
Multi-Agent Coordination

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Ekram Hossain, Editor in Chief

Jón Atli Benediktsson David Alan Grier Elya B. Joffe
Xiaoou Li Peter Lian Andreas Molisch
Saeid Nahavandi Jeffrey Reed Diomidis Spinellis
Sarah Spurgeon Ahmet Murat Tekalp

Multi-Agent Coordination

A Reinforcement Learning Approach

Arup Kumar Sadhu

Amit Konar

This edition first published 2021
© 2021 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by anymeans, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is
available at http://www.wiley.com/go/permissions.

The right of Tamilvanan Shunmugaperumal to be identified as the author of this work has been asserted
in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations, and the
constant flow of information relating to the use of experimental reagents, equipment, and devices, the
reader is urged to review and evaluate the information provided in the package insert or instructions
for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the
instructions or indication of usage and for added warnings and precautions. While the publisher and
authors have used their best efforts in preparing this work, they make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives, written sales
materials or promotional statements for this work. The fact that an organization, website, or product is
referred to in this work as a citation and/or potential source of further information does not mean that
the publisher and authors endorse the information or services the organization, website, or product may
provide or recommendations it maymake. This work is sold with the understanding that the publisher is
not engaged in rendering professional services. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a specialist where appropriate. Further, readers
should be aware that websites listed in this work may have changed or disappeared between when
this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Sadhu, Arup Kumar, author. | Konar, Amit, author.
Title: Multi-agent coordination : a reinforcement learning approach / Arup
Kumar Sadhu, Amit Konar.

Description: Hoboken, New Jersey : Wiley-IEEE, [2021] | Includes
bibliographical references and index.

Identifiers: LCCN 2020024706 (print) | LCCN 2020024707 (ebook) | ISBN
9781119699033 (cloth) | ISBN 9781119698999 (adobe pdf) | ISBN
9781119699026 (epub)

Subjects: LCSH: Reinforcement learning. | Multiagent systems.
Classification: LCC Q325.6 .S23 2021 (print) | LCC Q325.6 (ebook) | DDC
006.3/1–dc23

LC record available at https://lccn.loc.gov/2020024706
LC ebook record available at https://lccn.loc.gov/2020024707

Cover design: Wiley
Cover image: © Color4260/Shutterstock

Set in 9.5/12.5pt STIXTwoText by SPi Global, Pondicherry, India

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Preface xi
Acknowledgments xix
About the Authors xxi

1 Introduction: Multi-agent Coordination by Reinforcement Learning
and Evolutionary Algorithms 1

1.1 Introduction 2
1.2 Single Agent Planning 4
1.2.1 Terminologies Used in Single Agent Planning 4
1.2.2 Single Agent Search-Based Planning Algorithms 10
1.2.2.1 Dijkstra’s Algorithm 10
1.2.2.2 A∗ (A-star) Algorithm 11
1.2.2.3 D∗ (D-star) Algorithm 15
1.2.2.4 Planning by STRIPS-Like Language 15
1.2.3 Single Agent RL 17
1.2.3.1 Multiarmed Bandit Problem 17
1.2.3.2 DP and Bellman Equation 20
1.2.3.3 Correlation Between RL and DP 21
1.2.3.4 Single Agent Q-Learning 21
1.2.3.5 Single Agent Planning Using Q-Learning 24
1.3 Multi-agent Planning and Coordination 25
1.3.1 Terminologies Related to Multi-agent Coordination 25
1.3.2 Classification of MAS 26
1.3.3 Game Theory for Multi-agent Coordination 28
1.3.3.1 Nash Equilibrium 31
1.3.3.2 Correlated Equilibrium 36
1.3.3.3 Static Game Examples 38
1.3.4 Correlation Among RL, DP, and GT 40

v

1.3.5 Classification of MARL 40
1.3.5.1 Cooperative MARL 42
1.3.5.2 Competitive MARL 56
1.3.5.3 Mixed MARL 59
1.3.6 Coordination and Planning by MAQL 84
1.3.7 Performance Analysis of MAQL and MAQL-Based Coordination 85
1.4 Coordination by Optimization Algorithm 87
1.4.1 PSO Algorithm 88
1.4.2 Firefly Algorithm 91
1.4.2.1 Initialization 92
1.4.2.2 Attraction to Brighter Fireflies 92
1.4.2.3 Movement of Fireflies 93
1.4.3 Imperialist Competitive Algorithm 93
1.4.3.1 Initialization 94
1.4.3.2 Selection of Imperialists and Colonies 95
1.4.3.3 Formation of Empires 95
1.4.3.4 Assimilation of Colonies 96
1.4.3.5 Revolution 96
1.4.3.6 Imperialistic Competition 97
1.4.4 Differential Evolution Algorithm 98
1.4.4.1 Initialization 99
1.4.4.2 Mutation 99
1.4.4.3 Recombination 99
1.4.4.4 Selection 99
1.4.5 Off-line Optimization 99
1.4.6 Performance Analysis of Optimization Algorithms 99
1.4.6.1 Friedman Test 100
1.4.6.2 Iman–Davenport Test 100
1.5 Summary 101

References 101

2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative
Task Planning 111

2.1 Introduction 112
2.2 Literature Review 116
2.3 Preliminaries 118
2.3.1 Single Agent Q-learning 119
2.3.2 Multi-agent Q-learning 119
2.4 Proposed MAQL 123

vi Contents

2.4.1 Two Useful Properties 124
2.5 Proposed FCMQL Algorithms and Their Convergence Analysis 128
2.5.1 Proposed FCMQL Algorithms 129
2.5.2 Convergence Analysis of the Proposed FCMQL Algorithms 130
2.6 FCMQL-Based Cooperative Multi-agent Planning 131
2.7 Experiments and Results 134
2.8 Conclusions 141
2.9 Summary 143
2.A More Details on Experimental Results 144
2.A.1 Additional Details of Experiment 2.1 144
2.A.2 Additional Details of Experiment 2.2 159
2.A.3 Additional Details of Experiment 2.4 161

References 162

3 Consensus Q-Learning for Multi-agent Cooperative Planning 167
3.1 Introduction 167
3.2 Preliminaries 169
3.2.1 Single Agent Q-Learning 169
3.2.2 Equilibrium-Based Multi-agent Q-Learning 170
3.3 Consensus 171
3.4 Proposed CoQL and Planning 173
3.4.1 Consensus Q-Learning 173
3.4.2 Consensus-Based Multi-robot Planning 175
3.5 Experiments and Results 176
3.5.1 Experimental Setup 176
3.5.2 Experiments for CoQL 177
3.5.3 Experiments for Consensus-Based Planning 177
3.6 Conclusions 179
3.7 Summary 180

References 180

4 An Efficient Computing of Correlated Equilibrium for Cooperative
Q-Learning-Based Multi-Robot Planning 183

4.1 Introduction 183
4.2 Single-Agent Q-Learning and Equilibrium-Based MAQL 186
4.2.1 Single Agent Q-Learning 187
4.2.2 Equilibrium-Based MAQL 187
4.3 Proposed Cooperative MAQL and Planning 188
4.3.1 Proposed Schemes with Their Applicability 189
4.3.2 Immediate Rewards in Scheme-I and -II 190

Contents vii

4.3.3 Scheme-I-Induced MAQL 190
4.3.4 Scheme-II-Induced MAQL 193
4.3.5 Algorithms for Scheme-I and II 200
4.3.6 Constraint ΩQL-I/ΩQL-II(CΩQL-I/CΩQL-II) 201
4.3.7 Convergence 201
4.3.8 Multi-agent Planning 207
4.4 Complexity Analysis 209
4.4.1 Complexity of CQL 210
4.4.1.1 Space Complexity 210
4.4.1.2 Time Complexity 210
4.4.2 Complexity of the Proposed Algorithms 210
4.4.2.1 Space Complexity 211
4.4.2.2 Time Complexity 211
4.4.3 Complexity Comparison 213
4.4.3.1 Space Complexity 213
4.4.3.2 Time Complexity 214
4.5 Simulation and Experimental Results 215
4.5.1 Experimental Platform 215
4.5.1.1 Simulation 215
4.5.1.2 Hardware 216
4.5.2 Experimental Approach 217
4.5.2.1 Learning Phase 217
4.5.2.2 Planning Phase 217
4.5.3 Experimental Results 218
4.6 Conclusion 226
4.7 Summary 226
4.A Supporting Algorithm and Mathematical Analysis 227

References 228

5 A Modified Imperialist Competitive Algorithm for Multi-Robot
Stick-Carrying Application 233

5.1 Introduction 234
5.2 Problem Formulation for Multi-Robot Stick-Carrying 239
5.3 Proposed Hybrid Algorithm 242
5.3.1 An Overview of ICA 242
5.3.1.1 Initialization 242
5.3.1.2 Selection of Imperialists and Colonies 243
5.3.1.3 Formation of Empires 243
5.3.1.4 Assimilation of Colonies 244
5.3.1.5 Revolution 244

viii Contents

5.3.1.6 Imperialistic Competition 245
5.4 An Overview of FA 247
5.4.1 Initialization 247
5.4.2 Attraction to Brighter Fireflies 247
5.4.3 Movement of Fireflies 248
5.5 Proposed ICFA 248
5.5.1 Assimilation of Colonies 251
5.5.1.1 Attraction to Powerful Colonies 251
5.5.1.2 Modification of Empire Behavior 251
5.5.1.3 Union of Empires 252
5.6 Simulation Results 254
5.6.1 Comparative Framework 254
5.6.2 Parameter Settings 254
5.6.3 Analysis on Explorative Power of ICFA 254
5.6.4 Comparison of Quality of the Final Solution 255
5.6.5 Performance Analysis 258
5.7 Computer Simulation and Experiment 265
5.7.1 Average Total Path Deviation (ATPD) 265
5.7.2 Average Uncovered Target Distance (AUTD) 265
5.7.3 Experimental Setup in Simulation Environment 265
5.7.4 Experimental Results in Simulation Environment 266
5.7.5 Experimental Setup with Khepera Robots 268
5.7.6 Experimental Results with Khepera Robots 269
5.8 Conclusion 270
5.9 Summary 272
5.A Additional Comparison of ICFA 272

References 275

6 Conclusions and Future Directions 281
6.1 Conclusions 281
6.2 Future Directions 283

Index 285

Contents ix

Preface

Coordination is a fundamental trait in lower level organisms as they used their
collective effort to serve their goals. Hundreds of interesting examples of coordi-
nation are available in nature. For example, ants individually cannot carry a small
food item, but they collectively carry quite a voluminous food to their nest. The
tracing of the trajectory of motion of an ant following the pheromone deposited
by its predecessor also is attractive. The queen bee in her nest directs the labor bees
to specific directions by her dance patterns and gestures to collect food resources.
These natural phenomena often remind us the scope of coordination among
agents to utilize their collective intelligence and activities to serve complex goals.
Coordination and planning are closely related terminologies from the domain of

multi-robot system. Planning refers to the collection of feasible steps required to
reach a predefined goal from a given position. However, coordination indicates the
skillful interaction among the agents to generate a feasible planning step. There-
fore, coordination is an important issue in the field of multi-robot coordination to
address complex real-world problems. Coordination usually is of three different
types: cooperation, competition, and mixed. As evident from their names, cooper-
ation refers to improving the performance of the agents to serve complex goals,
which otherwise seems to be very hard for an individual agent because of the
restricted availability of hardware/software resources of the agents or deadline/
energy limits of the tasks. Unlike cooperation, competition refers to serving con-
flicting goals by two (team of) agents. For example, in robot soccer, the two teams
compete to win the game. Here, each team plans both offensively and defensively
to score goals and thus act competitively. Mixed coordination indicates a mixture
of cooperation and competition. In the example of a soccer game, inter-team com-
petition and intra-team cooperation is the mixed coordination. Most of the com-
mon usage of coordination in robotics lies in cooperation of agents to serve a
common goal. The book deals with the cooperation of robots/robotic agents to effi-
ciently complete a complex task.

xi

In recent times, researchers are taking keen interest to employ machine
learning in multi-agent cooperation. The primary advantage of machine learn-
ing is to generate the action plans in sequence from the available sensory read-
ings of the robots. In case of a single robot, learning the action plans from the
sensory readings is straightforward. However, in the context of multi-robot, the
positional changes of the other robots act as additional inputs for the learner
robot, and thus learning is relatively difficult. Several machine learning and
evolutionary algorithms have been adopted over the last two decades to handle
the situations. The simplest of all is the supervised learning technique that
requires an exhaustive list of sensory instances and the action plan by the
robots. Usually, a human experimenter provides these data from his/her long
acquaintance with such problems or by direct measurement of the sensory
instances and decisions. The training instances being too large, sometimes
has a negative influence to the engineer, and he/she feels it uncomfortable
not to miss a single instance that carries valuable mapping from sensory
instance to action plan by the robots.
Because of the difficulty of generating training instances and excessive compu-

tational overhead to learn those instances, coupled with the need for handling
dynamic situations, researchers felt the importance of reinforcement learning
(RL). In RL, we need not provide any training instance, but employ a critic
who provides a feedback to the learning algorithm about the possible reward/pen-
alty of the actions by the agent. The agent/s on receiving the approximate measure
of penalty/reward understands which particular sensory-motor instances they
need to learn for future planning applications. The dynamic nature of environ-
ment thus can easily be learned by RL. In the multi-agent scenario, RL needs
to take care of learning in joint state/action space of the agents. Here, each agent
learns the sensory-motor instances in the joint state/action space with an ultimate
motive to learn the best actions for itself to optimize its rewards.
The superiority of evolutionary algorithms (EAs) in optimizing diverse objective

functions is subjected to the No Free Lunch Theorem (NFLT). According to NFLT,
the expected effectiveness of any two traditional EAs across all possible optimiza-
tion problems is identical. A self-evident implication of NFLT is that the elevated
performance of one EA, say A, over the other, say B, for one class of optimization
problems is counterbalanced by their respective performances over another class.
It is therefore practically difficult to devise a universal EA that would solve all the
problems. This apparently paves the way for hybridization of EAs with other opti-
mization strategies, machine learning techniques, and heuristics.
In evolutionary computation paradigm, hybridization refers to the process of

integrating the attractive features of two or more EAs synergistically to develop
a new hybrid EA. The hybrid EA is expected to outperform its ancestors with
respect to both accuracy and complexity over application-specific or general

xii Preface

benchmark problems. The fusion of EAs through hybridization hence can be
regarded as the key to overcome their individual limitations.
Hence, apart from the RL, hybridization of the EAs is also an effective approach

to serve the purpose of multi-robot coordination in a complex environment. The
primary objective of an EA in the context of multi-robot coordination is concerned
with the minimization of the time consumed by the robots (i.e. the length of the
path to be traversed by the robots) for complete traversal of the planned trajectory.
In other words, robots plan their local trajectory, so that robots shifted from given
positions to the next positions (subgoals) in a time-optimal sense avoiding collision
with the obstacles or the boundary of the world map. The optimization algorithm
is executed in each local planning step to move a small distance. Hence, cumula-
tively robots move to the desired goal position using the sequence of local pla-
nning. There are traces of literature on hybridization of the EAs.
Several algorithms for multi-agent learning are available in the literature, each

with one specific flavor to optimize certain learning intents of the agents. Of these
algorithms, quite a few interesting works on the MAQL have been reported in the
literature. Among the state-of-the-art MAQL algorithms, the following need spe-
cial mentions. Claus and Boutilier, aimed at solving the coordination problem
using two types of reinforcement learners. The first one, called independent
learner (IL), takes care of the learning behavior of individual agents by ignoring
the presence of other agents. The second one, called joint action learner (JAL),
considers all agents including the self to learn at joint action-space. Unlike JAL,
in Team Q-learning proposed by Littman, an agent updates its Q-value at a joint
state–action pair without utilizing associated agents’ reward; rather the value
function of the agent at the next joint state is evaluated by obtaining the maximum
Q-value among the joint actions at the next joint state. Ville proposed Asymmetric-
Q learning (AQL) algorithm, where the leader agents are capable of maintaining
all the agents’ Q-tables. However, the follower agents are not allowed to maintain
all the agents’ Q-tables and hence, they just maximize their own rewards. In AQL,
agents always achieve the pure strategy Nash equilibrium (NE), although there
does exist mixed strategy NE. Hu and Wellman extended the Littman’s Minimax
Q-learning to the general-sum stochastic game (where the summation of all
agents’ payoff is neither zero nor constant) by taking into account of other agents’
dynamics using NE. They also offered a proof of convergence of their algorithm. In
case of multiple NE occurrences, one is selected optimally. Littman proposed
Friend-or-Foe Q-learning (FQL) algorithm for general-sum games. In this algo-
rithm, the learner is instructed to treat each other agent either as a friend in Friend
Q-learning or as a foe in Foe Q-learning. FQL provides a stronger convergence
guarantee in comparison to that of the existing NE-based learning rule. Greenwald
and Hall proposed correlated Q-learning (CQL) employing correlated equilibrium
(CE) to generalize both Nash Q-learning (NQL) and FQL. The bottlenecks of the

Preface xiii

above MAQL algorithms are update policy selection for adaptation of the Q-tables
in joint state–action space and the curse of dimensionality with an increase in the
number of learning agents. Several attempts have beenmade to handle the curse of
dimensionality in MAQL. Jelle and Nikos proposed Sparse Cooperative Q-learn-
ing, where a sparse representation of the joint state–action space of the agents
is done by identifying the need for coordination among the agents at a joint state.
Here, agents undertake coordination by their actions only in a few joint states.
Hence, each agent maintains two Q-tables: one is the individual-action Q-table
for uncoordinated joint states and another one is the joint action Q-table to
represent the coordinated joint states. In case of uncoordinated states, a global
Q-value is evaluated by adding the individual Q-values. Zinkevich offers a neural
network-based approach for generalized representation of the state-space for
multi-agent coordination. By such generalization, agents (here robots) can avoid
collision with an obstacle or other robots by collectingminimum information from
the sensors. Reinaldo et al. proposed a novel algorithm to heuristically accelerate
the TMAQL algorithms.
In the literature of MAQL, agents either converge to NE or CE. The equilibrium-

based MAQL algorithms are most popular for their inherent ability to determine
optimal strategy (equilibrium) at a given joint state. Hu et al. identified the phe-
nomenon of similar equilibria in different joint states and introduced the concept
of equilibrium transfer to accelerate the state-of-the-art equilibrium-based MAQL
(NQL and CQL). In equilibrium transfer, agents recycle the previously computed
equilibria having very small transfer loss. Recently, Zhang et al. attempted to
reduce the dimension of the Q-tables in NQL. The reduction is done by allowing
the agents to store the Q-values in joint state–individual action space, instead of
joint state–action space.
In the state-of-the-art MAQL (NQL and CQL), balancing exploration/exploita-

tion during the learning phase is an important issue. Traditional approaches used
to balance exploration/exploitation in MAQL are summarized here. The greedy
exploration, although has wide publicity, needs to tune the value of which is
time-costly. In the Boltzmann strategy, the action selection probability is con-
trolled by tuning a control parameter (temperature) and by utilizing the Q-values
due to all actions at a given state. Here, the setting of temperature to infinity (zero)
implies pure exploration (exploitation). Unfortunately, the Boltzmann strategy
antagonistically affects the speed of learning. Evolution of the Boltzmann strategy
toward better performance is observed in a series of literature. However, the above
selection mechanisms are not suitable for selecting a joint action preferred for the
team (all the agents) because of the dissimilar joint Q-values offered by the agents
at a common joint state–action pair. There are traces of literature concerning joint
action selection at a joint state during learning. However, with the best of our

xiv Preface

knowledge, there is no work in the literature, which considers the work, presented
in this book.
The book includes six chapters. Chapter 1 provides an introduction to the multi-

robot coordination algorithms for complex real-world problems, including trans-
portation of a box/stick, formation control for defense applications and soccer
playing by multiple robots utilizing the principles of RL, the theory of games,
dynamic programming, and/or EA. Naturally, this chapter provides a thorough
survey of the existing literature of RL with a brief overview of the evolutionary
optimization to examine the role of the algorithms in the context of multi-agent
coordination. Chapter 1 includes multi-robot coordination employing evolution-
ary optimization, and especially RL for cooperative, competitive, and their compo-
sition for application to static and dynamic games. The latter part of the chapter
deals with an overview of themetrics used to compare the performance of the algo-
rithms while coordinating. Fundamental metrics for performance analysis are
defined to study the learning and planning algorithms.
Chapter 2 offers learning-based planning algorithms, by extending the tradi-

tional multi-agent Q-learning algorithms (NQL and CQL) for multi-robot coordi-
nation and planning. This extension is achieved by employing two interesting
properties. The first property deals with the exploration of the team-goal (simul-
taneous success of all the robots) and the other property is related to the selection
of joint action at a given joint state. The exploration of team-goal is realized by
allowing the agents, capable of reaching their goals, to wait at their individual goal
states, until the remaining agents explore their individual goals synchronously or
asynchronously. Selection of joint action, which is a crucial problem in traditional
multi-agent Q-learning, is performed here by taking the intersection of individual
preferred joint actions of all the agents. In case the resulting intersection is a null
set, the individual actions are selected randomly or otherwise following classical
techniques. The superiority of the proposed learning and learning-based planning
algorithms are validated over contestant algorithms in terms of the speed of con-
vergence and run-time complexity, respectively.
In Chapter 3, it is shown that robots may select the suboptimal equilibrium in

the presence of multiple types of equilibria (here NE or CE). In the above perspec-
tive, robots need to adapt to such a strategy, which can select the optimal equilib-
rium in each step of the learning and the planning. To address the bottleneck of the
optimal equilibrium selection among multiple types, Chapter 3 presents a novel
consensus Q-learning (CoQL) for multi-robot coordination, by extending the equi-
librium-basedmulti-agent Q-learning algorithms. It is also shown that a consensus
(joint action) jointly satisfies the conditions of the coordination-type pure strategy
NE and the pure strategy CE. The superiority of the proposed CoQL algorithm over
traditional reference algorithms in terms of the average reward collection are

Preface xv

shown in the experimental section. In addition, the proposed consensus-based pla-
nning algorithm is also verified considering themulti-robot stick-carrying problem
as the testbed.
Unlike CQL, Chapter 4 proposes an attractive approach to adapt composite

rewards of all the agents in one Q-table in joint state–action space during learning,
and subsequently, these rewards are employed to compute CE in the planning
phase. Two separate models of multi-agent Q-learning have been proposed. If
the success of only one agent is enough to make the team successful, then
model-I is employed. However, if an agent’s success is contingent upon other
agents and simultaneous success of the agents is required, then model-II is
employed. It is also shown that the CE obtained by the proposed algorithms
and by the traditional CQL are identical. In order to restrict the exploration within
the feasible joint states, constraint versions of the said algorithms are also pro-
posed. Complexity analysis and experiments have been undertaken to validate
the performance of the proposed algorithms in multi-robot planning on both sim-
ulated and real platforms.
Chapter 5 hybridizes the Firefly Algorithm (FA) and the Imperialist Competitive

Algorithm (ICA). The above-explained hybridization results in the Imperialist
Competitive Firefly Algorithm (ICFA), which is employed to determine the
time-optimal trajectory of a stick, being carried by two robots, from a given starting
position to a predefined goal position amidst static obstacles in a robot world map.
The motion dynamics of fireflies of the FA is embedded into the sociopolitical evo-
lution-based meta-heuristic ICA. Also, the trade-off between the exploration and
exploitation is balanced by modifying the random walk strategy based on the posi-
tion of the candidate solutions in the search space. The superiority of the proposed
ICFA is studied considering run-time and accuracy as the performance metrics.
Finally, the proposed algorithm has been verified in a real-time multi-robot
stick-carrying problem.
Chapter 6 concludes the book based on the analysis made, experimental and

simulation results obtained from the earlier chapters. The chapter also examines
the prospects of the book in view of the future research trends.
In summary, the book aimed at developing multi-robot coordination algorithms

with aminimum computational burden and less storage requirement as compared
to the traditional algorithms. The novelty, originality, and applicability of the book
are illustrated below.
Chapter 1 introduces fundamentals of the multi-robot coordination. Chapter 2

offers two useful properties, which have been developed to speedup the conver-
gence of TMAQL algorithms in view of the team-goal exploration, where team-
goal exploration refers to the simultaneous exploration of individual goals. The
first property accelerates exploration of the team-goal. Here, each agent accumu-
lates high (immediate) reward for team-goal state-transition, thereby improving

xvi Preface

the entries in the Q-table for state-transitions leading to the team-goal. The Q-table
thus obtained offers the team the additional benefit to identify the joint action
leading to a transition to the team-goal during the planning, where TMAQL-based
planning stops inadvertently. The second property directs an alternative approach
to speedup the convergence of TMAQL by identifying the preferred joint action for
the team. Finding preferred joint action for the team is crucial when robots are
acting synchronously in a tight cooperative system. The superiority of the pro-
posed algorithms in Chapter 2 is verified both theoretically as well as experimen-
tally in terms of the convergence speed and the run-time complexity.
Chapter 3 proposes the novel CoQL, which addresses the equilibrium selection

problem. In case multiple equilibria exist at a joint state, by adapting the
Q-functions at a consensus. Analytically it is shown that a consensus at a joint state
is a coordination-type pure strategy NE as well as a pure strategy CE. Experimen-
tally, it is shown that the average rewards earned by the robots are more when
adapting at consensus, than by either NE or CE.
Chapter 4 introduces a new dimension in the literature of the traditional CQL. In

traditional CQL, CE is evaluated both in learning and planning phases. In
Chapter 4, CE is computed partly in the learning and the rest in the planning
phases, thereby requiring CE computation once only. It is shown in an analysis
that the CE obtained by the proposed techniques is same as that obtained by
the traditional CQL algorithms. In addition, the computational cost to evaluate
CE by the proposed techniques is much smaller than that obtained by traditional
CQL algorithms for the following reasons. Computation of CE in the traditional
CQL requires consulting m Q-tables in joint state–action space for m robots,
whereas in the present context, we use a single Q-table in the joint state–action
space for evaluation of CE. Complexity analysis (both time- and space-complexity)
undertaken here confirms the last point. Two schemes are proposed: one for a
loosely- and the other one for a tightly coupled multi-robot system. Also, the prob-
lem-specific constraints are taken care of in Chapter 4 to avoid unwanted explo-
ration of the infeasible state-space during the learning phase, thereby saving
additional run-time complexity during the planning phase. Experiments are
undertaken to validate the proposed concepts in simulated and practical multi-
agent robotic platform (here Khepera-environment).
Chapter 5 offers the evolutionary optimization approach to address the multi-

robot stick-carrying problem using the proposed ICFA. ICFA is the synergistic
fusion of the motion dynamics of a firefly in the FA and the local exploration cap-
abilities of the ICA. In ICA, an evolving colony is not guided by the experience of
more powerful colonies within the same empire. However, in ICFA, each colony
attempts to contribute to the improvement of its governing empire by improving
its sociopolitical attributes following the motion dynamics of a firefly in the FA. To
improve the performance of the above-mentioned hybrid algorithm further, the

Preface xvii

step-size for random movement of each firefly is modulated according to its rela-
tive position in the search space. An inferior solution is driven by the explorative
force while a qualitative solution should be confined to its local neighborhood in
the search space. The chapter also recommends a novel approach of evaluating the
threshold value for uniting empires without imposing any serious computational
overhead on the traditional ICA. Simulation and experimental results confirm the
superiority of the proposed ICFA over the state-of-the-art techniques. Chapter 6
concludes the book with interesting future research directions.

Arup Kumar Sadhu
Amit Konar

Artificial Intelligence Laboratory and Control Engineering Laboratory
Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India

xviii Preface

Acknowledgments

The authors sincerely like to thank Prof. Surnajan Das, the vice-chancellor of
Jadavpur University (JU), and Prof. Chiranjib Bhattacharjee and Dr. Pradip Kumar
Ghosh, the pro-vice-chancellors of JU, Kolkata, for creating a beautiful and lively
academic environment to carry out the necessary scientific work and experiments
for the present book. They also would like to acknowledge the technical and moral
support they received from Prof. Sheli Sinha Chaudhuri, the HoD of the Depart-
ment of Electronics and Tele-Communication Engineering (ETCE), Jadavpur
University, where the background research work for the present book is carried
out. Special thanks go to the reviewers of the previous publications by the authors
on the selected subject. Their suggestions helped a lot to develop the present book
in its current shape.
The authors like to thank their family members for their support in many ways

for the successful completion of the book. The first author wishes to mention
the everlasting support and words of optimism he received from his parents,
Mrs. Purnima Sadhu and Mr. Prabhat Kumar Sadhu, without whose active sup-
port, love, and affection, it would not have been possible to complete the book
in the current form. He likes to acknowledge the strong gratitude he has for his
elder sisters, Dr. Sucheta Sadhu and Mrs. Mithu Sadhu, who have nurtured him
since his childhood and always remained as a source of inspiration in his life.
The second author acknowledges the support he received from his family mem-
bers for sparing him from many family responsibilities while writing this book.
The authors like to thank their students, colleagues, and coresearchers of the

AI Lab, Jadavpur University, for their support in many ways during the phase

xix

of writing the book. Finally, the authors thank all their well-wishers, who have
contributed directly and indirectly toward the completion of the book.

Arup Kumar Sadhu
Amit Konar

Artificial Intelligence Laboratory
Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India
12 April 2020

xx Acknowledgments

About the Authors

Dr. Arup Kumar Sadhu received his PhD (Engineering)
degree in Multi-robot Coordination by Reinforcement
Learning from Jadavpur University, India, in 2017.
Currently he is working with Research & Innovation
Labs, Tata Consultancy Services, India, as a scientist.
His research interests include Reinforcement Learn-
ing, Artificial Intelligence, Robotics, Path planning
for unmanned aerial vehicle, Evolutionary Computa-
tion, Fuzzy Logic, and Human–Computer Interaction.
He has many international conference, journal papers,
and patents. He served as a reviewer of IEEE Tran-
sactions on Fuzzy Systems and IEEE Transactions
on Emerging Topics in Computational Intelligence,
Neurocomputing, and Applied soft computing, IJSI
and FUZZ-IEEE.

Prof. Amit Konar received his PhD (Engineering)
degree from Jadavpur University, India, in 1994.
Currently he is a Professor with the Department of
Electronics and Tele-Communication Engineering
(ETCE), Jadavpur University, where he is the Found-
ing Coordinator of the M. Tech. program on intelligent
automation and robotics. He has supervised 28 PhD
theses. He has over 350 publications in international
journal and conference proceedings. He is the author
of 15 books. He served as the Associate Editor of
IEEE Transactions on Systems, Man and Cybernetics,
Part-A, and is currently serving IEEE Transactions on

xxi

Fuzzy Systems and IEEE Transactions on Emerging Topics in Computational
Intelligence. He was the recipient of All India Council for Technical Education
(AICTE)-accredited 1997–2000 Career Award for Young Teachers and Fellowship
of National Academy of Engineers (FNAE) in 2015 for his significant contributions
in Artificial Intelligence and Robotics.

xxii About the Authors

1

Introduction

Multi-agent Coordination by Reinforcement Learning
and Evolutionary Algorithms

This chapter provides an introduction to the multi-agent coordination by rein-
forcement learning (RL) and evolutionary algorithms (EAs). A robot (agent) is
an intelligent programmable device capable of performing complex tasks and
decision-making like the human beings. Mobility is part and parcel of modern
robots. Mobile robots employ sensing-action cycles to sense the world around
them with an aim to plan their journey to the desired destination. Coordination
is an important issue in modern robotics. In recent times, researchers are tak-
ing keen interest to synthesize multi-agent-coordination in complex real-world
problems, including transportation of a box/stick, formation control for defense
applications, and soccer playing by multiple robots by utilizing the principles of
RL, theory of games (GT), dynamic programming (DP), and/or evolutionary
optimization (EO) algorithms. This chapter provides a thorough survey of
the existing literature of RL with a brief overview of EO to examine the role
of the algorithms in the context of multi-agent coordination. The study
includes the classification of multi-agent coordination based on different crite-
rion, such as the level of cooperation, knowledge sharing, communication, and
the like. The chapter also includes multi-robot coordination employing EO,
and specially RL for cooperative, competitive, and their composition for appli-
cation to static and dynamic games. The later part of the chapter deals with an
overview of the metrics used to compare the performance of the algorithms in
coordination. Two fundamental metrics of performance analysis are defined,
where the first one is required to study the learning performance, while the
other to measure the performance of the planning algorithm. Conclusions
are listed at the end of the chapter with possible explorations for the future
real-time applications.

1

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

1.1 Introduction

A robot is an intelligent and programmable manipulator, targeted at developing
the functionality similar to those of a living creature [1]. It can serve complex
and/or repetitive tasks efficiently. Based on the ability of locomotion, robots are
categorized into two basic types: fixed base robots and mobile robots. Depending
upon the type of locomotion, mobile robots are categorized into three types:
wheeled/legged robots, winged/flying robots, and underwater robots, where for
the last one, locomotion is controlled by water thrust. In this chapter, we would
deal with wheeled robots only.
Agency is a commonly used jargon in modern robotics [1]. An agent is a piece of

program/hardware that helps a robot to serve a directed goal. Like humans, when
complexity of the problem grows, collective intelligence of the agents is required to
achieve the target. The book is on collective/group behavior of agents, who can
sense and act rationally. On occasions, agents can share the sensory information
or its decisionwith its teammates directly through a communication network or by
displaying its gestural/postural patterns, carrying a specific signature, to commu-
nicate a message to its team members.
Communication is a vital issue to generate plans by the agents. However, com-

munication is time-costly and thus is often disregarded for real-world robotic
applications. In the present book, we attempted to learn the agent behavioral pat-
terns by a process of learning, and thus avoid communication overhead in real-
time planning [1].
There exists quite a vast literature on planning algorithms [2–29]. One of the

early robot planning algorithms is due to Nilsson in connection with his research
on reasoning-based planning undertaken in Stanford AI research laboratory,
which later was adopted in STRIPs [30–32]. In late 1980s to early 1990s, several
planning algorithms, including A∗ [31, 32], Voronoi diagrams [33], Quad tree,
and potential field [34] were evolved. These algorithms presume static world.
At the beginning of the 1990s, Michalewicz in one of his renowned papers intro-
duced genetic operators to undertake dynamic planning with local adaptation in
trial solutions by specialized mutation operators. The period 1990–2000 has seen
significant changes in the planning algorithm with the introduction of supervised/
unsupervised neural learning in planning algorithms [32]. The neural algorithms
worked in both static and dynamic environments. Typically, in dynamic environ-
ments, they predict the direction and speed of motion to determine possible avoid-
ance of collisions. However, they had limited learned experience, and thus were
unable to handle planning in the presence of random motions of dynamic obsta-
cles/persons in the environment. Almost at the beginning of the first quarter of the

2 1 Introduction

1990s, Sutton proposed RL algorithm [35], which can help the robot learn its envi-
ronment through semi-supervised learning. We would deal with multi-agent RL
(MARL) in this chapter.
Planning and coordination are two closely used terms in multi-agent robotics

[30]. While planning is concerned with determining the sequence of steps to
achieve a goal, coordination refers to skillful interaction among the agents to serve
their individual short-run/long-run purposes. Apparently, coordination among
the agents is required to implement the steps of planning. In centralized planning,
the agents need not require coordination, as the central manager takes care of
all the agents’ states as if its own state and generate a planning cycle by taking care
of all the agents’ states and goals jointly. Unfortunately, centralized planning is
very slow and single-point failure may occur. Thus, centralized planning is not
amenable for real-time applications, when the number of agents is excessive. In
distributed planning, each agent generates one step of planning by coordinating
with other active agents.
Coordination is broadly divided into two types: cooperation [36] and competition

[37]. As the names indicate, cooperation requires agents to work hand-in-hand
to purposefully serve the common objective of the team. Competition, on the other
hand, leads to the success of one team against the failure of its opponent.
For instance, in robot soccer, teammates work harmoniously in a cooperative man-
ner, while each team of agents competes for winning at the cost of defeat of the
other team.
Researchers are taking keen interest to model agent cooperation/competition by

various models/tools. A few of these that need special mention include RL, GT
[38–45], DP [46, 47], EO [48–56], and many others [6, 15–28, 57–59]. In RL, agents
learn the most profitable joint action at each joint state through a feedback from
the environment, and use them for subsequent planning applications [35]. GT
requires for strategic analysis in multi-agent domain. In GT, agents evaluate the
equilibrium, representative of the most-profitable joint action for the team in a
joint state, and execute the joint action for joint state-transition in a loop until
the joint goal is explored [38, 41–43, 60]. In DP [46], a complex problem is divided
into finite overlapping subproblems. Each subproblem is solved by a DP algorithm
and the solution is stored in a database. In the subsequent iterations, if a subpro-
blem already addressed reappears, then that subproblem is not readdressed, but its
solution is exploited from the database. In EO algorithm [48, 61–70], the constraint
to satisfy the cooperation is checked on the members of the trial solutions before
the solutions are entertained for the next generation. Recently, researchers aimed
at developing MARL fusing RL, DP, and GT [71, 72]. In this book, we would
explore new algorithms of MARL and novel EO.

1.1 Introduction 3

1.2 Single Agent Planning

In single agent planning [5], an agent searches for the sequence of actions, for
which it reaches its predefined goal state from a given state optimally in terms
of predefined performance metric. The section describes the single agent planning
terminologies and algorithms. Here, single agent planning algorithm includes
search-based and learning-based planning algorithms.

1.2.1 Terminologies Used in Single Agent Planning

Definition 1.1 An agent [1] is amathematical entity that acts on its environment
and senses the changes in the environment due to its action. The agent is realized
by hardware/software means. A hardwired agent has an actuator (motors/levers)
and a sensor to serve the purpose of actuation and sensing, respectively.

A learning agent learns its right action at a given location/grid, called state, from
its sensory-action doublets. A planning agent identifies its best action at its current
state to obtain maximum reward for its action in the given environment.
In a single agent system, the environment includes a single agent. Naturally, the

learning/planning steps/moves of the agent is undisturbed by the environment.
Figure 1.1 offers architecture of a single agent system.

Definition 1.2 The state of an agent represents a
situation of the agent, concerning the position and/or
orientation of the agent in the environment at an instant.

A state-space is a collective set of states of an agent. The
definition of the state-space is required a priori, to
address a planning problem. Such description of the
state-space is problem specific. The state-space may be
discrete or continuous. We in this book, however,
dealwith discrete state-space. Figure 1.2 illustrates three
discrete states (s1, s2, and s3) of an environment.

Definition 1.3 The action selection by an agent is
done randomly or using specific strategies, such as
ε-greedy strategy [35] or the Boltzmann strategy [73].
Random action selection sometimes is inefficient, when
the same action is selected repeatedly during the learn-
ing phase.

Environment

Actuation

S
e
n
si

n
g

Agent 1

Figure 1.1 Single agent
system.

s1 s2 s3

Figure 1.2 Three
discrete states in an
environment.

4 1 Introduction

The ε-greedy strategy [35] allows an agent to select random actions from a pool
with a probability =ε. For example, if ε=0.2, then the agent would select 20 actions
randomly and 80 greedy actions out of 100 trials from a pool of actions.
Unlike the above, the Boltzmann strategy [73] employs a probability distribution

based on the reward function value obtained for individual actions. Usually, an
exponential distribution is used to determine the probability of an action in a pool
of actions. The larger is the individual reward, the higher is the action selection
probability. One control parameter temperature is used to tune the action selection
probabilities.
In Figure 1.3, we consider one agent capable of state-transitions using

only four actions: Left-move (L), Forward-move (F), Right-move (R), and
Back-move (B).

Definition 1.4 A state-transition [35] function at state s {s} due to action a {a}
is a mapping from (s, a) to s/ {s}, where s/ be a next state, i.e.

s δ s, a 1 1

In deterministic system, for each pair of (s, a), we have a fixed s/. In non-
deterministic (or stochastic) situation, for each pair of (s, a), we may have different
s/. Traditionally, non-determinism is handled in an easier way by assigning a prob-
ability mass for each state-transition δ(s, a), such that the sum of the state-
transition probabilities is equal to one.
Non-determinism creeps into the system by various ways. For instance, in robot

planning application, the condition of floor, such as its “slippery condition” is a
guiding factor to determine the transition probabilities.
Suppose, in Figure 1.4, a robot executes an action a

at state s and moves to the next state s/, receiving an
immediate reward r(s, a) as a feedback from the
environment. Suppose the floor on which the robot
moves on is slippery. In that case, from a state s because
of an action a the robot can have more than one

1

2

3

4

5

6

7

8

9

B

RL

L = Left move
F = Forward move
R = Right move
B = Back move

Robot
R

F
Figure 1.3 Robot executing action
Right (R) at state s1 and moves to the
next state s2.

s s/a

r (s,a)

Figure 1.4 Deterministic
state-transition.

1.2 Single Agent Planning 5

state-transition, each with a state-transition probability of P(s/ (s, a)), s/ [s1, s2,
s3], where,

s

P s s, a = 1 1 2

as shown in Figure 1.5. For each state-transition, the agent receives an individual
immediate reward r(s, a) with its corresponding state-transition probability.

Definition 1.5 A policy [35] π is a decision-makingmapping function, represent-
ing the probability assignment to a set of actions {a} at a given state s {s} such that,

a
π s, a = 1, i e

π s × a 0, 1 , 1 3

subject to

a

π s, a = 1 1 4

holds for each state s.

In Figure 1.3, at state s1 there is a set of finite possible actions: L, F, R, and B. Now,
random selection of an action from this finite set infinite times results in a policy,
π(s1, a) = 0.25, a {L, F, R, B}.
In a planning problem, an agent starts by executing its individual action from a

predefined state (starting state) with an aim to reach its individual predefined

a
s

r (s,a)

r (s,a)

r (s,a)

s1

s2

s3

s/ ∈ {s1,s2,s3}

∑

P (s1 | (s,a))

P (s3 | (s,a))

P (s/ | (s,a)) = 1

P (s2 | (s,a))

Figure 1.5 Stochastic state-transition.

6 1 Introduction

absorbing state (goal state), optimally in terms of time, path length, energy, and the
like. Feasibility and optimality are two desired criterions need to be satisfied while
addressing the planning problem [30].

Definition 1.6 Feasibility refers to the locomotion of an agent to a feasible next
state because of an action form the current state.

Definition 1.7 Optimality indicates the performance optimization of the pla-
nning algorithm in each step, by minimizing the system resource utilization.

Definition 1.8 The sequence of actions lead to the predefined goal state from a
given starting state maintaining the feasibility and optimality jointly in each step is
well known as plan.

To understand the concept of planning, Example 1.1 is given to realize the move-
ment of a single agent (here robot) in a two-dimensional discrete environment.

Example 1.1 Suppose a robot moves in a two-dimensional 5 × 5 grid environ-
ment as shown in Figure 1.6. There are 25 states and each state is represented
by an integer or the Cartesian coordinate (x, y), where x [1, 5] and y [1, 5].
An agent can execute one among the four possible actions a {L, F, R, B} at a state
s [1, 25]. After executing an action a at a state s, a state-transition takes place
and the robot moves from s to the next state s/ [1, 25] by (1.1). The collection

y

1

2

9

3

4

5

6

7

8

10

11

12 17

13

14

15

16

18

19

20

21

22

23

24

25

1 2 3 4 5

1

2

3

4

5

x

B

RL

L = Left
F = Forward
R = Right

B = Back

S0

SG

Robot

Figure 1.6 Two-dimensional 5 × 5 grid environment.

1.2 Single Agent Planning 7

of state-transitions for which the robot moves from its current state “1” to the goal
state “25” is called a feasible path. Among the feasible paths, the optimal one is
chosen. One optimal path (here in terms of number of state-transitions) is shown
in Figure 1.6 by dotted lines. The example can be made more interesting by adding
obstacles in the optimal path.
After finalizing a plan (sequence of actions) by an agent, the agent follows the

plan either by execution, refinement, or hierarchical approach.

Execution: In the execution phase, planner’s plan is executed in a simulator or by
a robot connected to the real environment. There are two types of robots for exe-
cution. In the first type, the robot is programmable and acts as an autonomous
agent. This approach has the provision of updating the plans after finite time inter-
val. However, most planning algorithms are designed to tackle new situations dur-
ing the planning phase and hence, the above type of execution is not preferred. The
second one is the special-purpose robot designed to solve a specific task given to it.

Refinement: Refinement is the evolution of the planning algorithms toward the
better performance as shown in Figure 1.7. In Figure 1.7, agents first compute a
collision-free path in the presence of obstacles after that agents optimize
(smoothen) the path. Finally, a trajectory is planned following the path and a feed-
back controller is added for that.

Hierarchical: In hierarchical model, each plan is considered as an action under a
larger plan. The same plan may also be defined as a subroutine under the larger
plan. In Figure 1.8, the master plan is known as the root node. Remaining subse-
quent plans act as an action for the master plan or plan. There may be infinite
number of plans under a master plan or plan. In Figure 1.8, n, m, and p are the
real positive integer number. In Figure 1.9 (hierarchical model), agent 1 interacts
with environment 1 and agent 2 with environment 2. Again in Figure 1.9,

Environment

Evaluate
collision-free

path

Optimize/Smoothen the
path satisfying differential

constraint

Plan a trajectory
along the path

Add a feedback
controller to track

the trajectory

Model

Execute

Figure 1.7 Refinement approach in robotics.

8 1 Introduction

environment 2 includes agent 1 and environment 1. So, Agent 2 interacts with the
environment 2 as well as 1.
The search-based planning algorithms are employed to evaluate low-cost pla-

nning paths in terms of path length, time, energy, and the like, for single-robot
planning. The search-based planning algorithms are popular mainly because of
their simplicity. The search-based algorithm compromises of the following
two parts:

1) In the first part, the realization of the goal following a number of feasible plans
is done by employing a search algorithm.

2) The second part is related to the optimal planning, which employs principle of
optimality to reduce the computational effort in the planning algorithms.

The search-based planning algorithms avoid the geometric models or differential
equations. The search-based algorithms also avoid uncertainty and hence they
avoid complications due to probability calculation.

Master plan

Plan1 Plan2 Plann

Plan11 Plan1m Plann1 Plannp

Figure 1.8 Hierarchical tree.

Agent 1

Environment 2

Environment 1 Agent 2

Sensing

Actuation Sensing

Actuation

Figure 1.9 Hierarchical model.

1.2 Single Agent Planning 9

1.2.2 Single Agent Search-Based Planning Algorithms

By search-based planning algorithms, a plan (or sequence of feasible actions) is
searched by one of the following methods: forward search, backward search,
and bidirectional search [30]. Forward search algorithm deals with the three var-
iant of states. First one is the state which has not been visited yet or the unexplored
one is known as unvisited state. If all possible state-transitions are explored in a
given state, then the state is referred to as a dead state. The state which has been
visited but still there exist a few unexplored next state is defined as alive state.
Breadth first [30], Depth first [30], Dijkstra’s [74], Best first search [30], Iterative
deepening [30], A-star (A∗) [32], and D-star (D∗) [6] are the examples of forward
search algorithms. The above forward search algorithms are extendable to the
backward search algorithm, by solving the same planning problem by traversing
from the goal state to the starting state. The bidirectional search is the combination
of forward and backward search. In every search-based planning algorithm, a tree
is maintained. For the forward (backward) search, initial (goal) state is the root
node of the tree. The advantage of bidirectional search is the radical reduction
in the exploration required. In this chapter, only the Dijkstra’s, A∗ and D∗, and
STRIPS like algorithms are discussed as given below.

1.2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm was proposed by computer scientist Edsger W. Dijkstra’s [74].
Dijkstra’s algorithm is employed to find out the shortest path between two nodes
in a graph. In case of robotics, each state is represented by a node of the graph. The
starting state is denoted by the source node and instead of finding the shortest path
from the source node to all other nodes, the shortest path is obtained from the
source node to a specific goal node (goal state of the robot).
The Dijkstra’s algorithm is explained for the 3 × 3 grid shown in Figure 1.10. In

Figure 1.10, there are nine states (nodes). State 1 is the source node and state 9 is

F

1

2

93

4

5

6

7

8

1 2 3

1

2

3

x

y

B

RL

L = Left
F = Forward
R = Right
B = Back

S0

SG

Robot

Figure 1.10 Two-dimensional 3 × 3
grid environment.

10 1 Introduction

the goal node. From each node there aremaximum four possible paths as shown in
the graph (Figure 1.11). Weights of all the edges are 1,∞, and−1. 1 is assigned for a
feasible edge. The self-loop and/or collision between robot and the boundary in
Figure 1.11 signify the penalty with reward of−1.∞ is assigned for an invalid edge.
The steps of Dijkstra’s algorithm are given in Algorithm 1.1.
The trace of the Dijkstra’s algorithm for robot path planning is given in Table 1.1.

The bold numbers are the selected node corresponding to the column’s node from the
current node. The run-time complexity of the Dijkstra’s algorithm is O(V log V
+ E), where V and E are the number of edges and nodes, respectively.

1.2.2.2 A� (A-star) Algorithm

A∗ is a heuristic search-based algorithm [32]. In A∗ algorithm, the quality of a node
is measured by introducing two cost functions: one is heuristic cost and another is
the generation cost. The heuristic cost, denoted by h(x), is a measure of distance
(here city block distance) between the current node x to the goal node. The gen-
eration cost of a node x, denoted by g(x), measures the distance of node x from the
source node. Total cost function at node x is the summation of f(x) and g(x). The
following definitions are required before explaining the A∗ algorithm [32].

Definition 1.9 A node x is called open if the node x has been generated and the
heuristic cost h(x) has been computed over it but it has not been expanded yet.

Definition 1.10 A node x is called closed if it has been expanded for generating
offspring.

The steps of A∗ algorithm is given Algorithm 1.2. Example 1.2 is given for better
understanding of A∗ algorithm in the perspective of robot path planning problem.

3 6 9

2 5 8

1 4 7

–1

–1
–1–1

–1

–1

–1
–1

1

1

1
11 1 1

1

1

1
1

1

1 1

1

1

1

1

1

1

1 1

1 1

Figure 1.11 Corresponding graph of
Figure 1.10.

1.2 Single Agent Planning 11

Algorithm 1.1 Dijkstra’s Algorithm

Input: Mark all the unvisited nodes and the current node is

set as the source node; Generate a search graph G, including

the starting node x. Mark node x as an open;

Output: The optimal path;

Begin

Initialize: Set a distance value to all the nodes in the

graph. Set zero for the source node (here state 1) and ∞ for

the remaining nodes;

Repeat

1) From the current node, explore all the unvisited neigh-

bors and evaluate their distances from the initial node.

(For example, let the current node, x has a distance of 3

unit from the source node, and an edge connecting x with

another node y has distance of 2. Now, the distance to y

through x from the source node becomes 3 + 2 = 5. Compare

the currently evaluated distance with the previously

recorded distance (∞ at the beginning). If the cur-

rently evaluated distance is less than previously

recorded distance, then update the database by the cur-

rently evaluated distance, otherwise do nothing.

2) Once all the neighbors of the current node have been

explored, the current node is marked asvisited (not

checked further), and the evaluated distances are

recoded as the final and minimal distances.

3) Select one unvisited node with smallest distance as the

next current node;

Until goal state reached;

End.

Table 1.1 Trace of Dijkstra’s algorithm for Figure 1.11.

Nodes

1 2 3 4 5 6 7 8 9

Visited nodes {1} −1 1 ∞ 1 ∞ ∞ ∞ ∞ ∞

{1,2} 1 −1 2 2 2 ∞ ∞ ∞ ∞

{1,2,3} 2 1 −1 3 2 3 ∞ ∞ ∞

{1,2,3,6} 3 2 1 4 3 −1 5 6 4

Example 1.2 In this example, the A∗ algorithm is employed to find the shortest
path between source node 1 to the goal node 9 as shown in Figure 1.10. The
heuristic cost h(x) of node x (xx,xy) is given by the city-block distance and it is
defined in (1.5).

Algorithm 1.2 A� Algorithm

Input: Generate a search graph G, including the starting node

x. Mark node x as an open;

Output: The optimal path;

Begin

Initialize: Create a list of closed node keeping them

initially empty;

Repeat

1) If list of open node is empty, then exit with failure;

2) Let node n is selected from the list of open nodes and

removes it from the set. Put the node n on the closed nodes

list;

3) If n is the goal node, then exit and return the solution

obtained to trace a path from the node n to node x in the

search graph G;

4) Expand node n and generate the set M, which contains its

successors that are not already the ancestors of n in G.

Add the elements of M as successors of n in G;

5) Point n from each members of M, which does not belong to G

and add them in the open list. If for all the members of M

already belong to open or closed list of nodes, then

redirect the pointer to n, subject to the shortest path

is found through n. If all the members of M are belong

to closed list of nodes, then redirect the pointers of

its entire offspring in G, so that they point toward

the back along the best paths found till now to these

offspring;

6) Sort the elements of open list in order of increasing cost

function (sum of heuristic cost and generation cost);

Until goal state reached;

End.

1.2 Single Agent Planning 13

h x = xg − xx + yg − yx , 1 5

where (xg, yg) is the goal coordinate.
The trace of the A∗ algorithm is given in Table 1.2. In step 0, robot starts from

node 1 and its heuristic cost is 4 and generation cost is 0. Hence, total cost is 4.

Table 1.2 Trace of A∗ algorithm from Figure 1.10.

Step State-space
Heuristic
cost

Generation
cost

Total
cost

0 1 4 0 4

1

1

42

F R

For node 2
(selected)

3 1 4

For node 4 3 1 4

2

1

42

F R

3 5 1

F R B
X

For node 3
(selected)

2 2 4

For node 5 2 2 4

3

1

42

F R

3 5 1

F R B
X

2 6
X

B R

1 3 4

4

1

42

F R

3 5 1

F R B
X

2 6
X

B R

5 9

B R
X

Goal

0 4 4

The bold values signifies the selected node and its corresponding cost.

14 1 Introduction

In step 1, node 1 is expanded by the action forward (F) to node 2 and by the action
right (R) to node 4. The total cost of both the nodes 2 and 4 is 3 + 1 = 4. Node 2 is
selected and it is expended further by the actions forward (F), right (R), and back
(B) to the nodes 3, 5, and 1, respectively. The total cost of the nodes 3 and 5 is 2 +
2 = 4. Node 1 is not selected following Definition 1.10. Node 3 is selected and it is
extended further to node 2 and 6 by the action back (B) and right (R), respectively.
Here, node 2 is a closed node by Definition 1.10 and hence it is eradicated. So, node
6 is expanded to node 6 and 9 by the action back (B) and forward (F). Again node 6
is eradicated by Definition 1.10 and node 9 is the goal state. The total cost function
of node 9 is 4 with 0 heuristic cost. Hence, optimal path is generated by sequen-
tially following the nodes 1, 2, 3, 6, and 9.

1.2.2.3 D� (D-star) Algorithm

Unlike A∗ [68], D∗ [6] algorithm may be employed to efficiently plan in dynamic
unknown or partially known environments, by adjusting the weights of the edges
(arcs). In the present path-planning application, each state is assumed as a node
and weight of each edge (arc) connecting two nodes represents the cost of moving
from one node to another. Initially, a path is planned from current node to the goal
employing the A∗ algorithm using the known information. In the journey of the
robot toward the goal state, it discovers the presence of obstacles in its path and the
graph is modified by adapting the arc weight. The robot again computes the short-
est path from its node position to the goal. The process continues until it reaches its
goal position or it concludes that the goal is inaccessible. The trace of the D∗ algo-
rithm is shown below in Table 1.3 by adding an obstacle in state 3 of Figure 1.10 as
shown in Figure 1.12. Steps 0 and 1 are same as A∗ algorithm. In step 2, node 3 is
expanded to node 1 and 5 by action right (R) and back (B), respectively.
Node 3 is not accessible as there is an obstacle at node 3. So, node 5 is expanded

by left (L), forward (F), right (R), and back (B) actions to nodes 2, 6, 8, and 4,
respectively. Nodes 2 and 4 are closed nodes following Definition 1.10. Selecting
node 6 and expanding it to nodes 5 and 9 by actions back (B) and right (R), respec-
tively, the goal node 9 is reached. So, optimal path is generated by sequentially
following the nodes 1, 2, 5, 6, and 9.

1.2.2.4 Planning by STRIPS-Like Language

Representation is the main bottleneck of the earlier explained search-based pla-
nning techniques due to enormous state-space. To address such representation
problem, STRIPS-like language [30] is proposed by the Stanford Research Institute
Problem Solver group, which is expressive enough to characterize a planning prob-
lem logically. STRIPS stands for Stanford Research Institute Problem Solver.

1.2 Single Agent Planning 15

Table 1.3 Trace of D∗ algorithm from Figure 1.12.

Step State-space
Heuristic
cost

Generation
cost

Total
cost

0 1 4 0 4

1

1

42

F R

For node 2
(selected)

3 1 4

For node 4 3 1 4

2

1

42

F R

15

R BX

For node 5 2 2 4

3

1

42

F R

15

R BX

2 6 8 4

RFL B
X

X

For node 6
(selected)

1 3 4

For node 8 1 3 4

4

1

42

F R

15

R BX

2 6 8 4

RFL B
X

X

5 9

B RX

Goal

0 4 4

The bold values signifies the selected node and its corresponding cost.

y

F

1

2

93

4

5

6

7

8

1 2 3

1

2

3

x

B

RL

L = Left
F = Forward
R = Right
B = Back

S0

SG

Robot

Figure 1.12 Two-dimensional 3 × 3
grid environment with an obstacle.

STRIPS is the first well-known logic-based representation of the discrete planning
algorithm, which is the extension of first-order logic (propositional logic). The fol-
lowing representations are employed in STRIPS.

State: In STRIPS, an agent decomposes the environment into logical conditions
(TRUE or FALSE), and then the state is represented by conjunctions of func-
tion-free ground literals. Ground literal refers to the predicates, which cannot
break any more. Suppose, a home service robot is instructed to bring a cup of
tea with a biscuit and a magazine. So, in STRIPS, the initial state is formed using
the following predicates “at(home),” “┐have(tea),” “┐have(biscuit),” and “┐have
(magazine).” Here, home represents the initial position. Now, initial state is the
conjunctions of the function-free predicates (ground literals), i.e. “at(home)
˄┐have(tea)˄┐have(biscuit)˄┐have(magazine).” However, the goal state is the
“at(home)˄have(tea)˄have(biscuit)˄have(magazine)”. Now, the task is to find out
the sequence of actions to reach from the initial state to the goal state.

Action: An action follows the following two conditions: preconditions and effect.
In precondition, an agent needs to satisfy certain feasibility condition before
executing an action. For example, for “have(tea)” the agent must go to a nearby
tea stall because tea is not available at(home). Also the preconditions are always
positive ground literals. On the other hand, effects are the conjunction of positive
and negative ground literals. For example, if there is an action “go(tea stall)” from
“at(home)”, then the precondition is “at(home)˄path(here, there)” and the effect is
“at(tea stall)˄┐at(home)”. Hence, to reach the goal state “at(home)˄have(tea)˄have
(biscuit)˄have(magazine),” an agent must satisfy all the preconditions and effects.

1.2.3 Single Agent RL

In the above perspective, learning can assist an agent to select actions. In single
agent RL [35, 75–77] (Figure 1.13), an agent receives a reward/penalty as a feed-
back due to an action at its present (current) state or situation from the surround-
ing (environment). Such scalar feedback measures the quality of the action in that
state. In the literature of RL, this quality value is well known as state–action value.
The robot remembers or stores the <state, action, reward> profile as an experience
for future reference. Once the robot learns all possible
<state, action, reward> profiles, it plans optimally in
terms of time and/or energy, from any state within the
environment it learns. The single agent RL can be
explained by the well-known multiarmed bandit
problem [78, 79].

1.2.3.1 Multiarmed Bandit Problem

In the literature of English, a bandit refers to a robber
or gambler, who belongs to a gang typically isolated

Robot

Environment

Action

Current state

Next state

R
ew

a
rd

 o
r

P
e
n
a
lty

Figure 1.13 Structure of
reinforcement learning.

1.2 Single Agent Planning 17

from the human society. If a bandit has only one arm, then the bandit is called one-
armed bandit. The one-armed bandit is also well known as a slot machine, because
a slot machine is operated by a button located on the front panel of the machine.
A slot machine is a casino gambling machine, which rolls three or more times once
the button is pushed. As the slot machine stops rolling, it pays off the bandit based
on the pattern formed by the symbols visible on the front side of the machine.
A multiarmed bandit consists of a series of slot machines arranged in a row. In
multiarmed bandit problem [78, 79], the bandit has to decide which slot machine
to play and for how many times to maximize the sum of the rewards earned.
The gambler starts playing the multiarmed bandit problem without any knowl-

edge about the slot machines. In each trial, the gambler faces a trade-off between
the “exploration” of a new slot machine to obtain better reward than the present
rewards, and “exploitation” of a slot machine that has already obtained highest
expected rewards. Similar trade-off is experienced by a reinforcement learner in
RL. Hence, the multiarmed bandit is employed to manage several projects in a
large organization, where initially the properties of the projects are partially
known or unknown, but as time passes, the properties becomes fully known to
the bandit.
Suppose, a multiarmed bandit [78, 79] has N-slot machines (or N-arms), which

are being played by the bandit, and the bandit receives different rewards for each
arm, with an aim to determine the arm having the maximum reward. To choose
the best arm, i.e. an arm corresponding to the maximum reward (or greedy
reward); the agent (or bandit) may compute the running average of rewards of
all the arms given in (1.6).

Qt a =
r1 + r2 + + rk

k
, 1 6

where Qt(a) refers to the estimated value of the action a in t trials (play). We
assume that action a was played k times in t trials and rk was the reward of choos-
ing the action (arm) a at kth time step. As choosing an arm is analogous to choos-
ing an action, the value of each arm may also be defined as the expected reward of
the arm. Let the expected optimal reward of the action a is Q∗(a). Based on the
greedy action selection policy, the optimal action a∗ is chosen by (1.7).

a∗ = argmax
a

Q∗ a 1 7

The said greedy action selection may trap the agent (bandit) in local minima. To
overcome the problem of trapping in local minima, an agent has to explore a new
arm to receive new reward (well known as exploration), which might be better
than the present reward. Randomization of the probability of choosing an arm,
which is not the greedy one, is referred to as the exploration. In RL, always there
is a trade-off between the exploration and exploitation. For example, let N = 10 in

18 1 Introduction

the said multiarmed bandit problem. Each arm (analogous to an action) a [1, 10]
has a random reward given in (1.8) drawn from a normal random distribution with
mean zero and variance one, N(0, 1). Equation (1.8) represents the true value or
expected reward of the 10 arms.

Q∗ a = 0 0325,0 8530,0 1341,0 0620,−0 2040,0 6525,0 8927,−0 9418,
−1 4122,0 8089

1 8

By (1.7) and (1.8),

a∗ = argmax
a

Q∗ a

=argmax 0 0325,0 8530,0 1341,0 0620,−0 2040,0 6525,0 8927,

−0 9418,−1 4122,0 8089

= 7

1 9

By (1.9), seventh action is the optimal action denoted by a∗. The learning process is
started by estimating the true values from the earlier distribution of N(0, 1) setting
the exploration parameter ε to 0.2 and the first estimate is given in (1.10).

Q0
est a = 0 6761,−1 4321,−0 1824,3 1140,−1 5285,−2 4264,−1 6687,

−0 5252,−0 1021,−0 7124

1 10

By (1.7), (1.10), and assuming Q∗ a = Q0
est a ,

a∗ = argmax
a

Q∗ a

=argmax 0 6761,−1 4321,−0 1824,3 1140,−1 5285,−2 4264,

−1 6687,−0 5252,−0 1021,−0 7124

= 4

1 11

By (1.11), the bandit should choose the fourth action but by (1.9), the optimal
action is the seventh one. So, the greedy choice is misleading the action selection.
Several estimations are done to update the Qest(a) vector using (1.6). The learning
process continues until the agent recognizes the seventh action as its best choice
among the 10 actions. The variation of average reward with the number of trial for
different ε is given in Figure 1.14.

1.2 Single Agent Planning 19

1.2.3.2 DP and Bellman Equation

DP [46] is an optimization technique, which transforms a large complex problem
into a sequence of simple problems, by dividing it into finite overlapping subpro-
blems, where overlapping indicates that the subproblems can recursively form the
actual large complex problem. Breaking a large complex problem into finite over-
lapping subproblems is the condition of applying DP upon the large complex prob-
lem. In DP, there is a relation between the solution offered by the large problem
and solutions offered by the subproblems. In the literature of optimization, this
relationship is well known as the Bellman equation (BE) or DP equation.
Each subproblem is solved by a DP algorithm and the solution is stored in a data-

base. In the subsequent iterations, if a subproblem already addressed reappears,
then that subproblem is not readdressed, but its solution is exploited from the data-
base. Finally, one optimal solution is chosen from the evaluated value functions.
The basic four steps for a DP algorithm are given below [46].

1) Divide the large complex problem into finite overlapping subproblems.
2) A value function is defined recursively based on the overlapping subproblems.
3) Compute and memorize the value functions of the overlapping subproblems to

avoid repetition.
4) Obtain an optimal solution from the evaluated value functions.

Value function is the heart of DP, as it expresses the quality of a state because of an
optimal action in terms of numerical value. If one needs to maximize the value
function v(s) at a state s {s}, then using the principle of DP, the problem can
be expressed in the BE as given in (1.12).

v s = max
a

r s, a + γv s , γ 0, 1 , 1 12

0 200 400 600 800 1000

0

0.5

1

1.5

Number of trials

A
ve

ra
g
e
 r

e
w

a
rd

ε = 0.2

ε = 0.01

ε = 0.1

ε = 0.0

Figure 1.14 Variation of average reward with the number of trial for different ε in
10-armed bandit problem.

20 1 Introduction

where r(s, a) refers to the reward received at state s
because of an action a and v(s/) denotes the value func-
tion at next state s/.

1.2.3.3 Correlation Between RL and DP

It is apparent from the earlier sections that the RL
works on the principle of reward/penalty received by
the agents as a feedback from the environment, DP is
nothing but an optimization technique, which opti-
mizes the BE [71, 72]. Figure 1.15 indicates that the sin-
gle agent Q-learning (QL) is the combination of the RL
and the DP. The details of single agent Q-learning are
given in the next section.

1.2.3.4 Single Agent Q-Learning

Q-learning is one well-known paradigm among the RL techniques coined by Wat-
kins andDayan [80] in 1989. In Q-learning, an agent (robot) adapts in an unknown
environment, and receives two types of rewards due to an action at a given state
within the environment. One reward is immediate reward received as a feedback
from the environment as explained earlier in Section 1.2.3. Another reward is eval-
uated at the next state. The evaluated reward at the next state is of two types based
on the nature of the environment. If the environment is deterministic, then best
(or optimal) future reward is evaluated at the next state, shown in Figure 1.16.
Since, in deterministic environment, an agent can move from a given state to
the next state with probability one due to an action. On the other hand, in stochas-
tic environment, a robot moves from a given state to the next one by assigning a
probability in [0, 1] due to an action. Hence, in stochastic environment, the robot
evaluates the expected best (or optimal) future reward at the next state. The
expected best future reward in the next state is the expectation of selecting the best
action in the next state in terms of numerical value. The mechanism of evaluating
the expected best future reward in Q-learning is shown in Figure 1.17.
In Figure 1.16, initially all the Q-values at Q-table are set to zero. At the current

state 1, the robot executes an action right (R) and receives an immediate reward r
(1, R) = 0 from the environment. In the next state 3, maximum future reward is
evaluated from the Q-table. Until (3, F) is not explored, in the next state, Q(3,
L) = 81 is the best future reward and updated Q-value at (1, R) is Q(1, R)=72.9.
On the other hand, once (3, F) is explored in the next state, Q(3, F) = 100 is the
best future reward and updated Q-value at (1, R) is Q(1, R) = 90.
In Figure 1.17, “R” inside the circle symbolizes a robot. Here, each state 1 to 3 has

distinct frictional properties. In such stochastic environment, any one next state
among the three possible next states may be reached due to left action executed

QL

DPRL

Figure 1.15 Correlation
between the RL and DP.

1.2 Single Agent Planning 21

by R at 1. So, there is a probability of moving to the next state from the current state
due to an action. In the literature, such probability is well known as the state-
transition probability and the expected future reward is evaluated thereof.
In Q-learning, the future reward prediction depends on the current state–action

pair. It is apparent that the future reward prediction in Q-learning of an agent
depends exclusively upon the current state but not on the past state–action pairs,
which is the Markov property. The Markov property is also well known as the
memoryless property. This idea is framed inside the Markov Decision Process
(MDP). In Q-learning, theMDP plays a significant role in finding the optimal value
function corresponding to the optimal policy π∗. The definition of theMDP is given
in Definition 1.11 [81].

0 0

0 0 0

81 100 89

S
ta

te

Action

G

1

2

3

4

1

2

3

0 0 04

0

0

81

0

L F R B

–1

1000

F

L R

B

Q(1, R) ← r(1, R) + γ max Q(3, a); a ∈ {L, F, R, B}

γ = 0.9

80.1

r(1, R) = 0

Environment

89 100 Q-table

80.1 90

Q-learning

90

R1

Actions

a

Figure 1.16 Single agent Q-learning.

Possible next state

123

R

Current state

Left

Figure 1.17 Possible next state in stochastic situation.

22 1 Introduction

Definition 1.11 AMDP is a 4-tuple S,A, r, p [82], [83], where S refers to a finite
set of states, A denotes a finite set of actions, r : S ×A R refers to the reward
function of the agent, and p : S ×A [0, 1] indicates the state-transition
probability.

v s, π∗ = max
a

r s, a + γ
s

p s s, a v s , π∗ , 1 13

where v(s, π∗) and v(s/, π∗) represent the value at current state s and next state S/

due to optimal policy π∗, γ denotes the discounting factor, p[s/ (s, a)] is the state-
transition probability to reach next state s/ from current state s due to action a A,
and r(s, a) is the immediate reward at state s due to action a.

If an agent directly learns its optimal strategy without knowing either reward func-
tion or the state-transition probability, then the learning policy is calledmodel-free
RL [84]. Q-learning is one such model-free learning, involving the basic equation
given in (1.14).

Q∗ s, a = r s, a + γ
s

p s s, a v s , π∗ 1 14

Here,Q∗(s, a) is the optimal Q-value. After infinite revisit of state S due to action
a, Q(s, a) turns to Q∗(s, a). If next state is deterministically known for each action,
then the Q-learning is called deterministic. In deterministic situation, p[s/

(s, a)] = 1, s/.
Combining (1.13) and (1.14), we can write,

v s, π∗ = max
a

Q∗ s, a 1 15

Hence, the problem transforms to determining Q∗(s, a) for all (s, a). If Q∗(s, a) is
found, one can identify the action which maximizes the v(s, π∗). So, the Q-learning
update rule becomes,

Q s, a = r s, a + γmax
a

Q δ s, a , a , 1 16

where

s δ s, a 1 17

be the state-transition function. Hence, Q(s/, a/) = Q(δ(s, a), a/). By combining
(1.16) and (1.17), we obtain (1.18).

Q s, a = r s, a + γmax
a

Q s , a , 1 18

1.2 Single Agent Planning 23

where max
a

Q s , a indicates the action a/ A for which maximum Q-value,

Q(s/, a/) is received at next state s/. Now, the Q-learning update rule with learning
rate α (0, 1] is given by (1.19).

Q s, a 1− α Q s, a + α r s, a + γQ s , a∗ 1 19

However, in the stochastic situation, the state-transition probability to reach the
next state s/ {s} from the state s because of action a, is P[s/ (s, a)] 1. So, Q-value
adaption rule in the stochastic situation is given by (1.20) [84]:

Q s, a = 1− α Q s, a + α r s, a + γ
s

P s s, a max
a

Q s , a

1 20

After infinite revisit of (s, a), Q-value, Q(s, a) turns to the optimal Q-value
Q∗(s, a). The convergence proof of (1.20) is given in [2]. Single agent Q-learning
steps are given in Algorithm 1.3.

1.2.3.5 Single Agent Planning Using Q-Learning

Figure 1.18 explains the single robot planning mechanism. At first, the robot (R1)
observes its current state 3 and its corresponding Q-values from the Q-table. Then
at 3, the robot evaluates the action corresponding to the maximum Q-value using

Algorithm 1.3 Single Agent Q-Learning

Input: Current state s and action set A;

Output: Optimal Q-value Q∗(s, a), s, a;

Begin

Initialize: Q(s, a) 0, s, a and γ [0, 1);

Repeat

Select an action a A randomly and execute it;

Receive an immediate reward r(s, a);

Evaluate next state s/ δ(s, a);

Update: Q(s, a) by (1.19) for deterministic situation,

by (1.20) for stochastic situation and s s/;

Until Q(s, a) converges;

Obtain: Q∗(s, a) Q(s, a), s, a;

End.

24 1 Introduction

the learned Q-table. In Q-table, at the row of 3, the action R corresponds to the
maximum Q-value. Robot executes the action R and moves to the next state 4.
The above steps are repeated until the robot reaches it goal state.

1.3 Multi-agent Planning and Coordination

Multi-agent planning and coordination are two almost similar terminologies both
belonging to the multi-agent systems. Multi-agent planning refers to determining
the sequence of feasible actions of the agents to achieve individual goals maintain-
ing optimality. However, coordination refers to skillful and effective interaction
among the agents to serve the purpose of all the agents. The section describes
the multi-agent planning and coordination terminologies with corresponding
algorithms.

1.3.1 Terminologies Related to Multi-agent Coordination

A multi-agent system (MAS) includes several agents. Naturally, the action of an
agent influences the rewards received by the other agents. This calls for special
arrangement for learning and planning in a MAS. Figure 1.19 outlines the archi-
tecture of a MAS.
In the MAS, a state-space is a collective set of states of an agent. The definition of

the state-space is required a priori, to address a planning problem. Such descrip-
tion of the state-space is problem specific. In a multi-robot coordination problem,
instead of states, the joint state is defined.

Definition 1.12 A joint state is the collection or union of individual states in a
fixed order following the ascending order of the agents.

Suppose si is the individual state of agent i [1,m], then the joint state form agents
system is given by S = < si > m

i = 1

Environmentargmax (81, 100, 89, 81)

81 100 89

S
ta

te

Action

3 81

L F R B

Planning

31

2 4

R1

G

F

Figure 1.18 Single agent planning.

1.3 Multi-agent Planning and Coordination 25

Definition 1.13 The phrase: joint-action is a widely used term in the MAS and is
defined by the collection or union of individual actions in a fixed order following
the ascending order of the agents.

Suppose ai is the individual action of agent i [1,m], then the joint action for them
agent system is given byA = < ai > m

i = 1 In Figure 1.20, due to joint action <R, L>
at <1, 8> robots move to the joint next state <4, 5> as shown in Figure 1.20.

1.3.2 Classification of MAS

There exist several state-of-the-art attributes, based on which the MAS is classified
[1, 37]. Attributes relevant to the present book are employed here to classify the
MAS. Basically MAS is of two types: cooperative and competitive. Like any social
living beings, an agent belonging to cooperative MAS cooperate with remaining
agents. However, in the competitive MAS, agents do compete among themselves
to acquire limited resources required for livelihood. In this chapter, we consider
only the cooperative MAS.

Classification based on cooperation: Classification of MAS based on the coop-
erative aspect of the agents is done by measuring the ability of an agent to coop-
erate with remaining agents while performing a task. Agents cooperate with the

Environment

A
ctuation

S
en

si
ng

Agent 1
Actuation

S
en

si
ng

Agent

m

A
ctuationS

en
si

ng

Agent 2

Figure 1.19 Multi-agent system with m agents.

1

2

3

4

5

6

7

8

9

B

RL

L = Left move

F = Forward move

R = Right move

B = Back move

Robot
R

Robot
L

F Figure 1.20 Robots executing joint
action <R, L> at joint state <1, 8> and
move to the next state <4, 5>.

26 1 Introduction

remaining agents are well known as cooperative agent and those do not cooperate
rather they compete with others are distinguished as noncooperative agent. The
goal of cooperative agents is to achieve a common objective. On the other hand,
the noncooperative agents have always conflicting objectives. Figure 1.21 provides
a detailed classification of cooperative agents only based on the knowledge level.

Classification based on knowledge level: Further classification of cooperative
MAS can be done based on the knowledge level of an agent about the remaining
agents in the same team. In Figure 1.21, one is aware agent, which has knowledge
about its teammates and the unaware agent does not have such knowledge about
the remaining agents in the environment.

Classification based on coordination: Next, the aware agents are classified
based on the coordination procedure employed by the agents. There are three types
of coordination. In strong (weak) coordination, agents strictly (do not strictly) fol-
low the coordination protocols. In the third type, i.e. not coordinated, agents do not

Cooperative

Aware

Cooperation

Strongly

coordinated

Weakly

coordinated

Not

coordinated

Knowledge

Strongly

centralized

Weakly

centralized

Coordination

Organization

Heuristic

search based

Unaware

Distributed

Optimization

Multi-agent
reinforcement

learning (MARL)
based

Communication

Communication
dependent

Communication

independent

Competitive

MRS

Figure 1.21 Classification of multi-robot systems.

1.3 Multi-agent Planning and Coordination 27

coordinate with other agents. Classification based upon the coordination is shown
in Figure 1.21.

