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Preface

The purpose of this book is primarily to expound the idea that the first

principle of relativity (i.e., the form of a physical law is the same in any

inertial frame) taken by itself, implies a new theoretical framework which is

consistent with the Lorentz and Poincar@ group properties and with all

previous experiments. The motivation of this work is not to show that special

relativity is wrong in some way, but instead to show that special relativity is in

some sense over specified and that removal of the over specification leads to a

fresh view of the physical world with new concepts and results which are

unobtainable through special relativity.

This new framework uses a four-dimensional symmetry formalism in

which the three spatial variables as well as the temporal variable are all

expressed in units of length. Furthermore, because it is based on only one

postulate, it is the logically simplest theory which has Lorentz and Poincare

invariance. This is important because it is absolutely essential to insist that a

fundamental physical theory should be derivable from the smallest possible

set of basic principles. The 4-dimensional symmetry by itself dictates the

kinematics of particles and fields in inertial frames in a manner which can

also be extended to non-inertial frames through a limiting procedure.

Three aspects related to this simplest 4-dimensional symmetry framework

are discussed:

(1) The first principle of relativity is shown to be the essence of relativity

theory. All previous experimental results related to Einstein's theory of

special relativity can be derived and understood based solely on this symmetry

principle, without invoking an additional postulate regarding the universal

constancy of the speed of light. We call such a theory "taiji relativity." As a

result, we also find that the number of truly universal and fundamental

constants in inertial frames is reduced to two, the atomic fine structure

constant ae=1/137.03604 and a second constant J=3.51773xlo-38 gram-cm. The

speed of light (measured in cm/sec) and the Planck constant are found not to

be truly fundamental.

(2) The renaissance of the common-sense concept of time t=t' is shown to be

possible. By embedding this "common time" in a 4-dimensional symmetry

framework of the Lorentz and Poincare groups, rather than the 3-dimensional

framework of the Galilean group, we can construct a viable theory ("common

vii



viii Einstein 's Relativity and Beyond

relativity") which is consistent with all known experiments. Such a theory

has certain advantages over special relativity in that we can introduce the

notion of the canonical evolution for a system of N particles and derive the

invariant Liouville equation. This cannot be done, in principle, in special

relativity because each particle has its own relativistic time, so that one

cannot have a canonical evolution and can only derive N one-particle

Liouville equations rather than one single invariant Liouville equation for N

particles.

(3) The first principle of relativity can also lead to an 'absolute' theory of

spacetime physics in non-inertial frames undergoing a constant linear

acceleration or a uniform rotation. This is accomplished on the basis of

limiting 4-dimensional symmetry, which requires that transformations for

non-inertial frames must smoothly reduce to the familiar 4-dimensional

transformation of relativity in the limit of zero acceleration. The relativity

theory of spacetime for inertial frames is simply the limiting case of such a

theory of spacetime ("taiji spacetime") for non-inertial frames. Particle

dynamics and quantizations of fields in linearly accelerated frames are

discussed. The universal constants in non-inertial frames are found to be the

same as the ones in inertial frames mentioned above. Thus, ae and J are the

truly universal and fundamental constants in the physical world since almost

all reference frames in the universe are, strictly speaking, non-inertial.

I want to express my gratitude to Bonnie Hsu for her patience and

assistance in the preparation of this book. The writing of the book was

supported in part by the Potz Science Fund and the Jing Shin Research Fund of

the University of Massachusetts Dartmouth. I would like to thank the

Academia Sinica and the Beijing Normal University in Beijing for their

hospitality. I am indebted to Leslie Hsu, Wolfhard Kern, George Leung, John

Dowd, Ed King and Kevin Smith for reading many chapters and improving the

text. I would also like to thank Leonardo Hsu for his many valuable sugges-

tions made during our discussions of the ideas presented here.

I have greatly benefitted from discussions with colleagues C. Chiu, L

Hsu, H. Margenau, T. Sherry and T. Y. Wu. Over the past decade, students in my

classes (H. Lu, H. Stevens, Jr., Y. C. Wei, et al) have helped to clarify some ideas

with their questions and comments. Lastly, I would like to express my sincere

gratitude to B. Bertotti and the referees of my early papers on Common

Relativity. Because of their understanding and open-mindedness, I was able to
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publish my works on Common Relativity twenty-four years after I first

conceived of the idea during my first year of college. The acceptance for

publication strongly motivated me to further develop several new ideas which

have engrossed my thought for years , and to publish a series of papers which

have eventually led to the writing of this book.

Herein , I have sketched some of the questions which have arisen, in the

hope that some readers may participate in the research of this subject of

physics which is of fundamental importance.

As the author, I must take sole responsibility for any mistakes in the

book and would be grateful to have my attention called to them by readers.

Institute of Theoretical Physics J. P. Hsu

Academia Sinica, Beijing (UMass Dartmouth)

November, 1999
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0.

Introduction

"Truth loves its limits, for there it meets the beautiful."
R. Tagore, Fireflies

"We are not saying that special relativity is wrong. Instead, .....

(the new) relativity shows that relativistic time, or any

particular time system for that matter, is not a necessary

ingredient for a theory for it to correctly reproduce all known

experimental results. The four-dimensional symmetry of the

physical frmework is all that matters."

J. P. Hsu and Leonardo Hsu

Physics Letters A 196, 1 (1994)

Oa. Limitations of Special Relativity

There is no doubt that special relativity, the creation of a young Albert

Einstein, is a beautiful theory. It is logically rigorous and wonderful in its

agreement with experimental observations over a wide range of physical

phenomena. In addition, its union with quantum mechanics has led to

numerous significant results, including the celebrated Dirac equation, the

stunning prediction of the existence of anti-particles, quantum field theories

and the powerful Feynman rules. By now, all these successes of relativity are

taken for granted.

But, however powerful and beautiful it may be, special relativity has its

limitations . The web that physicists weave with concepts and laws often

restricts their own thinking. There is little chance for making progress

simply by repeatedly going over the successes of a physical theory. One must

continually push at the boundaries of knowledge if the frontiers are to be

extended. The reason that the limitations of a theory are so attractive to

physicists is simply because they are the joyful beginning of a 'love affair' in

research.

1



2 Einstein's Relativity and Beyond

Four questions related to the limitations and possible extensions of

special relativity and field theory are discussed in the following chapters.

While answers will be provided for the first three, we can only speculate on

the fourth because of its profound difficulty and the lack of any experimental

hint at present. For now, let us briefly examine each of the four questions.

Ob. Question #1: Can the theory of relativity be formulated

solely on the basis of the first principle of relativity)

(without assuming the constancy of the speed of light)?

In 1904, Poincare delivered an important address, entitled "The

Principles of Mathematical Physics," to the International Congress of Arts and

Science in St. Louis.2 During his talk, he discussed some hypotheses related to

relativity and conjectured a whole new mechanics with the following features:

(a) the principle of relativity, (b) the velocity of light as an unpassable limit,

and (c) the contraction of moving bodies in their direction of motion. These

were later stated in his lectures in Gottingen (1909) as the three hypotheses

for a new mechanics.3 In 1905, Einstein formulated his well-known special

relativity based on two postulates: (A) the relativity principle and (B) the

constancy of the speed of light.

When special relativity was proposed, some physicists felt that the

second postulate concerning the constancy of the speed of light was too radical

a change in physical concepts. They wondered:1 Can one formulate a theory

of relativity solely on the basis of the first postulate of special relativity,

without assuming the universal constancy of the speed of light?

This historic question was discussed by Ritz (1908), Tolman (1910), Kunz

(1910), Comstock (1910) and Pauli (1921, 1958), among others.1 All concluded

that to do so would be nearly impossible, that one would have to abandon

Maxwell's equations for the vacuum and the whole of electrodynamics would

have to be constructed from scratch. However, as we shall see, their

conclusion turns out to be incorrect because they failed to recognize the

existence of the 4-dimensional symmetry associated with the first

postulate of relativity alone. The 4-dimensional symmetry is the

symmetry of the Lorentz and Poincare groups, in which spatial and temporal

(or evolution) variables in basic physical laws are treated on equal footing.

We stress that all four variables must have the same dimension. In other
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words, the evolution variable must be expressed in units of length. The

importance of this property will become clear later.

The new idea which leads us to the unexpectedly affirmative answer was

stumbled upon in 1990 while re-analyzing the old question of whether the

Lorentz transformation can be completely determined using only

experimental results .4 As it turns out, the answer is no, unless an additional

theoretical assumption (such as the universality of the speed of light) is made.

Purely on the basis of precision experiments , one can only obtain a Lorentz-

like transformation which does not involve the constant speed of light c, but

which turns out to have exactly the Lorentz group properties. This finding

suggests that there exists a new "Lorentz and Poincare invariance" which does

not involve a constant corresponding to the speed of light at all and hence,

that there is a new " 4-dimensional symmetry" which can provide the

necessary mathematical framework to give an affirmative answer to this long-

standing question . In fact , this new Lorentz-like transformation is precisely

the one which would be derived using only the first postulate of special

relativity . Thus , this "4-dimensional symmetry " is associated only with the

first postulate of special relativity and does not involve the constant speed of

light c. It paves the way to a new and logically simplest theory of relativity,

called taiji relativity . This result was published in a paper5 in 1994.

The existence of taiji relativity illustrates more fully that the second

postulate of the universality of the speed of light is truly a postulate, or a truth

by definition, and a trap from which people can see only the particular four-

dimensional symmetry of special relativity. The postulate of the universality

of the speed of light is superfluous , blocking physicists ' sight from an

appreciation of the flexibility of the concept of time and from a true

understanding of the universality of the speed of light as merely a free

invention of the mind.

Many different theories of relativity with 4-dimensional symmetry can

be constructed on the basis of alternate second postulates. Comparing

Einstein 's theory of relativity and Euclidean geometry, Einstein 's second

postulate (i.e., the universality of the speed of light) plays a role similar to

Euclid's fifth postulate (i.e., the parallel postulate).6
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Oc. Question #2: Can one generalize the 4-dimensional

transformation for inertial frames to non -inertial frames

with a constant acceleration or rotation ? In accelerated

frames , the speed of light is no longer a universal constant;

is the Planck constant still a universal constant?

This second question is closely related to an issue addressed by the

young Einstein in his 1907 paper, two years after his successful application of

the principle of relativity to inertial frames, namely "Is it conceivable that an

analogous principle of relativity holds for systems which are accelerated

relative to each other?" This question can be answered with the help of taiji

relativity. A simple generalized transformation for frames with constant

linear acceleration (or rotation) can be obtained by assuming that the

transformation must reduce to the 4-dimensional transformation of relativity

in the limit of zero acceleration. This assumption is called "limiting 4-

dimensional symmetry," which is not only a natural assumption, but also

absolutely necessary since a non-inertial frame becomes an inertial frame in

the limit of zero acceleration and an inertial frame must display the 4-

dimensional symmetry of the Lorentz and PoincarE invariance. As it turns

out, the Planck constant, like the speed of light, is no longer a universal

constant in non-inertial frames. Such accelerated transformations lead to a

new and more general theory of space and time, implying a different, and

truly universal constant.

Od. Question #3: Within the 4-dimensional symmetry framework

of special relativity, it appears to be impossible, in

principle , to generalize the classical Liouville equation for

many-particle systems to a Lorentz invariant Liouville

equation. Can we overcome this difficulty?

