 0. (5.1)

The event T ≤ t occurs when the item fails before time t and F(t) is therefore the
probability that the item fails in the time interval (0, t]. The probability density
function f (t) is from (5.1) the derivative of F(t).

f (t) = d
dt

F(t) = lim
Δt→0

F(t + Δt) − F(t)
Δt

= lim
Δt→0

Pr(t < T ≤ t + Δt)
Δt

.

1 F(t) is also called the cumulative distribution function.
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This implies that when Δt is small,

Pr(t < T ≤ t + Δt) ≈ f (t)Δt. (5.2)

When we, at time t = 0, look into the future, Pr(t < T ≤ t + Δt) tells us the prob-
ability that the item will fail in the short interval (t, t + Δt]. When this probability
is high (low), the probability density f (t) is high (low), and this is the reason why
f (t) is also called the failure density function.

An example of a probability density curve is shown in Figure 5.3. The time unit
used in Figure 5.3 is not given. It may, for example, be one year or 10 000 hours.

To be a proper probability density function, f (t) must satisfy the two conditions

(1) f (t) ≥ 0 for all t ≥ 0
(2) ∫

∞
0 f (t) dt = 1.

When a probability density function is specified, only its nonzero part is usually
stated, and it is tacitly understood that the probability density function is zero over
any unspecified region. Because the time-to-failure T cannot take negative values,
f (t) is only specified for nonnegative values of t.

For a continuous random variable, the probability that T is exactly equal to t
is always zero, that is Pr(T = t) = 0 for all specific values of t. This means that
Pr(T ≤ t) = Pr(T < t) and Pr(T ≥ t) = Pr(T > t).

Because f (t) ≥ 0 for all t, the probability distribution function must satisfy

(1) 0 ≤ F(t) ≤ 1 because F(t) is a probability
(2) limt→0 F(t) = 0
(3) limt→∞ F(t) = 1
(4) F(t1) ≥ F(t2) when t1 > t2, that is,F(t) is a nondecreasing function of t.

The distribution function F(t) and the probability density function f (t) for
the same distribution are shown in Figure 5.4. The probability density func-
tion (dashed line) is the same as in Figure 5.3, but the scale of the y-axis is
changed.

Time t

f(
t)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

Figure 5.3 Probability density function, f (t) for the time-to-failure T .
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Time t
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1.0

f(t)

F(t)

Figure 5.4 The distribution function F(t) (fully drawn line) together with the
corresponding probability density function f (t) (dashed line).

Time t

f(
t)

0 1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

Figure 5.5 Illustration of the integral calculation of the probability to fail within
(t1, t2] = (5.0, 5.7].

The probability that a failure occurs in an interval (t1, t2] is

Pr(t1 < T ≤ t2) = F(t2) − F(t1) = ∫

t2

t1

f (u) du. (5.3)

This quantity corresponds to the gray area below f (t) on Figure 5.5 if t1 = 5 and
t2 = 5.7 time units. Depending on the values of t1, t2 and f (t) in (t1, t2], the gray
area will change and the probability to fail in (t1, t2] will change as well.

5.3.1 Survivor Function

The survivor function of an item is defined by

R(t) = 1 − F(t) = Pr(T > t) (5.4)

or, equivalently

R(t) = 1 −
∫

t

0
f (u) du =

∫

∞

t
f (u) du. (5.5)
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Time t

R
(t

)
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Figure 5.6 The survivor function R(t).

Hence, R(t) is the probability that the item does not fail in the time interval (0, t],
or in other words, the probability that the item survives the time interval (0, t] and
is still functioning at time t.

The survivor function is also called the survival probability function. Some
authors define reliability by R(t) and consequently call it the reliability func-
tion. This is also the reason for using the symbol R(t). The survivor function
that corresponds to the probability density function in Figure 5.3 is shown in
Figure 5.6.

In Figure 5.6, the dotted line indicates that the probability that the item survives
3 time units is approximately 0.80 (= 80%). We may also read this in the opposite
way, and find that the time corresponding to 80% survival is approximately 3 time
units.

5.3.2 Failure Rate Function

The probability that an item will fail in the time interval (t, t + Δt] when we know
that the item is functioning at time t, is

Pr(t < T ≤ t + Δt ∣ T > t) = Pr(t < T ≤ t + Δt)
Pr(T > t)

= F(t + Δt) − F(t)
R(t)

.

By dividing this probability by the length of the time interval, Δt and letting
Δt → 0, we get the failure rate function z(t) of the item

z(t) = lim
Δt→0

Pr(t < T ≤ t + Δt ∣ T > t)
Δt

= lim
Δt→0

F(t + Δt) − F(t)
Δt

1
R(t)

=
f (t)
R(t)

. (5.6)

This implies that when Δt is small,

Pr(t < T ≤ t + Δt ∣ T > t) ≈ z(t)Δt.

Because R(t) is a probability and ≤ 1 for all t, (5.6) implies that z(t) ≥ f (t) for all
t ≥ 0.
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Remark 5.1 (The difference between f (t) and z(t))
Observe the similarity and the difference between the probability density function
f (t) and the failure rate function z(t).

Pr(t < T ≤ t + Δt) ≈ f (t)Δt. (5.7)

Pr(t < T ≤ t + Δt ∣ T > t) ≈ z(t)Δt. (5.8)

Say that we start out with a new item at time t = 0 and at time t = 0 ask, “What
is the probability that this item will fail in the interval (t, t + Δt]?” According to
(5.7), this probability is approximately equal to the probability density function
f (t) at time t multiplied by the length of the interval Δt. Next consider an item that
has survived until time t, and we then ask, “What is the probability that this item
will fail in the next interval (t, t + Δt]?” This (conditional) probability is according
to (5.8) approximately equal to the failure rate function z(t) at time t multiplied by
the length of the interval, Δt. ◻

If we put a large number of identical items into operation at time t = 0, then
z(t)Δt will roughly represent the relative proportion of the items still functioning
at time t, that will fail in (t, t + Δt].

Because

f (t) = d
dt

F(t) = d
dt
[1 − R(t)] = −R′(t),

then

z(t) = −R′(t)
R(t)

= − d
dt

log R(t). (5.9)

Because R(0) = 1, then

∫

t

0
z(u) du = − log R(t) (5.10)

and

R(t) = e− ∫
t

0 z(u) du
. (5.11)

The survivor function R(t) and the distribution function F(t) = 1 − R(t) are there-
fore uniquely determined by the failure rate function z(t). From (5.6) and (5.11),
the probability density function f (t) can be written as

f (t) = z(t) e− ∫
t

0 z(u) du for t > 0. (5.12)

Some authors prefer the term hazard rate instead of failure rate, but because
the term “failure rate” is so well established in applied reliability, we use this term
even though we realize that this may lead to some confusion.
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Remark 5.2 (The failure rate function versus ROCOF)
In actuarial statistics, the failure rate function is called the force of mortality
(FOM). This term has been adopted by several authors of reliability textbooks to
avoid the confusion between the failure rate function and the rate of occurrence
of failures (ROCOF) of a repairable item. The failure rate function (FOM) is a
function of the time-to-failure distribution of a single item and an indication of
the “proneness to failure” of the item after time t has elapsed, whereas ROCOF is
the occurrence rate of failures for a stochastic process; see Chapter 10. To be short,
ROCOF is related to a counting process N(t) that gives the cumulative number
of failures from 0 to t and indicates at which speed this number is increasing or
decreasing in average.

ROCOF = d
dt

E[N(t)]. (5.13)

For more details, see Ascher and Feingold (1984). ◻

The relationships between the functions F(t), f (t), R(t), and z(t) are presented in
Table 5.2.

The Bathtub Curve
The survivor function R(t) is from (5.11) seen to be uniquely determined by the
failure rate function z(t). To determine the form of z(t) for a given type of items,
the following experiment may be carried out:

Put n identical and nonrepairable items into operation at time t = 0 and record
the time each item fails. Assume that the last failure occurs at time tmax. Split the

Table 5.2 Relationship between the functions F(t), f (t),R(t), and z(t).

Expressed
by F(t) f (t) R(t) z(t)

F(t) = –
∫

t

0
f (u) du 1 − R(t) 1 − e

−
∫

t

0
z(u) du

f (t) = d
dt

F(t) – − d
dt

R(t) z(t) e
−
∫

t

0
z(u) du

R(t) = 1 − F(t)
∫

∞

t
f (u) du – e

−
∫

t

0
z(u) du

z(t) =
dF(t)∕dt
1 − F(t)

f (t)
∫

∞
t f (u) du

− d
dt

log R(t) –



�

� �

�

5.3 General Characteristics of Time-to-Failure Distributions 151

time axis into disjoint intervals of equal length Δt. Starting from t = 0, number the
intervals as j = 1, 2,…. For each interval record:

• The number of items, n(j) that fail in interval j.
• The observed functioning times for the individual items (t1j, t2j,… , tnj) in inter-

val j. Hence, tij is the time item i has been functioning in time interval j. tij is
therefore equal to 0 if item j has failed before interval j, where j = 1, 2,… ,m.

Thus,
∑n

i=1 tij is the total functioning time for the items in interval j. Now

z(i) =
n(j)∑n
i=1 tij

.

That is, the number of failures per unit functioning time in interval j. This is a
natural estimate of the “failure rate” in interval j for the items that are functioning
at the start of this interval.

Let 𝜈(i) be the number of items that are functioning at the start of interval i. The
failure rate in interval j is approximately

z(i) ≈ n(i)
𝜈(i)Δt

,

and hence,

z(i)Δt ≈ n(i)
𝜈(i)

.

A histogram depicting z(i) as a function of i typically is of the form in Figure 5.7.
If n is large, we may use small time intervals. If we let Δt → 0, is it expected that
the step function z(i) will tend toward a “smooth” curve, as shown in Figure 5.8,
and is an estimate for the failure rate function z(t).

This curve is usually called a bathtub curve after its characteristic shape. The
failure rate is often high in the initial phase. This can be explained by the fact
that there may be undiscovered defects in the items; these soon show up when

z(i)

i0

Figure 5.7 Empirical bathtub curve.
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z(t)

Time t0

Burn-in
period

Useful life period
Wear-out
period

Figure 5.8 The bathtub curve.

the items are activated and the associated failures are called “infant mortality”
failures. When the item has survived the “infant mortality” period, the failure rate
often stabilizes at a level where it remains for a certain amount of time until it
starts to increase as the items begin to wear out. From the shape of the bathtub
curve, the time-to-failure of an item may be divided into three typical intervals: the
infant mortality or burn-in period, the useful life period, and the wear-out period.
The useful life period is also called the chance failure period. Sometimes, the items
are tested at the factory before they are distributed to the users, and thus much
of the “infant mortality” problems will be removed before the items are delivered
for use. For the majority of mechanical items, the failure rate function will usually
show a slightly increasing tendency in the useful life period.

Cumulative Failure Rate
The cumulative failure rate over (0, t] is

Z(t) =
∫

t

0
z(u) du. (5.14)

Equation (5.11) gives the following relationship between the survivor function R(t)
and Z(t)

R(t) = e−Z(t) and Z(t) = − log R(t). (5.15)

The cumulative failure rate Z(t) must satisfy

(1) Z(0) = 0
(2) limt→∞Z(t) = ∞
(3) Z(t) is a nondecreasing function of t.

Average Failure Rate
The average failure rate over the time interval (t1, t2) is

z(t1, t2) =
1

t2 − t1 ∫

t2

t1

z(u) du =
log R(t1) − log R(t2)

t2 − t1
. (5.16)
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When the time interval is (0, t), the average failure rate may be expressed as

z(0, t) = 1
t ∫

t

0
z(u) du =

− log R(t)
t

. (5.17)

Observe that this implies that

R(t) = e−z(0,t)t
. (5.18)

A Property of z(t)
Because z(t) = − d

dt
log R(t), we have

∫

∞

0
z(t) dt = −

∫

∞

0

d[log R(t)]
dt

dt = −
∫

∞

0
d log R(t)

= − log R(t) |∞0 = log R(0) − log R(∞) = log 1 − log 0 = ∞.

(5.19)

The area under the failure rate curve is therefore infinitely large.

5.3.3 Conditional Survivor Function

The survivor function R(t) = Pr(T > t) was introduced under the assumption that
the item was functioning at time t = 0. To make this assumption more visible, R(t)
may be written as

R(t ∣ 0) = Pr(T > t ∣ T > 0).

Consider an item that is put into operation at time 0 and is still functioning at
time x. The probability that the item of age x survives an additional interval of
length t is

R(t ∣ x) = Pr(T > t + x ∣ T > x) = Pr(T > t + x)
Pr(T > x)

= R(t + x)
R(x)

for 0 < x < t. (5.20)

R(t ∣ x) is called the conditional survivor function of the item at age x.
By using (5.12), R(t ∣ x) may be written

R(t ∣ x) = R(t + x)
R(x)

= e− ∫
t+x

0 z(u) du

e− ∫
x

0 z(u) du
= e− ∫

t+x
x z(u) du

. (5.21)

The conditional probability density function f (t ∣ x) of an item that is still func-
tioning at time x is

f (t ∣ x) = − d
dt

R(t ∣ x) = −R′(t + x)
R(x)

=
f (t + x)

R(x)
.
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The associated failure rate function is

z(t ∣ x) =
f (t ∣ x)
R(t ∣ x)

=
f (t + x)
R(t + x)

= z(t + x), (5.22)

which is an obvious result because the failure rate function is a conditional rate,
given that the item has survived up to the time where the rate is evaluated. This
shows that when we have a failure rate function z(t), such as for the bathtub curve
in Figure 5.8, and consider the failure rate function for a used item of age x, we do
not need any information about the form of z(t) for t ≤ x.

5.3.4 Mean Time-to-Failure

For the dataset in Table 5.1, the average time-to-failure is a metric for the central
location of the failure times. It can be calculated empirically as the sum of the
observed times-to-failure divided by the number n of failed items.

t = 1
n

n∑
i=1

ti. (5.23)

In probability theory, the law of large numbers says that if n tends to infinite, the
empirical mean, t, will stabilize around a constant value that does not depend on n
any more. This value is called the expected, or mean value of T, and denoted E(T).
In reliability theory, it is named MTTF.

MTTF = E(T) = lim
n→∞

1
n

n∑
i=1

ti. (5.24)

Law of Large Numbers

Let X1,X2,… be a sequence of independent random variables having a com-
mon distribution, and let E(Xi) = 𝜇. Then, with probability 1,

X =
X1 + X2 + · · · + Xn

n
→ 𝜇 as n → ∞. (5.25)

This definition is equivalent to the one in (5.26), which can be interpreted as a
continuous version of the limit of the empirical mean: Each possible failure time t
is multiplied by its frequency of occurrence f (t) dt and the summation is replaced
by an integral.

MTTF = E(T) =
∫

∞

0
tf (t) dt. (5.26)
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Observe that MTTF only provides information about the central location of the
failure times and no information about how failure times are dispersed around the
mean. Therefore, the MTTF provides much less information than the histogram
in Figure 5.2, but it gives useful input for a first screening and is very commonly
used in reliability applications.

The MTTF can be derived from the other reliability metrics. Because
f (t) = −R′(t),

MTTF = −
∫

∞

0
tR′(t) dt.

By partial integration

MTTF = −[tR(t)]∞0 +
∫

∞

0
R(t) dt.

If MTTF < ∞, it can be shown that [tR(t)]∞0 = 0. In that case,

MTTF =
∫

∞

0
R(t) dt. (5.27)

It is often easier to determine MTTF by (5.27) than by (5.26).

Remark 5.3 (MTTF derived by Laplace transform)
The MTTF of an item may also be derived by using Laplace transforms. The
Laplace transform of the survivor function R(t) is (see Appendix B)

R∗(s) =
∫

∞

0
R(t) e−st dt. (5.28)

When s = 0, we get

R∗(0) =
∫

∞

0
R(t) dt = MTTF. (5.29)

The MTTF may thus be derived from the Laplace transform R∗(s) of the survivor
function R(t), by setting s = 0. ◻

5.3.5 Additional Probability Metrics

This section defines several additional metrics that may be used to describe a prob-
ability distribution.

Variance
The variance is related to the dispersion of the observed lifetimes around their
mean value (see Chapter 12). The empirical variance is given by

s2 = 1
n − 1

n∑
i=1

(ti − t)2
. (5.30)
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The empirical standard deviation is the square root of the variance

s =

√√√√ 1
n − 1

n∑
i=1

(ti − t)2. (5.31)

The empirical variance indicates the average squared distance between the indi-
vidual lifetimes of the dataset and the mean of the dataset. If n tends to infinite,
this value converges to a constant called the variance defined as

var(T) =
∫

∞

0
[t − E(T)]2f (t) dt = E(T2) − [E(T)]2

. (5.32)

The associated standard deviation (SD) is defined as

SD(T) =
√

var(T).

The variance and the standard deviation are not so much used in reliability,
but they are often implicitly taken into account via the probability density
function. We come back to the variance and the standard deviation in the sections
dedicated to specific distributions. For further details, the reader may refer to
Chapter 14.

Moments
The kth moment of T is defined as

𝜇k = E(Tk) =
∫

∞

0
tkf (t) dt = k

∫

∞

0
tk−1R(t) dt. (5.33)

The first moment of T (i.e. for k = 1) is seen to be the mean of T.

Percentile Function
Because F(t) is nondecreasing, the inverse function F−1(⋅) exists and is called the
percentile function.

F(tp) = p ⇒ tp = F−1(p) for 0 < p < 1, (5.34)

where tp is called the p-percentile of the distribution.

Median Lifetime
The MTTF is only one of several metrics of the “center” of a lifetime distribution.
An alternative metric is the median lifetime tm, defined by

R(tm) = 0.50. (5.35)

The median divides the distribution in two halves. The item will fail before time tm
with 50% probability, and will fail after time tm with 50% probability. The median
is the 0.50-percentile of the distribution.
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Time t

f(
t)

Mode

Median

MTTF

0

Figure 5.9 Location of the MTTF, the median lifetime, and the mode of a distribution.

Mode
The mode of a lifetime distribution is the most likely lifetime, that is, the time tmode
where the probability density function f (t) attains its maximum.

f (tmode) = max
0≤t<∞

f (t). (5.36)

Figure 5.9 shows the location of the MTTF, the median lifetime tm, and the mode
tmode for a distribution that is skewed to the right.

Example 5.1 Consider an item with survivor function

R(t) = 1
(0.2 t + 1)2 for t ≥ 0,

where the time t is measured in months. The probability density function is

f (t) = −R′(t) = 0.4
(0.2 t + 1)3 ,

and the failure rate function is from (5.6)

z(t) =
f (t)
R(t)

= 0.4
0.2 t + 1

.

The MTTF is from (5.27)

MTTF =
∫

∞

0
R(t) dt = 5 mo.

The functions R(t), f (t), and z(t) are shown in Figure 5.10. ◻

Additional metrics are discussed in Chapter 14.

5.3.6 Mean Residual Lifetime

Consider an item that is put into operation at time t = 0 and is still functioning
at time x. The item fails at the random time T. The residual lifetime of the item,
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Time t (mo)
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0.0
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R(t)

z(t)

f(t)

Figure 5.10 The survivor function R(t), the probability density function f (t), and the
failure rate function z(t) (dashed line) in Example 5.1.

Time 0 x t

Item still 
functioning Failure

Residual lifetime

Figure 5.11 The residual lifetime of an item that is still functioning at time x.

when it is known that the item is still functioning at time x, is T − x, as shown in
Figure 5.11.

The mean residual (or, remaining) lifetime, MRL(x), of the item at age x is

MRL(x) = E(T − x ∣ T > x),

that is, the mean of the random variable T − x when it is known that T > x. The
mean value can be determined from the conditional survivor function in (5.27) as
follows:

MRL(x) = 𝜇(x) =
∫

∞

x
R(t ∣ x) dt = 1

R(x) ∫

∞

x
R(t) dt. (5.37)

Observe that MRL(x) is the additional MTTF, that is, the mean remaining life-
time of an item that has reached the age x. This means that when the item has
reached age x, its mean age at failure is x + MRL(x).

Also observe that MRL(x) applies to a general item that has reached the age x.
We do not have access to any additional information about the particular item or
its history in the interval (0, x). Our knowledge about a possible degradation of the
item is the same at age x as it was when the item was put into operation at time
t = 0.
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At time t = 0, the item is new, and we have 𝜇(0) = 𝜇 = MTTF. It is sometimes of
interest to study the function

g(x) = MRL(x)
MTTF

= 𝜇(x)
𝜇

. (5.38)

When an item has survived up to time x, then g(x) gives the MRL(x) as a percentage
of the initial MTTF. If, for example, g(x) = 0.60, then the mean residual lifetime,
MRL(x) at time x, is 60% of the MRL at time 0.

Remark 5.4 (Remaining useful lifetime)
A concept similar to MRL(x) is the (mean of the) remaining useful lifetime (RUL) at
age x. The main difference is that RUL(x) applies for a particular item, where we
have access to performance and maintenance data from the period (0, x) and/or
information about possible changes in the future operational context. RUL is fur-
ther discussed in Chapter 12. ◻

Example 5.2 (Mean residual lifetime)
Consider an item with failure rate function z(t) = t∕(t + 1). The failure rate
function is increasing and approaches 1 when t → ∞. The corresponding survivor
function is

R(t) = e− ∫
t

0 u∕(u+1) du = (t + 1) e−t
,

and the MTTF is

MTTF =
∫

∞

0
(t + 1) e−t dt = 2.

The conditional survivor function is

R(t ∣ x) = Pr(T > t ∣ T > x) = (t + 1) e−t

(x + 1) e−x = t + 1
x + 1

e−(t−x)
.

The MRL is

MRL(t) =
∫

∞

x
R(x ∣ t) dx =

∫

∞

x

t + 1
x + 1

e−(t−x) dt

=
∫

∞

x

(
1 + t − x

x + 1

)
e−(t−x) dt

=
∫

∞

x
e−(t−x) dt + 1

x + 1 ∫

∞

x
(t − x)e−(t−x) dt

= 1 + 1
x + 1

.

Observe that MRL(x) is equal to 2 (=MTTF) when x = 0, that MRL(x) is a
decreasing function of x, and that MRL(x) → 1 when x → ∞. This means that the
function g(x) in (5.38) approaches 0.5 when x increases. The survivor functions
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Time t
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MTTF MRL(x)x

R(t|x)

Figure 5.12 The survivor function R(t) (fully drawn line), the conditional survivor
function R(t ∣ x) for x = 1.2 (dashed line) together with the values of MTTF and MRL(x) in
Example 5.2.
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Figure 5.13 The g(x) function (5.38) in Example 5.2.

and the MRL(x) are shown in Figure 5.12, whereas the g(x) function is shown in
Figure 5.13. ◻

5.3.7 Mixture of Time-to-Failure Distributions

Assume that the same type of items are produced at two different plants. The items
are assumed to be independent with failure rate functions z1(t) and z2(t), respec-
tively. The production process is slightly different at the two plants, and the items
will therefore have different failure rates. Let R1(t) and R2(t) be the survivor func-
tions associated with z1(t) and z2(t), respectively. The items are mixed up before
they are sold. A fraction p is coming from plant 1, and the rest (1 − p) is coming
from plant 2.

If we pick one item at random, the survivor function for this item is

R(t) = p R1(t) + (1 − p) R2(t), (5.39)



�

� �

�

5.4 Some Time-to-Failure Distributions 161

and the probability density function of the life distribution is

f (t) = −R′(t) = p f1(t) + (1 − p) f2(t). (5.40)

The failure rate function of the item is

z(t) =
f (t)
R(t)

=
p f1(t) + (1 − p) f2(t)

p R1(t) + (1 − p) R2(t)

=
p R1(t)

p R1(t) + (1 − p) R2(t)

(
f1(t)
R1(t)

)
+

(1 − p) R1(t)
p R1(t) + (1 − p) R2(t)

(
f2(t)
R2(t)

)
.

By introducing the factor

ap(t) =
p R1(t)

p R1(t) + (1 − p) R2(t)
, (5.41)

we can write the failure rate function as (by remembering that zi(t) = fi(t)∕Ri(t) for
i = 1, 2)

z(t) = ap(t) z1(t) + [1 − ap(t)]z2(t). (5.42)

The failure rate of the item chosen at random is therefore a weighted average of
the two failure rates z1(t) and z2(t), but the weighing factor varies with the time t.

More details about life distributions are given by Rinne (2014) and O’Connor
et al. (2016).

5.4 Some Time-to-Failure Distributions

This section introduces a number of parametric time-to-failure distributions:

(1) The exponential distribution
(2) The gamma distribution
(3) The Weibull distribution
(4) The normal (Gaussian) distribution
(5) The lognormal distribution.

In addition, an introduction to distributions with covariates and extreme value
distributions is given.

5.4.1 The Exponential Distribution

Consider an item that is put into operation at time t = 0. The time-to-failure T of
the item has probability density function

f (t) =
{

𝜆e−𝜆t for t > 0, 𝜆 > 0
0 otherwise

. (5.43)

This distribution is called the exponential distribution with parameter 𝜆, and we
write T ∼ exp(𝜆).
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Time t
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Figure 5.14 Probability density function f (t) (fully drawn line) and distribution function
F(t) (dashed line) for the exponential distribution (𝜆 = 0.4).

Survivor Function
The survivor function of the item is

R(t) = Pr(T > t) =
∫

∞

t
f (u) du = e−𝜆t for t > 0. (5.44)

The probability density function f (t) and the survivor function R(t) for the expo-
nential distribution are shown in Figure 5.14.

MTTF
The MTTF is

MTTF =
∫

∞

0
R(t) dt =

∫

∞

0
e−𝜆t dt = 1

𝜆
, (5.45)

and the variance of T is

var(T) = 1
𝜆2 . (5.46)

Observe that when the MTTF increases (or is reduced), the variance does the same.
This is a limitation of the exponential distribution and makes it impossible to adapt
independently the mean and the variance to fit a historical dataset.

The probability that an item survives its MTTF is

R( MTTF ) = R
( 1
𝜆

)
= e−1 ≈ 0.3679 for all values of 𝜆.

Any item with exponential time-to-failure distribution will survive its MTTF with
a probability that is approximately 36.8%

Failure Rate Function
The failure rate function is

z(t) =
f (t)
R(t)

= 𝜆e−𝜆t

e−𝜆t = 𝜆. (5.47)
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Hence, an item with exponential time-to-failure distribution has a failure rate
function that is constant and independent of time. Because there is a one-to-one
correspondence between the distribution and the failure rate function, any item
with constant failure rate has an exponential time-to-failure distribution.

Figure 5.8 indicates that the exponential distribution may be a realistic
time-to-failure distribution for an item during its useful life period, at least for
certain types of items.

The results (5.45) and (5.47) compare well with the use of the concepts in every-
day language. If an item on the average has 𝜆 = 4 failures/yr, the MTTF of the item
is 1/4 year.

The corresponding cumulative failure rate function is Z(t) = 𝜆t and may be
drawn as a straight line with slope 𝜆.

Median Time-to-Failure
The median time-to-failure of the exponential distribution is determined from
R(tm) = 0.50 and is

tm =
log 2
𝜆

≈ 0.693
𝜆

= 0.693 MTTF. (5.48)

This means that for an item with constant failure rate, it is a 50% probability that
the item will fail before it has reached 69.3% of its MTTF.

Changed Time Scale
Consider an item with time-to-failure, T ∼ exp(𝜆). Assume that the time unit for
measuring T is changed, for example, that we measure time in days instead of
hours. This change of scale may be expressed by T1 = aT, for some constant a.
The survivor function of the time-to-failure T1 in the new time scale is

R1(t) = Pr(T1 > t) = Pr(aT > t) = Pr(T > t∕a) = e−𝜆t∕a
.

This means that T1 ∼ exp(𝜆∕a) with MTTF

MTTF1 = a
𝜆
= a MTTF,

which is an obvious result. This shows that the exponential distribution is closed
under change of scale, that is,

T ∼ exp(𝜆) ⇒ aT ∼ exp(𝜆∕a) for all constants a > 0. (5.49)

Probability of Failure in a Short Time Interval
The Maclaurin series2 of the exponential function is

e−𝜆t =
∞∑

x=0

(−𝜆t)x

x!
= 1 − 𝜆t + (𝜆t)2

2
− (𝜆t)3

6
+ · · · .

2 Named after the Scottish mathematician Colin Maclaurin (1698–1746). The Maclaurin series
is a special case of a Taylor series.
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When 𝜆t is small, (𝜆t)x for x = 2, 3,… is negligible, and we may use the approxi-
mation

e−𝜆t ≈ 1 − 𝜆t when 𝜆t is small. (5.50)

Consider a short time interval (t, t + Δt]. The probability that an item with
time-to-failure T ∼ exp(𝜆) fails in this interval is

Pr(t < T ≤ t + Δt) = Pr(T ≤ t + Δt) − Pr(T ≤ t) = 1 − e−𝜆(t+Δt) − (1 − e−𝜆t)

= e−𝜆t − e−𝜆(t+Δt) ≈ 𝜆Δt. (5.51)

The probability that at an item with constant failure rate 𝜆 fails in a short time
interval of length Δt is approximately 𝜆Δt. The approximation is sufficiently accu-
rate when Δt is very small.

Series Structure of Independent Components
Consider a series structure of n independent components with constant failure
rates 𝜆1, 𝜆2,… , 𝜆n. A series structure fails when the first component failure occurs
such that time-to-failure Ts of the series structure is

Ts = min{T1,T2,… ,Tn} = min
i=1.2,…,n

Ti.

The survivor function of the series structure is

Rs(t) = Pr(Ts > t) = Pr
(

min
i=1.2,…,n

Ti > t
)

= Pr

( n⋂
i=1

Ti > t

)

= Pr[(T1 > t) ∩ (T2 > t) ∩ · · · ∩ (Tn > t)] =
n∏

i=1
Pr(Ti > t)

=
n∏

i=1
e−𝜆i t = e

−
( n∑

i=1
𝜆i

)
t
= e−𝜆st

, (5.52)

where 𝜆s =
∑n

i=1 𝜆i. This shows that the time-to-failure, Ts, of the series structure
is exponentially distributed with failure rate 𝜆s =

∑n
i=1 𝜆i.

For the special case when the n independent components are identical, such that
𝜆i = 𝜆 for i = 1, 2,… ,n, the time-to-failure of the series structure is exponentially
distributed with failure rate 𝜆s = n𝜆. The MTTF of the series structure is

MTTFs =
1
𝜆s

= 1
n

1
𝜆
,

that is the MTTF of the series structure is equal to the MTTF of a single component
divided by the number of components in the structure.
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Conditional Survivor Function and Mean Residual Lifetime
The conditional survivor function of an item with time-to-failure T ∼ exp(𝜆) is

R(t ∣ xt) = Pr(T > t + x ∣ T > xt) = Pr(T > t + x)
Pr(T > xt)

= e−𝜆(t+x)

e−𝜆xt = e−𝜆tx = Pr(T > t) = R(tx). (5.53)

The survivor function of an item that has been functioning for x time units, is
therefore equal to the survivor function of a new item. A new item and a used
item (that is still functioning), therefore, have the same probability of surviving a
time interval of length t. The MRL, for the exponential distribution is therefore

MRL(xt) =
∫

∞

0
R(t ∣ xt) dtx =

∫

∞

0
R(tx) dtx = MTTF.

The mean residual lifetime, MRL(t), of an item with exponential time-to-failure
distribution is hence equal to its MTTF irrespective of the age xt of the item. The
item is therefore as-good-as-new as long as it is functioning, and we often say that
the exponential distribution has no memory.

Assuming an exponentially distributed time-to-failure implies that

• A used item is stochastically as-good-as-new, so there is no reason to replace a
functioning item.

• For the estimation of the survivor function, the MTTF, and so on, it is sufficient
to collect data on the number of hours of observed time in operation and the
number of failures. The age of the items is of no interest in this connection.

The exponential distribution is the most commonly used time-to-failure dis-
tribution in applied reliability analysis. The reason for this is its mathematical
simplicity and that it leads to realistic time-to-failure models for certain types
of items.

The Difference Between a Random Variable and a Parameter

A stochastic experiment is usually carried out in order to observe and measure
one or more random variables, such as the time-to-failure T. Observing T
gives a number, such as 5000 hours. Identical experiments lead to different
numbers. The variation, or uncertainty, in these numbers can be described by
a statistical distribution F(t). As a basis for the experiment, the distribution
is usually not specified fully, but depends on one or more variables known

(Continued)
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(Continued)

as parameters. Parameters are often represented in the distribution by Greek
letters. An example is the parameter 𝜆 of the exponential distribution.

A parameter in statistics is a variable that cannot be measured directly from
an experiment, but needs to be estimated based on observed values (numbers)
of the random variable. After an experiment, we measure the random variable,
but estimate the parameter. Different experiments will usually give slightly
different estimates of the parameter. The rule, or formula, used to estimate
a parameter is called an estimator of the parameter and can be assessed by
its mean value and its standard deviation. Estimators are discussed further in
Chapter 14.

Example 5.3 (Rotary pump)
A rotary pump has a constant failure rate 𝜆 = 4.28 × 10−4 h−1. The probability that
the pump survives one month (t = 730 hours) in continuous operation is

R(t) = e−𝜆t = e−4.28×10−4⋅730 ≈ 0.732.

The MTTF is

MTTF = 1
𝜆
= 1

4.28 × 10−4 h ≈ 2336 h ≈ 3.2 mo.

Suppose that the pump has been functioning without failure during its first two
months (t1 = 1460 hours) in operation. The probability that the pump will fail dur-
ing the next month (t2 = 730 hours) is

Pr(T ≤ t1 + t2 ∣ T > t1) = Pr(T ≤ t2) = 1 − e−4.28×10−4⋅730 ≈ 0.268.

because the pump is as-good-as-new when we know that it is still functioning at
time t1. ◻

Example 5.4 (Probability of one item failing before the other)
Consider a structure of two independent components with failure rates 𝜆1 and 𝜆2,
respectively. The probability that component 1 fails before component 2 is

Pr(T2 > T1) = ∫

∞

0
Pr(T2 > t ∣ T1 = t)fT1

(t) dt

=
∫

∞

0
e−𝜆2t

𝜆1e−𝜆1t dt

= 𝜆1 ∫

∞

0
e−(𝜆1+𝜆2)t dt =

𝜆1

𝜆1 + 𝜆2
.
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This result can easily be generalized to a structure of n independent components
with failure rates 𝜆1,… , 𝜆n. The probability that component j is the first compo-
nent to fail is

Pr( Component j fails first) =
𝜆j∑n

i=1 𝜆i
. (5.54)

◻

Mixture of Exponential Distributions
Assume that the same type of items is produced at two different plants. The items
are assumed to be independent and have constant failure rates. The production
process is slightly different at the two plants, and the items will therefore have
different failure rates. Let 𝜆i be the failure rate of the items coming from plant i,
for i = 1, 2. The items are mixed up before they are sold. A fraction p is coming
from plant 1, and the rest (1 − p) is coming from plant 2. If we pick one item at
random, the survivor function of this item is

R(t) = pR1(t) + (1 − p)R2(t) = p e−𝜆1t + (1 − p) e−𝜆2t
.

The MTTF is

MTTF =
p
𝜆1

+
1 − p
𝜆2

,

and the failure rate function is

z(t) =
p𝜆1 e−𝜆1t + (1 − p)𝜆2 e−𝜆2t

p e−𝜆1t + (1 − p) e−𝜆2t . (5.55)

The failure rate function, which is shown in Figure 5.15, is seen to be decreasing.
If we assume that 𝜆1 > 𝜆2, early failures should have a failure rate close to 𝜆1. After
a while, all the “weak” components have failed, and we are left with components
with a lower failure rate 𝜆2.

Time t

z(
t)

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

Figure 5.15 The failure rate function of the mixture of two exponential distributions
(𝜆1 = 1, 𝜆2 = 3, and p = 0.4).
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Stepwise Constant Failure Rate
Consider an item that is running in distinct intervals only. When not running, it
remains in a standby mode that may be energized or nonenergized. An example
of such an item is a household heat-pump.3 When the room temperature is low,
the heat-pump is started on demand from a thermostat and when the room tem-
perature is high, the heat-pump is stopped and enters a standby mode. The item
may fail to start (on demand) with a probability p. When running, it has a constant
failure rate 𝜆r and in standby mode it has a constant failure rate 𝜆s. The failure rate
function z(t) of the item becomes as shown in Figure 5.16.

If we can record the number n of start demands per time unit (e.g. per week)
and the fraction 𝜈 of time the item is running, we may calculate an average failure
rate 𝜆t of the item as

𝜆t = 𝜆d + 𝜈𝜆r + (1 − 𝜈)𝜆s, (5.56)

where 𝜆d = np is the number of start failures per time unit.

5.4.2 The Gamma Distribution

The time-to-failure T of an item is said to be gamma distributed when its probabil-
ity density function is

f (t) = 𝜆

Γ(𝛼)
(𝜆t)𝛼−1 e−𝜆t for t > 0, (5.57)

where Γ(⋅) is the gamma function, 𝛼 > 0 and 𝜆 > 0 are parameters, and t is the
time. The gamma distribution is often written T ∼ gamma(𝛼, 𝜆). The probability
density function f (t) is sketched in Figure 5.17 for selected values of 𝛼. The gamma
distribution is not a widely used time-to-failure distribution, but is considered to

z(t)

0 Time

Start Start Start

Running Running Running

Standby Standby Standby

Figure 5.16 The failure rate function of an item with stepwise constant failure rates and
start problems.

3 This example is inspired by a similar example found on the Internet, unfortunately without
any author’s name or any other references.
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Figure 5.17 The gamma probability density for selected values of 𝛼, 𝜆 = 1.0.

be adequate in cases where partial failures can exist and where a specific number
of partial failures must occur before the item fails. In spite of this limited usage,
the gamma distribution is an important distribution in reliability because it is used
in other situations as illustrated later in this book (e.g. see Chapter 15).

The gamma function is available in R by the command gamma(x), for example,
gamma(2.7)= 1.544686. In R, the parameter 𝛼 is called shape and 𝜆 is called
rate. We may alternatively use the parameter 𝜃 = 1∕𝜆, which is called scale in
R, as the second parameter. The probability density functions (e.g. for 𝛼 = 2 and
𝜆 = 1 can be plotted by the R script:

t<-seq(0,6,length=300) # Set time axis
# Set the parameters
a<-2 # shape
rate<-1 # rate
# Calculate the gamma density (y) for each t
y<-dgamma(t,a,rate,log=F)
plot(t,y,type="l")

Observe that we have to writerate= to specify 𝜆 in the script. We could, alterna-
tively, have written scale= to specify the scale parameter 𝜃(= 1∕𝜆). The scale
parameter is the default parameter in R and if we write only the number, it is inter-
preted as scale.

From (5.57) we find that

MTTF = 𝛼

𝜆
= 𝛼𝜃. (5.58)

var(T) = 𝛼

𝜆2 = 𝛼𝜃
2
. (5.59)
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The parameter 𝛼 is a dimensionless number, whereas 𝜃 is measured in time units
(e.g. hours). For a specified value of 𝛼, the MTTF is proportional to 𝜃.

The distribution function F(t) is available in R by the command pgamma and
R(t) is than obtained as 1-pgamma. The survivor function R(t) (e.g. for 𝛼 = 2 and
𝜆 = 1) can be plotted by the R script:

t<-seq(0,6,length=300) # Set time axis
# Set the parameter
a<-2 # shape
rate <- 1 #rate
# Calculate the survivor function (y) for each t
y<-1-pgamma(t,a,rate,log=F)
plot(t,y,type="l")

A sketch of R(t) is given in Figure 5.18 for some values of 𝛼.
The failure rate function (e.g. for 𝛼 = 2 and 𝜆 = 1) may be calculated and plotted

by the R script

t<-seq(0, 6, length=300) # Set time axis
# Set the parameter
a<-2 # shape
rate <- 1
# Calculate the failure rate function (y) for each t
y<-dgamma(t,a,rate,log=F)/(1-pgamma(t,a,rate,log=F))
plot(t,y,type="l")

Time t

R
(t

)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

α = 1

α = 2

α = 3

Figure 5.18 Survivor function for the gamma distribution for selected values of 𝛼,
𝜆 = 1.0.
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Figure 5.19 Failure rate function of the gamma distribution for selected values of 𝛼,
𝜆 = 1.

The“behavior” of the failure rate function can now be studied by running the
above script for various values of 𝛼. Observe that

for 0 < 𝛼 < 1, z(t) → ∞ when t → 0
for 𝛼 > 1, z(t) → 0 when t → 0

.

The function z(t) is hence not continuous as a function of the shape parameter 𝛼
for 𝛼 = 1. We must therefore be careful when specifying 𝛼 near 1.

The failure rate function z(t) is shown in Figure 5.19 for some integer values of 𝛼.
Let T1 and T2 be independent and gamma distributed (𝛼1, 𝜆) and (𝛼2, 𝜆), respec-

tively. It is then easy to show (see Problem 5.13) that T1 + T2 is gamma distributed
with parameters (𝛼1 + 𝛼2, 𝜆). Gamma distributions with a common 𝜆 are therefore
closed under addition.

For integer values of 𝛼, the gamma distribution can be deduced from the homo-
geneous Poisson process (HPP), as shown in Section 5.8.5.

Special Cases
For special values of the parameters 𝛼 and 𝜆, the gamma distribution is known
under other names:

(1) When 𝛼 = 1, we have the exponential distribution with failure rate 𝜆.
(2) When 𝛼 = n∕2, n is an integer, and 𝜆 = 1∕2, the gamma distribution coincides

with the well-known chi-square (𝜒2) distribution with n degrees of freedom.
(3) When 𝛼 is an integer, the gamma distribution is called an Erlangian distribu-

tion with parameters 𝛼 and 𝜆.

The 𝝌2 Distribution
The 𝜒

2 distribution is a very important distribution in many branches of statis-
tics. A main feature is its relation to the standard normal distribution  (0, 1). If
U1,U2,… ,Un are independent and standard normal variables, X =

∑n
i=1 U2

i is a𝜒2
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distributed variable with n degrees of freedom, with probability density function

fn(x) =
1

Γ(n∕2)2n∕2 xn∕2−1e−x∕2 for x > 0.

The 𝜒
2 distribution has mean E(X) = n and variance var(X) = 2n. The 𝜒

2 dis-
tribution is not a relevant time-to-failure distribution, but is important in some
data-analyses. The 𝜒2 distribution is available in R where, for example, the density
of the 𝜒

2 distribution with df degrees of freedom is calculated by the command
dchisq(x,df,log=F).

Example 5.5 (Mixture of exponential distributions)
This example illustrates another application of the gamma distribution. Assume
that items of a specific type are produced in a plant where the production process
is unstable such that the failure rate 𝜆 of the items varies with time. If we pick an
item at random, the conditional probability density function of the time-to-failure
T, given 𝜆, is

f (t ∣ 𝜆) = 𝜆e−𝜆t for t > 0.

Assume that the variation in 𝜆 can be modeled by assuming that the failure rate
is a random variable Λ that is gamma distributed with parameters k and 𝛼. The
probability density function of Λ is

𝜋(𝜆) = 𝛼
k

Γ(k)
𝜆

k−1 e−𝛼𝜆 for 𝜆 > 0, 𝛼 > 0, k > 0.

The unconditional probability density of T is thus

f (t) =
∫

∞

0
f (t ∣ 𝜆)𝜋(𝜆) d𝜆 = k𝛼k

(𝛼 + t)k+1
. (5.60)

The survivor function is

R(t) = Pr(T > t) =
∫

∞

t
f (u) du = 𝛼

k

(𝛼 + t)k
=
(

1 + t
𝛼

)−k
. (5.61)

The MTTF is

MTTF =
∫

∞

0
R(t) dt = 𝛼

k − 1
for k > 1.

Observe that MTTF does not exist for 0 < k ≤ 1. The failure rate function is

z(t) =
f (t)
R(t)

= k
𝛼 + t

, (5.62)

and hence is monotonically decreasing as a function of t. This may be illustrated
by the following case:

A factory is producing a specific type of gas detectors. Experience has shown that
the mean failure rate of the detectors is 𝜆m = 1.15 × 10−5 h−1. The corresponding
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mean MTTF is 1∕𝜆m ≈ 9.93 years, but the production is unstable and the stan-
dard deviation of the failure rate is estimated to be 4 × 10−6 h−1. As above, we
assume that the failure rate is a random variableΛwith a gamma(k, 𝛼)distribution.
From (5.59), we have E(Λ) = k∕𝛼 = 1.15 × 10−5, and var(Λ) = k∕𝛼2 = [4 × 10−6]2.
We can now solve for k and 𝛼 and get

k ≈ 8.27 and 𝛼 ≈ 7.19 × 106
.

The MTTF is then

MTTF = 𝛼

k − 1
≈ 9.9 × 105 h ≈ 11.3 yr.

The corresponding failure rate function z(t) may be found from (5.62). Similar
examples are discussed in Chapter 15. ◻

Remark 5.5 (Mixed distributions)
Example 5.5 is similar to the situation illustrated in Figure 5.15, where we by
mixing two different exponential distributions got a decreasing failure rate (DFR)
function. The results from these examples are very important for collection and
analysis of field data. Suppose that the failure rate of a specific item is equal to 𝜆.
When we collect data from different installations and from different operational
contexts, the failure rate 𝜆 will vary. If we pool all the data into one single dataset
and analyze the data, we conclude that the failure rate function is decreasing. ◻

5.4.3 The Weibull Distribution

The Weibull distribution is one of the most widely used time-to-failure distribu-
tions in reliability analysis. The distribution is named after the Swedish professor
Waloddi Weibull (1887–1979), who developed the distribution for modeling the
strength of materials. The Weibull distribution is very flexible, and can, through
an appropriate choice of parameters, model many types of failure rate behaviors.

Two-Parameter Weibull Distribution
The time-to-failure T of an item is said to be Weibull distributed with parameters
𝛼(> 0) and 𝜃(> 0) if the distribution function is given by

F(t) = Pr(T ≤ t) =

{
1 − e−

(
t
𝜃

)𝛼

for t > 0
0 otherwise

. (5.63)

The two-parameter Weibull distribution is often written as T ∼ Weibull(𝛼, 𝜃). The
corresponding probability density is

f (t) = d
dt

F(t) = 𝛼

𝜃

( t
𝜃

)𝛼−1
e−
(

t
𝜃

)𝛼

for t > 0, (5.64)
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where 𝜃 is a scale parameter measured in time units, and 𝛼 is a dimensionless
constant called the shape parameter. Observe that when 𝛼 = 1, the Weibull distri-
bution is equal to the exponential distribution with 𝜆 = 1∕𝜃.

Remark 5.6 (Choice of parameters)
The parameters in (5.64) are chosen because this is the default parameterization
in R. Many authors prefer instead the parameters 𝛼 and 𝜆 (= 1∕𝜃), in which case
the distribution function is written F(t) = 1 − e−(𝜆t)𝛼 . This way, the special case for
𝛼 = 1 directly becomes the exponential distribution exp(𝜆). Both parameteriza-
tions give the same results, and it is therefore a matter of habit and convenience
which one to use. Later in this book, you will see both versions, and we hope this
will not be too confusing. Both 𝜃 and 𝜆 are referred to as scale parameters. ◻

A plot of the probability density function (dweibull) of the Weibull distribu-
tion with shape parameter 𝛼 = 2.5 and scale parameter 𝜃 = 300 is, for example,
obtained by the following R script.

t<-seq(0,1000,length=300) # Set time axis
# Set the parameters
a<-2.5 # shape parameter (alpha)
th<-200 # scale parameter (theta)
# Calculate the Weibull density (y) for each t
y<-dweibull(t,a,th,log=F)
plot(t, y, type="l")

The probability density function f (t) is shown in Figure 5.20 for selected values
of 𝛼.

Survivor Function
The survivor function of T ∼ Weibull(𝛼, 𝜃) is

R(t) = Pr(T > 0) = e−
(

t
𝜃

)𝛼

for t > 0. (5.65)

Failure Rate Function
The failure rate function of T ∼ Weibull(𝛼, 𝜃) is

z(t) =
f (t)
R(t)

= 𝛼

𝜃

( t
𝜃

)𝛼−1
for t > 0. (5.66)

Observe that the failure rate may be written as

z(t) = 𝛼 𝜃
−𝛼 t𝛼−1 for t > 0.
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Figure 5.20 The probability density function of the Weibull distribution for selected
values of the shape parameter 𝛼 (𝜃 = 1).
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Figure 5.21 Failure rate function of the Weibull distribution, 𝜃 = 1 and four different
shape parameter (𝛼) values.

When 𝛼 = 1, the failure rate is constant, when 𝛼 > 1, the failure rate function
is increasing, and when 0 < 𝛼 < 1, z(t) is decreasing. When 𝛼 = 2 (such that
the failure rate function is linearly increasing, see Figure 5.21), the resulting
distribution is known as the Rayleigh distribution. The failure rate function
z(t) of the Weibull distribution is shown in Figure 5.21 for some selected values
of 𝛼. The Weibull distribution is seen to be flexible and may be used to model
time-to-failure distributions, where the failure rate function is decreasing,
constant, or increasing.

Observe that

𝛼 < 1 ⇒ z(t) is a decreasing function of time

𝛼 = 1 ⇒ z(t) is constant

𝛼 > 1 ⇒ z(t) in an increasing function of time

.
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Remark 5.7 (A warning)
The failure rate function is seen to be discontinuous as a function of the shape
parameter 𝛼 at 𝛼 = 1. It is important to be aware of this discontinuity in numerical
calculations, because, for example, 𝛼 = 0.999, 𝛼 = 1.000, and 𝛼 = 1.001 give signif-
icantly different failure rate functions for small values of t. ◻

Assume that T ∼ Weibull(𝛼, 𝜃) and consider the variable T𝛼 . The survivor func-
tion of T𝛼 is

Pr(T𝛼
> t) = Pr(T > t1∕𝛼) = exp

(
− t
𝜃𝛼

)
,

which means that T𝛼 is exponentially distributed with constant failure rate 𝜆 =
1∕𝜃𝛼 .

The parameter 𝜃 is called the characteristic lifetime of the Weibull distribution.
From (5.65), it follows that

R(𝜃) = e−1 = 1
e
≈ 0.368, for all 𝛼 > 0.

This means that for any choice of the shape parameter 𝛼, the item will survive time
𝜃 with probability 36.8%.

MTTF
The MTTF of the two-parameter Weibull distribution is

MTTF =
∫

∞

0
R(t) dt = 𝜃 Γ

(
1 + 1

𝛼

)
. (5.67)

The MTTF is equal to the characteristic lifetime 𝜃 multiplied with a factor that
depends on the shape parameter 𝛼. This factor, Γ(1 + 1∕𝛼), varies with 𝛼 as shown
in Figure 5.22, which shows that MTTF is slightly less than 𝜃 when 𝛼 ≥ 1.

The median time-to-failure tm of the Weibull distribution is

R(tm) = 0.50 ⇒ tm = 𝜃(log 2)1∕𝛼
. (5.68)
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Figure 5.22 The proportionality factor of MTTF as a function of 𝛼.
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The variance of T is

var(T) = 𝜃
2
[
Γ
(

1 + 2
𝛼

)
− Γ2

(
1 + 1

𝛼

)]
. (5.69)

Observe that MTTF∕
√

var(T) is independent of 𝜃.
The Weibull distribution also arises as a limit distribution for the smallest

of a large number of independent, identically distributed, nonnegative random
variables. The Weibull distribution is therefore often called the weakest link
distribution. This is further discussed in Section 5.5.3.

The Weibull distribution has been widely used in reliability analysis of semi-
conductors, ball bearings, engines, spot weldings, biological organisms, and so on.
The Weibull distribution is discussed in detail by Murthy et al. (2003) and McCool
(2012). The Weibull distribution is a basic distribution in R and is covered in several
R packages. Interested readers may have a look at the package Weibull-R.

Example 5.6 (Choke valve)
The time-to-failure T of a variable choke valve is assumed to have a Weibull
distribution with shape parameter 𝛼 = 2.25 and scale parameter 𝜃 = 8695 hours.
The valve will survive six months (t = 4380 hours) in continuous operation with
probability

R(t) = exp
[
−
( t
𝜃

)𝛼]
= exp

[
−
(4380

8695

)2.25]
≈ 0.808.

The MTTF is

MTTF = 𝜃 Γ
(

1 + 1
𝛼

)
= 8695 Γ(1.44) h ≈ 7701 h,

and the median time-to-failure is

tm = 𝜃 (log 2)1∕𝛼 ≈ 7387 h.

A valve that has survived the first six months (t1 = 4380 hours), will survive the
next six months (t2 = 4380 hours) with probability

R(t1 + t2 ∣ t1) =
R(t1 + t2)

R(t1)
=

exp
[
−
(

t1+t2
𝜃

)𝛼]

exp
[
−
(

t1
𝜃

)𝛼] ≈ 0.448,

that is, significantly less than the probability that a new valve will survive six
months.

The MRL when the valve has been functioning for six months (x = 4380
hours) is

MRL(x) = 1
R(x) ∫

∞

0
R(t + x) dt ≈ 4448 h.



�

� �

�

178 5 Probability Distributions in Reliability Analysis

0 14 000
0

0.2

0.4

0.6

0.8

1

g(
t)

12 00010 0008000
Time t (hours)

600040002000

Figure 5.23 The scaled mean residual lifetime function g(t) = MRL(x)/MTTF for the
Weibull distribution with parameters 𝛼 = 2.25 and 𝜃 = 8760 hours.

The MRL(x) cannot be given a simple closed form in this case and was therefore
calculated by using a computer. The function g(x) = MRL(x)∕ MTTF is shown in
Figure 5.23. ◻

Series Structure of Independent Components
Consider a series structure of n components. The times-to-failure T1,T2,… ,Tn of
the n components are assumed to be independent and Weibull distributed:

Ti ∼ Weibull (𝛼, 𝜃i) for i = 1, 2,… ,n.

A series structure fails as soon as the first component fails. The time-to-failure of
the structure, Ts is thus

Ts = min{T1,T2,… ,Tn}.

The survivor function of this series structure becomes

Rs(t) = Pr(T > t) = Pr
(
min

1≤i≤n
Ti > t

)
=

n∏
i=1

Pr(Ti > t)

=
n∏

i=1
exp

[
−
(

t
𝜃i

)𝛼]
= exp

[
−

n∑
i=1

(
t
𝜃i

)𝛼
]
= exp

[
−

n∑
i=1

(
1
𝜃i

)𝛼

t𝛼
]
.

A series structure of independent components with Weibull time-to-failure dis-
tribution with the same shape parameter 𝛼, again has a Weibull time-to-failure
distribution, with scale parameter 𝜃s = 1∕

∑n
i=1 (1∕𝜃i)1∕𝛼 and with the shape

parameter being unchanged.

Identical Components
When all the n components have the same distribution, such that 𝜃i = 𝜃 for i =
1, 2,… ,n, the series structure has a Weibull time-to-failure distribution with scale
parameter 𝜃∕(n1∕𝛼) and shape parameter 𝛼.
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Example 5.7 (Numerical example)
Consider a series structure of n independent and identical components with
Weibull distributed times-to-failure the same parameters as in Example 5.6,
𝛼 = 2.25 and 𝜃 = 8695 hours. The MTTF of the series structure is

MTTFs = 𝜃sΓ
(

1 + 1
𝛼

)
,

where

𝜃s =
𝜃

n1∕𝛼 .

For a series structure of n = 5 components, the mean time-to-failure is

MTTFs =
8695

51∕2.25 Γ
(

1 + 1
2.25

)
h = 3766.3 h.

In Figure 5.24, MTTFs is shown as a function of n, the number of identical com-
ponents in the series structure. ◻

Three-Parameter Weibull Distribution
The Weibull distribution we have discussed so far is a two-parameter distribution
with shape parameter 𝛼 > 0 and scale parameter 𝜃 > 0. A natural extension of this
distribution is the three-parameter Weibull distribution (𝛼, 𝜃, 𝜉) with distribution
function

F(t) = Pr(T ≤ t) =

{
1 − e−

(
t−𝜉
𝜃

)𝛼

for t > 𝜉

0 otherwise
. (5.70)

The corresponding density is

f (t) = d
dt

F(t) = 𝛼

𝜃

(
t − 𝜉

𝜃

)𝛼−1

e−
(

t−𝜉
𝜃

)𝛼

for t > 𝜉.

The third parameter 𝜉 is sometimes called the guarantee or threshold parameter
because the probability that a failure occurs before time 𝜉 is 0.
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Figure 5.24 MTTFs as a function of n, the number of independent and identical
components in a series structure (Example 5.7).
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Because (T − 𝜉) obviously has a two-parameter Weibull distribution (𝛼, 𝜃), the
mean and variance of the three-parameter Weibull distribution (𝛼, 𝜃, 𝜉) follows
from (5.67) and (5.69).

MTTF = 𝜉 + 𝜃 Γ
(

1 + 1
𝛼

)
.

var(T) = 𝜃
2
[
Γ
(

1 + 2
𝛼

)
− Γ2

(
1 + 1

𝛼

)]
.

In reliability applications, reference to the Weibull distribution usually means the
two-parameter family, unless otherwise specified.

5.4.4 The Normal Distribution

The most commonly used distribution in statistics is the normal (Gaussian4) dis-
tribution. A random variable T is said to be normally distributed with mean 𝜈 and
standard deviation 𝜏, T ∼  (𝜈, 𝜏2), when the probability density of T is

f (t) = 1√
2𝜋𝜏

e−(t−𝜈)2∕2𝜏2 for −∞ < t < ∞. (5.71)

The probability density function of  (𝜈, 𝜏2) may be plotted in R by the script

t<-seq(0,20,length=300) # Set the time axis
# Set the parameters
nu<-10
tau<-2
# Calculate the normal density y for each t
y<-dnorm(t,nu,tau,log=F)
plot(t,y,type="l")

The resulting plot is shown in Figure 5.25. The  (0, 1) distribution is called the
standard normal distribution. The distribution function of the standard normal
distribution is usually denoted by Φ(⋅). The probability density of the standard
normal distribution is

𝜙(t) = 1√
2𝜋

e−t2∕2
. (5.72)

The distribution function of T ∼  (𝜈, 𝜏2) may be written as

F(t) = Pr(T ≤ t) = Φ
( t − 𝜈

𝜏

)
. (5.73)

The normal distribution is sometimes used as a time-to-failure distribution, even
though it allows negative values with positive probability.

4 Named after the German mathematician Johann Carl Friedrich Gauss (1777–1855).
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Time t

f(
t)

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

Figure 5.25 The normal distribution with mean 𝜇 = 10 and standard deviation 𝜎 = 2.

Survivor Function
The survivor function of T ∼  (𝜈, 𝜏2) is

R(t) = 1 − Φ
( t − 𝜈

𝜏

)
. (5.74)

Failure Rate Function
The failure rate function of T ∼  (𝜈, 𝜏2) is

z(t) = −R′(t)
R(t)

= 1
𝜏

𝜙[(t − 𝜈)∕𝜏]
1 − Φ[(t − 𝜈)∕𝜏]

. (5.75)

The failure rate function may be plotted in R by the script

t<-seq(-2,10,length=300) # Set the time axis
# Set the parameters
nu<-10
tau<-2
# Calculate the failure rate function for each t
y<-dnorm(t,nu,tau,log=F)/(1-pnorm(t,nu,tau,log=F))
plot(t,y,type="l")

If zΦ(t) is the failure rate function of the standard normal distribution, the failure
rate function of  (𝜈, 𝜏2) is seen to be

z(t) = 1
𝜏

zΦ
( t − 𝜈

𝜏

)
.

The failure rate function of the standard normal distribution,  (0, 1), is shown in
Figure 5.26. The failure rate function is increasing for all t and approaches z(t) = t
when t → ∞.

When a random variable has a normal distribution but with an upper bound
and/or a lower bound for the values of the random variable, the resulting distribu-
tion is called a truncated normal distribution. When there is only a lower bound,
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Time t

z(
t)
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Figure 5.26 Failure rate function of the standard normal distribution wit mean 𝜇 = 10
and standard deviation 𝜎 = 2.

the distribution is said to be left truncated. When there is only an upper bound,
the distribution is said to be right truncated. Should there be an upper as well as a
lower bound, it is said to be doubly truncated.

A normal distribution, left truncated at 0, is sometimes used as a time-to-failure
distribution. This left truncated normal distribution has survivor function

R(t) = Pr(T > t ∣ T > 0) =
Φ[(𝜈 − t)∕𝜏]

Φ(𝜈∕𝜏)
for t ≥ 0. (5.76)

The corresponding failure rate function becomes

z(t) = −R′(t)
R(t)

= 1
𝜏

𝜙[(t − 𝜈)∕𝜏]
1 − Φ[(t − 𝜈)∕𝜏]

for t ≥ 0.

Observe that the failure rate function of the left truncated normal distribution is
identical to the failure rate function of the (untruncated) normal distribution when
t ≥ 0.

Example 5.8 (Wear-out of car tires)
A specific type of car tires has an average wear-out “time” T of 50 000 km, and 5% of
the tires last for at least 70 000 km. We assume that T is normally distributed with
mean 𝜈 = 50 000 km, and that Pr(T > 70 000) = 0.05. Let 𝜏 be the standard devi-
ation of T. The variable (T − 50 000)∕𝜏 then has a standard normal distribution.
Standardizing, we get

Pr(T > 70 000) = 1 − Pr
(T − 50 000

𝜏
≤

70 000 − 50 000
𝜏

)
= 0.05.

Therefore,

Φ
(20 000

𝜏

)
= 0.95 ≈ Φ(1.645)

and
20 000

𝜏
≈ 1.645 ⇒ 𝜏 ≈ 12 158.
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The probability that a tire will last more than 60 000 km is now

Pr(T > 60 000) = 1 − Pr
(T − 50 000

12 158
≤

60 000 − 50 000
12 158

)

≈ 1 − Φ(0.795) ≈ 0.205.

The probability of a “negative” time-to-failure is in this case

Pr(T < 0) = Pr
(T − 50 000

12 158
<

−50 000
12 158

)
≈ Φ(−4.11) ≈ 0.

The effect of using a truncated normal distribution instead of a normal distribution
is therefore negligible. ◻

5.4.5 The Lognormal Distribution

The time-to-failure T of an item is said to be lognormally distributed with param-
eters 𝜈 and 𝜏, T ∼ lognorm(𝜈, 𝜏), if Y = log T is normally (Gaussian) distributed
with mean 𝜈 and standard deviation 𝜏 [i.e. Y ∼  (𝜈, 𝜏2)]. The probability density
function of T is

f (t) =

{
1√

2𝜋 𝜏 t
e−

1
2𝜏2 (log t−𝜈)2 for t > 0

0 otherwise
. (5.77)

The probability density function of the lognormal distribution may be plotted in
R by the script

t<-seq(0,10,length=300) # Set the time axis
# Set the parameters:
nu<-5
tau<-2
# Calculate the lognormal density y for each t
y<-dlnorm(t,nu,tau,log=F)
plot(t,y,type="l")

The reader is encouraged to make the plot for various values of 𝜈 and 𝜏 and to
study how the shape of the density varies with the parameter values. The lognor-
mal probability density is sketched in Figure 5.27.

The MTTF is

MTTF = e𝜈+𝜏2∕2
, (5.78)

the median time-to-failure (i.e. satisfying R(tm) = 0.5) is

tm = e𝜈 , (5.79)
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Time t

f(
t)
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Figure 5.27 Probability density of the lognormal distribution with 𝜈 = 8 and 𝜏 = 0.2.
The mean value is indicated by the dotted line.

and the mode of the distribution is

tmode = e𝜈−𝜏2
.

Observe that the MTTF may be written

MTTF = tm e𝜏2∕2
,

and that the mode may be written

tmode = tm e−𝜏2
.

It is therefore easy to see that

tmode < tm < MTTF, for 𝜏 > 0.

The variance of T is

var(T) = e2𝜈(e2𝜏2 − e𝜏2 ). (5.80)

Survivor Function
The survivor function of T ∼ lognorm(𝜈, 𝜏) is

R(t) = Pr(T > t) = Pr(log T > log t)

= Pr
(

log T − 𝜈

𝜏
>

log t − 𝜈

𝜏

)
= Φ

(
𝜈 − log t

𝜏

)
, (5.81)

where Φ(⋅) is the distribution function of the standard normal distribution.

Failure Rate Function
The failure rate function of T ∼ lognorm(𝜈, 𝜏) is

z(t) = − d
dt

[
logΦ

(
𝜈 − log t

𝜏

)]
=

𝜙[(𝜈 − log t)∕𝜏)]∕𝜏t
Φ[(𝜈 − log t)∕𝜏]∕𝜏

, (5.82)

where 𝜙(t) is the probability density of the standard normal distribution.
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The failure rate function of the lognormal distribution may be plotted in R by
the script

t<-seq(0,12000,1) # Set the time axis
# Set the parameters:
nu<-8
tau<-0.2
# Calculate the failure rate y for each t:
y<-dlnorm(t,nu,tau)/(1-plnorm(t,nu,tau)
plot(x,y,type="l")

The shape of z(t) is discussed in detail by Sweet (1990) who describes an itera-
tive procedure to compute the time t for which the failure rate function attains its
maximum value. He proves that z(t) → 0 when t → ∞.

Let T1,T2,… ,Tn be independent lognormally distributed functions with param-
eters 𝜈i and 𝜏

2
i for i = 1, 2,… ,n. The product T =

∏n
i=1 Ti is then lognormally dis-

tributed with parameters
∑n

i=1 𝜈i and
∑n

i=1 𝜏
2
i .

Repair Time Distribution
The lognormal distributed is commonly used as a distribution for repair time. The
repair rate is defined analogous to the failure rate. When modeling the repair time,
it is natural to assume that the repair rate is increasing, at least in a first phase. This
means that the probability of completing the repair action within a short interval
increases with the elapsed repair time. When the repair has been going on for
a rather long time, this indicates serious problems, for example that there are no
spare parts available on the site. It is therefore natural to believe that the repair rate
is decreasing after a certain period of time, namely, that the repair rate function has
the same shape as the failure rate function of the lognormal distribution shown in
Figure 5.28.

Time t

z(
t)

0 2000 4000 6000 8000 10 000 12 000
0.000

0.001

0.002

0.003

0.004

Figure 5.28 Failure rate function of the lognormal distribution with 𝜈 = 8 and 𝜏 = 0.2.
The MTTF is indicated by the dotted line.
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Median and Error Factor
In some cases, we may be interested to find an interval (tL, tU ) such that Pr(tL <

T ≤ tU ) = 1 − 2𝛼, for example. If the interval is symmetric in the sense that Pr(T ≤

tL) = 𝛼 and Pr(T > tU ) = 𝛼, it is easy to verify that tL = e−u
𝛼
𝜏 and tU = eu

𝛼
𝜏 , where

u
𝛼

is the upper 𝛼% percentile of the standard normal distribution [i.e. Φ(u
𝛼
) =

1 − 𝛼]. By introducing the median tm = e𝜈 and k = eu
𝛼
𝜏 , the lower limit tL and the

upper limit tU may be written

tL =
tm

k
and tU = k tm. (5.83)

The factor k is often called the (1 − 2𝛼) error factor. 𝛼 is usually chosen to be 0.05.

Uncertainty in Failure Rate Estimate
In many situations, the (constant) failure rate 𝜆may vary from one item to another.
In the Reactor Safety Study (NUREG-75/014), the variation (uncertainty) in 𝜆 was
modeled by a lognormal distribution, that is, the failure rate 𝜆 is regarded as a
random variable Λ with a lognormal distribution.

In the Reactor Safety Study, the lognormal distribution was determined by the
median 𝜆m and a 90% error factor k such that

P
(
𝜆m

k
< Λ < k𝜆m

)
= 0.90.

If we, as an example, choose the median to be 𝜆m = 6.0 × 10−5 failures/h, and an
error factor k = 3, then the 90% interval is equal to (2.0 × 10−5

, 1.8 × 10−4). The
parameters 𝜈 and 𝜏 of the lognormal distribution can now be determined from
(5.79) and (5.83).

𝜈 = log(𝜆m) = log 6.0 × 10−5 ≈ −9.721.

𝜏 = 1
1.645

log k = 1
1.645

log 3 ≈ 0.668.

With these parameter values, the MTTF is equal to

MTTF = e𝜈+𝜏2∕2 ≈ 1.47 × 10−4 h.

Example 5.9 (Fatigue analysis)
The lognormal distribution is commonly used in the analysis of fatigue failures.
Considering the following simple situation: A smooth, polished test rod of steel is
exposed to sinusoidal stress cycles with a given stress range (double amplitude) s.
We want to estimate the time-to-failure of the test rod (i.e. the number of stress
cycles N, until fracture occurs). In this situation, it is usually assumed that N
is lognormally distributed. The justification for this is partly physical and partly
mathematical convenience. A fatigue crack will always start in an area with local
yield, normally caused by an impurity in the material. It seems reasonable that in
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the beginning the failure rate function increases with the number of stress cycles.
If the test rod survives a large number of stress cycles, this indicates that there are
very few impurities in the material. It is therefore to be expected that the failure
rate function will decrease when the possibility for impurities in the material is
reduced.

It is known that within a limited area of the stress range s, the number N of
cycles to failure will roughly satisfy the equation

Nsb = c, (5.84)

where b and c are constants depending on the material and the geometry of the
test rod. They may also depend on the surface treatment and the environment in
which the rod is used.

By taking the logarithms of both sides of (5.83), we get

log N = log c − b log s. (5.85)

If we introduce Y = log N, 𝛼 = log c, 𝛽 = −b and x = log s, it follows from (5.84)
that Y roughly can be expressed by the relation

Y = 𝛼 + 𝛽x + random error.

If N is assumed to be lognormally distributed, then Y = log N will be normally
distributed, and the usual theory for linear regression models applies when esti-
mating the expected number of cycles to failure for a given stress range s. Equation
(5.84) represents the Wöhler5 or s–N diagram for the test rod. Such a diagram is
shown in Figure 5.29. When the stress range is below a certain value s0, the test rod
will not fracture, irrespective of how many stress cycles it is exposed to. Equation
(5.84) is therefore valid only for stress values above s0.

ln N

ln s

ln s0

0

Figure 5.29 Wöhler or s–N diagram.

5 Named after the German engineer August Wöhler (1819–1914).
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The stress range s0 is called the fatigue limit. For certain materials such as alu-
minum, the Wöhler curve has no horizontal asymptote. Such materials therefore
have no fatigue limit. In a corrosive environment, such as salt water, neither does
steel have any fatigue limit. ◻

5.4.6 Additional Time-to-Failure Distributions

Section 6.4 has, so far, presented the most common time-to-failure distributions
used in practical reliability analyses. There are several other time-to-failure distri-
butions that are not covered. Two of the most important are

Birnbaum–Saunders distribution. This distribution was developed as a time-to-
failure distribution for fatigue failures in aircrafts (see Birnbaum and Saunders
1969). For a brief survey of the main properties of the Birnbaum–Saunders dis-
tribution, see https://en.wikipedia.org/wiki/Birnbaum-Saunders_distribution.

Inverse Gaussian distribution. This distribution is sometimes used as time-to-
failure distribution for fatigue failures (e.g. see Chhikara and Folks 1989). The
inverse Gaussian distribution resembles the lognormal distribution, but its
failure rate function does not approach zero when the time increases. For a
brief survey of the main properties of the inverse Gaussian distribution, see
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.

5.5 Extreme Value Distributions

Extreme value distributions play an important role in reliability analysis. They
arise in a natural way, for example, in the analysis of engineering systems, made up
of n identical items with a series structure, and in the study of corrosion of metals,
of material strength, and of breakdown of dielectrics.

Let T1,T2,… ,Tn be independent, identically distributed random variables (not
necessarily times-to-failure) with a continuous distribution function FT(t), for the
sake of simplicity assumed to be strictly increasing for F−1

T (0) < t < F−1
T (1). Then

T(1) = min{T1,T2,… ,Tn} = Un (5.86)

T(n) = max{T1,T2,… ,Tn} = Vn (5.87)

are called the extreme values.
The distribution functions of Un and Vn are easily expressed by FT(⋅) in the fol-

lowing way (e.g. see Cramér 1946; Mann et al. 1974):

FUn
(u) = 1 − [1 − FT(u)]n = Ln(u) (5.88)
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and

FVn
(𝑣) = FT(𝑣)n = Hn(𝑣). (5.89)

Despite of the simplicity of (5.88) and (5.89), these formulas are usually not easy to
work with. If FT(t), say, represents a normal distribution, one is lead to work with
powers of FT(t), which may be cumbersome.

In many practical reliability applications, n is very large. Hence, one is lead to
look for asymptotic techniques, which under general conditions on FT(t) may lead
to simple representations of FUn

(u) and FVn
(𝑣).

Cramér (1946) suggests the following approach: Introduce

Yn = nFT(Un),

where Un is defined as in (5.86). Then for y ≥ 0,

Pr(Yn ≤ y) = P
(

FT(Un) ≤
y
n

)

= P
[

Un ≤ F−1
T

( y
n

)]

= FUn

[
F−1

T

( y
n

)]

= 1 −
[
1 − FT

(
F−1

T

( y
n

))]

= 1 −
(

1 −
y
n

)n
. (5.90)

As n → 0

Pr(Yn ≤ y) → 1 − e−y for y > 0. (5.91)

Because the right hand side of (5.91) is the distribution function for the exponential
distribution with parameter 𝜆 = 1, it is continuous for y > 0, this implies that Yn
converges in distribution to a random variable Y , with distribution function

FY (y) = 1 − e−y for y > 0. (5.92)

It follows from (5.88) that the distribution of Un becomes more and more similar
to the distribution of the random variable F−1

T (Y∕n) when n increases. Therefore,

Pr(Un ≤ x) ≈ Pr
(

F−1
T

[Y
n

]
≤ x

)
when n is “large”. (5.93)

Similarly, let

Zn = n[1 − FT(Vn)], (5.94)

where Vn is defined in (5.87). By an analogous argument, it can be shown that for
z > 0.

Pr(Zn ≤ z) = 1 −
(

1 − z
n

)n
, (5.95)
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which implies that the distribution of Vn becomes more and more similar to the
distribution of the random variable F−1

T (1 − Z∕n) when n increases. Therefore,

Pr(Vn ≤ x) ≈ Pr
(

F−1
T

[
1 − Z

n

]
≤ x

)
when n is “large”, (5.96)

where Z has distribution function

Pr(Z ≤ z) = 1 − e−z for z > 0. (5.97)

It is to be expected that the limit distribution of Un and Vn will depend on the
type of distribution FT(⋅), but it turns out that there are only three possible types of
limiting distributions for the minimum extreme Un, and only three possible types
of limiting distributions for the maximum extreme Vn.

For a comprehensive discussion of the application of extreme value theory to
reliability analysis, see Mann et al. (1974), Lawless (1982), and Johnson and Kotz
(1970). Here, we content ourselves with mentioning three of the possible types of
limiting distributions, and indicate areas where they are applied.

5.5.1 The Gumbel Distribution of the Smallest Extreme

If the probability density fT(t) of the Tis approaches zero exponentially as t → ∞,
then the limiting distribution of Un = T(1) = min{T1,T2,… ,Tn} is of the form

FT(1)
(t) = 1 − exp(−e(t−𝜗)∕𝛼) for −∞ < t < ∞, (5.98)

where 𝛼 > 0 and 𝜗 are constants. 𝛼 is the mode, and 𝜗 is a scale parameter.
The corresponding “survivor” function is

RT(1)
(t) = 1 − FT(1)

(t) = exp(−e(t−𝜗)∕𝛼) for −∞ < t < ∞. (5.99)

Gumbel (1958) calls this distribution the Type I asymptotic distribution of the
smallest extreme. It is now called the Gumbel distribution of the smallest extreme.6
If standardized variables

Y = T − 𝜗

𝛼
(5.100)

are introduced, the distribution function takes the form

FY(1)
(y) = 1 − exp(−ey) for −∞ < y < ∞,

with probability density

fY(1)
(y) = ey exp(−ey) for −∞ < y < ∞. (5.101)

The corresponding “failure rate” is

zY(1)
(y) =

fY(1)
(y)

1 − FY(1)
(y)

= ey for −∞ < y < ∞. (5.102)

6 Named after the German mathematician Emil Julius Gumbel (1891–1966).
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The mean value of T(1) is (see Lawless 1982, p. 19)

E(T(1)) = 𝜗 − 𝛼𝛾,

where 𝛾 = 0.5772… is known as Euler’s constant.
Because T(1) can take negative values, (5.101) is not a valid time-to-failure distri-

bution, but a valid time-to-failure distribution is obtained by left-truncating (5.101)
at t = 0. In this way, we get the truncated Gumbel distribution of the smallest
extreme, which is given by the survivor function

R0
T(1)

(t) = Pr(T(1) > t ∣ T > 0) =
Pr(T(1) > t)
Pr(T(1) > 0)

=
exp(−e(t−𝜗)∕𝛼)

exp(−e𝜗∕𝛼)
= exp(−e−(𝜗∕𝛼)(et∕𝛼−1)) for t > 0. (5.103)

By introducing new parameters 𝛽 = e−𝜗∕𝛼 and 𝜚 = 1∕𝛼, the truncated Gumbel dis-
tribution of the smallest extreme is given by the survivor function

R0
T(1)

(t) = exp[−𝛽(e𝜚t − 1)] for t > 0. (5.104)

The failure rate function of the truncated distribution is

z0
T(1)

(t) = − d
dt

log R0
T(1)

(t) = d
dt

𝛽(e𝜚t − 1) = 𝛽𝜚e𝜚t for t ≥ 0. (5.105)

5.5.2 The Gumbel Distribution of the Largest Extreme

If the probability density fT(t) approaches zero exponentially as t → ∞, then the
limiting distribution of Vn = T(n) = max{T1,T2,… ,Tn} is of the form

FT(n)
(t) = e−e−(t−𝜗)∕𝛼 for −∞ < t < ∞,

where 𝛼 > 0 and 𝜗 are constants. Gumbel (1958) calls this distribution the Type
I asymptotic distribution of the largest extreme. It is now known as the Gumbel
distribution of the largest extreme.

If standardized variables are introduced, the distribution takes the form

FY(n)
(y) = exp(−e−y) for −∞ < y < ∞, (5.106)

with probability density

fY(n)
(y) = e−y exp(−e−y) for −∞ < y < ∞. (5.107)

5.5.3 The Weibull Distribution of the Smallest Extreme

Another limiting distributions for the smallest extreme is the Weibull distribution

FT(1)
(t) = 1 − exp(−[(t − 𝜗)∕𝜂]𝛽) for t ≥ 𝜗, (5.108)

where 𝛽 > 0, 𝜂 > 0, and 𝜗 > 0 are constants.
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Introducing standardized variables [see (5.100)],

FY(1)
(y) = 1 − exp(−y𝛽) for y > 0 and 𝛽 > 0. (5.109)

This distribution is also called the Type III asymptotic distribution of the smallest
extreme.

Example 5.10 (Pitting corrosion)
Consider a steel pipe with wall thickness 𝜃 which is exposed to corrosion.
Initially, the surface has a certain number n of microscopic pits. Pit i has a
depth Di, for i = 1, 2,… ,n. Due to corrosion, the depth of each pit will increase
with time. Failure occurs when the first pit penetrates the surface, that is when
max{D1,D2,… ,Dn} = 𝜃.

Let Ti be the time pit i will need to penetrate the surface, for i = 1, 2,… ,n. The
time-to-failure T of the item is

T = min{T1,T2,… ,Tn}.

Assume that the time to penetration Ti is proportional to the remaining wall thick-
ness, that is Ti = k(𝜃 − Di). We further assume that k is independent of time, which
implies that the corrosion rate is constant.

Assume next that the random initial depths of the pits D1,… ,Dn are indepen-
dent and identically distributed with a right truncated exponential distribution.
Then the distribution function of Di is

FDi
(d) = Pr(Di ≤ d ∣ Di ≤ 𝜃) =

Pr(Di ≤ d)
Pr(Di ≤ 𝜃)

= 1 − e−𝜂d

1 − e−𝜂𝜃
for 0 ≤ d ≤ 𝜃.

The distribution function of the time to penetration, Ti, is thus

FTi
(t) = Pr(Ti ≤ t) = Pr(k(𝜃 − Di) ≤ t) = P

(
Di ≥ 𝜃 − t

k

)

= 1 − FDi

(
𝜃 − t

k

)
= e𝜂t∕k − 1

e𝜂𝜃 − 1
for 0 ≤ t ≤ k𝜃, (5.110)

and the survivor function R(t) of the item becomes

R(t) = Pr(T > t) = [1 − FTi
(t)]n for t ≥ 0.

If we assume that the number n of pits is very large, then as n → ∞, we get

R(t) = [1 − FTi
(t)]n ≈ e−nFTi

(t) for t ≥ 0.

By using (5.110)

R(t) ≈ exp
(
−n e𝜂t∕k − 1

e𝜂𝜗

)
for t ≥ 0.
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By introducing new parameters 𝛽 = n∕(e𝜂𝜗 − 1) and 𝜚 = 𝜂∕k, we get

R(t) ≈ exp(−𝛽(e𝜚t − 1)) for t ≥ 0,

which is equal to (5.104), namely the time-to-failure caused by pitting corrosion
has approximately a truncated Gumbel distribution of the smallest extreme.

A similar example is discussed by Mann et al. (1974), Lloyd and Lipow (1962),
and Kapur and Lamberson (1977). ◻

5.6 Time-to-Failure Models With Covariates

The reliability of items is often found to be influenced by one or more covari-
ates. A covariate is a variable, condition, or property that can influence the
time-to-failure T of an item, either because it has a direct causal relationship to
the time-to-failure or because it influences the survival time in a noncausal way.
Examples of covariates that can influence T are temperature, humidity, voltage,
and vibrations. The covariates may be continuous or discrete variables. In some
cases, it is relevant to use binary variables to distinguish two types of items or two
types of operation (e.g. active or standby). A covariate is also called a concomitant
variable, an explanatory variable, or a stressor.

In most applications, the items are exposed to several covariates s = (s1,

s2,… , sk), where s is called a covariate vector. Each covariate can take several
different levels and in a sample of times-to-failure, each time-to-failure may be
associated with a specific set of values for the k covariates.

So far in the book, we have tacitly assumed that all the covariates are kept con-
stant. Many situations require that we consider the reliability of items operating
under different conditions, where items are influenced by different covariate vec-
tors. This is, for example, relevant when

• We have adequate knowledge about the reliability of the item in a baseline situa-
tion with known and constant covariates, but wonder what will happen if some
of the covariates (e.g. temperature, voltage) are changed.

• We have datasets of field data from several, slightly different application con-
ditions (i.e. covariate vectors) and wonder how we can use all the datasets to
assess the reliability for a particular covariate vector.

• We have identical items that are used under different conditions and want to
identify the covariates with the strongest influence on the reliability (i.e. that
need to be controlled).

To identify the relevant covariates requires a thorough understanding of the
potential failure modes of the item and of which factors that may influence
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the occurrence of the failure. Some main covariates influencing a shutdown valve
are listed in Example 5.11.

Example 5.11 (Covariates for a shutdown valve)
Typical covariates for a shutdown valve in a process plant may include

• Corrosiveness of the fluid (flowing through the valve)
• Erosiveness of the fluid (i.e. presence and amount of particles in the fluid)
• Flow-rate of the fluid
• Pressure of the fluid
• Test principle used when proof-testing the valve
• Test frequency of proof-tests.

◻

The influence of the covariate vector on the reliability can be modeled in many
different ways. This section deals with three different models:

• The accelerated failure time (AFT) model
• The Arrhenius model
• The proportional hazards (PH) model.

5.6.1 Accelerated Failure Time Models

Consider an item that has been used in a baseline application where its reliability
characteristics are known. A new application is planned with a constant covariate
vector s = (s1, s2,… , sk), where si is measured as the deviation from the baseline
application, for i = 1, 2,… , k. Our aim is to describe how the reliability of the item
is influenced by the new covariate vector s. The time-to-failure of an item operat-
ing with the baseline covariate vector is denoted T0, with corresponding survivor
function R0(t) and failure rate function z0(t).

The AFT model assumes that the influence of the covariates s can be modeled by
a factor h(s) > 0 that directly scales the time-to-failure, such that T has the same
distribution as T0∕h(s).

The deterioration of the item is therefore accelerated by increasing h(s). When
h(s) < 1, an item with covariate vector s deteriorates slower than the baseline item,
and when h(s) > 1, the item with covariate vector s deteriorates faster than the
baseline item.

The survivor function of T with covariate vector s is

R(t ∣ s) = Pr(T > t ∣ s) = Pr
( T0

h(s)
> t

)

= Pr(T0 > h(s) t) = R0[h(s) t]. (5.111)



�

� �

�

5.6 Time-to-Failure Models With Covariates 195

The probability density function of T with covariate vector s is

f (t ∣ s) = d
dt

R(t ∣ s) = h(s) f0[h(s)t]. (5.112)

The failure rate function becomes

z(t ∣ s) = h(s) z0[h(s) t]. (5.113)

Because T has the same distribution as T0∕h(s), MTTFs is obviously

MTTFs =
MTTF0

h(s)
. (5.114)

Example 5.12 (Constant failure rate)
Consider identical items with a constant failure rate, where the constant failure
rate assumption is realistic within a certain range of stress (covariate) levels. The
failure rate has been estimated for baseline stress to be 𝜆0. Identical items are to
be used with stress (covariate) level s, where s is measured as the difference from
the baseline stress level. We want to determine the failure rate 𝜆s for this stress
level. If we know the scaling factor h(s), 𝜆s can be found from (5.119), because
MTTFs = 1∕𝜆s, as

𝜆s = h(s) 𝜆0.

For items with constant failure rate, the AFT model implies that the failure rate
at a specified stress level can be determined as the failure rate for normal stress
multiplied by a constant (that is determined by the increases stress). ◻

For two identical items operating with two different covariate vectors s1 and s2,
the ratio

AF(s1, s2) =
MTTF1

MTTF2
=

g(s2)
g(s1)

(5.115)

is called the acceleration factor (AF) of covariate s1 with respect to covariate s2.

5.6.2 The Arrhenius Model

The Arrhenius model7 is one of the earliest acceleration models. Initially, Arrhe-
nius studied how a chemical reaction rate varies as a function of temperature 𝜏 and
found that

𝜈(𝜏) = A0 exp
[
−

Ea

k𝜏

]
, (5.116)

7 Named after the Swedish scientist Svante Arrhenius (1859–1927).
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where

• 𝜏 is the temperature measured in degrees Kelvin (the Celsius temperature plus
273.16∘).

• 𝜈(𝜏) is the chemical reaction rate at temperature 𝜏, that is, the amount of a reac-
tant reacted per time unit.

• A0 is a constant scaling factor (for each chemical reaction).
• Ea is the activation energy for the reaction.
• k is the universal gas constant that is equal to the Boltzmann constant, but

expressed in another unit.

Taking the natural logarithm of (5.116) yields:

log 𝜈(𝜏) = log A0 −
Ea

k
1
𝜏
.

Rearranging gives

log 𝜈(𝜏) =
−Ea

k

(1
𝜏

)
+ log A0, (5.117)

which is the equation for a straight line y = ax + b, where x is 1∕𝜏, and where the
slope and the intercept can be used to determine Ea and A0.

The Arrhenius Model for Times-to-Failure
The Arrhenius model has been adapted to model accelerated times-to-failure
for electronic and especially semiconductor components (and some other items)
with respect to temperature. The Arrhenius failure time model is similar to the
Arrhenius chemical reaction model in (5.121) and is given as

L(𝜏) = A exp
[Ea

k𝜏

]
. (5.118)

The main differences between this model and (5.116) are

• A is a constant determined by the material properties of the item (whereas A0
was determined by the properties of the chemical reaction).

• L(𝜏) is an expression for the time-to-failure of the item at temperature 𝜏 (L(𝜏)
may, for example be a percentile of the distribution of the time-to-failure T. For
constant failure rates, a natural choice for L(𝜏) is the MTTF (𝜏)).

• k is the Boltzmann constant (8.6171 × 10−5 eV/K∘).
• The reaction rate 𝜈(𝜏) in (5.116) is the amount of reactant reacted per time unit.

Assume that the reaction has reached a critical level. This event may be consid-
ered a “failure” of the reaction and the mean time until this event occurs for tem-
perature 𝜏 is reciprocal to the reaction rate 𝜈(𝜏). The same idea is used for failure
times, but instead of presenting (5.118) for the failure rate, it is presented with
respect to L(𝜏), that can be considered the reciprocal of the failure rate and the
minus sign has therefore disappeared in (5.118).
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Consider a semiconductor that is tested at two different temperatures 𝜏1 < 𝜏2.
The acceleration factor due to the change of temperature is

A(𝜏1, 𝜏2) =
L(𝜏1)
L(𝜏2)

= exp
[(Ea

k

)(
1
𝜏1

− 1
𝜏2

)]
. (5.119)

The acceleration factor is seen to be zero when 𝜏1 = 𝜏2, positive when 𝜏1 < 𝜏2, and
negative when 𝜏1 > 𝜏2. Observe that the constant A has disappeared.

Example 5.13 (Constant failure rate)
Reconsider the situation in Example 5.14 where identical items with constant fail-
ure rate are operating in temperature 𝜏. For items with constant failure rate, it is
recommended to use MTTF (𝜏) as a measure of the time-to-failure L(𝜏). Because
MTTF= 1∕𝜆, the survivor function for temperature 𝜏 can from (5.123) be written as

R(t ∣ 𝜏) = exp(−𝜆t) = exp
(
− t

MTTF(𝜏)

)
= exp

⎛⎜⎜⎜⎝
− t

A exp
[

Ea
k𝜏

]
⎞⎟⎟⎟⎠
.

If we are able to determine A and Ea, the survivor function may be determined as
a function of the temperature 𝜏.

Consider two different temperatures 𝜏1 < 𝜏2. The acceleration factor in (5.119)
can be written as

A(𝜏1, 𝜏2) =
MTTF (𝜏1)
MTTF (𝜏2)

=
1∕𝜆1

1∕𝜆2
=

𝜆2

𝜆1
,

such that

𝜆2 = A(𝜏1, 𝜏2)𝜆1.

For items with constant failure rate, the Arrhenius model is seen to give the same
result as the PH model; the failure rate at increased stress is equal to the failure
rate at initial stress multiplied with a constant. ◻

Example 5.14 (Weibull distribution)
Consider identical items with Weibull distributed times-to-failure. The items are
operating in two different temperatures 𝜏1 < 𝜏2. For the Weibull distribution, it is
usually recommended to use the median as metric for the time-to-failure L(𝜏). For
temperature 𝜏1, the Weibull parameters are 𝛼1 and 𝜃1, and for temperature 𝜏2, the
Weibull parameters are 𝛼2 and 𝜃2. The acceleration factor in (5.119) can now be
written as

A(𝜏1, 𝜏2) =
median(𝜏1)
median(𝜏2)

=
𝜃1(log 2)

1
𝛼1

𝜃2(log 2)
1
𝛼2

=
𝜃1

𝜃2
(log 2)

(
1
𝛼1
− 1

𝛼2

)
.
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If we assume that the shape parameter is unchanged 𝛼1 = 𝛼2, the acceleration fac-
tor is simply

A(𝜏1, 𝜏2) =
𝜃1

𝜃2
.

◻

5.6.3 Proportional Hazards Models

PH models are the most popular models that include covariates. To put it briefly, a
PH model splits the failure rate z(t ∣ s) of an item into two separate parts: (i) a part
z0(t) that is a function of the time t but not of the stress vector s = (s1, s2,… , sk)
and (ii) a second part g(s) that depends on the stress vector s, but not on the time
t. The PH model can be written as

z(t ∣ s) = z0(t) g(s).

The PH model is further discussed in Section 14.8.

5.7 Additional Continuous Distributions

This section introduces two continuous distributions: the uniform distribution
and the beta distribution. None of these are commonly used as time-to-failure dis-
tributions, but they are used for several other purposes in reliability analyses.

5.7.1 The Uniform Distribution

A random variable X has a uniform distribution over an interval [a, b] when

fX (x) =

{ 1
b − a

for a ≤ x ≤ b
0 otherwise

. (5.120)

That X has a uniform distribution is often written as X ∼ unif(a, b), for a < b. The
uniform distribution is available in R where the uniform density, for example is
available by the command dunif(x,min=a,max=b,log=F). The probability
density function of unif(0,1) is illustrated in Figure 5.30. The mean value of X ∼
unif(a, b) is

E(X) =
∫

b

a
xfX (x) dx = a + b

2
, (5.121)

and the variance of X is

var(X) = (b − a)2

12
. (5.122)
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x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
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0.6

0.8

1.0

Figure 5.30 The probability density of X ∼ unif(0, 1).

The derivation is left to the reader as an exercise. In many applications, the interval
[a, b] is equal to [0, 1].

5.7.2 The Beta Distribution

A random variable X has a beta distribution with parameters 𝛼 and 𝛽 over the
interval [0, 1] when

fX (x) =
⎧⎪⎨⎪⎩

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

x𝛼−1(1 − x)𝛽−1 for 0 ≤ x ≤ 1

0 otherwise
, (5.123)

where 𝛼 > 0 and 𝛽 > 0. The statement X has a beta distribution with parameters
𝛼 and 𝛽 is often written as X ∼ beta(𝛼, 𝛽). The beta distribution is avail-
able in R where the beta density, for example, is available by the command
dbeta(x,shape1,shape2,log=F). The probability density function of
the beta distribution is illustrated in Figure 5.31 for some selected values of 𝛼
and 𝛽.

x

f(
x)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

α = 1
β = 1

α = 0.4
β = 0.4

α = 2
β = 5

Figure 5.31 The probability density of X ∼ beta(𝛼, 𝛽) for some selected values of 𝛼
and 𝛽 .
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A simple R script to plot the density of the beta distribution is as follows

x<-seq(0,1,length=300) # Set the values for the x-axis
# Set the parameters a (=alpha) and b (=beta)
a<-2
b<-5
# Calculate the beta density y for each x
y<-dbeta(x,a,b,log=F)
plot(x,y,type="l",xlab="x",ylab="f(x)")

The reader is encouraged to run this script for different sets of parameters to
become familiar with the possible shapes of the beta density function.

The mean value of X ∼ beta(𝛼, 𝛽) is

E(X) = 𝛼

𝛼 + 𝛽
, (5.124)

and the variance is

var(X) = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. (5.125)

The beta distribution is used for several purposes in reliability analyses. In
Chapter 15, the beta distribution is an important prior distribution for parame-
ters. Observe that when 𝛼 = 𝛽 = 1, the beta distribution is equal to the uniform
distribution over [0, 1], that is, beta(1, 1) = unif(0, 1).

5.8 Discrete Distributions

This section introduces three discrete distributions: the binomial distribution, the
geometric distribution, and the negative binomial distribution. All these are fre-
quently used in reliability models and in connection with time-to-failure models.
All distributions are used in the same setup called the binomial situation. In addi-
tion, the HPP is introduced.

5.8.1 Binomial Situation

The binomial situation must fulfill three requirements:

(1) n independent trials are carried out.
(2) Each trial has two possible outcomes A and A∗.
(3) The probability Pr(A) = p is the same in all the n trials.
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The n trials are sometimes referred to as Bernoulli trials. A trial may, for example,
be to start a fire pump (or some other engine). Outcome A may be that the start
is successful and outcome A∗ may be that the fire pump does not start. Each trial
must be independent with the same probability Pr(A). This means that the fire
pumps must be of the same type and that the startup procedure must be the same
for each trial.

5.8.2 The Binomial Distribution

Consider a binomial situation and let X be the number of the n trials that have
outcome A. X is then a discrete random variable with probability mass function

Pr(X = x) =
(n

x

)
px(1 − p)n−x for x = 0, 1,… ,n, (5.126)

where
(

n
x

)
is the binomial coefficient

(n
x

)
= n!

x!(n − x)!
.

The distribution (5.126) is called the binomial distribution (n, p) and is shown in
Figure 5.32 for a simulated dataset with n = 20 and p = 0.3. For brevity, the bino-
mial distribution is often written as X ∼ binom(n, p). The mean value and the
variance of X are

E(X) = np. (5.127)

var(X) = np(1 − p). (5.128)

5.8.3 The Geometric Distribution

Assume that we carry out a sequence of Bernoulli trials and want to find the
number Z of trials until the first trial with outcome A. If Z = z, this means that
the first z − 1 trials have outcome A∗, and that the first A will occur in trial z.

x

Pr
(X

 =
 x

)

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

Figure 5.32 The binomial distribution (20, 0.3).



�

� �

�

202 5 Probability Distributions in Reliability Analysis

The probability mass function of Z is

Pr(Z = z) = (1 − p)z−1p for z = 1, 2,… . (5.129)

The distribution (5.129) is called the geometric distribution with parameter p and
is often written as Z ∼ geom(p). We have that

Pr(Z > z) = (1 − p)z
.

The mean value and the variance of Z are

E(Z) = 1
p
. (5.130)

var(Z) =
1 − p

p2 . (5.131)

5.8.4 The Negative Binomial Distribution

Again, assume that we carry out a series of independent Bernoulli trials (see
Section 5.8.1). Let Zr be the number of trials until a predefined number r of
outcomes A have occurred. If Zr = z, this means that during the first z − 1 trials,
we got r − 1 outcomes A and in trial number z the rth outcome A occurred. The
probability mass function of Zr is

Pr(Zr = z) =
(z − 1

r − 1

)
pr−1(1 − p)z−r ⋅ p

=
(z − 1

r − 1

)
pr(1 − p)z−r for z = r, r + 1, r + 2,… . (5.132)

When r = 1, the negative binomial distribution becomes a geometric distribution.
The negative binomial distribution is sometimes defined by the random variable

Yr = the number of occurrences of A∗ before the rth occurrence of A. By this for-
mulation Yr = Zr − r we can obtain the probability mass function of Y by a simple
transformation of the variables. The probability mass function of Y becomes

Pr(Yr = y) =
(

r + y − 1
y

)
pr(1 − p)y for y = 0, 1, 2,… . (5.133)

Remark 5.8 (The name of the distribution)
The negative binomial distribution has got its name from the relationship(

r + y − 1
y

)
= (−1)y

(
−r
y

)
= (−1)y (−r)(−r − 1) · · · (−r − y − 1)

y(y − 1) · · · 2 ⋅ 1
,

which defines the binomial coefficient with negative integers. ◻

The mean value of Yr is (see Problem 5.32)

E(Yr) =
∞∑

y=0
y
(

r + y − 1
y

)
pr(1 − p)y =

r(1 − p)
p

. (5.134)
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Because Yr = Zr − r, the mean value of Z is

E(Zr) = E(Yr) + r = r
p
. (5.135)

5.8.5 The Homogeneous Poisson Process

The HPP8 is a stochastic process that may be used to model occurrences of a spe-
cific event E in the course of a given time interval. The event E may, for example,
be a failure, or an accident. The HPP is discussed in more detail in Chapter 10.
The following conditions are assumed to be fulfilled:

(1) The event E may occur at any time in the interval, and the probability of E
occurring in the interval (t, t + Δt] is independent of t and may be written as
𝜆Δt + o(Δt),9 where 𝜆 is a positive constant.

(2) The probability of more than one event E in the interval (t, t + Δt] is o(Δt).
(3) Let (t11, t12], (t21, t22],… be any sequence of disjoint intervals in the time period

in question. Then the events “E occurs in (tj1, tj2],” for j = 1, 2,…, are indepen-
dent.

Without loss of generality, we let t = 0 be the starting point of the process.
Let N(t) be the number of times the event E occurs during the interval (0, t]. The

stochastic process {N(t), t ≥ 0} is then an HPP with rate 𝜆. The rate 𝜆 is sometimes
called the intensity of the process, or the frequency of events E. A consequence of
assumption (1) is that the rate of events E is constant and does not change with
time. The HPP can therefore not be used to model processes where the rate of
events changes with time, for example processes that have a long-term trend, or
are exposed to seasonal variations.

The time t may be measured as calendar time or operational time. In many cases,
several subprocesses are running in parallel and the time t must then be measured
as total, or accumulated, time in service. This is, for example the case when we
observe failures in a population of repairable items.

The probability that E occurs exactly n times in the time interval (0, t] is

Pr(N(t) = n) = (𝜆t)n

n!
e−𝜆t for n = 0, 1, 2,… . (5.136)

The distribution (5.136) is called the Poisson distribution, and we sometimes write
N(t) ∼ Poisson(𝜆t). When we observe the occurrence of events E in an interval
(s, s + t], the probability that E occurs exactly n times in (s, s + t] is

Pr(N(s + t) − N(s) = n) = (𝜆t)n

n!
e−𝜆t for n = 0, 1, 2,… ,

8 Named after the French mathematician Siméon Denis Poisson (1781–1840).
9 o(Δt) denotes a function of Δt with the property that limΔt→0

o (Δt)
Δt

= 0.
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that is, the same probability as we found in (5.132). The important quantity is
therefore the length t of the time interval we are observing the process, not when
this interval starts.

Consider a time interval (t, t + Δt] that is so short that at most one event E can
occur within the interval. Because 𝜆Δt is so small that (𝜆Δt)x, for x = 2, 3,…,
become negligible, the probability of observing one event E in the interval is
approximately

Pr(N(Δt) = 1) = 𝜆Δt e−𝜆Δt ≈ 𝜆Δt(1 − 𝜆Δt) ≈ 𝜆Δt, (5.137)

which is in line with the above assumption (1) for the HPP.
The mean number of events in (0, t] is

E[N(t)] =
∞∑

n=0
n Pr(N(t) = n) = 𝜆t, (5.138)

and the variance is

var[N(t)] = 𝜆t. (5.139)

From Eq. (5.138), the parameter 𝜆 may be written as 𝜆 = E(N(t))∕t, that is, the
mean number of events per time unit. This is why 𝜆 is called the rate of the HPP.
When the event E is a failure, 𝜆 is called the ROCOF of the HPP.

A natural unbiased estimator of 𝜆 is

�̂� = N(t)
t

=
No. of events observed in an interval of length t

Length t of the interval
. (5.140)

Let T1 be the time when E occurs for the first time, and let FT1
(t) be the distribu-

tion function of T1. Because the event (T1 > t) means that no event has occurred
in the interval (0, t], we get

FT1
(t) = Pr(T1 ≤ t) = 1 − Pr(T1 > t)

= 1 − Pr(N(t) = 0) = 1 − e−𝜆t for t ≥ 0. (5.141)

The time T1 to the first E is seen to be exponentially distributed with parameter
𝜆. It may be shown, see Chapter 10, that the times between events, T1,T2,… are
independent, and exponentially distributed with parameter 𝜆. The times between
events T1,T2,… are called the interoccurrence times of the process.

Example 5.15 (Repairable item)
Consider a repairable item that is put into operation at time t = 0. The first failure
(event E) occurs at time T1. When the item has failed, it is replaced with a new
item of the same type. The replacement time is so short that it can be neglected.
The second failure occurs at time T2, and so on. We thus get a sequence of failure
times T1,T2,…. The number of failures, N(t) in the time interval (0, t] is assumed to
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be Poisson distributed with rate (ROCOF) 𝜆. The interoccurrence times T1,T2,…
are then independent and exponentially distributed with failure rate 𝜆. Observe
the important difference in meaning between the two concepts “failure rate” and
ROCOF. ◻

Let us consider an HPP with rate 𝜆 and assume that we are interested in deter-
mining the distribution of the time Sk, where E occurs for the kth time (k is accord-
ingly an integer). We let t be an arbitrarily chosen point of time on the positive
real axis. The event (Tk > t) is then obviously synonymous with the event that E
is occurring at most (k − 1) times in the time interval (0, t]. Therefore,

Pr(Sk > t) = Pr(N(t) ≤ k − 1) =
k−1∑
j=0

(𝜆t)j

j!
e−𝜆t

.

Hence,

FSk
(t) = 1 −

k−1∑
j=0

(𝜆t)j

j!
e−𝜆t

, (5.142)

where FSk
(t) is the distribution function for Sk. The probability density function

fSk
(t) is obtained by differentiating FSk

(t) with respect to t:

fSk
(t) = −

k−1∑
j=1

j𝜆(𝜆t)j−1

j!
e−𝜆t + 𝜆

k−1∑
j=0

(𝜆t)j

j!
e−𝜆t

= 𝜆e−𝜆t

(k−1∑
j=0

(𝜆t)j

j!
−

k−1∑
j=1

(𝜆t)j−1

(j − 1)!

)

= 𝜆e−𝜆t

(k−1∑
j=0

(𝜆t)j

j!
−

k−2∑
j=0

(𝜆t)j

j!

)

= 𝜆

(k − 1)!
(𝜆t)k−1 e−𝜆t for t ≥ 0 and 𝜆 > 0, (5.143)

where k is a positive integer. This distribution is the gamma distribution with
parameters k and 𝜆. The gamma distribution is discussed in Section 5.4.2. We
can therefore conclude that the waiting time until the kth occurrence of E in an
HPP with rate 𝜆, is gamma distributed (k, 𝜆). HPP is discussed in more detail
in Chapter 10.

5.9 Classes of Time-to-Failure Distributions

This section defines four categories or families of time-to-failure distribution.
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5.9.1 IFR and DFR Distributions

We say that a distribution F(t) is an increasing failure rate (IFR) distribution if its
failure rate function z(t) increases as a function of t, for t > 0.10

A more general definition is to say that F(t) is an IFR distribution if − log R(t)
is a convex function of t. This is because a differentiable convex function has an
increasing derivative.

Similarly, a distribution F(t) is said to be a DFR distribution if z(t) decreases as a
function of t, for t > 0, or more generally when − log R(t) is a concave function of t.
This follows because a differentiable concave function has a decreasing derivative.

In the following examples, we consider some common time-to-failure distribu-
tions and check whether they are IFR, DFR, or neither of these.

Example 5.16 (The uniform distribution over (0,b))
Let T be uniformly distributed over (0, b]. Then

F(t) = t
b

for 0 < t ≤ b

f (t) = 1
b

for 0 < t ≤ b.

Hence,

z(t) =
1∕b

1 − (t∕b)
= 1

b − t
for 0 < t ≤ b (5.144)

is strictly increasing for 0 < t ≤ b. The uniform distribution is accordingly IFR.
The same conclusion follows by considering − log R(t), which in this case

becomes − log[1 − (t∕b)] and hence is convex for 0 < t ≤ b. ◻

Example 5.17 (The exponential distribution)
Let T be exponentially distributed with probability density

f (t) = 𝜆e−𝜆t for t > 0.

Then

z(t) = 𝜆 for t > 0,

z(t) is thus constant, that is, both nonincreasing and nondecreasing.
The exponential distribution therefore belongs to the IFR family as well as the

DFR family. Alternatively, one could argue that − log R(t) = 𝜆t, that is convex and
concave as well. ◻

10 In this section “increasing” and “decreasing” are used in place of “nondecreasing” and
“nonincreasing,” respectively.
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Hence, the families of IFR distributions and DFR distributions are not disjoint.
The exponential distribution can be shown to be the only continuous distribution
that belongs to both families (see Barlow and Proschan 1975, p. 73).

Example 5.18 (The Weibull distribution)
The distribution function of the Weibull distribution with parameters 𝛼 > 0 and
𝜃 > 0 is given by

F(t) = 1 − exp
[
−
( t
𝜃

)𝛼]
for t ≥ 0.

It follows that

− log R(t) = − log
(

exp
[
−
( t
𝜃

)𝛼])
=
( t
𝜃

)𝛼

. (5.145)

Because (t∕𝜃)𝛼 is convex in t when 𝛼 ≥ 1 and concave in t when 𝛼 ≤ 1, the Weibull
distribution is IFR for 𝛼 ≥ 1 and DFR for 𝛼 ≤ 1. For 𝛼 = 1, the distribution is “re-
duced” to an exponential distribution with failure rate 𝜆 = 1∕𝜃, and hence is IFR
as well as DFR. ◻

Example 5.19 (The gamma distribution)
The gamma distribution is defined by the probability density

f (t) = 𝜆

Γ(𝛼)
(𝜆t)𝛼−1e−𝜆t for t > 0,

where 𝛼 > 0 and 𝜆 > 0. To determine whether the gamma distribution (𝛼, 𝜆) is IFR,
DFR, or neither of these, we consider the failure rate function.

z(t) =
[𝜆(𝜆t)𝛼−1e−𝜆t]∕Γ(𝛼)

∫
∞

t [𝜆(𝜆u)𝛼−1e−𝜆u]∕Γ(𝛼) du
.

Dividing the denominator by the numerator yields

z(t)−1 =
∫

∞

t

(u
t

)𝛼−1
e−𝜆(u−t) du.

Introducing 𝑣 = (u − t) as a new variable of integration gives

z(t)−1 =
∫

∞

0

(
1 + 𝑣

t

)a−1
e−𝜆𝑣 d𝑣. (5.146)

First suppose that 𝛼 ≥ 1. Then [1 + (𝑣∕t)]a−1 is nonincreasing in t. Accordingly, the
integrand is a decreasing function of t. Thus, z(t)−1 is decreasing in t. When 𝛼 ≥ 1,
z(t) is in other words increasing in t, and the gamma distribution (𝛼, 𝜆) is IFR. This
is, in particular, the case when 𝛼 is an integer (the Erlangian distribution).

Next suppose 𝛼 ≤ 1. Then by an analogous argument z(t) is decreasing in t,
which means that the gamma distribution (𝛼, 𝜆) is DFR.

For 𝛼 = 1, the gamma distribution (𝛼, 𝜆) is reduced to an exponential distribu-
tion with parameter 𝜆. ◻
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The plot of the failure rate function in Figure 5.28 for a lognormal distribution
indicates that this distribution is neither IFR nor DFR.

If time-to-failure distribution is DFR and continuous, z(t) = f (t)∕[1 − F(t)] must
be decreasing. Knowing that 1 − F(t) is decreasing in t, then f (t) must decrease by
at least as much as 1 − F(t) in order for z(t) to be decreasing. These arguments
lead to the useful result: If a continuous time-to-failure distribution is to be DFR,
its probability density f (t) must be nonincreasing.

5.9.2 IFRA and DFRA Distributions

Chapter 6 shows that the time-to-failure distribution of a system of components is
not necessarily IFR even if all the components have IFR distributions. We therefore
introduce a less demanding class of distributions and say that the distribution F(t)
is an increasing failure rate average (IFRA) distribution if the average value of its
failure rate function z(t) increases in the sense that

1
t ∫

t

0
z(u) du increases as a function of t.

A more general definition is to say that F(t) is an IFRA distribution if

−1
t

log R(t) increases with t ≥ 0.

Similarly, the distribution F(t) is said to be a decreasing failure rate average
(DFRA) distribution if the average failure rate decreases with time, or slightly
more general that [− log R(t)]∕t decreases as a function of t.

Let t1 ≤ t2 and assume that F(t) is an IFR distribution. This implies
that − log R(t) is a convex function of t. For t = 0, we have R(0) = 1 and
hence, − log R(0) = 0. If we draw the convex curve − log R(t), we immediately see
that

− log R(t1) ≤
t1

t2
[− log R(t2)],

which implies that

1
t1 ∫

t1

0
z(u) du ≤

1
t2 ∫

t2

0
z(u) du,

and we have shown that if F(t) is IFR, it is also IFRA. To show that if F(t) is DFR
implies that it is also DFRA is done by similar arguments.

5.9.3 NBU and NWU Distributions

A distribution F(t) is said to be a new better than used (NBU) distribution if

R(t ∣ x) ≤ R(t) for t ≥ 0, x ≥ 0, (5.147)
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where R(t ∣ x) = Pr(T > t + x ∣ T > x) is the conditional survivor function that is
introduced in Section 5.3.3. Equation (5.147) may also be written

Pr(T > t + x ∣ T > x) = Pr(T > t)
Pr(T > x)

≤ Pr(T > t),

which implies that

Pr(T > t + x) ≤ Pr(T > t)Pr(T > x). (5.148)

If an item with NBU distribution is to work for a period of length t + x, the relia-
bility would increase if we replace the item at some time x during this interval.

Similarly, F(t) is said to be a new worse than used (NWU) distribution if

R(t ∣ x) ≥ R(t) for t ≥ 0, x ≥ 0.

For an item with NWU distribution that should work for a period of length t + x,
it would be stupid to replace the item with a new one.

5.9.4 NBUE and NWUE Distributions

The MRL of an item at age x was defined in Section 5.3.6 as

MRL(x) =
∫

∞

0
R(t ∣ x) dt. (5.149)

When x = 0, we start out with a new item and consequently MRL(0) = MTTF.

Definition 5.1 (New better/worse than used in expectation)
A time-to-failure distribution F(t) is said to be a new better than used in expectation
(NBUE) distribution if

(1) F has a finite mean 𝜇

(2) MRL(x) ≤ 𝜇 for x ≥ 0.

A time-to-failure distribution F(t) is said to be a new worse than used in expectation
(NWUE) distribution if

(1) F has a finite mean 𝜇

(2) MRL(x) ≥ 𝜇 for x ≥ 0. ◻

5.9.5 Some Implications

The families of time-to-failure distributions presented above are further discussed,
for example by Barlow and Proschan (1975) and Gertsbakh (1989) who proves the
following chain of implications:

IFR ⇒ IFRA ⇒ NBU ⇒ NBUE
DFR ⇒ DFRA ⇒ NWU ⇒ NWUE
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Table 5.3 Summary of time-to-failure distributions and parameters.

Distribution

Probability
density

f (t)
Survivor function

R(t)
Failure rate

z(t) MTTF

Exponential 𝜆e−𝜆t e−𝜆t
𝜆 1∕𝜆

Gamma 𝜆

Γ(k)
(𝜆t)k−1e−𝜆t

k−1∑
x=0

(𝜆t)x

x!
e−𝜆t f (t)

R(t)
k∕𝜆

Weibull 𝛼𝜆(𝜆t)𝛼−1e−(𝜆t)𝛼 e−(𝜆t)𝛼
𝛼𝜆(𝜆t)𝛼−1 1

𝜆
Γ
( 1
𝛼
+ 1

)

Lognormal 1√
2𝜋

1
𝜏

1
t

e−(log t − 𝜈)2∕2𝜏2
Φ
(
𝜈 − log t

𝜏

)
f (t)
R(t)

e𝜈+𝜏2∕2

5.10 Summary of Time-to-Failure Distributions

A number of time-to-failure distributions have been introduced in this chapter.
Some characteristics of the main distributions are presented in Table 5.3 to provide
a brief reference.

5.11 Problems

5.1 Show that to say “the item has a constant failure rate” is equivalent to saying
“the time-to-failure of the item is exponentially distributed.”

5.2 An item with time-to-failure T has constant failure rate

z(t) = 𝜆 = 3.5 × 10−6 h−1
.

(a) Determine the probability that the item survives a period of six months
in continuous operation without failure.

(b) Find the MTTF of the item.
(c) Find the probability that the item fails in the interval (t1, t2), where t1 =

16 months and t2 = 17 months.

5.3 A machine with constant failure rate 𝜆 survives a period of 4000 hours with-
out failure, with probability 0.95.
(a) Determine the failure rate 𝜆.
(b) Find the probability that the machine survives 5000 hours without

failure.
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(c) Determine the probability that the machine fails within 5000 hours,
when you know that the machine was functioning at 3500 hours.

5.4 A safety valve is assumed to have constant failure rate with respect to all
failure modes. A study has shown that the total MTTF of the valve is 2450
days. The safety valve is in continuous operation, and the failure modes are
assumed to occur independent of each other.
(a) Determine the total failure rate of the safety valve.
(b) Determine the probability that the safety valve survives a period of

three months without any failure.
(c) 48% of all failures are assumed to be critical failure modes. Determine

the mean time to a critical failure, MTTFcrit.

5.5 The time-to-failure T of an item is assumed to have an exponential distri-
bution with failure rate 𝜆. Show that the rth moment of T is

E(Tr) = Γ(r + 1)
𝜆r . (5.150)

5.6 Let T1 and T2 be two independent times-to-failure with constant failure
rates 𝜆1 and 𝜆2, respectively. Let T = T1 + T2.
(a) Show that the survivor function of T is

R(t) = Pr(T > t) = 1
𝜆2 − 𝜆1

(𝜆2 e−𝜆1t − 𝜆1 e−𝜆2t) for 𝜆1 ≠ 𝜆2.

(b) Find the corresponding failure rate function z(t), and make a sketch of
z(t) as a function of t for selected values of 𝜆1 and 𝜆2.

5.7 Show that f (t) ≤ z(t) for all t ≥ 0 and for all life distributions.

5.8 Let X be a random variable with a binomial distribution with parameters
(n, p). Find E(X) and var(X).

5.9 Let N be a random variable with value set 0, 1,…. Show that

E(N) =
∞∑

n=1
Pr(N ≥ n).

5.10 Consider the time-to-failure T with cumulative failure rate function Z(t)
and show that the transformed variable Z(T) ∼ exp(1).

5.11 Let Z have a geometric distribution with probability p, and determine
(a) The mean value, E(Z)
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(b) The variance, var(Z)
(c) The conditional probability, Pr(Z > z + x ∣ Z > x). Describe the result

you get by words.

5.12 Let N1 and N2 be independent Poisson random variables with E(N1) = 𝜆1
and E(N2) = 𝜆2.
(a) Determine the distribution of N1 + N2.
(b) Determine the conditional distribution of N1, given that N1 + N2 = n.

5.13 Let T1 and T2 be independent and gamma distributed with parameters
(k1, 𝜆) and (k2, 𝜆), respectively. Show that T1 + T2 has a gamma distribu-
tion with parameters (k1 + k2, 𝜆). Explain why we sometimes say that the
gamma distribution is “closed under addition.”

5.14 A component with time-to-failure T has failure rate function

z(t) = kt for t > 0 and k > 0.

(a) Determine the probability that the component survives 200 hours,
when k = 2.0 × 10−6 h−1.

(b) Determine the MTTF of the component when k = 2.0 × 10−6 h−1.
(c) Determine the probability that a component which is functioning after

200 hours, is still functioning after 400 hours, when k = 2.0 × 10−6 h−1.
(d) Does this distribution belong to any of the distribution classes

described in Chapter ?
(e) Find the mode and the median of this distribution.

5.15 A component with time-to-failure T has failure rate function

z(t) = 𝜆0 + 𝛼t for t > 0, 𝜆0 > 0, and 𝛼 > 0.

(a) Determine the survivor function R(t) of the component.
(b) Determine the MTTF of the component.
(c) Find the probability that the component will survive 2 MTTF when we

know that it was functioning at MTTF.
(d) Give a physical interpretation of this model.

5.16 A component with time-to-failure T has failure rate function

z(t) = t
1 + t

for t > 0.

(a) Make a sketch of the failure rate function.
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(b) Determine the corresponding probability density function f (t).
(c) Determine the MTTF of the component.
(d) Does this distribution belong to any of the distribution classes

described in Chapter ?

5.17 The failure rate function of an item is z(t) = t−
1
2 . Derive:

(a) The probability density function, f (t),
(b) The survivor function, R(t),
(c) The mean time-to-failure, MTTF, and
(d) The variance of the time-to-failure, T, var(T).

5.18 The time-to-failure T of a component is assumed to be uniformly
distributed over (a, b), i.e. T ∼ unif(a, b). The probability density is thus

f (t) = 1
b − a

for a < t < b.

Derive the corresponding survivor function R(t) and failure rate function
z(t). Draw a sketch of z(t).

5.19 The time-to-failure T of a component has probability density f (t) as shown
in Figure 5.33.
(a) Determine c such that f (t) is a valid probability density.
(b) Derive the corresponding survivor function R(t).
(c) Derive the corresponding failure rate function z(t) and make a sketch

of z(t).

aa – b a + b

c
f(t)

 Time t

Figure 5.33 Probability density (Problem 5.19).

5.20 let T be the time-to-failure of an item. Assume that we know that MTTF=
10 000 hours and the standard deviation, SD = 2500 hours.
(a) Assume that T has a Weibull distribution with parameters 𝜃 and 𝛼 and

determine 𝜃 and 𝛼.
(b) Assume that T has a lognormal distribution with parameters 𝜈 and 𝜏

and determine the parameters.
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(c) Determine the MRL(t) at time t = 9000 hours for both distributions
and make comments to the difference between the two MRL-values
obtained.

5.21 Let T have a Weibull distribution with shape parameter 𝛼 and scale param-
eter 𝜆. Show that the variable (𝜆T)𝛼 has an exponential distribution with
rate 1.

5.22 The time-to-failure T of an item is assumed to have a Weibull distribution
with scale parameter 𝜆 and shape parameter 𝛼. Show that the rth moment
of T is

E(Tr) = 1
𝜆r Γ

( r
𝛼
+ 1

)
.

5.23 The time-to-failure T of an item is assumed to have a Weibull distribu-
tion with scale parameter 𝜆 = 5.0 × 10−5 h−1 and shape parameter 𝛼 = 1.5.
Compute MTTF and var(T).

5.24 Let T have a three parameter Weibull distribution (𝛼, 𝜆, 𝜉) with probability
density

f (t) = d
dt

F(t) = 𝛼𝜆[𝜆(t − 𝜉)]𝛼−1 e−[𝜆(t−𝜉)]𝛼 for t > 𝜉.

(a) Show that the density is unimodal if 𝛼 > 1. Also show that the density
decreases monotonically with t if 𝛼 < 1.

(b) Show that the failure rate function is 𝛼𝜆[𝜆(t − 𝜉)]𝛼−1 for t > 𝜉, and
hence is increasing, constant, and decreasing with t, Respectively, as
𝛼 > 1, 𝛼 = 1, and 𝛼 < 1.

5.25 Let T be Weibull distributed with parameter 𝜆 and 𝛼. Show that Y = log T
has a Type I asymptotic distribution of the smallest extreme. Find the mode
and the scale parameter of this distribution.

5.26 Assume the time-to-failure T to be lognormally distributed such that Y =
log T is  (𝜈, 𝜏2). Show that

E(T) = e𝜈+𝜏2∕2
,

var(T) = e2𝜈(e2𝜏2 − e𝜏2 ),

and that the variance may be written as

var(T) = [E(T)]2(e𝜏2 − 1).
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5.27 Let z(t) be the failure rate function of the lognormal distribution. Show that
z(0) = 0, that z(t) increases to a maximum, and then decreases with z(t) → 0
as t → ∞.

5.28 Let T be lognormally distributed with parameters 𝜈 and 𝜏
2. Show that 1∕T

is lognormally distributed with parameters −𝜈 and 𝜏
2.

5.29 Show that the median tmed of the lognormal distribution is e𝜈 . Compute k
such that Pr(tmed∕k ≤ T ≤ ktmed) = 0.90.

5.30 Reconsider the item in Example 5.1 with survivor function

R(t) = 1
(0.2t + 1)2 for t ≥ 0,

where the time t is measured in months.
(a) Find the mean residual lifetime (MRL) of the item at age t = 3

months.
(b) Make a sketch of MRL(t) as a function of the age t.

5.31 Consider an item with survivor function R(t). Show that the MTTF of the
item can be written as

MTTF =
∫

t

0
R(u) du + R(t) MRL(t).

Explain the meaning of this formula.

5.32 Derive the mean value of the negative binomially distributed variable Y in
(5.133). Show and justify all the steps used to derive E(Y ).

5.33 Let N(t) be an HPP with rate 𝜆 > 0. Assume that n ≥ 1 events have been
observed during a specified time interval of length t.
(a) Find the conditional distribution Pr(N(t∗) = k ∣ N(t) = n) for

k = 0, 1,… ,n and 0 < t∗ < t.
(b) Determine the mean and the variance of this distribution.

5.34 The time-to-failure, T, has survivor function R(t). Show that if E(Tr) < ∞,
then

E(Tr) =
∫

∞

0
rtr−1R(t) dt for r = 1, 2,… .

5.35 Consider an item with time-to-failure T and failure rate function z(t). Show
that

Pr(T > t2 ∣ T > t1) = e− ∫
t2

t1
z(u) du for t2 > t1.



�

� �

�

216 5 Probability Distributions in Reliability Analysis

5.36 Consider a component with time-to-failure T, with increasing failure rate
(IFR) distribution, and MTTF = 𝜇. Show that

R(t) ≥ e−t∕𝜇 for 0 < t < 𝜇.

5.37 Derive the Laplace transform of the survivor function R(t) of the expo-
nential distribution with failure rate 𝜆 and use the Laplace transform to
determine the MTTF of this distribution.

5.38 Let F(t) be the distribution of the time-to-failure T. Assume F(t) to be
strictly increasing. Show that
(a) F(T) is uniformly distributed over (0, 1).
(b) if U ∼ unif(0, 1) random variable, then F−1(U) has distribution F,

where F−1(y) is that value of x such that F(x) = y.

5.39 Prove that

∫

t0

0
z(t) dt → ∞ when t0 → ∞.

5.40 Consider a structure of n independent components with failure rates
𝜆1, 𝜆2,… , 𝜆n, respectively. Show that the probability that component i
fails first is

𝜆i∑n
j=1 𝜆j

.

5.41 A component may fail due to two different causes, excessive stresses and
aging. A large number of this type of components have been tested. It has
been shown that the time to failure T1 caused by excessive stresses is expo-
nentially distributed with density function

f1(t) = 𝜆1e−𝜆1t for t ≥ 0,

whereas the time-to-failure T2 caused by aging has density function

f2(t) =
1

Γ(k)
𝜆2(𝜆2t)k−1e−𝜆2t for t ≥ 0.

(a) Describe the rationale behind using

f (t) = pf1(t) + (1 − p)f2(t) for t ≥ 0,

as the probability density function for the time-to-failure T of the com-
ponent.
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(b) Explain the meaning of p in this model.
(c) Let p = 0.1, 𝜆1 = 𝜆2, and k = 5, and determine the failure rate function

z(t) corresponding to T. Calculate z(t) for some selected values of t, e.g.
t = 0, 1

2
, 1, 2,…, and make a sketch of z(t).

5.42 A component may fail due to two different causes, A and B. It has been
shown that the time-to-failure TA caused by A is exponentially distributed
with density function

fA(t) = 𝜆Ae−𝜆At for t ≥ 0,

whereas the time-to-failure TB caused by B has density function

fB(t) = 𝜆Be−𝜆Bt for t ≥ 0.

(a) Describe the rationale behind using

f (t) = pfA(t) + (1 − p)fB(t) for t ≥ 0,

as the probability density function for the time-to-failure T of the com-
ponent.

(b) Explain the meaning of p in this model.
(c) Show that a component with probability density f (t) has a decreasing

failure rate (DFR) function.

5.43 Let T1 and T2 be independent times-to-failure with failure rate functions
z1(t) and z2(t), respectively. Show that

Pr(T1 < T2 ∣ min{T1,T2} = t) =
z1(t)

z1(t) + z2(t)
.

5.44 Assume that Zr has a negative binomial distribution with probability mass
function given by (5.131) for specified values of p and r. When r = 1, we
write Zr = Z1.
(a) Find E(Zr) and var(Zr).
(b) Verify that E(Zr) = rE(Z1) and var(Zr) = r var(Z1) and explain why this

is a realistic result.

5.45 Show that
(a) If X1,X2,… ,Xr are independent variables with geometric distribution

with parameter p, then Zr =
∑r

i=1 Xi has negative binomial distribution
with parameters (p, r).
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(b) If Z1,Z2,… ,Zn are independent variables and that Zi has a negative
binomial distribution with parameters (p, ri) for i = 1, 2,… ,n, then
Z =

∑n
i=1 Zri

has a negative binomial distribution with parameters
(p,
∑n

i=1 ri).

5.46 Let X be a random variable with uniform distribution, X ∼ unif(0, 1). Show
that the random variable T = 1

𝜆
log(1 − X) has distribution exp(𝜆).
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6

System Reliability Analysis

6.1 Introduction

Chapter 4 deals with the structural relationships between a system and its
components and shows how a deterministic model of the structure can be estab-
lished, using a reliability block diagram (RBD) or a fault tree. Whether or not a
given component will be in a failed state after t time units, can usually not be
predicted with certainty. Rather, when studying the occurrence of such failures,
one looks for statistical regularity. Hence, it seems reasonable to interpret the
state variables of the n components at time t as random variables. We denote the
random state variables by X1(t),X2(t),… ,Xn(t). The state vector and the structure
function are denoted by X(t) = [X1(t),X2(t),… ,Xn(t)] and 𝜙[X(t)], respectively.
The following probabilities are of interest:

Pr (Xi(t) = 1) = pi(t), for i = 1, 2,… ,n (6.1)

Pr (𝜙[X(t)] = 1) = pS(t). (6.2)

Here, pi(t) is called the reliability of component i and pS(t) the system reliability at
time t.

This chapter is delimited to the study of systems where failures of individual
components can be interpreted as independent events. This implies that the state
variables at time t, X1(t),X2(t),… ,Xn(t) are stochastically independent. Unfortu-
nately, independence is often assumed just to “simplify” the analysis, but may
sometimes be unrealistic. This problem is discussed in more detail in Chapter 8.

In the first part of this chapter, we consider nonrepairable components and sys-
tems that are discarded the first time they fail. In that case (6.1) and (6.2) corre-
spond to the survivor function of component i and of the system, respectively.

A repairable system is a system where at least one of its components is repaired
or replaced upon failure. Repairable components and systems that are considered
until the first failure only are treated as nonrepairable. The main reliability metrics

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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for repairable systems are introduced in Section 6.5, and some simple approaches
to reliability analysis of repairable systems are outlined in subsequent sections.
A more thorough treatment of repairable (or maintained) systems is provided in
Chapter 9. Preventive maintenance is dealt with in Chapter 12.

6.1.1 Assumptions

Throughout this chapter, the following assumptions apply:

(1) All the structures studied are coherent (coherent systems are introduced in
Section 4.7.)

(2) Each item (component, subsystem, and system) has two possible states, 1 or
0. Depending on the system and the type of analysis, these states are referred
to as functioning or failed, up or down, and true or false.

(3) The system is put into operation at time t = 0 with all components in a func-
tioning state.

(4) The operating context is unchanged during the time period considered.
(5) All components are independent, both with respect to failures and repairs.
(6) No preventive maintenance is carried out. The only maintenance action con-

sidered is repair of a failure that has occurred. After the repair, the component
is considered to be as-good-as-new.

(7) Failure and repair data for the components (or basic events) are known with
sufficient accuracy.

(8) Systems are sometimes referred to as structures, and vice versa.

6.2 System Reliability

Because the state variables Xi(t) for i = 1, 2,… ,n are binary, then

E [Xi(t)] = 0 ⋅ Pr (Xi(t) = 0) + 1 ⋅ Pr (Xi(t) = 1)

= pi(t) for i = 1, 2,… ,n. (6.3)

This applies for both nonrepairable and repairable systems. Similarly, the system
reliability at time t is

pS(t) = E (𝜙[X(t)] ). (6.4)

It can be shown (see Problem 6.1) that when the components are independent, the
system reliability, pS(t), is a function of the pi(t)’s only. Hence, pS(t) may be written

pS(t) = h[p1(t), p2(t),… , pn(t)] = h[p(t)]. (6.5)

Unless stated otherwise, we use h(⋅) to express system reliability in situations
where the components are independent. Now, let us determine the reliability of
some simple structures.
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6.2.1 Reliability of Series Structures

The structure function of a series structure of order n is from (4.4)

𝜙[X(t)] =
n∏

i=1
Xi(t).

Because X1(t),X2(t),… ,Xn(t) are independent, the system reliability is

h[p(t)] = E(𝜙[X(t)]) = E

( n∏
i=1

Xi(t)

)
=

n∏
i=1

E[Xi(t)] =
n∏

i=1
pi(t). (6.6)

Observe that

h[p(t)] ≤ min
i
{pi(t)}.

In other words, a series structure is at most as reliable as the least reliable compo-
nent.

Example 6.1 (Series structure)
Consider a series structure of three independent components. At a specified point
of time t, the component reliabilities are p1 = 0.95, p2 = 0.97, and p3 = 0, 94. The
system reliability at time t is from (6.6)

pS = h(p) = p1p2p3 = 0.95 ⋅ 0.97 ⋅ 0.94 ≈ 0.866. ◻

If all the components have the same reliability p(t), then the system reliability
of a series structure of order n is

pS(t) = p(t)n
.

If, for example n = 10 and p(t) = 0.950, then

pS(t) = 0.95010 ≈ 0.599.

The system reliability of a series structure is low already when n = 10, even when
the component reliability is 0.950.

The reliability h[p(t))] of a series structure may also be determined by a more
direct approach, without using the structure function. Let Ei(t) be the event that
component i is functioning at time t. The probability of this event is Pr[Ei(t)] =
pi(t). Because a series structure is functioning if, and only if, all its components
are functioning, and because the components are independent, the reliability of
the series structure is

h[p(t)] = Pr [E1(t) ∩ E2(t) ∩ · · · ∩ En(t)]

= Pr [E1(t)]Pr [E2(t)] · · ·Pr [En(t)] =
n∏

i=1
pi(t),

which is the same result we got in (6.6) by using the structure function.
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6.2.2 Reliability of Parallel Structures

The structure function of a parallel structure of order n is from (4.5)

𝜙[X(t)] =
n∐

i=1
Xi(t) = 1 −

n∏
i=1

[1 − Xi(t)].

Hence,

h[p(t)] = E(𝜙[X(t)]) = 1 −
n∏

i=1
(1 − E[Xi(t)]) = 1 −

n∏
i=1

[1 − pi(t)]. (6.7)

This expression may alternatively be written as follows:

h[p(t)] =
n∐

i=1
pi(t).

Observe that

h[p(t)] ≥ max
i
{pi(t)}.

Example 6.2 (Parallel structure)
Consider a parallel structure of three independent components. At a specified time
t, the component reliabilities are p1 = 0.95, p2 = 0.97, and p3 = 0, 94. The system
reliability at time t is from (6.7)

pS = h(p) = 1 − (1 − p1)(1 − p2)(1 − p3) = 1 − 0.05 ⋅ 0.03 ⋅ 0.06 ≈ 0.99991.
◻

If all the components have the same reliability p(t), then the system reliability
at time t of a parallel structure of order n is

pS(t) = 1 − [1 − p(t)]n
.

As for the series structure, the reliability h[p(t)] of a parallel structure may be
determined by a more direct approach, without using the structure function. Let
E∗

i (t) be the event that component i is in a failed state at time t. The probability of
this event is Pr [E∗

i (t)] = 1 − pi(t). Because a parallel structure is in a failed state if,
and only if, all its components are in a failed state, and because the components
are independent, we have that

1 − h[p(t)] = Pr [E∗
1(t) ∩ E∗

2(t) ∩ · · · ∩ E∗
n(t)]

= Pr [E∗
1(t)]Pr [(E∗

2(t)] · · ·Pr [E∗
n(t)] =

n∏
i=1

[1 − pi(t)]

and, therefore, in accordance with (6.7)

h[p(t)] = 1 −
n∏

i=1
[1 − pi(t)].
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This direct approach is feasible for series and parallel structures, but is cumber-
some for more complicated structures, in which case, the approach by using struc-
ture functions is much more suitable.

6.2.3 Reliability of koon Structures

The structure function of a koon:G structure has a structure function (see Eq. (4.7))

𝜙[X(t)] =

{
1 for

∑n
i=1 Xi(t) ≥ k

0 for
∑n

i=1 Xi(t) < k
. (6.8)

To simplify the notation, we omit the explicit reference to G (“good”) and write
koon instead of koon:G. In cases where a koon:F structure is studied, we always
include the F (“failed”).

Consider a koon structure, where all the n components have identical reliabili-
ties pi(t) = p(t) for i = 1, 2,… ,n. Because it is assumed that failures of individual
components are independent events, then at a given time t, Y (t) =

∑n
i=1 Xi(t) is

binomially distributed [n, p(t)]

Pr (Y (t) = y) =
(

n
y

)
p(t)y[1 − p(t)]n−y for y = 0, 1,… ,n.

The reliability of a koon structure of components with identical reliabilities is
hence

pS(t) = Pr (Y (t) ≥ k) =
n∑

y=k

(
n
y

)
p(t)y[1 − p(t)]n−y

. (6.9)

Example 6.3 (2oo3 structure)
The 2oo3 structure is shown in Figure 2.14, and the structure function is from (4.8)

𝜙[X(t)] = X1(t)X2(t) + X1(t)X3(t) + X2(t)X3(t) − 2X1(t)X2(t)X3(t).

When the three components are independent, the reliability of the 2oo3 struc-
ture is

pS(t) = p1(t)p2(t) + p1(t)p3(t) + p2(t)p3(t) − 2p1(t)p2(t)p3(t).

When all the three components have the same reliability, pi(t) = p(t) for i = 1, 2, 3,
then

pS(t) = 3p(t)2 − 2p(t)3
.

In this example, the structure function is used to find the reliability pS(t) of the
2oo3 structure. Observe that the same result is obtained by using (6.9). ◻

Finally, let us see how the system reliability of a more complicated structure can
be determined.
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(a) (b)

Figure 6.1 RBD of a simplified automatic alarm system for gas leakage.

Example 6.4 (Alarm system for gas leakage)
Figure 6.1 shows an RBD of a simplified automatic alarm system for gas leakage.
In the case of gas leakage, “connection” is established between a and b so that
at least one of the alarm bells (7 and 8) will start ringing. The system has three
independent gas detectors (1, 2, and 3) that are connected to a 2oo3 voting unit (4);
that is, at least two detectors must indicate gas leakage before an alarm is raised.
Component 5 is a power supply, and component 6 is a relay.

Consider the system at a given time t. To simplify the notation, we omit the
explicit reference to the time t. The structure function of the system is

𝜙(X) = (X1X2 + X1X3 + X2X3 − 2X1X2X3) (X4X5X6) (X7 + X8 − X7X8).

If the component reliability at time t of component i is denoted by pi, i = 1, 2,… , 8,
and X1,X2,… ,X8 are independent, then the system reliability at time t0 is

pS = (p1p2 + p1p3 + p2p3 − 2p1p2p3) p4p5p6 (p7 + p8 − p7p8). ◻

6.2.4 Pivotal Decomposition

By pivotal (or Shannon) decomposition, the structure function 𝜙[X(t)] at time t
may be written as (see Eq. (4.21))

𝜙[X(t)] = Xi(t)𝜙[1i,X(t)] + [1 − Xi(t)]𝜙[0i,X(t)]

= Xi(t)(𝜙[1i,X(t)] − 𝜙[0i,X(t)]) + 𝜙[0i,X(t)]

When the components are independent, the system reliability becomes

h[p(t)] = pi(t)E (𝜙[(1i,X(t)]) + [1 − pi(t)]E (𝜙[0i,X(t)]).

Let h[1i,p(t)] = E (𝜙[1i,X(t)]) and h[0i,p(t)] = E (𝜙[0i,X(t)]), which implies that

h[p(t)] = pi(t)h[1i,p(t)] + [1 − pi(t)]h[0i,p(t)]

= pi(t)(h[1i,p(t)] − h[0i,p(t)]) + h[0i,p(t)]. (6.10)
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Observe that the system reliability h[p(t)] is a linear function of pi(t) when all the
other component reliabilities are kept constant. Also observe that (6.10) follows
directly from the law of total probability in basic probability theory (see box):

Law of Total Probability

Let  be the sample space of an experiment and let C1,C2,… ,Cn be a parti-
tion of  such that  =

⋃n
i=1 Ci and Ci ∩ Cj = ∅ for all i ≠ j. Let A be an event

in  . The probability of A is

Pr (A) = Pr (A ∩ ) = Pr

(
A ∩

n⋃
i=1

Ci

)
= Pr

( n⋃
i=1

A ∩ Ci

)
=

n∑
i=1

Pr (A ∩ Ci).

The last equality follows because Ci,C2,… ,Cn are mutually exclusive, and
therefore, (A ∩ C1), (A ∩ C2),… , (A ∩ Cn) are also mutually exclusive. We now
use the definition of conditional probability Pr (A ∩ Ci) = Pr (A ∣ Ci)Pr (Ci) to
arrive at the law of total probability

Pr (A) =
n∑

i=1

Pr (A ∣ Ci) Pr (Ci). (6.11)

6.2.5 Critical Component

Component i is said to be critical for a (coherent) system if the rest of the com-
ponents are in such states that the system is functioning when component i is
functioning and fails when component i fails. This means that the rest of the sys-
tem has state [⋅i,X(t)] such that 𝜙[1i,X(t)] = 1 and 𝜙[0i,X(t)] = 0. Because the
system is coherent and has binary states, component i is critical when

𝜙[1i,X(t)] − 𝜙[0i,X(t)] = 1.

Because 𝜙[1i,X(t)] − 𝜙[0i,X(t)] can take only the values 0 and 1, the probability
that the system comes in such a state that component i is critical is

Pr (Component i is critical) = Pr (𝜙[1i,X(t)] − 𝜙[0i,X(t)] = 1)

= E (𝜙[1i,X(t)] − 𝜙[0i,X(t)])

= h[1i,p(t)] − h[0i,p(t)]. (6.12)

Component i is said to cause system failure if component i is critical and then fails.
Critical components are discussed further in Chapter 7.
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6.3 Nonrepairable Systems

This section deals solely with nonrepairable systems. As explained in Section 6.1,
the component reliability and the survivor function coincide for nonrepairable
components:

pi(t) = Ri(t) for i = 1, 2,… ,n.

6.3.1 Nonrepairable Series Structures

According to (6.6) the survivor function of a nonrepairable series structure con-
sisting of independent components, is

RS(t) =
n∏

i=1
Ri(t). (6.13)

Furthermore, according to (5.11)

Ri(t) = e− ∫
t

0 zi(u) du
, (6.14)

where zi(t) is the failure rate function of component i at time t.
Inserting (6.14) into (6.13) yields

RS(t) =
n∏

i=1
e− ∫

t
0 zi(u) du = e− ∫

t
0
∑n

i=1 zi(u) du = e− ∫
t

0 zS(u) du
.

The failure rate function zS(t) of a series structure (of independent components) is,
hence, equal to the sum of the failure rate functions of the individual components:

zS(t) =
n∑

i=1
zi(t). (6.15)

The mean time-to-failure (MTTF) of this series structure is

MTTFS =
∫

∞

0
RS(t) dt =

∫

∞

0
e− ∫

t
0
∑n

i=1 zi(u) du dt. (6.16)

Example 6.5 (Series structure with constant failure rates)
Consider a series structure on n (independent) components with constant failure
rates 𝜆i, for i = 1, 2,… ,n. The survivor function of the series structure is

RS(t) = e−(
∑n

i=1 𝜆i) t
. (6.17)

The failure rate of the series structure is constant and equal to

𝜆S =
n∑

i=1
𝜆i (6.18)
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and the mean to failure is

MTTFS =
∫

∞

0
RS(t) dt = 1∑n

i=1 𝜆i
. (6.19)

When all the failure rates are equal, 𝜆i = 𝜆 for i = 1, 2,… ,n, the failure rate of
the series structure is 𝜆S = n𝜆, and the MTTF of the series structure is MTTF
= 1∕(n𝜆). ◻

Example 6.6 (Series structure with Weibull-distributed times-to-failure)
Consider a series structure with n independent components. The time-to-failure
of component i has a Weibull distribution with common shape parameter 𝛼 and
scale parameter 𝜃i, for i = 1, 2,… ,n. The survivor function of the series structure
is from (6.16)

RS(t) =
n∏

i=1
e−

(
t
𝜃i

)𝛼

= e
−

[( n∑
i=1

(
1
𝜃i

)𝛼
)1∕𝛼

t

]𝛼

.