Classification based on organization: Strongly coordinated agents are further
classified based on the responsibilities of the agents in a team (or organization) as
shown in Figure 1.21. By this aspect, the centralized approaches are distinguished
from the distributed approaches. In the centralized approach, an agent is elected as
a leader for the entire team. The leader is responsible to distribute the task among
all the agents in the team. The remaining agents (follower) act according to the
instructions provided by the leader. However, in the distributed system, agents
are completely autonomous in view of the decision-making process, as there is
no leader in the team. On the other hand, the centralized system can further be
classified based upon the way the leader is elected among the team members. If
only one robot leads the complete mission, then such centralized system is known
as strongly centralized. However, in a weakly centralized system, more than one
agent is allowed to lead the team toward the completion of the mission.

Classification based on communication:Distributed robots are classified based
upon the dependency on communication among the agents as shown in
Figure 1.21. There are two types of distributed agents, one is communication
dependent, and another is communication independent.
Besides the above classification, the MAS can further be classified considering

“Team Composition” (combination of heterogeneous and homogeneous robots),
“System Architecture,” and “Team Size.”
Several approaches are available in the literature of multi-robot coordination.

Among them, coordination by MAQL and EO algorithms are described in this
chapter. To improve readability, GT and DP are briefly described below.

1.3.3 Game Theory for Multi-agent Coordination

GT formally analyzes the strategic situation of the MAS, where each agent poten-
tially affects the interests of other agents in the environment [38, 41, 42]. Two types
of game are considered in the present book: static and dynamic. The definitions of
static and dynamic games are given below.

Definition 1.14 A static game with m player is defined by a tuple m, A1, A2, …,
Am, r1, r2, …, rm [42], where Ai, i [1,m] is the set of finite actions of player i and
ri × m

i = 1Ai R, i 1,m refers to the reward function of player i, where, ×
denotes the Cartesian product.

Definition 1.15 If a static game is played repeatedly, then the game is well
known as repeated game.

28 1 Introduction

In static game, multiple agents execute their actions at a joint state and agents do
not have any state-transition. Hence, a static game is also known as state-less
game. Now, to handle the games with state-transitions, another version of game
called dynamic game is defined below.

Definition 1.16 A dynamic gamewithm number of agents is defined as a 5-tuple
m, {S}, {A}, ri, pi where S = × m

i = 1Si is the joint state-space, A = × m
i = 1Ai is

the joint action-space, ri= {S} × {A} R is the reward function at joint state–action
of agent i, and Pi = {S} × {A} [0, 1] is state-transition function of agent i.

Suppose an agent i [1,m] selects an action ai from the pool of its action set Ai and
plays the repeated game. The conjunction of the individually chosen actions for all
the agents form a joint action A × m

i = 1Ai Let πi(ai) refers to the probability of
selecting an action ai Ai by agent i, where

πi Ai 0, 1 1 21

If πi(ai) = 1, then the strategy of agent i, πi is deterministic for ai Ai. The strat-
egy profile for m agents is given by

Π = πi i 1,m 1 22

The strategy profile

Π− i = π1,…, πi− 1, πi + 1,…, πm 1 23

denotes the strategy of all the agents except the strategy of agent i, πi, where

Π = Π− i πi 1 24

It is apparent from Definitions 1.14 and 1.16 that a dynamic game is also a static
game with state-transitions. In a static game, agents look for a balanced condition
or equilibrium among them, such that no one would receive any incentive by uni-
lateral deviation. In the literature, two well-known equilibria exist: Nash equilib-
rium (NE) and correlated equilibrium (CE).
Before understanding equilibrium, let at a given state s an agent (here robot)

have an action set A. An action a∗ A corresponding to the maximum reward
at state s refers to the optimal or greedy action. Collection of such optimal actions
executed at each state is termed as optimal policy or strategy. In a particular state, if
a robot executes an action, then the action is well known as a pure strategy. How-
ever, the mixed strategy is the randomization over the pure strategies. To under-
stand mixed strategy, rock-paper-scissor game is given in Example 1.3.

Example 1.3 Rock-paper-scissor [41, 42] is a two player hand game, played for
fun by kids and sometimes for decision-making by adults. Each player has three
options: rock, paper, or scissor and a player can choose one in a trial. The player

1.3 Multi-agent Planning and Coordination 29

expresses his/her choice to another player by using a hand to form one of the sha-
pers as shown in Figure 1.22.With these options, this game can have three possible
outcomes excluding a tie. The three possible outcomes are given one by one.

1) One rock crushes scissor. Here, player playing rock beats the player playing
scissor.

2) But if paper covers rock, then the player chooses to play paper beats the player
playing rock.

3) On the other hand, if scissors cut paper, then the play of paper is defeated by the
play of scissor.

However, if the choices of both the players are same, then a tie occurs and the
game is replayed until the tie is broken.
After finite trials of the game, the rewards of both the players are given in the

reward matrix as shown in Figure 1.23. In Figure 1.23, one cell contains two
rewards. The first reward is for Player 1 and second one is for Player 2. In case
of a tie, both the players receive 0 reward. If a player wins the game, then the player
is rewarded by 1. On the other hand, if the player loses, then the player is penalized
by −1.
It is apparent that in the rock-paper-scissor game (Figures 1.22 and 1.23),

optimal mixed strategy of Players 1 and 2 is to execute each action with a proba-
bility 1/3. Now, suppose Player 1 knows in advance that the Player 2 is playing the
pure strategy “paper,” then optimal pure strategy for Player 1 is “scissor” as it
provides maximum reward to Player 1.

(a) (b) (c)

Figure 1.22 Hands gestures in rock-paper-scissor game: (a) rock, (b) paper, and (c) scissor.

P
la

ye
r

1

 Player 2

Rock Paper Scissor

Rock (0,0) (–1,1) (1,–1)

Paper (1,–1) (0,0) (–1,1)

Scissor (–1,1) (1,–1) (0,0)

Figure 1.23 Rock-paper-scissor game.

30 1 Introduction

1.3.3.1 Nash Equilibrium

NE is a solution concept of the multi-agent interactive system from where no
player deviates to maintain its current reward, which is the maximum one. The
Definition of NE is given in Definition 1.17. NE is of two types: pure strategy
NE (PSNE) and mixed strategy NE (MSNE). To evaluate PSNE at a joint state,
an agent selects an action from its own action set, which corresponds to its max-
imum reward due to joint action, where remaining agents’ actions are kept fixed.
The joint action at a joint state for which all the agents receive maximum reward
and no one has any selfish intension to deviate from its chosen action is well
known as PSNE at that joint state. An example is considered in Figures 1.24
and 1.25 to evaluate PSNE in a static game or state-less or one-stage or normal-
form game [85].

Definition 1.17 NE is a stable joint action (or strategy) at a given joint state (S) of
a system that involvesm interacting agents, such that no unilateral deviation (devi-
ation of an agent independently) can occur as long as all the agents follow the same
optimal joint action AN = < a∗i >

m
i = 1 at a joint state S {S} for PSNE. Further, for

a MSNE, agents perform the joint action A = < ai > m
i = 1 with a probability

p∗ A = m
i = 1p

∗
i ai , where p∗i ai 0, 1 , p∗ A 0, 1 .

Let a∗i ai be the optimal action of agent i at si and A∗
− i Abe the optimal joint

action profile of all agents except agent i at joint state S = < s j > m
j = 1,j i and Qi(S,

A) be the joint Q-value of agent i at S because of joint action A {A}. Then the
condition of PSNE at S is

Qi S, a
∗
i ,A

∗
− i ≥ Qi S, ai,A

∗
− i , i

Qi S,AN ≥ Qi S,A , i where AN = < a∗i ,A
∗
− i > and A = < ai,A

∗
− i >

1 25

–10 20

1 10
10 20

1

L
L

F

F
L

F

L F

LL LF FL FF

S/

S

LL LF FL FF

S/

S

Joint actions Joint actions

J
o
in

t s
ta

te
s

J
o
in

t s
ta

te
s

–10, 10 20, 20

1, 1 10, –10

L

L

F

F

Action of R2

A
c
tio

n
 o

f R
1

–10 10120

Q1
Q2

10 –10120

Action of R2Action of R2

A
c
tio

n
 o

f R
1

A
c
tio

n
 o

f R
1

S S S

(a) (b)

(c) (d)(e)

–10

Figure 1.24 Reward mapping from joint Q-table to reward matrix.

1.3 Multi-agent Planning and Coordination 31

and condition of MSNE at S is

Qi S, p
∗
i , p

∗
− i ≥ Qi S, pi, p

∗
− i , i, 1 26

where Qi S, p =
A
p A Qi S,A and p∗− i A− i = m

j = 1,j i p
∗
j a j be the joint

probability of selecting joint action profile of all agents except agent i denoted
by A−i A.
Agents follow Figure 1.25 to evaluate PSNE AN = < a∗i ,A

∗
− i > and Figure 1.26

for MSNE < p∗i ai , p∗− i A− i > , respectively, at joint state S.

Pure Strategy NE

Assuming in the one-stage game there are two robots R1, R2 and each has two
actions. Robot 1 (R1) selects one action from the set {L, F} and robot 2 (R2) selects
one from {L, F}. As a result there is a joint action set. The joint action set {LL, LF,

20, 20

–10, 10 20, 20

1

(a) (b)

(c)

(e)

(d)

10, –10

L

L

F

F

Action of R2(A2) Action of R2(A2)

Action of R2(A2)

Action of R2(A2)

Action of R2(A2)

A
ctio

n
 o

f R
1
(A

1
)

–10, 10 20

1, 1 10, –10

L

L

F

F

A
ctio

n
 o

f R
1
(A

1
)

–10, 10 20,

1, 1 10, –10

L

L

F

F

A
ctio

n
 o

f R
1
(A

1
)

–10 , 10 20, 20

1, 10 , –10

L

L

F

F

A
ctio

n
 o

f R
1
(A

1
)

–10, 10 20, 20

1, 1 10, –10

L

L

F

F

A
ctio

n
 o

f R
1
(A

1
)

Coordination
equilibrium

Adversarial equilibrium

1,

20,

1

20

Figure 1.25 Pure strategy Nash equilibrium evaluation. (a) Fix A1 = L and A2 = L/F
(b) Fix A2 = F and A1 = L/F (c) Fix A1 = L and A2 = L/F. (d) Fix A1 = F and A2 = L/F.
(e) Nash equilibrium and FL and LF.

32 1 Introduction

10 20

1, 1 10, –10

L

L

F

F

Action of R2

A
ctio

n
 o

f R
1

–10, 10 20, 20

1 –10

L

L

F

F

Action of R2

A
ctio

n
 o

f R
1

–10,

q

20,

–10q + 20(1 – q)

10p + 1(1 – p) 20p – 10(1 – p)

–10q + 20(1 – q) = 1q + 10(1 – q)

10p + 1(1 – p) = 20q – 10(1 – p)

1q + 10(1 – q)

1, 10,

 At NE

Solve q and (1 – q)
10

21
q =

11
1 – q =

21

–10, 20, 20

1, 10, –10

L

L

F

F

Action of R2

A
ctio

n
 o

f R
1

–10, 10 20,

1, 1 10,

L

L

F

F

Action of R2

A
ctio

n
 o

f R
1

10

1 –10

 At NE

Solve p and (1 – p)
11

21

=<()>
11 , ,);(
21

11
21

10
21

10
21

p = 10
1 − p =

21

NE = <(p,(1 – p));(q,(1 – q))>

Probability
to select
action of

R2

Probability
to select
action of

R2

Probability to
select action

of R1

Probability to
select action

of R1

Expected reward of L against q is –10q + 20(1 – q)

Expected reward of F against q is 1q + 10(1 – q)

Expected reward of L against p is 10p + 1(1 – p)

Expected reward of F against p is 20p – 10(1 – p)

p

q

1 – p 1 – p

1 – q1 – q

p

q

1 – p 1 – p

1 – q1 – q

p p

q

a

b

c

d

20

Figure 1.26 Evaluation of mixed strategy Nash equilibrium.

1.3 Multi-agent Planning and Coordination 33

FL, FF} is the all possible combinations (the Cartesian product) of {L, F} and {L, F}.
Figure 1.24a and b provide the reward tables of R1 and R2 at joint state–action
space, respectively. The rows of the state–action tables indicate the joint state. Joint
state is the conjunction of individual states, here S and S/. Each column corre-
sponds to a joint action A. A can be any one from the set {LL, LF, FL, FF}. The
entries for each joint state–action pair are called joint state–action value. To eval-
uate PSNE at joint state S/, the rewards at S/ due to joint actions are mapped in the
reward matrix, as shown in Figure 1.24c and d. In Figure Figure 1.24c and d, each
cell of the reward matrices displays the rewards at a joint state S/ due to individual
actions, respectively, for R1 and R2. In Figure 1.24c–e, rows indicate the actions of
R1 and columns indicate the actions of R2. However, in Figure 1.24e, each cell
shows the rewards of both the agent. First entry is for R1 and the second one is
for R2.
Figure 1.25a–d show the reward matrices of R1 and R2 at joint state S/. In

Figure 1.25a, R1 selects its best action assuming that R2 has been selected L indi-
cated by solid black arrows. In this situation, R1 prefers action F and receives 1 as a
reward indicated in Figure 1.25a. Similarly, R1 receives 20 as a reward assuming
that R2 has been selected F as shown in Figure 1.25b. Similarly, R2 earns 20 and 1,
when R1 selects L and F, respectively, as indicated in Figure 1.25c and d. Finally,
Figure 1.25e shows the common solution producing cells, which are the PSNE.
Computation of PSNE for two agents is performed by the following three steps:

1) Fix the action of R1, then select the best reward of R2, considering all possible
actions of itself.

2) Fix the action of R2, then select the best reward of R1, considering all possible
actions of itself.

3) If the results of selection fall in the same cell, then PSNE = joint actions cor-
responding to the selected common grid.

Here, two PSNE are obtained: <F, L> and <L, F>. Let us examine them one by
one. For the <F, L>, both the robots receive 1. Now, if any one robot selfishly
attempts to change its action aiming at maximizing its own reward, then the robot,
which changes its action, causes to decrease its reward from 1 to−10. Besides, if R1
changes its action from F to L, then R2’s reward improves from 1 to 10. Again, if R2
changes its action from F to L, then R1’s reward improves from 1 to 10. So, the joint
action <F, L> is an adversarial equilibrium. Adversarial equilibrium is a PSNE in
competitive situation. Now, the joint action <L, F> is coordination equilibrium,
where both the robots receive maximum reward selflessly, i.e. 20. Coordination
equilibrium is a PSNE in cooperative situation. The present book considers coor-
dination equilibrium only.

34 1 Introduction

Mixed Strategy NE

MSNE is stochastic. In MSNE, each robot randomizes its own pure strategies by
assigning a probability in between zero and one for each pure strategy. Let R1 select
its actions L and Fwith a probability p and (1− p), respectively. Also, let R2 select its
actions L and F with a probability q and (1− q), respectively. The summary of
rewards at MSNE is given in Figure 1.26. At MSNE, the expected rewards of L
and F against q are equal. Equating these two expected rewards yield p and
(1− p) as shown in Figure 1.26a. Similarly, one can find q and (1− q) as shown
in Figure 1.26b. The expected reward of a mixed strategy is the weighted sum of
the expected rewards of all the pure strategies in the mix. Finally, the expected
reward of R1 by employing p against q and the expected reward of R2 by employing
q against p are given in Table 1.4. Also it is listed in Figure 1.26d. Finally, the MSNE
is <(p, (1− p)); (q, (1− q))> given in Figure 1.26c. Table 1.4 provides the expected
reward at MSNE for two players. Example 1.4 provides an example of MSNE for a
two-player tennis game. Example 1.4 is given below to illuminate MSNE.

Example 1.4 Figure 1.27 shows the reward matrix for a two-player tennis game
between Venus and Serena. Let in Figure 1.27, Venus is the row player and Serena
is the column player. If Venus chooses Left (L), then she attempts to pass Serena to
Serena’s left (l). If Venus decides Right (R), then she is attempting to pass Serena
to Serena’s right (r). Serena chooses l, means that she bends slightly toward her l.
Similarly, Serena chooses r means she slightly bends toward her r. There is no
PSNE in Figure 1.27. Let’s find MSNE for the tennis game. In MSNE, each agent’s
mix should be the best for the remaining agents’ mix. To find Serena’s NE mix
(q, 1− q), look at Venus’s rewards. Now, Venus’s rewards against qwhile choosing

Table 1.4 Expected reward of R1 and R2 at MSNE.

Expected reward of R1 by employing p against q p[−10q+ 20(1− q)] + (1− p)[1q+ 10(1− q)]

Expected reward of R2 by employing q against p q[10p+ 1(1− p)] + (1− q)[20p− 10(1− p)]

V
e
n
u
s

Serena

l r

L 50, 50 80, 20 p

R 90, 10 20, 80 1 − p

1 − qq

Figure 1.27 Reward matrix for
tennis game.

1.3 Multi-agent Planning and Coordination 35

L and R is given by 50q+ 80(1− q) and 90q+ 20(1− q), respectively. In MSNE, L
and R both themselves must be the best response against q. So,

50q + 80 1− q = 90q + 20 1− q 1 27

Therefore, solving (1.27), we obtain q= 0.6 and 1− q= 0.4. Now, to find Venus’s
NEmix (p, 1− p), look at Serena’s rewards. Serena’s reward against pwhile choos-
ing l and r is given by 50p+ 10(1− p) and 10p+ 80(1− p), respectively. In MSNE, l
and r both themselves must be the best response against p. So,

50p + 10 1− p = 10p + 80 1− p 1 28

Therefore, solving (1.28), we obtain p = 0.7 and 1− p = 0.3. Hence, the MSNE is
given by [(p, 1− p); (q, 1− q)] = [(0.7, 0.3); (0.6, 0.4)].
For multi-agent coordination without any communication among the agents,

agents face coordination problem in the presence of multiple coordination equili-
bria [72]. Here, coordination problem refers to the problem of selecting unique
equilibrium by all the robots. Such problem can be resolved by selecting a joint
action based on a signal (e.g. traffic signal), which is commonly accessible by
all the robots. Before discussing about the remedies of equilibrium selection,
Example 1.5 is provided to realize the problem.

Example 1.5 The reward matrix for a common reward two-agent static game is
given in Figure 1.28, where both a and bare the rewards. There are two action sets
{x0, x1} and {y0, y1} for agent X and Y, respectively. Now, if a> b> 0, then there are
two equilibria <x0, y0> and <x1, y1 > . But, only <x0, y0> is the optimal and
hence, one would expect that the agents play <x0, y0 > . If a = b> 0, then none
of the agents have any reason to prefer any one action.
In such situation, there exist multiple equilibria. Choosing one equilibrium

among multiple equilibria by random selection or by focusing personal basing
may lead to suboptimal (or uncoordinated) equilibrium.
A robot can resolve the problem of equilibrium selection [38] in a coordinated

game by repeatedly playing a game by the same robot. In the literature, CE
addresses the problem of equilibrium selection.

1.3.3.2 Correlated Equilibrium

CE is more general than the NE [72]. There are four
variants of CE: Utilitarian, Egalitarian, Republican,
and Libertarian equilibria [72]. In each variant, a
numerical value is maximized and its corresponding
index (joint action) is well known as CE. The former
numerical value may be evaluated by one of the fol-
lowing techniques:

A
g
e
n
t
X

Agent Y

y0 y1

x0 a 0

x1 0 b

Figure 1.28 Reward
matrix of in a common
reward two-agent
static game.

36 1 Introduction

1) In Utilitarian equilibrium, the numerical value to be maximized is evaluated by
adding all robots’ rewards.

2) The least efficient robot’s reward is maximized in the Egalitarian equilibrium.
3) Most efficient robot’s reward is maximized in Republican equilibrium.
4) In Libertarian equilibrium, the numerical value to be maximized is evaluated

by multiplying all the robots’ rewards.

Like NE in CE, there are pure strategy andmixed strategy CE. The definition of CE
is given in Definition 1.18. The pure strategy Egalitarian equilibrium evaluation is
shown in Figure 1.29.

Definition 1.18 CE at a joint state, S = < si > m
i = 1 with m interacting agents is

the pure strategy CE, AC and mixed strategy CE, p∗(AC) if agents follow (1.29) and
(1.30), respectively.

AC = argmax
A

Φ Qi S,A , 1 29

p∗ AC = argmax
p A

Φ
A

p A Qi S,A , 1 30

89 1007189 81 10071100

Joint actions Joint actionsJ
o
in

t s
ta

te
s

J
o
in

t s
ta

te
s

Minimum

81 1007189

Joint actionsJ
o
in

t s
ta

te
s

Maximum

100

Joint action corresponding to 100

RR

a

b

c

LL LR RL RR

LL LR RL RR LL LR RL RR

13

13 13

R1 R2

Left(L) Right(R)

1 2 3 4

G1 G2

Environment

Collision is penalized by a reward of –10

Figure 1.29 Pure strategy Egalitarian equilibrium, which is one variant of CE.

1.3 Multi-agent Planning and Coordination 37

where

Φ
m

i = 1

,Minm
i = 1,Maxmi = 1,

m

i = 1

1 31

Game of chicken reflects the idea of CE and is illustrated in Example 1.6.

Example 1.6 In the game of chicken, two players play by heading toward each
other as shown in Figure 1.30. If both the players move (M) on the same way, then
they collide, which results in penalty for both the agents. If one player moves and
another player waits (cooperate (C)), then both the players are rewarded. The
player which successfully moves receives more reward, than the player which
cooperates. Both the players receive zero reward if none of them move. In
Figure 1.31, both the joint action (M, C) and (C,M) is the PSNE. To achieve PSNE
without establishing any communication among the players, they should follow a
signal (like traffic signal), which is commonly accessible for both the players.

1.3.3.3 Static Game Examples

A few examples of static games are given below.

Constant-sum-game: In constant-sum game [41], summation of the two players’
rewards is constantas shown inFigure1.32,where<a,b>and<x, y>are theaction
sets of player 1 and 2, respectively. In Figure 1.32, the value of the constant is 1.

Collision
Player 1 moves

successfully

Player 2 cooperates

Both Players 1 and 2
try to cooperate

Player 1 cooperates

Player 2 moves

successfully

1

1

2

2

1

1

2

2

Figure 1.30 Game of chicken.

P
la

ye
r

1

Player 2

M C

M –5, –5 10, 5

C 5, 10 0, 0

Figure 1.31 Reward matrix in the game of chicken.

38 1 Introduction

Zero-sumgame: Zero-sum game is a special case of
constant-sum game [41]. It is a two-player game,
where the summation of the two players’ reward
is always zero. This indicates that one player’s gain
is equivalent to another player’s loss. Hence, net
change in reward is zero. Chess and tennis are the
examples of zero-sum game, where there is a winner
and a loser. Financial market is also an example of
zero-sum game. In the literature of GT, matching
pennies and rock-paper-scissor (given in Exam-
ple 1.3) are the well-known examples of zero-sum
game. Example 1.7 illustrates the game of matching
pennies.

Example 1.7 In matching pennies, two pennies
are thrown by two players simultaneously. The
rewards of the players depend on whether the pennies match or not. If both pen-
nies result in head (H) or tail (T), then player 1 wins and rewarded by player 2’s
penny. If there is amismatch, then player 2 wins and rewarded by player 1’s penny.
As one player’s gain is other player’s loss, hence, matching pennies is a zero-sum
game as shown in Figure 1.33. Inmatching pennies, there is no PSNE instead there
exists MSNE.
In some situation, a game does not have a PSNE but every game have a MSNE

[42]. For example in the rock-paper-scissor game, there is no PSNE but there
exists MSNE.

General-sum-stochastic game: In general-sum-stochastic game, the summation
of all the players’ rewards is neither zero nor constant. Prisoner’s Dilemma is an
example of general-sum-stochastic game and is illustrated in Example 1.8.

Example 1.8 In Prisoner’s Dilemma, two criminals are suspected of committing
a crime and are being interrogated in two separate cells. From human physiology,
both the criminals want tominimize their jail sentence. Both of them face the same
scenarios as follows (Figure 1.34):

• If Players 1 and 2 each Deny (D) each other,
then each of them are sentenced by nine year
jails.

• If Player 1 Deny (D) but Player 2 remains Con-
fess (C), then Player 1 will be set free and
Player 2 will serve 10 year jails (and vice versa).

P
la

y
e
r

1

Player 2

x y

a 5, –4 –7, 8

b –2, 3 4, –3

Figure 1.32 Constant-sum
game.

P
la

ye
r

1

Player 2

H T

H 1, –1 –1, 1

T –1, 1 1, –1

Figure 1.33 Matching
pennies.

P
la

ye
r

1

Player 2

C D

C –1, –1 –10, 0

D 0, –10 –9, –9

Figure 1.34 Reward matrix in
Prisoner’s Dilemma game.

1.3 Multi-agent Planning and Coordination 39

• If both Players 1 and 2 remain Confess (C),
then both of them will only serve one
year jail.

Hence, in Prisoner’s Dilemma game, (C, C)
is the PSNE.

1.3.4 Correlation Among RL, DP,
and GT

It is apparent from the earlier sections that
the RL works on the principle of reward/pen-
alty received by the agents as a feedback from
the environment. DP is nothing but an optimization technique, which optimizes
the BE. On the other hand, GT helps in analyzing the strategic situation of the
agents in theMAS, where an agent significantly affects the interests of other agents
in the environment. Figure 1.35 indicates that the multi-agent Q-learning (MAQL)
comprising of the MARL, GT, and DP. However, in the literature, MARL is well
known as MAQL for simplicity.

1.3.5 Classification of MARL

Based on the task type, MARL is classified as cooperative, competitive, and mixed
as shown in Figure 1.36 [85]. Now, the cooperative and mixed algorithms may be
designed for static (stateless) games or for stagewise (dynamic) games. However,
there are only two competitive algorithms for two agents, namely Minimax-Q and
heuristically accelerated multi-agent RL (HAMRL).
Joint Action Learners (JAL) and Frequency Maximum Q-value (FMQ) heuristic

are classified as cooperative static algorithm. Team-Q, Distributed-Q, Optimal
Adaptive Learning (OAL), Sparse Cooperative Q-learning (SCQL), Sequential
Q-learning (SQL), and Frequency of the maximum reward Q-learning (FMRQ) fall
within the scope of cooperative dynamic algorithms.
Themixed static algorithms are classified based on the belief on the other agents’

policy of an agent and the steps required in searching the optimal policy (direct
policy search). Belief-based learning include Fictitious play (FP), Meta Strategy,
AWESOME, and Hyper-Q. The direct policy search-based algorithms are classified
based on variation of the learning rate: fixed learning rate and variable learning
rate. Fixed learning rate includes Infinitesimal Gradient Ascent (IGA) and Gener-
alized IGA (GIGA). Win or Learn Fast-IGA (WoLF-IGA) and GIGA-Win or Learn
Fast (GIGA-WoLF) are under the variable learning rate. The dynamic mixed

GT

DP

MAQL

MARL

Figure 1.35 Correlation among the
MARL, DP, and GT.

40 1 Introduction

strategy algorithms are classified as equilibrium dependent and equilibrium inde-
pendent. Equilibrium-dependent algorithms are Nash Q-Learning (NQL), Corre-
lated Q-Learning (CQL), Asymmetric-Q learning, Friend-or-Foe Q-Learning
(FFQ) (for more than two agents), Negotiation-based Q-learning (NegoQ), and
MAQL with equilibrium transfer (MAQLET). Again equilibrium-independent
learning algorithms are classified as fixed learning rate and variable learning rate.
Fixed learning rate includes Nonstationary Converging Policies (NSCP) and
Extended Optimal Response Learning (EXORL) heuristic. WoLF Policy Hill-
Climbing (WoLF-PHC) and PD-WoLF are under the variable learning rate. The
details of all the algorithms are given in the subsequent sections.

MARL

Cooperative Competitive Mixed

Minimax-QStatic Dynamic Static Dynamic

JAL

FMQ

Team-Q
Distributed-Q
OAL
SCQL

Belief-based

Learning rule

Direct policy

search based

SQL

HAMRL

FMRQ

FP
Meta Strategy

AWESOME
Hyper-Q

Fixed

learning rate

Variable

learning rate

IGA GIGA WoLF-

IGA

GIGA-

WoLF

Equilibrium

dependent

Equilibrium

independent

NQL
CQL

Asymmetric-Q
FFQ

NegoQ

MAQLET

Variable

learning rate

Fixed

learning rate

WoLF-PHC

PD-WoLF

NSCP
EXORL

Figure 1.36 Classification of multi-agent reinforcement learning.

1.3 Multi-agent Planning and Coordination 41

1.3.5.1 Cooperative MARL

The cooperative MARL algorithms are given below as listed in Figure 1.36.

Static

The static MARL does not involve any state-transitions as described in
Section 1.3.3. The static MARL algorithms are discussed below.

Independent Learner and Joint Action Learner In [81], Claus and Boutilier pro-
posed two variants of learners. One is the Independent Learner (IL) and another
is the JAL. IL learns Q-value at its own action–space employing the classical single
agent Q-learning rule ignoring the presence of other agents. For an IL i, the single
agent Q-learning rule (1.19) becomes (1.32) with <a, r> as the experience profile.
Also the Q-value earned by IL denoted by Qi(ai) converges to the optimal Q-value
Q∗
i ai for all action ai Ai in the single agent system.

Qi ai Qi ai + α ri ai −Qi ai 1 32

In MAS, all the agents are adapting simultaneously and hence, the environment
is no longer stationary, which does not ensure the convergence of Q-values any
more. Reconsidering the 1.5, in IL, Agent X learns for the actions x0 and x1. How-
ever, if Agent X is a JAL, then it learns for the four joint actions. It is interesting
that the expected value of selecting x0 and x1 exclusively depends on the strategy
played by Y. In 1.5, if a = b = 10, then Agent X’s expected Q-value for x0 is

Qx x0 =Qx x0,y0 ×P y0 x0 +Qx x0,y1 × P y1 x0

= 10 ×P y0 x0 + 0×P y1 x0 by1 5Qx x0,y0 = 10 and Qx x0,y1 = 0

=10× 0 5+ 0× 0 5

=5,

1 33

where P(y0 x0) and P(y1 x0) refer to the probability of y0 and y1 being executed,
respectively, by agent Y subject to x0 is being selected by agent X. To handle the
above explained dynamics in multi-agent systems, the JAL maintains a belief
about the other agents’ strategies and the expected value of action ai by agent i
is given below.

Qi ai =
a− i A− i

Qi a− i, ai
j i

Pi
a
− i j

, 1 34

where

Qi a− i, ai Qi a− i, ai + α ri a− i, ai −Qi a− i, ai 1 35

The experience tuple of JAL is denoted by <ai, a−i, ri> .

42 1 Introduction

So, JAL learns the Q-value at joint action–space considering the presence of
other agents by synergistically combining the RL and equilibrium (or coordina-
tion) learning methods [45, 86–88]. Learning equilibrium depends on the rewards
corresponding to the joint actions at a given joint state and these rewards are
obtained by the well-known RL more especially by Q-learning. The convergence
of Q-learning does depend on the already explained trade-off between the explo-
ration and exploitation. If an agent i chooses an action ai with probability Pi(ai),
then probability of choosing remaining actions is 1− Pi(ai). The said trade-off can
be balanced by tuning the temperature parameter T of the Boltzmann strategy
given by (1.36). The variation of T is done in such a way so that the convergence
is guaranteed [89].

Pi ai =
eQi ai T

ai

eQi ai T
1 36

The following conditions are required to satisfy for convergence of both the IL
and JAL [81]:

1) The learning rate α decreases with respect to time, i.e. t
α = 0α = ∞ and

1
α = 0α

2 < ∞
2) Each agent selects each of its actions infinitely.

3) The probability of choosing action a by agent i, Pi
t a 0

4) All the agent’s exploration strategy is exploitive. That is, lim t ∞ Pi
t Xt = 0,

where Xt is a random variable denoting the event that some nonoptimal action
was taken based on i ’ s estimated value at time t.

Finally, myopic heuristic-based optimistic exploration strategies are proposed in
[81] for optimal action selection.

1) Optimistic Boltzmann (OB): Choose the action a−i using the Boltzmann
strategy, assuming MaxQi(ai) = MaxQi(ai, a−i).

2) Weight OB (WOB): Explore using the Boltzmann strategy using the factor
Pi(optimal match a−i for ai), i.e. MaxQi(ai) Pi(optimal match a−i for ai).

3) Combined: Employ the Boltzmann strategy, assuming V(ai) = ρMaxQi(ai) +
(1− ρ)EV(ai) as the value of action ai, where ρ [0, 1].

Considering the biasing ρ= 0.5 in [81], it is shown that combined exploration strat-
egy outperforms the OB,WOB, and the Boltzmann strategy in terms of the average
accumulated reward. The algorithm for IL and JAL are given in Algorithms 1.4
and 1.5, respectively.

1.3 Multi-agent Planning and Coordination 43

Unfortunately, the above conditions do not guarantee convergence to equilib-
rium in the practical and complicated games such as in the climbing game [3,
81] and the penalty game [3, 81].

Algorithm 1.4 Independent Learners

Input: Action set of agent i, Ai, α [0, 1);

Output: Optimal Q-value of agent i,Q∗
i ai ,ai Ai;

Initialize: Qi(ai) 0;

Begin

Repeat

Execute an action ai by agent i employing the

Boltzmann strategy;

Receive immediate reward ri(ai);

Update: Qi(ai) Qi(ai) + α[ri(ai) − Qi(ai)];

Q∗
i ai Qi ai ;

Until Qi(ai) converges;

End.

Algorithm 1.5 Joint Action Learners

Input: Action set Ai, i, α [0, 1);

Output: Optimal joint Q-value Q∗
i ai,a−i , i;

Initialize: Qi(ai, a−i) 0;

Begin

Repeat

Execute an action ai by agent i employing the

Boltzmann strategy;

Receive immediate reward ri(ai, a−i) by

observing other agents’ rewards;

Update:
Qi ai,a−i Qi ai,a−i +

α ri ai,a−i −Qi ai,a−i
and

Pi
a j
,Qi ai by (1.50), (1.51) respectively;

Q∗
i ai,a−i Qi ai,a−i ;

Until Qi(ai, a−i) converges;

End.

44 1 Introduction

Frequency Maximum Q-Value heuristic The inde-
pendent agent in [90] and [2] including the JAL in
[81] does not guarantee convergence to the optimal
joint action in the absence of coordination with high
penalties. In the FMQ heuristic [3], a novel action
selection strategy is proposed assuming agents can
observe other agents’ actions and are tested in two
coordination problems mentioned in [81]: the climb-
ing game and the penalty game. The said games are repeated cooperative
single-stage games and they provide suitable platforms for studying the
multi-agent coordination problem.

Climbing game: It is apparent from Figure 1.37 that in the climbing game [3, 81],
(x, x) is the optimal joint action and both the agents should go for it. Now, if Agent
1 plays x and Agent 2 plays y, then both the agents receive negative reward (−30).
After learning this situation, both the agents avoid joint action (x, y). Later, if Agent
1 plays action z, then Agent 2 plays either y or z as due to both the joint action (z, y)
and (z, z) agents receive positive rewards of 6 and 5, respectively. Suppose, Agent 2
is playing x but Agent 1 does not play x as it receives negative reward in the past
due to x, and also Agent 1 does not play y as it provides negative reward. Hence,
Agent 1 plays z and both the agents receive reward of 0. Similarly, if Agent 2 plays
z, then agents receive at least 0 independent of Agent 1’s choice. From the above
analysis it is apparent that in the climbing game, agents always move away from
the optimal joint action.

Penalty game: Similartotheclimbinggame,thepresenceofmultipleequilibriainthe
penaltygame[3,81] isalsochallengingtochecktheperformanceof thecoordination in
the MAS. In the penalty game (Figure 1.38), both the agents should avoid the joint
actions (x, z) and (z, x) to avoid the negative reward of−10. Now, in the penalty game,
thereare twooptimal joint actions (x, x) and (z, z).Agents canplay for anyoneof them.
Suppose, Agent 1 plays xwith an expectation that Agent 2 also plays x to receivemax-
imum reward of 10. In this situation, if Agent 2 plays z, expecting Agent 1 plays z to
receive maximum reward of 10. In the above circumstances, y is the safe choice for
both the agents regardless of what other agent’s play and is guaranteed to receive a
reward of 0 or 2. Hence, it is challenging to identify the optimal joint action in
penalty game for multi-agent coordination.
From the climbing game and the penalty game it is

apparent that an agent should select its action wisely
for convergence. Maintaining a balance between the
exploration and exploitation is an intelligent approach
for action selection. Balancing the exploration/exploi-
tation is a trade-off and is addressed by thewell-known

A
g
e
n
t
1

Agent 2

x y z
x 11 –30 0
y –30 7 0

z 0 6 5

Figure 1.37 The climbing
game reward matrix.

A
g
e
n
t
1

Agent 2

x y z
x 10 0 –10
y 0 2 0

z –10 0 10

Figure 1.38 The penalty
game reward matrix.

1.3 Multi-agent Planning and Coordination 45

Boltzmann strategy given in (1.36). In (1.36), the probability of selecting an action ai
for agent i is evaluated by utilizing the Q-value and the tuning parameter temper-
ature (T). IfT ∞ , then each action has an equal probability to execute and hence,
pure exploration occurs. If T 0, then the action has a probability of one to execute
and hence, exploitation occurs. In [3], T is given by

T t = e− st × Tmax + 1, 1 37

where t is the learning epoch, s is a parameter to control the exploration rate, and
Tmax is initial value of temperature.
In [91], an optimistic assumption-based algorithm is proposed. By optimistic

assumption, an agent updates its Q-value only if the new value is greater than
the current one. Unfortunately, the optimistic assumption fails to converge to
the optimal joint action due to misleading maximum reward. FMQ heuristic is
based on the experience of the agent. Agent counts the frequency of the action
which yields the best reward. Instead of optimistic assumption, an agent i uses

the Boltzmann strategy with the modified Q-value Qi A given in (1.38).

Qi A = Qi A + f ×
cmax A
c A

× rmax A , 1 38

where cmax(A) is the number of times agent i receives maximum reward rmax(A)
after executing the action A c(A) times. f refers to the control parameter to control
the importance of the FMQ heuristic. The value of f increases proportionally with
the increase in problem difficulty.

Algorithm 1.6 FMQ heuristic

Input: Action set Ai, i, γ [0, 1), α [0, 1), f;

Output: Optimal joint Q-value Q∗
i A , i,i 1,m ;

Initialize: Qi(A) 0, i;

Begin

Repeat

Execute action ai Ai, i employing FMQ heuristic;

Receive immediate reward ri(A), i;

Update: Qi(A) Qi(A) + α[ri(A) − Qi(A)] and modify

Q-value Qi ai , i by (1.54) for

modified Boltzmann strategy (FMQ heuristic);

Q∗
i A Qi A ;

Until Qi(A), i converge;

End.

46 1 Introduction

It is observed from the experiments that the
FMQ heuristic outperforms the baseline experi-
ments in terms of the convergence to the opti-
mal joint action both in the climbing game
and the penalty game [3]. To compare the
FMQ heuristic with optimistic assumption, a
partially stochastic version of the climbing
game is given in Figure 1.39. In the partially sto-
chastic climbing game, at least one of the rewards is stochastic as shown in
Figure 1.39. In Figure 1.39, the joint action (y, y) yields a reward of 14 or 0 with
probability 0.5. So, in the long run both the agents receive a reward of 7 due to
joint action (y, y). Hence, the reward matrix given in Figures 1.37 and 1.39 are
equivalent in the long run. The FMQ heuristic also outperforms the baseline
experiment and the optimistic assumption in the partially stochastic climbing
game, in terms of the convergence to optimal joint action. Unfortunately, the
FMQ heuristic fails to convergence to optimal joint action in the fully stochastic
penalty game and climbing game. The algorithm for FMQ heuristic is given in
Algorithm 1.6.

Dynamic

Dynamic RL is stochastic Markov game with more than one joint state.

Team-Q Team-Q is a cooperative dynamic Q-learning algorithm. Dynamic indi-
cates the existence of state-transitions. In [92], Littman proposed Team-Q learning
designed for team games in the framework of team Markov games (Coordination
game). In Team-Q learning, the value function VQi(S

/) of agent i [1, m] at joint
next state S/ for the m agents’ team is given in (1.39).

VQi S = Max
a1, a2,…, am

Qi S; a1, a2,…, am 1 39

The update rule in Team-Q learning for agent i is given in (1.40), without using
reaming agents’ model like in [81].

Qi S,A 1− α Qi S,A + α ri S,A + γVQi S , 1 40

where A = < a1, a2, …, am> be the joint action at joint state S = < s1, s2, …, sm> .
The Team-Q learning is convergent following the generalized Q-learning algo-
rithm [93, 94]. Team-Q learning is similar to NQL [95] for the coordination games.
Still there exists a challenge regarding the equilibrium selection among multiple
equilibria in noisy environment. The algorithm for Team-Q learning is given in
Algorithm 1.7.

A
g
e
n
t
2 Agent 1

x y z
x 11 –30 0

y –30 14/0 6

z 0 0 5

Figure 1.39 The penalty game
reward matrix.

1.3 Multi-agent Planning and Coordination 47

Distributed-Q In [91], model-free Distributed Q-learning is proposed for cooper-
ative MAS in deterministic situation with a motivation to compute an optimal pol-
icy in a cooperative multi-agent environment. The Distributed Q-learner solves
two problems. The first problem is concerned with determination of the optimal
policy. The second problem deals with selection of one optimal policy among alter-
natives, which is optimal for the entire team.
To handle multi-agent dynamics, MDP is extended to Multi-agent MDP

(MMDP), where each agent maximizes its own reward having different goals
(i.e. reward-function). However, in the cooperative MMDP, all the agents have
identical reward function. Such identical reward-functions are advantageous in
finding an equilibrium point, which is an optimal joint action and it maximizes
the reward of all the agents. In cooperative MMDP, the learning algorithm is
responsible in making cooperation among the agents. Here, also two types of
agents are considered: one is JAL and another is IL as mentioned in [81]. IL cannot
distinguish the difference between the individual (elementary) action [91] and
joint action. Hence, IL maintains a Q-table of smaller size, i.e. S ×A, instead of
maintaining the Q-table at joint state–action space, S ×Am. In [91], the smaller
Q-tables are assumed as the projection from the larger central Q-table with a con-
jecture about the strategies of teammates. So, in [91], a projection approach is pro-
posed by evaluating the individual Q-table in a distributed way without adapting
Q-table in joint state–action space by weighting the Q-values from larger Q-table
given in (1.41).

Algorithm 1.7 Team-Q

Input: Action set Ai, i, γ [0, 1), α [0, 1);

Output: Optimal joint Q-value Q∗
i S,A , i,i 1,m ;

Initialize: Qi(S, A) 0, i;

Begin

Repeat

Execute action ai Ai, i;

Receive immediate reward ri(S, A), i;

Update: Qi S,A 1−α Qi S,A + α ri S,A + γmax
A

Qi S;A

and S S/;

Q∗
i S,A Qi S,A ;

Until Qi(S, A), i converge;

End.

48 1 Introduction

qi S, ai
A = < ai > m

i = 1

P S,A ai ri S, ai + γmax
ai

qi S , ai ,

1 41

where P(S, A ai) refers to the probability of joint action A to be executed at joint
state S including the action of agent i, ai.
Another way of projection is the “pessimistic assumption.” By pessimistic

assumption, the individual smaller Q-value is the least efficient agent’s Q-value
obtained from larger central Q-value. Such approach creates robust policies but
is not extended in [91], because of its cautious nature. Instead of pessimistic
assumption, its dual form is utilized to obtain the smaller Q-value from the central
Q-table as given in (1.42).

qi S, ai max
A

Q S,A 1 42

It can also be written in terms of small Q-table given in (1.43).

qi S, ai = max
ai A

qi S, ai 1 43

The projection technique introduced in (1.43) is also known as optimistic
assumption. It is assumed that all agents are acting optimally and the conjunction
of the individual optimal actions is also an optimal joint action. However, such
assumption is necessarily not true. This inspires the researchers in [91] to propose
a Proposition, which states that in cooperative deterministic MMDP

Algorithm 1.8 Distributed Q-learning

Input: Action set Ai, i, γ [0, 1);

Output: Optimal Q-value q∗
i S,ai , i,i 1,m ,ai A;

Initialize: qi(S, ai) 0, i;

Begin

Repeat

Execute action ai Ai, i;

Receive immediate reward ri(S, ai), i;

Update: qi S,ai max qi S,ai ,ri S,ai +γmax
ai

qi S ,ai

and S S/;

q∗
i S,ai qi S,ai ;

Until qi(S, ai), iconverge;

End.

1.3 Multi-agent Planning and Coordination 49

qti S, ai = max
A = < ai > m

i = 1

Qt S,A 1 44

holds and also its proof is given in [91], where t
is the learning epoch. The steps of the Distrib-
uted Q-learning are given in Algorithm 1.8.
The climbing game and the penalty game
are extended for the Distributed Q-learning,
respectively, in Examples 1.9 and 1.10.

Example 1.9 To extend the climbing game
for Distributed Q-learning as shown in
Figure 1.40, let both the agents are at joint
state S and for brevity discount factor γ is
set to 0. The reward function qi(S, ai) is eval-
uated employing Algorithm 1.8. Such greedy
approach of Algorithm 1.8 yields highest
Q-value for both the agents as shown in
Figure 1.40. In Figure 1.40, the optimal joint
action is (x, x). However, in the IL, JAL, and
the FMQ-heuristic algorithm, agents are sup-
posed to find the suboptimal joint action (y, y)
as explained in Figure 1.37.

Example 1.10 Like Example 1.9 to extend the penalty game for Distributed Q-
learning as shown in Figure 1.42, the discount factor γ is set to 0 and Algorithm 1.8
is employed to evaluate distributed rewards. In the FMQ-heuristic algorithm
(Figure 1.41), there are four optimal joint actions:(x, x), (x, z), (z, x), and (z, z)
but only (x, x) and (z, z) are optimal joint actions with reward 10 as shown in
Figure 1.42 offered by Algorithm 1.8. Unfortunately, application of the Distributed
Q-learning is limited to the deterministic system only.

Optimal Adaptive Learning There are many straightforward solutions to choose
optimal equilibrium among multiple equilibrium solutions, like enforce conven-
tion [96] and FP [39, 81]. In [81], the JAL guarantees the convergence to NE in a
team game. However, it is not guaranteed that the selected NE is the optimal one.
Similar problem arises in game theory like Adaptive play (AP) [86] and evolution-
ary model proposed in [40].
In model-free RL, agents do not have any idea about the environment; in addi-

tion, they may receive noisy rewards. Hence, it is impossible to converge

Actions

x y z
11 7 5

11 7 5In
d
iv

id
u
a
l

Q
-v

a
lu

e

x y z
q1 (S, a1)

q2 (S, a2)

11 7 5

11 7 5

Figure 1.40 Individual Q-values
obtained in the climbing game
reward matrix by Distributed
Q-learning.

A
g
e
n
t
1

Agent 2

x y z
x 10 0 9
y 0 2 0

z 9 0 10

Figure 1.41 The penalty game
reward matrix.

In
d
iv

id
u
a
l

Q
-v

a
lu

e Actions

x y z
10 2 10

10 2 10

q1 (S, a1)

q2 (S, a2)

Figure 1.42 Individual Q-values
obtained in the penalty game reward
matrix by Distributed Q-learning.

50 1 Introduction

properly. In [91] and [96], the MDP is extended to Team Markov Game (cooper-
ative MMDP) with an aim to find a deterministic joint strategy to maximize the
expected sum of discounted rewards. In [96], the OAL algorithm is proposed with
convergence proof where agents learn to choose the optimal NE among multiple
NE with probability one. Let in a three-player coordination game, <a1, a2 > , <
b1, b2>, and <c1, c2> be the individual action sets of agent 1, 2, and 3, respec-
tively. The reward matrix of this coordination game is shown in Figure 1.43.
It is apparent from Figure 1.43 that there are three PSNEs <a1b1c1, a2b2c2,
a3b3c3> and six suboptimal NEs. The rewards corresponding to the suboptimal
NE are italicized.
Before discussing about the OAL algorithm, the AP algorithm [86] is discussed.

In AP game, it is assumed that agents know the game before playing it and one
virtual game (VG) is designed. In TeamMarkov Game, to eliminate the suboptimal
NE, the following arrangement is made. Suppose, in cooperative situation VG(S,
A) be the payoff of the agents at joint state S because of joint action A. In VG, it is
assumed that at optimal NE, the reward denoted by VG∗(S, A) is equal to one and
else it is set to zero; e.g. in Figure 1.43, VG∗(S, A) is equal to one if A is an optimal
NE, i.e. A {a1b1c1, a2b2c2, a3b3c3} and else it is zero. Considering weakly acyclic
game (WAG) [86] as a VG, where each joint action A {A} is considered as a ver-
tex. The vertices are connected with the directed edge avoiding self-loop, where for
an agent i the action ai Ai is the best response to A−i, here−i stands for all except
agent i. By the principle of WAG represented as a best-response graph, from any
starting vertex A there exists a directed path to some vertex A∗ {A} and from A∗

there is no outgoing path [86].
To eliminate the suboptimal NE or tackle the equilibrium selection problem in

WAG, Young proposed AP in [86]. In AP, suppose in am− player matrix game the
joint action at time t is denoted by At {A}. Also assume two integers k and n such
that 1≤ k≤ n and t≤ n. After acting randomly, agents look at its experience and
restart the learning at t= n+ 1. At t= n+ 1, each agent looks reverse at their most
recent n experiences and randomly choose k samples from that. Now, the expected
reward of agent i ’ s action ai is given in (1.45). After evolution of ER(ai) randomly,
an action is chosen from a set of best response given in (1.46).

←
 A

g
e
n
t
1
 Joint actions of Agents 2 and 3 →

b1c1 b1c2 b1c3 b2c1 b2c2 b2c3 b3c1 b3c2 b3c3

a1 10 –20 –20 –20 –20 5 –20 5 –20

a2 –20 –20 5 –20 10 –20 5 –20 –20

a3 –20 5 –20 5 –20 –20 –20 –20 10

Figure 1.43 Reward matrix of a three-player coordination game.

1.3 Multi-agent Planning and Coordination 51

ER ai =
A− i A− i

ui ai A− i
Kt + 1 A− i

k
, 1 45

where Kt+ 1(A−i) refers to the count the joint actionA−i in the k samples and ui({ai}
A−i) = ui(A) is the reward of agent i because of joint action A.

BRt
i = ai ai = argmax

ai Ai

ER ai 1 46

It is shown in [86] that by AP, WAG converges to a strict NE. Unfortunately, all
the VGs are not WAG and hence, the AP may not converge to a strict NE for all
VGs. To address the said problem, the WAG and AP algorithms are modified as
follows.
The WAG and AP are modified as WAG with respect to a biased set (WAGB). In

WAGB, there is a set D containing a few Nash equilibria of the WAGB. A game is a
WAGB if from any vertex A one path exists leading to the NE belongs to set D or a
strict NE [96]. In AP, agents randomly select the NE among multiple best
responses of the agents. On the other hand, in biased AP (BAP) [96], agents deter-
ministically select the best-response action as a NE belongs to D. Suppose, Wt

denotes the set of k samples drawn from the most recent n joint actions. The fol-
lowing two conditions are satisfied. First condition is that the joint action A/ D
such that A, A Wt, A−i A, and A−i A/. Second condition is that there must
exist at least a joint action A D so that A Wt and A D. If the above two con-
ditions are satisfied, then agent i chooses its best-response action ai such that

ai at , where

t = max T aT Wt aT D 1 47

The philosophy of (1.47) is that the action ai is the component of the most recent
NE belonging to D. If the above two conditions are not satisfied, then AP is imple-
mented. Hence, it can be concluded that the BAP on WAGB converges to either a
NE belongs to D or a strict NE. The above techniques are applicable only when the
game structure is known. To learn in an unknown game structure multi-agent
−optimality is employed. By definition, a joint action is ε−optimality at joint

state S and time t if Qt S,A + ≥ max A Qt S,A , A A Let the set of

ε−optimal joint action, which converges Qt to Q∗ with slower rate, then VGt con-
verges to VG∗. Here, ε varies proportionately to the function B(Nt) [0, 1], where B
(Nt) decreases slowly and monotonically to zero with Nt. Nt refers to the minimum
time required to sample a state–action pair. The algorithm for OAL is given in
Algorithm 1.9 [96]. The convergence proof of the OAL algorithm is given in [96].

52 1 Introduction

Algorithm 1.9 Optimal Adaptive Learning

Input: Action set Ai, i at joint state S, γ [0, 1);

Output: Optimal Q-value Q∗(S, A);

Initialize:

t=0,nt S,A =1,Tt S S,A =
1

S
,Rt S,A =0, t = C,A t S =A,D =A;

Repeat //nt(S, A) is the number of times the joint action A has been

executed in joint state S up to time t

If t≤ m,

Then randomly select an action ai, i;

Else do

Begin

Update the virtual game VGt at joint state S;

Randomly select records from n recent observations of other

agents’ joint actions played at joint state S;

Evaluate expected payoff of individual action ai of the VG at

joint state S by (1.45) and construct the best

response set by (1.46);

If condition 1 and 2 in BAP are TRUE

Then choose best response action with respect to the biased

set D;

Else randomly select a best response action from BRt
i S ;

End If.

End.

End If.

Receive immediate reward rt
i S,A ;

Update: nt S,A nt S,A +1,Rt S,A Rt S,A + 1
nt S,A rt

i S,A −Rt S,A ,

Tt S S,A Tt S S,A + 1
nt S,A 1−Tt S S,A ,

Qt+1 S,A Rt S,A +γ
S S

Tt S S,A × max
A A

Qt S ,A ,t t+1, Nt

min
S,A

nt S,A ;

If t > CB(Nt)

Then do

Begin

t > CB(Nt), Q∗(S, A) Q(S, A), i and A t S

A Qt S,A + t≥ max
A A

Qt S,A ;

End;

End If.

Until Q(S, A), i converge;

Sparse Cooperative Q-learning One of the principal bottlenecks of the MAS is the
exponential increase in the space and time complexity, with the increase in num-
ber of agents. Kok et al. [97] observed that in most of the MAS, agents are required
to coordinate their actions only in a few states and in the remaining, they act inde-
pendently. In the coordinated joint state S, the Q-value of an agent i is denoted by
Qi(S, A). However, if S be the uncoordinated joint state, then the Q-value of agent i
is denoted by Qi(S, ai). In case of uncoordinated joint state, the global Q-value Q(S,
A) for m number of agents is defined as the summation of individual Q-values
given by (1.48).

Q S,A =
m

i = 1

Qi S, ai 1 48

Based on the above observations, in [97], Kok and Vlassis proposed SCQL,
where the Q-tables of the agents are sparsely maintained as discussed above.

Sequential Q-learning In [98], Wang and Silva proposed SQL to handle conflict-
ing behavior of the agents that arises in tightly coupled multi-robot object trans-
portation. In SQL, robots do not select their actions simultaneously; rather they do
it sequentially based on their predefined priorities. In SQL, the problem of behav-
ior conflict is addressed by avoiding the selection of same actions those already
selected by the preceding robots. Assuming ith robot is denoted by Ri, i [1, m]
and all the robots are arranged in a special sequence. The subscript i in Ri indicates
its position in the sequence. All the robots repeat steps given in Algorithm 1.10 to

Algorithm 1.10 Joint Action Formation in SQL

Initialize Ψ = ϕ; //ϕ be the empty set.

Observe current joint state S;

For i = 1 to m

Evaluate the currently available action set Δi, where Ai the

action set of robot be i.

Δi = (Ai − (Ai Ψ));

Ri selects the action a j
i = Δi by probability P aj

i =
eQi S,a j

i

Δi

r = 1
eQi S,ar

i

Include the action a j
i to the set Ψ;

End For

Execute the corresponding selected action a j
i , i;

54 1 Introduction

form a joint action avoiding the conventional steps in the classical stepMAQL. The
joint action offered by Algorithm 1.10 avoids the bottleneck of behavior conflict in
tightly coupled multi-robot object transportation.

Frequency of the Maximum Reward Q-learning In [99], Zhang et al. proposed a
MARL algorithm for fully cooperative tasks, namely FMRQ, which aims at achiev-
ing the optimal NE tomaximize the system performance with respect to the metric
of interest. In FMRQ, a modified immediate reward signal is used, which is
obtained by identifying the highest global immediate reward. In FMRQ, an agent
needs to share only its state and reward at each learning epoch with remaining
agents.
In FMRQ, the authors considered two issues: first, they investigated whether the

NE is good enough for the fully cooperative MAS; second, the curse of dimension-
ality of the MARL is considered by storing the Q-value at joint state–individual
action space.
To describe the dynamics of the FMRQ, differential equations are formulated for

the four cases including two-agent two-action repeated game, and a three-agent
two-action repeated game. In each case, the critical points of the differential equa-
tions are analyzed and it is observed that FMRQ converges to equilibrium with
maximum global rewards in all the five cases [99]. In case 1, there exists only
one global immediate reward. Cases 2 and 3 have two maximum immediate
rewards in diagonal positions and in the same row, respectively. In case 4, three
maximum immediate rewards exist and in case 5, only one global immediate
reward exists [99].
In FMRQ, the size of a Q-table for an agent i is {S} × {Ai} . In the FMRQ algo-

rithm (Algorithm 1.11), the immediate reward of an agent i, denoted by ri(ai), is
replaced by the frequency of getting the maximum global immediate reward by
the same action ai, denoted by fre(ai).

fre ai =
nmax ai

nai
, 1 49

where nai refers to the number of times action ai is selected by agent i and nmax ai is
the number of times agent i achieves the maximum global immediate reward.
Moreover, the superiority of the FMRQ algorithm is verified by two case studies:
one is the 12-vertex box-pushing by 4-agents and the other one is the distributed
sensor network optimization problem. The FMRQ algorithm is provided in
Algorithm 1.11 for an agent i in repeated games.

1.3 Multi-agent Planning and Coordination 55

1.3.5.2 Competitive MARL

The competitive MARL algorithms are discussed below. Here, two competitive
MARL algorithms are discussed. One is Minimax Q-learning for two agents and
its extension for general-sum game for more than two agents called HAMRL.

Minimax-Q Learning

In [100], Littman proposed a competitive algorithm, namely minimax-Q learning
for two agents. In minimax-Q learning, both the agents have conflicting goals with
an objective of maximizing the sum of its own discounted expected reward. In
other words, an agent tries to maximize a reward function and simultaneously
the opponent agent tries to minimize it. In [2] and [90], the authors realized that
an agent must interact with other agents and the environment during the learning
phase without proposing any supporting mathematical model. In addition, the
theory of MDP [46, 84], which is an extension of game theory, also cannot handle
the multi-agent dynamics. Even sometimes it is assumed that the environment is
stationary. Littman [100] considered only two-player zero-sum Markov game. In
zero-sum game, the summation of the rewards of two agents is zero [41]. In every

Algorithm 1.11 FMRQ for an Agent i in Repeated Games

Input: Action set ai Ai, i and learning rate α [0, 1);

Output: Optimal Q-value Q∗(ai);

Initialize: Q(ai) 0, count of selecting action ai,nai = 0, number

of times maximum global immediate reward received by action

ai,nmax ai = 0 and frequency of getting maximum immediate reward

after selecting action ai, fre(ai) = 0;

Repeat

Select an action ai by the Boltzmann exploration scheme;

nai = nai + 1;

Execute the action ai and update nmax ai and rh(ai);

For each action ai Ai do //rh(ai) refers to history of global

immediate reward obtained by action ai

Begin

Evaluate fre(ai) by (1.49);

Q(ai) = Q(ai) + α(fre(ai) − Q(ai));

Set nai = 0, nmax ai = 0 and fre(ai) = 0;

End

End For

Until Q∗(ai); converges;

56 1 Introduction

MDP, there is at least one strategy that is stationary, deterministic, and optimal
[100]. But in most of the cases, the optimal strategies are probabilistic. For exam-
ple, in Figure 1.23 (rock, paper, and scissor, Example 1.3), selection of a determin-
istic policy by any one player leads to punishment and hence, the player is
defeated. The probabilistic strategy is required to represent the uncertainty about
the agents’ action choice. Suppose, the opponent agent has an action O {O} and
Q-value is denoted by Q(S, A, O) as introduced in (1.50).

Q S,A,O r S,A,O + γ
S

P S S,A × V S , 1 50

where

V S = max
π P A

min
O O

πA Q S,A,O 1 51

(1.51) indicates the expected reward to the agent for playing strategy π against the
opponent’s choice O {O}. P({A}) refers to the probability distribution over the
action set {A}. The algorithm for Minimax Q-learning is given in Algorithm 1.12
[100]. Algorithm 1.12 is tested in a two-player Markov game and it is compared
with Q-learning. The convergence of Minimax-Q learning is guaranteed and the
strategy offered by it is a safe choice against the opponent even in the worst
situation.

Algorithm 1.12 Minimax Q-learning

Input: Action A {A}, opponent’s action O {O} at joint state S,

α [0, 1) and γ [0, 1);

Output: Optimal Q-value Q∗(S, A, O);

Initialize: Q S,A,O 0, π S,A = 1
A ;

Begin

Repeat

Choose an action to execute by π(S, A);

Receive immediate reward r(S, A, O);

Update: Q(S, A, O) (1 − α)Q(S, A, O) + α[r(S, A, O) + γV(S/)],
S S/,

π S,A =argmax
π S,A

Min
O A

π S,A ×Q S,A,O and V S = max
π P A

min
O O

πA Q S,A,O ;

Q∗(S, A, O) Q(S, A, O);

Until Q(S, A, O) converges;

End.

1.3 Multi-agent Planning and Coordination 57

Heuristically Accelerated Multi-agent Reinforcement Learning

In [101], Bianchi et al. proposed HAMRL, which attempts to speed up in conver-
gence of MARL, by balancing exploration/exploitation employing a heuristic
function for action selection. There exist a series of literature [101–104], where
heuristic functions are used to increase the convergence speed of the MARL.
The work of [101] is the extension of [104], whereas in [104], Littman’s Mini-
max-Q is heuristically accelerated. Bianchi et al. defined a heuristic function
H : {S} × {A} × {O} R, which influences the action selection of the agents during
the learning phase, when an agent executes an action A {A} at state S {S}
against the opponent’s action O {O}. In [101], the authors employ the modified
ε-greedy learning rule including the heuristic function H(S, A, O) given by (1.52).

πc S = argmax
A

min
O

Q S,A,O + ξH S,A,O β 1 52

and ξ R, β R are the weightage on the confidence of the heuristic function. In
(1.52), if ξ = 0, then (1.52) becomes (1.53), which is the standard ε-greedy.

π S =
πc S , if p ≥ ε, ε 0, 1

Select an action randomly, otherwise
, 1 53

where p [0, 1] is a random number. Considering ξ= β = 1, the heuristic function
is given by

H S,A,O =
max

i
Q S, i,O −Q S,A,O + η, if A = πH S

0, otherwise
, 1 54

where η R, πH(S) is the heuristic policy. The superiority of theHAMRL (Algorithm
1.13) is validated by conducting the experiments in two robots soccer game.

Algorithm 1.13 HAMRL for Zero-sum Game

Input: Action A {A}, opponent’s action O {O} at joint state S, α
[0, 1), γ [0, 1) and ε [0, 1);

Output: Optimal Q-value Q∗(S, A, O);

Initialize: Q(S, A, O) 0, H(S, A, O), πH, η;
Begin

Repeat

Choose an action A {A} using the modified ε-greedy rule;

Execute A {A}, observe the opponent’s action O {O};

Receive immediate reward r(S, A, O);

Update: Q(S, A, O) (1 − α)Q(S, A, O) + α[r(S, A, O) + γV(S/)],
S S/ and H(S, A, O),

where V S = max
A A

min
O O

Q S,A,O ;

Q∗(S, A, O) Q(S, A, O);

Until Q(S, A, O) converges;

End.

58 1 Introduction

1.3.5.3 Mixed MARL

Mixed MARL includes the following algorithms. The mixed MARL may be coop-
erative or competitive. It can be categorized based on the number of joint states
involved: static and dynamic.

Static

The static MARL algorithms are further extended in Figure 1.36.

Belief-Based Learning Rule In belief-based learning algorithm, an agent main-
tains a belief about the remaining agents’ strategy. This section illustrates the
belief-based learning rule.

Fictitious Play FP [105] is a belief-based learning rule. Here, belief indicates that a
player adapts with the strategy about opponent players’ and behaves as per the
strategy learned. In FP, a robot can resolve the problem of equilibrium selection
[38] in a coordinated game by repeatedly playing the game by the same robot. FP is
an effective and efficient approach to reach equilibrium in a coordinated game. As
per FP, agent i learns the models of all the other agentsj i by the model given
in (1.55).

Pi
a j

=
C j
a j

a j

C j

a j

, 1 55

where Pi
a j
refers to the model of agent j ’ s strategy evaluated by agent i or agent i ’ s

assumption of playing aj Aj by agent j or Π−i and C j
a j

be the number of times

agent i observed agent j executing action aj. In cooperative games, the strategy
offered by (1.55) leads to an equilibrium, where in case of multiple equilibrium,
agents randomly choose any one. Also, in FP, a player does not need to learn about
opponent players’ reward, rather it maintains a belief about the opponents’ feature
strategy. If a FP converges to Π∗, then Π∗ is a NE.

Meta Strategy In [106], Powers and Shoham proposed a straightforward MARL
algorithm for repeated games, which have the following two requirements. The
first requirement is to specify a class of opponents and against them the algorithm
yields a reward that approaches the reward corresponding to the best response.
Second requirement is that the reward offered by the algorithm fulfills a threshold
of security-level reward. Constraining the above requirements, the algorithm
achieves a close to optimal payoff in self-play. Based on the above conditions
an algorithm is proposed in [106], for stationary opponents only. However, to learn
in a repeated game a learning algorithm is required. In the learning algorithm, an
agent plays its best response with a prior probability of its opponent’s strategy.
GAMUT [60] is employed to test the superiority of the proposed algorithm in [106].

1.3 Multi-agent Planning and Coordination 59

In [107], two properties are presented related to the rationality and convergence.
By rationality in a stage game, if the other players’ strategies converge to stationary
strategy, then the learning algorithm will converge to a stationary strategy and it is
the best response to the other players’ strategies. Another property is related to the
convergence. By this property, the learner will necessarily converge to a stationary
strategy.
In [107], Bowling and Veloso proposed an algorithm for known repeated game

having two players and two actions. Conitzer and Sandholm in [108] extend the
work in [107] for all repeated games. It is investigated in [106] that the algorithms
considering self-play proposed in [107] and [108] are not convergent against all
possible opponents. In Figures 1.30, 1.31, and 1.34, by Tit-for-Tat algorithm for
the Prisoner’s Dilemma and game of chicken offers higher average reward in
self-play than the rewards at NE. To avoid encounter the opponent outside the
target set, security value Vs is defined in (1.56).

Vs = max
π1 π1

max
π2 π2

Ve π1, π2 1 56

In summary, Powers and Shoham synergistically fuse the FP [39], Bully [109],
and Minimax [100] strategy with an aim to create most powerful hybrid
algorithm [106].
By FP, an agent plays best response against its stationary opponent utilizing the

likelihood of other agents to select an action from history. In [106], the best
response

Br π argmax
x X

OVe x, π , 1 57

where

X = y Π1 EV y, π ≥ max
z π1

EV z, π − ε 1 58

In [106], Bully algorithm (Algorithm 1.14) is extended to handle multiple stra-
tegies with equal reward by maximizing opponent’s values. In Bully algorithm, a
full set of mixed strategies are

BullyMixed argmax
x X

OVe x,Br x , 1 59

X = y Π1 Ve y,Br0 y = max
z Π1

Ve z,Br0 z 1 60

Bully algorithm is the one which is employed to elect a coordinator dynamically
among m number of agents with unique identify (ID) in the field of distributed

60 1 Introduction

computing. In distributed artificial intelligence, an algorithm needs to act as a
leader (or coordinator). In distributed algorithm, it is assumed that each agent
has a unique ID and goal of the algorithm is to find out the agent with highest
ID. The Bully algorithm is given in Algorithm 1.14. Finally, the Minimax strategy
is defined as

maximin argmax
π1 Π1

min
π2

Ve π1, π2 1 61

Initial portion of Algorithm 1.15 is related to coordination/exploration to iden-
tify the class of opponent and choose one strategy among three. If neither station-
ary strategy nor Bully strategy holds, then best-response strategy is applied. The
algorithm plays with one of the three strategies maintaining the average reward
within the security level and improving the maximum strategy when it is too
low, where dt2t1 refers to the distribution of opponent actions for the period from

t1 to t2. Avgn represents the average value achieved by the agent during the last
n epoch. VBully represents Ve(BullyMixed, Br0(BullyMixed)).

Algorithm 1.14 Bully Algorithm

Begin

An agent i initiates an election;

Agent i sends election message to all agents with higher IDs and

waits for feedback;

If feedback is not OK

Then agent i becomes coordinator and sends coordination

message to all agents with lower IDs;

Else

The agent i drops out and waits for a coordination message;

End;

If an agent receives an election message

Then immediately sends coordination message subject to that

the agent has highest ID;

Else

Return OK and starts an election;

If an agent receives a coordination message

Then the agent i treats the sender as the coordination;

End.

1.3 Multi-agent Planning and Coordination 61

Adapt When Everybody Is Stationary, Otherwise Move to Equilibrium As per [108], the
minimum requirements of MAS are that agents learn optimally against stationary
opponents and converge to a NE when all the agents are playing the same algo-
rithm. WoLF-IGA [107] has satisfied the above criteria in a two-agent two-action
repeated game assuming that the opponents’ strategies are observable. In [108],
Conitzer and Sandholm proposed Adapt When Everybody is Stationary, Otherwise
Move to Equilibrium (AWESOME), which is guaranteed to have the above proper-
ties for more than two agents and actions assuming that the opponents’ actions
(not strategies) are observable. In AWESOME, either agents’ aim at adapting with
the present strategies of the opponent agents or they converge to an already
learned NE. Once both of the above hypotheses are discarded, agents restart the
learning by the AWESOME algorithm.
The basic idea of the AWESOME is straightforward. If other agents are following

stationary strategies, then AWESOME offers its best strategy to the other agents.

Algorithm 1.15 Meta Strategy Algorithm

Begin

Set strategy = BullyMixed

Play strategy at time step t1;

Play strategy at time step t2;

If strategy=BullyMixed AND AVGValueH < VBully − ε1 with prob-

ability P

Then set strategy = Brε2 dt
0 and play;

End If

If dt1
o −dt

t−t1
< ε3

Set best Strategy = Brε2 dt
0 ;

Else if strategy=BullyMixed AND AVGValueH > VBully − ε1
Then set Best strategy=BullyMixed;

Else

Set best Strategy=Best Response;

End If

Until end of the game;

If AVGValuet − t0 < Vsecurity − ε0
Play Maximin strategy for t3 time steps

Else

Play best Strategy for t3 time steps;

End If

End

62 1 Introduction

On the other hand, if other agents adapt their strategies, then AWESOME follows
an already learned equilibrium. In spite of the above basic idea, the following addi-
tional specifications are made before proposing the AWESOME algorithm.

• From the beginning it is specified which equilibrium to repeat and restart learn-
ing by the AWESOME to avoid confusion.

• After restarting, the learning agents forget whatever it learned for simplicity.

• Following one equilibrium strategy among the already computed other equilib-
rium strategies may lead to divergence from equilibrium. Although, a null
hypothesis exists, AWESOME does not reject the hypothesis without sufficient
confirmations.

• If an agent selects its own action by its own mixed strategy, then AWESOME
rejects the equilibrium strategy to avoid the nonequilibrium strategy.

• After rejecting the equilibrium strategy by AWESOME, randomly an action is
chosen from a pool and changes its strategy.

• In AWESOME, except actions the strategies of the remaining agents are not
observable. Hence, one needs to specify how to reject an equilibrium strategy
which is common to all the agents.

The AWESOME algorithm is given in Algorithm 1.16 [108], and is developed
based on the above specifications. It is shown in [108] that AWESOME learns best
responses against the stationary opponents, and AWESOME converges to NE in
self-play.

Hyper-Q Q-learning is a well-known technique to learn optimal strategies by an
agent utilizing the cumulative rewards earned by it in an infinite trial-and-error.
Unfortunately, this is not applicable for nonstationary environment with multiple
adaptive agents. Most of the multi-agent Q-learner [72, 95, 100] requires knowl-
edge about other agents’ rewards and Q-function at each learning epoch. These
MAQL algorithms are convergent subject to the following conditions which are
not realizable in practice. First, an agent can observe all agents’ rewards. Second,
all the learning agents follow the same learning algorithms. In [110], Gerald pro-
posed Hyper-Q learning. Hyper-Q learner learns only the mixed strategies and the
strategies of the remaining agents are estimated employing the Bayesian inference.
Hyper-Q learner aims at overcoming the above limitations of MAS by modeling
the environment as repeated stochastic game, where only the remaining agents’
actions are observable but the rewards received due to the actions are not
observable.
Assuming the Hyper-Q learner is playing in a stochastic Markov game and

hence, the reward functions of the agents become the function the available joint
actions. Now, instead of choosing the best joint action with probability one (pure

1.3 Multi-agent Planning and Coordination 63

Algorithm 1.16 AWESOME Algorithm

For i = 1 to m

π∗i ComEquStrategy i ;//compute equilibrium strategy

for agent i

End For;

Repeat

For i = 1 to m

Ini2Empty hprev
i ; Ini2Empty hcurr

i ;

End For;

APPE true;// All players playing Equilibrium

APS true; // All players stationary

β false;// β is true if the equilibrium hypothesis is just rejected

t 0; // denotes the tth epoch and is initializes to zero in every

restart.

ϕ π∗Me; // refers to the AWESOME player’s current strategy

While APPE

For j = 1 to Nt

Play(ϕ); //Play the strategy ϕ
For i = 1 to m

Update hcurr
i ;

End For;

End For;

If APPE=false

If β =false

For i = 1 to m

If hcur
i −hprev

i > εts
Then APS false;

End If;

End For;

End If;

Then β false;a arg max
a

V a,hcurr
−Me ;

If V a,hcurr
−Me > V ϕ,hcur

−Me + n A εt + 1
s μ;

Then ϕ a;

End If;

End If;

If APPE=true

For i = 1 to m

If hcur
i − πpi > εte

Then APS false; ϕ RandAct(); β true;

End If;

End For; End If;

For i = 1 to m

hcur
i hprev

i ;Ini2Empty hcurr
i ;

End For; t t + 1;

End While;

strategy), in stochastic Markov game, an agent chooses actions with the best prob-
ability (mixed strategy). The Hyper-Q learning update rule is given in (1.62).

ΔQ S, pi, p− i α r S, pi, p− i + γmax
ai

Q S, pi , p− i −Q S, pi, p− i ,

1 62

where pi and pi denote the mixed strategy to select action ai and ai at joint state S

and joint next state S/, respectively. p−i and p− i refer to the joint mixed strategy of

all the agents except i to select joint action A−i and A− i at joint state S and joint
next state S/, respectively. It is indicated in [110] that establishing the convergence
for the function, approximation-based Q-learning is more difficult than the same
for the Q-learning. If all the agents do explore in a similar exploration strategy,
then like Q-learning in Hyper-Q learning, agents may fail to spot the optimal
mixed strategy in the strategy space after infinite visit of the joint states. In case
of stationary opponent strategy, the stochastic game becomes a MDP with station-
ary state-transitions and stationary rewards. Under the above circumstance,
Hyper-Q learning converges. Remaining convergence conditions are given in
[110]. To estimate opponent strategy, Bayesian strategy estimation is done in
[110]. By Bayesian estimation, one can write

P S H =
P H S P S

S

P H S P S
, 1 63

whereH refers to the history of observed actions, S and S/ are the discrete state and
next state, respectively. The outstanding performance of Hyper-Q learning in
terms of convergence rate and opponent agent’s strategy modeling is tested in
the framework of two-player, three-action matrix game rock-paper-scissors game
(Example 1.3).

Direct Policy Search Based Algorithm Direct policy search-based algorithms are
further classified as fixed learning rate and variable learning rate as shown in
Figure 1.36.

Fixed Learning Rate The algorithms with fixed learning rates are given below.

Infinitesimal Gradient Ascent In [111], Singh and Kearns proposed IGA based on
the positive changes in expected reward of the agents. The IGA is tested in a two-
player, two-action iterated general-sum games. It is shown in [111] that agents
converge to NE, but once they fail to converge to NE, they can never reach the

1.3 Multi-agent Planning and Coordination 65

NE. Literature shows that agents converge to
NE, but with restriction and limiting the appli-
cability of the NE [88]. Following the gradient
ascent (positive change) is the most common
trend in machine learning algorithm. It is not
guaranteed that the strategies computed by gra-
dient ascent in two-player, two-action iterated
games will converge to NE. However, the aver-

age reward is guaranteed to converge NE. For example, let there is a two-player,
two-action general-sum game. The reward matrix of the row (R) and column (C)
player is given in Figure 1.44.
Let row player choose action a1 stochastically with probability 0≤ r≤ 1 and col-

umn player choose action a1 stochastically with probability 0≤ c≤ 1. The expected
payoff of the row and column player is given by (1.64) and (1.65), respectively.