According to taiji relativity, it is possible to have infinitely many four-

dimensional symmetry frameworks, each of which has a different concept of

time. Within the four-dimensional symmetry framework of taiji relativity,

relativistic time is but one of many possibilities which are all consistent with

experimental results. For example, one could also make all clocks read the

same time ("common time") for all observers without contradicting any



Chap.O. Introduction 5

experimental results. In the framework of taiji relativity, each particular

concept of time corresponds to the assumption of a particular relation between

the time t in F and time t' in F'. As we shall see in chapter 6, any given

relationship between t and t' can always be physically realized by clock

systems because the reading and the rate of ticking of any clock can be

adjusted. Two of these are particularly simple. The first is the relativistic time

of special relativity. The second, which is elaborated in chapter 12, is known

as common relativity.

Poincare first stated in 1898 that "the simultaneity of two events

or the order of their succession , as well as the equality of two time
intervals , must be defined in such a way that the statements of the
natural laws be as simple as possible."7

Our third question can be answered on the basis of this point of view.

Common relativity has the advantage over special relativity in treating many

particle systems. For N-particle systems, common relativity with a single time

enables us to introduce the notion of the canonical evolution of a system and to

derive the Liouville equation, a basic equation of the statistical physics. This

cannot be done, in principle, in special relativity because each particle has its

own relativistic time, so that one cannot have a canonical evolution and can

only derive N one-particle Liouville equations which are not practically

useful. Hidden here is a simplicity which will be explored and discussed in

chapter 12.

Oe. Question #4: In view of the profound divergence difficulties

in quantum field theory, is the spacetime 4-dimensional
symmetry exact at very large momenta or short distances?

This final question is extremely non-trivial and has no clear answer as

yet. In view of the fundamental difficulties of the divergences in quantum

field theory, the limitations of the conventional concepts of space and time

become more clear. With piercing insight, Schwinger noted that "a

convergent theory [i.e., finite quantum electrodynamics] cannot be

formulated consistently within the framework of present space-time concepts

[special relativity]. To limit the magnitude of interactions while retaining the
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customary coordinate description is contradictory, since no mechanism is

provided for precisely localized measurements."8

In his book, Theory of Fundamental Processes , Feynman analyzed

possible modifications in quantum electrodynamics at very high energies. He

said that "relativity plus quantum mechanics seems to be exceedingly

restrictive, but we are also undoubtedly adding unknown tacit assumptions

(such as indefinitely short distances in space.) "9

The profound difficulties of divergence in relativistic quantum field

theories appear to suggest that the concept of locality has to be modified. The

assumption of locality requires that the theory of quantum fields should be

based on dynamical variables that are each localized at some point in

spacetime.10 However, locality is interlocked with the conventional

description of space and time in special relativity, which has extensive

experimental support.11 Locality cannot be changed without modifying the

traditional concept of space-time at short distances . Perhaps, a new dawn in

the landscape of physics is not far off. Perhaps one may soon be able to see

clearly the nonexistence of indefinitely short wavelengths and hence, an

inherent fuzziness at short distances in space! It appears that common

relativity could provide a more satisfactory foundation than special relativity

for phenomena related to high energies , short distances and many-particle

systems.12

In summary, taiji relativity has several interesting implications for

various ideas which have been advanced during the past 90 years to extend or

to change the concepts of time and simultaneity. These ideas were discussed by

Reichenbach (1927), Edwards (1963), Winnie (1970), Mansouri and Sexl (1977),

Hsu and Sherry (1976, 1980), Yuan Zhong Zhang, and others.13 Unfortunately,

the formulations of all these ideas, with the exception of those of Hsu and

Sherry, did not have the explicit 4-dimensional symmetry of the Lorentz and

Poincare groups and , hence, are incompatible with quantum electrodynamics

and other gauge field theories. However, taiji relativity indicates that such an

incompatibility simply shows that these ideas were not properly formulated

rather than incorrect. In addition, taiji relativity can provide a formulation

for these various ideas which are compatible with the 4-dimensional

symmetry of the Lorentz and Poincare groups.14
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1.

A Brief Review of Space and Time.

"What can be named is not the permanent name."

Lao-tzu ( -.600 B.C.) Dauhder-jing

la. Space and Objects

The existence of space and time is intuitively clear and is taken for

granted by all but the most hard-boiled of philosophers. In the most basic

terms, space is the grand stage for all physical phenomena , while time is

intimately related to our perception of the motion of objects and the changes

in phenomena. As human beings, our perception of space and time are

inherently different. An object in space can move left and right, forwards

and backwards, up and down, or some combination of the three. This implies

that the space we live in is three dimensional. However, at present, objects

cannot move in time in the same way that they move in space, except in stories

such as H. G. Wells' The Time Machine.1 Although we can easily return to a

previous location in space as many times as we wish , time appears to flow

uniformly without being affected by anything.

Space itself is an "empty stage,"2 without reference marks, so the only

way to denote the position of an object (which we may idealize as a point

particle for now) on a straight line is to specify its distance relative to another

object with the help of some measuring device, such as a meter stick. There is

absolutely no other way to define the concept of position. Such a method of

measuring space is possible only because of the invariance in the form or size

of solid bodies under certain transformations, namely spatial translations and

rotations. As will become clear later, the invariance of solid bodies under

spatial motion is closely related to the invariant forms of physical laws.

A convenient way to express the spatial positions of objects is to set up a

coordinate system (e.g., three mutually perpendicular lines in the Cartesian

case) relative to which any object's position can be measured. Thus, in the

case of Cartesian coordinates, the position of any object at any instant can be

completely defined by three numbers which are the shortest possible

9
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distances of the object from each of the axes.

Ignoring gravitational effects, the physical space we inhabit appears to

be described by Euclidean geometry. The origin of the concepts of Euclidean

geometry probably lies in the intuitions and world experiences of the

ancients. As an independent branch of mathematics, however, Euclidean

geometry now has a life of its own and often extends beyond any physical

structure we might encounter. If gravity is not ignored, then our space is

curved, according to general relativity, and described by non-Euclidean

geometry, which was discovered independently by G. F. Gauss (1777-1855), J.

Bolyai (1802-1860), and N. I. Lobachevsky (1793-1856). A more general non-

Euclidean geometry (now called Riemannian geometry) was later constructed

by G. F. B. Riemann (1826-1866).

As science progressed through the ages , the ability to make accurate

and reproducible measurements of space and time became more and more

important. The standards of measurement have been improved and modified.

For example, the international definition of the meter has changed several

times. The original standard meter bar was made of platinum in 1793. Its

length at 0°C was supposedly one ten-millionth of the length of the Earth's

meridian at sea level. As the techniques of spectroscopy became available, the

definition of the meter was changed to be 1,553,164.13 times the wavelength of

the red line of cadmium in air at standard temperature and pressure (1 atm and

0°C). In 1960, the meter was redefined as 1,650,763.73 wavelengths of the

orange-red line of Krypton-86. Using interferometers, one could now make

measurements of extremely high accuracy and reproducibility. Most recently,

in 1983, the definition of the meter was once again altered, this time being

identified with the distance traveled by light through vacuum in 1/299792458

of a second, where the speed of light is defined as 299792458 meters per second.

This latest definition is not as hard to realize as one may think since there are

atomic clocks which are capable of making such precise time measurements.

For example, using light signals, the distance between the Earth and the moon

can be measured to within a few meters accuracy.
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lb. Time and Motion

As we have mentioned, if there were no motion of objects and no

change in the universe, then it will be impossible to define time. Newtonian

mechanics gave us the simplest intuitive concept of space and time: Space is

absolute and is defined in terms of a reference coordinate system; time, on the

other hand, is treated as a separate entity consistent with human intuition.

The measurement of time has also undergone many changes and

improvements throughout the ages , but the one thing that all time pieces have

had in common is that they all have used some regularly recurring events to

mark the passage of time. In the early days, water clocks, hourglasses and

sundials were used to measure time. In the early 1600's, Galileo discovered the

constancy of the period of a swinging pendulum and for hundreds of years

afterwards, this property has been used to construct all sorts of clocks. The

Dutch scientist C. Huygens was probably the first to invent a pendulum clock

around 1656 by applying Galileo's law of the pendulum. Electric clocks were

made in the second half of the 19th century, but were not used extensively

until after 1930. Their hands are driven by a synchronous electric motor

controlled by an alternating current with a stable frequency. In 1929, the

quartz clock was invented, which used the vibration of a quartz crystal to

drive a synchronous motor at a very precise rate. The turning of a balance

wheel and the oscillation of a quartz crystal have enabled the reduction in size

of timepieces. For the most precise time measurements in modern research

labs, atomic clocks, in which oscillations based on the frequency of radiation

from atomic and molecular transitions, are used to mark time. Cesium atomic

clocks are currently used as a standard of measurement. In a cesium clock,

one second is defined as the time interval for 9,192,631,770 cycles of the

oscillation with an accuracy of a few parts per billion.

1c. Inertial Frames of References

For the description of physical phenomena, we must have a frame of

reference, which is a system of coordinates to indicate the spatial position of a

particle, and clocks fixed in the frame to indicate the time. With the help of

meter sticks and clocks in a frame, one can give operational definitions of

space and time in that frame, provided that clocks at different places are
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synchronized by a certain procedure. For simplicity, we assume the use of

identical meter sticks and identical clocks for all inertial frames. Roughly

speaking, this means that the length of a meter stick on the ground (F frame)

is the same as that of another meter stick in a train (F' frame) with constant

velocity. Furthermore, the rate of ticking of a clock on the ground with

respect to ground-observers is the same as that of another clock at rest in the

train with respect to the train-observers. These assumed properties are

consistent with the fact that all inertial frames are equivalent.

There exist frames of reference in which a particle moves with *a

constant velocity if the particle is not acted upon by external forces. These

frames are called inertial frames . Clearly, all inertial frames move with

constant velocities relative to one another. We may remark that why a particle

has this inertial property, i.e., it remains in motion when it is moving under

zero net force, is not known in physics. This inertial property of all matter

was discovered by Galileo and is called the principle of inertia. His

discovery marked a great advance in our understanding of motion.

In a given frame of reference, we can define spatial coordinates for

particles and evolution variables to describe their motions. For simplicity, we

usually assume that there are meter sticks, clocks and observers everywhere

in a frame, so that space and time of a particle's motion can be recorded. We

usually call the evolution variable 'time' and we define a unit for it such as the

second. It is clear that the definition of a unit of time is an arbitrary

convention for convenience. In other words, the change of the unit of time

does not change physics. Suppose one uses seconds as the unit on Monday and

minutes as the unit on Tuesday, etc. Physics does not change . Actually, if one

uses a non-uniform time t*, say, t* = t3, where t is the usual uniform time to

describe motions, physics also does not change. The reason is that a non-

uniform time amounts to a continuous change of the unit of time. In this case,

we will still have the conservation of momentum, etc. and what will happen

will happen. As an example, consider the collision of the Titanic and the

iceberg. If one uses a non-uniform time t* to measure the velocity of the

iceberg, its velocity v* will be different from the usual velocity v measured by

using t. Will this change of time prevent the tragic collision from happening?

Furthermore, one may call the evolution variable w instead of t and

define its unit to be, say, centimeters. Now the "velocity," dx/dw, of a particle

measured by using w will be a pure number, without dimension. Will physics
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be changed?