Introducing 𝜃0 =
(∑n

i=1 𝜃
−𝛼
i

)−1∕𝛼 , the survivor function RS(t) can be written as

RS(t) = e−
(

t
𝜃0

)𝛼

. (6.20)

The time-to-failure of the series structure is therefore Weibull distributed with
shape parameter 𝛼 and scale parameter 𝜃0 =

(∑n
i=1 𝜃

−𝛼
i

)−1∕𝛼 . ◻

Example 6.7 (Bathtub curve obtained by three Weibull distributions)
Consider a series structure of n = 3 independent components. Component 1
has a decreasing failure rate, for example a Weibull distributed time-to-failure
with shape parameter 𝛼 < 1. Component 2 has a constant failure rate, whereas
component 3 has an increasing failure rate, for example a Weibull distributed
time-to-failure with shape parameter 𝛼 > 2. The failure rates of the three com-
ponents are illustrated in Figure 6.2. The failure rate function of the series
structure is from (6.15) the sum of the three individual failure rate functions,
and is illustrated by the fully drawn line in Figure 6.2. The failure rate function
of the series structure is seen to have a bathtub shape. A bathtub-shaped failure
rate of a component may therefore be obtained by replacing the component by
three independent and virtual components in series; one with decreasing failure
rate function, one with constant failure rate, and one with increasing failure rate
function. ◻
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0 Time t

z(t)

1
2

3

Figure 6.2 The failure rate function of a series structure of three independent
components, where component 1 has decreasing failure rate, component 2 has constant
failure rate, and component 3 has increasing failure rate.

6.3.2 Nonrepairable Parallel Structures

From (6.7), the survivor function of a nonrepairable parallel structure of indepen-
dent components is

RS(t) = 1 −
n∏

i=1
[1 − Ri(t)]. (6.21)

To determine the survivor function for general time-to-failure distributions is
complicated, and we therefore suffice with assuming that all components have
constant failure rates. When all the components have constant failure rates zi(t) =
𝜆i, for i = 1, 2,… ,n, then

RS(t) = 1 −
n∏

i=1
(1 − e−𝜆i t). (6.22)

Parallel Structure of Identical Components
Consider a parallel structure of n independent components of the same type with
constant failure rate 𝜆. The survivor function of the parallel structure is

RS(t) = 1 − (1 − e−𝜆t)n
. (6.23)

The parallel structure may be illustrated by the transition diagram in Figure 6.3.1
In the first state (i.e. circle), all the n components are functioning. When the first
of these fails, with rate n𝜆, the structure moves to the second state with n − 1 com-
ponents functioning. After some time, one of these n − 1 components fails, with
rate (n − 1)𝜆, and the structure moves to the next state, with n − 2 components

1 Transition diagrams are discussed in detail in Chapter 11.
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n comps.
function

n–1 comps.
function

n–2 comps.
function

1 comp.
functions

0 comps.
function

2𝜆 1𝜆(n–1)𝜆 (n–2)𝜆n𝜆

Structure failedStructure perfect

Figure 6.3 Transition diagram for a parallel structure of n independent and identical
components with failure rate 𝜆.

functioning, and so on, until all the n components have failed and the structure
fails. The mean time to the first transition is 1∕n𝜆, the mean time to the second
transition is 1∕(n − 1)𝜆, the mean time to the third is 1∕(n − 2)𝜆, and so on. The
mean time to structure failure is hence

MTTFS = 1
n𝜆

+ 1
(n − 1)𝜆

+ · · · + 1
2𝜆

+ 1
𝜆

= 1
𝜆

(
1 + 1

2
+ · · · + 1

n − 1
+ 1

n

)
= 1

𝜆

n∑
x=1

1
x

(6.24)

Remark 6.1 (An alternative derivation)
Equation (6.24) is formally derived in Section 6.3.5 for a koon structure of n iden-
tical and independent components with failure rate 𝜆. The MTTFS of a parallel
structure is listed in the first row of Table 6.2 for some selected values of n. ◻

Example 6.8 (Parallel structure of two identical components)
Consider a parallel structure of two independent and identical components with
failure rate 𝜆. The survivor function is

RS(t) = 2e−𝜆t − e−2𝜆t
. (6.25)

The probability density function of the time-to-failure of the parallel structure is

fS(t) = −R′
S(t) = 2𝜆e−𝜆t − 2𝜆e−2𝜆t

.

The mode of the distribution is the value of t that maximizes fS(t)

tmode =
ln 2
𝜆

.

The median life of the parallel structure is

tmed = R−1
S (0.5) ≈ 1.228

𝜆
.

The MTTF is

MTTFS =
∫

∞

0
RS(t) dt = 3

2𝜆
. (6.26)

Observe that the MTTF of a parallel structure of two independent components is
50% longer than for a single component.
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Time t

f S(
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6
Mode Median MTTF

Figure 6.4 The probability density function of a parallel structure with two independent
and identical components with failure rate 𝜆 = 1, together with its mode, median, and
MTTF.

The probability density fS(t) of the parallel structure, together with its mode,
median, and MTTFS are illustrated in Figure 6.4. The mean residual lifetime of
the parallel structure at age t is

MRLS(t) =
1

RS(t) ∫

∞

t
RS(x) dx = 1

2𝜆
4 − e−𝜆t

2 − e−𝜆t .

Observe that limt→∞ MRLS(t) = 1∕𝜆. Because the two components are nonre-
pairable, and one of them will fail first, we will sooner or later be left with only
one component. When one of the components has failed, the mean residual
lifetime of the structure is equal to the mean residual lifetime of the remaining
component. Because the failure rate is constant, the mean residual lifetime of the
remaining component is equal to its MTTF, MTTF = 1∕𝜆. ◻

Example 6.9 reveals that the time-to-failure TS of a parallel structure is not
exponentially distributed, even if all components have exponentially distributed
times-to-failure.

Example 6.9 (Parallel structure of two different components)
Consider a parallel structure of two nonrepairable components with constant fail-
ure rates 𝜆1 and 𝜆2, respectively.

The survivor function of the structure is

RS(t) = 1 − (1 − e−𝜆1t)(1 − e−𝜆2t)

= e−𝜆1t + e−𝜆2t − e−(𝜆1+𝜆2)t. (6.27)

The MTTF of the parallel structure is

MTTFS =
∫

∞

0
RS(t) dt = 1

𝜆1
+ 1

𝜆2
− 1

𝜆1 + 𝜆2
. (6.28)



�

� �

�

6.3 Nonrepairable Systems 233

Time t

z S(
t)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

λ
1 
= 0.3  λ

2 
= 0.7

λ
1 
= 0.2  λ

2 
= 0.8

λ
1 
= 0.5  λ

2 
= 0.5

Figure 6.5 The failure rate for a parallel structure of two independent components for
selected values of 𝜆1 and 𝜆2 (𝜆1 + 𝜆2 = 1).

The corresponding failure rate function is

zS(t) = −
R′

S(t)
RS(t)

.

Hence,

zS(t) =
𝜆1e−𝜆1t + 𝜆2e−𝜆2t − (𝜆1 + 𝜆2)e−(𝜆1+𝜆2)t

e−𝜆1t + e−𝜆2t − e−(𝜆1+𝜆2)t
. (6.29)

Figure 6.5 shows zS(t) for selected combinations of𝜆1 and𝜆2, such that𝜆1 + 𝜆2 = 1.
Observe that when 𝜆1 ≠ 𝜆2, the failure rate function zS(t) increases up to a maxi-
mum at a time t0, and then decreases for t ≥ t0 down to min {𝜆1, 𝜆2}. ◻

Example 6.10 (Parallel structure of Weibull-distributed components)
Consider a parallel structure of two independent and identical components with
Weibull (𝛼, 𝜃) life distribution. The survivor function of the structure is

RS(t) = 2e−
(

t
𝜃

)𝛼

− e−2
(

t
𝜃

)𝛼

.

The last term in this expression may be written as

e−2
(

t
𝜃

)𝛼

= e−
(

t
2−1∕𝛼𝜃

)𝛼

,

which is the survivor function of a Weibull (𝛼, 𝜃1) distribution, where the scale
parameter 𝜃1 = 2−1∕𝛼

𝜃.
The MTTF of the parallel structure can now be determined as

MTTFS = 2𝜃 Γ
(

1 + 1
𝛼

)
− 𝜃1Γ

(
1 + 1

𝛼

)
= (2𝜃 − 𝜃1) Γ

(
1 + 1

𝛼

)
,

and the failure rate function of the parallel structure is next obtained from

zS(t) =
fS(t)
RS(t)

=
−R′

S(t)
RS(t)

.
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Time t

z S(
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

MTTFs

Figure 6.6 Failure rate function for a parallel structure of two independent and
identical components that are Weibull distributed with 𝛼 = 1.8 and 𝜃 = 1.

The failure rate function for the parallel structure is illustrated in Figure 6.6 for
𝛼 = 1.8 and 𝜃 = 1. The corresponding R script is

t <- seq(0, 3, length=300) # time axis
a <- 1.8 # the Weibull shape parameter
th <- 1 # the Weibull scale parameter
th1 <- 2ˆ(-1/a)*th # the transformed scale parameter
m <- (2*th-th1)*gamma(1+1/a) # the MTTF
x <- 2*dweibull(t,a,th, log=FALSE) -
dweibull(t,a,th1, log=FALSE)
y <- 1+ pweibull(t,a,th1, log=FALSE) -
2*pweibull(t,a,th, log=FALSE)
z <-x/y
plot(t, z, type="l")
segments(m,0,m,2.1)
text(m,2.6, expression(MTTF[S]))

◻

6.3.3 Nonrepairable 2oo3 Structures

The survivor function of a 2oo3 structure of independent components can, by
using Example 6.2, be written as

RS(t) = R1(t)R2(t) + R1(t)R3(t) + R2(t)R3(t) − 2R1(t)R2(t)R3(t).

In the special case, where all the three components have the common constant
failure rate 𝜆, then

RS(t) = 3 e−2𝜆t − 2e−3𝜆t
. (6.30)
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Time t
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t)
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Figure 6.7 The failure rate function zS(t) for a 2oo3 structure of independent and
identical components with failure rate 𝜆 = 1. The MTTFS of the structure is indicated.

The failure rate function of this 2oo3 structure is

zS(t) =
−R′

S(t)
RS(t)

= 6𝜆(e−2𝜆t − e−3𝜆t)
3e−2𝜆t − 2e−3𝜆t . (6.31)

The failure rate function zS(t) is shown in Figure 6.7.
Observe that limt→∞zC(t) = 2𝜆 (see Problem 6.9). The MTTF of this 2oo3 struc-

ture is

MTTFS =
∫

∞

0
RS(t) dt = 3

2𝜆
− 2

3𝜆
= 5

6
1
𝜆
. (6.32)

Observe that the MTTF of a 2oo3 structure is shorter than the MTTF of a single
component.

6.3.4 A Brief Comparison

Let us compare the three simple structures:

(1) A single component;
(2) A parallel structure of two identical components;
(3) A 2oo3 structure of identical components.

All the components are assumed to be independent with a common constant
failure rate 𝜆. A brief comparison of the three structures is presented in Table 6.1.
Observe that a single component has a higher MTTF than the 2oo3 structure. The
survivor functions of the three simple structures are compared in Figure 6.8.
The introduction of a 2oo3 structure instead of a single component, hence,
reduces the MTTF by about 16%, but the 2oo3 structure has a significantly higher
survival probability in the interval (0, t] for t < ln 2∕𝜆.
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Table 6.1 A brief comparison of the structures (1), (2), and (3).

Survivor function Mean time-to-failure

System RS (t) MTTF

1
1oo1

e−𝜆t 1
𝜆

2

1

1oo2

2e−𝜆t − e−2𝜆t 3
2

1
𝜆

3

2

2oo3

1

1

2 3

3e−2𝜆t − 2e−3𝜆t 5
6

1
𝜆

Time t

R
(t

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1oo1

1oo2

2oo3

Figure 6.8 The survivor functions of the three structures in Table 6.1 (𝜆 = 5).

6.3.5 Nonrepairable koon Structures

Assume that we have a koon structure of n identical and independent compo-
nents with constant failure rate 𝜆. The survivor function of the koon structure is
from (6.8)

RS(t) =
n∑

x=k

(n
x

)
e−𝜆tx(1 − e−𝜆t)n−x

. (6.33)
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Table 6.2 MTTF of some koon structures of identical and independent components with
constant failure rate 𝜆.

k\n 1 2 3 4 5

1 1
𝜆

3
2𝜆

11
6𝜆

25
12𝜆

137
60𝜆

2 — 1
2𝜆

5
6𝜆

13
12𝜆

77
60𝜆

3 — — 1
3𝜆

7
12𝜆

47
60𝜆

4 — — — 1
4𝜆

9
20𝜆

5 — — — — 1
5𝜆

The mean time-to-failure is

MTTFS =
∫

∞

0
RS(t) dt =

n∑
x=k

(n
x

)
∫

∞

0
e−𝜆tx(1 − e−𝜆t)n−x dt. (6.34)

By introducing 𝑣 = e−𝜆t, we obtain by using the beta function

MTTFS =
n∑

x=k

(n
x

) 1
𝜆 ∫

1

0
𝑣

x−1(1 − 𝑣)n−x d𝑣

=
n∑

x=k

(n
x

) 1
𝜆

Γ(x)Γ(n − x + 1)
Γ(n + 1)

= 1
𝜆

n∑
x=k

(n
x

) (x − 1)!(n − x)!
n!

= 1
𝜆

n∑
x=k

1
x
. (6.35)

The MTTF of some simple koon structures, computed by (6.35), are listed in
Table 6.2. Observe that a 1oon structure is a parallel structure, whereas a noon
structure is a series structure.

6.4 Standby Redundancy

In some structures, single items (components, subsystems) may be of much greater
importance for the system’s ability to function than others. If, for example a single
item is operating in series with the rest of the system, failure of this item leads to
system failure. Two ways of ensuring higher system reliability in such situations
are to (i) use items with very high reliability in these critical places in the system,
or (ii) introduce redundancy in these places (i.e. introduce one or more reserve
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items). The type of redundancy obtained by replacing the important item with
two or more items operating in parallel is called active redundancy. These items
then share the load right from the start until one of them fails.

Reserve items may be kept in standby in such a way that the first of them is acti-
vated when the ordinary item fails, the second is activated when the first reserve
item fails, and so on. If the reserve items carry no load and are not subject to dete-
rioration in the waiting period before activation (and therefore cannot fail in this
period), the redundancy is called passive. In the waiting period, such an item is said
to be in cold standby. If the standby items carry a weak load or deteriorate in the
waiting period (and therefore might fail in this period), the redundancy is called
partly loaded. In the following sections, we illustrate these types of redundancy by
considering some simple examples.

6.4.1 Passive Redundancy, Perfect Switching, No Repairs

Consider the standby system in Figure 6.9. The system functions in the following
way: Item 1 is put into operation at time t = 0. When it fails, item 2 is activated.
When it fails, item 3 is activated, and so forth. The item that is in operation is called
the active item, whereas the items that are standing by ready to take over are called
standby or passive items. When item n fails, the system fails.

We assume that the switch S functions perfectly and that items cannot fail when
they are passive. Let Ti denote the time-to-failure of item i, for i = 1, 2,… ,n. The
time-to-failure, TS, of the whole standby system is then

TS =
n∑

i=1
Ti.

The mean time to system failure, MTTFS, is obviously

MTTFS =
n∑

i=1
MTTFi,

where MTTFi is the mean time-to-failure of item i, for i = 1, 2,… ,n.

1

2

n

S

Figure 6.9 Standby system with n
items.
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The exact distribution of the time-to-failure TS can only be determined in some
very special cases. Such a special case occurs when T1,T2,… ,Tn are indepen-
dent and exponentially distributed with failure rate 𝜆. According to (5.142), TS is
gamma distributed with parameters n and 𝜆. The survivor function of the system
is then

RS(t) =
n−1∑
k=0

(𝜆t)k

k!
e−𝜆t

. (6.36)

If we have only one standby item, such that n = 2, the survivor function is

RS(t) = e−𝜆t + 𝜆t
1!

e−𝜆t = (1 + 𝜆t) e−𝜆t
. (6.37)

If we have two standby items (i.e. n = 3), the survivor function is

RS(t) = e−𝜆t + 𝜆t
1!

e−𝜆t + (𝜆t)2

2!
e−𝜆t =

(
1 + 𝜆t + (𝜆t)2

2

)
e−𝜆t

. (6.38)

If we are unable to determine the exact distribution of TS, we have to be content
with an approximate expression for the distribution. Assume, for example that
the time-to-failure T1,T2,… ,Tn are independent and identically distributed with
MTTF 𝜇 and variance 𝜎

2. According to central limit theorem (see box), when n →

∞, TS is asymptotically normally distributed with mean n𝜇 and variance n𝜎2.

Central Limit Theorem

Let X1,X2,… ,Xn be a sequence of independent and identically distributed
random variables with mean value E(Xi) = 𝜇 and variance var(Xi) =
𝜎

2
< ∞, for i = 1, 2,… ,n, and consider the sum

∑n
i=1 Xi. We know that

E
(∑n

i=1 Xi
)
= n𝜇 and var

(∑n
i=1 Xi

)
= n𝜎2. The central limit theorem says

that the sum
∑n

i=1 Xi converges in distribution to a normal distribution when
n → ∞, such that∑n

i=1 Xi − n𝜇

𝜎

√
n

d
→  (0, 1). (6.39)

This means that, when n is large

Pr

( n∑
i=1

Xi ≤ x

)
= Pr

(∑n
i=1 Xi − n𝜇

𝜎

√
n

≤
x − n𝜇
𝜎

√
n

)
= Φ

(
x − n𝜇
𝜎

√
n

)
,

where Φ(⋅) is the cumulative distribution function of the standard normal
distribution  (0, 1).
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Using the central limit theory, the survivor function of the system is approxi-
mately

RS(t) = Pr

( n∑
i=1

Ti > t

)
= 1 − Pr

( n∑
i=1

Ti ≤ t

)

= 1 − Pr

(∑n
i=1 Ti − n𝜇

𝜎

√
n

≤
t − n𝜇
𝜎

√
n

)
≈ Φ

(
n𝜇 − t
𝜎

√
n

)
.

6.4.2 Cold Standby, Imperfect Switch, No Repairs

Here, we restrict ourselves to considering the simplest case with n = 2 items.
Figure 6.10 shows a standby system with an active item (item 1) and an item in
cold standby (item 2). The active item is under surveillance by a switch, which
activates the standby item when the active item fails.

Furthermore, assume that the active item has constant failure rate 𝜆1. When
the active item fails, the switch activates the standby item. The probability that
this switching is successful is 1 − p. The failure rate of item 2 in standby position
is assumed to be negligible. When the standby item is activated, its failure rate
is 𝜆2. The three items operate independently. No repairs are carried out. In addi-
tion, assume that the only way in which the switch S can fail is by not activating
the standby item when the active item fails. In many practical applications, the
switching is performed by a human operator. The probability p of unsuccessful
activation of the standby item often includes the probability of not being able to
start the standby item.

The system is able to survive the interval (0, t] in two disjoint ways.

(1) Item 1 does not fail in (0, t] (i.e. T1 > t)
(2) Item 1 fails in a time interval (𝜏, 𝜏 + d𝜏], where 0 < 𝜏 < t. The switch S is able

to activate item 2. Item 2 is activated at time 𝜏 and does not fail in (𝜏, t].

Let TS denote the time-to-system failure. Events 1 and 2 are clearly disjoint. Hence,
the survivor function of the system RS(t) = Pr (TS > t) is the sum of the probability
of the two events.

The probability of event 1 is

Pr (T1 > t) = e−𝜆1t
.

1

2

S

Figure 6.10 Standby system with 2
items.
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Next, consider event 2: Item 1 fails in (𝜏, 𝜏 + d𝜏] with probability f1(𝜏) d𝜏 =
𝜆1e−𝜆1𝜏 d𝜏. The switch S is able to activate item 2 with probability (1 − p).

Item 2 does not fail in (𝜏, t] with probability e−𝜆2(t−𝜏). Because item 1 may fail at
any point of time 𝜏 in (0, t], the survivor function of the system is when 𝜆1 ≠ 𝜆2

RS(t) = e−𝜆1t +
∫

t

0
(1 − p) e−𝜆2(t−𝜏)𝜆1e−𝜆1𝜏 d𝜏

= e−𝜆1t + (1 − p)𝜆1e−𝜆2t
∫

t

0
e−(𝜆1−𝜆2)𝜏 d𝜏

= e−𝜆1t +
(1 − p)𝜆1

𝜆1 − 𝜆2
e−𝜆2t −

(1 − p)𝜆1

𝜆1 − 𝜆2
e−𝜆1t

. (6.40)

When 𝜆1 = 𝜆2 = 𝜆, we get

RS(t) = e−𝜆t +
∫

t

0
(1 − p)e−𝜆(t−𝜏)𝜆e−𝜆𝜏 d𝜏

= e−𝜆t + (1 − p)𝜆e−𝜆t
∫

t

0
d𝜏

= e−𝜆t + (1 − p)𝜆te−𝜆t
. (6.41)

The MTTFS for the system is

MTTFS =
∫

∞

0
RS(t) dt = 1

𝜆1
+

(1 − p)𝜆1

𝜆1 − 𝜆2

(
1
𝜆2

− 1
𝜆1

)

= 1
𝜆1

+ (1 − p) 1
𝜆2

. (6.42)

This result applies for all values of 𝜆1 and 𝜆2.

Example 6.11 (Standby pump)
Consider the standby system in Figure 6.10 with two identical pumps, each with
constant failure rate 𝜆 = 10−3 failures/hour. The probability p that the switch S
fails to activate (switch over and start) the standby pump has been estimated to
1.5% (i.e. p = 0.015).

The survivor function of the pump system at time t = 1000 hours is from (6.38)

RS(1000) = 0.7302.

The mean time to system failure is from (6.42)

MTTFS = 1
𝜆
[1 + (1 − p)] = 1985 hours. ◻

6.4.3 Partly Loaded Redundancy, Imperfect Switch, No Repairs

Consider the same standby system as the one in Figure 6.10, but change the
assumptions such that item 2 carries a certain load before it is activated. Let 𝜆0
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denote the failure rate of item 2 while in partly loaded standby. The system is able
to survive the interval (0, t] in two disjoint ways.

(1) Item 1 does not fail in (0, t] (i.e. T1 > t)
(2) Item 1 fails in a time interval (𝜏, 𝜏 + d𝜏), where 0 < 𝜏 < t. The switch S is able

to activate item 2. Item 2 does not fail in (0, 𝜏], is activated at time 𝜏 and does
not fail in (𝜏, t].

Let TS denote the time-to-system failure. The survivor function of the system,
RS(t) = Pr (TS > t), is the sum of the probabilities for the two disjoint events.

Consider event (2): Item 1 fails in (𝜏, 𝜏 + d𝜏] with probability f1(𝜏) d𝜏 =
𝜆1e−𝜆1𝜏 d𝜏. The switch S is able to activate item 2 with probability 1 − p. Item 2
does not fail in (0, 𝜏] in partly loaded standby with probability e−𝜆0𝜏 , and item 2
does not fail in (𝜏, t] in active state with probability e−𝜆2(t−𝜏).

Because item 1 may fail at any point of time t in (0, 𝜏], the survivor function of
the system becomes

RS(t) = e−𝜆1t +
∫

t

0
(1 − p)e−𝜆0𝜏e−𝜆2(t−𝜏)𝜆1e−𝜆1𝜏 d𝜏

= e−𝜆1t +
(1 − p)𝜆1

𝜆0 + 𝜆1 − 𝜆2
(e−𝜆2t − e−(𝜆0+𝜆1)t), (6.43)

where we have assumed that (𝜆1 + 𝜆0 − 𝜆2) ≠ 0.
When (𝜆1 + 𝜆0 − 𝜆2) = 0, the survivor function becomes

RS(t) = e−𝜆1t + (1 − p)𝜆1te−𝜆2t
. (6.44)

The mean time to system failure is

MTTFS = 1
𝜆1

+
(1 − p)𝜆1

𝜆1 + 𝜆0 − 𝜆2

(
1
𝜆2

− 1
𝜆1 + 𝜆0

)

= 1
𝜆1

+ (1 − p)
𝜆1

𝜆2(𝜆1 + 𝜆0)
. (6.45)

This result applies for all values of 𝜆0, 𝜆1, and 𝜆2. In this section, we have tac-
itly made certain assumptions about independence. These assumptions are not
discussed thoroughly here.

The concept of redundancy is discussed further in Chapter 11, where Markov
models are used to study repairable as well as nonrepairable standby systems.

6.5 Single Repairable Items

This section introduces simple aspects of assessing the reliability of a single
repairable item, that is, an item that is repaired when failure occurs. Other types
of maintenance are not carried out. More advanced repair and maintenance
strategies are treated in Chapter 9.
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6.5.1 Availability

The main reliability metric for a repairable item is the availability of the item, intro-
duced in Chapter 1 as

Definition 6.1 (Availability)
The availability A(t) at time t of a repairable item is the probability that the item is
functioning at time t:

A(t) = Pr (The item is in a functioning state at t) = Pr (X(t) = 1). (6.46)
◻

The availability A(t) is also called the point – or time-dependent availability.
Observe that when the item is not repaired, then A(t) = R(t), the survivor
function.

Definition 6.2 (Unavailability)
The unavailability A(t)[= 1 − A(t)] at time t of a repairable item is the probability
that the item is not in a functioning state, but in a failed state, at time t:

A(t) = Pr (The item is in a failed state at t) = Pr (X(t) = 0). (6.47)
◻

Sometimes, we are interested in the interval or mission availability in the time
interval (t1, t2), defined by

Definition 6.3 (Interval availability)
The (average) interval or mission availability Aavg(t1, t2) in the time interval (t1, t2)
is defined as

Aavg(t1, t2) =
1

t2 − t1 ∫

t2

t1

A(t) dt. (6.48)

◻

Aavg(t1, t2) is just the average value of the point availability A(t) over a specified
interval (t1, t2).

In some applications, we are interested in the interval or mission availability
from startup, that is in an interval (0, 𝜏). This is defined as

Aavg(0, 𝜏) =
1
𝜏 ∫

𝜏

0
A(t) dt. (6.49)

The average availability [Aavg(t1, t2) or Aavg(0, 𝜏)] may be interpreted as the mean
proportion of time in the interval where the item is able to function.

When 𝜏 → ∞, the average interval availability (6.49) approaches a limit called
the long-run average availability of the item.
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Definition 6.4 (Average availability)
The (long-run) average availability of an item is

Aavg = lim
𝜏→∞

Aavg(𝜏) = lim
𝜏→∞

1
𝜏 ∫

𝜏

0
A(t) dt. (6.50)

◻

The (long-run) average availability may be interpreted as the average propor-
tion of a long period of time where the item is able to function. The availability
depends both on the number of failures that may occur and how quickly faults
can be rectified (i.e. the maintainability and the maintenance support).

The (long-run) average unavailability Aavg = 1 − Aavg is in some application
areas (e.g. electro-power generation) called the forced outage rate.

Example 6.12 (Average availability)
Consider an item that is assumed to run on a continuous basis. The item has an
average availability of 0.95. During a period of one year (i.e. 8760 hours), we then
expect the item to be functioning during 8760 ⋅ 0.95 = 8322 hours and not to be
functioning during 8760 ⋅ 0.05 = 438 hours. Observe that the average availability
does not tell anything about how many times the item will fail during this time
interval. ◻

In many cases, the point availability A(t) approaches a limit A when t → ∞. The
limit A is called the limiting availability of the item.

Definition 6.5 (Limiting availability)
The limiting availability is

A = lim
t→∞

A(t) (6.51)

when the limit exists. ◻

The limiting availability is sometimes called the steady-state availability. When
the limiting availability exists, it is equal to the long-run average availability, that
is Aavg = A.

6.5.2 Average Availability with Perfect Repair

Consider an item that is put into operation and is functioning at time t = 0. When-
ever the item fails, it is replaced with a new item of the same type or repaired to an
as-good-as-new condition. We then get a sequence of times-to-failure or uptimes
T1,T2,… for the item. We assume that T1,T2,… are independent and identically
distributed, with distribution function FT(t) = Pr (Ti ≤ t) for i = 1, 2,… and mean
uptime MUT.
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1

0

X(t)

Time tT1 T3T2D1 D2 D3

Figure 6.11 States of a repairable item.

We further assume that the downtimes D1,D2,… are independent and identi-
cally distributed with distribution function FD(t) = Pr (Di ≤ t), for i = 1, 2,… and
mean downtime (MDT). Finally, we assume that all Tis and Dis are independent.
This means, for example that the repair time is not influenced by the length of the
uptime. The state variable X(t) of the item is illustrated in Figure 6.11.

Suppose that we have observed an item until repair n is completed. Then we have
observed the uptimes T1,T2,… ,Tn and the downtimes D1,D2,… ,Dn. According
to the law of large numbers, then under relatively general assumptions, with prob-
ability one

1
n

n∑
i=1

Ti → E(T) = MUT when n → ∞

1
n

n∑
i=1

Di → E(D) = MDT when n → ∞.

The proportion of time in which the item has been functioning is∑n
i=1 Ti∑n

i=1 Ti +
∑n

i=1 Di
=

(1∕n)
∑n

i=1 Ti

(1∕n)
∑n

i=1 Ti + (1∕n)
∑n

i=1 Di
. (6.52)

By the law of large numbers, the right-hand side of (6.52) tends to
E(T)

E(T) + E(D)
= MUT

MUT + MDT
as n → ∞,

which is the average proportion of time where the item has been functioning, when
we consider a long period of time. We have therefore found the long-run average
availability of the item.

Aavg = MUT
MUT + MDT

. (6.53)

The corresponding average unavailability is

Aavg = MDT
MUT + MDT

, (6.54)

which is the average proportion of time where the item is not functioning when
we consider a long period of time.
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Example 6.13 (Average availability with perfect repair)
A machine with MTTF = 1000 hours has MDT = 5 hours. The assumption of
perfect repair implies that MTTF = MUT (see Remark 6.2). This means that the
machine has average availability

Aavg = MUT
MUT + MDT

= 1000
1000 + 5

= 0.995.

On the average, this machine will function 99.5% of the time. The average unavail-
ability is thus 0.5%, which corresponds to approximately 44 hours of downtime per
year, when the machine is supposed to run continuously. ◻

Remark 6.2 (MTTF versus MUT)
The MTTF of an item is defined as the MTTF for an item that is in a fully operat-
ing state at time t = 0. For repairable items, the item is not always repaired to an
as-good-as-new condition when it fails, even if we have assumed that each com-
ponent fulfills this requirement. Consider, for example an item that is a parallel
structure of three components. The item fails if and only if all the three compo-
nents fail. This means that item failure involves three component failures. For
some items, it is important to get the item into an operating state again as soon as
possible, the item may therefore be started up again with one or two components
functioning and one in failed state. It is therefore clear that the mean uptime, MUT
may be different from the MTTF. ◻

6.5.3 Availability of a Single Item with Constant Failure and Repair
Rates

Consider a repairable item where the uptimes are independent and exponentially
distributed with failure rate 𝜆. The downtimes are assumed to be independent and
exponentially distributed with parameter 𝜇. All repairs are assumed to be perfect.
The mean downtime is

MDT = 1
𝜇
.

The parameter 𝜇 is called the repair rate. Chapter 11 shows that the availability of
the item at time t, with perfect repair, is

A(t) = 𝜇

𝜆 + 𝜇
+ 𝜆

𝜆 + 𝜇
e−(𝜆+𝜇)t. (6.55)

The availability A(t) is shown in Figure 6.12. For these uptime and downtime dis-
tributions, the availability A(t) is seen to approach a constant A when t → ∞.

A = lim
t→∞

A(t) = 𝜇

𝜆 + 𝜇
=

1∕𝜆
1∕𝜆 + 1∕𝜇

= MUT
MUT + MDT

(6.56)
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1
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A(t)

μ

λ + μ

Time t0

Figure 6.12 The availability A(t) of an item with failure rate 𝜆 and repair rate 𝜇.

A is the limiting availability and is, in this case, equal to the average availability of
the item. When the item is not repaired, that is when 𝜇 = 0, the availability A(t) is
seen to be equal to the survivor function R(t).

In most cases, MDT ≪ MUT, and the average unavailability of the item may
therefore be approximated as

Aav = MDT
MUT + MDT

= 𝜆 MDT
1 + 𝜆 MDT

≈ 𝜆 MDT. (6.57)

This approximation is often used in hand calculations.
When planning supplies of spare parts, it is of interest to know how many fail-

ures that may be expected in a given time interval. Let W(t) denote the mean
number of repairs carried out in the time interval (0, t). Obviously, W(t)depends on
the distributions of the uptimes and the downtimes. It is often difficult to find an
exact expression for W(t) (see Chapter 10). When t is relatively large, the following
approximation may be used:

W(t) ≈ t
MTTF + MDT

. (6.58)

6.5.4 Operational Availability

The operational availability AOP of an item is defined as the mean proportion of
a mission period the item is able to perform its intended functions. To determine
AOP, we have to specify the mission period and estimate the mean total planned
downtime and the mean total unplanned downtime in the mission period. The
operational unavailability AOP = 1 − AOP may be determined from

AOP =
Mean total planned downtime + Mean total unplanned downtime

Mission period
.

When using the concepts availability and operational availability, we only consider
two states: a functioning state and a failed state. The output from a production sys-
tem may vary a lot, and the availability is therefore not a fully adequate measure of
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the system’s performance. Several alternative metrics have been proposed. In ISO
20815 (2018), production assurance is measured as the operational performance
of an oil/gas production system. Production availability is a term used to describe
the capability of a production system of meeting demands for deliveries or per-
formance. ISO 20815 was developed for the oil and gas industry, but most of the
concepts may be used also in other industries. Production availability assessment
is further discussed by Kawauchi and Rausand (2002).

6.5.5 Production Availability

Several metrics have been proposed for operational performance. Among these are
the following: Deliverability is defined by ISO 20815 as the ratio between the actual
deliveries and the planned/agreed deliveries over a specified period of time, when
the effect of compensating elements such as substitution from other producers and
downstream buffer storage are included.

Deliverability = Actual deliveries
Planned or agreed deliveries

.

The deliverability is a metric for the system’s ability to meet demands agreed with
a customer. Failures and other problems in the production system may be com-
pensated using products from a storage, or by purchasing products from other
suppliers. The North Sea operators supply gas to Europe through subsea pipelines.
The deliverability is measured at the interface between the subsea pipeline and the
national gas network (e.g. in Germany). A relatively short downtime of a produc-
tion unit does not have any effect on the outlet of the pipeline due to the large
volume of gas and the high pressure in the pipeline. A longer downtime may be
compensated by increasing the gas production from other production units, con-
nected to the same pipeline.

The on-stream availability, OA, is defined as the mean proportion of time, in a
specified time period, in which the production (delivery) is greater than zero. In
this case, 1 − OA denotes the mean proportion of time the system is not producing
at all.

The 100% production availability, A100, in a time interval (t1, t2) is defined as
the mean proportion of the time in this interval the system is producing with full
production (time is measured in hours).

A100 =
No. of hours in the interval (t1, t2) with full production

t2 − t1
.

With A100, we are only concerned with full production. We do not distinguish
between 90% production and no production.

We may also define the production availability at a reduced capacity, for
example, 80%

A80 =
No. of hours in (t1, t2)the system is producing with ≥ 80% capacity

t2 − t1
.
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6.5.6 Punctuality

A service is said to be punctual if it is initiated and/or completed “on time.” In the
transport sector, punctuality is a commonly used reliability metric. The definition
of being punctual varies between transport means and between countries. In civil
aviation, punctuality may refer to the time leaving and arriving at the terminal,
but may also refer to the time the wheels get off or on the runway. The criterion
for on-time departure or arrival is specified as the number of minutes after the
scheduled departure or arrival. In some countries, the accepted deviation for civil
aviation is 15 minutes, but may be both shorter and longer. The punctuality in civil
aviation is defined as

Punctuality =
No. of flights on time

Total no. of scheduled flights
.

The punctuality is usually presented as a percentage. The same definition of punc-
tuality is used for railways, ferries, buses, and so on.

6.5.7 Failure Rate of Repairable Items

Assume that the item considered is functioning when it is put into operation at
time t = 0, such that X(0) = 1.

Failure Rate Function
The failure rate function of a nonrepairable item was defined in Chapter 5 as

z(t) = lim
Δt→0

Pr (t < T ≤ t + Δt ∣ T > t)
Δt

=
f (t)
R(t)

,

where f (t) is the probability density function for the time-to-failure T and R(t) =
Pr (T > t) is the survivor function. When Δt is small, we may use the approxima-
tion

Pr (t < T ≤ t + Δt ∣ T > t) ≈ z(t)Δt.

Because the item considered is nonrepairable, the events T > t and X(t) = 1 give
exactly the same information. The same applies for the two events (t < T ≤ t +
Δt) and (Failure in (t, t + Δt]). When the item is known to be nonrepairable, the
definition of the failure rate function may, alternatively, be expressed as

z(t) = lim
t→∞

Pr (Failure in (t, t + Δt] ∣ X(t) = 1)
Δt

. (6.59)

ROCOF
Another “failure rate” is the rate of occurrence of failures, ROCOF, that was briefly
mentioned in Chapter 5. To define ROCOF, we start with the variable N(t) = num-
ber of failures that occur in the time interval (0, t] and its mean value W(t) =
E [N(t)].
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The ROCOF at time t is defined as

𝑤(t) = lim
Δt→0

E [N(t + Δt) − N(t)]
Δt

= lim
Δt→0

W(t + Δt) − W(t)
Δt

= d
dt

W(t).

Because the time interval (t, t + Δt] is very short, at most one failure can occur in
this interval. The mean number of failures in this interval is therefore close to 1
times the probability of a failure in (t, t + Δt]. ROCOF can therefore be written as

𝑤(t) = lim
Δt→0

Pr (Failure in (t, t + Δt])
Δt

. (6.60)

When Δt is small, we may use the approximation

Pr (Failure in (t, t + Δt]) ≈ 𝑤(t)Δt. (6.61)

The mean number of failures in a specific time interval (t1, t2] is

W(t1, t2) = ∫

t2

t1

𝑤(t) dt = W(t2) − W(t1). (6.62)

ROCOF is more thoroughly discussed in Chapter 10.

Approximation Formula for ROCOF
Consider a repairable item that is always repaired to an as-good-as-new state
(i.e. perfect repair). This will create a sequence of uptimes (U) and downtimes
(D). Assume that the item is observed until failure n has been repaired. We
then have the two sequences of observed uptimes and downtimes u1,u2,… ,un
and d1, d2,… , dn. During the observation period

∑n
i=1(ui + di), n failures have

occurred. The ROCOF of this process can therefore be determined as

𝑤 = n∑n
i=1(ui + di)

= 1
1
n

∑n
i=1 ui +

1
n

∑n
i=1 di

−−−−→
n→∞

1
MUT + MDT

.

For a future time t, we may therefore approximate the ROCOF by

𝑤(t) ≈ 1
MUT + MDT

. (6.63)

This is an intuitive result because, on the average, we expect a failure every MUT
+ MDT time units.

Example 6.14 (Constant failure and repair rates)
Consider a single repairable item with constant failure rate 𝜆 and constant repair
rate𝜇. The item is perfectly repaired upon failure. The mean time between failures,
MTBF, of the item is MUT+MDT= 1∕𝜆 + 1∕𝜇 = (𝜆 + 𝜇)∕𝜆𝜇. After some time, the
ROCOF becomes

𝑤 = 1
MUT + MDT

= 𝜆𝜇

𝜆 + 𝜇
. (6.64)



�

� �

�

6.5 Single Repairable Items 251

If the item is put into operation and is functioning at time t = 0, the ROCOF is
slightly different just after t = 0 but will soon become close to the value in (6.64).
It is usually claimed to be sufficiently close after three MDTs, that is for t ≥ 3
MDT. ◻

Vesely’s Failure Rate
A third “failure rate” is the rate zV (t) defined as

zV (t) = lim
Δt→0

Pr (Failure in (t, t + Δt] ∣ X(t) = 1)
Δt

. (6.65)

This failure rate for repairable (and nonrepairable) items was proposed by Vesely
(1970) and is commonly known as the Vesely failure rate. When the item is
nonrepairable, zV(t) is identical with the failure rate function z(t) in (6.59). For a
repairable item, X(t) = 1 means that the item is functioning at time t, but provides
no information about how long time it has been functioning since the previous
repair (or startup).

When Δt is small, we may use the approximation

Pr (Failure in (t, t + Δt] ∣ X(t) = 1) ≈ zV(t)Δt. (6.66)

Let EΔt
t be the event “Failure in (t, t + Δt].” When this failure occurs, the state

of the item at time t can be either X(t) = 1 or X(t) = 0. This means that

Pr (EΔt
t ) = Pr (EΔt

t ∩ X(t) = 1) + Pr (EΔt
t ∩ X(t) = 0).

For the event EΔt
t ∩ X(t) = 0, the item is failed at time t and must be repaired before

it can fail. BecauseΔt is small, two different events cannot take place in the interval
(t, t + Δt] and consequently Pr (EΔt

t ∩ X(t) = 0) = 0. This yields

Pr (EΔt
t ) = Pr (EΔt

t ∩ X(t) = 1) = Pr (EΔt
t ∣ X(t) = 1)Pr (X(t) = 1)

and hence,

Pr (EΔt
t ∣ X(t) = 1) =

Pr (EΔt
t )

Pr (X(t) = 1)
.

Because Pr (X(t) = 1) = A(t) is the availability of the item at time t, dividing by Δt
on both sides and taking the limits, we obtain

zV (t) = 𝑤(t)
A(t)

. (6.67)

For a nonrepairable item, 𝑤(t) = f (t), the probability density function, and A(t) =
R(t), the survivor function, which shows that zV (t) = z(t) for nonrepairable com-
ponents.
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Example 6.15 (Constant failure and repair rates – cont.)
Reconsider the repairable item with constant failure rate 𝜆 and constant repair rate
𝜇 in Example 6.14. The Vesely failure rate for this item is from (6.67) equal to

zV (t) = 𝑤(t)
A(t)

=
𝜆𝜇∕(𝜆 + 𝜇)
𝜇∕(𝜆 + 𝜇)

= 𝜆,

which is an obvious result. An item with constant failure rate 𝜆 is as-good-as-new
as long as it is functioning. A nonrepairable item that is functioning at time t, such
that X(t) = 1, hence has exactly the same properties as an item that has survived
up to time t, such that T > t. ◻

6.6 Availability of Repairable Systems

A repairable system is a system of n components where at least one of the
n components is repaired upon failure. Consider a repairable system with
structure function 𝜙[X(t)]. Because we have assumed that the state variables
X1(t),X2(t),… ,Xn(t) are independent random variables, the system availability,
AS(t) can be determined by the procedure described in Section 6.2:

AS(t) = E (𝜙[X(t)]) = h[A(t)], (6.68)

where A(t) is the vector of the component availabilities A1(t),A2(t),… ,An(t).
When we are only interested in the average availability, we skip the reference to
time t and write AS = h(A). The system can be regarded as an item with mean
uptime MUTS and mean downtime MDTS. The system average availability can
then be written

AS = h(A) =
Mean uptime

Total time
=

MUTS

MUTS + MDT .S
. (6.69)

This approach is illustrated in Example 6.16.

Example 6.16 (System availability calculation)
Consider the repairable system of three independent components in Figure 6.13.
We are interested in the average availability only, and therefore skip the reference
to time t. The structure function of the system is

𝜙(X) = X1[X2 + X3 − X2X3]. (6.70)

The MUTs and MDTs of the three components are listed below, together with the
average component availabilities, calculated by

A a𝑣g,i =
MUTi

MUTi + MDTi
for i = 1, 2, 3. (6.71)
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Figure 6.13 RBD for Example 6.16.
2

3

1
(b)(a)

To simplify the notation, we omit the reference to average (avg), and write Ai
instead of Aavg,i.

i MUTi (hours) MDTi (hours) Ai

1 1000 20 0.980
2 500 5 0.990
3 500 12 0.977

The average availability of the system is

AS = A1(A2 + A3 − A2A3) ≈ 0.980.

The average system unavailability is thus AS ≈ 0.002, which corresponds to
approximately 174 hours of downtime per year when the system is supposed to
operate on a continuous basis, that is, 8760 hours per year. ◻

The approach in Example 6.16 is based on the assumption that the system com-
ponents fail and are repaired independently. This means that when a component
is down for repair, all the other components continue to operate as if nothing had
happened. This assumption is often not realistic, but despite of this, the approach
is often used in practical analyses because it is easy to use. Most of the computer
programs for FTA apply this simple approach to repairable systems.

6.6.1 The MUT and MDT of Repairable Systems

Consider a coherent and repairable system of n independent components with
constant failure and repair rates (𝜆i, 𝜇i) for i = 1, 2,… ,n.

Component i is from (6.12) critical with probability

Pr (Component i is critical) = h(1i,A) − h(0i,A),

where A is the vector of component availabilities.
Component i is said to cause system failure when component i is critical and

then fails. The frequency of system failures caused by component i, written as 𝑤(i)
S

is equal to the frequency of failures of component i multiplied by the probability
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that component i is critical. By using (6.64), the frequency of system failures caused
by component i is

𝑤
(i)
S =

𝜆i𝜇i

𝜆i + 𝜇i
[h(1i,A) − h(0i,A)] for i = 1, 2,… ,n. (6.72)

The total frequency of system failures, the system’s ROCOF 𝑤S, is obtained by
adding the contributions from the n components

𝑤S =
n∑

i=1

𝜆i𝜇i

𝜆i + 𝜇i
[h(1i,A) − h(0i,A)]. (6.73)

The system ROCOF can from (6.64) be written as

𝑤S = 1
MUTS + MDTS

. (6.74)

Combining (6.64) and (6.74) yields

MUTS =
AS

𝑤S
(6.75)

MDTS =
[1 − AS] MUTS

AS
, (6.76)

where 𝑤S is given in (6.74).

Remark 6.3 (Birnbaum’s metric of importance)
In Chapter 7, Birnbaum’s metric of component importance IB(i) is defined as

IB(i) = h(1i,A) − h(0i,A).

This means that the frequency of system failures caused by component i can be
written

𝑤
(i)
S =

𝜆i𝜇i

𝜆i + 𝜇i
IB(i), (6.77)

and that the frequency of system failures (i.e. the system ROCOF), 𝑤S, can be writ-
ten

𝑤S =
n∑

i=1

𝜆i𝜇i

𝜆i + 𝜇i
IB(i). (6.78)

◻

Example 6.17 (Repairable series systems)
Consider a repairable series system with n independent components, and inde-
pendent and perfect repairs. Component i has constant failure rate 𝜆i and constant
repair rate 𝜇i, for i = 1, 2,… ,n. The average availability of component i is

Ai =
MUTi

MUTi + MDTi
=

𝜇i

𝜆i + 𝜇i
for i = 1, 2,… ,n.
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The average availability of the series structure is

AS =
n∏

i=1

𝜇i

𝜆i + 𝜇i
.

The frequency of system failures caused by component i is from (6.77)

𝑤
(i)
S = 1

MUTi + MDTi
[h(1i,A) − h(0i,A)] = 1

MUTi + MDTi

∏
j≠i

Aj

=
𝜆i𝜇i

𝜆i + 𝜇i

∏
j≠i

𝜇j

𝜆j + 𝜇j
= 𝜆i

n∏
j=1

𝜇j

𝜆j + 𝜇j
= AS𝜆i, (6.79)

which is an obvious result for a series system. For component i to cause system
failure, the system must function (with probability AS) and then component i must
fail (with rate 𝜆i).

The frequency of system failures is

𝑤S = AS

n∑
i=1

𝜆i. (6.80)

The mean system uptime, MUTS is from (6.80)

MUTS =
AS

𝑤S
= 1∑n

i=1 𝜆i
, (6.81)

which is an obvious result for a series system. The system is functioning only when
all its components are functioning and will remain in this state until the first com-
ponent failure occurs with rate

∑n
i=1 𝜆i.

The mean system downtime, MDTS is from (6.81)

MDTS =
(1 − AS) MUTS

AS
=

1 − AS

AS

1∑n
i=1 𝜆i

. (6.82)
◻

A Numerical Example
Consider a series structure of n = 4 independent components with the following
mean uptimes and mean downtimes:

i MUTi (hours) MDTi (hours)

1 1000 20
2 500 5
3 600 12
4 1200 30
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The system availability is

AS =
4∏

i=1
Ai ≈ 0.9284.

By using the above formulas, we obtain

i Ai 𝒘
(i)
S

Percent

1 0.980 0.000928 18.2%
2 0.990 0.001857 36.4%
3 0.977 0.001547 30.3%
4 0.976 0.000774 36.4%
S 0.928 0.005106 100%

The percent column gives the fraction (in percent) of the system failures that are
caused by component i for i = 1, 2, 3, 4. The mean system uptime and downtime
are

MUTS = 181.8hours

MDTS = 14.0hours

Example 6.18 (Repairable parallel systems)
Consider a repairable parallel system with n independent components and inde-
pendent and perfect repairs. Component i has constant failure rate 𝜆i and constant
repair rate 𝜇i, for i = 1, 2,… ,n. The average unavailability of component i is

Ai =
MDTi

MUTi + MDTi
=

𝜆i

𝜆i + 𝜇i
for i = 1, 2,… ,n.

The average unavailability of the parallel structure is therefore

AS =
n∏

i=1
Ai =

n∏
i=1

𝜆i

𝜆i + 𝜇i
(6.83)

and the system availability is

AS = 1 −
n∏

i=1
Ai.

The frequency of system failures caused by component i is

𝑤
(i)
S = 1

MUTi + MDTi
[h(1i,A) − h(0i,A)].
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A parallel structure is functioning when at least one of its components is function-
ing and only fails when all components fail. Therefore,

h(1i,A) = 1

h(0i,A) = 1 −
∏
j≠i

Aj

and

𝑤
(i)
S = 1

MUTi + MDTi

∏
j≠i

Aj =
𝜆i𝜇i

𝜆i + 𝜇i

∏
j≠i

𝜆j

𝜆j + 𝜇j

= 𝜇i

n∏
j=1

𝜆j

𝜆j + 𝜇j
= AS𝜇i. (6.84)

The frequency of system failures is

𝑤S = AS

n∑
i=1

𝜇i. (6.85)

The mean system uptime, MUTS is

MUTS =
1 − AS

𝑤S
=

1 − AS

AS

1∑n
i=1 𝜇i

. (6.86)

The mean system downtime, MDTS is

MDTS =
AS MUTS

1 − AS

= 1∑n
i=1 𝜇i

. (6.87)

◻

A Numerical Example
Consider a parallel structure of n = 4 independent components with the
same mean uptimes and mean downtimes as in Example 6.18. The system
unavailability is

AS = 9.284 × 10−8
.

A repairable parallel system of four independent components is generally very reli-
able and will very seldom fail, even when the components have rather high failure
rates.
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By using the above formulas, we obtain

i Ai 𝒘
(i)
S

Percent

1 0.019 61 4.64 × 10−9 13.6%
2 0.009 90 1.86 × 10−8 54.5%
3 0.019 61 7.74 × 10−9 22.7%
4 0.024 39 3.09 × 10−9 9.1%
S 9.284 × 10−8 3.40 × 10−8 100%

The mean system uptime and downtime are

MUTS ≈ 29 375 000hours ≈ 3353years

MDTS = 14.0hours

Remark 6.4 (Assumptions and limitations)
The approach outlined in Section 6.6.1 is based on several assumptions that may
be questioned. The assumption that all component uptimes and downtimes are
independent implies that failed components are repaired online, that is, when the
other components are functioning as normal and that the repair actions do not
influence the functioning components. Another consequence is that there is no
shortage of repair resources. When a component fails, there is always a repair team
available to carry out the repair.

The formulas in Section 6.6.1 are correct for independent components for a spe-
cific point in time, but they are not fully correct for the average availability, that
is, over a long interval in time. Section 6.3.2 shows that the failure rate of a par-
allel structure is not constant even if all components have constant failure rates.
A similar effect is also the case for repairable parallel structures (but is not shown
here). The frequency 𝑤S of system failures is hence not constant as assumed in the
calculations above. ◻

6.6.2 Computation Based on Minimal Cut Sets

Consider a repairable system of n independent components. When all the minimal
cut sets C1,C2,… ,Ck of the structure are determined, the structure can be repre-
sented as a series structure of the k minimal cut parallel structures (MCPSs). The
system reliability properties can therefore be determined from the results on series
and parallel structures in Examples 6.17 and 6.18. The approach is illustrated in
Example 6.19
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2

2 3 3

11(a) (b)

Figure 6.14 RBD for Example 6.20, drawn as a series structure of its three MCPSs.

Example 6.19 (Repairable 2oo3 structure)
The repairable 2oo3 structure in Figure 6.14 has the following three minimal cut
sets:

C1 = {1, 2}, C2 = {1, 3}, C3 = {2, 3}.

Assume that the three components are identical with failure rate 𝜆 and repair
rate 𝜇 such that the three MCPSs have the same probabilistic properties. Consider
one specific MCPS. Using the results from Example 6.18, the average unavailability
of a component is

A = MDT
MUT + MDT

= 𝜆

𝜆 + 𝜇
.

The average unavailability of an MCPS is

AMCPS = A
2
=
(

𝜆

𝜆 + 𝜇

)2

.

The frequency of failures of an MCPS caused by a specific component i is from
(6.84)

𝑤
(i)
MCPS = AMCPS𝜇 = 𝜆

2
𝜇

(𝜆 + 𝜇)2 .

Because there are two components in each MCPS, the frequency of MCPS-failures
is

𝑤MCPS = 2𝜆2
𝜇

(𝜆 + 𝜇)2 .

The mean MCPS uptime, MUTMCPS is

MUTMCPS =
1 − AMCPS

𝑤MCPS
= 1

𝜆
+ 𝜇

2𝜆2 .

The mean MCPS downtime, MDTMCPS is

MDTMCPS = 1
2𝜇

.

Consider the three MCPSs as components in a series structure and use the results
from Example 6.17 to find the system availability

AS = (1 − AMCPS)3
.
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The frequency of system failures caused by a specific MCPS j is from (6.84)

𝑤
(j)
S = AS

2𝜆2
𝜇

(𝜆 + 𝜇)2 .

The frequency of system failures

𝑤S = 3AS
2𝜆2

𝜇

(𝜆 + 𝜇)2 = AS
6𝜆2

𝜇

(𝜆 + 𝜇)2 .

The mean system up-time, MUTS, is

MUTS = 1
3𝑤MCPS

= (𝜆 + 𝜇)2

6𝜆2𝜇
.

The mean system downtime, MDTS, is

MDTS =
1 − AS

AS

1
3𝑤MCPS

.

◻

A Numerical Example
A repairable 2oo3 system has independent and identical components with failure
rate 𝜆 = 7.2 × 10−5 per hour and mean repair time MDT = 24 hours. The repair
rate is then 𝜇 = 1∕MDT. Using the equations above, yields

– The system unavailability is AS = 2.976 × 10−6.
– The frequency of failures of a specific MCPS is 𝑤MCPS = 2.480 × 10−7 per hour

(this corresponds to one system failure per 153 years).
– The mean MCPS uptime is MUTMCPS = 4.033 × 106 hours.
– The mean MCPS downtime is MDTMCPS = 12 hours.
– The frequency of system failures is 𝑤S = 7.439 × 10−7 per hour.
– The mean system uptime is MUTS = 1.344 × 106 hours.
– The mean system downtime is MDTS = 12 hours.

Remark 6.5 (Not fully correct result)
The system results obtained in Example 6.19 are not fully correct. The MCPSs are
not independent because each component is a member of two MCPSs. The same
problem arises for all systems having overlapping MCPSs, but in many cases, the
results are approximately correct. ◻

6.6.3 Uptimes and Downtimes for Reparable Systems

In general, the uptimes and downtimes of a repairable system are not identically
distributed, but depends on the repair strategy and the completeness of the indi-
vidual repairs. This is illustrated for a parallel structure of three independent and
identical components in Example 6.20.
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Example 6.20 (Parallel structure of three components)
Consider a repairable parallel structure of three independent and identical com-
ponents with constant failure rate 𝜆. There are three independent repair teams.
When the structure has failed (i.e. all three components have failed), the teams
start repairing one component each. The repair time Tr for each component has
constant repair rate 𝜇. The repair strategy is as follows:

(1) The structure is put into operation again after a specified downtime of tr hours
if at least one component is repaired.

(2) If all three components are repaired before time tr , the structure is put into
operation again as soon as all repairs are finished.

(3) If none of the components are repaired at time tr , the repair continues until
the first repair is finished. Then the structure is put into operation with only
one component functioning.

The probability that a repair is finished before time tr is pr = 1 − e−𝜇tr . Let N
denote the number of components that have been repaired before time tr . N takes
the values 0, 1, 2, 3 with probabilities:

Pr (N = 0) = (1 − pr)3
,

Pr (N = 1) =
(3

1

)
(1 − pr)2pr ,

Pr (N = 2) =
(3

2

)
(1 − pr)p2

r ,

Pr (N = 3) = p3
r .

The mean downtime, MDT, for the four possible outcomes is

MDT0 = tr +
1

3𝜇
,

MDT1 = tr ,

MDT2 = tr ,

MDT3 = tr −
1

(1 − e−𝜇tr )3(
tr −

3
𝜇
(1 − e−𝜇tr ) + 3

2𝜇
(1 − e−2𝜇tr ) − 1

3𝜇
(1 − e3𝜇tr )

)
.

The mean uptimes following the three possible outcomes of the repair are from
Table 6.2:

MUT0 = MTTF1oo1 = 1
𝜆

MUT1 = MTTF1oo1 = 1
𝜆

MUT2 = MTTF1oo2 = 3
2𝜆
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MUT3 = MTTF1oo3 = 11
6𝜆

When N = 1 and N = 2, the downtime is tr . N = 0 means that none of the three
repair teams have finished by time tr . Because of the memoryless property of the
exponential distribution, we can as well start a new repair process at time tr , and
the mean time until the first component is repaired is 1∕3𝜆. For N = 3, we know
that all the three repairs have finished no later than tr . The probability that the
repair time T3 of all three components is longer than t is equal to the conditional
“survival” probability

R(t ∣ tr) = Pr (T3 > t ∣ T3 ≤ tr).

Solving the integral ∫ tr
0 R(t ∣ tr) dt yields MDT3. The average availability for a single

cycle (one downtime and one uptime), A, is MUT/(MUT+MDT) ◻

A Numerical Example
Let tr = 8 hours and 𝜇 = 0.10 (hours)−1, such that MTTR for each component is 10
hours. Further, let 𝜆 = 0.001 (hours)−1, such that the MTTF of a single component
is 1000 hours. With these input values, the following results are obtained:

N = n Pr(N = n) MDTn MUTn An

0 0.0907 11.33 1000 0.9888
1 0.3335 8.00 1000 0.9921
2 0.4088 8.00 1500 0.9947
3 0.1670 5.48 1833 0.9970
Average — 7.88 1344 0.9937

The total mean downtime in the cycle is calculated as MDTav =
∑3

n=0 MDTn
Pr (N = n). Similar for the mean uptime and the availability.

The mean time-to-first-failure (i.e. to the first occurrence of the system failure),
MTTFF, is always greater or equal to the mean uptimes. This is because all compo-
nents are assumed to be in a functioning state at time t = 0, but this is not always
the case after a component has been restored.

6.7 Quantitative Fault Tree Analysis

Fault tree construction and its qualitative aspects are introduced in Section 4.3,
whereas the present section deals with quantitative analysis of fault trees.
Quantitative FTA can be approximative or “exact.” This section is delimited to
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Figure 6.15 State variables for fault tree AND and OR

gates.

x1 x1

x1x2 x1+ x2 – x1x2

x2 x2

AND OR

approximative approaches, because these are feasible for hand calculation and
because they, for most purposes, give sufficiently accurate results.

Because any static fault tree (i.e. with only AND and OR gates) can be converted
to an RBD, the fault tree can be analyzed based on structure functions in the same
way as for RBDs. The Boolean functions for AND and OR gates are illustrated in
Figure 6.15 and are the same as for RBDs. The algebra that was developed for
RBDs can therefore be used to obtain a structure function for a fault tree. This
topic is not pursued any further in this book, because practical fault trees tend to
be so large that this approach is not tractable.

A number of guidelines and handbooks on FTA are available on the Internet.
Two of the most comprehensive references are NUREG-0492 (1981) and NASA
(2002).

6.7.1 Terminology and Symbols

The main symbols used in quantitative FTA are

qi(t) The probability that basic event Bi occurs (i.e. is present) at time t, i.e.
qi(t) = Pr [Bi(t)]. This probability may be interpreted as the unavailability of the
corresponding component/item.

Q0(t) The probability that the TOP event occurs (i.e. is present) at time t. Q0(t) is called
the TOP event probability and may be interpreted as the unavailability of the
system.

Q̌j(t) The probability that minimal cut parallel structure j (MCPSj) of the fault tree is
failed Ej at time t, i.e. Q̌j(t) = Pr [Ej(t)]. An MCPS fails if and only if all the basic
events in the minimal cut set occurs (i.e. are present) at the same time.

6.7.2 Delimitations and Assumptions

This section is delimited to static FTA with only AND, OR, and voting gates. The
following assumptions apply:

(1) All basic events are binary. They are either present or not present.
(2) All basic events are statistically independent.
(3) No basic events are present (i.e. no components are failed) at time t = 0.
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(4) The fault tree logic is coherent with respect to both failure and repair.
(5) Transitions between the (binary) states of basic events occur instantaneously.

It is not possible for a basic event to be in an intermediate state, even for a very
short time.

(6) When items are repaired, they are always brought back to an as-good-as-new
state.

(7) All repairs are performed on-line and do not influence the performance of
other components.

Remark 6.6 (Basic events are states)
The statement “basic event i occurs at time t” may be misleading. The basic events
and the TOP event in a fault tree are in reality states, and not events. When we
say that a basic event (or the TOP event) occurs at time t, we mean that the corre-
sponding state is present at time t. ◻

In the same way as for RBDs, it can be shown that when the basic events are (sta-
tistically) independent, Q0(t) is a function g(⋅) of the qi(t)s only, for i = 1, 2,… ,n,
where n is the number of different basic events in the fault tree. Hence, Q0(t) may
be written

Q0(t) = g[q1(t), q2(t),… , qn(t)] = g[q(t)]. (6.88)

6.7.3 Fault Trees with a Single AND-Gate

Consider the fault tree in Figure 6.16a with a single AND-gate. The TOP event occurs
if and only if all the basic events B1,B2,… ,Bn occur simultaneously.

By the same type of Boolean reasoning as used for RBDs, the TOP event proba-
bility may be written

Q0(t) = q1(t)q2(t) · · · qn(t) =
n∏

i=1
qi(t). (6.89)

TOP

B1 B2 Bn

TOP

B1 B2 Bn

AND-gate OR-gate

(a) (b)

Figure 6.16 Fault trees with single AND-gate and single OR-gate.
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Q0(t) may also be determined directly by set theory arguments (which are also
Boolean): Let Bi(t) denote that basic event Bi occurs at time t for i = 1, 2,… ,n.
Then

Q0(t) = Pr [B1(t) ∩ B2(t) ∩ · · · ∩ Bn(t)]

= Pr [B1(t)]Pr [B2(t)] · · ·Pr [Bn(t)]

= q1(t)q2(t) · · · qn(t) =
n∏

i=1
qi(t)

6.7.4 Fault Tree with a Single OR-Gate

Consider the fault tree in Figure 6.16b. The TOP event of this fault tree occurs if at
least one of the independent basic events B1,B2,… ,Bn occurs.

The same type of Boolean reasoning as used for RBDs gives the TOP event prob-
ability

Q0(t) = 1 −
n∏

i=1
[1 − qi(t)]. (6.90)

As for the AND gate, Q0(t) can be determined directly in the following way: Let B∗
i (t)

denote that basic event Bi does not occur at time t. Then

Pr [B∗
i (t)] = 1 − Pr (Bi(t)) = 1 − qi(t), for i = 1, 2,… ,n.

Q0(t) = Pr [B1(t) ∪ B2(t) ∪ · · · ∪ Bn(t)]

= 1 − Pr [B∗
1(t) ∩ B∗

2(t) ∩ · · · ∩ B∗
n(t)]

= 1 − Pr [B∗
1(t)]Pr [B∗

2(t)] · · ·Pr [B∗
n(t)]

= 1 −
n∏

i=1
[1 − qi(t)]

6.7.5 The Upper Bound Approximation Formula for Q0(t)

To determine the TOP event probability by means of the structure function may
in many cases be both time-consuming and cumbersome. Hence, there may be a
need for approximation formulas.

Consider a system (fault tree) with k minimal cut sets C1,C2,… ,Ck. This system
may be represented as a series structure of the k MCPSs, as illustrated by the RBD
in Figure 6.17.

The TOP event occurs if at least one of the k MCPSs fails. An MCPS fails if each
and all the basic events in the minimal cut set occur simultaneously. Observe that
the same input event may enter in many different cut sets.
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C1 C2 C3 C4 C5

Figure 6.17 A structure represented as a series structure of the minimal cut parallel
structures (MCPSs).

The probability that minimal cut parallel structure j fails at time t, when its basic
events are independent, is

Q̌j(t) =
∏
i∈Cj

qi(t). (6.91)

If all the k minimal cut parallel structure were independent, the TOP event prob-
ability would be

Q0(t) =
k∐

j=1
Q̌j (t) = 1 −

k∏
j=1

[1−Q̌j(t)]. (6.92)

Because the same basic event may occur in several minimal cut sets, the MCPSs
can obviously be positively dependent, but it may be shown (e.g. see Barlow and
Proschan 1975) that

Q0(t) ≤ 1 −
k∏

j=1
[1−Q̌j(t)]. (6.93)

Hence, the right-hand side of (6.93) may be used as an upper (conservative) bound
for the TOP event probability.

When all the qi(t)’s are very small, it may be shown that with good approxima-
tion

Q0(t) ≈ 1 −
k∏

j=1
[1−Q̌j(t)]. (6.94)

This approximation is called the upper bound approximation, and it is used in
many computer programs for FTA, but the approximation (6.94) must be used with
care when at least one of the qi(t)s is of order 10−2 or larger.

Assume that all the Q̌j(t)s are so small that we can disregard their products. In
this case, (6.94) may be approximated by

Q0(t) ≈ 1 −
k∏

j=1
[1−Q̌j(t)] ≈

k∑
j=1

Q̌i(t). (6.95)
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It is straightforward to verify that the last approximation is more conservative than
the first one:

Q0(t) ≤ 1 −
k∏

j=1
[1 − Q̌j(t)] ≤

k∑
j=1

Q̌i(t). (6.96)

Remark 6.7 (Rare event approximation)
The approximation used in (6.95) is called the rare event approximation. In its most
simple form, it says that if we have two events A and B, then

Pr (A ∪ B) = Pr (A) + Pr (B) − Pr (A ∩ B) ≈ Pr (A) + Pr (B).

The approximation reduces the result to its first-order terms and is generally
an adequate approximation when Pr (A ∩ B) is small, that is, when it is deemed
unlikely that two events occur at the same time. ◻

6.7.6 The Inclusion–Exclusion Principle

The TOP event probability can also be determined by the inclusion–exclusion prin-
ciple. The same approach can be used to determine the system reliability.

A fault tree with n different and independent basic events has k mini-
mal cut sets C1,C2,… ,Ck. Let Ej denote the event that the MCPS j fails at
time t. To simplify the notation, we skip the reference to the time t in the
formulas.

Because the TOP event occurs as soon as one of its MCPSs fails, the TOP event
probability may be expressed by

Q0 = Pr

( k⋃
j=1

Ej

)
. (6.97)

In general, the individual events Ej, j = 1, 2,… , k are not disjoint. Hence, the prob-
ability Pr (

⋃k
j=1 Ej) is determined by using the general addition theorem in proba-

bility theory.

Q0 =
k∑

j=1
Pr (Ej) −

∑
i<j

Pr (Ei ∩ Ej) + · · ·

+ (−1)j+1 Pr (E1 ∩ E2 ∩ · · · ∩ Ek) (6.98)

By introducing

W1 =
k∑

j=1
Pr (Ej)
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W2 =
∑
i<j

Pr (Ei ∩ Ej)

⋮

Wk = Pr (E1 ∩ E2 ∩ · · · ∩ Ek)

Eq. (6.98) may be written

Q0 = W1 − W2 + W3 − · · · + (−1)k+1Wk

=
k∑

j=1
(−1)j+1Wj (6.99)

Example 6.21 (Bridge structure)
Consider the bridge structure illustrated by the RBD in Figure 6.18. The minimal
cut sets of the bridge structure are

C1 = {1, 2}, C2 = {4, 5}, C3 = {1, 3, 5}, C4 = {2, 3, 4}.

Based on these minimal cut sets, a fault tree for the bridge structure may be estab-
lished. As before, let Bi denote the basic event that component i is failed, for i =
1, 2, 3, 4, 5.

According to (6.99), the TOP event probability Q0 of the fault tree for bridge
structure is

Q0 = W1 − W2 + W3 − W4,

where

W1 =
4∑

j=1
Pr (Ej)

= Pr (B1 ∩ B2) + Pr (B4 ∩ B5) + Pr (B1 ∩ B3 ∩ B5) + Pr (B2 ∩ B3 ∩ B4)

= q1q2 + q4q5 + q1q3q5 + q2q3q4

2

3

41

5

(a) (b)

Figure 6.18 RBD for the
bridge structure.
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W2 =
∑
i<j

Pr (Ei ∩ Ej) =Pr (E1 ∩ E2) + Pr (E1 ∩ E3) + Pr (E1 ∩ E4)

+ Pr (E2 ∩ E3) + Pr (E2 ∩ E4) + Pr (E3 ∩ E4)

=Pr (B1 ∩ B2 ∩ B4 ∩ B5)

+ Pr (B1 ∩ B2 ∩ B1 ∩ B3 ∩ B5)

+ Pr (B1 ∩ B2 ∩ B2 ∩ B3 ∩ B4)

+ Pr (B4 ∩ B5 ∩ B1 ∩ B3 ∩ B5)

+ Pr (B4 ∩ B5 ∩ B2 ∩ B3 ∩ B4)

+ Pr (B1 ∩ B3 ∩ B5 ∩ B2 ∩ B3 ∩ B4)

=q1q2q4q5 + q1q2q3q5 + q1q2q3q4 + q1q3q4q5

+ q2q3q4q5 + q1q2q3q4q5.

Similarly,

W3 = 4q1q2q3q4q5,

and

W4 = q1q2q3q4q5.

Hence, the TOP event probability – and the system unavailability – is

Q0 = W1 − W2 + W3 − W4

= q1q2 + q4q5 + q1q3q5 + q2q3q4 − q1q2q4q5 − q1q2q3q5

− q1q3q4q5 − q2q3q4q5 + 2q1q2q3q4q5 ◻

Example 6.21 shows that, when using the general addition theorem (6.99) we
have to calculate the probability of a large number of terms that later cancel
each other. An alternative approach is proposed by Satyanarayana and Prabhakar
(1978). The idea behind their method is, with the help of graph theoretical
arguments, to leave out the cancelling terms at an early stage without having to
calculate them.

Calculating the exact value of a system’s unreliability Q0 by means of (6.98) may
be cumbersome and time-consuming, even when the system is relatively simple.
In such cases, one may sometimes be content with an approximative value for the
TOP event probability.

Approximation Formulas by the Inclusion–Exclusion Principle
One way of determining approximate values of the TOP event probabil-
ity (or the system unavailability) Q0 utilizes the following result based on
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inclusion–exclusion:

Q0 ≤ W1

W1 − W2 ≤ Q0

Q0 ≤ W1 − W2 + W3

⋮ (6.100)

It can be shown that

(−1)j−1Q0 ≤ (−1)j−1
j∑

𝑣=1
(−1)𝑣−1W

𝑣
for j = 1, 2,… , k. (6.101)

Equation (6.100) may give the impression that the differences between the consec-
utive upper and lower bounds are monotonically decreasing, but this is not true
in general.

In practice, (6.100) is used the following way: Successively, we determine upper
and lower bounds for Q0, proceeding downwards in (6.100) until we obtain bounds
that are sufficiently close.

Example 6.22 (Bridge structure – cont.)
Reconsider the bridge structure in Example 6.21 and assume that all the basic
event probabilities qi are equal to 0.05. Introducing these qis in the expression for
the Wis in Example 6.20, yields

W1 = 5250 × 10−6

W2 = 3156 × 10−6

W3 = 1.25 × 10−6

W4 = 0.31 × 10−6

From (6.100) we get:

Q0 ≤W1 ≈ 5250 × 10−6 = 0.5250%

Q0 ≥W1 − W2 ≈ 5218.4 × 10−6 = 0.5218%

From the first two inequalities of (6.100), we hence know that

0.5218% ≤ Q0 ≤ 0.5250%.

For many applications, this precision may be sufficient. If not, we proceed and
calculate the next inequality:

Q0 ≤ W1 − W2 + W3 ≈ 5219.69 × 10−6 = 0.5220%.

Now we know that Q0 is bounded by

0.5218% ≤ Q0 ≤ 0.5220%.
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The exact value is

Q0 = W1 − W2 + W3 − W4 = 5219.38 × 10−6 ≈ 0.5219%.

By comparison, the upper bound obtained by (6.93) is equal to

1 −
k∏

j=1
(1−Q̌j) = 0.005 242 49 ≈ 0.5242%.

◻

6.7.7 ROCOF of a Minimal Cut Parallel Structure

Consider an MCPS of two independent and repairable components (basic events),
1 and 2. Let Q̌(1)(t) denote the event that the MCPS fails at time t because of a
failure of component 1. For this event to happen, component 2 must be down at
time t, because if component 2 were functioning, the parallel structure would not
fail when component 1 failed. The ROCOF of MCPS failures caused by component
1 is therefore

𝑤
(1)(t) = 𝑤1(t) q2(t),

where 𝑤1(t) is the ROCOF of component 1. The ROCOF of MCPS failures caused
by component 2 is determined by the same arguments. The total ROCOF of the
MCPS is therefore

�̌�(t) = �̌�
(1)(t) + �̌�

(2)(t) = 𝑤1(t)q2(t) +𝑤2(t)q1(t).

Consider a minimal cut set C
𝜅

of any order ≥ 2. For component i to cause failure
of the MCPS, all the other components of the minimal cut set C

𝜅
must be down

and the ROCOF for MCPS 𝜅 can therefore be calculated as

�̌�
𝜅
(t) =

∑
i∈C

𝜅

𝑤i(t)
∏

𝓁∈C
𝜅
,𝓁≠i

q𝓁(t). (6.102)

6.7.8 Frequency of the TOP Event

This section presents simple formulas for the frequency of the TOP event based
on the formulas developed in Section 6.6. The frequency of the TOP event is the
expected number of occurrences of the TOP event per time unit (e.g. per year).

A coherent system can always be represented as a series structure of its MCPSs.
For an MCPS 𝜅 to cause system failure (i.e. occurrence of the TOP event), none of
the other MCPSs can be failed. The frequency of the TOP event caused by MCPS
𝜅 is therefore approximately

𝑤
(𝜅)
TOP≈ �̌�

𝜅
(t)

k∏
j=1,j≠𝜅

(1−Q̌j(t)). (6.103)
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The approximation is due to the fact that the minimal cuts are generally not inde-
pendent because the same basic event can be present in several minimal cut sets.

The overall frequency of the occurrence of the TOP event is approximately

𝑤TOP(t) ≈
k∑

𝜅=1
𝑤

(𝜅)
TOP =

k∑
𝜅=1

�̌�
𝜅
(t)

k∏
j=1,j≠𝜅

(1 − Q̌j(t)). (6.104)

Example 6.23 (Bridge structure)
Reconsider the bridge structure in Example 6.21 and assume we have established
a corresponding fault tree based on the minimal cut sets C1 = {1, 2},C2 =
{4, 5},C3 = {1, 3, 5}, and C4 = {2, 3, 4}. The five components are independent
and repairable. Repair is carried out of individual components (i.e. on-line repair)
and always returns the component to an as-good-as-new condition. Failure
and repair rates are constant and downtimes are independent of uptimes. The
following rates (per hour) are provided:

Component i 𝝀i 𝝁i

1 0.001 0.10
2 0.002 0.08
3 0.005 0.03
4 0.003 0.10
5 0.002 0.12

The basic event probability of component i is

qi =
MDTi

MUTi + MDTi
=

𝜆i

𝜆i + 𝜇i
.

The mean time between failures for component i is

MUTi + MDTi =
1
𝜆i

+ 1
𝜇i
.

The frequency of component i failures is

𝑤i =
1

MUTi + MDTi
=

𝜆i𝜇i

𝜆i + 𝜇i
. (6.105)
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With the provided data, we obtain the following values (with time unit hours):

Component i qi MTBFi

1 0.0099 1010.0
2 0.0244 512.5
3 0.1429 233.3
4 0.0291 343.3
5 0.0164 508.3

◻

The last two subsections and also Section 6.6 are strongly influenced by the
kinetic tree theory (see box).

Kinetic Tree Theory

Kinetic tree theory (KTT) is an early method for quantitative FTA developed
by William E. Vesely in the late 1960s. The approach presented in Section 6.7
has its roots in KTT, but KTT is much more than what we have presented here.
Interested readers may consult Vesely’s original work in Vesely (1970). The
authors of this book wholeheartedly acknowledge Vesely’s huge contributions
to the development of reliability and risk analysis.

Several authors have pointed at weaknesses of the KTT, but still we consider
KTT to be a huge achievement.

6.7.9 Binary Decision Diagrams

A binary decision diagram (BDD) is an alternative to – and an extension of – the
approach described above for performing both qualitative and quantitative FTA. A
BDD is a directed acyclic graph (DAG) with a single root. The BDD algorithm leads
to an exact calculation of the TOP event probability and is not based on minimal
cut sets.

The truth table was introduced in Section 4.3 as an alternative representation of
a fault tree with only AND and OR gates. A truth table can be transferred to a BDD
as illustrated in Example 6.24.

Example 6.24 (BDD deduced from a truth table)
Consider a fault tree of two basic events A and B that are connected by an OR gate.
This means that the TOP event occurs when either A or B or both of them occur.
Let 0 denote that an event does not occur and 1 that it occurs. The truth table for
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A

B B

0

0 0

0 1

1

11

1 1

A TOP

0

1

0

0 0

0

B

0

0

1

1

1

1

Truth table

Figure 6.19 BDD deduced from a truth table.

this fault tree is shown in Figure 6.19 together with the associated BDD. Observe
that the only case the TOP event does not occur (i.e. state 0) is that the basic events
A and B both have state 0. Also observe that the BDD is established by stepwise
pivotal decomposition (i.e. Shannon decomposition). ◻

Observe that any Boolean function can be represented by a BDD. The order of
the nodes in the BDD can be different from the order of the variables in the Boolean
expression. In Example 6.24, we started with node A, but could as well start with
node B. A BDD satisfies the following conditions:

(1) All leaves are labeled by 0 or 1
(2) All nodes are labeled by a name (letters or numbers) and have exactly two

children, a 0-child and a 1-child. It is common to label the edges leading to
these children by 0 and 1, respectively. (Some authors indicate the type of edge
(arrow) by using two different line-styles.)

(3) The root of the tree (i.e. the top node) does not have any parents.

A BDD is a compact representation and has been used since the 1990s to com-
pute large fault trees. It is actually very well adapted for numerical storage and
algorithmic treatments. It is obtained through repeated application of two com-
pression rules:

(1) Sharing of identical subtrees,
(2) Elimination of nodes for which the 0-child and 1-child coincide (i.e. redundant

nodes).

These two rules are applied until all subtrees are different and there are no redun-
dant nodes. The obtained BDD is said to be reduced and ordered, and we some-
times use the notion “reduced, ordered binary decision diagram” (ROBDD). The
application of the two compression rules require a set of additional concepts and
are not treated any further in this book. The numerical evaluation of the BDD is
based on repeatedly using binary decompositions (Shannon decompositions) and
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several algorithms have been developed. Several computer programs for fault tree
analysis now use BDDs in the quantitative evaluation of fault trees.

When the fault tree is established by the procedures outlined in Section 4.3, the
BDD may be constructed from the fault tree by a bottom-up procedure. Each basic
event is associated with single-node BDD with two children. Starting at the bot-
tom of the tree, the BDD is constructed for each basic event, and then combined
according to the logic defined by the gate. The BDD for the OR and AND gates are
constructed by applying the OR and AND functions to the BDD. The NASA Fault
Tree Handbook recommends using BDDs as part of FTA and discusses the pros
and cons of the BBD approach compared to the minimal cut set approach that we
have presented earlier in this chapter (see NASA 2002, p. 78-82).

A high number of slide presentations, lecture notes, and articles on BDD may be
found by searching the Internet. Most of these are of high quality. A comprehen-
sive and relevant treatment is given by Andrews and Remenyte (2005) and Xing
and Amari (2015).

6.8 Event Tree Analysis

The basic theory and the construction of event trees are introduced in Section 4.4.
The current section deals with the quantification of event trees, mainly through
an example.

When input data are available for the initiating event and all the relevant
safety functions and hazard contributing factors, a quantitative analysis of the
event tree may be carried out to give frequencies or probabilities of the resulting
consequences.

The occurrences of the initiating event is usually modeled by a homogeneous
Poisson process with frequency 𝜆, which is measured as the expected number of
occurrences per year (or some other time unit). Homogeneous Poisson processes
are further discussed in Chapter 10.

For each safety function, we have to estimate the conditional probability that it
will function properly in the relevant context, that is, when the previous events
in the event chain have occurred. Some safety functions, such as emergency shut-
down (ESD) systems on offshore oil/gas platforms, may be very complicated and
will require a detailed reliability analysis.

The (conditional) reliability of a safety function depends on a wide range of envi-
ronmental and operational factors, such as loads from previous events in the event
chain, and the time since the last function test. In many cases, it is difficult to
distinguish between “functioning” and “nonfunctioning.” A fire pump may, for
example, start, but stop prematurely before the fire is extinguished.
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The reliability assessment of a safety function may in most cases be performed
by an FTA or an analysis based on RBD. If the analysis is computerized, a link
may be established between the reliability assessment and the appropriate node
in the event tree to facilitate automatic updating of the outcome frequencies and
sensitivity analyzes. It may, for example, be relevant to study the effect on the out-
come frequencies by changing the testing interval of a safety valve. Graphically, the
link may be visualized by a transfer symbol on one of the output branches from
the node.

The probabilities of the various hazard contributing factors (events/states) that
enter into the event tree must be estimated for the relevant contexts. Some of these
factors may be independent of the previous events in the event chain, whereas
others are not.

It is important to observe that most of the probabilities in the event tree are
conditional probabilities. The probability that the sprinkler system in Figure 4.11
will function is not equal to a probability that is estimated based on tests in the
normal operating context. We have to take into account that the sprinkler system
may have been damaged during the dust explosion and the first phase of the fire
(i.e. before it is activated).

Consider the event tree in Figure 4.11. Let 𝜆A denote the frequency of the ini-
tiating event A, “explosion.” In this example, 𝜆A is assumed to be equal to 10−2

per year, which means that an explosion on the average will occur once every 100
years. Let B denote the event “start of a fire,” and let Pr(B) = 0.8 be the conditional
probability of this event when a dust explosion has already occurred. A more cor-
rect notation would be Pr(B ∣ A) to make clear that event B is considered when
event A has already occurred.

In the same way, let C denote the event that the sprinkler system does not func-
tion, following the dust explosion and the outbreak of a fire. The conditional prob-
ability of C is assumed to be Pr (C) = 0.01

The fire alarm will not be activated (event D) with probability Pr (D) = 0.001.
This example assumes that this probability is the same whether the sprinkler sys-
tem is functioning or not, but in most cases, the probability of this event would
depend on the outcome of the previous event.

Let B∗, C∗, and D∗ denote the negation (nonoccurrence) of the events B, C, and
D respectively. We know that Pr(B∗) is equal to 1 − Pr (B), and so on.

The frequencies (per year) of the end consequences may now be calculated as
follows:

(1) Uncontrolled fire with no alarm:

𝜆4 = 𝜆A Pr (B)Pr (C)Pr (D) = 10−2 ⋅ 0.8 ⋅ 0.01 ⋅ 0.001 ≈ 8.0 × 10−8
.
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(2) Uncontrolled fire with alarm:

𝜆3 = 𝜆A Pr (B)Pr (C∗)Pr (D) = 10−2 ⋅ 0.8 ⋅ 0.01 ⋅ 0.999 ≈ 8.0 × 10−5
.

(3) Controlled fire with no alarm:

𝜆2 = 𝜆A Pr (B)Pr (C∗)Pr (D) = 10−2 ⋅ 0.8 ⋅ 0.99 ⋅ 0.001 ≈ 7.9 × 10−6
.

(4) Controlled fire with alarm:

𝜆1 = 𝜆A Pr (B)Pr (C∗)Pr (D∗) = 10−2 ⋅ 0.8 ⋅ 0.99 ⋅ 0.999 ≈ 7.9 × 10−3
.

(5) No fire:

𝜆5 = 𝜆A Pr (B∗) = 10−2 ⋅ 0.2 ≈ 2.0 × 10−3
.

It is seen that the frequency of a specific outcome (consequence) simply is
obtained by multiplying the frequency of the initiating event by the probabilities
along the event sequence leading to the outcome in question.

If we assume that occurrences of the initiating event may be described by a
homogeneous Poisson process, and that all the probabilities of the safety func-
tions and hazard contributing factors are constant and independent of time, then
the occurrences of each outcome will also follow a homogeneous Poisson process.

As for FTA, event trees may also be converted to and analyzed by BDDs (e.g. see
Andrews and Dunnett 2000).

6.9 Bayesian Networks

A qualitative introduction to Bayesian networks (BN) is given in Section 4.8. The
current section gives a brief introduction to probabilistic evaluation of BNs. We
tacitly assume that all nodes represent a state of an item and that each item has
only two states 1 (= functioning) or 0 (= failed). It is also assumed that each node
corresponds to a random variable with the same symbol as the node. A random
variable A is said to represent node A. Observe that this is similar to an RBD, where
the (random) state variable Xi represents component i.

Consider the simple BN in Figure 6.20. Node (and variable) A is said to influence
node (and variable) B. The random variable A represent a root node A. Node A is a
parent of node B, and node B is a child of node A. In a BN set-up, the distribution
of A is given as a table, such as Table 6.3, where probability values are entered for
illustration.

In a BN, the Bayesian interpretation of probability as “degree of belief” is
adopted. The value of Pr (A = 1) = pA is determined based on our knowledge
about A. This interpretation of probability is further discussed in Chapter 15. A BN
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A B
Figure 6.20 Simple BN with two nodes.

Table 6.3 Prior probability of root node A.

A Pr(A)

0 0.1
1 0.9

provides a structured, graphical representation of the probabilistic relationships
between the random variables (nodes).

6.9.1 Influence and Cause

The arc from node A to node B in Figure 6.20 means that node B is directly influ-
enced by node A. This influence is sometimes referred to causal influence, even
though statisticians are generally reluctant to use the word causal. For A to be a
cause of B, the following three conditions need to be fulfilled:

(1) There is correlation between A and B.
(2) There is a temporal asymmetry (precedence) – one is occurring before the

other.
(3) There is no hidden variable explaining the correlation.

Very often, we observe that components A and B are correlated, but where a thor-
ough analysis shows that they are both influenced by a common cause, which
may not be easy to identify. Correlation does not always imply causation. For a
thorough discussion, see Pearl (2009).

6.9.2 Independence Assumptions

Recall that two random variables A and B are independent if

Pr (A = a ∣ B = b) = Pr (A = a) and

Pr (B = b ∣ A = a) = Pr (B = b) for all a and b

When the conditional probabilities Pr (A = a ∣ B = b) ≠ Pr (A = a) or Pr (B = b ∣
A = a) ≠ Pr (B = b), the two variables are dependent. Dependence is discussed fur-
ther in Chapter 8.
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Figure 6.21 Linear BN with three
nodes. A B C

The BN approach is based on the assumption that the state of a node, say X in
is influenced only by the states of its parents. This means that the state of X is
independent of the states of all other nondescendant nodes of X , given that the
states of the parents of X are known. We say that each node of a BN fulfills the
local Markov property (see Chapter 11). In Figure 6.21, this assumption implies
that when the state of node B is known, node C is independent of node A. The
joint distribution of the variables A,B, and C, hence, can be written as

Pr (A = a ∩ B = b ∩ C = c)

= Pr (C = c ∣ B = b)Pr (B = b ∣ A = a)Pr (A = a), (6.106)

where a, b, and c are given values in {0, 1}.

6.9.3 Conditional Probability Table

A BN describes how a node directly influences other nodes. The nodes (and vari-
ables) of a BN are generally not independent, and we have to make use of condi-
tional probabilities.Consider the simple BN in Figure 6.21, where the root node
A has a direct influence on B. This influence is specified as a conditional proba-
bility table (CPT) as shown in Table 6.4. Again, probability values are included as
illustration.

When component A is failed (A = 0), the CPT in Table 6.4 says that component
B will fail with probability 0.7 and function with probability 0.3. Observe that for
a given state of A, the conditional probabilities of B must add up to 1.

If we have observed that component B failed, such that B = 0, we may ask what
is the probability that failure of B was caused (i.e. influenced) by a failure of com-
ponent A. This is written as Pr (A = 0 ∣ B = 0) and may be determined by Bayes’

Table 6.4 Conditional probability table for two nodes.

A B Pr(B ∣ A)

0 0 0.7
0 1 0.3
1 0 0.1
1 1 0.9
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formula.

Pr (A = 0 ∣ B = 0) = Pr (B = 0 ∣ A = 0)Pr (A = 0)
Pr (B = 0)

, (6.107)

where Pr (B = 0) is determined by the law of total probability

Pr (B = 0) = Pr (B = 0 ∣ A = 0)Pr (A = 0) + Pr (B = 0 ∣ A = 1)Pr (A = 1).

The values in Tables 6.3 and 6.4 yields

Pr (A = 0 ∣ B = 0) = 0.7 ⋅ 0.1
0.7 ⋅ 0.1 + 0.1 ⋅ 0.9

≈ 0.44.

6.9.4 Conditional Independence

As pointed out above, many variables in a BN are not independent. To study all
types of dependencies is overwhelming for BNs with a high number of nodes and
a limited type of dependence is therefore assumed. The analysis of BNs is therefore
delimited to random variables (nodes) that are conditionally independent (see box).

Conditional Independence

The variables A and B are said to be conditionally independent given C if for
all a, b, and a given value c

Pr (A = a ∩ B = b ∣ C = c) = Pr (A = a ∣ C = c)Pr (B = b ∣ C = c).

The rule indicated in Eq. (6.106) is general and may be expressed as follows:
Consider a BN with nodes X1,X2,… ,Xn. The joint distribution of X1,X2,… ,Xn is

Pr (X1 = x1 ∩ X2 = x2 ∩… ∩ Xn = xn)

=
n∏

i=1
Pr (Xi = xi ∣ States of the parents of Xi). (6.108)

In the BN in Figure 6.22, C has a direct influence on both A and B. Because they
are influenced by the same variable C, they are obviously dependent, but when
the state of C is known, we assume that A and B are conditionally independent
(see box).

If A and B are conditionally independent given C, then (for all a, b, and a given
value c)

Pr (A = a ∣ B = b ∩ C = c) = Pr (A = a ∩ B = b ∣ C = c)
Pr (B = b ∣ C = c)

= Pr (A = a ∣ C = c)Pr (B = b ∣ C = c)
Pr (B = b ∣ C = c)

= Pr (A = a ∣ C = c),
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Figure 6.22 BN with Three Nodes.
A

B

C

which means that the information that B = b has no influence on Pr (A =
a ∣ C = c).

With this assumption, each node in the BN is conditionally independent of all its
nondescendants given the value of its parents. Observe that a node X is not inde-
pendent of its descendants when the states of its parents are known. Also observe
that nodes that are not connected (i.e. there are no arc from one of the nodes to
the other) are conditionally independent.

Example 6.25 (System of two pumps)
The BN of two identical pumps, A and B, with power supply C may be illustrated
by Figure 6.22.

When the power supply is functioning (i.e. C = 1), we assume that the pumps
are functioning independent of each other. If one pump fails, it has no influence
on the functioning of the other pump. This means that when C = 1, the two pumps
are conditionally independent.

Pr (A = 1 ∩ B = 1 ∣ C = 1) = Pr (A = 1 ∣ C = 1)Pr (B = 1 ∣ C = 1).

We want to check whether or not conditional independence implies that the two
pumps are independent.

The probability that the power supply is functioning is Pr(C = 1) = 0.95. When
the power supply is functioning, the probability that the pumps are functioning are
Pr (A = 1 ∣ C = 1) = 0.90 and Pr (B = 1 ∣ C = 1) = 0.90. When the power supply is
failed, the pumps cannot function. The law of total probability gives

Pr (A = 1) = Pr (A = 1 ∩ B = 1 ∣ C = 1)Pr (C = 1)

+ Pr (A = 1 ∩ B = 1 ∣ C = 0)Pr (C = 0)

= 0.9 ⋅ 0.9 ⋅ 0.95 + 0 ≈ 0.77.

In the same way, Pr (B = 1) ≈ 0.77. Further, by the law of total probability

Pr (A = 1 ∩ B = 1) = Pr (A = 1 ∩ B = 1 ∣ C = 1)Pr (C = 1)

+ Pr (A = 1 ∩ B = 1 ∣ C = 0)Pr (C = 0)

= 0.9 ⋅ 0.9 ⋅ 0.95 + 0 ≈ 0.77.
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We have found that Pr (A = 1)Pr (B = 1) ≈ 0.77 ⋅ 0.77 ≈ 0.59, and Pr (A = 1 ∩ B =
1) ≈ 0.77, such that Pr (A = 1 ∩ B = 1) ≠ Pr (A = 1)Pr (B = 1), and we conclude
that the two pumps are not independent.

This conclusion may be justified intuitively. If we observe that pump A is not
functioning, this can mean that pump A has failed, or that the power supply is
not functioning. The information that A = 0, hence, increases the conditional
probability that pump B is not functioning, which means that A and B are not
independent. ◻

6.9.5 Inference and Learning

When we get information related to a BN in the form of expert judgments and
observed data, we may use this information to make inference. Inference is further
discussed in Chapters 14 and 15. Inference comprises computation of conditional
probabilities, parameter estimation, and determination of posterior distributions.

Learning a BN based on data means to acquire knowledge about (i) the struc-
ture of the graphical model and (ii) the conditional probability distributions. The
last option means to update a prior belief on the basis of the evidence (i.e. the
data available). This is done by Bayes’ formula, which is thoroughly discussed in
Chapter 15. Learning the BN structure involves to learn causal relationships and
to verify the correctness and the consistency of the structure. Learning may also
involve to identify the most likely explanation of an item failure. It is further pos-
sible to determine the effect of an intervention into the system (e.g. to repair or
modify a component).

Exact inference and learning is feasible only in small- to medium-sized BNs.
For larger BNs, we have to suffice with approximative approaches usually based
on Monte Carlo simulation, which are much faster and give pretty good results.

6.9.6 BN and Fault Tree Analysis

Because this chapter is delimited to systems of independent components, many
important features fall outside the scope of the chapter. Dependent components
are dealt with in Chapter 8.

Consider a system S of two independent components A and B. A BN for the
system is shown in Figure 6.23. To compare BN analysis and fault tree analysis, let
A = 1 denote that basic event A occurs, B = 1 that basic event B occurs, and S = 1
that the TOP event occurs. We want to find the TOP event probability Q0 when the
basic event probabilities qA and qB are specified.

The information about the basic events A and B is given in Table 6.5, where
the probabilities are included for illustration. Observe that both A and B are root
nodes.
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Figure 6.23 BN for a simple system of two components.
A

B

S

Table 6.5 Prior probability of the root nodes A and B.

A B Pr(A) Pr(B)

0 0 0.99 0.96
1 1 0.01 0.04

For an AND-gate (i.e. a parallel structure), the TOP event occurs only when A = 1
AND B = 1, such that

Q0 = Pr (A = 1 ∩ B = 1) = Pr (A = 1)Pr (B = 1) = 0.01 ⋅ 0.04 = 4.0 × 10−4
.

For an OR-gate (i.e. a series structure), the TOP event occurs if A = 1 OR B = 1, such
that

Q0 = Pr (A = 1 ∪ B = 1) = Pr (A = 1) + Pr (B = 1) − Pr (A = 1 ∩ B = 1)

= Pr (A = 1) + Pr (B = 1) − Pr (A = 1)Pr (B = 1)

= 0.01 + 0.04 − 0.01 ⋅ 0.04 = 4.96 × 10−2

The strength of BNs becomes visible when the basic events are not independent,
but influence each other and also when we have basic events that do not have only
two states.

To illustrate the calculation procedure, consider the simple BN in Figure 4.38.
This BN has three root nodes A, B, and C, each with two states, where state 1 means
that the basic event occurs and state 0 that it does not occur. The probabilities of
the root nodes are specified as a CPT, such as

A B C Pr(A) Pr(B) Pr (C)

0 0 0 1 − qA 1 − qB 1 − qC

1 1 1 qA qB qC

where qi is the probability that basic event i occurs, for i = A,B,C.
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Node M is a child node with parents A and B. The truth table for M is

A B M

0 0 0
0 1 1
1 0 1
1 1 1

The probability distribution for M is then

Pr (M = 0) = Pr [(A = 0) ∩ (B = 0)] = (1 − qA)(1 − qB)

Pr (M = 1) = 1 − Pr (M = 0) = 1 − (1 − qa)(1 − qB)

which is the same result we got when using FTA. With qM = Pr (M = 1), we can
repeat the above arguments to find the probability distribution of T as a child of
the parents M and C, and we get the probability

Pr (T = 0) = Pr [(M = 0) ∩ (C = 0)] = (1 − qM)(1 − qC)

= (1 − qA)(1 − qB)(1 − qC)

Pr (T = 1) = 1 − Pr (T = 0) = 1 − (1 − qA)(1 − qB)(1 − qC)

Quantitative analysis of Bayesian networks is not discussed further in this book.
For further information, see for example, Jensen and Nielsen (2007), Kjærulff and
Madsen (2008), Scutari and Denis (2015), and Bobbio et al. (2001). Several R pack-
ages make it possible to use R for BN analysis, such asbnlearn. A number of both
free and commercial computer programs for BN analysis are available. Programs
may be found by searching the Internet.

6.10 Monte Carlo Simulation

Monte Carlo simulation got its name from the city of Monte Carlo in Monaco
and its many casinos and is a computerized mathematical technique that gener-
ates random samples that are used to obtain numerical results. To illustrate the
approach, consider an RBD with n independent and nonrepairable components.
The time-to-failure Ti of component i is assumed to be Weibull-distributed with
parameters 𝛼i and 𝜃i, for i = 1, 2,… ,n. All parameters are assumed to be known.
We are interested in determining the distribution FS(t) of the time-to-failure TS for
the system. For a complicated system, this may be a difficult task.

By Monte Carlo simulation, a computer is used to generate a sequence of
times-to-failure t1, t2,… , tn from the given distributions, for the n components.
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Then, the structure function is used to determine a corresponding time-to-failure
ts for the system.

By repeating this simulation a large number (e.g. 1000) of times, we can use
the methods described in Chapter 14 to obtain an empirical survivor function
and to fit a continuous distribution to the data. This way, an estimate of RS(t)
is obtained without cumbersome calculations. When having the system survivor
function FS(t), the methods from Chapter 5 can be used to obtain estimates of the
system failure rate function zS(t) and the system mean time-to-failure MTTFS.

To illustrate how this is done in more detail, we start by describing what a ran-
dom number is and how to obtain a sequence of random numbers.

6.10.1 Random Number Generation

A sequence of random values from the interval (0, 1) can be obtained by using
a random number generator on a computer. The sequence of numbers should be
generated in such a way that each number has the same probability of assuming
any of the values in the interval and be independent of the other numbers in the
sequence. Random numbers generation is therefore similar to sampling from a
uniform distribution unif(0, 1) with probability density function

fY (y) =
{

1 for 0 < y < 1
0 otherwise

.

The numbers (y) obtained by this procedure on a computer are not truly random
because they are determined by an initial value called the seed. We therefore
say that the numbers generated are pseudo-random numbers. A wide range
of pseudo-random number generators are available (e.g. as part of spread-
sheet programs and programs for statistical analysis, such as R). Most of these
pseudo-random number generators are able to generate variables Y1,Y2,… that
are approximately independent with a uniform distribution over [0, 1]. In R,
the command runif(n) generates a sequence of n pseudo-random numbers.
Rerunning this command, we get another sequence of n pseudo-random numbers.

In Monte Carlo simulations for reliability analyses, we are mainly interested in
generating pseudo-random numbers from a life distribution, such as the exponen-
tial or the Weibull distributions and from some downtime/repair distributions,
such as the lognormal distribution. In the next paragraph, we illustrate how this
is accomplished.

Generation of Random Variables with a Specified Distribution
Let T denote a random variable, not necessarily a time-to-failure, with distribu-
tion function FT(t) that is strictly increasing for all t, such that F−1

T (y) is uniquely
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1

0
Time t

FT(t)

y

t = FT
–1(y)

y is generated by
a pseudo-random
generator from
a uniform (0,1) 
distribution

Figure 6.24 Generation of a random variable with distribution FT (t).

determined for all y ∈ (0, 1). Further let Y = FT(T). Then the distribution function
FY (y) of Y is

FY (y) = Pr (Y ≤ y) = Pr (FT(T) ≤ y)

= Pr [T ≤ F−1
T (y)] = FT[F−1

T (y)] = y for 0 < y < 1.

Hence, Y = FT(T) has a uniform distribution over (0, 1). This implies that if a ran-
dom variable Y has a uniform distribution over (0, 1), then T = F−1

T (Y ) has the
distribution function FT(t).

This result can be used to generate random variables T1,T2,… with a specified
distribution function FT(t) on a computer. Variables Y1,Y2,… that are uniformly
distributed over (0, 1), may be generated by a pseudo-random number generator.
The variables Ti = F−1

T (Yi) for i = 1, 2,… ,, then have distribution function FY (t).
The generation of random variable is illustrated in Figure 6.24.

In R, a sequence of n pseudo-random numbers from a Weibull distribution with
given shape parameter (𝛼) and scale parameter (𝜃) is obtained by the command
rweibull(n, shape, scale).

Simulating the Lifespan of a Repairable Component
Consider a repairable component where each repair brings the component back to
an as-good-as-new state. If there is no trend or external influences, the lifespan of
the component may be illustrated as in Figure 6.11. If the time-to-failure distribu-
tion and the downtime distribution are specified, it is easy to simulate a specified
lifespan of, for example 𝜏 = 20 years for the component. The simulation of a sin-
gle lifespan gives the outcome {t1, d1, t2, d2,…} until the total lifespan 𝜏 is reached,
where ti is an uptime and di is a downtime, for i = 1, 2,…. Based on this dataset,
we may calculate the observed availability as

∑
iti∕𝜏, the total number of failures

and the total downtime. By repeating this procedure a large number of times and
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by taking averages, we obtain accurate estimates of the availability and the associ-
ated metrics. This may seem to be a waste of time for a single component, because
we can obtain the exact values by simple hand calculation.

The power of the Monte Carlo simulation approach becomes clear when study-
ing a complicated system with many components and many different uptime and
downtime distributions. Many computer programs for system reliability assess-
ment are therefore based on Monte Carlo simulation.

6.10.2 Monte Carlo Next Event Simulation

Monte Carlo’s next event simulation is carried out by simulating “typical” lifes-
pans or mission scenarios for a system on a computer. We start with a model of the
system, such as an RBD. Random events (i.e. events associated with item failures)
are generated in the computer model and scheduled events (e.g. proof testing and
servicing) and conditional events (i.e. events initiated by the occurrence of other
events) are included to create a simulated mission scenario that is so close to a real
lifetime scenario as possible.

Applications may demand different types of input data. In the oil and gas indus-
try, this type of simulation is often used in the design phase to determine the
production availability of suggested design options. Production availability may
be measured as the number of barrels of oil or the number of cubic meters of gas
produced per day and may be compared to the agreed sales volume, which may
vary with the time of the year.

For most applications, the following input data to the simulation must be
available:

• A description of the system based on flow diagrams, control schematics, and
component information.

• Knowledge of component failure modes, failure effects, and failure conse-
quences, usually in the form of an FMECA.

• Component failure and repair data (failure mode specific uptime and downtime
distributions and estimates of the required parameters).

• Maintenance strategies. Frequency of preventive maintenance/servicing and
duration of each type of maintenance action.

• Resource data (e.g. availability of spare parts and maintenance resources).
• Decision rules – what is to be done when a component failure mode occurs?
• Throughput data and system/component capacities (if relevant).

When a “typical” lifetime scenario has been simulated on the computer, this
scenario is treated as a real experiment, and performance measures are calculated.
We may, for example, calculate
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• The observed availability of the system in the simulated time period (e.g. the
observed uptime divided by the length of the simulated period).

• The number of system failures.
• The number of failures for each component.
• The contribution to system unavailability from each component.
• The use of maintenance resources.
• The system throughput (production) as a function of time.
• And several more.

The simulation can be repeated to generate a number of “independent” lifetime
scenarios. From these scenarios, we may deduct estimates of the performance
metrics of interest.

Single Item with Only One Failure Mode
We illustrate the next event simulation technique by a very simple example, a sin-
gle repairable item with only one failure mode. A lifetime scenario for the item
may be simulated as follows:

(1) The simulation is started at time t = 0 (the simulator clock is set to 0 that cor-
responds to a specified date). The item is assumed to be functioning at time
t = 0.

(2) The time t1 to the first failure is generated from the life distribution FT1
(t) that

is specified by the analyst. The simulator clock is now set to t1.
(3) The downtime d1 is generated from a specified repair time distribution FD1

(d)
that is specified by the analyst, and may, for example depend on the season (the
date) and the time of the day of the failure. The repair time may, for example
be longer for a failure that occurs during the night than for the same failure
occurring during ordinary working hours. The simulator clock is now set to
t1 + d1.

(4) The uptime t2 to the second failure is generated from a the life distribution
FT2

(t). The item may not be as-good-as-new after the repair action and the life
distribution FT2

(t) may therefore be different from FT1
(t). The simulator clock

is set to t1 + d1 + t2.
(5) The downtime d2 is generated from a specified repair time distribution FD2

(d),
(6) and so on.

The simulation is continued until the simulator clock reaches a predefined time,
for example 10 years. The computer creates a chronological log file where all events
(failures, repairs) and the (simulator clock) time for each event are recorded. From
this log file, we are able to calculate the number of failures in the simulated period,
the accumulated use of repair resources and utilities, the observed availability, and
so on, for this specific life scenario. The observed availability A1 is, for example
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calculated as the accumulated time the item has been functioning divided by the
length of the simulated period.

The simulation described above is repeated n times (with different seed values),
and the parameters of interest are calculated for each simulation. Let Ai be the
observed availability in simulation i for i = 1, 2,… ,n. The average availability A
of the item is then calculated as the sample mean

∑n
i=1 Ai∕n. The sample standard

deviation may be used as a measure of the uncertainty of A. It is possible to split the
simulation period into a number of intervals and calculate the average availability
within each interval. The availability may, for example, be reported per year. A
variety of approaches to reduce the variation in the estimates are available. For a
comprehensive introduction to Monte Carlo simulation (e.g., see Rubinstein and
Kroese 2017).

The simulation on a computer can theoretically take into account virtually any
aspects and contingencies of an item:

• Seasonal and daily variations
• Variations in loading and output
• Periodic testing and interventions into the item
• Phased mission schemes
• Planned shutdown periods
• Interactions with other components and systems
• Dependencies between functioning times and downtimes

6.10.3 Simulation of Multicomponent Systems

Simulation of a mission scenario for a system with a high number of components
requires a lot of input data to the computer. In addition, we have to establish a set
of decision rules for the various events and combinations of events. These rules
must state which actions should be a consequence of each event. Examples are
decision rules related to

• Setting priorities between repair actions of simultaneous failures when we have
limited repair resources.

• Switching policies between standby items.
• Deciding to replace or refurbish some additional components of the same sub-

system when a component fails.
• Deciding to shut down the whole subsystem after a failure of a component, until

repair action of the component is completed.

To obtain estimates of satisfactory accuracy, we have to simulate a rather high
number of life histories of the system. The number of replicated simulations
depends on how many components the system has and the reliabilities of the
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various system components. Systems with a high reliability will in general require
more replications than systems with low reliability. The simulation time will
be especially long when the model involves extremely rare events with extreme
consequences. For multicomponent systems, we may need several thousands of
replications. The simulation time is often excessive even on a fast computer, and
the log file may become very large.

Next event simulation of simple systems can in principle be accomplished by
using a spreadsheet program together with a Visual Basic code. Most spreadsheet
programs have a random generator and a library of statistical distribution, and it is
easy to generate random values from a specific distribution. The values simulated
may next be combined according to given rules by using standard spreadsheet
operations. Even more options are available by using R.

A number of simulation programs have been developed for availability assess-
ment of specific systems. A list of program vendors may be found on the book
companion site.

Example 6.26 (Production availability simulation)
Consider a system of two production items as illustrated in Figure 6.25. When
both items are functioning, 60% of the system output comes from item 1 and 40%
from item 2. The system is started up on a specific date (e.g. 1 January 2020).
The times-to-failure are assumed to be independent and Weibull distributed with
known parameters (𝛼i, 𝜆i), for i = 1, 2. The simulation is started by generating two
Weibull distributed times-to-failure t1 and t2. Let us assume that t1 < t2. From time
t1, item 1 is out of operation during a random downtime that has a lognormal
distribution with known parameters (𝜈1, 𝜏1) that depends on the date at which
item 1 failed. The production from item 2 is increased to 60% to partly compen-
sate for the outage of item 1. The time-to-failure of item 2 with 60% production
is Weibull-distributed with parameters (𝛼2, 𝜆

1
2). (A conditional Weibull distribu-

tion might be selected.) The next step of the simulation is to generate the repair
time d1 of item 1, and the time-to-failure t1

2 of item 2 with increased production.
Let us assume that d1 < t1

2. At time d1, item 1 is put into operation again, with
60% production, and the load on item 2 is reduced to 40%. Time-to-failure distri-
butions are allocated to the two items. Conditional distributions, given the time
in operation, may be used. New times-to-failure are generated according to the
same procedure as described above. Periodic stops with adjustments, cleaning, and

Item 1

Item 2

Figure 6.25 System of two production items.
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Figure 6.26 Simulation of the performance of the production system in Figure 6.25.

lubrication, may easily be included in the simulation. If item 2 fails, the load on
item 1 is increased to 80%. The simulation is illustrated in Figure 6.26 together with
the resulting simulated production. Several other metrics may be recorded, such
as total item downtime, use of repair resources, and spare parts. The simulation of
times-to-failure may further be split into different failure modes. The simulation
is repeated a large number of times to give average values. ◻

6.11 Problems

6.1 Show that when the components are independent, the system reliability
pS(t) may be written by Eq. (6.5), that is, as a function of the component
reliabilities, pi(t) (i = 1, 2,… ,n), only.

6.2 An old-fashioned string of Christmas tree lights has 10 bulbs connected
in series. The 10 identical bulbs are assumed to have independent
times-to-failure with constant failure rate 𝜆. Determine 𝜆 such that the
probability that the string survives three weeks is at least 99%.

6.3 Consider three identical and independent items in parallel. What is the sys-
tem reliability when each item has a reliability of 98%?
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6.4 A system consists of five identical and independent components in parallel.
Determine the reliability of the components such that the system reliability
is 99%.

6.5 Consider the failure rate function zS(t) for a 2oo3 structure of indepen-
dent and identical components with constant failure rate 𝜆. Show that
limt→∞zS(t) = 2𝜆, and give a physical explanation of why this is a realistic
limit.

6.6 Consider a coherent structure of n independent components with system
survivor function RS(t) = h[R1(t),R2(t),… ,Rn(t)]. Assume that all the
n components have life distributions with increasing failure rate (IFR),
and that the mean time-to-failure of component i is MTTFi = 𝜇i, for
i = 1, 2,… ,n. Show that

RS(t) ≥ h(e−t∕𝜇1 , e−t∕𝜇2 ,… , e−t∕𝜇n ) for 0 < t < min{𝜇1, 𝜇2,… , 𝜇n}.

6.7 Consider the RBD in Figure 6.27.
(a) Find the minimal cut sets of the structure.
(b) Determine the availability of the system when the components are

independent, nonrepairable, and:
– Component C1 has constant failure rate 𝜆.
– Components Ci, for i = 2, 3, 4, 5, have constant probability qi to be

failed.
(c) Calculate the system availability at time t = 5000 hours, when 𝜆 = 0.01

failures per hour, and qi = 0.1.

6.8 The mean number of failures per 106 hours of an item A is 100 and the mean
time-to-first-failure for an item B is 100 days. Let MTTFA and MTTFB be the
MTTF of items A and B, respectively.
A system S is functioning if and only if at least one item A and one item B
in a series structure are functioning.
(a) What is the reliability of S at times t = MTTFA and t = MTTFB? Com-

ment your results.

C1

C2

C3

(a) (b)

C4

C5

C3

Figure 6.27 RBD for
Problem 6.7.
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(b) What is the MTTF of S, MTTFS?
(c) What is the probability that S survives MTTFS? Comment your result.
(d) To increase the reliability of S, we want to re-design the structure and

wonder which one of the two following options would be the best:
(i) add a redundant item A or (ii) add a redundant item B. Explain
which option is most reliable and determine the survivor function of
this design option at time t = MTTFA and at time t = MTTFB.

6.9 You are going to make a quantitative reliability analysis of the generator
of an offshore wind turbine. The generator converts mechanical energy to
electrical energy, and adapts the output energy from the wind turbine to the
grid. A simplified fault tree for this system is shown in Figure 6.28 (all items
are considered to be nonrepairable). The basic events and their constant
occurrence rates are given in Figure 6.28.
(a) Establish the corresponding RBD.
(b) Determine the structure function.
(c) Find the minimal cut sets.
(d) Determine the generator unreliability at time t =10 000 hours. Do you

need an approximation?

6.10 Consider a water storage tank that is supposed to provide enough water
in case of fire. A sensor is installed to monitor the water level. It sends a
signal to the control unit if the water level is below a critical level, and the

Generator
failure

Rotor and
stator hard-
ware failure

Rotor and
stator system

failure

1 2 3

Abnormal 
signals

4 5
876

Event Code

1 1 × 10–5

1 × 10–7

8 × 10–5

2 × 10–6

2 × 10–6

3 × 10–6

2 × 10–7

3 × 10–6

2
3
4
5
6
7
8

Failure rate
(failures per hour)

Wire fault
External facilities media leak
Abnormal vibration
Abnormal instrument reading
Fail to syncronize
Broken bars
Fail to start on demand

Parameter deviation

Figure 6.28 Fault tree for Problem 6.9.
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Table 6.6 Table for Problem 6.10.

Item Symbol Failure mode Failure rate (per hour)

Sensor S Nondetection of low water level 2 × 10−7

Control unit C Fail to function 1 × 10−8

Pumps P1,P2 Fail to function 2 × 10−6

Low power supply L Cut of low power supply 1 × 10−3

High power supply H Cut of high power supply 1 × 10−5

control unit activates the filling function. This function is carried out by
two electrical pumps. Each pump is able to provide the required water flow.
Only one pump is activated, and if it fails, the second pump is activated. If
the second pump also fails, the filling function cannot be fulfilled anymore.
The switching is assumed to be perfect (no fail to start). Some valves are
involved in the filling function but are considered to be outside the system
boundaries in this study. The sensor and the control unit need supply from
a low power circuit (12 V), and the pumps need supply from the high power
circuit (240 V).
The failure modes in Table 6.6 are considered. The switches for the two
pumps are supposed to be perfect. All the failure modes are supposed to be
independent.
(a) Carry out a functional analysis of the system.
(b) Establish a RBD.
(c) Find the minimal cut sets.

6.11 Assume that you are to evaluate the reliability of a heat exchanger used on
an offshore oil and gas paltform OREDA (2015) gives the following num-
bers for all failure modes:
● Mean number of failures per 106 hours: 96.93
● Standard deviation for the number of failures per 106 hours: 35.81

(a) Assume that the global failure rate of the heat exchanger is constant.
i. Estimate the failure rate by using the mean number of failures.

ii. Show that the time-to-failure is exponentially distributed and plot
the corresponding density function.

iii. Calculate the MTTF.
iv. Find the survivor function as a function of time and make a plot.

(b) During the design phase, the designers wonder what would be the
benefit of using two heat exchangers instead of one. You are to
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quantify the extra lifetime obtained by two exchangers, in order to
balance it with the equipment cost. We make the same assumptions
as for question (a), and both heat exchangers are assumed to have
the same constant failure rate:

i. First concept (active redundancy, no repairs): two exchangers are
used all the time, such that the whole system may be considered
as failed when both of them are in a failed state. Determine the
survivor function of the whole system at different times and make
a plot.

ii. Second concept (passive redundancy, perfect switching, no
repairs): one exchanger is used first, and the other one is only
started when the first one is failed. The whole system is con-
sidered to be failed when both heat exchangers have failed.
Determine the survivor function of the whole system at different
times and make a plot. You may use the analytical formulas in
Section 6.4.1 or Monte Carlo simulation.

iii. Discuss and compare the survivor function of the two concepts.
(c) What do we mean by the “standard deviation for the number of fail-

ures per 106 hours?” How can we take this standard deviation into
account when answering the previous questions?

6.12 Consider the primary cooling system of a nuclear power plant, compris-
ing a lithium loop that circulates and removes the heat from the deuteron
beam. The flow of the lithium is regulated by a flow controller (FC1), which
controls a pump (P) that is driven by electrical power (EP). The lithium
loop also contains a system (SHP) for maintaining the high purity of the
lithium required for avoiding plugging, or corrosion and leakages. In addi-
tion, there is a trace heating system (STH) driven by electric power (EP) to
maintain the temperature throughout the loop above the melting point of
the lithium. In case of shutdown of electric power, an electrical generator
(EG) is installed to take over.

(a) Construct a fault tree for the TOP event: “Loss of primary cooling sys-
tem.” Please add extra assumptions if required. The TOP event may
occur if the lithium flow in the loop is not sufficient. You are to con-
sider the failures of FC1, P, EP, EG, SHP, STH.

(b) Assume that none of the items is repairable. The failure rates of FC1,
P, SHP, STH equal 10−5 failures per hour, the failure rate of EP equals
10−4 failures per hour, and the failure rate of EG equals 10−3 failures
per hour.

i. Find the TOP event probability as a function of time by using one
of the methods presented in Chapter
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ii. Find the value of the survivor function of the system at times 1000
hours and 100 000 hours.

(c) Assume now that EP and EG are repairable with a repair rate equals
10−1 failures per hour for both of them. After a repair, the item is con-
sidered to be as-good-as-new.

i. Find the TOP event probability as a function of time by using
Eq. (6.55) for EP and EG and the structure function.

ii. Find the TOP event probability by Monte Carlo simulation at
times 1000 hours and 100 000 hours and compare with the results
obtained results in question (b).
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7

Reliability Importance Metrics

7.1 Introduction

From Chapter 6, it should be obvious that some system components are more
important for the system reliability than other components. A component in series
with the rest of the system is a minimal cut set of order one and is generally more
important than a component that is a member of a minimal cut set of higher
order. This chapter defines and examines nine component importance metrics. The
importance metrics may be used to arrange the components in order of increas-
ing or decreasing importance, but also to classify the components into two or
more groups according to some preset criteria. Importance metrics are mainly used
for prioritizing components and modules for improvements and for maintenance
planning and execution.

Most of the importance metrics are presented both in reliability block diagram
(RBD) and fault tree notation. Chapters 4 and 6 demonstrate that fault trees with
only OR and AND gates can be transferred to RBDs without losing information, and
vice versa. If the fault tree has additional gates, it cannot be easily converted to an
RBD, and we may not be able to define the important metrics in the same way. In
this chapter, we tacitly assume that there is a one-to-one correspondence between
an RBD and a corresponding fault tree.

In risk assessments, the causal analyses are usually based on fault trees, and
the importance metrics that are used mainly in risk assessments are therefore pre-
sented only in fault tree notation. The importance metrics are then called basic
event importance metrics or risk importance metrics.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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7.1.1 Objectives of Reliability Importance Metrics

The main objectives of a reliability importance metric are to

(1) Identify the items that merit the most additional research and development
in the design phase to improve overall system reliability at minimum cost or
effort.
The reliability may be improved by using a higher-quality item, by introducing
redundant items, by reducing the operational and environmental stresses on
the item, or by improving the maintainability of the item.

(2) Identify the items that are most likely to cause system failure and therefore
should be prioritized for inspection and maintenance.

(3) Identify the item(s) that, most likely, have caused a system failure. This met-
ric may be used as input to the repairman’s checklist in situations where it is
important to restore the system function as fast as possible.

(4) Identify the components for which we need to obtain high-quality data during
a safety or reliability analysis.
A component with low importance will have a very low influence on the
system reliability. Spending resources to get very accurate data for such
components may thus be a waste of money. A relevant approach is therefore
first to calculate the system reliability and a relevant importance metric based
on approximate (best guess) input parameters, and then concentrate the data
acquisition resources on the most important components.

(5) Determine the increased risk or the reduced system reliability by taking an
item out of service (e.g. for maintenance) when the system is running. This is
a common application in, for example, nuclear power plants.

7.1.2 Reliability Importance Metrics Considered

Nine reliability importance metrics are defined and discussed in this chapter.

(1) Birnbaum’s metric for structural importance
(2) Birnbaum’s metric for component importance (and some variants)
(3) The improvement potential metric (and some variants)
(4) The criticality importance metric
(5) Fussell–Vesely’s metric
(6) The differential importance metric
(7) Risk achievement worth
(8) Risk reduction worth
(9) Barlow and Proschan’s metric for component importance

Many of the reliability importance metrics are developed for safety and reli-
ability assessments for the nuclear industry, but have later been used in many
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other application areas. An overview of importance metrics used in probabilistic
risk assessments (PRAs) of nuclear power plants is given by van der Borst and
Schoonakker (2001). The reader can refer to Vu et al. (2016) for applications in
maintenance optimization.

7.1.3 Assumptions and Notation

The following assumptions apply throughout Chapter 7.

(1) The structure 𝜙[X(t)] considered is coherent with n components.
(2) All components, subsystems, and the system have only two states: function-

ing (1) and failed (0).
(3) Components may be repairable or nonrepairable.
(4) All times-to-failure and all repair times have continuous distribution

functions.
(5) All components are independent, both with respect to failures and repairs.
(6) The reliability of component i at time t is denoted pi(t). For a nonrepairable

item, pi(t) is the survivor function Ri(t) and for a repairable item, pi(t) is the
availability Ai(t) of the item.

(7) The system reliability, with respect to a specified system function, at time t
is denoted pS(t) = hS[p1(t), p2(t),… , pn(t)]. For a nonrepairable system, pS(t)
is the system survivor function RS(t), and for a repairable system, pS(t) is the
system availability AS(t).

(8) The corresponding unreliabilities are denoted

p∗
i (t) = 1 − pi(t)

p∗
S(t) = 1 − pS(t).

(9) The structure has k minimal cut sets K1,K2,… ,Kk that have been determined
and are available.

(10) The rate of the occurrence of failures (ROCOF) of a repairable item i is
denoted 𝑤i(t).
The fault trees considered have the same logical structure as the correspond-
ing RBD.

(11) The fault trees have only AND and OR gates.
(12) All basic events relate to the same component failures as mentioned for the

system structure.
(13) The following fault tree notation is used:

qi(t) The probability that basic event Ei occurs at time t
Q0(t) The probability that the TOP event occurs at time t
Q0(t ∣ Ei) The probability that the TOP event occurs at time t when it is known that

basic event occurs at time t
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Q0(t ∣ E∗
i ) The probability that the TOP event occurs at time t when it is known that

basic event does not occur at time t
Q̌j(t) The probability that minimal cut set j has failed at time t

(14) The probabilities of a structure and a fault tree relate as follows:

pi(t) = 1 − qi(t) = q∗
i (t)

h[p(t)] = 1 − Q0(t) = Q∗
S(t).

Additional assumptions are provided when needed in the text. A consequence of
assumptions 4 and 5 is that failures (basic events) occur at distinct points in time. A
system failure (TOP event) always coincide with the failure of a component (occur-
rence of a basic event), say component i. In this sense, we say that component i has
caused system failure or that basic event i has caused the TOP event to occur.

When discussing component importance, the importance is always seen in rela-
tion to the specified system function. Most systems have many different functions.
A component that has high importance with respect to a particular system func-
tion does not need to have high importance with respect to other system functions.

Two factors determine the importance of a component in a system:

• The structure of the system and where the component is located in the system,
• The reliability of the component.

Which of these is the most important depends on the importance metric used.
Interested readers may consult (Vesely, 1998; NASA, 2011; Kuo and Zhu, 2012;
La Rovere et al., 2013) for further information about importance metrics.

Remark 7.1 (An advice to the reader)
This chapter presents alternative definitions to many of the important metrics and
also relationships between the various metrics. Some of the derivations may seem
rather tedious, but if you stay on, you will get a deeper insight into many additional
aspects of reliability analysis. ◻

7.2 Critical Components

A critical component is the basis for several important metrics. We therefore start
by defining what a critical component is in both an RBD and a fault tree context.

Definition 7.1 (Critical component / basic event)

(1) Component i is critical for the system if the other n − 1 components are in such
states that the system is functioning if and only if component i is functioning.
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(2) Basic event Ei is critical for the TOP event if the other n − 1 basic events
are in such states that the TOP event occurs if and only if basic event Ei
occurs. ◻

When saying that component i is critical, this is not a statement about component i,
but rather a statement about the states of the other n − 1 components of the system.
Component i is critical for the system if the other n − 1 components have states
(⋅i, x) such that 𝜙(1i, x) = 1 and 𝜙(0i, x) = 0, which can be written

𝜙(1i, x) − 𝜙(0i, x) = 1.

A state vector (⋅i, x) that makes component i critical is called a critical state vector
for component i. The number of different critical state vectors for component i is

𝜂
𝜙
(i) =

∑
(⋅i,x)

[𝜙(1i, x) − 𝜙(0i, x)], (7.1)

where the sum is taken over all possible state vectors (⋅i, x). Because each state xj
can take only two values, the total number of distinct state vectors (⋅i, x) is 2n−1.
When the state at time t is a random variable X(t) = [X1(t),X2(t),… ,Xn(t)], com-
ponent i is critical when

𝜙[1i,X(t)] − 𝜙[0i,X(t)] = 1. (7.2)

The probability that component i is critical is therefore

Pr(Component i is critical at time t) = Pr(𝜙[1i,X(t)] − 𝜙[0i,X(t)] = 1).
(7.3)

Example 7.1 (Critical component)
Consider the simple system of three components in Figure 7.1. Component 1 is
seen to be critical if components 2 and 3 are in such states that the lower path in
the RBD is failed. This is the case if component 2 or component 3 or both of them
are failed. The states of components 2 and 3 that make component 1 critical are
therefore

(⋅1, x) = (⋅, 0, 1) (⋅1, x) = (⋅, 1, 0) (⋅1, x) = (⋅, 0, 0).

This means that component 1 has 𝜂
𝜙
(1) = 3 critical state vectors. The critical state

vectors are also shown in Table 7.1.

Figure 7.1 Simple system of three
components. 1

2 3

(b)(a)
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Table 7.1 Critical path
vectors for component 1.

x1 x2 x3

⋅ 0 1
⋅ 1 0
⋅ 0 0

For component 2 to be critical, component 1 must be failed, and component 3
must be functioning. The states of component 1 and 3 that make component 2
critical are therefore

(⋅2, x) = (0, ⋅, 1).

This means that component 2 has only 𝜂
𝜙
(2) = 1 critical state vector. The same

applies for component 3. ◻

7.3 Birnbaum’s Metric for Structural Importance

Birnbaum (1969) proposes the following metric for the structural importance of
component i.

Definition 7.2 (Birnbaum’s metric for structural importance)
The proportion of the total number of possible critical state vectors 𝜂

𝜙
(i) relative

to the total number of possible state vectors, 2n−1

IB
𝜙
(i) =

𝜂
𝜙
(i)

2n−1 . (7.4)

◻

Example 7.2 (Birnbaum’s metric for structural importance)
Reconsider the simple system shown by the RBD in Figure 7.1. For component 1,
we have

(⋅, x2, x3) 𝝓(1, x2, x3) − 𝝓(0, x2, x3)

(⋅, 0, 0) 1
(⋅, 0, 1) 1
(⋅, 1, 0) 1
(⋅, 1, 1) 0
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In this case, the total number of critical state vectors for component 1 is 3:

𝜂
𝜙
(1) = 3,

whereas the total number of possible state vectors is 23−1 = 4. Birnbaum’s metric
of structural importance of component 1 is therefore

IB
𝜙
(1) = 3

4
.

Component 2 has only one critical state vector (0, ⋅, 1) and Birnbaum’s metric of
structural importance becomes

IB
𝜙
(2) = 1

4
.

Symmetrical reasoning yields

IB
𝜙
(3) = 1

4
. ◻

7.4 Birnbaum’s Metric of Reliability Importance

Birnbaum (1969) proposes a metric of importance that can be defined in three
different ways. The first definition is

Definition 7.3 (Birnbaum’s metric of reliability importance - 1)
Birnbaum’s metric1 of reliability importance of (1) component i or (2) basic event
Ei at time t is

(1) IB(i ∣ t) =
𝜕h[p(t)]
𝜕pi(t)

for i = 1, 2,… ,n. (7.5)

(2) IB(i ∣ t) =
𝜕Q0(t)
𝜕qi(t)

for i = 1, 2,… ,n. (7.6)
◻

Birnbaum’s metric is obtained by partial differentiation of the system reliability
with respect to pi(t) [or Q0(t) with respect to qi(t)]. This approach is well known
from classical sensitivity analysis. If IB(i ∣ t) is large, a small change in the reliabil-
ity of component i results in a comparatively large change in the system reliability
at time t.

When the reliability importance of component i is determined, all the other
n − 1 components are assumed to have constant probabilities. When taking the
derivative, all the other n − 1 probabilities pj for j ≠ i are therefore treated as con-
stants. We illustrate the derivation for a series and a parallel structure.

1 Named after the Hungarian-American professor Zygmund William Birnbaum (1903–2000).
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Assume that the component importance is to be determined at a given (future)
time t. To simplify the notation, we suppress the time and write pi(t) = pi for
1, 2,… ,n.

Example 7.3 (Series structure)
Consider a series structure of n independent components with reliabilities
p = (p1, p2,… , pn). The system reliability of the series structure is

h(p) =
n∏

j=1
pj = pi

∏
j≠i

pj. (7.7)

In this context, the system reliability is expressed as pi times a constant, and the
derivative is

IB(i) =
𝜕h(p)
𝜕pi

=
∏
j≠i

pj. (7.8)

Consider a series structure of n = 2 independent components and assume that
p1 = 0.90 and p2 = 0.70. Birnbaum’s metric of importance of the two components
becomes

IB(1) = p2 = 0.70

IB(2) = p1 = 0.90.

For this series structure, the component with the lowest reliability (i.e. compo-
nent 2) is seen to be the most important. It is straightforward to show that this
result applies for all series structures of independent components. To improve
the reliability of a series structure, we should therefore focus our attention on the
weakest component. ◻

Example 7.4 (Parallel structure)
Consider a parallel structure of n independent components with reliabilities p =
(p1, p2,… , pn). The system reliability of the parallel structure is

h(p) = 1 −
n∏

j=1
(1 − pj) = 1 − (1 − pi)

∏
j≠i

(1 − pj). (7.9)

Because pj for j ≠ i are treated as constants, the derivative becomes

IB(i) =
𝜕h(p)
𝜕pi

=
∏
j≠i

(1 − pj). (7.10)

Consider a parallel structure of n = 2 independent components and assume that
p1 = 0.90 and p2 = 0.70. Birnbaum’s metric of importance of the two components
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becomes

IB(1) = 1 − p2 = 0.30

IB(2) = 1 − p1 = 0.10.

For the parallel structure, the component with the highest reliability (i.e. compo-
nent 1) is seen to be the most important. It is straightforward to show that this
result applies for all parallel structures of independent components. To improve
the reliability of a parallel structure, we should therefore–according to Birnbaum’s
metric–improve the most reliable component. ◻

Examples 7.3 and 7.4 indicate that components in a series structure are generally
more important than components in a parallel structure.

7.4.1 Birnbaum’s Metric in Fault Tree Analysis

The derivation of Birnbaum’s metric of basic events in fault trees is similar to the
derivation for components in RBDs.

Chapter 4 showed that a series structure corresponds to an OR-gate and that
a parallel structure corresponds to an AND-gate in a fault tree. The derivations
for a single AND-gate and a single OR-gate are shown in Examples 7.5 and 7.6,
respectively.

Example 7.5 (Fault tree with a single AND-gate)
Consider a fault tree with a single AND-gate connecting n independent basic events
E1,E2,… ,En with basic event probabilities q1, q2,… , qn (at a given time t). The
TOP event probability is

Q0 =
n∏

j=1
qj = qi

∏
j≠i

qj. (7.11)

Birnbaum’s metric of importance of basic event Ei is

IB(i) =
𝜕Q0

𝜕qi
=
∏
j≠i

qj. (7.12)

Remember that the qjs for j ≠ i are considered to be constants when deriving
Birnbaum’s metric. The basic event with the lowest basic event probability is by
Birnbaum’s metric the most important under an AND-gate. For an AND-gate, the
TOP event (i.e. the output event of the AND-gate) occurs only when all the basic
events under the AND-gate occur. The TOP event is avoided if at least one of the
basic events do not occur. In this case, Birnbaum’s metric tells us to focus on the
basic event with the lowest probability of occurrence. ◻
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Example 7.6 (Fault tree with a single OR-gate)
Consider a fault tree with a single OR-gate connecting n independent basic events
E1,E2,… ,En with basic event probabilities q1, q2,… , qn (at a given time t). The
TOP event probability is

Q0 = 1 −
n∏

j=1
(1 − qj) = 1 − (1 − qi)

∏
j≠i

(1 − qj). (7.13)

Birnbaum’s metric of importance of basic event Ei is

IB(i) =
𝜕Q0

𝜕qi
=
∏
j≠i

(1 − qj). (7.14)

Again, the qjs for j ≠ i are considered to be constants when deriving Birnbaum’s
metric. The basic event with the highest basic event probability is by Birnbaum’s
metric the most important under an OR-gate. For an OR-gate, the TOP event (i.e.
the output event of the OR-gate) occurs if any of the basic events under the OR-gate
occurs. The TOP event is avoided only if none of the basic events occur. In this case,
Birnbaum’s metric tells us to focus on the basic event with the highest probability
of occurrence. ◻

Similar to components in a structure, basic events under an OR-gate are generally
more important – according to Birnbaum’s metric – than basic events under an
AND-gate.

7.4.2 A Second Definition of Birnbaum’s Metric

Section 6.2.4 used pivotal decomposition to show that the system reliability h(p)
may be written as a linear function of pi for i = 1, 2,… ,n when the n components
are independent.

h(p) = pih(1i,p) + (1 − pi)h(0i,p)

= pi[h(1i,p) − h(0i,p)] + h(0i,p), (7.15)

where h(1i,p) is the (conditional) probability that the system is functioning when
it is known that component i is functioning (at time t), and h(0i,p) is the (condi-
tional) probability that the system is functioning when component i is in a failed
state (at time t). From (7.15), Birnbaum’s metric is

IB(i) =
𝜕h(p)
𝜕pi

= h(1i,p) − h(0i,p). (7.16)

Remark 7.2 (Straight line)
Equation (7.15) shows that the system reliability h(p) is a linear function of pi
as long as the reliability of the other components are considered to be constants.
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10

h(0i,p)

h(1i,p)

pi

IB(i)

Figure 7.2 Illustration of Birnbaum’s metric of reliability importance.

The derivative of a straight line, as shown in Figure 7.2, is a constant that may be
calculated by considering the change over the whole interval [0, 1].

IB(i) =
h(1i,p) − h(0i,p)

1
= h(1i,p) − h(0i,p). ◻

The result in (7.16) is derived from Definition 7.3, but many standards and guide-
lines prefer to define Birnbaum’s metric by Eq. (7.16). We therefore formulate a
second definition of Birnbaum’s metric.

Definition 7.4 (Birnbaum’s metric of importance - 2)
Birnbaum’s metric for the importance of (1) component i or (2) basic event Ei at
time t is

(1) IB(i ∣ t) = h[1i,p(t)] − h[0i,p(t))] (7.17)

(2) IB(i ∣ t) = Q0(t ∣ E∗
i ) − Q0(t ∣ Ei). (7.18)

◻

Definition 7.4 shows that Birnbaum’s metric IB(i ∣ t) of component i only
depends on the structure of the system and the reliabilities of the other compo-
nents. IB(i ∣ t) is independent of the actual reliability pi(t) of component i. This
may be regarded as a weakness of Birnbaum’s metric.

The reason why many standards and guidelines prefer Definition 7.4 is twofold:

(1) Birnbaum’s metric is easier to calculate from Definition 7.4, because we do not
need to determine the derivative. Many fault tree programs use this approach.
First, Q0(t ∣ E∗) is calculated by setting qi(t) = 0. Then Q0(t ∣ Ei) is calculated by
setting qi(t) = 1. A simple subtraction then yields IB(i ∣ t). This means that two
separate recalculations of the TOP event probability are required to determine
Birnbaum’s metric for each basic event Ei for i = 1, 2,… ,n.
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(2) The second reason is that Definition 7.4 can be used also for noncoherent
structures and for systems (and fault trees) with dependent components (basic
events).

The calculation of Birnbaum’s metric in Definition 7.4 is briefly illustrated for
a series and a parallel structure in Examples 7.7 and 7.8. Again, the time t is sup-
pressed.

Example 7.7 (Series structure)
Reconsider the series structures in Example 7.3. When component i is function-
ing (i.e. pi = 1), the series structure will function if and only if all the other n − 1
components are functioning.

h(1i,p) =
∏
j≠i

pj.

When component i is not functioning (i.e. pi = 0), the series structure cannot func-
tion and h(0i,p) = 0. Birnbaum’s metric of importance of component i in a series
structure is

IB(i) = h(1i,p) − h(0i,p) =
∏
j≠i

pj.
◻

Example 7.8 (Parallel structure)
Reconsider the series structures in Example 7.4. When component i is functioning
(pi = 1), the system is always functioning, that is h(1i,p) = 1. When component 1
is in a failed state (pi = 0), the system is parallel structure of the other n − 1 com-
ponents, with reliability

h(1i,p) = 1 −
∏
j≠i

(1 − pj).

Birnbaum’s metric of importance of component i in a parallel structure is

IB(i) = h(1i,p) − h(0i,p) = 1 −

[
1 −

∏
j≠i

(1 − pj)

]
=
∏
j≠i

(1 − pj).
◻

The derivation of Birnbaum’s metric is seen to be straightforward for both series
and parallel structures and does not involve finding derivatives.

7.4.3 A Third Definition of Birnbaum’s Metric

Section 6.2.4 shows that h[⋅i,p(t)] = E[𝜙(⋅i,X(t)], such that (7.17) can be written

IB(i ∣ t) = h[1i,p(t)) − h(0i,p(t)]

= E[𝜙(1i,X(t)] − E[𝜙(0i,X(t)]

= E[𝜙(1i,X(t) − 𝜙(0i,X(t)].
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When 𝜙[X(t)] is a coherent structure, (𝜙[1i,X(t)] − 𝜙[0i,X(t)]) can only take on
the values 0 and 1. Birnbaum’s metric (7.6) can therefore be written as

IB(i ∣ t) = Pr(𝜙[1i,X(t)] − 𝜙[0i,X(t)] = 1). (7.19)

This means that IB(i ∣ t) is equal to the probability that component i is critical for
the system at time t (see Definition 7.1). A third definition of Birnbaum’s metric is
hence,

Definition 7.5 (Birnbaum’s metric of importance – 3)
Birnbaum’s metric of importance of component i at time t is equal to the proba-
bility that the system is in such a state at time t that component i is critical for the
system. ◻

Definition 7.5 is not spelled out in the fault tree notation because this definition
is seldom – if ever – used in fault tree analysis. We illustrate the use of the third
definition by the same two examples as for the two first definitions. Again, the
time t is suppressed.

Example 7.9 (Series structure)
Reconsider the series structure of n independent components in Example 7.3. For
component i in the series structure to be critical, all the other n − 1 components
have to function. Birnbaum’s metric is hence

IB(i) = Pr(Component i is critical for the system) =
∏
j≠i

pi,

which is the same result as obtained by the two first definitions of Birnbaum’s
metric. ◻

Example 7.10 (Parallel structure)
Reconsider the parallel structure of n independent components in Example 7.4.
For component i in the parallel structure to be critical, all the other n − 1 compo-
nents must be in a failed state. Birnbaum’s metric is hence

IB(i) = Pr(Component i is critical for the system) =
∏
j≠i

(1 − pi),

which is the same result as obtained by the two first definitions of Birnbaum’s
metric. ◻

For more complicated structures, it may be cumbersome to find all the system
states that make component i critical, and the third approach may not be an effi-
cient approach.
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7.4.4 Computation of Birnbaum’s Metric for Structural Importance

Birnbaum’s metric of reliability importance IB
𝜙
(i) in Definition 7.2 can be deter-

mined from Birnbaum’s metric of importance as follows: Assume that the reliabili-
ties pj(t) = 1∕2 for all j ≠ i. Again, we suppress the time t. The different realizations
of the stochastic vector (⋅i,X) = (X1,… ,Xi−1, ⋅,Xi+1,… ,Xn) all have probability
1∕2n−1 because the state variables are assumed to be independent. Then

IB(t) = E[𝜙(1i,X) − 𝜙(0i,X)] =
∑
(⋅i,x)

[𝜙(1i, x) − (𝜙(0i, x)]Pr[(⋅i,X) = (⋅i, x)]

= 1
2n−1

∑
(⋅i,x)

[𝜙(1i, x) − 𝜙(0i, x)] =
𝜂
𝜙

2n−1 = IB
𝜙
(i), (7.20)

where 𝜂
𝜙
(i) is defined in (7.1).

This means that when all the component reliabilities pj(t) = 1∕2 for j ≠ i, then
Birnbaum’s metric for reliability importance of component i and his metric of
structural importance for component i coincide.

IB
𝜙
(i) = IB(i) |||pj=

1
2
, j≠i

=
𝜕h[p]
𝜕pi

|||pj=
1
2
,j≠i

. (7.21)

Equation (7.21) is hence an easy way to calculate structural importance.

7.4.5 Variants of Birnbaum’s Metric

(1) Assume that component i has a failure rate 𝜆i. In some situations, we may be
interested in studying how much the system reliability will change by making
a small change to the failure rate 𝜆i. The sensitivity of the system reliability
with respect to changes in 𝜆i is obtained by the chain rule.