VR r, c = r11 rc + r22 1− r 1− c + r12 r 1− c + r21 1− r c ,

1 64
VC r, c = c11 rc + c22 1− r 1− c + c12 r 1− c + c21 1− r c

1 65

Here, the strategy pair (r, c) is called NE if and only if, the following two condi-
tions hold.

• if for any mixed strategy r/ (1.66) holds: i.e.

VR r , c ≤ VR r, c 1 66

• for any mixed strategy c/ (1.67) holds: i.e.

VC r, c ≤ VR r, c 1 67

Gradient for the row player and column player is given by (1.66) and (1.69),
respectively, considering u = (r11 + r22)− (r21 + r12) and u/ = (c11 + c22) −

(c21 + c12).

δVR r, c
δr

= cu− r22 − r12 , 1 68

δVC r, c
δc

= ru − c22 − c12 1 69

The mixed strategy update rules are given by (1.70) and (1.71), where η refers to
the step size.

r r + η
δVR r, c

δr
, 1 70

R

C

a1 a2

a1 r11, c11

r21, c21 r22, c22

r12, c12

a2

Figure 1.44 Reward matrix in a
two-player two-agent game.

66 1 Introduction

c c + η
δVC r, c

δc
1 71

Assuming that the gradient ascent algorithm is a full information game and
hence, both the players know the game matrices and the mixed strategies played
by the opponent players in the previous step.
By game theory [43], the sequences of strategies over timemay never converge to

NE. However, in [111], it is shown that the average rewards of both the players
always converge. The basic logic behind the analysis of two players acting accord-
ing to IGA is a two-dimensional dynamic system. Considering the infinitesimal
step size of η(η 0), IGA is proposed in [111]. By (1.66)–(1.71) and setting η 0,
the unconstraint dynamics of the strategy pair can be expressed as a function of
time in (1.72).

δr
δt
δc
δt

=
0

u

u

0

r

c
+

− r22 − r12
− c22 − c21

1 72

If the matrix U given in (1.73) is invertible, then trajectories of the unconstraint
strategies of the two-player two-action stochastic game are of having either limit
cycle behavior or have divergent nature. The direction and structure of these tra-
jectories depend on the exact values of u and u/.

U =
0

u

u

0
1 73

By solving (1.72), (r∗, c∗) is given in (1.74).

r∗, c∗ =
c22 − c21

u
,
r22 − r12

u
1 74

The average expected reward of the IGA player converges to a NE following one
of the following conditions. First condition is that the trajectories of the strategy
pair will automatically converge to a NE. The other condition is that the trajec-
tories due to the strategy pair will not converge but the average reward of the
two players reward will converge to the NE. To prove these conditions, the follow-
ing exclusive and exhaustive cases are considered [112].

1) U is non-invertible, if u 0/u/ 0 or u 0, u/ 0. Such cases can appear in
team, zero-sum, and general-sum games.

2) U is invertible, if the Eigen values of (1.75) are imaginary with zero real part, i.e.
when uu/ < 0.

0

u

u

0

x

y
= λ

x

y
1 75

1.3 Multi-agent Planning and Coordination 67

3) U is invertible, if its Eigen values are real with zero imaginary part. This con-
dition may appear in team and general-sum games but not is zero-sum games,
i.e. when uu/ > 0.

If U has imaginary Eigen values with zero real part, then based on the location of
the center (i.e. (r∗, c∗)) in the two-dimensional plane, there are three possibilities.

1) The center (r∗, c∗) is in the interior of the unit square,
2) Center (r∗, c∗) is on the boundary of the unit square, and
3) Center (r∗, c∗) is outside of the unit square.

Generalized Infinitesimal Gradient Ascent Convex programming is the generaliza-
tion of the linear programming having several applications in machine learning
domain [113–115]. The convex programming aims at searching a point F which
maximizes the cost function.

c F R 1 76

A convex programming comprises a feasible set F Rn and a convex cost func-
tion given in (1.76). In applications like industrial optimization, nonlinear facility
location problems [113], network routing problems [116], and consumer optimi-
zation problems [117], the value of the end product is unknown until the end prod-
uct is created. In [118], an online convex optimization programming is undertaken
with identical feasible set but having dissimilar cost functions. An algorithm is pro-
posed in [118], namely GIGA, which is generally reliable to solve former problems.
GIGA is the extension of IGA [111] applicable for more than two agents. Following
the definitions of convex, convex programming problem, online convex program-
ming problem, and the assumptions made in [107], make clear idea about the
online convex optimization. Interestingly, it is shown in [107] that the repeated
games are online linear programming. Finally, GIGA tries to minimize
regret [118].

Variable Learning Rate The algorithms with variable learning rates are
given below.

Win or Learn Fast-IGA Referring from Section “Infinitesimal Gradient Ascent,” if
the center (r∗, c∗) is inside the unit square with imaginary Eigen values, then the
performance of IGA andWoLF-IGA differs in terms of convergence. It is shown in
[107] that IGA does not converge if (r∗, c∗) lies inside the unit square. But WoLF-
IGA converges in such situation. The strategy-space where the player wins and
loses is also indicated in the proof. In addition, it is shown in [107] that the trajec-
tories due to Eigen values are pricewise elliptical in nature and take a spiral shapes

68 1 Introduction

toward the center. In [107], lemmas are proposed assuming that there are only
imaginary Eigen values.
By lemma 6 in [107], if the learning rate for the row player (αr) and the learning

rate for the column player (αc) remain constant, then the trajectory due to strategy

pair forms an ellipse considering (r∗, c∗) as the center and

0

αc u
αr u

,
1

0
are

as the axes of the ellipse. In [107], lemma 7 concludes that a player is winning if the
strategy of the player is moving away from the center. It is also mentioned in [107]
that in a two-person, two-action iterated general-sum game, both the players
follow the WoLF-IGA algorithm with learning rates αmax and αmin, then their
strategies will converge to a NE subject to

αrminα
c
min

αrmaxα
c
max

< 1 1 77

GIGA-Win or Learn Fast The most common problems in MARL, regret and con-
vergence, are addressed in gradient-based GIGA-WoLF [119]. GIGA-WoLF is the
synergism of GIGA’s no-regret property and WoLF-IGA’s convergence prop-
erty [119]. A bound is assigned to test the GIGA-WoLF’s regret against the
unknown strategy of an opponent agent. For a two-agent, two-action normal-form
game, if one agent follows the GIGA-WoLF algorithm and another agent follows
the GIGA algorithm, then their strategies does converge to NE. Both the properties
are validated theoretically and experimentally in [119]. In GIGA-WoLF, agents
must know about the game and should have the model of opponent agent. In
almost all the games (except “problematic” Shapley’s game), unlike GIGA’s stra-
tegies, GIGA-WoLF’s strategies does converge in self-play to equilibrium.

Dynamic

The dynamic algorithms are categorized as equilibrium dependent and independ-
ent. The algorithms based on the equilibrium solution concept are listed below.

Equilibrium Dependent The equilibrium-dependent MARL algorithms are
given below.

Nash-Q Learning NQL is the extension of Littman’s Minimax-Q learning [100]. In
other words, it’s the extension of zero-sum-stochastic game to the general-
sum-stochastic game. NQL is a MAQL algorithm, which converges under specific
conditions. It looks for optimal joint action (NE) in a game. Formultiple NEs in the
game, the NQL algorithm is fused with other learning techniques to obtain optimal

1.3 Multi-agent Planning and Coordination 69

strategies for the entire team. The adopted framework in [95] is stochastic/Markov
games. Markov game is the generalization of the MDP with more than two agents.
Unlike, zero-sum game, here in general-sum-stochastic game, an agent’s gain is no
longer its opponent agent’s loss. In general-sum game, an agent’s reward depends
on other agent’s choices and hence, the NE is employed. In NE, an agent cannot
deviate unilaterally and it is assumed that there is no communication among the
agents. Only agents can observe other agents’ strategies and rewards. In addition,
the state-transition probabilities and reward functions are unknown. The NQL
algorithm is designed in such a way that all the agents converge to the NE with
restrictions. NQL is guaranteed that all the agents converge to the NE. But for mul-
tiple NE solutions, it is not guaranteed that all the agents converge the same NE. In
[80], Filar and Vrieze proposed that every general-sum discounted stochastic game
possess at least one equilibrium point in stationary strategy. Unlike single agent
Q-learning [84] andMinimax Q-learning [100], in NQL the Q-learning update rule
for agent i is given in (1.78).

Qi S,A 1− α Qi S,A + α ri S,A + γ NashQi S , i, 1 78

where

NashQi S = π1 S πm S Qi S 1 79

An online version of NQL and simulation results on Grid game 1 and 2 are given
in [71]. The NQL for general-sum-stochastic game is given in Algorithm 1.17. The
convergence proof of Algorithm 1.17 is given [71].

Algorithm 1.17 NQL in General-sum Game

Input: Action ai Ai at si Si, i, learning rate α [0, 1) and dis-

count factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i; S = si

m
i = 1,A = ai

m
i = 1;

Initialize: Qi(A, A) 0, i;

Begin

Repeat

Choose an action ai Ai, i;

Receive immediate reward ri(S, A), i;

Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γ NashQi(S
/)],

i and S S/;

Q∗
i S,A Qi S,A , i; //NashQi(S

/) = π1(S
/). …πm(S

/). Qi(S
/)

Until Qi(S, A), i converge;

End.

70 1 Introduction

Correlated-Q Learning In [72], Greenwald andHall introduced aMAQL algorithm,
namely Correlated-Q Learning (CQL). In CQL, Q-value of an agent updates at CE.
CQL generalizes both NQL and FFQ in general-sum-stochastic games. If NE and
CE do not intersect, then the agent receives less reward at NE compared to the
same at CE. Four variants of CE are defined in [72] and the definition of CE is
given in Definition 1.18. The algorithm for CQL is given in Algorithm 1.18. Con-
vergence analysis of the above equilibria in the framework of Markov games are
done in [72].

Asymmetric-Q Learning In [120], Ville proposed Asymmetric-Q Learning (AQL)
algorithm, where an agent leads the follower agents by providing the information
about the follower agents’ strategy to the follower agents. AQL offers the following
benefits:

• In each state the leader has unique equilibrium point.

• Asymmetric Q-learner always achieves the PSNE very fast. Though MSNE
exists.

• The AQL algorithm enjoys the lower space and computational requirements
than conventional algorithms.

In [120], the existingMAQL algorithms are divided into three clusters. One is the
methods utilizing the direct gradients of agents’ value function. Second one is the
methods that estimate the value functions and then use this estimate to compute

Algorithm 1.18 Correlated-Q Learning

Input: Action ai Ai at state si Si for all the agents learning

rate α [0, 1) and discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i;

Initialize: Qi(S, A) 0, i;

Begin

Repeat

Choose an action ai A, i;

Receive immediate reward ri(S, A), i;

Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γVi(S
/)], i

and S S/;

Vi(S
/) = CE(Q1(S

/), Q2(S
/), …, Qm(S

/)), i;

Q∗
i S,A Qi S,A , i;

Until Qi(S, A), i; converge;

End.

1.3 Multi-agent Planning and Coordination 71

equilibrium of the process. Last one is the use of direct policy gradients. The AQL
algorithm is developed by Stackelberg equilibrium (SE) [44]. The algorithm for the
leader and the follower are given in Algorithms 1.19 and 1.20. The leader agents
are capable to maintain all the agents’ Q-tables. However, the follower agents are

Algorithm 1.19 Asymmetric-Q Learning for the Leader

Input: Action ai Ai at state si Si for all the agents learning rate

α [0, 1) and discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i;

Initialize: Qi(S, A) 0, i;

Begin

Repeat

Choose an action ai A, i;

Receive immediate reward ri(S, A), i;

Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γVi(S
/)], i

and S S/;

Vi(S
/) = SE(Q1(S

/), Q2(S
/), …, Qm(S

/)), i;

Q∗
i S,A Qi S,A , i;

Until Qi(S, A), i; converge;

End.

Algorithm 1.20 Asymmetric-Q Learning for the Follower

Input: Action ai Ai at state si Si for all the agents learning rate

α [0, 1) and discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i;

Initialize: Qi(S, A) 0, i;

Begin

Repeat

Choose an action ai A, i;

Receive immediate reward ri(S, A), i;

Update: Qi S,A 1−α Qi S,A + α ri S,A + γmax
A

Qi S ,A and

S S/;

Q∗
i S,A Qi S,A , i;

Until Qi(S, A), i; converge;

End.

72 1 Introduction

not able to maintain all the agents’ Q-values and hence, they just maximize their
reward. Experiments are performed in the grid world environment to demonstrate
the superiority of the AQL algorithm.

Friend-or-Foe Q-learning In [121], Littman proposed one variant of MAQL algo-
rithm, namely FFQ algorithm with a strong convergence guarantee compared
with NE in the framework of general-sum-stochastic game, where agents are
instructed to consider other agents’ either as a friend or foe. Though, FFQ learning
is an improvement over the Nash-Q. In FFQ, two variants’ of NE are employed.
One is adversarial equilibrium and another is coordination equilibrium. In Min-
imax-Q (zero-sum game) [100], all the equilibria are adversarial equilibrium. How-
ever, in general-sum game, all the equilibria are not coordination equilibrium.
Coordination equilibrium provides the highest possible reward of agent i, i [1,
m] given in (1.80) [121].

Ri π1,…, πm = max
a1 A1,…, am Am

Ri a1,…, am 1 80

Except fully cooperative game, coordination equilibrium need not always exist.
The adversarial and coordination equilibria are explained in Figure 1.25. The dif-
ference between the Nash operation and the maximization or minimax operations
is that the latter two have unique solutions. However, the Nash operation offers
two variant of solutions: adversarial and coordination equilibrium depending
on the problem type.
Two Propositions are proposed and proved in [121]. As per the Propositions, if a

one-stage game has a coordination/adversarial equilibrium, then all of the coor-
dination/adversarial equilibrium have same value. There exist two conditions
for convergence [121]. In summary, the conditions statement is that for a game
there exists either adversarial/coordination equilibrium. Later, two stronger con-
ditions of convergence are proposed in [95, 121]. These conditions can be summar-
ized as follows. There exists an adversarial/coordination equilibrium in a game
and every game is defined by the Q-functions adapted during the learning phase.
The later conditions are also not sufficient to guarantee convergence. Hu andWell-
man [95] state two theorems that by the latter two conditions Nash-Q converges to
Nash-Q equilibrium until all the equilibria are adapted during the learning phase
are unique. Also by the latter two conditions, Nash-Q converges to NE, until the
required equilibria are employed in (1.82).
Now, in FFQ algorithm, Nash Qi(S

/) are given in (1.81) and (1.82) for Friend-Q
(coordination equilibrium) and Foe-Q (adversarial equilibrium), respectively.

Nash Qi S = max
A

A

P A Qi S ,A , 1 81

1.3 Multi-agent Planning and Coordination 73

Nash Qi S = max
a1,…, ax

min
a1,…, ay A

P A Qi S ,A , 1 82

where A/ = < a1,…, am> , A// = < a1,…, ax, a1,…, ay>, and y refers to the number
of foes (opponent agents). The convergence of FFQ learning is subject to that the
Nash operator is max or minimax operator [121]. Like NQL, for simulation pur-
pose two grid games are employed [95, 121] in FFQ. Six different variants’ of oppo-
nents are described in [121]. Though, Nash-Q and FFQ cannot fix the problem of
finding equilibria, if neither coordination nor adversarial equilibrium exists. The
algorithm for FFQ learning is given in Algorithm 1.21.

Negotiation-Based Q-learning In [122], Hu et al. proposed a MARL without mutu-
ally sharing their value functions. Authors in [122] mentioned that mutual
exchange of value function is impractical because of the local restriction of the sys-
tem and privacy of the agents in case of distributed agents. Doing so appears
impossible to evaluate equilibrium in a one short game. In the above circum-
stances, authors propose a multi-step negotiation process to evaluate three types
of pure strategies: PSNE, equilibrium-dominating strategy profile (EDNP), and
nonstrict EDNP, instead of computing the computationally expensive MSNE. It
is also shown that abovementioned three strategies are symmetric Meta strategies.
Fusing the above techniques, Hu et al. proposed NegoQ in [122].

Algorithm 1.21 Friend-or Foe-Q Learning

Input: Action ai Ai at state si Si for all the agents learning rate

α [0, 1) and discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i;

Initialize: Qi(S, A) 0, i;

Begin

Repeat

Choose an action ai A, i;

Receive immediate reward ri(S, A), i;

Evaluate Nash Qi(S
/), i by (1.81) and (1.82) respectively

for Friend-Q and Foe-Q

Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γNash Qi(S
/)],

i and S S/;

Q∗
i S,A Qi S,A , i;

Until Qi(S, A), i; converge;

End.

74 1 Introduction

NegoQ deals with pure strategy equilibrium. However, in some games (e.g. rock-
paper-scissor game, Example 1.3), PSNE does not exist. Another hindrance is that
a strategy may be Pareto dominated and so not a PSNE. In Prisoners’ Dilemma,
only one PSNE (C, C) exist as shown in Figure 1.34. Though (D, D) is the better
choice, but (D, D) is the Pareto optimal and not a PSNE. In this regard, a strategy
profile Pareto dominates NE, i.e. EDNP is defined in Definition 1.19.

Definition 1.19 In an m−agent (m ≥ 2) normal-form game, a joint action A
{A} is an EDNP if there is a PSNE AN {A} such that

Qi A ≥ Qi AN , i = 1,m 1 83

By Definition 1.19 one can conclude that each agent following EDNP receives
more reward than the same by following PNSE.
Before defining the nonstrict EDSP, a normal-form game with the same is given

in Figure 1.45. In Figure 1.45, there are two PSNEs: (a1, b1) and (a2, b2). It is appar-
ent that the strategy profile (a1, b3) and (a3, b3) provide a greater reward to A than
(a1, b1) and a greater reward to B than (a2, b2), respectively. So, the priority of (a1,
b3) and (a3, b3) are more than (a1, b1) for A and (a2, b2) for B, respectively. Hence,
for A and B the nonequilibrium strategy profile (a1, b3) and (a3, b3) partially dom-
inate the existing PSNE. In [122], Hu et al. defined them as nonstrict EDSP as given
in Definition 1.20.

Definition 1.20 In anm−agent (m≥ 2) normal-form game, a joint action A {A}

is an EDNP if there is a PSNE Ai
N A such that

Qi A ≥ Qi A
i
N , i = 1,m 1 84

In the multistep negotiation process of computing the abovementioned three pure
strategy profiles, agents exchange their preferences of joint actions among them-
selves in terms of binary answers. An illustration of themultistep negotiation proc-
ess is given in Figure 1.46. In Figure 1.46, “Y” and “N” represent as yes and no,
respectively. A joint action is pure strategy profile if and only if both the agents’
responses are yes. The negotiation process comprises of three types:
(i) negotiation for finding the set of PSNE, (ii) negotiation for finding the set of

A

B
b1 b2 b3

a1 (20,40) (4,22) (29,30)
a2 (18,9) (36,19) (7,4)
a3 (17,26) (15,38) (27,38)

Figure 1.45 Nonstrict EDNP in normal-
form game.

1.3 Multi-agent Planning and Coordination 75

nonstrict EDSP, and (iii) negotiation for choosing
equilibrium (joint action) from the sets obtained
by the above two steps. Evaluation of EDSP fol-
lows from the evaluation of the nonstrict EDSP,
as EDSP is a special case of nonstrict EDSP. The
negotiation to evaluate the PSNE for agent i is
given in Algorithm 1.22. The negotiation to eval-
uate the nonstrict EDSP for agent i is given in
Algorithm 1.23. Based on the Negotiation algo-

rithms (Algorithms 1.22 and 1.23) to evaluate the pure strategy profiles the NegoQ
algorithm for a Markov game is given in Algorithm 1.24. The superiority of

A

B

C D

C Y, Y Y, N

D N, Y Y, Y

Figure 1.46 Multistep
negotiation process between
agent A and B.

Algorithm 1.22 Negotiation to Evaluate the PSNE for Agent i in a Normal-form
Game

Input: Action ai Ai only for the agent i [1, m] and Qi(A);

//A A = × m
i = 1Ai

Output: PSNE set {AN};

Initialize: {AN} φ;
Evaluate maximal reward set for agent iMSi;

For all A−i {A−i}

ai = arg max
ai

Q ai,A −i ;

{AN} {AN} {ai, A−i};

End For

For all joint action A {AN}

Ask remaining agents that is {AN} includes A;a

If {AN} does not include A then

{AN} {AN}\{A};

Inform other agents to exclude A from their {AN} sets

End If

End For

For all joint action A/ received from remaining agents

If A/ belongs to MSi then

Response as yes to the remaining agents;

else

Response as no to the remaining agents;

End If

End For

76 1 Introduction

Algorithm 1.23 Negotiation to Evaluate the Nonstrict EDSP for Agent i in a
Normal-form Game

Input: Action ai Ai only for the agent i [1, m], {AN} from

Algorithm 1.13 and Qi(A); //A A = × m
i = 1Ai

Output: nonstrict EDSP set {AnP};

Initialize: {AnP} φ;
{X} A\{AN};

For each PSNE AN {AN}

For each joint action A {X};

If Qi(A)≥ Qi(AN) then

{X} {X}\{A};

{AnP} {AnP} {A};

End If

End For

End For

For all joint action A {AnP}

Ask remaining agents that is AnP includes A;

If answer is no then

{AnP} {AnP}\{A};

End If

End For

For all joint action A/ received from remaining agents

If A/ belongs to AnP then

Response as yes to the remaining agents;

else

Response as no to the remaining agents;

End If

End For

Algorithm 1.24 Negotiation-Q Learning for Agent i in a Markov Game

Input: Joint action space {A}, number of agents’ m, state space

{S}, learning rate α, discounting factor γ and exploration rate ε;
Output: Optimal joint Q-value Q∗

i S,A ;

Initialize: Qi(S, A) 0;
Begin

Repeat
Negotiate with remaining agents employing Algorithms 1.13

and 1.14;
Select the pure strategy equilibrium A/ using ε-greedy;
Receive experience tuple <S, A, ri(S, A), S/ > ; // ri(S, A) and

S/ are the immediate reward and next joint state
Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γQi(S

/, A/)],

and S S/;
Q∗
i S,A Qi S,A ;

Until Qi(S, A); converges;

End.

Algorithm 1.24 is tested in grid-world maps over the state-of-the-art reference
algorithms.

MAQL with Equilibrium Transfer Hu et al. [123] identified that agents evaluate the
same equilibrium (NE or CE) at a joint state for different one-shot games. Here,
two equilibria are declared as same if and only if the Euclidian distance between
the probability distribution of the strategies is less than a predefined threshold.
Reuse of the previously computed equilibrium (or equilibrium transfer) decreases
as the convergence time of the equilibrium-based MAQL decreases with negligible
transfer loss. Suppose G and G/ are two one-short games that visit the same joint
state S. Now, the Euclidian distance between the equilibrium strategy p ofG and p/

of G/ are given in (1.85) and (1.86), respectively, for NE and CE.

dNE p, p =
n

i = 1 ai Ai

pi ai − pi ai
2
, 1 85

dCE p, p =
A A

q A − q A 2 1 86

If the dNE(p, p/) or dCE(p, p/) is smaller than a threshold, then p and p/ are con-
sidered as identical in G and G/. Hence, by equilibrium transfer one can directly
use p in G/. As computation of equilibrium is more expensive than checking,
hence, there is a significant saving in computational cost. Hu et al. [123] measures
the equilibrium transfer loss and based on that loss the equilibrium transfer con-
dition is defined. Let p∗ and q∗ denote the NE and CE of G and G/, respectively.
Now, loss because of transferring the equilibrium p∗ and q∗ from G to G/ is given
by (1.87) and (1.88), respectively.

Algorithm 1.25 Equilibrium Transfer-Based MAQL

Input: Action ai Ai at state si Si for all the agents learning

rate α [0, 1), discount factor γ [0, 1),exploration factor

ε, threshold of transfer loss τ, Gc be the one-short game at

joint state S and p∗ previously computed equilibrium at S;

Output: Optimal joint Q-value Qi(S, A), i; //S S = × m
i = 1Si

and A A = × m
i = 1Ai

Initialize: Qi(S, A) 0, i;

Repeat

If joint state S has been visited

then evaluate maximum utility loss εΩ, Ω {NE, CE} for

transferring to Gc;

Else

78 1 Introduction

Here, QG
i refers to the Q-value of agent i in G/.

Now the transfer loss condition for NE, p∗ for an agent i is given by

QG
i p∗ + εNE ≥ QG

i p∗ + max
ai Ai

QG
i ai, p∗− i −QG

i p∗

= QG
i p∗ + max

ai Ai

QG
i ai, p∗− i −QG

i p∗

= max
ai Ai

QG
i ai, p∗− i

1 89

Similarly, for CE, the following condition can be derived:

A− i

q∗ ai,A− i × QG
i ai,A− i + εCE ≥

A− i

q∗ ai,A− i × QG
i ai ,A− i

1 90

The algorithm for equilibrium transfer-based MAQL is given in Algorithm 1.25.
Superiority of Algorithm 1.25 is tested in Grid World game, Wall game, and Soc-
cer game.

Equilibrium Independent Equilibrium-independent MARL algorithms are again
categorized based on the learning rate selection given below.

Variable Learning Rate RL algorithms with variable learning rate are given below.

εΩ + ∞ ;

End if

If εΩ > τ
Then evaluate p∗ for Gc;

Else

Reuse p∗ in Gc;

End if

Select joint action, A sampled from p∗;
Receive experience (S, A, ri, S/), i;

Evaluate equilibrium p/ for the next joint state S/;

Evaluate Vi(S
/) expected value of p/ in S/, Qi(S, A) (1 − α)Qi

(S, A) + α(ri + γVi(S
/)) and S S/;

Until Qi(S, A), i converge;

εNE = max
i N

max
ai Ai

QG
i ai,p∗

−i −QG
i p∗ , 1 87

εCE = max
i N

max
ai Ai

max
ai Ai A −i

q∗ ai,A −i × QG
i ai,A −i −QG

i ai,A −i 1 87

1.3 Multi-agent Planning and Coordination 79

Win or Learn Fast Policy Hill-Climbing In [124], Bowling and Veloso proposed
WoLF policy hill-climbing algorithm for stochastic game in the presence of other
adaptive agents, satisfying rationality and convergence. Rationality indicates that
all agents’ policies converge to stationary policies and then the learning algorithm
will converge to a stationary policy, which is best response to their policies [124].
The convergence property states that agents necessarily converge to a stationary
policy. Also, if all agents are rational and convergent, then it is guaranteed to con-
verge NE. The learning algorithms in [31] and [125] either converge to a subop-
timal policy or does not converge. Proposed WoLF is based on the principle of
learn quickly while losing and learn slowly while wining.
Policy hill-climbing (PHC) is a straightforward extension of Q-learning to han-

dle mixed strategies. The PHC algorithm is given in Algorithm 1.26. PHC learns
the most recent mixed strategy. The updating of the mixed strategy in PHC is done
by selecting the highest valued action as per the learning rate δ (0, 1]. For δ = 1,
the algorithm behaves as single agent Q-learning. Both Q-values and the strategy
are convergent following single agent Q-learning.
The main contribution of the proposed algorithm in [124] is the extension of

PHC algorithm by employing a variable learning rate and the WoLF principle.

Algorithm 1.26 Policy Hill-Climbing (PHC)

Input: Action ai Ai at state si Si for all the agents learning rate

α [0, 1) and discount factor γ [0, 1);

Output: Optimal policy π∗i S,A ;

Initialize: Qi(S, A) 0 and πi S,A 1
Ai

;

Begin

Repeat

Choose an action ai A with probability πi(S, A);

Receive immediate reward ri(S, A);

Update: Qi S,A 1− α Qi S,A + α ri S,A + γmax
A

Qi S ,A ,

S S/ and

πi S,A πi S,A +

δ, If A = arg max
A

Q S,A

− δ

Ai −1
, otherwise

π∗i S,A πi S,A ;

Until π∗i S,A converges;

End.

80 1 Introduction

In variable learning rate, the learning rate is used by the learning algorithm and is
tuned in such a way so that the rationality is maintained. The WoLF principle
motivates to learn quickly while losing and slowly while winning [124]. The
WoLF-PHC algorithm employs two learning rate: losing learning rate δl and win-
ing learning rate δw, where δl> δw. The winning/losing situation of the agent is
determined by contrasting the current reward and the average reward taken over
the time. If the agent is losing, then larger learning rate δl is employed. The WoLF-
PHC [124] algorithm is given in Algorithm 1.27. The convergence and rationality
of the WoLF-PHC algorithm is tested in Matrix games, Grid world game, and Soc-
cer game. In all frameworks, WoLF-PHC outperforms reference algorithms.

Policy Dynamic-BasedWin or Learn Fast (PD-WoLF) IGA [111] learner converges to
NE rationally but they are not convergent to NE for all the general-sum games.
Later, IGAwas extended toWoLF-IGA in [107] and its convergence proof is shown
in [107] for a 2 × 2 game assuming agents know the equilibrium policies of other
agents. In [126], Banerjee and Peng did experimental-based comparisons of the

Algorithm 1.27 Win or Learn Fast-PHC (WoLF-PHC)

Input: Action ai Ai at state si Si for all the agents learning

rate α, δl > δw and discount factor γ [0, 1);

Output: Optimal policy π∗i S,A ;

Initialize: C(S) 0, Qi(S, A) 0 and πi S,A 1
Ai

;

Begin

Repeat

Choose an action ai A with probability πi(S, A);

Receive immediate reward ri(S, A);

Update: average policy π,C S C S + 1, S S/,

π S,A π S,A + 1
C S πi S,A − π S,A

and πi S,A πi S,A +

δ, If A = argmax
A

Q S,A ;

− δ

Ai −1
, otherwise;

δ =
δw, If

A
πi S,A Qi S,A >

A
π S,A Qi S,A

δl, otherwise
;

π∗i S,A πi S,A ;

Until π∗i S,A converges;

End.

1.3 Multi-agent Planning and Coordination 81

WoLF and PD-WoLF to establish the superiority of the PD-WoLF both in the
bimatrix and the general-sum games.
From Section “Infinitesimal Gradient Ascent,” considering the sub case of

purely imaginary Eigen values,U and the center (r∗, c∗) are within the unit square.
The solution r(t) of (1.72) for unconstraint dynamics [127] is given in (1.91), where
the value of B and ϕ depends on the initial values of α, β.

r t = B u cos uu t + ϕ + r∗ 1 91

PD-WoLF criteria for a row player (agent) are given by (1.92).

αr t =
αmin, if ΔtΔ2

t < 0

αmax, otherwise
, 1 92

where Δt = rt− rt− 1 and Δ2
t = Δt −Δt− 1 It is apparent that (1.92) is independent

of other agents’ policies.

Fixed Learning Rate MARL Algorithms with fixed learning rate are given below.

Non-Stationary Converging Policies One major shortcoming of MAQL is the
assumption that the environment is stationary. In [128], Michael and Jeffrey pro-
posed the NSCP, where agents are not interested in converging to an equilibrium
rather they search for the best-response policy for the non-stationary opponents.
NSCP predicts the opponents’ non-stationary strategy with precision and act by its
best-response strategy with respect to the opponents in the well-known test bench
of general-sum-stochastic games (game with multiple joint states) or matrix games
(game with one joint state). The MAQL algorithms [71, 72, 81, 95, 100] and [121]
either converge to NE or CE. By [129], the equilibrium-based MAQL algorithms
are problematic, as the learning stops at the equilibrium point and the equilibrium
point is necessarily not a goal point. Also an additional problem arises in the pres-
ence of multiple equilibria. The NSCP algorithm aims at adapting an optimal
reward considering the presence of other agents. In [130], an agent converges
to best-response strategy subject to stationary opponents in two-player general-
sum-stochastic games. The NSCP algorithm is given in Algorithm 1.28. Simulation
results validate the superior performance of the NSCP with respect to reference
algorithms.

Extended Optimal Response Learning The zero-sum-stochastic game proposed by
Littman [100] was extended to general-sum-stochastic game by Hu and Wellman
[95] and agents converge to NE in stochastic games by these algorithms. On the
contrary, in [95] and [100], agents always try to converge to NE ignoring strategies
of other agents. Further, all the agents must agree upon to select a NE in the

82 1 Introduction

presence of multiple NEs. Thus, the algorithms proposed in [95] and [100] are not
adaptable in the above sense. In [131], Nobuo and Akira extended optimal
response to EXORL, where agents converge to NE subject to adaptability of other
agents. Similar to NQL [95], in EXORL, an agent maintains all agents’ Q-tables
assuming that it can observe other agents’ state–action and reward. EXORL aims
at realizing a policy which is optimal response to other agents’ policies, where
remaining agents are adaptable and attain NE. The EXORL algorithm is given
in Algorithm 1.29. JAL [81] learns Q-value due to its own action and estimates
teammates’ strategy. Let πi be the strategy of agent i at state S which maxi-
mizes (1.93).

Qi S, πi = πi
TQi S π − i S , 1 93

where π − i S refers to estimate of all agents’ joint policy except agent i. Now, if a
policy diverges from NE, then the policy may not be suitable to estimate the
remaining agents’ strategy. This problem is addressed in [131] and the update rule
is given by (1.94) and (1.95) tuning the value of ρ.

Qi S, πi = πi
TQi S π − i S − ρσ S, πi , 1 94

Algorithm 1.28 Non-Stationary Converging Policies

Input: Action ai Ai at state si Si, i, i [1, m], learning rate

α [0, 1) and discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i;

Initialize: Qi(S, A) 0, i and πi S,A = 1
A ;

Begin

Repeat

Observe the actions taken by all the agents A {A};

Receive immediate reward ri(S, A), i;

Update: other agents’ strategy π −i S,A = 1
A , i;

Select best-response strategy πbri S,A

that maximizes BR S =
a1 a2 am

πbri S ,ai
−i
πi S ,ai Qi S ,A ;

Update: Q-values using the following rules

Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γBR(S/)] and S S/;

Until Qi(S, A), i; converges;

Obtain Q∗
i S,A Qi S,A , i;

End.

1.3 Multi-agent Planning and Coordination 83

where

σ S, πi = max
π − i

πi
TQ− i S π − i − πi

TQ− i S π − i S , 1 95

here σ(S, πi) refers to the possible increase in expected discounted reward of agent
i. Hence, to maximize the left part of (1.95), agent i has to maximize the first com-
ponent of right part and also minimizes the second component of the right part.
Also, (1.95) is a piece-wise linear concave function and it has a sole maximal point.
It is shown in [131] that by EXORL an agent plays well subject to that the opponent
agents play fixed policy considering small value of ρ. The EXORL is verified in
Matching Pennies, Presidency Game [80], and Battle of sexes game in [131].

1.3.6 Coordination and Planning by MAQL

In the present book, for multi-robot coordination and planning without any com-
munication among the agents, we focus on the equilibrium-based MAQL as
explained in Section “EquilibriumDependent”. Because of the absence of commu-
nication among the agents, each agent needs to maintain all the agents’Q-tables at
joint state–action space. Figure 1.47 explains the multi-robot coordination and
planning mechanism for the well-known stick-carrying problem. Stick-carrying

Algorithm 1.29 EXORL for Agent i

Input: Action ai Ai at si Si, i, learning rate α [0, 1) and

discount factor γ [0, 1);

Output: Optimal Q-value Q∗
i S,A , i; S = si

m
i = 1,A = ai

m
i = 1;

Initialize: Qi A,A 0, πi S,ai
1
Ai

i, π −i S,A −i
1

× m
j = 1,j i

A j
;

Begin

Repeat

Choose an action ai Ai, i;

Receive immediate reward ri(S, A), i;

Update: Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γ Qi(S
/, A)],

i, S S/

and π −i S 1− β π −i S + β π −i S ; π −i S =
1 if A −i = A −i

0 otherwise

Until Qi(S, A), i converge;

Obtain Q∗
i S,A Qi S,A , i;

End.

84 1 Introduction

problem refers to the transportation of a stick from current positions to the desired
destination. Presently, twin robots are at a joint state <4, 7> with a stick as shown
in Figure 1.47c. As each robot have both robots’ Q-tables at joint state–action
space, a robot looks for the optimal joint action, i.e. PSNE at <4, 7> by evaluating
equilibrium. To evaluate equilibrium, a robot extracts the information from the
joint state <4, 7> (Figure 1.47a, b) and PSNE, “FL” is evaluated following the def-
inition of NE as shown in Figure 1.47. Here, both the robots evaluate identical
PSNE. Hence, without any communication between the robots, coordination
occurred and the stick is shifted to the next joint state <5, 4> because of the joint
action “FL” by the robots.

1.3.7 Performance Analysis of MAQL and MAQL-Based Coordination

The MAQL algorithms illustrated above have addressed several challenges of the
MAQL. The main challenges of MAQL are suitable action selection for balancing
exploration/exploitation, update policy selection for adaptation of the Q-table in

90 65.61 - -

- - 100 81

- - X -

FL LL FF RF

4 7

5 4

6 5

Joint action

J
o

in
t s

ta
te

72.9 72.9 - -

- - 81 65.61

- - 90 -

FL LL FF RB

4 7

5 4

6 5

Joint action

J
o

in
t s

ta
te

(a) (b)

(c)

G1 G2

1
1

2

3

4

5

6

7

8

9

Obstacle

Obstacle Obstacle

Nash equilibrium
computation FL

72.9, 72.9
90, 65.61

Action of R2A
c
tio

n
 o

f R
1

F

65.61, 72.9

L

L

90, 72.9

2

2

1

Figure 1.47 Multi-robot coordination for the well-known stick-carrying problem. (a) Joint
Q-table of agent 1 by NQL. (b) Joint Q-table of agent 2 by NQL. (c) Stick-carrying by
employing (a) and (b).

1.3 Multi-agent Planning and Coordination 85

joint state–action space, equilibrium selection among multiple equilibria, and
the exponential increase in the space and time complexity, with the increase
in number of agents. In this regard, to measure the performance of a MAQL over
contender MAQL algorithms, the following metrics are summarized for the
abovementioned MAQL.
In JAL [81], the Boltzmann strategy is extended to the OB, WOB, and their com-

bination. The superiority of the JAL with the combined method is tested consid-
ering the average accumulated reward as the performance metric. The superiority
of the FMQ heuristic is measured considering convergence to the optimal joint
action as the performance metric. In Team-Q learning [92], the average reward
of agents is maximized over the learning epoch. The Distributed Q-learner [91]
converges to the optimal joint action with less storage and computational cost.
Therefore, in Distributed Q-learning, computational cost and storage requirement
are the performance metrics. In OAL [96] algorithm, agents select the optimal NE
among multiple NE with probability one. Hence, in OAL, optimal equilibrium
selection is the metric. In SCQL [97], the Q-tables are sparsely maintained and per-
formance of the SCQL is measured over reference algorithms in terms of the com-
putational cost and storage requirement. In SQL [98], the metric is the steps
required to reach the goal state from the starting state, i.e. selection of the right
joint action without any behavior conflict among the agents. In FMRQ [99], agents
achieve the coordination-type optimal NE to maximize the system performance in
terms of average steps per episode for box-pushing problem and average rewards
per episode for distributed sensor network problem. In Minimax-Q learning algo-
rithm [100], both the agents learn optimal policies and efficiency of the algorithm
is tested in the framework of a two-player grid game by measuring the winning
percentage of the game by the agent in an episode. Performance of the HAMRL
algorithm [101] is measured in terms of the convergence speed. FP [105] addressed
the equilibrium selection problem in coordination game. The performance of the
Meta strategy [106] is measured in terms of the average reward achieved by the
agents. AWESOME [108] learns the best response (NE) considering a stationary
opponent and its performance is measured against FP in terms of the distance
to equilibrium and distance to the best response. In Hyper-Q learning [110], online
Bellman error and average reward variation with respect to the learning epoch are
considered as the performance metrics. In [111], IGA proposed a scheme by which
agents conditionally converge to the NE. Performance of the GIGA [118], WoLF-
IGA [107], and GIGA-WoLF [119] algorithms are measured in terms of the con-
vergence rate. In NQL [95], percentage of NE achieved in a game is considered as
the performance metric. In CQL [72], mean Q-value difference is the performance
metric. In AQL [120], change in Q-values of the agents with the learning epoch is
considered as the performance metric. The FFQ [121] always converges to a NE
and converging to a NE is a metric. Average reward with the episode and number

86 1 Introduction

of learning epoch required per episode are the metrics in NegoQ. In the equilib-
rium transfer-based MAQL [123], three metrics are considered. First one is the
learning speed, second one is the improved average reward, and finally the last
one is the reduction in the space complexity. InWoLF-PHC [124], the policy either
converges to NE or to a suboptimal NE and percentage of winning a game by an
agent is considered as the performance metric. In PD-WoLF [111], average reward
is the performance metric during the learning phase. Average time required to
complete a task is considered the performance metric during learning in case of
NSCP [128]. In EXORL [100], policy and Q-value learned with the learning epoch
are considered as the performance metric.
In MAQL-based coordination, agents re-evaluate the NE/CE as explained in

Section 1.3.6. As the computational cost of evaluating the NE/CE is very high,
run-time complexity is one performance metric in the MAQL-based coordination.
On the other hand, space-complexity, successful completion of the task, system
resource utilization, and the like are considered as the performancemetrics during
the MAQL-based coordination [98].

1.4 Coordination by Optimization Algorithm

One common bottleneck of the search-based coordination and MARL-based algo-
rithms is the memory requirement and suboptimal solution. Such bottlenecks are
addressed by the Swarm Intelligence (SI) [61, 62] and EA [62]. The advantages of
the SI algorithms are Scalability, Adaptability, Collective Robustness, and Individ-
ual Simplicity. The scalability of the SI algorithms are remarkable, as the control
mechanism adopted by the SI algorithms does not depend upon the swarm size,
until the swarm size is not too small [45]. The SI algorithm has very fast response to
the rapidly changing environment by employing the auto-configuration and self-
organization capabilities, which allow the swarms to adapt online with the
dynamic environment [66]. Collective robustness indicates that the SI algorithms
are distributed and hence, there is no possibility of single point failure [67]. In spite
of very simple behavior of every swarm in any SI algorithm, the group of a swarm
can achieve sophisticated group behavior [67]. Particle SwarmOptimization (PSO)
algorithm and Firefly algorithm (FA) are two examples of SI algorithms. In PSO,
the fitness function is not differentiable and is employed to obtain quality solution
for high-dimensional problems faster than other alternatives. However, there is a
high probability to be trapped in local optima in high-dimensional problems. On
the other hand, the FA has a very high probability of exploring the global optima.
The advantages of EAs are that they can cope with discontinuities, nonlinear con-
straints, multi-modalities, and multi-objective optimization problems.

1.4 Coordination by Optimization Algorithm 87

However, the EAs do not provide any guarantee to provide optimal solutions
within finite amount of time. Differential evolution is an example of EA. Stability
is a very good attribute of DE over the GA. Another is Imperialist Competitive
Algorithm (ICA) [67], which is a sociopolitical-based algorithm. ICA has neigh-
borhood movements both in continuous and discrete search-space. However,
the solutions provided by the ICA does not guarantee for optimal solution. In addi-
tion, the ICA requires tuning more number of parameters as compared with the
PSO, FA, and DE. In the above circumstance, hybridization is a good approach. By
hybridization, the efficient attributes of two or more algorithms are fused to pro-
duce a powerful algorithm. One approach formulti-robot stick-carrying problem is
shown in [91], where the hybridization of the motion dynamics of fireflies of the
FA [48] into a sociopolitical evolution-based meta-heuristic search algorithm is
done and is named as Imperialist Competitive Firefly Algorithm (ICFA). The
abovementioned algorithms are implemented for multi-robot coordination follow-
ing scheme as shown in Figure 1.48. Brief description of the abovementioned algo-
rithms are given below.

1.4.1 PSO Algorithm

In [61], Kennedy and Eberhart proposed a nonlinear function optimization tech-
nique following the behavior of flocking birds, namely PSO. Let an n-dimensional
nonlinear function given by (1.96) to be optimized. The PSO aims at finding such a
X so that (1.96) is either maximized or minimized depending upon the problem
requirement. So, one can say that the solution of (1.96) is an n-dimensional
hyperspace.

Current states
of robots

Local planning by
determining next optimal
states employing swarm/

evolutionary algorithm

Next state

transition

Goal states
reached?

Next state becomes
current state

Stop

No

Yes

Figure 1.48 Multi-robot local planning by swarm/evolutionary algorithm.

88 1 Introduction

f X = f x1,…, xn 1 96

Let us consider a two-dimensional problem as given in (1.97) [48]. In (1.97), x
[−10, 10] and y [−10, 10] and the plot of (1.97) is given in Figure 1.49. It is appar-
ent from Figure 1.49 that (0, 0) is the only solution in the xy plane for which the
f(x, y) attains a minimum value of zero. It is quiet easy to identify the minima for
the function (1.96) compared to the same for (1.98) [48]. The plot of (1.98) is shown
in Figure 1.50. Unlike Figure 1.49, in Figure 1.50, there are multiple optimal
points. It is difficult to identify the global optima among them. PSO employs
the multi-agent parallel search technique and each agent starts from different ini-
tial positions and explores the landscape until a global optima is reached. It is
assumed that in PSO, agents can communicate among themselves and share
the values of fitness function explored by them.

f x, y = x2 + y2, 1 97

f x, y = x sin 4πy + y sin 4πx + π + 1 1 98

In PSO, each agent flies through the multidimensional landscape with a unique
position and velocity at each landscape. The population is initialized with random
positions denoted by X = xi

S
i = 1 each having a random velocity V = vi

S
i = 1

–10
–5

0
5

10

–10

–5

0

5

10
0

50

100

150

200

x

f(x,y) = x2 + y2

y

f(
x,

y)

Figure 1.49 Surface plot of (1.97).

1.4 Coordination by Optimization Algorithm 89

The position and velocity of the d-th dimension’s i-th particle is given by (1.99) and
(1.100), respectively.

xid t + 1 = xid t + vid t + 1 , 1 99

vid t + 1 = ω vid t + C1 φ1 Pid t − xid t + C2 φ2 gid t − xid t

1 100

In (1.100), the first component is the initial velocity of the i-th particle. ω refers
to the inertial weight factor. C1 and C2 are the constant multiplier termed as self-
confidence and swarm confidence, respectively. Two random numbers φ1 [0, 1]

and φ2 [0, 1] are introduced in (1.100), which determine the influence of p t

and g t on (1.100). p t , g t , and x t are initialized to zero at t = 0, i.e. and

p 0 = g 0 = x 0 After that the velocity and position of each particle update
following (1.99) and (1.100). The algorithm for PSO is given in Algorithm 1.30 [48].
In [69], Pugh et al. proposed the noise-resistance PSO for obstacle avoidance in

multi-robot systems. In [70], Pugh modified the noise-resistance PSO [69] by
setting

x∗'i = x∗''i , if fitness x∗''i > fitness x∗'i , 1 101

–10
–5

0
5

10

–10

–5

0

5

10
–10

–5

0

5

10

15

x

f(x,y) = x sin(4πy) + y sin(4πx) + 1

y

f(
x,

y)

Figure 1.50 Surface plot of (1.98).

90 1 Introduction

where x∗'i refers to the neighborhood best for particle (here robot) i and x∗''i denotes
the new neighborhood best particle.

1.4.2 Firefly Algorithm

In FA [93], a potential solution to an optimization problem is encoded by the posi-
tion of a firefly in the search space and the light intensity at the position of the
firefly corresponds to the fitness of the associated solution. Each firefly changes
its position iteratively by flying toward brighter fireflies at more attractive location
in the fitness landscape to obtain optimal solutions.

Algorithm 1.30 Particle Swarm Optimization (PSO)

Input: Enter the Swarm size (S), values of C1, C2, φ1 [0, 1], φ2

[0, 1], ω and Vmax;

Output: Approximate global optimal position X
∗
;

Initialize: Initialized the position and velocity vectors: Xi 0

and Vi 0 ;

Begin

While termination condition is not reached do

For i = 1 to S

Evaluate the fitness f Xi ;

Update pi and gi;

Adapt position and velocity of the partial by (1.99) and (1.100)

respectively.

End For;

End While.

End.

Initialization Mutation Recombination Selection

Figure 1.51 Steps of Differential evolution (DE) algorithm [132].

1.4 Coordination by Optimization Algorithm 91

1.4.2.1 Initialization

FA commences with a population Pt of NP, D-dimensional firefly positions,

Xi t = xi,1 t , xi,2 t , xi,3 t ,…, xi,D t for i = [1, NP] by randomly initializing

in the search range X
min

,X
max

where X
min

= xmin
1 , xmin

2 ,…, xmin
D and

X
max

= xmax
1 , xmax

2 ,…, xmax
D at the current generation t = 0. Thus, the d-th com-

ponent of the i-th firefly at t = 0 is given by (1.102).

xi,d 0 = xmin
d + rand 0, 1 × xmax

d − xmin
d , 1 102

where rand(0, 1) is a uniformly distributed random number lying between 0 and 1

and d = [1, D]. The objective function value f Xi 0 (which is inversely propor-

tional to the light intensity for minimization problem) of the i-th firefly is evalu-
ated for i = [1, NP].

1.4.2.2 Attraction to Brighter Fireflies

Now the firefly Xi t is attracted toward the positions of the brighter fireflies X j t

for i, j= [1,NP] but i j such that f X j t < f Xi t for minimization problem.

Now the attractiveness βi,j ofXi t towardX j t is proportional to the light intensity
seen by adjacent fireflies. However attractiveness βi,j decreases exponentially with
the distance between the fireflies, denoted by ri,j as given in (1.103).

βi,j = β0 exp − γ × rmi,j , m ≥ 1, 1 103

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its
own position (i.e. at ri,j = ri,i = 0) and γ is the light absorption coefficient, which
controls the variation of βi,j with ri,j. This parameter is responsible for the conver-
gence speed of FA. A setting of γ = 0 leads to constant attractiveness while γ
approaching infinity is equivalent to the complete random search [48]. In
(1.103), m is a positive constant representing a nonlinear modulation index.

The distance between Xi t and X j t is computed using the Euclidean norm as
follows:

ri,j = Xi t −X j t 1 104

This step is repeated for i, j = [1, N].

92 1 Introduction

1.4.2.3 Movement of Fireflies

The firefly at position Xi t moves toward a more attractive position X j t occupied

by a brighter firefly (i.e. f X j t < f Xi t) for j = [1, N] but i j following the

dynamic given in (1.105).

Xi t + 1 = Xi t + βi,j × X j t −Xi t + α × rand 0, 1 − 0 5

1 105

The first term in the position updating formula (1.105) represents the i-th fire-
fly’s current position. The second term in (1.105) denotes the change in the posi-

tion of the firefly at Xi t due to the attraction toward the brighter firefly at X j t .
Hence it is apparent that the brightest firefly with no more attractive firefly in the
current sorted population Pt will have no motion due to the second term and may
get stuck at the local optima. To circumvent the problem, the last term is intro-
duced in (1.105) for the random movement of the fireflies with a step-size of
α (0, 1). Here, rand(0,1) is a random number generator uniformly distributed
in the range (0, 1). This step is repeated for i= [1, NP]. After completion of its jour-
ney mediated by the brighter ones, the updated position of the i-th firefly is repre-

sented by Xi t + 1 for i = [1, NP].
After each evolution, Sections 1.4.2.2 and 1.4.2.3 are repeated until one of the

following conditions for convergence is satisfied. These conditions include
restraining the number of iterations, maintaining error limits, or the both, which-
ever occurs earlier. In Algorithm 1.31, the number of iterations is considered as the
condition of convergence.

1.4.3 Imperialist Competitive Algorithm

ICA is a population-based stochastic algorithm, which is inspired by the sociopo-
litical evolution and the imperialistic competitive policy of a government to extend
its power beyond its boundaries. It has earned wide popularity because of its
noticeable performance in computational optimization with respect to the quality
of solutions [89]. Like any other EAs, ICA starts with an initial population of solu-
tions, called countries. The countries are classified into two groups – imperialists
and colonies, based on their ruling power (which is inversely proportional to their
objective function values). The colonies (weaker countries) with their relevant
imperialist (stronger country) form some empires. In each empire, the imperialist
pursues an assimilation policy to improve the economy, culture, and political sit-
uation of its colonies, thus winning their loyalty. Moreover, the empires take part
in the imperialistic competition in an attempt to gain more colonies. In ICA, the
assimilation of colonies toward their respective imperialists along with the

1.4 Coordination by Optimization Algorithm 93

competition among empires eventually results in just one empire in the world with
all the other countries as colonies of that unique empire. An overview of the main
steps of the ICA is presented next.

1.4.3.1 Initialization

ICA starts with a population Pt of NP, D-dimensional countries,

Xi t = xi,1 t , xi,2 t , xi,3 t ,…, xi,D t for i = [1, NP] representing the candidate
solutions, at the current generation t= 0 by randomly initializing in the

range X
min

,X
max

where X
min

= xmin
1 , xmin

2 ,…, xmin
D and X

max
=

xmax
1 , xmax

2 ,…, xmax
D . Thus the d-th component (sociopolitical feature) of the

i-th country at t = 0 is given by

xi,d 0 = xmin
d + rand 0, 1 × xmax

d − xmin
d , 1 106

Algorithm 1.31 Traditional Firefly Algorithm (FA)

Input: X = x1,x2,…,xD , fitness function f(X); // D dimen-

sion of the firefly

Output: Xi,i 1,n ;

Initialize: Generate population Xi,i 1,n , α (0, 1),

β0 = 1 andγ [0.1, 10];

While (t <MaxGeneration)

For k=1 to D

For i=1 to n

For j=1 to n

If f Xi t < f X j t

then Move Xi t towards X j t in all D dimensions;

End If;

Updatexik(t+1)=xik(t)+βrij×[xjk(t)−xik(t)]+α(rand−0.5);
End For;

End For;

End For;

Rank the fireflies based on current fitness and find the

current best one;

End While.

94 1 Introduction

where rand(0, 1) is a uniformly distributed random number lying between 0 and 1

and d = [1, D]. The objective function value f Xi 0 of the country Xi 0 is

evaluated for i = [1, NP].

1.4.3.2 Selection of Imperialists and Colonies

The population P0 is sorted in ascending order of f Xi 0 for minimization prob-

lem with i = [1, NP]. The first N countries with less cost function values are
selected as imperialists while the remaining M =NP −N countries are declared
as colonies. Hence the population individuals are categorized into two groups
of countries – imperialists and colonies.

1.4.3.3 Formation of Empires

The empire under the j-th imperialist is constructed based on its ruling power. To
accomplish this, first the normalized power of the j-th imperialist country, pj, is

evaluated by (1.107) with f XNP 0 representing the objective function value

of the weakest country in the current sorted population P0.

p j =
f XNP 0 − f X j 0

N

l = 1
f XNP 0 − f Xl 0

1 107

It is evident from (1.107) that better the j-th imperialist (i.e. less objective func-

tion value f X j 0 for minimization problem), higher is the difference

f XNP 0 − f X j 0 leading to the enhancement of its corresponding ruling

power, pj. Now the initial number of colonies under in the j-th empire, denoted
by nj, is computed by (1.108).

n j = M × p j , 1 108

such that

N

j = 1

n j = M 1 109

Here, represents the floor function. According to (1.108), the stronger imperi-
alists with higher ruling power now possess larger empires. Hence pj symbolizes
the fraction of the colonies occupied by the j-th imperialist. Subsequently, the j-th
empire is formed by randomly selecting nj countries from M colonies provided
that there will be no common colony between two different empires. Hence the

1.4 Coordination by Optimization Algorithm 95

number of countries within the j-th empire including its imperialist is nj + 1. Let

the k-th country belonging to the j-th empire be denoted by X
j

k t (at generation
t = 0) for k = [1, nj+1]. The countries within the j-th empire are now sorted in
ascending order of their objective function values such that the imperialist

X
j

1 t in the j-th empire attains the first rank. This step is repeated for j = [1, N].

1.4.3.4 Assimilation of Colonies

Each imperialist country now attempts to improve its empire by enhancing the

sociopolitical influences of its colonies. To accomplish this, each country X
j

k t

in the j-th empire now moves toward its corresponding imperialist X
j

1 t by chan-
ging its characteristic features following (1.110) for k = [2, nj+1].

X
j

k t + 1 = X
j

k t + β × rand 0, 1 × X
j

1 t −X
j

k t 1 110

Here, rand(0, 1) is a uniformly distributed random number lying between 0 and 1
and β is the assimilation coefficient. The objective function value of the modified

colony f X
j

k t + 1 is evaluated for k= [2, nj+1]. After assimilation, all the coun-

tries in the j-th empire are sorted in ascending order of the objective function

values and the first ranked country is declared as the imperialist X
j

1 t + 1 of
the same empire for the next generation (i.e. t = t + 1). The step is repeated for
j = [1, N].

1.4.3.5 Revolution

Revolution creates sudden fluctuation in the economic, cultural, and political
aspects of countries in an empire. The colonies in an empire are now equipped
with the power of randomly changing their sociopolitical attributes instead of
being assimilated by their corresponding imperialist. It resembles the mutation
of trial solutions in the traditional EA. The revolution rate η in the algorithm indi-
cates the percentage of colonies in each empire which will undergo the revolution
process. A high value of revolution rate therefore fortifies the explorative power at
a cost of poor exploitation capability. Hence a moderate value of revolution rate is
favored. Revolution is implemented by randomly selecting η × nj countries
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are
replaced by randomly initialized countries characterized by new sociopolitical
nature. After revolution, as in case of assimilation, all the countries in each empire
are sorted in ascending order of the objective function values so that its imperialist
is at the first position. The step is repeated for all empires.

96 1 Introduction

1.4.3.6 Imperialistic Competition

All the N empires now participate in an imperialistic competition to take posses-
sion of colonies of other weaker empires based on their ruling power. The colonies
of the weaker empires will be gradually eluded from the ruling power of their cor-
responding imperialists and will be thereafter controlled by some other stronger
empires. Consequently, the weaker empires will be losing their power and ulti-
mately may be eradicated from the competition. The imperialistic competition
along with the collapse mechanism will progressively result in an increment in
the power of more dominant empires and diminish the power of weaker ones.
The imperialistic competition encompasses the following steps.

Total Empire Power Evaluation

Once an empire is constructed under the dominance of the j-th imperialist

X
j

1 t + 1 , the power of the respective empire is compositely influenced by the

objective function value of X
j

1 t + 1 as well as the constituent colonies

X
j

k t + 1 (after assimilation) under the respective j-th empire for k = [2, nj+1].
The total objective function value of the j-th empire is evaluated as follows:

tc j = f X
j

1 t + 1 + ξ
1
n j

n j + 1

k = 2

X
j

k t + 1 1 111

Here, ξ < 1 is a positive number which regulates the influence of the constituent
colonies to control the ruling power of the empire. A tiny value of ξ causes the total

power of the j-th empire to be determined by its imperialist X
j

1 t + 1 only, while
increasing the value of ξ accentuates the importance of the colonies in deciding the
total power of the respective empire. The N empires now are sorted in ascending
order of tcj for j= [1, N]. Then the normalized possession power of the j-th empire,
ppj, is evaluated by (1.112) with tcN representing the total objective function value
of the weakest empire in the current population Pt.

pp j =
tcN − tc j
N

l = 1
tcN − tcl

1 112

It is evident from (1.112) that stronger the j-th empire (i.e. less the total objective
function value tcj for minimization problem), higher is the possession power, ppj,
which consecutively increases its probability of seizing colonies from weaker
empires. This step is repeated for j = [1, N].

1.4 Coordination by Optimization Algorithm 97

Reassignment of Colonies and Removal of Empire

The empire with least possession power is interpreted as being defeated in
the competition. Let the weakest colony of this weakest empire be denoted
as Xworst, which is now removed from the dominance of its currently ruling impe-
rialist and reassigned as a new colony to one of the stronger empires based on their
possession probabilities. It is noteworthy that Xworst will not be possessed by the
most powerful empires, but stronger the empire, more likely to possess Xworst .
To accomplish this, the possession probability of the j-th empire is computed as
follows for j = [1, N]:

prob j = pp j − rand 0, 1 1 113

Now Xworst is assigned as a new colony to the j-th empire for which the posses-
sion probability probj is maximum. However, if the worst colony consists of only its

imperial before exclusion operation (i.e. Xworst is the imperialist of the weakest

empire), the removal of Xworst will result in the collapse of the weakest empire.

Union of Empires

The disagreement between two empires may be assessed by the difference in their
respective sociopolitical features. This dissimilarity between any two empires,
j and l, is evaluated by taking the Euclidean distance between the respective

imperialists X
j

1 t + 1 and X
l

1 t + 1 as in (1.114) for j, l = [1, N].

Dist j,l = X
j

1 t + 1 −X
l

1 t + 1 1 114

If Distj,l is less than a predefined threshold, Th, the two empires are merged into

one empire. The stronger country among X
j

1 t + 1 and X
l

1 t + 1 is declared as
the imperialist of the newly formed empire.
After each evolution, we repeat from Section 1.4.3.4 until one of the following

conditions for convergence is satisfied. Stop criteria include a bound by the num-
ber of iterations, achieving a sufficiently low error or aggregations thereof.

1.4.4 Differential Evolution Algorithm

Differential evolution (DE) algorithm is a stochastic, population-based global opti-
mization algorithm, introduced by [133], to optimize real parameter, real-valued
functions [48].

98 1 Introduction

1.4.4.1 Initialization

Range of each parameter, i.e. the upper and lower boundaries for each parameter,
is defined, and then randomly these parameters are initialized.

1.4.4.2 Mutation

The step mutation expands the search-space. Mutation is done by (1.115), where
F [0, 2] is the mutation factor. xr1,G , xr2,G and xr3,G are the randomly selected vari-
ables with i, r1, r2, r3 and G are index. vi,G+ 1 refers to the donor vector.

vi,G + 1 = xr1,G + F xr2,G − xr3,G 1 115

1.4.4.3 Recombination

Employing the target vector xi ,G and the elements of the donor vector vi ,G + 1, the
trial solution vector ui,G+ 1 is evaluated by following (1.116).

ui,j,G + 1 =
vi,j,G + 1 if rand ≤ CR or j = Irand
xi,j,G if rand > CR or j Irand

, 1 116

where i = [1, N], j = [1, D] and vi,G+ 1 xi, G is checked by Irand.

1.4.4.4 Selection

The target solution xi,G is compared with the trial solution vector ui,G+ 1 and the
next generation is selected by (1.117).

xi,G + 1 =
ui,G + 1 if f ui,G + 1 ≤ f xi,G
xi,G otherwise

, 1 117

where i = [1, N].
Sections 1.4.4.2 to 1.4.4.4 continue until the termination criterion as explained

earlier is reached.

1.4.5 Off-line Optimization

By SI and EO algorithms only the off-line optimization is possible due to their huge
run-time complexity. In case of multi-robot coordination, robots evaluate the opti-
mal trajectory (collection of coordinates) off-line in the sense of system recourse
(time and/or energy) utilization. After off-line optimization of the trajectory, it
is executed in the real-robot.

1.4.6 Performance Analysis of Optimization Algorithms

The performance of SI, EA, and their hybridization can be analyzed by the follow-
ing performance metrics. Quality of solution within a fixed epoch and the

1.4 Coordination by Optimization Algorithm 99

convergence time are two performancematrices of the SI and EA. In addition, mean
best objective function versus function evaluation, accuracy versus function eval-
uation, and function evaluation versus search space dimensionality can be consid-
ered as the performance metrics. In spite of the abovementioned performance
metrics, statistical test is conducted over the algorithms for performance
measurement.

1.4.6.1 Friedman Test

Friedman test [64], which is a nonparametrical statistical test, may be carried out
on the average objective function values of each of the algorithms for fixed inde-
pendent runs, assuming a fixed dimension. To carry out the Friedman test, first the
average ranking (Ri) for each of the considered algorithms is calculated as the
mean of the individual ranks obtained by them over all the considered N number
of benchmark functions, as shown in (1.118),

Ri =
1
N

N

j = 1

r j
i 1 118

Here, r j
i refers to the individual rank attained by the i-th algorithm for the j-th

benchmark function and the results have been computed considering N bench-
mark functions. In the next step, a term formally defining the Friedman statistic,
which follows a χ2F distribution with (k− 1) degrees of freedom, has been evaluated
using (1.119),

χ2F =
12N

k k + 1

k

i = 1

R2
i −

k k + 1 2

4
1 119

1.4.6.2 Iman–Davenport Test

Moreover, Iman–Davenport test [65] can also been conducted in order to substan-
tiate the findings of the former statistical analysis. It is basically a deviation from
the Friedman test producing more precise results and the Iman–Davenport statis-
tics is calculated as follows:

FF =
N − 1 × χ2F

N × k− 1 − χ2F
1 120

Tabular analysis can be shown in case of Friedman test, which demonstrates
that the null hypothesis has been rejected if the computed value of χ2F is greater
than the critical value of the χ2Fdistributionwith degrees of freedom (k− 1) at prob-
ability of α (χ23,α). For, Iman–Davenport test, the statistic is distributed with (k− 1)

and (k− 1) × (N− 1) degrees of freedom. Likewise, the null hypothesis has been

100 1 Introduction

rejected as the calculated value of FF is greater than the critical value of the FF
distribution with degrees of freedom (k− 1) and (k− 1) × (N− 1) at probability
of α (F(k− 1),(N− 1),α). It is obvious that the proposed algorithm is the most efficient
one, hence, in the post-hoc analysis, the proposed algorithm is assumed to be the
control method.
For multi-robot trajectory (path) planning, Average total path deviation, Aver-

age Uncovered Target Distance, Average total path traversed, and numbers of
steps required are considered as the performance metrics.

1.5 Summary

This chapter introduces multi-robot coordination algorithms for complex real-
world problems employing the principles of RL, GT, DP, and/or EA. As expected,
this chapter includes a thorough survey of the exiting literature of RL with a brief
overview of the EO to examine the role of the algorithms in view of the multi-agent
coordination.Here,multi-robot coordination is achieved by employing the EO, and
specially RL for cooperative, competitive, and their composition for application to
static anddynamic games. The remainder of the chapter provides anoverviewof the
metrics used to compare the performance of the algorithms while coordinating.

References

1 Arkin, R.C. (1998). Behavior-Based Robotics. MIT Press.
2 Sen, S., Sekaran, M., and Hale, J. (1994). Learning to coordinate without sharing

information. Proceedings of the American Association for Artificial Intelligence
94: 426–431.

3 Kapetanakis, S. and Kudenko, D. (2002). Reinforcement learning of coordination in
cooperative multi-agent systems. Proceedings of the American Association for
Artificial Intelligence 18: 326–331.

4 Konar, A., Chakraborty, I.G., Singh, S.J. et al. (2013). A deterministic improved
Q-learning for path planning of a mobile robot. IEEE Transactions on Systems, Man,

and Cybernetics: Systems 43 (5): 1141–1153.
5 Sadhu, A.K., Rakshit, P., and Konar, A. (2016). A modified Imperialist Competitive

Algorithm for multi-robot stick-carrying application. Robotics and Autonomous
Systems 76: 15–35.

6 Stentz, A. (1997). Optimal and efficient path planning for partially known
environments. In: Intelligent Unmanned Ground Vehicles, vol. 388 (eds. M. Hebert
and C. Thorpe), 203–220. Boston, MA: Springer.

References 101

7 Xu, X., Zuo, L., and Huang, Z. (2014). Reinforcement learning algorithms with
function approximation: recent advances and applications. Information Sciences
261: 1–31.

8 Buşoniu, L., Lazaric, A., Ghavamzadeh, M. et al. (2012). Least-squares methods for
policy iteration. In: Reinforcement Learning (eds. M. Wiering and M. van Otterlo),
75–109. Berlin Heidelberg: Springer.

9 Xu, X., Hu, D., and Lu, X. (2007). Kernel-based least squares policy iteration for
reinforcement learning. IEEE Transactions on Neural Networks 18 (4): 973–992.

10 Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-
inverse of a matrix. Journal of the Society for Industrial and Applied Mathematics,
Series B: Numerical Analysis 2 (2): 205–224.

11 Lagoudakis, M.G. and Parr, R. (2003). Least-squares policy iteration. The Journal
of Machine Learning Research 4: 1107–1149.

12 Martins, M.F. and Demiris, Y. (2010). Learning multirobot joint action plans from
simultaneous task execution demonstrations. Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems 1: 931–938.

13 Cao, Y.U., Fukunaga, A.S., and Kahng, A.B. (1997). Cooperative mobile robotics:
antecedents and directions. Autonomous Robots 4 (1): 7–27.

14 Farinelli, A., Iocchi, L., and Nardi, D. (2004). Multi-robot systems: a classification
focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics 34 (5): 2015–2028.
15 Szer, D., Charpillet, F., and Zilberstein, S. (2005). MAA∗: a heuristic search

algorithm for solving decentralized POMDPs. Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence-UAI, Edinburgh, Scotland (26–29
July 2005).

16 Dias, M.B., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-based multirobot
coordination: a survey and analysis. Proceedings of the IEEE 94 (7): 1257–1270.

17 Stentz, A. and Dias, M.B. (1999). A Free Market Architecture for Coordinating
Multiple Robots. Technical Report, CMU-RI-TR-99-42, Robotics Institute,
Carnegie Mellon University.

18 Dias, M.B. and Stentz, A. (2002). Opportunistic optimization for market-based
multirobot control. IEEE/RSJ International Conference on Intelligent Robots and

Systems 3: 2714–2720.
19 Dias, M.B. (2004). Traderbots: a new paradigm for robust and efficient multirobot

coordination in dynamic environments. Doctoral dissertation, Carnegie Mellon
University Pittsburgh.

20 Sandholm, T. (2002). Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence 135 (1): 1–54.

21 Berhault, M., Huang, H., Keskinocak, P. et al. (2003). Robot exploration with
combinatorial auctions. Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, (IROS 2003) 2: 1957–1962.

102 1 Introduction

22 Dias, M.B., Zlot, R., Zinck, M. et al. (2004). A versatile implementation of the
TraderBots approach for multirobot coordination. Proceedings of the 8th
Conference on Intelligent Autonomous Systems (IAS-8), Amsterdam, Netherlands
(10–12 March 2004).

23 Badreldin, M., Hussein, A., and Khamis, A. (2013). A comparative study between
optimization and market-based approaches to multi-robot task allocation.
Advances in Artificial Intelligence 2013: 1–11.

24 Konar, A., Chakraborty, I.G., Singh, S.J. et al. (2013). A deterministic improved
Q-learning for path planning of a mobile robot. IEEE Transactions on Systems,

Man, and Cybernetics: Systems 43 (5): 1–13.
25 Marden, J.R., Arslan, G., and Shamma, J.S. (2009). Cooperative control and

potential games. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics 39 (6): 1393–1407.
26 Fax, A. and Murray, R.M. (2004). Information flow and cooperative control of

vehicle formations. IEEE Transactions on Automation Control 49: 1465–1476.
27 Kashyap, A., Başar, T., and Srikant, R. (2006). Consensus with quantized

information updates. Proceedings of the 45th IEEE Conference on Decision and
Control, San Diego, CA (13–15 December 2006).

28 Olfati-Saber, R., Fax, A., and Murray, R.M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE 95 (1): 215–233.

29 Mohanty, M., Mishra, A., and Routray, A. (2009). A non-rigid motion estimation
algorithm for yawn detection in human drivers. International Journal of
Computational Vision and Robotics 1 (1): 89–109.

30 LaValle, S.M. (2006). Planning Algorithms. Cambridge university press.
31 Nilsson, N.J. (2014). Principles of Artificial Intelligence. Morgan Kaufmann.
32 Konar, A. (1999). Artificial Intelligence and Soft Computing: Behavioral and

Cognitive Modeling of the Human Brain. CRC Press.
33 Bhattacharya, P. and Gavrilova,M.L. (2008). Roadmap-based path planning: using

the Voronoi diagram for a clearance-based shortest path. IEEE Robotics and
Automation Magazine 15 (2): 58–66.

34 Gayle, R., Moss, W., Lin, M.C., and Manocha, D. (2009). Multi-robot coordination
using generalized social potential fields, Proceedings of the IEEE International

Conference onRobotics andAutomation. Kobe, Japan (12–17May 2009), pp. 106–113.
35 Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: The MIT Press.
36 Krishna, K.M. and Hexmoor, H. (2004). Reactive collision avoidance of multiple

moving agents by cooperation and conflict propagation. IEEE International
Conference on Robotics and Automation (ICRA) 3: 2141–2146.

37 Farinelli, A., Iocchi, L., and Nardi, D. (2004). Multirobot systems: a classification
focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics) 34 (5): 2015–2028.

References 103

38 Myerson, R.B. (1991). Game Theory: Analysis of Conflict. Cambridge: Harvard
University Press.

39 Brown, G.W. (1951). Iterative solution of games by fictitious play. Activity Analysis
of Production and Allocation 13 (1): 374–376.

40 Kandori, M., Mailath, G.J., and Rob, R. (1993). Learning, mutation, and long run
equilibria in games. Econometrica: Journal of the Econometric Society 61: 29–56.

41 Neumann, L.J. and Morgenstern, O. (1947). Theory of games and economic

behavior, vol. 60. Princeton: Princeton University Press.
42 Nash, J. (1951). Non-cooperative games. Annals of Mathematics 54: 286–295.
43 Owen, G. (1995). Game Theory. Academic Press.
44 Basar, T. and Olsder, G.J. (1999). Dynamic Noncooperative Game Theory,

vol. 23. SIAM.
45 Fudenberg, D. and Kreps, D.M. (1992). Lectures on Learning and Equilibrium in

Strategic Form Games. Louvain-La-Neuve: Core Foundation.
46 Howard, R.A. (1960). Dynamic Programming and Markov Processes. The

MIT Press.
47 Bellman, R.E. (1957). Dynamic programming. Proceedings of the National

Academy of Science of the United States of America 42 (10): 34–37.
48 Yang, X.S. (2009). Firefly algorithms for multimodal optimization, stochastic

algorithms: foundations and applications. SAGA, Lecture Notes in Computer

Sciences 5792: 169–178.
49 Narimani, R. and Narimani, A. (2013). A new hybrid optimization model based on

imperialistic competition and differential evolution meta-heuristic and clustering
algorithms. Applied Mathematics in Engineering, Management and Technology

1 (2): 1–9.
50 Subudhi, B. and Jena, D. (2011). A differential evolution based neural network

approach to nonlinear system identification. Applied Soft Computing 11 (1):
861–871.

51 Ramezani, F., Lotfi, S., and Soltani-Sarvestani, M.A. (2012). A hybrid evolutionary
imperialist competitive algorithm (HEICA). In: Intelligent Information and

Database Systems, Part I, LNAI, vol. 7196 (eds. J.-S. Pan, S.-M. Chen and N.T.
Nguyen), 359–368. Berlin Heidelberg: Springer.

52 Khorani, V., Razavi, F., and Ghoncheh, A. (2010). A New Hybrid Evolutionary
Algorithm Based on ICA and GA: Recursive-ICA-GA, 131–140. IC-AI.

53 Nozarian, S. and Jahan, M.V. (2012). A Novel Memetic Algorithmwith Imperialist
Competition as Local Search. International Proceedings of Computer Science and

Information Technology 30: 54–59.
54 Lin, J.L., Tsai, Y.H., Yu, C.Y., and Li, M.S. (2012). Interaction enhanced imperialist

competitive algorithms. Algorithms 5 (4): 433–448.
55 Coelho, L.D.S., Afonso, L.D., and Alotto, P. (2012). A modified imperialist

competitive algorithm for optimization in electromagnetic. IEEE Transactions on
Magnetics 48 (2): 579–582.

104 1 Introduction

56 Bidar, M. and Rashidy, H.K. (2013). Modified firefly algorithm using fuzzy tuned
parameters. Proceedings of the 13th Iranian Conference on Fuzzy Systems (IFSC),
IEEE, Iran Qazvin (27–29 August 2013), pp. 1–4.

57 Seuken, S. and Zilberstein, S. (2007). Memory-Bounded Dynamic Programming
for DEC-POMDPs. IJCAI, pp. 2009–2015.

58 Seuken, S. and Zilberstein, S. (2012). Improved memory-bounded dynamic
programming for decentralized POMDPs. arXiv preprint arXiv. pp. 1206.5295.

59 K. Alton and I. M. Mitchell, Efficient dynamic programming for optimal multi-
location robot rendezvous. Proceedings of the 47th IEEE Conference on Decision

and Control, MEX Cancun (9–11 December 2008), pp. 2794–2799.
60 Nudelman, E., Wortman, J., Shoham, Y., and Leyton-Brown, K. (2004). Run the

GAMUT: a comprehensive approach to evaluating game-theoretic algorithms.
Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems 2: 880–887.

61 Kennedy, J., Eberhart, R., and Shi, Y. (2001). Swarm Intelligence. Los Altos, CA:
Morgan Kaufmann.

62 Das, S., Abraham, A., and Konar, A. (2008). Particle swarm optimization and
differential evolution algorithms: technical analysis, applications and
hybridization perspectives. In: Advances of Computational Intelligence in
Industrial Systems, 1–38. Berlin Heidelberg: Springer.