In our discussions later, it is important to keep this flexibility of the

evolution variable or "time" in mind. We shall demonstrate that the usual

physical properties of time measured in seconds or minutes are actually not

inherent properties of nature. They are human conventions imposed upon a

physical theory for describing nature, and therefore, they are not essential

for physics, as we shall see in chapter 7.

id. Space and Time Transformations

We stress that just having a grid of identical clocks (synchronized

according to a certain procedure) and meter sticks in one inertial frame does

not completely define space and time in physics. One may ask an elementary

question:

If a particle is at position (x,y,z) at time t [or w] as measured by

observers in a particular inertial frame, what is the corresponding position

(x',y',z') and time t' [or w'] for the same particle as measured by observers in a

different inertial frame?

In order to answer this question, there must be specific relations

between the space and time coordinates of any two inertial frames. Only then

are space and time completely defined. Once we have such space and time

transformations, the mathematical framework for describing physical

phenomena is complete. One must merely follow logic to understand their

meanings and implications. It is important to note that such transformations

can only be expressed in terms of the Cartesian coordinate system and not in

spherical coordinates or any other coordinate system. Why? If one attempts to

use any other coordinate system to express space and time transformations for

reference frames with uniform motion in a straight line, it simply does not

work. The Cartesian coordinate provides the simplest equations which

describe straight lines. In this sense, the Cartesian coordinate system is

preferred for the transformations of inertial frames. In contrast, when one

restricts oneself to a particular inertial frame, one can choose any coordinate

system to describe physical phenomena and to solve physical problems.

The space and time transformations for inertial frames are of

fundamental importance because they determine the basic space-time

symmetry of the frame and restrict possible forms of the dynamics of
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interactions, but of course, cannot dictate the actual dynamics themselves. It

is fair to say that the basic dynamics of particles and fields that is known so far

is determined by several symmetry principles including local gauge

symmetry, and by simplicity. For example, the interaction between a charged

particle and the electromagnetic fields cannot be uniquely determined by the

gauge symmetry principle; simplicity (e.g., an uncomplicated algebraic form

for the electromagnetic coupling) also must be invoked.

In this connection, one may say that space and time in physics as a

whole are not completely known because their properties in non-inertial

frames have not yet been satisfactorily defined and tested experimentally. In

chapters 21 and 22, we shall discuss space, time and physics in simple non-

inertial frames with a constant linear acceleration based on symmetry

principles.

1 e. Absolute Time, Relative Time , Common Time and Taiji Time

Newton asserted absolute time and absolute space3 in his Principia

(1687) before stating his laws of motion. These ideas of absolute time and space

were taken for granted for more than 200 years.

In the beginning of the 20th century, Einstein's special relativity

introduced a revolutionary new concept of space and time based on two

principles, (I) the invariance of physical laws under a constant velocity, and

(II) a universal and constant speed of light. Consequently, time and space are

relative and are interlocked, which differ drastically from the Newtonian

concepts of absolute space and time.3 In any inertial frame, one uses the 4-

coordinate (ct,x,y,z) to express physical laws. The relativity of space and time

is completely described by the Lorentz transformations which connects the 4-

coordinates of different inertial frames. For example, one can have

relativities of simultaneity, length contraction and time dilatation. The

evolution variable of a physical system is the relativistic time t and is

measured in, say, seconds. Such a time can be operationally defined by the

invariant phase of an electromagnetic wave, exp{i(wt-k•r)}, where w=lklc. In

any inertial frame, clocks can be synchronized based on the second postulate,

i.e., the universal constancy of the speed of light c = 299792458 m/sec.

In the 1970's, it was shown that one could formulate a 4-dimensional

symmetry framework in which there is a common time for all observers in
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However, it also shows that none of them is . a necessary ingredient of a theory

for it to correctly reproduce all known experiments. Taiji relativity has the

advantage of not being tied to any particular concept of time measured in

seconds. It is also helpful to explore physics in non-inertial frames9 in which

the speed of light is not constant.

Since there are many possible times in 4-dimensional symmetry

framework , which one should be used ? The simplest criterion to follow is the

one proposed by Poincar6 . He believed that time "must be defined in such a

way that the statement of the natural laws be as simple as possible."10 For one-

particle systems , common time, relativistic time and taiji time are more or less

equal in making the natural laws as simple as possible. Nevertheless, for

many-particle systems , common time has the unique and unequaled advantage

of making the natural laws the simplest within the 4-dimensional symmetry

framework, as we shall see in chapter 13.



Chap.1. A Brief Review of Spaceand Time 17

Reference

1. H. G. Wells, The Time Machine (1895). There are some interesting

passages in the book. The Time Traveler ardently explained to his guests:

"The geometry, for instance, they taught you at school is founded on a

misconception .... There are really four dimensions, three which we call

the three planes of Space, and a fourth, Time. There is, however, a

tendency to draw an unreal distinction between the former three

dimensions and the latter, because it happens that our consciousness

moves intermittently in one direction along the latter from the

beginning to the end of our lives.... There is no difference between Time

and any of the three dimensions of space, except that our consciousness

moves along it." (pp. 1-2) Thus, it appears that long before Poincare

(1906) and Minkowski (1909) published their views that the Lorentz

transformations could be interpreted as a 'rotation' of the coordinates

system in a 4-dimensional spacetime, etc., Wells was the first to argue for

a 4-dimensional vision of the universe. Of course, the four dimensions of

spacetime are, strictly speaking, not completely equivalent, as explained

in this paragraph. Sometime, people call it (3+1)-dimensional spacetime.

2. Space is usually considered as a set of points satisfying specified

geometric postulates. Physically, this is true if and only if one ignores

the effects of quantum fields. See section 4d and T. D. Lee, Particle Physics

and Introduction to Field Theory (Harwood Academic Publishers, New

York; and Science Press , Beijing, 1981), pp. 378-405. This book gives a

comprehensive discussion on fundamental aspects of particle physics and

quantum fields related to the vacuum (i.e., the "aether" or the "ether", in

old language). For a brief discussion of changing views of geometry and

space, see O. Veblen and J. H. C. Whitehead, The Foundations of Differential

Geometry (Cambridge Univ. Press, London, 1954), pp. 31-33.

3. Newton stated: "Absolute, true, and mathematical time, of itself, and from

its own nature, flows equally without relation to anything external..."

"Absolute space, in its own nature, without relation to anything external,

remains always similar and immovable..."

4. Jong-Ping Hsu, Nuovo Cimento B, 74, 67 (1983); J. P. Hsu, Found. Phys. 8, 371

(1978); 6, 317 (1976); J. P. Hsu and T. N. Sherry, ibid 10, 57 (1980); J. P. Hsu

and C. Whan, Phys. Rev. A 38, 2248 (1988), Appendix. See chapter 12.



18 Einstein's Relativity and Beyond

S. J. P. Hsu and L Hsu, Phys. Letters A 196, 1 (1994); (Erratum) ibid 217, 359

(1996); Leonardo Hsu and Jong-Ping Hsu, Nuovo Cimento 111B, 1283

(1996); Jong-Ping Hsu and Leonardo Hsu, in JingShin Physics Symposium

in Memory of Professor Wolfgang Kroll (World Scientific, Singapore. New

Jersey, 1997), pp. 176-193.

6. See, for example, The New Lin Yutang Chinese-English Dictionary (Ed.

Lai Ming and Lin Tai-Yi, Panorama Press, Hong Kong, 1987), p. 90.

7. H. Hellwig, Metrologia 6, 118 (1970).

& It includes Reichenbach's time. H. Reichenbach, The Philosophy of Space

and Time (Dover, New York, 1858), p. 127. See chapters 17 and 20 for more

discussions.

9. Leonardo Hsu and Jong-Ping Hsu, Nuovo Cimento 112B , 575 (1997) and

1147 (1997); Jong-Ping Hsu and Leonardo Hsu, Chinese J. Phys. 35, 407

(1997). See also chapters 21-23.

10. H. Poincare, Rev. Metaphys. Morale 6, 1 (1898).



2.

The Nontrivial Pursuit of Earth 's Absolute Motion

2a. Newton, Classical Mechanics and Invariant Laws of Motion

Once an inertial frame is set up with operational definitions of space,

time, and observers, one can proceed to discuss mechanical phenomena.

Mechanics is the study of the motions and interactions of objects and is

probably the oldest branch of physics. The first person to undertake a

systematic study of mechanics was Isaac Newton (1642-1727).1 In his

Principia (1687), Newton established his three now famous laws of motion and

derived a large number of interesting and useful results. This work forms the

foundation of what we now refer to as classical mechanics. Based on the

method used to obtain the vast majority of his results, it would be fair to say

that Newtonian mechanics is as complete and rigorous as Euclidean geometry.

Though not all of Newton's work has remained valid, Newtonian

mechanics has two very important and fundamental properties which have

had great significance in the later development of all branches of physics.

The first property is that Newton's laws of motion are invariant under

Galilean transformations. What do we mean by invariant? Simply that the

laws of mechanics (or their representative equations) have the same form for

all observers whose relative motion is described by a constant velocity. This is

equivalent to making the statement that, as far as the laws of mechanics are

concerned, all inertial frames are completely equivalent. In classical

mechanics, this invariance of laws is a basic symmetry property,2 which is a

simple generalization of the concept of symmetry as applied to geometry. The

Symmetry of an object is, in the words of Herman Weyl, that "one does

something to it, and after one finishes doing it, the object looks the same." For

example, a sphere rotated by any angle or displaced by any amount in space is

still a sphere. This concept can be generalized in several ways-for example,

the shortest distance between two points in space remains the same under any

translation or rotation of the coordinate axes describing that space.

It is extremely fortunate that Newton's law of motion is the same in any

inertial frame. If the law took a different form in different inertial frames, it

19
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would be much more complicated to understand the physical world. In this

sense, the invariance of physical laws is interlocked with the simplicity of

physics.

As an example , consider a set of Cartesian axes (x', y', z') fixed in an

inertial frame F, say , a train which is moving with a constant velocity V=(Vx,

Vy, Vz) relative to the inertial frame F (the ground ) with Cartesian axes (x, y,

z). Then

r'=r-Vt, t,=t, (2.1)

give the coordinate transformation between the two frames, with the

stipulation that the origins of F and F' coincide at time t=0 and that the two sets

of axes are parallel to each other. This is the Galilean transformation. It is

also explicitly assumed that there exists a unique time which is independent of

any reference to special frames of coordinates. This is another important

point that we will return to later. The ground or a laboratory on the rotating

Earth may be considered to be inertial frame to a very good approximation

during short time intervals, if gravity can be neglected.

Intuitively, one might expect that the laws of physics should remain the

same when going from a particular coordinate system to one which is rotated

or translated by a fixed amount from the original system. This is indeed true.

This stands to reason as moving to a different place or tilting one's head should

not change the outcome or characteristics of physical phenomena. This is a

fundamental property of physics, as it cannot be explained in terms of

something more basic. Let us see how one of Newton's laws holds up under a

Galilean transformation.