𝜕h[p(t)]
𝜕𝜆i

=
𝜕h[p(t)]
𝜕pi(t)

𝜕pi(t)
𝜕𝜆i

= IB(i ∣ t)
𝜕pi(t)
𝜕𝜆i

. (7.22)

(2) Consider a system where component i has reliability pi(t) that is a function
of a parameter 𝜃i. The parameter 𝜃i may be the failure rate, the repair rate, or
the test frequency of component i. To improve the system reliability, we may
want to change the parameter 𝜃i (by buying a higher-quality component, or
changing the maintenance strategy). Assume that we are able to determine
the cost of the improvement as a function of 𝜃i, that is ci = c(𝜃i), and that this
function is strictly increasing or decreasing such that we can find its inverse
function. The effect of an extra investment related to component i may now be
measured by

𝜕h[p(t)]
𝜕ci

=
𝜕h[p(t)]

𝜕𝜃i

𝜕𝜃i

𝜕ci
= IB(i ∣ t)

𝜕pi(t)
𝜕𝜃i

𝜕𝜃i

𝜕ci
.
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(3) In a practical reliability study of a complicated system, one of the most
time-consuming tasks is to find adequate estimates for the input parameters
(e.g. failure rates, repair rates). In some cases, we may start with rather
rough estimates, calculate Birnbaum’s metric of importance for the various
components, or the parameter sensitivities, and then spend most time finding
high-quality data for the most important components. Components with a
very low value of Birnbaum’s metric will have a negligible effect on the system
reliability, and extra efforts finding high-quality data for such components
may be considered a waste of time.

7.5 Improvement Potential

Consider a system with reliability h[p(t)] at time t. In some cases, it may be of
interest to know how much the system reliability increases if component i (i =
1, 2,… ,n) is replaced by a perfect component, that is a component with pi(t) = 1.
The difference between h[1i,p(t)] and h[p(t)] is called the improvement potential
of component i and denoted by IIP(i ∣ t).

Definition 7.6 (Improvement potential)
The improvement potential for component i at time t is

IIP(i ∣ t) = h[1i,p(t)] − h[p(t)] for i = 1, 2,… ,n. (7.23)
◻

If the time t is given, and we suppress t in the formulas to simplify the notation,
the improvement potential is written as

IIP(i) = h(1i,p) − h(p).

When the RBD is established, and all the input parameters (i.e. p) are available, the
base case system reliability h(p) is usually calculated. The improvement potential
of component i can be obtained by a simple recalculation of the system reliability,
but this time with pi = 1, which means that component i is perfect and cannot fail.

With fault tree notation, this may be written as

IIP(i ∣ t) = Q0 − Q0(E∗
i ). (7.24)

As for the reliability case above, the base case TOP event probability Q0 is calcu-
lated first. The improvement potential of basic event Ei is obtained by recalculating
the TOP event probability Q0(E∗

i ) under the assumption that basic event Ei cannot
occur.

If, for example, basic event Ei represents the fault of a safety barrier, the improve-
ment potential tells how much the TOP event probability can be reduced by replac-
ing the current barrier with a barrier that is 100% reliable.
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7.5.1 Relation to Birnbaum’s Metric

Birnbaum’s metric of importance, IB(i) = h(1i,p) − h(p), is illustrated by the slope
of the line in Figure 7.2 and can alternatively be expressed as

IB(i) =
h(1i,p) − h(p)

1 − pi
for i = 1, 2,… ,n. (7.25)

The improvement potential of component i can therefore be expressed by Birn-
baum’s metric as

IIP(i) = IB(i) (1 − pi), (7.26)

and Birnbaum’s metric can be expressed by the improvement potential as

IB(i) = IIP(i)
1 − pi

. (7.27)

With fault tree notation, we get

IIP(i) = IB(i) qi, (7.28)

and

IB(i) = IIP(i)
qi

=
Q0 − Q0(E∗

i )
qi

. (7.29)

For very large fault trees, (7.29) is a faster way to find Birnbaum’s metric of basic
event Ei than (7.18) because only one recalculation of the TOP event probability is
required for each basic event.

7.5.2 A Variant of the Improvement Potential

The improvement potential of component i is the difference between the system
reliability with a perfect component i, and the system reliability with the actual
component i. In practice, it is not possible to improve component i to be 100%
reliable. Let us assume that it is possible to improve pi to the new value p(n)

i rep-
resenting, for example the state-of-the-art for this type of components. We may
then calculate the realistic, or credible improvement potential (CIP) of component i,
defined by

ICIP(i) = h(p(n)
i ,p) − h(p), (7.30)

where h(p(n)
i ,p) is the system reliability when component i is replaced with a new

component with reliability p(n)
i . Because the system reliability h(p) is a linear func-

tion of pi and because Birnbaum’s metric is the slope of the line in Figure 7.2, we
can write (7.30) as

ICIP(i) = IB(i) (p(n)
i − pi). (7.31)
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7.6 Criticality Importance

Criticality importance (CR) is a component importance metric that is particu-
larly suitable for prioritizing maintenance tasks. Criticality importance is related
to Birnbaum’s metric. As a motivation for the definition of criticality importance,
recall from Section 7.2 that component i is critical for the system if the other com-
ponents of the system are in such states that the system is functioning if and only if
component i is functioning. To say that component i is critical is thus a statement
about the other components in the system, and not a statement about component i.

Again, we assume that the time t is given and therefore suppress t in the formu-
las. Let C(1i,X) be the event that the system at time t is in a state where component
i is critical. According to (7.19), the probability of this event is equal to Birnbaum’s
metric of component i at time t.

Pr[C(1i,X)] = IB(i). (7.32)

Because the components are assumed to be independent, they fail at distinct
points in time. We have also assumed that system failure will occur at the same
time as one of the component failures. We say that component i causes system
failure when the system fails when component i fails. For component i to cause
system failure at time t, component i must be critical for the system immediately
before time t and then fail at time t.

Because the components of the system are independent, event C(1i,X) is inde-
pendent of the state of component i at time t. The probability that component i is
critical for the system just before time t and then fails at time t, is hence

Pr[C(1i,X) ∩ (Xi = 0)] = IB(i) (1 − pi). (7.33)

Assume that we know that the system failed, that is, 𝜙(X) = 0. The conditional
probability that component i caused system failure when we know that the system
is failed is then

Pr(Component i caused system failure ∣ The system is failed)

= Pr[C(1i,X) ∩ (Xi = 0) ∣ 𝜙(X) = 0]. (7.34)

Because event C(1i,X) ∩ (Xi = 0) implies that 𝜙(X) = 0, we can use (7.33) to
obtain

Pr[C(1i,X) ∩ (Xi = 0)]
Pr(𝜙(X) = 0)

=
IB(i) (1 − pi)

1 − h(p)
. (7.35)

This result is called the criticality importance, and we give the formal definition
at time t as follows:

Definition 7.7 (Criticality importance – 1)
Separate definitions are given for (1) component i and (2) for basic event Ei.
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(1) The criticality importance ICR(i ∣ t) of component i at time t is the probabil-
ity that component i caused system failure at time t, when we know that the
system failed at time t.

ICR(i ∣ t) =
IB(i ∣ t) [1 − pi(t)]

1 − h[p(t)]
. (7.36)

(2) The criticality importance ICR(i ∣ t) of basic event Ei in a fault tree is the proba-
bility that Ei caused the TOP event to occur at time t, when we know that the
TOP event occurs at time t.

ICR(i ∣ t) =
IB(i ∣ t) qi(t)

Q0(t)
. (7.37)

◻

When the component that has caused system failure is repaired, the system will
start functioning again. This is why the criticality importance metric may be used
to prioritize maintenance tasks in complicated systems.

Equation (7.37) shows that Birnbaum’s metric can be expressed by the criticality
importance metric as

IB(i) =
Q0

qi
ICR(i). (7.38)

By using (7.28), IIP(i) = IB(i)qi, the criticality importance metric may be writ-
ten as

ICR(i) =
IB(i) qi

Q0
= IIP(i)

Q0
.

The criticality importance metric may therefore, alternatively, be defined as fol-
lows:

Definition 7.8 (Criticality importance – 2)
Separate definitions are given for (1) component i and (2) for basic event Ei.

(1) The criticality importance ICR(i) of component i is the probability that compo-
nent i caused system failure, when we know that the system fails.

ICR(i) =
h(1i,p) − h(p)

1 − h(p)
. (7.39)

(2) The criticality importance ICR(i) of basic event Ei in a fault tree is the probability
that Ei caused the TOP event to occur, when we know that the TOP event
occurs.

ICR(i) =
Q0 − Q0(E∗

i )
Q0

. (7.40)
◻
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Definition 7.8 can be applied to fault trees with dependent basic events. If we are
able to calculate the TOP event probability, we are also able to calculate the critical-
ity importance. The second benefit of this definition is that it is easier to calculate
because only one extra recalculation of the TOP event probability is required for
each basic event.

By combining (7.6) and (7.37), the criticality importance ICR(i ∣ t) of component
i may be written as

ICR(i) =
𝜕Q0

𝜕qi

qi

Q0
=

𝜕Q0∕Q0

𝜕qi∕qi
.

This may also be written as
𝜕Q0

Q0
= ICR(i)

𝜕qi

qi
. (7.41)

Equation (7.38) helps to answer questions such as “If we make a small improve-
ment (e.g. 5%) to the basic event probability qi(t), what will the (relative) effect on
the TOP event probability Q0(t) be?”

7.7 Fussell–Vesely’s Metric

Fussell and Vesely suggested the following metric for the importance of compo-
nent i (see Fussell, 1975):

Definition 7.9 (Fussell–Vesely’s metric – 1)
Fussell–Vesely’s metric of importance, IFV(i ∣ t) is the probability that at least one
minimal cut set that contains component i, is failed at time t, given that the system
is failed at time t. ◻

An alternative definition is provided later in this section. We say that a minimal
cut set is failed when all the basic events in the minimal cut set occur – or, more
formally, when the associated minimal cut parallel structure is failed.

Fussell–Vesely’s metric takes into account the fact that a component may con-
tribute to a system failure without being critical. The component contributes to a
system failure when a minimal cut set, containing the component, is failed.

7.7.1 Derivation of Formulas for Fussell–Vesely’s Metric

Consider a fault tree with n distinct basic events and k minimal cut sets
K1,K2,… ,Kk. Let Fj denote that minimal cut set j is failed, for j = 1, 2,… , k.
Because the basic events are independent, the probability of Fj is

Q̌j = Pr(Fj) =
∏
𝓁∈Kj

q𝓁 . (7.42)
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For any coherent fault tree, basic event Ei is a member of at least one minimal cut
set. The number ni of minimal cut sets where Ei is a member may range from 1 up
to n. Let Ki

j be such a minimal cut set and let Fi
j denote that minimal cut set Ki

j is
failed. The probability of this event is

Q̌i
j = Pr(Fi

j ) =
∏
𝓁∈Ki

j

q𝓁 . (7.43)

For the TOP event to occur, at least one of the minimal cut sets must fail. The TOP
event (i.e. system fault) can therefore be written as TOP =

⋃k
j=1 Fj.

With this notation, Fussell–Vesely’s metric may be written as the conditional
probability

IFV(i) = Pr

( ni⋃
𝜈=1

Fi
𝜈
∣

k⋃
j=1

Fj

)
=

Pr
(⋃ni

𝜈=1 Fi
𝜈

)
Pr

(⋃k
j=1 Fj

) =
Pr

(⋃ni
𝜈=1 Fi

𝜈

)
Q0

, (7.44)

because a failed minimal cut set will always lead to the TOP event.
We can now use the upper bound approximation (6.93) to determine both the

nominator and the denominator in (7.44).

Pr

( ni⋃
j=1

Fi
j

)
≲ 1 −

ni∏
j=1

(1 − Q̌i
j),

where we have replaced the counting variable 𝜈 with j.
Fussell–Vesely’s metric for the importance of basic event Ei can therefore be

calculated as

IFV(i) ≈
1 −

∏ni
j=1(1 − Q̌i

j)

Q0
. (7.45)

A slightly more crude approximation is 1 −
∏ni

j=1(1 − Q̌i
j) ≲

∑ni
j=1 Q̌i

j. With this
approximation, Fussell–Vesely’s metric may be calculated as

IFV(i) ≈

∑ni
j=1 Q̌i

j

Q0
. (7.46)

As shown in Chapter 4, any coherent fault tree can be drawn with an OR-gate
under the TOP event, and where the minimal cut sets are inputs to this OR-gate.
Assume that we delete all the minimal cut sets that do not contain basic event Ei
and remain with the ni minimal cut sets where Ei is a member. Further, let Qi

0
be the TOP event probability of this modified fault tree. Qi

0 may then be approxi-
mated by

Qi
0 ≲ 1 −

ni∏
j=1

(1 − Q̌i
j) ≲

ni∑
j=1

Q̌i
j.
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Here, Qi
0 can be interpreted as the contribution to the TOP event probability from

those minimal cut sets, where basic event Ei is a member, and we may express
Fussell–Vesely’s metric as

IFV(i) ≈
Qi

0

Q0
, (7.47)

that is, the relative contribution to the TOP event probability from those minimal
cut sets where basic event Ei is a member.

For complicated systems, Fussell–Vesely’s metric is considerably faster and
easier to calculate (even by hand) than Birnbaum’s metric and the criticality
importance metric. When Fussell–Vesely’s metric is to be calculated by hand,
formula (7.46) is normally used. The formula is simple to use and at the same
time gives a good approximation when the basic event probabilities are small.

Example 7.11 (Bridge structure)
Consider the bridge structure in Figure 6.18. As shown in Example 4.5, the min-
imal cut sets of this structure are K1 = {1, 2},K2 = {4, 5},K3 = {1, 3, 5} and K4 =
{2, 3, 4}. Assume the following component unreliabilities:

Comp. i pi qi = 1 − pi

1 0.99 0.01
2 0.98 0.02
3 0.95 0.05
4 0.97 0.03
5 0.98 0.02

The minimal cuts fail with the following probabilities

Q̌1 = q1q2 = 0.01 ⋅ 0.02 = 2 × 10−4

Q̌2 = q4q5 = 0.03 ⋅ 0.02 = 6 × 10−4

Q̌3 = q1q3q5 = 0.01 ⋅ 0.05 ⋅ 0.02 = 1 × 10−5

Q̌4 = q2q3q4 = 0.02 ⋅ 0.05 ⋅ 0.03 = 3 × 10−5

If we draw a corresponding fault tree with TOP event “System failed,” the TOP
event probability is

Q0 ≈ 1 −
4∏

j=1
(1 − Q̌j) = 8.4 × 10−4

.



�

� �

�

320 7 Reliability Importance Metrics

For this example, the cruder approximations Q0 ≈
∑4

j=1 Q̌j is very accurate. If
not rounded off, the difference between the two approximations is approximately
1.52 × 10−7.

To find Fussell–Vesely’s metric of, for example basic event E2 (i.e. component 2),
observe that component 2 is a member of the two minimal cut sets K1 and K4. The
contribution to the TOP event probability from these two cut sets is

Q2
0 ≈ 1 − (1−Q̌1)(1−Q̌4) = 2.3 × 10−4

.

The FV importance of component 2 is therefore

IFV(2) ≈
1 − (1−Q̌1)(1−Q̌4)

Q0
≈ 0.274. (7.48)

Fussell–Vesely’s metric for the other basic events (components) can be deter-
mined in the same way to obtain:

Comp. i I FV(i)

1 0.250
2 0.274
3 0.048
4 0.750
5 0.726

Component 3 has a much lower Fussell–Vesely importance than the other four
components. This is to be expected because component 3 is member of minimal
cut sets of order 3, whereas the other components are also members of a minimal
cut set of order 2. Generally, we find that components (and basic events) that are
members of minimal cut sets of the lowest order are the most important. ◻

7.7.2 Relationship to Other Metrics for Importance

In Eq. (7.46), Q̌i
j is the probability that minimal cut set j, which contains component

i, is failed. From (7.42), we have that Q̌i
j =

∏
𝓁∈Ki

j
q𝓁 , where we can put qi(t) outside

the product and get

Q̌i
j = qi

⎛⎜⎜⎝
∏

𝓁∈Ki
j ,𝓁≠i

q𝓁

⎞⎟⎟⎠
= qi Q̌i−

j . (7.49)

Here, Q̌i−
j is the probability that minimal cut set j – that contains basic event

Ei (component i), but where basic event Ei is removed – is failed. We may now
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rewrite (7.46) and get

IFV(i) ≈
qi

Q0

ni∑
j=1

Q̌i−
j . (7.50)

The TOP event probability Q0(t) may, according to (6.95) be approximated by

Q0 ≈
k∑

j=1
Q̌j. (7.51)

Equation (7.47) may be used to find an approximation to Birnbaum’s metric for
basic event Ei. We therefore have to take the partial derivative of Q0 with respect
to qi. The partial derivative of Q̌j is zero for all minimal cut sets, where Ei is not a
member, and the partial derivative of a Q̌i

j where i is a member is from (7.45)

IB(i) =
𝜕Q0

𝜕qi
≈

ni∑
j=1

Q̌i−
j .

The criticality importance metric is then given by

ICR(i) =
qi

Q0
IB(i) ≈

qi

Q0(t)

ni∑
j=1

Q̌i−
j . (7.52)

By comparing with (7.50), we see that

IFV(i) ≈ ICR(i), (7.53)

for systems where the approximation (7.51) is adequate. This means that the fol-
lowing, alternative definition of Fussell–Vesely’s metric may be used.

Definition 7.10 (Fussell–Vesely’s metric – 2)
Fussell–Vesely’s metric of importance, IFV(i) is approximately given by

IFV(i) ≈
Q0 − Q0(E∗

i )
Q0

.

◻

This second definition can be used also for fault trees with dependent basic events.
Birnbaum’s metric may be (approximately) expressed by Fussel–Vesely’s metric

as

IB(i) ≈
qi

Q0
IFV(i). (7.54)

This way of determining Birnbaum’s metric is listed in several guidelines.

Remark 7.3 Consider a system with minimal cut sets K1,K2,… ,Kk. A necessary
criterion for component i to be critical for the system is that all the components,



�

� �

�

322 7 Reliability Importance Metrics

except for component i, in at least one minimal cut set containing component i
are in a failed state. This is not a sufficient criterion for component i to be crit-
ical because we have to require the remaining cut sets be functioning. This fact
highlights the similarity and the difference between the definitions of criticality
importance ICR(i), and Fussell–Vesely’s metric IFV(i). We realize that we always
have that

ICR(i) ≲ IFV(i). (7.55)
◻

Example 7.12 (Example 7.11 cont.)
Reconsider the bridge structure in Example 7.11. The TOP event probability may
be expressed as

Q0 = q1q2 + q4q5 + q1q3q5 + q2q3q4 − q1q2q4q5 − q1q2q3q5

− q1q2q3q4 − q1q3q4q5 − q2q3q4q5 + 2q1q2q3q4q5. (7.56)

With the same input data as in Example 7.12, Q0 = 8.38 × 10−4, that is slightly
smaller than obtained by the upper bound approximation.

Birnbaum’s metric is obtained by taking the derivative, for example,

IB(1) =
𝜕Q0

𝜕q1
= q2 + q3q5 − q2q4q5 − q2q3q5 − q2q3q4 − q3q4q5 + 2q2q3q4q5.

Similar for the other basic events. The criticality importance of basic event Ei is
calculated as

ICR(i) =
qi

Q0
IB(i).

By including the Fussell–Vesely metric from Example 7.11 the following results
are obtained:

Component i I B(i) I CR(i) I VF(i)

1 0.020 0.249 0.250
2 0.011 0.273 0.274
3 7.72 × 10−4 0.046 0.048
4 0.020 0.750 0.750
5 0.030 0.726 0.726

Observe that Fussell–Vesely’s metric is a good approximation to criticality
importance for this example. ◻
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7.8 Differential Importance Metric

The differential importance metric (DIM) is proposed by Borgonovo and
Apostolakis (2001). The DIM of basic event Ei is denoted DIM(i). The idea of
DIM(i) is to compare a small change (Δqi) of the basic event probability qi with
the change of the TOP event probability Q0. DIM(i) is defined as follows:

Definition 7.11 (Differential importance metric)
The DIM is given by

DIM(i) =

𝜕Q0
𝜕qi

Δqi

∑n
j=1

𝜕Q0
𝜕qj

Δqj

. (7.57)

◻

The numerical value of DIM(i) depends on how the changes Δqj, for
j = 1, 2,… ,n are selected. Borgonovo and Apostolakis (2001) propose two
different options:

(1) Δqj = Δqk for all j, k. This is the simplest possible option and may be accept-
able when all the qjs are of the same order of magnitude.

(2)
Δqj

qj
=

Δqk

qk
for all j, k. In this option, all the basic event probabilities are

changed with the same percentage. This option is more acceptable when the
qjs are very different, for example when one basic event represent an operator
error with probability 0.10 and another basic event is the fault of a safety item
with basic event probability 10−5.

7.8.1 Option 1

For option 1, Δqj has the same value for all j = 1, 2,… ,n and can therefore be
cancelled from the expression, such that DIM1(i) becomes

DIM1(i) =

𝜕Q0
𝜕qi

Δqi

∑n
j=1

𝜕Q0
𝜕qj

Δqj

=

𝜕Q0
𝜕qi∑n

j=1
𝜕Q0
𝜕qj

.

Because Birnbaum’s metric IB(j) was defined as

IB(j) =
𝜕Q0

𝜕qj
for j = 1, 2,… ,n.

DIM1(j) can be expressed as a function of Birnbaum’s metric for the n basic events.

DIM1(i) =
IB(i)∑n
j=1 IB(j)

. (7.58)
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DIM1 will therefore give the same importance ranking of the basic event as Birn-
baum’s metric, but the numerical value of DIM1 will be relative to the sum of
Birnbaum’s metric for all the n basic events and therefore add up to 1.

n∑
i=1

DIM1(i) = 1.

7.8.2 Option 2

For option 2, Δqj∕qj has the same value for all j = 1, 2,… ,n, and we can therefore
cancel all factors Δqj∕qj. If we also divide by Q0, DIM2(i) becomes

DIM2(i) =

𝜕Q0
𝜕qi

Δqi

∑n
j=1

𝜕Q0
𝜕qj

Δqj

=

𝜕Q0
𝜕qi

qi

∑n
j=1

𝜕Q0
𝜕qj

qj

=

𝜕Q0
𝜕qi

qi
Q0∑n

j=1
𝜕Q0
𝜕qj

qj
Q0

.

Because the criticality importance metric ICR(i) can be expressed as

ICR(j) =
𝜕Q0

𝜕qj

qj

Q0
.

DIM2(j) can be expressed as a function of the criticality importance of the various
basic events.

DIM2(j) =
ICR(i)∑n

j=1 ICR(j)
. (7.59)

DIM2 gives the same importance ranking as the criticality importance metric, but
the numerical value of DIM2 will be relative to the sum of the criticality importance
for all the n basic events and therefore add up to 1.

n∑
i=1

DIM2(i) = 1.

Because ICR(i) ≈ IFV(i), we also have that

DIM2(j) ≈
IFV(i)∑n

j=1 IFV(j)
, (7.60)

which is easier to calculate than Eq. (7.59).
A main advantage of DIM is that it is additive, such that DIM of a group of several

basic events can be determined by adding the individual DIMs. This means that
we can find the DIM of a larger module (e.g. equipment, subsystem) by summing
the DIM of the components (or basic events) that constitute the module.

Example 7.13 (Simple structure)
Consider the structure of three independent components that is shown by the RBD
in Figure 7.3. Component 1 has reliability p1 = 0.99, component 2 has reliability
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Component 1
failed

E1 Component 2
failed

E2

Component 3
failed

E3

2

1

3

System failed

Figure 7.3 Structure with three components: RBD and associated fault tree
representation.

p2 = 0.95, and component 3 has reliability p3 = 0.93. The associated fault tree,
shown in Figure 7.3, has three basic events E1, E2, and E3 with basic event proba-
bilities q1 = 0.01, q2 = 0.05, and q3 = 0.07.

The TOP event probability of the fault tree is

Q0 = q1 + q2q3 − q1q2q3 = 0.0135.

Birnbaum’s metric for the two basic events (and components) are

IB(1) =
𝜕Q0

𝜕q1
= 1 − q2q3 = 0.9965

IB(2) =
𝜕Q0

𝜕q2
= q3 − q1q3 = 0.0693

IB(3) =
𝜕Q0

𝜕q3
= q2 − q1q2 = 0.0495.

DIM1 for the two basic events (and components) are

DIM1(1) =
IB(1)

IB(1) + IB(2) + IB(3)
= 0.8935 = 89.35%

DIM1(2) =
IB(2)

IB(1) + IB(2) + IB(3)
= 0.0621 = 6.21%

DIM1(3) =
IB(3)

IB(1) + IB(2) + IB(3)
= 0.0444 = 4.44%,

such that DIM1(1) + DIM1(2) + DIM1(3) = 1.
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The criticality importance of the basic events (and components) are

ICR(1) =
𝜕Q0

𝜕q1

q1

Q0
= 0.7401

ICR(2) =
𝜕Q0

𝜕q2

q2

Q0
= 0.2573

ICR(3) =
𝜕Q0

𝜕q3

q3

Q0
= 0.2573.

DIM2 for the basic events (and components) are

DIM2(1) =
ICR(1)

ICR(1) + ICR(2) + ICR(3)
= 0.5898 = 58.98%

DIM2(2) =
ICR(2)

ICR(1) + ICR(2) + ICR(3)
= 0.2051 = 20.51%

DIM2(3) =
ICR(3)

ICR(1) + ICR(2) + ICR(3)
= 0.2051 = 20.51%,

such that DIM2(1) + DIM2(2) + DIM2(3) = 1. ◻

The reader can refer to Do et al. (2008, 2010) for further work on the DIM in the
context of dynamic systems including inter-component, functional dependencies,
or more generally, systems described by Markov models at steady state.

7.9 Importance Metrics for Safety Features

In this section, we introduce two importance metrics for a safety feature in a sys-
tem. Safety feature i is assumed to be represented as an event Ei in a fault tree. The
event Ei may be a basic event or an intermediate event. In the latter case, Ei may
be the TOP event of a subfault tree and may sometimes represent a complicated
safety system. The interpretation of the term “safety feature” is wide. It may be a
technical item or a human action, in fact, every fault tree event that represent a
protective feature.

The importance metrics are

• Risk achievement worth (RAW)
• Risk reduction worth (RRW)

The two metrics were introduced for the nuclear power industry (e.g. see
NUREG/CR-3385, 1986) and are still most used in nuclear applications. The main
purpose of these two importance metrics is to support decision-making related to
the following questions:
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• What is the risk reduction obtained by safety feature i?
• How much can the risk be reduced by installing safety feature i?
• Which safety feature (among several candidates) should be installed – and

where?
• Is it sufficiently safe to remove or by-pass safety feature i when the system is in

operation?

The metrics are in principle time-dependent, but we suppress the reference
to a time t to simplify the notation. We only present the metrics with fault tree
terminology.

The term risk is usually defined as a function of the consequence of an accident
scenario and the probability or frequency of the accident scenario. In this case,
the consequence is disregarded (or assumed to be the same in all cases), and the
risk is measured as the probability (or frequency) of the TOP event. As used in this
section, risk reduction means reducing the TOP event probability (or frequency).

7.9.1 Risk Achievement Worth

The importance metric risk achievement worth (RAW) is defined as (e.g. see Cheok
et al. 1998).

Definition 7.12 (Risk achievement worth)
The RAW of basic event i is defined as the ratio

IRAW(i) =
Q0(Ei)

Q0
for i = 1, 2,… ,n, (7.61)

◻

where Q0(Ei) is the TOP event probability when we know that basic event Ei occurs
(with probability 1). This may, for example, represent that we know that a safety
feature i has been taken out of service or that it fails.

If we assume that a safety feature always have a positive effect on the system’s
safety, we must have Q0(Ei) ≥ Q0. Consequently, IRAW(i) ≥ 1 for all coherent fault
trees.2

We introduce the term risk achievement for basic event Ei as

RA(i) = Q0(Ei) − Q0. (7.62)

RA(i) tells how much the risk (i.e. the TOP event probability) can be reduced by
installing safety feature i (with its actual reliability).

2 In the risk literature, the RAW is often denoted RAW or RAW(i) instead of IRAW(i).
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Equation (7.61) can be rewritten as

IRAW(i) − 1 =
Q0(Ei) − Q0

Q0
= RA(i)

Q0
,

such that

RA(i) = [IRAW(i) − 1]Q0. (7.63)

Example 7.14 (A numerical example)
Assume that the RAW importance of safety feature i is found to be IRAW(i) = 1.25.
This means that the risk achievement of i is from (7.58)

RA(i) = 0.25 Q0.

This means that by installing the safety feature i the TOP event probability is
reduced by 25%. ◻

Example 7.15 (Barrier against demands)
A safety feature i is considered to be installed in a process system as barrier
against a specific type of demands that occur at random with frequency 𝜈0.
Further, assume that an accident occurs if the TOP event is present when a
demand occurs. The accident frequency is therefore 𝜈acc = 𝜈0 Q0 (see Section 9.2
for a detailed explanation).

Let Q0(Ei) be the TOP event probability without the safety feature i, and Q0 the
TOP event probability with the safety feature (with its actual reliability). The risk
achievement of installing safety feature i is Q0(Ei) − Q0. The accident frequency is
now

With the safety feature i ∶ 𝜈
+
acc = 𝜈0 Q0

Without the safety feature i ∶ 𝜈
−
acc = 𝜈0 Q(Ei).

This means that

𝜈
−
acc =

Q0(Ei)
Q0

𝜈
+
acc = IRAW(i) 𝜈+acc. (7.64)

If, for example, the RAW importance of safety feature i is found to be
IRAW(i) = 1.25, the accident frequency without the safety feature in place (e.g.
that it is removed for maintenance) will increase to 𝜈

−
acc = 1.25𝜈+acc, or 25% higher

that it would be with the safety feature in place.
In nuclear applications, one is mainly concerned with the core damage frequency

(CDF). The CDF is the accident frequency 𝜈acc for core damage accidents.
If a safety feature i is disconnected from the main safety system, the CDF

becomes

CDFi = IRAW(i) CDF0,



�

� �

�

7.9 Importance Metrics for Safety Features 329

where CDF0 is the base core damage frequency, and CDFi is the core damage fre-
quency when safety feature i is not present. ◻

7.9.2 Risk Reduction Worth

The importance metric risk reduction worth (RRW) is defined as follows:

Definition 7.13 (Risk reduction worth)
The RRW of basic event Ei is defined as the ratio

IRRW(i) =
Q0

Q0(E∗
i )

for i = 1, 2,… ,n. (7.65)
◻

If we assume that the safety feature has a positive effect on the system’s safety, Q0 ≥

Q0(E∗
i ) and consequently that IRRW(i) ≥ 1. Recall that Q0(E∗

i ) is the conditional
TOP event probability when safety feature i is available and 100% reliable (i.e. will
always function as intended). Also recall that Q0 is the TOP event probability when
safety feature i is installed with its actual reliability. Two small examples may help
explain the conditional probability:

• The current safety feature is replaced with a safety feature that can never fail.
• The event Ei is related to an operator error or some external events that are

removed from the system by a system modification that avoids the operator
intervention or protects the system from external stresses.

We introduce the term risk reduction for basic event Ei as

RR(i) = Q0 − Q0(E∗
i ). (7.66)

The risk reduction, RR(i), tells how much the TOP event probability may be
reduced by replacing the current safety feature i by a perfect safety function with
the same functionality, or by designing out the problem that the safety feature is
protecting against.

Equation (7.65) can be rewritten as

IRRW(i) − 1 =
Q0 − Q0(E∗

i )
Q0(E∗

i )
= RR(i)

Q0(E∗
i )
,

such that

RR(i) = (IRRW(i) − 1)Q0(E∗
i ). (7.67)

Example 7.16 (A numerical example)
Assume that the RRW importance of safety feature i is found to be IRRW(i) = 1.25.
This means that the risk reduction of i is

RR(i) = 0.25 Q0(E∗
i ).
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This means that by installing safety feature i (with its actual reliability) provides a
risk reduction that is 25% of the TOP even probability obtained with a 100% reliable
safety feature (with the same functionality). ◻

7.9.3 Relationship with the Improvement Potential

Assume that the systems are considered at a given time t, but suppress t in the
formulas to simplify the notation.

Recall that the improvement potential was defined as

IIP(i) = Q0 − Q0(E∗
i ), (7.68)

which is the same definition as for RRW. Mathematically, the IP and the RRW are
identical

IIP(i) = IRRW(i), (7.69)

but the two metrics are used for different purposes. Whereas IIP(i) is mainly used in
relation to avoiding potential component failures in the design phase of a system,
the IRRW(i) is used as support for decision-making related to installation or removal
of safety features.

Example 7.17 Reconsider the process safety system in Example 7.15 with relia-
bility h(p). Let us assume that we contemplate improving component i and would
like to know the maximum potential improvement, by replacing component i with
a perfect component with reliability pi = 1. The (conditional) system reliability will
then be 1 − h(1i,p), which we can use (7.65) to express as

1 − h(1i,p) =
1 − h(p)
IRRW(i)

.

If we, as an example, find that IRRW(i) = 2, then the system unreliability we would
obtain by replacing component i with a perfect component would be 50% of the
initial unreliability 1 − h(p). ◻

Remark 7.4 We observe from (7.52) that the criticality importance ICR(i ∣ t)
is close to a linear function of qi(t), at least for systems with a high level of
redundancy. This is because Birnbaum’s metric is not a function of qi(t) and
because qi(t) will have a rather low influence on Q0(t) in highly redundant
systems. The linearity is, however, not adequate for very simple systems with two
components. ◻
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7.10 Barlow–Proschan’s Metric

Barlow and Proschan (1975) observe that Birnbaum’s metric gives the importance
at fixed points of time, leaving for the analyst to determine which points are impor-
tant. To compensate for this shortcoming they proposed a new metric, which is
now known as Barlow–Proschan’s metric for the importance IBP(i) of component
i. Before defining Barlow and Proschan’s metric, we consider some intermediate
results.

Let S∗(t, t + dt) be the event that a system failure occurs in (t, t + dt) and let
B∗

i (t, t + dt) be the event that a failure of component i occurs in (t, t + dt). If com-
ponent i is critical for the system at time t, the two events will occur at the same
time, and component i is said to cause the system failure.

The conditional probability that the system failure is caused by component i,
given that a system failure occurs in (t, t + dt) is

Pr[B∗
i (t, t + dt) ∣ S∗(t, t + dt)] =

Pr[B∗
i (t, t + Δt) ∩ S∗(t, t + dt)]

Pr[S∗(t, t + dt)]
. (7.70)

According to the third definition of Birnbaum’s importance metric, IB(i ∣ t) is the
probability that component i is critical at time t. When we know that the system
has failed in (t, t + dt), that is, the event S∗(t, t + dt)has occurred, the simultaneous
occurrence of B∗

i (t, t + dt) is the same as the event “component i caused system
failure at time t.”

When component i is nonrepairable, the probability that component i causes
system failure at time t must be IB(i ∣ t)fi(t)dt, where fi(t) is the probability density
function for the time-to-failure of component i.

Because any system failure must be caused by (i.e. coincide with) failure of one
of the components, the probability of S∗(t, t + dt) can be written as

Pr[S∗(t, t + dt)] =
n∑

i=1
IB(i ∣ t)f (t) dt. (7.71)

The conditional probability (7.70) can hence be written as

IB(i ∣ t)f (t) dt∑n
i=1 IB(i ∣ t)f (t) dt

. (7.72)

The conditional probability that the system failure is caused by component i in
the time interval (0, t0) is

∫
t0

0 IB(i ∣ t)f (t) dt∑n
i=1 ∫

t0
0 IB(i ∣ t)f (t) dt

. (7.73)
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Letting t0 → ∞, the denominator tends to one because any system must fail sooner
or later. We are now ready to define Barlow and Proschan’s metric:

Definition 7.14 (Barlow–Proschan’s metric for a nonrepairable
component)
Barlow–Proschan’s metric of importance for a nonrepairable component i is

IBP(i) =
∫

∞

0
IB(i ∣ t)fi(t) dt for i = 1, 2,… ,n. (7.74)

◻

Similarly, when component i is repairable, the probability that component i fails
in (t, t + dt) is 𝑤i(t)dt, where 𝑤i(t) is the ROCOF of component i at time t. Barlow
and Proschan’s metric of importance of the repairable component i is hence:

Definition 7.15 (Barlow–Proschan’s metric for a repairable component)
Barlow–Proschan’s metric of importance for a repairable component i is

IBP(i) =
∫

∞

0
IB(i ∣ t) 𝑤i(t) dt. (7.75)

◻

Observe that it is obvious from (7.72) that
n∑

i=1
IBP(i) = 1.

This means that IBP(i) is the percentage of system failures that are caused by com-
ponent i (i.e. among the failures that occur).

Example 7.18 (Series structure)
Reconsider the series structure of n independent and nonrepairable components
in Example 7.3. Assume that all components have constant failure rates 𝜆i, for
i = 1, 2,… ,n. Birnbaum’s metric of component i is from Example 7.9

IB(i ∣ t) =
∏
j≠i

e−𝜆j t.

The probability density for the time-to-failure of component i is fi(t) = 𝜆ie−𝜆i t and
Barlow–Proschan’s metric of component i is

IBP(i) =
∫

∞

0
IB(i ∣ t)fi(t) dt =

∫

∞

0

∏
j≠i

e−𝜆j t𝜆ie−𝜆i t dt = 𝜆i ∫

∞

0

n∏
j=1

e−𝜆j t dt

= 𝜆i ∫

∞

0
e−

∑n
j=1 𝜆j t dt =

𝜆i∑n
j=1 𝜆j

.
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This means that Barlow–Proschan’s metric is the percentage of system failures
that are caused by component i for the series structure. Observe that when all
the components have the same failure rate 𝜆, Barlow–Proschan’s metric of each
component is 1∕n. ◻

Example 7.19 (Parallel structure)
Reconsider the parallel structure of n independent and nonrepairable components
in Example 7.4. Assume that all components have constant failure rates 𝜆i, for
i = 1, 2,… ,n. Birnbaum’s metric of component i is from Example 7.10.

IB(i ∣ t) =
∏
j≠i

(1 − e−𝜆j t).

The probability density for the time-to-failure of component i is fi(t) = 𝜆ie−𝜆i t and
Barlow–Proschan’s metric of component i is

IBP(i) =
∫

∞

0
IB(i ∣ t)fi(t) dt =

∫

∞

0

∏
j≠i

(1 − e−𝜆j t)𝜆ie−𝜆i t dt.

To solve this integral is time-consuming, and we do not come up with any nice and
closed formula for IBP(i). ◻

The problem of finding a nice and closed formula for the parallel structure in
Example 7.19 also applies to most structures that are not a purely series structure
and this makes Barlow–Proschan’s metric of limited interest. The computation of
Barlow–Proschan’s metric is discussed by Eryilmaz (2016) for systems of identical
components.

7.11 Problems

7.1 Show that a 2oo3:G structure of independent components with component
reliabilities p1 ≥ p2 ≥ p3 fulfills:
(a) if p1 ≥ 0.5, IB(1) ≥ IB(2) ≥ IB(3)
(b) if p1 ≤ 0.5, IB(1) ≤ IB(2) ≤ IB(3)

7.2 Let pS(t) = 1 − Q0(t) be the system reliability, and let pi(t) = 1 − qi(t) be the
reliability of component i, for i = 1, 2,… ,n. Verify that

dpS(t)
dpi(t)

=
dQ0(t)
dqi(t)

.

7.3 Consider the nonrepairable structure in Figure 7.4
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2
4 51
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3 7
8

11109

12

Figure 7.4 RBD (Problem 7.3).

(a) Show that the corresponding structure function may be written as:

𝜙(X) = [X1(X2 + X3 − X2X3)X4X5(X6 + X7 − X6X7)X8

+ X9X10X11 − X1(X2 + X3 − X2X3)X4X5(X6 + X7 − X6X7)

X8X9X10X11]X12.

(b) Determine the system reliability when the different component reliabil-
ities are given as follows:

p1 = 0.970 p5 = 0.920 p9 = 0.910

p2 = 0.960 p6 = 0.950 p10 = 0.930

p3 = 0.960 p7 = 0.959 p11 = 0.940

p4 = 0.940 p8 = 0.900 p12 = 0.990.

(c) Determine the reliability importance of component 8 by using
Birnbaum’s metric and the criticality importance metric.

(d) Similarly, determine the reliability importance of component 11, using
the same metrics as in (c). Compare and comment on the results
obtained.

7.4 Find Birnbaum’s reliability importance and structural importance of compo-
nent 7 of the structure in Figure 7.4.

7.5 Find the reliability importance for component 7 of the structure in Figure 7.4
by using Fussell–Vesely’s metric.

7.6 Consider the nonrepairable structure in Figure 7.5
(a) Determine the structure function.

2

4

51

63

Figure 7.5 RBD
(Problem 7.6).
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(b) Assume the components to be independent and determine the reliabil-
ity importance according to Birnbaum’s metric for components 2 and 4
when pi = 0.99 for i = 1, 2,… , 6.

7.7 Consider the nonrepairable structure in Figure 7.5. Assume that the six com-
ponents are independent, and let the reliability at time t of component i be
pi(t), for i = 1, 2,… , 6.
(a) Determine Birnbaum’s metric of importance of component 3.
(b) Determine the Criticality importance of component 3.
(c) Determine Fussell–Vesely’s metric of component 3.
(d) Select realistic values for the component reliabilities and discuss the dif-

ference between criticality importance and Fussell–Vesely’s metric for
this particular system. Show that the relation (7.55) is fulfilled.

7.8 Let (C, 𝜙) be a coherent structure of n independent components with state
variables X1,X2,… ,Xn. Consider the following modular decomposition of
(C, 𝜙):
(i) C =

⋃r
j=1 Aj where Ai ∩ Aj = ∅ for i ≠ j

(ii) 𝜙(x) = 𝜔(𝜒1(xA1 ), 𝜒2(xA2 ),… , 𝜒r(xAr ))
Assume that k ∈ Aj and show that
● the Birnbaum metric of importance of component k is equal to the prod-

uct of
● the Birnbaum metric of importance of module j relative to the system, and
● the Birnbaum metric of importance of component k relative to module j.

Is the same relation valid for the other metrics?
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8

Dependent Failures

8.1 Introduction

Chapter 6 deals with systems where n components fail independent of each
other, but this assumption of independence is not always realistic. The current
chapter starts with a brief repetition of the definitions of statistical independence,
dependence, and correlation. Two main types of dependent failures have a special
relevance in system reliability: cascading failures and common-cause failures
(CCFs). Of these, cascading failures are treated very briefly, whereas CCFs
are given a more thorough treatment. The most commonly used models for
CCFs are presented through examples and discussed.

8.1.1 Dependent Events and Variables

Two events E1 and E2 are (statistically) independent if

Pr(E1 ∣ E2) = Pr(E1) and Pr(E2 ∣ E1) = Pr(E2),

which means that

Pr(E1 ∩ E2) = Pr(E1)Pr(E2). (8.1)

Independence implies, in terms of conditional probabilities, that the probability
of E1 is not changed by knowing that event E2 has occurred, and vice versa.

Consider two independent components 1 and 2 and let E1 denote that compo-
nent 1 is functioning and E2 denote that component 2 is functioning. Further, let
E∗

i denote that component i is in a failed state, for i = 1, 2. When E1 and E2 are inde-
pendent, E1 and E∗

2 are also independent.1 This means that if component 2 fails
(E∗

2), the state of component 1 is not at all influenced by this failure. In practice,
this assumption may not always be realistic.

1 The proof is left to the reader as Problem 8.2.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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When two components are not independent, they are dependent, and the depen-
dence can take many different forms. In general, we say that two events E1 and E2
are dependent when Pr(E1 ∩ E2) ≠ Pr(E1)Pr(E2), which means that

Pr(E1 ∣ E2) ≠ Pr(E1) and Pr(E2 ∣ E1) ≠ Pr(E2).

When Pr(E2 ∣ E1) ≠ Pr(E2), two cases may be distinguished:

• Pr(E2 ∣ E1) > Pr(E2). This means that the probability of E2 increases when E1
has occurred, and we say that E2 is positively dependent of E1.

• Pr(E2 ∣ E1) < Pr(E2). This means that the probability of E2 is reduced when E1
has occurred, and we say that E2 is negatively dependent on E1.

As for events, we say that two (discrete) random variables X1 and X2 are inde-
pendent when

Pr(X1 = x1 ∩ X2 = x2) = Pr(X1 = x1)Pr(X2 = x2) for all x1 and x2,

and X1 and X2 are dependent if

Pr(X1 = x1 ∩ X2 = x2) ≠ Pr(X1 = x1)Pr(X2 = x2),

for at least one combination of x1 and x2.

Remark 8.1 (Mutually exclusive versus independent)
Two events, E1 and E2, are said to be mutually exclusive when E1 ∩ E2 = ∅,
which means that Pr(E1 ∣ E2) = 0. By comparing with (8.1), we observe that
the two events E1 and E2 cannot be both independent and mutually exclusive.
The two properties are sometimes confused, and the reader should be aware
of the difference. ◻

8.1.2 Correlated Variables

The degree of correlation between two random variables X1 and X2 may be mea-
sured by their covariance, defined as

cov(X1,X2) = E([X1 − E(X1)][X2 − E(X2)]). (8.2)

Pearson’s correlation coefficient2
𝜌(X1,X2) is obtained by scaling the covariance

with the standard deviation (SD) of the two variables.

𝜌(X1,X2) =
cov(X1,X2)

SD(X1)SD(X2)
, (8.3)

where SD(Xi) = E([Xi − E(Xi)]2) for i = 1, 2.

2 Named after the British mathematician Karl Pearson (1857–1936).
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The correlation coefficient 𝜌(X1,X2) is bounded by the interval [−1, 1]. When
𝜌(X1,X2) = 0, the two variables are said to be uncorrelated, and when 𝜌(X1,X2) =
±1, they are totally correlated. Positive correlation implies that large (small) val-
ues of one variable correspond to large (small) values of the other variable, and
negative correlation implies that large (small) values of one variable correspond
to small (large) values of the other variable.

Correlation is not the same as independence. The following implications
apply:

Independent variables ⇒ Uncorrelated variables

Uncorrelated variables ⇏ Independent variables.

Consider a structure of two components that are correlated in such a way that
both components tend to fail within a very short time interval. This does not nec-
essarily mean that the two components are dependent and that one failure causes
the failure of the other component. It may be that there is an external stress event
that causes both components to fail. We should be aware of that correlation does
not necessarily imply causation.

Correlation ⇏ Causation.

The definition of independence may be extended to n random variables as follows:

Pr

( n⋂
i=1

Xi = xi

)
=

n∏
i=1

Pr(Xi = xi) for all x1, x2,… , xn. (8.4)

If (8.4) is not fulfilled for all x1, x2,… , xn, the random variables X1,X2,… ,Xn are
dependent.

The correlation coefficients between more than two random variables are set up
as a correlation matrix, where the entries are pair-wise correlation coefficients as
defined above.

Remark 8.2 (Dependence versus interdependence)
The terms “dependence” and “interdependence” are often used in the literature
without any clear distinction in meaning. According to our view, an event B
depends on an event A when A influences B, such that, A → B. It may, on the
other hand, be physically impossible for event B to influence A. The two event
A and B are interdependent when A influences B and B influences A, such that
A ↔ B. See also Section 4.8. ◻

Several types of dependence were mentioned in Chapter 6, such as the depen-
dence between events in an event tree and the influencing attributes of Bayesian
networks.



�

� �

�

340 8 Dependent Failures

8.2 Types of Dependence

Consider a structure of n dependent components and assume that the structure is
functioning at time t0. There can be several types of (statistical) dependence.

(1) If component i fails, this failure may increase the probability that another
component j will also fail, such that Pr(Xj = 0 ∣ Xi = 0) > Pr(Xj = 0 ∣ Xi = 1).
This is typically the situation when two or more components are sharing a
load. When one of the components fails, the remaining components have
to carry a higher load and the probability of failure increases. In some
systems – especially those built as a network – this type of dependence can
lead to a long sequence of failures. The failures are often said to show a
domino effect and the sequence of failures is called a cascading failure.

(2) Several components may fail at the same time, or within a limited time inter-
val, due to a shock or some common stress. Relevant types of shocks may
include lightning, storm, falling objects, and many more. Common stresses
may include humid environment, maintenance errors, installation errors, and
many more. Shocks may lead to simultaneous failures, whereas stresses, such
as increased humidity, may lead to failures rather close in time. This type of
dependent failures is called common-cause failures.

(3) A dependent failure where several components in a structure fail in the same
way (i.e. with the same failure mode) is called a common-mode failure. A
common-mode failure is a specific type of CCF where several subsystems fail
in the same way for the same reason. The failures may occur at different times
and the common cause could be a design defect or a repeated event.

(4) In some cases, the failure of a component may lead to a more benign operat-
ing environment for another component. This is the case when a component
that produces extreme heat, or heavy vibrations fails. After the failure, the
nearby component(s) get an improved environment such that the probabil-
ity of failure is reduced. This type of dependence is sometimes called negative
dependence and is not discussed any further in this book.

The remainder of the chapter first provides a brief introduction to cascading
failures and thereafter a more thorough treatment of CCFs. For other kind of
dependences, the reader may refer to Zhang et al. (2017, 2018a,b,c) for examples.

8.3 Cascading Failures

A cascading failure may be defined as follows:

Definition 8.1 (Cascading failure)
An uncontrolled process in a structure of connected items in which the failure of
one or a few items trigger the failure of other items, and so on. ◻
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The cascading sequence of failures in often called a domino effect. Cascading
failures may happen in many types of systems, such as electric power transmis-
sion systems, computer networks, and transportation systems. Such failures have
especially been a problem in power transmission and many of the blackouts or
power outages have been caused by cascading failures. Several cascading failures
have taken place in computer networks, such as the Internet.

Cascading failures may be initiated by a random failure or event, or a deliberate
action by a threat actor. For power transmission systems, a cascading failure is
called a cascading outage. Initiating events that may start a cascading outage in a
power transmission system include the following:

• Strong winds
• Heavy snowfall or freezing rain
• Lightning
• Other natural threats, such as

avalanche and flooding
• Mechanical failure, e.g. relay or cable

joint failure

• Contact between conductors and vegetation
• Maintenance, caused by the isolation of the

maintained item, or because of maintenance
errors

• Human errors
• Sabotage
• …and many more

Cascading outages in power transmission systems are thoroughly discussed by
Sun et al. (2019).

When cascading outages occur, they are usually analyzed thoroughly, and
several methods and tools are available for this purpose. To identify and analyze
potential (i.e. future) cascading failures in power transmission systems is a very
difficult task, if at all possible. There are a multitude of initiating events, and how
they occur and where they occur strongly influence the further development. The
cascading effects can follow many different trajectories and spread extremely fast.
Some analysts consider cascading failures to be emergent properties of complex
transmission systems. The systems do not comply with the Newtonian–Cartesian
paradigm (see Chapter 2) and are hence not possible to analyze properly (see also
Perrow 1984).

Potential cascading failures in simple network systems may partly be studied by
Markov methods (see Chapter 11). In power transmission, several Monte Carlo
simulation programs have been developed to study cascading failures, or selected
trajectories of such failures.

Some analysts claim that power transmission systems are vulnerable to cascad-
ing outages because of the protection policies, where

• Upper and lower thresholds are assigned to many types of items.
• A variety of relays are used to remove items from service when their thresholds

are crossed.
• The system is operated close to threshold values to optimize profit.

Example 8.1 (Fukushima nuclear disaster)
The Fukushima nuclear accident on 11 March 2011 was a classical example of
a cascading failure. The accident started by a magnitude 9.0 earthquake off the
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eastern coast of Japan. The earthquake generated a tsunami that flushed into
the nuclear plant and virtually destroyed the whole plant. All the six reactors
were shut down as designed when triggered by the earthquake, but the plant’s
seawater cooling pumps were damaged by the tsunami and the emergency
electrical generators were flooded. As a result, the plant was left without means to
cool the reactors and the spent nuclear fuel that was stored on-site. The resulting
explosions and fires released high levels of radioactive contamination into the air,
ocean, and on land. For more information about the Fukushima accident, you
may consult Little (2012) or search the Internet. ◻

8.3.1 Tight Coupling

The seminal book Perrow (1984) classifies systems on a scale from loosely coupled
to tightly coupled. Tightly coupled systems are, according to Perrow, vulnerable to
major failures or accidents.

The main characteristics of a tightly coupled system include

• Time-dependent processes that cannot wait.
• Rigidly ordered processes (sequence A must follow B) – direct and immediate

connection and interaction between components.
• Fast and time-dependent processes – they happen quickly and cannot be turned

off or isolated.
• Only one path to a successful outcome.
• Little or no slack (requiring precise quantities of specific resources for successful

operation).
• Little opportunity for mitigation or defense once an initial disturbance or fault

occurs.
• Rapid response.
• Fast propagation of disturbances – operators do not have time or ability to deter-

mine what is wrong.
• Limited substitutions.

The listed characteristics are not disjoint. We observe that these characteristics are
typical for a system that is vulnerable to cascading failures.

8.4 Common-Cause Failures

CCF analysis was introduced in the nuclear power industry in the 1970s. This
industry has had a continuous focus on CCFs and has been in the forefront of
the development of CCF models, and on collection and analysis of data related to
CCFs. The aerospace industry has also given these failures close attention, and the
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offshore oil and gas industry has at least since the 1990s focused on CCFs related
to reliability assessment of safety systems. CCF analysis is now mandated by IEC
61508 for safety-instrumented systems (see Chapter 13).

CCFs are mainly relevant for redundant structures and is often restricted to
voted groups, that is a subsystem of n items that are configured as a koon:G struc-
ture, where k < n. As illustrated in Example 8.5, CCF is not a problem for series
structures (i.e. when k = n). In voted groups, the minimal paths are often called
channels. A channel is a structure of one or more components that can indepen-
dently perform a required function.

In the rest of this chapter, the study object is a voted group of n components
(or channels) that is configured as a koon:G structure. CCF analysis is most
relevant for safety protection systems, such as safety-instrumented systems (see
Chapter 13). A CCF may be defined as follows:

Definition 8.2 (Common-cause failure)
Failures, that are the direct result of a shared cause, after which two or more com-
ponents in a multicomponent structure are in fault state at the same time, leading
to failure of the structure. ◻

To be classified as a CCF, this definition requires the CCF to lead to structure
failure. A 2oo4:G structure is functioning as long as at least two components are
functioning. If exactly two components are in a failed state at the same time, this
is a multiple fault with a shared cause, but it is not a CCF because the structure is
still functioning.

To be a CCF, it is not required that the components fail exactly at the same time.
What is important, is that the failed components are in a failed state at the same
time. Nonsimultaneous failures may sometimes be detected and repaired before
the next failure occurs, thus avoiding CCF.

The relationship between independent (or individual) failures and CCFs of a
structure of two components is illustrated in Figure 8.1. The number of compo-
nents that fail due to the common cause is called the multiplicity of the CCF.

Independent 

failures affecting 

component 1

Independent 

failures affecting 

component 2

Common cause

failures affecting 

both components

Component 1 Component 2

Figure 8.1 Relationship between independent failures and CCFs of a structure with two
components.
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Remark 8.3 (Increased stress)
Increased stress may not only lead to a CCF, but may also increase the independent
failure rates of the affected components. In some cases, the increased stress may
imply that the constant failure rate assumption is no longer valid and that the
components have increasing failure rate functions. ◻

8.4.1 Multiple Failures that Are Not a CCF

As mentioned above, a multiple failure with a shared cause does not need to be a
CCF. It is sometimes useful to have a specific term. The following term is therefore
introduced:

Definition 8.3 (Multiple failure with a shared cause, MFSC)
Failure, that is a direct result of a shared cause, in which two or more items are in
failed state simultaneously. ◻

An MFSC is also called a CCF event, but the authors prefer the term MFSC
because the term CCF event may be confused with a CCF. Observe that when an
MFSC leads to system failure, then the MFSC is a CCF of the system. CCFs have
particularly been focused in systems where there is a high risk for fatal accidents.
Methods for controlling and preventing such failures have been developed during
safety analyses within the aviation and the nuclear power industry.

8.4.2 Causes of CCF

The causes of a CCF may be split into shared causes and coupling factors. A shared
cause is a cause of a component failure (e.g. high humidity), whereas a coupling
factor explains why several components are affected by the same cause. The rela-
tion between a CCF, the shared cause, and the coupling factors is illustrated in
Figure 8.2 for a parallel structure of two components, that is, a voted group with
two single-component channels.

Failure of

component 1

Failure of

component 2

Shared

cause
Coupling 

factors

Figure 8.2 A shared cause combined with coupling factors lead to CCF of a parallel
structure of two components.
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Shared causes. A number of studies have investigated the shared causes of CCF
events, and several classification schemes have been proposed and used to cat-
egorize these events. Several studies of CCFs have shown that a majority of the
root causes are related to human actions and procedural deficiencies. A study
of centrifugal pumps in nuclear power plants indicates that the causes of nearly
70% of all CCFs are of this category (Miller et al. 2000).

Coupling factors. A coupling factor is a property that makes multiple channels
susceptible to failure from a single shared cause. Such properties include the
following:

● Same design
● Same hardware
● Same software
● Connections to the same

network (e.g. Internet)
● Same installation staff

● Same maintenance or operation staff
● Same procedures
● Same environment
● Same location

More detailed taxonomies of coupling factors are available in NEA (2004),
NUREG/CR-5485 (1998), and Childs and Mosleh (1999). Studies of CCFs in
nuclear power plants indicate that the majority of coupling factors contributing
to CCFs are related to operational aspects (Miller et al. 2000).

To save money and ease operation and maintenance, the technical solutions in
many industries become increasingly standardized. This applies both to hardware
and software and increases the presence of coupling factors. SINTEF, the Norwe-
gian research organization, has made several studies of the impacts of this type of
standardization on Norwegian offshore oil and gas installations, where new oper-
ational concepts and reduced manning levels are feeding this trend (Hauge et al.
2006).

When studying structures that are vulnerable to CCFs, it is often helpful
to identify components with similar vulnerabilities to CCFs. Such a group of
components is called a common-cause component group (CCCG) and may be
defined as follows:

Definition 8.4 (Common-cause component group, CCCG)
A group of components that share one or more coupling factors, making them
susceptible to CCFs. ◻

CCCGs’ are discussed thoroughly in NUREG/CR-5485 (1998).

8.4.3 Defenses Against CCF

A number of possible defense measures against CCFs have been proposed among
which are the following:
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Separation or segregation. The separation can be both physical and logical and
enhances the independence of the components and reduces the susceptibility
to both CCFs and cascading failure.

Diversity. Different components and different technologies reduce the likelihood
of coupling factors and the susceptibility to CCFs.

Robustness. A robust design has a higher ability to withstand environmental
stresses (e.g. see DOE-STD-1195 2011).

Component reliability. High component reliability reduces the number of both
individual and dependent failures, and thereby the number of maintenance
actions and human interventions (which are recognized causes of CCFs)

Simplicity of design. A simple design is easier to understand and maintain and
reduces the number of intervention errors.

Analysis. Failure modes, effects, and criticality analysis (FMECA) and other relia-
bility analyses can identify causes of CCFs and propose measures to reduce the
likelihood of CCFs

Procedures and human interface. Clear procedures and an adequate human–
machine interface reduce the likelihood of human errors.

Competence and training. Designers, operators, and maintainers can help to
reduce CCFs by understanding shared causes and coupling factors.

Environmental control. The susceptibility to CCFs can be reduced by weather
proofing.

Diagnostics and coverage. A diagnostic system with high coverage can reveal the
first nonsimultaneous CCFs and bring the system to a safe state before the next
failure occurs.

Remark 8.4 (Condition monitoring and software)
Condition monitoring is increasingly used in many technical items. To serve its
purpose, the condition monitoring equipment is connected to a computer net-
work, and more and more often to the Internet. This way, an item expert may sit
in a distant place and survey the item condition and recommend maintenance
actions and when these actions should be carried out. Even if items are diversi-
fied, the condition monitoring equipment and/or the associated software may be
the similar, thus leading to coupling factors. Dedicated cyberattacks may also take
down several items at the same time. The same applies for other software-based
functions that are implemented in modern technical items that are connected to
the Internet. ◻

8.5 CCF Models and Analysis

Two different methods can be used to model CCFs, an explicit method and an
implicit method. There are two main categories of CCFs:
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(1) CCFs due to clear deterministic causes.
(2) Residual CCFs that are not considered explicitly in the system models (e.g.

fault trees) because we do not see any clear deterministic causes, we do not
fully understand how they can occur, or it is not possible to obtain reliability
data.

The first category should, as far as possible, be modeled explicitly.
A number of implicit CCF models have been proposed and O’Connor (2013)

classifies these models into three categories:

(1) Direct method – basic parameter model (BPM)
(2) Ratio models
(3) Shock models

8.5.1 Explicit Modeling

Assume that a specific cause of a CCF can be identified and defined. By the
explicit method, this cause of dependence is included into the system logic
models. This modeling is illustrated in Figure 8.3, for a 1oo2:G structure of two

No signal about high

pressure from the

pressure switches

No signal from

pressure switch 1

No signal from

pressure switch 2

PS2PS1

Common tap

blocked with solids

CCF

Independent

switch failures

Rest of the 

fault tree

Figure 8.3 Explicit modeling of a CCF in a system of two pressure switches.
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pressure switches that are installed on a pressure vessel. The two switches are
installed on a common tap (thin pipe) from the pressurized vessel. The 1oo2:G
structure can fail in two different ways: (i) as two independent failures or (ii) as a
CCF because the common tap is blocked by some sort of solids.

Examples of causes that may be modeled explicitly are the following:

• Human errors
• Utility failures (e.g. electricity, cooling, and heating)
• Environmental events (e.g. earthquake, and lightning).

8.5.2 Implicit Modeling

Some causes of dependencies are difficult or even impossible to identify and model
explicitly. These are called residual causes and are catered for by an implicit model.
The residual causes cover many different shared causes and coupling factors, such
as common manufacturer, common environment, and maintenance errors. There
are so many causes that an explicit representation of all of them in a fault tree or
an event tree would not be manageable.

When establishing the implicit model, it is important to remember which causes
were covered in the explicit model so that they are not counted twice.

8.5.3 Modeling Approach

Modeling and analysis of CCFs as part of a reliability study should, in general,
comprise at least the following steps:

(1) Development of system logic models. This activity comprises system familiar-
ization, system functional failure analysis, and establishment of system logic
models (e.g. fault trees and reliability block diagrams (RBDs)).

(2) Identification of common-cause component groups. The groups of components
with similar vulnerabilities to CCFs are identified.

(3) Identification of shared causes and coupling factors. The shared causes and cou-
pling factors are identified and described for each CCCG. Suitable tools are
checklists and root cause analysis.

(4) Assessment of component defenses. The CCCGs are evaluated with respect to
their defenses against the root causes that were identified in the previous step.

(5) Explicit modeling. Explicit CCF causes are identified for each CCCG and
included into the system logic model.

(6) Implicit modeling. Residual CCF causes that were not covered in the previous
step are included in an implicit model as discussed later in this chapter. The
parameters of this model have to be estimated based on checklists (e.g. see IEC
61508 2010, Part 6) or from available data.
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(7) Quantification and interpretation of results. The results from the previous steps
are merged into an overall assessment of the system.

In most cases, we are not able to find high-quality input data for the explicitly
modeled CCF causes. However, even with low-quality input data, or guesstimates,
the result is usually more accurate than by including the explicit causes into a
general (implicit) CCF model.

The CCF models that are discussed in the rest of this section are limited to cov-
ering implicit causes of CCF.

8.5.4 Model Assumptions

The following assumptions apply for the CCF models presented in the remainder
of this chapter.3

(1) The study object is a voted group of n identical components. The voted group
is written koon:G for functioning structures and koon:F for failed structures.

(2) There is a complete symmetry in the n components, and each component has
the same constant failure rate.

(3) All specific combinations, where k components are failing and n − k compo-
nents are not failing, have the same probability to occur.

(4) Removing j of the n components has no effect on the probabilities of failure of
the remaining n − j components.

These assumptions imply that we do not have to specify completely new parame-
ters for each n. The parameters defined to handle CCF for n = 2 are retained for
n = 3, and so on.

8.6 Basic Parameter Model

The BPM, was proposed by Fleming et al. (1983), and can be applied to a koon:F
voted group of identical components. A component that has failed can be an indi-
vidual (single) fault or one fault in a set of multiple faults. The variable of interest
in the BPM is the multiplicity of the fault and its distribution.

To illustrate the approach, consider a voted group of n = 3 identical components
(e.g. gas detectors), which may have hidden failures that are revealed in a proof test
(see Chapter 13). Assume that all the n components have been proof-tested at time
t. Let E∗

i denote that component i is found to be functioning and that component Ei
is found to be in a failed state, for i = 1, 2, 3. A specific component, say component
1, can be involved in four disjoint fault scenarios:

3 The following treatment of implicit CCF modeling is a reworked and updated version of
Hokstad and Rausand (2008).
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(1) Component 1 is failed, as an individual (single) fault, that is, E1 ∩ E∗
2 ∩ E∗

3.
(2) Component 1 is, together with component 2, involved in a double fault, that

is, E1 ∩ E2 ∩ E∗
3.

(3) Component 1 is, together with component 3, involved in a double fault, that
is, E1 ∩ E∗

2 ∩ E3.
(4) Component 1 has, together with components 2 and 3, a triple fault, that is,

E1 ∩ E2 ∩ E3.

Similar expressions can be established for components 2 and 3.

8.6.1 Probability of a Specific Multiplicity

Let gi,n be the probability of a specific combination of functioning and failed com-
ponents, such that (exactly) i components are in fault state, and n − i components
are functioning. The probability of a specific single (individual) fault in a voted
group of three identical components is

g1,3 = Pr(E1 ∩ E∗
2 ∩ E∗

3) = Pr(E∗
1 ∩ E2 ∩ E∗

3) = Pr(E∗
1 ∩ E∗

2 ∩ E3). (8.5)

The probability of a specific double fault is

g2,3 = Pr(E1 ∩ E2 ∩ E∗
3) = Pr(E1 ∩ E∗

2 ∩ E3) = Pr(E∗
1 ∩ E2 ∩ E3), (8.6)

and the probability of a triple fault is

g3,3 = Pr(E1 ∩ E2 ∩ E3). (8.7)

These probabilities are shown in the Venn diagram in Figure 8.4. Let Qk∶3 be the
probability that a voted group of three identical components has a (unspecified)
fault with multiplicity k, for k = 1, 2, 3. These probabilities are the following:

Q1∶3 =
(3

1

)
g1,3 = 3g1,3

Q2∶3 =
(3

2

)
g2,3 = 3g2,3 (8.8)

Q3∶3 =
(3

3

)
g3,3 = g3,3.

These probabilities can also be deducted from Figure 8.4.
A 1oo3:F voted group fails when at least one of its three components fails. The

probability that the 1oo3:F voted group fails is then

Q1oo3∶F = Q1∶3 + Q2∶3 + Q3∶3 = 3g1,3 + 3g2,3 + g3,3.

Similarly, a 2oo3:F voted group fails when at least two of its three components fail.
The probability that the 2oo3:F voted group fails is then

Q2oo3∶F = Q2∶3 + Q3∶3 = 3g2,3 + g3,3
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Figure 8.4 Probabilities of different
multiplicities for a voted group of three
identical channels.
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and, a 3oo3:F voted group fails when all its three components fail and the proba-
bility that the 3oo3:F voted group fails is

Q3oo3∶F = Q3∶3 = g3,3.

When proof-testing a voted group of three identical components, the probability
that a particular component (say component 1) has failed is

Q = g1,3 + 2g2,3 + g3,3, (8.9)

where Q is the total probability that a specific component is found to have failed,
comprising both individual and multiple faults.

This probability may be written as

Q =
3∑

i=1

(3 − 1
i − 1

)
gi,3, (8.10)

and it is not so difficult to show that for a voted group of n components, this expres-
sion becomes

Q =
n∑

i=1

(n − 1
i − 1

)
gi,n. (8.11)

8.6.2 Conditional Probability of a Specific Multiplicity

Assume that a particular component is proof-tested at time t and found to be in a
failed state in a voted group of three identical components. Without loss of gener-
ality, we can assume that this is component 1. As above, let Q be the probability
of this event. When such a fault is observed, the multiplicity of faults is either 1,
2, or 3. Let fi,3 be the conditional probability that the fault has multiplicity i when
we know that a specific component has failed, for i = 1, 2, 3. For a triple fault, the
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fault of component 1 is included in the triple fault, and we have

f3,3 = Pr(E1 ∩ E2 ∩ E3 ∣ E1) =
Pr(E1 ∩ E2 ∩ E3)

Pr(E1)
=

g3,3

Q
. (8.12)

For a double fault, the fault of component 1 is included in two of the three possible
fault combinations in (8.8). By using the same argument as above, the conditional
probability of a double fault involving components 1 and 2 is

f (1,2)2,3 =
g2,3

Q
,

and the conditional probability of a double fault involving components 1 and 3 is

f (1,3)2,3 =
g2,3

Q
.

The superscripts in f (1,2)2,3 and f (1,3)2,3 indicate which components are involved in the
fault. The conditional probability of a double fault involving component 1 and one
of the other components is

f2,3 = f (1,2)2,3 + f (1,3)2,3 =
2g2,3

Q
. (8.13)

For a single fault, the fault of component 1 is included in only one fault combina-
tion in (8.8). The conditional probability that the fault of component 1 is a single
fault is

f1,3 =
g1,3

Q
. (8.14)

These probabilities are easily seen from Figure 8.4. If it is known, for example, that
component 1 is in a failed state, the probabilities have to be found in the circle
representing fault of component 1 (i.e. E1).

The above probabilities can be estimated from observed data – if sufficient data
are available – as

Qn∶i =
mi

mtot
, (8.15)

where mi is the observed number of faults of multiplicity i and mtot is the total
number of proof tests of the voted group. It is assumed that each time the voted
group is tested, all the n components in the group are tested.

The BPM cannot estimate CCFs for voted groups for which data is unavailable,
and for this reason is rarely used directly. A more detailed discussion of the BPM
may be found in Hokstad and Rausand (2008) and NUREG/CR-5485 (1998).

8.7 Beta-Factor Model

The beta-factor model was introduced by Fleming (1975) and is the simplest and
most commonly used model for CCF analysis. The model is applicable for a voted
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group of n identical components, requires only two parameters, and is the main
CCF model in IEC 61508.

The idea of the beta-factor model is to split the constant failure rate, 𝜆, of a
component into two parts, one part, 𝜆(i), covering the individual failures of the
component, and another part, 𝜆(c), covering CCFs.

𝜆 = 𝜆
(i) + 𝜆

(c)
. (8.16)

The beta-factor, 𝛽, is introduced as

𝛽 = 𝜆
(c)

𝜆
, (8.17)

and is the fraction of all the component failures that are CCFs.

Example 8.2 (Interpretation of the beta-factor)
Consider a system component with constant failure rate𝜆 that has failed 100 times.
If the beta-factor is 𝛽 = 0.10, approximately 90 of the failures are individual (i.e.
independent) failures and ten failures are CCFs that also involve the other com-
ponents in the system. ◻

The parameter 𝛽 can be interpreted as the conditional probability that a compo-
nent failure is in fact a CCF.

𝛽 = Pr(CCF ∣ Failure of component).

The individual failure rate and the CCF rate can be expressed by the total com-
ponent failure rate 𝜆 and the factor 𝛽 as

𝜆
(c) = 𝛽𝜆

𝜆
(i) = (1 − 𝛽)𝜆.

The beta-factor model is based on the assumption that when a CCF occurs, it
affects all the components of the voted group, such that we either have individual
failures or a total failure affecting all components.

The data inputs to the beta-factor model are the total failure rate 𝜆 and the
beta-factor 𝛽. If 𝜆 is kept constant and we make adjustments to the system design
such that 𝛽 is reduced, the result of this adjustment is that the CCF failure rate 𝛽𝜆
is reduced, whereas the individual failure rate (1 − 𝛽)𝜆 increases.

The beta-factor model may be regarded as a shock model where shocks occur
randomly according to a homogeneous Poisson process (HPP) with rate 𝜆

(c). Each
time a shock occurs, all the system components fail at the same time, irrespec-
tive of the status of the components. Each component may hence fail due to two
independent causes: shocks and component-specific (individual) causes. We may
choose different beta-factors for the different component failure modes.
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8.7.1 Relation to the BPM

Assume that a particular component of the voted group is proof-tested and found
in a failed state. The probability of this event is in the BPM denoted Q. The fault
is either an individual fault or a total fault involving all the n components of the
system. An individual fault occurs with probability g1,n and a total CCF occurs
with probability gn,n = Qn∶n, such that

Q = g1,n + Qn∶n. (8.18)

The parameter 𝛽 is defined as the fraction of the total failure probability
attributable to dependent failures, such that

𝛽 =
Qn∶n

Q
=

Qn∶n

Qn∶n + g1,n
,

and we get

g1,n = (1 − 𝛽)Q

gi,n = 0 for i = 2, 3,… ,n − 1 (8.19)

gn,n = 𝛽Q.

The conditional probabilities of specific multiplicities, given the fault of a par-
ticular component is

f1,n = 1 − 𝛽

fi,n = 0 for i = 2, 3,… ,n − 1 (8.20)

fn,n = 𝛽.

Remark 8.5 (Unreliable components have higher beta-factor)
For a fixed 𝛽, the rate of CCFs, 𝜆(c) = 𝛽𝜆, in the beta-factor model is seen to
increase with the failure rate 𝜆. Therefore, systems with many failures have many
CCFs. Because repair and maintenance is often claimed to be a prime cause
of CCFs, it is relevant to assume that systems requiring a lot of repair also have
many CCFs. ◻

8.7.2 Beta-Factor Model in System Analysis

In line with (8.16), the RBD in Figure 8.5 interprets a component 1 as a series struc-
ture of two blocks, the first block 1(i) represents component 1 exposed to individual
failure and block C represents component 1 exposed to CCF.

The use of the beta-factor model in system analysis is illustrated in the following
examples.
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Figure 8.5 A component
represented as a series
structure of two blocks.

1(i) C1

(a) (b)

Example 8.3 (Parallel structure of two identical components)
Consider the parallel structure of two identical components with constant total
failure rate 𝜆 in Figure 8.6 (i.e. a 1oo2:G voted group). The structure is exposed to
CCFs modeled by a beta-factor model. Part (a) of the figure shows the traditional
RBD for a parallel structure. In part (b), each component is split into two blocks
as shown in Figure 8.6. Because the block C, representing a component exposed
to CCF, is identical for both components, the RBD in part (b) can be redrawn to
the RBD in part (c). The contribution from CCFs can therefore be modeled in an
RBD as a block C in series with the rest of the structure.

The survivor function of the 1oo2:G structure is

RS(t) = [2e−(1−𝛽)𝜆t − e−2(1−𝛽)𝜆t] e−𝛽t = 2e−𝜆t − e−(2−𝛽)𝜆t
. (8.21)

The mean time-to-failure (MTTF) of the 1oo2:G structure is

MTTF1oo2∶G = 2
𝜆
− 1

(2 − 𝛽)𝜆
. (8.22)

The fractions of individual (independent) failures and CCFs for this structure are
shown in Figure 8.7. Because the failure rates are constant, the number of failures
that occur in a time interval of length t is determined from a HPP. If the parallel
structure is observed during a long time interval (0, t), the numbers of observed
failures are

Mean number of individual failures 2(1 − 𝛽)𝜆t
Mean number of double (i.e. CCF) failures 𝛽𝜆t

◻

1

2

1(i) C

C2(i)

1(i)

C
2(i)

(a) (b) (c)

Figure 8.6 A parallel structure modeled by the beta-factor model.

Figure 8.7 Fractions of different types of
failures for a structure of two components
when using a beta-factor model.

1 – β 1 – ββ

Component
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Component
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Example 8.4 (2oo3:G structure of identical components)
Consider a 2oo3:G structure of identical components with constant failure rate 𝜆

and beta-factor 𝛽. The structure may be represented by the RBD in Figure 8.8. The
survivor function of the 2oo3:G structure is

R(t) = (3e−2(1−𝛽)𝜆t − 2e−3(1−𝛽𝜆t)e−𝛽𝜆t

= 3e−(2−𝛽)𝜆t − 2e−(3−2𝛽)𝜆t
. (8.23)

The MTTF of the 2oo3:G structure is

MTTF2oo3∶G = 3
(2 − 𝛽)𝜆

− 2
(3 − 2𝛽)𝜆

. (8.24)

The MTTF is shown as a function of 𝛽 in Figure 8.9. Observe that:

(a) When the three components are independent (i.e. 𝛽 = 0), the MTTF2oo3∶G
is shorter than the MTTF1 of a single component. We get MTTF2oo3∶G =
(5∕6) MTTF1 ≈ 0.833 MTTF1.

(b) When 𝛽 = 1, all the three components fail when one of them fails and
MTTF2oo3∶G = MTTF1.

(c) Setting MTTF in (8.24) equal to 1 and solving for 𝛽 yields 𝛽 = 0.5. This means
that with 𝛽 = 0.5, the MTTF of the 2oo3:G structure is equal to the MTTF of a
single component.

1(i)

1(i)

2(i)

2(i)

3(i)

3(i)

C
(a) (b)

1(i)

Figure 8.8 RBD for a 2oo3:G structure
modeled by the beta-factor model.
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Figure 8.9 The MTTF of a 2oo3:G structure modeled as a function of the beta-factor 𝛽 ,
for 𝜆 = 1.
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Figure 8.10 Fractions of different types of
failures for a system with three components
when using a beta-factor model.
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The fractions of individual (independent) failures and CCFs for this structure are
shown in Figure 8.10. Because the failure rates are constant, the number of failures
that occur in a time interval of length t is determined from a HPP. If the parallel
structure is observed during a long time interval (0, t), the numbers of observed
failures are

Number of individual failures 3(1 − 𝛽)𝜆t
Number of double failures 0
Number of triple (i.e. CCF) failures 𝛽𝜆t

Observe that double failures are not allowed with the beta-factor model. ◻

Example 8.5 (Series structure of n identical components)
Consider a series structure of n identical components with constant failure rate 𝜆.
The structure is exposed to CCFs, and these are modeled by a beta-factor model
with parameter 𝛽. The survivor function of the series structure is

RS(t) = e−n(1−𝛽)𝜆te−𝛽𝜆t = e−[n−(n−1)𝛽]𝜆t
. (8.25)

The MTTF of the series structure is

MTTF1oon∶G = 1
[n − (n − 1)𝛽]𝜆

= n
n − (n − 1)𝛽

1
n𝜆

. (8.26)

Observe that 1∕n𝜆 is the MTTF(i) of the series structure for independent com-
ponents (i.e. for 𝛽 = 0). The MTTF of the series structure with beta-factor 𝛽 is
obtained by multiplying MTTF(i) with the scaling factor (sf):

sf = n
n − (n − 1)𝛽

.

Numerical example: Let n = 10. The sf is calculated for some selected values of
𝛽 as
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𝛽 0 0.05 0.10 0.15 0.50 1.00

sf 1.000 1.047 1.098 1.156 1.818 10

Observe that the MTTF increases with 𝛽. When 𝛽 = 1, the series structure behaves
as a single component with failure rate 𝜆 and MTTF = 1∕𝜆. We observe that
the reliability of a series structure increases with increasing 𝛽 when using the
beta-factor model. This is an obvious result as seen by the beta-factor model, but
some readers may find it a bit strange. ◻

The beta-factor model is simple, and it is easy to understand the practical inter-
pretation of the parameter 𝛽. A serious limitation of the beta-factor model is that
it does not allow that only a certain fraction of the components fails. The model
seems quite adequate for parallel structures of two components, but may not be
fully adequate for more complicated structures. NUREG/CR-4780 states that:

Although historical data collected from the operation of nuclear power
plants indicate that common cause events do not always fail all redundant
components, experience from using this simple model shows that, in many
cases, it gives reasonably accurate (or slightly conservative) results for
redundancy levels up to about three or four items. However, beyond such
redundancy levels, this model generally yields results that are conservative.

The beta-factor is further discussed with many examples in Chapter 13. Input data
to the beta-factor model are discussed in Chapter 16.

8.7.3 Beta-Factor Model for Nonidentical Components

The beta-factor model presented above is defined for identical components, but
many systems are diversified with components that are nonidentical. In this case,
it is more difficult to define and interpret the beta-factor. An approach that is some-
times used is to define 𝛽 as a percentage of the geometric average (see box) of the
failure rates of the various components of the group (e.g. see Hauge et al. 2013).

Arithmetic Versus Geometric Average

Consider a data set {a1, a2,… , an}.
The arithmetic average of the data set is a = 1

n

∑n
i=1 ai

The geometric average of the data is a∗ =
(∏n

i=1 ai
) 1

n = n
√

a1a2 · · · an

For a data set of two entries: a1 = 1 and a2 = 10, we have

a = (1 + 10)∕2 = 5.5 and a∗ =
√

1 ⋅ 10 =
√

10 ≈ 3.16
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Example 8.6 (Parallel structure of n nonidentical components)
Consider a parallel structure of n nonidentical components. The structure is
exposed to CCFs, and we assume that this can be modeled by a beta-factor model.
Let 𝜆i be the (total) failure rate of component i, for i = 1, 2,… ,n. The geometric
average of the n failure rates is

𝜆 =

( n∏
i=1

𝜆i

)1∕n

. (8.27)

The beta-factor 𝛽 can be determined as a fraction of this average failure rate 𝜆,
and the individual failure rate of component i becomes

𝜆
(i)
i = 𝜆i − 𝛽𝜆. (8.28)

The survivor function of the structure is

RS(t) =

[
1 −

n∏
i=1

(1 − e−(𝜆i−𝛽𝜆)t)

]
e−𝛽𝜆t

.

◻

This approach in Example 8.6 may be acceptable when all the failure rates are
in the same order of magnitude. When the failure rates are very different, this
approach can lead to unrealistic results, as illustrated in Example 8.7.

Example 8.7 (Beta-factor with very different failure rates)
Consider a parallel structure of two components. The failure rate of component 1
is 𝜆1 = 1 × 10−4 h−1, and the failure rate of component 2 is 𝜆2 = 1 × 10−8 h−1. The
two components are exposed to CCFs that can be modeled by a beta-factor model.
The geometric average of the two failure rates is, according to (8.27),

𝜆 = (𝜆1𝜆2)1∕2 =
√

10−4 ⋅ 10−8 = 1 × 10−6 h−1
.

If we suggest a 𝛽 of 10%, the CCF rate becomes 𝜆(c) = 𝛽𝜆 = 10−7 h−1. This is clearly
impossible as the total failure rate of the strongest component is 𝜆2 = 10−8 h−1, and
the rate of CCFs of a component can never be higher than the total failure rate.

This example shows that the suggested approach cannot be suitable when the
components have very different failure rates. ◻

Another problematic issue is illustrated in Example 8.8.

Example 8.8 (2oo3:G voted group with different failure rates)
Consider a 2oo3:G structure, where components 1 and 2 are identical, with failure
rate 𝜆12 = 5 × 10−7 h−1, and component 3 is different with failure rate 𝜆3 = 2 ×
10−6 h−1 (a possible example of such a system might be a system of two smoke
detectors and one flame detector).
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If the third component had been of the same type as components 1 and 2, we
would have used a beta-factor model with 𝛽12 = 0.10 for the whole group. The
third component is different from components 1 and 2 and the likelihood of a
CCF involving all the three components is considered to be very low, such that
a beta-factor model with 𝛽all = 0.01 might be suggested.

Because the group is voted 2oo3:G, it is sufficient that two components fail for
the group to fail. If a CCF involving components 1 and 2 occurs, the group fails.
The rate of group CCFs should consequently be

𝜆
(c)
S ≥ 𝜆

(c)
12 𝛽12 = 5 × 10−8 h−1

.

How this situation should be treated by the approach suggested above is far from
obvious. ◻

8.7.4 C-Factor Model

The C-factor model was introduced by Evans et al. (1984) and is essentially the
same model as the beta-factor model but defines the fraction of CCFs in another
way. In the C-factor model, the CCF rate is defined as 𝜆(c) = C𝜆(i), that is as a frac-
tion of the individual failure rate 𝜆

(i). The total failure rate may then be written as
𝜆 = 𝜆

(i) + C𝜆(i). In this model, the individual failure rate 𝜆
(i) is kept constant and

the CCF rate is added to this rate to give the total failure rate.

8.8 Multi-parameter Models

The beta-factor model has only one parameter, 𝛽, in addition to the component fail-
ure rate 𝜆 and is said to be a single-parameter model. This section presents briefly
four CCF models with more than one parameter. These are sometimes called mul-
tiparameter models. The four models described are the following:

• Binomial failure rate (BFR) model
• Multiple Greek letter (MGL) model
• Alpha-factor model
• Multiple beta-factor (MBF) model

8.8.1 Binomial Failure Rate Model

The BFR model was introduced by Vesely (1977) based on the assumptions listed
in Section 8.5.4. The BFR model is based on the premise that CCFs result from
shocks to the voted group (Evans et al. 1984). The shocks occur randomly according
to a HPP with rate 𝜈. Whenever a shock occurs, each of the individual compo-
nents is assumed to fail with probability p, independent of the states of the other
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components. The number Z of components failing as a consequence of the shock
is thus binomially distributed (n, p). The probability that the multiplicity, Z, of fail-
ures due to a shock is equal to z is

Pr(Z = z) =
(

n
z

)
pz(1 − p)n−z for z = 0, 1,… ,n. (8.29)

The mean number of components that fail in one shock is E(Z) = np. The fol-
lowing two conditions are assumed:

• Shocks and independent failures occur independently of each other.
• All failures are immediately discovered and repaired, with the repair time being

negligible.

As a consequence, the time between independent component failures, in the
absence of shocks, is exponentially distributed with failure rate 𝜆

(i), and the time
between shocks is exponentially distributed with rate 𝜈. The number of indepen-
dent failures in any time period of length t is therefore Poisson distributed with
parameter 𝜆(i)t, and the number of shocks in any time period of length t is Poisson
distributed 𝜈t.

The component failure rate caused by shocks thus equals p𝜈, and the total failure
rate of one component equals

𝜆 = 𝜆
(i) + p𝜈. (8.30)

By using this model, we have to estimate the independent failure rate 𝜆
(i) and the

two parameters 𝜈 and p. The parameter 𝜈 relates to the degree of “stress” on the
group, whereas p is a function of the built-in component protection against exter-
nal shocks. Observe that the BFR model is identical to the beta-factor model when
the group has only two components.

The assumption that the components fail independently when a shock occurs
is a rather serious limitation, and this assumption is often not satisfied in prac-
tice. The problem can, to some extent, be remedied by defining one fraction of
the shocks as being “lethal” shocks, that is shocks that automatically cause all
the components to fail, that is p = 1. If all the shocks are “lethal,” one is back
to the beta-factor model. Observe that this case, p = 1, corresponds to the situation
in which there is no built-in protection against these shocks.

Situations where independent failures occur together with nonlethal as well as
lethal shocks are often realistic. Such models are rather complicated, even when
the nonlethal and the lethal shocks occur independently of each other.

Example 8.9 (2oo3:G structure of identical components)
Consider a 2oo3:G structure of identical components with individual failure 𝜆(i) =
5.0 × 10−6 h−1.
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The voted group is exposed to random shocks that occur according to a HPP
with rate 𝜈 that has been estimated to be 𝜈 = 1.0 × 10−5 h−1. When a shock occurs,
each component fails with probability p = 0.20. The components are assumed to
fail independently when a shock occurs such that the number Z of components
that fail due to a shock is binomially distributed.

Pr(Z = 0) =
(3

0

)
p0(1 − p)3−0 = (1 − p)3 = 0.5120

Pr(Z = 1) =
(3

1

)
p1(1 − p)3−1 = 3p(1 − p)2 = 0.3840

Pr(Z = 2) =
(3

2

)
p2(1 − p)3−2 = 3p2(1 − p) = 0.0960

Pr(Z = 3) =
(3

3

)
p3(1 − p)0 = p3 = 0.0080.

The voted group only fails due to shocks when Z = 2 or Z = 3. This means that the
probability that a shock results in a group failure is ps = Pr(Z = 2) + Pr(Z = 3) =
0.1040. Random shocks giving group failures therefore occur according to a HPP
with rate 𝜈s = 𝜈ps = 1.04 × 10−6 h−1. ◻

Observe that shocks can occur without any failures (i.e. Z = 0). This makes it dif-
ficult to estimate 𝜈 directly from failure data because shocks may occur unnoticed
when no component fails.

8.8.2 Multiple Greek Letter Model

The MGL model represents a generalization of the beta-factor model to obtain
an approach that is less conservative for highly redundant structures (e.g. see
Fleming and Kalinowski 1983; NUREG/CR-4780 1989). The assumptions made
for the MGL model are the same as listed in Section 8.5.4.

Assume that a voted group of n identical components are proof-tested at time
t. We may assume that potential faults are hidden faults. Let E1 be the event that
a specified component, say component 1, is found to be failed and let Z be the
multiplicity of the fault. New parameters (Greek letter) are defined as follows:

𝛽 = Pr[Z ≥ 2 ∣ E1 ∩ (Z ≥ 1)] = Pr[Z ≥ 2 ∣ E1]
𝛾 = Pr[Z ≥ 3 ∣ E1 ∩ (Z ≥ 2)]
𝛿 = Pr[Z ≥ 4 ∣ E1 ∩ (Z ≥ 3)]
Additional Greek letters are introduced for higher multiplicities of failures.

Expressed verbally:

• If we have detected one fault in the group, then 𝛽 is the probability that there
are at least one more fault.
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• If we have detected two faults, then 𝛾 is the probability that there are at least one
more fault.

• If we have detected three faults, then 𝛿 is the probability that there are at least
one more fault.

The extra parameters account for

• Higher component redundancies
• Fault multiplicities greater than one and less than n.

Observe that the beta-factor model is a special case of the MGL model when n = 2,
and also when all the parameters of the model, except for 𝛽, are equal to 1.

In the MGL model, the probabilities Qk∶n are expressed in terms of the total com-
ponent failure probability, Q, which includes effects of all (independent and CCF)
contributions to that component failure, and a set of conditional probabilities of
all possible ways a CCF of component can be shared with other components in the
same group, given that component failure has occurred.

We do not go into the details of the MGL model, but suffice by illustrating the
approach by studying a voted group of n = 3 identical components. Further details
may be found in NUREG/CR-4780 (1989).

System with Three Identical Components
Consider a structure of n = 3 identical components. The probabilities gk,3 of the
various multiplicities of failures are shown in Figure 8.11 for k = 1, 2, 3. Without
loss of generality, we may consider component 1, such that event E1 denotes that
a fault of component 1 is detected. The probability of event E1 is

Q = Pr(E1) = g1,3 + 2g2,3 + g3,3, (8.31)

as shown in Figure 8.11. All three components have the same probability of failure.

Figure 8.11 Probabilities of failures with
different multiplicities.

g1,3 g1,3

g1,3

g2,3

g2,3

g2,3

g3,3

Component 2Componen
t 1

Component 3
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As a first step of the development, we restrict our attention to the circle repre-
senting component 1 in Figure 8.11. The parameter 𝛽 can be expressed as

𝛽 = Pr(Z ≥ 2 ∣ Z ≥ 1) = Pr(Z ≥ 2)
Pr(Z ≥ 1)

=
2g2,3 + g3,3

Q
. (8.32)

For a structure of three components, Z ≥ 3 is identical to Z = 3, and the param-
eter 𝛾 can be expressed as

𝛾 = Pr(Z = 3 ∣ Z ≥ 2) = Pr(Z = 3)
Pr(Z ≥ 2)

=
g3,3

2g2,3 + g3,3
. (8.33)

Combining (8.32) and (8.33) yields

g3,3 = 𝛽𝛾Q. (8.34)

Entering this result into (8.32) yields

g2,3 = 1
2
𝛽(1 − 𝛾)Q. (8.35)

The probability that E1 is an individual (single) fault is

g1,3 = Q − 2g2,3 − G3,3 = Q[1 − 𝛽(1 − 𝛾) − 𝛽𝛾] = (1 − 𝛽)Q. (8.36)

The probability that the structure of three components has a single, double, and
triple faults is

Q1∶3 =
(3

1

)
g1,3 = 3(1 − 𝛽)Q

Q2∶3 =
(3

2

)
g2,3 = 3

2
𝛽(1 − 𝛾)Q (8.37)

Q3∶3 =
(3

3

)
g3,3 = 𝛽𝛾Q.

The probability that a 2oo3:F structure fails is therefore

Q2oo3∶F = Q2∶3 + Q3∶3 = [3𝛽(1 − 𝛾) + 𝛽𝛾]Q = [3𝛽 − 2𝛽𝛾]Q. (8.38)

8.8.3 Alpha-Factor Model

The alpha-factor model is described by Mosleh and Siu (1987) for structures of n
identical components. Assume that a failure event is observed at time t, be it an
individual or a multiple failure. Let Qtot be the probability of this event. With the
notation introduced in Section 8.6, the probability is

Qtot = 3g1,3 + 3g2,3 + g3,3.

The alpha-factor model is based on a sequence of n parameters, 𝛼1, 𝛼2,… , 𝛼n,
defined as

𝛼k =Pr(Exactly k components fail ∣ Failure event occurs)

for k = 1, 2,… ,n. (8.39)
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This implies that
∑n

k=1 𝛼k = 1. Observe that the alpha-factor model reduces to
beta-factor model when 𝛼1 = 1 − 𝛽, 𝛼n = 𝛽, and 𝛼i = 0 for all i = 2, 3,… ,n − 1.

The formulas for the alpha-factor model depend on the type of testing per-
formed, whether it is simultaneous testing and staggered testing. Interested
readers may find the appropriate formulas in Mosleh and Siu (1987).

The alpha-factor model is recommended for CCF analysis in aerospace appli-
cations (NASA 2011) and is also recommended by the US NRC for nuclear
applications.

Structure with Three Identical Components
We illustrate the alpha-factor model by a structure of n = 3 identical components.
The starting point for the model is a failure event E in the structure. The failure
can be an individual failure or a multiple fault of any (possible) multiplicity. In
our case, with only three components, the probability of E is, from the results in
Section 8.6

Pr(E) = Qtot = 3Q1∶3 + 3Q2∶3 + Q3∶3,

a result that is easily seen from Figure 8.11. From the same figure, it is seen that

𝛼1 =
3Q1∶3

Qtot
⇒ Q1∶3 =

𝛼1

3
Qtot

𝛼2 =
3Q2∶3

Qtot
⇒ Q2∶3 =

𝛼2

3
Qtot (8.40)

𝛼3 =
Q3∶3

Qtot
⇒ Q1∶3 = 𝛼3Qtot.

Observe that Qtot has to be estimated separately and is not a result from using
the alpha-factor model. The alpha-factor model gives only the distribution of the
failure multiplicities when a failure event E occurs.

The probability that a 2oo3:F structure fails is

Q2oo3∶F = Q2∶3 + Q3∶3 =
[
𝛼2

3
+ 𝛼3

]
Qtot.

8.8.4 Multiple Beta-Factor Model

The MBF model is developed by the research organization SINTEF and is thor-
oughly described by Hokstad and Rausand (2008). The MBF model is developed
for application to safety-instrumented systems and is similar to the MGL model.

To illustrate the MBF model, consider a 2oo3:G structure of three identical com-
ponents. As shown earlier, this structure fails with probability

Q2oo3 = 3g2,3 + g3,3.
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In line with the MGL model (with 𝛾 = 𝛽2), this probability can be written as

Q2oo3 = (3 − 2𝛽2)𝛽Q. (8.41)

The factor in front of 𝛽Q is in the MBF model considered as a correction factor,
C2oo3 to give

Q2oo3 = C2oo3𝛽Q. (8.42)

The same approach is used for all koon:G configurations and suggested values
for the correction factors Ckoon for all relevant values of k and n are provided in
Hokstad and Rausand (2008). Several SINTEF reports (e.g. Hauge et al. 2013, 2015)
are available, providing theoretical background for the model and practical help.

Hokstad and Rausand (2008) give a more thorough survey of CCF models,
including some additional models, and also presents ideas on how to estimate the
parameters of the models. See also NASA (2011, chapter 10).

8.9 Problems

8.1 Let Ei denote that component i is functioning and let E∗
i denote that

component i is failed, for i = 1, 2. Assume that the events E1 and E2
are independent. Show that this implies that events E1 and E∗

2 are also
independent.

8.2 Consider the two events A and B that both have positive probabilities. Show
that if Pr(A ∣ B) = Pr(A) then Pr(B ∣ A) = Pr(B).

8.3 A coin is tossed three times. Determine the probability of getting exactly
two heads, when it is given that
(a) The first outcome was a head.
(b) The first outcome was a tail.
(c) The two first outcomes were heads.

8.4 If the occurrence of event A makes event B more likely, does the occurrence
of event B make event A more likely? Justify your answer.

8.5 If Pr(A∗) = 0.35 and Pr(B ∣ A) = 0.55, what is Pr(A ∩ B)?

8.6 Discuss basic CCF concepts.
(a) Carefully review the definition of a CCF in Definition 8.2. What type

of criticism can be raised against this definition? Do you have any sug-
gestions for improvements?
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(b) What is a root cause and a coupling factor, and why are these two terms
useful when explaining why CCFs occur?

(c) It is possible to argue that a CCF is sometimes a systematic failure and
sometimes a random failure? Why is this the case?

8.7 Consider a 1oo4:G, a 2oo4:G, and a 3oo4:G structure.
(a) Compare and discuss how vulnerable with respect to CCFs and spuri-

ous activations the three structures are.
(b) Assume that we decide to use a beta-factor model to include CCFs.

When determining the factor 𝛽, we usually end up using the same 𝛽

value for all the three structures. Discuss the realism of this, and also
the realism of the beta-factor model.

8.8 Consider a 2oo3:G structure of identical components with constant failure
rate 𝜆. The system is exposed to common-cause failures that may be mod-
eled by a beta-factor model. In Figure 8.9, it is shown that the MTTF of
the system has a minimum for 𝛽 = 0. Determine the value of 𝛽 for which
MTTF attain its maximum. Explain why MTTF as a function of 𝛽 has this
particular shape.

8.9 Consider a bridge structure of five components. Assume that all the five
components are identical and have constant failure rate 𝜆. The system is
exposed to common-cause failures that may be modeled by a beta-factor
model. Determine the MTTF of the bridge structure as a function of 𝛽, and
make a sketch of MTTF as a function of 𝛽 when 𝜆 = 5 × 10−4 failures/h,
and no repair is carried out.

8.10 C-Factor model.
(a) Describe and discuss the main differences between the beta-factor

model and the C-factor model.
(b) In some cases, it may be argued that the C-factor model is more realistic

than the beta-factor model. Why is this the case?

8.11 Consider a 2oo3:G structure of identical components. The system is
exposed to common cause failures that may be modeled by a binomial
failure rate (BFR) model. The “individual” failure rate of the components is
𝜆
(i) = 5 × 10−5 failures/h. Nonlethal shocks occur with frequency 𝜈 = 10−5

non-lethal shocks/h. When a nonlethal shock occurs, the components
may fail independently with probability p = 0.20. Lethal shocks occur with
frequency 𝜔 = 10−7 lethal shocks/h. When a lethal shock occurs, all the
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three components will fail simultaneously. The lethal and the nonlethal
shocks are assumed to be independent.
(a) Determine the mean time between system failures, MTBF(i), caused by

“individual” component failures, when you assume that the system is
only repaired when a system failure occurs. In such a case the system
is repaired to an as-good-as-new condition.

(b) Determine the mean time between system failures, MTBFNL when you
assume that the only cause of system failures is the nonlethal shocks.

(c) Determine the mean time between system failures, MTBFL, when you
assume that the only cause of system failures is the lethal shocks.

(d) Try to find the total mean time between system failures. Discuss the
problems you meet during this assessment.
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9

Maintenance and Maintenance Strategies

9.1 Introduction

Many technical systems need to be maintained to preserve high operational
reliability during their useful life. The influence of maintenance is clearly seen in
Chapter 6 where maintenance metrics, such as the mean downtime (MDT) and
the mean time to repair (MTTR), enter directly into the formulas that determine
the reliability metrics. Other maintenance aspects do not have such a direct and
visible effect, but may strongly affect failure rates and other system reliability
metrics.

This chapter deals with aspects of maintenance that influence the operational
reliability but does not provide a general introduction to maintenance. Two
popular maintenance strategies, reliability-centered maintenance (RCM) and
total productive maintenance (TPM), are presented. Management and economic
aspects of maintenance are not covered adequately in this book.

First, we need to introduce some new terms. We consider a system where at
least some of the items are subjected to some sort of maintenance. The smallest
items that are maintained or replaced as a unit (i.e. without being disassembled on
site) are called maintainable items. These items are the lowest level in the system
hierarchy to which a maintenance task is allocated. A maintainable item is also
called a least replaceable assembly/unit. What is defined to be a maintainable item
may vary from company to company and between different application areas. A
maintainable item is always a part of a specific system, which we refer to as the
study object.

The persons who plan, execute, and document the maintenance tasks are
referred to as the maintenance personnel or the maintenance crew. A comput-
erized maintenance management system (CMMS) is often used to support and
document the maintenance management.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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In many industries, maintenance tasks are specified as maintenance work
orders. A maintenance work order is a written request that lists the maintenance
work to be carried out at a specified date and time. The work order

• Gives an explanation of the work to be carried out.
• Provides the maintenance personnel with detailed instructions on the work to

be performed and which tools and other resources to use.
• Documents the labor, materials, and resources used to complete the work.
• Tracks all maintenance and repair work that has been performed on each main-

tainable item.

Most CMMSs have a module for making and managing maintenance work orders.

9.1.1 What is Maintenance?

The term “maintenance” is defined in Chapter 1 as: “the combination of all tech-
nical and management tasks intended to retain an item in, or restore it to, a state
in which it can perform as required” (IEV 192-06-01).

Several international standards define and outline the main aspects of mainte-
nance. Such general maintenance standards include

• EN 13306 (2017) “Maintenance terminology”
• ISO 55000 (2014) “Asset management – Overview, principles and terminology”
• IEC 60300-3-14 (2004) “Dependability management – Application Guides –

Maintenance and maintenance support”
• ISO 17359 (2018) “Condition monitoring and diagnostics of machines – General

guidelines”

A high number of standards covering maintenance of specific systems are also
available.

In this book, maintenance is related to the required performance of item func-
tions. Maintenance carried out for other purposes, such as to preserve aesthetic
appearance, is hence not covered. Relevant objectives of maintenance include

• Prevent breakdowns
• Reduce downtime
• Reduce total costs
• Improve safety
• Improve equipment efficiency

• Improve production
• Reduce energy use
• Prevent/reduce pollution of the environment
• Extend useful life of equipment

9.2 Maintainability

The term “maintainability” was defined in Chapter 1 as a characteristic of an
item’s design and installation that determines the ease and rapidity maintenance
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tasks can be accomplished using prescribed practices and procedures. The
maintainability of an item may be different for different failure modes. Some
authors distinguish between two types of maintainability: serviceability and
repairability.

The mean number of hours a study object is inoperative while undergoing main-
tenance is a determining factor for the operational reliability of the study object
and much efforts are therefore devoted to getting an optimal maintainability.

Maintainability engineering is concerned with designing an item (system or
device) such that all maintenance tasks can be performed easily, rapidly, and at
low cost. Maintainability is a function of the equipment design and installation,
personnel availability with the required skill levels, adequacy of maintenance
procedures, test equipment, spare parts, and the physical environment under
which the maintenance task is performed. Several standards and guidelines are
developed to support maintainability engineering, and examples include (IEC
60706 2006; SAE JA1010 2011; MIL-HDBK-470A 1997). The maintainability may
be influenced by factors such as (e.g. see IEC TR 62278-3 2010):

• The simplicity of the design and the use of standardized and interchangeable
items and modules.

• The accessibility of items for servicing and repair (e.g. without having to build
a scaffolding structure).

• The skills required to perform the work.
• The availability and quality of diagnostics to identify and isolate faults.
• The modularization and stacking such that modules with high failure rate are

easy to access.
• The standardization and availability of tools.
• The redundancy of failure-prone items and the feasibility of switchovers.
• The maintenance documentation and its availability and completeness.
• The availability and quality of spare parts.
• The software code quality (i.e. to what degree it is developed, documented, and

maintained according to accepted software quality principles).
• The accessibility for cleaning and testing.

High maintainability generally improves the operational reliability of the sys-
tem, but for some types of systems, high maintainability may also have negative
effects and lead to increased system failure rate. This is, for example the case when
splitting the system into smaller and more handy modules, requiring several more
connectors that may fail.

Example 9.1 (Subsea oil/gas production system)
A subsea oil and gas production system consists of a high number of control
and safety valves, sensors and electrical and hydraulic control systems. Modern
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systems may also have pump, compressors, and several other types of equipment.
The production system is located on the seabed, often more than 2000m below
the sea surface. The largest systems might fill almost a whole football stadium
and are split into a high number of modules, which must be pulled/lifted to the
surface for maintenance/repair. Each module is connected to the main structure
and/or to other modules by a number of remotely operated electrical, hydraulic,
and flow connectors. Many modules are stacked on the top of each other. To avoid
having to pull modules because an item beneath the module has failed, it is very
important to locate the most failure-prone modules on the top level. The process
of arranging the modules to avoid having to pull well-functioning modules is
called stacking. For large systems, stacking is a very laborious and demanding
process that requires many detailed reliability analyses. ◻

Maintainability engineering provides predictions of how long it will take to
repair the maintainable item when it fails. Using these predictions, the design can
be analyzed to identify possible changes that would reduce the time required to
perform maintenance. Several maintainability metrics are used. Among these are

• Mean time to repair (MTTR)
• Mean/median active repair time versus mean item downtime
• Mean system downtime
• Maximum active corrective maintenance time
• Mean preventive maintenance time
• Mean man-hours per repair task
• Maintenance hours per operating hours
• Mean time to restore system

Maintainability metrics are probabilistic and are determined in a similar way as
other reliability metrics. The actual maintainability of the system is usually deter-
mined by maintainability demonstration of typical maintenance tasks.

9.3 Maintenance Categories

Maintenance tasks may be classified in many different ways. The classification in
Figure 9.1 is in line with many standards (e.g. see EN 13306 2017). The main types
of maintenance tasks are briefly described in the following:

(1) Corrective maintenance (CM) denotes all tasks that are carried out as a result
of a detected item failure or fault, to restore the item to a specified condi-
tion. The goal of a CM task is to bring the item back to a functioning state
as soon as possible, either by repairing or replacing the failed item. CM tasks
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Maintenance

Corrective Preventive

Clock based Age based Condition basedImmediate Deferred

Figure 9.1 Classification of maintenance types.

may be carried out immediately when a fault is revealed or postponed until
an opportunity occurs. In the last case, the CM task is said to be deferred.
CM is also called repair, reactive maintenance, run-to-failure maintenance, or
breakdown maintenance and can include any or all of the following steps:
localization, isolation, disassembly, interchange, reassembly, alignment, and
checkout (e.g. see MIL-HDBK-338B 1998). An argument for CM may be sum-
marized by the old quotation: “if it ain’t broke, don’t fix it.”

(2) Preventive maintenance (PM) is planned maintenance “carried out to miti-
gate degradation and reduce the probability of failure” (IEV 192-06-05). PM
tasks may involve inspection, adjustments, lubrication, parts replacement, cal-
ibration, and repair of items that are beginning to wear out. PM tasks have
traditionally been performed on a regular basis, regardless of whether or not
functionality or performance is degraded. With the current possibility of mas-
sive data collection, many companies move to degradation-based PM tasks.
There are several types of PM tasks:
(a) Age-based PM tasks are carried out at a specified age of the item. The

age may be measured as time in operation, or by other time concepts,
such as number of kilometers driven for an automobile, or number of
take-offs/landings for an aircraft. The age replacement policy discussed in
Section 12.3 is an example of age-based maintenance.

(b) Clock-based PM tasks are carried out at specified calendar times. The block
replacement policy discussed in Section 12.3 is an example of clock-based
maintenance. A clock-based maintenance policy is generally easier to
manage than an age-based maintenance policy because the maintenance
tasks can be scheduled to predefined times.

(c) Condition-based PM tasks are based on measurements of one or more con-
dition variables of the item. A PM task is initiated when a condition vari-
able (or a function of several condition variables) approaches, or passes a
threshold value. Examples of condition variables include vibration, tem-
perature, and number of particles in the lubrication oil. The condition
variables may be monitored continuously or at regular intervals.
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(d) Opportunity-based tasks are carried out when maintenance tasks of other
items or a system shutdown provides an opportunity for carrying out
maintenance on items that were not the cause of the opportunity. Oppor-
tunity maintenance is not listed as a separate type in some maintenance
standards.

(e) Overhaul is a comprehensive set of PM tasks that are carried out to
maintain the level of a system’s performance. Very often, the overhaul
is allocated to periods with low demand for the system services. In the
offshore oil and gas industry, whole platforms may be closed down for
several weeks during summer to overhaul the equipment and optimize
functions, to secure that the production will run smoothly during the
high-demand period.

(3) Predictive maintenance extends condition-based maintenance by adding the-
ory and methods used to predict the time when the item will fail. A PM task
can then be planned for a suitable time before the maintainable item fails.

Maintenance tasks may be classified in many different ways as illustrated by the
German (DIN 31051 2012), see box.

An alternative classification of maintenance

The German standard (DIN31051) distinguishes between four categories of
maintenance.

Servicing – tasks to reduce the wear, such as lubrication, cleaning, adjust-
ments, and calibration.

Inspection –tasks to determine and assess the actual state of the item, includ-
ing the causes of this state and necessary consequences for further usage.

Repair – tasks to restore the function of a failed item. Also called corrective
maintenance.

Improvement – tasks to improve the reliability and/or the maintainability
of the item without changing its original function. This category includes
replacement of worn parts.

Example 9.2 (Automobile service)
Automobile service consists of a set of maintenance tasks carried out at a specified
time or after the automobile has run a certain distance. The service intervals and
the content of each service are specified by the automobile manufacturer. Some
modern automobiles display the time of the next service on the instrument panel
and adjust the service-time based on additional usage parameters, such as number
of starts. The service may include tasks such as, replace engine oil, replace filters,
check/refill brake fluid, grease and lubricate components, check lights and wipers,
and many more. ◻
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Example 9.3 (Proof test)
Consider an automatic safety shutdown valve that is located on a pipeline in a
process plant. The valve is normally in open position and is only used to shut down
the flow through the pipeline if a safety-critical situation should occur. Because
the valve is seldom closed, it may have hidden critical faults that prevent it from
performing its safety function. Of this reason, the valve is proof-tested at regular
intervals. The proof test covers more than testing that the valve is able to close. The
valve is tested with pressure and flow-rate as close to the real shutdown situation
as possible. ◻

Remark 9.1 (Modification)
Modification is an integrated set of tasks carried out to modify, or change, one
or more functions of a system. After a modification, the system does not perform
exactly the same functions as before the modification. A modification, or change,
is not classified as a maintenance task, but this is often performed by the mainte-
nance personnel. ◻

9.3.1 Completeness of a Repair Task

When a maintainable item is repaired, the repair task may be

(1) Perfect repair. The repair task returns the item to an as-good-as-new condi-
tion, which corresponds to replacing the item with a new item of the same
type.

(2) Imperfect repair. The repair task returns the item to a functioning state that is
inferior to the state of a new item. In most cases, the return state is better than
the state just before the failure occurred, but it may sometimes be even worse
(e.g. when new faults are introduced in the repair task).

(3) As-bad-as-old. The repair task returns the item to the same state as it had just
before the failure. This is, for example, the case for a large system where the
repair task is to repair a small component and do nothing with the rest of the
system.

The completeness of a repair task is discussed further in Section 10.5.

9.3.2 Condition Monitoring

Condition monitoring may be defined as follows:

Definition 9.1 (Condition monitoring)
The process of systematic data collection and evaluation to identify changes in
performance or condition of a maintainable item or a system, such that a remedial
task may be planned in a cost-effective manner to maintain reliability. ◻
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Common techniques for condition monitoring of mechanical systems include
(Fedele 2011):

• Visual inspection
• Performance monitoring
• Monitoring of noise and vibrations
• Monitoring of wear debris
• Monitoring of temperature

9.4 Maintenance Downtime

There are two types of system downtime associated with a maintenance task.

(1) Unplanned downtime is the downtime caused by item failures or internal and
external (random) events; for example human errors, environmental impacts,
loss of utility functions, labor conflicts (strikes), and sabotage. In some appli-
cations (e.g. electro-power generation), the unplanned downtime is called the
forced outage time.

(2) Planned downtime is the downtime caused by planned preventive main-
tenance, planned operations (e.g. change of tools), and planned breaks,
holidays, and the like. What is to be included as planned downtime depends
on how the mission period is defined. We may, for example, define the mission
period as one year (8760 hours), or the net planned time in operation during
one year, excluding all holidays and breaks, and all planned operational stops.
In some applications, it is common to split the planned downtime into two
types:
(a) Scheduled downtime that is planned long time in advance (e.g. planned

preventive maintenance, breaks, and holidays)
(b) Unscheduled planned downtime initiated by condition monitoring, detec-

tion of incipient failures, and events that may require a preventive task
to improve or maintain the quality of the system functions, or to reduce
the probability of a future failure. The associated remedial tasks can some-
times be postponed (within some limits) and carried out when it is suitable
from an operational point of view.

The scheduled downtime may often be regarded as deterministic and be esti-
mated from the operational plans. The unscheduled planned downtime may be
subject to random variations, but it is usually rather straightforward to estimate a
mean value.

The unplanned downtime strongly depends on the cause of the downtime.
Assume that we have identified n independent causes of unplanned downtime,
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and let Di be the random downtime associated to cause i for i = 1, 2,… ,n. Let
FDi

(d) denote the distribution function of Di, and let pi be the probability that
a specific downtime has cause i. The distribution of the downtime D is then
FD(d) =

∑n
i=1 piFDi

(d), and the mean downtime is

MDT ≈
n∑

i=1
piMDTi,

where MDTi = E(Di) denotes the mean downtime associated with cause i for i =
1, 2,… ,n.

9.4.1 Downtime Caused by Failures

In the following, we confine ourselves to discussing the downtime caused by item
failures and assume that the planned downtime and the unplanned downtime
from other causes are treated separately. When we use the term “downtime” in
the following, we tacitly assume that the downtime is caused by item failures.

The downtime of an item can usually be regarded as a sum of elements, such
as access time, diagnosis time, active repair time, and checkout time. The ele-
ments are further discussed by Smith (2013). The length of the various elements
are influenced by a number of system specific factors, such as ease of access, main-
tainability, and availability of maintenance personnel, tools, and spare parts. The
downtime associated with a specific failure therefore has to be estimated based on
knowledge of all these factors.

The MDT is the mean time the item is in a nonfunctioning state after a failure.
The MDT is usually significantly longer than the MTTR and includes time to detect
and diagnose the failure, logistic time, and time to test and startup of the item.
When the item is put into operation again it is considered to be as-good-as-new.
The mean uptime (MUT) of the item is equal to the MTTF. Both concepts may be
used, but MUT is a more common term in maintenance applications. The mean
time between consecutive occurrences of failures is denoted MTBF. The state vari-
able and the various time concepts are illustrated in Figure 9.2.

For detailed reliability assessments, it is important to choose an adequate down-
time distribution as basis for the estimation. Three distributions are commonly
used: the exponential, the normal, and the lognormal distribution (Ebeling 2009).
We briefly discuss the adequacy of these distributions.

Exponential Distribution
The exponential distribution is the most simple downtime distribution we can
choose because it has only one parameter, the repair rate 𝜇. The exponential dis-
tribution was discussed in detail in Section 5.4. Here, we briefly mention some of
its main features.
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Figure 9.2 Average “behavior” of a repairable item and main time concepts.

The mean downtime is MDT = 1∕𝜇, and the probability that a downtime D is
longer than a value d is Pr(D > d) = e−𝜇d. The exponential distribution has no
memory. This implies that if a downtime has lasted a time d, the mean remaining
downtime is 1∕𝜇 regardless of the value of d. This feature is not realistic for most
downtimes, except for situations where the main part of the downtime is spent on
searching for failures, and where failures are found more or less at random.

In many applications, the exponential distribution is chosen as a downtime dis-
tribution, not because it is realistic, but because it is easy to use.

Example 9.4 (Exponentially distributed downtime)
Consider a repairable item with downtime D related to a specific type of failures.
The downtime is assumed to be exponentially distributed with repair rate 𝜇. The
MDT for this specific type of failures has been estimated to be five hours. The repair
rate is then 𝜇 = 1∕MDT = 0.20 hours−1. The probability that the downtime, D, is
longer than seven hours is Pr(D > 7) = e−7𝜇 ≈ 0.247 = 24.7%. ◻

Normal Distribution
The rationale for choosing a normal (Gaussian) downtime distribution is
motivated by the fact that the downtime may be considered as a sum of many
independent elements. The normal distribution is discussed in Section 5.4.
Estimation of MDT and the standard deviation are straightforward in the normal
model. When using the normal distribution, the repair rate function 𝜇(d) may
be approximated by a straight line as a function of the elapsed downtime d.
Therefore, the probability of being able to complete an ongoing repair task within
a next short interval increases almost linearly with time.

Lognormal Distribution
The lognormal distribution is often used as a model for the repair time distribution.
The lognormal distribution is discussed in Section 5.4. When using the lognor-
mal distribution, the repair rate 𝜇(d) increases up to a maximum, and thereafter
decreases asymptotically down to zero as a function of the elapsed downtime d.
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When an item has been down for a very long time, this indicates serious problems,
for example that there are no spare parts available on the site, or that the mainte-
nance crew is not able to get access to, or correct the failure. It is therefore natural
to believe that the repair rate is decreasing after a certain period of time.

9.4.2 Downtime of a Series Structure

Consider a series structure of n independent items. Item i has constant failure rate
𝜆i. When item i fails, the mean system downtime is MDTi, for i = 1, 2,… ,n. The
probability that the structure failure is caused by item i is 𝜆i∕

∑n
j=1 𝜆j, and the mean

system downtime for an unspecified failure is

MDT ≈
∑n

i=1 𝜆iMDTi∑n
j=1 𝜆j

(9.1)

The MDT is equal to the right-hand side of (9.1) only when the items are not inde-
pendent. In most applications, equation (9.1) gives a good approximation.

Example 9.5 (Item with independent failure modes)
Consider an item with n independent failure modes. Failure mode i occurs with
constant failure rate 𝜆i, and the mean downtime required to restore the item from
failure mode i is MDTi for i = 1, 2,… ,n. The item may be considered as a series
structure of n independent virtual items, where item i only can fail with failure
mode i. The mean downtime of the item is therefore given by (9.1). ◻

Equation (9.1) may be used as an approximation for the mean downtime caused
by an unspecified item failure of a nonseries structure of independent items. In
this case, it is important to realize that MDTi denotes the system downtime caused
by failure of item i for i = 1, 2,… ,n.

9.4.3 Downtime of a Parallel Structure

Consider a parallel structure of n independent items. The structure fails when all
the n items are in a failed state. The mean system downtime MDTS can be very
different depending on the repair strategy. Several options are possible and among
these are

(1) We wait until the structure has failed before starting any maintenance task
and then we may
(a) repair all the items at the same time, or
(b) repair the item with the lowest MDTi, in which case MDTS =

min1=1,2,…,n{MDTi}.
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(2) We begin repairing the items as soon as they fail or as soon as a given number
of them have failed. The structure experiences a downtime if the last surviving
item fails before the maintenance of at least one of the failed items is finished.

The system downtime is a random variable and its distribution and mean value
may be rather difficult to determine because they cannot be derived directly based
on a description of a limited number of scenarios. The use of a stochastic process
is required to describe the possible states of the system. This can be done in some
cases by using Markov processes (see Chapter 11) if the times-to-failure and repair
times are exponentially distributed.

9.4.4 Downtime of a General Structure

For more complicated structures, there are no generic analytical formulas avail-
able that can give the mean structure downtime MDTS. The structure downtime
strongly depends on the maintenance policy when a failure occurs (as indicated
for the parallel structure). Monte Carlo simulation may be used to obtain adequate
estimates.

9.5 Reliability Centered Maintenance

As many modern maintenance practices, the RCM concept originated within the
aircraft industry. RCM has now been applied with considerable success for more
than 40 years; first within the aircraft industry, and later within the military forces,
the nuclear power industry, the offshore oil and gas industry, and many other
industries. Experiences from these industries show significant reductions in PM
costs while maintaining, or even improving, the availability of the systems.

Definition 9.2 (Reliability-centered maintenance, RCM)
A systematic consideration of system functions, the way functions can fail, and a
priority-based consideration of safety and economics that identifies applicable and
effective PM tasks1 ◻

The focus of RCM is on the system functions, and not on the system hardware,
and the main objective of RCM is to reduce the maintenance cost, by focusing
on the most important functions of the system, and avoiding or removing mainte-
nance tasks that are not strictly necessary. If a maintenance program already exists,
the result of an RCM analysis will often be to eliminate inefficient PM tasks.

1 The definition is based on a definition proposed by the Electric Power Research Institute
(EPRI).
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The RCM concept is described in several standards, reports, and textbooks.
Among these are Nowlan and Heap (1978), IEC 60300-3-11 (2009), SAE JA1012
(2011), and NASA (2008). The main ideas presented in the various sources are
more or less the same, but the detailed procedures may be rather different.

The maintenance tasks considered in the RCM approach are related to failures
and functional degradation. Maintenance carried out, for example to preserve or
improve the aesthetic appearance of a system by cleaning and painting is outside
the scope of RCM, at least when such maintenance has no effect on the system
functions. However, planning of such tasks should be integrated with the planning
of RCM relevant tasks.

9.5.1 What is RCM?

RCM is a technique for developing a PM program. It is based on the assump-
tion that the inherent reliability of the equipment is a function of the design and
the built quality. An effective PM program will ensure that the inherent reliabil-
ity is maintained. It should be realized that RCM will never be a substitute for
poor design, inadequate build quality or bad maintenance practices. RCM can-
not improve the inherent reliability, of the system. This is only possible through
redesign or modification.

The application of PM is often misunderstood. It is easy to erroneously believe
that the more an item is routinely maintained, the more reliable it will be. Often,
the opposite is the case due to maintenance-induced failures. RCM was designed
to balance the costs and benefits, to obtain the most cost-effective PM program.
To achieve this, the desired system performance standards have to be specified.
PM will not prevent all failures, and therefore the potential consequences of each
failure must be identified and the likelihood of failure must be known. PM tasks
are chosen to address each failure by using a set of applicability and effectiveness
criteria. To be effective, a PM task must provide a reduced expected loss related
to personnel injuries, environmental damage, production loss, and/or material
damage.

An RCM analysis basically provides answers to the following seven questions.

(1) What are the functions and associated performance standards of the equip-
ment in its present operating context?

(2) In what ways can it fail to fulfill its functions?
(3) What is the cause of each functional failure?
(4) What happens when each failure occurs?
(5) In what way does each failure matter?
(6) What can be done to prevent each failure?
(7) What should be done if a suitable preventive task cannot be found?



�

� �

�

384 9 Maintenance and Maintenance Strategies

Experience has shown that approximately 30% of the efforts of an RCM analysis
is involved in defining functions and performance standards, that is, answering
question 1.

9.5.2 Main Steps of an RCM Analysis

The RCM analysis may be carried out as a sequence of activities or steps, some of
which are overlapping in time.

(1) Study preparation
(2) System selection and definition
(3) Functional failure analysis (FFA)
(4) Critical item selection
(5) Data collection and analysis
(6) Failure modes, effects and criticality analysis (FMECA)
(7) Selection of maintenance tasks
(8) Determination of maintenance intervals
(9) Preventive maintenance comparison analysis

(10) Treatment of noncritical items
(11) Implementation
(12) In-service data collection and updating

The various steps are discussed in the following.

Step 1: Study Preparation
In Step 1 an RCM project group is established. The project group must define and
clarify the objectives and the scope of the analysis. Requirements, policies, and
acceptance criteria with respect to safety and environmental protection should be
made visible as boundary conditions for the RCM analysis.

Overall drawings and process diagrams, such as piping and instrumentation
diagrams, must be made available. Possible discrepancies between the as-built doc-
umentation and the real plant must be identified. The resources that are available
for the analysis are usually limited. The RCM group should therefore be sober
with respect to what to look into, realizing that analysis cost should not dominate
potential benefits.

Step 2: System Selection and Definition
Before a decision to perform an RCM analysis at a plant is taken, two questions
should be considered.

(1) To which systems are an RCM analysis beneficial compared with more tradi-
tional maintenance planning?
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(2) At what level of assembly (plant, system, subsystem) should the analysis be
conducted?

All systems may in principle benefit from an RCM analysis. With limited
resources, we must, however, make priorities, at least when introducing RCM in a
new plant. We should start with the systems we assume will benefit most from the
analysis. Most operating plants have developed some sort of assembly hierarchy.
In the offshore oil and gas industry, this hierarchy is referred to as a tag number
system. The following terms will be used for the levels of the assembly hierarchy:

Plant is a set of systems that function together to provide some sort of output. An
offshore gas production platform is, for example considered to be a plant.

System is a set of subsystems that perform a main function in the plant (e.g. gener-
ate electro-power, supply steam). The gas compression system on an offshore gas
production platform may, for example be considered as a system. Observe that
the compression system may consist of several compressors with a high degree
of redundancy. Redundant items performing the same main function should be
included in the same system.

The system level is recommended as the starting point for the RCM analysis.
This means that on an offshore oil/gas platform the starting point of the analysis
should, for example be the gas compression system, and not the whole platform.

The systems may be broken down into subsystems, sub-subsystems, and so on.
For the purpose of the RCM analysis, the lowest level of the hierarchy is called
maintainable items.

Maintainable item is an item that is able to perform at least one significant func-
tion as a stand-alone item (e.g. pumps, valves, and electric motors). By this defi-
nition, a shutdown valve is, for example a maintainable item, whereas the valve
actuator is not. The actuator is a supporting equipment to the shutdown valve and
only has a function as part of the valve. The importance of distinguishing the main-
tainable items from their supporting equipment is clearly seen in the FMECA in
Step 6. If a maintainable item is found to have no significant failure modes, then
none of the failure modes or causes of the supporting equipment are important,
and therefore do not need to be addressed. Similarly, if a maintainable item has
only one significant failure mode, then the supporting equipment only needs to
be analyzed to determine if there are failure causes that may affect that particular
failure mode. Therefore, only the failure modes and effects of the maintainable
items need to be analyzed in the FMECA in Step 6.

By the RCM approach, all maintenance tasks and maintenance intervals are
decided for the maintainable items. When it comes to the execution of a partic-
ular maintenance task on a maintainable item, this will usually involve repair,
replacement, or testing of an item or part of the maintainable item. These com-
ponents/parts are identified in the FMECA in Step 6. The RCM analyst should
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always try to keep the analysis at the highest practical indenture level. The lower
the level, the more difficult it is to define performance standards.

It is important that the maintainable items are selected and defined in a clear and
unambiguous way in this initial phase of the RCM analysis because the following
steps of the analysis are based on these items.

Step 3: Functional Failure Analysis
A specific system was selected in Step 2. The objectives of this step are to

(i) Identify and describe the system’s required functions and performance crite-
ria

(ii) Describe input interfaces required for the system to operate
(iii) Identify the ways in which the system might fail to function

Step 3(i): Identification of System Functions
The system will usually have a high number of different functions. It is essential
for the RCM analysis that all the important system functions are identified. The
analyst may benefit from using the approach outlined in Chapter 4.

Step 3(ii): Identification of Interfaces
The various system functions may be represented by functional block diagrams, to
illustrate the input interfaces to a function. In some cases, we may want to split sys-
tem functions into subfunctions on an increasing level of detail, down to functions
of maintainable items. This may be accomplished by functional block diagrams,
or reliability block diagrams.

Step 3(iii): Functional Failures
The next step is a FFA to identify and describe the potential system failure modes.
In most of the RCM references, the system failure modes are called functional fail-
ures. Classifications schemes for failure modes were discussed in Chapter 3. Such
schemes may be used to secure that all relevant functional failures are identified.

The functional failures are recorded on a specific FFA worksheet that is rather
similar to a standard FMECA worksheet. An example of an FFA worksheet is
shown in Figure 9.3. In the first column of the worksheet, the various operational
modes of the system are recorded. For each operational mode, all the relevant sys-
tem functions are recorded in column 2. The performance requirements to each
function such as target values and acceptable deviations are listed in column 3. For
each system function (in column 2) all the relevant functional failures are listed
in column 4. In columns 5–8, a criticality ranking of each functional failure in
that particular operational mode is given. The reason for including the criticality
ranking is to be able to limit the extent of the further analysis by not wasting time
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Figure 9.3 Functional failure analysis (FFA) worksheet.

on insignificant functional failures. For complicated systems, such a screening is
often important in order not to waste time and money.

The criticality must be judged on the plant level and should be ranked in the
four consequence classes:

S: Safety of personnel
E: Environmental impact
A: Production availability
M: Material loss

For each of these consequence classes, the criticality may be ranked as for example
high (H), medium (M), low (L), or negligible (N), where the definition of the cate-
gories will depend on the specific application. If at least one of the four entries are
medium (M) or high (H), the criticality of the functional failure should be classified
as significant, and be subject to further analysis.

The frequency of the functional failure may also be classified into four cate-
gories. The frequency classes may be used to prioritize between the significant
functional failures. If all the four criticality entries of a functional failure are low
or negligible, and the frequency is also low, then the failure is classified as insignif-
icant and disregarded in the further analysis.

Step 4: Critical Item Selection
The objective of this step is to identify the maintainable items that are potentially
critical with respect to the functional failures identified in Step 3 (iii). These main-
tainable items are denoted functional significant items (FSI). Observe that some of
the less critical functional failures are disregarded at this stage of the analysis.
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For simple systems, the FSIs may be identified without any formal analysis. In
many cases, it is obvious which maintainable items have influence on the system
functions.

For complicated systems with an ample degree of redundancy or with buffers,
we may need a formal approach to identify the FSIs. Depending on the complexity
of the system, importance ranking based on techniques such as fault tree anal-
ysis, reliability block diagrams, or Monte Carlo simulation may be suitable. In a
petroleum production plant, there is often a variety of buffers and rerouting pos-
sibilities. For such systems, Monte Carlo next event simulation may often be the
only feasible approach.

In addition to the FSIs, we should identify items with high failure rate, high
repair costs, low maintainability, long lead time for spare parts, and items requir-
ing external maintenance personnel. These maintainable items are denoted main-
tenance cost significant items (MCSI). The combination of the FSIs and the MCSIs
are denoted maintenance significant items (MSI).

In the FMECA in Step 6, each of the MSIs will be analyzed to identify potential
failure modes and effects.

Step 5: Data Collection and Analysis
The various steps of the RCM analysis require a variety of input data, such as
design data, operational data, and reliability data. Reliability data sources are dis-
cussed in Chapter 16. Reliability data is necessary in order to decide the criticality,
to mathematically describe the failure process, and to optimize the time between
PM tasks.

In some situations, there is a complete lack of reliability data. This is the case
when developing a maintenance program for new systems. The maintenance
program development starts long before the equipment enters service. Helpful
sources of information may then experience data from similar equipment,
recommendations from manufacturers, and expert judgments. The RCM method
will even in this situation provide useful information.

Step 6: Failure Modes, Effects, and Criticality Analysis
The objective of this step is to identify the dominant failure modes of the MSIs
identified in Step 4. A variety of different FMECA worksheets are proposed in
the main RCM references. The FMECA worksheet used in our approach is pre-
sented in Figure 9.4, and is more detailed than most of the FMECA worksheets in
the main RCM references. The various columns in our FMECA worksheet are as
follows:

• MSI. In this column, we record the maintainable item number in the assembly
hierarchy (tag number), optionally with a descriptive text.
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• Operational mode. The MSI may have various operational modes, for example
running and standby. The operational modes are listed, one by one.

• Function. The various functions for each operational mode of the MSI are listed.
• Failure mode. The failure modes for each function are listed.

Effect of failure/severity class. The effect of a failure is described in terms of the
worst-case outcome for the S, E, A, and C categories introduced in Step 3(iii).
The criticality may be specified by the same four classes as in Step 3(iii), or by
some numerical severity measure. A failure of an MSI will not necessarily give a
worst-case outcome resulting from, redundancy, buffer capacities, and the like.
Conditional likelihood columns are therefore introduced.

• “Worst-case” probability. The worst-case probability is defined as the probability
that an equipment failure will give the worst-case outcome. To obtain a numer-
ical probability measure, a system model is sometimes required. This will often
be inappropriate at this stage of the analysis and a descriptive measure may be
used.

• MTTF. Mean time-to-failure (MTTF) for each failure mode is recorded. Either
a numerical measure or likelihood classes may be used.

The information described so far should be entered for all failure modes. A
screening may now be appropriate, giving only dominant failure modes, that is,
items with high criticality.

• Criticality. The criticality field is used to tag off the dominant failure modes
according to some criticality measure. A criticality measure should take failure
effect, worst-case probability, and MTTF into account. “Yes” is used to tag off
the dominant failure modes.

For the dominant failure modes, the following fields are required:

• Failure cause. For each failure mode, there may be several failure causes. An
MSI failure mode will typically be caused by one or more component failures.
Observe that supporting equipment to the MSIs entered in the FMECA work-
sheet is for the first time considered in this step. In this context, a failure cause
may therefore be a failure mode of a supporting equipment. A “fail to close”
failure of a safety valve may, for example be caused by a broken spring in the
failsafe actuator.

• Failure mechanism. For each failure cause, there is one or several failure mech-
anisms. Examples of failure mechanisms are fatigue, corrosion, and wear.

• %MTTF. The MTTF was entered on an MSI failure mode level. It is also inter-
esting to know the (marginal) MTTF for each failure mechanism. To simplify,
a percent is given, and the (marginal) MTTF may be estimated for each failure
mechanism. The %MTTF will obviously only be an approximation because the
effects of the various failure mechanisms usually are strongly interdependent.
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• Failure characteristic. Failure propagation may be divided into three classes:
(1) The failure propagation may be measured by one or several (condition mon-

itoring) indicators. The failure is referred to as a gradual failure.
(2) The failure probability is age-dependent, that is there is a predictable

wear-out limit. The failure is referred to as an aging failure.
(3) Complete randomness. The failure cannot be predicted by either con-

dition monitoring indicators or by measuring the age of the item. The
time-to-failure can only be described by an exponential distribution, and
the failure is referred to as a sudden failure.

• Maintenance task. For each failure mechanism, an appropriate maintenance
task may hopefully be found by the decision logic in Figure 9.5, which is
described in Step 7. This field can therefore not be completed until Step 7 is
performed.

• Failure characteristic measure. For gradual failures, the condition monitoring
indicators are listed by name. Aging failures are described by an aging parame-
ter, that is the shape parameter (𝛼) in the Weibull distribution is recorded.

• Recommended maintenance interval. In this column, the interval between con-
secutive maintenance tasks is given. The length of the interval is determined in
Step 8.

Step 7: Selection of Maintenance Task
This step is the most novel compared to other maintenance planning techniques.
A decision logic is used to guide the analyst through a question and answer pro-
cess. The input to the RCM decision logic is the dominant failure modes from the
FMECA in Step 6. The main idea is for each dominant failure mode to decide
whether a PM task is applicable and effective, or it is best to let the item deliber-
ately run to failure and afterwards carry out a corrective maintenance task. There
are generally three main reasons for doing a PM task:

(1) To prevent a failure
(2) To detect the onset of a failure
(3) To discover a hidden fault

The following basic maintenance tasks are considered:

(1) Scheduled on-condition task
(2) Scheduled overhaul
(3) Scheduled replacement
(4) Scheduled function test
(5) Run to failure

Scheduled on-condition task is a task to determine the condition of an item, for
example by condition monitoring. There are three criteria that must be met for an
on-condition task to be applicable.
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(1) It must be possible to detect reduced failure resistance for a specific failure
mode.

(2) It must be possible to define a potential failure condition that can be detected
by an explicit task.

(3) There must be a reasonable consistent age interval between the time of poten-
tial failure (P) is detected and the time of functional failure (F).

The time interval from it is possible to reveal a potential failure (P) by the cur-
rently used monitoring technique until a functional failure (F) occurs is called
the PF interval. The P–F interval can be regarded as the potential warning time
in advance of a functional failure. The longer the P–F interval, the more time one
has to make a good decision and plan tasks. P–F intervals are further discussed in
Section 12.3.3.

Scheduled overhaul of an item may be performed at or before some specified age
limit and is often called hard time maintenance. An overhaul task is considered
applicable to an item only if the following criteria are met:

(a) There must be an identifiable age at which there is a rapid increase in the
item’s failure rate function.

(b) A large proportion of the items must survive to that age.
(c) It must be possible to restore the original failure resistance of the item by

reworking it.

Scheduled replacement is replacement of an item (or one of its parts) at or before
some specified age or time limit. A scheduled replacement task is applicable only
under the following circumstances:

(a) The item must be subject to a critical failure.
(b) The item must be subject to a failure that has major potential consequences.
(c) There must be an identifiable age at which the item shows a rapid increase in

the failure rate function.
(d) A large proportion of the items must survive to that age.

Scheduled function test is a scheduled failure-finding task or inspection of a
hidden function to identify failures. Failure finding tasks are preventive only in
the sense that they prevent surprises by revealing failures of hidden functions.
A scheduled function test task is applicable to an item under the following
conditions:

(a) The item must be subject to a functional failure that is not evident to the oper-
ating crew during the performance of normal duties. The task has to be based
on information about the failure rate function, the likely consequences and
costs of the failure, the PM task is supposed to prevent the cost and risk of the
PM task, and so on.
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(b) The item must be one for which no other type of task is applicable and effec-
tive.

Run to failure is a deliberate decision to run to failure because the other tasks
are not possible or the economics are less favorable.

PM will not prevent all failures. Consequently, if there is a clear identifiable fail-
ure mode that cannot be adequately addressed by an applicable and effective PM
task that will reduce the probability of failure to an acceptable level, then there is
need to redesign or modify the item. If the consequences of failures are related to
safety or the environment, redesign will normally be mandatory. For operational
and economic consequences of failure this may be desirable, but a cost–benefit
assessment has to be performed. The criteria given for using the various tasks
should only be considered as guidelines for selecting an appropriate task. A task
might be found appropriate even if some of the criteria are not fulfilled.

A variety of different RCM decision logic diagrams are used in the main RCM
references. Some of these are rather complicated. The decision logic diagram in
Figure 9.5 is very simple and may be too simple for many applications, but the
resulting maintenance tasks may – in many cases – be the same. It should be

Does a failure alerting
measurable indicator

exist?

Increasing 
failure rate?

Is the failure 
mode hidden?

No PM activity
found

Scheduled
on-condition task

Scheduled
overhaul

Scheduled
replacement

Scheduled
function test

Is overhaul
feasible?

Yes

Yes

No

No

No

No

Figure 9.5 Maintenance task assignment/decision logic.
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emphasized that such a logic can never cover all situations. In the case of a hidden
function with aging failures, a combination of scheduled replacements and func-
tion tests is required.

Step 8: Determination of Maintenance Intervals
Some of the PM tasks are to be performed at regular intervals. To determine the
optimal interval is a very difficult task that has to be based on information about
the failure rate function, the likely consequences and costs of the failure the PM
task is supposed to prevent, the cost and risk of the PM task, and so on. Several
models are discussed in Chapter 12.

In practice, the various maintenance tasks have to be grouped into maintenance
packages that are carried out at the same time, or in a specific sequence. The main-
tenance intervals can therefore not be optimized for each single item. The whole
maintenance package has, at least to some degree, to be treated as an entity.

Step 9: Preventive Maintenance Comparison Analysis
Two overriding criteria for selecting maintenance tasks are used in RCM. Each
task selected must meet two requirements:

(1) It must be applicable.
(2) It must be effective.

Applicability means that the task is applicable in relation to our reliability knowl-
edge and in relation to the consequences of failure. If a task is found based on
the preceding analysis, it should satisfy the applicability criterion. A PM task is
applicable if it can eliminate a failure, or at least reduce the probability of the
occurrence of failure to an acceptable level, or reduce the impact of the failure.

Cost-effectiveness means that the task does not cost more than the failure(s) it is
going to prevent.

The effectiveness of a PM task is a measure of how well it accomplishes its pur-
pose and if it is worth doing. Clearly, when evaluating the effectiveness of a task,
we are balancing the cost of performing the maintenance with the cost of not per-
forming it. The cost of a PM task may include the following:

(1) The risk/cost related to maintenance induced failures.
(2) The risk the maintenance personnel is exposed to during the task.
(3) The risk of increasing the likelihood of failure of another item while the one

is out of service.
(4) The use and cost of physical resources.
(5) The unavailability of physical resources elsewhere while in use on this task.
(6) Production unavailability during maintenance.
(7) Unavailability of protective functions during maintenance of these.
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In contrast, the cost of a failure may include the following:

(1) The consequences of the failure should it occur (loss of production, possible
violation of laws or regulations, reduction in plant or personnel safety, or dam-
age to other equipment).

(2) The consequences of not performing the PM task even if a failure does not
occur (e.g. loss of warranty).

(3) Increased premiums for emergency repairs (such as overtime, expediting
costs, or high replacement power cost).

Step 10: Treatment of Non-MSIs
In Step 4, critical items (MSIs) were selected for further analysis. A remaining
question is what to do with the items that are not analyzed. For plants already
having a maintenance program, a brief cost evaluation should be carried out. If the
existing maintenance cost related to the non-MSIs is insignificant, it is reasonable
to continue this program. See Paglia et al. (1991) for further discussion.

Step 11: Implementation
A necessary basis for implementing the result of the RCM analysis is that the
organizational and technical maintenance support functions are available. A main
issue is therefore to ensure that these support functions are available. Experience
shows that many accidents occur either during maintenance or because of inad-
equate maintenance. When implementing a maintenance program, it is therefore
of vital importance to consider the risk associated with the various maintenance
tasks. For complicated maintenance operations, it may be relevant to perform a
safe job analysis combined with a human HAZOP to reveal possible hazards and
human errors related to the maintenance task (e.g. see Rausand and Haugen 2020).

Step 12: In-service Data Collection and Updating
The reliability data we have access to at the outset of the analysis may be scarce,
or even second to none. In our opinion, one of the most significant advantages of
RCM is that we systematically analyze and document the basis for our initial deci-
sions, and, hence, can better utilize operating experience to adjust that decision as
operating experience data become available. The full benefit of RCM is therefore
only obtained when operation and maintenance experience is fed back into the
analysis process.

The updating process should be concentrated on three major time perspectives:

(1) Short-term interval adjustments
(2) Medium-term task evaluation
(3) Long-term revision of the initial strategy
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For each significant failure that occurs in the system, the failure characteristics
should be compared with the FMECA. If the failure was not covered adequately in
the FMECA, the relevant part of the RCM analysis should, if necessary, be revised.

The short-term update may be considered a revision of previous analysis results.
The input to such an analysis is updated failure information and reliability esti-
mates. This analysis should not require much resources as the framework for the
analysis is already established. Only Steps 5–8 in the RCM process will be affected
by short-term updates.

The medium-term update should carefully review the basis for the selection of
maintenance tasks in Step 7. Analysis of maintenance experience may identify sig-
nificant failure causes not considered in the initial analysis, requiring an updated
FMECA in Step 6.

The long-term revision should consider all steps in the analysis. It is not suf-
ficient to consider only the system being analyzed, it is required to consider the
entire plant with its relations to the outside world, such as contractual considera-
tions, new laws regulating environmental protection, and so on.

9.6 Total Productive Maintenance

TPM is an approach to maintenance management that was developed in
Japan (Nakajima 1988) to support the implementation of just-in-time manufac-
turing and associated efforts to improve product quality. TPM activities focus on
eliminating the six major losses:

Availability losses

(1) Equipment failure (breakdown) losses. Associated costs include downtime,
labor, and spare part cost.