63 Gargari, E.A. and Lucas, C. (2007). Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition. Proceedings of
the IEEE Congress in Evolutionary Computation, CEC, Singapore (25–28
September 2007), pp. 4661–4667.

64 Horng, M.H. and Jiang, T.W. (2010). The codebook design of image vector
quantization based on the firefly algorithm. In: International Conference on
Computational Collective Intelligence, Part III, LNAI, vol. 6423 (eds. J.-S. Pan,
S.-M. Chen and N.T. Nguyen), 438–447. Berlin, Heidelberg: Springer.

65 Abidin, Z.Z., Arshad, M.R., and Ngah, U.K. (2011). A simulation based fly
optimization algorithm for swarms of mini-autonomous surface vehicles
application. Indian Journal of Marine Sciences 40 (2): 250–266.

66 Belal, M., Gaber, J., El-Sayed, H., and Almojel, A. (2006). Swarm intelligence.
In: Handbook of Bioinspired Algorithms and Applications, CRC Computer and
Information Science, vol. 7 (eds. S. Olariu and A.Y. Zomaya). Chapman and Hall.

67 M. Dorigo, In The Editorial of the First Issue of: Swarm Intelligence Journal,
Springer Science + Business Media, LLC, Vol.1, No. 1, pp. 1–2, 2007.

68 Hosseini, S. and Al Khaled, A. (2014). A survey on the Imperialist Competitive
Algorithm metaheuristic: implementation in engineering domain and directions
for future research. Applied Soft Computing 24: 1078–1094.

69 Pugh, J., Zhang, Y., and Martinoli, A. (2005). Particle swarm optimization for
unsupervised robotic learning. Proceedings of the Swarm Intelligence Symposium,
Pasadena, CA (June 2005), pp. 92–99.

References 105

70 Pugh, J. and Martinoli, A. (2006). Multi-robot learning with particle swarm
optimization. International Proceedings of the Autonomous Agents and Multi-agent
Systems, Japan (8–12 May 2006), pp. 441–448.

71 Hu, J. and Wellman, M.P. (2003). Nash Q-learning for general-sum stochastic
games. The Journal of Machine Learning Research 4: 1039–1069.

72 Greenwald, A., Hall, K., and Serrano, R. (2003). Correlated Q-learning.
Proceedings of the International Conference on Machine Learning 3: 242–249.

73 Kaelbling, L.P., Littman,M.L., andMoore, A.W. (1996). Reinforcement learning: a
survey. Journal of Artificial Intelligence Research 4: 237–285.

74 Dijkstra, E.W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik 1: 269–271.

75 Najnin, S. and Banerjee, B. (2018). Pragmatically framed cross-situational noun
learning using computational reinforcement models. In: Frontiers in Psychology
(Cognitive Science Section), vol. 9, Article 5 (ed. J.L. McClelland).

76 Fraternali, F., Balaji, B., and Gupta, R. (2018). Scaling configuration of energy
harvesting sensors with reinforcement learning. Proceedings of the 6th
InternationalWorkshop on Energy Harvesting and Energy-Neutral Sensing Systems,
Shenzhen, China (4 November 2018), pp. 7–13. ACM.

77 Lawhead, R.J. and Gosavi, A. (2019). A bounded actor–critic reinforcement
learning algorithm applied to airline revenue management. Engineering
Applications of Artificial Intelligence 82: 252–262.

78 Schawartz, H.M. (2014). Multi-Agent Machine Learning a Reinforcement

Approach. Wiley.
79 Berry, D. and Fristedt, B. (1985). Bandit Problems. Chapman and Hall.
80 Filar, J. and Vrieze, K. (2012). Competitive Markov Decision Processes. Springer

Science & Business Media.
81 Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. Proceedings of the National Conference on
Artificial Intelligence 15: 746–752.

82 Jain, R. and Varaiya, P. (2010). Simulation-based optimization of Markov decision
processes: an empirical process theory approach. Automatica 46 (8): 1297–1304.

83 Kemeny, J.G. and Laurie Snell, J. (1960). Finite Markov Chains. New York, Berlin,
Tokyo: Springer-Verlag.

84 Barto, A.G., Sutton, R.S., and Watkins, C.J. (1989). Learning and Sequential

Decision Making. Amhers: University of Massachusetts.
85 Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of

multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 38 (2): 156–172.

86 Young, H.P. (1993). The evolution of conventions. Econometrica: Journal of the
Econometric Society 61 (1): 57–84.

87 Fudenberg, D. and Levine, D.K. (1993). Steady state learning and Nash
equilibrium. Econometrica: Journal of the Econometric Society 61: 547–573.

106 1 Introduction

88 Kalai, E. and Lehrer, E. (1993). Rational learning leads to Nash equilibrium.
Econometrica: Journal of the Econometric Society 61: 1019–1045.

89 Singh, S., Jaakkola, T., Littman, M.L., and Szepesvari, C. (1998). Convergence
results for single-step on-policy reinforcement learning algorithms. Machine
Learning 38 (3): 287–308.

90 Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative
agents. Proceedings of the Tenth International Conference on Machine Learning,
Amherst (27–29 June 1993), pp. 330–337.

91 Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. Proceedings of the Seventeenth
International Conference on Machine Learning, Stanford, CA (29 June to 2
July 2000).

92 Littman, M.L. (2001). Value-function reinforcement learning in Markov games.
Cognitive Systems Research 2 (1): 55–66.

93 Littman, M.L. and Szepesvári, C. (1996). A generalized reinforcement-learning
model: convergence and applications. Proceedings of the International Conference
on Machine Learning 13: 310–318.

94 Szepesvári, C. and Littman, M.L. (1999). A unified analysis of value-function-
based reinforcement-learning algorithms. Neural Computation 11 (8): 2017–2060.

95 Hu, J. and Wellman, M.P. (1998). Multiagent reinforcement learning: theoretical
framework and an algorithm. Proceedings of the International Conference on
Machine Learning 98: 242–250.

96 Wang, X. and Sandholm, T. (2002). Reinforcement learning to play an optimal
Nash equilibrium in team Markov games. Advances in Neural Information

Processing Systems 2: 1571–1578.
97 Kok, J.R. and Vlassis, N. (2004). Sparse cooperative Q-learning. Proceedings

of the International Conference on Machine Learning, Banff, Alberta
(4–8 July 2004).

98 Wang, Y. and de Silva, C.W. (2008). A machine learning approach to multi-robot
coordination. Engineering Application of Artificial Intelligence 21: 470–484.

99 Zhang, Z., Zhao, D., Gao, J. et al. (2016). FMRQ: a multiagent reinforcement
learning algorithm for fully cooperative tasks. IEEE Transactions on Cybernetics

47: 2168–2267.
100 Littman, M.L. (1994). Markov games as a framework for multi-agent

reinforcement learning. Proceedings of the Eleventh International Conference on
Machine Learning 157: 157–163.

101 Bianch, R.A.C., Martins, M.F., Ribeiro, C.H.C., and Costa, A.H.R. (2014).
Heuristically: accelerated multiagent reinforcement learning. IEEE Transactions

on Cybernetics 44 (2): 252–265.
102 Bianchi, R.A.C., Ribeiro, C.H.C., and Costa, A.H.R. (2008). Accelerating

autonomous learning by using heuristic selection of actions. Journal Heuristics
14 (2): 135–168.

References 107

103 Bianchi, R.A.C. (2012). Heuristically accelerated reinforcement learning:
theoretical and experimental results. Frontiers in Artificial Intelligence and
Applications 242: 169–174.

104 Bianchi, R.A.C. (2007). Heuristic selection of actions in multiagent reinforcement
learning. Proceedings of the 20th International Joint Conference on Artificial

Intelligence, Hyderabad, India (6–12 January 2007), pp. 690–695.
105 Conitzer, V. (2009). Approximation guarantees for fictitious play. Proceedings of

the 47th Annual Allerton Conference on Communication, Control, and Computing,
IEEE, Allerton House, IL (30 September to 2 October 2009), pp. 636–643.

106 Powers, R. and Shoham, Y. (2004). New criteria and a new algorithm for learning
in multi-agent systems, Advances in Neural Information Processing Systems,
Vancouver, British Columbia (13–18 December 2004), pp. 1089–1096.

107 Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable learning
rate. Artificial Intelligence 136 (2): 215–250.

108 Conitzer, V. and Sandholm, T. (2007). AWESOME: a general multiagent learning
algorithm that converges in self-play and learns a best response against stationary
opponents. Machine Learning 67 (1–2): 23–43.

109 Stone, P. and Veloso, M. (2000). Multiagent systems: a survey from a machine
learning perspective. Autonomous Robots 8 (3): 345–383.

110 Tesauro, G. (2003). Extending Q-learning to general adaptive multi-agent systems.
Advances in Neural Information Processing Systems, Vancouver and Whistler,
British Columbia (8–13 December 2003), pp. 871–878.

111 Singh, S., Kearns, M., and Mansour, Y. (2000). Nash convergence of gradient
dynamics in general-sum games. Proceedings of the Sixteenth Conference on

Uncertainty in Artificial Intelligence, San Francisco, CA (30 June to 3 July 2000),
pp. 541–548. Morgan Kaufmann Publishers Inc.

112 Reinhard, H. (1986). Differential Equations: Foundations and Applications. North
Oxford: Academic.

113 Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge
University Press.

114 Friedman, J., Hastie, T., and Tibshirani, R. (2001). The Elements of Statistical
Learning, Springer series in statistics, vol. 1. Berlin: Springer.

115 Boser, B.E., Guyon, I.M., and Vapnik, V.N. (1992). A training algorithm for
optimal margin classifiers. Proceedings of the Fifth Annual Workshop on

Computational Learning Theory, Pittsburgh, PA (27–29 July 1992),
pp. 144–152. ACM.

116 Bansal, N., Blum, A., Chawla, S., and Meyerson, A. (2003). Online oblivious
routing. Proceedings of the Fifteenth Annual ACM Symposium on Parallel

Algorithms and Architectures, San Diego, CA, (7–9 June 2003), pp. 44–49. ACM.

108 1 Introduction

117 Boot, J.C. (1964). Quadratic Programming: Algorithms, Anomalies, Applications.
Rand McNally.

118 Zinkevich, M. (2003). Online convex programming and generalized infinitesimal
gradient ascent. Proceedings of the International Conference on Machine Learning,
Washington, DC (21–24 August 2003).

119 Bowling, M. (2005). Convergence and no-regret in multiagent learning. Advances
in Neural Information Processing Systems 17: 209–216.

120 Könönen, V. (2004). Asymmetric multiagent reinforcement learning. Web
Intelligence and Agent Systems: An International Journal 2 (2): 105–121.

121 Littman, M.L. (2001). Friend-or-foe Q-learning in general-sum games. Proceedings
of the International Conference on Machine Learning 1: 322–328.

122 Hu, Y., Gao, Y., and An, B. (2015). Multiagent reinforcement learning with
unshared value functions. IEEE Transactions on Cybernetics 45 (4): 647–661.

123 Hu, Y., Gao, Y., andAn, A. (2015). Acceleratingmultiagent reinforcement learning
by equilibrium transfer. IEEE Transactions on Cybernetics 45 (7): 1289–1302.

124 Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic
games. International Joint Conference on Artificial Intelligence 17 (1): 1021–1026,
Lawrence Erlbaum Associates Ltd.

125 Weiß, G. (1995). Adaptation and Learning in Multi-agent Systems, Some Remarks
and a Bibliography, 1–21. Berlin, Heidelberg: Springer.

126 Banerjee, B. and Peng, J. (2003). Adaptive policy gradient in multiagent learning.
Proceedings of the Second International Joint Conference onAutonomousAgents and

Multiagent Systems, Melbourne, Victoria (14–18 July 2003), pp. 686–692. ACM.
127 Banerjee, B. and Peng, J. (2002). Convergent gradient ascent in general-sum

games. In: Machine Learning: ECML (eds. T. Elomaa, H. Mannila and H.
Toivonen), 1–9. Berlin, Heidelberg: Springer.

128 Weinberg, M. and Rosenschein, J.S. (2004). Best-response multiagent learning in
non-stationary environments. Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems 2: 506–513.
129 Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent Reinforcement

Learning: A Critical Survey. Technical Report, Computer Science Department,
Stanford University, Stanford.

130 Hu, J. (2003). Best-response algorithm for multiagent reinforcement learning.
Proceedings of the International Conference onMachine Learning, Washington, DC
(21–24 August 2003).

131 Suematsu, N. and Hayashi, A. (2002). A multiagent reinforcement learning
algorithm using extended optimal response. Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, Bologna
Italy (July 2002), pp. 370–377. ACM.

References 109

132 Cortés-Antonio, P., Rangel-González, J., Villa-Vargas, L.A., et al. (2014). Design
and implementation of differential evolution algorithm on FPGA for double-
precision floating-point representation. Acta Polytechnica Hungarica 11 (4):
139–153.

133 Storn, R. and Price, K., et al. (1996). Minimizing the real functions of the ICEC’96
contest by differential evolution, In Proceedings of IEEE international conference
on evolutionary computation. pp 842–844.

110 1 Introduction

2

Improve Convergence Speed of Multi-Agent Q-Learning
for Cooperative Task Planning

Learning-based planning algorithms are currently gaining popularity for their
increasing applications in real-time planning and cooperation of robots. This chap-
ter aims at extending traditional multi-agent Q-learning algorithms to improve
their speed of convergence by incorporating two interesting properties, concerning
(i) exploration of the team-goal and (ii) selection of joint action at a given joint
state. The exploration of team-goal is realized by allowing the agents, capable of
reaching their goals, to wait at their individual goal states, until remaining agents
explore their individual goals synchronously or asynchronously. To avoid
unwanted never-ending wait-loops, an upper bound to wait-interval, obtained
empirically for the waiting team members, is introduced. Selection of joint action,
which is a crucial problem in traditional multi-agent Q-learning, is performed here
by taking the intersection of individual preferred joint actions of all the agents. In
case the resulting intersection is a null set, the individual actions are selected ran-
domly or otherwise following classical multi-agent Q-learning. It is shown both
theoretically and experimentally that the extended algorithms outperform its tra-
ditional counterpart with respect to speed of convergence. To ensure selection of
right joint action at each step of planning, we offer high rewards to exploration of
the team-goal and zero rewards to exploration of individual goals during the learn-
ing phase. The introduction of the above strategy results in an enriched joint
Q-table, the consultation of which during the multi-agent planning yields signif-
icant improvement in the performance of cooperative planning of robots. Hard-
wired realization of the proposed learning-based planning algorithm, designed
for object-transportation application, confirms the relative merits of the proposed
technique over contestant algorithms.

111

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

2.1 Introduction

Reinforcement learning (RL) [1–10] refers to a real-time learning paradigm, where
an agent learns its environment with respect to a fixed goal by receiving reward/
penalty [6] for its actions on the environment. The reward/penalty obtained by the
agent for its sequence of actions is used to adapt its effective reward in a given
state–action space [11–15]. The motivation of RL is to derive the optimal action
at a given environmental state for which the agent would be able to derive themax-
imum reward. Such formulation of deriving optimal action at a given state based
on the learned experience of interaction with the environment has plenty of inter-
esting applications, including generating moves in a game [16, 17], and complex
task-planning and motion-planning of a mobile robot in a constrained environ-
ment [18]. In RL, the environment is typically represented by a Markov Decision
Process (MDP) with unknown state-transition probabilities and an unknown
reward model [6]. The MDP provides the basic mathematical model of a dis-
crete-event system [19].
Among the RL algorithms, Q-learning is most popular. Q-learning does not

require any background knowledge of the agents’ environment and thus is called
model-free. This characteristic of Q-learning is advantageous [20] as learning can
be performed without the knowledge of the environment. In Q-learning, optimal
policy for each state–action pair is estimated through an iterative process using
Dynamic Programming (DP) [21], realized with the well-known Bellman
Equation (BE) [21]. In single agent Q-learning, the state-transitions are controlled
by the agent itself. However, in a multi-agent environment, all the agents partic-
ipate to select their individual actions and form a joint action in a joint state-space.
Because of joint actions by the agents on the environment, the environment in
multi-agent Q-learning (MAQL) [2, 12, 18, 22–51] appears as dynamic to an indi-
vidual agent. Like single agent Q-learning, a MAQL too is described by a MDP,
called Multi-agent MDP (MMDP) [23, 33].
Several extensions of the single agent Q-learning for multi-agent applications is

available. The fundamental problems in MAQL, by which it significantly differs
from its single-agent counterpart, include [2, 18, 22–51] (i) joint action selection,
(ii) update policy selection for adaptation of the Q-table in joint state–action space,
and (iii) exploration of the team-goal. Although the first two problems have been
addressed in the literature, the last one remains unattended. In this paper, we pro-
vide a solution to MAQL with a motivation to deal with exploration of the team-
goal and demonstrate its scope of applications in tight cooperative multi-agent
planning.
Several approaches to action selection in a single agent are available. A few of

these that deserve special mention includes ε-greedy exploration [6], Boltzmann

112 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

strategy [15, 52] the extended Boltzmann strategy for Frequency Maximum
Q-value (FMQ) heuristic [43], and also random selection. Selection of a joint action
traditionally is done in two phases. First, individual actions are selected by any one
of the above techniques. Next, the individual actions are combined to form a joint
action. However, there are situations when the joint actions thus obtained are
infeasible for a given environment. In Traditional MAQL (TMAQL), the research-
ers do not check the possibility of infeasible actions, as infeasible actions are pena-
lized and thus automatically get forbidden in subsequent learning epochs.
Wang et al. introduced a novel technique for joint action selection in their pro-

posed Sequential Q-Learning (SQL) using a two-step procedure [18]. In the first
step, they employed the Boltzmann strategy for the individual action selection,
and in the second step, they designed a specialized selection operation to avoid
the same actions repeatedly. Besides joint action selection, there exists extensive
literature on update policy in the Q-table. A few of these include Nash Q-learning
(NQL) [27, 28], correlated Q-learning (CQL) [26], SQL [18], sparse Q-learning [48],
heuristically acceleratedMAQL [49], MAQLwith equilibrium transfer (MAQLET)
[46], and Frequency of the maximum reward Q-learning (FMRQ) [50]. These tech-
niques have their individual merits depending on the nature of the problem
selected.
Of the three problems inMAQL, we discussed above themajor works on the first

two. Unfortunately, there is hardly any work on the last problem on exploration of
the team-goal. In many real-world problems, particularly where tight cooperation
of the members is required, such as carrying a stick [53]/pushing a box [50] by two
(or more) robots in an environment with plenty of obstacles. Here, the moves that
ensure reaching of one or more (but not all) agents to their individual goals are no
longer useful. Such moves, if executed during planning, may not allow the agents,
who have reached their goals, to perform any further actions. Thus, there is an
apparent deadlock as no team effort can keep the agents continue changing their
states.
In this paper, we overcome the above problem by realization of the following

strategy in the learning phase. The strategy includes allowing one or more agents,
who could manage to reach their individual goals, to wait in their individual goal
states for a significantly large time to give the remaining agents a chance to move
to their respective (individual) goals synchronously or asynchronously. Such mul-
tiphase state-transition to the team-goal offers one way to overcome the limitation
of single-phase goal transition. Here, the goal transition in the last phase only
accumulates high (immediate) reward contributed by an agent for the team,
thereby improving the entries in the Q-table for state-transitions for the team-goal.
The Q-table thus obtained offers the team the additional benefit to identify the
joint action leading to transition to the team-goal.

2.1 Introduction 113

One question that may be raised is how long the agents, who could manage to
reach their goals, wait for the other agents to reach their subsequent goals. A small
waiting interval may not be enough to allow all agents to reach their goals. On the
other hand, a large interval may keep the entire team waiting at their team-goal.
Thus, selection of the right time-interval for the agents waiting at their individual
goals is a crucial parameter, which in turn determines both the speed and planning
performance of the agents.
The other important issue addressed in the chapter is the joint action selection.

Here, the agents identify their preferred individual actions in combination with all
possible actions by the other agents with an aim to determine the preferred joint
action(s) of the team by taking the meet operation of such combinations. The joint
action selection introduced above is useful for agents acting synchronously. As
agents act synchronously, they do not require setting any priority to them like
in [18]. In case no feasible joint action by the above method is available, the agents
select individual actions randomly or by standard techniques (Boltzmann strategy
and ε-greedy) used in traditional Q-learning [6, 15, 37, 43] to construct the joint
action.
The incorporation of the above two strategies in the MAQL enhances the pla-

nning performance of multi-agent systems as the Q-tables, defined in joint
state–action space, is enriched with high reward values for state-transitions con-
cerning exploration of the team-goal in the next joint state. The reward values
stored in the joint Q-table are also adapted with greater rewards for next joint
states geographically closer to the team-goal. The resulting joint Q-table would
offer the right selection of next joint state, helping the agents reach the team-goal
by an optimal/near-optimal path for transition from the starting joint state to the
goal state.
A fast cooperative multi-agent Q-learning (FCMQL) and its associated multi-

agent planning algorithm have been developed using the above two strategies
in both deterministic and stochastic environment. Experiments undertaken con-
firm that the proposed algorithms outperform their existing competitors with
respect to convergence time in learning and successful team-task in planning.
In addition, the joint action selection employing Imperialist Competitive Firefly
Algorithm (ICFA) [53], modified noise-resistant Particle Swarm Optimization
(MNPSO) [54, 55], Differential Evolution (DE) [56, 57], and multi-robot joint
action learning by demonstration (MLbD) [58] algorithms are compared sepa-
rately with the FCMQL-based multi-robot planning algorithms. The merits of
the present work are now outlined below.

1) Two useful properties have been developed to speedup the convergence of
MAQL algorithms. Property 2.1 establishes the principles used to overcome
the exploration of the team-goal. Property 2.2 directs an alternative approach

114 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

to speedup the convergence of MAQL by identifying the preferred joint action
for the team.

2) Incorporation of the above two properties in TMAQL (including NQL, variants
of CQL, MAQLET, and FMRQ) results in significant improvement in speed of
convergence.

3) In addition, because of an enriched Q-table to handle transitions to goal states,
the proposed FCMQL-induced planning algorithm can successfully complete the
plan to reach the team-goal, where TMAQL-based planning stops inadvertently.

4) Experiments have been developed to validate the performance of the proposed
FCMQL with the contender algorithms in terms of the convergence speed and
the run-time complexity as the performance metrics.

The rest of the chapter is structured as follows. Preliminaries of RL are reviewed in
Section 2.3. Sections 2.4 and 2.5 introduce the proposed FCMQL algorithms and
Section 2.6 deals with multi-agent cooperative planning algorithms. Section 2.7
includes experiments and results. The conclusions are listed in Section 2.8. The
list of acronyms are listed in Table 2.1.

Table 2.1 List of acronyms.

Full form Acronyms

Multi-agent Q-learning MAQL

Traditional MAQL TMAQL

Nash equilibrium NE

Nash Q-learning NQL

NQL with equilibrium transfer NQLET

NQL with Property 2.1 NQLP1

NQL with Property 2.2 NQLP2

NQL with Properties 2.1 and 2.2 NQLP12

Correlated equilibrium CE

Correlated Q-learning CQL

Utilitarian Q-Learning UQL

UQL with equilibrium transfer UQLET

UQL with Property 2.1 UQLP1

UQL with Property 2.2 UQLP2

UQL with Properties 2.1 and 2.2 UQLP12

Egalitarian Q-learning EQL

(Continued)

2.1 Introduction 115

2.2 Literature Review

Quite a few interesting works on the MAQL have been reported in the literature
[18, 22–51]. Among the state-of-the-art MAQL algorithms, the following need
special mention. In [24], Claus and Boutilier aimed at solving the coordination
problem using two types of reinforcement learners. The first one, called

Table 2.1 (Continued)

Full form Acronyms

EQL with equilibrium transfer EQLET

EQL with Property 2.1 EQLP1

EQL with Property 2.2 EQLP2

EQL with Properties 2.1 and 2.2 EQLP12

Republican Q-learning RQL

RQL with equilibrium transfer RQLET

RQL with Property 2.1 RQLP1

RQL with Property 2.2 RQLP2

RQL with Properties 2.1 and 2.2 RQLP12

Libertarian Q-learning LQL

LQL with equilibrium transfer LQLET

LQL with Property 2.1 LQL1

LQL with Property 2.2 LQL2

LQL with Properties 2.1 and 2.2 LQLP12

Frequency of the maximum reward Q-learning FMRQ

FMRQ with Property 2.1 FMRQP1

FMRQ with Property 2.2 FMRQP2

FMRQ with Properties 2.1 and 2.2 FMRQP12

Fast cooperative multi-agent Q-learning FCMQL

Nash Q-induced multi-agent planning NQIMP

Correlated Q-induced multi-agent planning CQIMP

Contributed reward by agent i for the team CRi

Imperialist competitive firefly algorithm ICFA

Modified noise-resistant particle swarm optimization MNPSO

Differential Evolution DE

Multi-robot joint action learning by demonstration MLbD

116 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

independent learner (IL) [24], takes care of the learning behavior of individual
agents by ignoring the presence of other agents. The second one, called joint
action learner (JAL) [24], considers all agents including the self to learn at joint
action-space. Unlike JAL, in Team Q-learning [51] proposed by Littman, an
agent updates its Q-value at a joint state–action pair without utilizing associated
agents’ reward; rather the value function of the agent at the next joint state is
evaluated by obtaining the maximumQ-value among the joint actions at the next
joint state. In [37], Ville Könönen proposed Asymmetric-Q learning (AQL)
algorithm, where the leader agents are capable of maintaining all the agents’
Q-tables. However, the follower agents are not allowed to maintain all the
agents’ Q-tables and hence, they just maximize their own rewards. In AQL,
agents always achieve the pure strategy Nash equilibrium (NE), although there
does exist mixed strategy NE [27, 28]. In [27], Hu andWellman extended the Litt-
man’s Minimax Q-learning [29] to general-sum-stochastic game (where summa-
tion of all agents’ payoff is neither zero nor constant) [16, 59] by taking into
account of other agents’ dynamics using NE [27, 28, 60]. They also offered a proof
of convergence of their algorithm [40]. In [41, 42], the authors selected one NE
optimally in case of its multiple occurrences. In [30], Littman proposed Friend-
or-Foe Q-learning algorithm for general-sum games. In this algorithm, the
learner is instructed to treat each other agent either as a friend in Friend
Q-learning (FQL), or as a foe in Foe Q-learning. Friend-or-Foe Q-learning
provides a stronger convergence guarantee in comparison to that of the existing
NE-based learning rule [27, 28]. In [26], Greenwald et al. proposed CQL employ-
ing correlated equilibrium (CE) [26] to generalize both NQL [27] and Friend-or-
Foe Q-learning [30]. The bottlenecks of the above MAQL algorithms are update
policy selection for adaptation of the Q-tables in joint state–action space and the
curse of dimensionality with the increase in number of learning agents. Several
attempts have been made to handle the curse of dimensionality in MAQL. Kok
and Vlassis proposed Sparse Cooperative Q-learning in [48], where a sparse rep-
resentation of the joint state–action space of the agents is done by identifying the
need of coordination among the agents at a joint state. In [48], agents undertake
coordination by their actions only in a few joint states. Hence, each agent main-
tains two Q-tables: one is the individual-action Q-table for uncoordinated joint
states and other one is the joint action Q-table to represent the coordinated joint
states. In case of uncoordinated states, a global Q-value is evaluated by adding
the individual Q-values. In [47], authors offer a neural network-based approach
for generalized representation of the state-space for multi-agent coordination. By
such generalization, agents (here robots) can avoid collision with an obstacle or
other robots by collecting minimum information from the sensors. In [49], Bian-
chi et al. proposed a novel algorithm to heuristically accelerate the TMAQL algo-
rithms. In the literature of MAQL [18, 22–51] agents either converge to NE or CE.

2.2 Literature Review 117

The equilibrium-based MAQL algorithms [26, 27] are most popular for their
inherent ability to determine optimal strategy (equilibrium) at a given joint state.
In [46], Hu et al. identified the phenomenon of similar equilibria in different
joint states and introduced the concept of equilibrium transfer to accelerate
the state-of-the-art equilibrium-based MAQL (NQL and CQL). In equilibrium
transfer, agents recycle the previously computed equilibria having very small
transfer-loss. Recently in [50], Zhang et al. attempted to reduce the dimension
of the Q-tables in NQL. The reduction is done by allowing the agents to store
the Q-values in joint state–individual action space, instead of joint state–action
space. However, with the best of our knowledge, there is no work in the litera-
ture, which considers simultaneous exploration of the individual goals (i.e. team-
goal) of the agents.
In the state-of-the-artMAQL (NQL [27, 28] and CQL [26]), balancing exploration/

exploitation during the learning phase is an important issue. Traditional approaches
used to balance exploration/exploitation in MAQL are summarized here. The
ε-greedy exploration [6], although has wide publicity, needs to tune the value of
ε, which is time-costly. In the Boltzmann strategy [15], the action selection proba-
bility is controlled by tuning a control parameter (temperature) [15] and by utilizing
the Q-values due to all actions at a given state. Here, the setting of temperature to
infinity (zero) implies pure exploration (exploitation). Unfortunately, the Boltz-
mann strategy antagonistically affects the speed of learning [43]. Evolution of the
Boltzmann strategy toward better performance is observed in Refs. [38, 43]. How-
ever, the above selectionmechanisms are not suitable for selecting a joint action pre-
ferred for the team (all the agents) because of the dissimilar joint Q-values offered by
the agents at a common joint state–action pair. There are traces of literature con-
cerning joint action selection at a joint state during learning. In [54], Pugh andMar-
tinoli employ a MNPSO, where each agent is considered as a swarm and they can
communicate with each other. In [58], the joint action formulti-robot cooperation is
selected by learning simultaneous demonstration [58].

2.3 Preliminaries

The section presents preliminaries of RL, single agent Q-learning, andMAQL con-
cisely. In RL [6, 8], an agent interacts with the environment, by means of a 3-tuple
<state (s), action (a), reward (r)>. A state refers to the current position of an agent
(here robot) within an environment. By executing an action in the current state,
the agent receives a scalar reward from the environment and moves to the next
state. The scalar reward acts as a feedback for the agent on its immediate perfor-
mance. Figure 2.1 provides a schematic overview of RL.

118 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

2.3.1 Single Agent Q-learning

Single agent Q-learning, proposed by Watkins and Dayan, is one of the most
widely used RL techniques [20]. In single agent Q-learning, the environment is
divided into a finite number of states. At any state, an agent has a finite set of
actions, fromwhich it can choose one according to a given policy. The agent learns
optimal state–action value (Q-value) for each state–action pair using the principle
of DP and BE [21]. In single agent Q-learning, the agent attempts to determine the
optimal policy in order to maximize the sum of discounted expected rewards [11].
The single agent Q-learning update rule is given by (2.1) [20]:

Q s, a 1− α Q s, a + α r s, a + γ
s

P s s, a max
a

Q s , a ,

2 1

where Q(s, a) and r(s, a) are the Q-value and immediate reward, respectively, at
state s due to action a, a/ {a} is the action in the next state s/ {s}, s/ δ(s, a)
is the state-transition function, γ [0, 1) denotes the discounting factor, and α
[0, 1) refers to the learning rate. However, in the deterministic situation, the state-
transition probability P[s/ (s, a)] to reach the next state s/ {s} from the state s
because of action a is unity. After infinite revisit of (s, a), Q-value Q(s, a) turns
to the optimal Q-value Q∗(s, a).

2.3.2 Multi-agent Q-learning

Unlike single agent Q-learning presented above, in MAQL, the joint Q-value
depends on the other agents’ actions too. In MAQL, MDP is extended to MMDP
[23, 32]. The definition of MMDP is given below.

R
ew

ar
d

Action

N
ex

t
st

a
te

Agent

Environment

Figure 2.1 Block diagram of reinforcement
leaning (RL).

2.3 Preliminaries 119

Definition 2.1 A MMDP for m number of agents can be defined as a 5-tuple
{S}, m, {A}, Pi, Ri , where S = × m

i = 1 si is the joint state space, S {S} and si
{si} are the state of agent i, × denotes the Cartesian product, A = × m

i = 1 ai
is the joint action space, A {A} and ai {ai} are the action of agent i, Pi : {S} ×
{A} × {S} [0, 1] is the joint state-transition probability of agent i, and Ri : {S} ×
{A} R is the reward function at a joint state–action pair of agent i, where R is
the set of real numbers.
MAQL algorithms [18, 22–51] usually are of three types: cooperative, competi-

tive, and mixed [45]. In this paper, we deal with cooperative MAQL algorithms,
where all the agents adapt Q-tables in a common environment. Because of the
adaption in a common environment, the environment becomes dynamic, and
an agreement is needed among the agents to attain optimal performance of the
team. Such agreement is attained by adapting the joint Q-values in equilibrium,
e.g. NE [60] and CE [26]. Both NE and CE employ (i) pure strategy and
(ii) mixed strategy. The definitions of NE [60] and CE [26] are given below.

Definition 2.2 NE is a stable joint action (or strategy) at a given joint state (S) of
a system that involvesm interacting agents, such that no unilateral deviation (devi-
ation of an agent independently) can occur as long as all the agents follow the same

optimal joint action AN = a∗i
m
i = 1 at a joint state S {S} for pure strategy NE. Fur-

ther, for a mixed strategy NE, agents perform the joint action A = ai
m
i = 1 with a

probability p∗ A =
m

i = 1
p∗i ai , where p∗i ai 0, 1 , p∗ : {A} [0, 1].

Let a∗i ai be the optimal action of agent i at si and A∗
− i A be the optimal

joint action profile of all agents except agent i at joint state S = < s j > m
j = 1,j i and

Qi(S,A) be the joint Q-value of agent i at S because of joint actionA {A}. Then the
condition of pure strategy NE at S is [60].

Qi S, a
∗
i ,A

∗
− i ≥ Qi S, ai,A

∗
− i , i

Qi S,AN ≥ Qi S,A , i where AN = a∗i ,A
∗
− i and A = ai,A

∗
− i

2 2

and condition of mixed strategy NE at S is [60]

Qi S, p
∗
i , p

∗
− i ≥ Qi S, pi, p

∗
− i , i, 2 3

where Qi S, p =
A
p A Qi S,A and p∗− i A− i =

m

j = 1, j i
p∗j a j be the joint

probability of selecting joint action profile of all agents except agent i denoted
by A−i A.

120 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Agents follow (2.2) to evaluate pure strategy NE AN = a∗i ,A
∗
− i and (2.3) for

mixed strategy NE p∗i ai , p∗− i A− i , respectively, at joint state S. Evaluation

of NE employing Lemke–Howson method [61] is quiet efficient but limited to
two agents problem only. In this chapter, to evaluate NE, a simple search method
following [62] has been employed.
In NE, agents are allowed to maximize its own reward. However, in CE, the com-

posite benefits of the agents are considered by selecting the individual actions jointly.
In [26], authors outline four variants of CE: Utilitarian equilibrium (UE) (represent-
ing sumofall the agents’ rewards), Egalitarianequilibrium (EE) (computedby taking
minimum of all the agents’ rewards), Republican equilibrium (RE) (obtained by tak-
ing maximum of all the agents’ rewards), and Libertarian equilibrium (LE) (which
multiplies all the agents’ rewards) to evaluate a joint strategy (action).

Definition 2.3 CE at a joint state S = < si > m
i = 1withm interacting agents is the

pure strategy CE; AC and mixed strategy CE, p∗(AC) if agents follow (2.4) and (2.5),
respectively [26].

AC = argmax
A

Φ Qi S,A , 2 4

p∗ AC = argmax
p A

Φ
A

p A Qi S,A , 2 5

where

Φ Σ
m

i = 1
, min

m

i = 1
, max

m

i = 1
, Π

m

i = 1
2 6

In [27], Hu and Wellman proposed NQL with the help of NE to update the
reward of the agent at joint state–action space. Similarly, in [26], Greenwald
et al. proposed CQL with the help of CE to update the reward of the agent at joint
state–action space. Later in [46], Hu et al. attempted to accelerate the NQL and
CQL by equilibrium transfer. Recently in [50], Zhang et al. attempted to reduce
the dimension of the Q-tables in NQL. The reduction is done by allowing the
agents to store the Q-values in joint state–individual action space, instead of stor-
ing them in joint state–action space. The above-mentioned NE/CE-based algo-
rithms are summarized in Algorithm 2.1. In Algorithm 2.1, ri(S, A) refers to the
immediate reward of agent i given by (2.7), where rmax and rmin are the maximum
and minimum immediate rewards, respectively.

ri S,A = rmax, if agent i reaches its individual goal,

= rmin, if agent i does not reach its individual goal,

= − r, if agent i violates constraint, r R +

2 7

2.3 Preliminaries 121

Complexity analysis: To analyze complexities of Algorithm 2.1 [27, 50], let for
m number of agents {S} be the set of joint states and {A} be the set of joint actions
from each joint state S {S}. In NQL, CQL, and MAQLET, an agent maintains
Q-table at joint state–action space. In the absence of communication [27], an agent
has to maintain all the agents’ Q-tables at joint state–action space. So, the space
complexity of the NQL, CQL, and MAQLET algorithms is m {S} {A} . However,
in FMRQ, an agent adapts Q-values at a joint state for each individual
actions. Therefore, the space complexity of the FMRQ algorithms is m {S} {a} ,
where {a1} = {a2} = = {am} = {a}. Also in the TMAQL, an agent updates all
the agents’Q-values at the current joint state–action pair by selecting the Q-values
in the next joint state at NE/CE in each learning epoch. So, the time complexity to
evaluate NE (considering pure strategy NE) is ({A} − 1) |{A}|m− 1 = O({A})m

and time complexity to evaluate the pure strategy CE is (m− 1)({A} − 1) =
O (m {A}).

Algorithm 2.1 NE/CE-Based Multi-agent-Q Learning

Input: Current state si, i, action set {ai}, μ is a small positive threshold

to stop the algorithm, γ [0, 1) and α [0, 1);

Output: Joint Q-value of agent iQ∗
i S,A , S, A, i;

Initialize: Qi(S, A) 0, S, A, i;

Repeat

Observe the current state si, i;

Randomly select an action ai {ai} at si and execute it i;

Receive ri(S, A), i, evaluate next state si δi si,ai , ito obtain next

joint

state S = < si > m
i = 1; Qi S,A Qi S,A , i;

Update:

Qi S,A 1−α Qi S,A +α ri S,A +γ
S

Pi S S,A ΨQi S , i // for stochastic

Qi(S, A) (1 − α)Qi(S, A)+ α[ri(S, A)+ γ ΨQi(S/)],
i //for deterministic, Ψ {NE, CE} and S S/; //ΨQi(S/) is the Q-value of

agent i due to Ψ {NE, CE} at joint state S/

Until Qi S,A −Qi S,A < μ, S, A, i;

Obtain Q∗
i S,A Qi S,A , S, A, i

122 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

2.4 Proposed MAQL

Algorithm 2.1 presented above suffers from two limitations: (i) exploration of the
team-goal and (ii) joint action selection. In addition, overcoming these limitations
derive additional benefit in subsequent planning stage to optimally select the
team-goal. We here briefly outline the possible ways to overcome the limitations
stated above.
In this section, we propose two important properties to overcome the above lim-

itations and subsequently increase the speed of convergence of MAQL algorithms.
In the first property, when one agent reaches its goal, it would remain idle, while
its teammates continue exploration for their respective goals. The second property
ascertains selection of a joint action at a joint state corresponding to the least
reward of all the agents. It is shown that such selection accelerates the learning
of the Q-table in MAQL algorithms. It is shown that the convergence speed of
the proposed FCMQL algorithms is more than the same of the TMAQL (NQL,
CQL, MAQLET, and FMRQ) algorithms. We now define a new term, called con-
tributed reward by agent i, for the team denoted by CRi.

Definition 2.4 The contributed reward by agent i to achieve the team-goal is a
scalar quantity: CRi(S, A), defined at joint state S due to joint action A, is given by

CRi S,A = rmax, if all agents reach their goals simultaniously,

= rmin, if atleast one agent is left to reach its goal,

= − r, if atleast one agent violates constraint, r R +

,

2 8

where rmax and rmin are the maximum and minimum immediate rewards, respec-
tively. Violation of constraints generally indicates collision among the teammates.

Qi S,A 1− α Qi S,A + α CRi S,A + γ
S

Pi S S,A ΨQi S ,

2 9

where γ [0, 1) and α [0, 1) refer to the discounting factor and learning rate,
respectively. The joint state-transition function designed following TMAQL is
given below:

2.4 Proposed MAQL 123

δ S,A = < δi si, ai > m
i = 1

= si
m

i = 1

= S

S

2 10

and Pi[S
/ (S, A)] denotes the joint state-transition probability of agent i to reach

the next joint state S/ {S} from the joint state S because of joint action A. Ψ Qi(S
/)

is the Q-value of agent i because of Ψ {NE, CE} at next joint state S/ and is eval-
uated by a simple search method [62].

2.4.1 Two Useful Properties

The properties based on which the FCMQL algorithms are being developed are
discussed below. The properties are valid both in deterministic and stochastic
situations. Property 2.1 is derived using Statute 2.1 given below.

Statute 2.1 Unlike the TMAQL in the proposed FCMQL, when an agent moves to
its goal state, it will not restart the learning process by randomly selecting a state
(excluding its goal state); rather it waits in its goal state, and will restart learning
along with all other agents, when the last agent moves to its individual goal state.

Property 2.1 In MAQL, if all the agents follow Statute 2.1, then the probability of
exploring the team-goal monotonically increases with k in a learning episode, where k
refers to the number of agents exploring their individual goals.

Proof:
Let,
l be the number of states in a given environment,
m be the number of agents learning cooperatively in a given environment,
j be the feasible actions for each agent.
The proof is segregated into the following three components.

1) Here, agent 1 can occupy any one of l states in the next iteration. Consequently,
agent 2 would occupy any one of (l− 1) possible next states. In the similar man-
ner, it can be shown that agent m can occupy any one of (l−m) possible next
states. Thus, there would be asmany as l(l− 1) (l−m+ 1) = lPm possible next
joint states, where P denotes the permutation operator.

2) Thus, probability that the next joint state (S/) is equal to the team-goal (G) due
to a joint action (A) at joint state (S) is given by (2.11).

124 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Pr S = G S,A =
1

lPm
2 11

3) Now, each agent can have j feasible actions. So, two agents would have j × j= j2

joint actions. Proceeding similarly, m agents would have jm possible joint
actions. Thus, the probability of randomly selecting a joint action (A) at a joint
state (S) from the joint action set ({A}) is given by (2.12).

Pr S,A =
1
jm

2 12

Now, probability that the next joint state (S/) is the team-goal (G) after executing
a joint action (A) randomly from the joint action set ({A}) at a joint state (S) given in
(2.13) by conditional probability.

Pr S, A S =G A ×m
i=1 ai ; S, S ×m

i=1 si ; G= < gi >
m
i=1 gi is the goal of agent i

=Pr S,A ×Pr S =G S, A sincePr C D =Pr C Pr D C

=
1
jm

×
1

lPm
by 2 11 and 2 12

2 13

In general, suppose k agents have already reached their individual goals. Then
by Statute 2.1, the number of active learning agents become (m− k). So, one can
rewrite (2.13) as in (2.14). In (2.14),−k in suffix indicates that all except the k num-
ber of agents and {S} = {S−k} {Sm− k}, etc., where (m− k) in the suffix indicates
the joint state for (m− k) agents.

Pr S−k , A−k S−k =G−k A−k × m
n= 1 an ; S−k , S−k × m

n= 1 sn ; G−k = < gn >
m
n= 1; n 1, k

= Pr S−k , A−k × Pr S−k =G−k S−k , A−k sincePr C D = Pr C P D C

=
1

jm−k ×
1

lPm−k
sincem m−k

2 14

Since the result obtained in (2.14) is a monotonically increasing function of k,
with increase in k, the probability of exploring the team-goal monotonically
increases. □

2.4 Proposed MAQL 125

Besides exploration of the team-goal, to speedup learning further, Property 2.2 is
proposed. For the sake of convenience of the readers, the definition of preferred
joint action is given below.

Definition 2.5 If Qi(S, A) refers to the Q-value of agent i at joint state S because

of joint action A, then the set of preferred joint actions Ap
i of agent i, is obtained

by (2.15).

Ap
i = argmax

A
Qi S, A 2 15

We also define the common preferred set of joint actions of m agents as

Ap =
m

i = 1
Ap
i 2 16

In case {Ap} = ϕ, the agents would select their individual preferred actions ran-
domly or by traditional selection techniques [6, 15, 43, 52].

In Property 2.2 introduced below, if at a joint state S only one joint action A
remains non-utilized, then the probability to execute A at S becomes one, i.e.
the joint action A is selected certainly for execution. This, in other words, indicates
that the joint actions already taken in a joint state should not be repeated, until all
the joint actions at that joint state have been explored.

Property 2.2 In MAQL, if {AP} is the set of equally preferred joint action for the

team at the joint state S where Ap =
i
AP
i =

i
argmin

A
Qi S,A ϕ then

P(S,Ap/) > P(S,AP), where Ap/ refers to the preferred joint action in the next iteration.

Proof
Let at each state there exist j number of feasible actions for each of the m agents.
Therefore, at a joint state (S) there are jm number of feasible joint actions. Let joint
action set for all the agents at joint state S are

Ai = A , i

and A = jm, i
2 17

In MAQL, the initial joint Q-values usually are assumed to be zero, i.e. Qi(S, A)
= 0, S, A, i at iteration t = 0. So, by Definition 2.5, preferred joint action set of
agent i = [1,m] at joint state S is

126 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Ap
i = argmin

A
Qi S,A , i

= Ai , i

sinceQi S,A = 0, S, A, i,∴argmin
A

Qi S,A returns allA for agent i at S

= A , i by 2 17

2 18

Now, by the given statement of Property 2.2, preferred joint action set of the
team (m agents) at joint state S is

Ap =
m

i = 1
Ap
i

=
m

i = 1
A by 2 18

= A

2 19

Therefore, probability to execute joint action Ap at the joint state S is

Pr S,Ap =
1
Ap

=
1
A

by 2 19
2 20

Let after first iteration the joint Q-value of agent x [1, m] has been improved

because of preferred joint action Ap
x Ap

x = < ax ,A− x > at the joint state S

{S}. So, joint Q-value of agent x at joint state S is

Qx S; ax ,A− x > Qx S;A , A,A < ax ,A− x > , 2 21

where A−x be the joint action except the action of agent x, ax {ax}. Therefore,
updated preferred joint action set of agent x [1, m] at joint state S by Defini-
tion 2.5 is

Ap
x = argmin

A
Qx S,A

= Ap
x − A j

x where, A j
x be the joint action set of agent x

containing action ax

Ap
x 2 22

Therefore, by (2.17), (2.22), and the given statement of the Property 2.2, updated
preferred joint action set {Ap/} of the team (m agents) at joint state S is

2.4 Proposed MAQL 127

Ap =
m

i = 1,
i x

Ap
i Ap

x

=
m

i = 1,
i x

A Ap
x by 2 19

= A Ap
x

= A
p

x since A
p

x A , x 1,m

2 23

Therefore, probability to execute joint action A
p

x at joint state S is

Pr S,Ap =
1

Ap

=
1

A
p

x

by 2 23

>
1

Ap
x

since A
p

x < Ap
x by 2 22

=
1
A

by 2 17

= P S,Ap by 2 20

2 24

Hence, the Property is proved. □

In Property 2.2, if an agent i receives a penalty (reward of −r by (2.8)) at a joint
state S because of a joint action A before improving its joint Q-value Qi(S, A) from
the initialized value (generally zero), then the agent is trapped at the former joint
state S. To overcome such problem, Qi(S, A) is re-initialized to zero. Such
re-initialization improves the speed of convergence of the proposed FCMQL by
avoiding the trapping at local minima.

2.5 Proposed FCMQL Algorithms and Their
Convergence Analysis

In this section, we propose FCMQL algorithms with their convergence analysis,
where FCMQL refers to a set of algorithms given by {NQLP12, EQLP12, UQLP12,
RQLP12, LQLP12, FMRQP12}.

128 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

2.5.1 Proposed FCMQL Algorithms

In Algorithm 2.2, the proposed FCMQL algorithms enjoy the benefits of the pro-
posed Properties 2.1 and 2.2, which are responsible for exploring the team-goal
rapidly and speeding-up learning process, respectively. In Algorithm 2.2, we com-
pute pure strategy NE, if it exists; otherwise, mixed strategy NE is evaluated. How-
ever, it may please be noted that in the proposed FMRQP12 and its associated
variants, agents maintain Q-tables at joint state–individual action space denoted
by Qi(S, ai), S, ai, i [50].

Complexity analysis: To analyze the complexity of the proposed Algorithm 2.2,
let there be m number of agents. Let {S} and {A} be the set of joint states and joint
actions, respectively. The space complexity of the proposed FCMQL algorithms,
except FMRQP12, is given by m {S} {A} , where for the latter the complexity
is m {S} {a} , where {a1} = {a2} = = {am} = {a}. Now, referring to Prop-
erty 2.1, the best- and worst-case time complexities in one learning epoch for
an agent in the proposed FCMQL algorithms, in the absence of communication
[28], are given by ({a} − 1) = O({a}) and ({A} − 1)|{A}|m− 1 = O(|{A}|m),
respectively.

Algorithm 2.2 Fast Cooperative Multi-agent Q-Learning (FCMQL)

A) Input: Current state si, i, joint action set {A}, μ is

a small positive threshold to stop the algorithm, γ [0, 1)

and α [0, 1);

B) Output: Joint Q-value of agent iQ∗
i S,A , S, A, i;

C) Initialize: Qi(S, A) 0, S, A, i;

Repeat

1) Observe the current state si, i;

2) If
i
arg min

A
Qi S,A ϕ

Then select a joint action A {A} employing

Property 2.2; // by Property 2.2

Else Randomly select an action ai {ai}, i;

End If;

3) Receive immediate reward ri(si, ai), i and evaluate CRi
by Definition 2.4;

4) Evaluate next state si δi si,ai , i and joint next

state S = < si > m
i = 1;

2.5 Proposed FCMQL Algorithms and Their Convergence Analysis 129

2.5.2 Convergence Analysis of the Proposed FCMQL Algorithms

The convergence of the proposed FCMQL is compared with the TMAQL in The-
orem 2.1 and is given below.

Theorem 2.1 The expected time of convergence of the proposed FCMQL is less than
the same of the TMAQL.

Proof

The expected time of convergence of FCMQL, TF
e , decreases with an increase in

the probability of exploring the team-goal, given by Pr(S, A) × Pr((S/ = G) (S, A))

and also the joint action selection probability Pr(S, A). Thus, TF
e can be modeled by

an exponentially decreasing function of the joint probability of exploration of the
team-goal and probability of joint action selection, i.e.

TF
e = exp − Pr S,A 2 × Pr S = G S,A 2 25

5) If si = gi holds for i < m // gi is the goal state of agent i

Then the agent i waits at gi, until S−i = G−i

//where −i indicates all except agent i

or up to a finite time Tf obtained empirically;

Else select a joint action A {A} by step 2;

End If;

6) If si = gi, i

Then restart learning by randomly selecting a joint

state (except team-goal state);

End If;

7) Qi S,A Qi S,A , i;

8) Update: Qi(S, A) (1 − α)Qi(S, A) + α[CRi(S, A) +

γ ΨQi(S
/)]; //for deterministic

Qi S,A 1− α Qi S,A + α CRi S,A + γ
S

Pi S S,A ΨQi S ;

//for stochastic

and S S/ //Ψ Qi(S
/) be the Q-value of agent i

due to Ψ {NE, CE} at joint state S/

Until Qi S,A −Qi S,A < μ, S, A, i;

Obtain Q∗
i S,A Qi S,A , S, A, i

130 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

It is important to note that the expression (2.25) is equally good for TMAQL.
However, in TMAQL, the probabilities Pr(S, A) and Pr((S/ = G) (S, A)) both
remain constant over the learning epochs, whereas in FCMQL, the above two
probabilities increase with increase in learning epochs. Thus, (2.25) transforms
to (2.26) and (2.27) for TMAQL and FCMQL, respectively.

TTM
e = exp − k , 2 26

for any positive real number k.

TF
e = exp − k− δk TF

e , 2 27

where δk TF
e is a linearly increasing function of TF

e . A little algebra, given below,

returns TF
e as a nonlinear function of k:

TF
e exp δk TF

e = exp − k

TF
e δk TF

e = exp − k as δk TF
e 0

TF
e β TF

e = exp − k by linear approximation of δk TF
e

TF
e =

1
β
exp − k

2 28

It is apparent from (2.26) and (2.28) that TF
e < TTM

e Thus, the theorem follows. □

2.6 FCMQL-Based Cooperative Multi-agent Planning

In this section, the proposed FCMQL-based cooperative multi-agent planning
algorithms are discussed. In the proposed FCMQL-based multi-agent planning,
agents move from the current joint state to the next joint state following the prin-
ciple of pure strategy NE/CE, which is evaluated by utilizing the joint Q-tables
adapted by the FCMQL and satisfying the task-constraint. Here, task-constraint
refers to the constraint which agents have to satisfy during the planning phase
in the deterministic and/or the stochastic environment. Consider the problem
of object-carrying, where an object (stick, triangle, or square) needs to be trans-
ported to a desired location with the help of multiple robotic agents that hold
the stick at its two extremities [53], triangle at its vertexes, and rectangle at its cor-
ners. Robots maintain a fixed distance between them to avoid falling off of
the object carried by them. Holding the object without a fall is considered as a

2.6 FCMQL-Based Cooperative Multi-agent Planning 131

task-constraint. This is a problem, where cooperation of two (or more) robots is
needed for the required transportation problem.
In TMAQL, the immediate reward is given in (2.7), and is designed to measure

the individual agent’s performance. However, in the proposed FCMQL, the imme-
diate reward is given by (2.8) and is designed to measure the team performance.
The benefit of such proposed reward function during the planning phase is rea-
lized and analyzed in the proposed FCMQL-based planning (Algorithm 2.3)
and Theorem 2.2, respectively, in terms of optimal team performance, measured
by the number of joint state-transitions required to reach the team-goal. The def-
inition of the optimal team performance is given in Definition 2.6. The FCMQL-
based cooperative multi-agent planning is given in Algorithm 2.3.

Definition 2.6 If the planning algorithm evaluates joint state-transitions follow-
ing NE/CE, and the terminal state-transition ends at the team-goal, then the
agents are called to have the optimal team performance considering the number
of joint state-transitions required to reach the terminal (team-goal) joint state as
the performance metric.

Theorem 2.2 shows that the non-team-goal state transitions cannot be a NE in
the proposed NPQLP12-based multi-agent planning. However, it does a NE in the
TMAQL-based multi-agent planning.

Theorem 2.2 If all excluding at least one agent explores its individual goal state
employing the proposed NPQLP12 or TMAQL due to joint action AN at joint state S,
then in the NQLP12-induced planning, AN is not a NE, but in TMAQL-induced
planning, AN is a NE at S.

Proof
Let the Q-values of agent i [1,m] at joint state S due to all joint actions A {A} is
denoted by the set {Qi(S, A) :A {A}}. Now, one can write

rmin ≤ Qi S,A ≤ rmax, i, 2 29

where rmin and rmax are the minimum and maximum immediate rewards, respec-
tively, of an agent. Let agent x [1,m] explore its individual goal due toAN at S and
the subsequent joint Q-value of agent x adapted by the proposed NQLP12 is
given by

Qx S,AN = rmin by 2 8 2 30

132 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Again, by (2.29),

rmin ≤ Qx S,A where x 1,m andA A 2 31

Combining (2.30) and (2.31), we obtain

Qx S,AN ≤ Qx S,A , A A 2 32

However, in the above situation, joint Q-value of agent x adapted by TMAQL is

Qx S,AN = rmax by 2 7 2 33

Again, by (2.29),

rmax ≥ Qx S,A , A A where x 1,m andA A 2 34

Combining (2.33) and (2.34), we obtain

Qx S,AN ≥ Qx S,A , A A 2 35

Now, by the principle of multi-agent planning algorithm, let maximum joint
Q-value of all except agent x at joint state S because of joint action AN is Q−x(S, AN)
{Q−x(S, A) :A {A}}, − x. Therefore,

Q− x S,AN ≥ Q− x S,A , A A , − x 2 36

By (2.32) and (2.36), we can conclude thatQi(S,AN)≤Qi(S,A
/) for i= x andQi(S,

AN)≥Qi(S, A
/), i, i x. Hence, by Definition 2.2, we say that in the proposed

NQLP12-induced planning, the joint action AN is not a NE at S. Again by (2.35)
and (2.36), we conclude that Qi(S, AN)≥Qi(S, A

/), i. So, by Definition 2.2, we
say that in TMAQL-induced planning, the joint action AN is a NE at S. □

By Theorem 2.2, one can confirm that in NQLP12-based cooperativemulti-agent
planning (Algorithm 2.3), an agent never executes a joint action, which results in a
goal state-transition of at least one agent. However, in the TMAQL-induced pla-
nning, agents do prefer such joint actions. The agent which reaches its individual
goal in the planning phase cannot move any more, resulting in low probability to
reach the team-goal. Trivially, it can also be shown that in the other variants of the
proposed FCMQL-induced multi-agent planning, agents do not prefer a joint
action which leads to a non-team-goal state transition, except in the proposed
RQLP12.

2.6 FCMQL-Based Cooperative Multi-agent Planning 133

2.7 Experiments and Results

This section includes four experiments. The first experiment is designed to exam-
ine the relative performance of the proposed FCMQL algorithms over the refer-
ence algorithms in view of the team-goal exploration, considering convergence
speed as the performance metric. The second experiment is designed to compare
the performance of the proposed Algorithm 2.3 over the reference algorithms. The
third experiment examines the merits of the proposed Algorithm 2.3 over the exist-
ing ones, including joint action selection by MLbD [58], MNPSO [54, 55] DE [56,
57], and ICFA [53] algorithms, uses run-time complexity as the metric. The com-
puter simulations undertaken for the experiments are coded and tested with an
Intel(R) Core(TM) i7-3770 CPU with a clock speed of 3.40 GHz. Finally, in the last
experiment, we examine the performance of the proposed Algorithm 2.3 in real
environment with twin Khepera-II mobile robots (Appendix 2.A).
All the experiments are studied in 10 different 10 × 10 grid world maps given in

Table 2.2. Figure 2.2 indicates map 1 (for deterministic) or 4 (for stochastic) in a
two-agent system during the learning phase with 12 obstacles (marked as a black
rectangle) and a team-goal <G1, G2>. Each agent can perform four actions: such
as moving Left (L), Forward (F), Right (R), and Back (B). In case of stochastic envi-
ronment, the state-transition probabilities are assigned as randomly generated
constant values, satisfying the property of a Markovian matrix, where the sum
of state-transition probabilities at each state is unity. Like the TMAQL algorithms,
the starting positions can be selected randomly for a fixed team-goal state, which is
predefined during the learning. To maintain uniformity, all the algorithms are
initialized with identical joint starting states. Each grid in the multi-robots’

Algorithm 2.3 FCMQL-Based Cooperative Multi-agent Planning

Input: Qi, i, feasible joint state SF;

Output: NE (or CE) AN (or AC) at SF;

Repeat

Observe current state si, i;

Evaluate NE (or CE), AN (or AC) following (2.2) (or (2.4)) and satisfying

task constraint;

Execute AN (or AC) at SF and go to next feasible joint state SF and SF SF;

For multiple AN (or AC) solutions at SF select the first one;

Until the task is complete.

134 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

workspace is assigned a positive integer to indicate its identity in the workspace
with the help of mapping functions defined in Appendix 2.A.
The discounting factor γ is chosen as 0.9 and learning rate α is set to 0.1. On

exploration of the team-goal, agents are awarded by (2.8), where maximum imme-
diate reward rmax = 100, minimum immediate reward rmin = 0. In addition, the
violation of constraint is penalized by a reward of r = − 1.

Experiment 2.1 Study of Convergence Speed
This experiment aims at examining the relative superiority in convergence speed
of the proposed FCMQL over the existing algorithms. The study includes:
(i) convergence of state–action pairs with learning epochs, (ii) determining the
number of times a given team-goal is explored within a fixed number of learning
epochs, (iii) average reward ofm agents, where the reward of an agent is the aver-
age of the entries in the Q-table, and (iv) convergence in state–action pairs with
learning epochs, where joint action selection is done by Property 2.2.

Table 2.2 Details of 10 × 10 grid maps.

Number
of
agents Situation Map Team-goal

Joint
starting
state

Number
of
obstacles

Obstacle state
number

2 Deterministic 1 81, 91 10, 20 12 9, 27, 40, 46, 52,
54, 58, 61, 63, 67,
82, 84

2 2 55, 65 45, 55 6 25, 48, 53, 57, 68,
75

2 3 55, 65 45, 55 8 25, 46, 48, 53, 57,
66, 68, 75

3 7 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86

4 8 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47,
64, 83

2 Stochastic 4 81, 91 10, 20 12 9, 27, 40, 46, 52,
54, 58, 61, 63, 67,
82, 84

2 5 55, 65 45, 55 6 25, 48, 53, 57, 68,
75

2 6 55, 65 45, 55 8 25, 46, 48, 53, 57,
66, 68, 75

3 9 9, 20, 19 72, 81, 71 6 8, 28, 45, 49, 73, 86

4 10 81, 82, 92, 91 10, 20, 19, 9 7 16, 29, 33, 41, 47,
64, 83

2.7 Experiments and Results 135

The results of the first study are given in Figure 2.3, developed for NQL and in
Figures 2.A.1–2.A.3 (Appendix 2.A). It is apparent from Figures 2.3 and 2.A.1–2.
A.3 that the FCMQL outperforms reference algorithms with respect to the number
of joint state–action pairs converged (Nc). Here, the FMRQP12 is not compared
with reference algorithms. As in FMRQ, an agent does not adapt its Q-value in
joint state–action space; instead the Q-values are adapted in joint state–individual
action space. However, FMRQP12 is compared in the later part of the same
experiment.
It is interesting that in the second to seventh columns of Tables 2.A.1 and 2.A.2

(Appendix 2.A), the proposed FCMQL algorithms designed with Property 2.1 out-
perform the realization of FCMQL with Property 2.2 in the measure ofNc. But gra-
dually at higher learning epochs (eighth, ninth, and 10th columns of Tables 2.A.1
and 2.A.2), the superiority of the proposed FCMQL algorithms realized with Prop-
erty 2.2 is observed over the FCMQL designed with Property 2.1.

30 50 60 70 80 90 10040

9

20

19 29 39 49 59 69

68 78 88 98

79 89 99

10

8

7

6

5

4

3

2

1

16

15

14

13

12

11

26

25

24

23

22

21

36

35 45

44

43

42

41

34

33

32

31

56

55

54

53

52

51

66

65

64

63

62

61

76

75

74 84

83

82

81

G2 G1

73

72

71

86

85

96

95

94

93

92

91

17 27

18 28 38

37 47 57 77 87 97

48 58

67

46

S1 S2

Figure 2.2 Experimental workspace for two agents during the learning phase.

136 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

The result of the second study emphasizes that the proposed FCMQL, when
developed with Property 2.1, yields a high count in the team-goal exploration in
comparison to its traditional counterpart, including those developed with Prop-
erty 2.2 (see Figure 2.A.4, Tables 2.A.3 and 2.A.4).
The third study reveals that the average reward ofm agents, denoted by average

of average reward (AAR) (where the reward of an agent being measured by its
average Q-table value) evaluated for the proposed FCMQL exceeds that of the
TMAQL. The high value in AAR of the agents indicates that early convergence
in FCMQL in comparison to TMAQL (see Figures 2.4 and 2.A.5–2.A.7).
The last study dealing with convergence of joint state–action pairs with learning

epochs, while embedding Property 2.2 in designing FCMQL, yields larger value in
convergence of joint state–action pairs than the same obtained by the TMAQL (see
Figures 2.5, 2.A.8, and 2.A.9).

Experiment 2.2 Planning Performance
The motivation of the present study is to examine the completion of a task in pla-
nning and is tested with the well-known object-carrying problem on a 10 × 10 grid-
map by 2, 3, and 4 agents. Figures 2.6 and 2.A.10–2.A.14 offer the planed paths for
robot team toward the predefined team-goal. It is worthwhile to note that the
TMAQL-induced multi-agent planning fails to reach their team-goal, while
the FCMQL-induced multi-agent planning is successful to complete the task.

0 1 2 3 4 5 6 7 8
0

1

2

3

× 105

× 105 × 105

× 105

Deterministic

NQL
NQLET
NQLP1
NQLP2
NQLP12

NQL
NQLET
NQLP1
NQLP2
NQLP12

0 1 2 3 4 5 6 7 8
0

1

2

3

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

Figure 2.3 Convergence plot of NQLP12 and reference algorithms for two agents.

2.7 Experiments and Results 137

× 105

× 105

NQL
NQLET
NQLP1
NQLP2
NQLP12

NQL
NQLET
NQLP1
NQLP2
NQLP12

0 2 4 6 8 10
0

20

40

60
Deterministic

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R Stochastic

Figure 2.4 Average of average reward (AAR) plot of NQLP12 and reference algorithms for
two agents.

0 1 2 3 4 5 6 7 8
0

1

2

3

× 105

× 105 × 105

× 105

Deterministic

Random
Boltzmann
SQL
EQLP12

0 1 2 3 4 5 6 7 8
0

1

2

3

Learning epoch

Stochastic

Random
Boltzmann
SQL
EQLP12

Jo
in

t s
ta

te
–a

ct
io

n
pa

ir
co

nv
er

ge
d

Figure 2.5 Joint action selection strategy in EQLP12 and reference algorithms for two
agents.

138 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

The reason behind the success of FCMQL lies in the enrichment of the Q-table
because of incorporation of Property 2.1 in the learning phase. In Figure 2.6b,
the arrows outside the environment indicate rotation of the triangle by robots
for successful team-goal state-transition.

Experiment 2.3 Run-Time Complexity
This study includes run-time analysis of the proposed FCMQL-induced multi-
agent planning along with a set of well-known algorithms from different domains.
The algorithms used for comparison include: (i) ICFA [53], (ii) MNPSO [54, 55],
(iii) DE [56, 57], and (iv) MLbD [58]. The run-time analysis reveals that the pro-
posed FCMQL has the least run-time complexity in comparison to its contenders
(see Tables 2.3 and 2.4).
For ICFA and DE, the objective functions used for the object-transportation task

are as given in Refs. [53, 57], respectively. In MNPSO, population size is equal to
the number of agents. Here, agents learn in a parallel and distributed fashion, so as
to reduce the run-time requirement by theMNPSOwith an increase in the number
of agents. By varying the number of robots in MNPSO algorithm, different objects
are transported. On the other hand, little progress is attained in the field of learn-
ing joint action by simultaneous demonstrations. MLbD is a novel technique to
learn multi-robot joint action from simultaneous demonstrations as given in
[58]. Here also agents learn sequence of individual actions obtained from

S2

(a) (b)

S3

G1

G2G3

S1

S2

S3

G1

G2G3

S1

Figure 2.6 Cooperative path planning to carry a triangle by three robots in deterministic
situation by: (a) NQIMP algorithm and (b) NQLP12-based cooperative multi-agent planning.

2.7 Experiments and Results 139

demonstration with the help of HAMMER architecture [58]. The joint action plan
is then identified by spatiotemporal clustering algorithm. Here, we compare the
MLbD from [58] with the proposed Algorithm 2.3. In MLbD, agents need to com-
municate among themselves, which require an extra cost in terms of time and
energy.

Table 2.3 Run-time complexity of Algorithm 2.3 over reference algorithms in
deterministic situation.

Algorithms

Map 1 (stick-
carrying)

Map 7 (triangle-
carrying) Map 8 (square-carrying)

Run-time
(minute)
for Agent

Run-time (minute)
for Agent Run-time (minute) for Agent

1 2 1 2 3 1 2 3 4

Algorithm 2.3 0.195 0.191 0.244 0.246 0.242 0.309 0.313 0.310 0.304

MLbD 14.24 14.54 20.57 21.05 20.56 27.56 28.06 27.39 28.10

ICFA 51.16 51.01 60.56 61.10 60.51 64.56 64.10 64.51 64.56

MNPSO 70.43 70.58 50.54 50.38 51.01 40.26 40.45 40.42 40.56

DE 90.45 90.56 86.54 86.34 86.38 79.45 79.34 79.34 79.04

The bold values’ corresponding algorithm is outperforming the reference algorithms.

Table 2.4 Run-time complexity of Algorithm 2.3 over reference algorithms in stochastic
situation.

Algorithms

Map 4 (stick-
carrying)

Map 9 (triangle-
carrying) Map 10 (square-carrying)

Run-time
(minute)
for agent

Run-time (minute)
for agent Run-time (minute) for agent

1 2 1 2 3 1 2 3 4

Algorithm 2.3 0.184 0.182 0.218 0.220 0.221 0.293 0.302 0.301 0.302

MLbD 18.34 18.27 25.28 24.58 25.49 33.56 33.59 33.34 33.09

ICFA 52.27 53.10 60.76 60.25 60.17 63.59 63.55 63.45 63.57

MNPSO 71.54 71.52 51.34 51.65 52.04 39.45 39.34 39.32 39.12

DE 91.04 89.52 83.34 84.58 83.32 80.34 78.26 79.28 80.12

The bold values’ corresponding algorithm is outperforming the reference algorithms.

140 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Experiment 2.4 Real-Time Planning
This experiment is concerned with examining planning performance of the pro-
posed FCMQL algorithms in the stick-carrying problem realized with twin Khe-
pera-II robots (Appendix 2.A). The stick-carrying problem refers to determining
the pathways to transfer stick from a given starting position to a fixed destination,
where the robots hold the stick at its two ends. We consider a grid-world map for
the robots with 6 × 6 square grids.
Figure 2.8 provides a snapshot of the experimental instance, when the robots

reach the goal positions using the proposed FCMQL-induced planning. The path
followed by the robots employing the reference algorithms also is shown in
Figure 2.7. The experiments presented indicate that the simulated results pre-
sented earlier are realized in hardware.

2.8 Conclusions

The chapter aims at extending the TMAQL with two useful characteristic proper-
ties: exploration of the team-goal and the joint action selection. The incorporation
of the first property ensures exploration of the team-goal by multiphased transi-
tions of the agents asynchronously or synchronously to finally reach the team-
goal, and thereby offer high reward values to such pre-goal state to the goal state
transitions. The second property helps in identifying common preferred joint
actions for the team, thus avoiding same joint actions at the same joint states
and thereby enhancing the learning speed of the agents. The Q-table obtained
in joint state–action space using the proposed FCMQL algorithms have been

Table 2.5 Time taken by Khepera-II mobile robots to reach a team-goal with different
speeds in Algorithm 2.3 [63].

Run-time obtained Speed (unit)

Run-time (seconds)

Agent 1 Agent 2

Theoretically 2 8.75 9.14

3 5.83 6.09

5 3.50 3.66

Experimentally 2 11.71 12.43

3 9.45 10.23

5 8.28 9.36

2.8 Conclusions 141

Figure 2.7 Cooperative path planning to carry a stick by two Khepera-II mobile robots
using NQIMP algorithm.

Figure 2.8 Cooperative path planning to carry a stick by two Khepera-II mobile robots
using Algorithm 2.3.

142 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

employed in the multi-agent planning algorithm to autonomously select goal
state-transitions from the pre-goal states based on their high reward values stored
in the Q-table. TMAQL-induced planners occasionally fail to reach the team-goal
as such state-transitions which might result in due to follow-up actions of Prop-
erty 2.1 in FCMQL are missing from the Q-table obtained by TMAQL.
The convergence of the proposed FCMQL is shown in Theorem 2.1, that the

expected convergence time of the proposed FCMQL algorithms is less than the
same of TMAQL algorithms. The complexity analysis reveals the superiority of
the proposed FCMQL algorithms over the TMAQL algorithms.
Four different experiments have been conducted to validate the performance of

FCMQL and the FCMQL-based planning algorithms over the contender algo-
rithms. In Experiment 2.1, the FCMQL algorithms outperform reference algo-
rithms in terms of convergence rate, exploration of the team-goal, and the AAR
parameter. In Experiment 2.2, Algorithm 2.3 outperforms reference algorithms
considering successful completion of a task as the performance metric. In Exper-
iment 2.3, the merit of Algorithm 2.3 is verified considering the run-time require-
ment as the performancemetric over the reference algorithms: ICFA [53], MNPSO
[51, 58], DE [56, 57], and MLbD [50] algorithms with respect to the well-known
object-transportation problems. In Experiment 2.4, the superiority of Algorithm2.3
is verified over contender algorithms utilizing in a real-time planning problem
using twin Khepera-II mobile robots.

2.9 Summary

This chapter offers learning-based planning algorithms, by extending the tradi-
tional MAQL algorithms (NQL and CQL) for multi-robot coordination and pla-
nning. This extension is achieved by employing two interesting properties. The
first property deals with the exploration of the team-goal (simultaneous success
of all the robots) and the other property is related to the selection of joint action
at a given joint state. The exploration of team-goal is realized by allowing the
agents, capable of reaching their goals, to wait at their individual goal states, until
remaining agents explore their individual goals synchronously or asynchronously.
Selection of joint action, which is a crucial problem in traditional MAQL, is per-
formed here by taking the intersection of individual preferred joint actions of all
the agents. In case the resulting intersection is a null set, the individual actions are
selected randomly or otherwise following classical techniques. The superiority of
the proposed learning and learning-based planning algorithms are validated over
contestant algorithms in terms of the speed of convergence and run-time complex-
ity, respectively.

2.9 Summary 143

2.A More Details on Experimental Results

2.A.1 Additional Details of Experiment 2.1

Two agents’ individual state numbers s1 and s2 are mapped into a single integer S
(joint state) by the mapping function:

S = s2 − 1 × n + s1 2 A 1

for n × n grid map. For three and four agents, the mapping functions are given by
(2.A.2) and (2.A.3), respectively, where s3 and s4 are the state of third and fourth
agents, respectively.

S = s3 − 1 × n2 + s2 − 1 × n + s1, 2 A 2

S = s4 − 1 × n3 + s3 − 1 × n2 + s2 − 1 × n + s1 2 A 3

0 1 2 3 4 5 6 7 8
0

1

2

3

× 105

× 105 × 105

0 1 2 3 4 5 6 7 8

× 105

Deterministic

(a)

EQL
EQLET
EQLP1
EQLP2
EQLP12

0

1

2

3

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

Figure 2.A.1 Convergence plot of FCMQL and reference algorithms for two agents. (a)
EQLP12 and reference algorithms for two agents. (b) UQLP12 and reference algorithms for
two agents. (c) RQLP12 and reference algorithms for two agents. (d) LQLP12 and reference
algorithms for two agents.

144 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

(b)

0 1 2 3 4 5 6 7 8
0

1

2

3

× 105

× 105 × 105

× 105

Deterministic

UQL
UQLET
UQLP1
UQLP2
UQLP12

0 1 2 3 4 5 6 7 8
0

1

2

3

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e

d

Stochastic

UQL
UQLET
UQLP1
UQLP2
UQLP12

(c)

× 105

× 105 × 105

× 105

0 1 2 3 4 5 6 7 8
0

1

2

3

Deterministic

RQL
RQLET
RQLP1
RQLP2
RQLP12

0 1 2 3 4 5 6 7 8
0

1

2

3

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

RQL
RQLET
RQLP1
RQLP2
RQLP12

Figure 2.A.1 (Continued)

2.A More Details on Experimental Results 145

(d)

× 105

× 105 × 105

× 105

0 1 2 3 4 5 6 7 8
0

1

2

3

Deterministic

LQL
LQLET
LQLP1
LQLP2
LQLP12

0 1 2 3 4 5 6 7 8
0

1

2

3

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

LQL
LQLET
LQLP1
LQLP2
LQLP12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

× 108

× 108 × 108

× 108

Figure 2.A.2 Convergence plot of EQLP12 and reference algorithms for three agents.

Figure 2.A.1 (Continued)

146 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

0 0.5 1 1.5 2 2.5
0

0.5

1

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

EQL
EQLET
EQLP1
EQLP2
EQLP12

0 0.5 1 1.5 2 2.5
0

0.5

1
Deterministic

EQL
EQLET
EQLP1
EQLP2
EQLP12

× 1011

× 1011 × 1011

× 1011

Figure 2.A.3 Convergence plot of EQLP12 and reference algorithms for four agents.

(a)

100

50

0
0 5 000

Agent 1

C
R

Agent 2 Agent 1

Learning epoch

Agent 2

NQL

NQLET

NQLP1

NQLP2

NQLP12

10 000
100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Deterministic Stochastic

Figure 2.A.4 CR versus learning epoch plot for FCMQL and reference algorithms for two
agents. (a) NQLP12 and reference algorithms for two agents. (b) EQLP12 and reference
algorithms for two agents. (c) UQLP12 and reference algorithms for two agents. (d) RQLP12
and reference algorithms for two agents. (e) LQLP12 and reference algorithms for two
agents. (f) FMRQP12 and reference algorithms for two agents.