Newton's law of motion can be expressed as

d2rb
m dt = F(rb - ra) (2.2)

where m is the mass of an object and rb is its position. The vector ra may be

seen as the position of the source of the force on our object or as an

equilibrium point for our system. Using equation (2.1) above, one can verify

that Newton's law (2.2) is invariant under a Galilean transformation, i.e., that

the equation looks exactly the same, except that all quantities are now
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material objects. Given that mechanical phenomena were not sufficient to

determine a frame of absolute rest, Newton was probably aware of the logical

weakness in his postulated absolute space, but he employed theological

arguments to strengthen his idea of the absolute space, declaring that the

absolute space was simply the space relative to God. About 150 years later,

when the idea of a stationary aether permeating all space was popular, it was

only natural to associate this aether with the frame of absolute rest.

2b. Maxwell 's Suggestion for Finding Absolute Motion and

Michelson's Interferometer

In the nineteenth century, the study of electric and magnetic

phenomena was still a relatively new subject. When electromagnetic waves

were found to be associated with the oscillations of fields, the similarity to

mechanical oscillations was too great for people to believe that the waves could

be transmitted through empty space. The theory of an aether that permeated

all space and matter and provided a medium for the oscillations of the fields

made perfect sense at that time and provided a convenient and pleasing

analogy to the mechanical case. It may be somewhat puzzling for modern

physicists to see why the idea of an aether was so popular among physicists in

the nineteenth century. However, the very existence of the electromagnetic

field was considered by them to be the unequivocal and firm evidence for the

existence of the aether.

Given the aether and a frame of reference that could be associated with

absolute rest, it was only natural to try to discover the velocity of the Earth

through this medium. As mentioned before, mechanical phenomena do not

provide meaningful tests because of Galilean invariance. However, when

light was discovered to be a form of electromagnetic wave, optics seemed to

present a possible solution. Initially, such experiments appeared to be

impossible, considering the precision that would be required. Maxwell (1831-

1879) wrote that "all methods ... by which it is practicable to determine the

velocity of light from terrestrial experiments depend on the measurement of

the time required for the double journey from one station to the other and

back again, and the increase of this time on account of a relative velocity of

the ether equal to that of Earth would be only about one hundred millionth

part of the whole time of transmission, and would therefore be quite
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the earth to observe whether there is any diurnal and annual variation

of attraction - diurnal due to the rotation of the earth being added and

subtracted from its orbital velocity, and annual similarly for its orbital

velocity, and the motion of the solar system."

This was the first spark of theoretical thought, the FitzGerald

contraction , that eventually caused a prairie fire in theoretical physics in the

20th century.
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3.

On the Right Track - Voigt, Lorentz and Larmor

3a. "Absolute Contraction of Length " and Lorentz 's Heuristic

Local Time

The Michelson-Morley experiment carried out in 1887 confirmed

Michelson 's original experimental null result of 1887 with a 20-fold increase

in accuracy. In 1889, G. F. FitzGerald (1851-1901) proposed that the null result

obtained could be explained if bodies in motion through the aether underwent

a length contraction in the direction of motion "by an amount depending on

the square of the ratio of their velocities to that of light," as mentioned in

chapter 2. Of course, there was no other experimental evidence for this

conclusion, so this was merely an ad hoc explanation. However, since the

aether was generally believed to exist at that time, FitzGerald's idea was

"natural" and attractive. This idea of FitzGerald influenced Larmor and

Lorentz in obtaining the relativistic transformation of space and time.

The next development was carried out by H. A. Lorentz (1853-1928). He

finished his doctoral dissertation in 1875, in which he refined Maxwell's

electromagnetic theory so that it explained more satisfactorily the reflection

and the refraction of light. He became a professor of mathematical physics at

Leiden University in 1878 at the age of 25. His main effort was to complete

Maxwell's theory to explain the relationship among electricity, magnetism and

light by introducing the Lorentz force and by suggesting that the oscillations

of charged particles inside the atom was the source of light. To test his idea on

the source of light, he reasoned that a strong magnetic field should have an

effect on the oscillations of these charged particles. P. Zeeman, a student of

Lorentz, carried out experiments to confirm this idea in 1896. This

phenomenon is now known as the Zeeman effect. For these experiments, both

Zeeman and Lorentz were awarded the Nobel Prize in 1902.

In 1895, Lorentz was investigating the physical effects on electric and

optical phenomena due to the Earth's motion through the aether, taking

Maxwell's equations to be a description of such phenomena in the aether. This

amounted to finding the proper transformation for Maxwell's equation from

27
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the aether frame Fa ( the frame of absolute rest ) to the Earth 's moving frame,

P. At this time , it was known that while Newton 's mechanical equations were

invariant under the Galilean transformation , Maxwell 's equations were not.

In order to make them invariant from frame to frame to first order in V/c,

Lorentz discovered that one had to introduce a new time t' in the moving frame

F':

t'-t-Vx/c2, x' - x - Vt, Y'=Y, z'=z, (3.1)

where t is the time measured in the aether frame Fe and the relative motion of

the two frames is taken to be solely along the parallel x and x' axes. Lorentz

was not the first to write down such a transformation , however. In 1887,

Woldemar Voigt (1850-1919) had introduced a non-absolute time t' = t-Vx/c2

while studying Doppler shifts.1

Lorentz considered this t' in ( 3.1) to be a local time which had no

physical meaning since it contradicted the absolute time t' = t in the Galilean

transformation ( 2.1), which was too intuitively obvious to be incorrect. He

later remarked that

"a transformation of the time was necessary, so I introduced the

conception of local time which is different for different frames of

reference which are in motion relative to each other. But I never

thought that this had anything to do with real time. This real time for me

was still represented by the older classical notion of an absolute time,

which is independent of any reference to special frames of coordinates.

There existed for me only one true time . I considered my time-

transformation only as a heuristic working hypothesis, so the theory of

relativity is really solely Einstein 's work."Z

On the other hand, Poincare regarded Lorentz as the one who had

conceived the principle of relativity for electromagnetic phenomena and was

the first physicist to call the formulae obtained by Lorentz the "Lorentz

transformation ".3 In one of his essays , "Space and Time ," Poincare wrote,

prophetically: "Will not the principle of relativity, as conceived by

Lorentz, impose upon us an entirely new conception of space and time and

thus force us to abandon some conclusions which might have seemed

established?"4
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3b. Exact Transformations Discovered by Larmor and Lorentz

Sir Joseph Larmor (1857-1942) was educated at Belfast and Cambridge.

He taught at Cambridge from 1885 to 1932 and was the Lucasian Professor of

Mathematics in the University of Cambridge. Larmor was knighted in 1909.

He did pioneering work in the rate of energy radiation from an accelerated

electron and in explaining the splitting of spectrum lines by a magnetic field.

Like many physicists at that time, he believed that matter consists entirely of

electric particles moving in aether. Today, he is mainly known for his work

on the wobbling motion of an atomic orbit when an atom is subjected to an

external magnetic field, called "Larmor precession" and the rate of the

precession is known as the "Larmor frequency." He also obtained "Larmor's

formula" for the total power radiated by an accelerated charge. In retrospect,

however, Larmor's most significant contribution is his discovery of the exact

relativistic spacetime transformation which is now called the "Lorentz

transformations." In the fierce competition of scientific research today, to be

the first person to make a discovery is everything. To be the second is

nothing. In light of this, one may be surprised that, before he died in 1942,

Larmor never made any claim of being the first to conceive of this important

exact spacetime transformation, which specifies the transformation of space

and time between inertial frames and forms the basis of Einstein's special

theory of relativity.

Larmor studied Lorentz's paper of 1895 which contained the first order

transformation (3.1). He was able to improve it and obtained an exact

transformation which can be written in the familiar form:

x'=Y(x-vt), y'=y, z' = z t1= Y(t - c2 ) ; Y= 1-V1 2/c2 ' (3.2)

after a change of variables. This important result was presented and discussed

in his book Aether and Matters which was completed in 1898 and published in

1900. Apparently, this work went largely unnoticed as this set of equations is

now known as the Lorentz transformation. Larmor also derived what we now

know as the relativistic length contraction from the transformation (3.2). At

the time, it was thought that this was the contraction that FitzGerald had
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proposed. However, this is not the case since the FitzGerald contraction is an

actual physical contraction of the length of an object due to its motion in

absolute space, while the contraction implied by (3.2) is an effect due to the

relative motion of the observer . Larmor did not discuss the physical meaning

of V. Presumably , his viewpoint on that account was the same as that of

Lorentz.

In 1899, Lorentz wrote down the exact transformation with an additional

factor K:

x'=Ky(x-Vt), y'=Ky,
Vx

z'=Kz, t'=Ky(t- ^-2). (3.3)

It is unknown whether or not he was aware of Larmor's work at the time. He

noted that the scale factor K could not be determined by the Michelson-Morley

experiment and that it required "a deeper knowledge of the phenomena."

Nevertheless , he stressed that the length contraction implied by the spatial

components in (3.3 ) were precisely those which one had to assume in order to

explain the Michelson-Morley experiment. In 1904, Lorentz wrote down the

transformation

Vx
x'=y(x-Vt), Y'=Y, z'=z, t'=y(t- cz ). (3.4)

He attempted to fix K in (3.3) to have the value 1 by considering the

transformation properties of the equation of motion of an electron in an

external field . However , because he made a mistake in the transformation

equations for velocities, his proof was valid only to first order in V/c.6 This

mistake was corrected by Poincare in 1905.

As mentioned earlier, Voigt7 (1850-1919) had obtained a similar

transformation as early as 1887 while studying Doppler shifts in his paper

'Ober das Dopplersche Prinzip .' 1 His transformation was the same as that

found in (3.3), but with the scale factor K set to 1/y:

x'=(x-Vt), Y'=Y/y,
Vx

z'=z/y, t' =(t - cz ). (3.5)

Reflecting for a moment, one sees that Voigt had actually introduced two

revolutionary ideas into physics,
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(a) the concept of non-absolute time t', which is almost the correct

relativistic time, and

(b) the universal and constant speed c for the propagation of light in all

inertial frames.

Furthermore, Voigt showed the invariance of the wave equation,

z a2 a2 a2

aX2 + aye + azz - C 5t 0

under his transformation (3.5). If people had been imaginative enough at that

time, they might have recognized the potential of these ideas to open up a

whole new field of physics. Of course, this never happened. In the time when
the ideas of Newtonian absolute time and space dominated physics, people

simply dismissed Voigt's ideas as nonsense . Later, in 1906, Lorentz said that

regrettably, Voigt's transformations had escaped his notice all those years.8

It would be fair to say that Lorentz first conceived the invariance of the

laws of the electromagnetic field and that his transformations embody the

whole mathematical essence of the new concepts of space and time in special

relativity. However, Lorentz believed in the aether.9 Consequently, the

relativity of space and time and the principle of relativity were not apparent

to him before 1905. He did not believe in the non- absolute time found in

equation (3.4) even though he discovered it himself and, moreover, he did not

attempt to formulate a theory of relativitylO for mechanics and electro-

dynamics as Poincare and Einstein did. Lorentz arrived at the new concept of

time by struggling with the old idea of absolute time. Unfortunately, the

preconceptions of absolute time and aether remained the language of his

thinking for the rest of his life.
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Woldemar Voigt ( 1850-1919 ): The unsung hero of special relativity
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Poincare 's Contributions and
the Aether ( Past and Present)

4a. A Remarkable Insight of Physical Time

If one examines the writings of the great French mathematician and

physicist Jules Henri Poincare (1854-1912) at the turn of the 20th century, one

would see a foreshadowing of most of the notions which would later become

part of the special theory of relativity.1 In 1895, he noted the impossibility of

detecting earth's absolute motion and, in July of 1905, completed his theory of

relativity based on the postulate of relativity and a definition-choosing the

units of length and of time so that the speed of light was equal to unity. Many

physicists consider Poincare 's main contributions to relativity to be of a

mathematical nature. However, this does not adequately represent his work.