(2) Setup and adjustment losses that occur during product changeovers, shift
change, or other changes in operating conditions.

Performance (speed) losses.

(3) Idling and minor stoppages that typically last up to 10 minutes. These include
machine jams and other brief stoppages that are difficult to record, and conse-
quently usually are hidden from efficiency reports. When combined, they can
represent substantial equipment downtime.

(4) Reduced speed losses that occur when equipment must be slowed down to pre-
vent quality defects or minor stoppages. In most cases, this loss is not recorded
because the equipment continues to operate, albeit at a lower speed. Speed
losses obviously have a negative effect on productivity and asset utilization.



�

� �

�

9.6 Total Productive Maintenance 397

Gross available time:  t
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 operating time:  tU

Six major losses

Figure 9.6 Time concepts used in Total productive maintenance.

Quality losses

(1) Defects in process and reworking losses that are caused by manufacture of
defective or substandard products, that must be reworked or scrapped. These
losses include the labor and material costs (if scrapped) associated with
off-specification production.

(2) Yield losses reflect the wasted raw materials associated with the quantity of
rejects and scrap that result from start-ups, changeovers, equipment limita-
tions, poor product design, and so on. It excludes the category 5 defect losses
that result during normal production.

The six major losses determine the overall equipment effectiveness (OEE), which is
a multiplicative combination of equipment availability losses (1 and 2), equipment
performance losses (3 and 4), and quality losses (5 and 6). The time concepts used
in TPM are illustrated in Figure 9.6. The factors used to determine the OEE are:

Operational availability AO = tF∕tR

Performance rate RP = tN∕tF

Quality rate RQ = tU∕tF

The quality rate may alternatively be measured as

Quality rate = RQ =
No. of processed products − No. of rejected products

No. of processed products
The OEE is defined as

OEE = AORPRQ (9.2)
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The OEE is used as an indicator of how well machines, production lines, and
processes are performing in terms of availability, performance, and quality. An
OEE ≥ 85% is considered to be “world class.”

TPM has been described as a partnership approach to maintenance. Under
TPM, small groups or teams create a cooperative relationship between main-
tenance and production. Production workers become involved in performing
maintenance work allowing them to play a role in equipment monitoring and
upkeep. This raises the skill of production workers and allows them to be more
effective in maintaining the equipment in good condition. Team-based activities
play an important role in TPM. Team-based activities involve groups from main-
tenance, production, and engineering. The technical skill of engineers and the
experience of maintenance workers and equipment operators are communicated
through these teams. The objective of the team-based activities is to improve
equipment performance through better communication of current and potential
equipment problems. Maintainability improvement and maintenance prevention
are two team-based TPM activities. TPM has several benefits. The efforts of main-
tenance improvement teams should result in improved equipment availability
and reduced maintenance costs. Maintainability improvement should result in
increased maintenance efficiency and reduced repair time. TPM resembles total
quality management (TQM) in several aspects, such as (i) total commitment to
the program from upper level management is required, (ii) employees must be
empowered to initiate corrective tasks, and (iii) a long range outlook must be
accepted as TPM may take a year or more to implement and is an ongoing process.

9.7 Problems

9.1 Discuss the maintainability of your bicycle and suggest improvements of its
maintainability.

9.2 Give a practical example where an as-bad-as-old repair action may be a real-
istic assumption.

9.3 Assume that you are driving your car when it suddenly fails and you have to
leave it where it stopped. Explain what is meant by MDT in this case and list
the main elements adding up to the MDT.

9.4 List and discuss the main differences between RCM and TPM. Are the two
approaches competitors, can they be combined, or do they serve two totally
different purposes? Justify your answers. (Further information about RCM
and TPM may be found by searching the Internet.)
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10

Counting Processes

10.1 Introduction

This chapter studies the reliability of a single and repairable item as a function
of time. The goal is to determine relevant reliability metrics, such as the item’s
availability, the mean number of failures during a specified time interval, the mean
time to the first item failure, and the mean time between item failures. For this
purpose, the item is studied by using stochastic processes.

A stochastic process {X(t), t ∈ Θ} is a collection of random variables. The set Θ is
called the index set of the process. For each index t in Θ, X(t) is a random variable.
The index t is here interpreted as time, and X(t) is called the state of the process at
time t. When the index set Θ is countable, the process is a discrete-time stochastic
process. When Θ is a continuum, we have a continuous-time stochastic process.
The presentation of the various processes in this book is brief and limited, and
focuses on results that can be applied in practice instead of mathematical rigor.
The reader should consult a textbook on stochastic processes for more details.
Good treatments of stochastic processes are given by, for example, Ross (1996),
Cocozza-Thivent (1997), and Cha and Finkelstein (2018).

10.1.1 Counting Processes

Consider a repairable item that is put into operation at time t = 0. The first item
failure occurs at time S1, which is a random variable. When the item has failed,
it is replaced or restored to a functioning state. The repair time is assumed to be
so short that it may be neglected. The second failure occurs at time S2, and so on.
In this way, a sequence of failure times S1, S2,… is obtained. Let Ti be the time
between failure i − 1 and failure i for i = 1, 2,…, where S0 is taken to be 0. Ti is
called the interoccurrence time i for i = 1, 2,…. Ti is also called the time between
failures, and the interarrival time.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Figure 10.1 Relation between the number of events N(t), the interoccurrence times (Ti),
and the calendar times (Si)

Throughout this chapter, t denotes a specified point of time, irrespective whether
t is calendar time (a realization of Si) or local time (a realization of an interoccur-
rence time Ti). We hope that this convention does not confuse the reader. The time
concepts are illustrated in Figure 10.1.

The sequence of interoccurrence times, T1,T2,… is generally not independent
and identically distributed – unless the item is replaced upon failure, or restored to
an as-good-as-new condition, and the operating context remains constant during
the whole period.

A counting process is a special type of a stochastic process, and is defined as:

Definition 10.1 (Counting process)
A stochastic process {N(t), t ≥ 0} that satisfies:

(1) N(t) ≥ 0
(2) N(t) is integer valued.
(3) If s < t, then N(s) ≤ N(t)
(4) For s < t, [N(t) − N(s)] represents the number of failures that have occurred in

the interval (s, t]. ◻

Definition 10.1 is adapted from Ross (1996). A counting process {N(t), t ≥ 0}
may alternatively be represented by the sequence of failure (calendar) times
S1, S2,…, or by the sequence of interoccurrence times T1,T2,…. The three
representations contain the same information about the counting process. Main
features of counting processes are illustrated in Examples 10.1 and 10.2. The two
examples also introduce some new concepts.
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65177 51 43 32 27 15

Time177 242 293 336 368 395 410

Figure 10.2 The dataset in Example 10.1.

Example 10.1 (Sad versus happy items)
The following failure times (calendar time in days) come from Ascher and
Feingold (1984). The dataset is recorded from time t = 0 until seven failures have
occurred during a total time of 410 (days). The data represent a single item, and
the repair times are assumed to be negligible. This means that the item is assumed
to be functioning again almost immediately after a failure is encountered.

Number of failures Calendar time Interoccurrence time

N(t) Sj Tj

0 0 0
1 177 177
2 242 65
3 293 51
4 336 43
5 368 32
6 395 27
7 410 15

The dataset is shown in Figure 10.2. The interoccurrence times are seen to
become shorter with time. The item seems to be deteriorating, and failures tend to
become more frequent. An item with this property is called a sad item by Ascher
and Feingold (1984). An item with the opposite property, where failures become
less frequent with operating time, is called a happy item.

The number of failures N(t) is shown as a function of (calendar) time t in
Figure 10.3. Observe that N(t) by definition is constant between failures and
jumps (a height of 1 item) at the failure times Si for i = 1, 2,…. It is thus sufficient
to plot the jumping points (Si,N(Si)) for i = 1, 2,…. The plot is called an N(t) plot,
or a Nelson–Aalen plot (see Chapter 14).

Observe that N(t) as a function of t tends to be convex when the item is sad.
In the same way, N(t) tends to be concave when the item is happy.1 If N(t) is

1 Observe that we are using the terms convex and concave in a rather inaccurate way here. What
we mean is that the observed points {ti,N(ti)} for i = 1, 2,… approximately follow a
convex/concave curve.
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Figure 10.3 Number of failures N(t) as a function of time for the data in Example 10.1.

(approximately) linear, the item is steady, that is, the interoccurrence times have
the same expected length. In Figure 10.2, N(t) is clearly seen to be convex, and the
item is sad. ◻

Example 10.2 (Compressor failure data)
Failure time data for a specific compressor at a Norwegian process plant was col-
lected as part of a student thesis at NTNU. All compressor failures in the time
period 1968–1989 were recorded. In this period, a total of 321 failures occurred.
90 of these failures were critical failures and 231 failures were noncritical. In this
context, a critical failure is a failure causing compressor downtime. Noncritical
failures may be corrected without having to stop the compressor. The majority of
the noncritical failures were instrument failures, and failures related to the seal oil
system and the lubrication oil system.

As above, let N(t) be the number of compressor failures in the time interval
(0, t]. From a production point of view, the critical failures are the most important,
because they lead to process shutdown. The operating times (in days) at which the
90 critical failures occurred are listed in Table 10.1. Here, the time t denotes the
operating time, which means that the downtimes caused by compressor failures
and process shutdowns are not included. An N(t) plot of the 90 critical failures is
shown in Figure 10.4.

In this case, the N(t) plot is slightly concave and indicates a happy item. The
time between critical failures seems to increase with the time in operation. Also
observe that several failures have occurred within short intervals. This indicates
that the failures may be dependent, or that the maintenance personnel have not
been able to correct the failures properly at the first attempt. ◻

An analysis of life data from a repairable item should always be started by estab-
lishing an N(t) plot. If N(t) as a function of the time t is nonlinear, methods based
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Table 10.1 Failure times (operating days) in chronological order.

1.0 4.0 4.5 92.0 252.0 277.0
277.5 284.5 374.0 440.0 444.0 475.0
536.0 568.0 744.0 884.0 904.0 1017.5

1288.0 1337.0 1338.0 1351.0 1393.0 1412.0
1413.0 1414.0 1546.0 1546.5 1575.0 1576.0
1666.0 1752.0 1884.0 1884.2 1884.4 1884.6
1884.8 1887.0 1894.0 1907.0 1939.0 1998.0
2178.0 2179.0 2188.5 2195.5 2826.0 2847.0
2914.0 3156.0 3156.5 3159.0 3211.0 3268.0
3276.0 3277.0 3321.0 3566.5 3573.0 3594.0
3640.0 3663.0 3740.0 3806.0 3806.5 3809.0
3886.0 3886.5 3892.0 3962.0 4004.0 4187.0
4191.0 4719.0 4843.0 4942.0 4946.0 5084.0
5084.5 5355.0 5503.0 5545.0 5545.2 5545.5
5671.0 5939.0 6077.0 6206.0 6206.5 6305.0
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Figure 10.4 Number of critical compressor failures N(t) as a function of time (days),
(totaling 90 failures).

on the assumption of independent and identically distributed times between fail-
ures are obviously not appropriate. It is, however, not certain that such methods
are appropriate even if the N(t) plot is very close to a straight line. The interoccur-
rence times may be strongly correlated. Methods to check whether the interoccur-
rence times are correlated or not, are discussed, e.g. by Ascher and Feingold (1984)
and Bendell and Walls (1985). The N(t) plot is further discussed in Section 10.4.
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10.1.2 Basic Concepts

Throughout this section, we assume that the events that are counted are failures.
In some of the applications later in this chapter we also study other types of events,
such as repairs. Some of the concepts must be reformulated to be meaningful in
these applications. We hope that this does not confuse the reader.

• Independent increments. A counting process {N(t), t ≥ 0} is said to have
independent increments if for 0 < t1 < · · · < tk, k = 2, 3,… [N(t1) −
N(0)], [N(t2) − N(t1)],… , [N(tk) − N(tk−1)] are all independent random vari-
ables. In that case the number of failures in an interval is not influenced by
the number of failures in any strictly earlier intervals (i.e. with no overlap).
This means that even if the item has experienced an unusual high number of
failures in a certain time interval, this does not influence the distribution of
future failures.

• Stationary increments. A counting process is said to have stationary incre-
ments if for any two disjoint time points t > s ≥ 0 and any constant c > 0,
the random variables [N(t) − N(s)] and [N(t + c) − N(s + c)] are identically
distributed. This means that the distribution of the number of failures in a time
interval depends only on the length of the interval, and not on the interval’s
distance from the origin.

• Stationary process. A counting process is said to be stationary (or homoge-
neous) if it has stationary increments.

• Nonstationary process. A counting process is said to be nonstationary (or non-
homogeneous) if it is neither stationary nor eventually becomes stationary.

• Regular process. A counting process is said to be regular (or orderly) if

Pr[N(t + Δt) − N(t) ≥ 2] = o(Δt), (10.1)

when Δt is small, and o(Δt) is a function of Δt with the property that
lim
Δt→0

o(Δt)∕Δt = 0. This means that the item will not have two or more
simultaneous failures.

• Rate of the process. The rate of the counting process at time t is defined as:

𝑤(t) = W ′(t) = d
dt

E[N(t)], (10.2)

where W(t) = E[N(t)] is the mean number of failures (events) in the interval
(0, t]. Thus

𝑤(t) = W ′(t) = lim
Δt→0

E[N(t + Δt) − N(t)]
Δt

, (10.3)
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and when Δt is small,

𝑤(t) ≈ E[N(t + Δt) − N(t)]
Δt

= Mean number of failures in (t, t + Δt]
Δt

A natural estimator of 𝑤(t) is

�̂�(t) = Number of failures in (t, t + Δt]
Δt

, (10.4)

for some suitable Δt. It follows that the rate 𝑤(t) of the counting process, may
be regarded as the mean number of failures (events) per time unit at time t.
When we are dealing with a regular process, the probability of two or more fail-
ures in (t, t + Δt] is negligible when Δt is small and we may assume that

N(t + Δt) − N(t) = 0 or 1.

The mean number of failures in (t, t + Δt] is hence approximately equal to the
probability of failure in (t, t + Δt], and

𝑤(t) ≈
Probability of failure in (t, t + Δt]

Δt
. (10.5)

Hence,𝑤(t)Δt can be interpreted as the probability of failure in the time interval
(t, t + Δt]. Some authors write (10.5) as

𝑤(t) = lim
Δt→0

Pr[N(t + Δt) − N(t) = 1]
Δt

,

as definition of the rate of the process. Observe also that

E[N(t0)] = W(t0) = ∫

t0

0
𝑤(t) dt. (10.6)

• Rate of occurrence of failures (ROCOF). When the events of a counting process
are failures, the rate 𝑤(t) of the process is often called the rate of occurrence of
failures (ROCOF).

• Time between failures. We have denoted the time Ti between failure i − 1 and
failure i, for i = 1, 2,…, the interoccurrence times. For a general counting pro-
cess, the interoccurrence times are neither identically distributed nor indepen-
dent. Hence, the mean times between failures, MTBFi = E(Ti), are in general a
function of i and T1,T2,… ,Ti−1.

• Forward recurrence time. The forward recurrence time Y (t) is the time to the
next failure measured from an arbitrary point of time t. Thus Y (t) = SN(t)+1 − t.
The forward recurrence time is also called the residual lifetime, the remain-
ing lifetime, or the excess life. The forward recurrence time is illustrated in
Figure 10.5.
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SN(t) SN(t)+1 0

Y(t)

t

Figure 10.5 The forward recurrence time Y(t).

Many of the results in this chapter are only valid for nonlattice distributions. A
lattice distribution is defined as:

Definition 10.2 (Lattice distribution)
A nonnegative random variable is said to have a lattice (or periodic) distribution if
there exists a number d ≥ 0 such that

∞∑
n=0

Pr(X = nd) = 1.

In words, X has a lattice distribution if X can only take on values that are integral
multiples of some nonnegative number d. ◻

10.1.3 Martingale Theory

Martingale theory can be applied to counting processes to make a record of the his-
tory of the process. Lett denote the history of the process up to, but not including,
time t. Usually, we think of t as {N(s), 0 ≤ s < t} which keeps record of all fail-
ures before time t. It could, however, contain more specific information about each
failure.

A conditional rate of failures may be defined as

𝑤C(t ∣ t) = lim
Δt→∞

Pr(N(t + Δt) − N(t) = 1 ∣ t)
Δt

. (10.7)

Thus, 𝑤C(t ∣ t)Δt is approximately the probability of failure in the interval [t, t +
Δt) conditional on the failure history up to, but not including time t. Observe that
the rate of the process (ROCOF) defined in (10.2) is the corresponding uncondi-
tional rate of failures.

Usually, the process depends on the history through random variables and𝑤C(t ∣
t)will consequently be stochastic. It should be observed that𝑤C(t ∣ t) is stochas-
tic only through the history: for a fixed history (that is for a given state just before
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time t), 𝑤C(t ∣ t) is not stochastic. To simplify the notation, we will in the follow-
ing omit the explicit reference to the history t and let 𝑤C(t) be the conditional
ROCOF.

The martingale approach for modeling counting processes require rather sophis-
ticated mathematics. We will therefore avoid using this approach during the main
part of the chapter, but will touch upon martingales in Section 10.5 where we dis-
cuss imperfect repair models. A brief, but clear introduction to martingales used
in counting processes is given by Hokstad (1997). For a more rigorous treatment,
see Andersen et al. (1993).

10.1.4 Four Types of Counting Processes

This chapter examines four types of counting processes.

(1) Homogeneous Poisson processes (HPP),
(2) Renewal processes
(3) Nonhomogeneous Poisson processes (NHPP)
(4) Imperfect repair processes

The HPP is introduced in Section 5.5. In the HPP model, all the interoccurrence
times are independent and exponentially distributed with the same parameter
(failure rate) 𝜆.

The renewal process and the NHPP are generalizations of the HPP, both having
the HPP as a special case. A renewal process is a counting process where the inte-
roccurrence times are independent and identically distributed with an arbitrary
time-to-failure distribution. Upon failure, the item is thus replaced or restored to
an as-good-as-new condition. This is often called a perfect repair. Statistical analy-
sis of observed interoccurrence times from a renewal process is discussed in detail
in Chapter 14.

The NHPP differs from the HPP in that the ROCOF varies with time rather than
being a constant. This implies that for an NHPP model, the interoccurrence times
are neither independent nor identically distributed. The NHPP is often used to
model repairable items that are subject to a minimal repair strategy, with negligi-
ble repair times. Minimal repair means that a failed item is restored just back to
functioning state. After a minimal repair, the item continues as if nothing had hap-
pened. The likelihood of item failure is the same immediately before and after a
failure. A minimal repair thus restores the item to an as-bad-as-old condition. The
minimal repair strategy is discussed, for example, by Ascher and Feingold (1984)
and Akersten (1991) who give a detailed list of relevant references on this subject.

The renewal process and the NHPP represent two extreme types of repair:
replacement to an as-good-as-new condition and replacement to as-bad-as-old
(minimal repair), respectively. Most repair actions are somewhere between these
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Type of repair

Imperfect repair
(normal repair)

Minimal repair
(as-bad-as-old)

Perfect repair or
replacement

(as-good-as-new)

HPP
Renewal
process NHPP

Imperfect
repair models

Figure 10.6 Types of repair and stochastic point processes covered in this book.

extremes and are often called imperfect repair, or normal repair. A number of
different models have been proposed for imperfect repair. A survey of some of
these models is given in Section 10.5. The various types of repair and the models
covered in this book are shown in Figure 10.6.

10.2 Homogeneous Poisson Processes

The HPP is introduced in Section 5.8.5. The HPP may be defined in a number
of different ways. Three alternative definitions of the HPP are presented in the
following, to illustrate different features of the HPP. The two first definitions are
based on Ross (1996).

Definition 10.3 (Homogeneous Poisson process – 1)
The counting process {N(t), t ≥ 0} is said to be an HPP with rate 𝜆, for 𝜆 > 0, if

(1) N(0) = 0
(2) The process has independent increments.
(3) The number of events in any interval of length t is Poisson distributed with

mean 𝜆t. That is, for all s, t > 0,

Pr(N(t + s) − N(s) = n) = (𝜆t)n

n!
e−𝜆t for n = 0, 1, 2,… . (10.8)

◻

Observe that it follows from property 3 that an HPP has stationary increments
and also that E[N(t)] = 𝜆t, which explains why 𝜆 is called the rate of the process.

Definition 10.4 (Homogeneous Poisson process – 2)
The counting process {N(t), t ≥ 0} is said to be an HPP with rate 𝜆, for 𝜆 > 0, if
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(1) N(0) = 0
(2) The process has stationary and independent increments.
(3) Pr(N(Δt) = 1) = 𝜆Δt + o(Δt)
(4) Pr(N(Δt) ≥ 2) = o(Δt)

◻

These two alternative definitions of the HPP are presented to clarify the analogy
to the definition of the NHPP that is presented in Section 10.4. The third definition
of the HPP is adapted from Cocozza-Thivent (1997).

Definition 10.5 (Homogeneous Poisson process – 3)
The counting process {N(t), t ≥ 0} is said to be an HPP with rate 𝜆 > 0, if N(0) = 0,
and the interoccurrence times T1,T2,… are independent and exponentially dis-
tributed with parameter 𝜆. ◻

10.2.1 Main Features of the HPP

The main features of the HPP can be easily deduced from the three alternative
definitions:

(1) The HPP is a regular counting process with independent and stationary incre-
ments.

(2) The rate of occurrence of failures, ROCOF, of the HPP is constant and inde-
pendent of time,

𝑤(t) = 𝜆 for t ≥ 0. (10.9)

(3) The number of failures in the interval (t, t + 𝑣] is Poisson distributed with
mean 𝜆𝑣,

Pr[N(t + 𝑣) − N(t) = n] = (𝜆𝑣)n

n!
e−𝜆𝑣 for t ≥ 0, 𝑣 > 0. (10.10)

(4) The mean number of failures in the time interval (t, t + 𝑣] is

W(t + 𝑣) − W(t) = E[N(t + 𝑣) − N(t)] = 𝜆𝑣. (10.11)

Especially observe that E[N(t)] = 𝜆t, and var[N(t)] = 𝜆t.
(5) The interoccurrence times T1,T2,… are independent and identically

distributed exponential random variables having mean 1∕𝜆
(6) The time of the nth failure Sn =

∑n
i=1 Ti has a gamma distribution with param-

eters (n, 𝜆). Its probability density function is

fSn
(t) = 𝜆

(n − 1)!
(𝜆t)n−1e−𝜆t for t ≥ 0. (10.12)
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Further features of the HPP are presented and discussed, for example, by Ross
(1996) and Ascher and Feingold (1984).

Remark 10.1 (Comparing definitions of the HPP)
Consider an HPP defined by Definition 10.5 where the interoccurrence times
T1,T2,… are independent and exponentially distributed with parameter 𝜆. The
arrival time Sn is, according to (10.12), gamma distributed with parameters
(n, 𝜆). Because N(t) = n if and only if Sn ≤ t < Sn+1, and the interoccurrence time
Tn+1 = Sn+1 − Sn, we use the law of total probability (see Section 6.2.4) to write

Pr(N(t) = n) = Pr(Sn ≤ t < Sn+1)

=
∫

t

0
Pr(Tn+1 > t − s ∣ Sn = s) fSn

(s) ds

=
∫

t

0
e−𝜆(t−s) 𝜆

(n − 1)!
(𝜆s)n−1 e−𝜆s ds

= (𝜆t)n

n!
e−𝜆t

. (10.13)

This shows that {N(t), t ≥ 0}, is an HPP with mean 𝜆t according to
Definition 10.5. ◻

10.2.2 Asymptotic Properties

The following asymptotic results apply:
N(t)

t
→ 𝜆 with probability 1, when t → ∞,

and
N(t) − 𝜆t√

𝜆t



→  (0, 1),

such that

P

(
N(t) − 𝜆t√

𝜆t
≤ t

)
≈ Φ(t) when t → ∞, (10.14)

whereΦ(t) is the distribution function of the standard normal distribution (0, 1).

10.2.3 Estimate and Confidence Interval

General information about estimates and confidence intervals is found in
Chapter 14. Readers who are not familiar with estimation theory may find it
useful to consult that chapter. In this section, we suffice by summarizing some
main formulas.
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An obvious estimator for 𝜆 is

�̂� = N(t)
t

. (10.15)

The estimator is unbiased, E(�̂�) = 𝜆, with variance, var(�̂�) = 𝜆∕t.
A (1 − 𝜀) confidence interval for 𝜆, when N(t) = n events (failures) are observed

during a time interval of length t, is given as (e.g. see Cocozza-Thivent 1997, p. 63):( 1
2t

z1−𝜀∕2, 2n,
1
2t

z
𝜀∕2, 2(n+1)

)
, (10.16)

where z
𝜀,𝜈

is the upper 100𝜀% percentile of the chi-square (𝜒2) distribution with
𝜈 degrees of freedom. Percentile values (e.g. 95%) of the 𝜒

2 distribution with n
degrees of freedom are found in R by the command qchisq(0.95, df=n).

In some situations, it is of interest to give an upper (1 − 𝜀) confidence limit for
𝜆. Such a limit is obtained through the one-sided confidence interval given by(

0, 1
2t

z
𝜀, 2(n+1)

)
. (10.17)

Observe that this interval is applicable even if no failures (i.e. N(t) = 0) are
observed during the interval (0, t).

10.2.4 Sum and Decomposition of HPPs

Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent HPPs with rates 𝜆1 and
𝜆2, respectively. Further, let N(t) = N1(t) + N2(t). It is then easy to verify (see Prob-
lem 4) that {N(t), t ≥ 0} is an HPP with rate 𝜆 = 𝜆1 + 𝜆2.

Suppose that in an HPP {N(t), t ≥ 0}, we can classify each failure as Type 1 and
Type 2 that are occurring with probability p and (1 − p), respectively. This is, for
example, the case when we have a sequence of failures with two different failure
modes (1 and 2), and p equals the relative number of failure mode 1. Then the
number of events, N1(t) of Type 1, and N2(t) of Type 2 in the interval (0, t] also
generate HPPs, {N1(t), t ≥ 0} and {N2(t), t ≥ 0} with rates p𝜆 and (1 − p)𝜆, respec-
tively. Furthermore, the two processes are independent. For a formal proof, see,
for example, Ross (1996, p. 69). These results can be easily generalized to more
than two cases.

Example 10.3 (Failures of a specific type)
Let {N(t), t ≥ 0} be an HPP with rate 𝜆. Some failures develop into a consequence
C, others do not. The failures developing into a consequence C are denoted a
C-failure. C may, for example, be a specific failure mode. The probability that a
failure develops into consequence C is denoted p and is constant for each failure.
The failure consequences are further assumed to be independent of each other. Let
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NC(t) be the number of C-failures in the time interval (0, t]. When N(t) is equal to
n, NC(t) is binomially distributed.

Pr(NC(t) = y ∣ N(t) = n) =
(

n
y

)
py(1 − p)n−y for y = 0, 1, 2,… ,n.

The marginal distribution of NC(t) is

Pr(NC(t) = y) =
∞∑

n=y

(
n
y

)
py(1 − p)n−y (𝜆t)n

n!
e−𝜆t

=
pye−𝜆t

y!
(𝜆t)y

∞∑
n=y

[𝜆t(1 − p)]n−y

(n − y)!

=
(p𝜆t)ye−𝜆t

y!

∞∑
x=0

[𝜆t(1 − p)]x

x!

=
(p𝜆t)ye−𝜆t

y!
e𝜆t(1−p)

=
(p𝜆t)y

y!
e−p𝜆t

, (10.18)

which shows that {NC(t), t ≥ 0} is an HPP with rate p𝜆. The mean number of
C-failures in the time interval (0, t] is

E[NC(t)] = p𝜆t.
◻

10.2.5 Conditional Distribution of Failure Time

Suppose that exactly one (hidden) failure of an HPP with rate 𝜆 is known to have
occurred sometime in the interval (0, t0]. We want to determine the distribution of
the time T1 at which the failure occurred.

Pr(T1 ≤ t ∣ N(t0) = 1) =
Pr(T1 ≤ t ∩ N(t0) = 1)

Pr(N(t0) = 1)

=
Pr(1 failure in (0, t] ∩ 0 failures in (t, t0])

Pr(N(t0) = 1)

=
Pr(N(t) = 1)Pr(N(t0) − N(t) = 0)

Pr(N(t0) = 1)

= 𝜆te−𝜆t e−𝜆(t0−t)

𝜆t0e−𝜆t0

= t
t0

for 0 < t ≤ t0. (10.19)

When we know that exactly one failure (event) takes place in the time interval
(0, t0], the time at which the failure occurs is uniformly distributed over (0, t0].
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Hence, each interval of equal length in (0, t0] has the same probability of contain-
ing the failure. The expected time at which the failure occurs is

E(T1 ∣ N(t0) = 1) =
t0

2
. (10.20)

This result is important for the analyses of safety-instrumented systems in
Chapter 13.

10.2.6 Compound HPPs

Consider an HPP, {N(t), t ≥ 0}, with rate 𝜆. A random variable Xi is associated to
failure event i, for i = 1, 2,…. The variable Xi may, for example, be the consequence
(economic loss) associated with failure i. The variables X1,X2,… are assumed to
be independent with common distribution function

FX (x) = Pr(X ≤ x).

The variables X1,X2,… are further assumed to be independent of N(t). The cumu-
lative consequence at time t is

Z(t) =
N(t)∑
i=1

Xi for t ≥ 0. (10.21)

The process {Z(t), t ≥ 0} is called a Compound Poisson process. Compound Poisson
processes are discussed, for example, by Ross (1996). The same model is called a
cumulative damage model by Barlow and Proschan (1975). To determine the mean
value of Z(t), Wald’s equation is used (see box).2

Wald’s equation

Let X1,X2,X3,… be independent and identically distributed random variables
with finite mean E(X). Further let N be a stochastic integer variable such that
the event (N = n) is independent of Xn+1,Xn+2,… for all n = 1, 2,…. Then

E

( N∑
i=1

Xi

)
= E(N) E(X). (10.22)

A proof of Wald’s equation may be found, for example, in Ross (1996). The vari-
ance of

∑N
i=1 Xi is Ross (1996):

var

( N∑
i=1

Xi

)
= E(N)var(Xi) + [E(Xi)]2var(N). (10.23)

2 Named after the Hungarian mathematician Abraham Wald (1902–1950).
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Let E(Vi) = 𝜈 and var(Vi) = 𝜏
2. From (10.22) and (10.23), we get

E[Z(t)] = 𝜈𝜆t and var[Z(t)] = 𝜆(𝜈2 + 𝜏
2)t.

Assume now that the consequences Vi are all positive, that is Pr(Vi > 0) = 1 for all
i, and that a total item failure occurs as soon as Z(t) > c for some specified critical
value c. Let Tc be the time to item failure. Observe that Tc > t if and only if Z(t) ≤ c.
Let V0 = 0, then

Pr(Tc > t) = Pr(Z(t) ≤ c) = Pr

(N(t)∑
i=0

Vi ≤ c

)

=
∞∑

n=0
Pr

( n∑
i=0

Vi ≤ c ∣ N(t) = n

)
(𝜆t)n

n!
e−𝜆t

=
∞∑

n=0

(𝜆t)n

n!
e−𝜆t F(n)

V (c), (10.24)

where F(n)
V (𝑣) is the distribution function of

∑n
i=0 Vi, and the last equality is due to

the fact that N(t) is independent of V1,V2,….
The mean time to total item failure is thus

E(Tc) = ∫

∞

0
Pr(Tc > t) dt

=
∞∑

n=0

(
∫

∞

0

(𝜆t)n

n!
e−𝜆t dt

)
F(n)

V (c)

= 1
𝜆

∞∑
n=0

F(n)
V (c). (10.25)

Example 10.4 (Exponentially distributed consequences)
Consider a sequence of failure events that can be described as an HPP {N(t), t ≥ t}
with rate 𝜆. Failure i has consequence Vi, where V1,V2,… are independent and
exponentially distributed with parameter 𝜌. The sum

∑n
i=1 Vi is therefore gamma

distributed with parameters (n, 𝜌) (see Section 5.4):

F(n)
V (𝑣) = 1 −

n−1∑
k=0

(𝜌𝑣)k

k!
e−𝜌𝑣 =

∞∑
k=n

(𝜌𝑣)k

k!
e−𝜌𝑣

Total item failure occurs as soon as Z(t) =
∑N(t)

i=1 Vi > c. The mean time to total item
failure is given by (10.15) where

∞∑
n=0

F(n)
V (c) =

∞∑
n=0

∞∑
k=n

(𝜌c)k

k!
e−𝜌c =

∞∑
k=0

k∑
n=0

(𝜌c)k

k!
e−𝜌c

=
∞∑

k=0
(1 + k) (𝜌c)k

k!
e−𝜌c = 1 + 𝜌c
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Hence, when the consequences V1,V2,… are exponentially distributed with
parameter 𝜌, the mean time to total item failure is

E(Tc) =
1 + 𝜌c
𝜆

. (10.26)
◻

The distribution of the time Tc to total item failure is by Barlow and Proschan
(1975, p. 94) shown to be an increasing failure rate average (IFRA) distribution for
any distribution FV (𝑣). (IFRA distributions are discussed in Section 5.7).

10.3 Renewal Processes

Renewal theory had its origin in the study of strategies for replacement of technical
items, but later it was developed as a general theory within stochastic processes. As
the name of the process indicates, it is used to model renewals, or replacement of
items. This section gives a summary of some main aspects of renewal theory that
are of particular interest in reliability analysis. This includes formulas for calcula-
tion of exact availability and mean number of failures within a given time interval.
The latter can, for example, be used to determine optimal allocation of spare parts.

Example 10.5 (A renewal process)
An item is put into operation and is functioning at time t = 0. When the item
fails at time T1, it is replaced by a new item of the same type, or restored to an
as-good-as-new state. When this item fails at time T1 + T2, it is again replaced,
and so on. The replacement time is assumed to be negligible. The times-to-failure
T1,T2,… are assumed to be independent and identically distributed. The number
of failures, and renewals, in a time interval (0, t] is denoted N(t). ◻

10.3.1 Basic Concepts

A renewal process is a counting process {N(t), t ≥ 0} with interoccurrence times
T1,T2,… that are independent and identically distributed with distribution func-
tion FT(t) = Pr(Ti ≤ t) for t ≥ 0 and i = 1, 2,… .

The events that are observed are called renewals, and FT(t) is called the
underlying distribution of the renewal process. We assume that E(Ti) = 𝜇 and
var(Ti) = 𝜎

2
< ∞ for i = 1, 2, 3,…. Observe that the HPP discussed in Section 10.2

is a renewal process where the underlying distribution is exponential with
parameter 𝜆. A renewal process may thus be considered as a generalization of
the HPP.

The concepts that are introduced for a general counting process in Section 10.1.2
are also relevant for a renewal process, but the theory of renewal processes has
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been developed as a specific theory, and many of the concepts have therefore been
given specific names. We therefore list the main concepts of renewal processes and
introduce the necessary terminology.

(1) The time until the nth renewal (the nth arrival time), Sn

Sn = T1 + T2 + · · · + Tn =
n∑

i=1
Ti. (10.27)

(2) The number of renewals in the time interval (0, t]

N(t) = max {n; Sn ≤ t}. (10.28)

(3) The renewal function

W(t) = E[N(t)]. (10.29)

Thus W(t) is the mean number of renewals in the time interval (0, t].
(4) The renewal density

𝑤(t) = d
dt

W(t). (10.30)

Observe that the renewal density coincides with the rate of the process defined
in (10.2), which is called the rate of occurrence of failures (ROCOF) when the
renewals are failures. The mean number of renewals in the time interval (t1, t2]
is

W(t2) − W(t1) = ∫

t2

t1

𝑤(t) dt. (10.31)

The relation between the renewal periods Ti and the number of renewals N(t),
the renewal process, is illustrated in Figure 10.1. The properties of renewal pro-
cesses are discussed in detail by Cox (1962), Ross (1996), Cocozza-Thivent (1997),
and Cha and Finkelstein (2018).

10.3.2 The Distribution of Sn

To find the exact distribution of the time to the nth renewal Sn is often complicated.
We outline an approach that may be used, at least in some cases. Let F(n)(t) be the
distribution function of Sn =

∑n
i=1 Ti.

Because Sn may be written as Sn = Sn−1 + Tn, and Sn−1 and Tn are independent,
the distribution function of Sn is the convolution of the distribution functions of
Sn−1 and Tn, respectively,3

F(n)(t) =
∫

t

0
F(n−1)(t − x) dFT(x). (10.32)

3 More information about convolution may be found on https://en.wikipedia.org/wiki/
Convolution.
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The convolution of two (time-to-failure) distributions F and G is often denoted
F ∗ G, meaning that F ∗ G(t) = ∫

t
0 G(t − x) dF(x). Equation (10.32) can therefore

be written F(n) = FT ∗ F(n−1).
When FT(t) is absolutely continuous4 with probability density function fT(t), the

probability density function f (n)(t) of Sn may be found from

f (n)(t) =
∫

t

0
f (n−1)(t − x)fT(x) dx. (10.33)

By successive integration of (10.33) for n = 2, 3, 4,…, the probability density of Sn
for a specified value of n can, in principle, be found.

It may also sometimes be relevant to use Laplace transforms to find the distri-
bution of Sn. The Laplace transform of Eq. (10.33) is (see Appendix B),

f ∗(n)(s) = [f ∗T (s)]
n
. (10.34)

The probability density function of Sn can now, at least in principle, be determined
from the inverse Laplace transform of (10.34).

In practice, it is often time-consuming and complicated to find the exact distri-
bution of Sn from (10.33) and (10.34). Often, an approximation to the distribution
of Sn is sufficient.

From the strong law of large numbers, that is, with probability 1,
Sn

n
→ 𝜇 as n → ∞. (10.35)

According to the central limit theorem (see Eq. 6.39), Sn =
∑n

i=1 Ti is asymptot-
ically normally distributed

Sn − n𝜇

𝜎

√
n



−−−−→  (0, 1).

and

F(n)(t) = Pr(Sn ≤ t) ≈ Φ

(
t − n𝜇
𝜎

√
n

)
. (10.36)

whereΦ(⋅) is the distribution function of the standard normal distribution (0, 1).

Example 10.6 (IFR interoccurrence times)
Consider a renewal process where the interoccurrence times have an increasing
failure rate (IFR) distribution FT(t) (see Section 5.6) with mean time-to-failure 𝜇.
In this case, Barlow and Proschan (1965, p. 27) show that the survivor function,
RT(t) = 1 − FT(t) satisfies

RT(t) ≥ e−t∕𝜇 when t < 𝜇. (10.37)

4 For a definition of the term absolutely continuous, e.g. see https://en.wikipedia.org/wiki/
Absolute_continuity.
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The right-hand side of (10.37) is the survivor function of a random variable Uj
with exponential distribution with failure rate 1∕𝜇. Let us assume that we have n
independent random variable U1,U2,… ,Un with the same distribution. The dis-
tribution of

∑n
j=1 Uj has then a gamma distribution with parameters (n, 1∕𝜇) (see

Section 5.4.2), and we therefore get

1 − F(n)(t) = Pr(Sn > t) = Pr(T1 + T2 + · · · + Tn > t)

≥ Pr(U1 + U2 + · · · + Un > t) =
n−1∑
j=0

(t∕𝜇)j

j!
e−t∕𝜇

Hence,

Fn(t) ≤ 1 −
n−1∑
j=0

(t∕𝜇)j

j!
e−t∕𝜇 for t < 𝜇. (10.38)

For a renewal (failure) process where the interoccurrence times have an IFR distri-
bution with mean 𝜇, Eq. (10.38) provides a conservative bound for the probability
that the nth failure occurs before time t, when t < 𝜇. ◻

10.3.3 The Distribution of N(t)

From the strong law of large numbers, that is, with probability 1,
N(t)

t
→

1
𝜇

as t → ∞. (10.39)

When t is large, N(t) ≈ t∕𝜇. This means that N(t) is approximately a linear function
of t when t is large. In Figure 10.7, the number of renewals N(t) is plotted as a
function of t for a simulated renewal process where the underlying distribution is
Weibull with parameters 𝜆 = 1 and 𝛼 = 3.

From the definition of N(t) and Sn, it follows that

Pr(N(t) ≥ n) = Pr(Sn ≤ t) = F(n)(t),

and

Pr(N(t) = n) = Pr(N(t) ≥ n) − Pr(N(t) ≥ n + 1)

= F(n)(t) − F(n+1)(t). (10.40)

For large values of n, we can apply (10.36) and obtain

Pr(N(t) ≤ n) ≈ Φ
(
(n + 1)𝜇 − t

𝜎

)
, (10.41)

and

Pr(N(t) = n) ≈ Φ

(
t − n𝜇
𝜎

√
n

)
− Φ

(
t − (n + 1)𝜇

𝜎

√
n + 1

)
, (10.42)
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Figure 10.7 Number of renewals N(t) as a function of t for a simulated renewal process
where the underlying distribution is Weibull with parameters 𝜆 = 1 and 𝛼 = 3.

Takács (1956) derives the following alternative approximation formula which is
valid when t is large

Pr(N(t) ≤ n) ≈ Φ

(
n − (t∕𝜇)

𝜎

√
t∕𝜇3

)
. (10.43)

A proof of (10.43) is provided in Ross (1996, p. 109).

10.3.4 The Renewal Function

Because N(t) ≥ n if and only if Sn ≤ t, we obtain (see Problem 10.5).

W(t) = E(N(t)) =
∞∑

n=1
Pr(N(t) ≥ n) =

∞∑
n=1

Pr(Sn ≤ t) =
∞∑

n=1
F(n)(t). (10.44)

An integral equation for W(t) may be obtained by combining (10.44) and (10.32):

W(t) = FT(t) +
∞∑

r=2
F(r)(t) = FT(t) +

∞∑
r=1

F(r+1)(t)

= FT(t) +
∞∑

r=1 ∫

t

0
F(r)(t − x) dFT(x)

= FT(t) + ∫

t

0

∞∑
r=1

F(r)(t − x) dFT(x)

= FT(t) + ∫

t

0
W(t − x) dFT(x). (10.45)

This equation is known as the fundamental renewal equation and can sometimes
be solved for W(t).
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Equation (10.44) can also be derived by a more direct argument. By conditioning
on the time T1 of the first renewal, we obtain

W(t) = E[N(t)] = E[E(N(t) ∣ T1)]

=
∫

∞

0
E(N(t) ∣ T1 = x) dFT1

(x), (10.46)

where

E(N(t) ∣ T1 = x) =
{

0 when t < x
1 + W(t − x) when t ≥ x

. (10.47)

If the first renewal occurs at time x for x ≤ t, the process starts over again from
this point of time. The mean number of renewals in (0, t] is thus 1 plus the mean
number of renewals in (x, t], which is W(t − x).

Combining the two equations (10.46) and (10.47) yields

W(t) =
∫

t

0
[1 + W(t − x)] dFT(x) = FT(t) + ∫

t

0
W(t − x) dFT(x),

and thereby an alternative derivation of (10.44) is provided.
The exact expression for the renewal function W(t) is often difficult to determine

from (10.44). Approximation formulas and bounds may therefore be useful.
Because W(t) is the expected number of renewals in the interval (0, t], the aver-

age length 𝜇 of each renewal is approximately t∕W(t). We should therefore expect
that when t → ∞, we get

lim
t→∞

W(t)
t

= 1
𝜇
. (10.48)

This result is known as the elementary renewal equation and is valid for a general
renewal process. A proof may, for example, be found in Ross (1996, p. 107).

When the renewals are item failures, the mean number of failures in (0, t] is
approximately

E[N(t)] = W(t) ≈ t
𝜇

= t
MTBF

when t is large.,

where 𝜇 = MTBF is the mean time between failures.
From the elementary renewal equation (10.48), the mean number of renewals

in the interval (0, t] is

W(t) ≈ t
𝜇

when t is large.

The mean number of renewals in the interval (t, t + u] is

W(t + u) − W(t) ≈ u
𝜇

when t is large, and u > 0, (10.49)

and the underlying distribution FT(t) is nonlattice. This result is known as Black-
well’s theorem, and a proof may be found in Feller (1968).
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Blackwell’s theorem (10.49) has been generalized by Smith (1958), who shows
that when the underlying distribution FT(t) is nonlattice, then

lim
t→∞∫

t

0
Q(t − x) dW(x) = 1

𝜇 ∫

∞

0
Q(u) du, (10.50)

where Q(t) is a nonnegative, nonincreasing function which is Riemann integrable5

over (0,∞). This result is known as the key renewal equation.
By introducing Q(t) = 𝛼

−1 for 0 < t ≤ 𝛼 and Q(t) = 0 otherwise, in (10.50), we
get Blackwell’s theorem (10.49).

Let

Fe(t) =
1
𝜇 ∫

t

0
[1 − FT(u)] du, (10.51)

where Fe(t) is a distribution function with a special interpretation that is explained
in Definition 10.6. By using Q(t) = 1 − Fe(t) in (10.50) we get

lim
t→∞

(
W(t) − t

𝜇

)
=

E(T2
i )

2𝜇2 − 1 = 𝜎
2 + 𝜇

2

2𝜇2 − 1 = 1
2

(
𝜎

2

𝜇2 − 1
)
,

if E(T2
i ) = 𝜎

2 + 𝜇
2
< ∞. We may thus use the following approximation when t is

large

W(t) ≈ t
𝜇
+ 1

2

(
𝜎

2

𝜇2 − 1
)
. (10.52)

Upper and lower bounds for the renewal function are supplied in Section 10.3.7.

10.3.5 The Renewal Density

When FT(t) has density fT(t), we may differentiate (10.45) and get

𝑤(t) = d
dt

W(t) = d
dt

∞∑
n=1

F(n)
T (t) =

∞∑
n=1

f (n)T (t). (10.53)

Equation (10.53) can sometimes be used to find the renewal density 𝑤(t). Another
approach is to differentiate (10.46) with respect to t

𝑤(t) = fT(t) + ∫

t

0
𝑤(t − x)fT(x) dx. (10.54)

Yet another approach is to use Laplace transforms. From Appendix B, the Laplace
transform of (10.54) is

𝑤
∗(s) = f ∗T (s) +𝑤

∗(s)f ∗T (s).

5 For further information about Riemann integrable functions, e.g. see https://en.wikipedia
.org/wiki/Riemann_integral. The Riemann integral is named after the German mathematician
Georg Friedrich Bernhard Riemann (1826–1866).
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Hence,

𝑤
∗(s) =

f ∗T (s)
1 − f ∗T (s)

. (10.55)

Remark 10.2 According to (10.5), the probability of a failure (renewal) in a short
interval (t, t + Δt] is approximately 𝑤(t)Δt. Because the probability that the first
failure occurs in (t, t + Δt] is approximately fT(t)Δt, we can use (10.54) to conclude
that a “later” failure (i.e. not the first) occurs in (t, t + Δt] with probability approx-
imately equal to

(
∫

t
0 𝑤(t − x)fT(x) dx

)
Δt. ◻

The exact expression for the renewal density 𝑤(t) is often difficult to determine
from (10.53) to (10.55). In the same way as for the renewal function, we therefore
have to suffice with approximation formulas and bounds.

From (10.48), we should expect that

lim
t→∞

𝑤(t) = 1
𝜇
, (10.56)

Smith (1958) shows that (10.56) is valid for a renewal process with underlying
probability density function fT(t) when there exists a p > 1 such that |fT(t)|p is Rie-
mann integrable. The renewal density 𝑤(t) therefore approaches the constant 1∕𝜇
when t is large.

Consider a renewal process where the renewals are item failures. The inte-
roccurrence times T1,T2,… are then the times-to-failure, and S1, S2,… are the
times when the failures occur. Let z(t) be the failure rate (force of mortality,
FOM) function of the time to the first failure T1. The conditional renewal density
(ROCOF) 𝑤C(t) in the interval (0,T1) must be equal to z(t). When the first failure
has occurred, the item is renewed or replaced, and started up again with the same
failure rate (FOM) as for the initial item. The conditional renewal rate (ROCOF)
may then be expressed as

𝑤C(t) = z(t − SN(t−)),

where t − SN(t−) is the time since the last failure, strictly before time t. The con-
ditional ROCOF is illustrated in Figure 10.8 when the interoccurrence times are
Weibull distributed with scale parameter 𝜆 = 1 and shape parameter 𝛼 = 3. The
plot is based on simulated interoccurrence times from this distribution.

Example 10.7 (Gamma distributed renewal periods)
Consider a renewal process where the renewal periods T1,T2,… are independent
and gamma distributed with parameters (2, 𝜆), with probability density function

fT(t) = 𝜆
2t e−𝜆t for t > 0, 𝜆 > 0.
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Figure 10.8 Illustration of the conditional ROCOF (fully drawn line) for simulated data
from a Weibull distribution with parameters 𝛼 = 3 and 𝜆 = 1. The corresponding
asymptotic renewal density is drawn by the dotted line.

The mean renewal period is E(Ti) = 𝜇 = 2∕𝜆, and the variance is var(Ti) = 𝜎
2 =

2∕𝜆2. The time until the nth renewal, Sn, is gamma distributed (see Section 5.4.2)
with probability density function

f (n)(t) = 𝜆

(2n − 1)!
(𝜆t)2n−1 e−𝜆t for t > 0.

The renewal density is according to (10.54)

𝑤(t) =
∞∑

n=1
f (n)(t) = 𝜆e−𝜆t

∞∑
n=1

(𝜆t)2n−1

(2n − 1)!

= 𝜆e−𝜆t e𝜆t − e−𝜆t

2
= 𝜆

2
(1 − e−2𝜆t)

The renewal function is

W(t) =
∫

t

0
𝑤(x) dx = 𝜆

2 ∫

t

0
(1 − e−2𝜆x) dx = 𝜆t

2
− 1

4
(1 − e−2𝜆t). (10.57)

◻

The renewal density 𝑤(t) and the renewal function W(t) are illustrated in
Figure 10.9 for 𝜆 = 1.

Observe that when t → ∞, then

W(t) → 𝜆t
2

= t
𝜇

𝑤(t) → 𝜆

2
= 1

𝜇

in accordance with (10.48) and (10.56), respectively. We may further use (10.52)
to find a better approximation for the renewal function W(t). From (10.56), we get
the left-hand side of (10.52)

W(t) − t
𝜇

= W(t) − 𝜆t
2

→ −1
4

when t → ∞.
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Figure 10.9 Renewal density 𝑤(t) (fully drawn line) and renewal function W(t) (dotted
line) for Example 10.7, with (𝜆 = 1).

The right-hand side of (10.52) is (with 𝜇 = 2∕𝜇 and 𝜎
2 = 2∕𝜆2)

t
𝜇
+ 1

2

(
𝜎

2

2𝜇2 − 1
)

= t
𝜇
− 1

4
.

We can therefore use the approximation

W(t) ≈ 𝜆t
2

− 1
4

when t is large.

Example 10.8 (Weibull distributed renewal periods)
Consider a renewal process where the renewal periods T1,T2,… are independent
and Weibull distributed with shape parameter 𝛼 and scale parameter 𝜆. In this
case, the renewal function W(t) cannot be deduced directly from (10.45). Smith
and Leadbetter (1963) show that W(t) can be expressed as an infinite, absolutely
convergent series where the terms can be found by a simple recursive procedure.
They show that W(t) can be written

W(t) =
∞∑

k=1

(−1)k−1Ak(𝜆t)k𝛼

Γ(k𝛼 + 1)
. (10.58)

By introducing this expression for W(t) in the fundamental renewal equation, the
constants Ak; k = 1, 2,… can be determined. The calculation, which is quite com-
prehensive, leads to the following recursion formula:

A1 = 𝛾1

A2 = 𝛾2 − 𝛾1A1

A3 = 𝛾3 − 𝛾1A2 − 𝛾2A1

⋮ (10.59)
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Figure 10.10 The renewal function for Weibull distributed renewal periods with 𝜆 = 1
and 𝛼 = 0.5, 𝛼 = 1, and 𝛼 = 1.5. Source: The figure is adapted from Smith and Leadbetter
(1963).

An = 𝛾n −
n−1∑
j=1

𝛾jAn−j

⋮

where

𝛾n = Γ(n𝛼 + 1)
n!

for n = 1, 2,… .

For 𝛼 = 1, the Weibull distribution is an exponential distribution with parameter
𝜆. In this case,

𝛾n = Γ(n + 1)
n!

= 1 for n = 1, 2,… .

This leads to

A1 = 1

An = 0 for n ≥ 2

The renewal function is thus according to (10.58)

W(t) =
(−1)0A1𝜆t

Γ(2)
= 𝜆t.

The renewal function W(t) is illustrated in Figure 10.10 for 𝜆 = 1 and three values
of 𝛼. ◻

10.3.6 Age and Remaining Lifetime

The age Z(t) of an item which is operating at time t is defined as

Z(t) =
{

t for N(t) = 0
t − SN(t) for N(t) > 0

. (10.60)
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Figure 10.11 The age Z(t) and the remaining lifetime Y(t).

The remaining lifetime Y (t) of an item that is in operation at time t is given as

Y (t) = SN(t)+1 − t. (10.61)

The age Z(t) and the remaining lifetime Y (t) are illustrated in Figure 10.11. The
remaining lifetime is also called the residual lifetime, the excess life, or the forward
recurrence time (e.g. see Ross 1996).

Observe that Y (t) > y means that there is no renewal in the time interval
(t, t + y].

Consider a renewal process where the renewals are item failures, and let T be
the time from start-up to the first failure. The distribution of the remaining life
Y (t) of the item at time t is given by

Pr(Y (t) > y) = Pr(T > y + t ∣ T > t) =
Pr(T > y + t)

Pr(T > t)
,

and the mean remaining lifetime at time t is

E[Y (t)] = 1
Pr(T > t) ∫

∞

t
Pr(T > u) du.

See also Section 5.3.6, where E[Y (t)] is called the mean residual lifetime (MRL) at
time t. When T is exponentially distributed with failure rate 𝜆, the mean remaining
lifetime at time t is 1∕𝜆 which is an obvious result because of the memoryless
property of the exponential distribution.

Limiting Distribution
Consider a renewal process with a nonlattice underlying distribution FT(t). We
observe the process at time t. The time till the next failure is the remaining lifetime
Y (t). The limiting distribution of Y (t) when t → ∞ is (e.g. see Ross 1996, p. 116)

lim
t→∞

Pr(Y (t) ≤ t) = Fe(t) =
1
𝜇 ∫

t

0
[1 − FT(u)] du, (10.62)
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which is the same distribution as we used in (10.52). The mean of the limiting
distribution Fe(t) of the remaining lifetime is

E(Y ) =
∫

∞

0
Pr(Y > y) dy =

∫

∞

0
[1 − Fe(y)] dy

= 1
𝜇 ∫

∞

0 ∫

∞

y
Pr(T > t) dt dy = 1

𝜇 ∫

∞

0 ∫

t

0
Pr(T > t) dy dt

= 1
𝜇 ∫

∞

0
t Pr(T > t) dt = 1

2𝜇 ∫

∞

0
Pr(T >

√
x) dx

= 1
2𝜇 ∫

∞

0
Pr(T2

> x) dx = E(T2)
2𝜇

= 𝜎
2 + 𝜇

2

2𝜇

where E(T) = 𝜇 and var(T) = 𝜎
2, and we assume that E(T2) = 𝜎

2 + 𝜇
2
< ∞.

We have thus shown that the limiting mean remaining life is

lim
t→∞

E[Y (t)] = 𝜎
2 + 𝜇

2

2𝜇
. (10.63)

Example 10.9 (Example 10.7 (cont.))
Again, consider the renewal process in Example 10.7 where the underlying dis-
tribution is gamma distributed with parameters (2, 𝜆), with mean time between
renewals E(Ti) = 𝜇 = 2∕𝜆 and variance var(Ti) = 2∕𝜆2. The mean remaining life
of an item that is in operation at time t far from now is from (10.62)

E[Y (t)] ≈ 𝜎
2 + 𝜇

2

2𝜇
= 3

2𝜆
when t is large.

◻

The distribution of the age Z(t) of an item that is in operation at time t can be
derived by starting with

Z(t) > z ⇐⇒ no renewals in (t − z, t)

⇐⇒ Y (t − z) > z

Therefore,

Pr(Z(t) > z) = Pr(Y (t − z) > z).

When the underlying distribution FT(t) is nonlattice, we can show that the limiting
distribution of the age Z(t) when t → ∞ is

lim
t→∞

Pr(Z(t) ≤ t) = Fe(t) =
1
𝜇 ∫

t

0
[1 − FT(u)] du, (10.64)

that is, the same distribution as (10.62). When t → ∞, both the remaining lifetime
Y (t) and the age Z(t) at time t have the same distribution. When t is large, then

E[Y (t)] ≈ E[Z(t)] ≈ 𝜎
2 + 𝜇

2

2𝜇
. (10.65)
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Assume that a renewal process with a nonlattice underlying distribution has
been “running” for a long time, and that the process is observed at a random time,
which we denote t = 0. The time T1 to the first renewal after time t = 0 is equal
to the remaining lifetime of the item that is in operation at time t = 0. The dis-
tribution of T1 is equal to (10.62) and the mean time to the first renewal is given
by (10.63). Similarly, the age of the item that is in operation at time t = 0 has the
same distribution and the same mean as the time to the first renewal. For a formal
proof, see Ross (1996).

Remark 10.3 This result may seem a bit strange. When we observe a renewal
process that has been “running” for a long time at a random time t, the length of the
corresponding interoccurrence time is SN(t)+1 − SN(t), as illustrated in Figure 10.11,
and the mean length of the interoccurrence time is 𝜇. We obviously have that
SN(t)+1 − SN(t) = Z(t) + Y (t), but E[Z(t) + E(Y (t)] = (𝜎2 + 𝜇

2)∕𝜇 is greater than 𝜇.
This rather surprising result is known as the inspection paradox, and is further
discussed by Ross (1996). ◻

If the underlying distribution function FT(t) is new better than used (NBU) or
new worse than used (NWU) (see Section 5.6.3), bounds may be derived for the
distribution of the remaining lifetime Y (t) of the item that is in operation at time
t. Barlow and Proschan (1975) show that the following apply:

If FT(t) is NBU, then Pr(Y (t) > y) ≤ Pr(T > y), (10.66)

If FT(t) is NWU, then Pr(Y (t) > y) ≥ Pr(T > y). (10.67)

Intuitively, these results are obvious. If an item has an NBU life distribution, then
a new item should have a higher probability of surviving the interval (0, y] than a
used item. The opposite should apply for an item with an NWU life distribution.

When the distributions of Z(t) and Y (t) are to be determined, the following
lemma is useful:

Lemma 10.1 If

g(t) = h(t) +
∫

t

0
g(t − x) dF(x), (10.68)

where the functions h and F are known and g is unknown, then

g(t) = h(t) +
∫

t

0
h(t − x) dWF(x), (10.69)

where

WF(x) =
∞∑

r=1
F(r)(x).
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Observe that Eq. (10.69) is a generalization of the fundamental renewal
Eq. (10.45).

Example 10.10 Consider a renewal process with underlying distribution FT(t).
The distribution of the remaining lifetime Y (t) of an item that is in operation at
time t can be given by (e.g. see Bon 1995, p. 129)

Pr(Y (t) > y) = Pr(T > y + t) +
∫

t

0
Pr(T > y + t − u) dWF(u). (10.70)

By introducing the survivor function R(t) = 1 − FT(t), and assuming that the
renewal density 𝑤F(t) = dWF(t)∕dt exists, (10.69) may be written

Pr(Y (t) > y) = R(y + t) +
∫

t

0
R(y + t − u)𝑤F(u) du. (10.71)

If the probability density function f (t) = dFT(t)∕dt = −dR(t)∕dt exists, we have
from the definition of f (t) that

R(t) − R(t + y) ≈ f (t)y when y is small.

Equation (10.70) may in this case be written

Pr(Y (t) > y) ≈ R(t) − f (t)y +
∫

t

0
[R(t − u) − f (t − u)y] 𝑤F(u) du

= R(t) +
∫

t

0
R(t − u) 𝑤F(u) du

− y
(

f (t) +
∫

t

0
f (t − u) 𝑤F(u) du

)

= Pr(Y (t) > 0) −𝑤F(t)y. (10.72)

The last line in (10.72) follows from Lemma 10.1. Because Pr(Y (t) > 0) = 1, we
have the following approximation

Pr(Y (t) > y) ≈ 1 −𝑤F(t)y when y is small. (10.73)

If we observe a renewal process at a random time t, the probability of having a
failure (renewal) in a short interval of length y after time t is, from (10.73), approxi-
mately𝑤F(t)y, and it is hence relevant to call𝑤F(t) the rate of occurrence of failures
(ROCOF). ◻

10.3.7 Bounds for the Renewal Function

We will now establish some bound for the renewal function W(t). For this purpose,
consider a renewal process with interarrival times T1,T2,…. We stop observing
the process at the first renewal after time t, that is, at renewal N(t) + 1. Because
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the event N(t) + 1 = n only depends on T1,T2,… ,Tn, we can use Wald’s equation
to get

E(SN(t)+1) = E

(N(t)+1∑
i=1

Ti

)
= E(T) E[N(t) + 1] = 𝜇 [W(t) + 1]. (10.74)

Because SN(t)+1 is the first renewal after t, it can be expressed as

SN(t)+1 = t + Y (t).

The mean value is from (10.74)

𝜇 [W(t) + 1] = t + E[Y (t)],

such that

W(t) = t
𝜇
+ E[Y (t)]

𝜇
− 1. (10.75)

When t is large and the underlying distribution is nonlattice, we can use (10.63)
to get

W(t) − t
𝜇

→
1
2

(
𝜎

2

𝜇2 − 1
)

when t → ∞, (10.76)

which is the same result as we found in (10.52).
Lorden (1970) shows that the renewal function W(t) of a general renewal process

is bounded by

t
𝜇
− 1 ≤ W(t) ≤ t

𝜇
+ 𝜎

2

𝜇2 . (10.77)

For a proof, see Cocozza-Thivent (1997).
Several families of life distributions are introduced in Section 5.4. A distribu-

tion is said to be “new better than used in expectation” (NBUE) when the mean
remaining lifetime of a used item is less, or equal to the mean life of a new item.
In the same way, a distribution is said to be “new worse than used in expectation”
(NWUE) when the mean remaining life of a used item is greater, or equal to the
mean life of a new item.

For an NBUE distribution, E[Y (t)] ≤ 𝜇, and

W(t) = t + E[Y (t)]
𝜇

− 1 ≤
t
𝜇

for t ≥ 0,

and
t
𝜇
− 1 ≤ W(t) ≤ t

𝜇
. (10.78)

If we have an NWUE distribution, then E[Y (t)] ≥ 𝜇, and

W(t) = t + E[Y (t)]
𝜇

− 1 ≥
t
𝜇

for t ≥ 0. (10.79)
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Figure 10.12 The renewal function W(t) of a renewal process with underlying
distribution that is gamma(2, 𝜆), together with the bounds for W(t), for 𝜆 = 1.

Further bounds for the renewal function are given by Dohi et al. (2002).

Example 10.11 (Example 10.5 (cont.))
Reconsider the renewal process where the underlying distribution has a gamma
distribution with parameters (2, 𝜆). This distribution has an IFR, and is therefore
also NBUE. We can therefore apply the bounds in (10.78). In Figure 10.12 the
renewal function (10.57)

W(t) = 𝜆t
2

− 1
4
(1 − e−2𝜆t),

is plotted together with the bounds in (10.78)
𝜆t
2

− 1 ≤ W(t) ≤ 𝜆t
2
.

◻

10.3.8 Superimposed Renewal Processes

Consider a series structure of n independent items that are put into operation at
time t = 0. All the n items are assumed to be new at time t = 0. When an item fails,
it is replaced with a new item of the same type, or restored to an as-good-as-new
condition. Each item therefore generates a renewal process. The n items are gen-
erally different, and the renewal processes therefore have different underlying dis-
tributions.

The process formed by the union of all the failures is called a superimposed
renewal process (SRP). The n individual renewal processes and the SRP are illus-
trated in Figure 10.13.

In general, the SRP will not be a renewal process, but it has been shown, for
example, by Drenick (1960), that superposition of an infinite number of inde-
pendent stationary renewal processes is an HPP. Many items are composed of a
large number of items in series and therefore, Drenick’s result is often used as
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Time

1

2

n

SRP

Figure 10.13 Superimposed renewal process.

a justification for assuming the time between item failures to be exponentially
distributed.

Example 10.12 (Series structure)
Consider a series structure of two items. When an item fails, it is replaced or
repaired to an as-good-as-new condition. Each item therefore generates an ordi-
nary renewal process. The time required to replace or repair an item is considered
to be negligible, and the items are assumed to fail and be repaired independent
of each other. Both items are put into operation and are functioning at time t = 0.
The series structure fails as soon as one of its items fails, and the structure fail-
ures produce a SRP. Times-to-failure for selected life distributions with IFRs for
the two items and the series structure have been simulated on a computer and are
shown in Figure 10.14. The conditional ROCOF (when the failure times are given)
is also shown. Figure 10.14 further shows that the structure is not restored to an
as-good-as-new state after each structure failure. The structure is subject to imper-
fect repairs (see Section 10.5) and the process of structure failures is not a renewal
process because the times between structure failures do not have a common dis-
tribution. ◻

The SRP is further discussed, for example, by Cox and Isham (1980) and Ascher
and Feingold (1984).

10.3.9 Renewal Reward Processes

Consider a renewal process {N(t), t ≥ 0}, and let (Si−1, Si] be the duration of the ith
renewal cycle, with interoccurrence time Ti = Si − Si−1. Let Vi be a reward asso-
ciated with renewal Ti, for i = 1, 2,…. The rewards V1,V2,… are assumed to be
independent random variables with the common distribution function FV (𝑣), and
with E(Ti) < ∞. This model is comparable with the compound Poisson process
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Time0

Component 1

Component 2

System

Figure 10.14 Superimposed renewal process. Conditional ROCOF 𝑤C(t) of a series
structure of two items that are renewed upon failure.

that is described in Section 10.2.6. The accumulated reward in the time interval
(0, t] is

V(t) =
N(t)∑
i=1

Vi. (10.80)

Let E(Ti) = 𝜇T and E(Vi) = 𝜇V . According to Wald’s equation (10.22), the mean
accumulated reward is

E[V(t)] = 𝜇V E[N(t)]. (10.81)

According to the elementary renewal equation (10.48), when t → ∞,
W(t)

t
= E[N(t)]

t
→

1
𝜇T

.

Hence
E[V(t)]

t
=

𝜇V E[N(t)]
t

→
𝜇V

𝜇T
. (10.82)

The same result is true even if the reward Vi is allowed to depend on the asso-
ciated interoccurrence time Ti for i = 1, 2,…. The pairs (Ti,Vi) for i = 1, 2,… are
assumed to be independent and identically distributed (for proof, see Ross 1996).
The reward Vi in renewal cycle i may, for example, be a function of the interoccur-
rence time Ti, for i = 1, 2,…. When t is very large, then

V(t) ≈ 𝜇V
t
𝜇T

,

which is an obvious result.
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10.3.10 Delayed Renewal Processes

Sometimes, the first interoccurrence time T1 has a distribution function FT1
(t) that

is different from the distribution function FT(t) of the subsequent interoccurrence
times. This may, for example, be the case for a failure process where the item at
time t = 0 is not new. Such a renewal process is called a delayed renewal process,
or a modified renewal process. To specify that the process is not delayed, we some-
times say that we have an ordinary renewal process.

Several of the results presented earlier in this section can be easily extended to
delayed renewal processes.

The Distribution of N(t)
Analogous with (10.40) we get

Pr (N(t) = n)∗ = F∗
T1

∗ F∗(n−1)
T − F∗

T1
∗ F∗(n)

T . (10.83)

The Distribution of Sn

The Laplace transform of the density of Sn is from (10.34)

f ∗(n)(s) = f ∗T1
(s)[f ∗T (s)]

n−1
. (10.84)

The Renewal Function
The integral equation (10.45) for the renewal function W(t) becomes

W(t) = FT1
(t) +

∫

t

0
W(t − x) dFT(x), (10.85)

and the Laplace transform is

W∗(s) =
f ∗T1

(s)

s(1 − f ∗T (s))
. (10.86)

The Renewal Density
Analogous with (10.54) we get

𝑤(t) = fT1
(t) +

∫

t

0
𝑤(t − x)fT(x) dx, (10.87)

and the Laplace transform is

𝑤
∗(s) =

f ∗T1
(s)

1 − f ∗T (s)
. (10.88)

All the limiting properties for ordinary renewal processes, when t → ∞, will obvi-
ously also apply for delayed renewal processes.
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For more detailed results see, for example, Cocozza-Thivent (1997). We will
briefly discuss a special type of a delayed renewal process, the stationary renewal
process.

Definition 10.6 (Stationary renewal process)
A stationary renewal process is a delayed renewal process where the first renewal
period has distribution function

FT1
(t) = Fe(t) =

1
𝜇 ∫

t

0
[1 − FT(x)] dx, (10.89)

whereas the underlying distribution of the other renewal periods is FT(t). ◻

Remark 10.4

(1) Observe that Fe(t) is the same distribution function we found in (10.63)
(2) When the probability density function fT(t) of FT(t) exists, the density of Fe(t)

is

fe(t) =
dFe(t)

dt
=

1 − FT(t)
𝜇

=
RT(t)
𝜇

.

(3) Cox (1962) shows that the stationary renewal process has a simple physical
interpretation: Suppose a renewal process is started at time t = −∞, but that
the process is not observed before time t = 0. Then the first renewal period
observed, T1, is the remaining lifetime of the item in operation at time t = 0.
According to (10.63), the distribution function of T1 is Fe(t). A stationary
renewal process is called an equilibrium renewal process by Cox (1962). This
is the reason why we use the subscript e in Fe(t). Ascher and Feingold (1984)
call the stationary renewal process a renewal process with asynchronous
sampling, whereas an ordinary renewal process is called a renewal process
with synchronous sampling.

◻

Let {NS(t), t ≥ 0} be a stationary renewal process, and let YS(t) be the remaining
life of an item at time t. The stationary renewal process has the following properties
(Ross 1996):

WS(t) = t∕𝜇, (10.90)

Pr(YS(t) ≤ y = Fe(y), for t ≥ 0 (10.91)

{NS(t), t ≥ 0} has stationary increments, (10.92)

where Fe(y) is defined by Eq. (10.89).
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Remark 10.5 An HPP is a stationary renewal process because of the memory-
less property of exponential distribution. The HPP is seen to fulfill all the three
properties (10.90), (10.91), and (10.92). ◻

Example 10.13 Reconsider the renewal process in Example 10.5 where the inte-
roccurrence times are gamma distributed with parameters (2, 𝜆). The underlying
distribution function is then

FT(t) = 1 − e−𝜆t − 𝜆t e−𝜆t
,

and the mean interoccurrence time is E(Ti) = 2∕𝜆. Let us now assume that the
process has been running for a long time and that when we start observing the
process at time t = 0, it may be considered as a stationary renewal process.

According to (10.90), the renewal function for this stationary renewal process is
WS(t) = 𝜆t∕2, and the distribution of the remaining life, YS(t) is (see Eq. (10.91)),

Pr(YS(t) ≤ y) = 𝜆

2 ∫

y

0
(e−𝜆u + 𝜆u e−𝜆u) du

= 1 −
(

1 +
𝜆y
2

)
e−𝜆y

The mean remaining lifetime of an item at time t is

E[YS(t)] = ∫

∞

0
Pr(YS(t) > y) dy =

∫

∞

0

(
1 +

𝜆y
2

)
e−𝜆y dy = 3

2𝜆
.

◻

Delayed renewal processes are used in Section 10.3.11 to analyze alternating
renewal processes.

10.3.11 Alternating Renewal Processes

Consider an item that is activated and is functioning at time t = 0. Whenever
the item fails, it is repaired. Let U1,U2,… denote the successive times-to-failure
(up-times) of the item. Let us assume that the times-to-failure are indepen-
dent and identically distributed with distribution function FU (t) = Pr(Ui ≤ t)
and mean E(U) = MTTF. Likewise, assume the corresponding downtimes
D1,D2,… to be independent and identically distributed with distribution function
FD(d) = Pr(Di ≤ d) and mean E(D) = MDT. MDT is the total mean downtime
following a failure, and will usually involve much more that the active repair
time.6

6 In the rest of this book, we are using T to denote time-to-failure. In this chapter, we have
already used T to denote interoccurrence time (renewal period), and we will therefore use U to
denote the time-to-failure (up-time) in this section. We hope that this does not confuse the
reader.
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Time
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Figure 10.15 Alternating renewal process.

If we define the completed repairs to be the renewals, we obtain an ordinary
renewal process with renewal periods (interoccurrence times) Ti = Ui + Di for i =
1, 2,…. The mean time between renewals is 𝜇T = MTTF + MDT. The resulting
process is called an alternating renewal process and is shown in Figure 10.15.

The underlying distribution function, FT(t), is the convolution of the distribu-
tion functions FU (t) and FD(t),

FT(t) = Pr(Ti ≤ t) = Pr(Ui + Di ≤ t) =
∫

t

0
FU (t − x) dFD(x). (10.93)

If instead, we let the renewals be the events when a “failure” occurs and start
observing the item at a renewal, we get a delayed renewal process where the first
renewal period T1 is equal to U1 whereas Ti = Di−1 + Ui for i = 2, 3,….

In this case, the distribution function FT1
(t) of the first renewal period is given

by

FT1
(t) = Pr(T1 ≤ t) = Pr(U1 ≤ t) = FU (t), (10.94)

whereas the distribution function FT(t) of the other renewal periods is given by
(10.83).

Example 10.14 Consider the alternating renewal process described above, and
let the renewals be the completed repairs such that we have an ordinary renewal
process. Let a reward Vi be associated with the ith interoccurrence time, and
assume that this reward is defined such that we earn one unit per unit of time
the item is functioning in the time period since the last failure. When the reward
is measured in time units, then E(Vi) = 𝜇V = MTTF. The average availability
Aav(0, t) of the item in the time interval (0, t) has been defined as the mean
fraction of time in the interval (0, t) where the item is functioning. From (10.82),
we therefore get

Aav(0, t) →
𝜇V

𝜇T
= MTTF

MTTF + MDT
when t → ∞, (10.95)

which is the same result we obtained in Section 6.5.1 based on heuristic argu-
ments. ◻
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Availability
The availability A(t) of an item was defined as the probability that the item is func-
tioning at time t, that is, A(t) = Pr(X(t) = 1), where X(t) is the state variable of
the item.

As above, consider an alternating renewal process where the renewals are com-
pleted repairs, and let T = U1 + D1. The availability of the item is then

A(t) = Pr(X(t) = 1) =
∫

∞

0
Pr(X(t) = 1 ∣ T = x) dFT(x).

Because the item is assumed to be as-good-as-new at time T = U1 + D1, the process
repeats itself from this point of time and

Pr(X(t) = 1 ∣ T = x) =
{

A(t − x) for t > x
Pr(U1 > t ∣ T = x) for t ≤ x

.

Therefore,

A(t) =
∫

t

0
A(t − x) dFT(x) + ∫

∞

t
Pr(U1 > t ∣ T = x) dFT(x),

but because D1 > 0, then

∫

∞

t
Pr(U1 > t ∣ U1 + D1 = x) dFT(x) = ∫

∞

0
Pr(U1 > t ∣ T = x) dFT(x)

= Pr(U1 > t) = 1 − FU (t)

Hence,

A(t) = 1 − FU (t) + ∫

t

0
A(t − x) dFT(x). (10.96)

We apply Lemma 10.1 and get

A(t) = 1 − FT(t) + ∫

t

0
[1 − FT(t − x)] dWFT

(x), (10.97)

where

WFT
(t) =

∞∑
n=1

F(n)
T (t),

is the renewal function for a renewal process with underlying distribution FT(t).
When FU (t) is a nonlattice distribution, the key renewal equation (10.50) can be

used with Q(t) = 1 − FU (t) and we get

∫

t

0
[1−FU (t−x)] dWFT

(x) → t → ∞ 1
E(T) ∫

∞

0
[1−FU (t)] dt = E(U)

E(U) + E(D)
.

Because FT(t) → 1 when t → ∞, we have thus shown that

A = lim
t→∞

A(t) = E(U)
E(U) + E(D)

= MTTF
MTTF + MDT

. (10.98)
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Observe that this is the same result as we got in (10.95) by using results from
renewal reward processes.

Example 10.15 (Parallel structure)
Consider a parallel structure of n items that fail and are repaired independent
of each other. Item i has a time-to-failure (up-time) Ui that is exponentially dis-
tributed with failure rate 𝜆i, and downtime Di that is also exponentially distributed
with (repair) rate 𝜇i, for i = 1, 2,…. The parallel structure fails when all the n items
are in a failed state at the same time. Because the items are assumed to be indepen-
dent, a parallel structure failure must occur in the following way: Just prior to the
last item failure, (n − 1) items must be in a failed state, and then the functioning
item must fail.

Let us now assume that the parallel structure has been in operation for a long
time, such that we can use limiting (average) availabilities. The probability that
item i is in a failed state is then approximately:

Ai ≈
MDT

MTTF + MDT
=

1∕𝜇i

1∕𝜆i + 1∕𝜇i
=

𝜆i

𝜆i + 𝜇i
.

Similarly, the probability that item i is functioning is approximately:

Ai ≈
𝜇i

𝜆i + 𝜇i
.

The probability that a functioning item i will fail within a very short time interval
of length Δt is approximately:

Pr(Δt) ≈ 𝜆i Δt.

The probability of parallel structure failure in the interval (t, t + Δt), when t is
large is,

Pr[Structure failure in (t, t + Δt)] =
n∑

i=1

[
𝜇i

𝜆i + 𝜇i

∏
j≠i

𝜆j

𝜆j + 𝜇j

]
𝜆i Δt + o(Δt)

=
n∑

i=1

[
𝜆i

𝜆i + 𝜇i

∏
j≠i

𝜆j

𝜆j + 𝜇j

]
𝜇i Δt + o(Δt)

=
n∏

j=1

𝜆j

𝜆j + 𝜇j

n∑
i=1

𝜇iΔt + o(Δt)

Because Δt is assumed to be very small, no more than one structure failure will
occur in the interval. We can therefore use Blackwell’s theorem (10.49) to conclude
that the above expression is just Δt times the reciprocal of the mean time between
structure failures, MTBFS, that is

MTBFS =

[ n∏
j=1

𝜆j

𝜆j + 𝜇j

n∑
i=1

𝜇i

]−1

. (10.99)
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When the parallel structure is in a failed state, all the n items are in a failed
state. Because the downtimes are assumed to be independent with rates 𝜇i
for i = 1, 2,… ,n, the downtime of the parallel structure will be exponentially
distributed with rate

∑n
i=1 𝜇i, and the mean downtime of the parallel structure is

MDTS = 1∑n
i=1 𝜇i

.

The mean up-time, or the mean time-to-failure, MTTFS of the parallel structure is
equal to MTBFS − MDTS

MTTFS =

[ n∏
j=1

𝜆j

𝜆j + 𝜇j

n∑
i=1

𝜇i

]−1

− 1∑n
i=1 𝜇i

=
1 −

n∏
j=1

𝜆j∕(𝜆j + 𝜇j)

n∏
j=1

𝜆j∕(𝜆j + 𝜇j)
∑n

i=1 𝜇i

. (10.100)

To check that the above calculations are correct, we may calculate the average
unavailability

AS =
MDTS

MTTFS + MDTS
=

n∏
j=1

𝜆j

𝜆j + 𝜇j
.

(Example 10.15 is adapted from example 3.5(B) in Ross (1996)). ◻

Mean Number of Failures/Repairs
First, let the renewals be the events where a repair is completed. Then we have an
ordinary renewal process with renewal periods T1,T2,… which are independent
and identically distributed with distribution function (10.93).

Assume that Ui and Di both are continuously distributed with densities fU (t) and
fD(t), respectively. The probability density function of the Ti’s is then

fT(t) = ∫

t

0
fU (t − x)fD(x) dx. (10.101)

According to Appendix B, the Laplace transform of (10.101) is

f ∗T (s) = f ∗U (s)f
∗
D(s).

Let W1(t) be the renewal function, that is, the mean number of completed repairs
in the time interval (0, t]. According to (10.86)

W∗
1 (s) =

f ∗U (s)f
∗
D(s)

s[1 − f ∗U (s)f
∗
D(s)]

. (10.102)
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In this case, both the Ui’s and the Di’s are assumed to be continuously distributed,
but this turns out not to be essential. Equation (10.102) is also valid for discrete
distributions, or for a mixture of discrete and continuous distributions. In this case,
we may use that

f ∗U (s) = E(e−sUi )

f ∗D(s) = E(e−sDi )

The mean number of completed repairs in (0, t] can now, at least in principle, be
determined for any choice of life- and repair time distributions.

Next, let the renewals be the events where a failure occurs. In this case, we get
a delayed renewal process. The renewal periods T1,T2,… are independent and
FT1

(t) is given by (10.94), whereas the distribution of T2,T3,… is given by (10.93).
Let W2(t) be the renewal function, that is, the mean number of failures in (0, t]

under these conditions. According to (10.86), the Laplace transform is

W∗
2 (s) =

f ∗U (s)
s(1 − f ∗U (s)f

∗
D(s))

, (10.103)

which, at least in principle, can be inverted to obtain W2(t).

Availability at a Given Point of Time
By taking Laplace transforms of (10.97), we get

A∗(s) = 1
s
− F∗

U (s) +
(1

s
− F∗

U (s)
)
𝑤

∗
FT
(s).

Because

F∗(s) = 1
s

f ∗(s),

then

A∗(s) = 1
s
[1 − f ∗U (s)][1 +𝑤

∗
FT
(s)].

For an ordinary renewal process (i.e. the renewals are the events where a repair is
completed), then

𝑤
∗
FT
(s) = sW∗

1 (s).

Hence,

A∗(s) = 1
s
[1 − f ∗U (s)]

(
1 +

f ∗U (s)f
∗
D(s)

1 − f ∗U (s)f
∗
D(s)

)
,

that is,

A∗(s) =
1 − f ∗U (s)

s(1 − f ∗U (s)f
∗
D(s))

. (10.104)
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The availability A(t) can in principle be determined from (10.104) for any choice
of life and downtime distributions.

Example 10.16 (Exponential time-to-failure and exponential downtime)
Consider an alternating renewal process where the item up-times U1,U2,… are
independent and exponentially distributed with failure rate 𝜆. The corresponding
downtimes are also assumed to be independent and exponentially distributed with
rate 𝜇 = 1∕MDT.

Then

fU (t) = 𝜆e−𝜆t for t > 0

f ∗U (s) =
𝜆

𝜆 + s
and

fD(t) = 𝜇e−𝜇t for t > 0

f ∗D(s) =
𝜇

𝜇 + s

The availability A(t) is then obtained from (10.104)

A∗(s) =
1 − 𝜆∕(𝜆 + s)

s[1 − (𝜆∕(𝜆 + s))(𝜇∕(𝜇 + s)]

= 𝜇

𝜆 + 𝜇

1
s
+ 𝜆

𝜆 + 𝜇

1
s + (𝜆 + 𝜇)

. (10.105)

Equation (10.105) can be inverted (see Appendix B) and we get

A(t) = 𝜇

𝜆 + 𝜇
+ 𝜆

𝜆 + 𝜇
e−(𝜆+𝜇)t. (10.106)

The availability A(t) is shown in Figure 10.16.

Time0

A(t)

1

A

Figure 10.16 Availability of an item with exponential up- and downtimes.
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The limiting availability is

A = lim
t→∞

A(t) = 𝜇

𝜆 + 𝜇
=

1∕𝜆
1∕𝜆 + 1∕𝜇

= MTTF
MTTF + MDT

.

By inserting f ∗U (s) and f ∗D(s) into (10.103), we get the Laplace transform of the mean
number of renewals W(t),

W∗(s) =
[𝜆∕(𝜆 + s)] [𝜇∕(𝜇 + s)]

s(1 − [𝜆∕(𝜆 + s)] [𝜇∕(𝜇 + s)])

= 𝜆𝜇

𝜆 + 𝜇

1
s2 − 𝜆𝜇

(𝜆 + 𝜇)2
1
s
+ 𝜆𝜇

(𝜆 + 𝜇)2
1

s + (𝜆 + 𝜇)
By inverting this expression, we get the mean number of completed repairs in the
time interval (0, t]

W(t) = 𝜆𝜇

𝜆 + 𝜇
t − 𝜆𝜇

(𝜆 + 𝜇)2 + 𝜆𝜇

(𝜆 + 𝜇)2 e−(𝜆+𝜇)t. (10.107)
◻

Example 10.17 (Exponential time-to-failure and constant downtime)
Consider an alternating renewal process where the item up-times U1,U2,… are
independent and exponentially distributed with failure rate 𝜆. The downtimes are
assumed to be constant and equal to 𝜏 with probability 1: Pr(Di = 𝜏) = 1 for i =
1, 2,….

The corresponding Laplace transforms are

f ∗U (s) =
𝜆

𝜆 + s

f ∗D(s) = E(e−sD) = e−s𝜏 Pr(D = 𝜏) = e−s𝜏

Hence, the Laplace transform of the availability (10.104) becomes

A∗(s) =
1 − 𝜆∕(𝜆 + s)

s[1 − (𝜆∕(𝜆 + s)) e−s𝜏 ]
= 1

s + 𝜆 − 𝜆e−s𝜏

= 1
𝜆 + s

[
1

1 − (𝜆∕(𝜆 + s)) e−s𝜏

]
= 1

𝜆 + s

∞∑
𝜈=0

(
𝜆

𝜆 + s

)𝜈

e−s𝜈𝜏

= 1
𝜆

∞∑
𝜈=0

(
𝜆

𝜆 + s

)𝜈+1
e−s𝜈𝜏

. (10.108)

The availability then becomes

A(t) = 
−1(A∗(s)) =

∞∑
𝜈=0

1
𝜆

−1

[(
𝜆

𝜆 + s

)𝜈+1
e−s𝜈𝜏

]
.

According to Appendix B


−1

[(
𝜆

𝜆 + s

)𝜈+1]
= 𝜆

𝜈+1

𝜈!
t𝜈e−𝜆t = f (t),


−1(e−s𝜈𝜏 ) = 𝛿(t − 𝜈𝜏),
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where 𝛿(t) is the Dirac delta-function. Thus


−1

[(
𝜆

𝜆 + s

)𝜈+1
e−s𝜈𝜏

]
= 

−1
[(

𝜆

𝜆 + s

)𝜈+1]
∗ 

−1(e−s𝜈𝜏 )

=
∫

∞

0
𝛿(t − 𝜈𝜏 − x)f (x) dx = f (t − 𝜈𝜏)u(t − 𝜈𝜏)

where

u(t − 𝜈𝜏) =
{

1 if t ≥ 𝜈𝜏

0 if t < 𝜈𝜏
.

Hence the availability is

A(t) =
∞∑
𝜈=0

𝜆
𝜈

𝜈!
(t − 𝜈𝜏)𝜈e−𝜆(t−𝜈𝜏)u(t − 𝜈𝜏). (10.109)

The availability A(t) is illustrated in Figure 10.17.
The limiting availability is then according to (10.98).

A = lim
t→∞

A(t) = MTTF
MTTF + MDT

=
1∕𝜆

(1∕𝜆) + 𝜏
= 1

1 + 𝜆𝜏
. (10.110)

The Laplace transform for the renewal density is

𝑤
∗(s) =

f ∗T (s)f
∗
D(s)

1 − f ∗T (s)f
∗
D(s)

=
𝜆e−s𝜏∕(𝜆 + s)

1 − 𝜆e−s𝜏∕(𝜆 + s)

= 1
𝜆 + s − 𝜆e−s𝜏 𝜆e−s𝜏 = 𝜆A∗(s) e−s𝜏

where A∗(s) is given by (10.108).
Then the renewal density becomes

𝑤(t) = 𝜆
−1(A∗(s)e−s𝜏 ) = 𝜆

∫

∞

0
𝛿(t − 𝜏 − x)A(x) dx,

that is,

𝑤(t) =
{

𝜆A(t − 𝜏) if t ≥ 𝜏

0 if t < 𝜏
. (10.111)

Hence, the mean number of completed repairs in the time interval (0, t] for t > 𝜏

is

W(t) =
∫

t

0
𝑤(u) du = 𝜆

∫

t

𝜏

A(u − 𝜏) du = 𝜆
∫

t−𝜏

0
A(u) du. (10.112)

◻
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Time0

A(t)

1

A

2τ 3ττ

Figure 10.17 The availability of an item with exponential uptimes and constant
downtime (𝜏).

10.4 Nonhomogeneous Poisson Processes

In this section, the HPP is generalized by allowing the rate of the process to be a
function of time, in which case the counting process is called a nonhomogeneous
Poisson process (NHPP).

10.4.1 Introduction and Definitions

An NHPP is defined as:

Definition 10.7 (Nonhomogeneous Poisson process)
A counting process {N(t), t ≥ 0} is a nonhomogeneous (or nonstationary) Poisson
process (NHPP) with rate function 𝑤(t) for t ≥ 0, if

(1) N(0) = 0.
(2) {N(t), t ≥ 0} has independent increments.
(3) Pr(N(t + Δt) − N(t) ≥ 2) = o(Δt), which means that the item will not experi-

ence more than one failure at the same time.
(4) Pr(N(t + Δt) − N(t) = 1) = 𝑤(t)Δt + o(Δt). ◻

The basic “parameter” of the NHPP is the ROCOF function 𝑤(t). This function
is also called the peril rate of the NHPP. The cumulative rate of the process is

W(t) =
∫

t

0
𝑤(u) du. (10.113)

This definition also covers the situation in which the rate is a function of some
observed explanatory variable that is a function of time t. Observe that the NHPP
model does not require stationary increments. This means that failures may be
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more likely to occur at certain times than others, and hence the interoccurrence
times are generally neither independent nor identically distributed. Consequently,
statistical techniques based on the assumption of independent and identically dis-
tributed variables cannot be applied to an NHPP.

The NHPP is often used to model trends in the interoccurrence times, such as,
improving (happy) or deteriorating (sad) items. It seems intuitive that a happy item
has a decreasing ROCOF function, whereas a sad item has an increasing ROCOF
function. Several studies of failure data from practical items have concluded that
the NHPP was an adequate model, and that the items that were studied approxi-
mately satisfied the properties of the NHPP listed in Definition 10.7.

Due to the assumption of independent increments, the number of failures in a
specified interval (t1, t2] is independent of the failures and interoccurrence times
prior to t1. When a failure has occurred at time t1, the conditional ROCOF 𝑤C(t ∣
t) in the next interval will be 𝑤(t) and independent of the history t1

up to time
t1. In the case when no failure has occurred before t1, 𝑤(t) = z(t) (i.e. the failure
rate function (FOM) for t < t1). A practical implication of this assumption is that
the conditional (ROCOF), 𝑤C(t), is the same just before a failure and immediately
after the corresponding repair. This assumption is called minimal repair. When
replacing failed parts that may have been in operation for a long time, with new
ones, an NHPP clearly is not a realistic model. For the NHPP to be realistic, the
parts put into service should be identical to the old ones, and hence should be aged
outside the item under identical conditions for the same period of time.

Consider an item consisting of a large number of components. Suppose that a
critical component fails and causes an item failure and that this component is
immediately replaced by a component of the same type, thus causing a negligible
item downtime. Because only a small fraction of the item is replaced, it seems nat-
ural to assume that the items’s reliability after the repair essentially is the same as
immediately before the failure. In other words, the assumption of minimal repair
is a realistic approximation. When an NHPP is used to model a repairable item,
the item is treated as a black box in that no concern is made about how the item
“looks inside.”

A car is a typical example of a repairable item. Usually the operating time of a car
is expressed in terms of the mileage indicated on the speedometer. Repair actions
will usually not imply any extra mileage. The repair “time” is thus negligible. Many
repairs are accomplished by adjustments, or replacement of single components.
The minimal repair assumption is therefore often applicable and the NHPP may
be accepted as a realistic model, at least as a first order approximation.

Consider an NHPP with ROCOF 𝑤(t), and suppose that failures occur at times
S1, S2,…. An illustration of 𝑤(t) is shown in Figure 10.18.
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s1 s2 s3 s4 s5 Time (t)0

w(t)

First
failure

Second
failure

Figure 10.18 The ROCOF 𝑤(t) of an NHPP and random failure times.

10.4.2 Some Results

From the definition of the NHPP it follows (e.g. see Ross 1996) that the number of
failures in the interval (0, t] is Poisson distributed

Pr(N(t) = n) = [W(t)]n

n!
e−W(t) for n = 0, 1, 2,… . (10.114)

The mean number of failures in (0, t] is therefore

E[N(t)] = W(t),

and the variance is var[N(t)] = W(t). The cumulative rate W(t) of the process
(10.106) is therefore the mean number of failures in the interval (0, t], and
is sometimes called the mean value function of the process. When n is large,
Pr(N(t) ≤ n) may be determined by normal approximation

Pr(N(t) ≤ n) = Pr

(
N(t) − W(t)√

W(t)
≤

n − W(t)√
W(t)

)

= Φ

(
n − W(t)√

W(t)

)
. (10.115)

From (10.114) it follows that the number of failures in the interval (𝑣, t + 𝑣] is Pois-
son distributed

Pr(N(t + 𝑣) − N(𝑣) = n) =[W(t + 𝑣) − W(𝑣)]n

n!
e−[W(t+𝑣)−W(𝑣)]

for n = 0, 1, 2,…

and that the mean number of failures in the interval (𝑣, t + 𝑣] is

E[N(t + 𝑣) − N(𝑣)] = W(t + 𝑣) − W(𝑣) =
∫

t+𝑣

𝑣

𝑤(u) du. (10.116)
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The probability of no failure in the interval (t1, t2) is

Pr[N(t2) − N(t1) = 0] = e− ∫
t2

t1
𝑤(t) dt

.

Let Sn be the time until failure n for n = 0, 1, 2,…, where S0 = 0. The distribution
of Sn is given by:

Pr(Sn > t) = Pr(N(t) ≤ n − 1) =
n−1∑
k=0

W(t)k

k!
e−W(t)

. (10.117)

When W(t) is small, this probability may be determined from standard tables of
the Poisson distribution. When W(t) is large, the probability may be determined
by normal approximation, see Eq. (10.115)

Pr(Sn > t) = Pr(N(t) ≤ n − 1)

≈ Φ

(
n − 1 − W(t)√

W(t)

)
. (10.118)

Time to First Failure
Let T1 be the time from t = 0 until the first failure. The survivor function of T1 is

R1(t) = Pr(T1 > t) = Pr(N(t) = 0) = e−W(t) = e− ∫
t

0 𝑤(t) dt
. (10.119)

Hence, the failure rate (FOM) function zT1
(t) of the first interoccurrence time T1

is equal to the ROCOF 𝑤(t) of the process. Observe the different meanings of
the two expressions. zT1

(t)Δt approximates the (conditional) probability that the
first failure occurs in (t, t + Δt], whereas 𝑤(t)Δt approximates the (unconditional)
probability that a failure, not necessarily the first, occurs in (t, t + Δt].

A consequence of (10.119) is that the distribution of the first interoccurrence
time, that is, the time from t = 0 until the item’s first failure, determines the
ROCOF of the entire process. Thompson (1981) claims that this is a nonintuitive
fact that casts doubt on the NHPP as a realistic model for repairable items. Use
of an NHPP model implies that if we are able to estimate the failure rate (FOM)
function of the time to the first failure, such as for a specific type of cars, we at the
same time have an estimate of the ROCOF of the entire life of the car.

Time Between Failures
Assume that the process is observed at time t0, and let Y (t0) be the time until
the next failure. In Section 10.3.5, Y (t0) is called the remaining lifetime, or the
forward recurrence time. By using (10.114), the distribution of Y (t0) can be
expressed as

Pr(Y (t0) > t) = Pr(N(t + t0) − N(t0) = 0) = e−[W(t+t0)−W(t0)]

= e− ∫
t+t0

t0
𝑤(u) du = e− ∫

t
0 𝑤(u+t0) du

. (10.120)
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Observe that this result is independent of whether t0 is a failure time or an arbitrary
point in time. Assume that t0 is the time, Sn−1, of failure n − 1. In this case, Y (t0)
is the time between failure n − 1 and failure n (i.e. the nth interoccurrence time
Tn = Sn − Sn−1). The failure rate (FOM) function of the nth interoccurrence time
Tn is from (10.120)

zt0
(t) = 𝑤(t + t0) for t ≥ 0. (10.121)

Observe that this is a conditional failure rate, given that Sn−1 = t0. The mean time
between failure n − 1 (at time t0) and failure n, MTBFn is

MTBFn = E(Tn) = ∫

∞

0
Pr(Yt0

> t) dt =
∫

∞

0
e− ∫

t
0 𝑤(u+t0) du dt. (10.122)

Example 10.18 Consider an NHPP with ROCOF 𝑤(t) = 2𝜆2t, for 𝜆 > 0 and
t ≥ 0. The mean number of failures in the interval (0, t) is W(t) = E[N(t)] =
∫

t
0 𝑤(u) du = (𝜆t)2. The distribution of the time to the first failure, T1, is given by

the survivor function

R1(t) = e−W(t) = e−(𝜆t)2 for t ≥ 0,

that is, a Weibull distribution with scale parameter 𝜆 and shape parameter 𝛼 = 2.
If we observe the process at time t0, the distribution of the time Y (t0) till the next
failure is from (10.120)

Pr(Y (t0) > t) = e− ∫
t

0 𝑤(u+t0) du = e−𝜆2(t2+2t0t)
.

If t0 is the time of failure n − 1, the time to the next failure, Y (t0) is the nth inte-
roccurrence time Tn and the failure rate (FOM) function of Tn is

zt0
(t) = 2𝜆2(t + t0),

which is linearly increasing with the time t0 of failure n − 1. Observe again that
this is a conditional rate, given that failure n − 1 occurred at time Sn−1 = t0. The
mean time between failure n − 1 and failure n is

MTBFn =
∫

∞

0
e−𝜆2(t2+2t0t) dt.

◻

Relation to the Homogeneous Poisson Process
Let {N(t), t ≥ 0} be an NHPP with ROCOF 𝑤(t) > 0 such that the inverse W−1(t)
of the cumulative rate W(t) exists, and let S1, S2,… be the times when the failures
occur.

Consider the time-transformed occurrence times W(S1),W(S2),…, and
let {N∗(t), t ≥ 0} be the associated counting process. The distribution of the
(transformed) time W(S1) till the first failure is from (10.121)

Pr[W(S1) > t] = Pr[S1 > W−1(t)] = e−W[W−1(t)] = e−t
,

that is, an exponential distribution with parameter 1.
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The new counting process is defined by

N(t) = N∗[W(t)] for t ≥ t,

hence,

N∗(t) = N[W−1(t)] for t ≥ 0,

and we get from (10.116)

Pr[N∗(t) = n] = Pr(N[W−1(t)] = n)

= (W[W−1(t)])n

n!
e−W[W−1(t)] = 1n

n!
e−t

that is, the Poisson distribution with rate 1. We have thereby shown that an
NHPP with cumulative – and invertible – rate W(t) can be transformed into an
HPP with rate 1, by time-transforming the failure occurrence times S1, S2,… to
W(S1),W(S2),….

10.4.3 Parametric NHPP Models

Several parametric models have been established to describe the ROCOF of an
NHPP. Among these are:

(1) The power law model
(2) The linear model
(3) The log-linear model

All the three models may be written in the common form (see Atwood 1992)

𝑤(t) = 𝜆0 g(t;𝜗), (10.123)

where 𝜆0 is a common multiplier, and g(t;𝜗) determines the shape of the
ROCOF 𝑤(t). The three models may be parameterized in various ways. This
section presents the parameterization of Crowder et al. (1991), although the
parametrization of Atwood (1992) may be more logical.

The Power Law Model
For the power law model, the ROCOF is

𝑤(t) = 𝜆𝛽t𝛽−1 for 𝜆 > 0, 𝛽 > 0, and t ≥ 0. (10.124)

This NHPP is sometimes referred to as a Weibull process because the ROCOF
has the same functional form as the failure rate (FOM) function of the Weibull
distribution. Also observe that the first arrival time T1 of this process is Weibull
distributed with shape parameter 𝛽 and scale parameter 𝜆. According to Ascher
and Feingold (1984), one should avoid the name Weibull process in this situation
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because it gives the wrong impression that the Weibull distribution can be used to
model trend in interoccurrence times of a repairable item. Hence, such a notation
may lead to confusion.

A repairable item modeled by the Power law model is seen to be improving
(happy) if 0 < 𝛽 < 1, and deteriorating (sad) if 𝛽 > 1. If 𝛽 = 1, the model reduces
to an HPP. The case 𝛽 = 2 is seen to give a linearly increasing ROCOF. This model
is studied in Example 10.18.

Assume that we have observed an NHPP in a time interval (0, t0] and that failures
have occurred at times s1, s2,… , sn. Maximum likelihood estimates 𝛽 and �̂� of 𝛽
and 𝜆, respectively, are given by

𝛽 = n
n ln t0 −

∑n
i=1 ln si

, (10.125)

and

�̂� = n

t𝛽0
. (10.126)

The estimates are further discussed by Crowder et al. (1991) and Cocozza-Thivent
(1997). A (1 − 𝜀) confidence interval for 𝛽 is given by Cocozza-Thivent (1997)(

𝛽

2n
z(1−𝜀∕2),2n,

𝛽

2n
z(1+𝜀∕2),2n

)
, (10.127)

where z
𝜀,𝜈

is the upper 100𝜀% percentile of the 𝜒
2 distribution with 𝜈 degrees of

freedom.

The Linear Model
For the linear model, the ROCOF is

𝑤(t) = 𝜆(1 + 𝛼t) for 𝜆 > 0 and t ≥ 0. (10.128)

The linear model is discussed by Vesely (1991) and Atwood (1992). A repairable
item modeled by the linear model is deteriorating if 𝛼 > 0, and improving when
𝛼 < 0. When 𝛼 < 0, then𝑤(t)will sooner or later become less than zero. The model
should only be used in time intervals where 𝑤(t) > 0.

The Log-Linear Model
For the log-linear model, which is also called the Cox–Lewis model, the ROCOF is

𝑤(t) = e𝛼+𝛽t for −∞ < 𝛼, 𝛽 < ∞ and t ≥ 0. (10.129)

A repairable item modeled by the log-linear model is improving (happy) if 𝛽 < 0,
and deteriorating (sad) if 𝛽 > 0. When 𝛽 = 0, the log-linear model reduces to
an HPP.
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The log-linear model was proposed by Cox and Lewis (1966) who used the model
to investigate trends in the interoccurrence times between failures in air condi-
tioning equipment in aircrafts. The first arrival time T1 has failure rate (FOM)
function z(t) = e𝛼+𝛽t and hence has a truncated Gumbel distribution of the small-
est extreme.

Assume that we have observed an NHPP in a time interval (0, t0] and that failures
occurred at times s1, s2,… , sn. Maximum likelihood estimates �̂� and 𝛽 of 𝛼 and 𝛽,
respectively, are found by solving

n∑
i=1

si +
n
𝛽
−

nt0

(1 − e−𝛽t0 )
= 0, (10.130)

to give 𝛽, and then taking

�̂� = ln
(

n𝛽
e ̂𝛽t0 − 1

)
, (10.131)

The estimates are further discussed by Crowder et al. (1991).

10.4.4 Statistical Tests of Trend

The simple graph in Figure 10.3 clearly indicates an increasing rate of failures, that
is, a deteriorating or sad item. The next step in an analysis of the data may be to
perform a statistical test to find out whether the observed trend is statistically sig-
nificant or just accidental. A number of tests have been developed for this purpose,
that is for testing the null hypothesis

H0: “No trend” (or more precisely that the interoccurrence times are independent
and identically exponentially distributed, that is, an HPP)
against the alternative hypothesis

H1: “Monotonic trend” (i.e. The process is an NHPP that is either sad or happy)

Among these are two nonparametric tests that we will discuss:

(1) The Laplace test
(2) The Military Handbook (MIL HDBK) test

These two tests are discussed in detail by Ascher and Feingold (1984) and Crow-
der et al. (1991). It can be shown that the Laplace test is optimal when the true fail-
ure mechanism is that of a log-linear NHPP model (Cox and Lewis 1966), whereas
the Military Handbook test is optimal when the true failure mechanism is that of
a power law NHPP model (Bain et al. 1985).
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The Laplace Test
The test statistic for the case where the item is observed until n failures have
occurred is

U =
1

n−1

∑n−1
j=1 Sj − (Sn∕2)

Sn∕
√

12(n − 1)
, (10.132)

where S1, S2,… are the failure times. For the case where the item is observed until
time t0, the test statistic is

U =
1
n

∑n
j=1 Sj − (t0∕2)

t0∕
√

12n
. (10.133)

In both cases, the test statistic U is approximately standard normally  (0, 1) dis-
tributed when the null hypothesis H0 is true. The value of U is seen to indicate the
direction of the trend, with U < 0 for a happy item and U > 0 for a sad item. Opti-
mal properties of the Laplace test have, for example, been investigated by Gaudoin
(1992).

Military Handbook Test
The test statistic of the so-called Military Handbook test (MIL-HDBK-189C 2011)
for the case where the item is observed until n failures have occurred is

Z = 2
n−1∑
i=1

ln
Sn

Si
. (10.134)

For the case where the item is observed until time t0, the test statistic is

Z = 2
n∑

i=1
ln

t0

Si
. (10.135)

The asymptotic distribution of Z is in the two cases a 𝜒
2 distribution with 2(n − 1)

and 2n degrees of freedom, respectively.
The hypothesis of no trend (H0) is rejected for small or large values of Z. Low

values of Z correspond to deteriorating items, whereas large values of Z correspond
to improving items.

10.5 Imperfect Repair Processes

The Sections 10.3 and 10.4 deal with two main categories of models that can be
used to describe the occurrence of failures of repairable items; renewal processes
and NHPPs – where the HPP is a special case of both models. When using a
renewal process, the repair action is considered to be perfect, meaning the item
is as-good-as-new after the repair action is completed. When using an NHPP,
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the repair action is minimal, meaning that the reliability of the item is the same
immediately after the repair action as it was immediately before the failure
occurred. In this case, we say the item is as-bad-as-old after the repair action. The
renewal process and the NHPP may thus be considered as two extreme cases.
Items subject to normal repair will be somewhere between these two extremes.
Several models have been suggested for the normal, or imperfect repair situation,
a repair that is somewhere between a minimal repair and a renewal.

This section considers an item that is put into operation at time t. The initial
failure rate (FOM) function of the item is z(t), and the conditional ROCOF of the
item is 𝑤C(t). The conditional ROCOF is defined by (10.7).

When the item fails, a repair action is initiated. The repair action brings the
item back to a functioning state and may involve a repair, or a replacement of
the component that produced the item failure. The repair action may also involve
maintenance and upgrading of the rest of the item, and even replacement of the
whole item. The time required to perform the repair action is considered to be
negligible. Preventive maintenance, except for preventive maintenance carried out
during a repair action, is disregarded.

A high number of models have been suggested for modeling imperfect repair
processes. Most of the models may be classified in two main groups: (i) models
where the repair actions reduce the rate of failures (ROCOF) and (ii) models where
the repair actions reduce the (virtual) age of the item. A survey of available models
are provided, e.g. by Pham and Wang (1996), Hokstad (1997), and Akersten (1998).

10.5.1 Brown and Proschan’s model

One of the best known imperfect repair models is described by Brown and
Proschan (1983). Brown and Proschan’s model is based on the following repair
policy: A item is put into operation at time t = 0. Each time the item fails, a repair
action is initiated, that with probability p is a perfect repair that will bring the item
back to an as-good-as-new condition. With probability 1 − p, the repair action
is a minimal repair, leaving the item in an as-bad-as-old condition. The renewal
process and the NHPP are seen to be special cases of Brown and Proschan’s
model, when p = 1 and p = 0, respectively. Brown and Proschan’s model may
therefore be regarded as a mixture of the renewal process and the NHPP. Observe
that the probability p of a perfect repair is independent of the time elapsed since
the previous failure and also of the age of the item. Let us, as an example, assume
that p = 0.02. This means that we for most failures will make do with a minimal
repair, and on the average renew (or, replace) the item once for every 50 failures.
This may be a realistic model, but the problem is that the renewals come at
random, meaning that we have the same probability of renewing a rather new
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Figure 10.19 An illustration of a possible shape of the conditional ROCOF of Brown and
Proschan’s imperfect repair model.

item as an old item. Figure 10.19 illustrates a possible shape of the conditional
ROCOF.

Datasets available for repairable items are usually limited to the times between
failures, T1,T2,…. Detailed repair modes associated to each failure are in
general not recorded. Based on this “masked” data set, Lim (1998) provides a
procedure for estimating p and the other parameters of Brown and Proschan’s
model.

Brown and Proschan’s model is extended by Block et al. (1985) to age-dependent
repair, that is, when the item fails at time t, a perfect repair is performed with
probability p(t) and a minimal repair is performed with probability 1 − p(t). Let Y1
be the time from t = 0 until the first perfect repair. When a perfect repair is carried
out, the process starts over again, and we get a sequence of times between perfect
repairs Y1,Y2,… that will form a renewal process. Let F(t) be the distribution of
the time to the first failure T1, and let f (t) and R(t) = 1 − F(t) be the corresponding
probability density function and the survivor function, respectively. The failure
rate (FOM) function of T1 is then z(t) = f (t)∕R(t), and we know from Chapter 5
that the distribution function may be written as

F(t) = 1 − e− ∫
t

0 z(x) dx = 1 − e− ∫
t

0 [f (x)∕R(x)] dx
.

The distribution of Yi is given by Block et al. (1985)

Fp(t) = Pr(Yi ≤ t) = 1 − e− ∫
t

0 [p(x)f (x)∕R(x)] dx = 1 − e− ∫
t

0 zp(x) dx
. (10.136)

Hence, the time between renewals, Y has failure rate (FOM) function

zp(t) =
p(t)f (t)

R(t)
= p(t)z(t). (10.137)

Block et al. (1985) supply an explicit formula for the renewal function and discuss
the properties of Fp(t).
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10.5.2 Failure Rate Reduction Models

Several models have been suggested where each repair action results in a reduction
of the conditional ROCOF. The reduction may be a fixed reduction, a certain per-
centage of the actual value of the rate of failures, or a function of the history of the
process. Models representing the first two types were proposed by Chan and Shaw
(1993). Let z(t) be the failure rate (FOM) function of the time to the first failure. If
all repairs were minimal repairs, the ROCOF of the process would be 𝑤1(t) = z(t).
Consider the failure at time Si, and let Si− be the time immediately before time
Si. In the same way, let Si+ be the time immediately after time Si. The models
suggested by Chan and Shaw (1993) may then be expressed by the conditional
ROCOF as

𝑤C(Si+) = 𝑤C(Si−) − Δ for a fixed reduction Δ (10.138)

𝑤C(Si+) = 𝑤C(Si−)(1 − 𝜌) for a proportional reduction 0 ≤ 𝜌 ≤ 1.

Between two failures, the conditional ROCOF is assumed to be vertically parallel
to the initial ROCOF, 𝑤1(t). The parameter 𝜌 in 10.138 is an index representing the
efficiency of the repair action. When 𝜌 = 0, we have minimal repair, and the NHPP
is therefore a special case of Chan and Shaw’s proportional reduction model. When
𝜌 = 1, the repair action brings the conditional ROCOF down to zero, but does not
represent a renewal process because the interoccurrence times are not identically
distributed, except for the special case when 𝑤1(t) is a linear function. The condi-
tional ROCOF of Chan and Shaw’s proportional reduction model is illustrated in
Figure 10.20 for some possible failure times and with 𝜌 = 0.30.

Chan and Shaw’s model 10.138 is generalized by Doyen and Gaudoin (2002) and
Doyen and Gaudoin (2011). They propose a set of models where the proportional-
ity factor 𝜌 depends on the history of the process. In their models, the conditional
ROCOF is expressed as

𝑤C(Si+) = 𝑤C(Si−) − 𝜑(i, S1, S2,… , Si), (10.139)

0 S1 S2 S3 S4 Time

w
C

(t
)

Figure 10.20 The conditional ROCOF of Chan and Shaw’s proportional reduction model
for some possible failure times (𝜌 = 0.30).
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where 𝜑(i, S1, S2,… , Si) is the reduction of the conditional ROCOF resulting from
the repair action. Between two failures, they assume that the conditional ROCOF
is vertically parallel to the initial ROCOF 𝑤1(t). These assumptions lead to the
conditional ROCOF

𝑤C(t) = 𝑤1(t) −
N(t)∑
i=1

𝜑(i, S1, S2,… , Si). (10.140)

When we, as in Chan and Shaw’s model (10.138) assume a proportional reduc-
tion after each repair action, the conditional ROCOF in the interval (0, S1) becomes
𝑤C(t) = 𝑤1(t). In the interval [S1, S2), the conditional ROCOF is 𝑤C(t) = 𝑤1(t) −
𝜌 𝑤1(S1). In the third interval [S2, S3), the conditional ROCOF is

𝑤C(t) = 𝑤1(t) − 𝜌 𝑤1(S1) − 𝜌 (𝑤1(S2) − 𝜌 𝑤1(S1))

= 𝑤1(t) − 𝜌 [(1 − 𝜌)0
𝑤1(S2) + (1 − 𝜌)1

𝑤1(S1)]

By continuing this derivation, we can show that the conditional ROCOF of Chan
and Shaw’s proportional reduction model (10.138) may be written as

𝑤C(t) = 𝑤1(t) − 𝜌

N(t)∑
i=0

(1 − 𝜌)i
𝑤1(SN(t)−i). (10.141)

This model is called arithmetic reduction of intensity with infinite memory (ARI∞)
by Doyen and Gaudoin (2011).

In (10.138), the reduction is proportional to the conditional ROCOF just before
time t. Another approach is to assume that a repair action can only reduce a pro-
portion of the wear that has accumulated since the previous repair action. This
can be formulated as:

𝑤C(Si+) = 𝑤C(Si−) − 𝜌[𝑤C(Si−) −𝑤C(Si−1+)]. (10.142)

The conditional ROCOF of this model is

𝑤C(t) = 𝑤1(t) − 𝜌 𝑤1(SN(t)). (10.143)

This model is called arithmetic reduction of intensity with memory one (ARI1)
by Doyen and Gaudoin (2011). If 𝜌 = 0, the item is as-bad-as-old after the repair
action, and the NHPP is thus a special case of the ARI1 model. If 𝜌 = 1, the condi-
tional ROCOF is brought down to zero by the repair action, but the process is not a
renewal process, because the interoccurrence times are not identically distributed.
For the ARI1 model, there exists a deterministic function 𝑤min(t) that is always
smaller than the conditional ROCOF such that there is a nonzero probability that
the ROCOF will be excessively close to 𝑤min(t).

𝑤min(t) = (1 − 𝜌) 𝑤1(t).
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Figure 10.21 The ARI1 model for some possible failure times. The “underlying” ROCOF
𝑤1(t) is a power law model with shape parameter 𝛽 = 2.5, and the parameter 𝜌 = 0.30.
The upper dotted curve is 𝑤1(t), and the lower dotted curve is the minimal wear intensity
(1 − 𝜌)𝑤1(t).

This intensity is a minimal wear intensity, that is to say a maximal lower boundary
for the conditional ROCOF. The ARI1 model is illustrated in Figure 10.21 for some
possible failure times.

The two models ARI∞ and ARI1 may be considered as two extreme cases. To
illustrate the difference, we may consider the conditional ROCOF as an index rep-
resenting the wear of the item. By the ARI∞ model, every repair action will reduce,
by a specified percentage 𝜌, the total accumulated wear of the item since the item
was installed. By the ARI1 model, the repair action will only reduce, by a percent-
age 𝜌, the wear that has been accumulated since the previous repair action. This is
why Doyen and Gaudoin (2002) say that the ARI∞ has infinite memory, whereas
the ARI1 has memory one (one period).

Doyen and Gaudoin (2011) also introduce a larger class of models in which only
the first m terms of the sum in (10.143) are considered. They call this model the
arithmetic reduction of intensity model of memory m (ARIm), and the correspond-
ing conditional ROCOF is

𝑤C(t) = 𝑤1(t) − 𝜌

min{m−1,N(t)}∑
i=0

(1 − 𝜌)i
𝑤C(SN(t)−i). (10.144)

The ARIm model has a minimal wear intensity:

𝑤min(t) = (1 − 𝛽)m
𝑤1(t).

In all these models, we observe that the parameter 𝜌 may be regarded as an index
of the efficiency of the repair action.

• 0 < 𝜌 < 1. The repair action is efficient.
• 𝜌 = 1. Optimal repair. The conditional ROCOF is put back to zero (but the repair

effect is different from the as-good-as-new situation.
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• 𝜌 = 0. The repair action has no effect on the wear of the item. The item state
after the repair action is as-bad-as-old.

• 𝜌 < 0. The repair action is harmful to the item, and will introduce extra prob-
lems.

10.5.3 Age Reduction Models

Malik (1979) proposes a model where each repair action reduces the age of the
item. The age of the item is hence considered as a virtual concept.

To establish a model, assume that an item is put into operation at time t = 0. The
initial ROCOF 𝑤1(t) is equal to the failure rate (FOM) function z(t) of the interval
until the first item failure. 𝑤1(t) is then the ROCOF of an item where all repairs are
minimal repairs. The first failure occurs at time S1, and the conditional ROCOF
just after the repair action is completed is

𝑤C(S1+) = 𝑤1(S1 − 𝜗),

where S1 − 𝜗 is the new virtual age of the item. After the next failure, the con-
ditional ROCOF is 𝑤C(S2+) = 𝑤1(S2 − 2𝜗), and so on. The conditional ROCOF at
time t is

𝑤C(t) = 𝑤1(t − N(t)𝜗).

Next, let 𝜗 be a function of the history such that

𝑤C(t) = 𝑤1

(
t −

N(t)∑
i=1

𝜗(i, S1, S2,… Si)

)
. (10.145)

Between two consecutive failures, assume that the conditional ROCOF is horizon-
tally parallel with the initial ROCOF 𝑤1(t).

Doyen and Gaudoin (2002) propose an age reduction model where the repair
action reduces the virtual age of the item with an amount proportional to its
age just before the repair action. Let 𝜌 be the percentage of reduction of the
virtual age. In the interval (0, S1) the conditional ROCOF is 𝑤C(t) = 𝑤1(t). Just
after the first failure (when the repair is completed), the virtual age is S1 − 𝜌S1,
and in the interval (S1, S2) the conditional ROCOF is 𝑤C(t) = 𝑤1(t − 𝜌S1). Just
before the second failure at time S2, the virtual age is S2 − 𝜌S1, and just after the
second failure the virtual age is S2 − 𝜌S1 − 𝜌(S2 − 𝜌S1). In the interval (S2, S3) the
conditional ROCOF is 𝑤C(t) = 𝑤1[t − 𝜌S1 − 𝜌(S2 − 𝜌S1)] which may be written as
𝑤C(t) = 𝑤1(t − 𝜌(1 − 𝜌)0S2 − 𝜌(1 − 𝜌)1S1). By continuing this argument, it is easy
to realize that the conditional ROCOF of this age reduction model is

𝑤C(t) = 𝑤1

(
t − 𝜌

N(t)∑
i=0

(1 − 𝜌)iSN(t)−i

)
. (10.146)
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Doyen and Gaudoin (2002) call this model arithmetic reduction of age with infi-
nite memory (ARA∞). Observe that when 𝜌 = 0, we get 𝑤C(t) = 𝑤1(t) and have an
NHPP. When 𝜌 = 1, we get 𝑤C(t) = 𝑤1(t − SN(t)) which represents that the repair
action leaves the item in an as-good-as-new condition. The NHPP and the renewal
process are therefore special cases of the ARA∞ model.

Malik (1979) introduces a model in which the repair action at time Si reduces the
last operating time from Si − Si−1 to 𝜌(Si − Si−1) where as before, 0 ≤ 𝜌 ≤ 1. Using
this model, Shin et al. (1996) develop an optimal maintenance policy and derive
estimates for the various parameters. The corresponding conditional ROCOF is

𝑤C(t) = 𝑤1(t − 𝜌SN(t)).

The minimal wear intensity is equal to 𝑤1((1 − 𝜌)t). This model is by Doyen and
Gaudoin (2002) called arithmetic reduction of age with memory one (ARA1).

In analogy with the failure rate reduction models, we may define a model called
arithmetic reduction of age with memory m by

𝑤(t) = 𝑤1

(
t − 𝜌

min{m−1,N(t)}∑
i=0

(1 − 𝜌)iSN(t)−i

)
.

The minimal wear intensity is

𝑤min(t) = 𝑤1((1 − 𝛽)mt).

10.5.4 Trend Renewal Process

Let S1, S2,… be the failure times of an NHPP with ROCOF 𝑤(t), and let W(t) be
the mean number of failures in the interval (0, t]. Section 10.4.2 shows that the
time-transformed process with occurrence times W(S1),W(S2),… is an HPP with
rate 1. In the transformed process, the mean time between failures (and renewals)
will then be 1. Lindqvist (1998) generalizes this model, by replacing the HPP with
rate 1 with a renewal process with underlying distribution F(⋅) with mean 1. He
called the resulting process a trend-renewal process, TRP(F, 𝑤). To specify the pro-
cess, we need to specify the rate 𝑤(t) of the initial NHPP and the distribution F(t).

If we have a TRP(F, 𝑤) with failure times S1, S2,…, the time-transformed pro-
cess with occurrence times W(S1),W(S2),… is a renewal process with underlying
distribution F(t). The transformation is illustrated in Figure 10.22. The require-
ment that F(t) has mean value 1 is made for convenience. The scale is then taken
care of by the rate 𝑤(t).

Lindqvist (1998) shows that the conditional ROCOF of the TRP(F, 𝑤) is

𝑤
TRP
C (t) = z[W(t) − W(SN(t−))]𝑤(t), (10.147)

where z(t) is the failure rate (FOM) function of the distribution F(t). The condi-
tional ROCOF of the TRP(F, 𝑤) is hence a product of a factor, 𝑤(t), that depends
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Figure 10.22 Illustration of the transformation of a TRP(F, 𝑤) to a renewal process.

on the age t of the item, and a factor that depends on the (transformed) time from
the previous failure. When both the failure rate (FOM) function z(t) and the ini-
tial ROCOF 𝑤(t) are increasing functions, then the conditional ROCOF (10.147)
at time t after a failure at time s0 is

z[W(t + s0) − W(s0)]𝑤(t + s0).

To check the properties of the trend renewal process (TRP), we may look at some
special cases:

• If z(t) = 𝜆, and 𝑤(t) = 𝛽 are both constant, the conditional ROCOF is also con-
stant, 𝑤C(t) = 𝜆𝛽. Hence the HPP is a special case of the TRP.

• If z(t) = 𝜆 is constant, the conditional ROCOF is 𝑤C(t) = 𝜆𝑤(t), and the NHPP
is hence a special case of the TRP.

• If z(0) = 0, the conditional ROCOF is equal to 0 just after each failure, that is,
𝑤C(SN(t+)) = 0.

• If 𝑤(t) = 𝛽 is constant, we have an ordinary renewal process, 𝑤C(t) =
z(t − SN(t−)).

• If z(0) > 0, The conditional ROCOF just after a failure is z(0)𝑤(SN(t+)) and is
increasing with t when 𝑤(t) is an increasing function.

• If z(t) is the failure rate (FOM) function of a Weibull distribution with shape
parameter 𝛼 and 𝑤(t) is a power law (Weibull) process with shape parameter 𝛽,
the conditional ROCOF will have a Weibull form with shape parameter 𝛼𝛽 − 1.

Example 10.19 Consider a trend renewal process with initial ROCOF 𝑤(t) =
2𝜃2t, that is, a linearly increasing ROCOF, and a distribution F(t) with failure
rate (FOM) function z(t) = 2.5 𝜆

2.5 t1.5, that is, a Weibull distribution with shape
parameter 𝛼 = 2.5 and scale parameter 𝜆. For the mean value of F(t) to be equal to
1, the scale parameter must be 𝜆 ≈ 0.88725. The conditional ROCOF in the interval
until the first failure is from (10.147)

𝑤C(t) = 5 𝜆
2.5

𝜃
5t4 for 0 ≤ t < S1.
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Figure 10.23 Illustration of the conditional ROCOF 𝑤C(t) in Example 10.19 for some
possible failure times.

Just after the first failure, 𝑤C(S1+) = 0. Generally, we can find 𝑤C(t) from (10.147).
Between failure n and failure n + 1, the conditional ROCOF is

𝑤C(t) = 5 𝜆
2.5

𝜃
5(t2 − S2

n)1.5t for Sn ≤ t < Sn+1.

The conditional ROCOF 𝑤C(t) is illustrated for some possible failure times
S1, S2,… in Figure 10.23. ◻

The trend renewal process is further studied by Lindqvist (1998) and Elvebakk
(1999), who also provides estimates for the parameters of the model.

10.6 Model Selection

A simple framework for model selection for a repairable item is shown in
Figure 10.24. Figure 10.24 is inspired by a figure in Ascher and Feingold (1984),
but new aspects have been added.

We will illustrate the model selection framework by a simple example. In off-
shore and onshore reliability data (OREDA), failure data from 449 pumps were col-
lected from 61 different installations. A total of 524 critical failures were recorded,
that is, on the average 1.17 failures per pump. To get adequate results, we have
to merge failure data from several valves. It is important that the data that are
merged are homogeneous, meaning that the valves are of the same type and that
the operating contexts are comparable. Because there are very few data from each
valve, this analysis will have to be qualitative. The total data set should be split into
homogeneous subsets and each subset has to be analyzed separately.

We now continue with a subset of the data that is deemed to be homogeneous.
The next step is to check whether or not there is a trend in the ROCOF. This may
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Figure 10.24 Model selection framework.
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be done by establishing a Nelson–Aalen plot as described in Chapter 14. If the plot
is approximately linear, we conclude that the ROCOF is close to constant. If the
plot is convex (concave), we conclude that the ROCOF is increasing (decreasing).
The ROCOF may also be increasing in one part of the life length and decreasing
in another part.

If we conclude that the ROCOF is increasing (or decreasing), we may use either
a NHPP or one of the imperfect repair models described in Section 10.5. Which
model to use must (usually) be decided by a qualitative analysis of the repair
actions, whether it is a minimal repair or and age, or failure rate, reduction repair.
In some cases, we may have close to minimal repairs during a period followed
by a major overhaul. In the Norwegian offshore sector, such overhauls are often
carried our during annual revision stops. When we have decided a model, we
may use the methods described in this chapter to analyze the data. More detailed
analyzes are described, for example, in Crowder et al. (1991).

If no trend in the ROCOF is detected, we conclude that the intervals between
failures are identically distributed, but not necessarily independent. The next step
is then to check whether or not the data may be considered as independent. Sev-
eral plotting techniques and formal tests are available, but these methods are not
covered in this book. An introduction to such methods may, for example, be found
in Crowder et al. (1991).

If we can conclude that the intervals between failures are independent and
identically distributed, we have a renewal process, and we can use the methods
described in Chapter 14 to analyze the data.

If the intervals are dependent, we have to use methods that are not described
in this book. Please consult, for example, Crowder et al. (1991) for relevant
approaches.

10.7 Problems

10.1 Consider an HPP {N(t), t ≥ 0} and let t, s ≥ 0. Determine

E[N(t) N(t + s)].

10.2 Consider an HPP {N(t), t ≥ 0} with rate 𝜆 > 0. Verify that

Pr(N(t) = k ∣ N(s) = n) =
(n

k

)( t
s

)k(
1 − t

s

)n−k

for 0 < t < s and 0 ≤ k ≤ n.
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10.3 Let T1 be the time to the first occurrence of an HPP {N(t), t ≥ 0} with
rate 𝜆.
(a) Show that

Pr(T1 ≤ s ∣ N(t) = 1) = s
t

for s ≤ t.

(b) Determine E(T1) and SD(T1).

10.4 Let {N1(t); t ≥ 0} and {N2(t); t ≥ 0} be two independent HPPs with rates
𝜆1 and 𝜆2, respectively. Let N(t) = N1(t) + N2(t) and show that {N(t);
t ≥ 0} is an HPP with rate 𝜆1 + 𝜆2.

10.5 Let {N(t), t ≥ 0} be a counting process, with possible values 0, 1, 2, 3,….
Show that the mean value of N(t) can be written

E[N(t)] =
∞∑

n=1
Pr(N(t) ≥ n) =

∞∑
n=0

Pr(N(t) > n). (10.148)

10.6 Let S1, S2,… be the occurrence times of an HPP {N(t), t ≥ 0} with rate 𝜆.
Assume that N(t) = n. Show that the random variables S1, S2,… , Sn have
the joint probability density function

fS1 ,…,Sn∣N(t)=n(s1,… , sn) =
n!
tn for 0 < s1 < · · · < sn ≤ t.

10.7 Consider a renewal process {N(t), t ≥ 0}. Is it true that:
(a) N(t) < r if and only if Sr > t?
(b) N(t) ≤ r if and only if Sr ≥ t?
(c) N(t) > r if and only if Sr < t?

10.8 Consider an NHPP with rate

𝑤(t) = 𝜆

( t + 1
t

)
for t ≥ 0.

(a) Make a sketch of 𝑤(t) as a function of t.
(b) Make a sketch of the cumulative ROCOF, W(t), as a function of t.

10.9 Consider an NHPP {N(t), t ≥ 0} with rate:

𝑤(t) =
⎧⎪⎨⎪⎩

6 − 2t for 0 ≤ t ≤ 2
2 for 2 < t ≤ 20

−18 + t for t > 20
.

(a) Make a sketch of 𝑤(t) as a function of t.
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(b) Make a sketch of the corresponding cumulative ROCOF, W(t), as a
function of t.

(c) Estimate the number of failures/events in the interval (0, 12)

10.10 Section 10.3.8 claims that the superposition of independent renewal pro-
cesses is generally not a renewal process. Explain why the superposition
of independent HPPs is a renewal process. What is the renewal density of
this superimposed process?

10.11 Atwood (1992) applies the following parametrization of the power law
model, the linear model and the log-linear model:

𝑤(t) = 𝜆0(t∕t0)𝛽 (power law model)
𝑤(t) = 𝜆0[1 + 𝛽(t − t0)] (linear model)
𝑤(t) = 𝜆0 e𝛽(t−t0) (log-linear model).

(a) Discuss the meaning of t0 in these models.
(b) Show that Atwood’s parameterization is compatible with the param-

eterization used in Section 10.4.4.
(c) Show that 𝑤(t) = 𝜆0 when t = t0 for all the three models.
(d) Show that 𝑤(t) is increasing if 𝛽 > 0, is constant if 𝛽 = 0, and decreas-

ing if 𝛽 < 0, for all the three models.

10.12 Use the MIL-HDBK test described in Section 10.4.4 to check if the “in-
creasing trend” of the data in Example 10.1 is significant (use 5% level).

10.13 The objective of this problem is to study different counting processes and
to create a procedure to asses the performance of a maintained system
when the repair duration is negligible compared to the item’s lifetime.

(a) Assume that the item is repaired after each failure to an
as-good-as-new state and that its failure rate is constant
(𝜆 = 5 × 10−4) per hour between two failures.

i. What kind of counting process is it? What are the MTTF and
the MTBF of the item?

ii. Consider the data set in Table 10.2, which can be downloaded
from the book companion site. Each column provides a
sequence of failure times for one item (in hours). All the items
are identical and are operated in the same conditions. S1 is the
first failure time for each item, S2 the second failure time, and
so on. Make a plot of N1(t), ...,N5(t) as a function of time t in the
same figure, where the y-axis is the number of failures (from 0
to 10) and the x-axis is the time (failure times).



�

� �

�

10.7 Problems 469

Table 10.2 Data set for Problem 13.

Item 1 Item 2 Item 3 Item 4 Item 5

S1 2099 2504 4081 1015 382
S2 5352 3060 5210 3686 1621
S3 8116 3626 6722 4535 1629
S4 9085 5559 15584 5279 6726
S5 10581 6691 17759 5860 8356
S6 12672 11848 21397 7454 12832
S7 13042 17688 21858 12412 12910
S8 14114 18955 24192 15361 23659
S9 15310 19454 25468 15542 24169
S10 15483 19590 29063 19305 24572

iii. Make a plot of E[N(t)], by using all the failure times in
Table 10.2 and by using the exact formula from Section 10.2.1.
Plot both of them in the same figure and comment if the
number of failure times is sufficient to provide an accurate
estimate of E[N(t)].

iv. Determine the probability Pk
t = Pr(N(t) = k) for k = 1, 2,… , 5,

that an item will experience k failures in (0, t) for k = 0, 1, 2.
Make a plot for each k in the same figure, give the times upon
which the probabilities Pk

t cross each others and give an expla-
nation for such “crossing” times.

v. Let t = MTBF. Determine the probabilities Pk
MTBF = Pr(N

(MTBF) = k) to have k failures at the time equal to MTBF for
different values of k. Chose k such that you obtain intuitively
expected results.

(b) Assume that the item is repaired to an as-good-as-new state after
each failure but that its failure rate is no more constant between
two failures. Further, assume that the time-to-failure is Weibull dis-
tributed with shape parameter 4 and scale parameter 500.

i. What kind of counting process is this?
ii. Which procedure can you apply to get an empirical expression

of E[N(t)]?
iii. Find the approximated value of E[N(t)] when t is high.

10.14 Consider an item that is repaired to an as-good-as-new state after each
failure and with a failure rate that is constant (𝜆 = 5 × 10−4 h−1) between
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two failures. The mean downtime (MDT) is six hours. By using theoretical
formulas, determine the average availability of the item and the average
number of hours per year that it is out of operation. Do you need any
further assumptions to use these formulas? If “yes,” record the assump-
tions made.
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11

Markov Analysis

11.1 Introduction

The models in the preceding chapters are all based on the assumption that the
components and the systems can be in one out of two possible states: a functioning
state or a failed state. We have also seen that the models are rather static and not
well suited for analysis of repairable systems.

Stochastic processes are introduced in Chapter 10. This chapter introduces a spe-
cific type of stochastic processes, called Markov1 chains, to model systems with
several states and transitions between the states. A Markov chain is a stochastic
process {X(t), t ≥ 0} having the Markov property. (The Markov property is defined
in Section 11.1.1.) The random variable X(t) is the state of the process at time t. The
collection of all possible states is called the state space, and is denoted  . The state
space  is either finite or countable infinite. In most applications, the state space
is finite, and the states correspond to real states of a system (see Example 11.1).
Unless stated otherwise,  is taken to be {0, 1, 2,… , r}, such that  contains r + 1
different states. The time may be discrete, taking values in {0, 1, 2,…}, or contin-
uous. When the time is discrete, we have a discrete-time Markov chain, and when
the time is continuous, we have a continuous-time Markov chain. Many authors
use the term Markov process for a continuous-time Markov chain. This term is
also used in the current book. When the time is discrete, we denote the time by n
and the discrete-time Markov chain by {Xn,n = 0, 1, 2,…}.

The theoretical basis for Markov chains is presented briefly in this book, and it
is recommended to consult a textbook on stochastic processes for more details. An
excellent introduction to Markov chains may be found in, for example, Ross (1996).
Continuous-time Markov chains and their application in reliability engineering
is treated by Cocozza-Thivent (1997), Pukite and Pukite (1998), and Trivedi and
Bobbio (2017).

1 Named after the Russian mathematician Andrei A. Markov (1856–1922).

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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The main focus in this book is on continuous-time Markov chains and how
these chains can be used to model the reliability of a system. This chapter starts by
defining the Markov property and continuous-time Markov chains. A set of linear,
first-order differential equations, called the Kolmogorov equations, are established
to determine the probability distribution P(t) = [P0(t),P1(t),… ,Pr(t)] of the chain
at time t, where Pi(t) is the probability that the chain (the system) is in state i at
time t. We then show that P(t), under specific conditions, will approach a limit
P when t → ∞. This limit is called the steady state distribution of the chain (the
system). Several system performance metrics such as state visit frequency, sys-
tem availability, and mean time to first system failure, are introduced. The steady
state distribution and system performance metrics are then determined for some
simple systems, such as series and parallel systems, systems with dependent com-
ponents, and various types of standby systems. The time-dependent solution of the
Kolmogorov equations is briefly discussed. The chapter ends with a brief discus-
sion and an introduction to semi-Markov, multiphase, and piecewise determinis-
tic Markov processes (PDMPs). They are generalizations of the continuous-time
Markov chains and may be used to model many maintained systems.

Example 11.1 (States of a parallel structure)
Consider a parallel structure of two components. Each component is assumed
to have two states, a functioning state (1), and a failed state (0). Because each
of the components has two possible states, the parallel structure has 22 = 4
possible states. These states are listed in Table 11.1. The state space is therefore
 = {0, 1, 2, 3}. The structure is fully functioning when the state is 3, and failed
when the state is 0. In states 1 and 2, the system is operating with only one
component in function. ◻

When the structure has n components, and each component has two states
(functioning, and failed), the structure has at most 2n different states. In some

Table 11.1 Possible states of a structure of two components.

State Component 1 Component 2

3 Functioning Functioning

2 Functioning Failed

1 Failed Functioning

0 Failed Failed
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applications, we may introduce more than two states for each component.
A pump may, for example, have three states: operating, standby, or failed. A
producing item may, for example, operate with 100% capacity, 80% capacity, and
so on. In other applications, it is important to distinguish the various failure
modes of an item, and we may define the various failure modes as states. For a
complicated structure, the number of states may become overwhelming, and it
may be necessary to simplify the system model, and separately consider modules
of the structure.

11.1.1 Markov Property

Consider a chain that is started at time 0. If X(s) = i, the chain is said to be in state i
at time s. The conditional probability that the chain is in state j at time t + s, when
it was in state i at time s is

Pr(X(t + s) = j ∣ X(s) = i,X(u) = x(u), 0 ≤ u < s).

Definition 11.1 (Markov property)
A continuous time Markov chain {X(t), t ≥ 0} is said to have the Markov property
when

Pr(X(t + s) = j ∣ X(s) = i,X(u) = x(u), 0 ≤ u < s)

= Pr(X(t + s) = j ∣ X(s) = i) for all possible x(u), 0 ≤ u < s.
(11.1)

◻

In other words, when the present state of the chain is known, the future devel-
opment of the chain is independent of anything that has happened in the past. A
chain satisfying the Markov property (11.1) is a continuous-time Markov chain, but
will in the following be called a Markov process.

Further, assume that the Markov process for all i, j in  fulfills

Pr(X(t + s) = j ∣ X(s) = i) = Pr(X(t) = j ∣ X(0) = i) for all s, t ≥ 0,

which says that the probability of a transition from state i to state j does not depend
on the global time, and only depends on the time interval available for the transi-
tion. A process with this property is known as a process with stationary transition
probabilities, or a time-homogeneous process.

From now on, we only consider Markov processes (i.e. chains fulfilling the
Markov property) that have stationary transition probabilities. A consequence
of this assumption is that a Markov process cannot be used to model a system
where the transition probabilities are influenced by long-term trends and/or
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seasonal variations. To use a Markov model, we have to assume that the environ-
mental and operational conditions for the system are relatively stable as a function
of time.

11.2 Markov Processes

Consider a Markov process {X(t), t ≥ 0} with state space  = {0, 1, 2,… , r} and
stationary transition probabilities. The transition probabilities of the Markov
process

Pij(t) = Pr(X(t) = j ∣ X(0) = i) for all i, j ∈  ,

may be arranged as a matrix

ℙ(t) =

⎛⎜⎜⎜⎜⎝

P00(t) P01(t) · · · P0r(t)
P10(t) P11(t) · · · P1r(t)
⋮ ⋮ ⋱ ⋮

Pr0(t) Pr1(t) · · · Prr(t)

⎞⎟⎟⎟⎟⎠
. (11.2)

Because all entries in ℙ(t) are probabilities,

0 ≤ Pij(t) ≤ 1 for all t ≥ 0, i, j ∈  .

When a process is in state i at time 0, it must either be in state i at time t or have
made a transition to a different state. This means that

r∑
j=0

Pij(t) = 1 for all i ∈  . (11.3)

The sum of each row in the matrix ℙ(t) is therefore equal to 1. Observe that the
entries in row i represent the transitions out of state i (for j ≠ i), and that the entries
in column j represent the transition into state j (for i ≠ j).

Let 0 = S0 ≤ S1 ≤ S2 ≤ … be the times at which transitions occur, and let
Ti = Si+1 − Si be the ith interoccurrence time, or sojourn time, for i = 1, 2,…. The
sojourn time in state i is hence the length of time of a visit to state i. Assume
that the transition takes place immediately before time Si such that the trajectory
of the process is continuous from the right. A possible trajectory of a process is
illustrated in Figure 11.1.

Consider a Markov process that enters state i at time 0, such that X(0) = i. Let T̃i
be a generic sojourn time in state i. Observe that Ti denotes the ith sojourn time,
whereas T̃i is the time spent during a visit to state i. We want to find the probability
Pr(T̃i > t). Assume now that the process is still in state i at time s, that is, T̃i > s,
and that we are interested in finding the probability that it will remain in state i
for t time units more. Hence, we want to find Pr(T̃i > t + s ∣ T̃i > s). Because the
process has the Markov property, the probability for the process to stay t time units
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Figure 11.1 Trajectory of a Markov process.

more is determined only by the current state i. The fact that the process has been
staying there for s time units is therefore irrelevant. Thus,

Pr(T̃i > t + s ∣ T̃i > s) = Pr(T̃i > t) for s, t ≥ 0.

Hence, the random variable T̃i is memoryless and must be exponentially distri-
buted.

The sojourn times T1,T2,… must therefore also be independent and exponen-
tially distributed. The independence follows from the Markov property. See Ross
(1996) for a more detailed discussion.

Let Xn = X(Sn). The process {Xn,n = 1, 2,…} is called the skeleton of the
(continuous-time) Markov process. Transitions of the skeleton occur at discrete
times n = 1, 2,…. The skeleton may be imagined as a process where all the
sojourn times are deterministic and of equal length. It is straightforward to show
that the skeleton of a (continuous-time) Markov process is a discrete-time Markov
chain, see Ross (1996). The skeleton is also called the embedded Markov chain.

A Markov process may now be constructed as a stochastic process having the
properties that each time it enters a state i (see Ross 1996):

(1) The amount of time the process spends in state i before making a transition
into a different state is exponentially distributed with rate, say 𝛼i.

(2) When the process leaves state i, it will next enter state j with some probability
Pij, where

∑r
j=0
j≠i

Pij = 1.

The mean sojourn time in state i is therefore

E(T̃i) =
1
𝛼i
.

If 𝛼i = ∞, state i is called an instantaneous state, because the mean sojourn time
in such a state is zero. When the Markov process enters such a state, the state
is instantaneously left. In this book, we assume that the Markov process has no
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instantaneous states, and that 0 ≤ 𝛼i < ∞ for all i. If 𝛼i = 0, then state i is called
absorbing because once entered it is never left. Sections 11.2 and 11.3 assume
that there are no absorbing states. Absorbing states are further discussed in
Section 11.4.

A Markov process may hence be seen as a stochastic process that moves from
state to state in accordance with a discrete-time Markov chain. The amount of time
it spends in each state – before going to the next state – is exponentially distributed.
The amount of time the process spends in state i, and the next state visited, are
independent random variables.

Let aij be defined by

aij = 𝛼iPij for all i ≠ j. (11.4)

Because 𝛼i is the rate at which the process leaves state i and Pij is the probability
that it goes to state j, it follows that aij is the rate when in state i the process makes
a transition into state j. We call aij the transition rate from i to j.