2.A More Details on Experimental Results 147

(b)

100

50

0
0 5 000

Agent 1

C
R

Agent 2 Agent 1

Learning epoch

Agent 2

10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Deterministic Stochastic

(c)

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Agent 1

C
R

Agent 2 Agent 1

Learning epoch

Agent 2

UQL

UQLET

UQLP1

UQLP2

UQLP12

Deterministic Stochastic

EQL

EQLET

EQLP1

EQLP2

EQLP12

Figure 2.A.4 (Continued)

148 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

(d)

100

50

0
0 5 000

Agent 1

C
R

Agent 2 Agent 1

Learning epoch

Agent 2

RQL

RQLET

RQLP1

RQLP2

RQLP12

10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Deterministic Stochastic

(e)

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Agent 1

C
R

Agent 2 Agent 1

Learning epoch

Agent 2

LQL

LQLET

LQLP1

LQLP2

LQLP12

Deterministic Stochastic

Figure 2.A.4 (Continued)

2.A More Details on Experimental Results 149

C
R

(f)

100

50

0
0 5 000

Agent 1 Agent 2 Agent 1

Learning epoch

Agent 2

FMRQ

FMRQP1

FMRQP2

FMRQP12

10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

100

50

0
0 5 000 10 000

Deterministic Stochastic

Figure 2.A.4 (Continued)

0 2 4 6 8 10

× 105

× 105

0

20

40

60
Deterministic

(a)

EQL
EQLET

EQLP1

EQLP2
EQLP12

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R

Stochastic

EQL
EQLET

EQLP1
EQLP2

EQLP12

Figure 2.A.5 Average of average reward (AAR) plot of FCMQL and reference algorithms for
two agents. (a) EQLP12 and reference algorithms for two agents. (b) UQLP12 and reference
algorithms for two agents. (c) RQLP12 and reference algorithms for two agents. (d) LQLP12
and reference algorithms for two agents. (e) FMRQP12 and reference algorithms for two
agents.

150 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

× 105

× 105

× 105

× 105

(b)

(c)

0 2 4 6 8 10
0

20

40

60

Deterministic

UQL
UQLET

UQLP1

UQLP2
UQLP12

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R

Stochastic

UQL

UQLET

UQLP1
UQLP2

UQLP12

0 2 4 6 8 10
0

20

40

60
Deterministic

RQL

RQLET
RQLP1

RQLP2

RQLP12

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R

Stochastic

RQL

RQLET
RQLP1
RQLP2

RQLP12

Figure 2.A.5 (Continued)

2.A More Details on Experimental Results 151

× 105

× 105

× 105

× 105

(d)

(e)

0 2 4 6 8 10
0

20

40

60
Deterministic

LQL
LQLET

LQLP1
LQLP2

LQLP12

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R

Stochastic

LQL
LQLET

LQLP1
LQLP2

LQLP12

0 2 4 6 8 10
0

20

40

60
Deterministic

FMRQ
FMRQP1

FMRQP2
FMRQP12

0 2 4 6 8 10
0

20

40

60

Learning epoch

A
A

R

Stochastic

FMRQ
FMRQP1

FMRQP2

FMRQP12

Figure 2.A.5 (Continued)

152 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

0 0.5 1 1.5 2 2.5
0

20

40

60
Deterministic

EQL
EQLET

EQLP1
EQLP2

EQLP12

0 0.5 1 1.5 2 2.5
0

20

40

60

Learning epoch

A
A

R

Stochastic

EQL
EQLET

EQLP1
EQLP2

EQLP12

× 108

× 108

Figure 2.A.6 Average of average reward (AAR) plot of EQLP12 and reference algorithms for
three agents.

0 0.5 1 1.5 2 2.5
0

20

40

60
Deterministic

EQL

EQLET
EQLP1
EQLP2

EQLP12

0 0.5 1 1.5 2 2.5
0

20

40

60

Learning epoch

A
A

R

Stochastic

EQL
EQLET

EQLP1
EQLP2

EQLP12

× 1011

× 1011

Figure 2.A.7 Average of average reward (AAR) plot of EQLP12 and reference algorithms for
four agents.

2.A More Details on Experimental Results 153

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4
Deterministic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

Random
Boltzmann
SQL
EQLP12

Random
Boltzmann
SQL
EQLP12

× 108

× 108 × 108

× 108

Figure 2.A.8 Joint action selection strategy in EQLP12 and reference algorithms for three
agents.

× 1011

× 1011 × 1011

× 1011
0 0.5 1 1.5 2 2.5

0

0.5

1

Learning epoch

J
o
in

t
s
ta

te
–
a
c
ti
o
n
 p

a
ir
 c

o
n
ve

rg
e
d

Stochastic

0 0.5 1 1.5 2 2.5
0

0.5

1
Deterministic

Random
Boltzmann
SQL
EQLP12

Random
Boltzmann
SQL
EQLP12

Figure 2.A.9 Joint action selection strategy in EQLP12 and reference algorithms for four
agents.

154 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Table 2.A.1 Number of joint state–action pair converged in deterministic situation for two
agents.

Algorithms

Number of joint state–action pair has been converged within

105 epochs in map 15 × 104 epochs in map 106 epochs in map

1 2 3 1 2 3 1 2 3

NQL 2 976 2 965 2 979 30 060 30 057 30 061 318 314 318 312 318 317

NQLET 12 365 12 367 12 366 74 299 74 302 74 298 318 723 318 725 318 724

NQLP1 47 566 47 567 47 568 115 164 115 168 115 167 318 878 318 879 318 877

NQLP2 2 600 2 602 2 599 31 522 31 524 31 521 319 968 319 968 319 968

NQLP12 48 846 48 847 48 844 142 010 142 011 142 014 319 968 319 968 319 968

UQL 2 732 2 734 2 733 27 824 27 826 27 823 318 296 318 299 318 297

UQLET 40 726 40 727 40 729 105 388 105 387 105 390 318 795 318 798 318 799

UQLP1 45 834 45 833 45 836 113 614 113 615 113 618 318 858 318 861 318 860

UQLP2 2 910 2 909 2 912 27 140 27 141 27 143 319 968 319 968 319 968

UQLP12 50 934 50 932 50 935 319 968 319 968 319 968 319 968 319 968 319 968

EQL 2 388 2 390 2 389 20 834 20 835 20 834 318 230 318 229 318 228

EQLET 3 582 3 580 3 581 32 630 32 630 32 632 318 342 318 340 318 341

EQLP1 43 518 43 517 43 516 111 101 111 102 111 100 318 863 318 861 318 862

EQLP2 894 896 894 16 092 16 093 16 091 319 968 319 968 319 968

EQLP12 48 524 48 526 48 525 141 596 141 597 141 599 319 968 319 968 319 968

RQL 2 732 2 732 2 733 27 824 27 826 27 824 318 299 318 298 318 300

RQLET 19 648 19 649 19 648 88 577 88 575 88 576 318 667 318 668 318 666

RQLP1 43 256 43 254 43 255 110 322 110 321 110 323 318 954 318 955 318 953

RQLP2 1 096 1 097 1 098 16 820 16 821 16 822 319 968 319 968 319 968

RQLP12 48 748 48 748 48 749 142 642 142 641 142 642 319 968 319 968 319 968

LQL 1 377 1 379 1 378 14 067 14 067 14 068 317 953 317 954 317 955

LQLET 10 019 10 020 10 018 62 028 62 027 62 029 318 502 318 503 318 501

LQLP1 46 126 46 125 46 127 113 724 113 725 113 726 318 786 318 786 318 786

LQLP2 2 910 2 911 2 912 27 140 27 141 27 143 319 968 319 968 319 968

LQLP12 47 954 47 955 47 954 140 408 140 408 140 410 319 968 319 968 319 968

The bold values’ corresponding algorithm is outperforming the reference algorithms.

2.A More Details on Experimental Results 155

Table 2.A.2 Number of joint state–action pair converged in stochastic situation for two
agents.

Algorithms

Number of joint state–action pair has been converged within

105 epochs in map 15 × 104 epochs in map 106 epochs in map

4 5 6 4 5 6 4 5 6

NQL 12 365 12 366 12 363 74 299 74 302 74 301 318 723 318 724 318 723

NQLET 2 976 2 978 2 977 30 060 30 062 30 061 318 314 318 313 318 315

NQLP1 42 371 42 372 42 373 111 814 111 817 111 816 318 823 318 823 318 825

NQLP2 11 472 11 471 11 475 82 937 82 939 82 938 319 937 319 938 319 939

NQLP12 54 705 54 708 54 706 147 816 147 815 147 818 319 948 319 951 319 950

UQL 40 726 40 727 40 728 105 388 105 386 105 389 318 795 318 796 318 798

UQLET 2 732 2 733 2 735 27 824 27 827 27 826 318 296 318 295 318 299

UQLP1 45 768 45 765 45 769 113 985 113 986 113 987 318 822 318 824 318 821

UQLP2 10 877 10 876 10 879 84 040 84 042 84 039 319 896 319 900 319 899

UQLP12 51 191 51 193 51 196 146 529 146 531 146 532 319 893 319 895 319 896

EQL 2 388 2 390 2 387 20 834 20 833 20 836 318 228 318 230 318 231

EQLET 3 582 3 581 3 583 32 630 3 263 32 634 318 342 318 341 318 342

EQLP1 4 928 4 927 4 929 36 492 36 493 36 494 318 438 318 440 318 439

EQLP2 1 738 1 740 1 739 20 824 20 823 20 825 319 810 319 812 319 811

EQLP12 3 759 3 761 3 760 34 658 34 660 34 661 319 803 319 806 319 804

RQL 2 732 2 733 2 731 27 824 27 825 27 823 318 298 318 302 318 299

RQLET 19 648 19 647 19 649 88 575 88 577 88 576 318 667 318 669 318 668

RQLP1 45 653 45 654 45 655 113 840 113 839 113 842 318 820 318 819 318 822

RQLP2 10 751 10 750 10 749 83 343 83 341 83 344 319 882 319 883 319 881

RQLP12 3 759 3 760 3 761 34 658 34 657 34 659 319 803 319 802 319 804

LQL 1377 1379 1378 14 067 14 068 14 066 317 953 317 952 317 954

LQLET 10 018 10 020 10 019 62 028 62 027 62 029 318 502 318 501 318 504

LQLP1 6 362 6 364 6 363 46 961 46 960 46 963 318 486 318 485 318 487

LQLP2 1 042 1 040 1 043 16 178 16 180 16 179 319 766 319 765 319 764

LQLP12 5 721 5 720 5 722 44 249 44 249 44 250 319 783 319 784 319 782

The bold values’ corresponding algorithm is outperforming the reference algorithms.

156 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

Table 2.A.3 Count of team-goal explored in the deterministic situation for two agents
within.

Algorithms

15 000 epochs 10 000 epochs 5 000 epochs

map map map

1 2 3 1 2 3 1 2 3

NQL 0 1 0 0 0 0 0 0 0

NQLET 1 0 0 0 0 0 0 0 0

NQLP1 55 65 70 37 38 41 16 20 27

NQLP2 0 1 1 0 0 0 0 0 0

NQLP12 57 66 68 38 39 40 18 22 26

UQL 1 1 0 0 0 0 0 0 0

UQLET 0 1 1 0 0 0 0 0 0

UQLP1 56 68 69 37 38 41 21 23 27

UQLP2 1 0 1 0 0 0 0 0 0

UQLP12 55 65 67 38 39 39 23 25 26

EQL 0 1 0 0 0 0 0 0 0

EQLET 1 0 2 0 0 0 0 0 0

EQLP1 57 69 70 38 39 41 18 23 25

EQLP2 1 2 0 0 0 0 0 0 0

EQLP12 56 62 68 38 39 40 20 22 26

RQL 1 0 1 0 0 0 0 0 0

RQLET 0 1 0 0 0 0 0 0 0

RQLP1 56 68 69 37 38 41 21 23 27

RQLP2 0 1 1 0 0 0 0 0 0

RQLP12 57 63 69 38 39 40 19 21 25

LQL 0 2 1 0 0 0 0 0 0

LQLET 1 0 1 0 0 0 0 0 0

LQLP1 55 62 68 37 38 40 20 24 27

LQLP2 1 0 1 0 0 0 0 0 0

LQLP12 56 61 68 38 39 41 22 23 26

FMRQ 0 1 0 0 0 0 0 0 0

FMRQP1 60 65 70 37 38 41 21 26 27

FMRQP2 2 1 0 0 0 0 0 0 0

FMQRP12 56 61 68 38 39 41 23 24 26

The bold values’ corresponding algorithm is outperforming the reference algorithms.

2.A More Details on Experimental Results 157

Table 2.A.4 Count of team-goal explored in the stochastic situation for two agents within.

Algorithms

15 000 epochs 10 000 epochs 5 000 epochs

map map map

4 5 6 4 5 6 4 5 6

NQL 1 0 0 0 0 0 0 0 0

NQLET 0 2 1 0 0 0 0 0 0

NQLP1 55 59 66 35 38 41 12 18 28

NQLP2 0 1 0 0 0 0 0 0 0

NQLP12 56 59 65 36 37 40 16 19 26

UQL 0 1 1 0 0 0 0 0 0

UQLET 1 0 0 0 0 0 0 0 0

UQLP1 57 58 63 37 38 41 18 22 25

UQLP2 0 1 1 0 0 0 0 0 0

UQLP12 55 57 65 36 39 40 15 21 27

EQL 0 2 1 0 0 0 0 0 0

EQLET 1 0 0 0 0 0 0 0 0

EQLP1 57 58 65 37 39 41 16 23 27

EQLP2 0 0 1 0 0 0 0 0 0

EQLP12 56 58 64 35 37 40 19 20 26

RQL 0 1 0 0 0 0 0 0 0

RQLET 1 0 2 0 0 0 0 0 0

RQLP1 55 59 65 34 37 39 21 22 25

RQLP2 0 2 1 0 0 0 0 0 0

RQLP12 56 58 65 35 39 41 17 21 26

LQL 0 2 1 0 0 0 0 0 0

LQLET 1 1 0 0 0 0 0 0 0

LQLP1 57 58 65 36 37 40 16 19 25

LQLP2 0 1 0 0 0 0 0 0 0

LQLP12 55 58 66 35 37 41 21 23 27

FMRQ 2 0 1 0 0 0 0 0 0

FMRQP1 56 58 64 37 38 40 18 22 26

FMRQP2 1 0 1 0 0 0 0 0 0

FMQRP12 56 57 65 35 38 41 21 24 26

The bold values’ corresponding algorithm is outperforming the reference algorithms.

158 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

2.A.2 Additional Details of Experiment 2.2

(a) (b)
S1 S2

G1G2

S1 S2

G1G2

Figure 2.A.11 Path planning with stick in stochastic situation by: (a) NQIMP algorithm and
(b) NQLP12-based cooperative multi-agent planning.

S1 S2

G1G2

S1 S2

G1G2

(a) (b)

Figure 2.A.10 Path planning with stick in deterministic situation by: (a) NQIMP algorithm
and (b) NQLP12-based cooperative multi-agent planning.

2.A More Details on Experimental Results 159

S1

S2

S3

G1

G2G3

S1

S2

S3

G1

G2G3

(a) (b)

Figure 2.A.12 Path planning with triangle in stochastic situation by: (a) NQIMP algorithm
and (b) NQLP12-based cooperative multi-agent planning.

S1 S2

G1

G2

S3S4

G3

G4

S1 S2

G1

G2

S3S4

G3

G4

90° 90° 90°

(a) (b)

Figure 2.A.13 Path planning with square in stochastic situation by: (a) NQIMP algorithm
and (b) NQLP12-based cooperative multi-agent planning.

160 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

2.A.3 Additional Details of Experiment 2.4

Details of Khepera-II mobile robot: Khepera-II is a miniature robot [64, 65],
equipped with an onboard Microcontroller (Motorola 68331), and includes a flash
memory of 512 KB and clock speed of 25 MHz, having 8 inbuilt infrared proximity
sensors. 1 unit speed of Khepera II mobile robot is 0.08 mm/10 ms. Selected speeds
in this experiment are 2 unit (0.16 mm/10 ms), 3 unit (0.24 mm/10 ms), and 5 unit
(0.4 mm/10 ms). Considering one grid length of 80 mm (square grid), theoretically
time taken by an agent to cover one grid length, with 2, 3, and 5 unit speed are 500,
333.33, and 200 ms, respectively [64, 65]. Assuming a circle of 40 mm radius inside
each grid, Khepera-II has to cover 20π mm of the total circumference of the circle
for 90 rotation. Therefore, theoretically time taken by an agent for one 90 rota-
tion with 2, 3, and 5 unit speed are 392.7, 261.8, and 157ms, respectively.
The stick-carrying problem has been realized in Figures 2.7 and 2.8 by control-

ling two Khepera-II mobile robots using pre-learned joint Q-tables. The stick
length is one grid width and two robots can carry the stick if they occupy neigh-
borhood cells. Each Khepera-II mobile robots (agents) are connected by wires to
two different Pentium IVmachines through serial port connections. Agents do not
communicate between them while transporting the stick. The next joint states of
the robots are determined by evaluating the NE employing the learned joint
Q-tables, stored in the attached Pentium IV machine.

S1 S2

G1

G2

S3S4

G3

G4

S1 S2

G1

G2

S3S4

G3

G4

180° 90°

(a) (b)

Figure 2.A.14 Path planning with square in deterministic situation by: (a) NQIMP algorithm
and (b) NQLP12-based cooperative multi-agent planning.

2.A More Details on Experimental Results 161

References

1 Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2010). Reinforcement
Learning and DynamicProgramming Using Function Approximators. CRC Press.

2 Banerjee, B., Sen, S., and Peng, J. (2001). Fast concurrent reinforcement learners.
International Joint conference on Artificial Intelligence, Vol. 17, No. 1, pp. 825–832,
Seattle, WA.

3 Wen, S., Chen, X., Ma, C. et al. (2015). The Q-learning obstacle avoidance algorithm
based on EKF-SLAM for NAO autonomous walking under unknown
environments. Robotics and Autonomous Systems 72: 29–36.

4 Shoham, Y., Powers, R., and Grenager, T. (2003). Multiagent reinforcement
learning: a critical survey, Web manuscript, 2003. https://www.cc.gatech.edu/
classes/AY2009/cs7641_spring/handouts/MALearning_ACriticalSurvey_2003_
0516.pdf (accessed 26 May 2020).

5 Srinivasan, D. and Jain, L.C. (eds.) (2010). Innovations in Multi-agent Systems and
Applications-1. Springer-Verlag.

6 Sutton, R.S. and Barto, A.G. (1998). Introduction to Reinforcement Learning.
MIT Press.

7 Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement
learning: an overview. In: Innovations in Multi-Agent Systems and Applications-1

(ed. D. Srinivasan), 183–221. Springer.
8 Mitchell, T. (1997). Machine Learning. McGraw-Hill.
9 Sommer, N. and Ralescu, A. (2014). Developing a machine learning approach to

controlling musical synthesizer parameters in real-time live performance.
Proceedings of the 25th Modern Artificial Intelligence and Cognitive Science
Conference 2014, Spokane, Washington, USA, April 26, 2014 1144: 61–67.

10 Dean, T., Allen, J., and Aloimonos, Y. (1995). Artificial Intelligence: Theory and
Practice. Boston, MA: Addison-Wesley Publishing Company.

11 Pashenkova, E., Rish, I., and Dechter, R. (1996). Value iteration and policy
iteration algorithms for Markov decision problem. AAAI 96: Workshop on
Structural Issues in Planning and Temporal Reasoning, Portland, Oregon
(5 August 1996).

12 Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems.
Proceedings of the International Joint Conference on Artificial Intelligence,
Stockholm, Sweden (31 July to 6 August 1999), pp. 478–485. Vancouver, Canada:
University of British Columbia.

13 Feinberg, E.A. (2010). Total expected discounted reward MDPS: existence of
optimal policies. In: Wiley Encyclopedia of Operations Research and Management
Science (eds. J.J. Cochran, L.A. Cox Jr., P. Keskinocak, et al.), 1–11. New York: State
University of New York.

162 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

14 Kondo, T. and Ito, L. (2004). A reinforcement learning with evolutionary state
recruitment strategy for autonomous mobile robots control. Robotics and
Autonomous Systems 46 (2): 111–124.

15 Kaelbling, L.P., Littman, M.L., and Moore, A.W. (1996). Reinforcement learning: a
survey. Journal of Artificial Intelligence Research 4: 237–285.

16 Von Neumann, J. and Morgenstern, O. (2007). Theory of Games and Economic
Behavior, 60th Anniversary Commemorative Edition. Princeton University Press.

17 Sharma, R. and Gopal, M. (2010). Synergizing reinforcement learning and game
theory-a new direction for control. Applied Soft Computing 10 (3): 675–688.

18 Wang, Y. and de Silva, C.W. (2008). A machine-learning approach to multi-robot
coordination. Engineering Applications of Artificial Intelligence 21 (3): 470–484.

19 Cao, X.R. and Chen, H.-F. (1997). Perturbation realization, potentials, and
sensitivity analysis of Markov processes. IEEE Transactions on Automatic Control
42 (10): 1382–1393.

20 Watkins, C.J. and Dayan, P. (1992). Q-learning.Machine Learning 8 (3–4): 279–292.
21 Bellman, R.E. (1957). Dynamic programming. Proceedings of the National Academy

of Science of the United States of America 42 (10): 34–37.
22 Hu, Y., Gao, Y., and An, B. (2015). Multiagent reinforcement learning with

unshared value functions. IEEE Transactions on Cybernetics 45 (4): 647–662.
23 Boutilier, C. (1996). Planning, learning and coordination in multiagent decision

processes. Proceedings of the 6th Conference on Theoretical Aspects of Rationality and
Knowledge, De Zeeuwse Stromen, The Netherlands (17–20 March 1996), pp.
195–210. Groningen, Netherlands: Morgan Kaufmann Publishers Inc.

24 Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in
cooperative multiagent systems. AAAI/IAAI, Madison, WI (27–29 July 1998),
pp. 746–752.

25 Georgios, C. and Boutilier, C. (2003). Coordination in multiagent reinforcement
learning: a bayesian approach. Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems, Melbourne, Australia
(14–18 July 2003), pp. 709–716. ACM.

26 Greenwald, A., Hall, K., and Serrano, R. (2003). Correlated Q-learning.
International Conference on Machine Learning 3: 242–249, Washington, DC.

27 Hu, J. and Wellman, M.P. (2003). Nash Q-learning for general-sum stochastic
games. The Journal of Machine Learning Research 4: 1039–1069.

28 Hu, J. and Wellman, M.P. (1998). Multiagent reinforcement learning: theoretical
framework and an algorithm. International Conference on Machine Learning,
Madison, WI (24–27 July 1998), pp. 242–250.

29 Littman, M.L. (1994). Markov games as a framework for multiagent reinforcement
learning. Proceedings of the Eleventh International Conference on Machine Learning
157: 157–163. Providence, RI: Brown University.

References 163

30 Littman,M.L. (2001). Friend-or-foe Q-learning in general-sum games. International
Conference on Machine Learning, Williams College, Williamstown, MA (28 June to
1 July, 2001), pp. 322–328.

31 Littman, M.L. and Szepesvári, C. (1996). A generalized reinforcement learning
model: convergence and applications. International Conference on Machine

Learning, Bari, Italy (3–6 July 1996), pp. 310–318.
32 Mukhopadhyay, S. and Jain, B. (2001). Multi-agent Markov decision processes with

limited agent communication. Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, (ISIC’01), Mexico City, Mexico (5–7 September,
2001) pp. 7–12.

33 Sen, S., Mahendr, S. and Hale, J. (1994). Learning to coordinate without sharing
information. The Twelfth National Conference on Artificial Intelligence (AAAI-94),
Seattle, WA (31 July to 4 August 1994), pp. 426–431.

34 Stone, P. and Sutton, R.S. (2001). Scaling reinforcement learning toward RoboCup
soccer. International Conference on Machine Learning, Williams College,
Williamstown, MA (28 June to 1 July 2001), pp. 537–544.

35 Wang, Y., Lang, H., and de Silva, C.W. (2008). Q-learning based multi-robot box-
pushing with minimal switching of actions. International Conference on
Automation and Logistics, IEEE, Qingdao, China (1–3 September 2008), pp.
640–643.

36 Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative
agents. Proceedings of the Tenth International Conference on Machine Learning,
University of Massachusetts, Amherst, MA (27–29 June 1993), Vol. 337.

37 Könönen, V. (2003). Asymmetric multiagent reinforcement learning. International
Conference on Intelligent Agent Technology, Halifax, NS (13–17 October 2003), pp.
336–342.

38 Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement
learning in cooperative multi-agent systems. Proceedings of the Seventeenth
International Conference on Machine Learning, Stanford University, Stanford, CA
(29 June to 2 July 2000).

39 Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic
games. International Joint Conference on Artificial Intelligence 17 (1): 1021–1026.
Lawrence Erlbaum Associates Ltd.

40 Bowling, M. (2000). Convergence problems of general-sum multiagent
reinforcement learning. International Conference on Machine Learning, Stanford
University, Stanford, CA (29 June to 2 July 2000), pp. 89–94.

41 Suematsu, N. and Hayashi, A. (2002). A multiagent reinforcement learning
algorithm using extended optimal response. Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, Montreal,
Quebec (13–17 May 2019), pp. 370–377. ACM.

164 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

42 Wang, X. and Sandholm, T. (2002). Reinforcement learning to play an optimal Nash
equilibrium in team Markov games. Advances in Neural Information Processing
Systems 15: 1571–1578.

43 Kapetanakis, S. and Kudenko, D. (2002). Reinforcement learning of coordination in
cooperative multi-agent systems. AAAI/IAAI, Edmonton, Alberta (28 July to 1
August 2002), pp. 326–331.

44 Sadananada, R. (2006). Agent computing and multi-agent systems. Proceedings of
the 9th Pacific Rim International Workshop on Multi-Agents, (PRIMA), Guilin,
China (7–8 August 2006), Vol. 4088.

45 Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics-Part C: Applications and Reviews 38 (2): 156–172.

46 Hu, Y., Gao, Y., and An, B. (2015). Accelerating multiagent reinforcement learning
by equilibrium transfer. IEEE Transactions on Cybernetics 45 (7): 1289–1302.

47 De Hauwere, Y.M., Vrancx, P., and Nowé, A. (2010). Learning multi-agent state
space representations. Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems: Volume 1, Downtown, Toronto (10–14
May 2010), pp. 715–722.

48 Kok, J.R. and Vlassis, N. (2004). Sparse cooperative Q-learning. Proceedings of the
Twenty-First International Conference on Machine Learning, Louisville, KY (16–18
December 2004), p. 61. ACM.

49 Bianchi, R.A., Martins, M.F., Ribeiro, C.H., and Costa, A.H. (2014). Heuristically-
accelerated multiagent reinforcement learning. IEEE Transactions on Cybernetics
44 (2): 252–265.

50 Zhang, Z., Zhao, D., Gao, J. et al. (2017). FMRQ-A multiagent reinforcement
learning algorithm for fully cooperative tasks. IEEE Transactions on Cybernetics

47 (6): 1367–1379.
51 Littman, M.L. (2001). Value-function reinforcement learning in Markov games.

Cognitive Systems Research 2 (1): 55–66.
52 Wang, Z., Shi, Z., Li, Y., and Tu, J. (2013). The optimization of path planning for

multi-robot system using Boltzmann policy based Q-learning algorithm.
International Conference on Robotics and Biomimetics, Shenzhen, China (12–14
December 2013), pp. 1199–1204.

53 Sadhu, A.K., Rakshit, P., and Konar, A. (2016). A modified imperialist competitive
algorithm for multi-robot stick-carrying application. Robotics and Autonomous
Systems 76: 15–35.

54 Pugh, J. and Martinoli, A. (2006). Multi-robot learning with particle swarm
optimization. Proceedings of the Fifth International Joint Conference on

Autonomous Agents and Multiagent Systems, Hakodate, Japan (8–12 May 2006),
pp. 441–448.

References 165

55 Pugh, J., Zhang, Y., and Martinoli, A. (2005). Particle swarm optimization for
unsupervised robotic learning. Swarm Intelligence Symposium, SWIS-CONF-2005-
004, Pasadena, CA (8–10 June 2005), pp. 92–99.

56 Price, K.V. (1997). Differential evolution vs. the functions of the 2nd ICEO. IEEE
Proceedings of International Conference Evolutionary Computing, Indianapolis
(13–16 April 1997), pp. 153–157.

57 Rakshit, P., Konar, A., Bhowmik, P. et al. (2013). Realization of an adaptive
memetic algorithm using differential evolution and Q-learning: a case study in
multirobot path planning. IEEE Transactions on Systems, Man, and Cybernetics:

Systems 3 (4): 814–831.
58 Martins, M.F. and Demiris, Y. (2010). Learning multirobot joint action plans from

simultaneous task execution demonstrations. Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems: Volume 1, Downtown,
Toronto (10–14 May 2010), pp. 931–938.

59 Osborne, M.J. (2004). An Introduction to Game Theory, vol. 3(3). New York: Oxford
University Press.

60 Nash, J. (1951). Non-cooperative games. Annals of Mathematics 54 (2): 286–295.
61 Cottle, R.W., Pang, J.S., and Stone, R.E. (1992). The Linear Complementarity

Problem, vol. 60. Society for Industrial and Applied Mathematics.
62 Porter, R., Nudelman, E., and Shoham, Y.. (2008). Simple search methods for

finding a Nash equilibrium. Games and Economic Behavior 63(2), pp. 642–662.
63 Sadhu, A.K., and Konar, A. (2017). Improving the speed of convergence of multi-

agent Q-learning for cooperative task-planning by a robot-team. Robotics and
Autonomous Systems 92, pp. 66–80.

64 Franzi, E. (1998). Khepera BIOS 5.0 Reference Manual. Lausanne: K-Team, SA.
65 K. U. M. Version (1999). Khepera User Manual 5.02. Lausanne: K-Team, SA.

166 2 Improve Convergence Speed of Multi-Agent Q-Learning for Cooperative Task Planning

3

Consensus Q-Learning for Multi-agent
Cooperative Planning

Multi-robot cooperation entails planning by multiple robots for a common objec-
tive, where each robot/agent actuates upon the environment based on the sensory
information received from the environment. Multi-robot cooperation employing
equilibrium-based reinforcement learning is optimal in the sense of system
resource (time and/or energy) utilization, because of the prior adaption of the envi-
ronment by the robots. Unfortunately, robots cannot enjoy such benefit of rein-
forcement learning in the presence of multiple types of equilibria (here, Nash
equilibrium or correlated equilibrium). In the above perspective, robots need to
adapt with a strategy, so that robots can select the optimal equilibrium in each step
of the learning. This chapter proposes consensus-based multi-agent Q-learning to
address the bottleneck of the optimal equilibrium selection among multiple types.
An analysis reveals that a consensus (joint action) is coordination-type pure strat-
egy Nash equilibrium as well as pure strategy correlated equilibrium. The superi-
ority of the proposed consensus-based multi-agent Q-learning algorithm over the
traditional reference algorithms in terms of the average reward collection is shown
in the experimental section. In addition, the proposed consensus-based planning
algorithm is also verified considering multi-robot stick-carrying problem as a
benchmark.

3.1 Introduction

Planning [1] refers to the execution of an action sequence, with an aim to achieve a
predefined goal by optimally employing the system resource (time and/or energy).
An agent (here, robot) can plan individually or in a group. While planning in a
group, the agent may be cooperative or competitive toward the remaining group
members. In this chapter, only the cooperative robots are considered and analyzed.

167

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

Several techniques are available for planning in the literature, including
Graphs [2], Voronoi diagrams [3], potential field [4], adaptive action selection
[5], intention inference [6], cooperative conveyance [7], perceptual cues [8],
and the like. All these require information about the environment, and thus are
unable to function when the information about the environment is absent. Rein-
forcement Learning (RL) [9–18] fills this void.
RL is the model-free approach and hence it is preferred over other traditional

planning approaches. There exist a number of RL algorithms [9–18]. Based on
the number of agents involved, RL is of two types: single agent and multi-agent.
Multi-Agent Reinforcement Learning (MARL) algorithms are of three types: coop-
erative, competitive, and mixed [19]. In this chapter, we focus only on cooperative
MARL. Among the cooperative MARL algorithms, equilibrium-based MARL is
one type [19], where each agent updates its joint Q-value at equilibrium. By equi-
librium, an agent attains a balance condition among the agents. In the literature,
there are two types of equilibria: Nash equilibrium (NE) [20] and correlated equi-
librium (CE) [21]. In Nash Q-learning (NQL) [22, 23] and correlated Q-learning
(CQL) [21], agents update Q-values at joint state–action space employing the
NE and CE, respectively. As we are dealing only with the cooperative MAQL,
so here only the coordination-type NE is considered. It is difficult to find out that
which equilibrium (NE or CE) is optimal at a joint state. If agents are instructed to
select any one type of equilibrium (either NE or CE) a priori, then there is a chance
of missing the optimal solution.
To address the above problem, we introduce the concept of consensus [24, 25] in

the domain of MARL, from the field of cooperative control [26] and potential
games (PGs) [26]. A consensus is a coordination-type pure strategy NE [26]. In this
paper, agents are instructed to update Q-values at consensus and proposed a novel
consensus Q-learning (CoQL) algorithm. In addition, an analysis reveals that a
consensus jointly satisfies the criterion of pure strategy NE as well as pure strategy
CE. Experimental result demonstrates the superiority of the proposed CoQL algo-
rithms over the reference algorithms in terms of the average of the average rewards
(AAR) earned by the agents. The consensus-based multi-robot cooperative pla-
nning algorithm is also proposed and its superiority is shown over the reference
algorithms considering path length and torque requirement by the robots as the
performance metric. The merits of the chapter are:

1) The problem of selecting the equilibrium type in multi-agent system is
addressed by proposing the CoQL algorithm.

2) Agents evaluate consensus (joint action) in each step of learning and planning
phases.

3) It is shown by an analysis that a consensus at a joint state is a coordination-type
pure strategy NE as well as pure strategy CE.

168 3 Consensus Q-Learning for Multi-agent Cooperative Planning

The rest of the chapter is structured as follows. Preliminaries of the Q-learning are
given in Section 3.2. Section 3.3 introduces the concept of consensus. Section 3.4
proposes the consensus-based Q-learning and planning. Section 3.5 includes
experiments and results. The conclusions are listed in Section 3.6. The list of acro-
nyms are listed in Table 3.1.

3.2 Preliminaries

In RL, the learner works on the principle of reward/penalty received from the
environment. Q-learning is an example of RL. This section briefly introduces the
adaptionmechanism of single agent Q-learning [27] and the state-of-the-art equilib-
rium-based multi-agent Q-learning (MAQL) algorithms. The state-of-the-art
equilibrium-based MAQL includes NQL [22, 23] and the four variants of CQL [21].

3.2.1 Single Agent Q-Learning

The single agent Q-learning is proposed byWatkins and Dayan [27]. The recursive
update rule of the single agent Q-learning for an agent, denoted by i, is given by
(3.1) [27].

Qi si, ai 1− α Qi si, ai + α ri si, ai + γ

si

Pi si si, ai max
ai

Qi si , ai ,

3 1

Table 3.1 List of acronyms.

Full form Acronyms

Multi-agent Q-learning MAQL

Nash equilibrium NE

Nash Q-Learning NQL

Correlated equilibrium CE

Correlated Q-learning CQL

Consensus Q-learning CoQL

Utilitarian Q-learning UQL

Egalitarian Q-learning EQL

Republican Q-learning RQL

Libertarian Q-learning LQL

3.2 Preliminaries 169

where α (0, 1] refers to the learning rate, γ (0, 1] denotes the discounting factor,
ri(si, ai) is the immediate reward received by the agent i because of action ai {ai} at
the current state si {si} Qi(si, ai) refers to the sum of long-term discounted

rewards or Q-value of agent i at state si because of action ai Pi si si, ai is

the probability of moving to the next state si si from current state si because

of ai. In the literature of Q-learning, Pi si si, ai is well known as the state-

transition probability. On completion of the learning, an agent (here, robot) begins
to plan. During the planning phase, it selects the action corresponding to the max-
imum Q-value in the current state, at each step of planning.

3.2.2 Equilibrium-Based Multi-agent Q-Learning

The Q-value adaption mechanism of single agent Q-learning is not applicable for
MAQL. As in multi-agent system, each agent learns in a common environment,
which results in a dynamic environment. Several attempts have been made to
address such multi-agent dynamics [22, 23]. In cooperative MAQL, each agent
attempts to maximize its own reward as well as the reward of the team. Such
requirement can be attained by achieving a balanced condition among the agents,
where no agent has any selfish intention to deviate from the balanced condition. In
the literature of cooperative MAQL, the above-mentioned balanced condition is
achieved following equilibrium, e.g. NE or CE, where each agent updates its opti-
mal expected future reward at equilibrium. Equilibrium-based cooperative MAQL
is one of the interesting learning-based multi-robot planning algorithms, where
each robot has inherent capabilities to adapt equilibrium at the current joint state.
In this paper, we are interested only with the pure strategy NE/CE (or joint

action). The definitions of pure strategy NE and pure strategy CE are, respectively,
given in Definitions 3.1 and 3.2.

Definition 3.1 Withm interacting agents’ pure strategy NE at a joint state S {S}

is a joint action AN = a∗i
m
i = 1, such that no unilateral deviation (selfish deviation

of an agent) can occur as long as all the agents follow the same optimal joint action

AN = a∗i
m
i = 1 at S.

Assuming a∗i ai be the optimal action of agent i at si and A∗
− i A be the opti-

mal joint action profile of all agents except agent i at S = < si > m
i = 1 and Qi(S, A)

be the joint Q-value of agent i at S because of joint action A {A}. Then the con-

dition of pure strategy NE AN = a∗i ,A
∗
− i at S is

Qi S,AN ≥ Qi S, ai,A
∗
− i , i 3 2

170 3 Consensus Q-Learning for Multi-agent Cooperative Planning

Definition 3.2 With m interacting agents’ pure strategy CE at a joint state (S) is
the optimal pure strategy profile ACE = < a1, a2, …, am>∗, if and only if agents
follow (3.3).

ACE = argmax
A

Ψ Qi S,A , 3 3

where [21]

Ψ Min
i
,Σ

i
,Max

i
,Π

i
3 4

Here, CE has four variants: Egalitarian equilibrium (EE), Utilitarian equilibrium
(UE), Republican equilibrium (RE), and Libertarian equilibrium (LE). One prob-
lem of equilibrium-basedMAQL is the selection of optimal equilibrium among the
multiple types of equilibria. In addition, in the context of multi-robot cooperative
planning problem, selection of optimal equilibrium refers to the selection of opti-
mal joint action. In this context, the traditional equilibrium-based MAQL
algorithm is given in Algorithm 3.1 [21–23].

3.3 Consensus

In this section, the cooperative control problem employing PGs mainly focusing
upon the consensus problem is briefly discussed. Here, cooperative control
[24–26] refers to a planning problem (e.g. object-transportation) by autonomous
agents, satisfying all the necessary constraints.Oneparadigmof cooperative control

Algorithm 3.1 Equilibrium-Based MAQL

Input: Current state si, i, action set Ai at si, i, α [0, 1) and

γ [0, 1);

Output: Optimal joint Q-value Q∗
i S,A , S, A, i;

Begin

Initialize: Qi(S, A) 0, S, A, i;

Repeat

Select an action ai Ai, i randomly and execute it;

Observe immediate rewards ri(S, A), i;

Evaluate si δi si,ai , i to obtain S = < si > m
i = 1;

Qi(S, A) (1 − α)Qi(S, A) + α[ri(S, A) + γ ΨQi(S
/)], i

and S S/; //Ψ {NE, CE}

Until Qi(S, A), S, A, i converges;

Q∗
i S,A Qi S,A , S, A, i;

End.

3.3 Consensus 171

problem is the consensus problemwith plenty of literature in computer science and
in the field of distributed computing [28], where the challenge is to design the objec-
tive functions of the autonomous agents at a given joint state due to a joint action to
realize the team objective amidst obstacles. Alternatively, the cooperative control
problem (consensus problem) can also be deciphered by employing the concept
of game-theory. In the context of cooperative control, PG has a big role to play
[26]. In PG, agents require the perfect alignment between the teamobjective/poten-
tial function and the individual objective of the agent.A consensus in thePG is guar-
anteed to converge to a pure strategy NE with a potential function of increasing
nature [26]. In Q-learning, individual objective is equivalent to the Q-value. The
following definitions are required to understand the later sections of the paper.
The definition of consensus is given by utilizing the concept that all the PGs are
guaranteed to converge to a pure strategy NE as given in [26].

Definition 3.3 In a m player game, if S × m
i = 1Si and A × m

i = 1Ai

indicate the joint state and joint action, respectively, individual objective
functions are Qi S × A R m

i = 1 and potential function denoted by Φ : S ×A
R satisfies

Qi S, ai ,A− i −Qi S, ai ,A− i = Φ S, ai ,A− i −Φ S, ai ,A− i , 3 5

i.e. all players’ objective functions are aligned with the potential function, then
the game is an Exact Potential game (EPG), where A− i × m

j = 1,j i,A j and

ai , ai Ai [26].

Definition 3.4 In am player game, if S × m
i = 1Si and A × m

i = 1Ai indicate the
joint state and joint action, respectively, individual objective functions
Qi S × A R m

i = 1 and potential function denoted by Φ : S ×A R satisfy

Qi S, ai ,A− i > Qi S, ai ,A− i

Φ S, ai ,A− i > Φ S, ai ,A− i

, 3 6

i.e. at least one player’s objective function is aligned with the potential function,
then the game is weakly acyclic game (WAG), where A− i × m

j = 1,j iA j and

ai , ai Ai [26].

Definition 3.5 A consensus is a joint action A∗ = a∗i ,A
∗
− i A at a given

joint state S {S}, which jointly maximizes the individual objective function

Qi(S, ai, A−i), A, i or Qi S, a
∗
i ,A

∗
− i ≥ Qi S, ai,A− i , A, i and the potential

function Φ(S, A) or Φ(S, A∗)≥Φ(S, A), A [26].

172 3 Consensus Q-Learning for Multi-agent Cooperative Planning

3.4 Proposed CoQL and Planning

In the section, we proposed a novel CoQL. Subsequently, a consensus-basedmulti-
robot cooperative planning algorithm is proposed.

3.4.1 Consensus Q-Learning

An example is given in Figure 3.1 to understand the importance of consensus in
multi-robot cooperative planning. Let at a given joint state two robots 1 and 2 are
synchronously cooperating with the action set, respectively, A1 = {a, b} and A2 =
{x, y} having no communication among the robots. The reward matrices in two
different joint states are given in Figure 3.1a and b. In Figure 3.1a, suppose, robots
plan following the CE (UE) and then they have two solutions ax and by to coop-
erate by (3.3). In such situation, in the absence of communication among the
robots, they cannot select one joint action to cooperate. But if they evaluate coor-
dination-type NE (cooperative NE) by (3.2) and select the joint action ax, then the
above problem can be addressed. However, Figure 3.1b contains two coordination-
type NEs (ax and by) by (3.2) and again the same problem arises. Here, robots can
go for evaluating the CE (UE or EE) by (3.3) and select joint action ax to cooperate.
It is interesting to note that both the robots receive maximum reward for the

joint action, which satisfies the criterion of coordination-type NE (or pure strategy
NE for brevity) and pure strategy CE jointly. Motivated by this observation, we are
interested to find such an equilibrium, which is a pure strategy NE as well as pure
strategy CE. To achieve this, we borrow the concept of consensus from PGs, which
by definition is a pure strategy NE. In this paper, by a Theorem 3.1 we have shown
that a consensus is also a pure strategy CE.

Theorem 3.1 In a PG, ifA∗ = a∗i ,A
∗
− i A is a consensus point (joint action)

at a given joint state S {S}, then at joint state S a consensus (A∗) is a pure strategy
NE, AN as well as a pure strategy CE, ACE. Assuming there exist at least one coor-
dination-type pure strategy NE.

x y

a 90, 72.9 81, 72.9
b 72.9, 72.9 72.9, 90

A
1

A2
x y

→A2 →

→ a

A
1

→ 99, 100 94, 96

b

(b)(a)

94, 95 97, 98

Figure 3.1 Equilibrium selection in multi-agent system. (a) Two UE (ax and by) and one
NE (ax). (b) Two NE (ax and by) and one UE or EE (ax).

3.4 Proposed CoQL and Planning 173

Proof
Since A∗ is a consensus point, by Definition 3.5, we have:

Qi S, a
∗
i ,A

∗
− i ≥ Qi S, ai,A− i , A, i

Qi S, a
∗
i ,A

∗
− i ≥ Qi S, ai,A

∗
− i , i ∵ ai,A∗

− i A

Qi S,A
∗ ≥ Qi S, ai,A

∗
− i , i ∵ a∗i ,A

∗
− i = A∗

3 7

By (3.7) and Definition 3.1 we can say that

A∗ = AN 3 8

at S. Again by Definition 3.5 at consensus, the inequality (3.9) holds.

Φ S,A∗ ≥ Φ S,A , A 3 9

Now, by Definition 3.3 all players’ objective functions are aligned with the
potential function in an EPG and by Definition 3.4 in WAG, at least one agent’s
objective function is aligned with the potential function and hence Φ(S, A) is
assumed as in (3.10).

Φ S,A = Ω Qi S,A , 3 10

where

Ω Min
i
,Σ

i
,Max

i
,Π

i
3 11

Now, by (3.9),

Φ S,A∗ ≥ Φ S,A , A

Ω Qi S,A
∗ ≥ Ω Qi S,A , A by 3 10 andΩ Min

i
,Σ

i
,Max

i
,Π

i

Ω Qi S,A
∗ = max

A
Ω Qi S,A

Q j S,A
∗ = max

A
Ω Qi S,A LetΩ Qi S,A

∗ = Q j S,A
∗ , j 1,m

arg
A

Q j S,A
∗ = argmax

A
Ω Qi S,A

A∗ = argmax
A

Ω Qi S,A

A∗ = ACE by Definition 3 2

3 12

174 3 Consensus Q-Learning for Multi-agent Cooperative Planning

So, to hold (3.9) in a PG, A∗ should be a ACE. Hence, by (3.8) and (3.12), we can say
that a consensus A∗ at a given joint state S is a AN as well as ACE. □

So, in the CoQL and planning algorithms, instead of evaluating the pure strategy
NE/CE at a joint state, a consensus is evaluated motivated by the cooperative con-
trol and PG, as a consensus is a pure strategy NE as well as a pure strategy CE as
shown in the proposed Theorem. The proposed CoQL algorithm is given in Algo-
rithm 3.2. The brace in Algorithm 3.2 indicates the difference between Algorithms
3.1 and 3.2.

3.4.2 Consensus-Based Multi-robot Planning

In multi-agent planning phase, each agent evaluates consensus by jointly
satisfying (3.2) and (3.3) at a feasible joint state. It may be noted that for
multiple consensuses at the given joint state, the consensus which appears
first is selected. In this paper, we have considered the well-known stick-carrying
problem, where each robot needs to reach its individual goal optimally without
violating any constraint. Constraint violation refers to the collision with obstacle
or the teammates and falling of stick following Algorithm 3.3. The brace in Algo-
rithm 3.3 indicates the key contribution in the planning algorithm.

Algorithm 3.2 Consensus Q-Learning (CoQL)

Input: Current state si, i, action set Ai at si, i, α [0, 1) and

γ [0, 1);

Output: Optimal joint Q-value Q∗
i S,A , S, A, i;

Begin

Initialize: Qi(S, A) 0, S, A, i;

Repeat

Select an action ai Ai, i randomly and execute it;

Observe immediate rewards ri(S, A), i;

Evaluate si δi si,ai , i to obtain S = < si > m
i = 1;

Qi(S, A) (1−α)Qi(S, A)+α[ri(S, A)+ γ. CoQi(S
/)], i}//Proposed

and S S/; //Co = NE and CE

Until Qi(S, A), S, A, i converges;

Q∗
i S,A Qi S,A , S, A, i;

End.

3.4 Proposed CoQL and Planning 175

3.5 Experiments and Results

Two experiments are presented in this section. The first experiment is designed to
study the relative performance of the CoQL over the reference algorithms, consid-
ering average reward collection by the agents as a performance metric. Another
experiment is framed to study the relative performance of the consensus-based pla-
nning algorithm over the reference algorithms, considering multi-robot stick car-
rying problem as a benchmark in terms of state-transitions required to complete
the task.

3.5.1 Experimental Setup

All the experiments related to learning are performed in ten different 10 × 10 grid
world maps for two and three agents. However, for brevity, multi-robot planning is
conducted for two agents only in 5 × 5 grid world maps. Each agent can execute
one among the four possible actions (Left (L), Forward (F), Right (R), and Back
(B)) at a state. As an agent reaches its goal state due to an action from a state,
it receives maximum immediate reward of 100. Similarly, an agent receives zero
(0) immediate reward for a non-goal state-transition. The constraint violation is
penalized by a negated immediate reward (here, −1). In addition, to the above
parameter setting the learning rate, α, and discounting factor, γ, are set to 0.1
and 0.9, respectively.

Algorithm 3.3 Consensus-Based Planning

Input: Feasible joint starting state SF, joint goal state SG and optimal

joint Q-value Q∗
i S,A , i;

Output: Consensus or joint action which is a NE as well as CE A∗
F at SF;

Begin

While SF SG do Begin

For A {A}

Evaluateconsensusbyjointlyfollowing(3.2)and(3.3);}//Proposed

If next feasible joint state SF satisfies all the constraints;

Then A∗
F A and SF SF; SF is the next joint state

End If;

End for;

End While;

End.

176 3 Consensus Q-Learning for Multi-agent Cooperative Planning

3.5.2 Experiments for CoQL

In this experiment, at each state an agent selects its action randomly from its indi-
vidual action pool. In the next step, the agent updates its own as well as the remain-
ing agents’ Q-values at joint state–action space following Algorithm 3.2. AAR as
given in (3.13) is considered as a performance metric of the learning algorithms
for m number of learning agents.

AAR =
m

i = 1 S A

Qi S,A ×
1
A

×
1
S

×
1
m

3 13

It is apparent from Figure 3.2 that the AAR collected by a team of two agents
over the learning epoch (iteration) in CoQL is more than the same offered by
the traditional NQL and different variants of CQL (EQL, UQL, RQL, and LQL).
Similar experiment is conducted for three agents as shown in Figure 3.3.

3.5.3 Experiments for Consensus-Based Planning

In this experiment, performance of the consensus-based multi-robot cooperative
planning algorithm has been tested considering the well-known stick-carrying
problem as a benchmark. The stick-carrying problem refers to the transportation
of a stick from starting position to the fixed destination optimally without violating
any constraint. It is apparent from Figures 3.4 and 3.5 that the planning path
offered by the consensus-based multi-agent cooperative planning algorithm is bet-
ter than the same offered by the traditional learning-based planning path, in terms
of the path length and the number of 90 turns. Minimization of the 90 turns

50

40

30

A
A

R

20

10

0
0 1 2 3 4 5

Learning epoch

6 7 8 9

CoQL

NQL
EQL

UQL
RQL
LQL

10

× 105

Figure 3.2 AAR versus learning epoch for two-agent system.

3.5 Experiments and Results 177

minimizes the torque requirement by the robots, and hence, saving in the energy
consumption. Table 3.2 illustrates the planning performance of the proposed con-
sensus-based planning algorithm over the NQL-based planning algorithm (here,
NQL) in terms of the above explained metrics.

50

40

30

A
A

R

20

10

0
0 1 2 3 4 5

Learning epoch

6 7 8 9

CoQL

NQL
EQL

UQL
RQL
LQL

10

× 105

Figure 3.3 AAR versus learning epoch for three-agent system.

S1 S2

G1 G2

Figure 3.4 Planning path offered by the consensus-based multi-agent planning algorithm.

178 3 Consensus Q-Learning for Multi-agent Cooperative Planning

3.6 Conclusions

The chapter proposes a novel CoQL algorithm for multi-robot cooperative pla-
nning. The proposed CoQL algorithm addresses the problem of equilibrium selec-
tion among different types of equilibria, by evaluating the consensus (joint action)
at the current joint state. An analysis reveals that a consensus at a joint state is a
pure strategy NE as well as pure strategy CE. The novelty of the CoQL lies in the
adaption of the joint Q-values at consensus. The superiority of the proposed CoQL
algorithm is verified over the reference algorithms in terms of the AAR earned by
the agents against the learning epoch. In addition, consensus-based multi-robot
cooperative planning algorithm is proposed and its superiority is verified over

S1 S2

G1 G2

Figure 3.5 Planning path offered by the Nash Q-learning-based planning algorithm.

Table 3.2 Planning performance.

Planning algorithm

Number of state-transitions required Number of 90 turns required

A1 A2 A1 A2

Consensus-based 7 7 2 2

NQL-based 7 7 3 3

3.6 Conclusions 179

reference algorithms considering path length and torque requirement as the per-
formance metrics.

3.7 Summary

In this chapter, it is shown that robots may select the suboptimal equilibrium in
the presence of multiple types of equilibria (here, NE or CE). In the above perspec-
tive, robots need to adapt with such a strategy, which can select the optimal equi-
librium in each step of the learning and the planning. To address the bottleneck of
the optimal equilibrium selection among multiple types, this chapter presents a
novel CoQL for multi-robot coordination, by extending the equilibrium-based
MAQL algorithms. It is also shown that a consensus (joint action) jointly satisfies
the conditions of the coordination-type pure strategy NE and the pure strategy CE.
The superiority of the proposed CoQL algorithm over traditional reference algo-
rithms in terms of the average reward collection are shown in the experimental
section. In addition, the proposed consensus-based planning algorithm is also ver-
ified considering multi-robot stick-carrying problem as the test bed.

References

1 LaValle, S.M. (2006). Planning Algorithms. Cambridge University Press.
2 Luna, R. and Bekris, K.E. (2011). Efficient and complete centralized multi-robot

path planning. International Conference on Intelligent Robots and Systems (IROS),
San Francisco, CA (2–30 September 2011), pp. 3268–3275. IEEE/RSJ.

3 Bhattacharya, P. and Gavrilova, M.L. (2008). Roadmap-based path planning: using
the Voronoi diagram for a clearance-based shortest path. IEEE Robotics and
Automation Magazine 15 (2): 58–66.

4 Gayle, R., Moss, W., Lin, M.C., and Manocha, D. (2009). Multi-robot coordination
using generalized social potential fields. IEEE International Conference on Robotics

and Automation, Kobe, Japan (12–17 May 2009), pp. 106–113.
5 Yamada, S. and Saito, J.Y. (2001). Adaptive action selection without explicit

communication for multirobot box-pushing. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews 31 (3): 398–404.

6 Sugie, H., Inagaki, Y., Ono, S. et al. (1995). Placing objects with multiple mobile
robots-mutual help using intention inference. IEEE International Conference on

Robotics and Automation, Proceedings 2: 2181–2186.
7 Yamauchi, Y., Ishikawa, S., Uemura, N., and Kato, K. (1993). On cooperative

conveyance by two mobile robots. IEEE International Conference on Industrial

180 3 Consensus Q-Learning for Multi-agent Cooperative Planning

Electronics, Control, and Instrumentation, Proceedings of the IECON’93, Lahaina,
Hawaii (15–18 November 1993), pp. 1478–1481.

8 Kube, C.R. and Zhang, H. (1996). The use of perceptual cues in multi-robot box-
pushing. IEEE International Conference on Robotics and Automation, Proceedings
3: 2085–2090.

9 Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2010). Reinforcement
Learning and Dynamic Programming Using Function Approximators. CRC Press.

10 Banerjee, B., Sen, S., and Peng, J. (2001). Fast concurrent reinforcement learners.
International Joint Conference on Artificial Intelligence 17 (1): 825–832. Seattle, WA.

11 Wen, S., Chen, X., Ma, C. et al. (2015). The Q-learning obstacle avoidance algorithm
based on EKF-SLAM for NAO autonomous walking under unknown
environments. Robotics and Autonomous Systems 72: 29–36.

12 Shoham, Y., Powers, R., and Grenager, T. (2003). Multiagent reinforcement
learning: a critical survey, Web manuscript, 2003. https://www.cc.gatech.edu/
classes/AY2009/cs7641_spring/handouts/
MALearning_ACriticalSurvey_2003_0516.pdf (accessed 27 May 2020).

13 Srinivasan, D. and Jain, L.C. (eds.) (2010). Innovations in Multi-agent Systems and
Applications-1. Springer-Verlag.

14 Sutton, R.S. and Barto, A.G. (1998). Introduction to Reinforcement Learning.
MIT Press.

15 Buşoniu, L., Babuška, R., and De Schutter, B. (2010). Multi-agent reinforcement
learning: an overview. In: Innovations in Multi-Agent Systems and Applications-1

(ed. D. Srinivasan), 183–221. Springer.
16 Mitchell, T. (1997). Machine Learning. McGraw-Hill.
17 Sommer, N. and Ralescu, A. (2014). Developing a machine learning approach to

controlling musical synthesizer parameters in real-time live performance.
Proceedings of the 25th Modern Artificial Intelligence and Cognitive Science
Conference, Spokane, Washington (26 April 2014), pp. 61–67.

18 Dean, T., Allen, J., and Aloimonos, Y. (1995). Artificial Intelligence: Theory and
Practice. Boston, MA: Addison-Wesley Publishing Company.

19 Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and

Cybernetics-Part C: Applications and Reviews 38 (2): 156–172.
20 Nash, J. (1951). Non-cooperative games. Annals of mathematics 54 (2): 286–295.
21 Greenwald, A. and Hall, K. (2003). Correlated Q-learning. International Conference

on Machine Learning 3: 242–249. Washington, DC.
22 Hu, J. and Wellman, M.P. (2003). Nash Q-learning for general-sum stochastic

games. The Journal of Machine Learning Research 4: 1039–1069.
23 Hu, J. and Wellman, M.P. (1998). Multiagent reinforcement learning: theoretical

framework and an algorithm. International Conference on Machine Learning

98: 242–250.

References 181

24 Kashyap, A., Başar, T., and Srikant, R. (2006). Consensus with quantized
information updates. Proceedings of the 45th IEEE Conference on Decision and
Control, San Diego, CA (13–15 December 2006).

25 Olfati-Saber, R., Fax, A., and Murray, R.M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE 95 (1): 215–233.

26 Marden, J.R., Arslan, G., and Shamma, J.S. (2009). Cooperative control and
potential games. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics 39 (6): 1393–1407.
27 Watkins, C.J. and Dayan, P. (1992). Technical note Q-learning. Machine Learning

8 (3–4): 279–292.
28 Lynch, N.A. (1997). Distributed Algorithms. San Francisco, CA: Morgan Kaufmann.

182 3 Consensus Q-Learning for Multi-agent Cooperative Planning

4

An Efficient Computing of Correlated Equilibrium for
Cooperative Q-Learning-Based Multi-Robot Planning

In traditional multi-agent Q-learning-induced planning, we need to evaluate
Nash/correlated equilibrium at a given joint state during both learning and pla-
nning phases. Determination of such equilibrium being computationally expen-
sive prohibits the planning in real time. This chapter introduces a novel
approach to adapt composite rewards of all the agents in one Q-table in joint
state–action space during learning, and uses these rewards to compute correlated
equilibrium in the planning phase. Two schemes of multi-agent Q-learning have
been proposed. If success of only one agent is enough to make the team successful,
then Scheme-I is employed. However, if an agent’s success is contingent upon
other agents and simultaneous success of the agents is mandatory, then
Scheme-II is employed. New algorithms for multi-agent learning/planning have
been proposed, centering on the said schemes. It is shown that the correlated
equilibrium obtained by the proposed algorithms and the traditional correlated
Q-learning are identical. In order to restrict the exploration within the feasible
joint states, constraint versions of the said algorithms are also proposed. An anal-
ysis is included to demonstrate the significant saving of computational time and
space by the proposed algorithms. In addition, convergence analysis of the pro-
posed algorithms is done. Experiments have been undertaken to validate the per-
formance of the proposed algorithms in multi-robot planning on both simulated
and real platforms.

4.1 Introduction

Reinforcement learning (RL) works on the principle of reward and penalty earned
by an agent (robot) [1–8] from the environment. An agent is an autonomous body
[9–12] capable of maintaining state-transitions [13, 14] freely in a given

183

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

environment. In RL, an agent learns a policy π to maximize a value function Vπ(s)
[15], at any environmental state s to achieve its (fixed) goal. Q-learning belongs to
the family of RL algorithms. In Q-learning, the agent learns an optimal policy to
select the best (optimal) action a at state s tomaximize the sum of immediate reward
and the value function of the next state s/, discounted by a factor 0≤ γ < 1.
In single agent Q-learning [16, 17], the environment is stationary because the

agent earns immediate reward due to its own action on the environment
[18, 19]. However, in multi-agent scenario, the immediate reward obtained by
an agent depends also on the other agents’ actions on the environment, and thus
the environment seems to be nonstationary [18–23]. Although the nonstationary
behavior of the environment has not yet been modeled directly in multi-agent
Q-learning (MAQL), its effect is considered by updating the joint state–action
value function of the agents at equilibrium [24].
Several algorithms forMAQL have been proposed for both cooperative and com-

petitive applications [18–34]. Among the equilibrium-based cooperative MAQL
algorithms, Nash-Q learning (NQL) [21, 28] and Friend-Q learning (FQL) [23]
algorithms need special mention. Both these algorithms allow each agent to opti-
mize its reward (payoff) in joint state–action space, considering fixed strategies
(pure or mixed) of all other agents among possible alternatives. Meanwhile, if
an agent selects only one action with unity probability, then the agent is said to
use a pure strategy. Amixed strategy is the assignment of a probability distribution
over the available actions, indicating a possibility of being selected by an agent
[35]. The strategy profile corresponding to Nash equilibrium (NE) [35–38] thus
refers to the best joint strategy of all the agents that allow each agent to maximize
its payoff, considering fixed strategies of all other agents. Such payoff updating pol-
icy offers maximum freedom to an agent to give its best choice. In [22], Greenwald
et al. compared the relative performance of NQL and FQL algorithms with Corre-
lated Q-learning (CQL), where the last one is used as the reference. Different var-
iants of CQL exist in the literature based on the definition of Ω-equilibrium [22],
where Ω usually takes any one of the four types: Utilitarian (U), Egalitarian (E),
Republican (R), and Libertarian (L) by which an agent updates its future reward.
Curse of dimensionality is one of the prohibiting factors of the state-of-the-art

equilibrium-based MAQL (NQL and CQL). Such bottleneck increases with the
increase in number of learning agents while adapting Q-values in joint state–
action space [39–41] by the state-of-the-art update policies. To address the curse
of dimensionality in MAQL, Kok and Vlassis proposed the Sparse Cooperative
Q-learning [40], where each agent maintains two Q-tables based on the require-
ment of coordination among the agents at a joint state. Zhang et al. successfully
reduced the dimension of Q-tables in NQL, where unlike the traditional NQL,
agents store Q-values in joint state–individual action space [41]. To accelerate
the convergence of the state-of-the-art equilibrium-based MAQL (NQL and

184 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

CQL), Hu et al. introduced the concept of equilibrium transfer [39] by exploiting
the previously computed equilibria in different joint states with negligible transfer-
loss. However, with the best of our knowledge, there is no equilibrium-based
MAQL in the literature, where agents adapt only one joint Q-table to accumulate
the rewards of all agents.
The applicability of RL includes finance sector [42], gaming industry [31, 36],

robotics [5, 10, 29, 33], and many more. In this chapter, proposed algorithms
are tested in the test bed of multi-robot object-transportation problems [43, 44].
TheΩQ-learning (ΩQL) algorithms proposed in this chapter have two attractive

features, which are not available in the traditional CQL. First, during the learning
phase, an agent needs to adapt only one Q-table in joint state–action space unlike
adaptingm joint Q-tables form agents in CQL. Second, the evaluation of the com-
putationally expensive correlated equilibrium (CE) is avoided, following a tricky
approach of computing it partially during the learning and the rest during the pla-
nning phases. This offers benefits in real-time planning as computation of a CE,
which is time-costly, is avoided here by the proposed technique.
Two schemes of ΩQL have been proposed to serve two distinct types of MAQL-

based planning applications. Scheme-I ensures the success of the team, if only one
agent is successful to serve its goal. This is useful for weakly coupled multi-agent
systems,where only one agent is active at a time to serve the fixed goal. For example,
in a soccer game, only one person/agent at a time takes the ball ahead, serving its
individual as well the team-goal. Scheme-II ensures simultaneous success of all the
agents in a tightly coupledmulti-agent system, such as long stick/big object carrying
by multiple robots. Both the schemes adapt Q-tables in joint state–action space.
However, there is a small difference in the adaptation mechanism of Q-values by
the two schemes. Scheme-I is used to adapt a Q-table in joint state–action space
based on the individual Q-values of the agents and the effect of coordination among
the agents, received as feedback from the environment. Scheme-II adaptsQ-table in
joint state–action space by considering group (Ω) Immediate Reward (ΩIR) as a
function of individual immediate rewards plus expected group (Ω) future reward
as a function of individual expected future rewards discounted by a factor γ in [0, 1).
Scheme-I and -II have four variants depending on the functional form used to

compute the Q-value in joint state–action space. We here use a general nomencla-

ture Φ Σm
i = 1,Minm

i = 1,Maxmi = 1,Π
m
i = 1 for a unified treatment of the four var-

iants, for computing Q-values following U, E, R, and L equilibria, respectively.
During the planning phase [45], we obtain one of the four equilibria, depend-

ing on the choice ofΦ in the preceding learning phases. The planned task is then
executed following the obtained equilibrium. Sometimes to execute a plan, we
need to satisfy certain constraints that appear naturally from the problem under
consideration. For example, in a twin robot cooperation to carry a stick held by
the robots at the two end-points of the stick [43], the stick-length is a constraint.

4.1 Introduction 185

It acts as a constraint in planning as for all possible next positions of the robots,
the separating distance should be equal to the stick length. The constraint can be
handled at the planning phase but at the cost of extra time to identify feasible
next states for the robots. Alternatively, the feasible joint state–actions can be
learned during the learning phase, so that equilibrium obtained in the planning
phase always falls in the feasible action-space. Here, we emphasized learning
only at the feasible joint state–action space to speed up planning.
The main contributions of the chapter are briefly summarized below.

1) Unlike traditional CQL, where CE is evaluated both in learning and planning
phases, here we need to compute CE partly in the learning and the rest in the
planning phases, thereby requiring CE computation once only when learning-
based planning is employed.

2) It has been proved that the CE obtained by the proposed schemes is the same as
that obtained by the traditional CQL algorithms.

3) The computational cost to evaluate CE here is much smaller than that obtained
by traditional CQL algorithms for the following reasons. Computation of CE in
CQL requires consulting m Q-tables in joint state–action space for m agents,
whereas in the present context, we use a single Q-table in the joint state–action
space for evaluation of CE.

4) Complexity analysis undertaken here confirms the last point. Both time- and
space-complexity-wise the proposed algorithms are less expensive than tradi-
tional CQL algorithms.

5) Problem-specific constraints are taken care of in the proposed ΩQL to avoid
unwanted exploration of the infeasible state-space during the learning phase,
thereby saving additional run-time complexity during the planning phase.

6) Experiments are undertaken to validate the proposed concepts in simulated
and practical multi-agent robotic platform (here Khepera-environment).

The rest of the chapter is organized as follows. In Section 4.2, an overview of the
single agent Q-learning and equilibrium-based MAQL algorithms are given.
Proposed cooperative MAQL and corresponding planning algorithms are given
in Section 4.3. Section 4.4 offers complexity analysis. Simulation and experimental
results are presented in Section 4.5. Conclusions are given in Section 4.6.

4.2 Single-Agent Q-Learning and Equilibrium-Based MAQL

This section discusses the preliminary ideas concisely on single agent Q-learning
and equilibrium-based MAQL algorithm for better understanding of the proposed
methods.

186 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

4.2.1 Single Agent Q-Learning

In 1989,Watkins andDayan [17] coined the single agent Q-learning, which is one of
the most widely used RL techniques. It works by continuously updating an agent’s
state–action value (Q-value) by a fixed policy and earns a reward (or penalty) from
the environment in each step of learning. The Q-learning update rule of an agent i

is given in (4.1), assumingQ
∗
i si to be the expected (indicated by) optimal (indi-

catedby∗)Q-value [3, 17] of agent i atnext state si Si and the expression of Q
∗
i si

is given in the Appendix 4.A following the traditional representation [15, 21].

Qi si, ai 1− α Qi si, ai + α ri si, ai + γ Q
∗
i si , 4 1

where Qi(si, ai) and ri(si, ai) are the Q-value and immediate reward, respectively,
at a state si Si because of action ai Ai of agent i, α [0, 1) be the learning rate,

γ [0, 1) denotes the discounting factor, and si δi si, ai indicates the state-

transition from state si to next state si because of action ai with state-transition

probability pi si si, ai of agent i.

4.2.2 Equilibrium-Based MAQL

Depending upon the type of tasks, MAQL can be classified into three categories:
cooperative, competitive, and mixed [11]. Multi-agent cooperative scenario
demands formulation of a joint policy, which benefits each agent individually
and also the team. The analysis and further enhancement of the cooperative
MAQL is carried out in this chapter.
In MAQL algorithm, more specifically in equilibrium-based MAQL, each agent

updates Q-values individually in joint state–action space employing one of the fol-
lowing equilibria: NE [28] and CE [22] to update the expected joint Q-value at
equilibrium of an agent at the joint next state. CE includes U-equilibrium (UE),
E-equilibrium (EE), R-equilibrium (RE), and L-equilibrium (LE) [22].
Suppose in a m agent system, due to joint action K K = A1 × A2

× × Am = × m
i = 1Ai at joint state G G = × m

i = 1Si , the agent i earns an
immediate reward ri(G, K) and Qi(G, K) be the Q-value of agent i because of joint
action K at joint state G, where × denotes the Cartesian product. Now, following
traditional representation [15, 21] of the expected joint Q-value at a given joint
next state, G/ {G} because of mixed strategy Ω-equilibrium,

Ωp∗ K G =
m

i = 1

p∗i ai si , 4 2

4.2 Single-Agent Q-Learning and Equilibrium-Based MAQL 187

for an agent i is given in (4.3),

ΩQ
∗
i G =

G

p G G,K
K

Ωp∗ K G Qi G ,K , 4 3

where

p G G,K =
m

i = 1

pi si si, ai 4 4

be the joint state-transition probability and K/ {K} be the joint action at joint next
state G/. The definition of CE is given below.

Definition 4.1 CE [22, 46] at a joint state G = < si > m
i = 1 with m interacting

agents is the pure strategy CE,ΩK∗ and mixed strategy CE,Ωp∗(K) if agents follow
(4.5) and (4.6), respectively, for Ω {U, E, R, L}.

ΩK∗ = argmax
K

Φ Qi G,K , 4 5

Ωp∗ K = argmax
Ωp K

Φ
K

Ωp K Qi G,K , 4 6

where Φ Σ
m

i = 1
,Min

m

i = 1
, Max

m

i = 1
, Π

m

i = 1

The CQL update rule is given in (4.7) [22] following the traditional representa-
tion [15, 21].

Qi G,K 1− α Qi G,K + α ri G,K + γ ΩQ
∗
i G 4 7

CQL algorithm [22] is given in the supplemental file Appendix 4.A.

4.3 Proposed Cooperative MAQL and Planning

In CQL algorithm, the entries of the Q-tables of m-agents at a given joint state
because of a joint action need not necessarily be the same. However, in the present
formulation, an attempt is made to solve the CQL algorithm by efficiently employ-
ing the Ω {U, E, R, L} equilibrium, with the motivation to create single joint Q-
table in joint state–action space by considering m Q-tables at individual state–
action space and the environmental feedback about possible penalty due to
multi-agent coordination at joint state–action space.
After each learning epoch, the results of adaptation of each agent’s individual

Q-tables are exploited to update the single Q-table in joint state–action space.

188 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Two techniques are proposed, namely Scheme-I and -II, by efficiently employing
theΩ {U, E, R, L}-equilibrium to evaluate the single joint Q-table. To distinguish
the nomenclatures of Scheme-I and –II, respectively, and are placed on the top of
each symbol. The basis of proposed schemes with their applicability is pro-
vided below.

4.3.1 Proposed Schemes with Their Applicability

The chapter proposes two distinct schemes for addressing two types of situations
that may arise during the MAQL-based multi-robot planning. In the first scheme,
the success of the team is subject to the success of any one agent. Scheme-I is appli-
cable for the weakly coupled multi-agent systems, where only one agent is enough
at a time to serve the fixed team-goal. For example, suppose,m numbers of agents
are assigned to transport a box from one location to another following Scheme-I,
and let transportation of the box requires only one agent at a time. Once failure
of an agent is detected, its nearest agent expresses cooperation toward the failed
agent for successful transportation of the box. Here, the success of any one agent
is enough to make the team successful. On the other hand, in the second scheme,
the success of a team is contingent upon the simultaneous success of all the agents
and it is applicable for the tightly coupled multi-agent system, such as long stick/
big object carrying by multiple robots [43, 44]. Therefore, in both schemes, agents
adapt Q-tables depending upon the task requirement.
In the proposed Scheme-I-induced Q-learning (ΩQL-I), agents adapt the Q-table

in joint state–action space exploiting the individual Q-values at individual state–
action space and the effect of coordination among the agents, received as a feed-
back from the environment to be explained in the next section. However, in the
proposed Scheme-II-induced Q-learning (ΩQL-II), agents adapt the Q-table in
joint state–action space following the traditional MAQL rule by evaluating the
ΩIR as a function of individual immediate rewards plus expected group (Ω) future
reward as a function of individual expected future rewards discounted by a factor
0≤ γ < 1.
It may be notated that in the proposed ΩQL-II, at a joint state, G because of all

the joint actions, K {K}, if an agent i receives less than or equal to (≤) reward for
EE (or LE) or greater than or equal to (≥) reward for UE (or RE) than the same by
the proposedΩQL-I, then for EE (or LE), the joint action K {K} corresponding to

equal reward ΩQ G,K = ΩQ G,K is preferred, as simultaneous success

of all the agents is desired to make the team successful. On the other hand
for UE (or RE), also the joint action, K {K} corresponding to equal reward

ΩQ G,K = ΩQ G,K is preferred as success of any one agent is enough to

make the team successful.

4.3 Proposed Cooperative MAQL and Planning 189

4.3.2 Immediate Rewards in Scheme-I and -II

In the literature of MAQL, agents receive only one type of immediate reward, i.e.
immediate reward at joint state–action space. However, it is our observation that
the immediate rewards at individual state–action space and immediate rewards at
joint state–action space are often diverse. Hence, in this chapter, we have consid-
ered two types of immediate rewards for an agent i. First one is the immediate
rewards at individual state–action space, ri(si, ai), and the second one is the
immediate rewards at joint state–action space during the multi-agent coordina-
tion, di(G, K). The physical significance of such reward categorization is that an
agent should not receive penalty or reward because of remaining agents’ actions.
For example, if each robot in a group individually receives immediate reward at
joint state–action space and subsequently employs either Scheme-I or -II to obtain
single Q-table at joint state–action space, then the penalty incurred by a robot due
to possible collision with an obstacle might influence the identical Q-values
offered by the Scheme-I or -II. The above phenomenon is not desired and hence
such immediate reward categorization is done. The definition of the proposed
immediate reward is given in Definition 4.2.

Definition 4.2 Ω {U, E, R, L} immediate reward (ΩIR), R(G, K), is given by

(4.8), where Φ Σm
i = 1,Minm

i = 1,Maxmi = 1,Π
m
i = 1

R G,K = di G,K , if agent i is penalized due to other agents

= Φ ri si, ai , otherwise
4 8

Trivially from (4.8), it can be inferred that

R G,K = Φ ri G,K 4 9

4.3.3 Scheme-I-Induced MAQL

The Q-value offered by Scheme-I ΩQ G,K is evaluated by obtaining the Φ
Σm
i = 1,Minm

i = 1,Maxmi = 1,Π
m
i = 1 of the summation of individual Q-value Qi(si,

ai) and the immediate reward due to multi-agent coordination given by di(G,
K). For example, inmulti-agent robotics, di(G, K) is the penalty because of collision

among the agents. The ΩQ G,K is evaluated by the learning rule,

ΩQ G,K Φ Qi si, ai + di G,K 4 10

at the joint state G because of joint action K. Assuming K∗ = < a1, a2, …, am>∗ be
the jointly optimized individual actions (joint action) at joint state G, at the end of

190 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

learning phase, agents evaluate the optimal pure strategy ΩK∗
corresponding to

the maximum of ΩQ G,K , Ω {U, E, R, L} and is given by (4.11).

ΩK∗
= argmax

K

ΩQ G,K 4 11

Note 4.1 As the CQL and the proposed Scheme-I-based learning algorithms
share common environment and agents, both have same joint action set given
by (4.12).

K = K 4 12

In ΩQL-I, the optimal mixed strategy Ωp∗ K is obtained by evaluating the
maximum of the expected reward

K
Ωp K ΩQ G,K , Ωp K 0, 1 and is

given by (4.13).

Ωp∗ K = argmax
Ωp K K

Ωp K ΩQ G,K 4 13

On the other hand, Kok et al. observed that in most of the MAQL, agents
required to coordinate their actions only in a few states, and in the remaining they
act independently [40]. Motivated by their observations, Notes 4.2 and 4.3 are
given below before proposing Theorems 4.1 and 4.2.