In the literature, historical accounts of relativity theory regarding Poincare's

contributions have been controversial. For example, at one extreme, one

author has claimed that Poincare discovered the principle of relativity for all

physical laws in 1904 and that the originators of the relativity theory are

Lorentz and Poincare rather than Einstein.2 At the opposite end of the

spectrum, Holton3 asserts that Poincare's principle of relativity is equivalent to

the Galilean-Newtonian principle of relativity, ignoring his comprehensive

papers on relativity and electrodynamics finished in June and July 1905. It

seems fair to say that the truth is somewhere in between these two views.4

In 1895, Poincare had already noted the impossibility of detecting the

earth's absolute motion. "Experiment has revealed a multitude of facts which

can be summed up in the following statement: It is impossible to detect the

absolute motion of matter, or rather the relative motion of ponderable matter

with respect to the ether, all that one can exhibit is the motion of ponderable

matter with respect to ponderable matter."5

Around 1898, Poincare was examining the concepts of absolute time and

absolute simultaneity in response to the then often-debated question of the

measurement of time intervals. He appears to have been the first physicist to

discuss and analyze the concept of time from what people later named the

35
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"operational viewpoint." In an article entitled "La Mesure du Temps",6

Poincar6 stressed that "we have no direct intuition about the equality of two

time intervals . People who believe they have this intuition are the dupes of an

illusion" (the italics are Poincare's). This is a very remarkable insight. Noting

earlier definitions of simultaneity which he found unsatisfactory, he wrote

that "it is difficult to separate the qualitative problems of simultaneity from the

quantitative problem of the measurement of time; either one uses a

chronometer, or one takes into account a transmission velocity such as the one

of light, since one cannot measure such a velocity without measuring a time."

He finally concluded that " the simultaneity of two events or the order

of their succession , as well as the equality of two time intervals,

must be defined in such a way that the statement of the natural

laws be as simple as possible. In other words, all rules and definitions are

but the result of an unconscious opportunism."

With this penetrating understanding of physical time , it was natural that

Poincar6 in 1900 showed a strong interest in and gave the first correct physical

interpretation to the "local time" t' which was introduced by Lorentz in 1895.

Lorentz investigated the influence of the Earth's motion on electric and optical

phenomena. He realized that if the experiments carried out in a terrestrial

laboratory could not reveal any effect on the motion, then the equations of the

theory must have the same form when going from the absolute rest frame

Far(t,x) of the aether to the terrestrial frame F'(t',x'). To obtain this result to the

first order in (V/c), Lorentz introduced approximate transformations of time

t' = t - Vx/c2 and space x' = x - Vt, where y, z and the second order terms in V/c

were neglected.

Local time t' in a moving frame F' differs from the true time t in the

frame of absolute rest Far by the amount Vx/c2 for each point on the x axis in F.

Lorentz considered the local time t' to be nothing but a convenient

mathematical quantity to simplify Maxwell's equations in a moving frame F'

and that it did not have any physical meaning at all. However, in a paper

published in 1900,7 Poincare showed that the local time t' could be given a

simple physical interpretation: Suppose observers at various points along the

x' axis of the moving frame F' synchronize their respective clocks by

exchanging light signals with an observer at the origin and that the speed of

light is independent of the motion of its source. The difference between true

time and local time would be accounted for by an observer at rest in Far by the
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amount each clock in F had been thrown out of "true synchrony" by its

translation during the exchange of signals. All these discussions hold only for

the first order approximation in (V/c) because the exact Lorentz

transformations had not yet been derived. Historically, this was the first

approximate operational definition of time. The exact operational definition of

time was discussed by Poincar8 in 1904, as we shall see below.

4b. Poincar!'s Innovative Principle of Relativity

The idea of relativity had already engrossed Poincar @'s mind for about

ten years when he proposed it as the "principle of relativity" in 1904 and

reformulated physics in accordance with it in 1905. It was a long evolutionary

process for him to finally grasp the principle based on an inductive approach.

As mentioned before, in 1895, Poincare had already noted the impossibility of

detecting earth's absolute motion.5 Five years later in 1900, he called it the

"principle of relative motion."7 In his book Science and Hypothesis published

in 1902, Poincare's principle of relative motion is stated in chapter VII,

"RELATIVE AND ABSOLUTE MOTION," as follows: "The movement of any system

whatever ought to obey the same laws, whether it is referred to fixed axes or to

the movable axes which are implied in uniform motion in a straight line."7

Although Lorentz had initiated research in "relativity" as early as 1895 and

attempted to show that Maxwell's equations are invariant under a new space

and time transformation, he did not conceive the principle of relativity to be

generally and rigorously valid and never believed in the relativistic time, even

though he himself discovered it.

In his address to the Paris Congress of 1900, Poincare discussed

hypotheses in physics and the theories of modern physics .8 It was a

comprehensive and impressive survey of all branches of physics up to that

time, 1900, the very beginning of the 20th century. He asked a burning

question:

"Does the aether really exist?"

which was one of the central questions in physics at that time. The importance

of this question can be seen by the fact that Einstein came back to this question

in 1920 from the viewpoint of gravity, that Dirac wrote a paper with essentially

the same title in 1951 based on relativistic quantum electrodynamics, and that

particle physicists such as T. D. Lee, Weisskopf, Bjorken and others continued to
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discuss it in the 1980's and afterward based on modern gauge field theory, as we

shall see in section 4d.

The essence of Poincare's argument was that the aether exists but that

there is a conspiracy of dynamical effects so that the velocity of an object

moving through the aether cannot be detected by optical phenomena. He

believed that the conspiracy causing the cancellations of the velocity

dependent terms should be rigorous and absolute, holding for all orders, rather

than just for the first order terms.

In 1904, Poincare delivered an important address to the International

Congress of Arts and Sciences in St. Louis with the title "THE PRINCIPLES OF

MATHEMATICAL PHYSICS," in which he listed and discussed six general

principles of physics.9 One of them is what he called the "principle of

relativity, according to which the laws of physical phenomena should be the

same, whether for an observer fixed, or for an observer carried along in a

uniform movement of translation; so that we have not, and could not have any

means of discerning whether or not we are carried along in such a motion." He

explained it as follows: "Indeed, experience has taken on itself to ruin this

interpretation of the principle of relativity; all attempts to measure the

velocity of the earth in relation to the ether have led to negative results. This

time experimental physics has been more faithful to the principle than

mathematical physics; ... but experiment has been stubborn in confirming it.

.....And finally Michelson has pushed precision to its limit: nothing has come of

it." In this connection, it is worthwhile to note that Poincare's principle of

relativity is clearly a new one and is not the Galilean-Newtonian principle of

relativity in classical mechanics. In fact, this principle is exactly the same as

his "principle of relative motion" proposed in 1900,7 as mentioned previously.

We stress that this is a pure symmetry principle because it asserts that the form

of physical laws should be the same in any inertial frame. In modern

language, it asserts that physical laws must display 4-dimensional symmetry of

the Lorentz and the Poincare groups.

Taken alone, Poincare's principle of relativity does not provide the

foundation for special relativity. However, with this principle of relativity,

Poincare has laid the foundation for a broad four-dimensional symmetry

framework, of which special relativity is, in the restricted sense of adding an

extra postulate, a particular case. This is to be expounded in chapter 7.
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Poincare even went one step further by treating Lorentz's ingenious

idea of a local time t' as a physical time and gave t' a rigorous operational

definition based on his principle of relativity. Consider two observers (or the

station A and the station B) in uniform relative motion who wish to

synchronize their clocks by means of light signals. According to Poincare,

clocks synchronized in this manner do not mark 'true' time if the frame of

reference has an absolute motion, since the velocity of light is not isotropic in

that frame. However, this leads to no contradiction because all physical laws in

the moving frame are the same as those in a rest frame. Thus, an observer in

the moving frame has no means of detecting the anisotropy and thereby

ascertaining a difference between his local time and "true" time. The

difference "matters little since. we have no means of perceiving it." "All

phenomena which happen at A, for example, will be late, but all will be equally

so, and the observer who ascertains them will not perceive it since his watch is

slow; so as the principle of relativity would have it, he will have no means of

knowing whether he is at rest or in absolute motion."

Here, in 1904, appeared for the first time the procedure for what is now

called the operational definition of physical time. Poincare continued:

"Unhappily, that does not suffice, and complementary hypotheses are

necessary; it is necessary to admit that bodies in motion undergo a uniform

contraction in the sense of the motion.... Thus, the last little difference find

themselves compensated. And then there is still the hypothesis about force.

Force, whatever be their origin, gravity as well as elasticity, would be reduced

in a certain proportion in a world animated by a uniform translation; or,

rather, this would happen for the components perpendicular to the translation;

the components parallel would not change."

Poincare concluded his talk with a marvelous vision: "Perhaps we

should construct a whole new mechanics, that we only succeed in catching a

glimpse of, where inertia increasing with the velocity, the velocity of light

would become an impassable limit."9

4c. Poincare's Theory of Relativity Based on 1 Postulate

and 1 Definition.

We have seen that, in 1904,9 Poincare discussed, among other

principles, one postulate related to relativity , (a) the principle of relativity,
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and a closely related property, (b) "no velocity could surpass that of light"

(which was stated as a character of an entirely new mechanics in the physics

of the future). These obviously correspond , though are not identical , to the two

postulates of Einstein 's special relativity . Poincar8 also mentioned two

necessary complementary hypotheses right after he discussed the

synchronization of clocks using light signals . They are (c) that bodies in

motion suffer a uniform contraction in their direction of motions and (d) that

the components of forces perpendicular to the translation would be reduced.

Because his idea of a new mechanics based on three hypotheses (a), (b) and (c)

was not stated until 1909 in his lectures in GOttingen , 10 and the lack of

explicitly physical interpretations of space, time and relativity,4 many

physicists tend not to consider Poincare as an originator of special relativity.

In June and July 1905, Poincare completed two papers , both entitled "On

the Dynamics of the Electron," l regarding his principle of relativity, the

Lorentz transformations and their physical implications. The first was a

detailed summary of the second much longer paper, which was Poincare's last

major work on relativity and was written at about the same time as Einstein

finished his first paper on special relativity . It is interesting to note that,

roughly speaking, the mathematician Poincare took a more physical approach

to discussing his relativity theory, while the physicist Einstein took a more

mathematical (axiomatic) approach in his formulation of the theory. In his

work, Poincare stayed close to experimental evidence, noting that neither the

aberration of starlight and related phenomena nor the work of Michelson

revealed any evidence for an absolute motion of the earth.

He said: "It seems that this impossibility to disclose experimentally the

absolute motion of the earth is a general law of nature; we are led naturally to

admit this law, which we shall call the Postulate of Relativity, and to admit it

unrestrictedly. Although this postulate, which up till now agrees with

experiment, must be confirmed or disproved by later more precise experiments,

it is in any case of interest to see what consequences can flow from it." And

before he wrote down Maxwell 's equations and the Lorentz force, he chose the

units of length and of time so that the speed of light equals unity . In other

words, he defined c=1 by a suitable choice of units rather than by postulating

the speed of light to be a universal constant , in sharp contrast with Einstein.