Because
∑

j≠iPij = 1, it follows from (11.4) that

𝛼i =
r∑

j=0
j≠i

aij. (11.5)

Because the sojourn times are exponentially distributed,

Pr(T̃i > t) = e−𝛼i t

Pr(Tij ≤ t) = 1 − e−aijt for i ≠ j,

where Tij is the time the chain spends in state i before entering into state j. We
therefore have that (Remember that ex =

∑∞
k=0 xk∕k!)

lim
Δt→0

1 − Pii(Δt)
Δt

= lim
Δt→0

Pr(T̃i < Δt)
Δt

= 𝛼i (11.6)

lim
Δt→0

Pij(Δt)
Δt

= lim
Δt→0

Pr(Tij < Δt)
Δt

= aij for i ≠ j. (11.7)

For proof, see Ross (1996).
Because we, from (11.4) and (11.5), can deduce 𝛼i and Pij when we know aij

for all i, j in  , we may equally well define a continuous-time Markov chain by
specifying; (i) The state space  , and (ii) the transition rates aij for all i ≠ j in  .
This second definition is often more natural, and is our main approach.

The transition rates aij may be arranged as a matrix,

𝔸 =

⎛⎜⎜⎜⎜⎝

a00 a01 · · · a0r

a10 a11 · · · a1r

⋮ ⋮ ⋱ ⋮

ar0 ar1 · · · arr

⎞⎟⎟⎟⎟⎠
, (11.8)
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where the following notation for the diagonal elements is introduced:

aii = −𝛼i = −
r∑

j=0
j≠i

aij. (11.9)

We call 𝔸 the transition rate matrix of the Markov chain. Some authors refer to the
matrix 𝔸 as the infinitesimal generator of the chain.

Observe that the entries of row i are the transition rates out of state i (for j ≠ i).
We call them departure rates from state i. According to (11.5) −aii = 𝛼i is the sum
of the departure rates from state i, and hence the total departure rate from state i.
Observe that the sum of the entries in row i is equal to 0, for all i ∈  . The entries
of column i are transition rates into state i (for j ≠ i).

11.2.1 Procedure to Establish the Transition Rate Matrix

To establish the transition rate matrix 𝔸, we have to:

(1) List and describe all relevant system states. Nonrelevant states should be
removed, and identical states should be merged (e.g. see Example 11.3). Each
of the remaining states must be given a unique identification. This book uses
the integers from 0 up to r, where r denotes the best functioning state of the
system, and 0 denotes the worst state. The state space of the system is thus
 = {0, 1,… , r}, but any other sequence of numbers, or letters may be used.

(2) Specify all transition rates aij for all i ≠ j and i, j ∈  . Each transition usually
involves a failure or a repair. The transition rates are therefore failure rates and
repair rates, and combinations of these.

(3) Arrange the transition rates aij for i ≠ j as a matrix, similar to the matrix (11.8)
(leave the diagonal entries aii open).

(4) Fill in the diagonal elements aii such that the sum of all entries in each row is
equal to zero, or by using (11.9).

A Markov chain may be represented graphically by a state transition diagram
that records the aij of the possible transitions of the Markov chain. The state tran-
sition diagram is also known as a Markov diagram. In the state transition diagram,
circles are used to represent states, and directed arcs are used to represent tran-
sitions between the states. An example of a state transition diagram is given in
Figure 11.2.

Example 11.2 (Parallel structure – cont.)
Reconsider the parallel structure of two independent components in Example 11.1.
Assume that the following corrective maintenance strategy is adopted: When a
component fails, a repair action is initiated to bring this component back to its
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Figure 11.2 State transition diagram of the
parallel structure in Example 11.2.

initial functioning state. After the repair is completed, the component is assumed
to be as-good-as-new. Each component is assumed to have its own dedicated
repair crew.

Assume that the components have constant failure rates 𝜆i and constant repair
rates 𝜇i, for i = 1, 2. The transitions between the four system states in Table 11.1
are illustrated in the state transition diagram in Figure 11.2.

Assume that the system is in a state of 3 at time 0. The first transition may either
be to state 2 (failure of component 2), or to state 1 (failure of component 1). The
transition rate to state 2 is a32 = 𝜆2, and the transition rate to state 1 is a31 = 𝜆1.
The sojourn time in state 3 is therefore T̃3 = min{T31,T32}, where Tij is the time
to the first transition from state i to state j. T̃3 is exponentially distributed with rate
a31 + a32 = 𝜆1 + 𝜆2, and the mean sojourn time in state 3 is 1∕(𝜆1 + 𝜆2).

When the system is in state 2, the next transition may either be to state 3 (with
rate a23 = 𝜇2), or to state 0 (with rate a20 = 𝜆1). The probability that the transition
is to state 3 is 𝜇2∕(𝜇2 + 𝜆1), and the probability that it goes to state 0 is 𝜆1∕(𝜇2 + 𝜆1).
The memoryless property of the exponential distribution ensures that component
1 is as-good-as-new when the system enters state 2. In this example, we assume
that component 1 has the same failure rate 𝜆1 in state 3, where both components
are functioning, as it has in state 2, where only component 1 is functioning. The
failure rate a20 of component 1 in state 2 may, however, easily be changed to a
failure rate 𝜆

′
1 that is different from (e.g. higher than) 𝜆1.

When the system is in state 0, both components are in a failed state, and two
independent repair crews are working to bring the components back to a func-
tioning state. The repair times T01 and T02 are independent and exponentially
distributed with repair rates 𝜇1 and 𝜇2, respectively. The sojourn time T̃0 in state 0,
min{T01,T02} is exponentially distributed with rate (𝜇1 + 𝜇2), and the mean down-
time (MDT) of the system is therefore 1∕(𝜇1 + 𝜇2). When the system enters state
0, one of the components will already have failed and be under repair when the
other component fails. The memoryless property of the exponential distribution
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ensures, however, that the time to complete the repair is independent of how long
time the component has been under repair.

The transition rate matrix of the system is thus

𝔸 =

⎛⎜⎜⎜⎜⎜⎝

−(𝜇1 + 𝜇2) 𝜇2 𝜇1 0

𝜆2 −(𝜆2 + 𝜇1) 0 𝜇1

𝜆1 0 −(𝜆1 + 𝜇2) 𝜇2

0 𝜆1 𝜆2 −(𝜆1 + 𝜆2)

⎞⎟⎟⎟⎟⎟⎠
. (11.10)

This model disregards the possibility of common-cause failures (CCFs). Thus, a
transition between states 3 and 0 is assumed to be impossible during a time interval
of length Δt.

Observe that when drawing the state transition diagram, we consider a very
short time interval, such that the transition diagram only records events of sin-
gle transitions. Analogous with the Poisson process, the probability of having two
or more events in a short timeΔt is o(Δt), and hence, events of multiple transitions
are not included in the state transition diagram. It is therefore not possible to have
a transition from states 1 to 2 in Figure 11.2, because this would involve failure
of component 2 and at the same time completed repair of component 1. A CCF
can be modeled as a transition from states 3 to 0 in Figure 11.2. Such a transition
involves the failure of two components, but may be considered a single event. ◻

Example 11.3 (Parallel structure – cont.)
Reconsider the parallel structure in Example 11.1, but assume that the two com-
ponents are independent and identical with the same failure rate 𝜆. In this case,
it is not necessary to distinguish between the states 1 and 2 in Table 11.1, and we
may reduce the state space to the three states:

2 Both components are functioning
1 One component is functioning and one is failed
0 Both components are in a failed state

.

Assume that the system is taken care of by a single repair crew, that has adopted a
first-fail-first-repair policy. The repair time of a component is assumed to be expo-
nentially distributed with repair rate 𝜇. The mean repair time is then 1∕𝜇. The
transitions between the three system states are illustrated in Figure 11.3.

A transition from states 2 to 1 takes place as soon as one of the two independent
components fails. The transition rate is therefore a21 = 2𝜆. When the system is

Figure 11.3 State transition
diagram for the parallel
structure in Example 11.3. 2 1 0

2λ λ

μ μ
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in state 1, it either goes to state 2 (with probability 𝜇∕(𝜇 + 𝜆)), or to state 0 (with
probability 𝜆∕(𝜇 + 𝜆)).

The transition rate matrix of the system is

𝔸 =
⎛⎜⎜⎜⎝

−𝜇 𝜇 0
𝜆 −(𝜇 + 𝜆) 𝜇

0 2𝜆 −2𝜆

⎞⎟⎟⎟⎠
.

The mean sojourn times in the three states are seen to be

E(T̃0) =
1
𝜇
, E(T̃1) =

1
𝜇 + 𝜆

, E(T̃2) =
1

2𝜆
,

that is, the inverse of the absolute value of the corresponding diagonal entry in 𝔸.
An alternative repair strategy for state 0 would be to repair both components at

the same time and only start up the system when both components are function-
ing again. If the repair time for this common repair action has rate 𝜇C, we have
to modify the state transition diagram in Figure 11.2 and introduce a01 = 0 and
a02 = 𝜇C (a12 is still 𝜇). ◻

Example 11.4 (Homogeneous Poisson process)
Consider a homogeneous Poisson process (HPP) {X(t), t ≥ 0}with rate 𝜆. The HPP
is a Markov process with countable infinite state space  = {0, 1, 2,…}. In this
case, we have 𝛼i = 𝜆 for i = 0, 1, 2,…, and aij = 𝜆 for j = i + 1, and 0 for j ≠ i + 1.
The transition rate matrix for the HPP is thus

𝔸 =

⎛⎜⎜⎜⎜⎝

−𝜆 𝜆 0 · · ·
0 −𝜆 𝜆 · · ·
0 0 −𝜆 · · ·
⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎠
.

The state transition diagram for the HPP is illustrated in Figure 11.4. ◻

11.2.2 Chapman–Kolmogorov Equations

By using the Markov property and the law of total probability, we realize that

Pij(t + s) =
r∑

k=0
Pik(t)Pkj(s) for all i, j ∈  , t, s > 0. (11.11)

210

λ λ λ

Figure 11.4 State transition diagram for a homogeneous Poisson process (HPP).
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Equation (11.11) is known as the Chapman–Kolmogorov equation.2 The equations
may, by using (11.2), be written in matrix terms as

ℙ(t + s) = ℙ(t) ⋅ ℙ(s).

11.2.3 Kolmogorov Differential Equations

We will try to establish a set of differential equations that may be used to find Pij(t),
and therefore start by considering the Chapman–Kolmogorov equations

Pij(t + Δt) =
r∑

k=0
Pik(Δt)Pkj(t).

Observe that we here split the interval (0, t + Δt) into two parts. First, we consider
a transition from state i to state k in the small interval (0,Δt), and thereafter, a
transition from state k to state j in the rest of the interval. We now consider

Pij(t + Δt) − Pij(t) =
r∑

k=0
k≠i

Pik(Δt)Pkj(t) − [1 − Pii(Δt)]Pij(t).

By dividing by Δt and then taking the limit as Δt → 0, we obtain

lim
Δt→0

Pij(t + Δt) − Pij(t)
Δt

= lim
Δt→0

r∑
k=0
k≠i

Pik(Δt)
Δt

Pkj(t) − 𝛼iPij(t). (11.12)

Because the summing index is finite, we may interchange the limit and summation
on the right-hand side of (11.12), and obtain, using (11.7)

·
Pij(t) =

r∑
k=0
k≠i

aikPkj(t) − 𝛼iPij(t) =
r∑

k=0
aikPkj(t), (11.13)

where aii = −𝛼i, and the following notation for the time derivative is introduced
·
Pij(t) =

d
dt

Pij(t).

The differential equations (11.13) are known as the Kolmogorov equations. They
are called backward equations because we start with a transition back by the start
of the interval.

The Kolmogorov backward equations may also be written in matrix format as
·
ℙ(t) = 𝔸 ⋅ ℙ(t). (11.14)

2 Named after the British mathematician Sydney Chapman (1888–1970) and the Russian
mathematician Andrey N. Kolmogorov (1903–1987).
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We may also start with the following equation

Pij(t + Δt) =
r∑

k=0
Pik(t)Pkj(Δt).

Here, we split the time interval (0, t + Δt) into two parts. We consider a transition
from i to k in the interval (0, t), and then a transition from k to j in the small interval
(t, t + Δt). We consider

Pij(t + Δt) − Pij(t) =
r∑

k=0
k≠i

Pik(t)Pkj(Δt) − [1 − Pjj(Δt)]Pij(t).

By dividing by Δt and then taking the limit as Δt → 0 we obtain

lim
Δt→0

Pij(t + Δt) − Pij(t)
Δt

= lim
Δt→0

⎡⎢⎢⎢⎣

r∑
k=0
k≠i

Pik(t)
Pkj(Δt)
Δt

−
1 − Pjj(Δt)

Δt
Pij(t)

⎤⎥⎥⎥⎦
.

Because the summation index is finite, we may interchange limit with summation
and obtain

·
Pij(t) =

r∑
k=0
k≠i

akjPik(t) − 𝛼jPij(t) =
r∑

k=0
akjPik(t), (11.15)

where, as before, ajj = −𝛼j. The differential equations (11.15) are known as the
Kolmogorov forward equations. The interchange of the limit and the sum above
does not hold in all cases, but is always valid when the state space is finite.

The Kolmogorov forward equations may be written in matrix terms as
·
ℙ(t) = ℙ(t) ⋅ 𝔸. (11.16)

For the Markov processes studied in this book, the backward and the forward
equations have the same unique solution ℙ(t), where

∑r
j=0 Pij(t) = 1 for all i in  .

In the following, we mainly use the forward equations.

11.2.4 State Equations

Let us assume that we know that the Markov process has state i at time 0, that is,
X(0) = i. This can be expressed as

Pi(0) = Pr(X(0) = i) = 1

Pk(0) = Pr(X(0) = k) = 0 for k ≠ i.

Because we know the state at time 0, we may simplify the notation by writing
Pij(t) as Pj(t). The vector P(t) = [P0(t),P1(t),… ,Pr(t)], then denotes the distribu-
tion of the Markov process at time t, when we know that the process started in
state i at time 0. As in (11.3), we know that

∑r
j=1 Pj(t) = 1.
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The distribution P(t) may be found from the Kolmogorov forward equations
(11.15)

·
Pj(t) =

r∑
k=0

akjPk(t), (11.17)

where, as before, ajj = −𝛼j. In matrix terms, this may be written

[P0(t),… ,Pr(t)] ⋅

⎛⎜⎜⎜⎜⎝

a00 a01 · · · a0r

a10 a11 · · · a1r

⋮ ⋮ ⋱ ⋮

ar0 ar1 · · · arr

⎞⎟⎟⎟⎟⎠
= [ ·P0(t),… ,

·
Pr(t)] (11.18)

or, in a more compact form as

P(t) ⋅𝔸 = Ṗ(t). (11.19)

Equation (11.19) is called the state equation for the Markov process.

Remark 11.1 (An alternative way of writing the state equations)
Some authors prefer to present the state equations as the transpose of (11.19), that
is 𝔸T ⋅ P(t)T = Ṗ(t)T . In this case, the vectors are column vectors, and Eq. (11.18)
may be written in a slightly more compact form, as

⎛⎜⎜⎜⎜⎜⎝

a00 a10 · · · ar0

a01 a11 · · · ar1

⋮ ⋮ ⋱ ⋮

a0r a1r · · · arr

⎞⎟⎟⎟⎟⎟⎠
⋅

⎡⎢⎢⎢⎢⎢⎣

P0(t)

P1(t)

⋮

Pr(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

·
P0(t)
·
P1(t)

⋮
·
Pr(t)

⎤⎥⎥⎥⎥⎥⎦
.

In this format, the indexes do not follow standard matrix notation. The entries in
column i represent the departure rates from state i, and the sum of all the entries
in a column is 0. The reader may choose which format she wants to present the
state equations. Both formats give the same result. This book presents the state
equations in the format of (11.18) and (11.19). ◻

Because the sum of the entries in each row in 𝔸 is equal to 0, the determinant of
𝔸 is 0 and the matrix is singular. Consequently, Eq. (11.19) do not have a unique
solution, but by using that

r∑
j=0

Pj(t) = 1,

and the known initial state (Pi(0) = 1), we are often able to compute all the prob-
abilities Pj(t) for j = 0, 1, 2,… , r. (Conditions for existence and uniqueness of the
solutions are discussed, for example, by Cox and Miller (1965).)



�

� �

�

486 11 Markov Analysis

Example 11.5 (Single component)
Consider a single component. The component has two possible states:

State 1 The component is functioning
State 0 The component is in a failed state

.

Transition from state 1 to state 0 means that the component fails, and transition
from state 0 to state 1 means that the component is repaired. The transition rate
a10 is thus the failure rate of the component, and the transition rate a01 is the repair
rate of the component. In this example, we use the following notation

a10 = 𝜆 The failure rate of the component
a01 = 𝜇 The repair rate of the component

.

The state transition diagram for the single component is illustrated in
Figure 11.5.

The state equations for this simple system is

[P0(t),P1(t)] ⋅

(
−𝜇 𝜇

𝜆 −𝜆

)
= [ ·P0(t),

·
P1(t)]. (11.20)

The component is assumed to be functioning at time t = 0,

P1(0) = 1, P0(0) = 0.

Because the two equations we get from (11.20) are linearly dependent, we use only
one of them, for example

−𝜇P0(t) + 𝜆P1(t) =
·
P(t).

And combine this equation with P0(t) + P1(t) = 1. The solution is:

P1(t) =
𝜇

𝜇 + 𝜆
+ 𝜆

𝜇 + 𝜆
e−(𝜆+𝜇)t (11.21)

P0(t) =
𝜆

𝜇 + 𝜆
− 𝜆

𝜇 + 𝜆
e−(𝜆+𝜇)t. (11.22)

For a detailed solution of the differential equation, see Ross (1996). P1(t) denotes
the probability that the component is functioning at time t, that is, the availability
of the component. The limiting availability P1 = limt→∞ P1(t) is from (11.21),

P1 = lim
t→∞

P1(t) =
𝜇

𝜆 + 𝜇
. (11.23)

1 0

λ

μ

Figure 11.5 State transition diagram for a single
component (function-repair cycle).
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Figure 11.6 Availability and survivor function for a single component (𝜆 = 1, 𝜇 = 10).

The mean time-to-failure, MTTF, is equal to 1∕𝜆, and the mean time to repair,
MTTR, is equal to 1∕𝜇. The limiting availability may therefore be written as the
well-known formula

P1 = MTTF
MTTF+MTTR

. (11.24)

When there is no repair (𝜇 = 0), the availability is P1(t) = e−𝜆t which coincides
with the survivor function of the component. The availability P1(t) is illustrated in
Figure 11.6. ◻

11.3 Asymptotic Solution

In many applications, only the long-run (steady state) probabilities are of interest,
that is, the values of Pj(t) when t → ∞. In Example 11.5, the state probabilities
Pj(t) (j = 0, 1) approached a steady state Pj when t → ∞. The same steady state
value would have been found irrespective of whether the system started in the
operating state or in the failed state.

Convergence toward steady state probabilities is assumed for the Markov pro-
cesses studied in this chapter. The process is said to be irreducible if every state is
reachable from every other state (see Ross 1996). For an irreducible Markov pro-
cess, it can be shown that the limits

lim
t→∞

Pj(t) = Pj for j = 0, 1, 2,… , r,

always exist and are independent of the initial state of the process (at time t = 0).
For a proof, see Ross (1996). Hence, a process that has been running for a long
time, has lost its dependency of its initial state X(0). The process converges to a
process where the probability of being in state j is

Pj = Pj(∞) = lim
t→∞

Pj(t) for j = 0, 1,… , r.
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These asymptotic probabilities are often called the steady state probabilities for the
Markov process.

If Pj(t) tends to a constant value when t → ∞, then

lim
t→∞

·
Pj(t) = 0 for j = 0, 1,… , r.

The steady state probabilities P = [P0,P1,… ,Pr] must therefore satisfy the matrix
equation:

[P0,P1,… ,Pr] ⋅

⎛⎜⎜⎜⎜⎝

a00 a01 · · · a0r

a10 a11 · · · a1r

⋮ ⋮ ⋱ ⋮

ar0 ar1 · · · arr

⎞⎟⎟⎟⎟⎠
= [0, 0,… , 0], (11.25)

which may be abbreviated to

P ⋅ 𝔸 = 0, (11.26)

whereas before
r∑

j=0
Pj = 1.

To calculate the steady state probabilities, P0,P1,… ,Pr of such a process, we use r
of the r + 1 linear algebraic equation from the matrix equation (11.25), and in addi-
tion the fact that the sum of the state probabilities always is equal to 1. The initial
state of the process has no influence on the steady state probabilities. Observe that
Pj also may be interpreted as the average, long-run proportion of time the system
spends in state j.

Remark 11.2 (Numerical solution with R)
Equation (11.25) is seen to be a set of linear equations on a matrix format. When
you have numerical values for the transition rates, you may use the basic command
solve or the matlib package in R to solve (11.25) and find [P0,P1,… ,Pr].3,4 ◻

Example 11.6 (Power station with two generators)
Consider a power station with two generators, 1 and 2. Each generator can have
two states: a functioning state (1) and a failed state (0). A generator is considered to

3 The matlib package is available on https://cran.r-project.org/web/packages/matlib/index
.html, where brief user guides are found under the heading “Vignettes.”
4 Several other computer programs can be used for the same purpose. Among these are Python,
Octave, and MATLAB®. Observe that R can read and write MATLAB (and Octave) m-files by
using the package R.matlab.
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be in the failed state (0) also during repair. Generator 1 is supplying 100 MW when
it is functioning, and 0 MW when it is not functioning. Generator 2 is supplying
50 MW when it is functioning, and 0 MW when it is not functioning.

The possible states of the system are

System
state

State of
generator 1

State of
generator 2

System
output (MW)

3 1 1 150

2 1 0 100

1 0 1 50

0 0 0 0

Assume that the generators fail independent of each other, and that they are
operated on a continuous basis. The failure rates of the generators are

𝜆1 Failure rate of generator 1
𝜆2 Failure rate of generator 2

When a generator fails, a repair action is started to bring the generator back
into operation. The two generators are assumed to be repaired independent of
each other, by two independent repair crews. The repair rates of the generators
are

𝜇1 Repair rate for generator 1
𝜇2 Repair rate for generator 2

The corresponding state transition diagram is shown in Figure 11.7.

Figure 11.7 State transition diagram of the
generators in Example 11.6.

3 2

1 0

λ2

μ1 λ1λ1

λ2

μ1

μ2

μ2
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The transition matrix is

𝔸 =

⎛⎜⎜⎜⎜⎝

−(𝜇1 + 𝜇2) 𝜇2 𝜇1 0
𝜆2 −(𝜆2 + 𝜇1) 0 𝜇1

𝜆1 0 −(𝜆1 + 𝜇2) 𝜇2

0 𝜆1 𝜆2 −(𝜆1 + 𝜆2)

⎞⎟⎟⎟⎟⎠
.

We can use (11.26) to find the steady state probabilities Pj for j = 0, 1, 2, 3, and
get the following equations:

−(𝜇1 + 𝜇2)P0 + 𝜆2P1 + 𝜆1P2 = 0

𝜇2P0 − (𝜆2 + 𝜇1)P1 + 𝜆1P3 = 0

𝜇1P0 − (𝜆1 + 𝜇2)P2 + 𝜆2P3 = 0

P0 + P1 + P2 + P3 = 1.

Observe that we use three of the steady state equations from (11.26) and in addi-
tion the fact that P0 + P1 + P2 + P3 = 1. Observe also that we may choose any three
of the four steady state equations, and get the same solution.

The solution is

P0 =
𝜆1𝜆2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)

P1 =
𝜆1𝜇2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)

P2 =
𝜇1𝜆2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)

P3 =
𝜇1𝜇2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)
. (11.27)

Now for i = 1, 2 let:

qi =
𝜆i

𝜆i + 𝜇i
=

MTTRi

MTTFi + MTTRi

pi =
𝜇i

𝜆i + 𝜇i
=

MTTFi

MTTFi + MTTRi
,

where MTTRi = 1∕𝜇i is the mean time to repair of component i, and MTTFi = 1∕𝜆i
is the mean time-to-failure of component i (i = 1, 2). qi thus denotes the average, or
limiting, unavailability of component i, whereas pi denotes the average (limiting)
availability of component i, (i = 1, 2). The steady state probabilities may thus be
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written as

P0 = q1q2

P1 = q1p2

P2 = p1q2

P3 = p1p2. (11.28)

In this example, where the components fail and are repaired independently of each
other, we may use direct reasoning to obtain the results in (11.28):

P0 = Pr(Component 1 is failed) Pr(Component 2 is failed) = q1q2

P1 = Pr(Component 1 is failed) Pr(Component 2 is functioning) = q1p2

P2 = Pr(Component 1 is functioning) Pr(Component 2 is failed) = p1q2

P3 = Pr(Component 1 is functioning) Pr(Component 2 is functioning) = p1p2

.

Because all failures and repairs are independent events, we do not need to use
Markov methods to find the steady state probabilities. The steady state proba-
bilities may easily be found by using standard probability rules for independent
events. Please observe that this only applies for systems with independent failures
and repairs.

Assume now that we have the following data:

Generator 1 Generator 2

MTTFi 6 mo ≈ 4380 h 8mo ≈ 5840 h
Failure rate per hour, 𝜆i 2.3 × 10−4 1.7 × 10−4

MTTRi 12 h 24 h
Repair rate per hour, 𝜇i 8.3 × 10−2 4.2 × 10−2

Observe that the steady state probabilities can be interpreted as the mean pro-
portion of time the system stays in the state concerned. The steady state probability
of state 1 is, for example, equal to

P1 =
𝜆1𝜇2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)
= q1p2 ≈ 2.72 × 10−3

.

Hence,

P1 = 0.002 72
[

yr
yr

]
= 0.002 72 ⋅ 8760

[
h
yr

]
≈ 23.8

[
h
yr

]
.

In the long run, the system stays in state 1 approximately 23.8 h/yr. This does not
mean that state 1 occurs on average once per year and lasts for 23.8 hours each
time.
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With the given data, we obtain:

System
state

System
output (MW)

Steady state
probability

Average hours
in state per year

3 150 0.9932 8700.3

2 100 4.08 × 10−3 35.8

1 50 2.72 × 10−3 23.8

0 0 1.12 × 10−5 0.1
◻

11.3.1 System Performance Metrics

Several system performance metrics for the steady state situation are introduced
in this section. Examples are provided in Sections 11.4–11.6.

Visit Frequency
The Kolmogorov forward equation (11.15) is

·
Pij(t) =

r∑
k=0
k≠i

akjPik(t) − 𝛼jPij(t).

When we let t → ∞, then Pij(t) → Pj, and ·
Pij(t) → 0. Because the summation index

in (11.15) is finite, we may interchange the limit and the sum and get, as t → ∞,

0 =
r∑

k=0
k≠i

akjPk − 𝛼jPj,

which can be written as

Pj 𝛼j =
r∑

k=0
k≠i

Pkakj. (11.29)

The (unconditional) probability of a departure from state j in the time interval
(t, t + Δt] is

r∑
k=0
k≠i

Pr[(X(t + Δt) = k) ∩ (X(t) = j)]

=
r∑

k=0
k≠i

Pr(X(t + Δt) = k ∣ X(t) = j)Pr(X(t) = j) =
r∑

k=0
k≠i

Pjk(Δt)Pj(t).
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When t → ∞, this probability tends to
∑r

k=0
k≠i

Pjk(Δt)Pj, and the steady state fre-

quency of departures from state j is, with the same argument as we used to derive
Eq. (11.5),

𝜈
dep
j = lim

Δt→0

∑r
k=0
k≠i

Pjk(Δt)Pj

Δt
= Pj 𝛼j.

The left-hand side of (11.29) is hence the steady state frequency of departures from
state j. The frequency of departures from state j is seen to be the proportion of time
Pj spent in state j, times the transition rate 𝛼j out of state j.

Similarly, the frequency of transitions from state k into state j is Pk akj. The total
frequency of arrivals into state j is therefore

𝜈
arr
j =

r∑
k=0
k≠i

Pkakj.

Equation (11.29) says that the frequency of departures from state j is equal to
the frequency of arrivals into state j, for j = 0, 1,… , r, and is therefore sometimes
referred to as the balance equations. In the steady state situation, we define the
visit frequency to state j as

𝜈j = Pj 𝛼j =
r∑

k=0
k≠i

Pkakj, (11.30)

and the mean time between visits to state j is 1∕𝜈j.

Mean Duration of a Visit
When the process enters a state j, the system stays in this state a time T̃j until the
process departures from that state, j = 0, 1,… , r. We have called T̃j the sojourn
time in state j, and shown that T̃j is exponentially distributed with rate 𝛼j. The
mean sojourn time, or mean duration of a visit, is hence

𝜃j = E(T̃j) =
1
𝛼j

for j = 0, 1,… , r. (11.31)

By combining (11.30) and (11.31), we obtain

𝜈j = Pj 𝛼j =
Pj

𝜃j

Pj = 𝜈j𝜃j. (11.32)

The mean proportion of time, Pj, the system is spending in state j is thus equal to
the visit frequency to state j multiplied by the mean duration of a visit in state j for
j = 0, 1,… , r.
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System Availability
Let = {0, 1,… , r} be the set of all possible states of a system. Some of these states
represent system functioning according to some specified criteria. Let B denote the
subset of states in which the system is functioning, and let F =  − B denote the
states in which the system is failed.

The average, or long-term availability of the system is the mean proportion of
time when the system is functioning; that is, its state is a member of B. The average
system availability AS is thus defined as follows:

AS =
∑
j∈B

Pj. (11.33)

In the following, we omit the term “average” and call AS the system availability.
The system unavailability (1 − AS) is then

1 − AS =
∑
j∈F

Pj. (11.34)

The unavailability (1 − AS) of the system is the mean proportion of time when the
system is in a failed state.

Frequency of System Failures
The frequency 𝜔F of system failures is the steady state frequency of transitions
from a functioning state (in B) to a failed state (in F),

𝜔F =
∑
j∈B

∑
k∈F

Pjajk. (11.35)

Mean Duration of a System Failure
The mean duration 𝜃F of a system failure is defined as the mean time from the
system enters into a failed state (F) until it is repaired/restored and brought back
into a functioning state (B).

Analogous with (11.32) it is obvious that the system unavailability (1 − AS) is
equal to the frequency of system failures multiplied by the mean duration of a
system failure. Hence,

1 − AS = 𝜔F𝜃F . (11.36)

Mean Time Between System Failures
The mean time between system failures, MTBFS is the mean time between con-
secutive transitions from a functioning state (B) into a failed state (F). The MTBFS
may be computed from the frequency of system failures by

MTBFS = 1
𝜔F

. (11.37)



�

� �

�

11.4 Parallel and Series Structures 495

Mean Functioning Time Until System Failure
The mean functioning time (“up-time”) until system failure, E(U)s, is the mean
time from a transition from a failed state (F) into a functioning state (B) until the
first transition back to a failed state (F). It is obvious that

MTBFS = E(U)s + 𝜃F . (11.38)

Observe the difference between the mean functioning time (“up-time”) and the
mean time to system failure MTTFS. The MTTFS is normally calculated as the
mean time until system failure when the system initially is in a specified function-
ing state.

11.4 Parallel and Series Structures

This section studies the steady state properties of parallel and series structures of
independent components.

11.4.1 Parallel Structures of Independent Components

Reconsider the parallel structure of two independent components in Example 11.6.
For this structure, we get

Mean Duration of the Visits
From (11.31), we get

𝜃0 = 1∕(𝜇1 + 𝜇2)

𝜃1 = 1∕(𝜆2 + 𝜇1)

𝜃2 = 1∕(𝜆1 + 𝜇2)

𝜃3 = 1∕(𝜆1 + 𝜆2). (11.39)

Visit Frequency
From (11.31) and (11.39), we get

𝜈0 = P0(𝜇1 + 𝜇2)

𝜈1 = P1(𝜆2 + 𝜇1)

𝜈2 = P2(𝜆1 + 𝜇2)

𝜈3 = P3(𝜆1 + 𝜆2). (11.40)

The parallel structure is functioning when at least one of its two components
is functioning. When the system is in state 1, 2, or 3 the system is functioning,
whereas state 0 corresponds to system failure.
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The average system unavailability is

1 − AS = P0 = q1q2, (11.41)

and the average system availability is

AS = P1 + P2 + P3 = 1 − q1q2.

The frequency of system failures 𝜔F is equal to the visit frequency to state 0, which
is

𝜔F = 𝜈0 = P0(𝜇1 + 𝜇2) = (1 − AS)(𝜇1 + 𝜇2). (11.42)

The mean duration of a system failure 𝜃F is in this case equal to the mean duration
of a stay in state 0. Thus,

𝜃F = 𝜃0 = 1
𝜇1 + 𝜇2

=
1 − AS

𝜔F
. (11.43)

For a parallel structure of n independent components, the above results may be
generalized as follows: For system unavailability,

1 − AS =
n∏

i=1
qi =

n∏
i=1

𝜆i

𝜆i + 𝜇i
. (11.44)

For frequency of system failures,

𝜔F = (1 − AS)
n∑

i=1
𝜇i. (11.45)

For mean duration of a system failure,

𝜃F = 1∑n
i=1 𝜇i

. (11.46)

The mean functioning time (up-time) E(U)P of the parallel structure can be deter-
mined from

1 − AS =
𝜃F

𝜃F + E(U)P
.

Hence,

E(U)P =
𝜃FAS

1 − AS
=

1 −
∏n

i=1 𝜆i∕(𝜆i + 𝜇i)∏n
i=1 𝜆i∕(𝜆i + 𝜇i)

∑n
j=1 𝜇j

. (11.47)

When the component availabilities are very high: (i.e. 𝜆i ≪ 𝜇i for all i = 1, 2,… ,n),
then

𝜆i

𝜆i + 𝜇i
=

𝜆i MTTRi

1 + 𝜆i MTTRi
≈ 𝜆i MTTRi.
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The frequency 𝜔F of system failures can now be approximated as

𝜔F = (1 − AS)
n∑

i=1
𝜇i =

n∏
i=1

𝜆i

𝜆i + 𝜇i

n∑
j=1

𝜇j

≈
n∏

i=1
𝜆i MTTRi

n∑
j=1

1
MTTRj

. (11.48)

For two components, (11.48) reduces to

𝜔F ≈ 𝜆1𝜆2(MTTR1 + MTTR2). (11.49)

For three components, (11.48) reduces to

𝜔F ≈ 𝜆1𝜆2𝜆3(MTTR1MTTR2 + MTTR1MTTR3 + MTTR2MTTR3).

11.4.2 Series Structures of Independent Components

Consider a series structure of two independent components. The states of the sys-
tem and the transition rates are as defined in Example 11.6. The state transition
diagram of the series structure is shown in Figure 11.8. The corresponding steady
state equations are equal to those found for the parallel structure in Example 11.6.

The average availability of the structure, AS, is equal to P3 which was found in
(11.28) to be

AS = P3 =
𝜇1𝜇2

(𝜆1 + 𝜇1)(𝜆2 + 𝜇2)
= p1p2, (11.50)

where

pi =
𝜇i

𝜆i + 𝜇i
for i = 1, 2.

The frequency of system failures,𝜔F , is the same as the frequency of visits to state 3.
Thus,

𝜔F = 𝜈3 = P3(𝜆1 + 𝜆2) = AS(𝜆1 + 𝜆2). (11.51)

Figure 11.8 Partitioning the state
transition diagram of a series
structure of two independent
components.
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The mean duration of a system failure 𝜃F is equal to

𝜃F =
1 − AS

𝜔F
. (11.52)

For a series structure of n independent components, the above results can be
generalized as follows: For system availability

AS =
n∏

i=1
pi =

n∏
i=1

𝜇i

𝜆i + 𝜇i
. (11.53)

For frequency of system failures

𝜔F = AS

n∑
i=1

𝜆i. (11.54)

For mean duration of a system failure

𝜃F =
1 − AS

𝜔F

= 1∑n
i=1 𝜆i

1 − AS

AS

=
1 −

∏n
i=1 𝜇i∕(𝜆i + 𝜇i)∏n

i=1 𝜇i∕(𝜆i + 𝜇i)
∑n

j=1 𝜆j
. (11.55)

When all the component availabilities are very high such that 𝜆i ≪ 𝜇i for all i,
then AS ≈ 1 and the frequency of system failures is approximately

𝜔F ≈
n∑

i=1
𝜆i, (11.56)

which is the same as the failure rate of a nonrepairable series structure of n inde-
pendent components.

The mean duration of a system failure 𝜃F may be approximated as

𝜃F = 1∑n
i=1 𝜆i

1 − AS

AS
= 1∑n

i=1 𝜆i

(
1

AS
− 1

)
= 1∑n

i=1 𝜆i

( n∏
i=1

1
pi

− 1

)

= 1∑n
i=1 𝜆i

( n∏
i=1

(
1 +

𝜆i

𝜇i

)
− 1

)
≈ 1∑n

i=1 𝜆i

(
1 +

n∑
i=1

𝜆i

𝜇i
− 1

)

=
∑n

i=1 𝜆i∕𝜇i∑n
i=1 𝜆i

=
∑n

i=1 𝜆iMTTRi∑n
i=1 𝜆i

, (11.57)

where MTTRi = 1∕𝜇i as before is the mean time to repair component i,
i = 1, 2,… ,n. Equation (11.57) is a commonly used approximation for the mean
duration of a failure in series structures of high reliability.
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11.4.3 Series Structure of Components Where Failure of One
Component Prevents Failure of the Other

Consider a series structure of two components. When one of the components
fails, the other component is immediately taken out of operation until the
failed component is repaired.5 After a component is taken out of operation, it
is not exposed to any stress, and we therefore assume that it will not fail. This
dependence between the failures prevents a simple solution by direct reasoning
as was possible in Example 11.6. This system has three possible states as described
in Table 11.2.

The following transition rates are assumed:

a21 = 𝜆1 Failure rate of component 1
a20 = 𝜆2 Failure rate of component 2
a12 = 𝜇1 Repair rate of component 1
a02 = 𝜇2 Repair rate of component 2

The state transition diagram of the series structure is illustrated in Figure 11.9.
The steady state equations for this system are

[P0,P1,P2] ⋅
⎛⎜⎜⎜⎝

−𝜇2 0 𝜇2

0 −𝜇1 𝜇1

𝜆2 𝜆1 −(𝜆1 + 𝜆2)

⎞⎟⎟⎟⎠
= [0, 0, 0]. (11.58)

Table 11.2 Possible states of a series structure of two components
where failure of one component prevents failure of the other.

State Component 1 Component 2

2 Functioning Functioning

1 Taken out of operation Functioning

0 Functioning Taken out of operation

Figure 11.9 State transition
diagram of a series structure of
two components. Where failure
of one component prevents
failure of the other component.

21 0

λ1 λ2

μ1 μ2

5 The same model is discussed by Barlow and Proschan (1975, pp. 194–201) in a more general
context that does not assume constant failure and repair rates.
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The steady state probabilities may be found from the equations

−𝜇2P0 + 𝜆2P2 = 0

−𝜇1P1 + 𝜆1P2 = 0

P0 + P1 + P2 = 1.

The solution is

P2 =
𝜇1𝜇2

𝜆1𝜇2 + 𝜆2𝜇1 + 𝜇1𝜇2
= 1

1 + (𝜆1∕𝜇1) + (𝜆2∕𝜇2)
. (11.59)

P1 =
𝜆1

𝜇1
P2. (11.60)

P0 =
𝜆2

𝜇2
P2. (11.61)

Because the series structure is only functioning when both the components are
functioning (state 2), the average system availability is,

AS = P2 =
𝜇1𝜇2

𝜆1𝜇2 + 𝜆2𝜇1 + 𝜇1𝜇2
= 1

1 + (𝜆1∕𝜇1) + (𝜆2∕𝜇2)
.

Observe that in this case, the availability of the series structure is not equal to the
product of the component availabilities.

The mean durations of the stays in each state are

𝜃2 = 1
𝜆1 + 𝜆2

𝜃1 = 1
𝜇1

𝜃0 = 1
𝜇2

.

The frequency of system failures 𝜔F is the same as the frequency of visits to
state 2.

𝜔F = 𝜈2 = P2(𝜆1 + 𝜆2) = AS(𝜆1 + 𝜆2). (11.62)

The mean duration of a system failure 𝜃F is

𝜃F =
1 − AS

𝜔F
= 1

𝜆1 + 𝜆2

1 − AS

AS

= 1
𝜇1

𝜆1

𝜆1 + 𝜆2
+ 1

𝜇2

𝜆2

𝜆1 + 𝜆2
. (11.63)

Equation(11.63) may also be written

𝜃F = MTTR1 Pr(Component 1 fails|system failure)

+ MTTR2 Pr(Component 2 fails|system failure).
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This formula is obvious because the duration of a system failure is equal to the
repair time of component 1 when component 1 fails and equal to the repair time
of component 2 when component 2 fails.

The mean time between system failures, MTBFS, is

MTBFS = MTTFS + 𝜃F = 1
𝜆1 + 𝜆2

+ 1
𝜇1

𝜆1

𝜆1 + 𝜆2
+ 1

𝜇2

𝜆2

𝜆1 + 𝜆2

=
1 + (𝜆1∕𝜇1) + (𝜆2∕𝜇2)

𝜆1 + 𝜆2
. (11.64)

The frequency of system failures may also be expressed as

𝜔F = 1
MTBFS

= (𝜆1 + 𝜆2)
1

1 + (𝜆1∕𝜇1) + (𝜆2∕𝜇2)
= AS(𝜆1 + 𝜆2).

For a series structure of n components, the above results can be generalized as
follows: For system availability

AS = 1
1 +

∑n
i=1(𝜆i∕𝜇i)

. (11.65)

For mean time to system failure

MTTF = 1∑n
i=1 𝜆i

. (11.66)

For mean duration of a system failure

𝜃F =
n∑

i=1

1
𝜇i

𝜆i∑n
j=1 𝜆j

= 1∑n
j=1 𝜆j

n∑
i=1

𝜆i

𝜇i
. (11.67)

For frequency of system failures

𝜔F = AS

n∑
i=1

𝜆i =
∑n

i=1 𝜆i

1 +
∑n

i=1(𝜆i∕𝜇i)
. (11.68)

11.5 Mean Time to First System Failure

Before developing formulas for the mean time to system failure, we need to intro-
duce the concept of absorbing states.

11.5.1 Absorbing States

All the processes we have studied so far in this chapter have been irreducible,
which means that every state is reachable from every other state.

We now introduce Markov processes with absorbing states. An absorbing state
is a state that, once entered, cannot be left until the system starts a new mission.
The popular saying is that the system is trapped in an absorbing state.
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2 1 0

2λ λ

μ

Figure 11.10 State transition
diagram for a parallel structure
of two identical components.

Example 11.7 (Parallel structure of two independent components)
Reconsider the parallel system in Example 11.3 with two independent and
identical components with failure rate 𝜆. When one of the components fails, it is
repaired. The repair time is assumed to be exponentially distributed with repair
rate 𝜇. When both components have failed, the system is considered to have
failed and no recovery is possible. Let the number of functioning components
denote the state of the system. The state space is thus  = {0, 1, 2}, and state 0
is an absorbing state. The state transition diagram of the system is given in
Figure 11.10.

Assume that both components are functioning (state 2) at time 0. That is P2(0) =
1. The transition rate matrix of this structure is thus

𝔸 =
⎛⎜⎜⎜⎝

0 0 0
𝜆 −(𝜆 + 𝜇) 𝜇

0 2𝜆 −2𝜆

⎞⎟⎟⎟⎠
. (11.69)

Because state 0 is an absorbing state, all the transition rates from this state are
equal to zero. Thus, the entries of the row corresponding to the absorbing state are
all equal to zero.

Because the matrix 𝔸 does not have full rank, we may remove one of the three
equations without losing any information about P0(t), P1(t), and P2(t). In this case,
we remove the first of the three equations. This is accomplished by removing the
first column of the matrix. Hence, we get the state equations

[P0(t),P1(t),P2(t)] ⋅
⎛⎜⎜⎜⎝

0 0
−(𝜆 + 𝜇) 𝜇

2𝜆 −2𝜆

⎞⎟⎟⎟⎠
= [ ·P1(t),

·
P2(t)].

Because all the elements of the first row of the matrix are equal to zero, P0(t) “dis-
appears” in the solution of the equations. The matrix equations may therefore be
reduced to

[P1(t),P2(t)] ⋅

(
−(𝜆 + 𝜇) 𝜇

2𝜆 −2𝜆

)
= [ ·P1(t),

·
P2(t)]. (11.70)

The matrix(
−(𝜆 + 𝜇) 𝜇

2𝜆 −2𝜆

)
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has full rank if 𝜆 > 0. Therefore, (11.70) determines P1(t) and P2(t). P0(t) may
thereafter be found from P0(t) = 1 − P1(t) − P2(t). This solution of the reduced
matrix equations (11.70) is identical to the solution of the initial matrix equations.
The reduced matrix is seen to be obtained by deleting the row and the column
corresponding to the absorbing state.

Because state 0 is absorbing and reachable from the other states, it is obvious
that

lim
t→∞

P0(t) = 1.

The Laplace transforms of the reduced matrix equations (11.70) are

(P∗
1(s),P∗

2(s)) ⋅

[
−(𝜆 + 𝜇) 𝜇

2𝜆 −2𝜆

]
= (sP∗

1(s), sP∗
2(s) − 1),

when the system is assumed to be in state 2 at time t = 0. Thus,

−(𝜆 + 𝜇)P∗
1(s) + 2𝜆P∗

2(s) = sP∗
1(s)

𝜇P∗
1(s) − 2𝜆P∗

2(s) = sP∗
2(s) − 1.

Solving for P∗
1(s) and P∗

2(s), we get (see Appendix B)

P∗
1(s) =

2𝜆
s2 + (3𝜆 + 𝜇)s + 2𝜆2

P∗
2(s) =

𝜆 + 𝜇 + s
s2 + (3𝜆 + 𝜇)s + 2𝜆2 .

Let R(t) denote the survivor function of the system. Because the system is func-
tioning as long as the system is either in state 2 or in state 1, the survivor function
is equal to

R(t) = P1(t) + P2(t) = 1 − P0(t).

The Laplace transform of R(t) is thus

R∗(s) = P∗
1(s) + P∗

2(s) =
3𝜆 + 𝜇 + s

s2 + (3𝜆 + 𝜇)s + 2𝜆2 . (11.71)

The survivor function R(t) may now be determined by inverting the Laplace
transform, or we may consider P0(t) = 1 − R(t) which denotes the distribu-
tion function of the time Ts to system failure. The Laplace transform of P0(t)
is

P∗
0(s) =

1
s
− P∗

1(s) − P∗
2(s) =

2𝜆2

s[s2 + (3𝜆 + 𝜇)s + 2𝜆2]
.

Let fs(t) denote the probability density function of the time Ts to system failure,
that is, fs(t) = dP0(t)∕dt. The Laplace transform of fs(t) is thus

f ∗s (s) = sP∗
0(s) − P0(0) =

2𝜆2

s2 + (3𝜆 + 𝜇)s + 2𝜆2 . (11.72)
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The denominator of (11.71) can be written

s2 + (3𝜆 + 𝜇)s + 2𝜆2 = (s − k1)(s − k2),

where

k1 =
−(3𝜆 + 𝜇) +

√
𝜆2 + 6𝜆𝜇 + 𝜇2

2

k2 =
−(3𝜆 + 𝜇) −

√
𝜆2 + 6𝜆𝜇 + 𝜇2

2
.

The expression for f ∗s (s) can be rearranged so that

f ∗s (s) =
2𝜆2

k1 − k2

(
1

s + k2
− 1

s + k1

)
.

By inverting this transform, we get

fs(t) =
2𝜆2

k1 − k2
(e−k2t − e−k1t).

The mean time to system failure MTTFS is now given by (the integration is left to
the reader as an exercise):

MTTFS =
∫

∞

0
tfs(t) dt = 3

2𝜆
+ 𝜇

2𝜆2 . (11.73)

Observe that the MTTFS of a two-component parallel system, without any repair
(i.e. 𝜇 = 0), is equal to 3∕2𝜆. The repair facility thus increases the MTTFS by
𝜇∕2𝜆2. ◻

11.5.2 Survivor Function

As discussed in Section 11.4.2, the set of states  of a system may be grouped in
a set B of functioning states and a set F =  − B of failed states. In the present
section, we assume that the failed states are absorbing states.

Consider a system that is in a specified functioning state at time t = 0. The sur-
vivor function R(t) determines the probability that a system does not leave the
set B of functioning states during the time interval (0, t]. The survivor function is
thus

R(t) =
∑
j∈B

Pj(t). (11.74)

The Laplace transform of the survivor function is

R∗(s) =
∑
j∈B

P∗
j (s).
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11.5.3 Mean Time to the First System Failure

The mean time to system failure, MTTFS, is determined by

MTTFS =
∫

∞

0
R(t) dt. (11.75)

The Laplace transform of R(t) is

R∗(s) =
∫

∞

0
R(t) e−st dt. (11.76)

The MTTFS of the system may thus be determined from (11.76) by inserting s = 0,
such that

R∗(0) =
∫

∞

0
R(t) dt = MTTFS. (11.77)

Example 11.8 (Example 11.7 (Cont.))
The Laplace transform of the survivor function for the two-component parallel
system was in (11.71) found to be

R∗(s) = 3𝜆 + 𝜇 + s
s2 + (3𝜆 + 𝜇)s + 2𝜆2 .

By introducing s = 0, we get

MTTFS = R∗(0) = 3𝜆 + 𝜇

2𝜆2 = 3
2𝜆

+ 𝜇

2𝜆2 ,

which is in accordance with (11.73). ◻

Procedure for Finding MTTFS

As indicated in Example 11.7, the following procedure may be used to find the
mean time to first failure, MTTF, of a system with state space  = {0, 1,… , r}.
See Billington and Allen (1992) and Pagès and Gondran (1980) for details and jus-
tification.

(1) Establish the transition rate matrix 𝔸. and let P(t) = [P0(t),P1(t),… ,Pr(t)]
denote the distribution of the process at time t. Observe that 𝔸 is a
(r + 1) × (r + 1) matrix.

(2) Define the initial distribution P(0) = [P0(0),P1(0),… ,Pr(0)] of the process,
and verify that P(0) means that the system has a functioning state.

(3) Identify the failed states of the system, and define these states as absorbing
states. Assume that there are k absorbing states.

(4) Delete the rows and columns of 𝔸 corresponding to the absorbing states, that
is, if j is an absorbing state, remove the entries aji and aij for all i from 𝔸. Let
𝔸R denote the reduced transition rate matrix. The dimension of 𝔸R is (r + 1 −
k) × (r + 1 − k).
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(5) Let P∗(s) = [P∗
0(s),P∗

1(s),… ,P∗
r (s)] denote the Laplace transform of P(t) and

remove the entries of P∗(s) corresponding to absorbing states. Let P∗
R(s) denote

the reduced vector. Observe that P∗
R(s) has dimension (r + 1 − k).

(6) Remove the entries of sP∗(s) − P(0) corresponding to absorbing states. Let
[sP∗(s) − P(0)]R denote the reduced vector.

(7) Establish the equation

P∗
R(s) ⋅𝔸R = [sP∗(s) − P(0)]R,

set s = 0 and determine P∗
R(0).

(8) The mean time-to-failure, MTTFS, is determined by

MTTFS =
∑

P∗
j (0),

where the sum is taken over all j representing the (r + 1 − k) nonabsorbing
states.

Example 11.9 (Parallel structure of two independent components)
Reconsider the parallel structure of two independent components in Example 11.2,
where the components have failure rates 𝜆1 and 𝜆2, and repair rates 𝜇1 and 𝜇2,
respectively. The states of the system are defined in Table 11.1. The system is
assumed to start out at time 0 in state 3 with both components functioning. The
system is functioning as long as at least one of the components is functioning.
The set B of functioning states is thus {1, 2, 3}. The system fails when both
components are in a failed state, state 0.

In this example, we are primarily interested in determining the mean time to
system failure MTTFS. We therefore define state 0 to be an absorbing state, and set
all departure rates from state 0 equal to zero. The transition rate matrix is then

⎛⎜⎜⎜⎜⎝

0 0 0 0
𝜆2 −(𝜆2 + 𝜇1) 0 𝜇1
𝜆1 0 −(𝜆1 + 𝜇2) 𝜇2
0 𝜆1 𝜆2 −(𝜆1 + 𝜆2)

⎞⎟⎟⎟⎟⎠
,

and the survivor function is

R(t) = P1(t) + P2(t) + P3(t).

We now reduce the matrix equations by removing the row and the column corre-
sponding to the absorbing state (state 0) and take Laplace transforms:

[P∗
1(0),P∗

2(0),P∗
3(0)] ⋅

⎛⎜⎜⎜⎝

−(𝜆2 + 𝜇1) 0 𝜇1
0 −(𝜆1 + 𝜇2) 𝜇2
𝜆1 𝜆2 −(𝜆1 + 𝜆2)

⎞⎟⎟⎟⎠
= [0, 0,−1].
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This means that

P∗
1(0) =

𝜆1

𝜆2 + 𝜇1
P∗

3(0) (11.78)

P∗
2(0) =

𝜆2

𝜆1 + 𝜇2
P∗

3(0). (11.79)

(
𝜆1𝜇1

𝜆2 + 𝜇1
+

𝜆2𝜇2

𝜆1 + 𝜇2
− (𝜆1 + 𝜆2)

)
P∗

3(0) = −1. (11.80)

The last equation leads to

P∗
3(0) =

1
𝜆1𝜆2[1∕(𝜆1 + 𝜇2) + 1∕(𝜆2 + 𝜇1)]

. (11.81)

Finally,

MTTFS = R∗(0) = P∗
1(0) + P∗

2(0) + P∗
3(0)

=
𝜆1∕(𝜆2 + 𝜇1) + 𝜆2∕(𝜆1 + 𝜇2) + 1
𝜆1𝜆2[1∕(𝜆1 + 𝜇2) + 1∕(𝜆2 + 𝜇1)]

, (11.82)

where P∗
1(0) and P∗

2(0) are determined by inserting (11.80) in (11.78) and (11.79),
respectively.

Some Special Cases

(1) Nonrepairable system (𝜇1 = 𝜇2 = 0)

MTTFS =
(𝜆2∕𝜆1) + (𝜆1∕𝜆2) + 1

𝜆1 + 𝜆2
.

When the two components have identical failure rates, 𝜆1 = 𝜆2 = 𝜆, this
expression is reduced to

MTTFS = 3
2

1
𝜆
. (11.83)

(2) The two components have identical failure rates and identical repair rates
(𝜆1 = 𝜆2 = 𝜆 and 𝜇1 = 𝜇2 = 𝜇). Then

MTTFS = 3
2𝜆

+ 𝜇

2𝜆2 . ◻

11.6 Systems with Dependent Components

This section illustrates how a Markov model can be used to model dependent
failures. Two simple situations are described: Systems exposed to CCFs and
load-sharing systems, that are exposed to cascading failures. Dependent failures
are discussed in Chapter 8.
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11.6.1 Common Cause Failures

Consider a parallel structure of two identical components. The components may
fail due to aging or other inherent defects. Such failures occur independent of each
other with failure rate 𝜆I . The components are repaired independent of each other
with repair rate 𝜇.

An external event may occur that causes all functioning components to fail at
the same time. Failures caused by the external event are CCFs. The external events
occur with rate 𝜆C that is called the CCF rate.

The states of the system are named according to the number of components
functioning. Thus, the state space is {0, 1, 2}. The state transition diagram of the
parallel system with CCFs is shown in Figure 11.11.

The corresponding transition rate matrix is

𝔸 =
⎛⎜⎜⎜⎝

−2𝜇 2𝜇 0
𝜆C + 𝜆I −(𝜆I + 𝜆C + 𝜇) 𝜇

𝜆C 2𝜆I −(2𝜆I + 𝜆C)

⎞⎟⎟⎟⎠
.

Assume that we are interested in determining the mean time to system failure
MTTFS. Because the system fails as soon as it enters state 0, we define state 0 as
an absorbing state, and remove the row and the column from the transition rate
matrix corresponding to state 0.

As before, we assume that the system is in state 2 (both components are func-
tioning) at time t = 0. By introducing Laplace transforms, we get the following
matrix equations

[P∗
1(0),P∗

2(0)] ⋅

(
−(𝜆I + 𝜆C + 𝜇) 𝜇

2𝜆I −(2𝜆I + 𝜆C)

)
= [0,−1].

The solutions are

P∗
1(0) =

2𝜆I

(2𝜆I + 𝜆C)(𝜆I + 𝜆C) + 𝜆C𝜇

P∗
2(0) =

𝜆I + 𝜆C + 𝜇

(2𝜆I + 𝜆C)(𝜆I + 𝜆C) + 𝜆C𝜇
,

2 1 0

2λΙ λΙ + λC

μ 2μ

λC
Figure 11.11 State transition
diagram for a parallel structure
of two components exposed to
CCF.
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and the mean time to system failure is

MTTFS = P∗
2(0) + P∗

1(0) =
3𝜆I + 𝜆C + 𝜇

(2𝜆I + 𝜆C)(𝜆I + 𝜆C) + 𝜆C𝜇
. (11.84)

As for the beta-factor model in Chapter 8, the common cause factor 𝛽 is defined as

𝛽 =
𝜆C

𝜆C + 𝜆I
=

𝜆C

𝜆
,

where 𝜆 = 𝜆C + 𝜆I is the total failure rate of a component, and the factor 𝛽 denotes
the fraction of CCFs among all failures of a component. To investigate how the
beta-factor affects the MTTFS, we insert 𝛽 and 𝜆 into (11.84) to obtain

MTTFS = 3(1 − 𝛽)𝜆 + 𝛽𝜆 + 𝜇

(2(1 − 𝛽)𝜆 + 𝛽𝜆)𝜆 + 𝛽𝜆𝜇

= 3 − 2𝛽𝜆 + 𝜇

(2 − 𝛽)𝜆2 + 𝛽𝜆𝜇
= 1

𝜆

𝜆(3 − 2𝛽) + 𝜇

(2 − 𝛽)𝜆 + 𝛽𝜇
. (11.85)

Figure 11.12 illustrates how the MTTFS of a parallel system depends on the com-
mon cause factor 𝛽.

Consider two simple cases.

(1) 𝛽 = 0 (i.e. only independent failures, 𝜆 = 𝜆I):

MTTFS = 3
2𝜆I

+ 𝜇

2𝜆2
I
,

which is what we obtained in Example 11.8.
(2) 𝛽 = 1 (i.e. all failures are CCFs, 𝜆 = 𝜆C):

MTTFS = 1
𝜆C

𝜆C + 𝜇

𝜆C + 𝜇
= 1

𝜆C
.

β

M
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T
F s
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20

40
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Figure 11.12 The MTTFS of a parallel structure as a function of the common-cause
factor 𝛽 (𝜆 = 1, and 𝜇 = 100).
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The last result is evident. Only CCFs are occurring, and they affect both compo-
nents simultaneously with failure rate 𝜆C. For further details about the beta-factor
model, see Chapter 8.

11.6.2 Load-Sharing Systems

Consider a parallel structure of two identical components. The components share
a common load. If one component fails, the other component has to carry the
whole load and the failure rate of this component is assumed to increase imme-
diately when the load is increased. Hence, the failures of the two components
are dependent. In Chapter 8, this type of dependency is referred to as cascading
failures. The components may, for example, be pumps, compressors, or power gen-
erators. The following failure rates are assumed:

𝜆h Failure rate at normal load (i.e. when both components are functioning)
𝜆f Failure rate at full load (i.e. when one of the components is failed)

Let 𝜇h denote the repair rate of a component when only one component has
failed, and let 𝜇f denote the repair rate of a component when both components
have failed. Let the number of components that are functioning denote the state
of the system. The state space is thus {0, 1, 2}. When the system has failed (state
0), all available repair resources are used to repair one of the components (usually
the component that failed first). The system is stated up again (in state 1) as soon
as this component is repaired. The state transition diagram of the system is given
in Figure 11.13.

The transition rate matrix is
⎛⎜⎜⎜⎝

−𝜇f 𝜇f 0
𝜆f −(𝜇h + 𝜆f ) 𝜇h

0 2𝜆h −2𝜆h

⎞⎟⎟⎟⎠
.

The system fails when both components fail (i.e. in state 0). To determine the
mean time to system failure, MTTFS, we define state 0 as an absorbing state, and
remove the row and the column corresponding to this state from the transition rate
matrix. If we assume that the system starts out at time t = 0 with both components

2 1 0

2λn λf

μh μf

Figure 11.13 Parallel structure
of two components sharing a
common load.
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functioning (state 2), and take Laplace transforms with s = 0, we get

[P∗
1(0),P∗

2(0)] ⋅

(
−(𝜇h + 𝜆f ) 𝜇h

2𝜆h −2𝜆h

)
= [0,−1].

The solution is

P∗
1(0) =

1
𝜆f

P∗
2(0) =

𝜆f + 𝜇h

2𝜆h𝜆f
.

The survivor function is R(t) = P1(t) + P2(t), and the mean time to system failure
is thus

MTTFS = R∗(0) = P∗
1(0) + P∗

2(0) =
1
𝜆f

+ 1
2𝜆h

+
𝜇h

2𝜆h𝜆f
. (11.86)

Observe that when no repair is carried out (𝜇h = 0)

MTTFS = 1
𝜆f

+ 1
2𝜆h

. (11.87)

When the load on the remaining component is not increased, such that 𝜆f = 𝜆h,
we get MTTFS = 3∕(2𝜆h) in accordance with (11.83).

Example 11.10 (System of two generators)
Consider a power station with two generators of the same type. During normal
operation, the generators are sharing the load and each generator has failure rate
𝜆h = 1.6 × 10−4 h−1. When one of the generators fails, the load on the remaining
generator is increased, and the failure rate increases to 𝜆f = 8.0 × 10−4 h−1 (five
times as high as the normal failure rate). In addition, the system is exposed to
CCFs. All generators in operation will fail at the same time when common cause
events occur. The CCF rate is 𝜆C = 2.0 × 10−5 h−1. When one generator fails, it
is repaired. The mean time to repair, MTTRh is 12 hours, and the repair rate is
therefore 𝜇h ≈ 8.3 × 10−2 h−1. When the system fails, the MTTR one generator
is MTTRf = 8 hours, and the repair rate is 𝜇f = 1.25 × 10−1 h−1. The state tran-
sition diagram of the generator system with load-sharing and CCFs is shown in
Figure 11.14.

Figure 11.14 State transition
diagram for the generator
system with load-sharing and
CCFs.

2 1 0

2λn λf + λC

μh
μf

λC
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The steady state probabilities can be found by the same approach as we have
shown several times (see, for example, Example 11.6).

P2 =
𝜇h𝜇f

(𝜆f + 𝜆C + 𝜇f )(𝜆C + 2𝜆h) + 𝜆C𝜇h + 𝜇h𝜇f
≈ 0.995 75

P1 =
(𝜆C + 2𝜆h)𝜇f

(𝜆f + 𝜆C + 𝜇f )(𝜆C + 2𝜆h) + 𝜆C𝜇h + 𝜇h𝜇f
≈ 0.004 06

P0 =
(𝜆f + 𝜆C)(𝜆C + 2𝜆h) + 𝜆C𝜇h

(𝜆f + 𝜆C + 𝜇f )(𝜆C + 2𝜆h) + 𝜆C𝜇h + 𝜇h𝜇f
≈ 0.000 19.

The mean time to system failure is found from the Laplace transforms:

[P∗
1(0),P∗

2(0)] ⋅

(
−(𝜆f + 𝜆C + 𝜇h) 𝜇h

2𝜆h −(𝜆C + 2𝜆h)

)
= [0,−1].

We find that

MTTFS = P∗
1 + P∗

2 =
2𝜆h + 𝜆f + 𝜆C + 𝜇h

(𝜆C + 2𝜆h)(𝜆f + 𝜆C + 𝜇h) − 2𝜆n𝜇h

≈ 43 421 h ≈ 4.96 yr. ◻

11.7 Standby Systems

Standby systems are introduced in Section 6.4 where the survivor function
R(t) and the mean time-to-failure MTTFS are determined for some simple
nonrepairable standby systems. This section deals with some simple two-item
repairable standby systems analyzed by Markov methods. The system considered
is illustrated in Figure 11.15. Item A is initially (at time t = 0) the operating item
and S is the sensing and changeover device.

A standby system may be operated and repaired in a number of different ways:

• The standby item may be cold or partly loaded.
• The changeover device may have several failure modes, such as “fail to switch,”

“spurious switching,” and “disconnect.”
• Failure of the standby item may be hidden (nondetectable) or detectable.

In the present section, a few operation and repair modes of a standby system are
illustrated. Generalizations to more complicated systems and operational modes
are often straightforward, at least in theory, but the computations may require a
computer.
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Figure 11.15 Two-item standby
system. A

B

S

11.7.1 Parallel System with Cold Standby and Perfect Switching

Because the standby item is passive, it is assumed not to fail in the standby state.
The switching is assumed to be perfect. Failure of the active item is detected imme-
diately, and the standby item is activated with probability 1. The failure rate of
item i in operating state is denoted 𝜆i for i = A,B. When the active item has failed,
a repair action is initiated immediately. The time to repair is exponentially dis-
tributed with repair rate 𝜇i for i = A,B. When a repair action is completed, the
item is placed in standby state.

The possible states of the system are listed in Table 11.3 where O denotes oper-
ating state, S denotes standby state, and F denotes failed state.

System failure occurs when the operating item fails before repair of the other
item is completed. The failed state of the system is thus state 0 in Table 11.3. When
both items have failed, they are repaired simultaneously, and the system is thus
brought back to state 4. The repair rate in this case is denoted𝜇. The state transition
diagram of the standby system is illustrated in Figure 11.16. The transition rate
matrix is

𝔸 =

⎛⎜⎜⎜⎜⎜⎝

−𝜇 0 0 0 𝜇

𝜆A −(𝜆A + 𝜇B) 0 0 𝜇B
0 𝜆B −𝜆B 0 0
𝜆B 0 𝜇A −(𝜆B + 𝜇A) 0
0 0 0 𝜆A −𝜆A

⎞⎟⎟⎟⎟⎟⎠
. (11.88)

Table 11.3 The possible states of a two-item parallel system
with cold standby and perfect switching.

System state State of item A State of item B

4 O S

3 F O

2 S O

1 O F

0 F F
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3

2

1

0
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Figure 11.16 State transition diagram of a
two-item parallel structure with cold standby and
perfect switching.

The steady state probabilities may be determined according to the procedures
described in Section 11.3. The survivor function R(t) and the mean time-to-failure
MTTFS of the system can be determined by considering the failed state of the
system (state 0) to be an absorbing state. Suppose that the initial state at t = 0
is state 4. By deleting the row and the column of the transition rate matrix
corresponding to the absorbing state 0, we get the reduced matrix 𝔸R

𝔸R =

⎛⎜⎜⎜⎜⎝

−(𝜆A + 𝜇B) 0 0 𝜇B
𝜆B −𝜆B 0 0
0 𝜇A −(𝜆B + 𝜇A) 0
0 0 𝜆A −𝜆A

⎞⎟⎟⎟⎟⎠
.

By taking Laplace transforms (with s = 0), we get the equations

[P∗
1(0),P∗

2(0),P∗
3(0),P∗

4(0)] ⋅𝔸R = [0, 0, 0,−1].

The solution is

P∗
2(0) =

𝜆A + 𝜇B

𝜆B
P∗

1(0)

P∗
3(0) =

𝜆A + 𝜇B

𝜇A
P∗

1(0)

P∗
4(0) =

𝜆B + 𝜇A

𝜆A
P∗

3(0)

=
(𝜆A + 𝜇B)(𝜆B + 𝜇A)

𝜆A𝜇A
P∗

1(0)

=
1 + 𝜇BP∗

1(0)
𝜆A

.

Thus,

P∗
1(0) =

𝜇A

𝜆A𝜆B + 𝜆A𝜇A + 𝜆B𝜇B
.
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The mean time-to-failure MTTFS of the system is now, by using (11.77),

MTTFS = R∗(0) = P∗
1(0) + P∗

2(0) + P∗
3(0) + P∗

4(0)

= 1
𝜆A

+ 1
𝜆B

+
𝜇A

𝜆B

⎛⎜⎜⎝
1
𝜆B

− 1
𝜆B + 𝜇A + 𝜆B

𝜆A
𝜇B

⎞⎟⎟⎠
. (11.89)

For a nonrepairable system, 𝜇A = 𝜇B = 0. Then

MTTFS = 1
𝜆A

+ 1
𝜆B

,

which is an obvious result.

11.7.2 Parallel System with Cold Standby and Perfect Switching
(Item A is the Main Operating Item)

Reconsider the standby system in Figure 11.15. Assume that item A is the main
operating item. This means that item B is only used when A is in a failed state and
under repair. Item A is thus put into operation again as soon as the repair action
is completed. System failure occurs when the operating item B fails before repair
of item A is completed. The failed state of the system is thus state 0 in Table 11.3.
When both items have failed, they are repaired simultaneously and brought back
to state 4. The repair rate in this case is denoted 𝜇. States 1 and 2 in Table 11.3
are therefore irrelevant states for this system. The state transition diagram of this
system is illustrated in Figure 11.17.

The transition rate matrix is
⎛⎜⎜⎜⎝

−𝜇 0 𝜇

𝜆B −(𝜆B + 𝜇A) 𝜇A
0 𝜆A −𝜆A

⎞⎟⎟⎟⎠
. (11.90)

The steady state probabilities are determined by

[P0,P3,P4] ⋅
⎛⎜⎜⎜⎝

−𝜇 0 𝜇

𝜆B −(𝜆B + 𝜇A) 𝜇A
0 𝜆A −𝜆A

⎞⎟⎟⎟⎠
= [0, 0, 0]

Figure 11.17 State transition diagram of a two-item
parallel structure with cold standby and perfect
switching (item A is the main operating item). 3

0

λA

4

μ

λB

μA



�

� �

�

516 11 Markov Analysis

and

P0 + P3 + P4 = 1.

The solution is

P0 =
𝜆A𝜆B

𝜆A𝜆B + 𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A

P3 =
𝜆A𝜇

𝜆A𝜆B + 𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A

P4 =
𝜆B𝜇 + 𝜇𝜇A

𝜆A𝜆B + 𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A
,

where Pj is the mean proportion of time the system is spending in state j for
j = 0, 3, 4.

The frequency of system failures, 𝜔F , is in this case equal to the visit frequency
to state 0, i.e.

𝜔F = 𝜈0 =
P0

𝜇
.

The MTTFS of the system is determined as in Section 11.5.3. By deleting the row
and the column of the transition rate matrix in (11.90) and taking Laplace trans-
forms (with s = 0), we obtain

[P∗
3(0),P∗

4(0)] ⋅

(
−(𝜆B + 𝜇A) 𝜇A

𝜆A −𝜆A

)
= [0,−1].

The solution is

P∗
3(0) =

1
𝜆B

P∗
4(0) =

1
𝜆A

+
𝜇A

𝜆A𝜆B
.

The mean time-to-failure of the system is thus

MTTFS = R∗(0) = P∗
3(0) + P∗

4(0) =
1
𝜆A

+ 1
𝜆B

+
𝜇A

𝜆A𝜆B
. (11.91)

The MTTR of the system is

MTTRS = 1
𝜇
.

The average availability A of the system is thus

A =
MTTFS

MTTFS + MTTRS
=

1∕𝜆A + 1∕𝜆B + 𝜇A∕(𝜆A𝜆B)
1∕𝜆A + 1∕𝜆B + 𝜇A∕(𝜆A𝜆B) + 1∕𝜇

.
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Figure 11.18 State transition diagram of a two-item
parallel structure with cold standby and imperfect
switching (item A is the main operating item). 3

0

(1– p)λA

4

μ
λB

μA

pλA

11.7.3 Parallel System with Cold Standby and Imperfect Switching
(Item A is the Main Operating Item)

Reconsider the standby system in Figure 11.15 (again let item 1 be item A and item
2 be item B). Assume that the switching is no longer perfect. When the active item
A fails, the standby item B will be activated properly with probability (1 − p). The
probability p may also include a “fail to start” probability of the standby item. The
state transition diagram of the system is illustrated in Figure 11.18. From state 4,
the system may have a transition to state 3 with rate (1 − p)𝜆A and to state 0 with
rate p𝜆A.

The steady state probabilities are determined by

[P0,P3,P4] ⋅
⎛⎜⎜⎜⎝

−𝜇 0 𝜇

𝜆B −(𝜆B + 𝜇A) 𝜇A
p𝜆A (1 − p)𝜆A −𝜆A

⎞⎟⎟⎟⎠
= [0, 0, 0] (11.92)

and

P0 + P3 + P4 = 1.

The solution is

P0 =
𝜆A𝜆B + p𝜆A𝜇A

𝜆A𝜆B + p𝜆A𝜇A + (1 − p)𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A

P3 =
𝜆A𝜇(1 − p)

𝜆A𝜆B + p𝜆A𝜇A + (1 − p)𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A

P4 =
𝜆B𝜇 + 𝜇𝜇A

𝜆A𝜆B + p𝜆A𝜇A + (1 − p)𝜆A𝜇 + 𝜆B𝜇 + 𝜇𝜇A
.

The MTTFS can be determined from

[P∗
3(0),P∗

4(0)] ⋅

(
−(𝜆B + 𝜇A) 𝜇A

(1 − p)𝜆A −𝜆A

)
= [0,−1],
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which leads to

P∗
3(0) =

1 − p
𝜆B + p𝜇A

P∗
4(0) =

𝜆B + 𝜇A

𝜆A(𝜆B + p𝜇A)
.

Thus,

MTTFS = R∗(0) = P∗
3(0) + P∗

4(0) =
(1 − p)𝜆A + 𝜆B + 𝜇A

𝜆A(𝜆B + p𝜇A)
. (11.93)

11.7.4 Parallel System with Partly Loaded Standby and Perfect
Switching (Item A is the Main Operating Item)

Reconsider the standby system in Figure 11.15 but assume that the standby item
B (i.e. item 2 in the figure) may fail in standby mode and have a hidden failure
when activated. The failure rate of item B in standby mode is denoted 𝜆

s
B and is

normally less than the corresponding failure rate during operation. In addition to
the transition in Figure 11.17, this system may also have transitions from states 4
to 1 (in Table 11.3) and from states 1 to 0. The state transition diagram is illustrated
in Figure 11.19.

The steady-state probabilities are determined by

[P0,P1,P3, 4] ⋅

⎛⎜⎜⎜⎜⎝

−𝜇 0 0 𝜇

𝜆A −𝜆A 0 0
𝜆B 0 −(𝜆B + 𝜇A) 𝜇A
0 𝜆

s
B 𝜆A −(𝜆A + 𝜆

s
B)

⎞⎟⎟⎟⎟⎠
= [0, 0, 0, 0]

and

P0 + P1 + P3 + P4 = 1.

3

1

0

λA

4

λA

μ
λB

λs
B

μA

Figure 11.19 State transition diagram of a two-item
parallel structure with partly loaded standby and perfect
switching (item A is the main operating item).
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The MTTFS can be determined from

[P∗
1(0),P∗

3(0),P∗
4(0)] ⋅

⎛⎜⎜⎜⎝

−𝜆A 0 0
0 −(𝜆B + 𝜇A) 𝜇A
𝜆

s
B 𝜆A −(𝜆A + 𝜆

s
B)

⎞⎟⎟⎟⎠
= [0, 0,−1].

P∗
1(0) =

𝜆
s
B

𝜆A
(𝜆B + 𝜇A)

𝜆A𝜆B + 𝜆B𝜆
s
B + 𝜆

s
B𝜇A

P∗
3(0) =

𝜆A

𝜆A𝜆B + 𝜆B𝜆
s
B + 𝜆

s
B𝜇A

P∗
4(0) =

𝜆B + 𝜇A

𝜆A𝜆B + 𝜆B𝜆
s
B + 𝜆

s
B𝜇A

.

Thus,

MTTFS = R∗(0) = P∗
1(0) + P∗

3(0) + P∗
4(0)

=

(
𝜆

s
B

𝜆A
+ 1

)
(𝜆B + 𝜇A) + 𝜆A

𝜆A𝜆B + 𝜆B𝜆
s
B + 𝜆

s
B𝜇A

. (11.94)

Let us now assume that we have two items of the same type and no repair is carried
out. Let 𝜆A = 𝜆B = 𝜆, and 𝜆

S
A = 𝜆

S
B = 𝜆

S. In this case, the mean time-to-failure is

MTTFS = 1
𝜆 + 𝜆S

(
2 + 𝜆

S

𝜆

)
. (11.95)

Observe that when 𝜆 = 𝜆
S, Equation (11.95) reduces to the mean time-to-failure

of an active parallel system.

11.8 Markov Analysis in Fault Tree Analysis

We now illustrate how results from Markov analysis can be used in fault tree anal-
ysis. Assume that a fault tree has been established with respect to a TOP event (a
system failure or accident) in a specific system. The fault tree has n basic events
(components) and k minimal cut sets K1,K2,… ,Kk.

The probability of the fault tree TOP event may be approximated by the upper
bound approximation (6.94

Q0(t) ≈ 1 −
k∏

j=1
[1−Q̌j(t)]. (11.96)
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Let us assume that the TOP event is a system failure, such that Q0(t) is the system
unavailability. The average (limiting) system unavailability is thus approximately

Q0 ≈ 1 −
k∏

j=1
(1−Q̌j), (11.97)

where Q̌j denotes the average unavailability of the minimal cut parallel structure
corresponding to the minimal cut set Kj, j = 1, 2,… , k.

In the rest of this section, assume that component i has constant failure rate
𝜆i, mean time to repair MTTRi, and constant repair rate 𝜇i = 1∕MTTRi for i =
1, 2,… ,n. Furthermore, assume that 𝜆i ≪ 𝜇i for all i = 1, 2,… ,n.

The average unavailability qi of component i is 𝜆i∕(𝜇i + 𝜆i), which may be
approximated by 𝜆iMTTRi, such that

Q̌j =
∏
i∈Kj

𝜆i

𝜇i + 𝜆i
≈
∏
i∈Kj

𝜆iMTTRi. (11.98)

The TOP event probability (system unavailability) is thus approximately

Q0 ≈ 1 −
k∏

j=1

⎛⎜⎜⎝
1 −

∏
i∈Kj

𝜆iMTTRi

⎞⎟⎟⎠
(11.99)

or

Q0 ≈
k∑

j=1

∏
i∈Kj

𝜆iMTTRi. (11.100)

11.8.1 Cut Set Information

Consider a specific minimal cut parallel structure Kj, for j = 1, 2,… , k. As before
we assume that the components fail and are repaired independent of each other.

When all the components of the cut set Kj are in a failed state, we have a cut set
failure. The mean duration of a failure of cut set Kj is from (11.47)

MTTRj =
1∑

i∈Kj
𝜇i
. (11.101)

The expected frequency of cut set failures, 𝜔j is from (11.48)

𝜔j ≈
⎛⎜⎜⎝
∏
i∈Kj

𝜆i

𝜇i

⎞⎟⎟⎠
⎛⎜⎜⎝
∑
i∈Kj

𝜇i

⎞⎟⎟⎠
(11.102)

and, the mean time between failures (MTBF) of cut set Kj is

MTBFj =
1
𝜔K

.
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Observe that MTBFj also includes the MDT of the cut parallel structure. The down-
time is, however, usually negligible compared to the uptime.

11.8.2 System Information

The system may be considered as a series structure of its k minimal cut parallel
structures. If the cut parallel structures were independent and the downtimes were
negligible, the frequency, 𝜔S of system failures would be

𝜔S =
k∑

j=1
𝜔j. (11.103)

In general, this formula is not correct, because (i) the minimal cut parallel struc-
tures are usually not independent, and (ii) the downtimes of the minimal cut par-
allel structures are often not negligible.

For a system with very high availability, (11.102) is an adequate approximation
for the expected frequency 𝜔S of system failures.

The mean time between system failures, MTBFS in the steady state situation is
approximately

MTBFS ≈ 1
𝜔S

.

The mean system downtime per system failure is from (11.57) approximately

MTTRS ≈
∑k

j=1 𝜔jMTTRj∑k
j=1 𝜔j

.

The average system availability may now be approximated by

AS =
MTBFS

MTBFS + MTTRS
.

The formulas in this section are used in some of the computer programs for fault
tree analysis.

11.9 Time-Dependent Solution

Reconsider the Kolmogorov forward equations (11.19)

P(t) ⋅𝔸 = Ṗ(t),

where P(t) = [P0(t),P1(t),… ,Pr(t)] is the distribution of the process at time t.
Assume that we know the distribution of the system state at time 0, P(0). Usually,
we know that the system is in a specific state i at time 0, but sometimes we only
know that it has a specific distribution.
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It is, in principle, possible to solve the Kolmogorov equations and find P(t) by

P(t) = P(0) ⋅ et𝔸 = P(0) ⋅
∞∑

k=0

tk𝔸k

k!
, (11.104)

where 𝔸0 is the identity matrix 𝕀. To determine P(t) from (11.104) is sometimes
time-consuming and inefficient. The numerical computation of this formula by
discretization of the time is proposed on the book companion site with a
Python script.

When we study a system with absorbing states, such as the parallel system
in Example 11.7, we may define a column vector C with entries 1 and 0, where
1 corresponds to a functioning state, and 0 corresponds to a failed state. In
Example 11.7, the states 1 and 2 are functioning, and state 0 is failed. The
(column) vector is therefore C = [0, 1, 1]T . The survivor function of the system is
then given by

R(t) = P(0) ⋅
∞∑

k=0

tk𝔸k

k!
⋅ C. (11.105)

It is also possible to use that

et𝔸 = lim
k→∞

(𝕀 + t ⋅ 𝔸∕k)k
,

and approximate P(t) by

P(t) ≈ P(0) ⋅ (𝕀 + t ⋅𝔸∕n)n
, (11.106)

for a “sufficiently” large n. See Bon (1995, pp. 176–182) for further approximations
and discussions.

11.9.1 Laplace Transforms

An alternative approach is to use Laplace transforms. A brief introduction to
Laplace transforms is given in Appendix B.

Again, assume that we know P(0), the distribution of the Markov process at time
0. The state equations (11.19) for the Markov process at time t are seen to be a set of
linear, first-order differential equations. The easiest and most widely used method
to solve such equations is by Laplace transforms.

The Laplace transform of the state probability Pj(t) is denoted by P∗
j (s), and the

Laplace transform of the time derivative of Pj(t) is, according to Appendix B:

[ ·Pj(t)] = sP∗
j (s) − Pj(0) for j = 0, 1, 2,… , r.

The Laplace transform of the state equations (11.19) is thus in matrix terms

P∗(s) ⋅𝔸 = sP∗(s) − P(0). (11.107)
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By using Laplace transforms, the differential equations are reduced to a set of lin-
ear equations. The Laplace transforms P∗

j (s) may now be computed from (11.107).
Afterward the state probabilities Pj(t) may be determined from the inverse Laplace
transforms.

Example 11.11 Reconsider the single component in Example 11.5, with transi-
tion rate matrix

𝔸 =
(

−𝜇 𝜇

𝜆 −𝜆

)
.

Assume that the component is functioning at time t = 0, such that P(0) =
(P0(0),P1(0)) = (0, 1). The Laplace transform of the state equation is then from
(11.107)

(P∗
0(s),P∗

1(s)) ⋅
[

−𝜇 𝜇

𝜆 −𝜆

]
= (sP∗

0(s) − 0, sP∗
1(s) − 1).

Thus,

−𝜇P∗
0(s) + 𝜆P∗

1(s) = sP∗
0(s)

𝜇P∗
0(s) − 𝜆P∗

1(s) = sP∗
1(s) − 1. (11.108)

By adding these two equations, we get

sP∗
0(s) + sP∗

1(s) = 1.

Thus,

P∗
0(s) =

1
s
− P∗

1(s).

By inserting this P∗
0(s) into (11.108), we obtain

𝜇

s
− 𝜇P∗

1(s) − 𝜆P∗
1(s) = sP∗

1(s) − 1.

P∗
1(s) =

1
𝜆 + 𝜇 + s

+ 𝜇

s
1

𝜆 + 𝜇 + s
.

To find the inverse Laplace transform, we rewrite this expression as

P∗
1(s) =

𝜆

𝜆 + 𝜇

1
𝜆 + 𝜇 + s

+ 𝜇

𝜆 + 𝜇

1
s
. (11.109)

From Appendix B, the inverse Laplace transform of (11.109) is

P1(t) =
𝜇

𝜇 + 𝜆
+ 𝜆

𝜇 + 𝜆
e−(𝜆+𝜇)t,

which is the same result we gave in Example 11.5. ◻
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To find the time-dependent state probabilities for a complicated system is usu-
ally a difficult task and is not discussed any further in this book. In most practical
applications, we are primarily interested in the steady state probabilities, and do
not need to find the time-dependent probabilities.

11.10 Semi-Markov Processes

Section 11.2 defines a continuous-time Markov process as a stochastic process hav-
ing the properties that each time it enters a state i:

(1) The amount of time the process spends in state i before making a transition
into a different state is exponentially distributed with rate 𝛼i.

(2) When the process leaves state i, it will next enter state j with some probability
Pij, where

∑r
j=0
j≠i

Pij = 1.

An obvious extension to this definition is to allow the time the process spends
in state i (the sojourn time in state i) to have a general “life” distribution, and also
to let this distribution be dependent on the state to which the process will go. A
semi-Markov process may be defined as (e.g. see Ross 1996):

Definition 11.2 (Semi-Markov process)
A stochastic process {X(t), t ≥ 0} with state space  = {0, 1, 2,… , r} such that,
whenever the process enters state i:

(1) The next state it will enter is state j with probability Pij, for i, j in  .
(2) Given that the next state to be entered is state j, the time until the transition

from i to j occurs has distribution Fij. ◻

The skeleton of the semi-Markov process is defined in the same way as for the
continuous-time Markov process (see Section 11.2), and is a discrete-time Markov
chain. The semi-Markov process is said to be irreducible if the skeleton is irre-
ducible.

The distribution of the sojourn time T̃i in state i is

Fi(t) =
r∑

j=0
j≠i

Pij Fij(t).

The mean sojourn time in state i is

𝜇i = E(T̃i) = ∫

∞

0
t dFi(t).
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Observe that if Fij(t) = 1 − e−𝛼i t, the semi-Markov process is a (continuous-time)
Markov process.

Let Tii denote the time between successive transitions into state i, and let 𝜇ii =
E(Tii). The visits to state i will now be a renewal process, and we may use the theory
of renewal processes described in Chapter 10.

If we let Ni(t) denote the number of times in [0, t] that the process is in state i,
the family of vectors

[N0(t),N1(t),… ,Nr(t)] for t ≥ 0

is called a Markov renewal process.
If the semi-Markov process is irreducible and if Tii has a nonlattice distribution

with finite mean, then

lim
t→∞

Pr(X(t) = i ∣ X(0) = j) = Pi

exists, and is independent of the initial state. Furthermore,

Pi =
𝜇i

𝜇ii
.

For a proof, see Ross (1996). Pi is the proportion of transitions into state i, and is
also equal to the long-run proportion of time the process is in state i.

When the skeleton (the embedded process) is irreducible and positive recurrent,
we may find the stationary distribution of the skeleton 𝜋 = [𝜋0, 𝜋1,… , 𝜋r] as the
unique solution of

𝜋j =
r∑

i=0
𝜋iPij,

where
∑

i𝜋i = 1 and 𝜋j = limn→∞ Pr(Xn = j (because we assume that the Markov
process is aperiodic). Because the 𝜋j is the proportion of transitions that are into
state j, and 𝜇j is the mean time spent in state j per transition, it seems intuitive that
the limiting probabilities should be proportional to 𝜋j𝜇j. In fact,

Pj =
𝜋j𝜇j∑

i𝜋i𝜇i
.

For a proof, see Ross (1996).
Semi-Markov processes are not discussed any further in this book. More

information may be found in Ross (1996), Cocozza-Thivent (1997), Limnios and
Oprisan (2001), and Grabski (2015). There are not so many applications for such
processes in reliability. For example, a system with two redundant identical items
and time-dependent transition rates is not a semi-Markov process: when one
of the items is failed, we do not have enough information for the current state
and the time spent in the current state, to know the time for the next transition.
We also need to know how long time the surviving item has been functioning.
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One of the only reasonable applications of semi-Markov processes in reliability
is for one item with intermediate degraded states and time-dependent transition
rates. When a new state is reached, the rate for the next transition can be
calculated with information from the current state only.

11.11 Multiphase Markov Processes

A multiphase Markov process is defined as

Definition 11.3 (Multiphase Markov process)
A Markov process where the parameters and the state of the system can be changed
at predefined points in time, such as when PM tasks are carried out. The phases
indicate the time periods between the changes. ◻

Two situations are considered:

(1) A PM task alters the transition matrix of the Markov process. This may happen
when:
– the PM task reduces some failure rates, or when
– stresses during the PM task increases some transition rates.

(2) A PM task changes the state in which the system is restarted.

11.11.1 Changing the Transition Rates

Let t1, t2,… , tn be the predefined dates for PM tasks, and let t0 = 0. Between ti−1
and ti, the process evolves according to a homogeneous Markov process with tran-
sition matrix 𝔸i. The transition rates in matrix 𝔸i may change just after time ti
depending on the effects of the PM task. Assume that PM tasks take no time. We
want to establish the probability distribution of the chain at any time t and assume
that the state probability vector at time 0 is given: P(t0) = P(0). In practice, this vec-
tor tells the probabilities to be in each and every state of the Markov process at time
0. We usually specify the system to be in the “new” state by putting probability 1
to the new state and 0 to the others.

It is possible to calculate the probability distribution of the process at any time t
for 0 ≤ t ≤ t1:

P(t) = P(0) ⋅ e𝔸1t
.

Until time t1, the process evolves with transition matrix 𝔸1, then:

P(t1) = P(0) ⋅ e𝔸1t1 .
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Between t1 and t2, the process evolves with transition matrix 𝔸2 and the initial
distribution P(t1). For any time t, such that t1 < t ≤ t2:

P(t) = P(t1) ⋅ e𝔸2(t−t1) = P(0) ⋅ e𝔸1t1 ⋅ e𝔸2(t−t1),

and so on. For any ti, such that i ≥ 1:

P(ti) = P(0) ⋅
k=i∏
k=1

e𝔸k(tk−tk−1),

and for any t such that ti < t ≤ ti+1, the distribution is

P(t) = P(0) ⋅ eA1t for i = 0

P(t) = P(0) ⋅

( k=i∏
k=1

e𝔸k(tk−tk−1)

)
⋅ e𝔸i+1(t−ti) for i ≥ 1.

The numerical computation of this formula by discretization of the time is pro-
posed on the book companion site with a Python script.

11.11.2 Changing the Initial State

A maintenance task at time ti may change the transition rates of the matrix 𝔸i but
also the state in which the process restarts after a maintenance task or an inspec-
tion. This can be modeled by a linear transformation of the probability P(ti): the
probability vector after the maintenance at time ti is P(ti) ⋅ 𝔹i, where𝔹i is an N × N
matrix such that the sum of each row is equal to 1. The term blj in the matrix 𝔹i
is the probability that the item is in state j after maintenance, given that it was
in state l just before the maintenance task is completed. If the maintenance task
duration is neglected, for ti < t ≤ ti+1, we have

P(t) = P(0) ⋅ eA1t for i = 0

P(t) = P(0) ⋅

( i∏
k=1

e𝔸k(tk−tk−1) ⋅ 𝔹k

)
⋅ e𝔸i+1(t−ti) for i ≥ 1.

If the item is taken out of operation during the maintenance/inspections task and
the duration of the task is not negligible (considered as constant), the same for-
malism can be used with a time lag. The maintenance task duration is denoted
ma and the item is taken out of operation during the task. This means that after a
maintenance task, beginning at time ti, the system is restarted at time ti + ma with
the distribution P(ti) ⋅ 𝔹i. This case yields:

P(t1) = P(0) ⋅ e𝔸1t1

P(t1 + ma) = P(t1) ⋅ 𝔹1 = P(0) ⋅ e𝔸1t1 ⋅ 𝔹1,
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and for t1 + ma < t ≤ t2

P(t) = P(t1 + ma) ⋅ e𝔸2(t−t1−ma)

= P(0) ⋅ e𝔸1t1 ⋅ 𝔹1 ⋅ e𝔸2(t−t1−ma).

In the same way

P(t2 + ma) = P(0) ⋅ e𝔸1t1 ⋅ 𝔹1 ⋅ e𝔸2(t2−t1−ma) ⋅ 𝔹2.

And for t2 + ma < t ≤ t3

P(t) = P(0) ⋅ e𝔸1t1 ⋅ 𝔹1 ⋅ e𝔸2(t2−t1−ma) ⋅ 𝔹2 ⋅ e𝔸3(t−t2−ma).

Generalizing the formula, we get if ti + ma ≤ t ≤ ti+1 for i ≥ 2

P(t) = P(0) ⋅ e𝔸1t1 ⋅ 𝔹1 ⋅
i∏

k=2
e𝔸k(tk−tk−1−ma) ⋅ 𝔹k ⋅ e𝔸i+1(t−ti−ma).

A Python script for numerical computation of this formula is provided on the
book companion site.

11.12 Piecewise Deterministic Markov Processes

In many simple situations, we may be unable to obtain an analytical formula for
the system survivor function or its availability by using Markov processes and
theirs extensions. As an example, consider the following case: two items are used
in a parallel structure, their times-to-failure are not exponentially distributed, and
they are separately maintained using preventive or corrective tasks. Even for such
a simple case, we are not able to obtain the survivor function of the system by
using a Markov process (the time-to-failure is not exponentially distributed), a
semi-Markov process (the time spent in the current state is not enough infor-
mation to calculate the transition rates for the next transitions), or a multiphase
Markov process (the system does not behave as a Markov process with changes at
deterministic points of time).

Such situations require the use a more generic modeling framework based on
PDMPs. PDMPs are widely used in dynamic reliability analyses to model phenom-
ena that are assumed to be deterministic most of the time with continuous state
space (e.g. evolution of the fluid level in a vessel) and that are influenced from time
to time by stochastic events with discrete state space (e.g. failures in the control
loop for the fluid level). Usually, a PDMP is made of a set of differential equations
(continuous part) whose solutions can experience random “jumps” (effect of dis-
crete stochastic events). Further details are given by Davis (1984).

This book uses a specific type of PDMP, which is also known as a piecewise linear
process: discrete and stochastic events model degradation increments and failure



�

� �

�

11.12 Piecewise Deterministic Markov Processes 529

times, whereas continuous variables are used to model deterministic repair dura-
tions or delays, time between inspections, time spent in different states, the age of
the items, and so on. Roughly speaking, the continuous part of the PDMP is not
related to any physical phenomena but is used to introduce continuous variables to
count time and to compensate for the lack of Markov property for the discrete part.

11.12.1 Definition of PDMP

A PDMP may be defined as

Definition 11.4 (Piecewise deterministic Markov process)
A hybrid Markov process (X(t),m (t), t ≥ 0) where X(t) is a discrete random vari-
able or vector with values in a finite state space  and m (t) is a vector in a contin-
uous space . ◻

In the PDMP, X(t) and m (t) may interact with each other. X(t) is used to model
the discrete system states and m (t) is used to model time-dependent continuous
variables, such as the age of the items, the repair durations, and so on. The PDMP
experiences “jumps,” meaning that a path of the process is described by jumps
of X(t) between some discrete system states in  . We distinguish “jumps due to
discrete event” when the jumps are due to a change of the system state itself (e.g.
failure of one item) and “jumps due to continuous variable” when the jumps are
due to a continuous variable in m (t) that reaches a boundary in  (e.g. the delay
before maintenance starts is elapsed). Examples of discrete and continuous jumps
are given in Section 11.12.3.

11.12.2 State Probabilities

The time-dependent state probabilities are solutions of the Kolmogorov equations,
but a closed form of the solution is usually not obtainable. They are, therefore,
approximated by discretization of the Kolmogorov equations. Assume that the
time is discretized with step Δ. Because m (t) is a time vector, its components are
also discretized with the same time step Δ. According to the law of total probabili-
ties, at time (n + 1)Δ, the probability to be in state (x′,m′) may be derived with the
following recursive equation:

Pn+1(x′,m′) =
∑

x

∑
m

Pn(x,m)Gn[(x,m)(x′,m′)], (11.110)

where Pn(x′,m′) is the probability of being in state (x′,m′) at time (n + 1)Δ,
Pn(x,m) is the probability of being in state (x,m) at time nΔ, and Gn[(x,m)(x′,m′)]
is the probability that the process moves to state (x′,m′) at time (n + 1)Δ, given
that it was in state (x,m) at time nΔ. Observe that m and m′ are discretized
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with the same step Δ. Then, a numerical scheme can be built to calculate
Gn[(x,m)(x′,m′)] step-by-step and by using (11.110). If Gn and the initial state are
known, everything is known.

11.12.3 A Specific Case

We study a specific case to illustrate the method. Further details and examples are
provided by Arismendi et al. (2019), Cocozza-Thivent et al. (2006a,b), Lair et al.
(2011), and Lin et al. (2018). Consider a redundant system with two identical items
(1 and 2). A repair action is initiated as soon as an item fails and the associated
downtime is dc. In addition, each item is preventively maintained as soon as its
age (time in operation) reaches a predetermined value a. For clarity, assume that
the preventive maintenance (PM) duration is negligible. The time-to-failure of an
item is assumed to be Weibull distributed with failure rate 𝜆(t). Both corrective
and the PM tasks are assumed to return the item to an as-good-as-new state.

Discrete States
The process with discrete states has state space  = (0, 1, 2, 3), where 0 indicates
zero functioning items, 1 (respectively 2) indicates that item 1 (respectively item 2)
is functioning, and 3 indicates that both items are functioning. We cannot merge
states 1 and 2 because we need each item’s age to model the PM. At any time t,
X(t) = i for i = 0, 1, 2, 3. The PDMP experiences a (discrete) jump each time one of
the item fails.

Continuous States
The process with continuous states has state space is  = ([0, dc], [0, dc], [0, a],
[0, a]), where a is the age when an item is preventively repaired. The value of a is a
parameter that can be optimized. At any time t, m (t) = (m1(t),m2(t),m3(t),m4(t)),
where m1(t), m2(t) denote the time spent under repair for items 1 and 2 at time
t, respectively, and m3(t), m4(t) denote the age of items 1 and 2 at time t. For clarity,
we write: m1(t) = r1(t),m2(t) = r2(t) and m3(t) = a1(t), m4(t) = a2(t) in the follow-
ing. Assume that if ri(t) = 0, the item is not under repair.

Observe that there is no unique way to define a PDMP for a given system and a
given maintenance strategy. There may be several solutions that are more or less
elegant and numerically efficient, depending on the number of discrete and con-
tinuous variables that are used. The one proposed for this example may not be the
most concise, but it is the most simple and intuitive.

State Probabilities
We are interested in the survivor function of the redundant system and we
need to calculate its state probabilities. The system state probabilities have to be
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deduced from the state probabilities of the PDMP. A PDMP state is defined by a
hybrid vector of discrete and continuous variables at any time t: (X(t),m (t)) =
(i, r1(t), r2(t), a1(t), a2(t)) with i = 0, 1, 2, 3. The PDMP state probabilities can be
approximated by discretization of  and by using (11.110). For this purpose, we
have to calculate the function Gn by writing a numerical scheme.

Numerical Scheme
The system starts in the new state so m (0) = (0, 0, 0, 0) and X(0) = 3. The function
Gn is built by calculating for every discrete state the nonnull transition probabili-
ties for the next possible discrete states, at any time step nΔ. We develop here only
some few cases by starting in state 3, in order to illustrate the method. The full
numerical scheme is provided on the book companion site with a Python
script.

For every nΔ

• If a1(nΔ) + Δ < a and a2(nΔ) + Δ < a (if none of the items can reach the
replacement age a in [nΔ, (n + 1)Δ]), then only jump due to discrete events can
occur and if an item failure occurs, its age is kept at its value at nΔ:
– Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(3, 0, 0, a1(nΔ) + Δ, a2(nΔ) + Δ)]
≈ [1 − 𝜆(a1(nΔ))Δ][1 − 𝜆(a2(nΔ))Δ].

– Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(2, 0, 0, a1(nΔ), a2(nΔ) + Δ)]
≈ 𝜆(a1(nΔ))Δ[1 − 𝜆(a2(nΔ))Δ].

– Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(1, 0, 0, a1(nΔ) + Δ, a2(nΔ))]
≈ [1 − 𝜆(a1(nΔ))Δ]𝜆(a2(nΔ))Δ.

• If a1(nΔ) + Δ ≥ a and a2(nΔ) + Δ < a (if item 1 reaches the replacement age a
in [nΔ, (n + 1)Δ]), then a jump due to continuous variable a1 and due to discrete
event can occur.
– If no failure occurs before the PM date of item 1, then a1(nΔ) is put back to 0

and there is no jump of the system state:
Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(3, 0, 0, 0, a2(nΔ) + Δ)]
≈ [1 − 𝜆(a1(nΔ))Δ][1 − 𝜆(a2(nΔ))Δ].

– If a failure of item 1 occurs before the PM date of item 1, then a1(nΔ) is left to
its current value, and there is a jump of system state from states 3 to 2:
Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(2, 0, 0, a1(nΔ), a2(nΔ) + Δ)]
≈ 𝜆(a1(nΔ))Δ[1 − 𝜆(a2(nΔ))Δ].

– If a failure of item 2 occurs before the PM date of item 1, then a1(nΔ) is put
back to 0 and there is also a jump of the system state from states 3 to 1:
Gn[(3, 0, 0, a1(nΔ), a2(nΔ))(1, 0, 0, 0, a2(nΔ))] ≈ [1 − 𝜆(a1(nΔ))Δ]𝜆(a2(nΔ))Δ.

• …and so on.

The same kind of calculations may be done for every case for every discrete
states. The main idea is to look at the possible transitions from the current state to
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the other ones. Observe that when calculating the survivor function, it is required
to consider that all transition rates from the failed state are zero.

A Monte Carlo simulation algorithm can be easily computed for this case, and it
is provided on the book companion site together with the complete numer-
ical scheme in a Python script. The reader my use them to compare results and
computation times.

11.13 Simulation of a Markov Process

A Markov chain is described by a set of possible system states and a set of
transitions between these states. The triggering of a transition depends on the
occurrence of stochastic events. Therefore, the output of the simulation algorithm,
which can be considered a system “history,” consists of the sequence of the states
taken by the system and by the corresponding sequence of events that have
governed the transitions across these different states.

Simulating a Markov chain implies to consider the current state of the system
and to treat its outgoing transitions as competitors. The (first) transition triggered
by an event leads the system to a new system state. This new state is then the
current state and the procedure continues.

More formally, consider a system with discrete state space  and let state i be its
current state. Each of the outgoing transitions from state i has a constant transition
rate aij, for all j ∈  . This means that the duration until the transition to state j
is triggering has distribution Tij ∼ exp(aij) (if j were the only possible transition).
The “competition” between the outgoing transitions, implies that the duration T̃i
in state i is T̃i = minj∈ (Tij). The “winning” transition, say to state k, implies that
k becomes the new current state.

The simulation of one system history may run until a predefined condition is
met. This condition, depending on the needs, can, for example be

• The time the process enters into a specified state or a set of states. In that case, the
system “history” may be complemented, for instance, by the time spent in the
different visited states (i.e. the duration until the outgoing transition is triggered,
provided that the considered state is visited a single time; if not, the durations
associated with these different visits would have to be summed) or the total dura-
tion of the history (i.e. the sum of times spent in all visited states).

• A specified simulated time (i.e. a total duration), which is obtained as the sum
of the durations associated to triggered transitions. In that case, only the times
spent in visited states are used to complement the system “history.”

Finally, several system histories are explored by Monte-Carlo simulation, mean-
ing that the simulation algorithm of one history is run several times. The set of
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obtained histories is used to calculate empirical means, giving an estimate of the
mean time spent in each state, the probability of being in a specific state, the mean
time before reaching a given state, and so on.

An appealing property of this approach is that the transition rates can be eas-
ily changed (e.g. from exponential to Weibull distribution) without altering the
general structure of the underlying code, provided that the distributions remain
independent. On the other hand, the simulation approach may require compli-
cated codes when there are, for example, a high numbers of states and/or compli-
cated and dependent distributions associated with the transitions. Simulation of a
Markov process is illustrated in Example 11.12.

Remark 11.3 (Accuracy)
The simulation approach requires extensive use of Monte-Carlo simulation to pro-
vide accurate outcomes. The number of simulated histories should be high enough
to guarantee that the outcomes of the simulation are sufficiently accurate. In prac-
tice, it is required to check that the empirical means calculated on the basis of the
Monte-Carlo simulation do not vary any more when passing a given number N of
histories. The reader may consult Fishman (1996) for more details and theoretical
framework. ◻

Example 11.12 (Simulating a Markov process)
Consider a system with a component A in series with two redundant components
B1 and B2. B1 is active and B2 is in standby mode. The structure is shown in
Figure 11.20a. Detection of a failure of component B1, and activation of the
standby component B2 are assumed to be instantaneous. We want to estimate the
MTTF of the system and the probabilities of system failure due to (i) failure of
component A or (ii) failures of both components B1 and B2.

Because there are three components, each having two states, the system might
have a state space of 23 = 8 states. In practice, only a subset of the possible states
may be required to model the system, depending on the structure, the assumptions

B1

B2

A

3

1
2

0λA

λA
λB

λB

(a) (b)

Figure 11.20 Reliability block diagram (a) and state transition diagram (b) of a two-item
parallel structure with partly loaded standby and perfect switching.
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and the quantities of interest. In the current example, only four states are
required:

• State 3 (A,B1,B2). All components are in a functioning state, which is the initial
state where the system is as-good-as-new.

• State 2 (A, B1, B2). All components are running except for component B1. This
state may be considered a degraded state of the system.

• State 1 (A, B1, B2). Components B1 and B2 are failed, such that the system is
failed. This is one of the two failed states that has to be studied in this example.

• State 0. Comprising the system states (A, B1, B2) and (A, B1, B2). These two
system states may be merged because they both imply that the system is in a
failed state caused by failure of component A.

Other system states, such as (A, B1, B2), (A, B1, B2), are, in this example, not
considered because they correspond to unreachable system states.

Assume that all the three components have constant failure rates: 𝜆A for com-
ponent A and 𝜆B1

= 𝜆B2
= 𝜆B for components B1 and B2. The corresponding state

transition diagram is shown in Figure 11.20b. For the exponential distribution, we
have that Pr(Tij > t + s ∣ Tij > s) = Pr(Tij > t) for all t, s ≥ 0. Therefore, the dura-
tion T20 associated to the transition from states 2 to 0 does not depend on the
duration of the transition T32, that previously triggered the transition to state 2.
T20 can be drawn directly from the exponential distribution parameter 𝜆A at the
arrival date in state 2. The memoryless property simplifies the management of the
duration associated to the concurrent transitions.

Hence, the transitions from states 3 to 0, and from states 2 to 0, have constant
rate 𝜆A; transitions from states 3 to 2, and from states 2 to 1, have constant rate 𝜆B.

The first pseudocode6 (GetOneHistory in Figure 11.21) simulates a single history
of the system and provides a single observation of the times-to-failure and a single
observation of the final system state. This pseudocode may form the basis for a
Monte-Carlo simulation that provides an estimate of the system MTTF and states
probabilities. A basic pseudocode of the Monte-Carlo simulation for N histories is
proposed in Figure 11.22. ◻

An implementation of this pseudocode in Python is provided on the book
companion site. When the system is not too large and/or too complicated,
it is rather straightforward to extend the pseudocode to use other time-to-failure
distributions that the exponential. Reconsider the system in Example 11.12; if
component A had a Weibull time-to-failure distribution instead of an exponential

6 A pseudocode is an informal high-level description of the operating principle of a computer
program.
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Figure 11.21 Example of a Markov’s chain simulation – single history.

Figure 11.22 Example of a Markov’s chain simulation – estimate of MTTF and states
probabilities.
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distribution, the pseudocode needs to be adapted in the following way: On the
arrival in state 0, the duration t03 must be drawn from the correct distribution.
The same value must be considered to select the next event at the transition from
state 1. This change of assumptions is seen to be managed in a much easier way
by simulation than in analytical approaches.

Remark 11.4 (Markov analysis with R)
Markov analysis and Monte Carlo simulation can also be accomplished with R.
Several R packages are available. Among these are

• markovchain is a general package for discrete time Markov analysis that also
includes modules for (continuous time) Markov processes.

• mcmc and mcmcr implement the Monte Carlo Markov chain approach.
• mstate fits multistate models based on Markov chains for survival analysis.
• simmer is a package for discrete event simulation and a valuable tool for

Markov process simulation. simmer is a parallel to the simulation package
simPy for the Python language.

Further information about these – and several other – packages may be found
by visiting https://cran.r-project.org. ◻

11.14 Problems

11.1 Consider an item that is subject to two types of repair. Initially, the item
has a constant failure rate 𝜆1. When the item fails for the first time, a par-
tial repair is performed to restore the item to the functioning state. This
partial repair is not perfect, and the failure rate𝜆2 after this partial repair is
therefore higher than 𝜆1. After the item fails the second time, a thorough
repair is performed that restores the item to an as-good-as-new condition.
The third repair is a partial repair, and so on. Let 𝜇1 denote the constant
repair rate for a partial repair, and 𝜇2 be the constant repair rate of a com-
plete repair (𝜇1 > 𝜇2). Assume that the item is put into operation at time
t = 0 in an as-good-as-new condition.
(a) Establish the state transition diagram and the state equations for this

process.
(b) Determine the steady state probabilities of the various states.

11.2 Consider a parallel structure of three independent and identical compo-
nents with failure rate 𝜆 and repair rate 𝜇. The components are repaired
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independently. All the three components are assumed to be functioning
at time t = 0.
(a) Establish the state transition diagram and the state equations for the

parallel structure.
(b) Show that the mean time to the first system failure MTTF is

MTTF = 1
3𝜆

+ 1
𝜇 + 2𝜆

+ 1
2𝜇 + 𝜆

.

11.3 Consider a parallel structure of four independent and identical compo-
nents with failure rate 𝜆 and repair rate 𝜇. The components are repaired
independently. All the four components are assumed to be functioning at
time t = 0.
(a) Establish the state transition diagram and the state equations for the

parallel structure.
(b) Determine the mean time to the first system failure MTTF.
(c) Is it possible to find a general formula for a parallel structure of n

components?

11.4 Consider the pitch system represented by the simplified reliability block
diagram (RBD) in Figure 11.23. The accumulators are identical and in a
parallel structure. The main line of the pitch system is active when the
system is started. When the main line of the pitch system fails, the pitch
system emergency line takes over. The switch is perfect (no switch failure,
when the main line is failed, the emergency line takes over). The failure
rates of all the items are constant, denoted 𝜆1 for the hydraulic cylinder, 𝜆2
for the two pitch systems (the failure rates are identical for main line and
emergency line), 𝜆3 for the accumulators (the failure rates are identical for
the two accumulators), 𝜆4 for the pump and 𝜆5 for the filter. Given that
this system is embedded in an off-shore wind turbine, we consider that
the repair rate is the same for all the items, and mainly due to the time to
prepare and go to the spot. The repair rate is assumed to be a constant 𝜇

Hydraulic
cylinder

Pitch system
Main line

Pitch system
Emergency 

line

Accumulator

Accumulator

Pump Filter

Figure 11.23 RBD for the pitch system in Problem 11.4.
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C

D

E

A

B

Figure 11.24 RBD for the
system in Problem 11.5.

for each item. Consider that one repair team is available for every item at
any time.
(a) Define the possible system states and establish a state transition dia-

gram for the system. You may assume that the system is stopped as
soon as it is failed (no item will fail after the system has failed).

(b) Establish the transition rate matrix 𝔸 for the pitch system.

11.5 Consider the system described by the RBD in Figure 11.24. Items A and
B are redundant and have the same constant failure rate 𝜆1. Items C and
D are redundant and have the same constant failure rate 𝜆2. Item E has a
constant failure rate 𝜆3. When item A (or B) fails, a repair is initiated with
a constant repair rate 𝜇1. While A(B) is under repair, the surviving item
B(A) experiences extra load and its failure rate is increased to the constant
value 𝜆1. The same applies to C and D. The failure rate of the surviving
item is 𝜆2 and the repair rate of the failed item is 𝜇2. When the whole
system is failed, a renewal is initiated and the system is put back to the
as-good-as-new state with a constant repair rate 𝜇. Let Sp denote the fol-
lowing set of parameters: Sp = {𝜆1, 𝜆3, 𝜆1, 𝜇1, 𝜇}.
(a) Consider the system with items A, B, C, D, and E.

i. Explain why this system can be modeled by a Markov process.
ii. List the possible states of the system and establish a state transition

diagram with as few states as possible.
(b) Now, remove items C and D from the system.

i. List the possible states of the system and establish the state tran-
sition diagram with as few states as possible.

ii. Establish the transition matrix and the state equations.
iii. Explain what is meant by steady state and derive the steady state

probabilities.
iv. Calculate the steady state availability of the system expressed by

the parameters in Sp.
v. Calculate the mean number of system failures per hour

expressed by the parameters in Sp.
vi. Calculate the mean number of repairs (any repair) in one year

expressed by the parameters in Sp.
vii. Calculate the mean number of renewals in one year expressed

by the parameters in Sp.
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viii. Explain the procedure to calculate the system survivor function
(without doing the calculations).

11.6 A fail-safe valve has two main failure modes: premature closure (PC)/
spurious closure (SC), and fail to close (FTC), with constant failure rates

𝜆PC = 10−3 PC-failures/h

𝜆FTC = 2 × 10−4 FTC-failures/h.

The MTTR a PC failure is assumed to be one hour, whereas the MTTR an
FTC failure is 24 hours. The repair times are assumed to be exponentially
distributed.
(a) Explain why the operation of the valve may be described by a Markov

process with three states. Establish the state transition diagram and
the state equations for this process.

(b) Calculate the average availability of the valve, and the mean time
between failures.

11.7 A production system has two identical channels and is running 24 hours
a day all days. Each channel can have three different states, represent-
ing 100%, 50%, and 0% capacity, respectively. The failure rate of a chan-
nel operating with 100% capacity is assumed to be constant 𝜆100 = 2.4 ×
10−4 h−1. When a failure occurs, the capacity will go to 50% with prob-
ability 60% and to 0% capacity with probability 40%. When a channel is
operated with 50% capacity, it may fail (and go to 0% capacity) with con-
stant failure rate 𝜆100 = 1.8 × 10−3 h−1. The system is further exposed to
external shocks that will take down the system irrespective of the state
it is in. The rate of these shocks is 𝜆s = 5 × 10−6 h−1. The two channels
are assumed to operate and fail independent of each other. When both
channels have capacity 50% or less, the whole system is closed down, and
it is not started up again until both channels have been repaired to an
as-good-as-new state. When a channel enters 50% capacity, a repair action
is “planned” and then carried out. The planning time includes bringing
in spare parts and repair teams. The planning time is 30 hours in which
case the channel continues to operate with 50% capacity. The active repair
time is so short that it can be neglected. When a channel enters 0% capac-
ity (and the other channel is operating with 100% capacity), the planning
time is compressed to 20 hours and the active repair time is still negligible.
After a system stop, the mean time to bring the system back to operation is
48 hours, irrespective of state of the system when it entered the idle state.
Record any additional assumptions you have to make to answer the ques-
tions below.
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(a) Define the relevant system states. Use as few states as possible.
(b) Draw the corresponding state transition diagram.
(c) Establish the transition rate matrix 𝔸 for the production system.
(d) Establish the Markov steady-state equations on matrix form.
(e) Explain (briefly) what we mean by the concept steady-state probabil-

ity in this case.
(f) Find the steady-state probability of the production system.
(g) The net income of a channel running at 100% capacity is €500 h−1.

The net income of a channel running at 50% capacity is €200 h−1. The
cost of a repair (50% → 100% capacity) is €5500. The cost of a repair
(0% → 100% capacity) is €10 500. The cost of a system repair from idle
to full functioning state (including penalty because of no production)
is €280 h−1.
i. Find the average income per year from operating the system.

ii. Find the mean time from startup until the first failure.

11.8 A pumping system has three pumps of the same type. Each pump can
supply 50% of the required capacity. In normal operation, two pumps are
running, whereas the third pump is in standby. When a pump is run-
ning, it has a (total) constant failure rate such that MTTF = 550 hours.
When one of the active pumps fails, the standby pump is activated, and
a repair action of the failed pump is initiated. The switching operation is
assumed to take place without any problems. Assume that a pump will
not fail in standby mode. The company has only one repair team, and
only one pump can therefore be repaired at each time. The mean repair
time of a pump is 10 hours. Assume that common cause failures may
occur for the active pumps, but that this type of failure will not affect the
standby pump. Further, assume that common cause failures may be mod-
eled by a beta-factor model with 𝛽 = 0.12. Common cause failures may be
regarded as external shocks that will affect all active pumps, regardless of
how many pumps that are in operation. Record any additional assump-
tions you have to make to answer the questions below.
(a) Define the relevant system states. Use as few states as possible.
(b) Draw the corresponding state transition diagram.
(c) Establish the transition rate matrix 𝔸 for the pumping system.
(d) Establish the steady-state equations on matrix form.
(e) Explain (briefly) what we mean by the concept steady-state probabil-

ity in this case.
(f) Find the steady-state probabilities for the pumping system.
(g) The pumping system has a system failure when none of the pumps

are in operation. Find the mean time to the first system failure, MTTF,
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when the pumping system starts out with two pumps in operation and
one pump in standby at time t = 0.

11.9 The heater system of a steam producing plant has three identical burners.
Only two of the three burners are in use, whereas the third is in standby.
Each burner has constant failure rate 𝜆 = 2.5 × 10−3 h−1. When one of the
active burners fails, the standby burner is activated, and a repair action of
the failed burner is initiated. The probability of a successful activation of
a standby burner is assumed to be 98%. The company has only one repair
team, and only one burner can therefore be repaired at each time. The
mean repair time of a failed burner is two hours. The same repair time
also applies for a burner that has “failed to start.” The likelihood of com-
mon cause failures is considered to be negligible. Record any additional
assumptions you have to make to answer the questions below.
(a) Define the relevant system states. Use as few states as possible.
(b) Draw the corresponding state transition diagram.
(c) Establish the transition rate matrix 𝔸 for the burner system.
(d) Establish the steady-state equations on matrix form.
(e) Explain (briefly) what we mean by the concept steady-state probabil-

ity in this case.
(f) Find the steady-state probabilities for the burner system.
(g) The steam production plant fails when no burner is active, and only

one burner is active and none of the other burners can be activated
within 30 minutes. Find the mean time to the first system failure,
MTTF, when the burner system starts out with two burners in opera-
tion and one burner in standby at time t = 0.

11.10 The degradation of an item can be discretized according to four levels
(level 1 is new, level 4 has failed) and the degradation level is known
only at periodic inspection dates (period 𝜏). Maintenance tasks can be
performed only at inspection dates and their duration is negligible. The
transition rates between the four degradation levels are all constant and
equal to 10−4 h−1. The corrective and PM tasks bring the item to an
as-good-as-new state and a PM task is performed when the item is found
in the degradation level 2 or 3 at the inspection date.
(a) Define the relevant system states between two inspections. Use as few

states as possible.
(b) Draw the corresponding state transition diagram between two

inspections.
(c) Establish the transition rate matrix𝔸 for the item between two inspec-

tions.
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(d) By using a multiphase Markov process, calculate the unavailability of
the item (probability to be in state 4) at any time with and without PM
task. Make a plot of it.

(e) Consider now that the monitoring is not perfect at inspection times:
there is a probability 0.9 that the unit is diagnosed as being in state 2 or
3 when it is actually in state 2 or 3, and a probability 0.1 that the unit
is diagnosed as being in state 1 (new state) when it is actually in state
2 or 3. Modify your previous model to calculate the item availability
at any time between two inspections with PM task.

11.11 Consider a redundant system with two identical items (1 and 2). A repair
action is initiated as soon as an item fails and the associated downtime
is dc = 1000 hours. In addition, each item is preventively maintained
as soon as its age (time in operation) reaches a predetermined value
a = 7500 hours. The downtime due to PM task is dp = 500 hours. The
time-to-failure of an item is assumed to be Weibull distributed with
parameters 𝛼 = 2.25 and 𝜃 = 1 × 104 hours. Both corrective and the PM
tasks are assumed to return the item to an as-good-as-new state.
● Define the relevant system states between two inspections. Use as few

states as possible.
● Draw the corresponding state transition diagram.
● Establish the transition rate matrix 𝔸.
● Use the PDMP proposed in Section 11.12.3 and modify it to take into

account PM tasks duration.
● Calculate the surviving function and the availability of the system at

any time.

11.12 Consider the system described in Example 11.12 and assume that the
items can be repaired upon failure with a constant repair rate 𝜇A for item
A and 𝜇B for items B1 and B2. There are two repair teams available at any
time. Numerical values are: 𝜆A = 10−4 h−1, 𝜆B = 5 × 10−3 h−1, 𝜇A = 𝜇B =
10−1 h−1. The surviving items are stopped when the whole system is failed
and cannot fail anymore.
● Define the relevant system states. Use as few states as possible.
● Draw the corresponding state transition diagram.
● Establish the transition rate matrix 𝔸.
● Use the pseudocode proposed in Figures 11.21 and 11.22 and modify it

to take into account corrective maintenance.
● Write a script to implement it (Python or R).
● Calculate the MTTF and the MTBF of the system.



�

� �

�

References 543

● Modify the script to consider that the repair durations are constant and
equal to 100 hours. Calculate the MTTF and the MTBF of the system
and compare to the previous results.
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12

Preventive Maintenance

12.1 Introduction

Preventive maintenance (PM) is introduced briefly in Chapter 9 and is treated in
more detail in the current chapter. A PM task is triggered by the age of the item,
the calendar time, or the condition of a functioning item. The main challenge of a
PM strategy is to decide what should be done, how thoroughly it should be done,
and when it should be done to prevent item or system failure at the lowest possible
long-term cost. The term cost is used here with a wide interpretation and may cover
production losses, risk to personnel, and pollution of the environment. The cost
related to a PM task is sometimes referred to as the objective function for the task.
Section 9.3 defines PM as maintenance “carried out to mitigate degradation and
reduce the probability of failure” (IEV 192-06-05). A slightly different definition is
partly based on ISO 14224 (2016):

Definition 12.1 (Preventive maintenance)
Maintenance carried out at predetermined intervals or according to prescribed
criteria and intended to reduce the probability of failure or functional degradation
of an item. ◻

A PM task of an item is relevant when (i) the failure rate of the item is increasing
and (ii) the cost associated to the PM task is lower than the cost of a CM task that is
carried out after an item failure has occurred. When the type and thoroughness of
a PM task has been decided, the time to perform the task has to be selected, based
on time or item condition. There is typically an optimal time to perform the task
that gives a minimal long-term cost. If the task is performed too early or too late,
the long-term cost will be higher than the minimal cost. The same applies to the
thoroughness of the task. A too brief and a too careful PM task inevitably gives an
increased long-term cost. The carefulness of a maintenance task is discussed and
classified in Chapter 9.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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To select the best PM task and the optimal time to perform this task, we need
to use various types of maintenance models. Some of the most relevant models
and approaches are presented and discussed in this chapter. The first category of
commonly used PM strategies is called time-based PM strategies because the time
is the sole decision variable. It can be the calendar time (block replacement strat-
egy) or the time in operation (age-based strategy). The asymptotic cost per time
unit is derived and the added value of such strategies is discussed based on several
numerical and practical examples.

Next, degradation models are introduced together with the concept of remaining
useful lifetime (RUL). This is a preliminary step to introduce condition-based main-
tenance (CBM) strategies which also provide direct inputs for prognostics. A brief
review of the most commonly used degradation models is presented with some
approaches to calculate the probability distribution of RUL. Numerical examples,
simulations of the degradation paths, and of the probability density function of
RUL are provided on the book companion site and we strongly recommend
the reader to study these to better understand the models.

The most common CBM strategies are reviewed and classified according to
the nature of the condition monitoring information (continuous monitoring
or inspections) and the nature of the degradation models used for the item
(discrete state space or continuous one). For each class, a suitable modeling
framework is proposed to evaluate the cost function in some simple but realistic
and representative cases. The review is far from exhaustive, but provides relevant
and significant inputs to start a modeling work in a wide range of situations.

In Section 12.6, the system is not considered any more as a single item or as a
black box but as a collection of several items that are put together to fulfill a main
function. A brief review of the modeling challenges and approaches for multi-item
systems is presented. Then a generic and rather complete example is studied in
detail.

Throughout this chapter, examples are provided to illustrate the concepts,
the analyses, and the modeling work. We strongly rely on (i) renewal and
counting processes (Chapter 10) and (ii) Markov processes and their extensions
(Chapter 11). For each example, a corresponding Python script is available on the
book companion site. These can be used to simulate the maintained item
or system and assess the maintenance strategies by Monte Carlo simulation.

12.2 Terminology and Cost Function

The models and the analyses are based on a set of terms that we define in a
decision-theoretic framework.
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Maintenance task. A specific task a to maintain an item determined by specifying
“what, where, how, and when.” Some authors prefer to call this task a main-
tenance action, but we prefer to use the term task. The set of all possible and
realistic tasks (or actions) is called the maintenance task space . When the
task space is discrete, we write  = {a1, a2, a3,…}.

Maintenance decision. A process 𝛿, based on the actual operating context, costs,
knowledge, and available data , which is used to select a specific maintenance
task ai ∈ . This process can be represented as a function 𝛿 ∶  → ai.

Maintenance strategy. An overall framework that describes how the maintenance
decision problem shall be approached and how specific decisions shall be made
when actual input information/data in  is available. Observe that a decision
is made based on a given dataset , whereas a strategy tells how we should
approach the decision problem for any dataset . The strategy must embrace
an objective function, a utility function, or a loss function. This function C(⋅, t)
may have one or more dimensions and is defined as a cumulative function on
a time horizon [0, t]. When C(⋅, t) has more than one dimension, we say that
we face a decision problem with multiple objectives. This book is delimited to
single objectives and this objective is called cost. The function C(⋅, t) is called
the cost function and is defined below.

Cost Function. The cost function of a maintenance strategy is a function of at least
the following items:
(a) A specified set of maintenance tasks 
(b) A specified process 𝛿
(c) The actual operating context oc describing the state of the system, which

components are failed, the actual production/operational requirements,
and so on

(d) The calendar time tcal, because the cost may depend on whether the task is
to be done within or outside normal working hours, the time of the year,
and so on

(e) …maybe several more items

If we assume that oc and tcal are specified as part of the decision problem, we
may simplify the notation and write the cost function as C(a, 𝛿, t). The final objec-
tive is then to choose the set of relevant maintenance tasks  and the decision
process 𝛿 that minimizes the cost C(a, 𝛿, t). This book focuses on the modeling
phase and not on the optimization phase. We demonstrate how reliability models
can be used to obtain C(a, 𝛿, t) for given a and 𝛿. You may use the same routine for
different a and 𝛿 to choose the best maintenance task. For brevity, the cost function
is often denoted C(t), meaning implicitly that a and 𝛿 are fixed and known.

In practice, the real cost function C(t) is a random and time-dependent variable.
For optimization purposes, it is replaced by its mean value or by the asymptotic
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cost per time unit, C∞, defined as follows:

C∞ = lim
t→∞

C(t)
t

.

The use of C∞ makes sense when the item behavior and the maintenance tasks are
studied on the very long term.

If the maintained item experiences renewals (it is put back into its initial state) at
random or deterministic times, then the model of the maintained item is a renewal
process and the cost function can be derived by using analytical tools related to
renewal processes (see Chapter 10) and especially the renewal theorem:

C∞ = lim
t→∞

C(t)
t

=
E[C(TR)]

E(TR)
, (12.1)

where C(t) is the maintenance cost accumulated from 0 to t for a maintenance
strategy, TR is the renewal cycle, that is, the time elapsing between two renewals,
and C(TR) is the maintenance cost accumulated in a renewal cycle. In the follow-
ing, TR is also called the replacement interval.

This means that C∞ can be calculated by considering a single renewal cycle. In
most cases, a closed form of C∞ is not obtainable, and approximation or numerical
calculation tools must be used. Another option is to use Monte Carlo discrete event
simulation (see Chapter 6) and approximate the mean cost per time unit by:

C∞ =
E[C(TR)]

E(TR)
= lim

n→∞

1
n

∑n
k=1 C(tk

R)
1
n

∑n
k=1 tk

R

≃
∑ns

k=1 C(tk
R)∑ns

k=1 tk
R

, (12.2)

where tk
R is the length of the kth simulated renewal cycle, C(tk

R) is the maintenance
cost in the kth renewal cycle, and ns is the number of simulated renewal cycles
(which must be high enough to guarantee the approximation quality).

In some cases, a and 𝛿 can be reduced to a set of parameters, in which case the
cost function C∞ can be written as a function of the parameters to be optimized
C∞(⋅).

12.3 Time-Based Preventive Maintenance

In this section, all PM tasks are assumed to be replacements, such that the item
is as-good-as-new after a PM task is completed. It is further assumed that the PM
tasks are specified such that the only decision variable is when the task is to be
carried out. The time may be measured as time in operation or calendar time.
Consider two distinct situations:1

1 Professor Bruno Castanier, Université d’Angers, made significant contributions to this
section.
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(1) The item is planned to be preventively replaced after a specified time in
operation (i.e. at a specified operational age). If a failure occurs first, the item
is replaced at the failure date, the preventive replacement is cancelled, and
rescheduled starting from the replacement date. This strategy is called age
replacement, and its advantage is to avoid preventive replacements of items
that have recently been (correctively) replaced. The disadvantage is that the
time of the next PM cannot be known in advance because it depends on
failure occurrences.

(2) The items are preventively replaced at fixed dates, even if failures occur
in-between. This strategy is called block replacement, and its advantage is
that the times of PM tasks are known in advance. They are usually periodic.
This strategy is, for example, relevant when the cost of having available repair
teams is high. The disadvantage is that we may preventively replace items
that have recently been replaced.

12.3.1 Age Replacement

Under an age replacement strategy, an item is replaced upon failure or at a speci-
fied operational age t0, whichever comes first. This strategy makes sense when the
replacement cost upon failure is higher than the cost of a planned replacement,
and when the failure rate of the item is increasing.

Consider a process where the item is subject to age replacement at age t0,
which is nonrandom. Let T be the (potential) time-to-failure of the item. T is
assumed to be continuous with distribution function F(t), density f (t), and mean
time-to-failure (MTTF). The time required to replace the failed item is considered
to be negligible, and after replacement, the item is assumed to be as-good-as-new.
The time between two consecutive replacements is called a replacement period or
a renewal cycle TR. The replacement period may be expressed as TR = min(t0,T).
The mean length of a replacement period is

E(TR) = ∫

t0

0
t f (t) dt + t0 Pr(T ≥ t0) = ∫

t0

0
[1 − F(t)] dt. (12.3)

Some authors use the term mean time between replacements (MTBRs) instead of
E(TR). Observe that E(TR) is always less than t0 and that limt0→∞E(TR) = MTTF.
The mean number of replacements, E[N(t)] in a long time interval of length t is
therefore approximately

E[N(t)] ≈ t
E(TR)

= t
∫

t0
0 [1 − F(t)] dt

. (12.4)

Including a repair duration is accomplished by adding its mean value to E(TR).
Let c be the cost of a preventive replacement when the item has reached the age

t0, and let c + k be the cost of replacing a failed item (before age t0). The cost c
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Figure 12.1 Age replacement strategy and costs.

covers the hardware and man-hour costs, whereas k is the extra cost incurred by
the unplanned replacement, such as production loss and extra mobilization cost
for the repair team. The costs are illustrated in Figure 12.1.

By the age replacement strategy, the replacement times cannot be fully sched-
uled, and the strategy may therefore be complicated to manage when having a high
number of items. The age of each item has to be monitored, and the replacement
tasks will be spread out in time.

The total cost per replacement period with replacement age t0 is equal to the
replacement cost c plus the extra cost k whenever a failure occurs. The mean total
cost per replacement period is

E[C(TR)] = c + k Pr(“failure”) = c + k Pr(T < t0) = c + kF(t0). (12.5)

The asymptotic cost per time unit, C∞, with replacement age t0 is denoted C∞(t0)
because it depends on the replacement age t0 and is determined by

C∞(t0) =
E[C(TR)]

E(TR)
=

c + kF(t0)

∫
t0

0 [1 − F(t)] dt
. (12.6)

The objective is now to determine the replacement age t0 that minimizes C∞(t0).
An approach to finding the optimal t0 is shown in Example 12.1.

When t0 → ∞, (12.6) becomes

C∞(∞) = lim
t0→∞

C∞(t0) =
c + k

∫
∞

0 [1 − F(t)] dt
= c + k

MTTF
. (12.7)

Observe that t0 → ∞ means that no age replacement takes place. All replacements
are corrective replacements and the cost of each replacement is c + k. The time
between replacements is MTTF, and (12.7) is therefore an obvious result. The ratio

C∞(t0)
C∞(∞)

=
c + kF(t0)

∫
t0

0 [1 − F(t)] dt
MTTF
c + k

=
1 + rF(t0)

∫
t0

0 [1 − F(t)] dt
MTTF
1 + r

, (12.8)

where r = k∕c, may be used as a measure of the cost efficiency of the age replace-
ment strategy with replacement interval t0. A low value of C∞(t0)∕C∞(∞) indicates
a high cost efficiency.
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Example 12.1 (Age replacement–Weibull distribution)
Consider an item with Weibull time-to-failure distribution F(t) with scale param-
eter 𝜃 and shape parameter 𝛼. To find the optimal replacement age t0, we have to
find the replacement age t0 that minimizes (12.7), or alternatively (12.8). Using
(12.8) yields

C∞(t0)
C∞(∞)

= 1 + r(1 − e−(t0∕𝜃)𝛼 )
∫

t0
0 e−(t∕𝜃)𝛼 dt

𝜃Γ(1∕𝛼 + 1)
1 + r

. (12.9)

By introducing x0 = t0∕𝜃, (12.9) may be written as

C∗
∞(x0)

C∞(∞)
= 1 + r(1 − e−x𝛼0 )

∫
x0

0 e−x𝛼 dx
Γ(1∕𝛼 + 1)

1 + r
, (12.10)

where C∗(⋅) is the cost function obtained by the transform x0 = t0∕𝜃. To find the
x0 for which (12.10) attains its minimum by analytical methods is not straight-
forward. The optimal x0 may be found graphically by plotting C∗

∞(x0)∕C∞(∞) as a
function of x0. An example is shown in Figure 12.2 where C∗

∞(x0)∕C∞(∞) is plotted
for 𝛼 = 3, and some selected values of r = k∕c.

The optimal x0, and thereby the optimal replacement age t0 = 𝜃x0, can be found
from Figure 12.2 as the value minimizing the ratio C∗

∞(x0)∕C∞(∞). Observe that
when C∗

∞(x0)∕C∞(∞) > 1, no age replacement should take place. The cost effi-
ciency of the age replacement strategy is seen to decrease when t0 increases. ◻
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Figure 12.2 The ratio C∗
∞(x0)∕C∞(∞) as a function of x0 for the Weibull distribution with

shape parameter 𝛼 = 3 and r = 3, 5, and 10.
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Time Between Failures
Let TF,1,TF,2,… be the times between consecutive actual failures. This may be
represented as a renewal process where the renewals are the actual failures. The
dataset for component i contains a random number, Ni of time periods of length t0
(corresponding to replacements without failure), plus a last time period in which
the item fails at an age Zi, less than t0, such that

TF,i = Nit0 + Zi for i = 1, 2,… .

The distribution of the random variable Ni can be found by using a geometric dis-
tribution (see Section 5.8.3)

Pr(Ni = n) = [1 − F(t0)]nF(t0) for n = 0, 1,… .

The mean number of replacements without failure for replacement age t0 is

E(Ni) =
∞∑

n=0
n Pr(Ni = n) =

1 − F(t0)
F(t0)

. (12.11)

The distribution of Zi is

Pr(Zi ≤ t) = Pr(T ≤ t ∣ T ≤ t0) =
F(t)
F(t0)

for 0 < t ≤ t0.

Hence,

E(Zi) = ∫

t0

0

(
1 − F(t)

F(t0)

)
dt = 1

F(t0) ∫

t0

0
[F(t0) − F(t)] dt. (12.12)

The mean time between actual failures when the replacement age is t0 becomes

E(TF,i) = t0E(Ni) + E(Zi)

= 1
F(t0)

(
t0[1 − F(t0)] + ∫

t0

0
[F(t0) − F(t)] dt

)

= 1
F(t0) ∫

t0

0
[1 − F(t)] dt. (12.13)

Age Replacement – Availability Criterion
In some applications, the unavailability of the item is more important than the cost
of replacement/repair, and it may be of interest to determine the replacement age
t0, that minimizes the average unavailability of the item. Let MDTP be the mean
downtime for a planned replacement, and MDTF be the mean downtime needed to
restore the function after a failure. The total mean downtime for the replacement
age t0 is

MDT(t0) = MDTFF(t0) + MDTP[1 − F(t0)]

= [MDTF − MDTP]F(t0) + MDTP
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The mean time between replacements is MTBR(t0) = E(TR) with

E(TR) = ∫

t0

0
[1 − F(t)] dt + MDTFF(t0) + MFDP[1 − F(t0)]

=
∫

t0

0
[1 − F(t)] dt + MDTP + [MDTF − MDTP]F(t0)

The average unavailability for replacement age t0 is therefore

Aav(t0) =
MDT(t0)

MTBR(t0)

=
[MDTF − MDTP]F(t0) + MDTP

∫
t0

0 [1 − F(t)] dt + MDTP + [MDTF − MDTP]F(t0)
. (12.14)

The optimal replacement age t0 is the value of t0 that minimizes Aav(t0) in (12.14).
This value may be found by the same approach as for the cost criterion.

12.3.2 Block Replacement

An item that is maintained under a block replacement strategy is preventively
replaced at regular time intervals (t0, 2t0,…) regardless of age, and correctively
replaced at failure dates. The block replacement strategy is easier to manage
than an age replacement strategy because only the elapsed (calendar) time since
last replacement must be monitored, rather than the operational time since last
replacement. The block replacement strategy is therefore commonly used when
there are a large number of similar items in service. The main drawback of the
block replacement strategy is that it is rather wasteful, because almost new items
may be replaced at planned replacement times.

Consider an item that is put into operation at time t = 0. The time-to-failure T of
the item has distribution function F(t) = Pr(T ≤ t). The item is operated under a
block replacement strategy where it is preventively replaced at times t0, 2t0,…. The
preventive replacement cost is c. If the item fails in an interval, it is immediately
repaired or replaced. The cost of the unplanned repair is k. Let N(t0) be the number
of failures/replacements in an interval of length t0, and let W(t0) = E[N(t0)] be the
mean number of failures/repairs in the interval.

The renewal cycle is TR = t0, and because t0 is deterministic, E(TR) = t0. The
average cost in a renewal cycle is E[C(TR)] = c + kW(t0). The average cost per
time unit E[C(TR)]∕E(TR) when using a block replacement interval of length t0
is denoted C∞(t0) as it depends on one parameter t0 and is equal to

C∞(t0) =
c + kW(t0)

t0
. (12.15)

Consider a block replacement model where the replacement interval t0 is con-
sidered to be so short that the probability of having more than one failure in a block



�

� �

�

554 12 Preventive Maintenance

replacement interval is negligible. In this case, we may use the approximation

W(t0) = E[N(t0)] =
∞∑

n=0
n Pr(N(t0) = n)

≈ Pr(N(t0) = 1) = Pr(T ≤ t0) = F(t0)

The average cost C(t0) per time unit is then

C∞(t0) ≈
c + kF(t0)

t0
. (12.16)

The minimum of C∞(t0) is found by solving dC∞(t0)∕dt0 = 0 and gives
c
k
+ F(t0) = t0 F′(t0). (12.17)

Example 12.2 (Block replacement)
Assume that F(t) is a Weibull distribution with shape parameter 𝛼 > 1 and scale
parameter 𝜃. The optimal replacement interval can be found by solving

c
k
+ 1 − e−(t0∕𝜃)𝛼 = t0

𝛼

𝜃𝛼
t𝛼−1
0 e−(t0∕𝜃)𝛼 = 𝛼

𝜃𝛼
t𝛼0 e−(t0∕𝜃)𝛼 ,

which can be written as
c
k
+ 1 = (1 + 𝛼(t0∕𝜃)𝛼)e−(t0∕𝜃)𝛼 . (12.18)

For this model to be realistic, the preventive replacement cost c must be small com-
pared to the corrective replacement cost k. By introducing x = (t0∕𝜃)𝛼 , and using
the approximation ex ≈ 1 + x + x2∕2, we can solve (12.18) and get the approxima-
tive solution (when remembering that t0 is small)

x ≈ 𝛼

1 + c∕k
− 1 −

√(
𝛼

1 + c∕k
− 1

)2

− 2
(

1 − 1
1 + c∕k

)
. (12.19)

If we assume that c∕k = 0.1 and 𝛼 = 2, we get the optimal value t0 = 1∕𝜆x1∕𝛼 ≈
0.35𝜃 ≈ 0.39 MTTF. With the same value of c∕k and 𝛼 = 3, we get the optimal
value t0 ≈ 0.391∕𝜆 ≈ 0.44 MTTF. In Figure 12.3, the optimal replacement interval
t0 is plotted as a function of 𝛼. The optimal value t0 is equal to h MTTF, where
MTTF is the mean of the Weibull distribution with parameters 𝛼 and 𝜃. ◻

Block Replacement with Minimal Repair
The block replacement strategy may be modified by only carrying out minimal
repair when items fail in the block interval. The assumption is that a minimal
repair is often adequate until the next planned replacement. In this case, we have
a nonhomogeneous Poisson process (NHPP) within the block interval of length
t0, and we may use the formulas developed in Section 10.4.1 to determine W(t0).
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Figure 12.3 The optimal replacement interval t0 in Example 12.2 as a function of the
shape parameter 𝛼 of the Weibull distribution. The optimal value t0 is equal to h MTTF.

This modified block replacement model was proposed and studied by Barlow and
Hunter (1960).

Another approach would be to assume that we carry out normal (imperfect)
repairs in the block interval. In that case, we may use the theory described in
Section 10.4.1 to determine W(t0).

Block Replacement with Limited Number of Spares
Consider an item that is operated under a block replacement strategy. We now
assume that the number m of spares that may be used in a replacement interval is
limited. In this case, we may run out of spares and the item’s function may there-
fore be unavailable during a part of the replacement interval. The times-to-failure
T1,T2,… of the items are assumed to be independent and identically distributed
with distribution function F(t).

Let ku denote the cost per time unit when the item function is not available,
and let T̃u(t0) be the time the item remains unavailable in a replacement interval
of length t0. Hence, we have T̃u(t0;m) = t0 −

∑m+1
i=1 Ti if the initial item and the m

spares fail in the replacement interval, and T̃u(t0;m) = 0 if less than m + 1 failures
occur.

The same number m of spares are assumed to be made available for each replace-
ment interval. All intervals therefore have the same stochastic properties, and we
may therefore confine ourselves to studying the first interval (0, t0).