Note 4.2 Following the principle of [40], in CQL, Q-value of agent i at joint state
G because of joint action K may be expressed by (4.14).

Qi G,K = Qi si, ai + di G,K , 4 14

where di(G, K) is explained in Section 4.3.2, elements of G and K include si and ai,
respectively.

Note 4.3 Again, following the principle of [40], in CQL, the Q-value of agent i at
joint state G because of joint action K setting di(G, K) = 0 may be expressed
by (4.15).

Qi G,K = Qi si, ai 4 15

Theorem 4.1 The optimal pure strategy, ΩK∗
induced by Scheme-I is an

Ω-equilibrium, ΩK∗ for Ω {U, E, R, L} attained in CQL.

4.3 Proposed Cooperative MAQL and Planning 191

Proof
Here,

ΩK∗
= argmax

K

ΩQ G,K by 4 11

= argmax
K

ΩQ G,K by 4 12

= argmax
K

Φ Qi si, ai + di G,K by 4 10 andΦ Σ
m

i = 1
, Min

m

i = 1
, Max

m

i = 1
, Π

m

i = 1

= argmax
K

Φ Qi G,K by 4 14

= ΩK∗ by 4 5

4 16

Hence, the Theorem is proved. □

Theorem 4.2 The optimal mixed strategy, Ωp∗ K induced by Scheme-I is an
Ω-equilibrium, Ωp∗(K) for Ω {U, E, R, L} attained in CQL.

Proof
Here,

Ωp∗ K = argmax
Ωp K K

Ωp K ΩQ G,K by 4 13

= argmax
Ωp K K

Ωp K Φ Qi si, ai + di G,K by 4 10 andΦ Σ
m

i = 1
, Min

m

i = 1
, Max

m

i = 1
, Π

m

i = 1

= argmax
Ωp K

Φ
K

Ωp K Qi si, ai + di G,K ∵Φ is independent of K

= argmax
Ωp K

Φ
K

Ωp K Qi G,K by 4 14

= argmax
Ωp K

Φ
K

Ωp K Qi G,K ∵Ωp : K 0, 1 , Ωp K 0, 1

= Ωp∗ K by 4 6

4 17

Hence, the Theorem is proved. □

It may be noted that, if among m agents at least one is required to successfully
transport an object (e.g. small box-carrying) to a predefined goal state coopera-
tively for succeeding the team, then Scheme-I is useful. In Scheme-I, while an
agent searches for its goal state, at the same time remaining agents keep on static

192 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

(current state becomes the next state) by maintaining the equilibrium (cooperat-
ing) with the active one at that joint state. However, if in a task (e.g. long stick-
carrying) all m agents need to reach their individual goal simultaneously to com-
plete the assigned task, then Scheme-II is employed instead of Scheme-I. Details
of Scheme-II are given below.

4.3.4 Scheme-II-Induced MAQL

In the traditional single agent Q-learning, two types of rewards are used: immedi-
ate reward and optimal future reward. The principle of ΩQL-II does not differ
much from single agent Q-learning except the consideration of R(G, K) at a given

joint state G because of a joint action K and ΩQ
∗
G at next joint state G/. Nat-

urally, to optimize total reward, we need to optimize both R(G, K) and ΩQ
∗
G .

Definition of R(G, K) is given in Definition 4.2 and ΩQ
∗
G are formally defined

in Definition 4.3 for convenience of the readers.

Definition 4.3 Expected optimal Ω {U, E, R, L} Q-value at next joint state G/,

ΩQ
∗
G is obtained by evaluating theΦ Σm

i = 1,Minm
i = 1,Maxmi = 1,Π

m
i = 1 among

the summation of expected optimalQ-value of agent i at si , Q
∗
i si and the expected

optimal change in immediate reward due to multi-agent coordination at joint next

state G/, ΔQ
∗
i G . ΩQ

∗
G is given by (4.18),

ΩQ
∗
G = Φ Q

∗
i si + ΔQ

∗
i G 4 18

where ΩQ
∗
G and ΔQ

∗
i G are given by (4.19) and (4.20), respectively.

ΩQ
∗
G =

G

p G G,K
K

Ωp∗ K G ΩQ G ,K , 4 19

ΔQ
∗
i G =

G

p G G,K
K

Ωp∗ K G di G ,K , 4 20

whereΩp∗ K G be the probability of selecting joint action K/ at joint next state

G/ in Scheme-II and the Ω Q-value by Scheme-II ΩQ G,K following the prin-

ciple of single agent Q-learning rule using Definitions 4.2 and 4.3 is given in (4.21).

ΩQ G,K 1− α ΩQ G,K + α R G,K + γ ΩQ
∗
G 4 21

At the end of learning phase, agents evaluate the optimal pure strategy ΩK
∗
cor-

responding to the maximum of ΩQ G,K , Ω {U, E, R, L} and is given by (4.22).

4.3 Proposed Cooperative MAQL and Planning 193

ΩK
∗
= argmax

K

ΩQ G,K 4 22

Note 4.4 Similar to Note 4.1, the relation between joint action set in Scheme-II,

K and {K} at a given joint state is given by (4.23).

K = K 4 23

InΩQL-II, the optimal mixed strategyΩp∗ K is obtained by evaluating themax-

imum of the expected reward
K
Ωp K ΩQ G,K , Ωp K 0, 1 and is given

by (4.24).

Ωp∗ K = argmax
Ωp K K

Ωp K ΩQ G,K 4 24

Lemmas 4.1 to 4.6 are required to prove Theorems 4.3 and 4.4.

Lemma 4.1 The Inequality, Ψ(xi) ± γ Ψ(yi)≤Ψ(xi± γ yi), Ψ Minm
i = 1,Π

m
i = 1

holds for any real values of xi, yi, i, i [1, m] and γ [0, 1), where 0 {xi} and
0 {yi}.

Proof
Given xi, yi, i, i [1, m] as real values and γ [0, 1),

For any j [1, m] and Ψ Min
m

i = 1
,

x j ≥ Min
m

i = 1
xi and y j ≥ Min

m

i = 1
yi always hold

∴ x j ± γy j ≥ Min
m

i = 1
xi ± γMin

m

i = 1
yi , j, j 1,m

Min
m

j = 1
x j ± γy j ≥ Min

m

i = 1
xi ± γMin

m

i = 1
yi

Min
m

i = 1
xi ± γyi ≥ Min

m

i = 1
xi ± γMin

m

i = 1
yi ∵ i, j 1,m

∴ Min
m

i = 1
xi ± γMin

m

i = 1
yi ≤ Min

m

i = 1
xi ± γyi

4 25

Similarly, if Ψ Π
m

i = 1
, 0 {xi} and 0 {yi}, then

m

i = 1

xi ± γ
m

i = 1

yi ≤
m

i = 1

xi ± yi 4 26

Thus, the desired inequality holds. □

194 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Lemma 4.2 The Inequality, Ψ(xi) ± γ Ψ(yi)≥Ψ(xi± γ yi), Ψ Maxmi = 1,Σ
m
i = 1

holds for any real values of xi, yi, i, i [1, m] and γ [0, 1).

Proof
Given xi, yi, i, i [1, m] as real values and γ [0, 1),

For any j [1, m] and Ψ Max
m

i = 1
,

x j ≥ Max
m

i = 1
xi and y j ≥ Max

m

i = 1
yi always hold

∴ x j ± γy j ≤ Max
m

i = 1
xi ± γMax

m

i = 1
yi , j, j 1,m

Max
m

j = 1
x j ± γy j ≤ Max

m

i = 1
xi ± γMax

m

i = 1
yi

Max
m

i = 1
xi ± γyi ≤ Max

m

i = 1
xi ± γMax

m

i = 1
yi ∵i, j 1,m

∴ Max
m

i = 1
xi ± γMax

m

i = 1
yi ≥ Max

m

i = 1
xi ± γyi

4 27

Similarly, if Ψ Σ
m

i = 1
, then

∴
m

i = 1

xi ± γ
m

i = 1

yi ≥
m

i = 1

xi ± γyi 4 28

Thus, the desired inequality holds. □

Lemma 4.3 The Inequality, (1− α)Ψ(xi) ± α Ψ(yi)≤Ψ[(1− α)xi± α yi], Ψ
Minm

i = 1,Π
m
i = 1 holds for any real values of xi, yi, i, i [1,m] and α [0, 1),where

0 {xi} and 0 {yi}.

Proof
Proof of Lemma 4.3 is similar to the proof of Lemma 4.1. □

Lemma 4.4 The Inequality, (1− α)Ψ(xi) ± α Ψ(yi)≥Ψ[(1− α)xi± αyi], Ψ
Maxmi = 1,Σ

m
i = 1 holds for any real values of xi, yi, i, i [1, m] and α [0, 1).

Proof
Proof of Lemma 4.4 is similar to the proof of Lemma 4.2. □

4.3 Proposed Cooperative MAQL and Planning 195

Now, if ΔQ
∗
i G = 0, then let the expected Q-value at Ω-equilibrium of agent i

at next joint state G/, ΩQ∗
i G is given in (4.29).

ΩQ∗
i G =

G

p G G,K
K

Ωp∗ K G Qi G ,K 4 29

Now, if ΔQ
∗
i G 0, (4.7) can be rewritten as in (4.30).

Qi G,K 1− α Qi G,K + α ri G,K + γ ΩQ∗
i G + ΔQ

∗
i G

4 30

Now, comparing (4.7) and (4.30), one can write

ΩQ
∗
i G = ΩQ∗

i G + ΔQ
∗
i G 4 31

Lemma 4.5 If ΩQ
∗
i G = ΩQ∗

i G + ΔQ
∗
i G , then ΩQ

∗
i G = Q

∗
i si +

ΔQ
∗
i G at the next joint state G = si

m

i = 1

Proof
By (4.30),

ΩQ∗
i G =

G

p G G,K
K

Ωp∗ K G Qi G ,K

=
G

m

j = 1

p j s j s j, a j

K

m

j = 1

p∗j a j s j Qi G ,K by 4 3 and 4 5

=
m

j = 1 s j

p j s j s j, a j

m

j = 1 a j

p∗j a j s j Qi si , ai by 4 14 ,Qi G ,K = Qi si , ai

=
si

pi si si, ai
ai

p∗i ai si Qi si , ai

×
m

j = 1,
j i

s j

p j s j s j, a j

m

j = 1,
j i

a j

p∗j a j s j , ∵i, j 1,m

196 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

=
si

pi si si, ai
ai

p∗i ai si Qi si , ai

∵
sj

pj sj sj, aj = 1 and
aj

p∗j aj sj = 1, j

= Q
∗
i si by 4 1

4 32

Given, ΩQ
∗
i G = ΩQ∗

i G + ΔQ
∗
i G ,

∴ ΩQ
∗
i G = Q

∗
i si + ΔQ

∗
i G by 4 32

Hence, the Lemma is proved. □

Lemma 4.6 ΩQ G,K = Φ Qi G,K for Φ Σm
i = 1,Minm

i = 1,Maxmi = 1,Π
m
i = 1

holds for the equality cases of Lemmas 4.1–4.4.

Proof
Here,

ΩQ G,K 1−α ΩQ G,K + α R G,K + γ ΩQ
∗
G by 4 21

= 1−α tΩQ G,K + 1−α t−1α R G,K + γΩQ
∗
G

+ 1−α t−2α R G,K + γΩQ
∗
G + + 1−α α R G,K + γΩQ

∗
G

+ α R G,K + γΩQ
∗
G

by recursively substituting 4 21 ,where, learning epoch t ∞

=Φ 1−α tQi G,K + 1−α t−1α R G,K + γΩQ
∗
G

+ 1−α t−2α R G,K + γΩQ
∗
G + + 1−α α R G,K + γΩQ

∗
G

+ α R G,K + γΩQ
∗
G

∵t ∞andα 0,1 ∴ 1−α t 0, where Φ Σ
m

i= 1
,Min

m

i= 1
,Max

m

i= 1
, Π
m

i= 1

4.3 Proposed Cooperative MAQL and Planning 197

=Φ 1−α tQi G,K + 1−α t−1α Φ ri G,K + γ Φ Q∗
i si +ΔQ∗

i G

+ 1−α t−2α Φ ri G,K + γ Φ Q∗
i si +ΔQ∗

i G + +

1−α α Φ ri G,K + γ Φ Q∗
i si +ΔQ∗

i G + α Φ ri G,K

+ γ Φ Q∗
i si +ΔQ∗

i G by 4 9 and 4 18

=Φ 1−α tQi G,K + 1−α t−1α Φ ri G,K + γ Φ ΩQ∗
i G

+ 1−α t−2α Φ ri G,K + γ Φ ΩQ∗
i G + + 1−α α Φ ri G,K + γ Φ ΩQ∗

i G

+ α Φ ri G,K + γ Φ ΩQ∗
i G byLemma4 5

=Φ 1−α tQi G,K + 1−α t−1α Φ ri G,K + γ ΩQ∗
i G

+ 1−α t−2α Φ ri G,K + γ ΩQ∗
i G + + 1−α α Φ ri G,K + γ ΩQ∗

i G

+ α Φ ri G,K + γ ΩQ∗
i G

by statement considering only the equalities in Lemmas4 1and4 2

= 1−α t−1Φ 1−α Qi G,K + 1−α t−1Φ α ri G,K + γ ΩQ∗
i G

+ 1−α t−2Φ α ri G,K + γ ΩQ∗
i G + + 1−α Φ α ri G,K + γ ΩQ∗

i G

+Φ α ri G,K + γ ΩQ∗
i G ∵Φ is independent of tandα

= 1−α t−1Φ 1−α Qi G,K + α ri G,K + γ ΩQ∗
i G + 1−α t−2Φ α ri G,K

+ γ ΩQ∗
i G +…+ 1−α Φ α ri G,K + γ ΩQ∗

i G +Φ α ri G,K + γ ΩQ∗
i G ,

by statement considering only the equalities in Lemmas4 3and4 4

= 1−α t−1Φ Qi G,K + 1−α t−2Φ α ri G,K + γ ΩQ∗
i G +…

+ 1−α Φ α ri G,K + γ ΩQ∗
i G +Φ α ri G,K + γ ΩQ∗

i G by 4 7

= 1−α t−2Φ 1−α Qi G,K + 1−α t−2Φ α ri G,K + γ ΩQ∗
i G +

+ 1−α Φ α ri G,K + γ ΩQ∗
i G +Φ α ri G,K + γ ΩQ∗

i G

which on further simplification returns

ΩQ G,K = Φ 1− α Qi G,K + α ri G,K + γ ΩQ
∗
i G

= Φ Qi G,K by 4 7

Hence, the Lemma is proved. □

198 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Theorem 4.3 The optimal pure strategy, ΩK
∗
, induced by Scheme-II is an

Ω-equilibrium, ΩK∗ for Ω {U, E, R, L} attained in CQL, holds for the equality cases
of Lemmas 4.1–4.4.

Proof
Here,

ΩK
∗
= argmax

K

ΩQ G,K by 4 22

= argmax
K

ΩQ G,K by 4 23

= argmax
K

Φ Qi G,K by Lemma 4 6

= ΩK∗ by 4 5

4 33

Hence, the Theorem is proved. □

Theorem 4.4 The optimal mixed strategy, Ωp∗ K induced by Scheme-II is an
Ω-equilibrium,Ωp∗(K) forΩ {U,E,R, L} attained in CQL, holds for the equality cases
of Lemmas 4.1–4.4.

Proof
Here,

Ωp∗ K = argmax
Ωp K K

Ωp K ΩQ G,K by 4 24

= argmax
Ωp K K

Ωp K Φ Qi G,K byLemma4 6

= argmax
Ωp K

Φ
K

Ωp K Qi G,K ∵Φ is independent of K

= argmax
Ωp K

Φ
K

Ωp K Qi G,K ∵ Ωp~ K 0,1 ,Ωp K 0,1

=Ωp∗ K by 4 6

4 34

Hence, the Theorem is proved. □

4.3 Proposed Cooperative MAQL and Planning 199

4.3.5 Algorithms for Scheme-I and II

Scheme-I and –II-induced ΩQL algorithms are proposed in Algorithm 4.1.
Now, for further improvement, constraint version of ΩQL-I/ΩQL-II(CΩQL-I/
CΩQL-II) is given below.

Algorithm 4.1 Scheme-I and –II-Induced ΩQL (ΩQL-I and ΩQL-II)

Input:Learningrateα [0,1)anddiscountingfactor γ [0,1);

Output:OptimaljointQ-valueΩQ∗ G,K , G, K; \\ for Scheme-I

OptimaljointQ-valueΩQ∗
G,K , G, K;\\ for Scheme-II

Begin

Initialize: state si, i, action set Ai at si, i,

ΩQ G,K 0, G, K for Scheme-I and ΩQ G,K 0, G, K for

Scheme-II;

Repeat

1) Select an action ai Ai, i by the Boltzmann strategy

[47] and execute it for both the schemes;

2) Forboththeschemesobserveimmediaterewardsri(si,ai)

and di(G, K), i, evaluate next state si δi si,ai , i

to obtain joint next state G = < si > m
i = 1 and individual

Q-value

Qi si,ai 1− α Qi si,ai + α ri si,ai + γ Q
∗
i si , i;

3) Update: Joint Q-value ΩQ G,K by (4.10) for Scheme-I∗

and ΩQ G,K by (4.21) for Scheme-II∗∗ and

G G/; Ω U,E,R,L ,Φ
m

i = 1
,Minm

i = 1,Maxm
i = 1,

m

i = 1

Until ΩQ G,K , G, K converges for Scheme-I and

ΩQ G,K , G, K converges for Scheme-II;

ΩQ∗ G,K ΩQ G,K , G, K for Scheme-I and ΩQ∗
G,K

ΩQ G,K , G, K for Scheme-II;

End.
* In Scheme-I, suppose, there is a group of two robots, R1 and
R2. R1 attempts to transport a box from one location to a
fixed goal G. Once R1 fails, R2 takes in charge and
continues the box transportation. If R2 reaches the goal
state G, then it receives the maximum individual
immediate reward, 100 (say). At the same time, R1

200 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

4.3.6 Constraint ΩQL-I/ΩQL-II(CΩQL-I/CΩQL-II)

In constraint ΩQL (CΩQL) algorithms, agents have to satisfy one or more task
constraints to determine next feasible joint state from a set of next joint states.
For example, in the stick-carrying problem, two robots (agents) transport a
stick from a given location to the other in their environment by holding it
at two ends of the stick. During transportation, the stick should not collide
with any obstacle. The transportation of a fixed-length stick without having
encountered an obstacle by the stick acts as a task constraint that the agents
have to maintain throughout their journey. Similarly, in triangle-carrying
problem, three robots carry a triangle satisfying the above-mentioned
constraint.
If joint next state (G/) does not satisfy task constraint(s) after selecting a

joint action (K) from a feasible joint state (GF), then the next joint state
(G/) is removed from the feasible joint Q-table and also the joint action (K)
is dropped from the feasible joint state (GF), otherwise the joint action is exe-
cuted for learning. It is apparent that GF G and KF K, where G and K are
joint state and joint action of the agents, respectively. The constraint ΩQL-I/
ΩQL-II(CΩQL-I/CΩQL-II) algorithm mentioning the changes as compared
with ΩQL (Algorithm 4.1) is given in Algorithm 4.2.

4.3.7 Convergence

In [40], Kok et al. mentioned that in most of the MAQL, agents require coordinat-
ing their actions only in a few states, while acting independently in the remaining
states. Based on their observations, we jointly optimize a combination of

receives the minimum individual immediate reward, i.e. 0.
In the above circumstance, we choose RE for group
immediate reward evaluation, because the success of one
agent is enough to make the successful. Group immediate
reward = max(100, 0) = 100.

** In Scheme-II, for the stick-carrying problem [44], both R1
and R2 should receive 100 rewards to make the team
successful. Here, EE is employed to evaluate the group
immediate reward = min(100, 100) = 100.

4.3 Proposed Cooperative MAQL and Planning 201

(i) individual Q-function and (ii) the change in the individual Q-functions because
of the multi-agent coordination. The function used to combine the above two is
determined based on the choice of type of equilibrium. In the present chapter,
to consider the change in Q-values due to multi-agent coordination, we classify
the immediate reward (Section 4.3.2) into two types, one defined in individual
state–action space, and the other in the joint state–action space. Theorems (4.1,
4.2) and (4.3, 4.4), respectively, lead to the optimal global policy for deterministic
and stochastic cases for both Scheme-I and -II. Convergence proofs of the proposed
algorithms are offered by Theorem 4.5 and 4.6, respectively, for Scheme-I and-II.
To propose Theorems 4.5 and 4.6 Lemmas 4.7–4.9 are the prerequisites.

Algorithm 4.2 Constraint ΩQL-I/ΩQL-II (CΩQL-I/CΩQL-II)

Input: As in Algorithm 4.1 plus task constraints;

Output: Optimal Q-values for feasible joint state–action

space;

Begin

Initialize: Same as Algorithm 4.1;

Repeat

1) Select action as in Algorithm 4.1;

2) Receive immediate rewards ri(si, ai), i and di(G, K), i

as in Algorithm 4.1 and evaluate joint next state

G = < si > m
i = 1 and individual Q-value Qi(si, ai), i as

in Algorithm 4.1;

3) Update:ΩQ GF,KF for Scheme-I andΩQ GF,KF for Scheme-

II; //F in the suffix indicates the feasible

4) If the feasibility checking fails, then delete the GF

from the joint Q-table and drop the KF taken at the

current joint state;

Until ΩQ GF,KF , GF, KF converges for Scheme-I and

ΩQ GF,KF , GF, KF converges for Scheme-II;

ΩQ∗ GF,KF ΩQ GF,KF , GF, KF for Scheme-I and

ΩQ∗
GF,KF ΩQ GF,KF , GF, KF

for Scheme-II;

End.

202 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Lemma 4.7 α [Rt(G, K)− R∗(G, K)] = 0, t holds for α [0, 1), where t is the
learning epoch.

Proof
By (4.9),

α Rt G,K −R∗ G,K = α Φ rti G,K −Φ r∗i G,K 4 35

For Φ Min
m

i = 1
, Π

m

i = 1
, (4.35) becomes

α Rt G,K −R∗ G,K ≤ α Φ rti G,K − r∗i G,K , by Lemma 4 1 with γ = 1

α Rt G,K −R∗ G,K = 0 ∵ rti G,K = r∗i G,K , t, i

4 36

For Φ Max
m

i = 1
, Σ

m

i = 1
, (4.35) becomes

α Rt G,K −R∗ G,K ≤ αΦ rti G,K − r∗i G,K ,

∵ Φ ai −Φ bi ≤ Φ ai − bi
α Rt G,K −R∗ G,K = 0 ∵ rti G,K = r∗i G,K , t, i

4 37

Hence, by (4.36) and (4.37), the Lemma holds. □

Lemma 4.8 γ ΩQ
∗
t G −ΩQ

∗
G = 0, holds for γ [0, 1) as learning

epoch t ∞.

Proof
By (4.18),

γ ΩQ
∗
t G −ΩQ

∗
G

= γ Φ Q
t∗
i si + ΔQ

t∗
i G −Φ Q

∗
i si + ΔQ

∗
i G

4 38

Now, we have two cases:

Case I: For, Φ Min
m

i = 1
, Π

m

i = 1
(4.38) becomes

4.3 Proposed Cooperative MAQL and Planning 203

γ ΩQ
∗
t G −ΩQ

∗
G

≤ γ Φ Q
t∗
i si + ΔQ

t∗
i G −Q

∗
i si −ΔQ

∗
i G by Lemma 4 1 with γ = 1

= γ Φ Q
t∗
i si −Q

∗
i si + ΔQ

t∗
i G −ΔQ

∗
i G

= γ Φ
si

pi si si, ai
ai

p∗i ai si Qt
i si , ai −Q∗

i si , ai

+
G

p G G,K
K

p∗ K G dti G ,K − d∗i G ,K

by 4 A 1 and 4 20

Q∗
i si , ai is the maximum individual Q-value of agent i at si , ai

and dti G ,K = d∗i G ,K , t, i

= γ Φ
si

pi si si, ai
ai

p∗i ai si Qt
i si , ai −Q∗

i si , ai

4 39

Case II: For Φ Max
m

i = 1
, Σ

m

i = 1
, (4.38) becomes

γ ΩQ
∗
t G −ΩQ

∗
G

≤ γΦ Q
t∗
i si + ΔQ

t∗
i G −Q

∗
i si −ΔQ

∗
i G ∵ Φ ai −Φ bi ≤ Φ ai − bi

= γΦ Q
t∗
i si −Q

∗
i si + ΔQ

t∗
i G −ΔQ

∗
i G

= γΦ
si

pi si si, ai
ai

p∗i ai si Qt
i si , ai −Q∗

i si , ai +

G

p G G,K
K

p∗ K G dti G ,K − d∗i G ,K

by 4 A 1 and 4 20

Q∗
i si , ai is the maximum individual Q-value of agent i at si , ai

and dti G ,K = d∗i G ,K , t, i

= γΦ
si

pi si si, ai
ai

p∗i ai si Qt
i si , ai −Q∗

i si , ai

4 40

204 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Now as t ∞ by [17] Qt
i si , ai Q∗

i si , ai So, from (4.39) and (4.40)

γ ΩQ
∗
t G −ΩQ

∗
G = 0, as t ∞.

Hence, the Lemma holds. □

Lemma 4.9 If ΩQt−k G,K −ΩQ
∗
G,K =ΔQt−k G,K , then 1−α ΩQt−1

G,K −ΩQ
∗
G,K = 1−α kΔQt−k G,K , where, α [0, 1), k R+ and t is the

learning epoch.

Proof
By (4.21),

1− α ΩQt− 1 G,K −ΩQ
∗
G,K

= 1− α 1− α ΩQt− 2 G,K + α Rt− 2 G,K + γ ΩQ
∗
t− 2 G −

1− α ΩQ
∗
G,K + α R∗ G,K + γ ΩQ

∗
G

= 1− α 1− α ΩQt− 2 G,K −ΩQ
∗
G,K + α Rt− 2 G,K −R∗ G,K +

γ ΩQ
∗
t− 2 G − γ ΩQ

∗
G

≤ 1− α 1− α ΩQt− 2 G,K −ΩQ
∗
G,K + α Rt− 2 G,K −R∗ G,K +

1− α γ ΩQ
∗
t− 2 G − γ ΩQ

∗
G ∵ a + b ≤ a + b

≤ 1− α 1− α ΩQt− 2 G,K −ΩQ
∗
G,K + 1− α α Rt− 2 G,K −R∗ G,K +

1− α γ ΩQ
∗
t− 2 G − γ ΩQ

∗
G ∵ a + b ≤ a + b

= 1− α 2 ΩQt− 2 G,K −ΩQ
∗
G,K + 1− α α Rt− 2 G,K −R∗ G,K +

1− α γ ΩQ
∗
t− 2 G − γ ΩQ

∗
G

= 1− α 2 ΩQt− 2 G,K −ΩQ
∗
G,K + 1− α γ ΩQ

∗
t− 2 G − γ ΩQ

∗
G

by Lemma 4 7

= 1− α 2 ΩQt− 2 G,K −ΩQ
∗
G,K by Lemma 4 8 with t ∞

= 1− α k ΩQt− k G,K −ΩQ
∗
G,K

For k R + and continuing recursively employing 4 21

= 1− α kΔQt− k G,K by statement

4 41

Hence, the Lemma holds. □

4.3 Proposed Cooperative MAQL and Planning 205

Theorem 4.5 The proposed Scheme-I-induced Ω Q-learning converges

ΩQt G,K ΩQ∗
G,K as learning epoch t ∞ .

Proof
By (4.10),

ΩQt G,K −ΩQ∗
G,K = Φ Qt

i si, ai + dti G,K −Φ Q∗
i si, ai + d∗i G,K

4 41

Now, we have two cases:

Case I: For Φ Min
m

i = 1
, Π

m

i = 1
, (4.41) becomes

ΩQt G,K −ΩQ∗
G,K by Lemma 4 1 with γ = 1

≤ Φ Qt
i si, ai + dti G,K −Q∗

i si, ai − d∗i G,K

= Φ Qt
i si, ai −Q∗

i si, ai + dti G,K − d∗i G,K = Φ Qt
i si, ai −Q∗

i si, ai

for any agent i at a fixed G,K di G,K is constant

= Φ ΔQt
i si, ai 4 42

Here, ΔQt
i si, ai refers to the error in Q-value of agent i at tth iteration.

Case II: For Φ Max
m

i = 1
, Σ

m

i = 1
, (4.41) becomes

ΩQt G,K −ΩQ∗ G,K

≤ Φ Qt
i si,ai +Φ dti G,K −Φ Q∗

i si,ai −Φ d∗i G,K byLemma4 2 with γ=1

= Φ Qt
i si,ai −Φ Q∗

i si,ai +Φ dti G,K −Φ d∗i G,K

≤ Φ Qt
i si,ai −Φ Q∗

i si,ai + Φ dti G,K −Φ d∗i G,K ∵ a+ b ≤ a + b

≤Φ Qt
i si,ai −Q∗

i si,ai +Φ dti G,K −d∗i G,K

∵ Φ ai −Φ bi ≤Φ ai + bi =Φ Qt
i si,ai −Q∗

i si,ai
foranyagent iata fixed G,K di G,K is constant

= Φ ΔQt
i si,ai 4 43

Now, by [17] as learning epoch t ∞ ,ΔQt
i si, ai 0. Hence, the Scheme-I-

induced Ω Q-learning converges ΩQt G,K ΩQ∗
G,K as t ∞ . □

Theorem 4.6 The proposed Scheme-II-induced Ω Q-learning converges

ΩQt G,K ΩQ
∗
G,K as learning epoch t ∞.

206 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Proof
By (4.21),

ΩQt G,K − ΩQ∗
G,K

= 1−α ΩQt−1 G,K + α Rt G,K + γ ΩQ∗
t G

− 1−α ΩQ∗
G,K + α R∗ G,K + γ ΩQ

∗
G

= 1−α ΩQt−1 G,K −ΩQ∗
G,K

+ α Rt G,K −R∗ G,K + γ ΩQ∗
t G −ΩQ

∗
G

≤ 1−α ΩQt−1 G,K −ΩQ∗
G,K +

α Rt G,K −R∗ G,K γ ΩQ∗
t G −ΩQ

∗
G ∵ a+ b ≤ a + b

≤ 1−α ΩQt−1 G,K −ΩQ∗
G,K +

α Rt G,K −R∗ G,K + γ ΩQ∗
t G −ΩQ

∗
G ∵ a+ b ≤ a + b

= 1−α ΩQt−1 G,K −ΩQ∗
G,K + α Rt G,K −R∗ G,K

+ γ ΩQ∗
t G −ΩQ

∗
G

= 1−α kΔQt−k G,K byLemma4 7 – 4 9
4 44

Now, ∵α [0, 1), with k ∞ , 1− α kΔQt− k G,K 0, where k is the dummy
variable indicating the learning epoch. Hence, the Scheme-II-induced Ω

Q-learning converges ΩQt G,K ΩQ
∗
G,K as learning epoch t ∞. □

4.3.8 Multi-agent Planning

Multi-agent planning is followed by multi-agent learning. In Correlated-Q-
induced Planning (CQIP) algorithm [22, 46], m number of agents plan to reach
a predefined joint goal state by determining CE usingm joint Q-tables. In the pro-
posed multi-agent planning algorithms, the (strategy or CE) joint action corre-
sponding to the (maximum expected) maximum joint Q-value offered by the
proposed multi-agent planning algorithms is selected. Two alternatives of
multi-agent planning algorithms are proposed. The first one, called ΩMulti-agent
Planning (ΩMP), does not require to satisfy task constraints as it has already been
undertaken during the learning phase (by CΩQL-I and CΩQL-II algorithms). The
ΩMP algorithm is given in Algorithm 4.3. However, in case the task constraint (e.g.
fixed stick length or triangle structure) is not undertaken during the learning

4.3 Proposed Cooperative MAQL and Planning 207

phase (as happens to be inΩQL-I andΩQL-II), task constraint(s) are to be satisfied
during the planning phase. Constraint ΩMP(CΩMP) algorithm takes into account
the task constraint during the planning phase. To handle the task constraint (stick-
length) in CΩMP algorithm, the policy given in Algorithm 4.4 is adapted.

Algorithm 4.3 Ω Multi-agent Planning (ΩMP)

Input: Feasible joint state GF, Goal state GL, ΩQ∗ GF,KF for

Scheme-I and ΩQ∗
GF,KF for Scheme-II;

Output: Optimal feasible joint action (or CE) K∗
F at GF;

Begin

While GF GL do Begin

For KF {KF}

If ΩQ∗ GF,K∗
F ≥ ΩQ∗ GF,KF // for Scheme-I

ΩQ∗
GF,K∗

F ≥ ΩQ∗
GF,KF // for Scheme-II

Then K∗
F KFand GF GF; GF is the joint next state

End If;
End for;

End While;

End.

Algorithm 4.4 Constraint Ω Multi-agent Planning (CΩMP)

Input: Feasible joint state GF, Goal state GL, ΩQ∗ G,K for

Scheme-I and ΩQ∗
G,K for Scheme-II;

Output: Optimal feasible joint action (or CE)K∗
F at GF;

Begin

While GF GL do Begin

For K {K}

If ΩQ∗ GF,K∗ ≥ ΩQ∗ GF,K // for Scheme-I

ΩQ∗
GF,K∗ ≥ ΩQ∗

GF,K // for Scheme-II

and feasible joint next state GF satisfies task

constraints;

Then K∗
F K and GF GF; GF is the joint next state

End If;
End for;

End While;

End.

208 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Let the space (grids) between the agents (robots) holding a stick called interme-
diate state. Since the stick lies over the intermediate space, it is difficult to ascertain
whether the region containing the next (front/back) intermediate state is occupied
by an obstacle or not. To handle this problem, an agent has to check whether joint
Q-value of the next intermediate space is nonzero (as Q-values are initialized as
zero). A nonzero Q-value indicates that the next joint state is free from obstacles.

4.4 Complexity Analysis

In this section, evaluation of the space- and time-complexities of the proposed
learning and planning algorithms in deterministic settings and comparing them,
respectively, with the CQL and CQIP algorithms are done forΩ {E, R}. The time-
complexity forΩ {U, L} is shown in the Appendix 4.A and the space-complexity is
not shown as it does not vary with the variation ofΩ. However, the run-time com-
plexities of the proposed and existing algorithms for Ω {U, E, R, L} are given in
Section 4.5. For simplicities, let us assume that

S1 = S2 = = Sm = S 4 45

and A1 = A2 = = Am = A 4 46

Now, the cardinality of joint state set

G = S1 × S2 × × Sm
= S1 S2 Sm
= S m by 4 45

Further, the cardinality of joint action set

K = A1 × A2 × × Am

= A1 A2 Am

= A m by 4 46

Let tCQIP and tCΩMP be the number of steps required to satisfy task constraint in
one epoch during the planning phase by CQIP and CΩMP algorithms, respec-
tively. In CQIP algorithm, task constraint is satisfied for m joint Q-tables and in
CΩMP algorithm, task constraint is satisfied for one joint Q-table, so tCQIP> tCΩMP.
Also, let tCΩQL-I and tCΩQL-II are the number of steps required to satisfy task con-
straint in one learning epoch by CΩQL-I and CΩQL-II algorithms, respectively.
Comparison of the CQL and CQIP algorithms with the proposed ΩQL, CΩQL,
and Ω-induced planning algorithms (ΩMP and CΩMP) are given below.

4.4 Complexity Analysis 209

4.4.1 Complexity of CQL

Complexities of Correlated-Q-induced learning and planning algorithms are
given below.

4.4.1.1 Space Complexity
Learning

In CQL algorithm, agents maintain their own Q-tables in joint state–action space.
Hence, the space requirement for a joint Q-table is |S|m |A|m. Assuming there is no
communication among the agents, during the learning phase, each agent has to
maintain all agent’s joint Q-tables individually by observing other agents state,
action, and rewards. So, in CQL algorithm, space complexity (SC) of one agent is

SCCQL = m S m A m = O m S m A m 4 47

Planning

In the CQIP phase, agents need the same number of joint Q-tables as required dur-
ing the learning phase. Hence, SC of CQIP algorithm is given by

SCCQIP = m S m A m = O m S m A m 4 48

4.4.1.2 Time Complexity
Learning

In CQL, during the learning phase for Ω {E, R}, an agent has to find out CE
among all the joint actions. Therefore, in CQL algorithm, time complexity (TC)
in a single learning epoch is

TCCQL = m− 1 A m + A m
− 1 = O m A m 4 49

Planning

ForΩ {E, R} during the CQIP phase, except finding CE agents have to satisfy task
constraint. Therefore, in CQIP algorithm, TC is

TCCQIP = m− 1 A m + A m
− 1 + tCQIP > O m A m 4 50

4.4.2 Complexity of the Proposed Algorithms

Complexities of the proposed learning and planning algorithms are given below.

210 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

4.4.2.1 Space Complexity
Learning

In ΩQL algorithms, an agent maintains m agents’ Q-tables at individual state–
action space and one joint Q-table. Hence, during the learning phase, SC in
ΩQL algorithms is

SCΩQL = m S A + S m A m > O S m A m 4 51

Planning

During the planning phase, in CΩMP, agents need only one joint Q-table to plan.
Hence, SC in CΩMP algorithm is

SCCΩMP = S m A m = O S m A m 4 52

4.4.2.2 Time Complexity
Learning

For Ω {E, R} in ΩQL algorithms, TC in a single learning epoch is the number
of comparisons required to update joint Q-value for a joint state–action pair. In
ΩQL-I and CΩQL-I, during the learning phase, an agent has to evaluate m

individual Q-values by m(A − 1) comparisons and evaluate the Φ
Minm

i = 1,Maxmi = 1 among the summation of m individual Q-values and di(G,

K) by (m− 1) comparisons. Hence, TC during the learning phase in ΩQL-I and
CΩQL-I (satisfying task constraint) algorithms are, respectively,

TCΩQL-I = m A − 1 + m− 1 ≈O m A 4 53

and

TCCΩQL-I = m A − 1 + m− 1 + tCΩQL-I > O m A 4 54

In ΩQL-II and CΩQL-II, during the learning phase, each agent has to find out

the ΩIR and ΩQ
∗
. For that, an agent requires 2(m− 1) number of comparisons.

Also agents update m individual Q-values by m (A − 1) comparisons. Hence,
TC during the learning phases in ΩQL-II and CΩQL-II (satisfying task constraint)
algorithms are given, respectively, in (4.55) and (4.56).

TCΩQL-II = m A − 1 + 2 m− 1 ≈O m A , 4 55

TCCΩQL-II = m A − 1 + 2 m− 1 + tCΩQL-II > O m A 4 56

Planning

During the planning phase, agents evaluate optimal joint action (CE) correspond-
ing to the maximum joint Q-value at a given joint state. Hence, TC in ΩMP and
CΩMP (satisfying task constraint) algorithms are

4.4 Complexity Analysis 211

TCΩMP = A m − 1 = O A m 4 57

and

TCCΩMP = A m
− 1 + tCΩMP > O A m 4 58

Space-complexity Analysis of Stick-Carrying and Triangle-Carrying Problem

SC of CΩQL algorithms (SCCΩQL) andΩMP algorithm (SCΩMP) depend on the task
to be solved. In the context of stick-carrying and triangle-carrying problems, a
description is given below. In a grid map, usually there exist three types of cells,
called Corner cell (c), Wall cell (w), and Other Cell (oc). From Figure 4.1 it is
observed that in an n × n grid map, the number of Corner cells (Cc), Wall cells
(Cw), and Other cells (Coc) are 4, 4(n− 2), and (n− 2)2, respectively. An analysis
of Figure 4.2 indicates that in a two-agent system (m= 2), from a c, w, and oc there
exist 3, 5, and 8 feasible joint states, respectively, for an agent. Therefore, assuming
Fk be the number of feasible joint states from state k in an n × n grid map, the total
number of feasible joint states by CΩQL algorithm is

m ×
k c,w, oc

Ck × Fk = 2 4 × 3 + 4 n− 2 × 5 + n− 2 2 × 8 , 4 59

which on simplification returns

m ×
k c,w, oc

Ck × Fk = 16n2 − 24n + 8, i e ,O n2 , 4 60

Corner
cell

Wall
cell

Corner
cell

Wall
cell

Other
cell

Wall
cell

Corner
cell

Wall
cell

Corner
cell

Figure 4.1 Corner cell, boundary cell, and
other cell.

1
2

2 2 2 2 2

2 2 1 2
2

1
2

2 2
2 2

2

Figure 4.2 Feasible joint states for two-agent systems in stick-carrying problem.

212 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

while that in ΩQL algorithm, for m = 2 is

n × n m = n × n 2 = n 4, i e ,O n4 4 61

Similarly, for triangle-carrying problem m = 3 and total space complexity in
CΩQL algorithm is

m ×
k c,w, oc

Ck × Fk = 24n2 − 48n + 24, i e ,O n2 4 62

and space complexity in ΩQL algorithm for m = 3 is

n × n m = n × n 3 = n 6, i e ,O n6 4 63

From (4.60)–(4.63) we conclude

SCΩQL > SCCΩQL 4 64

As only learned joint state–action pairs are utilized to plan,

∴ SCCΩMP > SCΩMP 4 65

4.4.3 Complexity Comparison

Comparisons of complexities between CQL and proposed algorithms are
given below.

4.4.3.1 Space Complexity

From (4.47) and (4.51),

SCΩQL

SCCQL
=

m S A + S m A m

m S m A m

=
S A
S m A m +

1
m

≈
1

S m− 1 A m− 1 after approximation

< 1

4 66

From (4.48) and (4.52),

SCCΩMP

SCCQIP
=

S m A m

m S m A m

=
1
m

4 67

∴SC of CΩMP is 1 m of the SC in CQIP.

4.4 Complexity Analysis 213

We by (4.64) and (4.66) obtain,

SCCQL > SCΩQL > SCCΩQL 4 68

We by (4.65) and (4.67) obtain,

SCCQIP > SCCΩMP > SCΩMP 4 69

4.4.3.2 Time Complexity

From (4.49) and (4.54),

TCCΩQL-I

TCCQL
=

m A − 1 + m− 1 + tCΩQL-I
m− 1 A m + A m − 1

≈
1

A m− 1 after approximation

< 1

4 70

From (4.53), (4.54), and (4.70),

TCCQL > TCCΩQL-I > TCΩQL-I 4 71

From (4.49) and (4.56),

TCCΩQL-II

TCCQL
=

m A − 1 + 2 m− 1 + tCΩQL-II
m− 1 A m + A m

− 1

≈
1

A m− 1 after approximation

< 1

4 72

From (4.55), (4.56), and (4.72),

TCCQL > TCCΩQL-II > TCΩQL-II 4 73

Again from (4.50) and (4.58),

TCCΩMP

TCCQIP
=

A m − 1 + tCΩMP

m− 1 A m + A m − 1 + tCQIP
tCΩMP < tCQIP

≈
1
m

after approximation

4 74

From (4.57), (4.58), and (4.74), we obtain,

TCCQIP > TCCΩMP > TCΩMP 4 75

214 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

4.5 Simulation and Experimental Results

This section provides three experiments on multi-agent cooperation: one is Exper-
iment 4.1 where complexity analysis of the proposed and the existing algorithms
are shown. Second one is Experiment 4.2 (for Ω = R) in which success of any one
agent is enough to make the team successful. The last one is Experiment 4.3 (for
Ω = E) where simultaneous success of all the agents is needed to make the team
successful. Experiment 4.1 provides experiments on cooperation of multiple
mobile robots (agents) during the learning phase in the framework of object-
transportation (stick-carrying and triangle-carrying) problem. The stick-carrying
(triangle-carrying) problem [43] refers to transposition of the stick (triangle) from
a given location to a desired destination in the given workspace by two (three)
robots, where the stick (triangle) is held at its end-points (vertices). In Experiment
4.2, two agents cooperatively transport an object (box) from a given location to a
predefined destination. Agents cooperate among themselves by moving (passing)
the box to another agent with an aim to achieve success. In Experiment 4.3, two/
three agents transport a stick/triangle from a given location to a predefined des-
tination. Obstacles are added to the workspace to add complexity for all the men-
tioned Experiments. These Experiments are undertaken to study the performance
of the proposed learning and planning algorithms to compare their performance
with equilibrium-based MAQL (NQL, FQL, and CQL) algorithms. The perfor-
mancemetric used during the learning phase is the number (or percentage) of con-
verged Q-values in joint state–action pair required with learning epochs and run-
time complexity per learning epoch, while that during the planning phase includes
only the run-time required to completely execute the plan.

4.5.1 Experimental Platform

Both computer simulations (for stick-carrying, triangle-carrying problem, and
box-carrying) and hardware testing (for stick-carrying and box-carrying problem)
are performed to compare the relative performance of the proposed and existing
algorithms.

4.5.1.1 Simulation

The simulation is done employing MATLAB GUI (graphical user interface)
R2015a version on an i7-3370 processor desktop computer with clock speed of
3.40 GHz. The individual grid size in computer simulation is fixed at 20 × 20 pixels.
The total arenas in computer simulation are considered as of 5 × 5 unit grids size
and 9 × 9 unit grids size.

4.5 Simulation and Experimental Results 215

In the present chapter, learning is conducted only in simulation, either by mim-
icking a real-world environment or by generating an arbitrary environment to
avoid any damage of the real-robot. On the other hand, in simulation, planning
is straightforward, where at the current joint state each agent evaluates the CE
employing the identical Q-table maintained by each agent in joint state–action
space, and moves to the next state by adding a fixed length in the direction of
the action executed. In case of multiple equilibria, agents select the CE, which
appears first.

4.5.1.2 Hardware

The hardware testing is done with two Khepera-II mobile robots [48, 49], equipped
with an onboard Microcontroller (Motorola 68331) having a flash memory of 512
kB and a clock speed of 25MHz. It has eight inbuilt active infrared proximity sen-
sors and they are the well-known semiconductor (GaAs)-type proximity sensors
[50]. In addition, both motor axes consist of an incremental encoder for position
and speed measurement of the robot [48, 49]. Considering 2 unit and 5 unit speed
(1 unit = 0.08 mm/10 ms), the stick-carrying problem is realized by connecting two
robots through serial ports to two different Pentium IV desktop computers with
clock speed of 2 GHz.
As already discussed, to avoid damage of the real-robot, learning is conducted in

simulation only and subsequently the planning is done in real time. During the
planning phase, the next positions of the robots are determined employing the pro-
posed Ω-induced joint Q-table for CΩMP, ΩMP algorithms and the Correlated-Q-
induced joint Q-tables for CQIP algorithm stored in both the Pentium IV
machines. As the joint Q-table maintained by each Pentium IVmachine (or robot)
is identical, hence, robots do not require communicating with fellow robots as well
as with fellow robots’ computers during coordination (i.e. evaluation of CE). In the
perspective of implementation, robots identify the change in states (next state) by
measuring the distance traversed, in the direction of the action executed using
incremental encoders. The individual grid size in hardware testing is fixed at
80 mm× 80mm. Total arena for hardware testing is 9 × 9 unit grids (720 mm×
720 mm).
Both in computer simulation and hardware testing, each agent cooperates by

selecting one set of actions among two sets. The first one consists of five actions:
Left (L), Forward (F), Right (R), Back (B), and Pause (P) from a state. The second
one includes nine actions, which are Left (L), Left-Forward (LF), Forward (F),
Forward-Back (FB), Right (R), Right-Back (RB), Back (B), and Pause (P) from
a state.

216 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

4.5.2 Experimental Approach

Experimental approaches for both learning and planning phases are given below.

4.5.2.1 Learning Phase

In the present chapter, it is assumed that agents can observe other agents’ state,
action, and reward, i.e. the environment can be represented as a Multi-agent Mar-
kov Decision Process (MMDP) [3]. Hence, in the above perspective, interagent
communication is not required. The parameters required during the learning
phase of the ΩQL-I, CΩQL-I, ΩQL-II, CΩQL-II, NQL, FQL, and CQL algorithms
are set as follows: discounting factor γ = 0.90, learning rate α = 0.2, and maximum
immediate reward = 100. In NQL, FQL, and CQL algorithms, a reward of−1 (pen-
alty) is given to an agent, when it hits other agents besides when hitting an obstacle
or boundary wall in the proposed Experiments 4.1, 4.2, and 4.3. However, inΩQL-
I, CΩQL-I, ΩQL-II. and CΩQL-II algorithms, an agent receives the same reward
(−1) due to penalty (hitting an obstacle or the boundary wall). InΩQL-I andΩQL-
II, because of the collision among the agents and in CΩQL-I and CΩQL-II, because
of collision among the agents as well as collision between the stick (or triangle)
with an obstacle results in a reward of −1, however, individually agents are not
penalized for the former cause. In simulation, the system joint state-transition
probabilities are assigned as randomly generated constant values assuming the
workspace to be slippery, satisfying the property of a Markovian matrix, subject
to the sum of state-transition probabilities at each state is unity, and slippery work-
space is the cause of uncertainty. In hardware, experiments are conducted only in
the deterministic environment. To determine convergence performance of NQL,
FQL, CQL,ΩQL-I, CΩQL-I,ΩQL-II, and CΩQL-II algorithms, the number (or per-
centage) of joint state–action pairs having converged Q-values after each learning
epoch (Nalgo) is accumulated in an array to plot with respect to the learning epoch,
where algo {NQL, FQL, CQL, ΩQL-I, CΩQL-I, ΩQL-II, CΩQL-II}. The plots are
shown under Experiment 4.1. In case of CQL, the average of Nalgo among the four
variants of CQL is done before comparison.

4.5.2.2 Planning Phase

To study the total execution time in the planning phase (Experiments 4.2 and 4.3),
the run-time complexity of ΩMP, CΩMP, and CQIP algorithms are evaluated uti-
lizing the ‘run & time’ button in MATLAB GUI. To study the run-time complexity
during hardware test by Khepera-II mobile robot, a stop watch is used. Let Talgo be
the run-time complexity of the algo {CQIP, CΩMP,ΩMP}. For multiple solutions
(joint action or equilibrium), the solution which appears first is selected by all the

4.5 Simulation and Experimental Results 217

agents. Let Si be the starting position of robot Ri and Gi is the goal position of the
robot, i {1, 2, 3}. Real-time planning with Khepera-II mobile robots is followed
after learning by computer simulation. Results for Experiments 4.1, 4.2, and 4.3 are
given below.

4.5.3 Experimental Results

Experiments 4.1, 4.2, and 4.3 are given below in detail.

Experiment 4.1 Performance Test of the Proposed Learning Algorithms

The motivation of this experiment is to examine the convergence of the ΩQL-I,
CΩQL-I (Figures 4.3a, 4.4a, and 4.5a), and ΩQL-II, CΩQL-II (Figures 4.3b, 4.4b,
and 4.5b) algorithms with learning epoch for a two/three agent system. In
Figures 4.3–4.5, all the algorithms are run for 20 times separately in an obsta-
cle-free 5 × 5 grid map and the mean from the above 20 runs is evaluated. It is
apparent from Figure 4.3 that for both the schemes NCQL>NΩQL >NCΩQL,Ω
{E, U, R, L}. This is supported by (4.68) and (4.69). It is also observed from
Figure 4.3 that NΩQL-I ≈NΩQL-II, NCΩQL-I ≈NCΩQL-II, and NNQL ≈NFQL ≈NCQL.
Further, the learning epochs required for convergence of NQL exceeds the same
for ΩQL algorithms, which in turn exceeds the same for CΩQL algorithms. This
is supported by (4.73) and (4.75). Hence, it is apparent from Figure 4.3 that CΩQL
algorithms outperform NQL, FQL, CQL, and ΩQL algorithms in terms of speed
of convergence. In Figure 4.3, a fluctuation is observed in the curves of CΩQL
because of task-constraint checking (here, maintaining stick length in stick-
carrying problem). Table 4.1 offers the average of the percentage of joint
state–action pair converged. It is apparent that Table 4.1 supports (4.68),
(4.69), (4.73), and (4.75). Similar inferences can be drawn from Figures 4.4
and 4.5.
Table 4.2 shows the superiority of the proposed schemes in terms of the run-time

complexity of single learning epoch over the equilibrium-based MAQL including
CQL for two agents.

Experiment 4.2 Object (Box)-Carrying By Scheme-I-Based Proposed
Planning Algorithms

The motivation of this experiment is to transport a box by two agents from a given
starting position to the desired destination utilizing the earlier experimental

218 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

0
0

0.5

1

1.5

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

2

2.5

Equilibrium-based MAQL

(a)

ΩQL-l, Ω∈{E, U, R, L}

CΩQL-l, Ω∈{E, U, R, L}

3

1 2 3 4
Learning epoch

5 6 7

NQL
FQL
CQL
EQL-I
UQL-I
RQL-I
LQL-I
CEQL-I
CUQL-I
CRQL-I
CLQL-I

8
× 105

× 104

0
0

0.5

1

1.5

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

2

2.5
Equilibrium-based MAQL

(b)

ΩQL-Il, Ω∈{E, U, R, L}

CΩQL-Il, Ω∈{E, U, R, L}

3

1 2 3 4
Learning epoch

5 6 7

NQL
FQL
CQL
EQL-II
UQL-II
RQL-II
LQL-II
CEQL-II
CRQL-II
CUQL-II
CLQL-II

8
× 105

× 104

Figure 4.3 Convergence comparison of ΩQL, CΩQL, NQL, FQL, and CQL algorithms for
two agents five actions, where Ω {U, E, R, L}. (a) Scheme-I and (b) Scheme-II.

4.5 Simulation and Experimental Results 219

4

3

2

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

1

0
0 1 2

(a)

3 4
Learning epoch

5 6 7 8
× 108

× 108

Equilibrium-based MAQL

ΩQL-l, Ω∈{E, U, R, L}

CΩQL-l, Ω∈{E, U, R, L}

NQL
FQL
CQL
EQL-I

UQL-I
RQL-I

LQL-I
CEQL-I
CUQL-I
CRQL-I
CLQL-I

4

3

2

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

1

0
0 1 2

(b)

3 4
Learning epoch

5 6 7 8
× 108

× 108

Equilibrium-based MAQL

ΩQL-Il, Ω∈{E, U, R, L}

CΩQL-Il, Ω∈{E, U, R, L}

NQL
FQL
CQL
EQL-II

UQL-II
RQL-II

LQL-II
CEQL-II
CUQL-II
CRQL-II
CLQL-II

Figure 4.4 Convergence comparison of ΩQL, CΩQL, NQL, FQL, and CQL algorithms for
three agents five actions, where Ω {U, E, R, L}. (a) Scheme-I and (b) Scheme-II.

220 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

platform and approach for Ω = R. Corresponding simulation and experimental
results for the planning paths are shown in Figures 4.6 and 4.7. In Map 4.1
(Figures 4.6 and 4.7), there are seven obstacles and two agents (robots). Each agent
has a gripper to grip the box with an aim to transport it from one position to

10

12

6

8

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

2

4

0
0 1 2

(a)

3 4
Learning epoch

5 6 7 8
× 108

× 105

Equilibrium-based MAQL

ΩQL-l, Ω∈{E, U, R, L}

CΩQL-l, Ω∈{E, U, R, L}

NQL
FQL
CQL
EQL-I

UQL-I
RQL-I

LQL-I
CEQL-I
CUQL-I
CRQL-I
CLQL-I

10

12

6

8

N
um

be
r

of
 jo

in
t s

ta
te

–a
ct

io
n

pa
ir

co
nv

er
ge

d

2

4

0
0 1 2

(b)

3 4
Learning epoch

5 6 7 8
× 108

× 105

Equilibrium-based MAQL

ΩQL-Il, Ω∈{E, U, R, L}

CΩQL-Il, Ω∈{E, U, R, L}

NQL
FQL
CQL
EQL-II

RQL-II
UQL-II

LQL-II
CEQL-II
CUQL-II
CRQL-II
CLQL-II

Figure 4.5 Convergence comparison ofΩQL, CΩQL, NQL, FQL, and CQL algorithms for two
agents nine actions, where Ω {U, E, R, L}. (a) Scheme-I and (b) Scheme-II.

4.5 Simulation and Experimental Results 221

Table 4.2 Average run-time complexity of different learning algorithms (second).

Algorithm Unconstraint Constraint Algorithm Unconstraint Constraint

EQL-I 0.008 0.014 LQL-II 1.011 1.017

UQL-I 0.019 0.023 EQL 12.019 X

RQL-I 0.008 0.015 UQL 22.018 X

LQL-I 1.008 1.015 RQL 12.020 X

EQL-II 0.010 0.016 LQL 32.801 X

UQL-II 0.021 0.025 NQL 14.201 X

RQL-II 0.012 0.016 FQL 16.206 X

Table 4.1 Average of the percentage (%) of joint state–action pair converged within
1 × 105 learning epochs of different learning algorithms.

Algorithm Unconstraint (%) Constraint (%) Algorithm Unconstraint (%) Constraint

EQL-I 99.76 100 LQL-II 99.96 100%

UQL-I 99.57 100 EQL 89.76 X

RQL-I 99.46 100 UQL 90.75 X

LQL-I 99.78 100 RQL 90.17 X

EQL-II 99.96 100 LQL 89.98 X

UQL-II 99.84 100 NQL 89.67 X

RQL-II 99.84 100 FQL 90.61 X

1

S1 1

1 1

1
1 1

1

1 1 1 1 1

2

2

2

2

2

2

2

2
2

22 S2

G

2

4

5

6

3 7

Figure 4.6 (Map 4.1) Planning with box by
CQIP, CΩMP, and ΩMP algorithms.

222 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

another. If two or more than two robots gather, then they exchange the box (indi-
cated by thick arrow in Figure 4.6 and by a circle in Figure 4.7), motivated by the
principle of market-based multi-robot coordination [51]. In Figure 4.7, two Khe-
pera-II mobile robots are employed in real time, for box transportation task. In real
time, only robot 2 (R2) has a gripper to grip the box (Figure 4.7) and robot 1 (R1)
transports the same by carrying it on its top.
Table 4.3 provides the mean of the run-time complexity of the 20 runs of the

CQIP, CΩMP, and ΩMP algorithms. It is apparent from Table 4.3 that TCQIP>
TCΩMP> TΩMP, which is supported by (4.75). Hence, it is apparent from
Table 4.3 that ΩMP algorithm outperforms the existing algorithms in terms of
run-time complexity.

Experiment 4.3 Stick- or Triangle-Carrying By Model-II-Based
Proposed Planning Algorithms

The motivation of this experiment is to transport a stick (by twin agents) or a tri-
angle (by three agents) from a given starting position to the desired destination

Figure 4.7 (Map 4.1) Planning using Khepera-II mobile robot by CQIP, CΩMP, and ΩMP
algorithms, the planned path of which is given in Figure 4.6 also.

4.5 Simulation and Experimental Results 223

utilizing the above explained experimental platform and approach for Ω = E. To
transport a stick, an agent is contingent upon other agents, where all the agents
have to reach their individual goal simultaneously to successfully complete the
task. InMap 4.2 (Figures 4.8 and 4.9), two robots transport a fixed length stick from
a given joint state to the joint next state, indicated by arrows avoiding eight obsta-
cles. In Figures 4.8 and 4.9, robots follow optimal strategy (CE) using ΩMP or
CΩMP algorithm. On the other hand, in CQIP, robots evaluate the same CE using
m joint Q-tables obtained after CQL. Similarly, in Map 4.3 (Figure 4.10), three
robots transport a triangle from a given joint state to the joint next state, indicated
by arrows avoiding seven obstacles.
Table 4.4 provides the mean of the run-time complexity of the 20 runs of the

CQIP, CΩMP, and ΩMP algorithms. By Table 4.4, one can conclude that TCQIP

> TCΩMP> TΩMP, which supports (4.75). Hence, it is apparent from Table 4.4 that
ΩMP algorithm outperforms the existing algorithms in terms of run-time
complexity.

Table 4.3 Average run-time complexity of different planning algorithms (second).

Map CQIP algorithm

Proposed planning algorithms

CΩMP ΩMP

4.1 (Figure 4.4) 15.93 10.92 8.90

4.1 (Figure 4.5) with 2 unit speed 28.84 23.75 21.92

4.1 (Figure 4.5) with 5 unit speed 18.65 13.65 11.97

2

3

1

8

7

6

5

4

G1

1

1

1
1

1

1
1

1

1
1

1

1S1 S2

1
2

2

2
2

2

2
2

2
2

2

2

2

2

G2

Figure 4.8 (Map 4.2) Planning with stick by
CQIP, CΩMP, and ΩMP algorithms.

224 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Table 4.4 Average run-time complexity of different planning algorithms (second).

Map CQIP algorithm

Proposed planning algorithms

CΩMP ΩMP

4.2 (Figure 4.8) 29.31 15.91 10.31

4.3 (Figure 4.10) 37.92 20.13 16.11

4.2 (Figure 4.9) with 2 unit speed 39.72 20.31 15.31

4.2 (Figure 4.9) with 5 unit speed 34.55 17.63 13.46

Figure 4.9 (Map 4.2) Path planning using Khepera-II mobile robot by CQIP, CΩMP, and
ΩMP algorithms, the planned path of which is given in Figure 4.6 also.

1

S2

G2

G3
G1

S1

S3

2 2
3

2

2 2

2

2

2

2
2

2

2

2
2

2

2

2

3
3

3

3

3

3

3

3

3
3

3

3
3

3

3

3

1

1

1

1
1

1

1

1

1 1

1

1

1
1

1

1 1

2

3

7

6

5

4

Figure 4.10 (Map 4.3) Path planning with
triangle employing CQIP, CΩMP, and ΩMP
algorithms.

4.5 Simulation and Experimental Results 225

4.6 Conclusion

The chapter introduces a new approach toMAQL and learning-basedmulti-agent pla-
nning by efficiently fusing the CE and the proposed principles of Scheme-I and -II.
The principles adapted in the proposed schemes yield a single Q-table in joint
state–action space, which contains sufficient information to plan by employing the
proposedmulti-agent planning algorithms. Also the task-constraint is considered dur-
ing the learning phase to further reduce the space-, time-, and run-time complexities.
CE is efficiently employed in the proposed Scheme-I and -II to obtain single Q-

table in joint state–action space. The Q-table obtained from Scheme-I and -II, with
less computational cost than the CQL, contains sufficient information to plan by
employing the proposed ΩMP and CΩMP. This is also proved by Theorems 4.1–
4.4. Convergence analyses of both the schemes are provided in Theorems 4.5 and
4.6, respectively. Although CΩMP plans well, it needs to satisfy the task-constraint
(e.g. stick length in stick-carrying problem) during the planning phase. To save the
run-time for task-constraint satisfaction, CΩQL is proposed, where only feasible
joint state–action pairs that satisfy the task-constraint are learned and the proposed
ΩMP follows the CΩQL. An analysis reveals that both time- and space-complexities
of proposed learning and planning algorithms are significantly less than those of the
CQL. A further reduction in complexity is obtained by dropping the infeasible joint
state–action pairs from the joint Q-table.
Simulation and practical experimental results are given to validate the superior-

ity of the proposed algorithms over the reference algorithms considering space-,
time-, and run-time complexities as the performance metrics.

4.7 Summary

Unlike CQL, this chapter proposes an attractive approach to adapt composite
rewards of all the agents in one Q-table in joint state–action space during learning,
and subsequently these rewards are employed to compute correlated equilibrium in
the planning phase. Two separate schemes ofMAQL have been proposed. If success
of only one agent is enough tomake the team successful, then Scheme-I is employed.
However, if an agent’s success is contingent upon other agents and simultaneous
success of the agents is required, then Scheme-II is employed. It is also shown that
the CE obtained by the proposed algorithms and by the traditional CQL is identical.
In order to restrict the explorationwithin the feasible joint states, constraint versions
of the said algorithms are also proposed. Complexity analysis and experiments have
been undertaken to validate the performance of the proposed algorithms in multi-
robot planning on both simulated and real platforms.

226 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

Appendix 4.A Supporting Algorithm and Mathematical
Analysis

The expected optimal Q-value of an agent i at next state si Si is denoted by

Q
∗
i si and is expressed in (4.A.1).

Q
∗
i si =

si

pi si si, ai
ai

p∗i ai si Qi si , ai 4 A 1

Here, ai Ai is the action at si Qi si , ai be the Q-value of agent i at next state

si Si because of action ai Ai p∗i Ai 0, 1 is the optimal probability distri-
bution over Ai.

Algorithm 4.A.1 Correlated Q-Learning (CQL)

Input: Learningrateα [0,1)anddiscountingfactor γ [0,1);

Output: Optimal joint Q-value Q∗
i G,K , G, K, i;

Begin

Initialize: Current state si, action set Ai at si, joint

Q-value Qi(G, K) 0, G, K, i;

Repeat

Randomly select an action ai Ai, i and execute it;

Observe joint immediate reward ri(G, K), i;

Evaluate next state si δi si,ai , i to obtain joint next

state G = < si > m
i = 1 for m agents;

Qi G,K 1− α Qi G,K + α ri G,K + γ ΩQ∗
i G , i and G

G/; //Ω {U, E, R, L}

Until Qi(G, K), G, K, i converges;

Q∗
i G,K Qi G,K , G, K, i;

End.

Appendix 4.A Supporting Algorithm and Mathematical Analysis 227

The time-complexity forΩ {U, L} are given in Table 4.A.1 for the traditional as
well as for the proposed algorithms. Let N be the maximum number of digits
required to represent one Q-value all agents’ Q-values.
It is apparent from Table 4.A.1 and earlier complexity analysis in Section 4.4 that

the time-complexity of the proposed planning algorithms does not vary with the
variation of Ω.

References

1 Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2010). Reinforcement
Learning and Dynamic Programming Using Function Approximators. New York:
CRC Press.

2 Poole, D.L. and Mackworth, A.K. (2010). Artificial Intelligence: Foundations of
Computational Agents. Cambridge University Press.

3 Sutton, R.S. and Barto, A.G. (1998). Introduction to Reinforcement Learning.
Cambridge, MA: MIT Press.

4 Mitchell, T.M. (1997). Machine Learning. McGraw-Hill.
5 Pradhan, S.K. and Subudhi, B. (2012). Real-time adaptive control of a flexible

manipulator using reinforcement learning. IEEE Transactions on Automation
Science and Engineering 9 (2): 237–249.

6 Vrancx, P., Verbeeck, K., and Nowe, A. (2008). Decentralized learning in markov
games. IEEE Transactions on Systems, Man and Cybernetics (Part B: Cybernetics) 38
(4): 976–981.

7 Leng, J., Jain, L., and Fyfe, C. (2007). Convergence analysis on approximate
reinforcement learning. In: Knowledge Science, Engineering and Management (eds.
Z. Zhang and J. Siekmann), 85–91. Berlin, Heidelberg: Springer.

Table 4.A.1 Time-complexity analysis.

Algorithm Ω = U Ω = L

Learning CQL m|A|m+ (|A|m− 1) Nm|A|m+ (|A|m− 1)

ΩQL-I m(A − 1) +m m(A − 1) +Nm

CΩQL-I m(A − 1) +m+ tCΩQL-I m(A − 1) +Nm+ tCΩQL-I

ΩQL-II m(A − 1) + 2m m(A − 1) + 2Nm

CΩQL-II m(A − 1) + 2m+ tCΩQL-I m(A − 1) + 2Nm+ tCΩQL-I

Planning CQIP m|A|m+ (|A|m− 1) + tCQIP Nm|A|m+ (|A|m− 1) + tCQIP

ΩMP (|A|m− 1) (|A|m− 1)

CΩMP (|A|m− 1) + tCΩMP (|A|m− 1) + tCΩMP

228 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

8 Park, S. and Roh, K.S. (2016). Coarse-to-fine localization for amobile robot based on
place learningwith a 2-D range scan. IEEE Transactions on Robotics https://doi.org/
10.1109/TRO.2016.2544301.

9 Kamkarian, P. and Hexmoor, H. (2013). A human inspired collision avoidance
strategy for moving agents. Proceedings of IEEE Federated Conference on Computer

Science and Information System,Kraków, Poland (8–11 September 2013), pp. 63–67.
10 Ng, A.Y., Coates, A., Diel, M. et al. (2006). Autonomous inverted helicopter flight

via reinforcement learning. In: Experimental Robotics IX (eds. O. Khatib, V. Kumar
and G. Pappas), 363–372. Berlin, Heidelberg: Springer.

11 Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 38 (2): 156–172.

12 Hu, Y., Gao, Y., and An, B. (2014). Accelerating multiagent reinforcement learning
by equilibrium transfer. IEEE Transactions on Cybernetics 45 (7): 1289–1302.

13 Samejima, K. and Omori, T. (1999). Adaptive internal state space construction
method for reinforcement learning of a real-world agent. Neural Networks 12 (7):
1143–1155.

14 Mahadevan, S. (1994). To discount or not to discount in reinforcement learning: a
case study comparing R learning and Q learning. International Conference on
Machine Learning New Brunswick, NJ (10–13 July 1994), pp. 164–172.

15 Littman, M.L. (2001). Value-function reinforcement learning in Markov games.
Cognitive Systems Research 2 (1): 55–66.

16 Konar, A., Chakraborty, I.G., Singh, S.J. et al. (2013). A deterministic improved
Q-learning for path planning of amobile robot. IEEE Transactions on Systems, Man,

And Cybernetics: Systems 43 (5): 1–13.
17 Watkins, C.J. and Dayan, P. (1992). Q-learning.Machine Learning 8 (3–4): 279–292.
18 Bin, Z. and Lin, Z. (2014). Consensus of high-order multi-agent systems with large

input and communication delays. Automatica 50 (2): 452–464.
19 D. Chakraborty and P. Stone, “Multiagent learning in the presence of memory-

bounded agents,” Autonomous Agents and Multi-agent Systems, Elsevier, vol. 28 no.
2, pp. 182-213, 2014.

20 Shoham, Y., Powers, R., and Grenager, T. (2003). Multi-agent reinforcement
learning: a critical survey, Web manuscript, 2003. https://www.cc.gatech.edu/
classes/AY2009/cs7641_spring/handouts/
MALearning_ACriticalSurvey_2003_0516.pdf (accessed 27 May 2020).

21 Hu, J. and Wellman, M.P. (2003). Nash Q-learning for general-sum stochastic
games. The Journal of Machine Learning Research 4: 1039–1069.

22 Greenwald, A., Hall, K., and Serrano, R. (2003). Correlated Q-learning.
International Conference on Machine Learning 3: 242–249, Washington, DC.

23 Littman,M.L. (2001). Friend-or-foe Q-learning in general-sum games. International
Conference on Machine Learning 1: 322–328, MA, USA.

References 229

24 Bowling, M. (2000). Convergence problems of general-sum multiagent
reinforcement learning. International Conference on Machine Learning: 89–94.

25 Sen, S., Mahendr, S., and Hale, J. (1994). Learning to coordinate without sharing
information. Association for the Advancement of Artificial Intelligence, Washington
(31 July to 4 August 1994), pp. 426–431.

26 Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative
agents. Proceedings of the Tenth International Conference on Machine Learning,
Amherst, MA (27–29 June 1993). Vol. 337.

27 Yanco, H. and Stein, L. (1993). An adaptive communication protocol for
cooperating mobile robots. Proceedings of the 2nd International Conference on
Simulation of Adaptive Behavior, Chicago (August 1993), pp. 478–485. Cambridge
MA: The MIT Press.

28 Hu, J. and Wellman, M.P. (1998). Multiagent reinforcement learning: theoretical
framework and an algorithm. International Conference on Machine Learning 98:
242–250.

29 Muelling, K., Boularias, A., Mohler, B. et al. (2014). Learning strategies in table
tennis using inverse reinforcement learning. Biological Cybernetics 108 (5): 603–619.

30 Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in
cooperative multiagent systems. Association for the Advancement of Artificial
Intelligence/American Association for Artificial Intelligence, Madison, WI (26–30
July 1998), pp. 746–752.

31 Leng, J., Fyfe, C., and Jain, L. (2008). Simulation and reinforcement learning with
soccer agents. Multiagent and Grid Systems 4 (4): 415–436.

32 Littman, M.L. and Stone, P. (2005). A polynomial-time Nash equilibrium algorithm
for repeated games. Decision Support Systems 39 (1): 55–66.

33 Peters, J., Vijayakumar, S., and Schaal, S. (2003). Reinforcement learning for
humanoid robotics. Proceedings of the International Conference on Humanoid
Robots, Las Vegas (27–31 October 2003), pp. 1–20.

34 Boutilier, C. (1996). Planning, learning and coordination in multiagent decision
processes. Proceedings of the 6th Conference on Theoretical Aspects of Rationality and
Knowledge, De Zeeuwse Stromen, Netherlands (17–20 March 1996), pp. 195–210.
Morgan Kaufmann Publishers Inc.

35 Polak, B. (2007). Game Theory. Yale University. http://oyc.yale.edu/economics/
econ-159 (accessed 27 May 2020).

36 Nash, J. (1951). Non-cooperative games. Annals of Mathematics 54 (2): 286–295.
37 Fan, Q., Zeitouni, K., Xiong, N. et al. (2017). Nash equilibrium-based semantic

cache in mobile sensor grid database systems. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 47 (9): 2550–2561.

38 Barreiro-Gomez, J., Obando, G., and Quijano, N. (2017). Distributed population
dynamics: optimization and control applications. IEEE Transactions on Systems,

Man, and Cybernetics: Systems 47 (2): 304–314.

230 4 An Efficient Computing of Correlated Equilibrium for Cooperative Q-Learning-Based Multi-Robot Planning

39 Hu, Y., Gao, Y., and An, B. (2015). Accelerating multiagent reinforcement learning
by equilibrium transfer. IEEE Transactions on Cybernetics 45 (7): 1289–1302.

40 Kok, J.R. and Vlassis, N. (2004). Sparse cooperative Q-learning. Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, Alberta (4–8
July 2004), p. 61. ACM.

41 Zhang, Z., Zhao, D., Gao, J. et al. (2017). FMRQ-a multiagent reinforcement
learning algorithm for fully cooperative tasks. IEEE Transactions on Cybernetics 47
(6): 1367–1379.

42 Eilers, D., Dunis, C.L., von Mettenheim, H.J., and Breitner, M.H. (2014). Intelligent
trading of seasonal effects: a decision support algorithm based on reinforcement
learning. Decision Support Systems 64: 100–108.

43 Sadhu, A.K., Rakshit, P., and Konar, A. (2016). A modified imperialist competitive
algorithm for multi-robot stick-carrying application. Robotics and Autonomous
Systems 76: 15–35.

44 Sadhu, A.K. and Konar, A. (2017). Improving the speed of convergence of multi-
agent Q-learning for cooperative task-planning by a robot-team. Robotics and
Autonomous Systems 92: 66–80.

45 de Weerdt, M. and Clement, B. (2009). Introduction to planning in multiagent
systems. Multiagent and Grid Systems 5 (4): 345–355.

46 Greenwald, A., Hall, K., and Zinkevich,M. (2007). CorrelatedQ-learning. Journal of
Machine Learning Research 1 (1): 1–30.

47 Kaelbling, L.P., Littman, M.L., and Moore, A.W. (1996). Reinforcement learning: a
survey. Journal of Artificial Intelligence Research: 237–285.

48 Franzi, E. (1998). Khepera BIOS 5.0 Reference Manual. K-Team, SA.
49 K. U. M. Version (1999). Khepera User Manual 5.02. K-Team, SA.
50 Siemens Semiconductor Group. SFH 900-a low cost miniature reflex optical sensor

app note 26. SFH900 Datasheet.
51 Dias, M.B. (2004). Traderbots: a new paradigm for robust and efficient multi-robot

coordination in dynamic environments. Doctoral dissertation. Carnegie Mellon
University Pittsburgh.

References 231

5

A Modified Imperialist Competitive Algorithm
for Multi-Robot Stick-Carrying Application

This chapter proposes a novel evolutionary optimization approach of solving a
multi-robot stick-carrying problem. The problem refers to determine the time-
optimal trajectory of a stick, being carried by two robots, from a given starting posi-
tion to a predefined goal position amidst static obstacles in a robot world map. The
problem has been solved using a new hybrid evolutionary algorithm (EA). Hybrid-
ization, in the context of evolutionary optimization framework, refers to develop-
ing new algorithms by synergistically combining the composite benefits of global
exploration and local exploitation capabilities of different ancestor algorithms. The
chapter proposes a novel approach to embed themotion dynamics of fireflies of the
Firefly Algorithm (FA) into a sociopolitical evolution-based meta-heuristic search
algorithm, known as the Imperialist Competitive Algorithm (ICA). The proposed
algorithm also uses a modified random walk strategy based on the position of the
candidate solutions in the search space to effectually balance the trade-off between
exploration and exploitation. Thirteen other state-of-the-art techniques have been
used here to study the relative performance of the proposed Imperialist Compet-
itive Firefly Algorithm (ICFA) with respect to run-time and accuracy (offset in
objective function from the theoretical optimum after termination of the algo-
rithm). Computer simulations undertaken on a well-known set of 25 benchmark
functions reveal that the incorporation of the proposed strategies into the tradi-
tional ICA makes it more efficient in both run-time and accuracy. The perfor-
mance of the proposed algorithm has then finally been studied on the real-time
multi-robot stick-carrying problem. Experimental results obtained for both simu-
lation and real frameworks indicate that the proposed algorithm-based stick-
carrying scheme outperforms other state-of-the-art techniques with respect to
two standard metrics defined in the literature. The application justifies the impor-
tance of the proposed hybridization and parameter adaptation strategies in prac-
tical systems.