Poincare never mentioned an experimental test of the universality of the speed

of light, although he did mention that the postulate of relativity must be tested



Chap.4. Poincarre 's Contributions and the Aether (Past and Present) 41

experimentally. This indicates that he did not treat the invariance of physical

laws and the constancy of the speed of light on equal footing. This has been

considered a weakness in Poincare's understanding of physics. However, it will

be argued that this is actually a major strength of Poincare's power of

thinking. Conceptually, there appears to be a significant difference between

Einstein's second postulate for special relativity and Poincare's definition

regarding the true nature of the constancy of the speed of light c. We shall

come back to this important point later in section 4f and in chapters 7 and 17.

In any case, we have a clear-cut answer to the question: How many

postulates did Poincare base his theory of relativity in the Rendiconti paperll

Answer. He made one postulate (the postulate of relativity) and one

definition concerning the speed of light to formulate relativity theory. (Apart

from these, Maxwell's equations and the Lorentz force must also be assumed for

discussions of electromagnetic phenomena; and the Newtonian equation of

motion must be assumed for discussions of particle dynamics. But these are not

on the same level as the fundamental postulates in relativity theory.)

Poincare wrote down the Maxwell equations, the continuity equation for

the conservation of charge, the wave equations for the scalar and vector

potentials and the Lorentz force. Then he stressed that "these equations admit a

remarkable transformation discovered by Lorentz, which is of interest because

it explains why no experiment is capable of making known to us the absolute

motion in the universe." The transformations discovered by Lorentz in 1899

are given by (3.3), i.e.,

x'=Ky(x - nt) , y'=Kz, z'=Kz, t' = Ky(t - ax) ; (4.1)

Y = , 0 = V/c.

Poincare called (4.1) the Lorentz transformations and rigorously proved the

invariance of Maxwell's equations under these transformations. Poincare

derived the transformation equations for the force per unit charge and pointed

out that they differ significantly from those found by Lorentz. He further

discussed in detail that the transformations (4.1) formed a group which was

generated by seven infinitesimal transformations (with K*1.)l

When Poincare discussed the Lorentz group, it was clear that his

derivation of the Lorentz transformation (4.1) was no different from that used
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in many of today's textbooks (with K=1): He explained that every transfor-

mation of this group can be decomposed into a transformation of the form

xi =Kxi, t'=Kt and a linear transformation that leaves invariant the quadratic

form x2 - tz, where x=(xi xz,x3). Perhaps because this simple derivation was not

written down explicitly in terms of the invariance of physical laws and because

his paper was not widely read, many people were not aware of Poincare's

derivation of the Lorentz transformations. Most physicists believed that he had

simply assumed the transformation, as Lorentz and Larmor did. As a result, it is

usually believed incorrectly that Einstein was the first one who derived the

Lorentz transformations from first principles.

Poincar8 did not discuss time and clock synchronization because they

were discussed in his previous papers. He did discuss a procedure for making

spatial measurements , writing "How do we make our measurements? By

transporting to mutual juxtaposition objects considered as invariable solids, one

would reply at first; but this is no longer true in the present theory if one

admits Lorentzian contraction. In this theory two equal lengths are by

definition two lengths which are traversed by light in equal times."

The elegance of Poincar@'s style is most evident in his use of the

principle of least action (or the Lagrangian formulation) for Maxwell's

equations with sources in vacuum and the equations of motion for charged

particles which were shown to be invariant under the Lorentz

transformations. He was the first physicist to employ the Lorentz covariant

I.agrangian formalism for discussions of physical theories. Today, the elegant

Lorentz covariant Lagrangian formalism has become a standard method for

treating quantum field theories and relativistic particle dynamics. Poincare

also considered the inverse of the Lorentz transformations, replacing V with

-V and rotating the coordinate axes by 180' around the y axis, to conclude that

K=l for any V consistent with the obvious condition that K=l when V=O. Then

he used the Lorentz transformation to discuss the dynamics and the contraction

of an extended electron in detail. The electromagnetic field due to the presence

of the electron can react on the electron itself. The interaction energy

between the electron and the electromagnetic field due to the presence of the

electron itself is called the self-energy and is an inherent part of the electron.

He discussed the self-energy of the electron and noted that an extended

electron with negative charge cannot be stable.
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In these discussions , Poincare wrote down the complete Lorentz

invariant action integrals of the electron, the electromagnetic fields and their

interaction. For example, he discussed quasi-stationary and arbitrary motions

of an electron and obtained the exact Lagrangian for the electron: L = m(1-
u2)"2 = m/y, u = Jul, in which he called m the experimental mass (i,e, the rest

mass) of the electron.1 Once the Lagrangian for the electron is given, its

kinetic properties and equations of motion are completely determined. The

correct expressions for the relativistic energy (L-u•[aL/ au]) and momentum
(aL/aui=-Dui/u, D=-dLdu), and the transverse and the longitudinal mass (D/u

and dD/du) were given. Furthermore, the exact covariant equation of motion

was given by (d/dt)[muy]=Jp(E+uxB )d3x (in modern notation), which reduces to

the familiar form, (d/dt)[muy]= e(E+uxB ), for a point charge distribution. (See

equations (64), (92), (93), (94), (95) and (95') in Schwartz's translation with

modern notations.1) This covariant equation of motion for a charged particle is

important because it shows for the first time that Newton's second law,

F=ma=d(mu)/dt, in classical mechanics can be generalized to be consistent with

the principle of relativity. This task is difficult to carry out if one does not use

the Lorentz invariant Lagrangian and variational calculus. (In contrast,

Einstein failed in deriving the exact covariant equation of motion for a charged

particle in 1905, as we shall see in chapter 5 below.) All these show Poincar6's

mastery of electrodynamics and mathematics and his difference from Einstein

in style and taste.

Poincare concluded that "if one admits this impossibility (of manifesting

absolute motion) one must admit that electrons when in motion contract so as to

become ellipsoid of revolution whose two axes remain constant; one must then

admit ... the existence of a supplementary potential proportional to the volume

of the electron." Thus, his principle of relativity led him to discover the

"Poincare stresses" to maintain the stability of an extended electron, a model

discussed by Lorentz and others. This was the climax of his paper. However,

the electron is now assumed to be a point-like object in quantum mechanics

and quantum electrodynamics, so that Poincare stresses do not play a

significant role in modern physics, although they are frequently mentioned.

We note that since the assumption of point-like particles is related to the

profound divergence difficulty in quantum field theory, it is possible that a

non-point-like particle might emerge in the physics of the future and that

Poincare stresses may again become important, unless the quantization of the



44 Einstein's Relativity and Beyond

electric charge and its stability can be understood on the basis of some

unexpected new principles.

In this connection , it is interesting to note Poincar@'s outlook of the

physical world : When an extended electron is at rest, the equilibrium of the

Coulomb force and the Poincar8 stresses result in a spherical electron.

However, when in motion , an electron would suffer a contraction such that the

extended electron undergoes a deformation precisely according to the Lorentz

transformation . In this sense, he appeared to believe that his non-

electromagnetic stresses gave a dynamical explanation to the contraction of the

extended electron.1

In the last part of his regular paper, he discussed a "relativistic theory of

gravitation" which was a generalization of Newtonian gravity to be consistent

with the principle of relativity . His generalized gravitational theory involved

retarded action-at-a-distance interaction and the concept of gravitational

waves which were "assumed to propagate with the velocity of light." It was the

first such attempt and not satisfactory . However, the significant result is the 4-

dimensional symmetry framework (with 4-vectors and Lorentz invariants, etc.)

that he developed, anticipating Minkowski , as a powerful tool to study physics.

After discussing general properties of the basic scalar equation of propagation

and transformation properties of the gravitational force , Poincare said: "In

order to make further progress , it is necessary to look for the invariants of the

Lorentz group (the italics are Poincare 's.) We know that the transformations of

this group (taking K=1) are the linear transformations which do not change

the quadratic form x2 +y2+z2-t2. .... Let us consider x, y, z, t ; &x, Sy, 6z, Sri

;.... as coordinates of ... points ...in a space of four-dimensions . We see that the

Lorentz transformation is just a rotation of this space about the origin,

regarded as fixed . We shall have as invariants only the ...distances between the

points among themselves and the origin ,... x2+y2+z2-t2 , x&x + y8y + z8z -t8t ,

etc...."

Indeed , Poincare 's statement concerning the "the invariants of the

Lorentz group" is precisely a modern view of the theory: "Mathematically

speaking , therefore , the special theory of relativity is the theory of invariants

of the Lorentz group ," as Pauli said in 1921 (when he was 21 years old) in the

article on the theory of relativity written for the Mathematical Encyclopedia,

which later became his book "Theory of Relativity."2
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The essence of Poincare's argument for K=1 in (4.1) is the principle of

relativity which implies that both frames, F and F, are physically completely

equivalent. Otherwise, if one sets K= 1-V2/c2=1/y, then the trans-formation

(4.1) becomes

x'=x-Vc, y'= z z Vx7 '=,1 , t'=t -cZ

or
x'+Vt' y' _ z

x=1-V2/c2 , Y= 1-V2/c2 1-V2/c2

t'+Vx'/c2
t =1-V2/c2

(4.2)

This particular transformation was first obtained by Voigt in 1887 in a work in

which he discussed Doppler shifts and invariance of wave equations. Clearly,

Voigt's transformation preserves the "four-dimensional intervals": s(0)2=s'(V)2,

where

s(0)2 = c2t2 - r-2,

S'(V)2 = (1 \-1(C2t'2 - r'2) ,

or s(V)2 = s'(0)2, where

s(V)2 = ^1 -)(C2t2 - r2)

for frame F (at rest) ,

for frame F (moving) ,

in F (moving) ,

s'(0)2 = c2t'2 - r'2 , in F' (at rest) .

(4.3)

(4.4)

Note that the four dimensional intervals are not the ones one knows from

special relativity but are multiplied by a velocity-dependent factor. This

transformation implies that one of the frames is really moving with an

"absolute velocity" V. Whether such an "absolute velocity" V can be detected

turns out to be non-trivial and is still an open question,11 as we shall see below

in section 4e.
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4d. The Concept of an "Aether" Never Fades Away

The concept of aether (or ether) is an old and cherished one which is

intertwined with the physical properties of the vacuum as a whole. In the age

of Newton and Maxwell, aether meant, among other things, the medium for the

propagation of light and was identified with the classical electromagnetic field

Its existence was taken for granted , just as the existence of the electromagnetic

field. Nowadays, it is simply called the "vacuum" in modern quantum field

theory. The properties of the vacuum are so complicated and non-classical

from the viewpoint of quantum fields that it is totally beyond the dreams of

Faraday, Maxwell, Lorentz, Poincare and Einstein.

In the 19th century, the universe was believed to be built of objects with

mechanical properties. In particular, light was believed to be supported by a

material substance, called aether, when it propagated in vacuum. Maxwell and

other physicists tried to understand and visualize electromagnetic field as a

mechanical stress in a material substance. Some physicists believed ordinary

matter to be condensed aether. Others such as Lord Kelvin held that matter is

only the locus of those points at which the aether is animated by vortex

motions. Riemann believed it to be locus of those points at which aether is

constantly destroyed. The properties and the names associated with the aether

may change, but the essential idea has never faded away even after Einstein

declared it to be superfluous based on his momentous theory of relativity. We

note that in the early 20th century, the concept of the state of motion of the

aether had to be given up because (a) it was unobservable and (b) it became

superfluous to a physical formalism since the electromagnetic field was

regarded as an independent physical reality.