The mean cost in a replacement interval is c + kE[N(t0)] + kuE[T̃u(t0;m)], and
the cost C∞(t0;m) when using a block replacement interval of length t0 is

C∞(t0;m) =
c + kE[N(t0)] + kuE[T̃u(t0;m)]

t0
, (12.20)

where N(t0) is the number of replacements in (0, t0).
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Example 12.3 (Block replacement without spare item)
Consider an item that is operated under a block replacement strategy without any
spare item (m = 0) in each block interval. In this case, (12.20) can be written

C∞(t0; 0) =
c + kF(t0) + ku ∫

t0
0 F(t) dt

t0
. (12.21)

Let F(t) be a Weibull distribution with shape parameter 𝛼 = 3 and scale parameter
𝜆 = 0.1. In Figure 12.4, C∞(t0; 0) is plotted as a function of t0 for some selected cost
values c, k, and ku that give three different shapes.

When the replacement period t0 tends toward infinity, the block replacement
strategy is equivalent to leave the item as it is, and not replace it. Then the average
cost per time unit will tend to ku. When c = 3, the shape of the curve is quite similar
to the corresponding curve for the classical age replacement strategy with optimal
replacement period. When c = 10, the optimal block replacement cost C∞(t0; 0)
is close to ku. When t0 increases, C∞(t0; 0) remains close to the replacement cost
until the influence of T̃u(t0) becomes sufficiently large. When c = 20, the curve
does not have a very distinctive minimum, and we may as well choose a very long
replacement interval. ◻

Example 12.4 (Block replacement with limited number of spare items)
Consider an item that is operated under a block replacement strategy with m spare
items in each block replacement interval. The time-to-failure T is assumed to be
gamma distributed with parameters 𝜆 and 𝛼. The density of T is

fT(t) =
𝜆

Γ(𝛼)
(𝜆t)𝛼−1 e−𝜆t

. (12.22)
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Figure 12.4 The average cost per time unit for a block replacement strategy with no
spares when the time-to-failure distribution is a Weibull distribution with 𝛼 = 3 and
𝜆 = 0.1, k = 10, ku = 3, and c = 3, 10, 20.
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Figure 12.5 The average cost per time unit for a block replacement strategy with m = 5
spares when the time-to-failure distribution is a gamma distribution with parameters 𝛼
and 𝜆 = 1, for 𝛼 = 1 and 3, and k = 10, ku = 3, and c = 3.

The item function will be unavailable when the initial item and the m spares have
failed. The time to system failure is therefore Ts =

∑m+1
i=1 Ti where the times to

individual failure T1,T2,… ,Tm+1 are assumed to be independent and identically
distributed with density fT(t). Let F(m+1)(t) denote the distribution function of Ts.
The distribution F(m+1)(t) can be found by taking the (m + 1)-fold convolution of
F(t) (see Section 10.3.2). Because the gamma distribution is “closed under addi-
tion,” Ts is gamma distributed with parameters 𝜆 and (m + 1)𝛼. In this case, (12.22)
may be written

C∞(t0;m) =
c + kF(m+1)(t0) + ku ∫

t0
0 F(m+1)(t) dt

t0
. (12.23)

In Figure 12.5, C∞(t0;m) is plotted as a function of t0 for some selected values of
the parameter 𝛼, and cost values c, k, and ku. ◻

The cost k of a repair/replacement in the block replacement interval may be
extended to be time-dependent and to include other types of costs, for example,
if the item deteriorates during the interval and will require increasing operating
costs.

12.3.3 P–F Intervals

We now study an inspection and replacement strategy known as the P–F interval
approach. The P–F interval approach is discussed in most of the main references
on reliability centered maintenance (RCM).

Consider an item that is exposed to random shocks (events) and assume that
the shocks occur as a homogeneous Poisson process (HPP) with rate 𝜆. The time
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Figure 12.6 Average behavior and concepts used in P–F interval models.

between two consecutive shocks is then, according to Section 10.2, exponentially
distributed with rate 𝜆, and mean 1∕𝜆. When a shock occurs, it produces a weak-
ness (potential failure) in the item that, in time, will develop/deteriorate into a
critical failure. We are not able to observe the shocks, but may be able to reveal
indications of potential failures some time after the shock has occurred. Let P be
the point of time (after a shock) when an indication of a potential failure can be
first detected, and let F be the point of time where the item has functionally failed.
The time interval from P to F is called the P–F interval, and is generally a random
variable. If a potential failure is detected between P and F in Figure 12.6, this is the
time interval in which it is possible to carry out a task to prevent the failure and to
avoid its consequences. The cost of a preventive replacement (or repair) is cP, and
the cost of a corrective replacement after a critical failure has occurred is cC.

The item is inspected at regular intervals of length 𝜏, and the cost of each inspec-
tion is cI . The inspections may be observations using human senses (view, smell,
sound), or we may use some monitoring equipment. In the most simple setup,
we assume that the inspection procedure is perfect, such that all potential failures
are detected by the inspection. In many cases, this is not a realistic assumption,
and the probability of successful detection may be a function of the time since P,
the time of the year, and so on. Our main objective in this section is to find the
optimal inspection interval 𝜏, that is, the value of 𝜏 that gives the lowest mean
average cost.

The length of the P–F interval generally depends on the materials and character-
istics of the item, the failure mode, the failure mechanisms, and the environmental
and operational conditions. Estimates of P–F intervals are not available in reliabil-
ity data sources and must be estimated by expert judgment by operators, specialists
on deteriorating mechanisms, and equipment designers. The length of the P–F
interval may be regarded as a random variable TPF with a subjective distribution
function (see Chapter 15).
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Example 12.5 (Cracks in railway rails)
Vatn and Svee (2002) study crack occurrences and crack detection in (railroad)
rails. In their model, cracks are initiated at random. The frequency 𝜆 of initiated
cracks may be measured as the number of initiated cracks per unit length of rails
and per time unit. The frequency generally depends on the traffic load, the mate-
rial and geometry of the rail, and various environmental factors, but may also be
caused by particles on the rails or “shocks” from trains with noncircular wheels.
In the first phase, the cracks are very small, and very difficult to detect. A special
rail-car equipped with ultrasonic inspection equipment is used to inspect the rails.
When a crack has grown to a specific size, it should be detectable by ultrasonic
inspection. This crack-size corresponds to the potential failure P described above.
The P–F interval is the time interval from an observable crack P is present until a
critical failure F occurs. The critical failure F is, in this case, breakage of a rail and
possible derailment of a train. Ultrasonic inspection is carried out at regular inter-
vals, at a rather high cost. It is therefore of interest to find an optimal inspection
interval, that balances the inspection cost and the costs related to replacements
and potential accidents. ◻

Our objective is to find the inspection interval 𝜏 that minimizes the mean total
cost. In the general setup, this is a rather difficult task. We therefore start by solving
the problem in the most simple situation, with known (deterministic) P–F interval
and known repair time. Thereafter, we present some ideas on how to solve the
problem in a more realistic setup.

Deterministic P–F Interval and Repair Time and Perfect Inspection
To simplify the problem, assume that the length of the P–F interval tPF is known
(deterministic). The time from a potential failure P is detected (during the first
inspection after P), until the failure has been corrected, tRep, is assumed to be
known (deterministic). We further assume that the inspections are perfect such
that all potential failures are detected during the inspections. Figure 12.6 shows
that we have a preventive replacement when 𝜏 − t + tRep < tPF, and a corrective
replacement if 𝜏 − t + tRep > tPF. If 𝜏 + tRep < tPF, all the replacements are preven-
tive, and there is no problem to optimize. We therefore assume that 𝜏 + tRep > tPF
(see Remark 12.1).

Assume that we start observing the item at time t = 0 and that the potential fail-
ure P is observable a short time after the shock occurs. The time T from startup to
P is exponentially distributed with failure rate 𝜆. Let N(𝜏) be the number of inspec-
tion intervals before a shock occurs. The event N(𝜏) = n hence means that we
observe n inspection intervals without any shock, and the shock occurs in inspec-
tion interval n + 1. The random variable N(𝜏) has a geometric distribution with
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point probability

Pr(N(𝜏) = n) = (e−𝜆𝜏 )n(1 − e−𝜆𝜏 ) for n = 0, 1,… ,

and mean value

E[N(𝜏)] = e−𝜆𝜏
1 − e−𝜆𝜏

.

Assume that a shock and an observable potential failure P has occurred in inspec-
tion interval n + 1. Let T̃ be the time from inspection n till P. The probability
distribution of T̃ is

Pr(T̃ ≤ t) = Pr(T ≤ t ∣ T ≤ 𝜏) = 1 − e−𝜆t

1 − e−𝜆𝜏
for 0 < t ≤ 𝜏.

A preventive replacement will therefore take place with probability

PP(𝜏) = Pr(T̃ > 𝜏 + tRep − tPF) = 1 − 1 − e−𝜆(𝜏+tRep−tPF)

1 − e−𝜆𝜏
.

A corrective replacement will take place with probability

PC(𝜏) = Pr(T̃ < 𝜏 + tRep − tPF) =
1 − e−𝜆(𝜏+tRep−tPF)

1 − e−𝜆𝜏
.

If we know that the potential failure results in a critical failure (corrective main-
tenance, CM), the mean time to this failure is 1∕𝜆 + tPF. On the other hand, if we
know that the potential failure results in a preventive replacement, the mean time
to this replacement is E(N(𝜏) + 1)𝜏 + tRep. The mean time between replacements
is therefore

MTBR(𝜏) =
( 1
𝜆
+ tPF

)
PC(𝜏) + (E(N(𝜏) + 1)𝜏 + tRep)PP(𝜏)

=
( 1
𝜆
+ tPF

)
PC(𝜏) +

(
𝜏

1 − e−𝜆𝜏
+ tRep

)
PP(𝜏). (12.24)

The mean total cost in a replacement interval (renewal cycle) E[C(TR)] is

E[C(TR)] = cPPP(𝜏) + cCPC(𝜏) + cI[E[N(𝜏)] + Pr(T̃ > 𝜏 − tPF)],

where Pr(T̃ > 𝜏 − tPF) is the probability that the item will not fail within the inspec-
tion interval where the potential failure occurred, and consequently that the next
inspection will be carried out. When 𝜏 − tPF > 0, this probability is

Pr(T̃ > 𝜏 − tPF) = Pr(T > 𝜏 − tPF ∣ T ≤ 𝜏) = e−𝜆(𝜏−tPF) − e−𝜆𝜏
1 − e−𝜆𝜏

.

We therefore have that

Pr(T̃ > 𝜏 − tPF) =
⎧⎪⎨⎪⎩

e−𝜆(𝜏−tPF) − e−𝜆𝜏
1 − e−𝜆𝜏

for 𝜏 − tPF > 0
1 for 𝜏 − tPF < 0

.
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Figure 12.7 The asymptotic cost C∞(𝜏) per time unit as a function of 𝜏 for
𝜆 = 1∕12 mo−1, tPF = 3 months, tR = 0.5 month, CC = 100, CP = 20, and CI = 15.

The mean total cost in a replacement interval is therefore

E[C(TR)] =
⎧⎪⎨⎪⎩

cPPP(𝜏) + cCPC(𝜏) + cI
e−𝜆(𝜏−tPF )

1−e−𝜆𝜏
for 𝜏 − tPF > 0

cPPP(𝜏) + cCPC(𝜏) + cI

(
e−𝜆𝜏

1 − e−𝜆𝜏
+ 1

)
for 𝜏 − tPF < 0

.

The mean total cost per time unit with inspection interval 𝜏 is denoted C∞(𝜏),
depends on one parameter 𝜏, and is equal to

C∞(𝜏) =
E[C(TR)]

E(TR)
=

E[C(TR)]
MTBR(𝜏)

. (12.25)

To find the value of 𝜏 for which (12.25) attains its minimum is not a straightforward
task. The optimal 𝜏 may be found graphically by plotting C∞(𝜏) as a function of 𝜏.
An example is shown in Figure 12.7.

Remark 12.1
In the case when 𝜏 + tRep < tPF, all the replacements are preventive, and the mean
time between replacements is MTBR(𝜏) = (E[N(𝜏)] + 1)𝜏 + tRep. The total cost in
a replacement period is CT(𝜏) = cP + cI(E[N(𝜏)] + 1). The optimal replacement
interval (with the restriction that 𝜏 + tRep < tPF) can therefore be found by
minimizing

C∞(𝜏) =
E[C(TR)]
MTBR(𝜏)

=
cI∕(1 − e−𝜆𝜏 ) + cP

𝜏∕(1 − e−𝜆𝜏 ) + tRep
.

◻

Stochastic P–F Interval, Deterministic Repair Time, and Nonperfect Inspection
Reconsider the situation described above, but assume that the inspection is not
perfect. In general, the probability of detecting a potential failure depends on the
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time since the potential failure became observable. When a crack in the rail in
Example 12.5 has been initiated, it will grow with time. The probability of detect-
ing the crack is assumed to increase with the size of the crack. A model where the
probability of successful detection is a function of the crack size will be rather com-
plicated. We therefore simplify the situation and introduce 𝜃i(𝜏) to be the probabil-
ity that the potential failure is not detected in inspection i after that an observable
potential failure P has occurred, for i = 1, 2,…. The probability is assumed to be a
function of the inspection interval 𝜏. We assume that 1 > 𝜃1(𝜏) ≥ 𝜃2(𝜏) ≥ · · ·.

The P–F interval, TPF is assumed to be a random variable with distribution func-
tion FPF(t). The repair time tR is assumed to be known (deterministic). Let TF =
T̃ + TPF. The variable TF is hence the time from the last inspection before P until
a (possible) critical failure. The distribution of TF can be found by the convolution
of the distribution of T̃ and TPF(t).

FF(t) = Pr(TF ≤ t) =
∫

𝜏

0
FPF(t − u) dFT̃(u)

= 𝜆

1 − e−𝜆𝜏 ∫

𝜏

0
FPF(t − u) e−𝜆u du. (12.26)

Let RF(t) = 1 − FF(t), and let Z(𝜏) be the number of inspections carried out after
a potential failure P has occurred. We want to find the probabilities Pr(Z(𝜏) ≥ k)
for k = 0, 1,…. It is obvious that Pr(Z(𝜏) ≥ 0) = 1. At least one inspection will be
carried out if TF = T̃ + TPF > 𝜏, that is,

Pr(Z(𝜏) ≥ 1) = Pr(TF > 𝜏) = RF(𝜏).

At least two inspections will be carried out if TF > 𝜏, the failure is not detected in
the first inspection, and if TF > 2𝜏. Because Pr(TF > 𝜏 ∩ TF > 2𝜏) = Pr(TF > 2𝜏)
we get

Pr(Z(𝜏) ≥ 2) = 𝜃1(𝜏)RF(2𝜏).

By continuing this argument, we get in the general case that (we define 𝜃0(𝜏) = 1):

Pr(Z(𝜏) ≥ k) =

(k−1∏
j=0

𝜃j(𝜏)

)
RF(k𝜏) for k = 1, 2,… . (12.27)

The mean number of inspections is therefore

E[Z(𝜏)] =
∞∑

k=1
Pr(Z(𝜏) ≥ k) =

∞∑
k=1

(k−1∏
j=0

𝜃j(𝜏)

)
RF(k𝜏).

A preventive replacement will take place with probability

PP(𝜏) = [1 − 𝜃1(𝜏)]Pr(TF > 𝜏 + tRep)

+ 𝜃1(𝜏)[1 − 𝜃2(𝜏)]Pr(TF > 2𝜏 + tRep) + · · ·
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which can be written as

PP(𝜏) =
∞∑

k=1
[1 − 𝜃k(𝜏)]

k−1∏
j=0

𝜃j(𝜏)Pr(TF > k𝜏 + tRep)

=
∞∑

k=1
[1 − 𝜃k(𝜏)]

k−1∏
j=0

𝜃j(𝜏) RF(k𝜏 + tRep). (12.28)

A corrective replacement will take place with probability PC(𝜏) = 1 − PP(𝜏). Let
ZP(𝜏) be the number of inspections that are carried out after a potential failure P
has occurred, when we know that the item will be preventively replaced. By using
the same argument as we used to find (12.27), we get

Pr(ZP(𝜏) ≥ k) =
k−1∏
j=1

𝜃j(𝜏),

and the mean value is

E[ZP(𝜏)] =
∞∑

k=1

k−1∏
j=1

𝜃j(𝜏).

The mean time between replacements is therefore

E(TR) = MTBR(𝜏) =
( 1
𝜆
+ E(TPF)

)
PC(𝜏)

+ [(E[N(𝜏)] + E[ZP(𝜏)])𝜏 + tRep]PP(𝜏). (12.29)

The mean total cost E[C(TR)] in a replacement interval (renewal cycle) is

E[C(TR)] = cPPP(𝜏) + cCPC(𝜏) + cI(E[N(𝜏)] + E[Z(𝜏)]). (12.30)

The optimal inspection interval 𝜏 may in this case be determined as the value of 𝜏
that minimizes C∞(𝜏) = E[C(TR)]∕MTBR(𝜏).

The models described in this section may be extended in many different ways.
An obvious extension is to let the repair time be a random variable TRep. Another
extension is to let the time to potential failure P have an increasing failure rate
function.

Delay Time Models
Few references are available discussing quantitative assessment related to the P–F
interval approach. Some further developments have been made based on the
delay-time concept that was introduced in maintenance applications by Christer
and Waller (1984). The delay-time model assumes that a failure is dependent on
the occurrence of a defect (an incipient or potential failure). The time-to-failure
T of an item can therefore be divided in two parts: (i) the time TP from startup
until a defect occurs and (ii) the delay-time TPF from the defect occurred until the
item fails.
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Several inspection models have been developed based on the delay-time
principle covering, for example, imperfect inspections, nonconstant defect rate,
nonstationary inspection rules (Wang 2008). Some of these models have been
applied in industry (e.g. see Dekker 1996).

12.4 Degradation Models

For the time-based strategies presented in Section 12.3, it is relevant to use a
time-to-failure model for the item. When, on the other hand, the maintenance
decisions are condition-based and the item is experiencing a degradation that
can be observed, the time-to-failure models are not suitable and we have to use
degradation models. With degradation models, the state space of the items is not
reduced to functioning or failed. The functioning and failed states may be split into
different substates that are more or less degraded. These substates can be defined
in a finite discrete state space, in an infinite discrete state space, or in a continuous
state space. Consider an item that gradually degrades when it is being used. For
mechanical items, the degradation may lead to an increasing number of initiated
cracks (possibly infinite discrete state space), crack lengths, corrosion depths,
level of vibration (continuous state space), and many other physical quantities.

Some of these quantities may be monitored by using a degradation indicator,
which may be measured continuously or periodically. In this chapter, the values
obtained by using the degradation indicator are assumed to be (univariate) scalars.
As an illustration, assume that the degradation indicator measures a crack length
at a specific location. At time t, the true value of this crack length is x(t), whereas
the measured value obtained by the degradation indicator is y(t), which may be
slightly different from x(t) because of measurement errors and “noise.” Both the
degradation and the measurements are subject to random variations and may
be modeled as stochastic processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}, respectively.
At time t, x(t) and y(t) are specific (numerical) outcomes of these two stochastic
processes. In the following, X(t) denotes the (random) state of the item and Y (t) its
observable (random) condition. In some situations, we may assume that X(t)
is available and the noise or measurement errors can be neglected.

A degradation model is a stochastic process {X(t), t ≥ 0} together with a set
of assumptions about the probability distribution of X(t) and the development
of X(t), as a function of time. This section briefly examines three categories of
degradation models: trend models, models with increments, and shock models.
All of these have a continuous state space. A brief reminder about discrete state
space models (Markov processes) is provided. More details may be found in
Chapters 9 and 10.

When the presence of degradation is acknowledged, the maintenance decision
can be based on the degradation indicator (Christer and Wang 1992), but also on
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the RUL distribution (Huynh et al. 2014). RUL is increasingly used to optimize
systems beyond maintenance decisions (Langeron et al. 2015; Lee et al. 2011). The
quality of the collected data seen in relation to establishing the degradation indica-
tor or the RUL distribution is of primary importance and is extensively discussed in
the literature with prognostics and diagnostics perspectives (Nguyen et al. 2019),
but this is outside the scope of this book. The RUL (survival) distribution is a nat-
ural extension of the survivor function in the sense that it is a kind of survivor
function conditioned by the knowledge about the current degradation indicator.
RUL is introduced in Section 12.4.1 before describing degradation models.

12.4.1 Remaining Useful Lifetime

RUL of an item at time tj is briefly introduced in Chapter 5. RUL(tj) is a random
variable that measures the time from tj until the item is not “useful” any more.
What is meant by not being “useful” must be carefully specified. The distribu-
tion of RUL is a reliability metric that can be used when a degradation model is
available. The RUL distribution is written as

Pr(RUL(tj) ≤ t) = FRUL(tj)(t). (12.31)

Remark 12.2 (Another interpretation of RUL)
In some practical applications, RUL(tj) is given as a fixed number, which is an
estimate of the mean time period the item can survive after a given time tj in a
specified operating context, and based on the knowledge available about the pre-
vious condition development. In this book, RUL(tj) is always considered to be a
random time variable. ◻

In reliability theory, prognostics is a field dedicated to the estimation of the prob-
ability distribution of RUL(tj) or its mean. Prognostics may be addressed from dif-
ferent points of view and with different methods, usually classified as model-based
and data-driven approaches. Model-based approaches are used for physical mod-
els dedicated to specific applications and are as such outside the scope of this book.
For data-driven prognostics, we distinguish between two categories:

Data-driven prognostics with no probabilistic modeling. These approaches (e.g. ker-
nels, machine learning, and artificial intelligence) rely on the observed data
without any prior choice of a unique degradation model between the running
state and the failed state. These approaches are not presented here, but a brief
introduction is given hereafter to indicate what the approaches consist of and
when they may be relevant. With such approaches, the distribution of RUL(tj) is
usually not derived but replaced by an estimate of the mean value of RUL(tj)
with confidence interval.
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Data-driven prognostics with probabilistic modeling. These approaches rely on
historical data to fit the parameters of an a priori chosen degradation model
{X(t), t ≥ 0}. Statistical methods presented in Chapter 14 may be used in
combination with physical considerations to choose the degradation model.

Sections 12.4.2 and 12.4.3 introduce the most common degradation models. With
these approaches, the distribution of RUL(tj) may be derived analytically or esti-
mated empirically by simulating the degradation model. An example is provided
by Le Son et al. (2013) and a review of data-driven prognostics with probabilistic
modeling is proposed by Si et al. (2011).

Data-Driven Prognostics with no Probabilistic Modeling
In this section, X(t) is not established a priori, and there is no intention to explain
the degradation phenomenon by stating that it should be a trend model, a model
with increments, or a shock model. Instead, a link is built between the data from
condition monitoring and the value of RUL. RUL is defined at any time ti as a
generic function, f , such that

R̂UL(ti) = f (ti, yi,ui), (12.32)

where ti is the current time, yi is the measured value (or a vector of values)
related to the current condition of the item, and ui is a vector of measured values
describing the operating context. RUL is estimated by learning the structure of
the function f (whether it is a linear function, a polynomial one, an exponential
one, etc.) and its parameters. This can be done by linear regression, neural
networks, Bayesian networks (especially if expert judgment or qualitative data
are available), and so on. Observe that the maintenance decision is made based
on the RUL estimate, and not the degradation model X(t). All these methods rely
on the existence of a dataset S, with more or less the following structure:

S = {(tj
k, yj

k,uj
k),RULj

k}j=1,2,…,N; k=1,2,…,𝜅
, (12.33)

where tj
k, for k = 1, 2,… , 𝜅, are the sampling times for item j, and RULj

k is the
recorded RUL of item j at time tj

k for the measures (yj
k,uj

k). The dataset must be
divided into two parts, one for estimating the function f (learning dataset) and
one for testing the quality of the estimate of f (testing dataset). The way the dataset
is divided into two parts may influence the results of the estimation and must be
carefully checked by resorting to cross validation methods.

Data-Driven Prognostics with Probabilistic Modeling
Let T be the time-to-failure of the item, X(tj + h) the future state of the item (i.e. at
time tj), 𝓁 the set of failed (or unacceptable) states of the item, tj

the set of times
when the item condition has been observed in [0, tj], and Y (t) the item condition
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at these times. Then, given that T > tj, RUL(tj) is formally defined as

RUL(tj) = min{h;X(tj + h) ∈ 𝓁}, (12.34)

and its distribution is defined as

Pr(RUL(tj) ≤ t) = Pr(min{h; X(tj + h) ∈ 𝓁} ≤ t ∣ T ≥ tj, Y (t)t∈tj
).

To define RUL and to find its probability distribution, the following must be
available:

(1) A variable X(t) that describes the state of the item at time t.
(2) A set 𝓁 of unacceptable states.
(3) A set tj

of observation times and condition observations Y (t) at these times.
(4) We must be able to estimate X(t) at time t, by filtering observed values of Y (t),

for t ∈ tj
, if necessary.

(5) We must be able to predict the value of X(tj + h) at any time after tj.

If X(t) is a time-dependent scalar function, a degradation level 𝓁 can be defined as
the lowest level of degradation that is considered to be a failure.

12.4.2 Trend Models; Regression-Based Models

Let Y (t) be a time-dependent function with a continuous state space. Typical
applications for such a model are degradation phenomena that can be monitored
through a continuous natural trend, that is to say through variations of quantities,
such as temperature, flow, velocity, and pressure as a function of time. The generic
form of the model is

Y (tk) = X(tk) + 𝜀(tk), (12.35)

where Y (tk) is the observed condition at time tk, X(tk) is the actual degradation
(where X(t) is a monotonically increasing function), and 𝜀(tk) is a random error
(often referred to as noise from the monitoring device). In most cases, it is assumed
that 𝜀(tk) ∼  (0, 𝜎2).

The following cases may be considered for k = 1, 2,…

Y (tk) = c + atk + 𝜀(tk) (linear)
Y (tk) = c + atk + bt2

k + 𝜀(tk) (polynomial)
log[aY (tk) + b] = c + atk + · · · + 𝜀(tk) (logarithmic)

aebY (tk) = c + atk + · · · + 𝜀(tk) (exponential),

where the model parameters {a, b, c,…} can be deterministic or random.
Because X(t) and Y (t) are scalar functions of time, a degradation level 𝓁 can

be defined as the lowest degradation level that is considered to be a failure and
RUL(tj) is defined as

RUL(tj) = min{h; X(tj + h) ≥ 𝓁}, (12.36)
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for T > tj. Because the current values of X(tk) and Y (tk) are not influenced by the
observations of the item condition in the past, all information contained in tj

is
useless except Y (tj), the observed condition at time tj. Then

Pr(RUL(tj) ≤ t) = Pr(min{h; X(tj + h) > 𝓁} ≤ t ∣ T ≥ tj,Y (tj) = y(tj)).

If X(t) is monotonically increasing and the noise is not too significant, the fol-
lowing approximation may be used

Pr(RUL(tj) ≤ t) ≃Pr[X(tj + t) > 𝓁 ∣ T ≥ tj,Y (tj) = y(tj)]

≃Pr[Y (tj + t) > 𝓁 ∣ T ≥ tj,Y (tj) = y(tj)]

≃Pr[Y (tj + t) − Y (tj) > 𝓁 − y(tj)] for y(tj) ≤ 𝓁. (12.37)

Wiener Process with Linear Drift
The Wiener process2 (or Brownian motion with linear drift) is a special case of a
trend model and can be defined as:

Y (tk) = atk + 𝜀(tk), Y (0) = 0,

where the constant a is called the drift parameter and the noise is a random vari-
able 𝜀(tk)with probability distribution (0, 𝜎2tk). Because the normal distribution
can take both positive and negative values, the Wiener process is not monotonic.
A possible interpretation is that the observed degradation is noisy whereas the true
degradation is monotonically increasing in average. Another interpretation is that
Y (t) = X(t) and that the true degradation is directly observed with such fluctua-
tions. This may be the case when a crack is randomly clogging. For the sake of
clarity, we use Y (t) instead of X(t). A Python script to simulate the paths of the
Wiener process is provided on the book companion site.

Because a is deterministic:

E[Y (tk)] = atk

E[Y (tk+1) − Y (tk)] = a(tk+1 − tk)

and:

var[Y (tk)] = 𝜎
2tk

var[Y (tk+1) − Y (tk)] = 𝜎
2(tk+1 + tk)

This means that (i) in average, the Wiener process is linearly increasing as a func-
tion of time with speed a and (ii) its variance is increasing with the time interval
tk+1 − tk and the variance of the noise.

2 Named after the US mathematician and philosopher Norbert Wiener (1894–1964).
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The Distribution of RUL(tj)
Because of the nonmonotonicity, there is no direct link between the distribution
of RUL and the probability that the condition level Y (t) is below the failure level
𝓁. This calculation is not straightforward, but you may find more details in Kahle
et al. (2016). For y(tj) ≤ l the RUL distribution is given by

FRUL (tj)(t) = Pr(RUL(tj) ≤ t)

=
∫

t+tj

0

𝓁 − y(tj)√
2𝜋𝜎2(u − tj)3

e
−

(𝓁−y(tj )−a(u−tj ))2

2𝜎2 (u−tj ) du. (12.38)

The book companion site provides details about Wiener processes, its simu-
lation, and its parameter estimation from degradation data. Examples of more
advanced trend models are given by Le Son et al. (2013) and Deng et al. (2016).
A polynomial trend model is studied in Problem 12.7.

12.4.3 Models with Increments

Consider a degradation process where Y (t) is not explicitly established. Instead, we
use a model of degradation increments, where of degradation Y (t) increases in a
time interval (tj, tk) in a continuous state space. We usually assume that the degra-
dation increment I(tj ,tk) = Y (tk) − Y (tj) is a random variable with a given probability
distribution. Typical applications for such a model are degradation phenomena
that can be monitored through increments of degradation, such as corrosion and
erosion. For a review and some examples of applications of models with incre-
ments, see Ghamlouch et al. (2018) and Van Noortwijk (2009).

Example 12.6 (Exponentially distributed increments)
Consider a deteriorating item where the degradation increments are exponentially
distributed with rate 𝜆∕(tj − tk) between times tj and tk. Assume that the item is
studied in two time intervals (t1, t2) and (t2, t3). The probability density functions
of the degradation increments in the intervals are as follows:

f(t1 ,t2)(x) =
𝜆

t2 − t1
e−

𝜆

t2−t1
x

f(t2 ,t3)(x) =
𝜆

t3 − t2
e−

𝜆

t3−t2
x

For this example, observe that the mean degradation increment E[I(t1,t2)] = (t2 −
t1)∕𝜆 and the variance var[I(t1 ,t2)] = (t2 − t1)2∕𝜆2 increase when the length of the
interval increases. A Python script to simulate the paths of such a process is pro-
vided on the book companion site. ◻
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The probability distribution of the increments is chosen such that the degra-
dation model fits to the available dataset, and such that (i) the distribution
parameters can be estimated with classical statistical methods and (ii) the distri-
bution of RUL is obtainable. For this purpose, the class of Levy processes is often
used. We describe briefly the main features of such processes with a particular
case; the homogeneous gamma process.

Levy Process
A Levy process3 is a continuous-time stochastic process {X(t), t ≥ 0} where the
increments in disjoint time intervals are independent random variables. The Levy
process satisfies the Markov property and is hence a Markov process, because the
next degradation increment does not depend on the past increments. In addition,
if the distribution of the increments depends only on tj − tk, but not on tj neither
tk, the process is stationary or homogeneous in time. In this case, the increments
are identically distributed for intervals of the same length, tj − tk, and the process
is a homogeneous Markov process.

Homogeneous Gamma Process
A homogeneous gamma process is a special case of a Levy process. It is a
continuous-time stochastic process {Y (t), t ≥ 0} where the increments in disjoint
time intervals are independent random variables such that Y (0) = 0 and for any
t2 > t1 ≥ 0, the increment Y (t2) − Y (t1) has a gamma density:

f
𝛼(t2−t1),𝛽(y) =

𝛽

Γ[𝛼(t2 − t1)]
(𝛽y)𝛼(t2−t1)−1e−𝛽y for y ≥ 0.

Because the gamma density is defined only for positive values, the increments are
always positive and the degradation model is always increasing. This means that
the gamma process can be a suitable model also for X(t). In that case, we have
direct access to the degradation measure, without any additional noise. Then, the
degradation increment X(t2) − X(t1) has a gamma density f

𝛼(t2−t1),𝛽(x). The mean
degradation in the interval (t1, t2) is

E[X(t2) − X(t1)] =
𝛼(t2 − t1)

𝛽
,

and the variance is:

var[X(t2) − X(t1)] =
𝛼(t2 − t1)

𝛽2 .

This means that the mean degradation in an interval of length t0 is 𝛼

𝛽
t0, indepen-

dent of when the interval begins. The parameter 𝛽 is called the rate of the process.
The variance of the process increases with the time horizon between t1 and t2 and

3 Named after the French mathematician Paul Pierre Lévy (1886–1971).
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can be tuned independently on the mean. A Python script to simulate the paths of
the homogeneous gamma process is provided on the book companion site.
For more details about the gamma process, simulation, and parameter estimation
from degradation data, see the book companion site.

The Distribution of RUL(tj)
Because X(t) is a scalar function of time, a degradation level𝓁 can be defined as the
lowest degradation level that is considered to be a failure and RUL(tj) is defined
as a hitting time. The distribution function of RUL can be derived and computed
numerically.

FRUL (tj)(t) = Pr(RUL(tj) ≤ t)

= Pr
(

X(tj + t) ≤ 𝓁 ∣ X(tj) > 𝓁, X(s)s∈tj

) Thanks to the
monotonicity

= Pr(X(tj + t) − X(tj) > 𝓁 − x(tj))
Thanks to the

lack of memory

=
∫

+∞

𝓁−x(tj)
f
𝛼t,𝛽(u) du for x(tj) ≤ 𝓁. (12.39)

Observe that the gamma process is a jump process. The jumps, whose size lies in
the interval [x, x + dx), occur as a Poisson process with an intensity depending on
x. In practice, this means that the modeled degradation should occur by “jumps.”
It has also some implications when simulating the process and looking for the
hitting time of the failure level 𝓁. You may consult the book companion site
for more details. The homogeneous gamma process is studied further in Problem
12.8.

12.4.4 Shock Models

Assume that Y (t) is explicitly established as a function of shocks. A shock is an
event that can cause degradation or instantaneous item failure. Examples of items
experiencing shocks are passive items such as switches and valves, that must act on
demand. The impact of a demand on the item condition can be modeled as a shock.
The time between two consecutive shocks, the damage caused by each shock, and
the criteria for item failure (e.g. damage threshold, number of shocks with a given
magnitude, time between shocks) are the three main characteristics of a shock
model. Depending on the damage caused by the shock (either it is a continuous
variable or a discrete one), the shock model may be defined in a continuous or
discrete state space. Shock models are classified as extreme or cumulative shock
models. A detailed review is provided by Nakagawa (2007).

In the first category, a single shock can cause item failure, whereas in the
second category, each shock causes an additive damage to the item and failure
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occurs when the cumulative damage exceeds a given threshold. Beyond this
classification, extreme and cumulative shock models may be mixed, and depen-
dencies between arrival times and magnitude of the shocks can be introduced.
We focus here on cumulative shock models because they are of interest for CBM
strategies where the noise is considered to be negligible. Then we have access
to X(t).

A generic way to introduce cumulative shock models is to use a marked point
process. The occurrence times of the shocks are denoted Tk, for k = 1, 2, 3,…,
and are generally random variables. The instantaneous damage caused by the
kth shock is defined by a variable Dk, which may be random and dependent on
the (random) time Tk and is called a mark. Then, the process {Tk,Dk; k ≥ 1} is a
marked point process.

Let N(t) be a counting process representing the number of shocks in the time
interval (0, t], see Chapter 10. The cumulative damage X(t) at time t is given by

X(t) =
N(t)∑
k=1

Dk. (12.40)

The distribution function of X(t) for x > 0 is defined by

Pr(X(t) ≤ x) =
∞∑

k=1
Pr(D1 + D2 + · · · + Dk ≤ x ∣ N(t) = k)Pr(N(t) = k)

and for x = 0 by

Pr(X(t) ≤ 0) = Pr(N(t) = 0).

If the increments are identically distributed with a given probability density func-
tion f and are independent from each other and from the process (Tk), then

Pr(X(t) ≤ x) =Pr(N(t) = 0) I(x≤0)

+
∞∑

k=1
∫

x

0
(f )∗(k)(u) du Pr(N(t) = k) I(x>0)

where (f )∗(k) is the kth convolution of the probability density function f . This fol-
lows from the summation rule for k independent and identically distributed ran-
dom variables with the same density f (see Chapter 10).

The Distribution of RUL(tj)
Assume that the observed cumulative damage due to shocks at time tj is m. If the
failure level is 𝓁, then the distribution of the RUL at time tj is

Pr(RUL(tj) ≤ t) = Pr
⎛⎜⎜⎝

N(tj+t)∑
k=1

Dk > 𝓁 ∣
N(tj)∑
k=1

Dk = m
⎞⎟⎟⎠
. (12.41)
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Then if 𝓁 − m > 0

Pr(RUL(tj) ≤ t) = Pr
⎛⎜⎜⎝

N(tj+t)∑
k=N(tj)+1

Dk > 𝓁 − m
⎞⎟⎟⎠

=
∞∑

k=1
∫

∞

𝓁−m
(f )∗(k)(x) dx Pr(N(tj + t) − N(tj) = k). (12.42)

Examples of how to use shock models for PM optimization are given by Zhu
et al. (2015) and Rafiee et al. (2015).

12.4.5 Stochastic Processes with Discrete States

When the state space is discrete or discretized, discrete state space degradation
models can be used. The most common are continuous-time Markov chains
(Markov processes) as described in Chapter 11. Several physical degradation
phenomena have by nature discrete state space. An example is the high-voltage
electrical motors for compressor systems in the oil and gas industry, which are
monitored by the amount of partial discharges. The number of partial discharges
decides the value of X(t), and the guidelines recommend to define only four
degradation states by putting thresholds on X(t). It is also quite common that the
degradation phenomenon is continuous, but the state space for X(t) is discretized
for convenience by guidelines. This is the case in civil engineering to define the
condition of structures such as bridges: by using inspection reports and measures,
the decision-maker is ranking a bridge between four degradation levels only.

Consider an item with n states, n is the new state and 0 is the failed state.
Intermediate states from n − 1 to 1 are degraded states. For a time homogeneous
degradation, the calculation of the distribution of RUL(tj) requires to calculate
the probability density function f̃n(x), f̃n−1(x),… , f̃1(x) of the sojourn times
T̃n, T̃n−1,… , T̃0 in nonfailed states. If the monitoring is continuous and we know
that the item enters the degraded state m at time tj, then

Pr(RUL(tj) ≤ t) = Pr

( m∑
k=1

T̃k ≤ t ∣ X(tj) = m

)

=
∫

t

0
f̃m ∗ f̃m−1 ∗ · · · ∗ f̃1(x) dx. (12.43)

If the monitoring is not continuous, tj may not coincide with the exact date upon
which the item enters a degraded state. If the model is a Markov process, this does
not matter because the only useful information is in which state the system is at
time tj, and (12.43) is still valid. If the model is not a Markov process, the calcula-
tion of the RUL distribution is more complicated because the time already spent
in the current state at time tj may influence the results.
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12.4.6 Failure Rate Models

A last option that can be mentioned is the one based on time-dependent failure
rate. Such models are used for imperfect maintenance policies, mainly to optimize
the reduction of the failure rate, the conditional failure rate, or the virtual age after
a failure has been repaired. Such models are discussed in Chapter 10, with focus
on CM optimization (i.e. what do to after failure).

12.5 Condition-Based Maintenance

As an introduction and a motivation for CBM, consider a single item that may be
maintained according to four different maintenance strategies: (i) only corrective
replacements, (ii) age-based replacements, (iii) block replacements, or (iv) ideal
replacements. Ideal replacement means that the item is preventively replaced just
before failure. Ideal replacement is obviously not conceivable except for some very
special cases.

By using the terminology and the notation in Section 12.3, the asymptotic cost
per time unit of a strategy with only corrective replacements is

C∞ = c + k
MTTF

, (12.44)

and the asymptotic cost per time unit for ideal maintenance is

C∞ = c
MTTF

. (12.45)

To obtain numerical results, assume that c = k = 50 cost units and that the
time-to-failure of the item is gamma distributed with MTTF = 375 time units and
standard deviation 50 time units. The asymptotic cost per time unit for age and
block replacements may be derived from (12.6) to (12.16), respectively, and are
shown in Figure 12.8 as a function of t0. The item is replaced preventively after
t0 time units in operation for the age replacement strategy and after t0 calendar
time units for the block replacement strategy. Optimal values for t0 (i.e. the value
of t0 that minimizes the mean cost per time unit) can be determined for both
strategies. The mean costs of the corrective and ideal strategies are constant
values. The asymptotic costs for age and block replacements are always lower
than the CM cost. In Figure 12.8, the asymptotic cost for block replacement is
seemingly higher than the CM cost for large values of t0, but this is due to an
approximation error for high values of t0 when calculating the cost. This error
is explained in Section 12.3.2 and is related to the assumption made that only a
single failure can occur before a preventive replacement.

The gap in Figure 12.8 between the minimal cost of the age-based strategy and
the ideal strategy illustrates the maximum benefit we can hope for with a CBM
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Figure 12.8 Comparison between four different (non-CBM) maintenance strategies.

strategy. The aim of the CBM strategy is, by monitoring, modeling, and predicting
degradation phenomena, to plan preventive replacements that come as close as
possible to the ideal strategy. The problem is that our monitoring, modeling, and
prediction of degradations are not perfect, they have a cost, and they are intro-
ducing uncertainties. It is then important to quantify precisely the added value of
CBM. A more detailed example is given by Zio and Compare (2013) and a more
general discussion on the application of mathematical models in maintenance is
given by Scarf (1997).

12.5.1 CBM Strategy

The main elements of a CBM strategy are as follows:
(1) A degraded state or a set of states for which a PM task is to be planned.
(2) A state or a set of states to which the item is put back after the PM task.
(3) A monitoring approach (continuous, inspection-based, or opportunistic) to

determine the state of the item.
The models presented in this section are delimited to a single item (or to a
uni-dimensional degradation model), and it is assumed that the actual degraded
state X(t) is directly measurable.
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We provide an overview of different CBM models and distinguish between
continuous monitoring and inspection-based monitoring. For continuous mon-
itoring, the current degradation state X(t) is assumed to be known at any time,
and the parameters to optimize may include the following:

• The state in which a maintenance task is planned to be started.
• The state to which the item is put back after the maintenance task.
• The maintenance duration, if the maintenance cost and its efficiency are depen-

dent on it.

For inspection-based monitoring, the current degradation state X(t) is assumed
to be known at inspection times only, and decisions related to maintenance are
taken at these times. Parameters to optimize may include the previous list, plus
the inspection dates/intervals.

In both cases, a generic degradation model is assumed with either discrete
or continuous state space. The common assumptions to all the models are as
follows:

• The monitoring is perfect meaning that the true state of the item is perfectly
known, continuously or at inspection date.

• Each PM task brings the item from a degraded state to the as-good-as-new state
or to a less degraded state (i.e. imperfect maintenance).

• The CM tasks always bring the item to the as-good-as-new state and have a
higher cost per time unit than the preventive ones.

• The cost of PM tasks may increase with the degree of repair.
• The PM tasks may have a higher cost if the item is in a more degraded state when

the PM task starts.
• It may be a penalty cost due to failure and possibly due to the sojourn time in

degraded states. This penalty cost can be caused by loss of production.

12.5.2 Continuous Monitoring and Finite Discrete State Space

Consider a discrete degradation model X(t) that is known at any time and that
takes values in a discrete and finite state space. Several CBM strategies are available
based on the following assumptions:

• The degradation X(t) takes values in a discrete finite state space with n states.
As an illustration, let n = 4.

• One of the states is considered to be as-good-as-new and one is regarded as failed.
The other states are regarded as degraded.

• The degradation is gradual, meaning that the item moves from one state to the
next more degraded state, until the failed state is reached.
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Maintenance Strategies
Consider the state transition diagram in Figure 12.9, where state 3 is the as-good-
as-new state, state 0 is the failed state, and states 2 and 1 are intermediate, degraded
states. Transitions from state k to state k − 1, for k = 1, 2, 3, are related to the degra-
dation phenomenon. The transition rate from state k to state k − 1 is denoted 𝜆k.
Transitions to a state with a higher number are related to maintenance tasks. Tran-
sitions from state 0 are CM. The transition from state 0 to state 3 corresponds to a
perfect repair (renewal), a transition from state 0 to state 2 is an imperfect repair
and a transition from state 0 to state 1 may be seen as a minimal repair. The degree
of repair for CM may be a parameter to optimize. When needed, a repair rate from
state k to state k + 1 is denoted by 𝜇k k+1, as shown in Figure 12.10.

The maintenance cost determines which of the PM strategies of Figure 12.10
that should be preferred. We may, for example, decide whether the PM task should
start when the item enters state 2 or 1, and whether or not it should be repaired to
the as-good-as-new state.

We start by highlighting some implicit assumptions related to the use of state
transition diagrams in PM planning. Case 1 in Figure 12.10 may be regarded as
a reference case with only CM, where the item is always repaired to the as-good-
as-new state (i.e. state 3). A PM task may be modeled by a transition from state k
to state k + 1, for k = 1, 2, with corresponding transition rates 𝜇k k+1. We consider
the PM strategies for the cases 2–5.

(1) When in state 1 or 2, the item can either degrade/fail or be maintained to a
better/as-good-as-new state. In practice, this means that:
● The item is not taken out of operation while it is maintained or
● The time spent in state 1 or 2 corresponds to a delay (i.e. maintenance is

planned but not started) and at the end of the delay, the item is put into the
better (or as-good-as-new) state immediately (i.e. the maintenance duration
is negligible compared to the delay).

(2) When assuming constant transition rates 𝜇13 or 𝜇12 in cases 4 and 5, this
implies, due to the memoryless property of the exponential distribution, that
if a PM task is planned or started in state 2 and the item degrades to state
1 before the maintenance is completed or the delay is over, the remaining
time spent in state 1 does not depend on the time already spent in state 2 to
preventively maintain the item. This may be acceptable in practice for some
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λ
1

λ
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λ
3

Figure 12.9 State transition diagram for a single item with degraded states.
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Figure 12.10 State transition diagram for a single item with degraded states and CBM.
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cases but not for all, and the modeling of delays with constant transition rates
can be questionable.

(3) When assuming constant transition rates 𝜆1, 𝜆2, 𝜆3, this implies, due to the
memoryless property of the exponential distribution, that the RUL at time tk
does not depend on the time already spent in the state in which the item is
observed at time tk.

Example 12.7 (Degradation and maintenance of multicomponent
systems)
Assume that the item is made of three identical components and one of the three
is sufficient for the item to function as required. This means that the item can be
modeled as a 1oo3:G parallel structure. In state 3, none of the components is failed,
in state 2, one of them is failed and in state 1, two of them are failed. As soon as
one component is failed (state 2), a repair task is started. Meanwhile, a second
component can fail and the item is put to state 1 before it can be put back to state
3. In such a case, the graphs of Figure 12.10 make sense but it may not be realistic
to consider constant repair rates for the two last strategies: the time spent in state
1 may depend on the time already spent in state 2 given the maintenance work
already done for the first failed component. ◻

Example 12.8 (Degradation and maintenance of bridges)
An increasing number of modern bridges are continuously monitored, where
sensor data provide an overall assessment of their structural health over time.
These data are used together with other information sources to trigger decisions
related to maintenance tasks. The state of the bridge is usually characterized by a
finite number of degraded states going from as-good-as-new to unacceptable. The
Norwegian Road Administration is currently using a scale with four states. If the
bridge is diagnosed to be in state 2 or 1, PM is scheduled and the bridge is kept
in operation. The maintenance strategy corresponds to case 4 in Figure 12.10.
During a maintenance task, the bridge continues to degrade, but with a very low
rate (the transition rate for the maintenance is much higher than the degradation
rate), but if it degrades to a lower state, the maintenance tasks to renew the
bridge are very different, such that the work done in the previous degraded state
may be disregarded. In this case, the assumption of constant repair rates may be
reasonable. ◻

Maintenance Cost
Let cij be the maintenance cost per time unit for bringing the item from state i to
state j. According to the assumptions for the maintenance costs, c03 ≥ c13 ≥ c23,
c13 ≥ c12, c12 ≥ c23. Let 𝛾j be the penalty cost per time unit due to sojourn in a
degraded or failed state j (e.g. due to loss of production). We have 𝛾0 ≥ 𝛾1 ≥ 𝛾2.
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If all the transition rates are constant, the model describing the maintenance
strategies are time-homogeneous Markov processes. The asymptotic cost per time
unit C∞ depends on the steady-state probabilities for each state. These probabil-
ities can be obtained numerically by using the results given for homogeneous
Markov processes in Chapter 11. They represent the mean time spent in each state
per time unit (mean proportion of time). The cost Cj

∞ for each case j in Figure 12.10
is determined as:

C1
∞ = c03𝜇03P0 +

2∑
i=0

𝛾iPi

C2
∞ = c13𝜇13P1 + C1

∞

C3
∞ = c12𝜇12P1 + C1

∞

C4
∞ = c23𝜇23P2 + c13𝜇13P1 + C1

∞

C5
∞ = c23𝜇23P2 + c12𝜇12P1 + C1

∞

where Pi is the steady-state probability for state i, 𝛾iPi is the mean loss of production
per time unit, and 𝜇ijPj is the mean number of maintenance tasks per time unit
from state i to state j. The numerical computation of the steady-state probabilities
Pi and an example of a Python simulation algorithm are provided on the book
companion site for each case. The numerical computation is valid only when
all the transition rates are constant.

If at least one of the transition rates is not constant, Monte Carlo simulation
should be used. The steady state may not exist anymore and other cost functions
have to be used, such as the cumulative mean cost per time unit for a given time
horizon t. Such a cost function depends on the mean sojourn time in each state
within [0, t]. An example of a simulation algorithm is provided on thebook com-
panion site for Case 4 when the transition rate 𝜇13 depends on the time spent
in state 2. The outputs of the simulation algorithms present the mean time spent
in each state, the mean number of failures, and the mean number of maintenance
interventions (preventive and corrective) in a specified time horizon. Numerical
examples are further studied in Problem 12.10.

It is possible to modify the state transition diagrams in Figure 12.10, such that the
item is taken out of operation during maintenance. A transition diagram, which
corresponds to case 4 in Figure 12.10, is shown in Figure 12.11, where 2R

, 1R, and
0R are the states where the item is under repair, d0, d1, d2 are the waiting rates for
a possible delays, and r0, r1, r2 are the repair rates. If there is no delay, one can
consider that transitions from states 2 and 1 to states 2R and 1R are immediate. If
there is a delay, the transition can be decided after a deterministic or a random
duration. In case of constant transition rates, a Markov process can be used. If not,
a piecewise-deterministic Markov process (PDMP) is recommended. An example
of a Python simulation algorithm is provided on the book companion site.
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Figure 12.11 State transition diagram for a single component with degraded states
taken out of operation during maintenance.

12.5.3 Continuous Monitoring and Continuous State Space

Consider a continuous degradation model X(t) that is known at any time and that
takes values in a continuous state space. We further assume that:

• The degradation level 𝓁 for which the item is considered to be failed is known.
• The repair duration is negligible.
• There is a delay before a maintenance task can be started, it is denoted 𝜏 and is

deterministic.
• The item is degrading continuously and may fail within the maintenance delay.
• The maintenance tasks, whether corrective or preventive, are perfect, both

return the item to the as-good-as-new state (i.e. a renewal).

These assumptions are realistic when the repair duration is short compared to the
delay, and when the downtime may be significant because of the delay. This is true
for systems that have a high reliability but are difficult to access, such as subsea
production systems in the offshore oil and gas industry, offshore platforms, off-
shore wind farms, hydroelectric dams. For such systems, it is also reasonable to
assume perfect CM and PM tasks because for many items, the material cost can
be very low compared to the delay cost (including preparation and moving).

Maintenance Strategy
The following PM strategy may be realistic for items with continuous monitor-
ing and continuous degradation: a preventive renewal is planned as soon as the
degradation level reaches a given level m and the actual renewal is started after
a delay 𝜏. Meanwhile, the item can reach the failure level 𝓁 and stay in the failed
state until the maintenance task is started. If so, the preventive renewal is replaced
by a corrective one. The objective is to optimize the level m for which the preven-
tive renewal is planned. Such a strategy has been extensively studied by Bérenguer
et al. (2003) and Grall et al. (2006).
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Maintenance Cost
With the given assumptions, the number of scenarios in a renewal cycle is very
limited: either the item does not fail within the delay or it does. In the first case, the
renewal cost is cm, and in the second case, the renewal cost is c𝓁 plus the downtime
cost per time unit 𝛾 multiplied with the downtime. The asymptotic mean cost per
time unit is:

C∞ =
cm Pr(T(h)

𝓁 > T(h)
m + 𝜏) + c𝓁 Pr(T(h)

𝓁 ≤ T(h)
m + 𝜏)

E(T(h)
m ) + 𝜏

+
𝛾E[(T(h)

m + 𝜏 − T(h)
𝓁 )I(T(h)

𝓁 ≤T(h)
m +𝜏)]

E(T(h)
m ) + 𝜏

=
cm Pr(T(h)

𝓁 > T(h)
m + 𝜏) + c𝓁 Pr(T(h)

𝓁 ≤ T(h)
m + 𝜏)

E(T(h)
m ) + 𝜏

+
𝛾(𝜏 − E[min (𝜏,T(h)

𝓁 − T(h)
m )])

E(T(h)
m ) + 𝜏

, (12.46)

where:

• T(h)
m and T(h)

𝓁 are the hitting times of degradation levels m and 𝓁, respectively.
• TR = T(h)

m + 𝜏 is the time interval between two renewals and E(TR) = E(T(h)
m +

𝜏) = E(T(h)
m ) + 𝜏 is the mean value.

• E[(T(h)
m + 𝜏 − T(h)

𝓁 )I(T(h)
𝓁 ≤T(h)

m +𝜏)] is the mean downtime in case of a failure within
the delay, that is, when T(h)

𝓁 ≤ T(h)
m + 𝜏. The term I(T(h)

𝓁 ≤T(h)
m +𝜏) equals 0 if T(h)

𝓁 ≥

T(h)
m + 𝜏 and 1 otherwise (indicator function). This means that the mean of the

downtime T(h)
m + 𝜏 − T(h)

𝓁 is non-zero only when the failure occurs before the PM
task is carried out.

The quantities Pr(T(h)
𝓁 > T(h)

m + 𝜏), E(T(h)
m ), and E[min (𝜏,T(h)

𝓁 − T(h)
m )] need to be

determined. If the degradation process is monotonically increasing and homoge-
neous:

Pr(T(h)
𝓁 > T(h)

m + 𝜏) = Pr(T(h)
𝓁 − T(h)

m > 𝜏)

= Pr(X(𝜏) ≤ 𝓁 − m)

and:

E(T(h)
m ) =

∫

+∞

0
Pr(T(h)

m > u) du

=
∫

+∞

0
Pr(X(u) ≤ m) du

For nonmonotonic processes such as the Wiener processes and trend models, this
is not true. It is a valid approximation if the nonmonotonicity may be neglected.
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In case of a gamma process, which is monotonically increasing, we get:

Pr(T(h)
𝓁 > T(h)

m + 𝜏) =
∫

𝓁−m

0
f
𝛼𝜏,𝛽

(x) dx,

E(T(h)
m ) =

∫

+∞

0 ∫

m

0
f
𝛼u,𝛽(x) dx du.

For E[min (𝜏,T(h)
𝓁 − T(h)

m )], we need the joint density function of (T(h)
m ,T(h)

𝓁 ). In
case of monotonic degradation:

fT(h)
m ,T(h)

𝓁
= 𝜕

2

𝜕u𝜕𝑣
Pr(T(h)

m > u,T(h)
𝓁 > 𝑣)

= 𝜕
2

𝜕u𝜕𝑣
Pr(X(u) ≤ m,X(𝑣) ≤ 𝓁)

Then the survivor function of (T(h)
𝓁 − T(h)

m ) is

G(s) =
∫

+∞

0 ∫

+∞

𝑣+s
fT(h)

m ,T(h)
𝓁
(u, 𝑣) du d𝑣.

Finally,

E[min (𝜏,T(h)
𝓁 − T(h)

m )] =
∫

𝜏

0
G(s) ds.

In case of a gamma process, we get:

fT(h)
m , T(h)

𝓁 (u,𝑣) =
𝜕

2

𝜕u𝜕𝑣
Pr(T(h)

m > u,T(h)
𝓁 > 𝑣)

= 𝜕
2

𝜕u𝜕𝑣
Pr(X(u) ≤ m, X(𝑣) ≤ 𝓁)

= 𝜕
2

𝜕u𝜕𝑣 ∫

m

0 ∫

𝓁−x

0
f
𝛼u,𝛽(x) f

𝛼(𝑣−u),𝛽(y) dy dx

=
∫

m

0 ∫

𝓁−x

0

𝜕
2

𝜕u𝜕𝑣
f
𝛼u,𝛽(x) f

𝛼(𝑣−u),𝛽 (y) dy dx

because the increments are independent. Numerical examples are further studied
in Problem 12.9.

12.5.4 Inspection-Based Monitoring and Finite Discrete State Space

With inspection-based monitoring, the item state is known at inspection dates,
and the maintenance tasks can be triggered only at these dates. This is the case for
many passive items such as valves, pipelines, vessels, any standby safety systems
(e.g. fire or gas detectors), and many parts of a structure in civil engineering. All
these items may not provide by themselves any signal that can be monitored con-
tinuously as a degradation indicator. They need to be activated or inspected to be
diagnosed in a given state.
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Consider a degradation model X(t), which takes values in a finite discrete state
space. Further, assume that:

• The degradation model is the same as the one used in Section 12.5.1.
• The item is inspected at deterministic dates 𝜏1, 𝜏2, 𝜏3,…. At inspection, the item

is taken out of operation and can be preventively maintained without any delay.
• The maintenance task durations are negligible (compared to the item lifetime),

and there is no delay for intervention (the item is easy to access).
• The CM and PM tasks return the item to an as-good-as-new state.

These assumptions are realistic when the repair duration is very short compared
to the item lifetime and when the delay before intervention at inspection date can
be neglected. This is true for systems that are very reliable and easy to access once
an inspection is launched. In addition, for many production systems, planned
inspections, and associated maintenance tasks are often triggered by stopping or
reducing the production process when the impact on the production is as low
as possible or when the loss can be compensated by redundant systems. The
production losses that have to be taken into account are mainly the ones due
to unexpected failures between two inspections and not the ones due to stop of
production at inspection dates.

Time-Based Inspections Versus Condition-Based Inspections
Inspections may be condition-based, meaning that the date of the next inspection
is determined by the degraded state at the current inspection date. The formalism
required in such a case is outside the scope of the book.

Assume that the inspections are fixed according to a calendar (they are usually
periodic). This is the easiest case to model and it makes sense in practice, when
some periods of time are more suitable to reduce the production rate, put some
items out of operation and perform inspections or PM.

Maintenance Strategy
If the transition rates from a state k to a more degraded state k − 1 are constant,
the item degradation model between two inspections is a Markov process. The
maintenance tasks can be modeled by a transition matrix 𝔹 as explained in
Section 11.11. The complete model including inspection and maintenance is a
multiphase Markov process. An example is given below. Consider the notation
in Figure 12.9. The transition rate matrix of the Markov process between two
inspections is:

𝔸 =

⎛⎜⎜⎜⎜⎝

0 0 0 0
𝜆1 −𝜆1 0 0
0 𝜆2 −𝜆2 0
0 0 𝜆3 −𝜆3

⎞⎟⎟⎟⎟⎠
.



�

� �

�

12.5 Condition-Based Maintenance 585

Let P(t) = [P0(t),P1(t),P2(t),P3(t)] be the time-dependent state probability vector,
where Pj(t) is the probability that the Markov process (degradation model) is in
state j at time t [Pj(t) = Pr(X(t) = j)]. The vector of state probabilities after the
maintenance task at time 𝜏i is P(𝜏i)𝔹, where 𝔹 is a 4 × 4 matrix such that the sum
of the entries in each line is 1. The entry 𝔹ij in the matrix 𝔹 is the probability that
the item is in state j after the maintenance task, given that it was in state i just
before the maintenance task is completed.

The matrix 𝔹 depends on the maintenance strategy applied to the item after
inspection. If, for example, the PM is triggered in state 1 and if all maintenance
tasks are as-good-as-new, we have

𝔹 =

⎛⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
.

The analytical expression of the time-dependent state probability vector is given
for 𝜏i ≤ t < 𝜏i+1 by

P(t) = P(0)

( k=i∏
k=1

e(𝜏k−𝜏k−1)𝔸 𝔹

)
e(t−𝜏i)𝔸. (12.47)

Python scripts for the numerical computation and for Monte Carlo simulation of
the multiphase Markov process are provided on the book companion site.
If one of the transition rates is time-dependent, it is necessary to use a PDMP as
described in Section 11.12.

Maintenance Cost
The process X(t) has no steady state and the maintenance cost per time unit
has to be calculated on a given finite time horizon by using the time-dependent
state probabilities P(t). Consider, for example, the cumulative maintenance cost
between two inspections in the time interval (𝜏i, 𝜏i+1]. It includes the maintenance
costs at time 𝜏i+1, that is to say c13 if the item is in state 1, or c03 if the item is in state
0. Because CM and PM are performed only at specified inspection dates, a single
failure can occur between two inspections. The cumulative cost in (𝜏i, 𝜏i+1] is

C((𝜏i, 𝜏i+1]) =
c03 Pr[X(𝜏i+1) = 0] + c13 Pr[X(𝜏i+1) = 1]

𝜏i+1 − 𝜏i

=
c03P0(𝜏i+1) + c13P1(𝜏i+1)

𝜏i+1 − 𝜏i

It is possible to consider a penalty cost due to the sojourn time in degraded or
failed states. It is denoted 𝛾j, for j = 1, 2, 0. In this case, failures and degraded states
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may be detected by a loss of production, but PM and CM tasks are still performed
at inspection dates. Then we have

C((𝜏i, 𝜏i+1]) =
c03P0(𝜏i+1) + c13P1(𝜏i+1)

𝜏i+1 − 𝜏i

+

∑2
j=0 𝛾j ∫

𝜏i+1
𝜏i

sfT̃j
(s)ds

𝜏i+1 − 𝜏i
. (12.48)

If there is an inspection or a maintenance duration that can be considered as
deterministic and the item is stopped during maintenance tasks, the same model
can be used with a time lag at inspection dates, see Section 11.11. If the inspec-
tion or maintenance durations are random with exponential density, a multiphase
Markov process can be still used but with additional states and additional phases.
The two last cases are studied in Problem 12.10.

12.5.5 Inspection-Based Monitoring and Continuous State Space

Consider a continuous degradation model X(t) that is known only at inspection
dates and that takes values in a continuous state space. The same assumptions as
in Section 12.5.4 are made for the maintenance/inspection tasks, by considering a
more generic framework where the inspection dates may be condition-based, such
that the next inspection date is updated according to the item condition observed
at the current inspection date.

Maintenance/Inspection Strategy
Consider the following PM strategy, which is realistic in case of inspection-based
monitoring and a continuous degradation state space: a preventive renewal is
started at the first inspection date upon which the degradation level is observed
above a degradation level m, where m < 𝓁. The cost is denoted cm. In addition,
a corrective renewal is performed at the first inspection date upon which the
degradation level is observed above the degradation level 𝓁. The cost is denoted
c𝓁 .The cost of the downtime per time unit is denoted 𝛾 when the item failed
between two inspections. The next inspection is rescheduled after each inspec-
tion according to the current degradation level (periodic inspection strategy or
calendar-based inspection strategy are special cases). Formally, the time of the
next inspection Tn+1 is random and is defined by Tn+1 = Tn + g(XTn

) where g(⋅)
is a decreasing function from [0,m) to R+. Periodic inspections may be modeled
by setting g(XTn

) = 𝜏, where 𝜏 is a constant value that is independent of the item
state and the time. This gives an optimization problem for m and the date of the
next inspection.
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Maintenance Cost
To calculate the maintenance cost requires studying the process {X(t), t ≥ 0} and
the maintenance effects at inspection dates. Analytical developments of the main-
tenance cost are not straightforward and require knowledge that is outside the
scope of this book. Consequently, we delimit the presentation to a brief formula-
tion of the cost function and propose to evaluate it by providing a solution with
Monte Carlo simulation. A Python script is available on the book companion
site. More details on maintenance cost calculations are available in Grall et al.
(2002) and Omshi et al. (2019).

Let C(t) be the cost function taking into account the cost of each type of task as
well as the cost of inactivity of the system between 0 an t,

C(t) = cmNm(t) + c𝓁N𝓁(t) + 𝛾d(t),

where N𝓁(t) is the number of corrective tasks, c𝓁 is the cost of one corrective task,
Nm(t) is the number of preventive tasks between 0 and t,cm is the cost of one pre-
ventive task, d(t) is the time of inactivity of the system between 0 and t, and 𝛾 is
the downtime cost per time unit. Then we have

C∞ =
E[C(TR)]

E(TR)
=

E[cmNm(TR) + c𝓁N𝓁(TR)] + 𝛾 E[d(TR)]
E(TR)

,

where TR is the renewal cycle. A renewal occurs at the first inspection time when
the degradation level of the item is observed above level m. The optimization con-
sists in finding the preventive repair threshold m and the inspection function g(⋅)
for which C∞ is minimum. For instance, if we choose a linear maintenance func-
tion g(x) = mmax − x

(
mmax−mmin

m

)
, we must find the three numbers m, mmax, and

mmin for which C∞ is minimum.

12.6 Maintenance of Multi-Item Systems

When addressing maintenance optimization problems at the system level, it is
required first to model the system behavior and then to integrate maintenance
effects into the system model. These two stages are reviewed in this section.

12.6.1 System Model

As described in Chapters 4–6, a system model must include:

• The system structure
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• The stochastic behavior of each item
• The interactions between the items

For all these items, we refer to Chapters 6 and 11 and see them as an application
of reliability theory to maintenance modeling.

Models for the System Structure
The system structure is a representation of how the items are combined to fulfill a
main function at the system level, as defined and formalized in Chapters 2 and 4.

Stochastic Models for Single Items
A single item is modeled by a state space and by probability distributions to
describe the sojourn time in each state. The two main classes of item models are
as follows:

Time-to-failure models. The state space of the items is reduced to two states (func-
tioning or failed). These models are presented in Chapters 3 and 5. They are
widely used in practice because they often rely on a reasonable amount of data
(failure dates). In this class, the exponential distribution has a particular place
because it is used for items that do not experience any wear (i.e. having constant
failure rate). For degrading items, it is possible to use other distributions, such
as the Weibull distribution, with increasing failure rate.
With time-to-failure models for each item, the degradation at the system level
may be interpreted as the number of failed items or the number of functioning
states with some failed items.

Degradation models. Each item is described by a degradation model, either a dis-
crete state space, a continuous one, or a mixture of both. The degradation at the
system level may be defined by a multi-dimensional degradation process or by
a scalar function of the degradation of the individual items.

Interactions Between Items
We usually distinguish three types of interactions between items.

Economic dependencies imply that the maintenance cost of a group of items is not
equal to the sum of the maintenance cost of the individual items. There are two
main cases:
● Positive economic dependencies. The maintenance cost of several items at the

same time is lower than the sum of individual maintenance costs. This, for
example, the case for a series structure where the maintenance cost may be
reduced by sharing the maintenance preparation costs and by reducing the
downtime of the system during the maintenance.

● Negative economic dependencies. The maintenance cost of several items at the
same time is greater than the sum of individual maintenance costs. This is,
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for example, the case of parallel structures where grouping the maintenance
tasks can lead to increased system downtime.

These dependencies are modeled with the maintenance strategy and are part of
the maintenance model.

Statistical dependencies (also called stochastic dependencies) occur when the
stochastic behavior of some of the items are dependent, which means that
their failure dates are dependent in the sense given by probability theory.
These dependencies are studied in Chapter 8. In practice, this corresponds to
situations where the items are subjected to the same harsh environment or
shocks (e.g. common-cause failures), when the items share the same load and
the failure of an item implies a redistribution of the load (load sharing), or
when the failure of one item can trigger the failure of other items (i.e. cascading
failures). Such dependencies are modeled with the stochastic behavior of each
and every item.

Structural dependencies occur when an item cannot be maintained without
impacting other items. This is a major challenge, for example, for systems that
are very difficult to access and should be designed as compact as possible such
as in subsea industry, aerospace industry, or nuclear industry. When designing
such systems, it is important to split them into suitable modules that are stacked
on top of each other and to place the least reliable modules on the top of the
stack. This process is called stacking and is among the most challenging parts
of a system development project. Observe also that the smaller the modules,
the more connectors are needed and the higher the total failure rate. The way
the stack is designed will have a major influence on the way the system can be
maintained and the maintenance of one module can imply to retrieve some
others. These dependencies have to be part of the maintenance model.

12.6.2 Maintenance Models

PM at the system level means that maintenance tasks are performed before the
whole system is failed. In some ways, the number of failed items, their importance
factors, and their own degradation levels (if any) can be used to define the state of
the system and to decide on PM tasks.

Opportunistic Maintenance and Grouping
Opportunistic maintenance is only relevant in cases where the PM task requires
the system or some subsystem to be shut down. Opportunistic maintenance is
also called opportunity maintenance. Opportunities occur when the system is shut
down due to production or administrative reasons, or when failures occur that
either shut down the system or that require system shutdown during the corrective
repair task.
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Definition 12.2 (Opportunistic maintenance)
Maintenance task that is deferred or advanced in time and is performed when an
unplanned opportunity occurs. ◻

One of the most developed areas for multi-item maintenance models is
dedicated to economic dependencies and grouping strategies to optimize oppor-
tunistic maintenance. They are not developed here. The main issue is to optimize
groups of items that are maintained preventively or correctively at the same time
to save setup costs. This is, most of the time, a discrete optimization problem
with time-to-failure models for each item. When the PM tasks on some items
are performed at a failure date, we speak about an opportunistic maintenance
strategy. This is of interest in series structures, when the repair of one failed item
stops the whole system production. It may then be worthwhile to perform PM on
some other items at the same time (named grouping). Such strategies may give
setup-cost savings.

For a series structure, theoretical results show that the optimal grouping strategy
is among a limited set of possible ones. Considering that all the items are stochasti-
cally independent, the PM date is first optimized individually for each item. Then,
at a given possible time of maintenance, the optimal group for PM tasks is among
those with the nearest optimal PM dates obtained individually. What has to be
optimized is the number of items to be grouped. But if there is redundancy in the
system structure, these results are not true anymore because grouping PM tasks
can have a bad side effect by reducing the whole system’s reliability or availability.
In this case, it is required to list all the possible ways to group maintenance tasks.
With a high number of items, exact solutions are not tractable within a reasonable
time and have to be replaced by heuristics. Maintenance grouping optimization
with a fixed grouping schedule is discussed by Cho and Parlar (1991), Dekker and
Scarf (1997), and Nicolai and Dekker (2008), and dynamic grouping schedules are
discussed by Do and Barros (2017) and Vu et al. (2018). For further information
on opportunistic maintenance, see Bouvard et al. (2011) and Shafiee et al. (2015).

Condition-Based Maintenance
When the items are independent and the CBM tasks are decided at the item’s
state level, the tools described in Chapter 6 may be used in combination with item
models. Each item may, for example, be modeled by an isolated gamma process
or Markov process representing independent degradation processes and isolated
maintenance strategies. Next, the system availability is calculated as described in
Chapter 6, by combining the item availabilities with a structure function. On the
other hand, when the items are dependent or when the maintenance tasks are
decided at the system level (meaning that the tasks are decided according to the
system state and not for each item) such an approach is not adequate. A review
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of CBM for systems with multiple dependent components is provided in Keizer
et al. (2017). There is an extensive literature dedicated to prognostics and CBM
for multi-item systems. Several examples are provided by Castanier et al. (2005),
Deloux et al. (2016), and Zhang et al. (2019).

The current literature distinguishes three main modeling frameworks to address
CBM at the system level:

Scenario-based approaches rely on describing all the possible scenarios that may
occur between two renewals of the system. This approach may be used when the
number of scenarios is very limited (often 2) with stochastic dependencies, or
when the number of items is high but where the items are independent such that
the scenarios can be captured by the structure function. Such models are used
to identify if we have a renewal process, a semi-regenerative renewal process, or
a Markov renewal process. The scenarios are built case by case, and may require
a theoretical basis that is beyond the scope of the book. Section 12.6.3 describes
what can be done with simple tools when the items are independent.

State-transition approaches as described in Chapter 6 with Monte Carlo simula-
tion, or with Markov processes and their extensions (e.g. piecewise determin-
istic Markov processes) as described in Chapter 11. They rely on a description
of the system states and the possible transitions between them. This may be
a solution when the number of items is still limited (it should be possible to
list “by hand” all the system states required to calculate the cost function) and
can be useful for stochastic or structural dependencies. The approach may be
used when the number of scenarios is too high to be exhaustively listed in a
scenario-based approach. Such models can be a basis for numerical computa-
tion of Kolmogorov equations when a Markov process is used or for building a
discrete event simulation algorithm with Monte Carlo simulation.

Dedicated modeling languages do not require the analyst to give a hand-made
descriptions of all the system states. The idea is to structure the model-
ing work to handle a higher number of system states than with the two
previous approaches. The true system states are automatically computed
from a higher level description of the system or at least from a structured
description of subsystems. The state probabilities are usually estimated with
Monte Carlo simulation. Many modeling languages and associated software
programs are available for this approach. A brief list is provided on the book
companion site.

12.6.3 An Illustrative Example

Consider a safety-instrumented system (SIS) that is represented by the RBD in
Figure 12.12. A thorough introduction to SISs is given in Chapter 13.
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Channel 1

Channel 2

Channel n

Cc

Ca Cb

Ca Cb

Ca Cb

Figure 12.12 RBD of a safety-instrumented system (SIS).

• The redundant structure corresponds to the mechanical part of the system
(actuators). In this structure, each path can be seen as a channel with several
items. There are n channels and every channel i (1 ≤ i ≤ n) may have two types
of failure modes that can be modeled by two items in series (with indices a and
b, respectively).

• The item with index c, in series with the redundant actuators, corresponds to a
logic solver.

The following assumptions are made:

• Partial inspections (partial tests) are performed after time intervals of length Δ,
at times 𝜏1, 𝜏2,… , 𝜏m−1, such that 𝜏k = kΔ. The whole system is renewed at the
end of regular intervals of length 𝜏 = mΔ.

• During the partial tests, failure modes associated to index a are detected, and
appropriate maintenance tasks are planned. The tasks can correspond to com-
plete renewal, renewal in case of an item failure, or imperfectly maintained
(preventively or correctively). Failures of item b remain undetectable.

• The item with index c is continuously monitored. Its failure is supposed to be
immediately detected due to embedded self-diagnostic functions.

• The item with index c is not exposed to degradation. It is modeled by a
time-to-failure model with constant failure rate 𝜆c.

• The items with indices a and b are exposed to degradation. Items a are
modeled by a discrete state degradation models and items b are modeled by a
time-to-failure model with time-dependent failure rate function.

• The time to repair item c can be taken into account as a constant value mc.
• The time to repair items of type a can be neglected or be a constant equal to ma.
• All the items are supposed to be independent regarding structural or stochastic

dependencies.

Degradation Model for Items of Type a
Assume that failures of items of type a are caused by degradation. The degradation
is modeled by a discrete state Markov process with 𝜅 + 1 states. State 𝜅 is the new
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state at time t = 0, states 1,… , 𝜅 − 1 are functioning states where the degradation
increases with the decreasing state number, and state 0 is the failed state. The
degradation of a type a item between two renewals is modeled by a discrete state
Markov process with transition 𝜆a,0 = 0 from state 0 to any other state, and transi-
tion rates 𝜆a,k from state k to state k − 1, for k = 1,… , 𝜅. The transition matrix is
given by:

𝔸 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 … 0 0
𝜆a,1 −𝜆a,1 0 … 0 0

0 𝜆a,2 −𝜆a,2 … 0 0
… … … … … …
0 0 … 𝜆a,𝜅−1 −𝜆a,𝜅−1 0
0 0 0 … 𝜆a,𝜅 −𝜆a,𝜅

⎞⎟⎟⎟⎟⎟⎟⎟⎠

. (12.49)

CBM Strategy
During one partial inspection, items of type a can be renewed systematically,
renewed if they are failed, or imperfectly maintained (preventively or correc-
tively). To model these strategies, define a matrix 𝔹 of entries 𝔹k,j, where 𝔹k,j is
the probability that an item in state k, just before the maintenance will be in state
j after the maintenance task. Observe that

∑K
j=1 𝔹k,j = 1.

If item a is renewed at each inspection, then for any k, 𝔹k,𝜅+1 = 1, and 𝔹k,j = 0
for j ≠ 𝜅 + 1. If the item is renewed only when a failure occurs, then 𝔹1,𝜅+1 = 1
and 𝔹k,k = 1, for k ≠ 1. For imperfect PM, all the cases can be considered with,
for example, 𝔹k,j = 1 for any k ≥ m and for a given j < k. Then m − 1 is the PM
threshold above which a PM has to be performed and j − 1 is the degradation level
after imperfect maintenance.

Maintenance Cost
Consider the system performance within the renewal time interval [0, 𝜏) and let
 be the set of the system functioning states. The system states are denoted 𝜂 =
(𝜂1,… , 𝜂n) with 𝜂i = 1 if channel i is functioning and 𝜂i = 0 if it is failed.

We calculate the system availability AS(t) in the interval [0, 𝜏) when the time to
repair an item of type a is negligible. Let Ac(t) be the availability at time t of item c
and Ai(t) the availability of channel i. The availability A(t) of the whole system is
given by:

AS(t) = Ac(t)
∑
𝜂∈

n∏
i=1

[Ai(t)]𝜂i [1 − Ai(t)]1−𝜂i . (12.50)

If item c is not available at time t it means that a self-diagnosed failure occurred
in the time interval [t − mc, t). Because the occurrences of these failures are
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modeled by an HPP with rate 𝜆c, this event occurs with a probability 1 − e−𝜆cmc ,
such that

Ac(t) = e−𝜆cmc . (12.51)

The availability Ai(t) for channel i is

Ai(t) = Rb(t)Aa(t), (12.52)

where Aa(t) is the availability of item a at time t and Rb(t) is the survivor function
of item b (recall that failures of item b are not detectable).

To calculate Aa(t), we describe the degradation of a type a item. If t ∈ [𝜏k, 𝜏k+1),
its state probability vector P(t) = [P0(t),… ,P

𝜅
(t)] equals:

P(t) = P(0)(eΔ𝔸𝔹)ke(t−𝜏k)𝔸,

where Pj(t) is the probability that a type a item is in state j. Then Aa(t) is obtained
by summing the Pi(t)’s corresponding to functioning states.

We can now calculate the availability. By denoting N(𝜂), the number of channels
in a functioning state in configuration 𝜂, the availability is given by:

AS(t) = Ac(t)
∑
𝜂∈

[Rb(t)Aa(t)]N(𝜂)[1 − Rb(t)Aa(t)]n−N(𝜂)

= Ac(t)
∑
𝜂∈

n∑
j=N(𝜂)

(−1)j−N(𝜂) Cj−N(𝜂)
n−N(𝜂)[Rb(t)Aa(t)]j

The average availability in (0, 𝜏) is

Aav(0, 𝜏) =
1
𝜏 ∫

𝜏

0
AS(s) ds

= e−𝜆cmc

𝜏

m∑
i=1

∑
𝜂∈

n∑
j=N(𝜂)

(−1)j−N(𝜂) Cj−N(𝜂)
n−N(𝜂) ∫

ti

ti−1

[Rb(s)Aa(s)]j ds

This formulation can be easily extended with a time lag, when the time to repair
type a items is constant and equal to ma. This means that after an inspection and
a maintenance task, the system is restarted at time 𝜏k + ma.

Various maintenance costs can be calculated by using AS(t). For example, for a
given matrix 𝔹 and the corresponding costs related to the maintenance/inspection
tasks, the benefits in terms of availability can be evaluated. For safety instrumented
systems, what is important is that the system is available when required. A cost
function is usually not considered at such, but the average availability in a given
period of time Aav(0, 𝜏) should be kept above a specified safety limit, at the lowest
possible maintenance cost.
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12.7 Problems

12.1 Consider an item that is replaced with a new item of the same type after
regular intervals of length 𝜏. If the item fails within a replacement interval,
it is repaired to an as-good-as-new state. Show that the limiting availability
A of the item does not exist.

12.2 An item has constant failure rate 𝜆 = 5 × 10−4 h−1. When the item fails, it
is repaired to an as-good-as-new state. The associated mean downtime is
six hours. The item is supposed to be in continuous operation.
(a) Find the average availability Aav of the item.
(b) How many hours per year will the item on average be out of opera-

tion?

12.3 A machine with constant failure rate 𝜆 = 2 × 10−3 h−1 is operated 8 h/d,
230 d/yr. The mean downtime required to repair the machine and bring
it back into operation is MDT = 5 hours. The machine can only fail dur-
ing active operation. If a repair task cannot be completed within normal
working hours, overtime will be used to complete the repair, such that the
machine is available next morning.
(a) Determine the average availability of the machine (during the

planned working hours)
(b) Determine the average availability of the machine if the use of over-

time were not allowed

12.4 An item is exposed to wear and has failure rate function z1(t) = 𝛽t.
(a) Determine the survival probability R(t) of the item at time t = 2000

hours, when 𝛽 = 5 × 10−8 h−2.
The item is to be overhauled after regular intervals of length 𝜏. Assume
that the overhaul will reduce the failure rate and that we may use the
following model:

z(t) = 𝛽t − 𝛼k𝜏 for k𝜏 < t ≤ (k + 1)𝜏,

where k is the number of overhauls after time t = 0.
(a) Draw a sketch of z(t). Explain what is meant by the term 𝛼k𝜏. Do you

consider this model to be realistic?
(b) Determine the survivor function R(t) at time t = k𝜏, which is just

before overhaul number k. Draw a sketch of R(t) as a function
of t.
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(c) Find the conditional probability that the item is functioning just
before overhaul k + 1, when you know that it was functioning
just before overhaul k.

12.5 Consider the age replacement strategy, and find the mean time between
actual item failures, E(Yi) when the distribution of the time-to-failure T
of the item has
(a) An exponential distribution with failure rate 𝜆. Give a “physical”

interpretation of the result you get.
(b) A gamma distribution with parameters (2, 𝜆).

12.6 Consider the block replacement strategy that is described in Section 12.3.2,
and find the optimal number of spares when the cost of a spare, cs per
spare item and per time unit is included.
(a) Determine the optimal average maintenance cost including the aver-

age spare cost as a function of the block replacement interval t0 and
the number m of spare items.

(b) Plot the curve of the optimal average maintenance cost as a function
of m. Assume that the time-to-failure T has a gamma distribution
with parameters (𝛼, 𝛽). Select realistic values for the necessary input
parameters and generate the plot.

12.7 Consider an item that is inspected every 15 months (p = 15) and the total
number of inspections is 35 (n = 35) when the first inspection is “fake”
because the system is new and therefore in a perfect state. Assume that the
system is experiencing degradation, that this degradation phenomenon
depends on time and is, in essence, deterministic and monotonically
increasing. The randomness is only due to measurement noise inherent
to the inspection. We first simulate the degradation (i.e. we generate
a “toy” dataset), and then estimate the parameters of the degradation
model on this dataset. We are in the ideal situation where the model
we use for the simulation is the one we use for the estimation.The
degradation X depends on the time according to the following equation:

X(t) = 0.001 t + 0.001 t2
.

The observation Y (t) of X(t) is defined as Y (t) = X(t) + 𝜖(t) where 𝜖(t) is a
Gaussian noise (i.e. a normally distributed noise with mean and standard
deviation equal to 0 and 100, respectively).
(a) The first step is to create a script that generates one history (i.e. the

samples from t = 0 to t = p n) of the degradation. To do so:
● Define a vector of times for inspections;
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● Calculate for each time the corresponding actual degradation;
● By using Monte Carlo simulation, simulate the noise associated to

the degradation measurement.
(b) The second step is to estimate the degradation parameters by using

the dataset. To do so:
● Create a script that estimates parameters of polynomial time

depending on degradation model with least square method.
● Evaluate, visually, the prediction quality by plotting several paths of

the theoretical model and the ones of the estimated model beyond
the last inspection, until a failure level 𝓁 = 5000.

● By using these prediction paths, compare the empirical probability
functions (the histograms) of the hitting time of degradation level
𝓁 obtained with the theoretical model and the estimated one. They
correspond to the empirical probability functions of the RUL at the
time of the last inspection. Plot the two empirical cumulative dis-
tributions.

(c) Modify the parameters to study the impact of the inspection number
and/or the inspection period on the estimation quality.

12.8 Consider an item that is inspected every p = 15 months where the
total number of inspections is n = 6. Assume that it is experiencing
degradation between two inspections and that the phenomenon is, in
essence, stochastic and monotonically increasing: The increments of
degradation between two inspections have some randomness but they
are always positive.

We first simulate the degradation (i.e. we generate a “toy” dataset),
and then estimate the parameters of the degradation model based on this
dataset. We are in the ideal situation where the model used for the simu-
lation is the one we use for the estimation. We want a script that allows
having a gamma or an exponential distribution of the increments.
(a) The first step is to create a script that generates m = 50 samples

(named also histories or paths) of a degradation process with degra-
dation increments following an exponential density or a gamma
probability density function between two inspections. To do so:
● Use Monte Carlo simulation to simulate the increments: n − 1

increments for every path, such that we get (n − 1) x(m) incre-
ments. Store these increments in a matrix of size (n − 1,m). Plot
your dataset.

● Build the paths by summing the increments related to each path.
(b) The second step is to estimate the parameters used for simulating the

dataset, by using the dataset itself. To do so:
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● Consider that you observed the n simulated paths at inspection
dates. Transform these paths into increments.

● Estimate the parameters of the probability density function of the
increments by maximizing the likelihood function.

● In order to evaluate the quality of the estimates, plot on the same
graph, the probability density function obtained by the estimated
parameters, with the true parameters (the one used to simulate
data), and the histogram corresponding to the dataset (i.e. the
histogram of degradation increments).

(c) Modify the parameter values to study the impact of the number of
path, number of inspections, inspection period on the estimation
quality.

(d) For a true dataset (not simulated), how can we decide whether the
degradation increments are following an exponential or a gamma dis-
tribution?

12.9 The degradation of an item can be discretized in four levels (level 1 is new,
level 4 is failed) and the degradation level is continuously known. Assume
that a maintenance action can begin without any delay.
(a) List all the possible maintenance strategies, preventive, and correc-

tive.
(b) What assumption(s) do you need to make to model the maintained

item as a Markov process?
(c) Assume that you choose a maintenance strategy for which correc-

tive maintenance and preventive maintenance return the item to an
as-good-as-new state, and a PM is only performed when the item is in
the degradation level 3. Determine the state transition diagram and
the corresponding transition rate matrix when the transition rates for
the degradation phenomenon are all equal to 10−4 h−1, the preventive
repair rate equals 2 × 10−2 h−1 and the corrective repair rate equals
10−2 h−1.

(d) Calculate the item availability as a function of t and make a plot of the
availability.

(e) Calculate the MDT (the item is considered to be failed only when
degradation level 4 is reached)

(f) Discuss (without doing any calculation) how you could choose the
best maintenance policy among all the possible ones, if the criteria to
optimize is the asymptotic cost per time unit. List all the assumptions
and the parameters you need.

12.10 Consider an item that experiences a degradation phenomenon modeled
by a gamma process with parameters 𝛼 and 𝛽. The degradation is
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then modeled by a scalar indicator that is continuously increasing. The
monitoring is continuous and 𝓁 is the degradation level that is considered
to be the failure level. We want to introduce a PM strategy such that a
PM task is planned when the degradation reaches a level m, such that
m < 𝓁. The optimization problem is then: “What is the optimal value of
m given that there is a delay 𝜏 between the time when the maintenance
is planned and the time when the maintenance is actually started? Such
delays can be due to time to prepare, gather the maintenance team, come
to the spot, etc.” The assumptions are:
● The cost of item replacement (whether corrective of preventive) is c,
● The cost of downtime per time unit is 𝛾 ,
● The maintenance duration, once the maintenance is started, is negligi-

ble,
● The repair (preventive or corrective) brings the item to an as-good-as-

new state.
(a) Recall the definition of the gamma process.
(b) Derive the formula that gives the mean asymptotic cost per time unit,

identify the renewal cycle and the quantities you need to assess.
(c) Make a script that simulates the gamma process and the maintenance

strategy.
(d) Use the corresponding script to approximate the quantities of interest

by running a sufficient number of Monte Carlo simulations.
(e) Use the script to “play around” with different parameters. The initial

values you should return after every question are as follows: 𝛼 = 9,
𝛽 = 0.5, 𝓁 = 500, m = 400, 𝜏 = 2.5 hours, c = 1000, 𝛾 = 10 000.

i. Make variations of 𝛼 and discuss the impact on the histograms of
T(h)

m (hitting time of level m) and of T(h)
𝓁 (hitting time of level 𝓁).

ii. Make variations of m below and above 400 and discuss the value
of the cost, the downtime. Can you identify an optimal “region”
for the value of m?

iii. Make variations of 𝜏 below and above 2.5 and discuss the value of
the cost, the downtime.

iv. Make variations of 𝛾 below and above 10 000 and discuss the “op-
timal region” for m.

(f) Check you results with analytical solutions in the special case when
the gamma distribution is replaced by an exponential distribution for
the degradation increments.

12.11 Consider an item with a single degraded state (state 2 is as-good-as-new,
state 1 is degraded, state 0 is failed). The degradation is gradual, meaning
that the item moves from state 2 to state 1 (with transition rate 𝜆21) and
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then from state 1 to state 0 (with transition rate 𝜆10). Numerical values per
hour: 𝜆21 = 10−4, 𝜆10 = 10−3.
(a) Assuming that the monitoring is continuous:

(i) List all the possible maintenance strategies we can implement.
(ii) Choose one maintenance strategy and explain which model you

can use to calculate the probability to be in each state at any time.
Numerical values per hour: 𝜇01 = 1, 𝜇12 = 1, 𝜇02 = 0.1.

(iii) Provide some performance indicators we can derive from the prob-
ability to be in each state at any time.

(iv) Assume that two of these items are put in a parallel structure and
are independent, and calculate the availability of the system for
your maintenance strategy at times 1000, 10 000, 50 000 hours.

(b) Assume that the monitoring is inspection-based and that an inspec-
tion is performed every month:
(i) Explain which model you can use in order to give the probability

for the item to be in each state at any time between two inspections.
Apply it for the following maintenance strategy: (i) a PM task is
performed at inspection date if the item is found in state 1 and
the item is put back to the new state immediately, (ii) a corrective
maintenance is performed at inspection date if the item is found
in state 0 and the item is put back to the new state immediately.
Assume that all the repair durations are negligible. Give the item
availability at times 1000, 10 000, 50 000 hours.

(ii) Calculate the availability of the item at steady state by using Monte
Carlo simulation.

(iii) Modify the previous model to take into account repair durations
at inspection dates, assuming that they are random with constant
repair rates. Numerical values per hour: 𝜇01 = 1, 𝜇12 = 1, 𝜇02 =
0.1.

(iv) Modify the previous model to take into account repair durations
at inspection dates, assuming that they are constant. Numerical
values in hours: r01 = 1, r12 = 1, r02 = 10.

12.12 Assume that you have two items in a redundant structure and that
each item is experiencing a continuous degradation which is discretized
according to four levels (level 1 is new, level 4 is failed). We want to
implement a preventive CBM given that the items are periodically
inspected at the same time, their degradation level is only known at
inspection time and there is no delay before intervention.
(a) Which maintenance strategies can we consider? List at least two

strategies.
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(b) Describe the modeling process you would follow to optimize the
choice of one of the maintenance strategy.
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13

Reliability of Safety Systems

13.1 Introduction

This chapter deals with reliability aspects of safety systems that are designed
to be activated upon hazardous system or process deviations (system or process
demands) to protect people, the environment, and material assets. In Example 4.2,
we discuss the safety systems of a gas/oil separator. The safety system has three
protection layers:

(1) An inlet shutdown system comprising pressure sensors, a logic solver, and
shutdown valves.

(2) A pressure relief system comprising two pressure relief valves.
(3) A rupture disc.

In Example 4.2, the process demand is a blockage of the gas outlet line. If safety
systems were not available, the process demand would cause a rapid increase of the
pressure in the separator and the separator might rupture. The system the protec-
tion layers are installed to protect is called the equipment under control (EUC). In
this example, the EUC is the separator. An EUC may experience several hazardous
process demands that require their own safety systems. In the process industry,
the potential process demands are usually identified by a hazard and operability
(HAZOP) study (e.g. see IEC 61882 2016).

Process demands may be classified according to their frequency of occurrence.
Some process demands occur so frequently that the safety system is operated
almost continuously. An example of such a safety system is the brakes of a
car. “Process” demands for the brakes occur several times each time we drive
the car, and brake failures and malfunctions may therefore be detected almost
immediately. The brakes are said to be a safety system with a high demand mode
of operation.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Other process demands occur very infrequently, and the safety system is there-
fore in a passive state for long periods of time. An example of such a system is the
airbag system in a car. The airbag system remains passive until a “process” demand
occurs and is said to be a safety system with a low demand mode of operation. Such
a safety system may fail in passive state, and the failure may remain hidden until
a process demand occurs or until the system is tested. To reveal hidden failures,
safety systems with low demand mode of operation are normally proof tested at
regular intervals.

A safety system composed of sensors, logic solvers, and final elements is
called a safety-instrumented system (SIS). A brief introduction to SISs is given in
Section 13.2. Several standards have been issued setting requirements to SISs.
The most important of these standards is IEC 61508 (2010) “Functional safety
of electrical/electronic/programmable electronic safety-related systems” that is
briefly introduced in Section 13.7. For a thorough discussion of SIS reliability
assessment, see Rausand (2014).

Section 13.3 introduces the main reliability models for the elements of safety
systems and discuss various issues related to the analysis of such systems. The
discussion is mainly limited to systems with a low demand of operation that are
periodically tested. Problems related to common-cause failures (CCFs) and spuri-
ous activation of the systems are discussed. A Markov approach to analyzing safety
systems is introduced in Section 13.9.

13.2 Safety-Instrumented Systems

A SIS is an independent protection layer that is installed to mitigate the risk
associated with the operation of a specified hazardous system, EUC. The EUC
may be various types of equipment, machinery, apparatus, or plant used for
manufacturing, process, transportation, medical, or other activities. A SIS is
composed of sensors, logic solvers, and final elements. The final elements may,
for example, be shutdown valves or brakes. A sketch of a simple SIS is shown
in Figure 13.1. SISs are used in many sectors of our society, for example, as
emergency shutdown (ESD) systems in hazardous chemical plants, fire and

Sensors Final elements

Logic solver

Figure 13.1 Sketch of a
simple SIS.
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gas detection (FGD) and alarm systems, pressure protection systems, dynamic
positioning systems for ships and offshore platforms, automatic train stop (ATS)
systems, fly-by-wire operation of aircraft flight control surfaces, anti-lock brakes,
and airbag systems in cars, and systems for interlocking and controlling the
exposure dose of medical radiotherapy machines. Recent developments include
network-based safety-related systems, often facilitated by Internet technology.

A safety-instrumented function (SIF) is a function that is implemented by a SIS,
and that is intended to achieve or maintain a safe state for the EUC with respect
to a specific process demand. A SIS may perform one or more SIFs.

In addition to the elements shown in Figure 13.1 (sensors, logic solver, and
final elements), an SIS usually comprises: electric power supply, user interface,
pneumatic and/or hydraulic system, electrical connections, and various process
connections.

IEC 61508 refers to a SIS as an “electrical/electronic/programmable electronic
(E/E/PE) safety-related system.”

13.2.1 Main SIS Functions

A SIS has two main system functions:

(1) When a predefined process demand (deviation) occurs in the EUC, the devia-
tion shall be detected by the SIS sensors, and the required final elements shall
be activated and fulfill their intended functions.

(2) The SIS shall not be activated spuriously, that is, without the presence of a
predefined process demand (deviation) in the EUC.

A failure to perform the first system function is called a fail to function (FTF), and
a failure of the second function is called a spurious trip (ST).

Example 13.1 (Safety systems on offshore oil and gas platforms)
The safety systems on an offshore oil and gas platform are usually grouped into
three categories:

(1) Process control (PC) system
(2) Process shutdown (PSD) system
(3) Fire and gas detection (FGD) and emergency shutdown (ESD) system

The objective of the PC system is to keep an EUC process within preset limits.
Various PC valves and regulators are used to control the process, based on signals
from temperature, pressure, level, and other types of transmitters. When the pro-
cess deviates from normal values, the PSD system is activated and closes down the
EUC. The required actions for each type of deviation/demand is programmed into
the logic solver. The actions may involve activation of alarms, closure of shutdown
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valves, and opening of relief valves. The PC and PSD systems are local systems that
are related to a specific EUC. For process demands that have a potential for a major
accident, the ESD system is activated. Relevant process demands include fires, gas
leaks, and loss of main power. The required ESD actions are usually grouped into
several levels, depending on the type of deviation/demand that is detected and
where it is detected. The top ESD level usually involves shutdown of the whole
platform and evacuation of the personnel. ◻

13.2.2 Testing of SIS Functions

Many SISs are passive systems that are only activated when a specified process
demand occurs in the EUC. A fire detection and extinguishing system should, for
example only be activated when a fire occurs. Such a system may fail in the pas-
sive position and the failure may remain undetected (hidden) until the system is
activated or tested.

Diagnostic Self-Testing
In modern SISs the logic solver is often programmable and may carry out diag-

nostic self-testing during online operation. The logic solver may send frequent sig-
nals to the detectors and to the final elements and compare the responses with
predefined values. The diagnostic testing can reveal failures of input and output
devices, and to an increasing degree, also failures of detectors and final elements.
In many cases, the logic solver consists of two or more redundant computers that
can carry out diagnostic self-testing of each other. The fraction of failures that
can be revealed by diagnostic self-testing is called the diagnostic coverage. The
self-testing may be carried out so often that failures are detected almost imme-
diately.

Proof Testing
The diagnostic self-testing cannot reveal all failure modes and failure causes, and
the various parts of the SIS are therefore proof tested at regular intervals. The objec-
tive of a proof test is to reveal hidden failures/faults and to verify that the system
is (still) able to perform the required functions if a process demand should occur.
It is sometimes not feasible to carry out a fully realistic proof test because it may
not be technically feasible, or very time-consuming. Another reason may be that
the test itself leads to unacceptable hazards. It is, for example not realistic to fill a
room with toxic gases to test a gas detector. The gas detector is rather tested with
a nontoxic test gas that is directly input to the gas detector through a test pipe.

Consider a safety valve that is installed in a pipeline. During normal operation,
the valve is kept in open position. If a specified process demand occurs, the valve
should close and stop the flow in the pipeline. A realistic test of the safety valve
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would imply to close the valve and apply a pressure to the upstream side of the
valve that is equal to the maximum expected shut-in pressure in a demand situa-
tion. This may not be possible, and we may have to suffice with only checking that
the valve is able to close on demand, and perhaps to check the valve for leakage
with normal shut-in pressure. In some cases, it may be possible to pressure test
the valve from the downstream side. In this case, we may be able to test the valve
to maximum shut-in pressure, but the wrong side of the seals is tested. In some
situations, it may be hazardous to shut down a flow, and the closure of the valve
should therefore be avoided. Some valve functions may be tested by partly clos-
ing the valve (the gate of a gate valve may be moved some few millimeters, and a
ball valve may be rotated some degrees). This type of testing is called partial stroke
testing and is discussed further by Lundteigen and Rausand (2008).

Some final elements employ an actuating principle that is not possible to proof
test without destroying the item. This is, for example, the case for the pyrotechnic
seat belt tensioners in cars. The reader can refer to Brissaud et al. (2012), Srivastav
et al. (2018), and Wu et al. (2018) for further work and more examples on this topic.

13.2.3 Failure Classification

A general introduction to failures and failure classification is given in Chapter 3.
For a SIS and the SIS subsystems, we may use the following failure mode classifi-
cation (see IEC 61508):

(1) Dangerous (D). The SIS does not fulfill its required safety-related functions
upon demand. These failures may further be split into
(a) Dangerous undetected (DU). Dangerous failures are preventing activation

on demand and are revealed only when tested or when a demand occurs.
DU failures are sometimes called dormant failures.

(b) Dangerous detected (DD). Dangerous failures that are detected immedi-
ately when they occur, for example by an automatic, built-in self-test.
The average period of unavailability due to a DD failure is equal to the
mean downtime, MDT, that is, the mean time elapsing from the failure is
detected by the built-in self-test until the function is restored.

(2) Safe failures (S). The SIS has a nondangerous failure. These failures may fur-
ther be split into
(a) Safe undetected (SU). Nondangerous failures that are not detected by auto-

matic self-testing.
(b) Safe detected (SD). Nondangerous failures that are detected by automatic

self-testing. In some configurations, early detection of failures may prevent
an actual ST of the system.

The failure mode classification is shown in Figure 13.2.
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Dangerous (D)

Failure

Safe (S)

Dangerous 
detected (DD)

Dangerous 
undetected (DU)

Safe
detected (SD)

Safe
undetected (SU)

Figure 13.2 Failure mode classification.

Example 13.2 (Safety shutdown valve)
A safety shutdown valve is installed in a gas pipeline feeding a production system.
If an emergency occurs in the production system, the valve should close and stop
the gas flow. The valve is a hydraulically operated gate valve. The actual open/close
function is performed by sliding a rectangular gate, having a bore equal to the bore
of the conduct. The gate is moved by a hydraulic piston connected to the gate by
a stem. The gate valve has a fail-safe actuator. The valve is opened and kept open
by hydraulic control pressure on the piston. The fail-safe function is achieved by
a steel spring that is compressed by hydraulic pressure. The valve is automatically
closed by spring force when the hydraulic pressure is bled off.

The valve is connected to an ESD system. When an emergency situation is
detected in the production system, an electric signal is sent to the valve control
system and the pressure is bled off. In this example, we only consider the valve
but will come back to the rest of the ESD system in Sections 13.4 and 13.5.

The main failure modes of the valve are

• Fail to close (FTC) on command. This failure mode may be caused by a broken
spring, blocked return line for the hydraulic fluid, too high friction between the
stem and the stem seal, too high friction between the gate and the seats, or by
sand, debris, or hydrates in the valve cavity.

• Leakage (through the valve) in closed position (LCP). This failure mode is mainly
caused by corrosion and/or erosion on the gate or the seat. It may also be caused
by misalignment between the gate and the seat.

• Spurious trip (ST). This failure mode occurs when the valve closes without a
signal from the ESD system. It is caused by a failure in the hydraulic system or
a leakage in the supply line from the control system to the valve.

• Fail to open (FTO) on command. When the valve is closed, it may fail to reopen.
Possible causes may be leakage in the control line, too high friction between the
stem seals and the stem, too high friction between the gate and the seats, and
sand, debris, or hydrates in the valve cavity.
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The valve has been installed to close the flow (and keep tight) following a demand.
The failure modes FTC and LCP prevent this function and are dangerous failure
modes with respect to safety. ST and FTO failures are normally not dangerous with
respect to safety, but may cause production shutdown and lost income.

Because the valve is normally in open position, we are not able to detect the
dangerous failure modes, FTC and LCP, unless we try to close the valve. These
dangerous failure modes are hidden during normal operation and are therefore
called dangerous undetected (DU) failure modes. To reveal, and repair, DU fail-
ures, the valve is tested periodically, with test interval 𝜏. This means that the valve
is tested at times 0, 𝜏, 2𝜏,…. A typical test interval may be 3–12 months. During a
standard test, the valve is closed and tested for leakage. The cause of a DU failure
may occur at a random point of time within a test interval and is not manifested
(revealed) until the valve is tested, or attempted closed due to operational rea-
sons. The safety unavailability (SU) of the valve is obviously lower with a short
test interval than with a long test interval. The gas flow has to be closed down dur-
ing the test, and the test will usually lead to a production loss. In some situations,
the shutdown and startup procedure may have safety implications. The length of
the test interval 𝜏 must therefore be a compromise between safety and economic
considerations.

In some situations, it may be impractical and even dangerous to close the valve,
and we have to suffice with partial stroke testing. In this case, we move the gate
slightly and monitor the movement of the valve stem. The test reveals some of
the DU failure causes, but not all. A hidden LCP failure will, for example not be
revealed.

The ST failure stops the flow and is usually detected immediately. An ST failure
is therefore called an evident failure. In some systems, an ST failure may also have
significant safety implications.

The FTO failure may occur after a test and is an evident failure. The FTO failure
will cause a repair intervention, but this has no extra safety implications because
the gas flow is shut down when the failure occurs. The FTO failure is therefore
called a noncritical or safe failure. ◻

13.3 Probability of Failure on Demand

Consider a safety item (component or system) that is tested periodically, in the
same way as the safety valve in Example 13.2. We assume that no diagnostic
self-testing is carried out, and that all hidden failures are revealed by the proof
testing. Some of the main concepts that are used in this section are introduced
in Example 13.2. The reader should therefore study the example carefully before
reading this section.
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The safety item is put into operation at time t = 0. The item may be a safety valve
(e.g. shutdown valve, or relief valve), a sensor (e.g. fire/gas detector, pressure sen-
sor, or level sensor), or a logic solver. The item is tested and, if necessary, repaired
or replaced after regular time intervals of length 𝜏. The time required to test and
repair the item is considered to be negligible. After a test (repair), the item is con-
sidered to be as-good-as-new. We say that the item is functioning as a safety barrier
if a DU failure mode is not present.

The state variable X(t) of an item with respect to DU failures is

X(t) =

⎧⎪⎪⎨⎪⎪⎩

1 if the item is able to function as a safety barrier
(i.e. no DU failure is present)

0 if the item is not able to function as a safety barrier
(i.e. a DU failure is present)

.

The state variable X(t) is shown in Figure 13.3.

13.3.1 Probability of Failure on Demand

Let T be the time to DU failure of the item, with distribution function F(t). The
safety unavailability A∗(t) of the item in the first test interval (0, 𝜏] is

A∗(t) = Pr(a DU failure has occurred at, or before, time t)

= Pr(T ≤ t) = F(t). (13.1)

Because the item is assumed to be as-good-as-new after each test, the test inter-
vals (0, 𝜏], (𝜏, 2𝜏],… are all equal from a stochastic point of view. Hence, the safety
unavailability A∗(t) of the item is as shown in Figure 13.4. Observe that A∗(t) is
discontinuous for t = n𝜏, for n = 1, 2,…. If a demand for the safety item occurs
at time t, the safety unavailability A∗(t) is the probability that the item will fail

1

0
τ 2τ Time t

X(t)

0
Dangerous 
undetected 

failure

Figure 13.3 The state X(t) of a periodically tested item with respect to DU failures.
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0 τ Time t
0

2τ 3τ

A(t)

Figure 13.4 The safety unavailability A∗(t) of a periodically tested item.

to respond adequately to the demand. The safety unavailability A∗(t) is therefore
often called the probability of failure on demand (PFD) at time t.

In most applications, we are not interested in the PFD as a function of time.
It is sufficient to know the long-run average value of PFD. The average value is
denoted PFD, without reference to the time t. Because of the periodicity of A∗(t),
the long-run average PFD is equal to the average value of A∗(t) in the first test
interval (0, 𝜏],

PFD = 1
𝜏 ∫

𝜏

0
A∗(t) dt = 1

𝜏 ∫

𝜏

0
F(t) dt. (13.2)

Let R(t) be the survivor function of the item with respect to DU failure. Because
R(t) = 1 − F(t), (13.2) may alternatively be written as

PFD = 1 − 1
𝜏 ∫

𝜏

0
R(t) dt. (13.3)

Consider a test interval, and let T1 be the part of this test interval where the item
is able to function as a safety barrier. Let D1 be the part of the interval where the
item is in a failed state (i.e. a DU failure is present but has not been detected), such
that T1 + D1 = 𝜏.

The PFD in (13.2) is the average safety unavailability in a test interval. Because
the average safety unavailability is the mean proportion of time the item is not
functioning as a safety barrier, the PFD may be written as

PFD =
E(D1)
𝜏

. (13.4)

The MDT in a test interval is therefore

E(D1) = ∫

𝜏

0
F(t) dt, (13.5)

and the mean uptime in a test interval is

E(T1) = 𝜏 −
∫

𝜏

0
F(t) dt =

∫

𝜏

0
R(t) dt. (13.6)

The PFD may from (13.4) be interpreted as the mean proportion of time the
item is not functioning as a safety barrier upon demand. The PFD is therefore also
referred to as the mean fractional deadtime (MFDT) of the item.
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Example 13.3 (Single item)
A sensor is tested at regular intervals of length 𝜏 and has constant failure rate 𝜆DU
with respect to DU failures. The survivor function of the sensor is R(t) = e−𝜆DUt and
the PFD is from (13.3)

PFD = 1 − 1
𝜏 ∫

𝜏

0
R(t) dt = 1 − 1

𝜏 ∫

𝜏

0
e−𝜆DUt dt

= 1 − 1
𝜆DU𝜏

(1 − e−𝜆DU𝜏 ). (13.7)

By replacing e−𝜆DU𝜏 in (13.7) with its Maclaurin series, we get

PFD = 1 − 1
𝜆DU𝜏

(
𝜆DU𝜏 −

(𝜆DU𝜏)2

2
+

(𝜆DU𝜏)3

3!
−

(𝜆DU𝜏)4

4!
+ · · ·

)

= 1 −
(

1 −
𝜆DU𝜏

2
+

(𝜆DU𝜏)2

3!
−

(𝜆DU𝜏)3

4!
+ · · ·

)
.

When 𝜆DU𝜏 is small, then

PFD ≈
𝜆DU𝜏

2
. (13.8)

This approximation is often used in practical calculation. The approximation is
always conservative, meaning that the approximated value in (13.8) is slightly
greater than the correct value in (13.7).

According to OREDA (2015) the failure rate of a specific type of fire detectors
is 𝜆DU = 0.21 × 10−6 DU failures/h. If we use a test interval 𝜏 = 3 months ≈ 2190
hours, the PFD is

PFD ≈
𝜆DU𝜏

2
= 0.21 × 10−6 × 2190

2
≈ 0.000 23 = 2.30 × 10−4

.

If a demand for the fire detector occurs, the (average) probability that the detector
will not be able to detect the fire is: PFD≈ 0.000 23. This means that approximately
one out of 4350 fires will not be detected by the fire detector.

The mean proportion of time the detector is not able to detect a fire is PFD ≈
0.000 23. This means that the fire detector is not able to detect a fire in 0.023% of the
time, or approximately 2h/yr, when we assume that the detector is in continuous
operation, and that a year is 8760 hours. We also say that we are unprotected by the
fire detector in 0.023% of the time. ◻

Example 13.4 (Parallel structure)
Assume that we have two independent fire detectors of the same type with fail-
ure rate 𝜆DU with respect to DU failures, that are tested at the same time with test
interval 𝜏. The fire detectors are operated as a 1oo2:G structure, where it is suffi-
cient that one detector is functioning for the structure to function. The survivor
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function for the structure is

R(t) = 2e−𝜆DUt − e−2𝜆DUt
,

and the PFD is from (13.3)

PFD = 1 − 1
𝜏 ∫

𝜏

0
2e−𝜆DUt − e−2𝜆DUt dt

= 1 − 2
𝜆DU𝜏

(1 − e−𝜆DU𝜏 ) + 1
2𝜆DU𝜏

(1 − e−2𝜆DU𝜏 ). (13.9)

If we replace e−𝜆DU𝜏 by its Maclaurin series, we may use the following approxima-
tion:

PFD ≈ 1
3
(𝜆DU𝜏)2

, (13.10)

when 𝜆DU𝜏 is small.
Let us now introduce the same data as we used for one single fire detector in

Example 13.3, 𝜆DU = 0.21 × 10−6 h−1 and 𝜏 = 3 months. The average unavailabil-
ity of the parallel structure is then

A∗
avg ≈ 1

3
(𝜆DU𝜏)2 = 1

3
(0.21 × 10−6 × 2190)2 ≈ 7.1 × 10−8

.

If a demand for the fire detector system occurs, the (average) probability that the
system will not be able to detect the fire is: PFD ≈ 7.1 × 10−8, that is, a very high
reliability. ◻

Remark 13.1 (The average of a product is not the product of the averages)
Because the parallel structure fails only when both of its components fail, the prob-
ability, QS(t), that the structure is in a failed state at time t, is equal to q1(t) q2(t),
where qi(t) is the probability that component i is in a failed state at time t, for
i = 1, 2. Because the (average) probability that component i is in a failed state is
PFDi ≈ 𝜆DU𝜏∕2, we should expect that the average unavailability (PFD) of the sys-
tem would be approximately (𝜆DU𝜏∕2)2 = (𝜆DU𝜏)2∕4 instead of (𝜆DU𝜏)2∕3 as we
found in (13.10). The result in (13.10) is the correct result. The reason for this dif-
ference is the fact that the average of a product is not the same as the product of
averages. Several computer programs for fault tree analysis make this error. A bad
effect is that the wrong approach produces a nonconservative result. ◻

Example 13.5 (2oo3 structure)
Assume that we have three independent fire detectors of the same type with fail-
ure rate 𝜆DU with respect to DU failures, that are tested at the same time with test
interval 𝜏. The fire detectors are operated as a 2oo3:G structure, where two detec-
tors have to function for the structure to function. The survivor function for the
structure is

R(t) = 3e−2𝜆DUt − 2e−3𝜆DUt
,
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and the PFD is from (13.3)

PFD = 1 − 1
𝜏 ∫

𝜏

0
(3e−2𝜆DUt − 2e−3𝜆DUt) dt

= 1 − 3
2𝜆DU𝜏

(1 − e−2𝜆DU𝜏 ) + 2
3𝜆DU𝜏

(1 − e−3𝜆DU𝜏 ). (13.11)

If we replace e−𝜆DU𝜏 by its Maclaurin series, we may use the following
approximation:

PFD ≈ (𝜆DU𝜏)2
, (13.12)

when 𝜆DU𝜏 is small.
Let us now introduce the same data as we used for one single fire detector in

Example 13.3, 𝜆DU = 0.21 × 10−6 h−1 and 𝜏 = 3 months. The average unavailabil-
ity of the parallel structure is then

PFD ≈ (𝜆DU𝜏)2 = (0.21 × 10−6 × 2190)2 ≈ 2.1 × 10−7
.

If a demand for the fire detector system occurs, the (average) probability that the
system will not be able to detect the fire is: PFD ≈ 2.1 × 10−7. ◻

The PFD of a 2oo3:G structure is seen to be approximately three times as high as for
a parallel structure. Chapter 6 shows that a 2oo3:G structure may be represented as
a series structure of three 1oo2:G, parallel structures. Each of these parallel struc-
tures has an average unavailability (𝜆DU𝜏)2∕3. When 𝜆DU𝜏 is small, the probability
of two parallel structures being in a failed state at the same time is negligible, and
the average unavailability of the 2oo3:G structure is then approximately the sum
of the average availabilities of the three parallel structures, which is the case.

Example 13.6 (Series structure)
Assume that we have two independent items with failure rate 𝜆DU,1 and 𝜆DU,2,
respectively, with respect to DU failures. The items are tested at the same time with
test interval 𝜏. The items are operated as a 2oo2:G structure, where both items have
to function for the structure to function. The survivor function for the structure is

R(t) = e−(𝜆DU,1+𝜆DU,2)t,

and the PFD is from (13.3)

PFD = 1 − 1
𝜏 ∫

𝜏

0
e−(𝜆DU,1+𝜆DU,2)t dt

≈
(𝜆DU,1 + 𝜆DU,2)𝜏

2
=

𝜆DU,1𝜏

2
+

𝜆DU,2𝜏

2
, (13.13)
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when 𝜆DU,i𝜏 is small, for i = 1, 2. When we have a series structure, the PFD of the
structure is hence approximately the sum of the PFDs of the individual items. ◻

13.3.2 Approximation Formulas

Assume that we have a system of n independent components with constant failure
rates 𝜆DU,i, for i = 1, 2,… ,n. The distribution function FTi

(t) of item i is approxi-
mated by

FTi
(t) = 1 − e−𝜆DU,i t ≈ 𝜆DU,it.

By using fault tree terminology, the unavailability of component i in the first test
interval is

qi(t) = Pr(Component i is in a failed state at time t)

= FTi
(t) ≈ 𝜆DUi

t.

Let K1,K2,… ,Kk be the k minimal cut sets of the system. The probability that the
minimal cut parallel structure corresponding to the minimal cut set Kj is failed at
time t is

Q̌j(t) =
∏
i∈Kj

qi(t) ≈
∏
i∈Kj

𝜆DU,it for j = 1, 2,… , k.

The probability that the system is failed (has a hidden failure) at time t is

Q0(t) = FS(t) ≈
k∑

j=1
Q̌j(t) ≈

k∑
j=1

∏
i∈Kj

𝜆DU,it

=
k∑

j=1

⎛⎜⎜⎝
∏
i∈Kj

𝜆DU,i

⎞⎟⎟⎠
t|Kj|, (13.14)

where |Kj| denotes the order of the minimal cut set Kj, j = 1, 2,… , k.
The PFD of the system that is tested periodically with test interval 𝜏 is, by com-

bining (13.2) and (13.14), approximately

PFD = 1
𝜏 ∫

𝜏

0
Fs(t) dt ≈

k∑
j=1

∏
i∈Kj

𝜆DU,i
1
𝜏 ∫

𝜏

0
t|Kj| dt. (13.15)

Hence,

PFD ≈
k∑

j=1

1
|Kj| + 1

∏
i∈Kj

𝜆DU,i𝜏. (13.16)
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Table 13.1 PFD of some koon structures of identical and independent
components with failure rate 𝜆DU and test interval 𝜏 .

k\n 1 2 3 4

1
𝜆DU𝜏

2
(𝜆DU𝜏)2

3
(𝜆DU𝜏)3

4
(𝜆DU𝜏)4

5
2 — 𝜆DU𝜏 (𝜆DU𝜏)2 (𝜆DU𝜏)3

3 — —
3𝜆DU𝜏

2
2(𝜆DU𝜏)2

4 — — — 2𝜆DU𝜏

Assume now that we have a koon structure of identical and independent compo-
nents with failure rate 𝜆DU. A koon:G structure has

(
n

n−k+1

)
minimal cut sets of

order (n − k + 1). The PFD of the koon:G structure is thus

PFD ≈ 1
𝜏 ∫

𝜏

0

( n
n − k + 1

)
(𝜆DUt)n−k+1 dt

=
( n

n − k + 1

) (𝜆DU𝜏)n−k+1

n − k + 2
. (13.17)

The PFD of some simple koon:G structures are listed in Table 13.1.

13.3.3 Mean Downtime in a Test Interval

The MDT in a test interval was found in (13.4) to be

E(D1) = ∫

𝜏

0
F(t) dt.

Suppose that we test an item at time 𝜏 and find that the item is in a failed state
[i.e. X(𝜏) = 0]. What is the (conditional) MDT in the interval (0, 𝜏] when the item
is found in a failed state at time 𝜏?

By using double expectation, E(D1) may be written as

E(D1) = E(E[D1 ∣ X(𝜏)])

= E(D1 ∣ X(𝜏) = 0) Pr(X(𝜏) = 0)

+ E(D1 ∣ X(𝜏) = 1) Pr(X(𝜏) = 1).

If the component is functioning at time 𝜏, the downtime D1 is equal to 0. Therefore,
E(D1 ∣ X(𝜏) = 1) = 0. Furthermore,

Pr(X(𝜏) = 0) = Pr(T ≤ 𝜏) = F(𝜏).

Hence,

E(D1) = E(D1 ∣ X(𝜏) = 0) F(𝜏).
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By using (13.6) and (13.3)

E(D1 ∣ X(𝜏) = 0) =
E(D1)
F(𝜏)

= 1
F(𝜏) ∫

𝜏

0
F(t) dt

= 𝜏

F(𝜏)
1
𝜏 ∫

𝜏

0
F(t) dt = 𝜏

F(𝜏)
PFD. (13.18)

Example 13.7 (Example 13.3 (Cont.))
With a single item, the conditional MDT in (13.18) is approximately

E(D1 ∣ X(𝜏) = 0) = 𝜏

F(𝜏)
PFD ≈ 𝜏

1 − e−𝜆DU𝜏

𝜆DU 𝜏

2
≈ 𝜏

2
,

which is an intuitive result. ◻

Example 13.8 (Example 13.4 (Cont.))
With a parallel structure of two independent, and identical items, the conditional
MDT in (13.18) is

E(D1 ∣ X(𝜏) = 0) = 𝜏

F(𝜏)
PFD ≈ 𝜏

1 − 2e−𝜆DU𝜏 + e−2𝜆DU𝜏

(𝜆DU 𝜏)2

3
≈ 𝜏

3
.

The last approximation follows because the distribution function of the parallel
structure 1 − 2e−𝜆DU𝜏 + e−2𝜆DU𝜏 can be approximated by (𝜆DU 𝜏)2 by using Maclau-
rin series. ◻

13.3.4 Mean Number of Test Intervals Until First Failure

Let us next determine the mean number of test intervals until the first failure
occurs. Let Ci be the event that the component does not fail in test interval i for
i = 1, 2,…. Then

Pr(Ci) = Pr(T > 𝜏) = R(𝜏).

Because the events C1,C2,… are independent with the same probability p = R(𝜏),
the number of test intervals, Z, until the component fails for the first time, has a
geometric distribution with point probability

Pr(Z = z) = Pr(C1 ∩ C2 ∩ · · · ∩ Cz ∩ Cc
z+1) = pz(1 − p) for z = 0, 1,… .

The mean number of test intervals until the component fails is then

E(Z) =
∞∑

z=0
z Pr(Z = z) =

p
1 − p

= R(𝜏)
F(𝜏)

. (13.19)

Let T′ be the time from the component is put into operation until its first failure.
Then

E(T′) = 𝜏E(Z) + (𝜏 − E(D1 ∣ X(𝜏) = 0))
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= 𝜏
R(𝜏)
F(𝜏)

+ 𝜏 − 1
F(𝜏)

(
𝜏 −

∫

𝜏

0
R(t) dt

)

= 1
F(𝜏) ∫

𝜏

0
R(t) dt. (13.20)

Example 13.9 If in particular the component has constant failure rate 𝜆DU, then

E(T′) = 1
F(𝜏) ∫

𝜏

0
R(t) dt = 1

1 − e−𝜆DU𝜏 ∫

𝜏

0
e−𝜆DUt dt = 1

𝜆DU
,

a result that follows directly from the properties of the exponential distribution.◻

13.3.5 Staggered Testing

When we have two items in parallel, we may reduce the system PFD by testing the
items with the same test interval, but at different times. Assume that we have two
independent items with constant failure rates 𝜆DU,1 and 𝜆DU,2, respectively, with
respect to DU failures. Item 1 is tested at times 0, 𝜏, 2𝜏,…, whereas item 2 is tested
at times t0, 𝜏 + t0, 2𝜏 + t0,…. This testing is called staggered testing with interval
t0. Assume that the time necessary for testing and repair is so short that it can be
neglected. Further assume that the process has been running some time and that
time 0 is the time for a test of item 1.

The PFD of the two items as a function of time is shown in Figure 13.5. In the
first test interval (0, 𝜏] the items have the following unavailabilities:

q1(t) = 1 − e−𝜆DU,1t for 0 < t ≤ 𝜏

q2(t) = 1 − e−𝜆DU,2(t+𝜏−t0) for 0 ≤ t ≤ t0

= 1 − e−𝜆DU,2(t−t0) for t0 < t ≤ 𝜏

.

The unavailability of item 1, q1(t), is shown by a short-dashed line in Figure 13.5,
whereas the unavailability of item 2, q2(t), is shown by a long-dashed line.

0
τ Time t0 2τt0

PFD(t)

τ + t0

Figure 13.5 PFD(t) of a parallel structure of two items with staggered testing. Item 1
(short dash) is tested at times 0, 𝜏, 2𝜏,…, whereas item 2 (long dash) is tested at times
t0, 𝜏 + t0, 2𝜏 + t0,…. The system PFD(t) is the fully drawn curve.
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The system unavailability qs(t) = q1(t) q2(t) is shown by a fully drawn line in
Figure 13.5.

qs(t) =

{
(1 − e−𝜆DU,1t)(1 − e−𝜆DU,2(t+𝜏−t0)) for 0 < t ≤ t0

(1 − e−𝜆DU,1t)(1 − e−𝜆DU,2(t−t0)) for t0 < t ≤ 𝜏
.

The average unavailability in (0, 𝜏] is equal to the PFD and is a function of t0

PFD(t0) =
1
𝜏 ∫

𝜏

0
qs(t) dt.

The integration is straightforward but requires several steps and is left to the reader
as Problem 13.7. For details and extensions, see Liu (2014).

13.3.6 Nonnegligible Repair Time

In some situations, the repair time after a failure is so long that it cannot be
neglected. This is, for example illustrated by the following example:

Example 13.10 (Downhole safety valve)
A downhole safety valve (DHSV) is located in the oil/gas production tubing in sub-
sea production wells. The DHSV is an integral part of the tubing approximately
100 m below the sea bottom. The valve has a spring-loaded hydraulic fail-safe
actuator and is held open by hydraulic pressure. The operation of the DHSV is
comparable to the gate valve described in Example 13.2, and the DHSV have the
same failure modes as the gate valve. The DHSV is tested periodically, with a test
interval of 6–12 months. To repair a failed valve is a long, hazardous, and extremely
costly operation. A semisubmersible intervention rig has to be moved from its per-
manent location out to the offshore field. The tubing string has to be pulled and
the well pressure has to be controlled during the intervention. The operation may
last several weeks, depending on the system and the weather conditions. In addi-
tion, we may have to wait months before an intervention rig becomes available. In
this case, the repair time is far from negligible. ◻

Example 13.10 illustrates that the item may sometimes be unavailable as a safety
barrier during the repair action, and while waiting for repair. This unavailability
may be different from the unavailability in the test interval because we know that
the item is in a failed state and may take precautions to reduce the risk. The time
from a failure is detected until the function is restored and is sometimes called the
restoration time. The risk associated to the restoration time may depend on

• The failure mode. The various failure modes of the item may require different
repair actions and the risk during waiting for repair may also be different.
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• The various phases of the restoration time may have different risk levels. The
risk during waiting for repair may, for example be different from the risk during
actual repair.

It may therefore be necessary to find the unavailability for each failure mode and
for the various phases of the restoration time.

13.4 Safety Unavailability

The safety unavailability A∗(t), of a safety system is the probability that the system
is not able to perform its required function upon a demand. The safety unavailabil-
ity may be split in four categories, as shown in Figure 13.6. The categories of the
safety unavailability are discussed in Hauge et al. (2013), where also more detailed
categories are defined.

NSU. Noncritical safety unavailability of the item, mainly caused by functional
testing. In this case, it is known that the item is unavailable, and other preven-
tive actions may be taken.

PFD: The (unknown) safety unavailability due to DU failures during the test inter-
val when it is not known that the function is unavailable.

PFDK : Safety unavailability of the item due to restoration actions after a failure has
been revealed. In this case, we know that the item is unavailable. The various
phases of the restoration actions may give rise to different levels of risk.

PSF: The probability that a systematic failure prevents the item from performing
its intended function. Systematic failures are not revealed by periodic testing.

NSU

PFDK

PFD

PSF
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Figure 13.6 Contributions to safety
unavailability.
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The PSF is approximately equal to the probability that an item that has just
been proof tested fails on demand. Unavailability due to imperfect testing, such
as partial stoke testing of valves, may adequately be included in the PSF.

13.4.1 Probability of Critical Situation

Consider a safety system that has been installed as a barrier against a specific
type of hazardous events. We may, for example assume that the safety system is
a fire detector system, and that the hazardous events are fires (in an early phase).
Assume that fires occur randomly according to a homogeneous Poisson process
(HPP) with intensity 𝛽. The parameter 𝛽 denotes the mean number of fires per
time unit and is sometimes called the process demand rate.

A critical situation occurs if a fire occurs while the fire detector system is in a
failed state. This situation is shown in Figure 13.7 .

Each time a fire occurs, there is a probability SU that the fire detector system is
not able to detect the fire. In Section 10.2, we show how to combine an HPP with
Bernoulli trials, such that critical situations will occur as an HPP with intensity
𝛽 SU.

Let NC(t) be the number of critical situations in the interval (0, t). The probability
of having n critical situations in the interval is

Pr(NC(t) = n) = (𝛽 SU t)n

n!
e−𝛽 SU t for n = 0, 1,… . (13.21)

The mean number of critical situations in the time interval (0, t) is

E[NC(t)] = 𝛽 SU t. (13.22)

13.4.2 Spurious Trips

For many safety items, the rate of STs may be comparable, and even higher, than
the rate of DU failures. STs usually imply significant costs and also reduce the
confidence in the system.

1

0
nτ (n + 1)τ Time t

X(t)

0

Demand

Figure 13.7 Critical situation – fire detector system. X(t) is the state of the fire detector
system.
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Consider a safety system comprising m independent subsystems. The system
may, for example comprise a flame detector subsystem, a heat detector subsys-
tem, a smoke detector subsystem, a logic solver subsystem, and safety shutdown
valves. Each subsystem may comprise several items. The system is considered to
be a series structure of the subsystems with respect to ST failures. A subsystem
ST failure will therefore give a system ST failure. Let 𝜆(j)ST be the rate of STs of the
safety subsystem j, and let MDT(j)

ST denote the mean system downtime associated
with the ST, for j = 1, 2,… ,m. The safety unavailability of the system caused by
STs is approximately

A∗
ST ≈

m∑
j=1

𝜆
(j)
ST MDT(j)

ST. (13.23)

Example 13.11 (Parallel structure)
Consider a sensor subsystem of n independent sensors. Sensor i has constant fail-
ure rate 𝜆ST,i with respect to STs, for i = 1, 2,… ,n. The subsystem is a parallel
structure with respect to safety, meaning that if one of the sensors is activated, the
subsystem raises an alarm. The subsystem is therefore a 1oon:G structure with
respect to safety. With this configuration, a spurious signal (a false alarm) from
any of the sensors will raise alarm. The subsystem is therefore a series (noon:G)
structure with respect to STs, and the ST rate from the subsystem is

𝜆
1oon
ST =

n∑
i=1

𝜆ST,i. (13.24)

A high degree of redundancy may therefore lead to many STs. ◻

Example 13.12 (2oo3:G structure)
Consider a subsystem of three independent sensors of the same type, and let 𝜆ST
be the constant failure rate with respect to STs from one sensor. The sensors are
connected to a logic solver with a 2oo3:G voting logic. The system is illustrated in
Figure 13.8. Two sensors have to send a signal to the logic solver to raise alarm. We
assume that the logic solver is so reliable that failures may be neglected. Because
the sensors are independent, STs (false alarms) occur as single failures. When a

Logic solver
2oo3

Local alarm

Sensors

Figure 13.8 A 2oo3:G sensor system.
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Table 13.2 PFD and spurious trip rate for three simple structures.

System PFD Rank Spurious trip rate Rank

Single item (1oo1)
𝜆DU𝜏

2
(3) 𝜆ST (2)

Parallel structure (1oo2)
(𝜆ST𝜏)2

3
(1) 2𝜆ST (3)

2oo3 structure (2oo3:G) (𝜆ST𝜏)
2 (2) ≈ 0 (1)

sensor gives a false alarm, the system gives a false alarm only if a second sen-
sor gives a false alarm before the first false alarm is detected and repaired. Let us
assume that when the logic solver receives a signal from a sensor, a local alarm
is raised. The operators may therefore check the status and repair the sensor that
has given the false alarm. Assume that the restoration time is tr . If a second alarm
is not received by the logic solver before the first failure is repaired, there will be
no system false alarm. The ST (false alarm) rate from the 2oo3:G subsystem is,
therefore,

𝜆
2oo3
ST = 3𝜆ST ∫

tr

0
(1 − e−2𝜆STt) dt

= 3𝜆ST (1 − e−2𝜆STtr ). (13.25)

Let 𝜆ST = 5 × 10−5 ST failures/h, and tr = 2 hours. In this case, we get 𝜆2oo3
ST ≈ 1.5 ×

10−8 h−1, that is, a very low ST rate. ◻

Table 13.2 gives a brief comparison of three simple structures with indepen-
dent items of the same type, with constant failure rate 𝜆DU with respect to DU
failures and constant failure rate 𝜆ST with respect to ST. The test interval is 𝜏.
The 2oo3:G structure is often chosen as the best configuration for sensor systems
because it has a PFD in the same order of magnitude as a parallel structure and
because it can be made much more reliable than a parallel structure when it comes
to STs.

13.4.3 Failures Detected by Diagnostic Self-Testing

Many failures of a modern SIS may be revealed by diagnostic self-testing. This
applies both for dangerous failures and safe failures. The diagnostic testing is
assumed to be carried out so frequently that the failures are revealed immediately.
In subsystems with redundant items, a failure may sometimes be repaired, while
the subsystem is online and is able to perform its safety function. In other cases,
the subsystem has to be taken offline to repair the failure. Let 𝜆(j)DT,i be the rate of
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failures of item i in subsystem j that are revealed by diagnostic self-testing, for
i = 1, 2,… ,nj and j = 1, 2,… ,m. If we assume that all items are independent,
then the rate of failures of subsystem j that are revealed by diagnostic self-testing is

𝜆
(j)
DT =

nj∑
i=1

𝜆
(j)
DT,i.

Let MDT(j)
DT be the MDT of subsystem j to repair a failure of an item in subsystem

j that has been revealed by diagnostic self-testing. (For some configurations, the
MDT may be zero.) The system unavailability caused by failures that are revealed
by diagnostic self-testing is therefore

A∗
DT ≈

m∑
j=1

𝜆
(j)
DT MDT(j)

DT. (13.26)

In (13.26), the MDT is given for each subsystem. For subsystems with different
types of items, it may be more appropriate to give the MDT associated to repair of
each type of items.

The diagnostic coverage of the diagnostic self-test of item i is defined by

cDT,i =
𝜆DT,i

𝜆i
,

where 𝜆i is the total failure rate (of a specified category) of item i, for i = 1, 2,… ,n.
A diagnostic self-testing with test coverage 70%, hence, reveal 70% of all the fail-
ures of the item. The term “diagnostic coverage” is mainly used for dangerous
failures, and is then the percentage of dangerous failures that can be detected by
self-testing. The term may, however, also be used for safe failures.

Example 13.13 (Process shutdown valve)
Consider a PSD valve, as illustrated by the sketch in Figure 13.9. The valve has a
fail-safe actuator and is held open by hydraulic pressure. When a process demand
occurs, the logic solver sends an electrical signal to the solenoid valve to open and
bleed off the hydraulic pressure. Diagnostic self-testing may be carried out by send-
ing on/off electric signals to the solenoid valve. The solenoid valve will start to open
and bleed off hydraulic pressure, and the shutdown valve will start to close. The
movement of the valve actuator may be monitored by the logic solver. When the
valve actuator has moved some few millimeters, full hydraulic pressure is again
applied to the actuator and the valve will fully open. By this testing, we can reveal
failures of the electrical cables, the solenoid valve, and the PSD valve. The test cov-
erage for the electrical cables is 100%. The test coverage of the solenoid valve and
the hydraulic flow depend on the design of the system and may be made close to
100%. This type of testing of the shutdown valve is called partial stroke testing and
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Hydraulic
system

Logic
solver

Solenoid 
valve

Process
shutdown

valve

Position monitoring

Electric
signal

Figure 13.9 A process shutdown valve with fail-safe hydraulic actuator.

can only reveal some of the failure modes of the valve. The partial stroke testing
will reveal some main causes of FTC failures, but it cannot reveal LCP failures.

In most applications, only the electrical cables will be tested by very frequent
diagnostic testing. To avoid excessive wear of the valve seals, the diagnostic testing
of the solenoid valve and the shutdown valve will be less frequent. ◻

13.5 Common Cause Failures

So far in this chapter, we have assumed that all items are independent. This is not
always realistic in practice. Safety systems often have a high degree of redundancy,
and the system reliability is therefore strongly influenced by potential CCFs. It is
therefore important to identify potential CCFs and take the necessary precautions
to prevent such failures.

Checklists that may be used to identify CCF problems of a SIS during its life
cycle have been developed (e.g. see Summers and Raney 1999).

When we are able to identify the causes of CCFs, these should always be explic-
itly modeled, as illustrated in Example 13.14. In most cases, we are not able to
find high quality input data for the explicitly modeled common causes. Even with
low quality input data, or guesstimates, the result is usually more accurate than
results obtained by including the explicit common causes into one of the general
(implicit) dependent failure models that were introduced in Chapter 8.

Example 13.14 (Pressure sensors CCF)
Consider a parallel structure of two pressure sensors that are installed in a pres-
sure vessel. Based on a search for potential causes for CCFs, we have identified
two possible causes: (i) the common tap to the sensors is plugged with solids, and
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PS2

Random failure of 
pressure sensor 1

PS1

Pressure sensors 
fail independently

MCPL

Pressure sensors
fail by common 

cause failure

Pressure sensors 
fail to detect 
high pressure

Random failure of 
pressure sensor 2

Common tap 
plugged with solids

Pressure switches
miscalibrated

Figure 13.10 Explicit modeling of a CCF for a system with two pressure sensors.

(ii) the sensors are miscalibrated. Other specific causes have not been identified.
The two causes for CCFs may be modeled explicitly as illustrated by the fault tree
in Figure 13.10. In the fault tree, the remaining failures of the sensors are said to
be independent. If we believe that there are some implicit causes of dependency,
in addition to the two explicit causes, this dependency may be modeled by one of
the models discussed in Chapter 8, for example the 𝛽-factor model. ◻

The most commonly used (implicit) model for CCFs of safety systems is the
𝛽-factor model. In the 𝛽-factor model, we assume that a certain percentage of all
failures are CCFs that cause all the items to fail at the same time (or within a very
short time interval). The failure rate 𝜆DU with respect to DU failures may therefore
be written as

𝜆DU = 𝜆
(i)
DU + 𝜆

(c)
DU,

where 𝜆(i)DU is the rate of independent DU failures that only affects one component,
and 𝜆

(c)
DU is the rate of common cause DU failures that will cause failure of all the

system components at the same time. The common cause factor

𝛽DU =
𝜆
(c)
DU

𝜆DU

is the percentage of common cause DU failures among all DU failures of a com-
ponent.

Similarly, the ST rate 𝜆ST may be written as

𝜆ST = 𝜆
(i)
ST + 𝜆

(c)
ST,
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where 𝜆
(i)
ST is the rate of independent ST failures that only affects one component,

and 𝜆
(c)
DU is the rate of common cause ST failures that will cause failure of all the

system components at the same time. The common cause factor

𝛽ST =
𝜆
(c)
ST

𝜆ST

is the percentage of common cause ST failures among all ST failures of a compo-
nent. Because there may be different failure mechanisms leading to DU and ST
failures, 𝛽DU and 𝛽ST need not be equal.

13.5.1 Diagnostic Self-Testing and CCFs

CCFs may be classified in two main types:

(1) Multiple failures that occur at the same time due to a common cause.
(2) Multiple failures that occur due to a common cause, but not necessarily at the

same time.

As an example of type 2, consider a redundant structure of electronic components
that are exposed to a common cause: increased temperature. The components will
fail due to the common cause, but usually not at the same time. If we have an SIS
with an adequate diagnostic coverage with respect to this type of failures, we may
be able to detect the first CCF and take action before the system fails. A system
failure due to the common cause may therefore be avoided.

Remark 13.2
If the common cause, increased temperature, is due to a cooling fan failure, this
should be explicitly modeled as illustrated in Example 13.14. Monitoring the con-
dition of the cooling fan would in this case give an earlier warning than diagnostic
testing of the electronic components and a higher probability of successful shut-
down before a system CCF occurs. A similar example is discussed in IEC61508-6
without mentioning any explicit modeling of the cooling fan. ◻

When we have identified the causes of potential CCFs (e.g. by applying a check-
list), we should carefully split the potential CCFs in the two types (1 and 2) above.
For each cause leading to failures of type 2, we should evaluate the ability of the
diagnostic self-testing to reveal the failure (or the failure cause), the time required
to take action, and the probability that this action will prevent a system failure.

It seems obvious that the common cause factor 𝛽 for an SIS with good diagnostic
coverage should be lower than for a system with no, or a poor, diagnostic coverage.
We should therefore be careful and not use estimates for 𝛽 from old-fashioned
systems when analyzing a modern SIS with good diagnostic coverage.
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Example 13.15 (Parallel structure)
Reconsider the parallel structure of two sensors in Example 13.4 and assume that
DU failures occur with a common cause factor 𝛽DU. The PFD of the parallel struc-
ture is from (13.10) and (13.13) approximately

PFD(𝛽DU) ≈
[(1 − 𝛽DU)𝜆DU𝜏]2

3
+

𝛽DU𝜆DU𝜏

2
. (13.27)

With respect to STs, the system is a series structure, and the trip rate is therefore

𝜆
1oo2
ST (𝛽ST) = (2 − 𝛽ST)𝜆ST. (13.28)

The rate of STs will therefore decrease when 𝛽ST increases.
By using the same data as in Example 13.4, 𝜆DU = 0.21 × 10−6 h−1 and 𝜏 = 2190

hours, and 𝛽DU = 𝛽ST = 0.10, we get from (13.27)

PFD(𝛽DU) ≈ 5.71 × 10−8 + 2.30 × 10−5 ≈ 2.31 × 10−5
.

Observe that with realistic estimates of 𝜆DU and 𝜏, PFDDU is dominated by the
common cause term in (13.27). We may therefore use the approximation

PFD(𝛽DU) ≈
𝛽DU𝜆DU𝜏

2
,

when 𝜆DU𝜏 is small. ◻

Example 13.16 (2oo3 structure)
The PFD for a 2oo3:G structure is from (13.11) and (13.12)

PFD(𝛽DU) ≈ [(1 − 𝛽DU)𝜆DU𝜏]2 +
𝛽DU𝜆DU𝜏

2
. (13.29)

With a local alarm on the logic solver, we may avoid almost all independent STs.
All CCFs will, on the other hand, result in a system ST, and we therefore have

𝜆
2oo3
ST (𝛽ST) = 𝛽ST𝜆ST. (13.30)

With the same data as in Example 13.15, we get from (13.29)

PFD(𝛽DU) ≈ 1.71 × 10−7 + 2.30 × 10−5 ≈ 2.32 × 10−5
.

As in Example 13.15, we observe that with realistic estimates of 𝜆DU and 𝜏, PFDDU
is dominated by the common cause term in (13.29). We may therefore use the
approximation

PFD(𝛽DU) ≈
𝛽DU𝜆DU𝜏

2
,

when 𝜆DU𝜏 is small. ◻
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In Examples 13.15 and 13.16, PFDDU(𝛽DU)was dominated by the common cause
term of the expressions (13.27) and (13.29), respectively, when 𝜆DU𝜏 is small. It
is straightforward to show that the same applies to all koon:G structures, where
n ≥ 2, and k ≤ n. Therefore, we have

PFDkoon(𝛽DU) ≈
𝛽DU𝜆DU𝜏

2
, (13.31)

when𝜆DU𝜏 is small. When 𝛽DU > 0, we therefore get approximately the same result
for all types of koon:G configurations, and the result is nearly independent of the
number n of components, as long as n ≥ 2. This may not be a realistic feature of
the 𝛽-factor model. A more realistic alternative to the 𝛽-factor model has been
proposed as part of the PDS approach that is described in Section 13.8.