233

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

5.1 Introduction

Multi-robot coordination has emerged as an important part of robotics research
since late 1980s [1]. The problem of coordination of multiple robots arises in
numerous applications, for example, in factory environment (to transfer materials
and products between workstations), in patient-carrying systems in hospitals/air-
ports, and in defense and security systems. Coordination in multi-agent robotics
aims at synchronizing and harmonizing the simultaneous actions of multiple
robotic agents in pursuit of a specific goal. One of the crucial challenges for
multi-agent coordination systems is to design appropriate coordination strategies
between the robotic agents that enable them to perform effectively and time
optimally in complex workspace. There exists extensive literature on multi-robot
coordination employing different approaches including graphs [2], Voronoi
diagrams [3], potential field [4], adaptive action selection [5], intention inference
[6], cooperative conveyance [7], and perceptual cues [8]. The traditional mathe-
matical model of a multi-robot coordination system can be recast in the settings
of an optimization problem [9] with an aim to efficiently utilize the system
resources. The objective of optimization here is to determine optimal robotic
actions based on the sensory readings collected from the environment by the
robots to meet one or more desired objectives of the problem. Thus, optimization
of the objective functions, characterizing the functionality of a multi-robot coor-
dination system, provides the feasible solutions for the qualitative system perfor-
mance. The chapter proposes a novel formulation of a multi-robot stick-carrying
system as an optimization problem. The stick-carrying problem [10] includes two
robots to jointly carry a stick from an assigned initial position to a specified final
position in a given environment, without collision with the given obstacles near
the robots and the stick, constrained by the constant distance (equal to the stick
length) between the robots. The sensory data of the robots, offering the range mea-
surements of the stick from the nearby obstacles and the workspace boundary, are
the input variables of the optimization problem while the output variables being
the necessary amount of rotation and translation of the stick (by the robots) to
transfer it in small steps toward the goal. The primary objective function of the
stick-carrying optimization problem in this context is concerned with the minimi-
zation of the time consumed by the robots (i.e. the length of the path to be tra-
versed by the robots) for complete traversal of the planned trajectory. In other
words, we expect the robots to plan the local trajectory, so that the stick is shifted
from a given position to the next position (subgoal) in a time-optimal sense avoid-
ing collision with the obstacles or the boundary of the world map in the robots’
workspace. The optimization algorithm is executed for each local planning step
to carry the stick by a small distance. A sequence of local planning ultimately
transports the stick to the desired goal position.

234 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

In the past decades, a plethora of computing algorithms has been proposed in
the domain of numerical function optimization. Traditional derivative-based opti-
mization techniques, such as Newton–Raphson method, quasi-Newton strategy,
and steepest descent learning algorithm, and the like, completely rely on the deriv-
ative information of the objective function guiding the direction of search in the
fitness landscape. These methods perform satisfactorily when the objective func-
tion to be optimized is globally concave over the search space. However, in real-
world scenario, the objective functions are sometimes found to be irregular and
multimodal comprising multiple local optima, saddle points, and discontinuities.
Traditional gradient-based optimization algorithms are, therefore, ineffective to
capture the global optima of these non-differentiable functions.
Since early 1990s, EAs have emerged as a derivative-free stochastic global opti-

mizer with capability of providing promising results to optimize the non-
differentiable functions of the real-world problems. EAs with the real-valued vec-
tor representation of the potential solutions of a complex physical system have
earned wide popularity due to their flexibility and simple search strategy in the
high-dimensional hyperspace and robust performance in the dynamic environ-
ment. They commence with a population of trial solutions, symbolizing the poten-
tial solutions of the problem. The relative integrity of a solution can be assessed by
evaluating its associated objective function value (often called fitness). New solu-
tions are then generated by population-based evolutionary procedure. Finally, a
greedy selection step is employed being inspired by Darwinian principle of the
survival of the fittest. The selection step is responsible for filtering and promoting
better candidate solutions from the candidate pool to the next evolutionary
generation.
The radical reduction in the computational time in the recent past coupled with

the increasing demand to solve complex real-world problems has enhanced the
quest for more proficient nature-inspired meta-heuristics. It is to be noted that
two fundamental processes drive the evolution of an EA population – the diversi-
fication process, which enables exploring different regions of the search space and
the intensification process, which ensures the exploitation of previous knowledge
about the fitness landscape. The effects of such exploration and exploitation pro-
cesses need to be competently balanced by an EA for its qualitative performance
both w.r.t computational accuracy and run-time complexity over different fitness
landscapes.
However, the superiority of an EA in optimizing different objective functions is

subjected to the No Free Lunch Theorem (NFLT) [11]. According to NFLT, the
expected effectiveness of any two traditional EAs across all possible optimization
problems is identical. A self-evident implication of NFLT is that the elevated per-
formance of one EA, say A, over other EA, say B, for one class of optimization pro-
blems is counterbalanced by their respective performances over another class. It is

5.1 Introduction 235

therefore practically difficult to devise a universal EA that would solve all the pro-
blems. This apparently paves the way for hybridization of EAs with other optimi-
zation strategies, machine learning techniques, and heuristics. In evolutionary
computation paradigm, hybridization [12] refers to the process of integrating
the attractive features of two or more EAs synergistically to develop a new hybrid
EA. The hybrid EA is expected to outperform its ancestors w.r.t both accuracy and
complexity over application-specific or general benchmark problems. The fusion
of EAs through hybridization hence can be regarded as the key to overcome their
individual limitations.
In this chapter, we propose a simple yet very powerful hybrid EA by collegially

coalescing the attributes of two global optimizers – the traditional ICA [13, 14] and
the traditional FA [15]. ICA is a novel sociopolitically motivated population-based
meta-heuristic, which has revealed remarkable performance in variant fields of
optimization problems. The population individuals of ICA, resembling the coun-
tries in the world, are categorized as imperialist (best countries) and colonies
(rest of the population) based on their associated objective function values. The
entire population is subsequently divided into a number of subpopulations, known
as empires, each consisting of an imperialist and a number of colonies (randomly
selected based on the ruling power of the respective imperialist). The foundation of
ICA is rooted in three elementary operations: (i) assimilation, which allows the
possible movement of the colonies to their respective imperialist (strengthening
exploitation), (ii) revolution, which brings out sudden change in the countries’
sociopolitical views (preventing premature convergence of ICA), and (iii) the
imperialistic competition, which reinforces the powerful empires with an attempt
to collapse the weakest one. There exists a vast literature on the modification and
application of ICA. Among these the following contributions need special
mentioning.
A new EA has been proposed in [16] by combining ICA, Differential Evolution

(DE) [17], and K-means clustering algorithm. ICA is also successfully hybridized
with EA [18] and Genetic Algorithm (GA) [19]. ICA is treated as a local search
strategy to develop a new memetic algorithm in [20]. A new variant of ICA has
been introduced in [21] by strengthening the interaction among the imperialists
of all the empires. A modified version of ICA is proposed in [22] based on the
attraction and repulsion profiles between countries in an empire and is applied
to solve a brushless direct current wheel motor design problem. A hybrid ICA,
along with an artificial neural network, is implemented in [23] for oil flow rate
prediction combining the local search facility of back-propagation and the global
search ability of ICA. Seven different chaotic maps are utilized in [24] to improve
the convergence characteristics of traditional ICA. Chaos has also been employed
in [25] to adapt the angle of movement of colonies in ICA. In [26], an adaptive
colony-radius selection strategy is proposed for improvement in the assimilation

236 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

policy of ICA. ICA has also been extended to solve constrained optimization policy
in [27] equipped with a classical penalty technique.
In [28], ICA is used to solve the dynamic economic dispatch problem while ICA

is utilized for parameter identification of a reduced detailed R-C-L-M model of
transformer in [29]. The capability of ICA to efficiently control the traffic of a
metropolis is studied in [30]. ICA has also shown its potential to design a novel
rotor configuration [31]. In [32], promising results are obtained for optimal design
of a brushless doubly fed induction generator using ICA. ICA has also been suc-
cessfully applied for clustering [33] and optimizing epoxy adhesive layer in fiber-
glass [34]. ICA has also been utilized to optimize the skeletal structures [35] and
for solving the integrated product mix-outsourcing optimization problem [36]. The
efficiency of ICA has also been validated in the field of template matching [37], IIR
filter design [38], nonlinear multiple response [39], graph coloring problem [40],
PID controller tuning [41], and scheduling in a hybrid flexible flow-shop [42].
A comparative study carried out in [43] exposes superiority of ICA over Particle
Swarm Optimization (PSO) in solving the inverse problem in eddy current nonde-
structive evaluation.
On the other hand, FA is a population-basedmeta-heuristic search algorithm for

numerical function optimization that draws inspiration from the collective behav-
ior and biochemical properties of fireflies. The motion dynamic of fireflies is
derived from four properties of the social interaction between a group of mobile
agents – following, dispersion, aggregation, and homing. In [44], a fuzzy controller
is employed to adaptively tune FA parameters for its better performance. In con-
trast, a novel strategy employing optimal deviation-based FA-tuned fuzzy mem-
bership function is introduced in [45] for multi-objective unit commitment
problem. Another multi-objective variant of FA, adaptively tuning its control para-
meters using beta distribution, is proposed in [46]. A high convergence speed is
obtained in [47] by using a Gaussian probability distribution-based position
renewal of fireflies. FA has been extensively applied to many optimization fields,
including annual crop planning problem [48], complex and nonlinear prob-
lem [49], data mining [50], digital image processing [51], structural size and shape
optimization [52], hybrid flow-shop scheduling problems [53], QAP problem [54],
queuing system optimization [55], economic emissions load dispatch problem [56],
object tracking [57], traveling salesman problem [58], and so on. According to [59]
FA outperforms PSO in finding optimal solutions of noisy nonlinear continuous
mathematical models in the presence of higher levels of noise. A hybridized ver-
sion of FA is found in [60] for forecasting day-ahead electricity price. FA has also
been successfully hybridized with cellular learning automata in [61]. A speciation-
based FA has been implemented in [62] to solve dynamic optimization problem.
A detailed description of hybridization aspects of FA with learning automata, GA,
and directed direction-based search is provided in [63].

5.1 Introduction 237

In our proposed hybrid stratagem, the foraging behavioral dynamic of fireflies in
FA is used to assimilate the colonies of ICA. The proposed assimilation dynamic
enforces the colonies within an empire to follow the sociopolitical aspects of all rel-
atively better countries, even including the imperialist, of the same dominion
empire. It, in turn, increases the explorative revelation of the colonies in the
empire. For improving the performance of the hybrid algorithm further, we mod-
ulate the step-size for random movement of each firefly according to its relative
position in the search space, such that an inferior solution is driven by the explor-
ative forcewhile a qualitative solution should be confined in its local neighborhood
in the search space. This chapter also recommends a novel approach of evaluating
the threshold value for uniting empires, accelerating the convergence speed. Com-
binations of the FA-type motion dynamic along with the adaptive step-size and
search range-based threshold computation do not impose any serious computa-
tional overhead on the traditional ICA as evident from the simulation results.
The complicated real-world fitness landscape, induced by uncertain and impre-

cise environment, encompasses multimodality, deception, and isolation. Explora-
tive and exploitative capabilities are two cornerstones of EA that determine its
efficacy in tracking the global optimum in such ill-conditioned/diverse fitness
landscape. Hence the performance of EA is constrained by a trade-off between
two antagonist processes: exploration and exploitation. Exploitation favors good
convergence speed by orienting the search toward the desired global optimum
through local refinement, whereas exploration aids in searching new promising
regions in a large search space without getting stuck at the local basins of attrac-
tion. In population-based EAs, the explorative power is manipulated by the pop-
ulation diversity. A population consisting of almost identical candidates has a low
exploration power. Generally, the search space is vigorously explored by the trial
solutions (using the search operators) in the earlier generations of EAs with a high
population variance. The population gradually loses its diversity during the con-
vergence toward the global optimum (via greedy selection) through evolutionary
generations. In the earlier explorative phases of optimization problems, low pop-
ulation diversity could induce premature convergence toward a suboptimal solu-
tion. In this article, we analyze the evolution of the population variance of ICFA
and its two parent algorithms including the traditional ICA and FA over genera-
tions delineating its impact on their explorative power. The simulation results
reveal that the proposed hybrid algorithm realized with the traditional ICA and
the traditional FA (hereafter referred to as ICFA) enjoys a greater potential of bal-
ancing the explorative and exploitative powers as compared to individual balan-
cing propensity of the original ICA and FA.
Experiments have been undertaken to test the expertise of the proposed hybrid

algorithm on a test-suite of 25 benchmark functions [64]. The performance of the
proposed ICFA is compared with ICA with DE (ICA-DE) [16], Interaction

238 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Enhanced ICA using Artificial Imperialists (ICAAI) [21], Memetic ICA (Memetic-
ICA) [20], ICA with Adaptive Radius of Colonies Movement (ICAR) [26], Social-
Based Algorithm (SBA) [65], Hybrid Evolutionary ICA (HEICA) [18], Chaotic ICA
(CICA) [24], Modify ICA with K-means (K-MICA) [33], Recursive ICA with GA
(R-ICA-GA) [19], the traditional Artificial Bee Colony (ABC) [66], traditional
FA [15], the traditional ICA [13], and the traditional global best PSO [67]. Experi-
ments reveal that the proposed realization outperforms other competitor algo-
rithms both by computational accuracy and run-time complexity.
Lastly, the efficacy of the proposed hybrid EA is validated in the present context

of the proposed multi-robot stick-carrying problem. Here too, the performance of
the proposed algorithm is compared with the state-of-the-art techniques for the
same application and the results are in favor of the proposed algorithm. Experi-
ments undertaken further to compare the relative performance of the ICFA-based
path-planner with other swarm/EA-based design reveal that the proposed ICFA-
based planner outperforms other realizations. We have arrived at this conclusion
by performing comparative analysis of the contender algorithms, used to plan the
time-optimal trajectory of the stick, by using two performance metrics, which have
been previously used in the existing literature [37].
The chapter is divided into five sections. Section 5.2 provides the formulation of

the multi-robot stick-carrying problem. Section 5.3 overviews the traditional ICA
and FA. The section then explores the proposed hybridization mechanism along
with the experimental settings for the benchmarks and simulation strategies.
Computer simulation of multi-robot stick-carrying problem in conjunction
with the experiments with Khepera-II mobile robots is given in Section 5.4.
Section 5.5 concludes the chapter with future research direction.

5.2 Problem Formulation for Multi-Robot
Stick-Carrying

The problem is demonstrated by considering two homogeneous robots, capable of
jointly carrying a stick (by transporting it through a desired angle and distance)
from a given starting position to a given goal position avoiding collision with static
obstacles in the workspace. There exist two different planning approaches to
address the stick-carrying problem: (i) local planning and (ii) global planning.
The global planning is concerned with the planning of the entire trajectory of
the robots with the stick from the given initial position to the final position. Con-
trarily, in the local planning, the local movement of the system (the robots with the
stick) is executed optimally in small steps toward the goal. The local planning has
more flexibility than the global counterpart for the following reasons. First, it can

5.2 Problem Formulation for Multi-Robot Stick-Carrying 239

take care of dynamic obstacles. Second, local planning requires small time to deter-
mine the next position of the stick only, rather than deriving the entire trajectory of
motion for the robots carrying the stick. Here, the local planning is used for its
time-efficiency.
The stick-carrying problem undertaken here is aimed at minimizing the time

required by the robots for the execution of each local plan of transportation of
the stick. In the present context, this is realized by minimizing the distance
between the next positions of the robots with respect to their goal position. It
ensures that the robots will follow the shortest path, in turn reducing time required
to execute the plan. In order to take care that the next position of the stick is not in
the close vicinity of obstacles, a penalty is introduced. It offers a large (or a small)
penalty when the next position is close enough to (or far away from) any obstacle.
The mathematical model of the stick-carrying problem is configured with the

distances of the stick as well as the robots, R1 and R2, from the sidewall of the
workspace as input variables (Figure 5.1) and the next position of the robots (car-
rying the stick) as output (estimator) variables. The mathematical model is recast
as minimizing an objective function, concerned with the optimal selection of the
next position of the system (i.e. the robots with the stick) avoiding collision with
obstacles for execution of each local plan. The hybrid evolutionary/swarm algo-
rithm to be proposed is used to determine the next local position of the stick to
satisfy the objective. Figure 5.1 provides the distance measures and (5.1) combines
these distances into a single entity [68]. Here,

d = min dw1, dw2 + min dl1, dl2 + min dw3, dw4 , 5 1

where the parameters used on the right side of (5.1) represent range-measures
(indicated in Figure 5.1) and R1 and R2 represent the centers of gravity of two
robots carrying the stick.
The following principles are used for formulating the problem:

1) The robots first determine their next positions in order to align themselves with
the goal and thus plan for a local motion at that current position.

R2

R1

dl2

dl1

dw3

dw2
dw1

H

G
F

E

dw4

Figure 5.1 Diagram illustrating the
calculation of d.

240 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

2) This alignment may result in a possible collision with static obstacles, if the
determined next position of either of the robots or the stick has already been
occupied by a static obstacle. Under this circumstance, the robots should turn
left or right by certain angle and hence new next positions are to be determined.

3) While planning locally, the most important issue to be taken care of is the dis-
tance between two robots. If the distance becomes greater than the stick length,
the stick will fall.

4) If the robots can align themselves toward the goal position of the stick without
any collision satisfying the distance constraint between them, the local motion
will be executed.

Let (xi, yi) and (xi
/, yi

/) be the current and the next positions of the robot Ri with θi
representing its angle of rotation for i = [1, 2]. Furthermore, (xi-goal, yi-goal) is
regarded as the goal position of Ri for i = [1, 2]. So, for unit time interval, we have

xi = xi + vi × cos θi,

yi = yi + vi × sin θi
5 2

To ensure that the robots should follow the shortest path, we need to minimize
(i) the total Euclidean distance traversed by robots from current position (xi, yi) to
the next position (xi

/, yi
/) and (ii) the expected Euclidian distance to be covered

from the next position (xi
/, yi

/) to the goal position (xi-goal, yi-goal), which is given
by (5.3).

f =
2

i = 1

xi − xi
2 + yi − yi

2 + xi − xi-goal
2
+ yi − yi-goal

2
5 3

Combining (5.2) and (5.3), we have the primary objective function to be mini-
mized as given in (5.4).

f =
2

i = 1

vi + xi + vi cos θi − xi-goal
2
+ yi + vi sin θi − yi-goal

2
5 4

Simultaneously, the robots need to satisfy the equality constraint of (5.5) for suc-
cessfully carrying the stick to execute each local step of the entire task.

d1,2 = l 5 5

Here, d1,2 is the distance between the robots and l represents the length of the stick.
In a nutshell, the optimization problem here includes an objective function f,

concerning minimization of the Euclidean distance between the current positions
of the robots with their respective goal positions, avoiding collision with obstacles
and subjected to the equality constraint as in (5.5). Hence, the objective function
for the proposed optimization problem is given by

5.2 Problem Formulation for Multi-Robot Stick-Carrying 241

f =
2

i = 1

vi + xi + vi cos θi − xi-goal
2
+ yi + vi sin θi − yi-goal

2

− λ d1,2 − l + 2− d × K

5 6

Here, λ is the Lagrangian multiplier, which needs to be evaluated to satisfy (5.5).
The last term in (5.6) is the penalty where K is a constant. The last term offers a
large (or a small) value when the next position is close enough to (or far away from)
any obstacle in the workspace.

5.3 Proposed Hybrid Algorithm

In this section, first the traditional ICA and then the FA are overviewed. It then
proposes their hybridization methodology following the simulation strategies to
substantiate the merit of the proposed algorithm over their traditional
counterparts.

5.3.1 An Overview of ICA

ICA is a population-based stochastic algorithm, which is inspired by the sociopo-
litical evolution and the imperialistic competitive policy of a government to extend
its power beyond its boundaries. It has earned wide popularity because of its
noticeable performance in computational optimization with respect to the quality
of solutions [13]. Like any other EAs, ICA starts with an initial population of solu-
tions, called countries. The countries are classified into two groups – imperialists
and colonies, based on their power (which is inversely proportional to their objec-
tive function values). The colonies (weaker countries) with their relevant imperi-
alist (stronger country) form some empires. In each empire, the imperialist
pursues an assimilation policy to improve the economy, culture, and political sit-
uation of its colonies, thus winning their loyalty. Moreover, the empires take part
in the imperialistic competition in an attempt to gain more colonies. In ICA, the
assimilation of colonies toward their respective imperialists along with the com-
petition among empires eventually results in just one empire in the world with
all the other countries as colonies of that unique empire. An overview of the main
steps of the ICA is presented next.

5.3.1.1 Initialization

ICA starts with a population Pt of NP, D-dimensional countries, Xi t =
xi,1 t , xi,2 t , xi,3 t ,…, xi,D t for i= [1,NP] representing the candidate solutions,

at the current generation t = 0 by randomly initializing in the range Xmin,Xmax ,

242 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

where Xmin = xmin
1 , xmin

2 ,…, xmin
D and Xmax = xmax

1 , xmax
2 ,…, xmax

D . Thus, the

d-th component (sociopolitical feature) of the i-th country at t = 0 is given by

xi,d 0 = xmin
d + rand 0, 1 × xmax

d − xmin
d , 5 7

where rand(0, 1) is a uniformly distributed random number lying between 0 and 1

and d = [1, D]. The objective function value f Xi 0 of the country Xi 0 is eval-

uated for i = [1, NP].

5.3.1.2 Selection of Imperialists and Colonies

The population P0 is sorted in ascending order of f Xi 0 for minimization prob-

lem with i = [1, NP]. The first N countries with less cost function values are
selected as imperialists while the remaining M = NP −N countries are declared
as colonies. Hence, the population individuals are categorized into two groups
of countries – imperialists and colonies.

5.3.1.3 Formation of Empires

The empire under the j-th imperialist is constructed based on its ruling power. To
accomplish this, first the normalized power of the j-th imperialist country, pj, is

evaluated by (5.8) with f XNP 0 representing the objective function value of

the weakest country in the current sorted population P0.

p j =
f XNP 0 − f X j 0

N

l = 1
f XNP 0 − f Xl 0

5 8

It is evident from (5.8) that better the j-th imperialist (i.e. less objective function

value f X j 0 for minimization problem), higher is the difference

f XNP 0 − f X j 0 leading to the enhancement of its corresponding ruling

power, pj. Now the initial number of colonies under in the j-th empire, denoted
by nj is computed by (5.9):

n j = M × p j , 5 9

such that
N

j = 1

n j = M 5 10

Here, represents the floor function. According to (5.9), the stronger imperialists
with higher ruling power now possess larger empires. Hence pj symbolizes the

5.3 Proposed Hybrid Algorithm 243

fraction of the colonies occupied by the j-th imperialist. Subsequently, the j-th
empire is formed by randomly selecting nj countries fromM colonies provided that
there will be no common colony between two different empires. Hence, the num-
ber of countries within the j-th empire including its imperialist is nj+ 1. Let the

k-th country belonging to the j-th empire is denoted by X
j

k t (at generation
t = 0) for k = [1, nj+ 1]. The countries within the j-th empire are now sorted in
ascending order of their objective function values such that the imperialist

X
j

1 t in the j-th empire attains the first rank. This step is repeated for j = [1, N].

5.3.1.4 Assimilation of Colonies

Each imperialist country now attempts to improve its empire by enhancing the

sociopolitical influences of its colonies. To accomplish this, each country X
j

k t

in the j-th empire now moves toward its corresponding imperialist X
j

1 t by chan-
ging its characteristic features following (5.11) for k = [2, nj+ 1].

X
j

k t + 1 = X
j

k t + β × rand 0, 1 × X
j

1 t −X
j

k t 5 11

Here, rand(0, 1) is a uniformly distributed random number lying between 0 and 1
and β is the assimilation coefficient. The objective function value of the modified

colony f X
j

k t + 1 is evaluated for k = [2, nj+ 1]. After assimilation, all the

countries in the j-th empire are sorted in ascending order of the objective function

values and the first ranked country is declared as the imperialist X
j

1 t + 1 of the
same empire for the next generation (i.e. t = t+ 1). The step is repeated for
j = [1, N].

5.3.1.5 Revolution

Revolution creates sudden fluctuation in the economic, cultural, and political
aspects of countries in an empire. The colonies in an empire are now equipped
with the power of randomly changing their sociopolitical attributes instead of
being assimilated by their corresponding imperialist. It resembles the mutation
of trial solutions in the traditional EA. The revolution rate η in the algorithm indi-
cates the percentage of colonies in each empire, which will undergo the revolution
process. A high value of revolution rate therefore fortifies the explorative power at
a cost of poor exploitation capability. Hence, a moderate value of revolution rate is
favored. Revolution is implemented by randomly selecting η × nj countries
(including the imperialist) in the j-th empire (for j = [1, N]) and then they are
replaced by randomly initialized countries characterized by new sociopolitical

244 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

nature. After revolution, as in case of assimilation, all the countries in each empire
are sorted in ascending order of the objective function values so that its imperialist
is at the first position. The step is repeated for all empires.

5.3.1.6 Imperialistic Competition

All the N empires now participate in an imperialistic competition to take posses-
sion of colonies of other weaker empires based on their ruling power. The colonies
of the weaker empires will be gradually eluded from the ruling power of their cor-
responding imperialists and will be thereafter controlled by some other stronger
empires. Consequently, the weaker empires will be losing their power and ulti-
mately may be eradicated from the competition. The imperialistic competition
along with the collapse mechanism will progressively result in an increment in
the power of more dominant empires and diminish the power of weaker ones.
The imperialistic competition encompasses the following steps.

5.3.1.6.1 Total Empire Power Evaluation

Once an empire is constructed under the dominance of the j-th imperialist

X
j

1 t + 1 , the power of the respective empire is compositely influenced by the

objective function value of X
j

1 t + 1 as well as the constituent colonies

X
j

k t + 1 (after assimilation) under the respective j-th empire for k = [2, nj+ 1].
The total objective function value of the j-th empire is evaluated as follows:

tc j = f X
j

1 t + 1 + ξ
1
n j

n j + 1

k = 2

X
j

k t + 1 5 12

Here, ξ< 1 is a positive number that regulates the influence of the constituent
colonies to control the ruling power of the empire. A minuscule value of ξ causes

the total power of the j-th empire to be determined by its imperialistX
j

1 t + 1 only,
while increasing the value of ξ accentuates the importance of the colonies in decid-
ing the total power of the respective empire. The N empires now are sorted in
ascending order of tcj for j = [1, N]. Then the normalized possession power of
the j-th empire, ppj, is evaluated by (5.13) with tcN representing the total objective
function value of the weakest empire in the current population Pt.

pp j =
tcN − tc j
N

l = 1
tcN − tcl

5 13

It is evident from (5.13) that stronger the j-th empire (i.e. less the total objective
function value tcj for minimization problem), higher is the possession power, ppj,

5.3 Proposed Hybrid Algorithm 245

which consecutively increases its probability of seizing colonies from weaker
empires. This step is repeated for j = [1, N].

5.3.1.6.2 Reassignment of Colonies and Removal of Empire

The empire with least possession power is interpreted as being defeated in
the competition. Let the weakest colony of this weakest empire be denoted
as Xworst, which is now removed from the dominance of its currently ruling impe-
rialist and reassigned as a new colony to one of the stronger empires based on their

possession probabilities. It is noteworthy that Xworst will not be possessed by the

most powerful empires, but stronger the empire, more likely to possess Xworst .
To accomplish this, the possession probability of the j-th empire is computed as
follows for j = [1, N]:

prob j = pp j − rand 0, 1 5 14

Now Xworst is assigned as a new colony to the j-th empire for which the
possession probability probj is maximum. However, if the worst colony consists
of only its imperial before exclusion operation (i.e. Xworst is the imperialist of
the weakest empire), the removal of Xworstwill result in the collapse of the weakest
empire.

5.3.1.6.3 Union of Empires

The disagreement between two empires may be assessed by the difference in their
respective sociopolitical features. This dissimilarity between any two empires,
j and l, is evaluated by taking the Euclidean distance between the respective

imperialists X
j

1 t + 1 and X
l

1 t + 1 as in (5.15) for j, l = [1, N].

Dist j,l = X
j

1 t + 1 −X
l

1 t + 1 5 15

If Distj,l is less than a predefined threshold, Th, the two empires are merged into

one empire. The stronger country among X
j

1 t + 1 and X
l

1 t + 1 is declared as
the imperialist of the newly formed empire.
After each evolution, we repeat from Section 5.3.1.4 until one of the

following conditions for convergence is satisfied. Stop criteria include a bound
by the number of iterations, achieving a sufficiently low error or aggregations
thereof.

246 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

5.4 An Overview of FA

In FA [15], a potential solution to an optimization problem is encoded by the posi-
tion of a firefly in the search space and the light intensity at the position of the
firefly corresponds to the fitness of the associated solution. Each firefly changes
its position iteratively by flying toward brighter fireflies at more attractive location
in the fitness landscape to obtain optimal solutions.

5.4.1 Initialization

FA commences with a population Pt of NP, D-dimensional firefly positions,

Xi t = xi,1 t , xi,2 t , xi,3 t ,…, xi,D t for i = [1, NP] by randomly initializing

in the search range X
min

,X
max

, where X
min

= xmin
1 , xmin

2 ,…, xmin
D and

X
max

= xmax
1 , xmax

2 ,…, xmax
D at the current generation t = 0. Thus, the d-th com-

ponent (sociopolitical feature) of the i-th firefly at t = 0 is given by

xi,d 0 = xmin
d + rand 0, 1 × xmax

d − xmin
d , 5 16

where rand(0, 1) is a uniformly distributed random number lying between 0 and 1

and d = [1, D]. The objective function value f Xi 0 (which is inversely propor-

tional to the light intensity for minimization problem) of the i-th firefly is evalu-
ated for i = [1, NP].

5.4.2 Attraction to Brighter Fireflies

Now the firefly Xi t is attracted toward the positions of the brighter fireflies X j t

for i, j= [1,NP] but i j such that f X j t < f Xi t for minimization problem.

Now the attractiveness βi,j ofXi t toward X j t is proportional to the light intensity
seen by adjacent fireflies. However, attractiveness βi,j decreases exponentially with
the distance between them, denoted by ri,j as given in (5.17).

βi,j = β0 exp − γ × rmi,j , m ≥ 1, 5 17

where β0 denotes the maximum attractiveness experienced by the i-th firefly at its
own position (i.e. at ri,j = ri,i = 0) and γ is the light absorption coefficient, which
controls the variation of βi,j with ri,j. This parameter is responsible for the conver-
gence speed of FA. A setting of γ = 0 leads to constant attractiveness while γ
approaching infinity is equivalent to the complete random search [15]. In
(5.17), m is a positive constant representing a nonlinear modulation index. The

5.4 An Overview of FA 247

distance between Xi t and X j t is computed using the Euclidean norm as
follows:

ri,j = Xi t −X j t 5 18

This step is repeated for i, j = [1, N].

5.4.3 Movement of Fireflies

The firefly at position Xi t moves toward a more attractive position X j t occupied

by a brighter firefly (i.e. f X j t < f Xi t) for j = [1, N] but i j following the

dynamic given in (5.19).

Xi t = Xi t + βi,j × X j t −Xi t + α × rand 0, 1 − 0 5 5 19

The first term in the position updating formula (5.19) represents the i-th firefly’s
current position. The second term in (5.19) denotes the change in the position of

the firefly at Xi t due to the attraction toward the brighter firefly at X j t . Hence,
it is apparent that the brightest firefly with no more attractive firefly in the current
sorted population Ptwill have nomotion due to the second term andmay get stuck
at the local optima. To circumvent the problem, the last term is introduced in
(5.19) for the random movement of the fireflies with a step-size of α (0, 1). Here,
rand(0, 1) is a random number generator uniformly distributed in the range (0, 1).
This step is repeated for i= [1,NP]. After completion of its journeymediated by the
brighter ones, the updated position of the i-th firefly is represented by Xi t + 1 for
i = [1, NP].
After each evolution, the Sections 5.4.2 and 5.4.3 are repeated until one of the

following conditions for convergence is satisfied. The conditions include restrain-
ing the number of iterations, maintaining error limits, or the both, whichever
occurs earlier.

5.5 Proposed ICFA

In our proposed hybridization stratagem, the light-intensity-based attraction-
driven movement of fireflies is embedded into the modified version of ICA to uti-
lize the composite benefits of the explorative and exploitative capabilities of both
the ancestor algorithms. The fitness profile-based colonizing behavior of the coun-
tries in ICA provides them the local exploitation capability surrounding the local
optima (as discovered by their imperialists). In addition, the imperialistic

248 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

competition eventually helps the algorithm to converge toward the desired global
optimum. On the other hand, FA draws inspiration from the self-organizing
behavior of fireflies, which offers it potential for global exploration. The informa-
tion of a better position in the search space, as acquired by a brighter firefly, is dis-
tributed among others through the motion dynamic as evident from (5.19). These
facts have motivated us to propose a new hybrid algorithm, named ICFA. In ICFA,
the intensification process is controlled by the formation and revolution of empires
(clusters) in the search space by ICA, while the diversification is influenced by the
foraging behavior of fireflies.
In the modified ICA, each colony tries to contribute to the improvement of its

governing empire by improving its sociopolitical attributes following a new assim-
ilation policy. This is different from the traditional ICA where the revolution of a
colony is instigated by the features of its respective imperialist only. Hence,
the evolving colony is not guided by the experience of more powerful colonies
within the same empire. This issue is resolved here being inspired by the
self-organizing dynamics (5.19) of the fireflies in the traditional FA. In the present
context, the sociopolitical features of the assimilating colony are stimulated by that
of all other powerful colonies within the same empire including its imperialist.
This is implemented here by the assimilation dynamic in (5.20) employed by

the k-th colony X
j

k t within the j-th empire for k= [2, nj+ 1]. Here, it is presumed
that the countries in the j-th empire are sorted in ascending order of their

respective objective function values such that the imperialist X
j

1 t occupies the
first position.

X
j

k t = X
j

k t + β j
k,l × X

j

l t −X
j

k t + α × rand 0, 1 − 0 5

if f X
j

l t < f X
j

k t
5 20

Expression (5.20) indicates that the colony X
j

k t follows the nature of a stronger

colony X
j

l t (including the imperialist X
j

1 t) with f X
j

l t < f X
j

k t in the

j-th empire. The k-th modernized country is now represented by X
j

k t + 1 .
Again, it is noteworthy that the randommovement of a firefly (or a colony) with

step-size α in (5.19) (or in (5.20)) in traditional FA helps the population individuals
to avoid local optima by their expedition proficiency. Particularly, the convergence
of fireflies toward the global optimum greatly relies on the step-size (α) profile.
However, in the traditional FA, α is taken to be constant for all fireflies in the cur-
rent population. It indicates that α assists in the exploration of the fireflies in the
fitness landscape irrespective of their fitness. Consequently, fireflies in vicinity of
the global optimum may be deviated away (with α value greater than the

5.5 Proposed ICFA 249

requirement) and may get trapped at local optima. Contrarily, fireflies far away
from the global optimum in the fitness landscape (with α smaller than necessity)
may not be given any opportunity to be attracted toward the global optimum. To
overcome this problem, α, used for the random movement of a firefly, needs to be
modulated with its relative position with respect to the current best firefly position.
It in turn ensures that the best candidate solution should search in the local

neighborhood with a small step-size to prevent the omission of the global optimum
whereas a poor performing member should participate in the global search to
explore promising regions in the search space. Under this proposed scheme, the
step-size value αi,d assigned to the d-th positional component of the i-th firefly

at location Xi t is varied based on its spatial distance from the best firefly rather
than being constant as outlined in (5.21) for d = [1, D]. It is apparent that in the

sorted population X1 t corresponds to the position of the brightest firefly.

αi,d = αmin + 1− αmin × rand 0, 1 ×
X1,d t −Xi,d t

Xmax
d −Xmin

d

5 21

Here, |.| represents the absolute value and rand(0, 1) is a uniformly distributed
random number lying in (0, 1). It is apparent from (5.21) that if Xi,d(t) is close
to X1,d(t), αi,d reduces to its small minimum value αmin confining Xi,d(t) in its small
neighborhood. Again, if the difference |Xi,d(t)− X1,d(t)| increases and approaches

to Xmax
d t −Xmin

d t , αi,d also approaches to unity offering Xi,d(t) a large magnitude
of perturbation. Apparently, the step-size is now treated as aD-dimensional vector

as symbolized by α i = αi,1,αi,2,…, αi,D with its d-th component αi,d (αmin, 1).
Moreover, in the traditional ICA, the dissimilarity threshold, Th, used for unit-

ing two empires is kept as a predefined constant disregarding the search space
dimension. It is obvious that the selection of threshold, being responsible for
the union of empires, determines the performance of ICA. In the proposed work,
a new empirical formula is recommended to calculate the threshold as in (5.22)

with the search range X
min

,X
max

and D and N as the search space dimension

and number of empires, respectively.

Th =
X

max
−X

min

N × D
5 22

Motivated by these observations, we extend the traditional ICA with the pro-
posed strategies of hybridization with α modulated FA and uniting threshold
Th selection. The extended ICA, called ICFA, is similar to the traditional ICA
except for the assimilation of the colonies and the union of the empires that are
given below.

250 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

5.5.1 Assimilation of Colonies

The assimilation of the k-th country X
j

k t under the sorted j-th empire (led by the

imperialist X
j

1 t) is performed by the following two steps for k = [1, nj+ 1] and
j = [1, N].

5.5.1.1 Attraction to Powerful Colonies

The distance between the k-th and l-th countries, X
j

k t and X
j

l t , under the j-th
empire is computed using the Euclidean norm as follows:

r j
k,l = X

j

k t −X
j

l t 5 23

Now, as in case of FA, the country X
j

k t is attracted toward a more powerful one

X
j

l t (including the respective imperialist) with an attractiveness β j
k,l for k, l =

[1, nj+ 1] but k l such that f X
j

l t < f X
j

k t . The associated attractiveness

β j
k,l is evaluated by (5.24).

β j
k,l = β0 exp − γ × r j

k,l

m
m ≥ 1, 5 24

where β0 and γ are same as defined in (5.17).

5.5.1.2 Modification of Empire Behavior

The country X
j

k t updates its sociopolitical features inspired by the stronger one

X
j

l t in the same empire following the dynamic given in (5.25) for k, l = [1, nj+ 1]

but k l provided f X
j

l t < f X
j

k t .

X
j

k t + 1 = X
j

k t + β j
k,l × X

j

l t −X
j

k t + α
j
k × rand 0, 1 − 0 5

5 25

The D-dimensional step-size vector α
j
k for random movement in (5.25) is now

modulated based on the relative sociopolitical aspects of the country X
j

k t with

respect to that of its respective imperialist X
j

1 t (with least objective function value
in the j-th empire) as given in (5.26) for d = [1, D].

5.5 Proposed ICFA 251

α j
k,d = αmin + 1− αmin × rand 0, 1 ×

X j
1,d t −X j

k,d t

Xmax
d −Xmin

d

5 26

Here, rand(0, 1) is a uniformly distributed random number lying in (0, 1). It is

apparent from (5.26) that the imperialist X
j

1 t is assigned with a step-size αmin

for all its components. After each movement of a country, the j-th empire is sorted
in ascending order of the objective function values of its constituent countries so

that the first rank is always occupied by the imperialist X
j

1 t The step is repeated
for k = [1, nj+ 1]. At the end of this step, the modified country is demoted by

X
j

k t + 1 for k = [1, nj+ 1].

5.5.1.3 Union of Empires

The dissimilarityDistj,l between any two empires, j and l, is evaluated by taking the

Euclidean distance between the respective imperialists X
j

1 t + 1 and X
l

1 t + 1 as
in (5.15) for j, l= [1,N]. The two empires are merged into one empire ifDistj,l is less
than the threshold, Th, as computed using (5.22). The stronger country among

X
j

1 t + 1 and X
l

1 t + 1 is declared as the imperialist of the newly formed empire
and the rest is treated as a colony under the former one. The algorithm for ICFA is
as follows.

Algorithm 5.1 Imperialist Competitive Firefly Algorithm (ICFA)

Begin

1) Initialize a population of NP, D-dimensional countries Xi t at

generation t = 0 using (5.7) and evaluate f Xi t for i = [1, NP];

2) Sort Pt in ascending order of cost function values and select the

top N countries as the imperialists with the remaining M = NP − N

countries as colonies;

3) Assign randomly selected nj colonies under the j-th imperialist,

based on its power pj as computed using (5.9) and (5.8), respec-

tively, for j = [1, N];

4) While termination condition is not reached do

Begin

4.1) For each empire j = 1 to N do begin

Sort the countries in the j-th empire in ascending order of their

respective cost function values with the imperialist X
j

1 t at

the first position;

252 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

For each country under the j-th empire k = 1 to nj + 1 do begin

For each country under the j-th empire k = 1 to nj + 1 do begin

If f X
j

l t < f X
j

k t then do

a) Evaluate the distance r j
k,l and hence the attraction β j

k,l

between X
j

k t and X
j

l t using (5.23) and (5.24),

respectively;

b) Compute the step-size of random movement of X
j

k t using

(5.26);

c) Update the sociopolitical nature of X
j

k t using

(5.25);

d) Sort the countries in the j-th empire in ascending

order of their respective cost function values with

the imperialist X
j

1 t at the first position;

End If.

End For.

Denote the updated country with X
j

k t + 1 ;

End For.

End For.

4.2) For each empire j = 1 to N do begin

i) Randomly select η × nj countries from the j-th empire and

perform revolution by re-initialization;

ii) Sort the countries in the j-th empire in ascending order of

their respective cost function values with its imperialist

at the first position;

End For.

4.3) Evaluate the possession power ppj and the possession probabil-

ity probj of the j-th empire using (5.13) and (5.14), respec-

tively, for j = [1, N];

4.4) Sort the empires in descending order of the possession power ppj

for j = [1, N]. Identify the worst colony Xworst of the weakest

empire XN t + 1 and reassign Xworst as a colony of new empire,

j, with the largest possession probability probj for j [1, N];

4.5) If Xworst was the only country in the N-th empire then the N-th

empire collapses with N N − 1;

End If.

4.6) Evaluate the disagreement threshold Th and the dissimilarity

Distj, l between any two imperialists X j t + 1 and Xl t + 1 using

(5.22) and (5.15), respectively. Combine the j-th and l-th

empires if Dj, l < Th. The stronger among X j t + 1 and Xl t + 1 will

be considered as the imperialist of the combined empire while

the remaining will be treated as its colony. Decrement the num-

ber of colonies by setting N N − 1. This is done for j, l = [1, N];

4.7) Set t t + 1;

End While.

End.

5.6 Simulation Results

The performance of the proposed ICFA algorithm is examined here with respect to
the minimization of 25 benchmark functions recommended in [64].

5.6.1 Comparative Framework

The comparative framework includes ICA with DE (ICA-DE) [16], Interaction
Enhanced ICA using Artificial Imperialists (ICAAI) [21], Memetic ICA
(Memetic-ICA) [20], ICA with Adaptive Radius of Colonies Movement (ICAR)
[26], Social-Based Algorithm (SBA) [65], Hybrid Evolutionary ICA (HEICA)
[18], Chaotic ICA (CICA) [24], Modify ICA with K-means (K-MICA) [33], Recur-
sive ICA with GA (R-ICA-GA) [19], the traditional Artificial Bee Colony (ABC)
[66], the traditional FA [15], the traditional ICA [67], and the traditional PSO
[54]. The above traditional evolutionary/swarm optimization algorithms are cho-
sen because of their wide popularity in solving numerical single objective optimi-
zation problems.

5.6.2 Parameter Settings

To make the comparison fair, the populations for all the algorithms (over all pro-
blems tested) are initialized using the same random seeds and the population size
is kept at 50. We employ the best parametric setup for all these algorithms as pre-
scribed in their respective sources. In our proposed ICFA, the initial number of

empires N is taken to be NP, which is equal to 7 for a population size NP of
50 and αmin is taken to be 0.3 so that maximum permissible value of step-size is
1. The maximum attractiveness β0 and the light absorption coefficient γ both
are taken to be 1 with the nonlinear modulation index m determined by

D × max
D

j = 1
Xmax

j −Xmin
j as described in [69].

5.6.3 Analysis on Explorative Power of ICFA

The explorative and exploitative capabilities of an algorithm can be assessed by the

population variance. Let Xi t be theD-dimensional i-th solution of the population
Pt at generation t. The variance of the population Pt considering all itsNP solutions
is given by (5.27).

V Pt =
1
D

D

j = 1

1
NP

NP

i = 1

x2i,j −
1
NP

NP

i = 1

xi,j

2

5 27

254 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Figure 5.2 shows the evolution of the population variance over FEs for f15 in
case of 50-D problem. The plots of other functions are omitted for the sake of space
economy. The plot indicates that ICA offers a good level of exploitation capability
from the initiation of the algorithm, whereas FA performs better in balancing the
diversification at the earlier exploration stage and gradually converges to the opti-
mal point with a relatively smaller population variance. However, it is evident that
ICFA outperforms the rest two ancestors in providing a well trade-off between
high explorative and exploitative powers, which prevail during the earlier and later
phases of the search, respectively. Hence, it can be concluded that the hybridiza-
tion of ICA and FA has empowered ICFA with better exploration and exploitation
capabilities.

5.6.4 Comparison of Quality of the Final Solution

Here, we test the relative performance of our algorithm with other competitor
algorithms using 25 benchmark functions [64] of 10, 30, and 50 dimensions.
The experiments are conducted for 50 independent runs. For lack of space, the
mean and standard deviation (within parenthesis) of the benchmarks function
values of 25 independent runs for each of the 14 algorithms are presented in
Table 5.1 for 30-D problems only. Please note that the results excluded follow a
similar trend like those reported in Table 5.1. Maximum number of function eva-
luations (Max_FEs) is set at 300 000 for 30-D.

5 10 15 20 25 30 35 40 45 50

Function evaluations →

P
o
p
u
la

ti
o
n
 v

a
ri

a
n
c
e
→

f15

ICA

FA

ICFA

104

× 104

102

100

10–2

10–4

10–6

Figure 5.2 Evolution of the expected population variance.

5.6 Simulation Results 255

Table 5.1 Comparative analysis of performance of the proposed ICFA with other algorithms based on solution quality for f01 to f25.

Functions ICFA ICA-DE ICAAI Memetic ICA ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO Stat. sig.

f01 0.00e + 00
(0.00e + 00)

2.88e− 29
(1.99e-27)

1.10e− 26
(2.74e-26)

1.94e− 23
(2.95e-25)

3.39e− 22
(4.59e-24)

3.82e− 21
(4.75e-23)

4.42e− 21
(5.20e-20)

5.70e− 20
(5.30e-18)

6.34e− 17
(5.54e-17)

6.39e− 16
(5.60e-17)

6.70e− 14
(5.94e-16)

6.70e− 14
(6.41e-15)

7.75e− 10
(6.53e-11)

7.79e− 10
(6.71e-10)

+

f02 1.22e− 04
(8.31e− 04)

3.24e− 04
(1.13e− 03)

2.32e− 03
(1.30e− 03)

2.67e− 03
(1.93e− 02)

1.19e− 02
(3.11e− 01)

1.93e− 01
(3.42e− 01)

2.21e− 01
(3.48e + 00)

2.67e− 01
(4.52e + 02)

3.07e− 01
(4.58e + 02)

4.58e− 01
(4.75e + 02)

4.86e− 01
(4.96e + 02)

4.94e− 01
(5.28e + 02)

5.76e− 01
(5.35e + 03)

7.65e− 01
(5.56e + 03)

+

f03 1.97e− 01
(1.37e + 00)

1.04e + 00
(1.50e + 00)

1.56e + 00
(1.75e + 00)

1.78e + 01
(1.77e + 00)

1.80e + 01
(2.44e + 01)

2.38e + 01
(2.46e + 01)

3.54e + 01
(3.31e + 01)

3.83e + 02
(3.84e + 01)

4.09e + 03
(4.09e + 01)

4.89e + 03
(4.31e + 02)

5.25e + 03
(5.69e + 02)

6.23e + 03
(5.81e + 02)

6.71e + 04
(5.50e + 02)

6.71e + 03
(5.88e + 02)

+

f04 1.37e− 05
(0.00e + 00)

1.53e− 04
(4.58e− 26)

1.90e− 04
(1.13e− 25)

2.00e− 04
(1.15e− 23)

2.66e− 04
(1.84e− 22)

3.28e− 03
(2.17e− 20)

3.71e− 03
(2.35e− 20)

3.97e− 02
(3.15e− 16)

3.98e− 02
(3.69e− 16)

5.27e− 02
(4.21e− 14)

5.30e− 02
(4.57e− 10)

5.45e− 01
(4.82e− 03)

6.53e + 01
(5.55e− 01)

6.42e− 01
(5.23e− 02)

+

f05 1.03e− 11
(4.59e− 09)

2.54e− 10
(6.95e− 08)

3.74e− 10
(1.01e− 08)

1.06e− 09
(1.01e− 08)

1.60e− 09
(1.27e− 07)

3.09e− 08
(1.81e− 07)

3.76e− 08
(1.84e− 06)

5.42e− 07
(2.79e− 05)

5.72e− 07
(3.01e− 04)

5.78e− 04
(3.84e− 04)

6.08e− 03
(4.05e− 04)

6.39e− 03
(5.60e− 03)

6.97e− 03
(7.37e− 03)

6.73e− 03
(6.08e− 02)

+

f06 7.34e− 01
(3.67e− 05)

9.53e− 01
(5.77e− 05)

1.06e + 00
(1.69e− 04)

1.28e + 00
(1.92e− 04)

1.67e + 00
(2.36e− 03)

1.67e + 00
(2.58e− 03)

2.45e + 00
(2.72e− 02)

2.81e + 00
(2.82e− 01)

2.92e + 00
(3.42e− 01)

3.59e + 00
(3.43e + 00)

4.35e + 00
(5.46e + 00)

5.97e + 00
(6.30e + 00)

6.61e + 00
(6.69e + 01)

6.31e + 00
(6.59e + 01)

+

f07 1.10e− 05
(8.56e− 01)

1.30e− 05
(1.28e + 00)

1.41e− 05
(1.32e + 00)

1.18e− 05
(2.14e + 00)

1.64e− 04
(2.57e + 00)

2.07e− 04
(3.05e + 00)

2.47e− 04
(3.12e + 00)

3.15e− 03
(3.40e + 00)

3.82e− 03
(4.37e + 00)

4.02e− 03
(4.80e + 00)

4.53e− 02
(5.21e + 00)

4.54e− 02
(5.42e + 00)

5.74e− 01
(6.50e + 00)

5.12e− 01
(5.46e + 00)

+

f08 2.45e + 01
(1.19e− 02)

2.65e + 01
(1.29e− 02)

3.55e + 01
(1.36e− 02)

3.57e + 01
(1.45e− 02)

3.72e + 01
(1.58e− 01)

3.85e + 01
(1.59e− 01)

4.10e + 01
(1.61e− 01)

4.35e + 01
(2.10e− 01)

4.51e + 01
(2.17e− 01)

5.56e + 01
(3.01e + 00)

5.68e + 01
(3.04e + 00)

5.72e + 01
(3.29e + 01)

7.57e + 01
(5.96e + 01)

6.13e + 01
(5.91e + 01)

+

f09 0.00e + 00
(2.20e− 28)

4.82e− 24
(3.59e− 26)

1.55e− 23
(1.66e− 25)

1.80e− 23
(1.83e− 22)

1.83e− 22
(2.96e− 22)

2.07e− 22
(3.21e− 18)

2.23e− 21
(3.42e− 18)

2.86e− 19
(3.55e− 17)

3.07e− 19
(3.82e− 16)

4.16e− 19
(4.04e− 13)

4.21e− 10
(5.11e− 12)

4.97e− 10
(5.60e− 10)

8.85e− 09
(7.74e− 09)

6.33e− 09
(6.50e− 09)

+

f10 1.59e + 01
(5.95e− 06)

1.26e + 01
(2.74e− 06)

1.62e + 01
(1.38e− 05)

1.83e + 01
(3.33e− 04)

2.57e + 01
(4.34e− 04)

2.76e + 01
(4.45e− 03)

3.42e + 01
(5.57e− 03)

3.64e + 01
(5.75e− 02)

4.36e + 01
(5.89e− 02)

4.75e + 01
(6.00e− 01)

5.57e + 01
(6.04e + 00)

6.19e + 01
(6.45e + 00)

6.39e + 01
(7.23e + 00)

7.91e + 01
(8.32e + 00)

−

f11 2.07e− 03
(1.29e− 13)

1.21e− 02
(3.41e− 12)

1.28e− 02
(4.50e− 12)

1.67e− 02
(2.67e− 11)

3.35e− 02
1.17e− 10)

3.50e− 01
(3.29e− 10)

4.03e− 01
(3.42e− 09)

4.26e− 01
(3.50e− 09)

4.32e + 00
(3.65e− 09)

5.20e + 00
(4.77e− 09)

5.63e + 00
(4.98e− 08)

6.01e + 00
(5.72e− 08)

6.20e + 00
(5.72e− 08)

6.33e + 00
(5.85e− 08)

+

f12 2.58e− 04
(6.10e− 05)

7.93e− 04
(1.42e− 04)

1.04e− 03
(1.74e− 04)

1.21e− 03
(1.87e− 04)

2.73e− 03
(2.04e− 04)

3.02e− 03
(2.79e− 04)

3.17e− 03
(2.91e− 03)

3.63e− 02
(3.02e− 03)

4.54e− 02
(3.68e− 03)

4.61e− 02
(4.39e− 02)

5.05e− 02
(4.59e− 02)

5.60e− 02
(5.62e− 02)

5.77e− 02
(5.81e− 02)

6.81e− 02
(5.88e− 02)

+

f13 1.26e− 01
(0.00e + 00)

1.58e− 01
(1.89e− 19)

1.88e− 01
(1.19e− 19)

2.37e− 01
(1.24e− 18)

2.60e− 01
(2.11e− 15)

2.92e− 01
(3.77e− 14)

2.95e− 01
(3.92e− 14)

3.42e− 01
(4.66e− 13)

3.83e− 01
(4.66e− 11)

5.16e− 01
(4.68e− 10)

6.44e− 01
(4.88e− 09)

6.51 e− 01
(4.90e− 09)

6.66e− 01
(6.17e− 08)

6.88e− 01
(7.99e− 07)

+

f14 1.09e + 00
(1.76e− 01)

1.09e + 00
(1.76e− 01)

1.33e + 00
(1.85e− 01)

1.33e + 00
(2.03e− 01)

1.58e + 00
(2.40e− 01)

2.58e + 00
(2.69e− 01)

2.63e + 00
(4.08e− 01)

2.99e + 00
(4.08e− 01)

3.22e + 00
(4.31e− 01)

3.37e + 00
(5.11e− 01)

4.12e + 00
(5.77e− 01)

4.51e + 00
(6.15 e− 01)

5.98e + 00
(6.34e− 01)

7.87e + 00
(8.87e− 01)

NA

f15 9.15e− 02
(1.23e− 03)

1.11e− 01
(3.48e− 03)

1.13e− 01
(6.73e− 03)

1.25e− 01
(2.23e− 02)

1.82e− 01
(2.27e− 02)

2.18e− 01
(2.85e− 02)

2.96e + 00
(3.71e− 02)

2.97e + 00
(3.71e− 02)

3.29e + 00
(4.27e− 01)

4.16e + 00
(4.46e− 01)

4.18e + 00
(4.58e− 01)

4.87e + 00
(5.02e− 01)

4.89e + 00
(5.73e− 01)

5.72e + 00
(5.78e− 01)

+

f16 4.63e + 01
(1.04e− 04)

1.07e + 02
(1.47e− 04)

1.86e + 02
(1.56e− 04)

1.96e + 02
(1.68e− 04)

2.96e + 02
(1.78e− 03)

3.08e + 02
(2.02e− 03)

3.20e + 02
(2.41e− 02)

3.62e + 02
(4.67e− 02)

3.68e + 02
(4.70e− 02)

4.46e + 02
(4.72e− 01)

5.45e + 02
(4.73e− 01)

6.12e + 02
(4.86e− 01)

6.60e + 02
(5.46e + 00)

6.70e + 02
(5.91e + 00)

+

f17 0.00e + 00
(7.63e− 08)

0.25e + 02
(1.06e− 07)

1.23e + 02
(1.32e− 07)

2.25e + 02
(1.34e− 07)

2.70e + 02
(1.69e− 06)

2.97e + 02
(1.88e− 05)

3.22e + 02
(2.01e− 04)

3.23e + 02
(2.38e− 04)

3.29e + 02
(3.31e− 04)

4.21e + 02
(4.03e− 03)

5.05e + 02
(4.25e− 02)

5.39e + 02
(5.16e− 02)

5.49e + 02
(5.35e + 01)

6.41e + 02
(6.42e + 01)

+

f18 1.27e + 02
(1.79e− 05)

1.46e + 02
(1.85e− 05)

1.65e + 02
(2.45e− 05)

2.98e + 02
(2.91e− 05)

3.15e + 02
(3.21e− 05)

3.82e + 02
(3.78e− 04)

4.25e + 02
(4.07e− 04)

4.45e + 02
(4.29e− 04)

4.51e + 02
(4.63e− 04)

4.53e + 02
(4.63e− 04)

4.75e + 02
(5.39e− 03)

4.78e + 02
(5.83e− 03)

4.96e + 02
(5.89e− 03)

5.61e + 02
(6.08e− 03)

+

f19 1.33e + 02
(1.08e− 06)

1.04e + 02
(4.44e− 07)

1.53e + 02
(1.15e− 06)

2.22e + 02
(1.27e− 060

3.35e + 02
(1.34e− 06)

3.65e + 02
(2.56e− 05)

3.80e + 03
(2.83e− 05)

3.81e + 03
(3.13e− 05)

4.47e + 03
(4.39e− 05)

4.51e + 03
(4.87e− 04)

4.53e + 03
(5.34e− 04)

5.04e + 03
(5.40e− 04)

6.57e + 03
(6.52e− 04)

6.95e + 03
(7.08e− 04)

−

f20 3.31e− 03
(1.13e− 01)

1.04e− 02
(1.37e− 01)

1.83e− 02
(1.69e− 01)

2.43e− 01
(1.89e− 01)

2.75e + 00
(2.31e− 01)

3.39e + 00
(2.51e− 01)

3.64e + 00
(2.76e− 01)

3.67e + 01
(2.97e− 01)

3.71e + 01
(3.09e + 00)

4.10e + 02
(3.09e + 00)

4.70e + 03
(4.78e + 00)

5.18e + 03
(4.81e + 00)

5.28e + 03
(4.92e + 01)

5.82e + 03
(5.15e + 01)

+

f21 2.51e + 02
(1.08e + 00)

3.29e + 02
(1.17e + 00)

3.64e + 02
(1.39e + 00)

4.73e + 02
(2.84e + 00)

4.77e + 02
(3.07e + 00)

4.00e + 02
(3.60e + 00)

5.69e + 02
(4.11e + 00)

5.28e + 03
(5.24e + 00)

6.38e + 03
(5.38e + 01)

7.53e + 03
(5.77e + 01)

7.65e + 03
(5.83e + 01)

7.75e + 03
(5.97e + 01)

8.21e + 03
(6.18e + 01)

8.64e + 03
(6.92e + 01)

+

f22 1.08e + 02
(0.00e + 00)

1.52e + 02
(1.59e + 00)

1.78e + 02
(3.35e + 00)

1.95e + 02
(3.69e + 00)

2.03e + 02
(4.07e + 00)

2.32e + 02
(4.28e + 00)

3.22e + 02
(4.87e + 00)

3.46e + 02
(5.60e + 00)

3.46e + 02
(5.70e + 00)

3.73e + 02
(6.05e + 00)

3.92e + 02
(6.15e + 00)

4.75e + 02
(6.50e + 00)

5.52e + 02
(6.92e + 00)

5.95e + 02
(6.92e + 00)

+

f23 3.38e + 02
(0.00e + 00)

4.72e + 02
(5.22e− 18)

4.48e + 02
(1.84e− 17)

5.02e + 02
(1.46e− 14)

5.10e + 02
(3.39e− 13)

5.38e + 02
(3.86e− 09)

5.62e + 03
(4.06e− 08)

5.66e + 03
(4.07e− 06)

6.10e + 03
(4.30e− 05)

6.17e + 03
(4.40e− 04)

6.91e + 03
(5.38e− 04)

7.23 e + 03
(5.91e− 03)

7.30 e + 03
(6.03e− 02)

7.87e + 03
(6.49e− 02)

+

f24 1.29e + 02
(3.57e− 17)

1.29e + 02
(3.57e− 17)

1.46e + 02
(1.44e− 16)

1.62e + 02
(1.45e− 15)

1.78e + 02
(1.89e− 14)

1.84e + 03
(2.91e− 12)

1.93e + 03
(3.11e− 10)

1.97e + 03
(3.43e− 10)

2.53e + 03
(3.75e− 09)

3.42e + 03
(3.95e− 07)

3.49e + 03
(4.48e− 06)

3.77e + 03
(5.97e− 05)

4.44e + 03
(6.11e− 05)

4.86e + 03
(6.63e + 01)

NA

f25 1.36e + 02
(1.17e + 00)

2.44e + 02
(1.21e + 00)

2.73e + 02
(1.93e + 00)

2.99e + 02
(1.94e + 00)

3.16e + 02
(2.06e + 00)

4.01e + 02
(2.10e + 00)

4.34e + 02
(2.33e + 00)

5.10e + 02
(2.79e + 00)

5.16e + 02
(3.26e + 00)

6.01e + 02
(3.59e + 01)

6.02e + 02
(4.53e + 01)

6.51e + 02
(5.49e + 01)

6.54e + 02
(5.89e + 01)

6.89e + 02
(6.57e + 01)

+

Comparative analysis is tabulated in Table 5.1. To identify the best algorithm (in this case ICFA) at a glance its corresponding values are bolded.

In the last column of Table 5.1, the statistical significance level of the difference
of the means (of the final accuracies) of the best two algorithms, obtained using t-
test with 25 samples, is reported. Here, “+” indicates that the t value of 49 degrees
of freedom is significant at a 0.05 level of significance by two-tailed test, while “−”
means the difference of the means is not statistically significant and “NA” stands
for Not Applicable, referring to the cases for which two ormore algorithms achieve
the same best accuracy results.

5.6.5 Performance Analysis

A close scrutiny of Table 5.1 indicates that the performance of the proposed ICFA
has remained effectually and consistently superior to that of the other algorithms.
It is noteworthy that out of 25 benchmark instances, in 21 cases ICFA outperforms
its nearest neighbor competitor in a statistically significant fashion. In three cases,
(f10 and f19) ICA-DE, which remains the second best algorithm, has achieved the
best average accuracy surpassing ICFA. It is evident from Table 5.1 that ICFA per-
forms consistently better than all algorithms over most of the 25 benchmark
instances, and the advantage of ICFA is very prominent as well.
In order to compare the speeds of different algorithms, we present the time taken

by each algorithm to converge to the prescribed threshold value of the objective
function for theminimization problem of 100-D search space in Table 5.2. The sim-
ulation results in Table 5.2 apparently substantiate the highest convergence speed
of the proposed ICFA as compared to its other 13 contestants.
To compare the relative speed of convergence and quality of solution (accuracy)

of ICFA with its 13 competitors, we plot the mean objective function values taken
over 25 runs versus FEs over four representative benchmark instances (f05, f07,
f17, and f20) for different settings of problem dimensions in Figures 5.3–5.6.
The plots for all the functions are omitted for space economy. In Figures 5.3–5.6,
the Max_FEs is set to be 100 000, 300 000, and 500 000 for 10-D, 30-D, and 50-D
problems, respectively. It is observed from Figures 5.3–5.6 that ICFA outperforms
all other algorithms in terms of convergence speed and solution quality.
In Figure 5.4, plot of accuracy versus run-time complexity for all 14 algorithms

over the benchmark function f25 is presented with Max_FEs of 500 000 for 50-D
problem. It is to be noted that the accuracy corresponds to absolute difference

between the best-of-the-run value f Xbest (obtained after the termination of

the algorithm) and the theoretical optimum f∗ of a particular objective function,

i.e. f Xbest − f ∗ . This provides a visual means of illustrating the performance of

the algorithms with respect to both accuracy and FEs/run-time. In order to have
uniformity in order of magnitude, the x- and the y-coordinates are scaled appro-
priately and then we refer to the distance of a point from the origin as a measure

258 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Table 5.2 Comparative analysis of performance of the proposed ICFA with other algorithms based on convergence time in seconds for f01 to f25.

Functions Tolerance ICFA ICA-DE ICAAI
Memetic
ICA ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f01 1.00e− 18 24.742 27.809 108.375 137.003 213.684 278.096 412.032 468.265 524.497 565.394 566.416 577.663 627.761 645.142

f02 2.00e− 14 31.957 42.212 190.793 204.307 228.951 256.775 276.649 298.114 330.707 356.942 377.611 437.234 441.208 454.723

f03 4.00e− 02 35.716 54.877 85.719 86.560 86.560 151.270 223.543 232.788 241.192 289.094 414.312 426.918 1 554.722 489.107

f04 2.00e− 04 44.991 46.230 222.895 280.683 359.109 404.514 584.069 693.453 864.752 899.838 1 190.840 1 197.032 1 203.223 1 271.330

f05 1.00e− 10 56.435 66.432 354.738 570.807 738.502 964.245 980.369 1206.112 1241.586 1 354.457 1 699.522 1 886.566 2 438.024 2 028.461

f06 4.00e− 02 65.785 74.136 368.645 509.179 606.941 729.145 800.430 975.587 1120.194 1 242.397 1 317.756 1 323.866 1 751.577 1 344.233

f07 3.00e− 05 71.749 72.299 224.046 259.784 384.8657 412.356 426.101 501.700 531.939 607.538 716.125 801.345 874.195 1 213.701

f08 2.00e− 01 80.550 85.743 195.016 225.752 289.344 393.212 463.163 474.822 518.277 519.337 526.756 549.013 594.587 552.193

f09 2.00e− 02 82.757 108.455 452.986 879.839 1520.119 1568.031 2060.219 2068.930 2121.198 2 386.892 2 700.498 2 748.410 2 883.435 2 974.904

f10 3.00e− 03 83.044 87.470 299.377 416.525 609.168 632.598 991.851 1239.163 1473.458 1 496.888 3 358.236 5 987.554 12 183.370 6 430.112

f11 1.00e− 10 87.984 136.390 335.992 410.024 586.563 879.845 936.792 1059.230 1104.789 1 261.396 1 312.649 1 383.833 1 765.384 2 007.413

f12 8.00e− 02 103.247 116.073 1154.319 1346.705 1513.440 2103.425 2218.857 2622.869 3078.184 3 283.396 3 341.112 3 347.525 3 629.692 3 719.472

f13 9.00e− 02 103.916 104.565 184.451 223.420 326.037 357.212 462.427 467.623 474.118 494.901 567.643 618.302 758.589 775.475

f14 7.00e− 04 113.784 146.048 431.003 679.753 684.679 756.102 758.565 770.880 844.766 898.949 943.281 1 098.442 1 155.088 1 293.009

f15 7.00e− 01 117.032 144.925 312.086 374.504 2145.597 2360.156 3881.580 6807.394 8406.839 8 874.969 9 577.165 11 157.105 11 332.653 12 795.561

f16 9.00e− 03 120.138 177.510 81.890 87.284 622.757 2049.704 2093.837 2407.667 2505.739 2 540.064 2 785.244 2 795.051 2 834.280 3 442.327

f17 1.00e− 01 120.310 131.810 293.698 302.544 337.929 360.930 375.084 461.778 470.624 485.663 5 051.256 5 316.646 6 015.507 6 227.819

f18 2.00e− 01 123.131 123.131 574.288 622.956 958.769 1065.840 1241.046 1620.661 1990.541 2 710.835 3 022.314 3 178.053 3 650.137 4 263.361

f19 3.00e− 02 128.413 168.148 327.428 185.883 325.722 3871.156 4280.442 5184.280 5798.208 6 633.832 8 339.188 8 782.580 9 925.168 11 801.059

f20 2.00e + 00 152.039 164.528 323.989 360.189 427.159 428.969 477.839 765.629 948.439 1 035.319 1 076.949 1 136.679 1 174.689 1 230.799

f21 4.00e + 01 152.635 201.814 250.264 324.213 743.142 863.356 1366.070 1653.855 1690.283 1 850.569 2 032.712 2 112.854 2 549.997 3 398.782

f22 2.00e + 00 156.405 184.566 1869.495 2129.448 2166.275 2751.169 4180.911 7603.627 9639.926 9 661.589 10 983.017 25 995.306 34 443.781 60 439.088

f23 7.00e + 01 165.270 207.414 224.767 243.773 269.390 329.714 428.049 437.966 444.576 454.493 472.672 545.391 2 247.674 4 016.065

f24 2.00e + 02 180.090 266.919 543.129 571.715 618.167 1032.661 1386.410 1486.460 1650.828 1 915.2471 19 581.26 6 860.587 7 432.303 8 254.144

f25 2.00e + 02 182.976 365.211 1437.141 1659.379 2266.831 2718.715 3296.535 4178.080 4259.568 11 852.711 120 00.870 12 371.267 20 445.927 28 965.063

of its performance. The smaller the measure, the better is the performance of
the algorithm. The relative performance of two algorithms is symbolized
by “≥.” Using this convention, Figure 5.4 reveals that the performance of the
14 algorithms, respectively, is ICFA≥ ICA-DE≥ ICAAI ≥Memetic ICA ≥ ICAR ≥
SBA ≥HEICA≥ CICA ≥K-MICA ≥ R-ICA-GA≥ABC ≥ FA≥ ICA ≥ PSO.

10 20 30 40 50

Function evaluations →

M
e
a
n
 o

b
je

c
ti
ve

 f
u
n
c
ti
o

n
 v

a
lu

e

→

f05

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10–2

101

104

107

× 104

Figure 5.3 Relative performance in mean best objective function versus function
evaluation for f05 with Max_FEs = 500 000.

× 104

6 12 18 24 30

Function evaluations →

M
e
a
n
 o

b
je

c
ti
ve

 f
u
n
c
ti
o
n
 v

a
lu

e
 →

f07

ICFA
ICA-DE
ICAAR
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10–4

10–3

10–2

10–1

100

101

Figure 5.4 Relative performance in mean best objective function versus function
evaluation for f07 with Max_FEs = 300 000.

260 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

The scalability of an algorithm signifies the consistency in its qualitative per-
formance with the growth of dimensionality of the search space. Increase of
dimensions indicates a rapid growth of the hyper-volume of the search space
and this, in turn, decelerates the convergence speed of most of the global

× 104

0 2 4 6 8 10

Function evaluations →

M
e
a
n
 o

b
je

c
ti
ve

 f
u
n
c
ti
o
n
 v

a
lu

e
 →

f17

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

101

101.5

102

103

103.5

104

102.5

Figure 5.5 Relative performance in mean best objective function versus function
evaluation for f17 with Max_FEs = 100 000.

10 20 30 40 50

Function evaluations →

M
e
a
n
 o

b
je

c
ti
ve

 f
u
n
c
ti
o
n
 v

a
lu

e
 →

f20

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10–1

100

101

102

103

104

× 104

Figure 5.6 Relative performance in mean best objective function versus function
evaluation for f20 with Max_FEs = 500 000.

5.6 Simulation Results 261

optimizers. Figure 5.7 illustrates the scalability of the 14 algorithms over two
benchmark functions delineating the variation of the average computational cost
(measured in number of FEs required to yield a predefined accuracy threshold) to
capture the global optimum with the enhancement in the dimensionality of the
search space. It can be observed that ICFA requires smaller number of FEs to
achieve the threshold value irrespective of the problem dimensions. Hence,
the superiority of the proposed ICFA over other algorithms is prominent as well
(Figure 5.8).
A non-parametrical statistical test, known as Friedman two-way analysis of var-

iances by ranks [51], is also performed on themean of the objective function values
for 50 independent runs of each of the 14 algorithms, for 50-D problems. Addition-
ally, we use Iman-Davenport test as a variant of Friedman test that provides better
statistics [52]. Table 5.3 summarizes the rankings obtained by the Friedman pro-
cedure. The results emphasize ICFA as the best algorithm, so the post-hoc analysis
[40] is applied with ICFA as the control method. With the level of significance
α = 0.05, both the Friedman and the Iman-Davenport statistics explain significant
differences in operators with test values of 275.7054 and 20 591.88, respectively,
and p< 0.001 (the estimated probability of rejecting the null hypothesis (H0) of
a study question when that hypothesis is true).
In the post-hoc analysis, the Bonferroni–Dunn test [53] is employed over the

results of the Friedman procedure. The outcome of the analysis provides ameasure
of the level of significance of the superiority of the control algorithm over each of
the remaining algorithms (i.e. when the null hypothesis is rejected). For the

× 104

0 1 2 3 4 5 6 7 8 9 10

Function evaluations →

A
c
c
u
ra

c
y
 →

f25

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

1018

1014

1010

106

10–2

102

Figure 5.7 Relative performance in accuracy versus function evaluation for ICFA
over other competitive algorithms for f25 with Max_FEs = 5 × 106.

262 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Bonferroni–Dunn test, a critical difference (CD) [53] is calculated which for these
data appears as 2.639. It elucidates that the performance of two algorithms is sig-
nificantly different, only if their corresponding average Friedman ranks differ by at
least a CD. It is pictorially depicted in Figure 5.9. It can be perceived that only ICA-
DE and ICAAI, the null hypothesis cannot be rejected with any of the tests for
α = 0.05. The performance of other 11 algorithms, however, may be regarded as
significantly poor than the ICFA in the present context.

× 105

× 104

10 20 30 40 50
5

10

15

20

25

30

Dimension →

F
u
n
c
ti
o
n
 e

va
lu

a
ti
o
n
s
 →

f04

ICFA
ICA-DE
ICAAI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

10 20 30 40 50
10

20

30

40

50

60

Dimension →

F
u
n
c
ti
o
n
 e

va
lu

a
ti
o
n
s
 →

f11

ICFA
ICA-DE
ICA-AI
Memetic ICA
ICAR
SBA
HEICA
CICA
K-MICA
R-ICA-GA
ABC
FA
ICA
PSO

Figure 5.8 Variation of FEs required for convergence to predefined threshold accuracy
(1.00e − 08) with increase in search space dimensionality for f04 and f11.

5.6 Simulation Results 263

Table 5.3 Average rankings obtained through Friedman’s test

Algorithm Ranking

ICFA 1.117

ICA-DE 1.883

ICAAI 3.000

Memetic ICA 4.000

ICAR 5.000

SBA 6.000

HEICA 7.000

CICA 8.000

K-MICA 9.000

R-ICA-GA 10.00

ABC 11.00

FA 12.00

ICA 13.00

PSO 14.00

Critical difference α = 0.05 2.639

14

12

10

F
ri

e
d
m

a
n
 r

a
n
k
in

g
 →

8

6

4

2

0

IC
FA

IC
A-D

E

IC
AAI

M
em

et
ic

IC
A IC

AR
SBA

H
EIC

A
C
IC

A

K-M
IC

A

R
-IC

A-G
A

ABC FA IC
A

PSO

Figure 5.9 Graphical representation of Bonferroni–Dunn’s procedure considering ICFA as a
control method.

264 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

5.7 Computer Simulation and Experiment

Here, the proposed algorithm is employed to carry a fixed length stick from a start-
ing position to a fixed destination by twin robots (multi-robot stick-carrying prob-
lem) both in computer simulation and real-time environment. To analyze the
performance of the proposed multi-robot stick-carrying problem, the following
performance metrics [68] are used.

5.7.1 Average Total Path Deviation (ATPD)

Let Pik be a path from the starting point Si to the goal point Gi generated by the i-th
robot in the k-th run of the algorithm. If Pi,1, Pi,2,…, Pik are the paths generated over
k runs, then the average total path traversed (ATPT) by the i-th robot is given by

k
j = 1Pi,j k and the average path deviation (APD) is evaluated by measuring the

difference between ATPT and the ideal shortest path between Si to Gi. If the geo-
metrically ideal path in a particular workspace is Pi-ideal, then the APD is given by

Pi-ideal−
k
j = 1Pi,j k. Therefore, for two robots in the workspace, the average total

path deviation (ATPD) is 2
i = 1Pi = ideal −

k
j = 1Pi,j k

5.7.2 Average Uncovered Target Distance (AUTD)

Given a goal position Gi and the current position Ci of a robot on a 2-dimensional
workspace, where Gi and Ci are 2-dimensional vectors, the uncovered distance of
robot i is ||Gi− Ci||, where ||.|| denotes the Euclidean norm. For two robots, uncov-

ered target distance UTD = 2
i = 1 Gi −Ci Now, for k runs of the program, we

evaluate the average of UTDs and call it the average uncovered target distance
(AUTD). For all experiments conducted in this study, we have considered k = 10.