Nevertheless, many well-known physicists continued to reexamine and

discuss the aether from time to time. For example, in 1920 Einstein himself

gave a talk on aether and general relativity. He identified aether with the

gravitational field and said that "the aether of the general theory of relativity

is a medium without mechanical and kinematic properties, but which

codetermines mechanical and electromagnetic events."12 However, there was

no further investigation along this line of thought.

In 1951, Dirac published a paper in the journal Nature with the title "Is

there an Aether?"-which is the same question that Poincare asked in 1900.

Dirac discussed the existence of an aether on the basis of modern physics:
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"If one reexamines the question in the light of present-day knowledge,

one finds that the aether is no longer ruled out by relativity, and good reasons

can now be advanced for postulating an aether."13

After the significance of gauge theories12,14 based on Yang-Mills fields

was recognized, many theorists discussed the physical properties of the vacuum

in the 1970s. More recently in 1981, T. D. Lee discussed vacuum, in his book

Particle Theory and Introduction to Field Theory, as the source of asymmetry in

quantum field theory (related to CP nonconservation and spontaneous

symmetry breaking in the unified electroweak theory, etc.) and vacuum as a

color dielectric medium for permanent quark confinement.15 Lee said that

"...since at that ( Faraday's ) time the nonrelativistic Newtonian

mechanics was the only one available , the vacuum was thought to

provide an absolute frame which could be distinguished from other

moving frames by measuring the velocity of light .... We know now that
vacuum is Lorentz-invariant, which means that just by our running

around and changing the reference system we are not going to alter the

vacuum."

Here, the vacuum is the aether in old language. Lee pointed out that from

Dirac's hole theory we know that the vacuum is actually quite complicated,

even though it is Lorentz-invariant and is the lowest energy state of the

system. Then Lee asked that important and long-standing question:

"Could the vacuum be regarded as a physical medium?"

This is a question that has engrossed the minds of many physicists such as

Huygens, Faraday, Maxwell, Michelson, Lorentz, Poincare, Einstein, Dirac and

others throughout the ages.14 Lee's answer was as follows:

"If under suitable conditions the properties of the vacuum, like those of

any medium, can be altered physically, then the answer would be

affirmative. Otherwise, it might degenerate into semantics."

He then proceeded to analyze and discuss the physical properties of the vacuum

(or the aether) on the basis of two remarkable phenomena in modern physics,

(i) missing symmetry and (ii) permanent quark confinement.

Who says the concept of the aether is dead ?
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Some people may wonder whether Poincare's acceptance of the

principle of relativity is only 'provisional because he did not give up the

concept of the aether. In contrast, Einstein put his faith in the two principles

of relativity and abandoned the notion of an aether completely. In this

connection, it should be stressed that from the viewpoint of modern quantum

field theory, the existence of an aether is not incompatible with the principle

of relativity or Lorentz and Poincare invariance. In this sense, Poincar8's

belief turns out to be not completely wrong from a modern field-theoretic

viewpoint, and his idea of "absolute rest" appears to be only a question of

semantics in the sense of T. D. Lee.

4e. Conformal Transformations for Inertial Frames with Absolute

Velocity and "Conformal 4-Dimensional Symmetry " with the

Constant Speed of Light

Theoretical physicists and mathematicians like to discuss general cases.

In fact , Poincare derived most of the equations in his relativity paperl based on

the transformation (4.1) with the arbitrary constant K(P)*1 . He explained that

every transformation in this group , which he called the Lorentz group, can be

decomposed into a transformation of the form, r' = Kr, t' = Kt, and a linear

transformation that leaves invariant the quadratic form r2 - t2. Thus, in

modern language , Poincare actually discussed the invariance of Maxwell's

equations under conformal transformations . The conformal transformation is

a larger class of coordinate transformations for which c2t'2-r'2 is proportional,

though not generally equal, to c2t2-r2, and which therefore also leaves the

speed of light universal and invariant, as shown in equations (4.2)-(4.4).

Concerning the special case K=1, Poincare said: "...we have to suppose that K is a

function of P and it is a question of choosing this function in such a way that

this group portion, which I shall call P, forms also a group ." In this

connection , it is worthwhile to note that the concept of conformal invariance

was explicitly introduced into physics by Cunningham who showed that

Maxwell's equations are invariant not only under the Lorentz group (10

parameters), but also under the conformal group C. (15 parameters).16

In connection with the existence of an aether, let us briefly examine

further possible physical implications of an absolute velocity ( i.e., a velocity

relative to a frame of absolute rest ) based on the 4-dimensional framework
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with the conformal symmetry. Suppose we have three inertial frames Fa = F(O),

F = F'(V) and F" = F(U), where V and U are the absolute velocities of F' and F"

relative to the absolute rest frame Fa=F(0) along the +x direction. For a general

K(V), we assume the four-dimensional intervals as9

sz = cztz - r2 , for F(0) ,

s'z = K -2(V) (czt'z - r'z) , for F'(V)

snz = K
-2(U) (c2t"2 - r"2) , for F"(U)

(4.5)

If we insist that the four-dimensional interval be invariant, we obtain the

following "absolute" transformations:

Vt
x' = K(V)

x
y' = K(V)y z' = K(V)z

zc
t' = K(V) t-

i
(4 6)

and

1
,

x

_

, ,
x

_t z

.

x" = K(U) y" = K(U)y
z„ = K(U)z t„ = K(U)

1
(4 7)

l4 ,
, , . .

where J3v = V/c and 13u = U/c.

It can be shown that the transformations (4.6) and (4.7) form a

conformal group because, for example, the transformation between F(V) and

F"(U) has the same form:

x" = P yy^^ = Py' ,
z„ = Pz, t„ = P t'-V'x'/cz

-(1 •z
(4.8)

where

_ K(U) , U-V V'
P K(V) ' V - 1-LTV/C2 , R= c (4.9)

Mathematically, the Voigt transformation (4.2) is clearly a special case of

a conformal transformation (4.6). The physical relevance of the conformal

transformations is in general not yet clear.17
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One may interpret absolute transformations such as those shown above

as a theory of "conformal four-dimensional symmetry" with an absolute motion

and with a constant speed of light c. Thus , it is interesting to see whether these

transformations can be excluded by modern high precision experiments of

special relativity. Surprisingly enough, it is highly nontrivial to exclude

experimentally this type of "absolute" transformation. 11 For example, let us

consider experiments designed to measure the Doppler shift to high precision.

The transformations of the contravariant wave 4-vector k1L=(k°,k1,k2,k3)=

((u/c,kx,ky,kz) between two moving frames, F'-F'(V) and F'-F"(U), are given by

kz = p kx - P ,,0 , k" = pk' , k' = pkz , k"0 = p k'0 - ^'kxl^,Z y y

where (kxI,ky,kz') = (k",k'2,k'3) and

K(U) U-V V1
P = K(V) ' - 1-UV/c2 c

(4.10)

(4.11)

Suppose one performs the experiment in the F'(V) frame and that the atoms are

at rest in F"(U) so that k" = 2x/k and k"0 = 2xv"/c. In practice, one cannot know

the wavelength and frequency X" and v" of the light emitted by the atoms as

measured by observers in the F"(U) frame. One can only compare the shifted ?.'

and v' with the unshifted quantities ?,'o and v'o associated with the same kind of

atoms at rest in the laboratory frame F'(V). Since F(V) and P(U) are not

completely equivalent, as shown in (4.5), the wavelength and the frequency of

light emitted by atoms at rest in F' and measured by observers in F are not the

same as those emitted by the same kind of atoms at rest in F' and measured in F.

Thus, one does not have the usual relations V = X'0 and v" = vo of special

relativity. Rather, one has in general

kX kko and (&'/c) _ (o'o/c)
K(U) = K(V) K(U) K(V)

(4.12)

for the contravariant wave 4-vector k'IL = (k'0,k",k'2,k'3) because of the metric

tensor in (4.5) for the two frames F'(V) and F"(U). Thus, one obtains

b"K(U) = 7l'oK(V) and K(' U) = K(V)
(4.13)
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It follows from (4.10) and (4.13) that the observable Doppler shifts in the

moving frame F'(V) are given by:11

1 1 (1-n')x1o X9 V'o = v' (4.14)

which are exactly the same as those in special relativity. Therefore, we see that

the absolute velocities V and U cannot be determined individually by the

Doppler shift experiment. The best one can do is to determine the "relative

velocity" p' between F'(V) and F'(U), as shown by (4.14). Note that if one uses

the covariant wave 4-vectors, kµ=K-2(V)01 and k"=K-2(U)Vg, the relations

corresponding to (4.10) and (4.12) will be different. Nevertheless, the final

result (4.14) for Doppler shift remains the same. Furthermore, the Michelson-

Morley experiment also cannot rule out the validity of the "absolute

transformation" (4.6) and (4.7) because the speed of light is still the universal

constant c in such a theory with "conformal 4-dimensional symmetry."

Incidentally, these results are consistent with Poincare's view that the

aether exists but that the absolute velocity of a moving frame cannot be

detected. Nevertheless, there is a difference: Namely, there is no conspiracy of

dynamical effects due to the interaction of aether and matter so that the

velocity of an object moving through the aether cannot be detected by optical

phenomena. Rather, the effects of the absolute velocities V and U are

suppressed and disappear from the Doppler shift experiment and the

Michelson-Morley experiment because of the inherent properties of the

conformal 4-dimensional symmetry.

4f. PoincarE's Contributions to Relativity and

Symmetry Principle

Poincare's paperl gave a complete logical foundation for relativity

theory, which includes the mathematical framework and the basic invariant

equations of motion for both electromagnetic fields and charged particles.

There is little doubt that Einstein formulated the theory of special relativity

independently, even though conceptually he may have benefited from

Poincare's nontechnical articles and Lorentz's early papers, as we shall discuss
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in chapter 5. It is certain that there is no experimental difference between

Poincare 's and Einstein 's relativity theories because their equations are

identical , provided Einstein 's approximate and non-Lorentz invariant dyna-

mical equations for charged particles are properly corrected. (See chapter 5.)

Both Poincare and Einstein should be credited for the discovery and the

establishment of the fundamental principle of relativity for physical laws.

Thus we shall call this fundamental symmetry principle in physics the

"Poincare-Einstein Principle." In our discussions, the following statements

may be taken to be equivalent:

(a) the Poincare-Einstein principle,

(b) the first postulate of relativity,

(c) the 4-dimensional symmetry of the Lorentz group,

(d) the 4-dimensional symmetry,

(e) the invariance of physical laws,

(f) the equivalence of all inertial frames,

(g) the Lorentz and Poincare invariance.

Henri Poincare was generally acknowledged to be the most outstanding

mathematician at the turn of the 20th century . He was a man with enormous

interest and rare insight in all branches of mathematics , astronomy and

theoretical physics . After Gauss, he was the last mathematical universalist-

doing creative work of high quality in all four main divisions of mathematics,

arithmetic , algebra, geometry and analysis.18 In addition , Poincare made

significant contributions towards the theory of special relativity in the years

from 1895 to 1905 through his strenuous effort.