IEC 61508 recommends using the 𝛽-factor model with a single “plant specific”
𝛽 that is determined by using a checklist for all voting configurations (see IEC
61508-6, appendix D). This makes a comparison between different voting logics
rather meaningless. Hokstad and Corneliussen (2004) criticize the 𝛽-factor model
and introduced a multiple 𝛽-factor (MBF) model, that is a generalization of the
𝛽-factor model.

Remark 13.3

• Some reliability data sources (see Chapter 16) present the total failure rates,
whereas other data sources only present the independent failure rates. The data
in OREDA (2015) are collected from maintenance reports and contain all fail-
ures, both independent and CCFs. The data in MIL-HDBK-217F (1995) mainly
come from laboratory testing of single components and therefore only presents
the failure rate of independent failures. When using data from reliability data
sources in CCF models, we should be aware of this difference.

• Some causes of CCFs, such as miscalibration of sensors, are equally likely for a
single component as it is for a system of several components. If we include mis-
calibration as a cause of CCFs of n redundant sensors, it should also be included
for a single sensor. This problem is further discussed by Summers and Raney
(1999). ◻

13.6 CCFs Between Groups and Subsystems

A voted group is a set of identical (or similar) components. Examples of voted
groups are (1) a 2oo3:G voted group of pressure transmitters and (2) a 1oo2:G
voted group of level transmitters. The methods described in this chapter are mainly
focused on CCFs within a single group.



�

� �

�

632 13 Reliability of Safety Systems

13.6.1 CCFs Between Voted Groups

A subsystem of a safety loop (or a SIS) may sometimes have more than one voted
group. An example is a shutdown function (SIF) on a pressure vessel, with a sensor
subsystem of both pressure transmitters [group 1] and level transmitters [group
2]. These two groups may be configured either with 1oo2:G voting or with 2oo2:G
voting.

An intuitive approach would be to use the 𝛽-factor model (or the PDS model, see
Section 13.8) for each voted group and determine factors 𝛽1 and 𝛽2 for group 1 and
group 2, respectively, and thereafter, to determine a 𝛽-factor 𝛽12 to model possible
CCFs between the two voted groups. The two types of 𝛽-factors are sometimes
referred to as “inner” (i.e. within voted groups) and “outer” (i.e. between voted
groups) 𝛽-factors.

A problem with this approach is that even if all components have constant fail-
ure rates, the voted groups will generally not have constant failure rates. This
means that a main assumption of the 𝛽-factor model is not fulfilled.

13.6.2 CCFs Between Subsystems

The three main subsystems of a safety loop (or a SIS) may also be exposed to CCFs.
The three subsystems are generally set up as a series structure.

Consider a series structure of two identical components with constant failure
rate 𝜆. The components are exposed to CCF that is modeled by a 𝛽-factor model
with factor 𝛽. Because the failure rate of a series structure is the sum of the failure
rates, the failure rate of the series structure is

𝜆S = 2(1 − 𝛽)𝜆 + 𝛽𝜆 = 2𝜆 − 𝛽𝜆.

This means that a series structure that is exposed to CCFs has a lower failure rate,
and a higher reliability, than a series structure of independent components, when
using the 𝛽-factor model. This also means that assuming independence gives a
conservative result for series structures.

This argument cannot be directly transferred to a series of subsystems, because
the 𝛽-factor model does not easily apply to nonidentical subsystems with noncon-
stant and different failure rate functions.

13.7 IEC 61508

The international standard, IEC 61508 is the main standard for SISs. IEC 61508
is a generic, performance-based standard that covers most safety aspects of a SIS.
As such, many topics covered in IEC 61508 are outside the scope of this book.
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This section gives a brief presentation of some main aspects of IEC 61508 that are
relevant for the theory and methods presented in this book.

IEC 61508 has seven parts:

Part 1 General requirements
Part 2 Requirements for E/E/PE safety-related systems
Part 3 Software requirements
Part 4 Definitions and abbreviations
Part 5 Examples of methods for the determination of safety integrity levels
Part 6 Guidelines on the application of IEC 61508-2 and IEC 61508-3
Part 7 Overview of techniques and measures

IEC 61508 gives safety requirements to SISs and provides guidance to validation
and verification of such systems. The first three parts are normative parts and deal
with the assessment of industrial process risk and the SIS hardware and software
reliability. The remaining four parts deal with definitions and provide informative
annexes to the standard.

Part 1 defines the overall performance-based criteria for an industrial process.
It mandates the use of an overall safety lifecycle model (see Figure 13.11). Part 2 is
directed toward manufacturers and integrators of SISs and presents methods and
techniques that can be used to design, evaluate, and certify the hardware reliability
of an SIS, and thus its contribution to process risk reduction.

IEC 61508 is a generic standard that is common to several industries. Applica-
tion specific standards and guidelines are therefore developed, giving more specific
requirements. Among these standards and guidelines are

IEC 61511 (2003) Functional safety – Safety instrumented systems for the process
industry

IEC 62061 (2005) Safety of machinery – Functional safety of electrical, electronic,
and programmable electronic systems

IEC 61513 (2011) Nuclear power plants – Instrumentation and control important to
safety – General requirements for systems

NOG (2018) Guideline for the application of IEC 61508 and IEC 61511 in the
petroleum activities on the Norwegian Continental Shelf

13.7.1 Safety Lifecycle

The requirements in IEC 61508 are related to an overall safety lifecycle outlining
the main steps of the life cycle, similar to – but more detailed than – the overview
of the reliability engineering process in Figure 1.8. Main steps of the safety lifecycle
include

(a) Concept definition
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(b) Overall scope definition
(c) Hazard and risk analysis
(d) Safety requirements specification
(e) Safety requirements allocation
(f) SIS design and development (with several substeps)
(g) Installation and commissioning
(h) Safety validation
(i) Operation and maintenance
(j) Decommissioning or disposal

Each step is thoroughly described in Part 1 of IEC 61508.

13.7.2 Safety Integrity Level

Safety integrity is a fundamental concept in IEC 61508 and may be defined as

Definition 13.1 (Safety integrity)
The ability of a safety-related system to achieve its required safety functions under
all the stated conditions within a stated operational environment and within a
stated duration (IEV 821-12-54). ◻

The safety integrity is classified into four discrete levels called safety integrity
levels (SILs).

The SIL is in turn defined by the PFD. The relation between the SIL and the PFD
is shown in Table 13.3.

• Low demand mode means that the frequency of demands for operation of the
SIS is not greater that once per year, and not greater than twice the proof-test
frequency

Table 13.3 Safety integrity levels for safety functions.

Safety integrity
level (SIL)

Low demand mode of
operation (average probability
of failure to perform its
design function on demand)

High demand mode
or continuous mode of
operation (probability of a
dangerous failure per hour)

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5
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• High demand or continuous mode means that the frequency of demands for oper-
ation of the SIS is greater than once per year or greater than twice the proof-test
frequency

ANSI/ISA-84.01 (1996) uses the same safety integrity levels as shown in
Table 13.3 but clearly states that SIL 4 is not relevant in the process industry.

A SIL has to be assigned to each SIF. Observe that the SIL is assigned to the SIF,
and not to the SIS, because a single SIS may perform several SIFs.

Assume that process demands for a SIF with low demand mode occur accord-
ing to a HPP with rate 𝜈 demands per hour. For each demand, the SIF fails to
perform the required function with probability PFD. A critical situation occurs if a
process demand occurs and the SIF fails. Let Nc(t) be the number of critical situa-
tions in the time interval (0, t). The process {Nc(t), t > 0} is therefore an HPP with
rate 𝜈c = 𝜈 PFD. The probability that n critical situations will occur in the interval
(0, t) is

Pr(Nc(t) = n) = (𝜈 PFD t)n

n!
exp(−𝜈 PFD t) for n = 0, 1, 2,… . (13.32)

The mean time between critical situations is

MTBF = 1
𝜈 PFD

. (13.33)

When the mean time between demands is 104 hours (≈1.15 years), we observe that
the mean time between critical situations is the same for a SIF with low demand
mode as for a SIF with high demand mode, with the same SIL. The demand rate 𝜈
is usually defined as the net demand rate for the SIF, excluding the demands that
are effectively taken care of by non-SIS protection layers and other risk reduction
facilities.

The risk related to a specified critical event for a SIF with low demand mode is a
function of (i) the potential consequences of a critical event, and (ii) the frequency
of the critical event. To select an appropriate SIL, we therefore need to assess

(1) The frequency 𝜈 of demands for the SIS.
(2) The potential consequences following an occurrence of the critical event.

13.7.3 Compliance with IEC 61508

The overall objective of IEC 61508 is to identify the required SIFs, to establish
the required SIL for each SIF, and to implement the safety functions in a SIS in
order to achieve the desired safety level for the process. IEC 61508 is risk based and
decisions taken shall be based on criteria related to risk reduction and tolerability
of risk.
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The objective and the requirements related to each of the lifecycle phases are
described in detail in Section 7 of IEC 61508, Part 1. The actions that have to be
carried out, and the extent of these actions, will vary with the type and complexity
of the system (process). We have proposed a sequence of actions in the following.
The described actions should be regarded as a supplement to the detailed require-
ments in the standard. Our proposed actions do not replace the requirements in
the standard, but may hopefully give additional insight. When developing this
sequence of actions, we have had the process section of an offshore oil/gas platform
in mind. For other processes/applications, some of the actions might be reduced
or omitted.

(1) System definition. We start with a conceptual design of the system. The con-
ceptual design is assumed to be a basic design where no SIFs are imple-
mented. The conceptual design is a (close to) final design that is described
by process and instrument diagrams (P&IDs), other flow diagrams, and cal-
culation results.

(2) Definition of EUCs. The system (process) must be broken down into suit-
able subsystems. The subsystems are the EUCs. Guidance on how to define
EUCs is given in NOG (2018). Examples of suitable EUCs are pressure ves-
sels, pumping stations, and compressors.

(3) Risk acceptance criteria. We have to define risk acceptance criteria, or tolera-
ble risk criteria for each EUC. In some industries, such as the Norwegian oil
and gas industry, risk acceptance criteria have to be defined on the plant (plat-
form) level in the initial phases of a development project. The risk acceptance
criteria are qualitative or quantitative criteria related to the risk to humans,
the environment, and sometimes also related to material assets and produc-
tion regularity. Risk acceptance criteria may, for example be formulated as
“the fatal accident rate (FAR)1 shall be less than nine,” and “no release of
toxic gas to the atmosphere with a probability of occurrence greater than 10−4

in one year.
The plant risk acceptance criteria have to be broken down and allocated to
the various EUCs. The allocation of requirements must be based on criteria
related to feasibility, fairness, and cost, and is generally not a straightfor-
ward task.

(4) Hazard analysis. A hazard analysis has to be carried out to identify all poten-
tial hazards and process demands2 of each EUC. The hazard analysis may be
carried out using methods, such as:

1 FAR = Expected number of fatalities per 108 hours of exposure.
2 A process demand is significant deviation from normal operation that can lead to adverse
consequences for humans, the environment, material assets, or production regularity.



�

� �

�

13.7 IEC 61508 637

● Preliminary hazard analysis
● Hazard and operability (HAZOP) analysis (e.g. see IEC 61882 2016)
● Failure modes, effects, and criticality analysis (FMECA)
● Checklists
The hazard analysis provides
(a) A list of all potential process demands that may occur in the EUC.
(b) The direct causes of each process demand.
(c) Rough estimates of the frequency of each project demand.
(d) A rough assessment of the potential consequences of each process

demand.
(e) Identification of non-SIS protection layers for each process demand.
The hazard analysis shall consider all reasonable, foreseeable circumstances
including possible fault conditions, misuse and extreme environmental
conditions. The hazard and risk analysis shall also consider possible human
errors and abnormal or infrequent modes of operation of the EUC.

(5) Quantitative risk assessment. A quantified risk assessment is carried out to
quantify the risk caused by the various process demands for the EUC and for
the system (process). The risk assessment is carried out by methods, such as
● Fault tree analysis
● Event tree analysis
● Consequence analysis (e.g. fire and explosion loads)
● Simulation (e.g. accident escalation)
The quantitative risk assessment provides
(a) Estimates of the frequency of the process demands that were identified

in step 4.
(b) Identification of potential consequences of each process demand and

assessment of these consequences.
(c) Risk estimates related to each process demand and for the EUC.
(d) Requirements for risk reduction to meet the tolerable risk criteria for

the EUC.
Note 1: The traditional quantitative risk analyses (QRAs) that are carried out
for Norwegian offshore installations (NORSOK Z-013) do generally not meet
all the requirements for risk assessment in IEC 61508.
Note 2: The QRA may partly be replaced with a layer of protection analysis
(LOPA) (CCPS 2001).

(6) Non-SIS layers of protection. The required risk reduction may in some cases be
obtained by non-SIS layers of protection. In this step, various non-SIS layers
of protection (e.g. mechanical devices, fire walls) are identified and evaluated
with respect to EUC risk reduction. Based on this step, we can decide whether
or not a SIF is required to meet the risk acceptance criteria.
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(7) Determination of SIL. The required SIL for each SIF is determined such that
the risk reduction for the EUC may be obtained. Qualitative and quantitative
approaches to the determination of SIL are provided in IEC 61508-5.
Note 3: The Norwegian offshore industry has proposed an alternative
approach, where the risk assessments and the SIL determinations are
carried out for a generic system. Based on these analyses, a minimum SIL is
specified for each category of EUCs (NOG 2018).

(8) Specifications and reliability requirements. The specifications and reliability
requirements of the SIFs have to be defined.

(9) SIS design. The SIS has to be designed according to the specifications. IEC
61511 give guidance on building an SIS with specific SIFs that meet a desired
SIL.

(10) PFD calculation. Reliability models are established and the PFD calculated
for the proposed SIS design.

(11) Spurious trip assessment. The frequency of ST failures of the proposed SIS
design has to be estimated. Other potential, negative effects of the proposed
SIS design should be evaluated. (This step is not required in IEC 61508).

(12) Iteration. We must now check that the proposed SIS design fulfills the criteria
in step 9 and that the frequency of ST failures is acceptable. If not, the design
has to be modified. Several iterations may be necessary.

(13) System risk evaluation. The system (process) risk reduction due to the pro-
posed SIS is now assessed.

(14) Verification. The required modifications and analysis are made to ascertain
that the proposed SIS meets the risk reduction (SIL) requirements.

Interested readers may find more information in Rausand (2014) and van
Beurden and Goble (2018).

13.8 The PDS Method

The safety unavailability of a SIS with low demand mode may be assessed by the
methods described in Sections 13.2 and 13.3. A more comprehensive approach has,
however, been developed by SINTEF as part of the PDS3 project. The PDS method
(Hauge et al. 2013) is used to quantify both the reliability (the safety unavailability
and the ST rate) and the life cycle cost of a SIS. The PDS method is compatible with
the requirements in IEC 61508 and can be used to verify whether or not a specific
SIL requirement is met.

3 PDS is a Norwegian abbreviation for “Reliability of computer-based safety systems.”
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13.9 Markov Approach

Consider a safety system that is tested periodically with test interval 𝜏. When a
failure is detected during a test, the system is repaired. The time required for testing
and repair is considered to be negligible.

Let X(t) be the state of the safety system at time t, and let  = {0, 1,… , r} be the
(finite) set of all possible states. Assume that we can split the state space  into two
parts, a set B of functioning states, and a set F of failed states, such that F =  − B.
The average PFD(n) of the system in test interval n is

PFD(n) = 1
𝜏 ∫

n𝜏

(n−1)𝜏
Pr(X(t) ∈ F) dt, (13.34)

for n = 1, 2,…. If a demand for the safety system occurs in interval n, the (average)
probability that the safety system is not able to shut down the EUC is PFD(n). The
following approach is mainly based on Lindqvist and Amundrustad (1998).

We assume that {X(t)} behaves like a time homogeneous continuous–time
Markov chain (see Chapter 11) with transition rate matrix 𝔸 as long as time runs
inside a test interval, that is, inside intervals (n − 1)𝜏 ≤ t < n𝜏, for n = 1, 2,….
Let Pjk(t) = Pr(X(t) = k ∣ X(0) = j) denote the transition probabilities for j, k ∈  ,
and let ℙ(t) denote the corresponding matrix. Failures detected by diagnostic
self-testing, and ST failures may occur and be repaired within the test interval.

Let Yn = X(n𝜏−) be the state of the system immediately before time n𝜏, that
is, immediately before test n. If a malfunctioning state is detected during a test, a
repair action is initiated, and changes the state from Yn to a state Zn, where Zn is the
state of the system just after the test (and possible repair) n. When Yn is given, we
assume that Zn is independent of all transitions of the system before time n𝜏. Let

Pr(Zn = j ∣ Yn = i) = Rij for all i, j ∈  (13.35)

denote the transition probabilities, and let ℝ denote the corresponding transition
matrix. If the state of the system is Yn = i just before test n, the matrix ℝ tells us the
probability that the system is in state Zn = j just after test/repair n. The matrix ℝ
depends on the repair strategy and also on the quality of the repair actions. Proba-
bilities of maintenance-induced failures and imperfect repair may be included in
ℝ. The matrix ℝ is called the repair matrix of the system.

Example 13.17 (Safety valve)
Consider a safety valve that is located in the production tubing in an oil/gas
production well. The valve is closed and tested for leakage at regular intervals.
When the valve is closed, it may fail to reopen. That is, the failure mode FTO
may occur. Experience has shown that a specific type of valves fails to reopen
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approximately once every 200 tests. The probability of FTO-failure can easily be
taken into account in the repair matrix ℝ. ◻

Let the distribution of the state of the safety system at time t = 0, Z0 ≡ X(0) be
denoted by 𝝆 = [𝜌0, 𝜌1,… , 𝜌r], where 𝜌i = Pr(Z0 = i), and

∑r
i=0 𝜌i = 1. The distri-

bution of the state of the system just before the first test, at time 𝜏, is

Pr(Y1 = k) = Pr(X(𝜏−) = k)

=
r∑

j=0
Pr(X(𝜏−) = k ∣ X(0) = j) Pr(X(0) = j)

=
r∑

j=0
𝜌j Pjk(𝜏) = [𝜌 ℙ(𝜏)]k, (13.36)

for any k ∈  , where [B]k denotes the kth entry of the vector B.
Let us now consider a test interval n (≥ 1). Just after test interval n the state of

the system is Zn. We assume that the continuous-time Markov chain in n𝜏 ≤ t <
(n + 1)𝜏, given its initial state Zn, is independent of all transitions that have taken
place before time n𝜏.

Pr(Yn+1 = k ∣ Yn = j)

=
r∑

i=0
Pr(Yn+1 = k ∣ Zn = i,Yn = j) Pr(Zn = i ∣ Yn = j)

=
r∑

i=0
Pik(𝜏)Rji = [ℝ ℙ(𝜏)]jk, (13.37)

where [𝔹]jk denotes the (jk)th entry of the matrix 𝔹. It follows that {Yn,n =
0, 1,…} is a discrete-time Markov chain with transition matrix

ℚ = ℝ ℙ(𝜏). (13.38)

In the same way,

Pr(Zn+1 = k ∣ Zn = j)

=
r∑

i=0
Pr(Zn+1 = k ∣ Yn+1 = i,Zn = j) Pr(Yn+1 = i ∣ Zn = j)

=
r∑

i=0
Pji(𝜏) Rik = [ℙ(𝜏) ℝ]jk, (13.39)

and {Zn,n = 0, 1,…} is a discrete-time Markov chain with transition matrix

𝕋 = ℙ(𝜏) ℝ. (13.40)
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Let 𝜋 = [𝜋0, 𝜋1,… , 𝜋r] denote the stationary distribution of the Markov chain
{Yn,n = 0, 1,…}. Then 𝜋 is the unique probability vector satisfying the equation

𝜋 ℚ ≡ 𝜋 ℝ ℙ(𝜏) = 𝜋, (13.41)

where 𝜋i is the long-term proportion of times the system is in state i just before
a test.

In the same way, let 𝛾 = [𝛾0, 𝛾1,… , 𝛾r] denote the stationary distribution of the
Markov chain {Zn,n = 0, 1,…}. Then 𝛾 is the unique probability vector satisfying
the equation

𝛾 𝕋 ≡ 𝛾 ℙ(𝜏) ℝ = 𝛾, (13.42)

where 𝛾i is the long-term proportion of times the system is in state i just after a
test/repair.

Let F denote the set of all states representing a DU failure in  , and define
𝜋F =

∑
i∈F𝜋i. Then, 𝜋F denotes the long-run proportion of times the system is in a

dangerously failed state immediately before a test. If, for example, 𝜋F = 5 × 10−3,
the system will have a critical failure, on the average, in one out of 200 tests. More-
over, 1∕𝜋F is the mean time, in the long run, between visits to F (measured with
time unit 𝜏). The mean time between DU failures is hence

MTBFDU = 𝜏

𝜋F
, (13.43)

and the average rate of DU failures is

𝜆DU = 1
MTBFDU

=
𝜋F

𝜏
. (13.44)

The average PFD in interval n, PFD(n) may now be expressed as

PFD(n) = 1
𝜏 ∫

n𝜏

(n−1)𝜏
Pr(X(t) ∈ F) dt

= 1
𝜏 ∫

𝜏

0

r∑
j=0

∑
k∈F

Pjk(t) Pr(Zn = j) dt. (13.45)

Because Pr(Zn = j) → 𝛾j when n → ∞, we get the long-term average PFD as

PFD = lim
n→∞

PFD(n) = 1
𝜏 ∫

𝜏

0

r∑
j=0

∑
k∈F

Pjk(t) 𝛾j dt =
r∑

j=0
𝛾jQj, (13.46)

where

Qj =
1
𝜏 ∫

𝜏

0

∑
k∈F

Pjk(t) dt

is the PFD given that the system is in state j at the beginning of the test interval.
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Example 13.18 Hokstad and Frøvig (1996) consider a single component that is
subject to various types of failure mechanisms. In one of their examples, they study
a component with the following states:

State Description
3 Component as-good-as-new
2 Degraded (noncritical) failure
1 Critical failure caused by sudden shock
0 Critical failure caused by degradation

The component is able to perform its intended function when it is in state 3 or
state 2 and has a critical failure if it is in state 1 or state 0. State 1 is produced
by a random shock, whereas state 0 is produced by degradation. In state 2, the
component is able to perform its intended function, but has a specified level of
degradation.

It is assumed that the continuous-time Markov chain is defined by the state tran-
sition diagram in Figure 13.11 and the transition rate matrix

𝔸 =

⎛⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
𝜆dc 𝜆s −(𝜆dc + 𝜆s) 0
0 𝜆s 𝜆d −(𝜆s + 𝜆d)

⎞⎟⎟⎟⎟⎠
,

where 𝜆s is the rate of failures caused by a random shock, 𝜆d is the rate of
degradation failures, and 𝜆dc is the rate of degraded failures that become critical.

Because no repair is performed within the test interval, the failed states 0 and 1
are absorbing states. Let us assume that we know that the system is in state 3
at time 0, such that 𝜌 = [1, 0, 0, 0]. We may now use the methods outlined in
Section 11.9 to solve the forward Kolmogorov equations P(t) 𝔸 = Ṗ(t) and find
the distribution ℙ(t). It is clear that ℙ(t) can be written as

ℙ(t) =

⎛⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

P20(t) P21(t) P22(t) 0
P30(t) P31(t) P32(t) P33(t)

⎞⎟⎟⎟⎟⎠
.

3 1

2 0

λs

λsλd
λdc

Figure 13.11 State transition diagram
for the failure process described by
Hokstad and Frøvig (1996).
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The first two rows ofℙ(t) are obvious because state 0 and state 1 are absorbing. The
entry P23(t) = 0 because it is impossible to have a transition from state 2 to state 3.
From the state transition diagram, the diagonal entries are seen to be

P22(t) = e−(𝜆s+𝜆dc)t

P33(t) = e−(𝜆s+𝜆d)t.

The remaining entries were shown by Lindqvist and Amundrustad (1998) to be

P20(t) =
𝜆dc

𝜆s + 𝜆dc
(1 − e−(𝜆s+𝜆dc)t)

P21(t) =
𝜆s

𝜆s + 𝜆dc
(1 − e−(𝜆s+𝜆dc)t)

P30(t) =
𝜆d𝜆dc

(𝜆d + 𝜆s)(𝜆s + 𝜆dc)
+

𝜆d𝜆dc

(𝜆d − 𝜆dc)(𝜆d + 𝜆s)
e−(𝜆s+𝜆d)t

+
𝜆d𝜆dc

(𝜆dc − 𝜆d)(𝜆s + 𝜆dc)
e−(𝜆s+𝜆dc)t

P31(t) =
𝜆s(𝜆d + 𝜆s + 𝜆dc)
(𝜆d + 𝜆s)(𝜆s + 𝜆dc)

+
𝜆s𝜆dc

(𝜆d − 𝜆dc)(𝜆d + 𝜆s)
e−(𝜆s+𝜆d)t

+
𝜆s𝜆d

(𝜆dc − 𝜆d)(𝜆s + 𝜆dc)
e−(𝜆s+𝜆dc)t

P32(t) =
𝜆d

𝜆d − 𝜆dc
(e−(𝜆s+𝜆dc)t − e−(𝜆s+𝜆d)t).

Several repair policies may be adopted,

(1) All failures are repaired after each test, such that system always starts in state
3 after each test.

(2) All critical failures are repaired after each test. In this case, the system may
have a degraded failure when it starts up after the test.

(3) The repair action may be imperfect, meaning that there is a probability that
the failure will not be repaired.

13.9.1 All Failures are Repaired After Each Test

In this case all failures are repaired, and we assume that the repair is perfect, such
that the system will be in state 3 after each test. The corresponding repair matrix
ℝ1 is therefore

ℝ1 =

⎛⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎞⎟⎟⎟⎟⎠
.
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With this policy, all test intervals have the same stochastic properties. The average
PFD is therefore given by

PFD = 1
𝜏 ∫

𝜏

0
(P31(t) + P30(t)) dt.

13.9.2 All Critical Failures Are Repaired after Each Test

In this case, the ℝ matrix is

ℝ2 =

⎛⎜⎜⎜⎜⎝

0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
.

13.9.3 Imperfect Repair after Each Test

In this case, the ℝ matrix is

ℝ3 =

⎛⎜⎜⎜⎜⎝

r0 0 0 1 − r0
0 r1 0 1 − r1
0 0 r2 1 − r2
0 0 0 1

⎞⎟⎟⎟⎟⎠
.

The PFD may be found from (13.46). The calculation is straightforward, but the
expressions become rather complicated and are not included here. Further results
are given by Lindqvist and Amundrustad (1998). ◻

13.10 Problems

13.1 Figure 13.12 shows a part of a smoke detection system. The system com-
prises two optical smoke detectors (with separate batteries) and a start
relay. All components are assumed to be independent with constant fail-
ure rates:

Smoke detectors 1 and 2: 𝜆SD = 2 × 10−4 failures/h
Start relay: 𝜆SR = 5 × 10−5 failures/h

The system is tested and, if necessary, repaired after time intervals of equal
length 𝜏 = 1 month. After each test (repair), the system is considered to be
as-good-as-new. The repair time is assumed to be negligible. Dangerous
undetected (DU) failures are only detected during tests.
(a) Find the PFD for the system.
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Figure 13.12 Smoke
detector system (simplified). Smoke detector 1

Smoke detector 2

Start relay

1oo2:G

(b) Find the mean number of test intervals the system passes from t = 0
until the first DU failure.

(c) Assume that you in a specific test find that the system has a DU fail-
ure. Determine the mean time the system has been in a failed state.

(d) Assume that fires occur as a homogenous Poisson process with inten-
sity 𝜆 = 1 fire per 10 years. Find the probability that a fire occurs while
a DU failure of the smoke detection system is present, during a period
of 50 years.

13.2 Reconsider the 1oo2:G structure of independent fire detectors in
Example 13.4, but assume that the two fire detectors are different and
have failure rates 𝜆DU,1 and 𝜆DU,2 respectively, with respect to DU failures.
The fire detectors are tested at the same time with test interval 𝜏.
(a) Find the PFD for the fire detector system.
(b) Find an approximation to the PFD when 𝜆DU,i 𝜏 is “small,” for i = 1, 2.

13.3 The 𝛽-factor model is often the preferred way of including CCFs due to its
simplicity, but the model has some questionable properties:
(a) Comment on the effect on the independent failure rate when

introducing measures to reduce the value of 𝛽. Why is this effect
questionable?

(b) A 1oo4:G voted structure and a 2oo4:G voted structure would obtain
approximately the same value for PFD, assuming identical compo-
nents and the same 𝛽. Why is this the case, and what is the realism in
having this effect on the PFD? In what situations would the effect be
a realistic scenario, and in what situations would it be less realistic?

13.4 Reconsider the 2oo3:G structure of independent fire detectors in
Example 13.5 but assume that the three fire detectors are different and
have failure rates 𝜆DU,1, 𝜆DU,2, and 𝜆DU,3 respectively, with respect to DU
failures. The fire detectors are tested at the same time with test interval 𝜏.
(a) Find the PFD for the fire detector system.
(b) Find an approximation to the PFD when 𝜆DU,i 𝜏 is “small” for i =

1, 2, 3.
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13.5 Will a 2oo4:G structure of identical and independent items give more or
less spurious trips than a 2oo3:G structure of the same type of items? Jus-
tify your answer.

13.6 You are planning to install a pressure sensor system on a pressure vessel.
From past experience, you know that the pressure sensors you are plan-
ning to use, have the following constant failure rates with respect to the
actual failure modes:

No signal when the pressure increases
beyond the pressure setting:

𝜆FTF = 3.10 × 10−6 failures/h

False high pressure signal: 𝜆FA = 3.60 × 10−6 failures/h

The pressure sensors will be connected to a logic unit (LU). The LU trans-
forms the incoming signals and transmits them to the emergency shut-
down (ESD) system. The failure rates of the LU are estimated to be

Does not transmit correct signal: 𝜆A = 0.10 × 10−6 failures/h per input
False high pressure signal out: 𝜆B = 0.05 × 10−6 failures/h

Four different system configurations are considered:
● One single pressure sensor (with LU)
● Two pressure sensors in parallel
● Three pressure sensors as a 2oo3:G structure
● Four pressure sensors as a 2oo4:G structure
The pressure sensors and the logic unit are tested and, if necessary,
repaired at the same time once a month. Dangerous undetected (DU)
failures are only detected during tests. After a test (repair), all items are
assumed to be as-good-as-new. The time required for testing and repair
is assumed to be negligible.
(a) Determine the PFD with respect to DU failures for each of the four

system configurations when you assume that all items are indepen-
dent, and the failure rates of cables, and so on, are negligible.

(b) Determine the probability of getting at least one false alarm (FA) from
each of the four system configurations during a period of one year.

(c) Which of the four system configurations would you install?

13.7 Consider staggered testing as introduced in Section 13.3.5 for a parallel
structure of two items with DU failure rates 𝜆DU,1 and 𝜆DU,2, respectively.
The test interval is 𝜏 and the staggered delay is t0 < 𝜏.
(a) Develop the formula for PFD(t0). All steps in the development shall

be shown.
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(b) Find the formula for the optimal staggered delay t0 as a function of
the DU failure rates and the test interval.

(c) Show that if the two items have the same failure rate, the optimal stag-
gered delay is t0 = 𝜏∕2 and provide intuitive arguments for this result.

13.8 Consider a parallel structure of n identical components with constant fail-
ure rates 𝜆. The system is put into operation at time t = 0. The system is
tested and if necessary repaired after regular time intervals of length 𝜏.
After a test (repair) the system is considered to be as-good-as-new. The
system is exposed to CCFs that may be modeled by a 𝛽-factor model. Let
PFDn denote the PFD of a parallel structure of order n.
(a) Determine PFDn as a function of 𝜆, 𝜏, and 𝛽.
(b) Let 𝜆 = 5 × 10−5 failures/h, and 𝜏 = 3 months, and make a sketch of

PFDn as a function of 𝛽 for n = 2 and n = 3.
(c) With the same data as in question (b), determine the difference

between PFD2 and PFD3 when 𝛽 = 0, and 𝛽 = 0.20, respectively.

13.9 List the main pros and cons related to using a Markov model to model the
reliability of a SIS.

13.10 Figure 13.13 shows a part of a shutdown system of a process plant. There
are two process sections, A, and B. If a fire occurs in one of the process
sections, the emergency shutdown (ESD) system is installed to close
the emergency shutdown valve, ESDV. The ESD valve has a failsafe
hydraulic actuator. The valve is held open by hydraulic pressure. When
the hydraulic pressure is bled off, the valve closes.
Each process section has two redundant detector circuits (circuits 1 and
2). Each detector circuit is connected to the ESDV actuator by a pilot valve,
which by signal from the detectors opens and bleeds off the hydraulic
pressure in the ESDV actuator, and thereby closes the ESD valve. Further,
each circuit comprises an input card, a central processing unit (CPU), an
output card, and two fire detectors in each process section. When a fire
detector is activated, the current in that circuit is broken. When the cur-
rent to the input card is broken, a “message” is sent to the CPU via the
output card to open the pilot valve. It is assumed that minor fires in one
of the process sections cannot be detected by the fire detectors in the other
process section.
It is assumed that all the components are independent with constant fail-
ure rates. Each component has two different failure modes:
– Fail to function (FTF) (i.e. no reaction when a signal is received)
– False alarm
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CPU2
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CPU1
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1.2B

Process section A
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Figure 13.13 Sketch of an emergency shutdown system.

Table 13.4 Failure rates for the “fail to function” mode.

Component Symbol
FTF-failure rate
𝝀 (failures/h)

ESD-valve ESDV 3.0 × 10−6

Actuator Actuator 5.0 × 10−6

Pilot valve P1, P2 2.0 × 10−6

Output card OP1, OP2 0.1 × 10−7

Input card IP1, IP2 0.1 × 10−7

CPU CPU1, CPU2 0.1 × 10−7

Fire detector 1.1A, 1.2A, 2.1A, 2.2A 4.0 × 10−6

1.1B, 1.2B, 2.1B, 2.2B

The system components, their symbols, and FTF failure rates are listed in
Table 13.4.
(a) Construct a fault tree with respect to the TOP event: “The ESD valve

does not close when a fire occurs in process section A.”
Write down the extra assumptions you have to make during the fault
tree construction. As seen from Table 13.4, the failure rates of the
input card, the CPU, and the output card are negligible compared to
the failure rates of the other components. To simplify the fault tree
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construction, you may therefore disregard the input/output cards and
the CPU.
Show that the fault tree has the following minimal cut sets:

{Actuator}
{ESDV}
{P1, P2}
{P2, 1.1A, 2.1A}
{P1, 1.2A, 2.2A }
{1.1A, 1.2A, 2.1A, 2.2A }

All the components are tested once a month. FTF failures are nor-
mally only detected during tests. The time required for testing and, if
necessary, repair is assumed to be negligible compared to the length
of the testing interval. In question (b) we shall assume that the test-
ing of the various components are carried out at different, and for us
unknown, times.

(b) .A. Determine the PFD for each of the relevant components.
B. Determine the TOP event probability by the “upper bound approx-

imation,” when the basic events of the fault tree are assumed to be
independent.

C. Discuss the accuracy of the “upper bound approximation” in this
case.

D. Describe other, and more exact methods, to compute the TOP
event probability. Discuss pros and cons for each of these
methods.

(c) Minor fires are assumed to occur in process section A on the average
two times a year, according to a HPP. A critical situation occurs when
a fire occurs at the same time as the ESD system has FTF failure (i.e.
when the TOP event is present). Find the probability of at least one
such a critical situation during a period of 10 years.

(d) Next consider the subsystem comprising the two fire detectors 1.1A
and 2.1A. Determine the PFD of this subsystem when the detectors
are tested:
(i) Once every third month at different and, for us, unknown time

points.
(ii) At the same time once every third month.

(iii) By staggered testing, where detector 1.1A is tested once every third
month and detector 2.1A is also tested once every third month, but
always one month later than detector 1.1A.

Which of these testing regimes would you prefer (give pros and cons).
Explain why the PFD in case (i) is different from the PFD in case (ii).
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(e) Do you consider the suggested system structure to be optimal with
respect to avoid “False alarm” failures? Suggest an improved structure
and discuss possible positive and negative properties of this structure.

13.11 A downhole safety valve (DHSV) is placed in the oil/gas production tub-
ing on offshore production platforms, approximately 50–100 m below the
sea floor. The valve is held open by hydraulic pressure through a 1∕16′′

hydraulic pipeline from the platform. When the hydraulic pressure is bled
off, the valve closes by spring force. The valve is thus failsafe close. The
valve is the last barrier against blowouts in case of an emergency situa-
tion on the platform. It is very important that the valve is functioning as
a safety barrier, and the valve is therefore tested at regular intervals.

There are two main types of DHSVs; wireline retrievable (WR) valves,
and tubing retrievable (TR) valves. WR valves are locked in a landing
nipple in the tubing, and may be installed and retrieved by a wireline oper-
ation from the platform. A TR valve is an integrated part of the tubing. To
retrieve a TR valve, the tubing has to be pulled. Here we shall consider a
WR valve. When the WR valve fails, it is retrieved by a wireline operation
and a new valve of the same type is installed in the same nipple.

The DHSV is tested once a month. During the testing, which requires
approximately 1.5 hours, the production has to be closed down. The mean
time to repair a failure is estimated to be nine hours.
The DHSV has four main failure modes:

FTC Fail to close on command
LCP Leakage in closed position
FTO Fail to open on command
PC Premature closure

The failure modes FTC and LCP are critical with respect to safety. The
failure modes FTO and PC are noncritical with respect to safety, but will
stop the production. The three failure modes FTC, LCP, and FTO may
only be detected during testing, whereas PC failures are detected at once
because the production from the well closes down.
The following failure mode distribution has been discovered:

FTC 15%
LCP 20%
FTO 15%
PC 50%
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The failure rates are assumed to be constant with respect to all failure
modes. The mean time between valve failures (with respect to all failure
modes) has been estimated to 44 months.
If a critical failure is detected during a test, the well will be unsafe during
approximately 1/3 of the repair time. If a noncritical failure is detected,
the well will be safe during these operations.
(a) Determine the mean time between FTC failures of a valve.
(b) Determine the probability that a valve survives a test interval without

any failure.
(c) Find the PFD. The time required for testing and repair shall be taken

into account. Discuss the complications encountered in this calcula-
tion due to PC failures.

(d) Find the mean proportion of time the production is shut down due to
DHSV testing and failures.

(e) Assume now that an emergency situation occurs on the platform
on the average once every 50 platform years, which requires that
the DHSV must be closed. A critical situation occurs when such an
emergency situation occurs when the DHSV is not functioning as a
safety barrier. Compute the mean time between this types of critical
situations.

(f) Consider a platform with 20 production wells, with a DHSV in each
well. In an emergency situation, all the wells have to be closed down.
With the same assumptions as above, determine the mean time
between critical situations on the platform.

13.12 A gas detector has constant failure rate 𝜆DU = 1.8 × 10−6 h−1 with respect
to the critical (DU) failure mode “gas detector does not raise alarm when
gas is present.” Please record any extra assumptions you have to make to
answer the questions below.
(a) Find the mean time-to-failure, MTTF, of the gas detector (with respect

to DU failures).
(b) The critical failure mode is a so-called hidden failure. The gas detector

is therefore proof tested after regular intervals of length 𝜏 = 6 months
(where 1 month = 730 hours). The time required to test and repair a
failed detector is so short that it may be neglected. After a test/repair,
the gas detector is assumed to be “as-good-as-new.”
– Explain what is meant by a “hidden failure.”
– Determine the PFD (“probability of failure on demand”) for the gas

detector.
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(c) Assume now that we have three gas detectors of the same type. The
three detectors are connected to a logic solver with a 2oo3 logic. The
gas detectors are proof tested at the same time every six months.
Otherwise, the same assumptions as in (b) apply. The logic solver is
assumed to be so reliable that its failure rate may be set to zero. In
this question, we assume that the three detectors are independent.
– Find the probability that the 2oo3:G structure survives 12 months

without a critical system failure.
– Find the PFD for the 2oo3:G structure.
– How many hours per year are we, on the average, unprotected by

the gas detector system when we assume that the system shall be
functioning continuously?

(d) Assume that the gas detectors are exposed to common cause failures
that can be modeled by a 𝛽-factor model with 𝛽 = 0.08.
– Find the PFD of the 2oo3:G structure in this case. Specify the pro-

portion of the PFD that is caused by independent failures and the
proportion caused by common cause failures.

– When a critical failure of the gas detector system is revealed in a
proof test, how long time can we expect that the system has been
unable to function?
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14

Reliability Data Analysis

14.1 Introduction

This chapter gives an introduction to reliability data analysis, also known as
survival analysis and lifetime analysis. The dataset to be analyzed consists of
lifetimes that are measured from a starting time to an endpoint of interest. The
starting time is usually the time when the item is put into operation for the first
time, but may also be the time when we start observing the item. The endpoint of
interest is usually a failure event, sometimes restricted to a specific failure mode.

For many datasets, the data collection is stopped before all the items fail. This
means that some items are still in a functioning state when the data collection
stops. The recorded times for such items are therefore not times-to-failure, but
the time measured from the starting time until the data collection stopped. These
times are said to be censored times, and a dataset with one or more censored times
is called a censored dataset.

Some datasets include one or more explanatory variables such as pressure, tem-
perature, flow-rate, and vibration. These variables are called covariates and help
explain why there are differences between the times-to-failure of the same type of
items.

Reliability data analysis is a loosely defined term that encompasses a variety of
statistical methods for analyzing positive-valued datasets. The methods presented
in this chapter are also extensively used in biostatistics and medical research under
the heading survival analysis.

A high number of books have been published on this topic, but to recommend
one of these for further study is difficult and will depend on your particular appli-
cation.

To analyze reliability data, we need to use a suitable computer program. Many
programs are available, and it is difficult to claim that one is better than all the
others. In this book, we have chosen the program R because it covers most of the

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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techniques dealt with in this chapter, because it is used by many universities, and
because it is free software that can be run on all major computer platforms.

By searching the Internet for “survival analysis,” “survival models,” and simi-
lar terms, you find an almost endless number of presentations, lecture notes, and
slides. Most of these are made for medical applications, but they are in most cases
still relevant for the content of this chapter.

14.1.1 Purpose of the Chapter

The purpose of this chapter is to give an introduction to reliability data analysis
that can be understood based on the material presented in the previous chapters.
We focus on explaining the basic concepts and how the various methods can be
used and do not dig deeply into the theoretical problems. We do, however, give
references to where interested readers may find more extensive information. We
assume that the reader has installed the program R on an available computer and
has become a bit familiar with how it is used. We illustrate how R may be used
in the analyses and present simple R scripts, such that the reader may repeat the
analyses for other datasets. More complete R scripts may be found on the book
companion site.

14.2 Some Basic Concepts

Before discussing the various analysis methods, we need to introduce the main
terminology to be used.

Population. A population is a set of similar items or events that are of interest for
some question or experiment. The population may, for example be
● All the valves of the same type in a plant.
● All the mobile phones of a particular brand.
● All the brakes of the same type used in the railway rolling stock within a

country.
Model. To study an aspect of a population, we define a random variable X that may

give us information about this aspect. To be able to use statistical methods in our
study, we establish a probabilistic model, M, related to the random variable X .
The model may be parametric, nonparametric, or semiparametric. As a starting
point, we assume that the model M is parametric with some parameter 𝜃. The
parameter is fixed but unknown, applies for the population, and is sometimes
called a population parameter.
If X is a discrete variable, the model is formulated by a conditional probability
mass function Pr(X = x ∣ 𝜃), where 𝜃 is fixed, but unknown. If X is a continuous
variable, the model is formulated by a probability density function f (x ∣ 𝜃).
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Sample. To study the entire population is usually too time-consuming and
expensive, and we therefore suffice by studying a sample from the population.
A sample is a subset of a population, collected or selected by a defined sampling
procedure. When the sampling is random, the sample is said to be a random
sample. In reliability studies, the sample is not always random, and we have to
suffice with the sample that is possible to get.

Experiment. To get information about the random variable X , we carry out inde-
pendent and identical experiments of the n items in the sample. When the n
experiments are completed, we have the dataset x1, x2,… , xn. The joint distri-
bution of obtaining this dataset is because of independence:

f (x1, x2,… , xn| 𝜃) =
n∏

i=1
f (xi| 𝜃), (14.1)

for a continuous variable. The expression for a discrete variable is left to the
reader.

Inference. Inference is a procedure to use information gathered from a sample to
make statements about the population from which the sample was taken. The
main concepts involved in statistical inference are shown in Figure 14.1.

14.2.1 Datasets

The starting point in this chapter is a dataset containing a random sample from
a population of independent items. Throughout this chapter, we assume that the
time-to-failure of an item is a nonnegative random variable T. In most applica-
tions, we assume that we observe n identical items with random times-to-failure

Population Sample

Sampling

Inference
Results from sampleConclusions on the population

Probabilistic model Analysis

Data = {x
1
, x

2
, ... , x

n
}

Tests/measurements

Figure 14.1 Main concepts of statistical inference.



�

� �

�

658 14 Reliability Data Analysis

Ti,T2,… ,Tn that are independent and identically distributed with distribution
function FT(t) and probability density function fT(t). The corresponding observed
sample survival times are denoted t1, t2,… , tn.

For many datasets, the observation of an item is stopped before the item has
failed, and we say that the time-to-failure is censored. There are many reasons for
censoring, including that the test equipment breaks down, the item is taken out of
service due to operational causes, or that the allocated test or observation period
is over. For each item, we assume that censoring occurs at time C that may be
deterministic or random.

14.2.2 Survival Times

When censoring is present, we cannot always observe the true time-to-failure T.
We only observe the survival time, the time until a failure or a censoring occurs, as
shown in Figure 14.2.

We may assume that two independent processes are competing to termi-
nate item i, a failure process and a censoring process. With no censoring, the
time-to-failure Ti would be observed, and with no failure, the censoring time Ci
would be observed. With both processes active, we observe the minimum of Ti
and Ci, that is min {Ti,Ci}, for i = 1, 2,… ,n.

We still denote the dataset t1, t2,… , tn, but to each observation ti, we associate
an indicator 𝛿i, defined by

𝛿i =
{

1 if ti ends with a failure (i.e. Ti < Ci)
0 if ti ends with censoring (i.e. Ti > Ci)

for i = 1, 2,… ,n.

We call the indicator 𝛿i the status of survival time ti. The dataset therefore consists
of n duplets (ti, 𝛿i), for i = 1, 2,… ,n, telling how long time the item survived and
whether the observation stopped with a failure (F) or a censoring (C).

In this chapter, we assume that survival time ti is measured from when item i was
new. In many practical applications, item i has a certain age t(0)i when the obser-
vation starts. Here, we assume that t(0)i = 0 for all i = 1, 2,… ,n, and we further
assume that all survival times can be shifted to a common starting point, without
loss of information. This is shown in Figure 14.3.

True time-to-failure

Observed survival time
Censored

Figure 14.2 Time-to-failure and Observed Survival Time.



�

� �

�

14.2 Some Basic Concepts 659
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Figure 14.3 An observed dataset (a), and the same dataset shifted to time 0 (b). F
denotes a failure and C denotes censoring.

Entering Survival Times into R
The dataset may be entered into R in several ways. The most common is as follows:
(i) a spreadsheet file, (ii) comma-separated values (CSV) file, or (iii) manually as
one or more vectors. For the last option, we enter the ordered survival times, for
example

ti 17.88 28.92 33.00 41.52 42.12 45.60
𝛿i 1 0 1 1 1 0

We denote the vector of survival times survtime and the status vectorstatus
and enter the following in the R script

survtime <- c(17.88,28.92,33.00,41.52,42.12,45.60)
status <- c(1,0,1,1,1,0)
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For a dataset with many survival times, it may be wise to enter the data into a
spreadsheet program and save the file either as a CSV or as an Excel® file.1

The Survival R Package
The R package survival contains many of the survival analysis functions used
in this chapter. How the package is loaded into your R session is illustrated by the
following R script, which is based on the data in the R script above. Before load-
ing the script, you must have installed the package survival, by the command
install.packages(’survival’). The new dataset is called my.surv and
is prepared for further analysis by the function Surv.

library(survival) # Activate the package survival
survtime <- c(17.88,28.92,33.00,41.52,42.12,45.60)
status <- c(1,0,1,1,1,0)
# Arrange and give the dataset a name
my.surv <- Surv(survtime,status)
# Display the dataset my.surv
print(my.surv)

Running this script in R gives the output

> print(my.surv)
[1] 17.88 28.92+ 33.00 41.52 42.12 45.60+

Observe that + is added to the censored survival times. The + indicates that the
time-to-failure would have been somewhat longer if the survival time were not
censored.

14.2.3 Categories of Censored Datasets

This section describes four main types of censoring and two subtypes.

Censoring of Type I
A life test of n numbered and identical items is carried to gain information about
the probability distribution of the time-to-failure T of the items. A specific time
interval [0, 𝜏]has been allocated for the test. After the test, only the times-to-failure
of those items that failed before 𝜏 are known.

1 Commands to import data files into R may be found by searching the Internet for “import data
into R.”
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This type of censoring is called censoring of type I, and the information in the
dataset consists of s (≤ n) observed, ordered survival times

t(1) ≤ t(2) ≤ · · · ≤ t(s).

In addition, we know that (n − s) items have survived the time 𝜏, and this infor-
mation should also be used.

Because the number of items that fail before time 𝜏 obviously is random, there
is a chance that none or relatively few of the items will fail before 𝜏. This may be
a weakness of the test design.

Censoring of Type II
Consider the same life test as for censoring of type I, but assume that it has been
decided to continue the test until exactly r (< n) failures have occurred. The test
is therefore stopped when the rth failure occurs. This censoring is called censoring
of type II, and the dataset obtained from the test consists of

t(1) ≤ t(2) ≤ · · · ≤ t(r),

together with the fact that (n − r) items have survived the time t(r).
In this case, the number r of recorded failures is not random. The price for

obtaining this is that the time t(r) to complete the test, is random. A weakness of
this design is therefore that we cannot know beforehand how long time the test
will last.

Censoring of Type III
Type III censoring is a combination of the first two types. The test terminates at
the time that occurs first, 𝜏 or the rth failure (𝜏 and r must both be fixed before the
test starts).

Censoring of Type IV
Consider a life test of n numbered identical items. Each item may either run to fail-
ure or be censored at a random time C. The time-to-failure T is, as before, assumed
to have distribution function FT(t) and probability density function fT(t), whereas
the censoring time C has distribution function FC(c) and probability density func-
tion fC(c). The two random variables T and C are assumed to be independent. The
survival time we observe is therefore the minimum of T and C.

This censoring is called censoring of type IV and is sometimes also called random
censoring. Many of the datasets that are relevant for reliability studies have random
censoring, especially when the datasets originate from systems in operation.
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Right Censoring
Right censoring means that the item is removed from the study before a failure
occurs, or that the study of the item ends before the item fails. For all the examples
in this chapter, the censoring is right censoring.

Example 14.1 (Censoring caused by other failures)
Consider a plant where two independent items are located close to each other in
a location that is difficult to access. When one of the items fails, both items are
replaced or totally refurbished. In this situation, failure of one item leads to cen-
soring of the other item. Because failures occur at random, this is an example of
random censoring (i.e. of type IV).

The same censoring applies to a data collection where only a particular failure
mode A is of interest. If another failure mode occurs, and is repaired, before failure
mode A occurs, the time-to-failure of failure mode A is censored. In this case, we
often say that we have competing failure modes. ◻

Informative Censoring
All the examples discussed in this chapter assume that the censoring is nonin-
formative. This means that the time-to-failure T is independent of the censoring
mechanism. The censoring may also be informative, for example when an item
is taken out of service because its level of performance is less than adequate, but
without failing.

14.2.4 Field Data Collection Exercises

In field data collection exercises, such as for the OREDA project, survival times
are collected from a certain time window (t1, t2). We may, for example collect data
for failure events that occurred between 1 January 2015 and 31 December 2019.
At the beginning of the time window, at time t1, the items may have different ages
t(0)i , whereas some items may be installed during the time window, often as replace-
ments for failed items. In many field data collection exercises, it is assumed that
repair of a failed item brings it back to an as-good-as-new condition.

The resulting dataset is sometimes complicated and is best entered into a spread-
sheet program, with the following columns:

Number Item number (i)
Age Age of item at the start of the data collection (t(0)i )
Start Starting time of observation (tstart

i )
Stop Observation terminated (tstop

i )
Status Status at stop (1 = failed, 0 = censored)

An example of such a dataset is shown in Figure 14.4.
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Figure 14.4 Typical dataset for field data.

14.2.5 At-Risk-Set

The at-risk-set at time t is the set of items that have not failed or been censored
before time t, that is, the set of items that are at risk of failing at time t. When a
(single) failure or censoring occurs, one item is removed from the at-risk-set and
when a new item enters the study, the at-risk-set is increased by one item. The
number of items in the at-risk-set at time t is an important variable in several of
the survival analyses methods presented in this chapter.

14.3 Exploratory Data Analysis

An exploratory data analysis (EDA) is an essential first step in any data analysis.
The EDA gives a “first look at the data” before any modeling effort is done. An
EDA has two main parts: (i) calculation of a selection of sample statistics such as
the mean, median, and standard deviation, and (ii) data visualization in the form
of histograms, empirical distribution functions, Q–Q plots, and so on.

EDA helps the analyst to understand the underlying structure of the data, to
identify anomalies and outliers in the dataset, to assess the assumptions about the
data, and several more. The examination of the data helps seeing what the data
can tell us. EDA got increased importance following the publication of John W.
Tukey’s seminal book Exploratory Data Analysis (Tukey 1977).
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14.3.1 A Complete Dataset

The starting point of an EDA is a specific dataset. This section assumes that we
have a complete dataset t1, t2,… , tn where all survival times are times-to-failure.
This means that the status is 𝛿i = 1 for all items i = 1, 2,… ,n, and that we do not
need to enter the status into R. All the n entries in the dataset are assumed to be
correct observations of a common variable. Many analytical methods require the
dataset to be sorted in ascending order. A sorted dataset is also called an ordered
dataset and is written as t(1), t(2),… , t(n), such that t(1) ≤ t(2),≤ · · · ≤ t(n).

As an illustration, we use the complete and ordered dataset of 22 observed values
in Table 14.1. We call the dataset survtime and Table 14.1 shows the most direct
way of entering the dataset into R by using the terminal.2

How the data is recorded in R is seen by launching the command print
(survtime) in the terminal. The result is:

[1] 17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84

[9] 51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12

[17] 93.12 98.64 105.12 105.84 127.92 138.04

If the dataset survtime were entered into R as an unordered set, it may be
ordered by the function sort(survtime).

Remark 14.1 (An advise)
We will illustrate several methods by using the survtime dataset. If you want
to test our examples or play with R, it may be wise to set up a textfile containing
the data. The simplest way is to write one datapoint per line (with a “full stop” as
decimal point and save the file as, for example, dataset.txt in your R working
directory.3 You may enter the textfile into R and activate the dataset survtime
by the command survtime<-read.table("dataset.txt",header=F,
dec=".")

Table 14.1 A complete and ordered dataset of survival times.

survtime <- c(17.88,28.92,33,41.52,42.12,45.6,48.4,51.84,

51.96,54.12,55.56,67.8,68.64,68.64,68.88,84.12,

93.12,98.64,105.12,105.84,127.92,138.04)

2 The terminal is called the Console in RStudio.
3 After having created the working directory, you may check the path by the command
getwd().
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Instead of a textfile, you may alternatively create an Excel file or a CSV file (but
this requires another command to activate the data). ◻

Ties
Two or more continuously distributed survival times may sometimes be recorded
with the same value. This is called a tie and may be caused by common-cause
failures or by rounding-off. The dataset in Table 14.1 has a tie for 68.64, because
two survival times are recorded with the same value. The number of failures that
occur at time t(i) is called the multiplicity of the tie and is denoted by di. The dataset
may therefore be recorded in two different ways:

(1) The ordered dataset may be recorded as t(1) ≤ t(2) ≤ · · · ≤ t(n) with a survival
time for each item, thus realizing that some of the survival times may be equal.

(2) The ordered dataset may be recorded as nt ≤ n distinct survival times t(1) <
t(2) < · · · < t(nt) associated with a vector giving the multiplicities of failures
d1, d2,… , dnt

.

Most of the following sections use option 1.

14.3.2 Sample Metrics

Valuable information about the dataset can be obtained by applying sample met-
rics to the dataset. This section defines and shows how to calculate a number of
these metrics.

Mean
The mean of a dataset is a measure of the central location of the data values and
is calculated as the sum of its data values divided by the number n of data values.

t = 1
n

n∑
i=1

ti. (14.2)

The R command to obtain the mean of the dataset is mean(survtime) and for
the data in Table 14.1, we obtain t = 68.08.

Median
The median tm of a dataset is the value at the middle of the ordered data. For
odd number of values (i.e. n = 2k + 1), the median is the (k + 1)th smallest in the
ordered dataset, that is t(k). For an even number of values (i.e. n = 2k), the median
is the average of the two values in the middle of the ordered dataset, that is the
average of t(k) and t(k+1). If, for example the sorted dataset has the six values 2, 4, 5,
7, 8, 10, the median is (5 + 7)∕2 = 6. A more formal definition is given in (14.3).

tm =
⎧⎪⎨⎪⎩

t(k+1) for n = 2k + 1
t(k) + t(k+1)

2
for n = 2k

. (14.3)
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The ordered dataset in Table 14.1 has n = 22 values and the median is therefore
the average of t(11) and t(12),

Median =
t(11) + t(12)

2
= 61.68.

The same result is obtained by the R functionmedian(survtime). Observe that
the mean value is larger than the median for this dataset.

A simple summary, including the mean and the median, of the dataset surv-
time is obtained by the command summary(survtime). If you have created
the textfile dataset.txt as recommended in Remark 14.1, you may use the
script

survtime <-read.table("dataset.txt",header=F,dec=".")
summary(survtime)

and obtain

Min. : 17.88
1st Qu.: 46.30
Median : 61.68
Mean : 68.08
3rd Qu.: 90.87
Max. :138.04

Quartiles (Qu.) are introduced below.

Variance and Standard Deviation
The variance is a measure of how the data values are dispersed around the mean
and is calculated as

s2 = 1
n − 1

n∑
i=1

(ti − t)2
. (14.4)

The standard deviation is the square root of the variance

s =

√√√√ 1
n − 1

n∑
i=1

(ti − t)2. (14.5)

The R commands to obtain the variance and the standard deviation of the dataset
are var(survtime) and sd(survtime), respectively. Observe that the stan-
dard deviation is measured with the same unit as the data values, whereas the
variance is measured with “squared units.” For the dataset in Table 14.1, the (sam-
ple) standard deviation obtained by sd(survtime) is 32.01.
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Quantiles
For p ∈ (0, 1), the quantile of order p of the distribution FT(t) is the value tp such
that

FT(tp) = p, which means that Pr(T ≤ tp) = p.

For realistic life distributions, tp is unique.
Now, consider an ordered dataset t(1) ≤ t(2) ≤ · · · ≤ t(n). The (sample) quantile of

order p may approximately be calculated as t([np]+1), where [np] is the largest inte-
ger < np. The dataset in Table 14.1 has n = 22 values. To determine the (sample)
quantile of, say order p = 0.15, we first calculate np = 22 ⋅ 0.15 = 3.3. The largest
integer less than np is 3 and the quantile of order 0.15 is therefore t(4) = 41.52.

The (sample) quantile of order p is available in R by the function quan-
tile(survtime,p), which gives 41.61. This is not exactly the same result we
got by hand calculation because R applies a more elaborate and “correct” formula
based on interpolation of the ordered survival times. Interested readers may check
the help file in R, help(quantile).

Quartiles
The quantiles of order 0.25 and 0.75 are called the lower and upper quartiles,
respectively. The lower quartile (or 1st quartile), t0.25 is the value that cuts off the
first 25% of the ordered dataset, and the upper quartile (or 3rd quartile) t0.75 is the
value that cuts off the first 75% of the ordered dataset. Both are provided by the
command summary(survtime).

Interquartile Range
The distance between the upper and the lower quartile, t0.75 − t0.25, called the
interquartile range, is a common measure for the dispersion of the dataset around
its mean or median. The interquartile range for the dataset in Table 14.1 is deter-
mined by quantile(survtime,0.75)-quantile(survtime,0.25) and
the result is 44.57.

Sample Moments and Central Moments
The kth (noncentral) sample moment for the dataset t1, t2,… , tn is defined as

mk,nc =
1
n

n∑
i=1

tk
i . (14.6)

We observe that the first sample moment is t = 1
n

∑n
i=1 ti is the average value (i.e.

mean) of the dataset.
The kth (k ≥ 2) central sample moment is centered around its average value of

the dataset and is defined as

mk,c =
1
n

n∑
i=1

(ti − t )k
. (14.7)
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Moments are available in the R package moments that must be installed in R
before you can use it.

library(moments)
survtime <-read.table("dataset.txt",header=F,dec=".")
k <-3 # Choose the order of the noncentral moment
moment(survtime,order = k,central=F)
moment(survtime,order=k,central=T)

The result for the dataset in Table 14.1 is

Order (k) Noncentral moment Central moment

2 5612.752 978.3606

3 534022.7 18720.53

Skewness
Skewness is a measure of the asymmetry of the dataset. The skewness value can be
positive or negative. When the distribution of the values of the dataset is symmet-
ric, the skewness is zero. When the values are predominantly large (but with some
small values), the skewness is negative and when the values are predominantly
small (with some large values), the skewness is positive.

The skewness 𝛾1 is defined by

𝛾1 =
m3,c

m3∕2
2,c

, (14.8)

where mk,c is the kth central sample moment of the dataset. The skewness 𝛾1 is
available in the R package moments by the command skewness(survtime).
The result is 0.6117442, which indicates that the dataset is slightly skewed to
the left.

Kurtosis
The kurtosis describes the shape of the tails of the distribution of the values in the
dataset. The normal distribution has zero kurtosis. Negative kurtosis indicate a
thin tail of the distribution and positive kurtosis indicate a thicker tail.

The kurtosis 𝛾2 is defined as

𝛾2 =
m4,c

m2
3,c

− 3, (14.9)
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where 𝜇k is the kth central moment of the dataset. The kurtosis is available in the
R package moments by the command kurtosis(survtime) and the result for
the dataset in Table 14.1 is 2.555 003.

14.3.3 Histogram

A histogram consists of parallel bars that graphically show the frequency distribu-
tion of a variable. As a default, all the bars have the same width. We may choose
the number of bars to display. We may also choose whether to (i) show the number
of values in the dataset that fall into the interval corresponding to the width of the
bar, or (ii) to show the relative number (or percentage) of the values that fall into
the interval. With option (ii), the histogram is said to show the relative frequency
distribution or the distribution density of the values in the dataset.

The information obtained from the histogram depends on the resolution, that
is how many intervals we choose. Figure 14.5 shows three different histograms of
the data in Table 14.1, with different numbers of columns.
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Figure 14.5 Histogram of the dataset in Table 14.1 with different numbers of columns:
(a) 3 columns, (b) 7 columns, and (c) 26 columns.



�

� �

�

670 14 Reliability Data Analysis

It is not always true that a higher resolution makes it easier to understand the
distribution of the data.

Histograms are established by the R script

survtime <-read.table("dataset.txt",header=F, dec=".")
hist(survtime$V1,breaks=3,freq=F) # Plots
the histogram

This script provides a histogram according to option (i). A relative frequency
histogram [option (ii)] is obtained by replacing freq=F with freq=T, where F
is an abbreviation for false and T is an abbreviation for true.

The reader is encouraged to run the script with different values for breaks.

14.3.4 Density Plot

The distribution of the dataset can also be illustrated by a sample density plot, by
using the R script:

survtime <-read.table("dataset.txt",header=F, dec=".")
d <- density(survtime) # Returns the density data
plot(d) # Plots the results

The resulting plot is shown in Figure 14.6. The plot is made by an averaging
technique and is based on a set of input parameters. The current plot is made with
the default parameters of the density command. Other parameters and other
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Figure 14.6 A sample density plot of the dataset in Table 14.1.
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averaging techniques may be chosen. Interested readers may consult the help file,
by the command help(density) in the R terminal (console).

14.3.5 Empirical Survivor Function

The survivor function R(t) = Pr(T > t) is the probability that an item from the pop-
ulation will still be functioning at time t. When a complete dataset is available, the
survivor function may be estimated by the empirical survivor function Rn(t)

Rn(t) =
Number of items with survival time > t

n
. (14.10)

Rn(t) is from (14.10) seen to be the relative frequency of items that survive time t
and is therefore an obvious estimate for R(t).

For a censored dataset, the estimate Rn(t) changes only at the failure times t(i).
Between two failure times, such as in an interval t(i) ≤ t < t(i+1), the number of
failures does not change, and Rn(t) remains constant. Observe that Rn(t) is reduced
by 1∕n each time a failure occurs. If more than one failure occurs at the same
failure time t and the tie has multiplicity d, Rn(t) is reduced by d∕n.

Consider a sample of n items from a population and let N(t) be the number of
these items that survive time t. We may consider this as a binomial experiment
with n independent trials and probability R(t) of survival, and write the estimator
for R(t) as4

R̂(t) = N(t)
n

. (14.11)

The random variable N(t) has a binomial distribution with probability mass func-
tion

Pr(N(t) = m) =
( n

m

)
R(t)m[1 − R(t)]n−m for m = 0, 1,… ,n,

with mean and variance

E[N(t)] = nR(t).

var[N(t)] = nR(t)[1 − R(t)].

The mean of the estimator is E[R̂(t)] = nR(t)∕n = R(t) and the estimator is there-
fore unbiased. The variance of the estimator is

var[R̂(t)] = var[N(t)]
n2 = R(t)[1 − R(t)]

n
−−−−→

n→∞
0.

The plot of Rn(t), as shown in Figure 14.7, for the dataset in Table 14.1 is also
called a survival curve and can be made with R using several different packages.

4 Estimators are discussed in Section 14.4.
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Figure 14.7 Empirical survivor function (survival curve) for the dataset in Table 14.1.

The authors prefer the package survival and the survival curve is obtained by
the script:

library(survival)
survtime <-read.table("dataset.txt",header=F,dec=".")
# Prepare the data and calculate required values
data<- Surv(survtime)
survfunct<- survfit(Surv(survtime)∼1,conf.type="none")
plot(survfunct, xlab="Time t", ylab="Survival
probability")

A 95% pointwise confidence interval is obtained by replacing conf.type=
’none’ with conf.type=’plain’ in the script above. The plot obtained is
shown in Figure 14.8.
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Figure 14.8 Empirical survivor function (survival curve) for the dataset in Table 14.1
with 95% confidence intervals.
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14.3.6 Q–Q Plot

A Q–Q plot compares the quantiles of the dataset with the quantiles of a specified
probability distribution F(t). The plot is constructed by plotting the kth smallest
observation out of n against the expected value of the kth smallest observation out
of n from a random sample from F(t). To construct such a plot by hand calculation
is time-consuming, and we need a computer program. A Q–Q plot for the normal
distribution  (0, 1) is available in R by the function qqnorm.

If the observations are approximately normally distributed, a normal Q–Q plot of
the observations results in an approximately straight line. The R script to produce
the Q–Q plot for the dataset survtime in Table 14.1 is

survtime<-read.table("dataset.txt",header=F,dec=".")
x<-survtime$V1
qqnorm(x)
qqline(x)

The resulting plot for the dataset in Table 14.1 is shown in Figure 14.9. The Q–Q
plot shows a fairly good fit to the normal distribution for this particular dataset.
If we consider the fit to the normal distribution to be acceptable, the parameters
of the normal distribution can be estimated from the slope and intercept of the
straight line. This is not pursued any further here.5

Q–Q plots for general distributions may be obtained in R by using the function
qqplot. To use this function, we need to compare our dataset with a simulated
dataset from the distribution we want to compare our data with. Assume that we
want to compare the data in Table 14.1 with the exponential distribution with rate
𝜆 = 1. A random sample of size, say, 300 from the exponential distribution is gen-
erated in R by the function rexp(300,rate=1). The Q–Q plot comparing the
data in Table 14.1 with the exponential distribution is obtained by the script

survtime <-read.table("dataset.txt",header=F,dec=".")
y<- survtime$V1
qqplot(rexp(300,rate=1),y)

The Q–Q plot produced by this script is shown in Figure 14.10.
Because the data from the exponential distribution are simulated, you do not get

exactly the same figure when re-running the script. The exponential Q–Q plot in
Figure 14.9 is rather far from a straight line, and we may therefore conclude that
the data probably do not come from the exponential distribution.
5 See, for example, https://en.wikipedia.org/wiki/Q-Q_plot.
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Figure 14.9 Normal Q–Q
plot for the dataset in
Table 14.1, made with the R
function qqnorm.
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Figure 14.10 Exponential
Q–Q plot for the dataset in
Table 14.1, made with the R
function qqplot.

14.4 Parameter Estimation

Probability distributions usually have one or more quantities that we call parame-
ters. Examples of parameters include 𝜆 in the exponential distribution exp(𝜆) and
the mean 𝜇 and the standard deviation 𝜎 in the normal distribution  (𝜇, 𝜎2).
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Parameters are generally – at least partly – unknown and cannot be measured
directly.

This chapter deals with a population of similar items, and we establish a prob-
abilistic model for a typical item in the population. The parameters of this model
are therefore called population parameters. To get information about population
parameters, we take a random sample of a certain number (n) of elements from
the population and measure some properties of each element. We then obtain a
dataset {t1, t2,… , tn}. Each measurement may be a scalar or a vector of values.
This process is shown in Figure 14.1.

Parameter estimation is the process of obtaining information about the param-
eter(s), based on the dataset. As part of this process, we have to answer ques-
tions such as (i) Which measurable properties of the sample elements shall be
measured? (ii) How shall we combine these measurements to provide informa-
tion about the population parameters? (iii) How accurate is this information? This
section will shed some light on the parameter estimation process, but first, we need
some terminology.

14.4.1 Estimators and Estimates

An estimator of a parameter 𝜃 is a statistic (i.e. a random variable) that is often
denoted 𝜃. An estimator 𝜃 may be considered a metric where observed data can be
input to calculate an estimate (i.e. a numeric value) for 𝜃. This estimator is some-
times called a point estimator and the corresponding estimate is called a point
estimate for 𝜃.

We may also talk about interval estimators and interval estimates for 𝜃. For inter-
val estimators a probability, often called a confidence level, is specified as the prob-
ability that the interval contains the “true” value of the parameter. The interval is
also called a confidence interval for 𝜃.

14.4.2 Properties of Estimators

An estimator 𝜃 may be judged by the following features:

Unbiased
An estimator 𝜃 is said to be an unbiased (point) estimator for 𝜃 if its expected value
is equal to the parameter, that is, if E(𝜃) = 𝜃. An unbiased estimator will not sys-
tematically overestimate or underestimate the “true” parameter.

An estimator that is not unbiased is said to be biased. The bias is calculated as
bn(𝜃) = E(𝜃) − 𝜃.

An estimator 𝜃 is said to be asymptotically unbiased if limn→∞bn(𝜃) = 0.
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Small Variance
The estimator 𝜃 should preferably have a small spread or variability, that is, a small
variance and standard deviation.

Mean Squared Error
The mean squared error (MSE) of the estimator 𝜃 for the parameter 𝜃 is defined as

MSE(�̂�) = E(�̂� − 𝜽)2 = [bn(�̂�)]2 + var(�̂�). (14.12)

The estimator �̂� is said to be efficient if it has the smallest MSE among all competing
estimators.

Consistency
An estimator 𝜃 is said to be a consistent (point) estimator for 𝜃 if 𝜃 → 𝜃 when the
sample size n increases. More formally, we say that the estimator 𝜃 is consistent if
we for all 𝜀 > 0 have that

Pr(|�̂� − 𝜽| > 𝜀) → 0 when n → ∞. (14.13)

This means that the distribution of 𝜃 becomes more and more concentrated around
the “true” value of 𝜃 as the sample size increases.

Chebyshev’s Inequality
Chebyshev6 showed that for all 𝜀 > 0

Pr(|�̂� − 𝜽| ≥ 𝜀) ≤ E(�̂� − 𝜽)2

𝜀2 = MSE(�̂�)
𝜀2 . (14.14)

If we can prove that the MSE of �̂� tends to 0 when n → ∞, then �̂� is consistent.
Estimator properties are illustrated in the following example.

Example 14.2 (Binomial model)
Consider a sequence of n independent and identically distributed Bernoulli trials
with probability p for a specific outcome A. Let X be the number of trials that
result in the outcome A. The random variable X is then binomially distributed,
binom(n, p)

Pr(X = x ∣ p) =
(n

x

)
px(1 − p)n−x for x = 0, 1,… ,n.

The mean and variance of X is

E(X) = np.

var(X) = np(1 − p).

6 Named after the Russian mathematician Pafnuty Lvovich Chebyshev (1821–1894).
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It may be natural to estimate p as the relative frequency of the outcomes that result
in A, and a natural estimator is therefore

p̂ = X
n
. (14.15)

This estimator is seen to be unbiased, because

E(p̂) = E(X)
n

= p.

The estimator p̂ is consistent because it is unbiased and

var(p̂) = var(X)
n2 =

np(1 − p)
n2 → 0 when n → ∞.

If we, for example, carry out n = 50 independent Bernoulli trials and get x = 3 out-
comes A, we may put this dataset into the estimator and obtain the point estimate
p̂ = 3∕50 = 0.06. Again, observe that the estimator p̂ is a random variable, whereas
the estimate is a numerical value. ◻

Remark 14.2 (Confusing symbols)
Observe that it may be confusing to use the same symbol (here p̂) for both the
estimator and the estimate. The same confusion is found in almost all relevant
textbooks and papers. ◻

To find adequate parameter estimators, we may use some general approaches or
methods. In this book, we suffice by describing three popular methods for point
estimation:

(1) Method of moments estimation (MME)
(2) Maximum likelihood estimation (MLE)
(3) Bayesian estimation, which is treated in Chapter 15.

14.4.3 Method of Moments Estimation

Consider a random variable T. The first population moment of T is the same as the
mean value E(T), and the kth (noncentral) population moment is E(Tk) (if this
mean value exists).

MME is based on the assumption that the sample moments are good esti-
mates of the corresponding population moments. Assume that we have a
sample T1,T2,… ,Tn from a distribution F(t ∣ 𝜽), where the parameter vector is
𝜽 = (𝜃1, 𝜃2,… , 𝜃k). The procedure to determine the MME of the parameters has
three steps.

(1) Find the k first noncentral population moments 𝜇1,nc, 𝜇2,nc,… , 𝜇k,nc. Each
moment will contain one or more of the parameters 𝜃1, 𝜃2,… , 𝜃k.
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(2) Find the k first noncentral sample moments m1,nc,m2,nc,… ,mk,nc.
(3) From the system of equations 𝜇i,nc = mi,nc, for i = 1, 2,… , k, solve for the

parameters 𝜽 = (𝜃1, 𝜃2,… , 𝜃k). The solution is the MME �̂� = (𝜃1, 𝜃2,… , 𝜃k).

Recall that we – from the law of large numbers – know that the first sample
moment converges to the first population moment (i.e. the population mean).

m1,nc → 𝜇1,nc that is 1
n

n∑
i=1

Ti → E(T) for n → ∞, (14.16)

but we do not know much about the higher moments (i.e. for k ≥ 2).
We illustrate the MME procedure by two examples.

Example 14.3 (Exponential distribution)
We observe the times-to-failure of n similar items. The times-to-failure are denoted
by T1,T2,… ,Tn, and we assume that they are independent and identically dis-
tributed with constant failure rate 𝜆, such that Ti ∼ exp(𝜆), for i = 1, 2,… ,n. In
this case, we have only one unknown parameter to estimate, and we can suffice
with considering only the first (population) moment E(T) = 1∕𝜆. The first sample
moment is given by the metric T = 1

n

∑n
i=1 Ti. The method of moment estimator

for the parameter 𝜆 is therefore determined from E(T) = T,

1
𝜆
= 1

n

n∑
i=1

Ti.

Solving for 𝜆, we obtain the MME

𝜆 = n∑n
i=1 Ti

.

Assume that we have a complete dataset with n = 8 items that have run to failure
and with a total time in operation

∑8
i=1 ti = 25 800 hours. The MME (estimate) of

the failure rate 𝜆 with this dataset is then

𝜆 = 8
25 800

h−1 ≈ 3.10 × 10−4 h−1
.

◻

Example 14.4 (Gamma distribution)
Let T1,T2,… ,Tn be a random sample of n independent gamma distributed ran-
dom variables, such that Ti ∼ gamma(𝛼, 𝜆), for i = 1, 2,… ,n. The first population
moment (i.e. the mean) is from Chapter 5, 𝜇1 = E(Ti) = 𝛼∕𝜆. The variance of Ti is

var(Ti) = E(T2
i ) − [E(Ti)]2 = 𝛼

𝜆2 .

The second population moment is therefore

𝜇2 = E(T2
i ) = var(Ti) + [E(Ti)]2 = 𝛼

𝜆2 +
(
𝛼

𝜆

)2
= 𝛼(𝛼 + 1)

𝜆2 .
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Setting the first two population moments equal to the first two sample moments
yields

𝛼

𝜆
= 1

n

n∑
i=1

Ti.

𝛼(𝛼 + 1)
𝜆2 = 1

n

n∑
i=1

T2
i .

We may now solve the two equations to obtain

𝜆 =
1
n

∑n
i=1 Ti

1
n

∑n
i=1 T2

i −
(

1
n

∑n
i=1 Ti

)2

and

𝛼 = 𝜆
1
n

n∑
i=1

Ti =

(
1
n

∑n
i=1 Ti

)2

1
n

∑n
i=1 T2

i −
(

1
n

∑n
i=1 Ti

)2 .

By using the dataset in Table 14.1, we may use the following R script to find the
estimates of 𝛼 and 𝜆.

survtime <-read.table("dataset.txt",header=F,dec=".")
a<-mean(survtime)
b<-mean(survtimeˆ2)
lambda<- a/(b-aˆ2)
print(lambda)
alpha<- lambda*a
print(alpha)

This gives the estimates 𝛼 ≈ 4.737 and 𝜆 ≈ 0.0696. ◻

General Properties of the MME
MMEs have a number of positive and negative properties. We suffice by listing
some of these properties, without any proofs:

(1) The MMEs are easy to compute and will always work. The method provides
estimators when other methods fail to do so or when estimators are hard to
obtain.

(2) The MMEs are consistent.
(3) The MMEs may not be unique.
(4) MMEs are usually not the “best estimators” (i.e. most efficient).
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(5) The minimum number of moments we need equals the number of unknown
parameters.

(6) Sometimes, the MMEs may be meaningless.

14.4.4 Maximum Likelihood Estimation

The method of maximum likelihood was first introduced in 1922 by the British
statistician and geneticist Ronald Aylmer Fischer (1890–1962) and has since been a
commonly used method for estimating parameters. With this method, the param-
eters are estimated by the values that maximize the likelihood function. Before
going into further detail, we need to introduce the likelihood function.

Likelihood Function
We start with the likelihood function for a discrete, binomial model. This model
is based on a random variable X with probability mass function

Pr(X = x ∣ p) =
(n

x

)
px(1 − p)n−x for x = 0, 1, 2,… ,n. (14.17)

In the classical setup, the parameter p has a deterministic but an unknown value.
In (14.17), the unknown parameter p is made visible in the probability mass func-
tion Pr(X = x ∣ p) to highlight that the probability is also a function of p. The num-
ber n of trials is considered to be a known number and therefore not a parameter.

Assume that the experiment has been carried out and the data has been
recorded. The data may, for example be n = 10 and x = 3. We may now wonder
which value of p that produced this particular result. To shed light on this prob-
lem, we calculate the probability of obtaining X = 3 for different values of p. The
probabilities may be calculated by using the function dbinom(3, size=10,
prob=p) in R.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Pr(X = 3 ∣ p) 0.0574 0.201 0.267 0.215 0.117 0.0425 0.009

The probabilities for p = 0.8 and p = 0.9 are very small and not included in this
table. Observe that with these p-values, the probability Pr(X = x ∣ p) is largest for
p = 0.3, which means that p = 0.3 is the most likely probability to have produced
X = 3.

Consider the probability Pr(X = 3 ∣ p) as function of p.

L(p ∣ 3) =
(10

3

)
p3(1 − p)7 for 0 ≤ p ≤ 1. (14.18)

We use the symbol L(p ∣ 3), because it seems natural to call this function the like-
lihood function of p for the observed data. It tells how likely it is that a particular
value of p has produced the observed result.
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Figure 14.11 Likelihood function for the binomial distribution (n = 10 and x = 3).

The likelihood function for the observed values n = 10 and x = 3 is shown in
Figure 14.11 as a function of p, and we observe that the most likely p-value to have
produced x = 3 is p = 0.3.

Remark 14.3 (The likelihood function is not a probability distribution)
We should observe that L(p ∣ 3) is not a probability distribution for p, because

∫

1

0
L(p ∣ 3) dp =

(10
3

)
∫

1

0
p3(1 − p)7 dp =

(10
3

)
B(11, 4) = 0.03 ≠ 1,

where B(a, b) is the beta function that can be written as

B(a, b) = Γ(a)Γ(b)
Γ(a + b)

.

The beta function B(a, b) is available in R by the function beta(a,b). A factorial,
such as 7!, is calculated in R by the function factorial(7). ◻

Maximum Likelihood Estimate
As indicated above, the parameter value that maximizes the likelihood function
for some observed data should be a good estimate for that parameter. This value is
called the maximum likelihood estimate of the parameter.

To provide a general definition of the maximum likelihood estimate, we have to
start with a model for the observed data, f (data ∣ 𝜃). This model can be a probability
density function or a probability mass function depending on whether the model
is continuous or discrete. The parameter 𝜃 may be one-dimensional or a vector of
parameters. On this background, the maximum likelihood estimate is defined as
follows.
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Definition 14.1 (Maximum likelihood estimate, MLE)
The MLE, 𝜃, is the value of the parameter 𝜃 that maximizes the likelihood function
with respect to 𝜃. That is,

L(𝜃 ∣ data) = max
𝜃

L(𝜃 ∣ data),

where the maximum is taken over all possible values of the parameter 𝜃. ◻

More formally, the MLE 𝜃 may be written as

𝜃 = argmax
𝜃

L(𝜃 ∣ data), (14.19)

which means that 𝜃 is the value (the argument) 𝜃 that maximizes L(𝜃 ∣ data). The
MLE hence is the answer to the question: What value of the parameter 𝜃 makes
the data most likely to occur?

In many applications, the natural logarithm of the likelihood function, is more
convenient to work with. Because the logarithm log(⋅) is a monotonically increas-
ing function, the logarithm of L(𝜃 ∣ data) attains its maximum value at the same
point as the L(𝜃 ∣ data) and therefore the log-likelihood function can be used instead
of the likelihood function to obtain the MLE.

The log-likelihood function is written as

𝓁(𝜃 ∣ data) = log L(𝜃 ∣ data). (14.20)

When plotting the log-likelihood function 𝓁(𝜃 ∣ data) it is most common to plot
the negative log-likelihood function, −𝓁(𝜃 ∣ data), such that the MLE 𝜃 is deter-
mined from the minimum value of this function. The negative log-likelihood func-
tion for the binomial distribution (14.18) is shown in Figure 14.12.

We now illustrate the maximum likelihood principle by some simple examples.
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Figure 14.12 The negative log-likelihood function for the binomial distribution.
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Example 14.5 (Binomial distribution)
Let X ∼ binom(n, p). The probability mass function is given by (14.18) and the
likelihood function is

L(p ∣ x,n) =
(n

x

)
px(1 − p)n−x

,

and the log-likelihood function is

𝓁(p ∣ x,n) = log
(n

x

)
+ x log n + (n − x) log(1 − p).

The MLE is found by taking the derivative of 𝓁(p ∣ x,n) and setting this derivative
equal to zero.

d
dp

𝓁(p ∣ x,n) = x
p
− n − x

1 − p
= 0.

An extreme point is found for p = x∕n. We should then check that this extreme
point really is a maximum. The ML estimate for the parameter p is therefore

p̂ = x
n
.

The above calculation may be done before any experiment is carried out, and it will
apply for any possible values of X and n. We may therefore establish the metric for
finding the maximum likelihood estimate as

p̂ = X
n
.

Observe the difference between the estimate and the estimator. The estimate is a
number that is determined by the observed data and is a numerical estimate that
is specific for the data. The estimator is a random variable that gives a metric for
determining the estimate when the data becomes available. This random variable
is called a maximum likelihood estimator and, unfortunately, the same symbol
and the same abbreviation, MLE, is commonly used for both the estimator and
the estimate.

Assume now that the experiment is carried out and that we have observed x = 5
in a total of n = 40 independent Bernoulli trials. With this data, the ML estimate
of p is therefore

p̂ = x
n
= 5

40
= 0.125.

◻

Example 14.6 (Homogeneous Poisson Process)
A homogeneous Poisson process (HPP) with unknown rate 𝜆 is observed during
a time period (0, 𝜏). Let N(𝜏) be the number of observed events. The probability
mass function is

Pr(N(𝜏) = n) = (𝜆𝜏)n

n!
e−𝜆𝜏 for n = 0, 1, 2,… .
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Assume that we have observed n = 8 events during a time period of length 𝜏 =
10 560 hours. The likelihood function is

L(𝜆 ∣ n, 𝜏) = (𝜆𝜏)n

n!
e−𝜆𝜏 for 𝜆 > 0.

The log-likelihood function is

𝓁(𝜆 ∣ n, 𝜏) = n log(𝜆𝜏) − log n! − 𝜆𝜏.

The MLE is found by taking the derivative of 𝓁(𝜆 ∣ n, 𝜏) and setting this derivative
equal to zero.

d
d𝜆

𝓁(𝜆 ∣ n, 𝜏) = n𝜏
𝜆𝜏

− 𝜏 = 0.

The extreme (i.e. maximum) point is found for 𝜆 = n∕𝜏. As always, we should
check that this is really a maximum. With the given data, the MLE (estimate) of
𝜆 is

𝜆 = n
𝜏
= 8

10 560 h
≈ 7.58 × 10−4 h−1

.
◻

Example 14.7 (Exponential distribution)
Let T1,T2,… ,Tn be n independent and identically distributed random variables
with distribution exp(𝜆). Because the variables are independent and identically
distributed, the joint probability density is

f (t1, t2,… , tn ∣ 𝜆) =
n∏

i=1
f (ti ∣ 𝜆) =

n∏
i=1

𝜆e−𝜆ti = 𝜆
ne−𝜆

∑n
i=1 ti for t ≥ 0.

Assume that we have observed n = 5 variables during an accumulated time period
𝜏 =

∑5
i=1 ti = 15 600 hours. The likelihood function is

L(𝜆 ∣ n, 𝜏) = 𝜆
ne−𝜆𝜏 for 𝜆 > 0.

The log-likelihood function is

𝓁(𝜆 ∣ n, 𝜏) = n log 𝜆 − 𝜆𝜏.

The MLE is found by taking the derivative of 𝓁(𝜆 ∣ n, 𝜏) and setting this derivative
equal to zero.

d
d𝜆

𝓁(𝜆 ∣ n, 𝜏) = n
𝜆
− 𝜏 = 0.

The extreme (i.e. maximum) point is found for 𝜆 = n∕𝜏. Again, we should check
that this is really a maximum. With the given data, the MLE (estimate) of 𝜆 is

𝜆 = n
𝜏
= 5

15 600 h
≈ 3.2 × 10−4 h−1

. ◻
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Remark 14.4 (Factors not depending on the parameter can be deleted)
As seen from the above examples, the likelihood function can usually be written
as a product of two functions, such that, L(𝜃 ∣ x) = h(x)g(𝜃, x). The log-likelihood
function is then 𝓁(𝜃 ∣ x) = log h(x) + log g(𝜃, x). When taking the derivative
of 𝓁(𝜃, x) with respect to the parameter 𝜃, we get d log h(x)∕d𝜃 = 0. We may
therefore remove additive terms not containing unknown parameters from
the log-likelihood function. For the binomial distribution in Example 14.5, the
likelihood function is a product of h(x) =

(
n
x

)
and g(p, x) = px(1 − p)n−x. The

likelihood function may be simplified to L(p, x,n) ∝ px(1 − p)n−x. ◻

General Properties of the MLE
The MLE has a high number of valuable properties. Here, we suffice by listing
some of these properties without proofs.

• Assume that we have found the MLE 𝜃 of 𝜃 and that g(𝜃) is a one-to-one function.
The MLE of g(𝜃) is then g(𝜃).

• An MLE is asymptotically unbiased. E(𝜃n) → 𝜃 when the sample size n
increases.

• Under relatively mild conditions, the MLE is consistent.
• Under certain regularity conditions, the ML estimator has an asymptotically

normal distribution.

Interested readers may consult almost any good book on estimation theory to find
proofs and further properties.

MLE with R
In most cases, ML estimation results in explicit formulas and R may therefore
not be needed to compute the MLEs. If a computer support is deemed to be
required, MLE is available by using the R packages: stats4 , bbmle, or maxLik.
If you want to use one of these packages, please read carefully the package
manuals that are found on the Internet (e.g. by searching for “CRAN package
bbmle”).

To illustrate the analysis, a brief R script using the package bbmle to calculate
the MLE for p in the binomial distribution is shown. To calculate the maximum
likelihood estimate, bbmle uses the function mle2, which again is based on the
negative log-likelihood function.

ML estimation in the binomial model was illustrated in Example 14.5. With
R and the dataset size = 40 and mydata = 5, we can use the following
R script.
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library(bbmle) # Activate the package bbmle
options(digits=3) # Set the precision of the output
size<-40
mydata<-c(5)
myfunc<-function(size,prob)(-sum(dbinom(mydata,size,prob,

log=T))#
mle2(myfunc,start=list(prob=0.5),data=list(size=40))

As in Example 14.5, the output is prob=0.125.

Likelihood Function for Censored Datasets
Consider a sample of n independent and identical items. If item i failed at time ti,
its contribution to the likelihood function is

Li(𝜃 ∣ ti) = f (ti ∣ 𝜃) = z(ti ∣ 𝜃)R(ti ∣ 𝜃),

because to fail at time ti, the item needs to be functioning just before time ti [with
probability R(ti ∣ 𝜃)] and then it must fail in a very short interval at ti. Recall the
definition of the failure rate function. Here, f (⋅) and R(⋅) are regarded as functions
of the parameter 𝜃, and ti is a specific and known time.

If, on the other hand, item i is still functioning at time ti, all we know is that its
time-to-failure exceeds ti. The contribution to the likelihood function is then

Li(𝜃 ∣ ti) = R(ti ∣ 𝜃).

Let, as before, 𝛿i be a failure indicator for item i, such that 𝛿i = 1 if item i fails and
𝛿i = 0 if item i is (right) censored, for i = 1, 2,… ,n. The likelihood function may
now be written as

L(𝜃 ∣ t1, t2,… , tn) =
n∏

i=1
Li(𝜃 ∣ ti) =

n∏
i=1

[z(ti)]𝛿i R(ti). (14.21)

When the failure rate is a constant 𝜆, the likelihood function is

L(𝜆 ∣ t1, t2,… , tn) =
n∏

j=1
𝜆
𝛿i e−𝜆ti .

14.4.5 Exponentially Distributed Lifetimes

The exponential distribution plays an important role in system reliability anal-
ysis, and we therefore treat estimation in this distribution separately. Let T be
the time-to-failure of an item and assume that T is exponentially distributed with
failure rate 𝜆, such that T ∼ exp(𝜆). Further, assume that the survival times of n
identical and independent items are observed. The times-to-failure of the n items.
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T1,T2,… ,Tn are therefore independent and identically distributed, exp(𝜆). The
dataset of observed survival times is t = (t1, t2,… , tn). The dataset may be complete
or censored.

Exponentially Distribution: Complete Sample
The joint probability density function of T1,T2,… ,Tn is

f (t1, t2,… , tn ∣ 𝜆) =
n∏

i=1
𝜆 exp(−𝜆ti) = 𝜆

n exp

(
−𝜆

n∑
i=1

ti

)
.

The corresponding likelihood function is

L(𝜆 ∣ t) = 𝜆
n exp

(
−𝜆

n∑
i=1

ti

)
,

and the log-likelihood function becomes

𝓁(𝜆 ∣ t) = n log 𝜆 − 𝜆

n∑
i=1

ti. (14.22)

The MLE is found by setting the derivative of the log-likelihood function equal to
zero.

d
d𝜆

𝓁(𝜆 ∣ t) = n
𝜆
−

n∑
i=1

ti = 0.

Solving for 𝜆 gives the ML estimate

𝜆 = n∑n
i=1 ti

.

The corresponding ML estimator is

𝜆 = n∑n
i=1 Ti

. (14.23)

The ML estimate can hence be expressed by the sample average t = 1
n

∑n
i=1 ti, as

𝜆 = 1
t
.

When a complete dataset D = {t1, t2,… , tn} is available, the ML estimate can be
calculated in R as 1/mean(D), and a special R package is not required.

Example 14.8 (Exponential distribution, complete sample)
Assume that we have n = 10 observed values and that

∑10
i=1 ti = 68 450 hours. With

these data, the likelihood function is shown in Figure 14.13 as a function of 𝜆.
The ML estimate in this case is

𝜆 = n∑10
i=1 ti

= 10
68 450 h

≈ 1.461 × 10−4 h−1
,
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Figure 14.13 Likelihood function for the exponential distribution in Example 14.8.

a value that corresponds with the maximum of the likelihood curve in
Figure 14.13. ◻

We now study the properties of the ML estimator and first find out whether or
not it is unbiased.

Because Ti ∼ exp(𝜆), 2𝜆Ti is 𝜒2 distributed with two degrees of freedom for i =
1, 2,… ,n (e.g. see Ross 2014). Because the Tis are independent, 2𝜆

∑n
i=1 Ti is 𝜒

2

distributed with 2n degrees of freedom.
The ML estimator can be written as

𝜆 = n∑n
i=1 Ti

= 2n𝜆
2𝜆

∑n
i=1 Ti

,

and has the same distribution as 2n𝜆∕Z, where Z is 𝜒2 distributed with 2n degrees
of freedom. Accordingly,

E(𝜆) = 2n𝜆 E
( 1

Z

)
.

Here,

E
( 1

Z

)
=
∫

∞

0

1
z

1
2n

1
Γ(n)

zn−1e−z∕2 dz

= 1
2(n − 1) ∫

∞

0

1
2n−1Γ(n − 1)

zn−2e−z∕2 dz

= 1
2(n − 1)

.

Therefore,

E(𝜆) = 2n𝜆 1
2(n − 1)

= n
n − 1

𝜆.

The estimator 𝜆 is accordingly not unbiased, but the estimator 𝜆∗, given by

𝜆
∗ = n − 1

n
𝜆 = n − 1∑n

i=1 Ti
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is seen to be unbiased. Let us determine var(𝜆∗).

var(𝜆∗) =
(n − 1

n

)2
var (𝜆∗) = 4(n − 1)2

𝜆
2var

( 1
Z

)
,

where Z has the same meaning as above. Now,

var
( 1

Z

)
= E

( 1
Z2

)
−

[
E

( 1
Z

)]2

and

E
( 1

Z2

)
=
∫

∞

0

1
z2

1
2n

1
Γ(n)

zn−1e−z∕2 dz = 1
4(n − 1)(n − 2)

.

Hence,

var(𝜆∗) = 4(n − 1)2
𝜆

2
(

1
4(n − 1)(n − 2)

− 1
4(n − 1)2

)

= (n − 1)𝜆2
( 1

n − 2
− 1

n − 1

)
= 𝜆

2

n − 2
.

The estimator

𝜆
∗ = n − 1∑n

i=1 Ti
(14.24)

is therefore unbiased and has variance

var(𝜆∗) = 𝜆
2

n − 2
. (14.25)

To establish a 1 − 𝜀 confidence interval for 𝜆, we use the fact that 2𝜆
∑n

i=1 Ti is
𝜒

2 distributed with 2n degrees of freedom. Hence,

Pr

(
z1−𝜀∕2,2n ≤ 2𝜆

n∑
i=1

Ti ≤ z
𝜀∕2,2n

)
= 1 − 𝜀

and

Pr

(
z1−𝜀∕2,2n

2
∑n

i=1 Ti
≤ 𝜆 ≤

z
𝜀∕2,2n

2
∑n

j=1 Tj

)
= 1 − 𝜀.

Thus, a 1 − 𝜀 confidence interval for 𝜆 is(
z1−𝜀∕2,2n

2
∑n

i=1 Ti
,

z
𝜀∕2,2n

2
∑n

j=1 Tj

)
. (14.26)

Total-Time-on-Test
Let T(1) ≤ T(2) ≤ · · · ≤ T(n) be the order statistics for the variables T1,T2,… ,Tn,
and similarly, let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the ordered dataset that is obtained from
the experiment. Assume that all the n items are put into operation at the same
time t = 0.
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We introduce the symbol  (t) for the accumulated time in operation in the inter-
val (0, t), and call  (t) the total-time-on-test (TTT) at time t. At time t(1), the n items
have accumulated a time in operation  (t(1)) = nt(1). Just after time t(1), there are
n − 1 items left in operation. The accumulated time in operation at time t(2) is
therefore  (t(2)) = nt(1) + (n − 1)(t(2) − t(1)).

Let di = t(i) − t(i−1) be the time interval between the termination of the operation
of the (i − 1)th entry and the termination of the ith entry, such that

t(1) = d1

t(2) = d1 + d2

⋮ ⋮

t(r) = d1 + d2 + · · · + dr .

The TTT at time t(r) has two parts

(1) The time on test of the items that have failed in the interval (0, t(r)], which is∑r
i=1 t(i) = rd1 + (r − 1)d2 + · · · + dr .

(2) The time on test of the n − r items that are still in operation at time t(r), which
is (n − r)t(r) = (n − r)

∑r
i=1 di.

The TTT at time t(r) is therefore,

 (t(r)) =
r∑

i=1
t(i) + (n − r)t(r)

= rd1 + (r − 1)d2 + · · · + dr + (n − r)
r∑

i=1
di.

Tidying up this expression yields

 (t(r)) =
r∑

i=1
[n − (i − 1)]di. (14.27)

By introducing the corresponding random variables, we obtain

 (T(r)) =
r∑

i=1
[n − (i − 1)]Di. (14.28)

Exponentially Distribution: Censored Data
Assume that n independent and identical items with constant failure rate 𝜆 have
been observed until either failure or censoring. We assume that there are no ties
in the dataset {t1, t2,… , tn}. As before, let 𝛿i = 1 when survival time tj is a failure
time, and 𝛿j = 0 when tj is a censored time, for j = 1, 2,… ,n. From (14.21), the
likelihood function may then be written as

L(𝜆 ∣ t1, t2,… , tn) =
n∏

j=1
𝜆
𝛿i e−𝜆ti . (14.29)
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Censoring of Type II
For censoring of type II, the life test is terminated as soon as r failures have been
observed. The ordered dataset may be written as t(1) < t(2) < · · · < t(r) < t(r+1) <

· · · < t(n), for r < n. The dataset contains r times-to-failure and n − r censored
times. This means that tr is the longest time-to-failure. The likelihood function
for this situation is (see Remark 14.4)

L(𝜆 ∣ t(1),… , t(r)) ∝ 𝜆
r exp

(
−𝜆

[ r∑
j=1

t(j) + (n − r)t(r)

])

= 𝜆
r exp[−𝜆 (t(r))] for 0 < t(1) < · · · < t(r).

The log-likelihood function is

𝓁(𝜆 ∣ t) ∝ r log 𝜆 − 𝜆 (t(r)),

where t = (t(1), t(2),… , t(r)). The MLE is found by setting the derivative of the
log-likelihood function equal to zero.

d
d𝜆

𝓁(𝜆 ∣ t) = r
𝜆
−  (t(r)) = 0.

The ML estimate 𝜆
∗
II of 𝜆 is, therefore,

𝜆
∗
II =

r
 (t(r))

.

The corresponding ML estimator is

𝜆
∗
II =

r
 (T(r))

. (14.30)

The TTT at time T(r) is

 (T(r)) = nD1 + (n − 1)D2 + · · · + [n − (r − 1)]Dr

=
r∑

j=1
[n − (j − 1)]Dj.

Introducing

D∗
j = [n − (j − 1)]Dj for j = 1, 2,… , r.

we know that 2𝜆D∗
1, 2𝜆D∗

2,… , 2𝜆D∗
r are independent and 𝜒

2 distributed, each with
2 degrees of freedom. Hence, 2𝜆 (T(r)) is 𝜒

2 distributed with 2r degrees of free-
dom, and we can utilize this to find E(𝜆∗II).

E(𝜆∗II) = E
(

r
 (T(r))

)
= 2𝜆rE

(
1

2𝜆 (T(r))

)
= 2𝜆rE

( 1
Z

)
,

where Z is 𝜒2 distributed with 2r degrees of freedom. This implies that

E
( 1

Z

)
= 1

2(r − 1)
.
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Hence,

E(𝜆∗II) = 2𝜆r 1
2r − 1

= 𝜆
r

(r − 1)
.

The estimator 𝜆∗II is accordingly not unbiased, but

𝜆
∗
II =

(r − 1)
 (T(r))

(14.31)

is seen to be unbiased. By the method used for a complete dataset, we find that

var(𝜆II) =
𝜆

2

(r − 2)
.

Confidence intervals, as well as tests for standard hypotheses about 𝜆, may now be
derived from the fact that 2𝜆 (T(r)) is 𝜒2 distributed with 2r degrees of freedom.

Censoring of Type I
The fact that the number (S) of items failing before time t0 is random, makes this
situation more difficult to deal with from a probabilistic point of view. We therefore
confine ourselves to suggesting an intuitive estimator for 𝜆.

First, observe that the estimators for 𝜆, derived in the case of complete
datasets and of type II censored data, both could be written as a fraction with
numerator equal to “number of recorded failures −1” and denominator equal to
“total-time-on-test at the termination of the test.” It seems intuitively reasonable
to use the same fraction when we have type I censoring.

In this case, the number of failures is S and the TTT is

 (t0) =
S∑

j=1
T(j) + (n − S)t0. (14.32)

Hence,

𝜆I =
S − 1
 (t0)

seems to be a reasonable estimator for 𝜆.
It can be shown that this estimator is biased for small samples, but asymptoti-

cally, it has the same properties as 𝜆II (see Mann et al. 1974, p. 173).

14.4.6 Weibull Distributed Lifetimes

Another important distribution in system reliability analyses is the Weibull distri-
bution. To find the MLEs for the parameters of the Weibull distribution is more
complicated than for the exponential distribution. We suffice by treating complete
datasets only.
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Complete Sample
Let T1,T2,… ,Tn be a complete sample of lifetimes that are independent and iden-
tical to Weibull distribution with probability density

fT(t) =
𝛼

𝜃

( t
𝜃

)𝛼−1
exp

[
−

( t
𝜃

)𝛼]
for t > 0, 𝛼 > 0, 𝜃 > 0.

The likelihood function is

L(𝛼, 𝜃 ∣ t1, t2,… , tn) =
n∏

j=1

𝛼

𝜃

( tj

𝜃

)𝛼−1

exp
[
−

( tj

𝜃

)𝛼]
, (14.33)

and the log-likelihood is

𝓁(𝛼, 𝜃 ∣ t1, t2,… , tn) =
n∑

j=1

[
log 𝛼 − 𝛼 log 𝜃 + (𝛼 − 1) log tj −

( tj

𝜃

)𝛼]

= n log 𝛼 − n𝛼 log 𝜃 +
n∑

j=1
(𝛼 − 1) log tj −

n∑
j=1

( tj

𝜃

)𝛼

.

The likelihood equations become

𝜕𝓁
𝜕𝜃

= −n𝛼
𝜃

+ 𝛼

𝜃𝛼+1

n∑
j=1

t𝛼j = 𝛼n
𝜃𝛼

(
1
n

n∑
j=1

t𝛼j − 𝜃
𝛼

)
= 0.

Solving this equation yields

𝜃 =

(
1
n

n∑
j=1

t𝛼j

)1∕𝛼

. (14.34)

The derivative with respect to 𝛼 is

𝜕𝓁
𝜕𝛼

= n
𝛼
− n log 𝜃 +

n∑
j=1

log tj +
n∑

j=1

( tj

𝜃

)𝛼

log
( tj

𝜃

)

= n
𝛼
− n log 𝜃 +

n∑
j=1

log tj +
1
𝜃𝛼

n∑
j=1

t𝛼j (log tj − log 𝜃).

Inserting (14.46) gives the MLE equation

1
n

n∑
j=1

log tj +
1
𝛼
−

∑n
j=1 t𝛼j log tj∑n

j=1 t𝛼j
= 0.

This is an equation with a single unknown parameter 𝛼. We may therefore solve
for 𝛼 to obtain the MLE 𝛼. It can be proved that there is a unique solution for 𝛼.
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Weibull Analysis with R
Several R packages can be used to determine ML estimates for the Weibull distri-
bution. Among these are bbmle, stat4, and survival. If you want to use one
of these, you should read the package documentation carefully and also search the
Internet for example scripts.

A dedicated R package for Weibull analysis, called WeibullR, is further
available, but is still under development. The package can be used to find the
ML estimates for both two-parameter and three-parameter Weibull distributions.
Examples of R scripts may be found in the package documentation. The package
can be used for both complete and censored datasets. WeibullR provides several
approaches to estimating the parameters 𝛼 and 𝜃 for a two-parameter Weibull
distribution. Here, we illustrate the most simple approach. In the basic setup, we
enter the times-to-failure and the censoring times as separate vectors, as shown
in the following R script

library(WeibullR)
failtime<-c(31.7,39.2,57.5,65.8,70.0,101.7,109.2,130.0)
censored<-c(65.0,75.0,75.2,87.5,88.3,94.2,105.8,110.0)
# Prepare the data for analysis
data<-wblr.conf(wblr.fit(wblr(failtime,censored)),lwd=1)
plot(data)

The function wblr is used to prepare the dataset for usage in WeibullR. The
resulting plot is shown in Figure 14.14.

Observe that the plot in Figure 14.14 is obtained by a simplified procedure in
WeibullRusing only default settings. The default names of parameters are “beta”
for 𝛼 and “eta” for 𝜃. The estimates obtained are 𝛼 = 2.35 and 𝜃 = 115.2. Con-
fidence bounds are supplied. To choose a more advanced estimation procedure
and to adjust the settings, the reader should read the WeibullR documentation
carefully.

Censoring of Type II
With censoring of type II, the dataset contains r times-to-failure, and n − r cen-
sored times, and the censoring takes place at time t(r). Analogous with (14.33) the
likelihood function is proportional with

L(𝛼, 𝜃 ∣ t) ∝
r∏

j=1

𝛼

𝜃

( t(j)
𝜃

)𝛼−1

exp
(
−

t(j)
𝜃

)𝛼

exp
(
−

( t(r)
𝜃

)𝛼)n−r

= 𝛼
r
𝜃
−𝛼r

r∏
j=1

t𝛼−1
(j) exp

(
−(n − r)

( t(r)
𝜃

)𝛼)
,
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Figure 14.14 Output from a simple script using WeibullR.

where t is the ordered dataset, that is, the r times-to-failure and the n − r censoring
times that are all equal to t(r). The log-likelihood is

𝓁(𝛼, 𝜆 ∣ t) = r log 𝛼 − r𝛼 log 𝜃 + (𝛼 − 1)
r∑

j=1
log t(j)

−
r∑

j=1

( t(j)
𝜃

)𝛼

− (n − r)
( t(r)

𝜃

)𝛼

.

Analogous with the complete data situation, we can determine the MLE estimates
𝛼
∗ and 𝜆

∗ from

𝜆
∗ =

(
r∑r

j=1 t𝛼∗(j) + (n − r)t𝛼∗(r)

)1∕𝛼∗

(14.35)

and

r
𝛼∗ +

r∑
j=1

log t(j) −
r

∑r
j=1 t𝛼∗(j) log t(j) + (n − r)t𝛼∗(r) log t(r)∑r

j=1 t𝛼∗(j) + (n − r)t𝛼∗(r)
= 0. (14.36)

For further details on ML estimation in the Weibull distribution, e.g. see Meeker
and Escobar (1998) and McCool (2012).
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14.5 The Kaplan–Meier Estimate

A nonparametric estimate for the survivor function R(t) = Pr(T > t) was intro-
duced by Kaplan and Meier (1958) and is called the Kaplan–Meier estimate.7 A
valued feature of the Kaplan–Meier estimate is that it provides an intuitive graph-
ical representation. We first introduce the estimate for a complete dataset.

14.5.1 Motivation for the Kaplan–Meier Estimate Based a Complete
Dataset

Consider a complete dataset without ties. For this dataset, the obvious estimate for
R(t) is the empirical survivor function, which is presented in Section 14.3.5. The
empirical survivor function is based on binomial reasoning for each failure time t.
As a motivation for the Kaplan–Meier estimate, we now develop the empirical
survivor function by a different approach based on the ordered (complete) dataset
0 = t(0) < t(1) < t(2) < · · · < t(n).

Consider a particular survival time, say t(i), in this dataset. To survive t(i), the
item has to survive the first interval (0, t(1)). Given that this interval is survived,
the item has to survive the next interval (t(1), t(2)), and so on, until it must survive
the interval (t(i−1), t(i)). Let t(0) = 0. The probability of surviving the first interval is

R(t(1)) = Pr(T > t(1)) = Pr(T > t(1) ∣ T > t(0)) = R(t(1) ∣ t(0)).

The probability of surviving the next interval (when it is known that it has survived
the first interval) is

R(t(2) ∣ t(1)) = Pr(T > t(2) ∣ T > t(1)),

and so on. This means that the survivor function at time t(i) can be expressed by
using the multiplication rule for conditional probabilities as

R(t(i)) =
i∏

j=1
R(t(j) ∣ t(j−1)), (14.37)

where R(t(0)) = R(0) = 1.
Each factor in (14.37) can be estimated with the same binomial approach we

used to obtain the empirical distribution function. Just before time t(1), n1 = n
items are in the at-risk-set and may fail, just before time t(2), n2 = n − 1 items are in
the at-risk-set and may fail, and so on. Because we have a complete dataset with-
out censoring and ties, the number of items that failed at time t(j), is dj = 1. The
number of items that survives t(j) is therefore nj − dj = (n − j − 1).

7 Named after the authors: Edward Lynn Kaplan (1920–2006) and Paul Meier (1924–2011).
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Based on the binomial model, we may then estimate the factors of (14.37) as

R̂(t(1) ∣ t(0)) =
n1 − d1

n1
= 1 −

d1

n1
= 1 − 1

n

R̂(t(2) ∣ t(1)) =
n2 − d2

n2
= 1 −

d2

n2
= 1 − 1

n − 1
,

and so on.
If we use this result in (14.37), we obtain a reformulated estimate for the empir-

ical survivor function

R̂(t) =
∏

j;t(j)<t
R̂(t(j) ∣ t(j−1)) =

∏
j;t(j)<t

(
1 −

dj

nj

)

=
∏

j;t(j)<t

(
1 − 1

n − j + 1

)
. (14.38)

For t > t(n), all the n items are failed and R̂(t) = 0. The reason why we have written
the empirical survivor function in such a complicated way is to pave the way for
the introduction of the Kaplan–Meier estimate.

14.5.2 The Kaplan–Meier Estimator for a Censored Dataset

Kaplan and Meier (1958) extend the empirical survivor function to a randomly
censored dataset that may also include ties. Their approach is very similar to our
derivation of the empirical survivor function and their estimate is given as

R̂(t) =
∏

j;t(j)<t

(
1 −

dj

nj

)
.

The only difference from (14.38) is the values for dj and nj. If t(j) is a censoring
time, dj = 0, the factor (1 − dj∕nj) = 1 and does not directly influence the estimate
R̂(t), but the censoring influences the at-risk-set before the next event (failure or
censoring).

We may rewrite the definition of the Kaplan–Meier estimate to include the infor-
mation of whether a survival time is a failure or a censoring time by including the
status 𝛿j in the formula

R̂(t) =
∏

j;t(j)<t,𝛿j=1

(
1 −

dj

nj

)
, (14.39)

where the product includes all items j that have a failure time (i.e. 𝛿j = 1) such that
t(j) < t. This formula clearly shows that the factors are only included for survival
times that represent failure. Survival times that represent censoring give a factor
equal to one and will hence not influence the estimate directly.
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With p̂j = 1 − dj∕nj = (nj − dj)∕nj we may write (14.54) as

R̂(t) =
∏

j;t(j)<t,𝛿j=1
p̂j. (14.40)

The estimate R̂(t) (14.39) and (14.40) is known as the Kaplan–Meier estimate
and is also called the product limit (PL) estimate. The procedure to calculate the
Kaplan–Meier estimate is illustrated in Example 14.9.

Example 14.9 (Kaplan–Meier estimate)
Consider the ordered dataset in Table 14.2. The dataset has 16 survival times, of
which 9 are censored times (status 𝛿 = 0) and 7 are failure times (status 𝛿 = 1). The
dataset has no ties. With no ties, the number of items at risk just before survival
time t(j) is nj = n − j + 1, as listed in the second column of Table 14.2.

Immediately before t(1), n = 16 items were at risk. After the failure at t(1),
n − 2 + 1 items are at risk before t(2), and similar for the other failure times. The
Kaplan–Meier estimate R̂(t) is found from (14.40) by multiplying the p̂j’s for all
survival times ≤ t.

In Table 14.3, the Kaplan–Meier estimate is presented as a function of time. In
the time interval (0, 31.7) until the first failure, it is reasonable to set R̂(t) = 1. The
estimate may be displayed graphically as a Kaplan–Meier plot. ◻

Kaplan–Meier Estimate with R
The Kaplan–Meier estimate is available in the R package survival and a
Kaplan–Meier plot is generated by the script

library(survival)
survtime <- c(31.7,39.2,57.5,65.0,65.8,70,0,75.0,75.2,
87.5,88.3,94.2,101.7,105.8,109.2,110.0,130.0)
status <- c(1,1,1,0,1,1,0,0,0,0,0,0,1,0,1,0,1)
data<- Surv(survtime,status==1)
km <- survfit(Surv(survtime, status==1)∼1,conf
.type="none")
plot(km,xlab="Time t",ylab="Survival probability")

The additional command print(summary(km)) gives a summary of the
results.

time n.risk n.event survival std.err
31.7 16 1 0.938 0.0605
39.2 15 1 0.875 0.0827
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57.5 14 1 0.812 0.0976
65.8 12 1 0.745 0.1105
70.0 11 1 0.677 0.1194
101.7 5 1 0.542 0.1542
109.2 3 1 0.361 0.1797
130.0 1 1 0.000 NaN

Observe that these results are the same as we found by hand-calculation in
Table 14.2, but the estimates are only presented for failure times.

Table 14.2 Computation of the Kaplan–Meier Estimate (censored times are marked with
0 in column “Status”).

Rank j
Number at risk
(n − j + 1)

Ordered survival
times t(j) Status 𝜹j p̂j R̂(t(j))

0 — — — 1 1.000

1 16 31.7 1 15∕16 0.938

2 15 39.2 1 14∕15 0.875

3 14 57.5 1 13∕14 0.813

4 13 65.0 0 1 0.813

5 12 65.8 1 11∕12 0.745

6 11 70.0 1 10∕11 0.677

7 10 75.0 0 1 0.677

8 9 75.2 0 1 0.677

9 8 87.5 0 1 0.677

10 7 88.3 0 1 0.677

11 6 94.2 0 1 0.677

12 5 101.7 1 4∕5 0.542

13 4 105.8 0 1 0.542

14 3 109.2 1 2∕3 0.361

15 2 110.0 0 1 0.361

16 1 130.0 1 0 0.000
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Table 14.3 The Kaplan–Meier estimate as a function of time.

t R̂(t)

0 ≤ t < 31.7 = 1.000

31.7 ≤ t < 39.2 15
16

= 0.938

39.2 ≤ t < 57.5 15
16

⋅
14
15

= 0.875

57.5 ≤ t < 65.8 15
16

⋅
14
15

⋅
13
14

= 0.813

65.8 ≤ t < 70.0 15
16

⋅
14
15

⋅
13
14

⋅
11
12

= 0.745

70.0 ≤ t < 101.7 15
16

⋅
14
15

⋅
13
14

⋅
11
12

⋅
10
11

= 0.677

101.7 ≤ t < 109.2 15
16

⋅
14
15

⋅
13
14

⋅
11
12

⋅
10
11

⋅
4
5

= 0.542

109.2 ≤ t < 130.0 15
16

⋅
14
15

⋅
13
14

⋅
11
12

⋅
10
11

⋅
4
5
⋅

2
3

= 0.361

130.0 ≤ t 15
16

⋅
14
15

⋅
13
14

⋅
11
12

⋅
10
11

⋅
4
5
⋅

2
3
⋅

0
1

= 0.000

We see from (14.39) that R̂(t) is a step function, continuous from the right, that
equals 1 at t = 0. R̂(t) drops by a factor of (nj − 1)∕nj at each failure time t(j). The
estimate R̂(t) does not change at the censored times. The censored times influence
the values of nj (i.e. the at-risk-set) and hence, the size of the steps in R̂(t).

A slightly problematic point is that R̂(t) never reduces to zero when the longest
survival time t(n) recorded is a censored time. For this reason, R̂(t) is usually taken
to be undefined for t > t(n). This issue is further discussed by Kalbfleisch and Pren-
tice (1980).

Some Properties of the Kaplan–Meier Estimator
A thorough discussion of the properties of the Kaplan–Meier estimator R̂(t) may
be found in Kalbfleisch and Prentice (1980), Lawless (1982), Cox and Oakes
(1984), and Aalen et al. (2008). Here, we suffice by summarizing a few properties
without proofs:

(1) The Kaplan–Meier estimator R̂(t) can be derived as a nonparametric MLE.
This derivation was originally given by Kaplan and Meier (1958).

(2) R̂(t) is a consistent estimator of R(t) under quite general conditions with esti-
mated asymptotic variance (e.g. see Kalbfleisch and Prentice 1980, p. 14):

v̂ar(R̂(t)) = [R̂(t)]2
∑
j∈Jt

dj

nj(nj − dj)
. (14.41)
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Figure 14.15 Kaplan–Meier plot for the data in Example 14.9. Made with R.
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Figure 14.16 Kaplan–Meier plot of the dataset in Example 14.9 with 90% confidence
limits, made with R.

Expression (14.41) is known as Greenwood’s formula.
Confidence limits based on Greenwood’s formula are available in R and
are obtained by the option conf.type=’plain’ in the R script in
Example 14.9. The Kaplan–Meier plot in Figure 14.15 with 90% confidence
limits is shown in Figure 14.16. Because the plot is based on only eight failure
times, the confidence band is rather wide.

(3) Because it is a maximum likelihood estimator, the Kaplan–Meier estimator
has an asymptotic normal distribution. Confidence limits for R(t) can hence
be determined using normal approximation. For details see Cox and Oakes
(1984).

14.6 Cumulative Failure Rate Plots

Let R(t) be the survivor function for a certain type of items, and assume that the
distribution is continuous with probability density f (t) = R′(t), where f (t) > 0 for
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t > 0. No further assumptions are made about the distribution (i.e. a nonparamet-
ric model).

The failure rate function was defined in Section 5.3.2 as

z(t) =
f (t)
R(t)

= − d
dt

log R(t).

The cumulative failure rate function is

Z(t) =
∫

t

0
z(u) du = − log R(t), (14.42)

and the survivor function may therefore be written as

R(t) = e−Z(t)
.

Plotting Z(t) as a function of t gives a cumulative failure rate plot. If the plot is
convex when plotted on a linear scale, the failure rate function is increasing, and
if the plot is concave, the failure rate function is decreasing.

Example 14.10 (Exponential distribution)
The cumulative failure rate function for the exponential distribution, exp(𝜆), is

Z(t) = 𝜆t for t ≥ 0, 𝜆 > 0.

Plotted as a function of t on a linear scale, the plot of Z(t) is a straight line with
slope 𝜆. If we are able to determine an estimate Ẑ(t), the plotted values should
follow a reasonably straight line. ◻

Example 14.11 (Weibull distribution)
The cumulative failure rate function for the Weibull distribution with shape 𝛼 and
scale 𝜃 is

Z(t) =
( t
𝜃

)𝛼

for t ≥ 0, 𝛼 > 0, 𝜃 > 0.

Taking logarithm yields

log Z(t) = 𝛼 log t − 𝛼 log 𝜃.

If Z(t) is plotted versus t on a log–log scale, the plot is a straight line with slope
𝛼. If we are able to determine an estimate Ẑ(t), the plotted values should follow a
reasonably straight line on a log–log scale. ◻

The rest of this section is concerned with a particular type of cumulative failure
rate plots: the Nelson–Aalen plot.
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14.6.1 The Nelson–Aalen Estimate of the Cumulative Failure Rate

An obvious estimate of the cumulative failure rate Z(t), based on the Kaplan–Meier
estimator R̂(t), is

Ẑ(t) = − log R̂(t). (14.43)

An alternative estimate of Z(t) is proposed by Nelson (1972) and elaborated by
Aalen (1978). This estimate is now known as the Nelson–Aalen estimate. Assume
that we have a stochastically censored (type IV) dataset. As before, let

0 = t(0) < t(1) < t(2) < · · · < t(n)

be the recorded ordered survival times until either failure or censoring, and let 𝛿j
be the status of survival time t(j), for j = 1, 2,… ,n.

The Nelson–Aalen estimate of the cumulative failure rate is then

Ẑ(t) =
∑

j;t(j)<t,𝛿j=1

dj

nj
, (14.44)

where dj, as before, is the number of items that fail at time t(j) and nj is the number
of items at risk just before t(j). The Nelson–Aalen estimator of the survivor function
at time t is

R∗(t) = exp[−Ẑ(t)]. (14.45)

Before we give a justification for these estimators, we illustrate how they are
calculated in Example 14.12.

Example 14.12 (Nelson–Aalen estimate for a censored dataset)
Reconsider the censored (type IV) dataset in Table 14.2. The Nelson–Aalen
estimate Ẑ(t) may be calculated from (14.44) for the eight failure times t(1), t(2),
t(3), t(5), t(6), t(12), t(14), and t(16). Next, R∗(t) is determined from (14.45). The results
are shown in Table 14.4. In the last column of Table 14.4, the corresponding
Kaplan–Meier estimate R̂(t) is shown.

As seen, there is good “agreement” between the Kaplan–Meier estimates and
the Nelson–Aalen estimates for the survivor function in this dataset, especially for
the shortest failure times. For the longest failure times, the discrepancy becomes
more significant.

By using the results in Table 14.4, we can now plot the survival times on the
x-axis and the corresponding Nelson–Aalen estimates Ẑ(t) on the y-axis and obtain
the Nelson–Aalen plot. ◻

Making the Nelson–Aalen plot manually by the procedure in Example 14.12
may be tedious, but luckily, we may use the R survival package.
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Table 14.4 Nelson–Aalen estimate for the censored dataset in Example 14.12,
compared with the Kaplan–Meier estimate.

j
Survival

time
Status
𝜹j

Nelson–Aalen
estimate Ẑ(tj)

Nelson–Aalen
R∗(t(j))

Kaplan–
Meier
R̂(t(j))

= 0.0000 1.000 1.000

1 31.7 1 1
16

= 0.0625 0.939 0.938

2 39.2 1 1
16

+ 1
15

= 0.1292 0.879 0.875

3 57.5 1 1
16

+ 1
15

+ 1
14

= 0.2006 0.818 0.813

4 65.0 0

5 65.8 1 1
16

+ 1
15

+ 1
14

+ 1
12

= 0.2839 0.753 0.745

6 70.0 1 1
16

+ 1
15

+ · · · + 1
11

= 0.3748 0.687 0.677

7 75.0 0

8 75.2 0

9 87.5 0

10 88.3 0

11 94.2 0

12 101.7 1 1
16

+ · · · + 1
11

+ 1
5

= 0.5748 0.563 0.542

13 105.8 0

14 109.2 1 1
16

+ · · · + 1
5
+ 1

3
= 0.9082 0.403 0.361

15 110.0 0

16 130.0 1 1
16

+ · · · + 1
3
+ 1

1
= 1.9082 0.148 0.000

Nelson–Aalen Plot with R
There is no dedicated package in R for making the Nelson–Aalen plot, but we may
use the procedure in the following R script, which illustrates the plot by using the
same dataset as in Example 14.12.
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library(survival)
# Data to be analyzed
survtime<-c(31.7,39.2,57.5,65.0,65.8,70.0,75.0 75.2,

87.5,88.3,94.2,101.7,105.8,109.2,110.0,130.0)
status<-c(1,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1)
# Prepare hazard data
revrank<-order(survtime,decreasing=T)
haz<- status/revrank
cumhaz<- cumsum(haz)
# Select only failures for plotting.
df<- data.frame(survtime status,cumhaz)
z<- subset(df,status==1)
# Generate cumulative failure rate plot for exp. distr.
plot(z$survtime, z$cumhaz,type="o",pch=19,xlab="Time",

ylab="Cumulative failure rate")

The plot obtained from this script is made with a linear scale on both axes.
This means that if the data come from an exponential distribution, the plot
should be approximately a straight line (see Example 14.10). The plot is shown
in Figure 14.17. The plot is rather far from linear, and we may conclude that the
underlying distribution is probably not exponential. To inspect the data used, you
may use the commands print(df) and print(z).
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Figure 14.17 Nelson–Aalen plot (linear scale).
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Figure 14.18 Nelson–Aalen plot (log 10 scale).

We may also make the Nelson–Aalen plot with log 10 scale on both axes. As
shown in Example 14.11, an approximately straight line would indicate that the
underlying distribution may be a Weibull distribution. The plot is obtained by
adding the option log="xy" to the plot( ) command in the R script above.
The resulting Nelson–Aalen plot is shown in Figure 14.18. The plot is not too far
from a straight line, so the Weibull distribution might be an adequate model.

Justification for the Nelson–Aalen Estimate
Some steps in the following justification are approximative and far from rigorous,
but we hope the reader may get an understanding of how the Nelson–Aalen esti-
mate is developed. For a more rigorous development of the estimate, see Aalen
et al. (2008).

To justify the Nelson–Aalen estimate, we start with arguments similar to those
used when introducing the Kaplan–Meier estimate. An ordered dataset 0 = t(0) <
t(1) < t(2) < · · · < t(n) is available. The dataset may be censored and include ties. As
before, let nj be the number of items at risk just before survival time t(j) and let dj
be the number of items that fail at time t(j). We again use (14.37)

R(t(i)) =
i∏

j=1
R(t(j) ∣ t(j−1)),

and assume that the failure rate function in the interval (t(j−1), t(j)) may be approx-
imated by a constant failure rate 𝜆j, for j = 1, 2,….

For a time t, such that t(m) < t < t(m+1), we get

R(t) = Pr(T > t(1) ∣ T > t(0)) · · ·Pr(T > t ∣ T > t(m)). (14.46)
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As for the Kaplan–Meier estimate, the idea is to estimate each single factor on the
right-hand side of (14.46) and use the product of these estimates as an estimate of
R(t). What is now a reasonable estimate of pj = Pr(T > t(j+1) ∣ T > t(j))? With the
same approach, we used to justify the Kaplan–Meier estimate, the only survival
times for which it is natural to estimate pj with something other than 1, are the
survival times t(j) where a failure occurs. Because we only consider the times where
something happens (failure or censoring), nj items are at risk in the whole interval
(t(j−1), t(j)).

The total functioning time in the (t(j−1), t(j)) is nj(t(j) − t(j−1)). Because we assume
a constant failure rate 𝜆j in (t(j−1), t(j)) a natural estimate of 𝜆j is

𝜆j =
No. of failures

Total functioning time
=

dj

nj(t(j+1) − t(j))
. (14.47)

A natural estimate of pj, when dj failures occur at t(j) is therefore

p̂j = exp[−𝜆j(t(j) − t(j−1))] = exp

(
−

dj

nj

)
. (14.48)

Inserting these estimates in (14.46) gives

R̂(t) =
∏

t(j)<t,𝛿j=1
exp

(
−

dj

nj

)
= exp

⎡⎢⎢⎣
−

∑
t(j)<t,𝛿j=1

dj

nj

⎤⎥⎥⎦
. (14.49)

Because R(t) = exp[−Z(t)], a natural estimate for the cumulative failure rate func-
tion is

Ẑ(t) =
∑

t(j)<t,𝛿j=1

dj

nj
, (14.50)

which is the Nelson–Aalen estimate.

Uncertainty of the Nelson–Aalen Estimator
The variance of the Nelson–Aalen estimator may be estimated by (e.g. see Aalen
et al. 2008)

var[Ẑ(t)] = 𝜎
2(t) =

∑
t(j)<t,𝛿j=1

(nj − dj) dj

(nj − 1) n2
j

. (14.51)

It may be shown that both the Nelson–Aalen estimator and the variance estima-
tor are close to unbiased. For large samples, it may further be shown that the
Nelson–Aalen estimator at time t is approximately normally distributed. We may
therefore find a (1 − 𝜖) confidence interval for Ẑ(t) as

Ẑ(t) ± u1−𝜖∕2𝜎(t), (14.52)

where u1−𝜖∕2 is the 1 − 𝜖∕2 fractile of the standard normal distribution. More prop-
erties of the estimator may be found in Aalen et al. (2008).
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14.7 Total-Time-on-Test Plotting

A TTT plot is an alternative – but also a supplement – to Kaplan–Meier plot and
Nelson–Aalen plots.

14.7.1 Total-Time-on-Test Plot for Complete Datasets

Assume that we have a complete and ordered dataset t(1) < t(2) < · · · < t(n) of
independent lifetimes with continuous distribution function F(t) that is strictly
increasing for F−1(0) = 0 < t < F−1(1). Further, it is assumed that the distribution
has finite mean 𝜇.

The TTT at time t,  (t) has earlier been defined as

 (t) =
i∑

j=1
t(j) + (n − i)t for i = 0, 1,… ,n and t(i) ≤ t < t(i+1),

(14.53)

and t(0) is defined to be equal to 0 and t(n+1) = +∞.
 (t) is the total observed lifetime of the n items at time t. We assume that all the

n items are put into operation at time t = 0 and that the observation is terminated
at time t. In the time interval (0, t], a number, i, of the items have failed. The total
functioning time of these i items is

∑i
j=0 t(j). The remaining n − i items survive the

time interval (0, t]. The total functioning time of these n − i items is thus (n − i)t.
The TTT at the ith failure is

 (t(i)) =
i∑

j=1
t(j) + (n − i)t(i) for i = 1, 2,… ,n. (14.54)

In particular,

 (t(n)) =
n∑

j=1
t(j) =

n∑
j=1

tj.

The TTT at the ith failure,  (t(i)), may be scaled by dividing by  (t(n)). The scaled
TTT at time t is defined as  (t)∕ (t(n)).

If we plot the points(
i
n
,

 (t(i))
 (t(n))

)
for i = 1, 2,… ,n, (14.55)

we obtain the TTT plot of the dataset.

Example 14.13 Suppose that we have activated 10 identical items and observed
their lifetimes (in hours):
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6.3 11.0 21.5 48.4 90.1
120.2 163.0 182.5 198.0 219.0

To construct the TTT plot for this (complete) dataset, calculate the necessary
quantities and put them in a table as done in Table 14.5. The TTT plot for this
(complete) dataset is shown in Figure 14.19. ◻

To be able to interpret the shape of the TTT plot, we need the following results,
which we state without proofs.

(1) Let U1,U2,… ,Un−1 be independent random variables with a uniform distri-
bution over (0, 1] (i.e. Ui ∼ unif(0, 1) ). If the underlying life distribution is
exponential, the random variables

 (T(1))
 (T(n))

,

 (T(2))
 (T(n))

, … ,

 (T(n−1))
 (T(n))

(14.56)

have the same joint distribution as the (n − 1) ordered variables U(1),U(2),… ,

U(n−1). For a proof, see Barlow and Campo (1975).
(2) If the underlying life distribution F(t) is exponential, then

(a) var[ (Ti)∕ (Tn)] is finite
(b) E[ (Ti)∕ (Tn)] = 1∕n for i = 1, 2,… ,n

Table 14.5 TTT Estimates for the dataset in Example 14.15.

i t(i)
∑i

j=1 t(j)
∑i

j=1 t(j) + (n − i)t(i) =  (t(i))
i
n

 (t(i))

 (t(n))

1 6.3 6.3 6.3 + 9⋅6.3 = 63.0 0.1 0.06
2 11.0 17.3 17.3 + 8⋅11.0 = 105.3 0.2 0.10
3 21.5 38.8 38.8 + 7⋅21.5 = 189.3 0.3 0.18
4 48.4 87.2 87.2 + 6⋅48.4 = 377.6 0.4 0.36
5 90.1 177.3 177.3 + 5⋅90.1 = 627.8 0.5 0.59
6 120.2 297.5 297.5 + 4⋅120.2 = 778.3 0.6 0.73
7 163.0 460.5 460.5 + 3⋅163.0 = 949.5 0.7 0.90
8 182.5 643.0 643.0 + 2⋅182.5 = 1008.0 0.8 0.95
9 198.0 841.0 841.0 + 1⋅198.0 = 1039.0 0.9 0.98

10 219.0 1060.0 1060.0 + 0 = 1060.0 1.0 1.00
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Figure 14.19 TTT plot of the data in Example 14.13.

If the underlying life distribution is exponential, we should, from (14.56), expect
that for large n

 (T(i))
 (T(n))

≈ i
n

for i = 1, 2,… , (n − 1).

As this is not the case for the TTT plot in Figure 14.19, we conclude that the under-
lying life distribution for the data in Example 14.13 is probably not exponential.

To decide from a TTT plot whether or not the corresponding life distribution is
increasing failure rate (IFR) or decreasing failure rate (DFR), we need a little more
theory. We will be content with a heuristic argument.8

We claim that

 (t(i)) = n
∫

t(i)

0
[1 − Fn(u)] du, (14.57)

where Fn(t) is the empirical distribution function. Assertion (14.57) can be proved
in the following way (remember that per definition t(0) = 0):

n
∫

t(i)

0
[1 − Fn(u)] du

8 A rigorous treatment is found, for example, in Barlow and Campo (1975).
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= n

[ i∑
j=1

∫

t(j)

t(j−1)

(
1 −

j − 1
n

)
du

]

=
i∑

j=1
(n − j + 1)(t(j) − t(j−1))

= nt(1) + (n − 1)(t(2) − t(1)) + · · · + (n − i + 1)(t(i) − t(i−1))

=
i∑

j=1
t(j) + (n − i)t(i) =  (t(i)).

We now come to the heuristic part of the argument. First, let n equal 2m + 1, where
m is an integer. Then t(m+1) is the median of the dataset. What happens to the
integral

∫

t(m+1)

0
[1 − Fn(u)] du when m → ∞.

When m → ∞, we can expect that

Fn(u) → F(u),

and that

t(m+1) → {median of F} = F−1(1∕2),

and therefore that

1
n
 (t(m+1)) → ∫

F−1(1∕2)

0
[1 − F(u)] du. (14.58)

Next, let n = 4m + 3. In this case, t(2m+2) is the median of the data, and t(m+1) and
t(3m+3) are the lower and upper quartiles, respectively.

When m → ∞, by arguing as we did above, we can expect the following:

1
n
 (t(m+1)) → ∫

F−1(1∕4)

0
[1 − F(u)] du

1
n
 (t(2m+2)) → ∫

F−1(1∕2)

0
[1 − F(u)] du (14.59)

1
n
 (t(3m+3)) → ∫

F−1(3∕4)

0
[1 − F(u)] du.

In addition, we have that

E(T) = 𝜇 =
∫

∞

0
[1 − F(u)] du =

∫

F−1(1)

0
[1 − F(u)] du. (14.60)

When n → ∞, we can therefore expect that

1
n

n∑
i=1

ti =
1
n
 (t(n)) → ∫

F−1(1)

0
[1 − F(u)] du. (14.61)
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Figure 14.20 The TTT transform of the distribution F.

The integrals that we obtain as limits by this approach seem to be of interest and
we will look at them more closely. They are all of the type

∫

F−1(𝑣)

0
[1 − F(u)] du for 0 ≤ 𝑣 ≤ 1.

The Total-Time-on-Test Transform
We now introduce the TTT transform of the distribution F(t) as

H−1
F (𝑣) =

∫

F−1(𝑣)

0
[1 − F(u)] du for 0 ≤ 𝑣 ≤ 1. (14.62)

The TTT transform of the distribution F(t) is shown in Figure 14.20. Observe that
H−1

F (𝑣) is the “area” under the survivor function R(t) between t = 0 and t = F−1(𝑣).
It can be shown under assumptions of general nature that there is a one-to-one

correspondence between a distribution F(t) and its TTT transform H−1
F (𝑣) (see Bar-

low and Campo 1975).
Observe from (14.62) that

H−1
F (1) =

∫

F−1(1)

0
[1 − F(u)] du = 𝜇. (14.63)

The scaled TTT transform of F(t) is defined as

𝜑F(𝑣) =
H−1

F (𝑣)
H−1

F (1)
= 1

𝜇
H−1

F (𝑣) for 0 ≤ 𝑣 ≤ 1. (14.64)

Example 14.14 (Exponential distribution)
The distribution function of the exponential distribution is

F(t) = 1 − e−𝜆t for t ≥ 0, 𝜆 > 0,
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and hence

F−1(𝑣) = − 1
𝜆

log(1 − 𝑣) for 0 ≤ 𝑣 ≤ 1.

Thus, the TTT transform of the exponential distribution is

H−1
F (𝑣) =

∫

[− log(1−𝑣)]∕𝜆

0
e−𝜆u du = − 1

𝜆
e−𝜆u ||||

− 1
𝜆

log(1−𝑣)
0

= 1
𝜆
− 1

𝜆
e𝜆 log(1−𝑣)∕𝜆

= 1
𝜆
− 1

𝜆
(1 − 𝑣) = 𝑣

𝜆
for 0 ≤ 𝑣 ≤ 1.

Further

H−1
F (1) = 1

𝜆
.

The scaled TTT transform for the exponential distribution is therefore

𝑣∕𝜆
1∕𝜆

= 𝑣 for 0 ≤ 𝑣 ≤ 1. (14.65)

The scaled TTT transform of the exponential distribution is thus a straight line
from (0, 0) to (1, 1), as shown in Figure 14.21. ◻
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Figure 14.21 Scaled TTT transform of the exponential distribution (Example 14.16).
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Example 14.15 (Weibull distribution)
It is usually not straightforward to determine the TTT transform of a life distribu-
tion. We illustrate this by trying to determine the TTT transform of the Weibull
distribution

F(t) = 1 − exp
[
−

( t
𝜃

)𝛼]
for t ≥ 0, 𝜃 > 0, 𝛼 > 0.

The inverse function of F is

F−1(𝑣) = 𝜃 [− log(1 − 𝑣)]1∕𝛼 for 0 ≤ 𝑣 ≤ 1.

The TTT transform of the Weibull distribution is

H−1
F (𝑣) =

∫

F−1(𝑣)

0
[1 − F(u)] du =

∫

𝜃 [− log(1−𝑣)]1∕𝛼

0
e−(u∕𝜃)𝛼 du.

By substituting x = (u∕𝜃)𝛼 we obtain

H−1
F (𝑣) = 𝜃

𝛼 ∫

− log(1−𝑣)

0
x1∕𝛼+1 e−x dx, (14.66)

which shows that the TTT transform of the Weibull distribution may be expressed
by the incomplete gamma function. However, several approximation formulas are
available.

The mean time-to-failure (MTTF) is obtained by inserting 𝑣 = 1 in H−1
F (𝑣).

H−1
F (1) = 𝜃

𝛼 ∫

∞

0
x1∕𝛼+1 e−x dx = 𝜃

𝛼
Γ

( 1
𝛼

)
= 𝜃 Γ

( 1
𝛼
+ 1

)
,

which coincides with the result we obtained in (5.67). Observe that the scaled
TTT transform of the Weibull distribution depends only on the shape parame-
ter 𝛼 and is independent of the scale parameter 𝜃. Scaled TTT transforms of the
Weibull distribution for some selected values of the shape parameter 𝛼 are shown
in Figure 14.22. ◻

Three Useful Results
We now list three useful results and indicate a proof.

(1) If F(t) is a continuous life distribution that is strictly increasing for F−1(0) =
0 < t < F−1(1), then

d
d𝑣

H−1
F (𝑣)|

𝑣=F(t) =
1

z(t)
, (14.67)

where z(t) is the failure rate of the distribution F(t).
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Figure 14.22 Scaled TTT transforms of the Weibull distribution for some selected
values of 𝛼.

Proof :
Because

d
d𝑣

H−1
F (𝑣) = d

d𝑣 ∫

F−1(𝑣)

0
[1 − F(u)] du

= (1 − F[F−1(𝑣)]) d
d𝑣

F−1(𝑣) = (1 − 𝑣) 1
f [F−1(𝑣)]

,

then
d

d𝑣
H−1

F (𝑣)|
𝑣=F(t) = [1 − F(t)] 1

f (t)
= 1

z(t)
.

From (14.67) we obtain
(2) If F(t) is a continuous life distribution, strictly increasing for F−1(0) = 0 < t <

F−1(1), then
(a) F ∼ IFR ⇐⇒ H−1

F (𝑣) concave; 0 ≤ 𝑣 ≤ 1
(b) F ∼ DFR ⇐⇒ H−1

F (𝑣) convex; 0 ≤ 𝑣 ≤ 1
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The arguments, used to prove properties 1 and 2 are completely analogous. We
therefore prove only property 1.
Proof :

F ∼ IFR ⇐⇒ z(t) is nondecreasing in t

⇐⇒
1

z(t)
is nonincreasing in t

⇐⇒
d

d𝑣
H−1

F (𝑣)|
𝑣=F(t) is nonincreasing in t

⇐⇒
d

d𝑣
H−1

F (𝑣) is nonincreasing in 𝑣

because F(t) is strictly increasing

⇐⇒ H−1
F (𝑣) is concave, 0 ≤ 𝑣 ≤ 1.

To estimate the scaled TTT transform of F(t) for different 𝑣 values on the basis
of the observed lifetimes, it is natural to use the estimator

∫
F−1

n (𝑣)
0 [1 − Fn(u)] du

∫
F−1

n (1)
0 [1 − Fn(u)] du

for 𝑣 = i
n
, i = 1, 2,… ,n. (14.68)

Introducing the notation

H−1
n (𝑣) =

∫

F−1
n (𝑣)

0
[1 − Fn(u)] du for 𝑣 = i

n
, i = 1, 2,… ,n,

(14.69)

this estimator can be written as

H−1
n (𝑣)

H−1
n (1)

for 𝑣 = i
n
, i = 1, 2,… ,n. (14.70)

By comparing (14.70) with (14.64), it seems natural to call H−1
n (𝑣)∕H−1

n (1) the
empirical, scaled TTT transform of the distribution F(t).
The following result is useful when we wish to exploit the TTT plot to provide
information about the life distribution F(t):

(3) If F(t) is a continuous life distribution function, strictly increasing for F−1(0) =
0 < t < F−1(1), then

H−1
n

(
i
n

)
H−1

n (1)
=

 (t(i))
 (t(n))

for i = 1, 2,… ,n, (14.71)

where  (t(i)), as before, is the TTT at time t(i).
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Proof :
According to (14.69), for i = 1, 2,… ,n,

H−1
n

( i
n

)
=
∫

F−1
n ( i

n
)

0
[1 − Fn(u)] du

=
∫

T(i)

0
[1 − Fn(u)] du = 1

n
 (T(i)),

where as

H−1
n (1) =

∫

F−1
n (1)

0
[1 − Fn(u)] du

=
∫

∞

0
[1 − Fn(u)] du = 1

n
 (t(n)) =

1
n

n∑
i=1

ti.