5.7.3 Experimental Setup in Simulation Environment

The multi-robot stick-carrying problem is implemented in C on a Pentium proc-
essor. The experiment is performed with two similar soft-bots of circular cross-
sections of radius 6 pixels and 10 differently shaped obstacles. While performing
the experiments, old obstacles are retained and new obstacles are added in the
workspace. The experiments are accomplished with equal velocities for two robots
in a given run of the program; however, the velocities are regulated over different
runs of the same program. Some instances of the workspace of the robots, employ-
ing different evolutionary optimization algorithms, are given in Figure 5.10. It
reveals that the robots successfully follow the shortest path with minimum path
deviation in case of ICFA-based realization of the multi-robot stick-carrying
problem.

5.7 Computer Simulation and Experiment 265

5.7.4 Experimental Results in Simulation Environment

First, we plot ATPT by varying the number of obstacles from 2 to 10 by generating
paths using five different algorithms, including ICFA, ICA-DE, ICAAI, FA, and
ICA. It is worthmentioning fromFigure 5.11 that ICFA has the leastATPT in com-
parison to other algorithms irrespective to the number of obstacles.
The second study on performance analysis is undertaken by plotting ATPD by

generating paths by five different evolutionary/swarm algorithms (as used in

(a)

5

6

A

A

B

B

A

A

B

B

4

3 5

6
4

3

2

1

2

1

(b)

(c) (d)

(e) (f)

5

6
4

3 5

6
4

3

2

1

2

1

5

6
4

3 5

6
4

3

2

1

2

1

A

A

B AB

B A B

AB

A B

AB

A B

Figure 5.10 Initial (a) and final configuration of the world map after execution of the
(b) ICFA-, (c) ICA-DE-, (d) ICAAI-, (e) FA-, and (f) ICA-based simulations with
5 obstacles requiring 23, 29, 32, and 34 steps, respectively.

266 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

ATPT). Figure 5.11 provides the results ofATPD computation when the number of
obstacles varies from 2 to 10. Here too, we observe that ICFA outperforms the
remaining four algorithms as ATPD remains the smallest for ICFA-based simula-
tion irrespective to the number of obstacles (Figure 5.12).

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Number of obstacles →

A
ve

ra
g
e
 t
o
ta

l
p
a
th

 t
ra

ve
rs

e
d
 →

ICA

FA

ICAAI

ICA-DE

ICFA

Figure 5.11 Average total path traversed versus number of obstacles.

2 4 6 8 10 8 10
0

100

200

300

400

500

600

700

800

900

Number of obstacles →

A
ve

ra
g
e
 t
o
ta

l
p
a
th

 d
e
v
ia

ti
o
n
 →

ICA

FA

ICAAI

ICA-DE

ICFA

Figure 5.12 Average total path deviation versus number of obstacles.

5.7 Computer Simulation and Experiment 267

The last analysis on performance is undertaken by comparing AUTD over the
number of planning steps. Figure 5.13 provides a plot of AUTD when the paths
are planned using the five algorithms referred to above with the number of obsta-
cles = 5. It is apparent from Figure 5.13 that AUTD returns the smallest value for
ICFA irrespective of the number of planning steps. In brief, the proposed ICFA-
based stick-carrying methodology outperforms the remaining four algorithms
with respect to all three popular metrics.

5.7.5 Experimental Setup with Khepera Robots

The experiment is also undertaken in real environment with two homogeneous
Khepera-II mobile robots [70, 71] (diameter of 7 cm) in a world map of 8 × 6 grids
of equal size. Each robot is equipped with 8 infrared sensors, 2 motor-driven side
wheels, and one caster wheel with a flash memory of 512 KB, and a Motorola 68
331, 25MHz processor. The range sensors placed at fixed angles have limited
range-detection capabilities. The robot represents measured range data in the
scale: [0, 1023]. When the distance of the obstacle from the sensor exceeds
5 cm, it is represented by zero. When an obstacle is approximately 2 cm away from
the sensor, it corresponds to 1023.

5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

Number of steps →

A
ve

ra
g
e
 u

n
c
o
ve

re
d
 t
a
rg

e
t
d
is

ta
n
c
e
 →

ICA

FA

ICAAI

ICA-DE

ICFA

Figure 5.13 Average uncovered target distance versus number of steps with number of
obstacles = 5 (constant).

268 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

The robots are controlled by two Pentium-IV personal computers (PCs) through
wired connections. An optimization algorithm-based control program determin-
ing the next position of each robot from its current position is run on the attached
Pentiummachine with the range data obtained from sensory measurements of the
robots. The necessary commands for controlling motor movements are transferred
to the robots from their connected computers. One sample run of the stick-
carrying problem on the Khepera environment is given in Figure 5.14. The exper-
iment is performed on 20 different world maps of different grid counts, each with
five different obstacle maps, and in all the 100 environments, the robots could suc-
cessfully follow the shortest paths avoiding collision with the obstacles.

5.7.6 Experimental Results with Khepera Robots

Results of the experiments performed are summarized in Table 5.4. Three perfor-
mance metrics, namely (i) total number of steps taken to reach the goal, (ii) ATPT,
and (iii) ATPD have been used here too to determine the relative merits of ICFA
over other algorithms. Table 5.4 substantiates that ICFA outperforms the remain-
ing four algorithms with respect to all the three metrics.

Figure 5.14 Final configuration of the world map after experiment using Khepera-II
mobile robots.

5.7 Computer Simulation and Experiment 269

5.8 Conclusion

The most intriguing issue of the present chapter is the unique formulation of a
multi-robot stick-carrying problem in the framework of an evolutionary optimiza-
tion problem. The integrity of the work lies in online optimization of the trajectory
of the stick (carried by the robots) in a sequence of local steps from the predefined
starting position to a given goal position without collision with obstacles in the
workspace. The stick-carrying optimization problem is then solved using the pro-
posed hybrid evolutionary optimization algorithm.
The chapter also introduced a novel approach for efficiently employing both ICA

and FA to develop a hybrid algorithm with an aim to utilize the composite benefits
of the explorative and exploitative capabilities of both ancestor algorithms. The
potential of local exploitation is captured by the colonizing behavior of countries
(representing candidate solutions) surrounding the respective imperialist (repre-
senting the local optima in the search space) of the traditional ICA. Alternatively,
the global explorative proficiency of FA is signified by the self-organizing behavior
of fireflies (representing candidate solutions) based on their light intensity (symbo-
lizing the fitness) profile. Themerit of the proposed hybridization policy lies in devis-
ing two interesting stratagems to realize the communal benefits of the two ancestor
algorithms: (i) integration of the light intensity (fitness)-inducedmotion dynamics of
fireflies in the traditional ICA and (ii) modulation of step-size for randommotion of
fireflies based on the best position in the search space (discovered so far). The chap-
ter also recommends a new policy of evaluating the threshold value for union of
colonies (set of candidate solutions) based on search space dimensions.
The incorporation of firefly motion dynamics of the traditional FA in the tradi-

tional ICA is significant due to its efficacy of distributing the information of the
promising regions in the search space among the fireflies (candidate solutions)
through the brighter ones (quality solutions with better fitness). The strategy thus
allows each country (candidate solution) of ICA to improve its sociopolitical

Table 5.4 Comparison of number of steps, average path traversed, and average total path
deviation (ATPD) by the Khepera robots.

Algorithms Total number of steps ATPT (in.) ATPD (in.)

ICFA 10 41.2 7.5

ICA-DE 13 44.2 9.5

ICAAI 16 45.7 12.1

FA 18 48.3 13.7

ICA 22 52.0 16.4

Comparative analysis is tabulated in Table 5.4. To identify the best algorithm (in this case ICFA) at
a glance its corresponding values are bolded. 7.5 is the ATPD corresponding to the ICFA.

270 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

characteristics by following the more powerful countries (quality solutions with
better fitness) in the colony, not only being guided by the respective imperialist
country (local optima). Hence, it evades the possibility of the search strategy to
get stuck at local optima.
The second strategy provides a unique estimate of step-size for random move-

ment of fireflies based on their position in the search space relative to the so far
best position. It differs from the conventional approach, which considers equal
step-size for random movement of all fireflies irrespective of their fitness, thereby
offering a poor convergence rate in most of the real-world applications. In the pro-
posed alternative approach, the step-size for random motion is decreased for a
brighter firefly (quality solution with better fitness) to confine its search process
in close proximity of the best position discovered so far. It thus assists in the local
exploitation of quality solutions. Contrarily, the fireflies far away from the best
location in the search space are assigned with a large value of step-size to inspire
them in global exploration.
The experimental study undertaken reveals the effectiveness of the proposed

hybrid algorithm in counterbalancing the trade-off between the global exploration
and the local exploitation. It is capable of maintaining large population variance to
ensure population diversity at earlier explorative phase of ICFA, while confining
the search process in the local neighborhoods at later exploitative phase by preser-
ving low population diversity. We have then undertaken a comparative study of
the proposed ICFA algorithmwith 13 state-of-the-art hybrid/traditional evolution-
ary/swarm algorithms. The efficacy of all the 14 contender algorithms is scruti-
nized with respect to the test suit of 25 CEC 2005 benchmark functions. The
relative performance of all the algorithms has been compared based on the solu-
tion quality and the convergence time. The quality performance of ICFA is sub-
stantiated by the reported simulation results. The experimental study clearly
reveals that ICFA outperforms its competitor algorithms with respect to the com-
putational accuracy and the run-time complexity required for convergence, irre-
spective of settings of problem dimension.
Three nonparametric tests including the Friedman test, the Iman-Davenport sta-

tistic, and the Bonferroni–Dunn post-hoc analysis are used to validate the statistical
significanceof the results. The results of both theFriedmanand the Iman–Davenport
tests affirm the rejection of the null hypothesis, concerned with the equivalent per-
formance of all the contender algorithms. Moreover, ICFA emerges as the winner
achieving the highest average Friedman rank. The outcome of the Bonferroni–Dunn
test further reveals that apart from ICA-DE and ICAAI, the remaining 11 algorithms
are outperformed by ICFA in a statistically significant manner.
Finally, the proposed ICFA is employed to handle the multi-robot stick-carrying

problem. The experiments undertaken reveal that the ICFA-based program here
too outperforms all its competitors with respect to two parameters AUTD and
ATPD. The experiments performed with Khepera-II mobile robots also indicate

5.8 Conclusion 271

that ICFA outperforms other realizations in real environment, thereby justifying
the merit of the proposed algorithm.
A potential extension of the proposed multi-robot stick-carrying problem is to

consider noise contaminating the sensory measurements of the robots. In real-
world problems, the sensory data of the robots are often found to be contaminated
with noise due to sensor aging or noisy ambience or faulty measurement proce-
dure. The application of traditional/hybrid evolutionary/swarm optimization
algorithms may fail to solve such practical multi-robot coordination problems.
The existing algorithms are biased toward the selection of candidate solutions with
better fitness measures over evolutionary generations. However, this conventional
fitness-based selection of candidate solutions may lead the search process toward
suboptimal or deceptive regions in the search space in the presence of noise.
Hence, new robust selection strategy needs to be incorporated in the tradi-
tional/hybrid evolutionary/swarm algorithms to cope with the uncertainty
involved in the noisy sensory data of the robots. Although the quality performance
of ICFA is evident on different complicated fitness landscapes, there is still scope to
further amend its effectiveness to capture the global optima in the real-world mul-
timodal objective surface. It can be accomplished by the online tuning of the algo-
rithm control parameters to learn the objective space characteristics using, for
instance, machine-learning methods.

5.9 Summary

This chapter hybridizes the FA and the ICA. The above explained hybridization
results in the ICFA, which is employed to determine the time-optimal trajectory
of a stick, being carried by two robots, from a given starting position to a predefined
goal position amidst static obstacles in a robot world map. The motion dynamics of
fireflies of the FA is embedded into the sociopolitical evolution-based meta-
heuristic ICA. Also the trade-off between the exploration and exploitation is bal-
anced by modifying the random walk strategy based on the position of the candi-
date solutions in the search space. The superiority of the proposed ICFA is studied
considering run-time and accuracy as the performance metrics. Finally, the pro-
posed algorithm has been verified in real-time multi-robot stick-carrying problem.

Appendix 5.A Additional Comparison of ICFA

In order to compare the speeds of different competitive algorithms listed under
Section 5.6.1, we record the number of FEs the algorithm takes to reach below
a predefined cutoff value of the objective function for the minimization problem.
A lower number of FEs corresponds to a faster algorithm. Table 5.A.1 details the

272 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Table 5.A.1 No of successful runs out of 25 runs and success performance in parenthesis (success performance = mean (fes for successful runs)
× (# of total runs)/(# of successful runs)) for f01 to f25.

Functions Tolerance ICFA ICA-DE ICAAI Memetic ICA ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f01 1.00e− 18 25
(2.42e + 03)

25
(2.72e + 03)

25
(1.06e + 04)

24
(1.34e + 04)

24
(2.09e + 04)

24
(2.72e + 04)

23
(4.03e + 04)

23
(4.58e + 04)

22
(5.13e + 04)

21
(5.53e + 04)

21
(5.54e + 04)

21
(5.65e + 04)

21
(6.14e + 04)

20
(6.31e + 04)

f02 2.00e− 14 24
(4.02e + 03)

24
(5.31e + 03)

23
(2.40e + 04)

23
(2.57e + 04)

22
(2.88e + 04)

22
(3.23e + 04)

22
(3.48e + 04)

21
(3.75e + 04)

21
(4.16e + 04)

21
(4.49e + 04)

21
(4.75e + 04)

20
(5.50e + 04)

19
(5.55e + 04)

18
(5.72e + 04)

f03 4.00e− 02 25
(4.25e + 03)

24
(6.53e + 03)

24
(1.02e + 04)

24
(1.03e + 04)

24
(1.03e + 04)

24
(1.80e + 04)

23
(2.66e + 04)

23
(2.77e + 04)

22
(2.87e + 04)

21
(3.44e + 04)

21
(4.93e + 04)

21
(5.08e + 04)

21
(1.85e + 05)

21
(5.82e + 04)

f04 2.00e− 04 25
(2.18e + 03)

24
(2.24e + 03)

24
(1.08e + 04)

24
(1.36e + 04)

24
(1.74e + 04)

23
(1.96e + 04)

23
(2.83e + 04)

23
(3.36e + 04)

21
(4.19e + 04)

21
(4.36e + 04)

20
(5.77e + 04)

19
(5.80e + 04)

19
(5.83e + 04)

18
(6.16e + 04)

f05 1.00e− 10 25
(1.75e + 02)

25
(2.06e + 02)

24
(1.10e + 03)

24
(1.77e + 03)

23
(2.29e + 03)

23
(2.99e + 03)

23
(3.04e + 03)

23
(3.74e + 03)

22
(3.85e + 03)

22
(4.20e + 03)

21
(5.27e + 03)

21
(5.85e + 03)

21
(7.56e + 03)

21
(6.29e + 03)

f06 4.00e− 02 25
(3.23e + 03)

24
(3.64e + 03)

23
(1.81e + 04)

23
(2.50e + 04)

22
(2.98e + 04)

22
(3.58 e + 04)

22
(3.93e + 04)

21
(4.79e + 04)

21
(5.50e + 04)

21
(6.10e + 04)

20
(6.47e + 04)

20
(6.50e + 04)

19
(8.60e + 04)

19
(6.60e + 04)

f07 3.00e− 05 25
(5.22e + 02)

24
(5.26e + 02)

24
(1.63e + 03)

24
(1.89e + 03)

23
(2.80e + 03)

23
(3.00e + 03)

23
(3.10e + 03)

22
(3.65e + 03)

22
(3.87e + 03)

21
(4.42e + 03)

21
(5.21e + 03)

20
(5.83e + 03)

19
(6.36e + 03)

18
(8.83e + 03)

f08 2.00e− 01 25
(7.60e + 03)

25
(8.09e + 03)

25
(1.84e + 04)

25
(2.13e + 04)

25
(2.73e + 04)

23
(3.71e + 04)

23
(4.37e + 04)

22
(4.48e + 04)

22
(4.89e + 04)

21
(4.90e + 04)

20
(4.97e + 04)

20
(5.18e + 04)

19
(5.61e + 04)

19
(5.21e + 04)

f09 2.00e− 02 24
(1.90e + 02)

24
(2.49e + 02)

23
(1.04e + 03)

23
(2.02e + 03)

22
(3.49e + 03)

22
(3.60e + 03)

21
(4.73e + 03)

21
(4.75e + 03)

20
(4.87e + 03)

20
(5.48e + 03)

20
(6.20e + 03)

19
(6.31e + 03)

19
(6.62e + 03)

19
(6.83e + 03)

f10 3.00e− 03 24
(3.19e + 02)

24
(3.36e + 02)

24
(1.15e + 03)

24
(1.60e + 03)

23
(2.34e + 03)

23
(2.43e + 03)

22
(3.81e + 03)

21
(4.76e + 03)

21
(5.66e + 03)

20
(5.75e + 03)

19
(1.29e + 04)

19
(2.30e + 04)

18
(4.68e + 04)

19
(2.47e + 04)

f11 1.00e− 10 25
(3.09e + 03)

25
(4.79e + 03)

25
(1.18e + 04)

25
(1.44e + 04)

24
(2.06e + 04)

24
(3.09e + 04)

23
(3.29e + 04)

23
(3.72e + 04)

23
(3.88e + 04)

21
(4.43e + 04)

20
(4.61e + 04)

20
(4.86e + 04)

20
(6.20e + 04)

20
(7.05e + 04)

f12 8.00e− 02 25
(1.61e + 03)

25
(1.81e + 03)

25
(1.80e + 04)

24
(2.10e + 04)

24
(2.36e + 04)

23
(3.28e + 04)

22
(3.46e + 04)

22
(4.09e + 04)

22
(4.80e + 04)

21
(5.12e + 04)

21
(5.21e + 04)

21
(5.22e + 04)

20
(5.66e + 04)

20
(5.80e + 04)

f13 9.00e− 02 25
(8.00e + 03)

25
(8.05e + 03)

23
(1.42e + 04)

22
1.72e + 04)

21
(2.51e + 04)

21
(2.75e + 04)

20
(3.56e + 04)

20
(3.60e + 04)

20
(3.65e + 04)

19
(3.81e + 04)

19
(4.37e + 04)

19
(4.76e + 04)

19
(5.84e + 04)

19
(5.97e + 04)

f14 7.00e− 04 25
(4.62e + 02)

25
(5.93e + 02)

24
(1.75e + 03)

24
(2.76e + 03)

24
(2.78e + 03)

23
(3.07e + 03)

23
(3.08e− + 03)

23
(3.13e + 03)

22
(3.43e + 03)

22
(3.65e + 03)

21
(3.83e + 03)

20
(4.46e + 03)

20
(4.69e + 03)

18
(5.25e + 03)

f15 7.00e− 01 25
(6.00e + 02)

25
(7.43e + 02)

25
(1.60e + 03)

25
(1.92e + 03)

24
(1.10e + 04)

24
(1.21e + 04)

24
(1.99e + 04)

23
(3.49e + 04)

22
(4.31e + 04)

22
(4.55e + 04)

22
(4.91e + 04)

21
(5.72e + 04)

21
(5.81e + 04)

21
(6.56e + 04)

(Continued)

Table 5.A.1 (Continued)

Functions Tolerance ICFA ICA-DE ICAAI Memetic ICA ICAR SBA HEICA CICA K-MICA R-ICA-GA ABC FA ICA PSO

f16 9.00e− 03 24
(2.45e + 03)

24
(3.62e + 03)

23
(1.67e + 03)

23
(1.78e + 03)

22
(1.27e + 04)

22
(4.18 + 04)

21
(4.27e + 04)

21
(4.91e + 04)

21
(5.11e + 04)

20
(5.18e + 04)

20
(5.68e + 04)

20
(5.70e + 04)

19
(5.78e + 04)

19
(7.02e + 04)

f17 1.00e− 01 25
(1.36e + 03)

25
(1.49e + 03)

23
(3.32e + 03)

23
(3.42e + 03)

22
(3.82e + 03)

21
(4.08e + 03)

21
(4.24e + 03)

21
(5.22e + 03)

21
(5.32e + 03)

20
(5.49e + 03)

20
(5.71e + 04)

19
(6.01e + 04)

19
(6.80e + 04)

19
(7.04e + 04)

f18 2.00e− 01 25
(2.53e + 03)

25
(2.53e + 03)

24
(1.18e + 04)

24
(1.28e + 04)

24
(1.97e + 04)

23
(2.19e + 04)

21
(2.55e + 04)

20
(3.33e + 04)

20
(4.09e + 04)

19
(5.57e + 04)

18
(6.21e + 04)

18
(6.53e + 04)

18
(7.50e + 04)

17
(8.76e + 04)

f19 3.00e− 02 24
(7.53e + 03)

24
(9.86e + 03)

24
(1.92e + 04)

23
(1.09e + 04)

23
(1.91e + 04)

23
(2.27e + 05)

22
(2.51e + 05)

21
(3.04e + 05)

20
(3.40e + 05)

20
(3.89e + 05)

20
(4.89e + 05)

19
(5.15e + 05)

19
(5.82e + 05)

18
(6.92e + 05)

f20 2.00e + 00 25
(8.40e + 03)

24
(9.09e + 03)

23
(1.79e + 04)

22
(1.99e + 04)

22
(2.36e + 04)

22
(2.37e + 04)

21
(2.64e + 04)

21
(4.23e + 04)

20
(5.24e + 04)

19
(5.72e + 04)

19
(5.95e + 04)

19
(6.28e + 04)

19
(6.49e + 04)

18
(6.80e + 04)

f21 4.00e + 01 25
(4.19e + 03)

25
(5.54e + 03)

24
(6.87e + 03)

24
(8.90e + 03)

24
(2.04e + 04)

23
(2.37e + 04)

22
(3.75e + 04)

22
(4.54e + 04)

21
(4.64e + 04)

21
(5.08e + 04)

21
(5.58e + 04)

21
(5.80e + 04)

21
(7.00e + 04)

20
(9.33e + 04)

f22 2.00e + 00 24
(7.22e + 02)

24
(8.52e + 02)

24
(8.63e + 03)

23
(9.83e + 03)

23
(1.00e + 04)

22
(1.27e + 04)

22
(1.93e + 04)

21
(3.51e + 04)

21
(4.45e + 04)

19
(4.46e + 04)

19
(5.07e + 04)

19
(1.20e + 05)

18
(1.59e + 05)

18
(2.79e + 05)

f23 7.00e + 01 25
(2.00e + 02)

24
(2.51e + 02)

24
(2.72e + 02)

24
(2.95e + 02)

23
(3.26e + 02)

22
(3.99e + 02)

22
(5.18e + 02)

21
(5.30e + 02)

20
(5.38e + 02)

20
(5.50e + 02)

20
(5.72e + 02)

19
(6.60e + 02)

19
(2.72e + 03)

18
(4.86e + 03)

f24 2.00e + 02 24
(5.04e + 02)

24
(7.47e + 02)

24
(1.52e + 03)

23
(1.60e + 03)

23
(1.73e + 03)

22
(2.89e + 03)

22
(3.88e + 03)

20
(4.16e + 03)

20
(4.62e + 03)

20
(5.36e + 03)

20
(5.48e + 04)

20
(1.92e + 04)

20
(2.08e + 04)

19
(2.31e + 04)

f25 2.00e + 02 24
(2.47e + 02)

23
(4.93e + 02

23
(1.94e + 03)

23
(2.24e + 03)

22
(3.06e + 03)

22
(3.67e + 03)

22
(4.45e + 03)

22
(5.64e + 03)

21
(5.75e + 03)

20
(1.60e + 04)

19
(1.62e + 04)

17
(1.67e + 04)

17
(2.76e + 04)

17
(3.91e + 04)

Comparative analysis is tabulated in Table 5.A.1. To identify the best algorithm (in this case ICFA) at a glance its corresponding values are bolded.

number of runs (out of 25) that successfully locate the optimum solution (within
the given tolerance) as well as the success performance attained by the algorithms
to converge within the prescribed threshold value. Table 5.A.1 designates that the
number of runs that converge below a prespecified threshold value is also greater
for ICFA overmost of the benchmark problems considered here. This indicates the
higher robustness of the algorithm as compared to its other 13 contestants.

References

1 Fong, T., Nourbakhsh, I., and Dautenhahn, K. (2003). A survey of socially
interactive robots. Robotics and Autonomous Systems 42 (3): 143–166.

2 Luna, R. and Bekris, K.E. (2011). Efficient and complete centralized multi-robot
path planning. International Conference on Intelligent Robots and Systems (IROS),
IEEE/RSJ, San Francisco, CA (25–30 September 2011), pp. 3268–3275.

3 Bhattacharya, P. and Gavrilova, M.L. (2008). Roadmap-based path planning-using
the Voronoi diagram for a clearance-based shortest path. IEEE Robotics and

Automation Magazine 15 (2): 58–66.
4 Gayle, R., Moss, W., Lin, M.C., and Manocha, D. (2009). Multi-robot coordination

using generalized social potential fields. IEEE International Conference on Robotics
and Automation, Kobe, Japan (12–17 May 2009), pp. 106–113.

5 Yamada, S. and Saito, J.Y. (2001). Adaptive action selection without explicit
communication for multirobot box-pushing. IEEE Transactions on Systems, Man,

and Cybernetics, Part C: Applications and Reviews 31 (3): 398–404.
6 Sugie, H., Inagaki, Y., Ono, S. et al. (1995). Placing objects with multiple mobile

robots-mutual help using intention inference. IEEE International Conference on
Robotics and Automation, Proceedings 2: 2181–2186.

7 Yamauchi, Y., Ishikawa, S., Uemura, N., and Kato, K. (1993). On cooperative
conveyance by two mobile robots. IEEE International Conference on Industrial
Electronics, Control, and Instrumentation, Proceedings of the IECON’93, Piscataway,
NJ (15–18 November 1993), pp. 1478–1481.

8 Kube, C.R. and Zhang, H. (1996). The use of perceptual cues in multi-robot box-
pushing. IEEE International Conference on Robotics and Automation, Proceedings 3:
2085–2090.

9 Rakshit, P., Konar, A., Das, S. et al. (2014). Uncertainty management in differential
evolution induced multi-objective optimization in presence of measurement noise.
IEEE Transactions on Systems, Man, and Cybernetics: Systems 44 (7): 922–937.

10 Das, P., Sadhu, A.K., Vyas, R.R. et al. (2015). Arduino based multi-robot stick-
carrying by artificial bee colony optimization algorithm. Third International
Conference on Computer, Communication, Control and Information Technology

(C3IT), IEEE, Adisaptagram, Hoogly, West Bengal (7–8 February 2015), pp. 1–6.

References 275

11 Wolpert, D.H. and Macready, W.G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1 (1): 67–82.

12 Pugalendhi, G.K., Chellasamy, R., Durairaj, D., and Aruldoss Albert Victoire, T.
(2014). Hybrid ant bee algorithm for fuzzy expert system based sample
classification. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 11 (2): 347–360.
13 Gargari, E.A. and Lucas, C. (2007). Imperialist competitive algorithm: an algorithm

for optimization inspired by imperialistic competition. IEEE Congress in
Evolutionary Computation, CEC, Singapore (25–28 September 2007), pp. 4661–4667.

14 Kamkarian, P. and Hexmoor, H. (2013). Exploiting the imperialist competition
algorithm to determine exit door efficacy for public buildings. Simulation:
Transactions of The Society for Modeling and Simulation International 89 (12):
24–51, Sage Pub.

15 Yang, X.S. (2009). Firefly algorithms for multimodal optimization, Stochastic
Algorithms: foundations and Applications. SAGA, Lecture Notes in Computer
Sciences 5792: 169–178.

16 Narimani, R. and Narimani, A. (2013). A new hybrid optimization model based on
imperialistic competition and differential evolution meta-heuristic and clustering
algorithms.AppliedMathematics in Engineering, Management and Technology 1 (2):
1–9.

17 Subudhi, B. and Jena, D. (2011). A differential evolution based neural network
approach to nonlinear system identification. Applied Soft Computing 11 (1):
861–871.

18 Ramezani, F., Lotfi, S., and Soltani-Sarvestani, M.A. (2012). A hybrid evolutionary
imperialist competitive algorithm (HEICA). In: Intelligent Information and
Database Systems, Part I, LNAI, vol. 7196 (eds. N.T. Nguyen, K. Jearanaitanakij, A.
Semalat, et al.), 359–368. Berlin, Heidelberg: Springer.

19 Khorani, V., Razavi, F., and Ghoncheh, A. (2010). A new hybrid evolutionary
algorithm based on ICA and GA: recursive-ICA-GA. Proceedings of the
International Conference on Artificial Intelligence, Las Vegas, NV (12–15 July, 2010),
pp. 131–140.

20 Nozarian, S. and Jahan, M.V. (2012). A novel memetic algorithm with imperialist
competition as local search. International Proceedings of Computer Science &
Information Technology, Hong Kong, China (April 2012). Vol. 30.

21 Lin, J.L., Tsai, Y.H., Yu, C.Y., and Li, M.S. (2012). Interaction enhanced imperialist
competitive algorithms. Algorithms 5 (4): 433–448.

22 Coelho, L.D.S., Afonso, L.D., and Alotto, P. (2012). A modified imperialist
competitive algorithm for optimization in electromagnetic. IEEE Transactions on

Magnetics 48 (2): 579–582.
23 Ahmadi, M.A., Ebadi, M., Shokrollahi, A., and Majidi, S.M.J. (2013). Evolving

artificial neural network and imperialist competitive algorithm for prediction oil
flow rate of the reservoir. Applied Soft Computing 13 (2): 1085–1098, Elsevier.

276 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

24 Talatahari, S., Farahmand Azar, B., Sheikholeslami, R., and Gandomi, A.H. (2012).
Imperialist competitive algorithm combined with chaos for global optimization.
Communications in Nonlinear Science and Numerical Simulation 17 (3): 1312–1319,
Elsevier.

25 Bahrami, H., Faez, K., and Abdechiri, M. (2010). Imperialist competitive algorithm
using chaos theory for optimization (CICA). Proceedings of the 12th International
Conference on Computer Modelling and Simulation (UKSim), IEEE, Cambridge, UK
(24–26 March 2010), pp. 98–103.

26 Bahrami, H., Abdechiri, M., and Meybodi, M.R. (2012). Imperialist competitive
algorithm with adaptive colonies movement. International Journal of Intelligent
Systems and Applications (IJISA) 4 (2): 49–57.

27 Zhang, Y., Wang, Y., and Peng, C. (2009). Improved imperialist competitive
algorithm for constrained optimization. International Forum on Computer Science-
Technology and Applications, IFCSTA, IEEE 1: 204–207.

28 Mohammadi-ivatloo, B., Rabiee, A., Soroudi, A., and Ehsan, M. (2012). Imperialist
competitive algorithm for solving non-convex dynamic economic power dispatch.
Energy 44 (1): 228–240, Elsevier.

29 Rashtchi, V., Rahimpour, E., and Shahrouzi, H. (2012). Model reduction of
transformer detailed RCLMmodel using the imperialist competitive algorithm. IET
Electric Power Applications 6 (4): 233–242.

30 Khorani, V., Razavi, F., and Disfani, V.R. (2011). A mathematical model for urban
traffic and traffic optimization using a developed ICA technique. IEEE Transactions

on Intelligent Transportation Systems 12 (4): 1024–1036.
31 Gorginpour, H., Jandaghi, B., and Oraee, H. (2013). A novel rotor configuration for

brushless doubly-fed induction generators. IET Electric Power Applications 7 (2):
106–115.

32 Gorginpour, H., Oraee Mirzamani, H., and McMaho, R. (2014). Electromagnetic-
thermal design optimization of the brushless doubly-fed induction generator. IEEE
Transactions on Industrial Electronics 61 (4): 1710–1721.

33 Niknam, T., Taherian, E.F., Pourjafarian, N., and Rousta, A. (2011). An efficient
hybrid algorithm based on modified imperialist competitive algorithm and K-
means for data clustering. Engineering Applications of Artificial Intelligence 24 (2):
306–317.

34 Mozafari, H., Abdi, B., and Ayob, A. (2012). Optimization of adhesive-bonded fiber
glass strip using imperialist competitive algorithm. Procedia Technology 1: 194–198,
Elsevier.

35 Kaveh, A. and Talatahari, S. (2010). Optimum design of skeletal structures using
imperialist competitive algorithm. Computers and Structures 88 (21): 1220–1229,
Elsevier.

36 Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R. et al. (2010). Solving the integrated
product mix-outsourcing problem using the imperialist competitive algorithm.
Expert Systems with Applications 37 (12): 7615–7626, Elsevier.

References 277

37 Duan, H., Xu, C., Liu, S., and Shao, S. (2010). Template matching using chaotic
imperialist competitive algorithm. Pattern Recognition Letters 31 (13): 1868–1875,
Elsevier.

38 Sharifi, M. and Mojallali, H. (2013). Design of IIR digital filter using modified
chaotic orthogonal imperialist competitive algorithm. Proceedings of the 13th
Iranian Conference on Fuzzy Systems (IFSC), IEEE, Qazvin, Iran (27–29 August
2013), pp. 1–6.

39 Bashiri, M. and Bagheri, M. (2013). Using imperialist competitive algorithm in
optimization of nonlinear multiple responses. International Journal of Industrial
Engineering 24 (3): 229–235.

40 Emami, H. and Lotfi, S. (2013). Graph colouring problem based on discrete
imperialist competitive algorithm. International Journal of Foundations of
Compututer Science and Technology 3 (4): 1–12.

41 Lin, J.L., Cho, C.W., and Chuan, H.C. (2013). Imperialist competitive algorithms
with perturbed moves for global optimization. Applied Mechanics and Materials
284–287: 3135–3139.

42 Karimi, N., Zandieh, M., and Najafi, A.A. (2011). Group scheduling in flexible flow
shops: a hybridized approach of imperialist competitive algorithm and
electromagnetic-like mechanism. International Journal of Production Research 49
(16): 4965–4977.

43 Hamel, A., Mohellebi, H., and Feliachi, M. (2012). Imperialist competitive
algorithm and particle swarm optimization comparison for eddy current non-
destructive evaluation. Przeglad Elektrotechniczny 88 (9A): 285–289.

44 Bidar, M. and Rashidy, H.K. (2013). Modified firefly algorithm using fuzzy tuned
parameters. Proceedings of the 13th Iranian Conference on Fuzzy Systems (IFSC),
IEEE, Qazvin, Iran (27–29 August 2013), pp. 1–4.

45 Chandrasekaran, K. and Simon, S.P. (2013). Optimal deviation based firefly
algorithm tuned fuzzy design for multi-objective UCP. IEEE Transactions on Power

Systems 28 (1): 460–471.
46 Coelho, L.D.S., Bora, T.C., Schauenburg, F., and Alotto, P. (2013). A multiobjective

firefly approach using beta probability distribution for electromagnetic
optimization problems. IEEE Transactions on Magnetics 49 (5): 2085–2088.

47 Farahani, S.M., Abshouri, A.A., Nasiri, B., and Meybodi, M.R. (2011). A Gaussian
firefly algorithm. International Journal of Machine Learning and Computing 1 (5):
448–453.

48 Chetty, S. and Adewumi, A.O. (2014). Comparison study of swarm intelligence
techniques for the annual crop planning problem. IEEE Transactions on
Evolutionary Computation 18 (2): 258–268.

49 Abdullah, A., Deris, S., Mohamad, M.S., and Hashim, S.Z.M. (2012). A new hybrid
firefly algorithm for complex and nonlinear problem. Distributed Computing and

278 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

Artificial Intelligence, Springer, AISC 151, Salamanca, Spain (22–24 May 2013),
pp. 673–680.

50 Banati, H. and Bajaj, M. (2011). Fire fly based feature selection approach.
International Journal of Computer Science Issues 8, issue 4, no. 2: 473–480.

51 Horng, M.H. and Jiang, T.W. (2010). The codebook design of image vector
quantization based on the firefly algorithm. International Conference on Computer
Communication and the Internet, Kaohsiung, Taiwan (10–12 November 2010),
pp. 438–447.

52 Abidin, Z.Z., Arshad, M.R., and Ngah, U.K. (2011). A simulation based fly
optimization algorithm for swarms of mini-autonomous surface vehicles
application. Indian Journal of Geo-Marine Sciences 40 (2): 250–266.

53 Huang, S.J., Liu, X.Z., Su, W.F., and Yang, S.H. (2013). Application of hybrid firefly
algorithm for sheath loss reduction of underground transmission systems. IEEE
Transactions on Power Delivery 28 (4): 2085–2092.

54 Durkota, K. (2011). Implementation of a discrete firefly algorithm for the QAP
problem within the sage framework. Bachelor Thesis. Czech Technical University.

55 Kwiecien, J. and Filipowicz, B. (2012). Firefly algorithm in optimization of
queueing systems. Bulletin of the Polish Academy of Sciences Technical Sciences 60
(2): 363–368.

56 Apostolopoulos, T. and Vlachos, A. (2011). Application of the firefly algorithm for
solving the economic emissions load dispatch problem. International Journal of
Combinatorics 2011: 523806, 23 pages.

57 Gao, M.L., He, X.H., Luo, D.S. et al. (2013). Object tracking using firefly algorithm.
IET Computer Vision 7 (4): 227–237.

58 Jati, G.K. (2011). Evolutionary discrete firefly algorithm for travelling salesman
problem. International conference on adaptive and intelligent systems, Klagenfurt,
Austria (6–8 September 2011), pp. 393–403. Springer, Berlin, Heidelberg.

59 Pal, S.K., Rai, C.S., and Singh, A.P. (2012). Comparative study of firefly algorithm
and particle swarm optimization for noisy non-linear optimization problems.
International Journal of Intelligent Systems and Applications 4 (10): 50–57.

60 Mandal, P., Haque, A.U., Meng, J. et al. (2013). A novel hybrid approach using
wavelet, firefly algorithm, and fuzzy ARTMAP for day-ahead electricity price
forecasting. IEEE Transactions on Power Systems 28 (2): 1041–1051.

61 Hassanzadeh, T. and Meybodi, M.R. (2012). A new hybrid algorithm based on
firefly algorithm and cellular learning automata. Proceedings of the 20th Iranian
Conference on Electrical Engineering (ICEE), IEEE, Tehran, Iran (15–17 May 2012),
pp. 628–633.

62 Nasiri, B. and Meybodi, M.R. (2012). Speciation based firefly algorithm for
optimization in dynamic environments. International Journal Artificial Intelligence
8 (12): 118–132.

References 279

63 Farahani, S.M., Abshouri, A.A., Nasiri, B., and Meybodi, M.R. (2012). Some hybrid
models to improve firefly algorithm performance. International Journal Artificial
Intelligence 8 (S12): 97–117.

64 Suganthan, P.N., Hansen, N., Liang, J.J. et al. (2005). Problem Definitions and
Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization. KanGAL Report 2005005.

65 Ramezani, F. and Lotfi, S. (2013). Social-based algorithm (SBA). Applied Soft

Computing 13 (5): 2837–2856, Elsevier.
66 Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical

Optimization. Technical Report-TR06. Erciyes University.
67 Chakraborty, J. and Konar, A. (2008). A distributedmulti-robot path planning using

particle swarm optimization. Proceedings of the 2nd National Conference on Recent

Trends in Information Systems, Kolkata, India (7–9 February 2008), pp. 216–221.
68 Rakshit, P., Konar, A., Bhowmik, P. et al. (2013). Realization of an adaptive

memetic algorithm using differential evolution and Q-learning: a case study in
multirobot path planning. IEEE Transactions on Systems, Man, and Cybernetics:

Systems 43 (4): 814–831.
69 Yan, X., Zhu, Y., Wu, J., and Chen, H. (2012). An improved firefly algorithm with

adaptive strategies. Advanced Science Letters 16 (1): 249–254.
70 Franzi, E. (1998). Khepera BIOS 5.0 Reference Manual. K-Team, SA.
71 K. U. M. Version (1999). Khepera User Manual 5.02. Lausanne: K-Team, SA.

280 5 A Modified Imperialist Competitive Algorithm for Multi-Robot Stick-Carrying Application

6

Conclusions and Future Directions

This chapter concludes the book. Here novelties, originality of book are reclaimed
and the future research directions are indicated.

6.1 Conclusions

The book identifies a few fundamental problems in multi-robot coordination and
proposes solutions to handle these problems by extending the traditional evolu-
tionary algorithm (EA) and multi-agent Q-learning (MAQL). Chapter 1 provides
the preliminaries of Reinforcement Learning (RL) and EA in view of the multi-
robot coordination. Chapter 2 proposes two useful characteristic properties for
exploration of the team-goal and joint action selection in multi-agent system.
The incorporation of the first property with traditional MAQL (TMAQL) ensures
exploration of the team-goal by multi-phased transitions of the agents asynchro-
nously or synchronously to finally reach the team-goal, and thereby offer high
reward values to such pre-goal state to the goal state-transitions. The second prop-
erty helps in identifying common preferred joint actions for the entire team, thus
avoiding same joint actions at the same states and thereby enhancing the learning
speed of the agents. The Q-table obtained in joint state–action space using the pro-
posed fast cooperative multi-agent Q-learning (FCMQL) algorithms have been
employed in the multi-agent planning algorithm to autonomously select goal
state-transitions (team-goal) from the pre-goal states based on their high reward
values stored in the Q-table. TMAQL-induced planners occasionally fail to reach
the team-goal as such state-transitions that might result in due to follow-up actions
of Property 2.1 in FCMQL are missing from the Q-table obtained by TMAQL. It is
shown in a Theorem 2.1 that the expected convergence time of the proposed
FCMQL algorithms is less than the same of TMAQL algorithms. The complexity

281

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

analysis reveals the superiority of the proposed FCMQL algorithms over the
TMAQL algorithms.
Chapter 3 proposes a novel Consensus Q-learning (CoQL) algorithm for multi-

robot cooperative planning. The proposed CoQL algorithm addresses the problem
of equilibrium selection among multiple equilibria, by evaluating the consensus
(joint action) at the current joint state. An analysis reveals that a consensus at a
joint state is a pure strategy Nash equilibrium (NE) as well as pure strategy
correlated equilibrium (CE). The novelty of the CoQL lies in the adaption of
the joint Q-values at consensus. The superiority of the proposed CoQL algorithm
is verified over the reference algorithms in terms of the average of the average
rewards (AAR) earned by the agents against the learning epoch. In addition,
consensus-based multi-robot cooperative planning algorithm is proposed and its
superiority is verified over reference algorithms, considering path length and
torque requirement as the performance metrics.
Chapter 4 introduces a novel approach to correlated Q-learning (CQL) and sub-

sequent multi-robot planning. Two models are proposed in this chapter. The prin-
ciples adapted in the proposed models yield a single Q-table in joint state–action
space, which contains sufficient information to plan by employing the proposed
multi-agent planning algorithms. The Q-table obtained from model-I and -II have
less computational cost than the traditional CQL. An analysis reveals that both
time- and space-complexities of proposed learning and planning algorithms are
significantly less to those of the CQL. A further reduction in complexity is obtained
by dropping the infeasible joint state–action pairs from the joint Q-table. Unlike
traditional CQL, in the proposed models, computation of the CE is done partly
in the learning and partly in the planning phases, thereby requiring CE computa-
tion once. It has been proved in a Theorem that the CE obtained by the proposed
models is same as that obtained by the traditional CQL algorithms.
Chapter 5 introduces a novel approach for efficiently employing both Imperialist

Competitive Algorithm (ICA) and Firefly Algorithm (FA) to develop a hybrid algo-
rithm with an aim to utilize the composite benefits of the explorative and exploit-
ative capabilities of both ancestor algorithms. The potential of local exploitation is
captured by the colonizing behavior of countries (representing candidate solu-
tions) surrounding the respective imperialist (representing the local optima in
the search space) of the traditional ICA. Alternatively, the global explorative pro-
ficiency of FA is signified by the self-organizing behavior of fireflies (representing
candidate solutions) based on their light intensity (symbolizing the fitness) profile.
The merit of the proposed hybridization policy lies in devising two interesting stra-
tagems to realize the communal benefits of the two ancestor algorithms:
(i) integration of the light intensity (fitness)-induced motion dynamics of fireflies
in the traditional ICA and (ii) modulation of step-size for random motion of fire-
flies based on the best position in the search space (discovered so far). The chapter

282 6 Conclusions and Future Directions

also recommends a new policy of evaluating the threshold value for union of colo-
nies (set of candidate solutions) based on search space dimensions.
Finally, all the proposed learning and planning algorithms are verified first in

simulation and then are implemented for real-time planning using Khepera
mobile robots. The proposed learning-based planning and ICFA are employed
to handle the multi-robot object-transportation tasks. The experiments performed
with Khepera mobile robots also indicate that the proposed algorithms outperform
other realizations in real environment, thereby justifying the merit of the proposed
algorithms.

6.2 Future Directions

Cooperative robots have wide applications in flexible manufacturing systems
(FMS) and factory automation, where the servicing robots picks up items from
the conveyer and places the items again once the operation on the item by the ser-
vicing robot is over. In the defense sector, cooperative robots would find applica-
tions in landmine/water mine clearing. In building construction/repair, robot
team is a good choice as the skyscrapers invite high risks for the masons or their
assistants. We hope for the best, when a pair of robots might serve as a surgeon and
nurse, where the latter may assist the former in surgery.
The above dreams will be realized in near future by extending the book in the

following dimension: (i) multi-agent Fuzzy-Q learning, (ii) multi-agent reinforce-
ment learning employing function approximation techniques, (iii) multi-agent
reinforcement learning for distributed Q-learning with the flavor of partially
observable Markov decision process, (iv) optimal trajectory generation in the pres-
ence of dynamic obstacles employing PrEference Appraisal Reinforcement Learn-
ing, (v) efficient strategies for mixed coordination, and (vi) deep reinforcement
learning.

6.2 Future Directions 283

Index

a
AAR see average of average reward
action xii, 4, 5, 7, 8, 15, 17–19, 21–23,

25, 29, 31, 34, 46, 49, 51, 52, 57, 58,
60, 63, 66, 80, 112, 113, 118, 119,
127, 129, 167, 170, 173, 184, 187,
210, 216, 217, 227

actuator 4
adaptability 83, 87
adaptive action selection 168, 234
adaptive play (AP) 50–52
Adapt When Everybody is Stationary,

Otherwise Move to Equilibrium
(AWESOME) 40, 62–64, 86

adversarial equilibrium 34, 73, 74
agent xii, xiii, xiv, xvi, 1–8, 17, 18, 21,

23, 26–29, 31, 34, 40, 42, 45, 46, 48,
51, 56, 59, 61, 63, 65, 69–71, 76,
80–82, 84, 87, 112, 113, 117–123,
128, 133, 134, 136, 137, 167–170,
175, 176, 183, 184, 187, 189, 190,
192, 193, 209, 211, 215–217, 224

aggregation 98, 237, 246
alive state 10
ancestor xii, 233, 236, 248, 255,

270, 282
antagonist processes 238
AQL see Asymmetric-Q learning

artificial neural network 236
assimilation 93, 96, 97, 236, 242, 244,

245, 249–253
assimilation dynamic 238, 249
A-star (A∗) 10–15
Asymmetric-Q learning (AQL) xiii,

41, 71–73, 86, 117
ATPD see average total path deviation
ATPT see average total path traversed
autonomous 8, 28, 143, 171, 172, 183
average of average reward (AAR) 68,

137, 138, 143, 150, 153,
177–179, 282

average path deviation (APD) 265
average Q-table value 137
average reward xv, xvii, 19, 20, 60,

61, 67, 81, 86, 87, 135, 137, 167,
168, 176, 180

average total path deviation
(ATPD) 101, 265–267, 269–271

average total path traversed
(ATPT) 101, 265–267, 269, 270

average uncovered target distance
(AUTD) 101, 265, 268, 271

b
back-propagation 236
backward search 10

285

Multi-agent Coordination: A Reinforcement Learning Approach, First Edition.
Arup Kumar Sadhu and Amit Konar.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.

bandit problem 17–20
Battle of sexes game 84
Bayesian inference 63
Belief based-learning 40, 59
Bellman equation (BE) 20–21, 40,

112, 119
Bellman error 86
benchmark function 100, 233, 238,

254, 255, 258, 262, 271
Best first search 10
best response strategy 61, 82
bidirectional search 10
Boltzmann strategy xiv, 4, 5, 43,

46, 86, 113, 114, 118
Bonferroni-Dunn 262–264, 271
Breadth first 10
Bully algorithm 60, 61

c
candidate solution xvi, 94, 233,

235, 250, 270, 272, 282, 283
cardinality 209
Cartesian product 28, 34, 120, 187
centralized 28
centralized planning 3
central Q-value 49
collective intelligence xi, 2
collective robustness 87
collision xiii, xiv, 2, 8, 11, 117, 123, 175,

190, 217, 234, 239–241, 269, 270
colonizing behavior 248, 270, 282
colony xvii, 95, 96, 98, 244, 246,

249, 252, 271
colony-radius 236
column player 35, 66, 69
communication 1, 2, 28, 36, 38, 70, 84,

85, 122, 129, 173, 210, 217
competitive 1, 26, 34, 40, 56, 59,

101, 120, 167, 168, 184, 187,
262, 272

complexity xvi, xvii, 2, 122, 129, 143,
186, 209–215, 226, 228, 236,
281, 282

computational 9, 71, 93, 183, 235, 238,
239, 242, 271

computational cost xvii, 78, 86, 87,
186, 226, 262, 282

consensus xvii, 167–175, 179,
180, 282

consensus-based planning 167,
176–180

Consensus Q-learning
(CoQL) 167–180, 282

constant-sum-game 38
constrained optimization 237
Constraint Ω Multi-agent Planning

(CΩMP) 208, 209, 211–213, 216,
217, 222–228

Constraint ΩQL-I (CΩQL-I) 2l18,
200–202, 207, 209, 211, 217

Constraint ΩQL-II
(CΩQL-II) 200–202, 207,
209, 211, 217, 218

consumer optimization 68
continuous 4, 88, 237
converge xiv, 46, 50, 52, 60, 62,

65–70, 80, 82, 83, 86, 117, 172,
249, 258, 275

convergence xiii, 24, 42–45, 47, 51,
57, 58, 60, 65, 68, 69, 71, 73, 74,
78, 80, 81, 86, 92, 93, 98, 100,
111–161, 183, 184, 201–207,
217–221, 226, 236–238, 246–249,
258, 259, 261, 263, 271, 281

convergence time 78, 100, 114, 143,
259, 271, 281

convex programming 68
cooperation xi, 1, 3, 26, 48, 111,

113, 132, 185, 189, 215
cooperative
control 168, 171, 172, 175

286 Index

conveyance 168, 234
MARL 42–56, 168
MAS 26, 27, 55
MMDP 48
planning 111, 115, 167–180, 282

cooperative robot 167, 283
coordination xi, 1, 3, 25–101, 116, 117,

184, 185, 189, 216, 234, 283
coordination equilibrium 34, 73
CoQL see Consensus Q-learning
correlated equilibrium (CE) 29,

36–38, 117, 167, 168, 183–228, 282
Correlated-Q induced Planning

(CQIP) 207, 209, 210, 213, 216,
217, 222–225

correlated Q-learning (CQL) 41, 86,
113, 115, 117, 118, 121–123, 143,
168, 169, 177, 183–186, 188, 191,
192, 199, 209, 210, 213, 215,
217–221, 224, 226, 227, 282

cost function 11, 15, 68, 95, 243
CQIP see Correlated-Q induced

Planning
CQL see correlated Q-learning
critical difference 263

d
Darwinian principle 235
deep reinforcement learning 283
depth first 10
deterministic 5, 21, 23, 29, 48–51, 57,

114, 119, 124, 131, 134, 139, 140,
155, 157, 159, 161, 202, 209, 217

Differential evolution (DE) 88, 91,
98–99, 114, 236

Dijkstra’s 10–12
direct policy search 40, 65
discounting factor 23, 119, 123, 135,

170, 176, 187, 217
discrete 4, 7, 17, 65, 88
discrete-event system 112

dispersion 237
distributed
algorithm 61
artificial intelligence 61
Q 40, 48
system 28

distributed Q-learning 48, 50, 86, 283
divergent nature 67
D-star (D∗) 10, 15, 16
dynamic
environment 2, 87, 170, 235
game xv, 1, 28, 29, 40, 101
obstacles 2, 240, 283

Dynamic Programming (DP) 1, 3,
20–21, 28, 40, 101, 112, 119

e
EDNP see equilibrium-dominating

strategy profile
Effect 17, 184, 185, 189
Egalitarian 36, 37, 184
Egalitarian equilibrium (EE) 121,

171, 173, 187, 189
empire xvii, 93–98, 236, 238, 242–249,

251–253
energy xi, 7, 9, 17, 99, 140, 167, 178
enforce convention 50
environment xii, 3–5, 17, 21, 27, 28,

40, 42, 50, 63, 112, 134, 167–170,
183–185, 187, 189, 191, 201,
216, 217, 234, 235, 238, 268,
272, 283

EPG see Exact Potential game
EQLP12 128, 138, 144, 146, 147, 150,

153, 154
equality constraint 241
equilibrium xiv, 34, 36, 41, 43, 44, 47,

48, 50, 51, 55, 63, 69, 70, 72, 74, 76,
78, 81, 82, 85, 86, 118, 167, 168,
170, 171, 173, 180, 183–187, 193,
202, 217, 282

Index 287

equilibrium-based MAQL 78, 82, 84,
118, 169, 171, 180, 184–188,
215, 218

equilibrium-dominating strategy
profile (EDNP) 74, 75

equilibrium transfer xiv, 78, 118,
121, 185

Euclidean distance 98, 241, 246, 252
Euclidean norm 92, 248, 251, 265
evolutionary algorithm

(EA) xii, 1–101
Exact Potential game (EPG) 172, 174
expected reward 18, 19, 35, 51, 56, 57,

65, 67, 119, 191, 194
exploitation xiv, xvi, 18, 43, 45, 46, 58,

85, 96, 118, 233, 235, 236, 238, 244,
248, 255, 270–272, 282

exploration xiv, xv, xvi, 10, 18, 19, 43,
45, 46, 58, 61, 65, 85, 111–114, 118,
123, 126, 130, 134, 135, 137, 141,
143, 183, 186, 226, 233, 235, 238,
249, 255, 271, 272, 281

exponential distribution 5
Extended optimal response 83
Extended Optimal Response Learning

(EXORL) 41, 83–84, 87

f
factory automation 283
Fast cooperative multi-agent

Q-learning (FCMQL) 114,
115, 123, 124, 128–137, 139,
141, 143, 144, 147, 150, 281, 282

feasibility 7, 17
feasible path 8
feedback xii, 3, 5, 8, 17, 21, 40, 118,

185, 188, 189
FFQ see Friend-or-Foe Q-Learning
Fictitious play (FP) 40, 59
Firefly xvii, xviii, 91–93, 238,

247–250, 270, 271

Firefly algorithm (FA) xvi 87,
91–101, 233, 282

fitness 87, 89, 91, 235, 247–249,
270–272, 282

fitness landscape 91, 235, 238, 247,
249, 250, 272

flash memory 161, 216, 268
flexible manufacturing systems

(FMS) 283
FMRQ see Frequency of the maximum

reward Q-learning
FMRQP12, 128, 129, 136, 147, 150
Foe Q-learning (FQL) xiii, 117, 184,

215, 217–221
FQL see Foe Q-learning
Frequency Maximum Q-value

(FMQ) heuristic 40, 45–47,
50, 86, 113

Frequency of the maximum reward
Q-learning (FMRQ) 40, 55, 56,
86, 113, 115, 122, 123, 136

Friedman test 100, 262, 271
Friend-or-Foe Q-Learning

(FFQ) xiii, 41, 71, 73–74,
86, 117

Friend Q-learning (FQL) xiii, 117,
184, 215, 217–221

function approximation 65, 283
future reward 21, 22, 170, 184, 185,

189, 193
fuzzy controller 237
Fuzzy-Q 283

g
game of chicken 38, 60
game theory 28–40, 50, 56, 67, 172
GAMUT 59
Generalized IGA (GIGA) 40, 68,

69, 86
general-sum game xiii, 56, 65–70, 73,

81, 82, 117

288 Index

general-sum stochastic game xiii,
39–40, 70, 71, 73, 82, 117

generation cost 11, 14
Genetic Algorithm (GA) 236
GIGA-Win or Learn Fast

(GIGA-WoLF) 40, 69, 86
global immediate reward 55
global optimum 238, 249, 250, 262
global planning 239
global Q-value xiv, 54, 117
global search 236, 250
goal node 10, 11, 13, 15
goal transition 113
gradient-based optimization 235
graph 10–13, 15, 51, 168, 234, 237
graphical user interface

(GUI) 215, 217
ε-greedy 4, 5, 58, 112, 114, 118
greedy action 5, 18, 29
greedy reward 18
greedy selection 235, 238
grid 4, 7, 10, 16, 34, 70, 73, 74, 86, 134,

144, 161, 212, 215, 216, 218, 269
Grid World game 79, 81
gripper 221, 223
group behavior 2, 87
group immediate reward 201

h
HAMMER architecture 140
hardware xi, 2, 4, 141, 215–217
heuristic

cost 11, 13–16
function 58

heuristically accelerated multi-agent
reinforcement learning
(HAMRL) 40, 56, 58, 86

hierarchical 8–9
hierarchical model 8, 9
homing 237
homogeneous 28, 239, 268

hybrid evolutionary 233, 240,
270, 272

hybridization 88, 99, 233, 236, 237,
239, 242, 248, 250, 255, 270,
272, 282

Hyper-Q 40, 63, 65, 86
hyper-space 88, 235

i
ICA see Imperialist Competitive

Algorithm
ICFA see Imperialist Competitive

Firefly Algorithm
IGA see Infinitesimal Gradient Ascent
Iman-Davenport 100, 262, 271
Iman-Davenport test 100–101,

262, 271
immediate reward 5, 6, 21, 23, 55,

113, 119, 121, 123, 132, 135, 170,
176, 184, 185, 187, 189, 190, 193,
202, 217

Immediate Reward (ΩIR) 185, 189,
190, 211

imperialist 93, 95–98, 236, 238,
242–246, 248, 249, 251, 252, 270,
271, 282

Imperialist Competitive Algorithm
(ICA) xvi, 88, 93–98,
233–275, 282

Imperialist Competitive Firefly
Algorithm (ICFA) 88, 114, 134,
139, 143, 233, 238, 239, 248–260,
262–264, 266–275, 283, xvi, xvii

imperialistic competitive
algorithm 93

incremental encoder 216
Independent learner (IL) xiii, 42–44,

48, 50, 117
individual goal xv, xvi, 25, 111, 113,

114, 118, 121, 124, 125, 132, 133,
143, 175, 193, 224

Index 289

individual Q-function 202
individual Q-value xiv, 50, 54, 117,

185, 189, 190, 204, 211
Individual Simplicity 87
industrial optimization 68
Infinitesimal Gradient Ascent

(IGA) 40, 65, 67, 68, 81,
82, 86

intention inference 168, 234
intermediate state 209
isolation 238
Iterative deepening 10

j
joint action xv, xvii, 3, 26, 29, 31, 32,

34, 36, 38, 45, 47–49, 51, 52, 55, 63,
65, 75, 76, 85, 86, 111–115, 120,
123–128, 133, 139, 140, 143, 167,
170–173, 187, 188, 191, 194, 201,
207, 282

Joint Action Learners (JAL) xiii, 40,
42, 43, 45, 48, 50, 83, 86, 117

joint action selection 112–114, 118,
123, 130, 134, 135, 138, 141,
154, 281

joint goal 3, 207
joint next state 26, 47, 65, 187, 188,

193, 201, 224
joint Q-table 31, 85, 111, 114, 131,

161, 185, 189, 201, 207, 209–211,
216, 224, 226, 282

joint Q-value xiv, 31, 118–120,
126–128, 132, 133, 168, 170, 179,
187, 207, 209, 211, 282

joint state xiii, xiv, xvii, 3, 25, 26, 29,
31, 34, 43, 47, 78, 85, 111, 114, 117,
118, 122, 123, 125, 126, 131, 132,
143, 168, 172, 175, 179, 184, 187,
189, 190, 193, 201, 211, 216,
224, 282

joint state-action 29

joint state-action space xiv, xvi, xvii,
34, 48, 84–86, 112, 114,
117, 118, 121, 122, 136, 141,
168, 177, 183–190, 202, 210,
216, 226, 281, 282

joint state-action value 34, 184
joint strategy 51, 121, 184

k
Khepera 134, 141–143, 161, 186,

216–218, 223, 225, 239,
268–271, 283

K-means clustering algorithm 236
knowledge sharing 1

l
Lagrangian multiplier 242
learning
based planning xv, 4, 111, 143, 177,

179, 283
by demonstration 114
epoch 46, 50, 55, 63, 86, 87, 122,

129, 147, 177–179, 188, 197, 203,
205–207, 209–211, 215, 217,
218, 282

rate 24, 40, 41, 43, 65, 68, 69, 79–82,
119, 123, 135, 170, 176, 187, 217

speed 87, 141, 281
learn quickly while losing and learn

slowly while wining 80, 81
Lemke–Howson method 121
Libertarian 36, 184
Libertarian equilibrium (LE) 37, 121,

171, 187, 189
light absorption coefficient 92,

247, 254
light intensity 91, 92, 247, 248,

270, 282
limit cycle behavior 67
linear programming 68

290 Index

local optima 87, 93, 235, 248–250,
270, 271, 282

local planning xiii, 88, 234, 239, 240
locomotion 2, 7
LQLP12 128, 144, 147, 150

m
machine learning xii, 66, 68, 236, 272
manipulator 2
MAQL with equilibrium transfer

(MAQLET) 41, 78–79, 113, 115,
122, 123

market based multi-robot
coordination 223

Markov Decision Process (MDP) 22,
23, 48, 51, 56, 57, 65, 70, 112,
119, 217, 283

Markov game 47, 56, 57, 63, 65,
70, 71, 76, 77

Markovian matrix 134, 217
Markov property 22
MARL see Multi-Agent Reinforcement

Learning
MAS see multi-agent system
matching pennies 39, 84
matrix game 51, 65, 81, 82
maximum attractiveness 92,

247, 254
MDP see Markov Decision Process
memetic algorithm 236
Metaheuristics 272
Meta Strategy 40, 59–63, 86
Minimax-Q 40, 58, 73
Minimax Q-learning xiii, 56–57, 69,

70, 86, 117
Minimax-strategy 61
mixed xi, xiii, 40, 59, 120, 168, 184,

187, 283
mixed strategy xiii, 29, 30, 35, 37, 63,

65, 66, 80, 120, 121, 184, 187, 188,
191, 194, 199

mixed strategy NE (MSNE) xiii, 31,
35–36, 117, 120, 121, 129

MMDP see Multi-agent Markov
Decision Process

mobile robot 1, 2, 112, 134, 141–143,
161, 215–218, 223, 225, 239, 268,
269, 271, 283

model 3, 47, 56, 59, 69, 112, 234,
237, 240, 282

modified noise-resistant Particle
Swarm Optimization
(MNPSO) 114, 118, 134,
139, 143

motion dynamic xvi, xvii, 88, 233,
237, 238, 249, 270, 272, 282

motion-planning 112
motor 4, 216, 236, 269
multi-agent
coordination xiv, xv, 1–101, 117,

188, 190, 193, 202, 234
planning 25–87, 111, 112,

133, 143, 175, 178, 207–209,
281, 282

Multi-agent Markov Decision Process
(MMDP) 48, 49, 51, 112, 119,
120, 217

multi-agent Q-learning (MAQL) xv,
xvi 40, 111–161, 169, 183,
184, 281

Multi-Agent Reinforcement Learning
(MARL) 3, 40–56, 58–84, 87,
168, 283

multi-agent system (MAS) 25, 26, 42,
114, 168, 170, 173, 185, 281

multiarmed bandit 17–20
multimodal 235, 272
multimodality 238
multi-objective optimization 87
multi-phase 281
multi-robot xv, xvii, 173–176,

226, 282

Index 291

multi-robot coordination xiii, xv, xvi,
1, 25, 28, 84, 85, 88, 99, 101, 143,
180, 223, 234, 272, 281

multi-robot joint action learning by
demonstration (MLbD) 114, 134,
139, 140, 143

mutation 2, 96, 99, 244

n
N-arms 18
Nash 73, 74
Nash equilibrium (NE) xiii, 29, 31–36,

52, 59, 63, 66, 67, 70, 71, 73, 78, 80,
82, 83, 86, 87, 117, 120, 121, 132,
133, 161, 167, 168, 170, 172, 173,
179, 183, 184, 187, 282, 282l

Nash-Q 73, 74, 184
Nash Q-induced multi-agent planning

(NQIMP) 139, 142, 159–161
Nash Q-Learning (NQL) xiii, xiv,

xv, 41, 47, 69–71, 74, 83, 85, 86,
113, 117, 118, 121–123, 136, 143,
168, 169, 177–179, 184, 215,
217–221

NE see Nash equilibrium
near-optimal 114
Negotiation-based Q-learning

(NegoQ) 41, 74–78, 87
network routing 68
Newton–Raphson method 235
node 8, 10, 11, 13–16
No Free Lunch Theorem

(NFLT) xii, 235
non-cooperative 27
non-determinism 5
non-deterministic 5
nonlinear facility location 68
nonlinear function 88, 131
Non-Stationary Converging Policies

(NSCP) 41, 82, 83, 87

nonstrict EDNP 74, 75
Normal-form game 69, 75–77
NP 92–95, 242, 243, 247, 248, 254
NPQLP12, 132
NQIMP see Nash Q-induced

multi-agent planning
NQL see Nash Q-Learning
NQLP12 128, 132, 133, 137–139, 147,

159–161
NSCP see Non-Stationary Converging

Policies
null hypothesis 63, 100, 262, 263, 271

o
OAL see Optimal Adaptive Learning
object-carrying problem 137
objective function 92, 93, 95–97,

100, 172, 174, 233–236, 240–245,
247, 249, 251, 252, 258,
260–262, 272

object-transportation 111, 139, 143,
171, 185, 283

offspring 11, 13
Ω Multi-agent Planning (ΩMP) 201,

208, 209, 211, 212, 217, 222–226
ΩQ-learning (ΩQL) 185, 186, 200,

201, 209, 211, 213, 218–221
one-armed bandit 18
optimal
action 18–20, 29, 31, 43, 49, 112,

120, 170, 184
mixed strategy 30, 65, 191, 192,

194, 199
NE 51, 55, 86
path 8, 15
point 89, 255
policy 22, 23, 29, 40, 48, 112,

119, 184
pure strategy 30, 171, 191, 193, 199
selection 240

292 Index

Optimal Adaptive Learning
(OAL) 40, 50–53, 86

optimality 7, 9, 25, 52
Optimistic Boltzmann (OB) 43
optimization xii, xiii, 20, 21, 40, 55,

68, 87–101, 234–238, 241, 242,
247, 254, 269, 270

optimization problem xii, 55, 68, 87,
91, 234–238, 241, 247, 254, 270

p
partially observable Markov decision

process 283
Particle Swarm Optimization

(PSO) 87–91, 114, 237, 239,
254, 260

path length 7, 9, 168, 177, 180, 282
payoff xiii, 51, 59, 66, 117, 184
penalty xii, 11, 17, 21, 38, 40, 112,

128, 169, 183, 187, 188, 190, 217,
237, 240, 242

penalty game 44–47, 50
pessimistic assumption 49
plan xii, xiii, 1, 7, 8, 10, 15, 115, 140,

167, 170, 173, 185, 207, 211, 213,
215, 226, 234, 239, 240, 282

planning xi, xv, 1–3, 7, 8, 15–17, 25,
84–85, 111, 114, 132, 137, 143, 167,
168, 170, 173–176, 186, 188–211,
215, 216, 218, 222–224, 226, 239,
268, 282, 283

policy 6, 18, 22, 23, 29, 40, 48, 57, 58,
80, 82–85, 87, 93, 112, 113, 117,
119, 184, 187, 202, 208, 237, 242,
249, 270, 282, 283

Policy Dynamic-Based Win or Learn
Fast (PD-WoLF) 41, 81–82, 87

policy hill-climbing (PHC) 80
post-hoc analysis 101, 262, 271
potential field 2, 168, 234

potential function 172, 174
potential game (PG) 168,

171–173, 175
precondition 17
preferred joint action xv, xvii, 111,

114, 115, 126, 127, 141, 143, 281
pricewise elliptical 68
Prisoner’s Dilemma 39, 40, 60
probability 5, 6, 9, 18, 21–24, 29–32,

35, 42, 43, 46, 47, 49, 51, 59, 63, 65,
66, 86, 87, 97, 98, 100, 101,
118–120, 124–128, 130, 133, 170,
184, 187, 188, 193, 246, 262

probability distribution 5, 57, 78,
184, 227

programmable 1, 2, 8
PSO see Particle Swarm Optimization
pure strategy xiii, 29, 30, 35, 37, 75,

76, 120, 167, 168, 171, 184,
191, 193

pure strategy CE xv, xvii, 37, 121, 122,
131, 168, 170, 171, 173, 175, 179,
180, 188, 282

pure strategy NE (PSNE) 31–35,
38–40, 51, 71, 74–76, 85, 117,
120–122, 129, 131, 167, 168, 170,
172, 173, 175, 179, 282

q
Q-learning 21–25, 43, 57, 65, 70,

80, 112, 169, 170, 172, 183,
184, 187

Q-table xiii, xiv, xvi, xvii, 21, 24, 25,
31, 48, 49, 54, 55, 72, 83–86,
111–115, 117, 118, 120–123, 129,
131, 135, 137, 139, 141, 143, 161,
183–186, 188–190, 201, 207,
209–211, 216, 224, 226, 281, 282

Quad tree 2
quasi-Newton strategy 235

Index 293

Q-value xiii, xiv, 21, 23, 24, 42, 43, 46,
48, 50, 55, 71, 73, 79, 80, 86, 87, 118,
119, 121, 122, 124, 132, 136, 168,
170, 172, 184, 185, 187, 190, 191,
202, 206, 209, 211, 215, 227, 228

r
random motion 2, 270, 271, 282
random walk xvi, 233, 272
real-time 1, 3, 111, 112, 141, 143, 185,

218, 233, 265, 272, 283
refinement 8, 238
Reinforcement Learning

(RL) xv, 1–101, 112, 115, 119,
168, 169, 183–185, 187, 281

Repeated game 28, 29, 55, 56, 59, 60,
62, 68

Republican (R) 36, 184
Republican equilibrium (RE) 37, 121,

171, 187, 189
revolution 96, 236, 244–245, 249
revolution rate 96, 244
reward 5, 11, 18, 21, 23, 28–31, 34, 36,

39, 47, 48, 50–52, 55, 56, 59, 63, 66,
70, 73, 82, 83, 112, 114, 118, 120,
121, 123, 132, 135, 137, 169, 170,
173, 183, 184, 187, 190, 217, 281

reward matrix 30, 31, 34–36, 38, 39,
45, 47, 50, 51, 66

robot
soccer xi, 3
team 137

rock-paper-scissor 29, 30, 39, 65
root node 8, 10
row player 35, 66, 69, 82
RQLP12 128, 133, 144, 147, 150
ruling power 93, 95, 97, 236, 243, 245
run-time complexity xv, xvii, 11, 87,

99, 115, 134, 139–141, 143, 186,
217, 218, 222–225, 235, 239,
258, 271

s
scalability 87, 261, 262
Scheme-I 183, 185, 189–193, 200–202,

206, 218–223, 226
Scheme-II 183, 185, 189, 190,

193–202, 206, 207, 219–221, 226
Scheme-I-induced Q-learning

(ΩQL-I) 189, 191, 200–201, 208,
211, 217, 218

Scheme-II-induced Q-learning
(ΩQL-II) 189, 193, 194,
200–201, 208, 211, 217, 218

SCQL see Sparse Cooperative
Q-learning

search-based planning 9, 10, 15
search space xvi, xviii, 88, 91, 99,

100, 233, 235, 238, 247, 249,
250, 258, 261–263, 270–272,
282, 283

self-organizing behavior 249, 270, 282
semi-supervised learning 3
Sequential Q-Learning (SQL) 40,

54–55, 86, 113
servicing robot 283
shortest path 10, 13, 15, 240, 241,

265, 269
single-phase 113
single point failure 3, 87
slot machine 18
soccer game xi, 58, 79, 81, 185
socio-political xvii, 94, 96, 98, 236,

238, 243, 244, 246, 247, 249,
251, 270

socio-political evolution 88, 93, 233,
242, 272

software xi, 4
source node 10, 11, 13
space-complexity xvii, 87, 209, 212–213
Sparse Cooperative Q-learning

(SCQL) xiv, 40, 54, 86,
117, 184

294 Index

speed xiv, 2, 58, 87, 114, 118, 134, 141,
161, 186, 215, 216, 281

speed of convergence xv, 58, 86, 92,
111–161, 218, 237, 238, 247,
258, 261

SQL see Sequential Q-Learning
Stackelberg equilibrium (SE) 72
Stanford Research Institute Problem

Solver (STRIPS) 10, 15–17
state-action 17, 22, 34, 52, 83, 112,

119, 135, 187–190, 211
state-less game 29
state-space xiv, xvii, 4, 15, 25, 29,

117, 186
state transition xvii, 3, 5–8, 10, 23, 24,

29, 42, 47, 65, 70, 112–114, 119,
120, 123, 124, 132–134, 139,
141, 143, 176, 183, 187, 188,
217, 281

state-transition xvii, 5–8, 10, 23, 24,
29, 42, 47, 65, 70, 112–114, 119,
132–134, 139, 143, 176, 183, 187,
188, 217, 281

state-transition probability 6, 23, 24,
120, 124, 187, 188

static
game xv, 1, 28, 29, 31, 36, 38–40
obstacle xvi, 233, 239, 241, 272

stationary opponent 59, 60, 62, 63,
82, 86

stationary opponent strategy 65
stationary strategy 60, 61, 70
statistical analysis 100
steepest descent leaning 235
stick-carrying 84, 85, 141, 161, 175,

177, 201, 212–213, 215, 216, 226,
234, 239, 240, 268, 270

stick-length 161, 185, 186, 207, 218,
226, 234, 241

stochastic 5, 21, 22, 35, 47, 70, 80, 82,
124, 140, 156, 158–160, 202

stochastic game 63, 65, 67, 80, 82
stochastic Markov game 47, 63,

65, 70
strategy 23, 29, 31, 41, 42, 45, 57,

59–61, 63, 65–67, 69, 75,
80, 83, 111, 113, 118, 120, 138,
154, 167, 180, 184, 207,
236, 270

STRIPs 2
strong coordination 27, 28
strongly centralized 28
sub-optimal equilibrium xv, 180
sub-optimal joint action 50
sub-optimal NE 51, 87
sub-optimal solution 87, 238
subroutine 8
supervised xii, 2
survival of the fittest 235
swarm 87, 88, 90, 118, 239, 240, 254,

266, 271, 272
Swarm Intelligence (SI) 87,

99, 100
System Architecture 28

t
task 8, 17, 26, 28, 40, 87, 111–161, 176,

185, 189, 193, 201, 207–212,
223, 224

task constraint 131, 132, 201,
207–211, 218, 226

Team Composition 28
team game 47, 50
team-goal xv, xvii, 111–115, 123–126,

129, 130, 132–137, 139, 141, 143,
157, 158, 185, 189, 281

Team Markov Game 47, 51
Team-Q learning 47, 86
Team Size 28
temperature xiv, 5, 43, 46, 118
theory of games (GT) 1
tightly coupled xvii, 54, 55, 185, 189

Index 295

time xiii, 7, 9, 17, 52, 54, 67, 78, 87, 88,
99, 114, 140, 141, 143, 161, 167,
183, 185, 189, 234, 235, 240, 258,
271, 281

time-complexity 228
Tit-for-Tat 60
torque 168, 178, 180, 282
trade-off xvi, 18, 43, 45, 233, 238,

255, 271, 272
Traditional MAQL (TMAQL) xiv, xvi,

xvii, 113, 115, 117, 122–124,
130–134, 137, 141, 143, 188, 189,
281, 282

traffic signal 36, 38
trajectory xi, xiii, xvi, 8, 67–69, 99,

101, 233, 234, 239, 240, 270,
272, 283

transfer-loss xiv, 78, 79, 118
triangle-carrying 201, 212, 213, 215,

223–225
t-test 258

u
unconstraint strategies 67
uncoordinated xiv, 36, 54, 117
unilateral deviation 29, 31, 120, 170
unsupervised 2

UQLP12, 128, 144, 147, 150
Utilitarian 36, 184
Utilitarian equilibrium (UE) 37,

121, 171

v
value function xiii, 20–22, 47, 71, 74,

117, 184
virtual game (VG) 51
Voronoi diagram 2, 168, 234

w
WAGB 52
weak coordination 27
weaker countries 93, 242
weakly acyclic game (WAG) 51, 52,

172, 174
weakly centralized 28
weakly coupled 185, 189
Weight OB (WOB) 43, 86
Win-or-Learn-Fast-IGA

(WoLF-IGA) 40, 62, 68–69, 81
WoLF PolicyHill-Climbing

(WoLF-PHC) 41, 80, 81, 87

z
zero-sum-game 69, 82

296 Index