By introducing these results in (14.70), we get (14.71).

Therefore, the scaled TTT at time t(i) seems to be a natural estimate of the scaled
TTT transform of F(t) for 𝑣 = i∕n, for i = 1, 2,… ,n. One way of obtaining an esti-
mate for the scaled TTT transform for (i − 1)∕n < 𝑣 < i∕n, is by applying linear
interpolation between the estimate for 𝑣 = (i − 1)∕n and 𝑣 = i∕n. In the following
we use this procedure.

Now suppose that we have access to a survival dataset. We first determine
 (t(i))∕ (t(n)) for i = 1, 2,… ,n as we did in Example 14.13, plot the points
[i∕n,  (t(i))∕ (t(n))] and join pairs of neighboring points with straight lines. The
curve obtained is an estimate for H−1

F (𝑣)∕H−1
F (1) = 1

𝜇
H−1

F (𝑣), for 0 ≤ 𝑣 ≤ 1.
We may now assess the shape of the curve (the estimate for H−1

F (𝑣)) in the light
of the result in (14.67) and its proof, and in this way obtain information about the
underlying distribution F(t).

A plot, such as the one shown in Figure 14.23a, shows that H−1
F (𝑣) is concave.

The plot therefore indicates that the corresponding life distribution F(t) is IFR.
Using the same type of argument, the plot in Figure 14.23b shows that H−1

F (𝑣) is
convex, so that the corresponding life distribution F(t) is DFR. Similarly, the plot
in Figure 14.23c indicates that H−1

F (𝑣) “is first convex” and “thereafter concave.”
In other words, the failure rate of the corresponding lifetime distribution has a
bathtub shape.

The TTT plot obtained in Example 14.13, therefore indicates that these data orig-
inate from a life distribution with bathtub shaped failure rate.

Example 14.16 (Ball bearing failures)
Lieblein and Zelen (1956) provide the numbers of millions of revolutions to failure
for each of 23 ball bearings. Below, the original data are put in numerical order for
convenience.
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Figure 14.23 TTT plots indicating (a) increasing failure rate (IFR), (b) decreasing failure
rate (DFR), and (c) bathtub-shaped failure rate.

17.88 28.92 33.00 41.52 42.12 45.60 48.40
51.84 51.96 54.12 55.56 67.80 68.64 68.64
68.88 84.12 93.12 98.64 105.12 105.84 127.92

128.04 173.40

The TTT plot of the ball bearing data is presented in Figure 14.24. The TTT plot
indicates an IFR. We may try to fit a Weibull distribution to the data. The Weibull
parameters 𝛼 and 𝜆 are estimated to be 𝛼 = 2.10 and 𝜆 = 1.22 × 10−2. The TTT
transform of the Weibull distribution with these parameters is plotted as an overlay
curve to the TTT plot in Figure 14.24. ◻

TTT Plotting with R
The scaled TTT-plot is available in the package AdequacyModel. We illus-
trate its use by the data from Example 14.16. A simple script for Figure 14.24
is:
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Figure 14.24 TTT plot of the ball bearing data in Example 11.11 together with an
overlay curve of the TTT transform of the Weibull distribution with shape parameter
𝛼 = 2.10.

library(AdequacyModel)
# Enter the dataset
data <- c(17.88,28.92,33.00,41.52,42.12,45.60,48.40,

51.84,51.96,54.12,55.56,67.80,68.64,68.64,
68.88,84.12,93.12,98.64,105.12,105.85,127.92,
128.04,173.40)

# Make the TTT plot
TTT(data,lwd=1.5,grid=F,lty=3)

If you want to establish the scaled TTT-transform for a particular distribution,
say a 2-parameter Weibull distribution with shape parameter 𝛼 = 3, this can be
obtained by a similar script where the data is a random sample from this distribu-
tion. To get a smooth curve, we need a rather high number of simulated values. A
script to obtain the TTT-transform is
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library(AdequacyModel)
# Generate a random sample from a Weibull distribution
data <- rweibull(8000,3,scale=1)
# Make the TTT transform
TTT(data, lwd=1.5,grid=F,lty=3)

Example 14.17 (Age replacement)
A well-known application of the TTT transform and the TTT plot is the age
replacement problem that is discussed in Section 12.3.1. Here an item is replaced
at a cost c + k at failure or at a cost c at a planned replacement when the item has
reached a certain age t0.

The average replacement cost per time unit of this policy was found to be

C(t0) =
c + kF(t0)

∫
t0

0 [1 − F(t)] dt
. (14.72)

The objective is now to determine the value of t0 that minimizes C(t0). If the distri-
bution function F(t) and all its parameters are known, it is a straightforward task
to determine the optimal value of t0. One way to solve this problem is to apply the
TTT transform.

By introducing the TTT transform (14.62) as

C(t0) =
c + kF(t0)
H−1

F [F(t0)]
= 1

H−1
F (1)

c + kF(t0)
𝜑F[F(t0)]

,

where H−1
F (1) is the MTTF of the item, and 𝜑F(𝑣) = H−1

F (𝑣)∕H−1
F (1) is the scaled

TTT transform of the distribution function F(t).
The optimal value of t0 may be determined by first finding the value 𝑣0 = F(t0)

that minimizes

C1(𝑣0) =
c + k𝑣0

𝜑F(𝑣0)
,

and thereafter determine t0 such that 𝑣0 = F(t0). The minimizing value of 𝑣0 may
be found by setting the derivative of C1(𝑣0) with respect to 𝑣0 equal to zero, and
solve the equation for 𝑣0.

d
d𝑣0

C1(𝑣0) =
𝜑F(𝑣0) k − 𝜑

′
F(𝑣0)(c + k𝑣0)

𝜑F(𝑣0)2 = 0.

This implies that

𝜑
′
F(𝑣0) =

𝜑F(𝑣0)
c∕k + 𝑣0

. (14.73)

The optimal value of 𝑣0, and hence t0, may now be determined by the following
simple graphical method.
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Figure 14.25 Determination of the optimal replacement age from the scaled TTT
transform.

(1) Draw the scaled TTT transform in a 1 × 1 –coordinate system.
(2) Identify the point (−c∕k, 0) on the abscissa axis.
(3) Draw a tangent from (−c∕k, 0) to the TTT transform.

The optimal value of 𝑣0 can now be read as the abscissa of the point where
the tangent touches the TTT transform. If 𝑣0 = 1, then t0 = ∞, and no preventive
replacements should be performed. The procedure is shown in Figure 14.25.

When a set of times-to-failure of the actual type of item has been recorded, we
may use this dataset to obtain the empirical, scaled TTT transform of the underly-
ing distribution function F(t), and draw a TTT plot. The optimal replacement age t0
may now be determined by the same procedure as described above. This is shown
in Figure 14.26. The procedure is further discussed, for example, by Bergman and
Klefsjö (1982,1984). ◻

14.7.2 Total-Time-on-Test Plot for Censored Datasets

When the dataset is incomplete with random censoring (type IV), we may argue as
follows to obtain a TTT plot: The TTT transform, as defined in (14.62), is valid for a
wide range of distribution functions F(t), also for step functions. Instead of estimat-
ing the TTT transform H−1

F (t) by introducing the empirical distribution function
Fn(t) as we did in (14.69), we could estimate F(t) by [1 − R̂(t)], where R̂(t) is the
Kaplan–Meier estimator of R(t).
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Figure 14.26 Determination of the optimal replacement age from a TTT plot.

Technically, the plot is obtained as follows: Let t(1), t(2),… , t(k) denote the k
ordered failure times among t1, t2,… , tn and let

𝑣(i) = 1 − R̂(t(i)) for i = 1, 2,… , k.

Define

Ĥ−1(𝑣(i)) = ∫

t(i)

0
R̂(u) du =

i−1∑
j=1

(t(j+1) − t(j))R̂(t(j)),

where t(0) = 0.
The TTT plot is now obtained by plotting the points(

𝑣(i)

𝑣(k)
,

Ĥ−1(𝑣(i))

Ĥ−1(𝑣(k))

)
for 1 = 1, 2,… , k.

Observe that when k = n, that is, when the dataset is complete, then

𝑣(i) =
i
n
,

Ĥ−1(𝑣(i)) =  (t(i)),

and we get the same TTT plot as we got for complete datasets.

14.7.3 A Brief Comparison

Sections 14.5–14.7 present three nonparametric estimation and plotting tech-
niques that may be applied to both complete and censored data. (The empirical



�

� �

�

14.8 Survival Analysis with Covariates 723

survivor function is equal to the Kaplan–Meier estimate when the dataset is
complete, and is therefore considered as a special case of the Kaplan–Meier
approach.) The estimates obtained by using the Kaplan–Meier, and the
Nelson–Aalen approaches are rather similar, so it is not important which of
these is chosen. The nature of the estimate based on TTT transform is different
from the other two estimates and may provide supplementary information.

The plots may also be used as a basis for selection of an adequate parametric
distribution F(t). In this respect, the three plots provide somewhat different infor-
mation. The Kaplan–Meier plot is very sensitive to variations in the early and
middle phases of an item’s lifetime, but is not very sensitive in the right tail of
the distribution. The Nelson–Aalen plot is not at all sensitive in the early part of
the life distribution, because the plot is “forced” to start in (0, 0). The TTT plot is
very sensitive in the middle phase of the life distribution, but less sensitive in the
early phase and in the right tail, because the plot is “forced” to start in (0, 0) and
end up in (1, 1). To get adequate information about the whole distribution, all the
three plots should be studied.

14.8 Survival Analysis with Covariates

The reliability of items is often found to be influenced by one or more covariates.
Covariates and various models applying covariates were introduced in Section 5.5.
This section sheds some light on how to analyze data with different covariate lev-
els. This is a huge and complicated area, so we only scratch the surface of this
topic.

We assume that all covariates are measurable, either on a continuous scale, a
discrete scale, or simply as “yes” or “no.” We further assume that all covariates
remain constant during the data collection exercise.

14.8.1 Proportional Hazards Model

By a proportional hazards (PH) model the failure rate function z(t) is modified by a
factor g(s), where s is the covariate vector. The term “hazard” is here used with the
same meaning as failure rate. We could therefore talk about proportional failure
rates instead of PH, but PH is the standard term used in most other application
areas, such as biostatistics and medical research.

The PH model assumes that the failure rate function related to a specific covari-
ate vector s may be written as

z(t ∣ s) = z0(t) g(s). (14.74)

The failure rate function z(t ∣ s) is seen to be the product of two factors:
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(1) A time-dependent factor z0(t), which is called the baseline failure rate and does
not depend on s. The baseline failure rate is usually not specified in the PH
model.

(2) A proportionality factor g(s), which is a function of the covariate vector s, and
not of time t.

Hazard Ratio
We may compare the effects of two covariate vectors s1 and s0 by the ratio:

HR(s1, s0) =
z(t ∣ s1)
z(t ∣ s0)

=
g(s1)
g(s0)

. (14.75)

This expression is called the hazard ratio (HR) for the covariate vectors s1 and s0.
The covariate vector s0 often refers to a basic and known application of the item,
called the baseline application, whereas the covariate vector s1 refers to the use of a
similar item in a new environment. The hazard ratio shows that the two failure rate
functions are proportional for any value of t. This proportionality is the reason for
calling the model a PH model. The factor of interest is how large g(s1) is compared
to g(s0) and not the value of each of them. Therefore, we often set g(s0) = 1, such
that g(s1) = HR(s1, s0).

In cases where g(s0) = 1, and we study a single alternative covariate vector, this
vector is usually denoted s (i.e. without an index) and the hazard ratio is HR(s) =
g(s).

The effect of the covariate vector s is, therefore, determined by g(s), which
scales the baseline failure rate function z0(t). Figure 14.27 shows a baseline failure
rate function z0(t) for a Weibull distribution with shape parameter 𝛼 = 1.65 (fully
drawn line) together with the failure rate function (dotted line) for an item with
covariate vector s and hazard ratio g(s) = 2 based on a PH model. The failure rate
function for s is obtained by multiplying z0(t) with HR = 2 for each point of time t.

Time t

z(
t)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

Figure 14.27 Failure rate function for the PH model. The baseline failure rate function
(fully drawn line) and for another condition with hazard ratio (HR)= 2 (dotted line). The
baseline is a Weibull distribution with shape parameter 𝛼 = 1.65.
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Cumulative Failure Rate
In the PH model, the cumulative failure rate Z(t) = ∫

t
0 z(u) du is

Z(t ∣ s) = Z0(t)g(s). (14.76)

Survivor Function
Let R0(t) be the survivor function for the baseline application. The survivor func-
tion for a new application with covariate vector s is from (14.74)

R(t ∣ s) = exp[−Z(t ∣ s)] = exp[−Z0(t)g(s)] = [R0(t)]g(s)
. (14.77)

This result implies that if we know the survivor function in the baseline applica-
tion and if we are able to determine the hazard ratio, g(s), it is easy to find the sur-
vivor function – and all the related reliability measures – in the new environment s.

Example 14.18 (Exponential distribution)
Consider at item with constant failure rate. During normal operation in a base-
line environment, the failure rate is 𝜆0. The assumption of constant failure rate is
considered realistic also for an alternative environment with covariate vector s. A
simple model for describing the failure rate in this environment is

𝜆(s) =

( m∑
i=1

k1si

)
𝜆0,

where ki is a constant that determines the effect of si on the failure rate, for i =
1, 2,… ,m. To comply with our knowledge about the effect of the various influ-
ences, the covariates used may be transformed values of the physical variables.
The square of the voltage may, for example, be used as a covariate. ◻

Example 14.19 (The MIL-HDBK-217 prediction method)
The MIL-HDBK-217F (1995) has for a long time been the state-of-the-art approach
for predicting the constant failure rate of an electronic item that is used under
non-baseline conditions. Let 𝜆0 be the constant failure rate when the item is used
under baseline conditions. For these conditions, 𝜆0 can be estimated from data
obtained from laboratory testing or from field data. The MIL-HDBK-217F suggests
that the failure rate 𝜆 in the nonreference conditions is determined as follows:

𝜆 = 𝜆0 ⋅ 𝜋S ⋅ 𝜋T ⋅ 𝜋E ⋅ 𝜋Q ⋅ 𝜋A, (14.78)

where

𝜋S is the stress factor.
𝜋T is the temperature factor.
𝜋E is the environment factor.
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𝜋Q is the quality factor.
𝜋A is the adjustment factor.

These factors may be found in the handbook when we know the conditions the
item is used in. The MIL-HDBK-217F therefore applies a simple PH approach.
The MIL-HDBK-217F is discussed further in Chapter 16. ◻

14.8.2 Cox Models

The Cox model was introduced by the British statistician Sir David Roxbee Cox in
his famous paper “Regression models and life tables” Cox (1972). The Cox model
is a special case of a PH model, where the failure rate function is written as

z(t ∣ s) = z0(t) e𝜷s
. (14.79)

The hazard ratio g(s) of this model is

g(s) = e𝜷s = exp

( k∑
i=1

𝛽isi

)
,

where 𝜷 = (𝛽1, 𝛽2,… , 𝛽k) is a vector of unknown parameters that need to be esti-
mated from observed data.

Consider two different stress levels; a baseline application with s0 and a new
application with s. It is common practice to set s0 = 0 for the baseline application
and to measure the covariates s as the difference from the baseline application. It
is further common to scale the function g(⋅) such that g(s0) = 1. The hazard ratio
of this Cox model is

z(t ∣ s)
z(t ∣ 0)

= exp(𝜷s) = exp

( k∑
j=1

𝛽jsj

)
.

For the Cox model, the log-failure rate function is a linear function

log z(t ∣ s) = log z0(t) + 𝛽1s1 + 𝛽2s2 + · · · + log 𝛽ksk. (14.80)

This indicates that (14.80) may be a suitable basis for some sort of regression anal-
ysis.

The Cox model is said to be a semiparametric model. It is not a parametric model
because the baseline failure rate z0(t) is unspecified, and it is not nonparametric
because it is assumed how the failure rate function varies with the value of the
covariates. If we make special assumptions about the baseline failure rate func-
tion z0(t), the Cox model becomes a parametric model. The baseline distribution
may, for example, be assumed to be an exponential or a Weibull distribution. The
advantage of the Cox model is that such assumptions can be avoided. Even though
z0(t) is unspecified, our objective is to estimate the parameters𝜷. One of the biggest
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advantages of the Cox model is that we can estimate the parameters 𝜷 that reflect
the effects of the covariates without having to make any assumptions about the
form of z0(t).

14.8.3 Estimating the Parameters of the Cox Model

A thorough introduction of the theory required to estimate the parameters (𝜷) of
the Cox model would involve several new concepts and is considered to be outside
the scope of this book. The theory described by Cox (1972) is elaborated in several
books (e.g. see Cox and Oakes 1984, Ansell and Phillips 1994, Crowder et al. 1991,
Kalbfleisch and Prentice 1980, Lawless 1982). Theoretical introductions and sur-
veys may also be found in a high number of presentations and lecture notes that
are available on the Internet.

Here, we suffice with a simple introduction, where we highlight some of
the main concepts. We start with a right-censored dataset of survival times
t = (t1, t2,… , tn) from n independent and identical items used in different envi-
ronments. All the survival times are measured from time t = 0. As before, we use
the indicator 𝛿i to tell whether the survival time ended with a failure (𝛿i = 1) or
with a censoring (𝛿i = 0), for i = 1, 2,… ,n.

From (14.21), the likelihood function may be written as

L(𝜷 ∣ data) =
n∏

i=1
[z(ti ∣ 𝜷, si)]𝛿i R(ti ∣ 𝜷, si),

where z(⋅) and R(⋅) are seen as functions of 𝜷 and “data” includes all the data avail-
able in the dataset, including ti, 𝛿i, and si for all the items. For the Cox model, the
likelihood function may be written as

L(𝜷 ∣ data) =
n∏

i=1
z0(ti)[exp(𝜷si)]𝛿i [R0(ti)]exp(𝜷si).

The corresponding log-likelihood function is

𝓁(𝜷 ∣ data) =
n∑

i=1
log z0(ti) + 𝛿i𝜷si + exp(𝜷si) log R0(ti).

It is not possible to find the 𝜷 that maximizes this log-likelihood function unless
we specify the baseline failure rate function z0(t). A detailed discussion of this
problem is given in Cox and Oakes (1984, chapter 7). Instead, Cox (1972) intro-
duced a partial likelihood function that does not depend on z0(t). This function
uses the at-risk-set RS(t) at time t, that is, the set of all items that are functioning
and exposed to failure just before time t. Items that have failed or have been cen-
sored before time t are not members of RS(t). In this simplified introduction, we
assume that there are no ties in the dataset.
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Consider a dataset with n distinct survival times t1, t2,… , tn. To each survival
time ti is connected an indicator 𝛿i and a covariate vector si, for i = 1, 2,… ,n. Each
covariate vector may be regarded as an observation of a general covariate vector s.
This means that the same covariates are measured for each and every survival time.

Next, the survival times are ordered, such that t1 < t2 < · · · < tn. To establish the
partial likelihood function, Cox (1972) starts by considering the conditional prob-
ability that a specific item, say i [∈ RS(ti)] fails at time ti given that one individual
item from the at-risk-set RS(ti) fails at time ti.9 If the dataset were complete, this
probability would be

Lp(𝜷 ∣ ti, si) =
z(ti ∣ 𝜷si)∑

j∈RS(ti)
z(ti ∣ 𝜷sj)

,

and is the contribution to the partial likelihood [Lp(⋅)] from survival time ti. The
arguments used to arrive at the above result may be summarized as follows:

Pr(Item i fails at time ti ∣ One item from RS(ti) fails at time ti)

=
Pr(Item i fails at ti)

Pr(One failure in RS(ti) at ti)

=
Pr(Item i fails at ti)

Pr
(∑

j∈RS(ti)
Item j ∈ RS(ti) fails at ti, ti + Δt

)

≈
Pr(Item i fails in (ti, ti + Δt))∕Δt

Pr
(∑

j∈RS(ti)
Item j ∈ RS(ti) fails in ti, ti + Δt

)
∕Δt

≈
limΔt→0 Pr(Item i fails in (ti, ti + Δt))∕Δt

limΔt→0 Pr
(∑

j∈RS(ti)
Item j ∈ RS(ti) fails in ti, ti + Δt

)
∕Δt

=
z(ti ∣ 𝜷si)∑

j∈RS(ti)
z(ti ∣ 𝜷sj)

.

To simplify the notation, we introduce

𝜓i = exp(𝜷si) for i = 1, 2,… ,n,

which is the factor we must multiply the baseline failure rate z0(t) with to obtain
the failure rate for the covariate vector si, that is, z(ti ∣ 𝜷, si) = 𝜓iz0(t). The con-
tribution to the total partial likelihood function from failure time ti can hence be

9 Any item in RS(ti) would do. We assume that item i corresponds to the ordered survival time
ti, so it is obviously a member of RS(ti). We focus on item i to simplify the notation.
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written as

Lp(𝜷 ∣ ti, si) =
𝜓i∑

j∈RS(ti)
𝜓j

. (14.81)

The total partial likelihood for the complete dataset is then

Lp(𝜷 ∣ data) =
n∏

i=1

𝜓i∑
j∈RS(ti)

𝜓j
.

For a right censored dataset, the partial likelihood can be shown to be

Lp(𝜷 ∣ data) =
n∏

i=1

[
𝜓i∑

j∈RS(ti)
𝜓j

]𝛿i

, (14.82)

where censored times are excluded by the indicator 𝛿i = 0 (remember x0 = 1). The
partial likelihood function is obtained by multiplying the contributions (14.80)
from the actual failure times, but the censoring times are still important because
they enter into the at-risk-sets RS(t).

There are at least two reasons why Lp(𝜷 ∣ data) is called a partial likelihood:

• It is not a complete likelihood function for all parameters of the density function
(because the baseline failure rate function is not covered).

• All the data in the dataset is not used because the actual survival times play no
part in (14.81), but only their ranking, i.e. when they enter into the at-risk set.

More thorough treatments may be found in Cox and Oakes (1984), Lawless
(1982), and Kalbfleisch and Prentice (1980).

When there are many ties in the dataset, computation of maximum partial-
likelihood estimates is still possible but may become time-consuming. Of this
reason, the partial likelihood function is often approximated. Two commonly
employed approximations are due to Norman E. Breslow and to Bradley Efron.
Both approximations are available in the R survival package.

The procedures to find estimates for the various parameters are rather techni-
cal and are not presented in the current book. Readers who plan to use the Cox
model on a practical dataset are advised to consult a more specialized book and to
carefully read the documentation of the relevant R packages.

Cox Model Analysis with R
The Cox model is available in R by the function coxph in the survival pack-
age. Related aspects are also treated in several other R packages. Among these are
simPH, coxme, Coxnet, coxphw, and several more.

We suggest that you start by learning the function coxph in the survival
package. You have many options when using this package, and it is therefore
important that you read carefully the package documentation.

Additional theory and several worked examples with R may be found in Moore
(2016) and Fox and Weisberg (2019).
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14.9 Problems

14.1 Assume that you have determined the lifetimes for a total of 12 identical
items and obtained the following results (given in hours): 10.2, 89.6, 54.0,
96.0, 23.3, 30.4, 41.2, 0.8, 73.2, 3.6, 28.0, 31.6
The dataset can be downloaded from the book companion site.
(a) Find the sample mean and the sample standard deviation for the

dataset. Can you draw any conclusions about the underlying distri-
bution F(t) by comparing the sample mean and the sample standard
deviation?

(b) Construct the empirical survivor function for the dataset.
(c) Plot the data on a Weibull paper.10 What conclusions can you draw

from the plot?
(d) Construct the TTT plot for the dataset. What conclusion can you draw

from the TTT plot about the corresponding life distribution?

14.2 Failure time data from a compressor were discussed in Example 10.2. All
compressor failures at a certain process plant in the time period from
1968 until 1989 have been recorded. In this period, a total of 90 critical
failures occurred. In this context, a critical failure is defined to be a fail-
ure causing compressor downtime. The compressor is very important for
the operation of the process plant, and every effort is taken to restart a
failed compressor as soon as possible. The 90 repair times (in hours) are
presented chronologically in Table 14.6. The repair time associated with
the first failure was 1.25 hours, the second repair time was 135.00 hours,
and so on. The dataset can be downloaded from the book companion
site.
(a) Plot the repair times in chronological order to check whether or not

there is a trend in the repair times. Is there any reason to claim that
the repair times increase with the age of the compressor?

(b) Assume now that the repair times are independent and identically
distributed. Construct the empirical distribution function for the
repair times

(c) Plot the repair times on a lognormal plotting paper. Is it reason to
believe that the repair times are lognormally distributed?

14.3 Consider the set of material strength data presented by Crowder et al.
(1991, p. 46) and given in Table 14.7. An experiment has been carried

10 Weibull paper may be downloaded from https://www.weibull.com/GPaper/ or you can use
the R package WeibullR.
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Table 14.6 Dataset for Problem 14.2.

1.25 135.00 0.08 5.33 154.00 0.50 1.25 2.50 15.00
6.00 4.50 32.50 9.50 0.25 81.00 12.00 0.25 1.66
5.00 7.00 39.00 106.00 6.00 5.00 17.00 5.00 2.00
2.00 0.33 0.17 0.50 18.00 2.50 0.33 0.50 2.00
0.33 4.00 20.00 6.00 6.30 15.00 23.00 4.00 5.00

28.00 16.00 11.50 0.42 38.33 10.50 9.50 8.50 17.00
34.00 0.17 0.83 0.75 1.00 0.25 0.25 2.25 13.50

0.50 0.25 0.17 1.75 0.50 1.00 2.00 2.00 38.00
0.33 2.00 40.50 4.28 1.62 1.33 3.00 5.00 120.00
0.50 3.00 3.00 11.58 8.50 13.50 29.50 29.50 112.00

Table 14.7 Dataset for Problem 14.3.

26.8∗ 29.6∗ 33.4∗ 35.0∗ 36.3 40.0∗ 41.7 41.9∗ 42.5∗

43.9 49.9 50.1 50.8 51.9 52.1 52.3 52.3 52.4
52.6 52.7 53.1 53.6 53.6 53.9 53.9 54.1 54.6
54.8 54.8 55.1 55.4 55.9 56.0 56.1 56.5 56.9
57.1 57.1 57.3 57.7 57.8 58.1 58.9 59.0 59.1
59.6 60.4 60.7

*Censored data points.

out to gain information about the strength of a certain type of braided
cord. A total of 48 pieces of cord were investigated. Seven cords were dam-
aged during the experiment, implying right-censored strength values. The
dataset can be downloaded from the book companion site.
(a) Establish a Kaplan–Meier plot of the material strength data.
(b) Establish a TTT plot of the material strength data.
(c) Discuss the effect of this type of censoring.
(d) Describe the form of the related failure rate function.

14.4 Establish a graph paper such that the Nelson–Aalen plot of Weibull
distributed life data is close to a straight line. Describe how the Weibull
parameters 𝛼 and 𝜆 can be estimated from the plot.

14.5 The Pareto distribution has cumulative distribution function F(x) =
Pr(X ≤ x) = 1 − x−𝜃 for x > 1. Let x1, x2,… , xn be n independent
observations of X .
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(a) Find the method of moments estimation (MME) estimator for 𝜃.
(b) Find the mean and the standard deviation of this estimator.

14.6 Let X1,X2,… ,Xn be independent and identically distributed variables
with uniform distribution unif(0, 𝜃). Assume that x = (x1, x2,… , xn) has
been observed.
(a) Find the likelihood function L(𝜃 ∣ x).
(b) Find the MLE for 𝜃 and derive its mean value.
(c) Find an unbiased estimator for 𝜃.

14.7 Let X1,X2,… ,Xn independent and identically distributed Po(𝜆), where 𝜆

is unknown.
(a) Find an MLE for e−𝜆.
(b) Find an unbiased estimator for e−𝜆.

14.8 Consider a homogeneous Poisson process (HPP) with rate 𝜆. Let N(t)
be the number of failures (events) in a time interval of length t. N(t) is
hence Poisson distributed with parameter 𝜆t. Assume that the process is
observed in a time interval of length t = 2 years. In this time period, a
total of seven failures have been observed.
(a) Find an estimate for 𝜆
(b) Determine a 90% confidence interval for 𝜆

14.9 Let X ∼ Po(𝜆).
(a) Determine an exact 90% confidence interval for 𝜆 when X is observed

and found equal to 6. For comparison, also determine an approximate
90% confidence interval for 𝜆, using the approximation of the Poisson
distribution to  (𝜆, 𝜆)

(b) Solve the same problem as stated in (a) when X is observed and found
equal to 14.

14.10 Denote the distribution function of the Poisson distribution with parame-
ter 𝜆 by o(x; 𝜆), and the distribution function of the 𝜒

2 distribution with
𝜈 degrees of freedom by Γ

𝜈
(z).

(a) Show that o(x ∣ 𝜆) = 1 − Γ2(x+1)(2𝜆). (Hint: First show that
1 − Γ2(x+1)(2𝜆) = ∫

∞
2𝜆

ux

x!
e−u du, and next apply repeated partial

integrations to the integral).
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Table 14.8 Dataset for Problem 14.11.

12 373 107 318 9 739 13 000 12 207 63 589 31 893
98 474 5 784 9 662 61 731 15 269 4 730 11 269
26 947 27 838 90 682 8 086 7 905 48 162

(b) Let 𝜆1(X) and 𝜆2(X) be defined by

o(x ∣ 𝜆1(x)) =
𝛼

2
.

o(x − 1 ∣ 𝜆2(x)) = 1 − 𝛼

2
.

Use the result of (a) to show that

𝜆1(x) =
1
2

z
𝛼∕2,2x and

𝜆2(x) =
1
2

z1−𝛼∕2,2(x+1),

where z
𝜀,𝜈

is the upper 100 𝜀% percentile of the 𝜒2 distribution with 𝜈

degrees of freedom.

14.11 Historical data with a record of 20 times-to-failure (in hours) of a pressure
transmitter (PT) are available in Table 14.8. The dataset can be down-
loaded from the book companion site.
(a) Explain why it is reasonable to assume a constant failure rate for

the PT.
(b) Determine the empirical cumulative distribution corresponding to

this dataset and plot it.
(c) Estimate the failure rate of PT.
(d) Find the survivor function obtained with the estimated failure rate

and compare to the one obtained with the empirical distribution.
Comment and explain how to improve the result.

14.12 Reconsider the situation in Example 14.16, but assume that the
times-to-failure are those that are not starred. They are given in
Table 14.9. The dataset can be downloaded from the book companion
site.
(a) Determine the Kaplan–Meier estimate R̂(t) and display it graphically.
(b) Determine the Nelson–Aalen estimate R∗(t) for the survivor function

and display it graphically.

14.13 Table 14.10 shows the intervals in operating hours between successive
failures of air-conditioning equipment in a Boeing 720 aircraft. The first
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Table 14.9 Dataset for Problem 14.12.

31.7 39.2∗ 57.5 65.5 65.8∗ 70.0 75.0∗ 75.2∗

87.5∗ 88.3∗ 94.2 101.7∗ 105.8∗ 109.2 110.0 130.0∗

*Censored data points.

Table 14.10 Dataset for Problem 14.13.

413 14 58 37 100 65 9 169
447 184 36 201 118 34 31 18

18 67 57 62 7 22 34

Source: Proschan (1963).

interval is 413, the second is 14, and so on. The data are from Proschan
(1963). The dataset can be downloaded from the book companion
site.
(a) Establish the Nelson–Aalen plot (N(t) plot) of the dataset. Describe

(with words) the shape of the rate of occurrence of failures (ROCOF).

14.14 Suppose that the dataset in Problem 14.11 was obtained by simultane-
ously activating 20 identical items, but that the test was terminated at the
12th failure.
(a) What type of censoring is this?
(b) Estimate 𝜆 in this situation.
(c) Calculate a 95% confidence interval for 𝜆.
(d) Compare the results with those derived in Problem 14.11.

14.15 Establish a graph paper such that the Nelson–Aalen plot of normally dis-
tributed ( (𝜇, 𝜎2)) life data is close to a straight line. Describe how the
parameters 𝜇 and 𝜎 may be estimated from the plot.

14.16 Table 14.11 shows the intervals in days between successive failures of a
piece of software developed as part of a large data system. The first interval
is 9, the second is 12, and so on. The data are from Jelinski and Moranda
(1972).The dataset can be downloaded on thebook companion site.
(a) Establish the Nelson–Aalen plot (N(t) plot) of the dataset. Is the

ROCOF increasing or decreasing?
(b) Assume that the ROCOF follows a log-linear model, and find the max-

imum likelihood estimates (MLE) for the parameters of this model.
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Table 14.11 Dataset for Problem 14.16.

9 12 11 4 7 2 5 8 5 7
1 6 1 9 4 1 3 3 6 1

11 33 7 91 2 1 87 47 12 9
135 258 16 35

Source: Jelinski and Moranda (1972).

Table 14.12 Dataset for Problem 14.17.

31.7 39.2 57.5 65.0 65.8 70.0 75.0 75.2
87.7 88.3 94.2 101.7 105.8 109.2 110.0 130.0

(c) Draw the estimated cumulative ROCOF in the same diagram as the
Nelson–Aalen plot. Is the fit acceptable?

(d) Use the Laplace test to test whether the ROCOF is decreasing or not
(use a 5% level of significance).

14.17 Independent lifetimes (given in months in Table 14.12) have been
observed with no censoring. The dataset can be downloaded from the
book companion site.
(a) Give the analytical expression of empirical distribution function and

explain your method.
(b) Give a script to get this function.
(c) Give a plot of it.
(d) Assuming that the probability density function is an exponential law

of parameter 𝜆, give the optimal value of 𝜆 to fit to the given dataset.
(e) Is it reasonable to assume that such a unit has an exponential density

function? Why?

14.18 A record of the times-to-failure (given in hours) of a sensor give the fol-
lowing historical dataset in Table 14.13. The dataset can be downloaded
from the book companion site.

Table 14.13 Dataset for Problem 14.18.

1.2 × 104 9.3 × 104 0.5 × 104 0.2 × 104 1.1 × 104

2.6 × 104 9.4 × 104 1.2 × 104 4.9 × 104 9.6 × 104

0.9 × 104 8.6 × 104 6.5 × 104 0.5 × 104 1.0 × 104

0.1 × 104 0.8 × 104 3.6 × 104 3.2 × 104
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(a) Demonstrate that it is reasonable to assume a constant failure rate for
the sensor.

(b) Determine the empirical cumulative distribution corresponding to
this dataset and plot it.

(c) Propose two methods to estimate the failure rate.
(d) Determine the survivor function obtained with the estimated failure

rate and compare with the one you obtain with the empirical distri-
bution. Comment and explain how you could improve your results.

(e) For all the units, calculate their MTTF and the probability that they
survive their own MTTF. Give comments.

(f) Determine a plot for the survivor functions and identify the time hori-
zons tk for which the survivor function of k items (k = 0, 1, 2,…) is
higher than 0.9.
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15

Bayesian Reliability Analysis

15.1 Introduction

This chapter gives a brief introduction to Bayesian modeling and Bayesian data
analysis. These aspects are presented and explained by simple examples with a
single parameter 𝜃 and mostly a single random variable X . For these examples, it
is straightforward to obtain results by hand calculation. For models with two or
more parameters, it is not feasible to solve the equations by hand calculation, and
we need to rely on the use of computers. A very brief introduction to computerized
Bayesian analysis is given at the end of the chapter. More details may be found in
the references cited.

The Bayesian approach has increasing popularity is recent years for two main
reasons:

(1) Several user-friendly computer programs have become available that can solve
problems that we were not able to solve by hand calculation.

(2) Bayesian methods have become a central element in the development of new
technologies, such as artificial intelligence (AI) and machine learning (ML).

In the Bayesian approach to reliability analysis, probability is a measure of
the analyst’s degree of belief about a specific situation or a specific outcome.
The Bayesian view is different from the classical and the frequentist views of
probability. The frequentist view is the one we tacitly have used in the first 14
chapters of this book.

15.1.1 Three Interpretations of Probability

The definition and interpretation of the term probability has, for a long time, been
a controversial issue. What do we really mean when we say that the probability
of an event A is 0.90? Is it an objective statement or a subjective statement? Three

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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dominating views prevail: the classical, the frequentist, and the subjective view.
The three views are briefly introduced below.

Classical Probability
With the classical view, experiments with n equally likely single outcomes
e1, e2,… , en are considered. The set of all possible single outcomes is called the
sample space S = {e1, e2,… , en}. The probability of a particular event A ∈ S,
Pr(A), is calculated as the number of single outcomes that fulfill A divided by
the total number n of possible outcomes. If the experiment consists of throwing
a dice, n = 6, and the sample space is {1, 2, 3, 4, 5, 6}. If A = “outcome is an odd
number” when throwing the dice, the single outcomes fulfilling A are the three
outcomes 1, 3, and 5, and the probability of A is Pr(A) = 3∕6 = 1∕2. The classical
view is applicable only in cases with equally likely single outcomes.

Frequentist Probability
With the frequentist view, it is imagined that a series of n independent and iden-
tical experiments can be carried out. Each experiment may, or may not, result in
an event A, and the number nA of experiments that resulted in A is counted. The
frequency nA∕n is assumed to approach a limiting value when the number, n, of
experiments increases, and this limit is called the probability of A, and is written as
Pr(A). With this view, probability Pr(A) is an unknown, but existing number, and
it is our job to determine this number. To determine this number, we often have to
use probabilistic models. Let T be the time-to-failure of an item, and let the event
A be T > t0 for a specified t0. Chapter 5 introduces a range of models that help us to
determine Pr(A). Among these are the exponential, Weibull, and lognormal mod-
els. The model to use is often chosen as a compromise between what is realistic
and what is feasible with the limited amount of data we have access to. The fre-
quentist view is often claimed to be objective, but the choice of a model has several
subjective elements that may influence the resulting probabilities.

With the frequentist view, model parameters (e.g. 𝜆 in the exponential model)
are estimated solely based on the data without using any existing knowledge about
the parameters. See Chapter 14.

Both the subjective and frequentist views require that a random variable X is
a real-valued, measurable quantity that can be observed and recorded when an
experiment is carried out. More formally, a random variable is a function f ∶  →

ℝ from the sample space to the real numbers. Quantities that cannot be observed
and measured are not random variables.

Subjective Probability
With the subjective view, the probability Pr(A) of an event A is a measure of the
analyst’s degree of belief about a quantity or an outcome. The degree of belief is



�

� �

�

15.1 Introduction 741

formed by the analyst’s knowledge and experience with the event A. She may call
on experts in the relevant domains and use physical and symmetry arguments
to form her degree of belief. For experiments that comply with the classical
view, the subjective and classical views give the same probabilities because of
symmetry.

With the subjective view, a wide range of quantities and issues may be treated
as random variables, many of which have no meaning within the classical and
frequentist views. In our context, the most important feature of the subjective view
is that we may consider a parameter 𝜃 of a probability distribution to be a random
variable Θ with (probability) density 𝜋(𝜃). The density 𝜋(𝜃) describes the analyst’s
degree of belief about the value of the parameter. A subjective probability is also
called a Bayesian probability.

Relevance for Reliability
Reliability analyses give the highest yields in the early design phases of new sys-
tems. New systems often comprise new components, based on a new design, new
materials, and/or new technologies, with no or limited field experience. To obtain
adequate parameter estimates, we need to test the components in a relevant oper-
ating context. For high reliability components, this is both time-consuming and
costly – and the estimate will usually come after the design decision has been
made. In many cases, new components are minor modifications of existing com-
ponents from which we have some experience. This experience should be used to
provide parameter estimates for the new components. For this purpose, the sub-
jective probabilities provide an excellent framework.

15.1.2 Bayes’ Formula

Bayesian inference is a method of statistical inference where Bayes’ formula1 is
used to update our degree of belief as more evidence or data becomes available.
Bayes’ formula has been mentioned several times earlier in this book. Here, we
explain this formula by first looking at an experiment with discrete outcomes.
Let S be the sample space of all possible outcomes of an experiment, and let
E1,E2,… ,Em be mutually exclusive events such that

⋃m
i=1 Ei = S. This means

that exactly one of the events Ei will occur when the experiment is performed.
Consider another event A in S. This event may be written as

A = A ∩ S = A ∩
m⋃

i=1
Ei =

m⋃
i=1

(A ∩ Ei).

1 Also called Bayes’ theorem.
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Because the events A ∩ Ei are mutually exclusive for i = 1, 2,… ,m, the probability
of A is

Pr(A) =
m∑

i=1
Pr(A ∩ Ei) =

m∑
i=1

Pr(A ∣ Ei)Pr(Ei). (15.1)

Equation (15.1) is called the law of total probability (see Section 6.2.4). Suppose
that we know that event A has occurred and ask “what is the probability that
event Ej also occurs?” This probability is by using the definition of conditional
probability

Pr(Ej ∣ A) =
Pr(Ej ∩ A)

Pr(A)
=

Pr(A ∣ Ej)∑m
i=1 Pr(A ∣ Ei)Pr(Ei)

, (15.2)

which is Bayes’ formula for events. If we consider a discrete random variable Y
with sample space Y = {y1, y2,… , ym}, we may let Ei be the event that Y = yi, for
i = 1, 2,… ,m. Also assume that we have another random variable X with sample
spaceX = {x1, x2,… , xn}. From Bayes’ formula (15.2), the conditional probability
mass function for Y given X = x𝓁 is

Pr(Y = yj ∣ X = x𝓁) =
Pr(X = x𝓁 ∣ Y = yj)Pr(Y = yj)∑m

i=1 Pr(X = x𝓁 ∣ Y = yi)Pr(Y = yi)
, (15.3)

which is Bayes’ formula for discrete variables.
The similar formula for continuous variables can be developed by analogy

to (15.3). Consider the continuously distributed random variable X that can
take values in X , as our observable variable. Let Θ be a continuous variable
that will represent our parameter with density 𝜋(𝜃) with sample space Θ. The
(probability) density for X is written f (x ∣ 𝜃). Assume that we have carried out the
experiment and have got the result X = x𝓁 . The density for Θ when we know that
X = x𝓁 is

𝜋(𝜃 ∣ x𝓁) =
f (x𝓁 ∣ 𝜃) 𝜋(𝜃)

∫
𝜃′∈Θ

f (x𝓁 ∣ 𝜃′) 𝜋(𝜃′) d𝜃′
, (15.4)

which is Bayes’ formula for continuous variables. In addition, it is obviously rel-
evant to have one discrete variable and one continuous variable, as will be illus-
trated later in this chapter.

15.2 Bayesian Data Analysis

To highlight the similarities and differences between the frequentist and the
Bayesian approach to data analysis, we start with a brief recap of the main
elements of frequentist data analysis.
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15.2.1 Frequentist Data Analysis

The approaches to data analyses in Chapter 14 are based on the frequentist inter-
pretation of probability and starts with a model of the data. For parametric models,
the model has a fixed but an unknown parameter and may be represented by a
probability density or a probability mass function. The model is established based
on knowledge about the item and the operating context before we start looking at
the data.

The data is usually a set of n independent realization, x = (x1, x2,… , xn) of a
random variable X with density f (x, 𝜃) or probability mass function Pr(X = x ∣ 𝜃).
The data is combined with the model in a data analysis, and this analysis gives
information about the parameter 𝜃, often in the form of an estimate �̂�. The analysis
procedure is outlined in Figure 15.1.

No initial information about the value of the parameter 𝜃 is included in the fre-
quentist data analysis.

15.2.2 Bayesian Data Analysis

The main elements of the Bayesian approach to data analysis are the following:

(1) A prior distribution 𝜋(𝜃) that expresses our degree of belief about 𝜃 prior to
observing any data.

(2) A likelihood function L(𝜃 ∣ d) that expresses the “likelihood” that a particular
value of the parameter 𝜃 has “produced” the obtained data d.

(3) A posterior distribution 𝜋(𝜃 ∣ d) that expresses our degree of belief about 𝜃 after
the data d has been observed.

(4) A Bayesian inference procedure that derives appropriate statements from the
posterior distribution, such as point estimates, interval estimates, and proba-
bilities of hypotheses.

The main difference between the frequentist approach and the Bayesian
approach is that the Bayesian approach also uses initial knowledge about the
value of the parameter. This initial knowledge is called the prior knowledge in the

Likelihood

Model for observed 

data (e.g. f(x,q))

Observed data

(e.g. x)

Inference

Figure 15.1 The frequentist data analysis process.
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Bayesian approach, and the data is used to update this knowledge to a posterior
knowledge.

The Bayesian approach can be summarized by the following steps:

(1) The data to be studied can be represented by a random variable X . When
a data set has been observed, the available data is a set of numbers x = (x1,

x2,… , xn).
(2) Based on an understanding of the physical situation, the analyst chooses a

probability model for the random variable X . For continuous random vari-
ables, this involves choosing a density f (x ∣ 𝜃), where 𝜃 is the unknown param-
eter(s) of the model. For discrete random variables, this involves choosing a
probability mass function Pr(X = x ∣ 𝜃).

(3) Prior information about the actual value of the parameter 𝜃 (e.g. previous expe-
rience with the same, or similar, items, expert judgments) is included in the
model as a density 𝜋(𝜃) called the prior density. This density represents the
analyst’s degree of belief about 𝜃 prior to looking at the data, x.

(4) After observing the data x, the analyst applies Bayes’ formula to update her
beliefs and calculates the posterior distribution 𝜋(𝜃 ∣ x).

(5) A fifth step is sometimes included. It involves evaluating the fit of the model
and the implications of the resulting posterior distribution: how well does the
model fit the data, are the substantive conclusions reasonable, and how sen-
sitive are the results to the modeling assumptions? In response, one can alter
or expand the model and repeat steps 2–4 (Gelman et al. 2013).

The Bayesian data analysis process is shown in Figure 15.2. The main elements
of the Bayesian approach are discussed briefly in the remainder of the section.

Prior distribution 
 (e.g. π(θ))

Posterior distribution 
 (e.g. π(θ| x))

Feedback to next analysis

Likelihood

Model for observed 
data (e.g. f (x,θ))

Observed data
(e.g. x)

Bayes
theorem

Inference

Figure 15.2 The Bayesian data analysis process.
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15.2.3 Model for Observed Data

Earlier in this book, we have studied a number of different models for data to be
observed. Among these are the binomial model

Pr(X = x ∣ 𝜃) =
(n

x

)
𝜃

x(1 − 𝜃)n−x for x = 0, 1, 2,… ,n, and 0 ≤ 𝜃 ≤ 1,

and the exponential model

fT(t ∣ 𝜆) = 𝜆e−𝜆t for t ≥ 0, and 𝜆 > 0.

The binomial model is a discrete model because the sample space for X is discrete
{0, 1, 2,… ,n}. The exponential model is said to be a continuous model because T
can take all positive values. Observe that the models are written as conditional
models, given the value of the parameter.

15.2.4 Prior Distribution

To simplify the presentation, we assume that the model for the observed data has
only one parameter 𝜃. In the Bayesian set-up, this parameter is regarded as a ran-
dom variable Θ. The data resulting from the experiment come from n independent
observations of a random variable X . To simplify the presentation, we assume that
X is a continuous random variable with density f (x ∣ 𝜃).

The joint density of the n independent observations X1,X2,… ,Xn is

f (x1, x2,… , xn ∣ 𝜃) =
n∏

i=1
f (xi ∣ 𝜃).

For brevity, we often write {x1, x2,… , xn} = x.
Before analyzing the data, our uncertainty about the value of this parameter is

formulated as a prior distribution, defined as follows:

Definition 15.1 (Prior distribution)
A probability distribution of an uncertain quantity that expresses the analyst’s
degree of belief about this quantity before any evidence (i.e. observed data) is taken
into account. ◻

The prior distribution is usually given as a prior density 𝜋(𝜃) for the possible
values 𝜃 ∈ Ω, where Ω is the set (or sample space) of possible values for 𝜃. The
prior density expresses our degree of belief and our uncertainty about the value of
the parameter before the experiment is carried out. The prior density is determined
from our prior knowledge and our beliefs about the value of the parameter and is
hence a subjective distribution.
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Prior distributions may be classified into three categories:

Informative priors provide information that is crucial to the inference made from
the model.

Weakly informative priors do not provide any controversial information, but are
strong enough to pull the data away from inappropriate inferences that are con-
sistent with the likelihood.

Noninformative priors do not provide any additional information to the inference.
A noninformative prior is uniform, or nearly so.

The term diffuse prior is sometimes used to denote a noninformative or weakly
informative priors. These priors are sometimes chosen based on the argument that
we should “allow the data to speak.”

Remark 15.1 (Categories of Bayesians)
There are several categories of Bayesian statisticians:

Subjective Bayesians interpret probability strictly as personal degrees of belief.
Objective Bayesians start with a noninformative prior distribution and claim that

the resulting posterior is objective.
Empirical Bayesians estimate the prior density from available data. ◻

15.2.5 Observed Data

The observed data are a realization of the random variable(s) and hence a known
single number or sequence of numbers, such as {x1, x2,… , xn}. In the discussions
of unspecified models, we refer to the observed data as “data.” The observed
data may include covariates, but these are tacitly ignored in this simplified
presentation.

15.2.6 Likelihood Function

The likelihood function is introduced in Section 14.4.4 and is written as L(𝜃 ∣ d).
When the data has been observed in an experiment, for example data = x, the like-
lihood function is given by the same mathematical expression as the joint density
f (data ∣ 𝜃), but the interpretations of the two expressions are quite different. When
only one variable is observed and the data is one-dimensional, the two expressions
may be interpreted as follows:

• Probability density, f (d ∣ 𝜃). The probability that the random variable D gives
data d in a small interval (d, d + Δd] is

Pr(d < D ≤ d + Δd) ≈ f (d ∣ 𝜃)Δd.
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Knowing the value of 𝜃, the density tells us which outcome d should be expected
from the experiment.

• Likelihood function, L(𝜃 ∣ d). In this case, the data d has been observed and is
known. It is obvious that the value of the parameter 𝜃 strongly influences the
outcome d of an experiment. The outcome d for a high value of 𝜃 will gener-
ally be quite different from the outcome for a low value of 𝜃. The likelihood
function L(𝜃 ∣ d) tells us the likelihood that a particular value of 𝜃 produced the
outcome d.

Similar arguments are made for a multidimensional d and for discrete model
distributions. Observe that the likelihood function is not a probability density
function for Θ, given d. Further details about the likelihood function is found in
Section 14.4.4.

Example 15.1 (Likelihood function for binomial model)
Consider an experiment where we observe a variable X that is binomially dis-
tributed X ∼ binom(n, 𝜃). The probability of getting the outcome x is

Pr(X = x) =
(n

x

)
𝜃

x(1 − 𝜃)n−x for x = 0, 1, 2,… ,n, (15.5)

where the number of trials, n, is a specified and known number. Assume that the
experiment gave the outcome X = x, where x ∈ {0, 1, 2,… ,n} and that this out-
come is known. The likelihood function for this outcome is

L(𝜃 ∣ x) =
(n

x

)
𝜃

x(1 − 𝜃)n−x for 0 ≤ 𝜃 ≤ 1. (15.6)

The likelihood function for n = 10 and x = 3 is shown in Figure 14.11. We
observe that L(𝜃 ∣ x) attains its maximum for 𝜃 = 0.3, which is the maximum
likelihood estimate (MLE) for 𝜃 for this data. ◻

15.2.7 Posterior Distribution

When the prior distribution and the observed data are available, Bayes’ formula
may be used to update our prior degree of belief into a posterior distribution,
defined as follows:

Definition 15.2 (Posterior distribution)
The probability distribution of an uncertain quantity that is assigned after relevant
evidence or background is taken into account. ◻

The posterior distribution is also called the aposteriori distribution or simply the
posterior. The posterior distribution summarizes all our current information about
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the unknown parameter 𝜃, by combining our prior information, specified by 𝜋(𝜃),
and the information about 𝜃 we obtain from the observed data.

The posterior distribution is usually given as a posterior density, 𝜋(𝜃 ∣ data), for
the possible values 𝜃 ∈ Ω. To make clear that we refer to the posterior and not the
prior density, we sometimes write the posterior density as 𝜋Θ∣data(𝜃 ∣ data).

The following two examples show how Bayes’ formula is used to find the poste-
rior distribution for discrete and continuous models, respectively.

Example 15.2 (Discrete distribution)
Consider a discrete random variable X with probability mass function with a single
parameter 𝜃, Pr(X = xi ∣ 𝜃), for i = 1, 2, 3,… and 𝜃 ∈ Ω.

Let 𝜋(𝜃) be the prior density that reflects our degree of belief about the value
of 𝜃 before any data is available. In this case, we have an observable variable X
that is discrete and a parameter Θ that has a continuous distribution. This means
that we need to use a combination of two Bayes’ formulas in (15.3) and (15.4).
The new formula can be developed by analogy to the two others versions of Bayes’
formula.

Assume that a single experiment is conducted, giving the outcome X = xi for
some i in {x1, x2,… , xn}. Observe that when the experiment is performed, the
number xi is known.

Bayes’ formula is used to derive the posterior density

𝜋(𝜃 ∣ xi) =
Pr(X = xi ∣ 𝜃) 𝜋(𝜃)

∫Ω Pr(X = xi ∣ 𝜃′) 𝜋(𝜃′) d𝜃′
for 𝜃 ∈ Ω.

Because the observation xi is known, the only variable in 𝜋(𝜃 ∣ xi) is 𝜃, and we
should rather replace the probability Pr(X = xi ∣ 𝜃) with the likelihood function
L(𝜃 ∣ 𝜃). The posterior density can then be written as

𝜋(𝜃 ∣ xi) =
L(𝜃) ∣ xi)𝜋(𝜃)

∫ΩL(𝜃′ ∣ xi) 𝜋(𝜃′) d𝜃′
for 𝜃 ∈ Ω. (15.7)

The posterior probability 𝜋(𝜃 ∣ xi) is a proper probability distribution that fulfills
∫Ω𝜋(𝜃 ∣ xi) d𝜃 = 1. In Section 14.4.4, it is argued that factors of the likelihood func-
tion that do not include the parameter may be deleted. The same applies here, and
we may therefore write

𝜋(𝜃 ∣ xi) ∝ L(𝜃 ∣ xi) 𝜋(𝜃), (15.8)

where the symbol ∝ means proportional to. The posterior density is therefore pro-
portional to the product of the likelihood function and the prior density. Because
we know that the posterior density is a proper density, the constant of proportion-
ality may be fitted afterwards (if required). ◻
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Example 15.3 (Continuous distribution)
The random variable X has continuous density f (x ∣ 𝜃), where the actual value of
𝜃 is a realization of a random variable Θ with a prior density 𝜋(𝜃) for 𝜃 ∈ Ω that
describes the analyst’s degree of belief about the value of 𝜃.

Assume that an experiment gave the outcome x, where x can be a single number
or a vector of numbers. Bayes’ formula (15.4) gives the posterior density

𝜋(𝜃 ∣ x) =
f (x ∣ 𝜃) 𝜋(𝜃)

∫
∞

0 f (x ∣ 𝜃′) 𝜋(𝜃′) d𝜃′
for 𝜃 ∈ Ω.

Because x is a known value, f (x ∣ 𝜃) is the likelihood function L(𝜃 ∣ d), and because
the denominator is a constant, the posterior density may, as in Example 15.2, be
written as

𝜋(𝜃 ∣ x) ∝ L(𝜃 ∣ x) 𝜋(𝜃). (15.9)
◻

15.3 Selection of Prior Distribution

To be able to determine the posterior distribution by hand calculation, it is impor-
tant to select a prior distribution that “fits” the model distribution for the observed
data, such that (i) the prior distribution is flexible enough to describe our degree
of belief about 𝜃 and (ii) that it is possible to determine the posterior distribution
with hand calculation. We now discuss some typical one-parameter situations.

15.3.1 Binomial Model

Consider the binomially distributed random variable X ∼ binom(n, 𝜃), where n is
a specified and known number of trials.

Pr(X = x ∣ 𝜃) =
(n

x

)
𝜃

x(1 − 𝜃)n−x for x = 0, 1,… ,n and 0 ≤ 𝜃 ≤ 1.

(15.10)

The possible values of the unknown parameter 𝜃 are in the interval [0, 1] so we
need a continuous prior distribution that takes values in the same interval. A com-
monly used distribution for this purpose is the beta distribution.

Beta Prior Distribution
For parameters that express probabilities, the beta distribution is often chosen to
express our prior information.Θ is beta distributed,Θ ∼ beta(r, s), over the interval
[0, 1] when its density is

𝜋(𝜃) = Γ(r + s)
Γ(r)Γ(s)

𝜃
r−1(1 − 𝜃)s−1 for 0 ≤ 𝜃 ≤ 1. (15.11)
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The beta distribution is introduced in Section 5.7.2. Please observe that we, in this
chapter, are using other symbols for the parameters of the beta distribution than
in Section 5.7.2 (i.e. 𝛼 = r and 𝛽 = s).

The beta distribution has mean and standard deviation (SD)

E(Θ) = r
r + s

(15.12)

SD(Θ) =
√

rs
(r + s)2(r + s + 1)

. (15.13)

The beta distribution is available in R where the beta density function, for
example, is obtained by dbeta(x,r,s,log=F) for given values of x(= 𝜃), r,
and s. The beta distribution is rather flexible, and the parameters can be adapted to
fit almost any degree of belief we have about 𝜃. Observe that by choosing r = s = 1,
the density becomes 𝜋(𝜃) = 1 for 0 ≤ 𝜃 ≤ 1. This is the uniform distribution over
[0, 1] and means that we consider all probabilities in [0, 1] to be equally likely
(see Section 5.7.1). This means that the prior distribution does not provide any
information about the value of 𝜃, and is hence noninformative.

If we believe that the probability 𝜃 is approximately 0.2, we may let E(Θ) = 0.2, in
which case s = 4r The standard deviation can now be expressed by r and becomes

SD(Θ) =
√

4
5(5r + 1)

.

Our uncertainty about the value of 𝜃 may be expressed by, for example, SD(Θ) =
0.25, which gives r = 2.36 and s = 9.44. The corresponding beta distribution is
shown in Figure 15.3 and made by the R script

# Set the range (i.e. [0,1]) and the number of val-
ues to calculate
x<-seq(0,1,length=100)
# Specify the parameters r and s
r<-2.36
s<-9.44
# Calculate the beta density for each x
y<-dbeta(x,r,s,log=F)
plot(x,y,type="l",xlab=expression(theta),
ylab=expression(pi(theta)))
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Figure 15.3 Prior beta density with parameters r = 2.36 and s = 4r.

Posterior Distribution
Assume that X = x has been observed. The posterior density is from (15.8)

𝜋(𝜃 ∣ x) ∝ L(𝜃 ∣ x) 𝜋(𝜃)

∝ 𝜃
x(1 − 𝜃)n−x

𝜃
r−1(1 − 𝜃)s−1

∝ 𝜃
x+r−1(1 − 𝜃)n−x+s−1

,

which (apart from a constant) is seen to be a beta distribution with parameters
(x + r) and (n − x + s). This means that the prior distribution and the posterior
distribution come from the same class of distribution. Two distributions (here the
binomial and the beta distributions) with this property are said to be conjugate
distributions.

The prior mean value is E(Θ) = r∕(r + s) and the posterior mean value is

E(Θ ∣ x) = r + x
x + r + n − x + s

= x + r
n + s + r

. (15.14)

Remark 15.2 (Conjugate distributions)
To use a prior distribution for the parameter that is a conjugate to the model distri-
bution makes the Bayesian analysis simple, and it is therefore important to identify
the conjugate distributions when using hand calculation. Current computer pro-
grams for Bayesian analysis are based on Monte Carlo simulation and do not use
conjugacy in the posterior sampling. When using a computer program for Bayesian
analysis, you may choose whichever distribution you like as prior distribution,
even a histogram prior. ◻
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15.3.2 Exponential Model – Single Observation

Assume that the time-to-failure T of an item is exponentially distributed with
parameter (failure rate) 𝜆.

f (t ∣ 𝜆) = 𝜆e−𝜆t for t ≥ 0 and 𝜆 > 0.

Assume that t1 has been observed and is known. The likelihood function is

L(𝜆 ∣ t1) = 𝜆e−𝜆t1 for 𝜆 > 0. (15.15)

The analyst’s prior belief about 𝜆 may be expressed by the random variable Λ
with a prior distribution. A common distribution for this purpose is the gamma
distribution.

Gamma Prior Distribution
The gamma distribution (see Section 5.4.2) is often the preferred prior distribution
for parameters that can take any positive value. A random variable Λ is said to be
gamma distributed, Λ ∼ gamma(𝛼, 𝛽) when its density is

𝜋(𝜆) = 𝛽
𝛼

Γ(𝛼)
𝜆
𝛼−1e−𝛽𝜆 for 𝜆 > 0. (15.16)

From Section 5.4.2, the mean and the standard deviation of the gamma distribu-
tion are

E(Λ) = 𝛼

𝛽
(15.17)

SD(Λ) =
√
𝛼

𝛽
. (15.18)

The gamma distribution is flexible, and we may adapt the parameters 𝛼 and 𝛽

to fit our prior belief about the value of the parameter (failure rate) 𝜆. We may, for
example, have experience data from items that are similar to the actual item. This
may lead us to believe that the failure rate should be around 1.2 × 10−3 h−1, with
a standard deviation of about 6 × 10−4. If we use these values for the mean and
the standard deviation, we may solve for 𝛼 and 𝛽 and obtain 𝛼 = 4.5 and 𝛽 = 3700.
The corresponding density is shown in Figure 15.4, which is made with an R script
similar to the one used to make Figure 15.3.

Posterior Distribution
When T = t1 has been observed, the posterior density is from (15.4)

𝜋(𝜆 ∣ t1) ∝ L(𝜆 ∣ t1) 𝜋(𝜆)

∝ 𝜆e−𝜆t1𝜆
𝛼−1e−𝛽𝜆 = 𝜆

𝛼+1−1e−(𝛽+t1)𝜆, (15.19)
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Figure 15.4 The gamma distribution with parameters 𝛼 = 4.5 and 𝛽 = 3700.

which (apart from a constant) is seen to be a gamma distribution with parameters
(𝛼 + 1) and (𝛽 + t1). This means that the prior distribution and the posterior distri-
bution come from the same class of distribution. The two distributions (here the
exponential and the gamma distributions) are therefore conjugate distributions.

The prior mean is E(Λ) = 𝛼∕𝛽, whereas the posterior mean is

E(Λ ∣ t1) =
𝛼 + 1
𝛽 + t1

. (15.20)

15.3.3 Exponential Model – Multiple Observations

Let T = {T1,T2,… ,Tn} be n independent and identically exponentially dis-
tributed times to failure with failure rate 𝜆. The joint distribution of T is because
of independence

fT(t1, t2,… , tn) =
n∏

i=1
fTi
(ti) =

n∏
i=1

𝜆e−𝜆ti = 𝜆
ne−𝜆

∑n
i=1 ti .

Assume that t = {t1, t2,… , tn} have been observed and hence are known num-
bers. The gamma distribution, gamma(𝛼, 𝛽), is chosen as prior distribution for the
(random) parameter Λ. The posterior density is from (15.4)

𝜋(𝜆 ∣ t) ∝ L(𝜆 ∣ t) 𝜋(𝜆)

∝ 𝜆
ne−𝜆

∑n
i=1 ti𝜆

𝛼−1e−𝛽𝜆 = 𝜆
𝛼+n−1e−𝜆(𝛽+

∑n
i=1 ti), (15.21)

which is recognized as a gamma distribution with parameters (𝛼 + n) and(
𝛽 +

∑n
i=1 ti

)
. The posterior mean is

E(Λ ∣ t) = 𝛼 + n
𝛽 +

∑n
i=1 ti

, (15.22)

where n is the number of failures observed and
∑n

i=1 ti is the total time in
operation.
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Example 15.4 (Sequential updating)
Consider a nonrepairable valve with constant failure rate 𝜆. Experience and
various studies lead us to believe that the failure rate is a random variable
Λ ∼ gamma(𝛼, 𝛽). The prior density of Λ is therefore

𝜋(𝜆) = 𝛽
𝛼

Γ(𝛼)
𝜆
𝛼−1 e−𝛽𝜆 for 𝜆 > 0,

and the prior mean value of Λ is

E(Λ) = 𝛼

𝛽
.

The density of the time-to-failure T of the valve, when the failure rate 𝜆 is known,
is

fT∣Λ(t ∣ 𝜆) = 𝜆e−𝜆t for t > 0, 𝜆 > 0.

Assume that we can test n valves of the same type one by one. Before the first test,
we assume the prior distribution of the failure rate Λ to be gamma distributed with
parameters 𝛼1 = 2 and 𝛽1 = 1,

𝜋(𝜆) = 𝜆 e−𝜆 for 𝜆 > 0.

Let T1 be the time-to-failure of the first valve tested. The joint density of T1 and Λ
becomes

fT1 ,Λ(t1, 𝜆) = fT1∣Λ(t1 ∣ 𝜆) 𝜋(𝜆) = 𝜆e−𝜆t1 𝜆e−𝜆

= 𝜆
2e−𝜆(t1+1) for t1 > 0, 𝜆 > 0.

The marginal density of T1 is

fT1
(t1) = ∫

∞

0
𝜆

2e−𝜆(t1+1) d𝜆 = Γ(3)
(t1 + 1)3 = 2

(t1 + 1)3 for t > 0.

The conditional density of Λ, given T1 = t1, that is the posterior density, is

𝜋(𝜆 ∣ t1) =
𝜆

2e−𝜆(t1+1)

2
(t1 + 1)3

=
(t1 + 1)3

Γ(3)
𝜆

3−1e−𝜆(t1+1) for 𝜆 > 0,

which is also seen to be a gamma density, now with parameters 𝛼2, and 𝛽2, where

𝛼2 = 3 = 𝛼1 + 1 because 𝛼1 = 2

𝛽2 = (t1 + 1) = 𝛽1 + t1 because 𝛽1 = 1
.
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This procedure may now be repeated with 𝜋(𝜆 ∣ t1) as our new prior distribution.
Then, we observe the lifetime T2 = t2 of a similar valve and are lead to a new pos-
terior distribution which is a gamma distribution with parameters:

𝛼3 = 𝛼2 + 1 = 𝛼1 + 2

𝛽3 = 𝛽2 + t2 = 𝛽1 + (t1 + t2),

and so on.
The posterior density could also have been derived directly because

𝜋(𝜆 ∣ t1) ∝ fT1∣Λ(t1 ∣ 𝜆) 𝜋(𝜆)

∝ 𝜆e−𝜆t1 𝜆e−𝜆

∝ 𝜆
2e−𝜆(t1+1)

.

Hence,

𝜋(𝜆 ∣ t1) = k(t1) 𝜆2e−𝜆(t1+1) for t1 > 0.

Because 𝜋(𝜆 ∣ t1) is a density, k(t1) is easily determined to be (1 + t1)3∕2. This leads
to the same posterior density as we derived above.

By repeated arguments, we obtain

E(Λ) = 2
1

E(Λ ∣ T1 = t1) = 2 + 1
1 + t1

E(Λ ∣ T1 = t1,T2 = t2) = 2 + 1 + 1
1 + t1 + t2

⋮

.

Observe how our belief about the mean of Λ is updated, as observations of T
become available. ◻

15.3.4 Homogeneous Poisson Process

Consider an HPP with rate 𝜆, and let N(t) be the number of events in a time interval
(0, t). The probability mass function of N(t) is

Pr(N(t) = n ∣ 𝜆) = (𝜆t)n

n!
e−𝜆t for n = 0, 1, 2,… .

Assume that n1 failures have been observed during (0, t) such that n1 and t are
known numbers. A gamma(𝛼, 𝛽) is again chosen as prior distribution for the
(random) parameter Λ. The prior mean is

E(Λ) = 𝛼

𝛽
.
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The likelihood function is

L(𝜆 ∣ n1, t) = (𝜆t)n1

n1!
e−𝜆t for 𝜆 > 0. (15.23)

The posterior density is from (15.4)

𝜋(𝜆 ∣ n1, t) ∝ L(𝜆 ∣ n1, t) 𝜋(𝜆)

∝ 𝜆
n1 e−𝜆t

𝜆
𝛼−1e−𝛽𝜆 = 𝜆

𝛼+n1−1e−𝜆(𝛽+t)
, (15.24)

which, apart from a constant, is recognized as a gamma distribution with param-
eters (𝛼 + n1) and (𝛽 + t). The posterior mean is hence

E(Λ ∣ n1, t) =
𝛼 + n1

𝛽 + t
. (15.25)

Example 15.5 (Marginal distribution of N(t))
Consider a plant that has a specified number of identical and independent valves
with constant failure rate 𝜆, where 𝜆 is a realization of a random variable Λ ∼
gamma(𝛼, 𝛽)

The parameters 𝛼 and 𝛽 of the prior distribution are usually “estimated” based
on prior experience with the same type of valves, combined with information
gained from various reliability data sources (see Chapter 16).

When a valve fails, it is replaced with a valve of the same type. The associ-
ated downtime is considered to be negligible. Valve failures are assumed to occur
according to an HPP with rate 𝜆. The number of valve failures N(t) ∼ Po(𝜆t).

The marginal distribution of N(t) is

Pr(N(t) = n) =
∫

∞

0
Pr(N(t) = n ∣ 𝜆) 𝜋(𝜆) d𝜆

=
∫

∞

0

(𝜆t)n

n!
e−𝜆t 𝛽

𝛼

Γ(𝛼)
𝜆
𝛼−1e−𝛽𝜆 d𝜆

= 𝛽
𝛼tn

Γ(𝛼)n! ∫

∞

0
𝜆
𝛼+n−1e−(𝛽+t)𝜆 d𝜆

= 𝛽
𝛼tn

Γ(𝛼)n!
Γ(n + 𝛼)
(𝛽 + t)n+𝛼 = Γ(n + 𝛼)

Γ(𝛼)Γ(n + 1)

(
t

t + 𝛽

)n(
1 − t

t + 𝛽

)𝛼

.

When 𝛼 is an integer and p = 𝛽

t+𝛽
, the marginal distribution for N(t) can be written

Pr(N(t) = n) =
(n + 𝛼 − 1

n

)
p𝛼(1 − p)n

, (15.26)

which is recognized as the standard negative binomial distribution N(t) ∼
nbinom(𝛼, p) (see Section 5.8.4). The negative binomial distribution is also
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defined when 𝛼 is not an integer. The (prior) marginal mean value of N(t) is

E[N(t)] =
𝛼(1 − p)

p
= 𝛼

𝛽
t = E(Λ) t. (15.27)

◻

15.3.5 Noninformative Prior Distributions

A noninformative prior is a prior distribution that makes all possible values of the
parameter 𝜃 equally likely. When 𝜃 is a probability, the noninformative prior is
a uniform distribution over [0, 1] (see Section 15.3.1). When 𝜃 can take any posi-
tive value, no proper distribution is completely noninformative. In this case, it is
common to use a flat prior, that is 𝜋(𝜃) = k for all 𝜃. This prior is not a proper prior
because it does not integrate to 1, that is ∫ ∞

0 𝜋(𝜃) d𝜃 ≠ 1. Even so, such a “distribu-
tion” may be used because the posterior might still integrate to 1 even if the prior
does not.

The posterior distribution is then expressed as

𝜋(𝜃 ∣ d) ∝ L(𝜃 ∣ d) 𝜋(𝜃) ∝ L(𝜃 ∣ d), (15.28)

which means that the posterior distribution is determined solely by the likelihood
function.

Example 15.6 (Binomial model)
Let the model distribution be binom(n, 𝜃):

Pr(X = x ∣ 𝜃) =
(n

x

)
𝜃

x(1 − 𝜃)n−x
. (15.29)

The noninformative prior is a uniform distribution 𝜋(𝜃) = 1 for 0 ≤ 𝜃 ≤ 1. The
posterior when X = d (where d ∈ {0, 1, 2,… ,n}) is then given by

𝜋(𝜃 ∣ d) ∝ 𝜃
d(1 − 𝜃)n−d

. (15.30)

This means that starting with a noninformative prior for 𝜃 in the binomial model
X ∼ binom(n, 𝜃), we get a posterior that is beta distributed with parameters (d + 1)
and (n − d + 1). This is in line with (15.30) because the beta distribution reduces
to a (noninformative) uniform distribution when r = s = 1. ◻

Example 15.7 (Exponential model)
The model distribution is

f (t ∣ 𝜆) = 𝜆e−𝜆t for t > 0.

Let 𝜋(𝜆) = 1∕k be an improper prior distribution for Λ. The posterior for T = t1 is
then

𝜋(𝜆 ∣ t1) ∝ 𝜆e−𝜆t1 , (15.31)
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which is recognized (apart from a constant) to be a gamma distribution with
parameters 2 and t1. The posterior mean is therefore

E(Λ ∣ t1) =
2
t1
.

◻

15.4 Bayesian Estimation

When the posterior distribution has been determined, it is often useful to sum-
marize the results with a single point estimate or an interval estimate. A brief
introduction to point and interval Bayesian estimation is given in the following.

15.4.1 Bayesian Point Estimation

In Chapter 14, an estimator �̂� for 𝜃 is deemed to be a good estimator when it is unbi-
ased, that is E(�̂�) = 𝜃, and the variance, var(�̂�), is small. In the Bayesian approach,
a loss function, 𝓁(�̂�, 𝜃) is used to judge the estimator of the true value 𝜃. The best
Bayesian estimator is the estimator that minimizes the expected loss, E[𝓁(�̂�, 𝜃)].

Many different loss functions may be used. The most common loss functions
are

(1) Squared loss. 𝓁(�̂�, 𝜃) = (�̂� − 𝜃)2.
(2) Absolute loss. 𝓁(�̂�, 𝜃) =∣ �̂� − 𝜃 ∣.

It is also possible to define nonsymmetric loss functions. If, for example, the
parameter 𝜃 indicates the maximum load to an item and �̂� is used to determine
the required strength of the item, it may be wise to use a loss function as indicated
in Figure 15.5. If �̂� < 𝜃, the item will fail and a certain loss will be incurred. If
�̂� ≪ 𝜃, the item may be cheaper to build and the loss may become slightly lower.
On the other hand, if �̂� > 𝜃, a loss related to higher purchase cost will be incurred.

L
os

s

θ Strength

Figure 15.5 Loss function.
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In the following, we use the squared loss function to exemplify the approach.
The Bayesian estimator is determined based on the current knowledge about the
parameter 𝜃 and can therefore be based on both the prior and the posterior distri-
butions. We illustrate how this is done based on the posterior distribution.

Consider the general setup where 𝜃 is a realization of a random variable Θ ∈ Ω
with some prior density 𝜋(𝜃), and where X is a random variable with continuous
density given Θ = 𝜃, fX ∣Θ(x ∣ 𝜃). Our task is now to estimate the value 𝜃 of Θ that
belongs to an observed value x of X . We denote this estimator by �̂�(X).

As is usual, we prefer an estimator that minimizes the mean squared loss:

E[(�̂�(X) − Θ)2].

Such an estimator is called a Bayesian estimator (of 𝜃) (with minimum expected
quadratic loss). Observe that in the Bayesian framework, X andΘ are both random
variables. How should �̂�(X) be chosen?

E[(�̂�(X) − Θ)2] =
∫

+∞

−∞ ∫Ω
[�̂�(X) − 𝜃]2 fX ,Θ(x, 𝜃) dx d𝜃.

Because fX ,Θ(x, 𝜃) = fΘ∣X (𝜃 ∣ x)fX (x) = 𝜋(𝜃 ∣ x)fX (x), we get

E[(�̂�(X) − Θ)2] =
∫

+∞

−∞
fX (x)

(
∫Ω

[𝜃 − �̂�(X)]2
𝜋(𝜃 ∣ x) d𝜃

)
dx.

Obviously, E[(�̂�(X) − Θ)2] becomes minimized if, for each x, �̂�(x) is chosen to
minimize

∫Ω
[𝜃 − �̂�(x)]2

𝜋(𝜃 ∣ x) d𝜃.

In probability theory, the following result is well known.

Let Y be a random variable with density fY (y) and finite variance 𝜏
2. Then

h(𝜂) =
∫

+∞

−∞
(y − 𝜂)2fY (y) dy (15.32)

is minimized when 𝜂 is chosen as E(Y ).

This result, applied to our problem, tells that E[�̂�(X) − Θ]2 is minimized for

�̂�(X) = E(Θ ∣ X). (15.33)

We can therefore conclude that the Bayesian estimator of 𝜃 is the mean of the pos-
terior distribution of Θ, when using a squared loss function.

Let us return to our Bayesian model where 𝜃 represents a realization of a random
variable Θ ∈ Ω with some prior density 𝜋Θ(𝜃). We are now considering a situa-
tion where our data (x1, x2,… , xn) consist of observations of n random variables
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X1,X2,… ,Xn, assumed to be independent and identically distributed, conditional
on 𝜃, with density fX ∣Θ(x ∣ 𝜃). Then

fX1 ,X2,…,Xn∣Θ(x1, x2,… , xn ∣ 𝜃) =
n∏

j=1
fX ∣Θ(xj ∣ 𝜃). (15.34)

The posterior distribution of Θ, given X1,X2,… ,Xn, may now be obtained by the
same procedure as we used for a single X , and we get

fΘ∣X1 ,X2 ,…,Xn
(𝜃 ∣ x1, x2,… , xn) ∝

[ n∏
j=1

fX ∣Θ(xj ∣ 𝜃)

]
fΘ(𝜃). (15.35)

Considering the right-hand side of (15.35) as a function of 𝜃, given x1, x2,… , xn,
this can also be written as

fΘ∣X1 ,X2 ,…,Xn
(𝜃 ∣ x1, x2,… , xn) ∝ L(𝜃 ∣ x1, x2,… , xn)𝜋(𝜃), (15.36)

where L(𝜃 ∣ x1, x2,… , xn) is the likelihood function in the usual meaning.

15.4.2 Credible Intervals

For brevity, let D = d be the data obtained in the experiment (or in the data col-
lection). A credible interval is the Bayesian analogue to a confidence interval. A
credible interval for Θ, at level (1 − 𝜀), is an interval (a(d), b(d)) such that the con-
ditional probability, given the data d, satisfies

Pr(a(d) ≤ Θ ≤ b(d) ∣ d) =
∫

b(d)

a(d)
𝜋(𝜃 ∣ d) d𝜃 = 1 − 𝜀. (15.37)

The interval (a(d), b(d)) is an interval estimate of 𝜃 in the sense that the conditional
probability of Θ belonging to the interval, given the data, is equal to 1 − 𝜀.

As for confidence intervals, the credible intervals are often made symmetrical
in the sense that the limits a(d) and b(d) are chosen such that

Pr(Θ < a(d) ∣ d) = 𝜀

2
and Pr(Θ > b(d) ∣ d) = 𝜀

2
.

Another possibility is to determine the (1 − 𝜀) credible interval to be the region
A of values of Θ that satisfy:

(1) The posterior probability of that region is (1 − 𝜀), that is, Pr(Θ ∈ A) = 1 − 𝜀.
(2) The minimum posterior density of any point within A is equal to or larger than

the posterior density of any point outside A.

The region fulfilling these two requirements is called the highest posterior density
(HPD) interval. The HPD is an interval in which most of the distribution lies. Some
analysts prefer this interval because it is the shortest interval.
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15.5 Predictive Distribution

Consider the random variable X with density fX (x ∣ 𝜃), where 𝜃 is considered as a
realization of a random variable Θ with prior density 𝜋(𝜃). The marginal density
of X is

fX (x) = ∫Ω
fX ,Θ(x, 𝜃) d𝜃 =

∫Ω
fX (x ∣ 𝜃) 𝜋(𝜃) d𝜃. (15.38)

Some authors (e.g. Gelman et al. 2013) calls this marginal distribution of X the
prior predictive distribution of X .

Assume that the first experiment has given the result X = x0 and that we are
interested in predicting the result of X in the next experiment. This may be done
by finding the conditional density of X , given x0.

fX (x ∣ x0) = ∫Ω
f (x, 𝜃 ∣ x0) d𝜃 =

∫Ω
f (x ∣ x0, 𝜃) 𝜋(𝜃) d𝜃

=
∫Ω

f (x ∣ 𝜃) 𝜋(𝜃 ∣ x0) d𝜃. (15.39)

For this to be correct, we must assume that the experiments are conditionally inde-
pendent, given 𝜃. This expression is called the predictive density of X , given that x0
has already been observed.

Now, let x1, x2,… , xn be n conditionally independent observations of X , given 𝜃.
The joint density of X1,X2,… ,Xn and Θ is

fX ,Θ(x1, x2,… , xn, 𝜃) =

[ n∏
i=1

fX (xi ∣ 𝜃)

]
𝜋(𝜃). (15.40)

Let us for brevity denote the data set x1, x2,… , xn by d. After having observed the
data d, how should we predict the next value of X?

In the same way as for a single data value x0 above, the predictive density becomes

fX (x ∣ d) =
∫Ω

f (x ∣ 𝜃) 𝜋(𝜃 ∣ d) d𝜃. (15.41)

Example 15.8 (Exponential distribution)
A total of n identical items are tested to observe the times to failure T1,T2,… ,Tn
that are assumed to be exponentially distributed with constant failure rate 𝜆. The
times to failure are assumed to be conditionally independent, given Λ = 𝜆. As in
Example 15.4, assume that Λ has a gamma prior density with parameters 𝛼 = 2
and 𝛽 = 1, such that

𝜋(𝜆) = 𝜆e−𝜆 for 𝜆 > 0.
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Suppose that we have observed the lifetimes (t1, t2,… , tn) of n such valves. Based
on the arguments in Example 15.4, the posterior density of Λ, given D = d =
{t1, t2,… , tn} is

𝜋(𝜆 ∣ d) =
(
1 +

∑n
i=1 ti

)n+2

Γ(n + 2)
𝜆

n+1e−𝜆(1+
∑n

i=1 ti) for 𝜆 > 0. (15.42)

Hence, our guess, based on d, is that the next observation T has (predictive) density

fT∣D(t ∣ d) =
∫

∞

0
𝜆e−𝜆t

(
1 +

∑n
i=1 ti

)n+2

Γ(n + 2)
𝜆

n+1e−𝜆(1+
∑n

i=1 ti) d𝜆

=
(
1 +

∑n
i=1 ti

)n+2

Γ(n + 2) ∫

∞

0
𝜆

n+2e−𝜆[(1+
∑n

i=1 ti)+t] d𝜆

=
(n + 2)

(
1 +

∑n
i=1 ti

)n+2

(
1 +

∑n
i=1 ti + t

)n+3 for t > 0. (15.43)

Hence, our guess is that the survivor function for a given new valve of the same
type is

Pr(T > t ∣ d) = R(t ∣ d) =
∫

∞

t

(n + 2)
(
1 +

∑n
i=1 ti

)n+2

(
1 +

∑n
i=1 ti + t

)n+3 du

=

(
1 +

∑n
i=1 ti

1 +
∑n

i=1 ti + t

)n+2

=

(
1 + t

1 +
∑n

i=1 ti

)−(n+2)

for t > 0. (15.44)
◻

15.6 Models with Multiple Parameters

For models with two or more unknown parameters, multidimensional prior distri-
butions must be used and this makes analytic solutions intractable. A wide range
of computer programs are available for this type of analysis.

15.7 Bayesian Analysis with R

Within the Bayesian framework, all information about an unknown parameter
𝜽 is contained in the posterior distribution. The posterior distribution can be



�

� �

�

15.7 Bayesian Analysis with R 763

determined in two main ways:

(1) Direct derivation of the posterior, mainly by using conjugate distributions (see
above).

(2) Simulation of the posterior
(a) Sampling from the posterior distribution.
(b) A Markov chain Monte Carlo (MCMC) approach by using a Gibbs sampler

and the Metropolis–Hastings algorithm.

To give a detailed introduction to Bayesian analysis by using MCMC is beyond
the scope of this book. Interested readers may find adequate introductions in sev-
eral other books, such as Albert (2009), Gelman et al. (2013), and Hamada et al.
(2008). Here we suffice by briefly mentioning the main approaches.

The programming language BUGS – an acronym for “Bayesian inference using
Gibbs sampling” – is the dominating approach for Bayesian analysis by simulation.
A main feature of BUGS is to separate the “knowledge base” from the “inference
machine” that is used to draw conclusions. BUGS is able to describe rather com-
plex models using very limited syntax. An “expert system” is included in BUGS
that can be used to determine an appropriate MCMC scheme for analyzing the
specified model. BUGS is thoroughly described in (Lunn et al. 2013). As a pro-
gramming language, BUGS needs to be implemented into a computer program.

There are three commonly used BUGS implementations:

• WinBUGS (available for MS Windows® computers).
• OpenBUGS (is a native Windows® application, but can run on other platforms

by using an emulator (e.g. Wine).
• JAGS – an acronym for “Just Another Gibbs Samples” (is a native application

for all major computer platforms).

Among the three, JAGS is often preferred. For any of the three, you have to write
the model and the problem to solve in the BUGS language. Each of the engines
can be controlled from R. The packages controlling JAGS are, for example called
rjags and R2jags and the R script acts as a frontend to the JAGS/BUGS script.
The main programming steps are

(1) Write a BUGS model and save it as a text file.
(2) Open R.
(3) Prepare the inputs for the R2jags script and run it.
(4) The model will run in JAGS and you will see the progress and the output in

the R terminal/console.

A range of tutorials and examples may be found by searching the Internet. Many
WinBUGS examples may, for example, be found in NASA (2009).
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The analysis can alternatively be based on Stan, a programming language
written in C++. An R interface to Stan is obtained by using the R package
RStan. Interested readers find numerous tutorials and examples by searching the
Internet.

15.8 Problems

15.1 A patient takes a lab test, and the result is A (positive). A positive
result (A) indicates that the patient has a special type of cancer (B).
It is known that the test returns a correct positive result with prob-
ability Pr(A ∣ B) = 0.97 and a correct negative result with probability
Pr(A ∣ B) = 0.95. Furthermore, evidence indicates that 3% of the popula-
tion in this age group has this type of cancer, such that our prior belief is
Pr(B) = 0.03.
(a) Find the probability that a randomly chosen person is tested with

result A (positive).
(b) Find the probability that a patient with a positive test has the special

type of cancer?

15.2 Show that the Bayesian estimator of 𝜃, which minimizes the mean abso-
lute error loss E(∣ �̂�(X) − Θ ∣) is equal to the median of the posterior dis-
tribution of Θ (given X = x).

15.3 Assume that X has a binomial distribution (n, p), where p represents a
realization of a random variable P. The prior distribution of P is fP(p) = 1
for 0 ≤ p ≤ 1. Determine the posterior density of P when X = x is observed
and determine the Bayesian estimate for p.

15.4 (Based on (Kapur and Lamberson, 1977, p. 402). Seven automobiles are
each run over a 36 000 km test schedule. The testing produced a total of 19
failures. Assuming an exponential failure distribution and a gamma prior
with parameters 𝛼 = 30 000 and 𝛽 = 3, answer the following:
(a) What is the Bayesian point estimate for the mean time-to-failure

(MTTF)?
(b) What is the 90% lower confidence (credible) limit on the 10 000 km

reliability?

15.5 Let X1,X2,… ,Xn be independent and identically distributed  (𝜃, 𝜎2
0 ),

where 𝜎
2
0 is known, and 𝜃 represents a realization of a random variable

Θ with normal distribution  (𝜇0, 𝜏
2
0 ), where 𝜇0 and 𝜏

2
0 are known.
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Show that the Bayesian estimate of Θ (minimizing the mean quadratic
loss) is a weighed average of the prior mean and the MLE of 𝜃

�̂�(X1,X2,… ,Xn) =
n∕𝜎2

0

n∕𝜎2
0 + 1∕𝜏2

0
X +

1∕𝜏2
0

n∕𝜎2
0 + 1∕𝜏2

0
𝜇0.

Observe that the Bayesian estimate of Θ is a weighed average of the hypo-
thetical estimates of Θ based on the following:
● Data alone (i.e. the standard estimator X).
● Prior information of Θ but no data, 𝜇0 (i.e. the Bayesian estimator of 𝜇

before any observations are taken).
Again, observe that the influence of the prior mean 𝜇0 tends to zero as
n → ∞.

15.6 Let X1,X2,… ,Xn be independent and identically distributed  (0, 𝜎2).
(a) Show that the joint density of X1,X2,… ,Xn can be written as

C𝜏re−𝜏
∑n

i=1 x2
i where r = n∕2, 𝜏 = 1∕(2𝜎2).

(b) Choose the gamma distribution (k, 𝜆) with density

𝜆

Γ(k)
(𝜆𝜏)k−1e−𝜆𝜏 for 𝜏 > 0,

as prior density of 𝜏.
Show that the posterior density of 𝜏, given X1,X2,… ,Xn then becomes
a gamma distribution (k + r, 𝜆 +

∑n
i=1 x2

i ) with density

C(x1, x2,… , xn)𝜏r+k−1e−𝜏(𝜆+
∑n

i=1 x2
i ) for 𝜏 > 0.

(c) Use the result in (b) to show that the Bayesian estimator of 𝜎2 (with
minimum expected quadratic loss) becomes

𝜆 +
∑n

i=1 X2
i

n + 2k − 2
.

(Hint: Because 2𝜎2 = 1∕𝜏, the Bayesian estimator of 2𝜎2 is the pos-
terior expectation of 1∕𝜏). This problem is based on an example in
Lehmann (1983, p. 246).

15.7 Show that the posterior variance on the average is smaller than the prior
variance.

15.8 Explain, as simple as possible, the main differences between a confidence
interval and a credible interval.
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15.9 Let X have a binomial distribution (n, 𝜃), where 𝜃 represents a realization
of a random variable Θ with a beta distribution (r, s). Denote the prior
mean of Θ by 𝜃0.
Show that the Bayesian estimate of Θ (minimizing the mean quadratic
loss) is a weighed average of the prior mean and the MLE of 𝜃:

�̂�(X) = n
r + s + n

X
n
+ r + s

r + s + n
𝜃0.

Observe that the Bayesian estimate of Θ is a weighed average of the hypo-
thetical estimates of Θ based on
● Data D alone (i.e. the standard estimator of 𝜃, X∕n).
● Prior information of Θ, but no data, 𝜃0 (i.e. the Bayesian estimator of 𝜃

before any observations are taken).
Observe that the influence of the prior mean 𝜃0 tends to zero as n → ∞.

15.10 Some authors refer to the Bayesian approach to probability as the Bayesian
paradigm.
(a) Explain what they may mean by referring to this approach as a

paradigm.
(b) List some advantages obtained by using the Bayesian approach

(paradigm).
(c) List some disadvantages related to using the Bayesian approach

(paradigm).
(d) List some reasons for the popularity of the Bayesian approach in reli-

ability analyses.
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16

Reliability Data: Sources and Quality

16.1 Introduction

By reliability data, we mean estimates of the parameters that enter into our system
reliability models, such as failure rates, mean time-to-failures (MTTFs), mean time
to repairs (MTTRs), and proof test intervals. To quantify the system reliability, it is
necessary to find relevant and realistic estimates for all such parameters. Luckily,
there are some databases and prediction methods that can provide some of these
estimates. In the following, the term database is used to denote any type of data
source, from a single table of data to a comprehensive computerized database.

A brief survey of some selected reliability databases is given in this chapter,
with focus on databases that are free or commercially available. Quality problems
related to reliability databases are briefly discussed.

16.1.1 Categories of Input Data

Quantitative system reliability analyses rely on four main types of input data.

Technical data are needed to understand the functions and the functional require-
ments and to establish a system model. Technical data are usually supplied by
the system vendors.

Operational and environmental data are necessary to define the actual operating
context for the system.

Maintenance data, in the form of procedures, resources, quality, and durations, are
necessary to establish the system model and to be able to determine the system
reliability.

Failure data, that is information about failure modes and failure causes,
time-to-failure distributions, and various parameters.

Operational, environmental, and maintenance data are system-specific and can
usually not be found in any databases.

System Reliability Theory: Models, Statistical Methods, and Applications, Third Edition.
Marvin Rausand, Anne Barros, and Arnljot Høyland.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/SystemReliabilityTheory3e
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Sources of Reliability Data
Reliability data can generally be obtained from the following sources:

(1) Field (i.e. operational) failure event data from the company where the study
object is to be used. The failure event data are usually available from the plant’s
computerized maintenance management system. To provide parameter esti-
mates, the data has to be analyzed by methods as presented in Chapter 14.

(2) Generic reliability databases where the items are classified in broad groups
without information about manufacturer, make, and item specifications.
OREDA (2015), for example presents estimates for items such as “centrifugal
pump; oil processing,” “gas turbine; aeroderivative (3000–10,000 kW),” and
the like.

(3) Sources providing information about failure modes and failure modes distri-
butions, such as FMD (2016).

(4) Expert judgment is sometimes the only option available to obtain input param-
eters. The procedure to obtain expert judgments can be more or less structured
(e.g. see Meyer and Booker 2001).

(5) Data from manufacturers. These estimates may be based on (i) feedback to
the manufacturer from practical use of the items, (ii) engineering analyses of
the items, sometimes combined with some test results, (iii) warranty data, and
obviously, a combination of all three types.

(6) Reliability prediction models, usually combined with a base case component
reliability database, such as MIL-HDBK-217F (1995).

(7) Research reports and papers sometimes present reliability studies of specific
items, including the input reliability data.

(8) Data from reliability testing. The testing may be part of the item’s qualification
process or be available from testing of similar items.

16.1.2 Parameters Estimates

Parameter estimation is dealt with in Chapters 14 and 15. Some brief comments
to estimates of the main reliability parameters are given in this section.

Failure Rates
Nearly all the available databases present only constant failure rate estimates.
Some databases present failure rates for specific failure modes, whereas other
databases present a total failure rate that covers all failure modes. Some few
databases provide the number of failures and the operating time on which the
estimates are made and also give confidence interval estimates.
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CCF Estimates
Common-cause failures (CCFs) are usually modeled by the beta-factor model. The
beta-factor is entirely system-specific. Some few databases providing beta-factors
are available for nuclear applications. For other applications, the beta-factors usu-
ally have to be determined by expert judgment or by using a checklist approach
(e.g. see IEC 61508 2010).

Mean Downtime
The estimates of mean downtime (MDT) and MTTR parameters are specific for
the particular system and depend on IEEE Std. 352 (2016):

• The physical and mental capabilities of the
personnel who operate and maintain the
system

• The tools and equipment available for the
maintenance action

• The time required to identify and localize
the failure

• The time required to isolate the failed part

• The disassembly time
• The availability of spare parts
• The interchange time
• The time to reassemble
• The alignment time
• Checkout time

Most often, these parameters must be provided by expert judgment.

Proof Test Interval and Coverage
The proof test interval for safety items is normally determined from overall safety
requirements and should be available as part of the operating procedures. In prac-
tice, the proof tests are often adapted to the operational conditions and may there-
fore vary within an interval covering the stated length of the test interval. The test
coverage depends on both the technical properties of the item and the properties
of the system where the item is located.

16.2 Generic Reliability Databases

Several generic reliability databases are commercially available as handbooks or
computerized databases. This section presents briefly some few of these databases.
Most of the databases maintain a website with further descriptions and informa-
tion about how you can get access to the database.

We start with OREDA that provides reliability data for items used in offshore
and onshore oil and gas applications.
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16.2.1 OREDA

The OREDA project was initiated by the Norwegian Petroleum Directorate1

in 1981 to collect and present reliability data for safety equipment used in the
Norwegian oil and gas industry. OREDA was later transformed into a joint
industry project with international participation. Failure event data are collected
from the participating companies and analyzed by a contractor. OREDA has, so
far, published six comprehensive data handbooks; in 1984, 1992, 1997, 2002, 2009,
and 2015.

Features of OREDA include

• A description of the item and its boundary. The boundary of the item is illus-
trated by a drawing as shown in Figure 16.1. The lowest level in the system
hierarchy at which preventive maintenance is carried out is called maintain-
able items. A list of the maintainable items of the item in question is given, as
shown in Table 16.1.

• The number of items from which data have been collected and the number of
installations/plants that have supplied data are specified.

• A brief description of the item’s operating context is provided.
• Reliability estimates are provided for each failure mode of the item, with 90%

confidence intervals. The estimate is denoted “mean,” whereas the confidence
interval is given by the “lower” and “upper” bounds.

Power
transmission

(gearbox, etc.)
Pump unit

Miscellaneous
Lubrication

system
Control and
monitoring

Driver
(diesel, electric

motor, etc.)

Starting
system

Inlet Outlet

Power Remote
instruments

Fuel or
electric 
power

Exhaust

System 
boundary

Figure 16.1 Pumps, boundary definition in OREDA.

1 Now called the Norwegian Petroleum Safety Authority.



Table 16.1 Pumps, subdivision in maintainable items in OREDA.

Pump

Power transmission Pump Control/monitoring Lubrication Miscellaneous

– Gearbox/variable drive – Support – Instruments – Instruments – Purge air
– Bearing – Casing – Cabling and boxes – Reservoir with – Cooling/heating
– Seals – Impeller – Control unit heating system system
– Lubrication – Shaft – Actuating device – Pump w/motor – Filter, cyclone
– Coupling to driver – Radial bearing – Monitoring – Filter – Pulsation damper
– Coupling to driven unit – Thrust bearing – Internal power supply – Cooler
– Instruments – Seals – Valves – Valves/piping

– Cylinder liner – Oil
– Piston – Seals
– Diaphragm
– Instruments
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• The number of failures for each failure mode and the accumulated time in oper-
ation and the accumulated calendar time are specified.

• For on-demand failures, the number of demands is given such that the proba-
bility of failure on demand (PFD) can be calculated.

• The active repair time (i.e. the MDT) is estimated for each failure mode together
with the number of manhours used for the repair action.

An example of how the data is presented is available on www.oreda.com. The
failure data are mainly collected from maintenance records. This means that both
item-specific failures and CCFs are included. It also implies that spurious failures
such as false alarms may not be included in full detail because such failures not
always require a work-order to be corrected. Repair times are recorded whenever
possible. For some of the item types, only man-hours were available.

OREDA classifies failure modes in three categories:

(1) Critical. A failure that causes immediate and complete loss of a system’s capa-
bility of providing its output.

(2) Degraded. A failure that is not critical, but that prevents the system from pro-
viding its output within specifications. Such a failure would usually, but not
necessarily, be gradual or partial, and may develop into a critical failure in
time.

(3) Incipient. A failure that does not immediately cause loss of a system’s capa-
bility of providing its output, but which, if not attended to, could result in a
critical or degraded failure in the near future.

The OREDA handbooks provide data from different time periods, and partly also
for different items. This means that data for a particular item may only be found
in one of the handbooks.

The OREDA project is still running and is a forum for coordination of reliability
data for the oil and gas industry. The detailed data collected during the project is
stored in a computerized database that is available to the OREDA Participants. The
data in the computerized database is much more detailed that the data presented
in the handbooks. The current version of the OREDA handbook is OREDA (2015).

OREDA is often claimed to be the highest quality source of reliability data avail-
able and has been a model for other databases. The standard ISO 14224 may be
seen as a spin-off of the OREDA project.

Further information about OREDA may be obtained from www.oreda.com.

16.2.2 PDS Data Handbook

The PDS data handbook contains reliability data for items of a safety-instrumented
system (SIS) (see Chapter 13). The handbook is based on data from several sources,
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such as OREDA and vendor data, and subjected to careful expert reviews. The
handbook was made to support the PDS method for reliability assessment of
SISs, but is a valuable source of reliability data as a stand-alone database. More
information is found on https://www.sintef.no/projectweb/pds-main-page/pds-
handbooks/pds-data-handbook.

16.2.3 PERD

Process Equipment Reliability Database (PERD) is an ongoing member-based reli-
ability data collection project operated by the Center for Chemical Process Safety
(CCPS) of American Institute of Chemical Engineers (AIChE). PERD participants
report failures according to a specific taxonomy and in a specified format in line
with ISO 14224 (2016).

16.2.4 SERH

Safety Equipment Reliability Handbook (SERH) is an Exida handbook for items
in SISs. The handbook has three volumes dedicated to (i) sensors, (ii) logic solvers
and interface modules, and (iii) final elements (exida.com 2005).

16.2.5 NPRD, EPRD, and FMD

The data sources Nonelectronic Parts Reliability Data (NPRD), Electronic Parts
Reliability Data (EPRD), and Failure Mode Mechanism Distributions (FMD) are
supplied by the company Quanterion, through its RMQSI Knowledge Center
(www.rmqsi.org). The three sources were earlier developed by the Reliability
Information and Analysis Center (RIAC).

NPRD
NPRD provides data for a variety of electrical, mechanical, and electro-mechanical
items. The data is a compilation of field experience in military, commercial, and
industrial applications. The handbook offers part descriptions, quality level, appli-
cation environments, point estimates of failure rate, data sources, number of fail-
ures, total operating hours, distance, or cycles, and detailed part characteristics.
The first edition of NPRD was published in 1978. The most recent version of the
handbook is NPRD (2016).

EPRD
EPRD provides reliability estimates for electronic components, such as integrated
circuits, discrete semiconductors (diodes, transistors, optoelectronic devices),
resistors, capacitors, and inductors/transformers. The estimates are based on
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failure events in both commercial and military electronic applications. The
current version (EPRD 2014) consists of more than 2700 pages and has the
same format as NPRD. The handbook provides part descriptions, quality level,
application environments, point estimates of failure rate, data sources, number of
failures, total operating hours, miles, or cycles, and detailed part characteristics.
EPRD is also available in electronic format.

FMD
Failure Mode Mechanism Distributions (FMD) provide field failure mode and
mechanism distribution data on a variety of electrical, mechanical, and elec-
tromechanical parts and assemblies. The current version (FMD 2016) covers
more than 999,000 records. The handbook is also available in electronic format.

Automated Databook
The three data handbooks are also available as an interactive software tool called
Quanterion Automated Databook.

16.2.6 GADS

Generating Availability Data System (GADS). This database is operated by the
North American Electric Reliability Corporation (NERC). GADS was introduced
in 1982, is based on failure and disturbance data from power stations in the United
States and Canada, and is a mandatory industry program for conventional gener-
ating units over a specified capacity. GADS data consists of three types:

(1) Design data. Detailed equipment descriptions.
(2) Performance data. Produced power, number of start ups, and so on.
(3) Event data. Data related to equipment failures, time, type of outage (forced,

maintenance, planned), and so on.

GADS is adapted to IEEE Std 762 (2006) and presents reliability data for total
units and major equipment groups. GADS is widely used by industry analysts.

16.2.7 GIDEP

Government Industry Data Exchange Program (GIDEP) is a cooperative
information-sharing program between the US government, the Canadian govern-
ment and industry participants. GIDEP members exchange information about
significant problems and nonconforming item data for three main reasons:

(1) To improve safety, reliability, and availability and, at the same time, reduce the
development, production, and ownership costs of technical systems.
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(2) To ensure that only reliable and conforming parts, material, and software are
in use on all government programs.

(3) To avoid the use of counterfeit, known-problem, or discontinued parts and
materials.

Further information may be found on www.gidep.org.

16.2.8 FMEDA Approach

An approach combining a reliability database and an analysis to adapt the data
is proposed by Exida. Their approach is similar to reliability prediction described
in the next section. Exida starts with a failure rate estimate 𝜆0 from an existing
database, such as exida.com (2005) and OREDA (2015). Then a detailed failure
modes, effects, and diagnostics analysis (FMEDA) is run to compare the new item
to the item covered by the database, to reveal similarities and differences. A pro-
prietary procedure is then used to adjust 𝜆0 to the new item and to the new oper-
ating context. The estimates are then provided to customers. Exida specializes
on safety-related equipment, such as sensors and actuating items as discussed in
Chapter 13.

16.2.9 Failure Event Databases

Many companies maintain an item failure event database as part of their com-
puterized maintenance management system. Failures and maintenance actions
are recorded related to the various items. The data are used in maintenance plan-
ning and as a basis for system modifications. In some sectors, the companies are
exchanging information recorded in their failure event databases.

Some industries have implemented a failure recording, analysis, and corrective
action system (FRACAS) or a defect recording, analysis, and corrective action sys-
tem (DRACAS). By using FRACAS or DRACAS, failures are formally analyzed,
and classified before the reports are stored in the failure report database. Several
computer programs supporting FRACAS/DRACAS are available.

16.3 Reliability Prediction

Reliability prediction is the process of forecasting a component’s reliability in a
given future operating context. The prediction procedures described in this section
are mainly used for electronic components, but similar procedures have also been
developed for electrical and mechanical components.

For most reliability predictions, a constant failure rate is assumed. Reliability
prediction is different from estimation. Estimation (see Chapter 14) deals with
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Timet0 System development 
and construction

Operating phase

Reliability
analysis

Base case
data

Prediction adjusted
to assumed operating

context

Figure 16.2 Reliability prediction timeline.

quantifying reliability parameters based on an existing dataset, whereas prediction
deals with predicting the value of parameters in a future operating context. Very
often, we are met with the challenge of predicting the reliability of a new com-
ponent that has never been used in this operating context. A typical prediction
process is illustrated in Figure 16.2, which may be elucidated as follows:

• The component failure rate 𝜆 that will be applicable in the (future) operating
phase is to be predicted at time t0.

• Some time before t0, a base case failure rate 𝜆0 estimate for a similar compo-
nent is made available based on data from available sources, expert judgment,
or laboratory testing in a controlled environment – or a combination of these.

• The failure rate 𝜆 will be used in the system development and construction
project, which may be terminated a rather long time after time t0. The main
need of 𝜆 is in the early design phase of this project.

• The value of 𝜆 to be used must be predicted based on an assumed operating
context for the component in the operating phase and also on the technology on
which the component may be built.

The analyst applies some procedures to modify 𝜆0 such that it applies to the
stress levels of the given future operating context. Most often, this is accomplished
by multiplying 𝜆0 with a factor C(⋅), which is a function of the relevant stress lev-
els, such that 𝜆 = 𝜆0C(relevant stress levels). The functional form of the factor C(⋅)
varies from approach to approach.

16.3.1 MIL-HDBK-217 Approach

The most common approach for reliability prediction of electronic components
is outlined in the military handbook (MIL-HDBK-217F 1995). The handbook
provides base case estimates for the constant failure rate 𝜆0 for various parts used
in electronic systems, such as integrated circuits, transistors, diodes, resistors,
capacitors, relays, switches, and connectors. The estimates are mainly based on
laboratory testing in a controlled base case environment. The failure rates in



�

� �

�

16.3 Reliability Prediction 777

MIL-HDBK-217F are hence related only to component-specific (primary) failures.
Failures due to external stresses and CCFs are not included. The handbook gives
formulas and data to adjust the failure rate of a component to a specified operating
context.

Parts Stress
The approach used in MIL-HDBK-217F to predict the failure rate 𝜆 in a speci-
fied future operating context is called the parts stress analysis prediction technique
and is based on detailed stress analysis information as well as environment, qual-
ity applications, maximum ratings, complexity, temperature, construction, and a
number of other application-related factors. The failure rate estimate has the form

𝜆P = 𝜆B ⋅ 𝜋Q ⋅ 𝜋E ⋅ 𝜋A · · · ,

where 𝜆B is the base case failure rate, that is estimated from reliability tests per-
formed on components under specific and controlled environmental conditions.
𝜆B is thus given for standardized stresses (e.g. voltage and humidity) and tem-
perature conditions. 𝜋Q, 𝜋E, 𝜋A,… are often called influence or covariate factors
and take into account impact of part quality, equipment environment, application
stress, and so on. The values of the basic failure rates and the various factors in
the handbook are kept up to date by analysis of failure data on components and
systems. The approach does not distinguish between failure modes.

Parts Count
MIL-HDBK-217F describes a special approach for predicting the reliability of a
system. The method is called parts count reliability prediction and assumes that
system success can be achieved only if all the system components are operating,
that is, if the system has a series structure. The system failure rate 𝜆S is obtained
by adding the failure rates of the n system components:

𝜆S =
n∑

i=1
𝜆i.

When the system is not a series system, 𝜆S gives an upper bound of the failure rate.
The parts count method has been heavily criticized (National Research Council
2015, app. D).

The last version of MIL-HDBK-217F was issued in 1995 and has since then not
been maintained or updated. It remains a U.S. Department of Defense (DoD) hand-
book, but Notice 2 of 1995 states that “This handbook for guidance only – Do not
cite this document as a requirement.” In spite of this, many producers still adhere
to the handbook because it offers a convenient and standard way of estimating
reliability.
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16.3.2 Similar Methods

Several methods, similar to the MIL-HDBK-217F models have been developed.
Among these methods are

Siemens SN 29500 “Electronic Reliability Prediction” is developed by Siemens to be
applied to their own products. As for MIL-HDBK-217F, SN 29500 is based on
failure rates under specified base case conditions. These failure rates are esti-
mated from application and testing experience and combined with data from
external sources, such as MIL-HDBK-217F. Components are categorized into
different groups, and each group has a slightly different reliability model. The
stress models described in IEC 61709 (2017) are used as a basis for conversion of
the failure rate data at reference conditions to the actual operating conditions.

Telcordia SR-322 “Reliability Prediction Procedure for Electronic Equipment” is a
reliability prediction method for commercial telecommunication components.
Initially, SR-322 was developed by Bellcore because of their dissatisfaction with
MIL-HDBK-217F methods applied to commercial products. SR-322 applies
three different methods:
● Method I. Predictions based on the parts count procedure of MIL-HDBK-217F.
● Method II. Predictions based on a combination of parts count and laboratory

data.
● Method III. Predictions based on a combination of parts count and field data.

FIDES “Reliability Methodology for Electronic Systems” is a French alternative to
MIL-HDBK-217F, developed by a consortium of large French companies.

NSWC “Handbook of Reliability Prediction for Mechanical Equipment” (NSWC
2011) is developed for the U.S. DoD by the Naval Surface Warfare Center.

Several computer programs have been developed to support MIL-HDBK 217,
Telcordia, and similar databases.

16.4 Common Cause Failure Data

In many reliability studies, the likelihood of CCFs may be more important to esti-
mate than the item failure rates. Very few data sources for CCFs are available and
all these are based on the beta-factor model, meaning that it is the value of 𝛽 that
is obtained. There are two main types of data sources:

(1) Data sources based on actual events in the field, such as the International com-
mon cause data exchange (ICDE) program.

(2) Procedures to predict the value of 𝛽 based on information about the system
and the operating context, such as in IEC 61508 (2010) and IEC 62061 (2005).
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16.4.1 ICDE

The ICDE is a project operated by the Nuclear Energy Agency (NEA) on behalf of
nuclear industry authorities in several countries. ICDE is focusing mainly on CCF
events and how to gain knowledge from these events.

The objectives of the ICDE Project are

• To collect and analyze CCF events to be able to better understand such events,
their causes, and their prevention.

• To generate qualitative insights into the causes of CCF events, which can then be
used to derive approaches or mechanisms for their prevention or for mitigating
their consequences.

• To establish a mechanism for the efficient feedback of experience gained on CCF
phenomena, including the development of defenses against their occurrence,
such as indicators for risk-based inspections.

The qualitative insights gained from the analysis of CCF events are published in
a series of open reports, but the ICDE database is accessible only for the partici-
pants of the project.

NRC CCF Insights
The US NRC runs a national project that is similar to ICDE. Data on CCF events are
systematically collected and analyzed, stored in a CCF database (NUREG/CR-6268
2007), and insights are published as Insight Summary reports.

16.4.2 IEC 61508 Method

The beta-factor is usually in the range from 1% to 10%. The defenses against
CCF events that are actually implemented in the system affect the fraction of
CCF events, and estimates of 𝛽 based on generic data are therefore of limited
value.

An approach to estimate 𝛽 is suggested in IEC 61508-6, Annex D. This method
is called the IEC 61508 method and is made for SIS hardware failures. The method
requires answering 37 predefined questions. The questions are grouped into the
following categories:

(1) Physical design (20 questions)
● Separation/segregation (5)
● Diversity/redundancy (9)
● Complexity/design/application/maturity/experience (6)

(2) Analysis (3 questions)
● Assessment/analysis and feedback of data
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(3) Human/operator issues (10 questions)
● Procedures/human interface (8)
● Competence/training/safety culture (2)

(4) Environmental issues (4 questions)
● Environmental control (3)
● Environmental testing (1)

The IEC 61508 provides formulas to process the answers and to come up with a
estimate of 𝛽. The method is explained in detail in IEC 61508 (2010) and also by
Rausand (2014).

16.5 Data Analysis and Data Quality

A significant effort has been devoted to the collection and processing of reliability
data during the last 40 years. Despite this great effort, the quality of the data avail-
able is still not good enough. The quality of the data presented in the databases
obviously depends on the way the data are collected and analyzed – and on the
competence of the persons who classify and analyze the data.

Several standards and guidelines have been issued to obtain high quality in data
collection and analysis. Among these are

• IEC 60300-3-2 (2004) Dependability management. Part 3-2: Application
guide – Collection of dependability data from the field.

• ISO 14224 Petroleum and natural gas industries – Collection and exchange of reli-
ability and maintenance data for equipment. This standard may be considered
as a spin-off of the OREDA project.

• Guidelines for Improving Plant Reliability Through Data Collection and Analysis
(CCPS 1998).

• Reliability Data Quality Handbook (ESReDA 1999).

In the following, we discuss briefly some main problems related to data analysis
and reliability databases.

16.5.1 Outdated Technology

A typical case for collection and use of reliability data is illustrated in Figure 16.3,
which may be interpreted as follows:

• The items considered are often so reliable that they have to be observed for a
long period to give enough failures to provide meaningful estimates. The data
collection must therefore cover a rather long time interval even if we observe a
fair number of identical items – usually several years.
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• The data collection is often organized as a project with a specified start and stop.
This means that many of the observed items were not new when the observation
period started.

• After the data collection project is terminated, there is usually a “waiting time”
where the data are classified and checked for quality and consistency. Next, the
data are analyzed and reliability estimates are provided.

• When the estimates are to be used as input to a new system development, the
estimates are needed in the first design phases of the project. The system devel-
opment project may sometimes take a long time, up to several years before the
items in question are installed and ready for use.

Figure 16.3 indicates that when the system items are purchased or built (based
on current technology) and installed, their reliability assessments may have been
based on estimates for items based a much older, and quite different technology.
The OREDA project has shown that some of the items – from which reliability
estimates are made – were installed 20–30 years ago. It is then pertinent to ask: Is
the technology used in these old items sufficiently similar to the technology of the
new items that are to be installed?

16.5.2 Inventory Data

Field data are typically collected from maintenance records. Failures that require
a maintenance task are usually recorded, but false alarms and temporary failures
may not be recorded in the maintenance files. Another challenge in field data col-
lection is to cover the total inventory. We need to find the answer to questions such
as:

• How many items of this particular type do we have in the plant?
• How big percentage of the time is each item loaded and in operation?
• What is the operating context for each item?

16.5.3 Constant Failure Rates

Almost all commercially available reliability databases provide only constant fail-
ure rates, even for mechanical equipment that degrade due to mechanisms such

Timet0Data collection System development 
and construction

Installation
Reliability
analysis

“Waiting”
time

Figure 16.3 Estimates from field data sources.
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as erosion, corrosion, and fatigue. Based on knowledge about the deteriorating
mechanisms, the failure rate of such equipment should be increasing. The data
available for the analysis is usually the number n of failures during a total time t
in service. The failure rate estimated by n∕t is thus an “average failure rate.” The
failure data are usually collected from a rather limited time period, that may be
called the observation window – see Section 16.5.1.

Assume that the failed items are replaced, or restored to an as-good-as-new
condition, such that we have a renewal process. A number of items are observed
during a specified observation window. The observation window may, for example
be from 1 January 2000 till 1 January 2003. In this period, we only record the num-
ber (n) of failures and the accumulated time (t) in service. A constant failure rate 𝜆
is estimated by 𝜆 = n∕t. If the (real) life distribution is a Weibull distribution with
an increasing failure rate function, z(t), and we use a constant failure rate estimate,
we overestimate the failure rate in the early phase of the item’s life, and underes-
timate the failure rate in the last part of its life. This is illustrated in Figure 16.4.
The result will especially be wrong if we extrapolate the estimated constant failure
rate beyond the time interval where we have collected data.

People who analyze life data are not always aware of the difference between the
concepts failure rate function (force of mortality [FOM]), and rate of occurrence
of failures (ROCOF) as discussed in Chapters 5 and 10. Assume that we have a
system with an increasing ROCOF,𝑤(t). If we collect failure data in an observation
window in an early phase of the system’s life, the resulting “average failure rate”
is often very different from what we would get in a later observation window. This
is illustrated in Figure 16.5.

This effect has been seen in several offshore data collection projects, for example
for downhole safety valves. When a valve has failed, it has been replaced with a
new valve of the same type, and we have (erroneously) believed that we had a

z(t)

Observation 
stops

0 Time t

“Average failure rate”

Figure 16.4 The real failure rate and the erroneously estimated constant failure rate.
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w(t)

Observation 
window 1

Observation 
window 2

“Average failure rate”

0
0

Time t

Figure 16.5 Average failure rates estimated in two different observation windows.

renewal process. The environmental conditions in the well had, however, changed
with time and produced a more hostile environment.

16.5.4 Multiple Samples

In generic databases, failure rate estimates for generic items are presented. The
individual items that are classified within the same generic class of items do not
need to be identical and do not need to be exposed to exactly the same operating
context. The data collected is therefore not a homogeneous sample.

Assume that we have m samples of failure data and that each sample is homoge-
neous. It is, however, not certain that all the m samples are homogeneous. Sample
i consists of ni recorded failures during a total time in operation ti. The items in
this sample are assumed to have constant failure rate 𝜆i, for i = 1, 2,… ,m. The
failure rate 𝜆i can be estimated by

𝜆i =
ni

ti
,

and a 90% confidence is given by (10.16)(
1

2ti
z0.95,2ni

,
1

2ti
z0.05,2(ni+1)

)
.

The estimates and the confidence intervals for the m samples are illustrated in
Figure 16.6.

If we (erroneously) assume that all samples have the same failure rate 𝜆, the
estimate would be

𝜆 =
∑m

i=1 ni∑m
i=1 ti

. (16.1)
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108

x

642 12 140 Failure rate
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m
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Figure 16.6 Estimates and confidence intervals for inhomogeneous samples.

Because the total number of failures is relatively large, and the total time in oper-
ation is relatively long, the confidence interval is rather short, as illustrated by
“total” in Figure 16.6. It is seen from Figure 16.6 that the “total” confidence inter-
val does not reflect the uncertainty of the failure rates.

We should therefore carefully check that the samples are homogeneous before
we merge them. In many databases, the samples are merged without any checking.
In OREDA (2015), an alternative approach is used. The failure rate 𝜆 is assumed
to be a random variable, that can take different values for the different samples.
An estimate of the standard deviation (SD) of the distribution of 𝜆 is presented
together with the failure rate estimates for each failure mode. A high value of SD
indicates that the samples are inhomogeneous. The (average) failure rate is esti-
mated as a weighted average of the failure rate estimates for each sample, following
a semi-Bayesian approach. The approach is described in detail in Lydersen and
Rausand (1989) and in the OREDA documentation.

Another approach to handle inhomogeneous samples is presented in Molnes
et al. (1986),, where failure data from safety valves in oil wells are analyzed. The
valves are installed in wells with different characteristics called stressors. The
stressors are factors such as flowrate, gas/oil ratio, CO2 content, H2S content,
and sand content. Some main valve characteristics, like diameter, and equalizing
principle, are also defined as stressors. The failure rate is modeled as a function
of the stressors, as proportional hazards models, and analyzed by Cox regression,
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as mentioned in Chapter 14. In this case, we obtain estimates based on a physical
modeling of the differences between the samples.

16.5.5 Data From Manufacturers

Some manufacturers provide reliability data for their equipment. These stem
mainly from reported failures by customers and warranty claims, sometimes
supplemented by laboratory tests. Manufacturers seldom get any information
from users after the warranty period is over. Some manufacturers therefore offer
service schemes to obtain such data. A general problem with this type of data is
that we can never be sure that all failures have been reported, neither does we
have full information about how long time the items have been in operation. Data
for manufacturers can provide some information, but analysts should be careful
not to put too much confidence in failure rate estimates.

16.5.6 Questioning the Data Quality

When using data from a reliability database to predict the reliability of a particular
item, one should at least consider the following questions:

• Does the data originate from the same type of items?
• Has this type of items recently been subject to significant changes of technology

or materials?
• Is the operating context the same or similar?
• Is the data source based on a big enough set to give a trustworthy estimate?

16.6 Data Dossier

When performing a reliability analysis, it is important to document all the input
parameters that are used in the calculations. It is therefore recommended that a
data dossier be set up that presents and justifies the choice of data for each ele-
ment or channel of the system. An example of such a data dossier is shown in
Figure 16.7. In many applications, a simpler data dossier may be used.

16.6.1 Final Remarks

Collection and analysis of field data are often difficult tasks, where it is easy to
make mistakes. Further information about reliability databases and associated
problems may be found in Flamm and Luisi (1992) and Cooke and Bedford (2002).
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Description:  The valve is a 5 in. gate valve with a hydraulic “fail safe” actuator. 
The fail safe-function is achieved by a steel spring that is compressed by hydraulic 
pressure. The valve is normally in the open position and is only activated when the pressure 
in the vessel exceeds 150 bar.  The valve is function-tested once a year. After a function test,
the valve is considered to be “as good as new.” The valve is located in a sheltered area 
and is not exposed to frost/icing.

Failure mode:

Assessment:

Source:

Testing and maintenance:

Comments:

Component:  Hydraulically operated 
gate valve

The failure rates are based on sources A and B. The failure rate for the failure mode 
“cannot be opened after closure”  is based on the judgments from three persons with
extensive experience from using the same type of valves and is estimated to one such 
failure per 300  valve openings. Source B is considered to be more relevant than source A,
but source B gives data for only two failure modes. Source B is therefore used for the failure 
modes “does not close on command” and “closes spuriously,” while source A is used for the 
remaining failure modes.

The valve is function-tested after installation and thereafter once per year. The function
test is assumed to be a realistic test, and possible failures detected during the test are 
repaired immediately such that the valve can be considered “as good as new” after the test.
There are no options for diagnostic testing of the valve. 

Data dossier
System: Pipeline into pressure vessel A1

Failure rate (h−1):

– Does not close on command

– Leakage through the valve
   in closed position
– External leakage from valve
– Closes spuriously

– Cannot be opened after closure

3.3 × 10–6

1.2 × 10–6

2.7 × 10–6

4.2 × 10–7

3.8 × 10–6

7.8 × 10–6

1/300

Source A
Source B
Source A

Source A
Source A
Source B
Expert judgment

The valve is a standard gate valve that has been used in comparable systems for a long 

application.
time. The data used therefore have good validity and are relevant for the specified

Figure 16.7 Example of a reliability data dossier.
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Appendix A

Acronyms

The main abbreviations and acronyms that are used in the book are listed in
Appendix A. Abbreviations that are used only once, and where the meaning of
the abbreviation is spelled out are not included.

AIChE American Institute of Chemical Engineers
AFT accelerated failure time
AMSAA U.S. Army Material Systems Analysis Activity
ARA arithmetic reduction of age
ARI arithmetic reduction of intensity
ARINC Aeronautical Radio, Incorporated
ARMA auto-regressive moving average
BDD binary decision diagram
BN Bayesian network
BPM basic parameter model
CCF common-cause failure
CCPS Center for Chemical Process Safety (of AIChE)
CDF core damage frequency
CBM condition-based maintenance
CM corrective maintenance
CMMS computerized maintenance management system
CONOPS concept of operations
CPT conditional probability table
CVS comma-separated values
DAG directed acyclic graph
DFR decreasing failure rate
DFRA decreasing failure rate average
DFT dynamic fault tree
DIM differential importance metric
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DoD Department of Defense
DRACAS defect recording, analysis, and corrective action system
EDA exploratory data analysis
E/E/PE electrical/electronic/programmable electronic
EN European norm
EPRD electronic parts reliability data
ESD emergency shutdown
ESDV emergency shutdown valve
ESReDa European Safety, Reliability & Data Association
ETA event tree analysis
EUC equipment under control
FAR fatal accident rate
FAST functional analysis system technique
FFA functional failure analysis
FMD failure mode mechanism distributions
FMEA failure modes and effects analysis
FMECA failure modes, effects, and criticality analysis
FMEDA failure modes, effects, and diagnostics analysis
FOM force of mortality
FRACAS failure reporting analysis and corrective action system
FSI functional significant item
FTA fault tree analysis
FTF fail to function
GADS generating availability data system
GIDEP government industry data exchange program
HAZOP hazard and operability (study)
HPD highest posterior density
HPP homogeneous Poisson process
ICDE international common cause data exchange
IDEF integrated definition language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronic Engineers
IEV international electrotechnical vocabulary
IFR increasing failure rate
IFRA increasing failure rate average
i.i.d. independent and identically distributed
IP improvement potential
ISO International Organization for Standardization
KTT kinetic tree theory
LCC life cycle cost
LOPA layer of protection analysis
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MBF multiple beta-factor (model)
MCPS minimal cut parallel structure
MCMC Markov chain Monte Carlo
MDT mean downtime
MFDT mean fractional deadtime
MFSC multiple failures with a shared cause
MGL multiple Greek letter (model)
MLE maximum likelihood estimator
MME method of moments estimator
MRL mean residual lifetime
MSG maintenance steering group
MTBF mean time between failures
MTBR mean time between replacements/renewals
MTTF mean time to failure
MTTFF mean time to first failure
MTTR mean time to repair
MUT mean up-time
NBU new better than used
NBUE new better than used in expectation
NEA nuclear energy agency
NERC North American Electric Reliability Corporation
NHPP nonhomogeneous Poisson process
NPRD non-electronic parts reliability data
NRC Nuclear Regulatory Commission (U.S.)
NTNU Norwegian University of Science and Technology
NUREG Title of reports from the U.S. NRC
NWU new worse than used
OEE overall equipment efficiency
OREDA offshore and onshore reliability data
PDMP piecewise-deterministic Markov process
PERD process equipment reliability database
PFD probability of failure on demand
PH proportional hazards
PHM prognostics and health management
PM preventive maintenance
PRA probabilistic risk assessment
PSA probabilistic safety assessment
PSV pressure safety valve
QRA quantitative risk analysis
RAM reliability, availability, and maintainability
RAMS reliability, availability, maintainability, and safety
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RAW risk achievement worth
RRW risk reduction worth
RBD reliability block diagram
RCM reliability centered maintenance
RIAC reliability information analysis center
ROCOF rate of occurrence of failures
RUL remaining useful lifetime
SADT structured analysis and design technique
SAE The Engineering Society For Advancing Mobility in Land Sea Air

and Space
SERH safety equipment reliability handbook
SIF safety instrumented function
SIL safety integrity level
SIS safety instrumented system
SRP superimposed renewal process
SRS system reliability services
TPM total productive maintenance
TRL technology readiness level
TRP trend renewal process
TQM total quality management
UKAEA United Kingdom Atomic Energy Authority
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Appendix B

Laplace Transforms

Let f (t) be a function that is defined on the interval (0,∞). The Laplace1 transform
f ∗(s) of the function f (t) is defined by

f ∗(s) =
∫

∞

0
e−stf (t) dt, (B.1)

where s is a real number and if the integral exists. In more advanced treatments
of the Laplace transform, s is permitted to be a complex number. All functions do
not have a Laplace transform. For instance, if f (t) = exp(t2), the integral diverges
for all values of s.

The Laplace transform of f (t) is also written as [f (t)]:

[f (t)] = f ∗(s) =
∫

∞

0
e−stf (t) dt, (B.2)

to indicate the relationship between the functions f and f ∗. When f (t) is the proba-
bility density function of a nonnegative random variable T, the Laplace transform
of f (t) is seen to be equal to the expected value of the random variable e−sT .

E(e−sT) =
∫

∞

0
e−stf (t) dt = f ∗(s).

The function f (t) is called the inverse Laplace transform of f ∗(s) and is written

f (t) = 
−1[f ∗(s)]. (B.3)

Theorem B.1
Let f (t) be a function that is piecewise continuous on every finite interval in the
range t ≥ 0 and satisfies

|f (t)| ≤ M e𝛼t for all t ≥ 0,

1 Named after the French mathematician Pierre-Simon Laplace (1749–1827).
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and for some constants 𝛼 and M. Then the Laplace transform of f (t) exists for all
s > 𝛼. ◻

Example B.1
Consider the function f (t) = e𝛼t, where 𝛼 is a constant. We have

f ∗(s) =
∫

∞

0
e−ste𝛼t dt =

∫

∞

0
e−t(s−𝛼) dt

= lim
𝜏→∞

[ −1
s − 𝛼

e−t(s−𝛼)
]𝜏

0

= 1
s − 𝛼

for s > 𝛼.

Thus

[e𝛼t] = 1
s − 𝛼

when s > 𝛼. ◻

B.1 Important Properties of Laplace Transforms

Table B.1 lists some important properties of the Laplace transform. Proofs may be
found in many standard textbooks on mathematical analysis.

B.2 Laplace Transforms of Some Selected Functions

Table B.2 lists the Laplace transforms of some selected functions.
You will find a lot more about Laplace transforms by searching the Internet.

Table B.1 Some main properties of Laplace transforms.

(1) [f (1(t) + f2(t)] = [f1(t)] + [f2(t)]
(2) [𝛼f (t)] = 𝛼[f (t)]
(3) [f (t − 𝛼)] = e−𝛼s[f (t)]
(4) [e𝛼tf (t)] = f ∗(s − 𝛼)
(5) [f ′(t)] = s[f (t)] − f (0)

(6) [∫ t
0 f (u) du] = 1

s
[f (t)]

(7) [∫ t
0 f1(t − u)f2(u) du] = [f1(t)] ⋅ [f2(t)]

(8) lims→∞ sf ∗(s) = limt→0f (t)
(9) lims→0 sf ∗(s) = limt→∞f (t)
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Table B.2 Some Laplace transforms.

f (t), t ≥ 0 f ∗(s) = [f (t)]

1 1
s

t 1
s2

t2 2!
s3

tn n!
sn+1 for 𝛼 > −1 for n = 0, 1, 2,…

t𝛼 Γ(𝛼 + 1)
s𝛼+1 for 𝛼 > −1

e𝛼t 1
s − 𝛼

e𝛼ttn n!
(s − 𝛼)n+1

cos𝜔t s
s2 + 𝜔2

sin𝜔t 𝜔

s2 + 𝜔2

cosh 𝛼t s
s2 − 𝛼2

sinh 𝛼t 𝛼

s2 − 𝛼2
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692, 714
DOE-STD-1195 346
DRACAS 775

e
EDA 663
Emergent property 43, 341
EN 13306 372, 374
Environmental risk 5
EPRD 773
EPRI 382
Equipment under control 605
ESReDa 780
Estimate 675
Estimation 674

Kaplan-Meier 696
maximum likelihood 680
method of moments 677

Estimator 675
consistent 676
interval 675
mean squared error 676
point 675
unbiased 675

Event
initiating 103, 104

Event tree analysis 79
quantitative 275

Exida 773, 775
Exploratory daya analysis, see EDA

f
Fail-safe 610
Failure 57
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Failure (contd.)
cascading 340
catastrophic 65
cause 62
classification 64
complete 65
control 69
dangerous 609
data 767
degraded 65
effect 71
extended 65
gradual 65
input/output 69
intermittent 65
mechanism 70
mishandling 70
misuse 70
noncritical 611
overload 66
overstress 66
partial 65
primary 65
random hardware 65
safe 609
secondary 66
security 68
sudden 65
systematic 67
undetected 608

Failure cause 62
direct 63
hierarchy 64
proximate 63
root 63

Failure mode 61
classification 64

Failure modes, effects, and criticality
analysis, see FMECA

Failure rate
Vesely’s 251

Failure rate function 148
average 152
bathtub curve 150
burn-in period 152
cumulative 152
empirical 151
infant mortality period 152
useful life period 152
wear-out period 152

Failure rate reduction model 458
Fatal accident rate 636
Fault 60

software 71
systematic 60, 67

Fault tree analysis, see FTA
FIDES 778
Fishbone diagram, see Cause and effect

diagram
FM 774
FMECA 80, 81, 388, 637

concept 81
cyber 81
design 81
functional 82
hardware 82
interface 81
machinery 81
process 81
software 81

FMEDA 81, 775
FMVEA 81
FOM 150
Force of mortality, see FOM
Foreseeable misuse 70
FRACAS 775
FTA 79, 88

dynamic 101
quantitative analysis 262

AND gate 264
OR gate 265
inclusion-exclusion principle 267
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upper bound approximation 265
symbols 90

Fukushima accident 341
Function 35, 36

auxiliary 37
essential 37
information 37
interface 37
off-line 38
on-line 38
protective 37
superfluous 37
tree 38

Functional block 36, 41, 44
Functional failure 386
Functional failure analysis 386
Functional significant item 387

g
GADS 774
Gamma process 570
General addition theorem 267
Geometric average 358
GIDEP 774
Greenwood’s formula 701

h
Happy system 448
Hazard

analysis 636
HAZOP 395, 605, 637
Histogram 143, 669
Homogeneous Poisson process, see HPP
HPP 203, 410, 411, 482, 683, 755

i
ICDE 778, 779
IDEF 0 39
IEC 60300 9
IEC 60300-3-11 383

IEC 60300-3-14 372
IEC 60300-3-2 780
IEC 60706 373
IEC 60812 81
IEC 61025 88, 91
IEC 61508 26, 65, 67, 343, 353, 606, 607,

629, 631–633, 635, 637, 638, 769,
778

IEC 61511 633, 638
IEC 61513 633
IEC 61709 778
IEC 61882 605, 637
IEC 62061 633, 778
IEC 62278 10, 373
IEEE 1366 12
IEEE 500 25
IEEE STD-352 82
IEEE Std.352 769
IEEE Std.762 774
Imperfect repair 455
Importance metric 299

Barlow-Proschan 331
Birnbaum 254
Birnbaum (FTA notation) 307
Birnbaum (reliability) 305, 314
Birnbaum (structural) 304, 312
Birnbaum (variants) 312
Criticality importance 315
Differential importance 323
Fussell-Vesely 317
Improvement potential 313, 330
RAW 326
RRW 326

Indenture level 32
Inference 657
Initiating event 103
Interquartile range 667
ISO 14224 545, 773, 780
ISO 17359 372
ISO 20815 5, 248
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ISO 25010 8
ISO 55000 372
ISO 9000 4
Item 33

embedded 33
happy 403
sad 403

k
Kaplan-Meier estimation 696
Key renewal equation, see Renewal

equation
Kinetic tree theory 273
Kurtosis 668

l
Laplace test 454
Laplace transform 793
Lattice distribution 408
Law of large numbers 419
Law of total probability 227, 280, 742
Law or large numbers 154
Least replaceable assembly 371
Levy Process 570
Life cycle cost 4
Lifetime 142
Likelihood function 680, 746

censored dataset 686
Linear model 452
Load-sharing system 510
Log-likelihood function 682
Log-linear model 452
LOPA 637
Loss function 758

absolute loss 758
squared loss 758

m
Maclaurin series 163, 614
Maintainability 8, 372

demonstration 374

engineering 373
metric 374

Maintainable item 371, 385, 770
Maintenance 8

breakdown 375
corrective 374
cost 547, 579, 582, 585
data 767
decision 547
downtime 378
grouping 590
interval 394
multi-item system 587
objectives 372
opportunistic 590
overhaul 376
predictive 376
preventive, see PM
reactive 375
run-to-failure 375
strategy 547, 577, 581, 584
task 391, 547

Maintenance significant item 388
Maintenance task 371
Markov

property 279
Markov analysis 639
Markov chain

continuous-time 473
discrete-time 473

Markov method 341
Markov process 473

frequency of system failures 494
mean functioning time until system

failure 495
absorbing state 501
asymptotic solution 487
balance equations 493
Chapman–Kolmogorov equations

482
common-cause failures 508
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departure rate 479
in fault trees 519
infinitesimal generator 479
Kolmogorov equations 483
load-sharing system 510
Markov diagram 479
mean duration of system failure 494
mean duration of visit 493
multiphase 526, 584
piecewise deterministic, see PDMP
simulation 532
skeleton 477
sojourn time 476
standby systems 512
state equations 484, 485
state transition diagram 479
steady state probability 488
survivor function 504
system availability 494
transition rate 478
transition rate matrix 478, 479
visit frequency 492, 493

Markov property 475
Markov renewal process 525
Martingale 408
Mean residual life 428
Mean residual lifetime 157
Mean time-to-failure, see MTTF
median lifetime 156
MFSC 344
MIL HDBK test 454
MIL-HDBK-217 631
MIL-HDBK-217F 23, 725, 768, 776
MIL-HDBK-338B 375
MIL-HDBK-470A 373
MIL-STD-1629A 22, 81
MIL-STD-785A 23
Minimal cut set 96, 119
Minimal path set 98, 119
Minimal repair 448
MLE 680

properties 685
MOCUS 96
Mode of a distribution 157
Model 656

nonparametric 696
probabilistic 656
semiparametric 726

Modeling
explicit 347
implicit 348

Modification 377
Modular decomposition 126
Module

coherent 126
Monte Carlo simulation 284

next event simulation 287
random number generation 285

MRL
parallel structure 232

MTTF 154
Multiple beta-factor model, see CCF
Multiple failures with shared cause,

see MFSC
Multiple greek letter model, see CCF
Mutually exclusive 338

n
NASA 61, 88, 90, 103, 263, 275, 365,

366, 383
NBUE 209
Nelson–Aalen estimate 703
Newtonian–Cartesian paradigm 42,

341
NHPP 554
NHPP 447
NORSOK 637
NPRD 773
NRC 70, 365
NUREG-0492 25, 88, 90, 263
NUREG/CR-1278 103
NUREG/CR-3385 326



�

� �

�

810 Subject Index

NUREG/CR-4780 358, 362, 363
NUREG/CR-5485 345, 352
NUREG/CR-6268 779
NWUE 209

o
Objective function 545
Operating context 2, 35

intended 35
Operational mode 56
OREDA 464, 614, 631, 662, 768, 770,

780, 784

p
P-F interval 557
Parameter

population 675
PDMP 528, 529
PDS

handbook 772
PDS method 638
PERD 773
Performance

required 1
requirement 36

Pivotal decomposition 123, 226, 308
PM

age-based 375
clock-based 375
condition-based 375, 574
definition 545
opportunity-based 376
time-based 548

Point process
marked 572

Poisson process
compound 415
homogeneous, see HPP
nonhomogeneous, see NHPP

Power law model 452
Prime modul 126

Probability
Bayesian 741
classical 740
degree of belief 740
frequentist 740
subjective 740

Probability density function 145
Prognostics 565

data-driven 565
model-based 565

Proof test 377
coverage 769
interval 769

Proof testing 608
Proportional hazards model 723

hazard ratio 724
Protection layer 605
Pseudocode 534

q
Q-Q plot 673
Quality 9
Quanterion 773

r
RAMS 10
Rare event approximation 267
RCM 382, 557
Reactor Safety Study 88
Redundancy 47, 237

active 48
cold-imperfect switch 240
component level 118
order 47
partly loaded 241
passive 238
system level 118

Relative frequency
distribution 143

Reliability 1
koon structure 225
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achieved 3
actual 7
bridge structure 268, 270, 272
built-in 7
component 221
data 767
database 767
inherent 7
metric 11
observed 3
parallel structure 224
series structure 223
system 221, 222

Reliability analysis
physical approach 13
systems approach 13

Reliability block diagram 44, 79, 109
order 45

Reliability centered maintenance, see
RCM

Reliability engineer
role 16

Reliability engineering 15
Remaining lifetime 428
Remaining useful life, see RUL
Remaining useful lifetime, see RUL
Renewal density 423, 436
Renewal equation

elementary 422
fundamental 421

generalization 431
key 423

Renewal function 421
bounds 431

Renewal process 417
alternating 438
delayed 436
reward 434
stationary 437
superimposed 433
trend renewal process 462

Renewal theorem 548
Repair

as-bad-as-old 377
imperfect 377
minimal 448, 554
perfect 377

Replacement
age 549
block 553
ideal 574
interval 548

Requirement 36
document 36

Restoration time 621
Risk 635

acceptance criteria 636
tolerable 636

Risk analysis 4
Risk assessment 637
Risk based 635
Risk matrix 85
Risk priority number, see RPN
ROCOF 150, 204, 249, 407, 411, 418,

447
approximation formula 250
conditional 448
minimal cut 271

Root cause 63
Root cause analysis 74
RPN 86
RUL 159, 546, 565

distribution 569, 571, 572

s
Sad system 448
SADT 39
SAE ARP 5580, 81
SAE J1739 81
SAE JA1010 373
SAE JA1012 383
Safe job analysis 395
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Safety 10
Safety function 105
Safety integrity 634
Safety integrity level 634
Safety-instrumented function 607
Safety-instrumented system, see SIS
Sample 657

complete 693
mean 665
median 665
quantiles 667
quartiles 667
standard deviation 666
variance 666

sample
random 657

Scenario-based approach 591
Security 10
Semi-Markov process 524
Service reliability 2
Severity 85

rating 85
Shannon expansion 123
Shock model 571
Siemens SN 29500, 778
Single point of failure 115
SINTEF 345, 365, 366
SIS 68, 591, 606
Skewness 668
Software bug 71
Spurious trip 607, 610
Stacking 374
Stakeholder 26
Standard devation 156
State 56

variable 111
vector 111

State variable 45, 142
State vector 221
State-transition approach 591
Stochastic process 401

Structure
koon 113
bridge 120, 123
coherent 115, 116
order 111
parallel 46
series 46, 112
series-parallel 49
standby 48
voted 47, 114

Structure function 111
Survival time 658
Survivor function 145, 147

conditional 153
empirical 671

Synthesis 41
System 31

analysis 41
boundary 34
closed 34
complex 43
complicated 43
model 44
nonrepairable 228
open 34
repairable 221
simple 42
structure 44, 45

System breakdown structure 32
Systems engineering 5, 38

t
Technology qualification 5
Technology readiness 26
Telcordia SR-322 778
Test

diagnostic 608
partial stroke 609
proof 608
staggered 620

THERP 103
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Threat 10, 66
Threat actor 69
Threat agent 10
Ties 665

multiplicity 665
Time-to-failure 142
Total productive maintenance, see TPM
Total-time-on-test, see TTT
TPM 396

six major losses 396
Transition 56
Transition diagram 230
Trigger 67
Truth table 114
TTT 689

plot 708
transform 712
transform (scaled) 712

u
Unavailability 243

v
Variance 155
Vesely’s failure rate 251
Vulnerability 10, 66, 69, 342

w
Wald’s equation 415, 435
Warranty 5
WeibullR 694
Wiener process 568

drift parameter 568
Work order 372
Wöhler diagram 187
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BOX and DRAPER ⋅ Response Surfaces, Mixtures, and Ridge Analyses, Second
Edition

BOX, HUNTER, and HUNTER ⋅ Statistics for Experimenters: Design, Innovation,
and Discovery, Second Editon
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* BROWN and HOLLANDER ⋅ Statistics: A Biomedical Introduction
CAIROLI and DALANG ⋅ Sequential Stochastic Optimization
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