The main reason that Poincare did not achieve a complete grasp of the

very essence of relativity (or "reciprocity") appears to be because of his

fundamental viewpoint - namely that the aether exists and there is a

conspiracy of dynamical effects due to interaction of aether and matter such

that the velocity of an object moving through the aether cannot be detected..

This outlook of the physical world urged him to search for a dynamical

explanation for the length contraction of the electron , as he did in his

Rendiconti paper.1 He did not have a satisfactory answer to explain the

conspiracy of dynamical effects. Apparently, a dynamical explanation for the

length contraction was very natural and popular among physicists at that time.

FitzGerald also speculated that "the molecular force are affected by the motion,

and that the size of a body alters consequently." 19 Even as late as 1912, three
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months before his death, Poincare delivered a lecture (to the French Society of

Physics, April 11, 1912) entitled "The Relations Between Matter and Ether."20 A

new aether may actually exist according to modern theory of gauge fields, but

it will be quite different from the aether that Lorentz and Poincare had in

mind. Furthermore, one probably cannot prove experimentally that his belief

in a conspiracy of dynamical effects due to interaction of aether and matter is

wrong. However, as far as relativity theory is concerned, it simply makes the

theory more complicated conceptually and is not necessary. In this aspect,

Einstein had a more profound understanding: Namely, it does not need to

be explained!!!

We may remark that Poincare was not alone in scientific research to

have had an incorrect conceptual interpretation of his equations. Maxwell also

had wrong ideas of molecular vortices and idle wheels for the electromagnetic

field in his equations, but physicists still call them Maxwell's equations.

Why did this thing happen?

In an interesting discussion of innovation in physics, Dyson made a

piercing observation:21 "When the great innovation appears, it will almost

certainly be in a muddled, incomplete and confusing form. To the discoverer

himself it will be only half-understood; to everybody else it will be a mystery.

For any speculation which does not at first glance look crazy, there is no hope."

He explained that "the reason why new concepts in any branch of science are

hard to grasp is always the same; contemporary scientists try to picture the

new concept in terms of ideas which existed before. The discoverer himself

suffers especially from this difficulty; he arrived at the new concept by

struggling with the old ideas, and the old ideas remain the language of his

thinking for a long time afterward." This makes it clear why a young scientist

has an edge over a mature scientist in grasping a new concept. For example,

one can see a difference between the young Einstein and the mature Poincare

regarding having a sound grip of the "crazy" properties of space, time and

relativity related to the Lorentz transformations around 1905; or of the young

Heisenberg versus the mature Einstein in understanding the "crazy"

uncertainty principle in quantum mechanics around 1927.

It seems fair to say that Poincare ushered symmetry principles onto the

stage of twentieth century physics because of

(i) his 1904 proposa19 of the symmetry principle of relativity for all laws

of physics,
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(ii) his recognition ) that the Lorentz transformations of space and time

preserve the invariant x2 + y2 + z2 - czt2 and form a symmetry

group , and that the Lorentz group has 6 generators (three for

spatial rotations and three for boosts),

(iii) his insight into the relation between the Lorentz transformations

and a 'rotational symmetry' in a 4-dimensional space,)

(iv) his use of the invariants of the Lorentz group and the Lorentz

covariant Lagrangian formalism for treating fields and particle

dynamics, which is particularly powerful for treating a physical

system with symmetry properties.

These insights show that his incomparable understanding of the

symmetry properties of the physical world was deeper than anybody else's at

the very beginning of the twentieth century. With the help of the enormous

impact of special relativity and general relativity, symmetry principles are

now generally believed to play a universal and fundamental role in revealing

the simplicity of the physical world. In particular, the view that symmetry

dictates interactions took root mainly through the works of H. Weyl and of C. N.

Yang and R. L. Mills in modern quantum field theory and was stressed in

particular by Yang.22 The most spectacular results of the power of symmetry

principles shows up in Dirac 's prediction of the existence of anti-particles, in

the establishment of the unified electroweak theory and quantum chromo-

dynamics based on non-Abelian gauge fields discovered by Yang and Mills.

Today, one hundred years after Poincar6 proposed the symmetry principle of

relative motion for all physical laws, symmetry principles in physics have

transcended both kinetic and dynamic properties and gone right to the very

heart of our understanding of the universe.

In this connection , we may remark that although Poincar6 did not

discuss the most general symmetry group in 4-dimensional spacetime (i.e., the

inhomogeneous Lorentz group generated by four translations and six rotations

), this group is nowadays called the "Poincare group" by many physicists and

mathematicians . Furthermore, "Lorentz and Poincar6 invariance" is now a

standard term in the 1997 ICSU/AB International Classification System for

Physics, and in Physics and Astronomy Classification Scheme. These

attributions appear to be in memory of his insight of the 4-dimensional

symmetry of spacetime. The Poincar6 group has important applications in

particle physics, as shown by Wigner and others.23
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To many physicists , it is apparent from Poincare's reasoning that the

speed of light is not really a universal constant in all inertial frames; it only

appears to be a constant in those frames moving with respect to the aether as a

result of compensating effects of motion on length and time.24 Indeed, this

may explain why he simply defined c-1 by specially choosing the units of

length and of time, and why he did not call the constancy of the speed of light a

postulate . 25 Furthermore , he did not mention the possibility of experimentally

testing the properties of the speed of light, in contrast to the 'postulate of

relativity .' In this sense , Poincare's viewpoint turns out to be closer to the

recent result of taiji relativity ( in chapter 7) based solely on the Poincare-

Einstein principle of relativity .26 From this recent vantage point, it was

Poincare 's profound insight to treat "the invariance of physical laws" as a

fundamental postulate and "the constancy of the speed of light " as a definition.

This view has not been appreciated for nearly a century.

After special relativity was established , there was some work towards

formulating a theory of relativity without introducing any postulates or

definitions concerning the speed of light . From this point of view , Poincar@

may be credited as a pioneer in the search toward logically the simplest theory

of relativity theory based solely on one single postulate.
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Young Einstein 's Novel Creation Based on 2 Postulates

"Concepts which have proved useful for ordering things easily

assume so great an authority over us, that we forget their

terrestrial origin and accept them as unalterable facts. They

then become labeled as 'conceptual necessities ,' 'a priori

situations ,' etc. The road of scientific progress is frequently

blocked for long periods by such errors."

A. Einstein, Phys. Zeitschr. 17,101 (1916)

ALBERT EINSTEIN: Person of the Century

"He was the pre-eminent scientist in a century dominated by

science. The touchstones of the era-the Bomb , the Big Bang,

quantum physics and electronics-all bear his imprint."

Frederic Golden, TIME, Dec. 31, 1999 , page 62

5 a. The Power of a Young Mind

In contrast to Lorentz and Poincare, Einstein was a young physicist at

the turn of the century and hence had more fresh ideas and more flexibility in

his thinking. Rather than being rooted in the ideas of the traditional

physicists of his time, he was able to discard the idea of an aether without any

reservations. His approach to the whole problem was quite novel, mostly

aesthetic and logically deductive, rather than mathematical. Furthermore, the

young Einstein showed a more profound understanding of the heart of the

matter, namely, the physical properties of space and time.

Although Einstein did not refer to other physicists' earlier works in his

first 1905 paper on relativity, it is certain that he had known of the work of

Poincare and Lorentz.1 These days, if an unknown physicist were to submit a

research paper without any references to previous work by other scientists, it

is certain that the paper would be rejected by any of the well-known journals

such as Physical Review or Nuovo Cimento. Presumably, this absence of

references was the sign of a young rebel outside the academic circle. It

61
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certainly made it more difficult for later historians to trace the origin of

special relativity and to assess the originality of his paper.

Around the time Einstein was formulating his ideas about relativity, his

personal life was in turmoil . He was a young theoretical physicist who tried

and failed for years to find an academic position after graduating. He was

passionately in love with his classmate , Mileva Maric , and they had a baby

girl, Lieserl , before their marriage but were forced to give the baby away.

Moreover , his father passed away and his mother was vehemently opposed to

Einstein 's marriage . It was the worst time in Einstein 's life , yet the best time

for Einstein 's physics . This curious circumstance is not unlike what has been

known for a poet and his poems.

In his first 1905 paper on relativity ,2 Einstein derived all of the

essential results contained in Poincare 's papers of 1905, except the exact

covariant equations of motion for a charged particle . These results are now

standard textbook material and, hence , will not be discussed in detail here. To

read his paper is to see the exuberant new ideas and the beauty of nature.

Although most people tend to think that Einstein created special relativity all

by himself, it is more reasonable to consider special relativity as both an effect

and a cause of scientific progress.

5b. Einstein 's Formulation of Special Relativity with 2 Postulates

Einstein 's approach to special relativity was as follows : He simply

observed that "the phenomena of electrodynamics and mechanics possess no

properties corresponding to the idea of absolute rest" , and from this idea,

proceeded to formulate special relativity entirely on the basis of two postulates

or principles:

(PI) The form of a physical law is the same in any inertial frame.

(PII) In all inertial frames , the speed of light c is the same whether the light

is emitted from a source at rest or in motion.

The first postulate was originally stated by Einstein as follows: "The

laws in accordance with which the states of physical systems vary are not

dependent on whether these changes of state are referred to one or to the

other of two coordinate systems that are in uniform translational relative

motion ." 2 It is the same as Poincare 's 'principle of relative motion '1 proposed

in 1900 or his 'principle of relativity ' as discussed in the1904 address in St.
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Louis: ".... the laws of physical phenomena must be the same for a 'fixed'

observer or for an observer who has a uniform motion of translation relative
to him ..." This first postulate implies that all inertial frames are equivalent.

The second postulate is also known as the principle of the constancy of

the speed of light. This particular property of the speed of light in vacuum (or

of electromagnetic waves in general ) was actually built into the Voigt
transformation ( 3.5) in 1887 and the exact Lorentz transformations (3.4)
obtained by Larmor ( 1898 ) and Lorentz ( 1899). From this historical viewpoint,
neither of the two statements above postulated by Einstein was anything
original . However, it took Einstein 's extraordinary insight to understand the

role they play, to combine these two postulates of physics together
consistently , and to extract their revolutionary implications regarding space

and time, which were so different from the widely accepted Newtonian ideas of
space and time.

The second postulate was originally stated by Einstein in the beginning

of his paper as follows : 'Every light ray moves in the "stationary" coordinate
system with the fixed velocity c, independently of whether this ray is emitted
by a stationary or a moving body.'Z Schwartz has pointed out that Einstein

used an alternative expression of his second postulate during the derivation of

the coordinate transformations, namely : "The speed of light in vacuum has the
same value in every inertial frame ." Are these two versions of the second
postulate the same?

Let us consider the first version: The speed of light c is independent of

the motion of the light source . That is , we have
c(source a) = c(source b) (5.1)

for any two light sources a and b. This statement can also be seen in Pauli's
book , Theory of Relativity, and many other textbooks . Taken as it stands, it is
not a complete statement of the second postulate of special relativity and can

lead to misunderstandings. For example , suppose we have N light sources
moving with different velocities . In general , the speed of light emitted by the
source Si , i=1,2,3, ...N, can be denoted by ci and c'i in the frames F and F'
respectively . Given this, the statement of the postulate (5.1) implies only that

c1=c2=......=cN=c, inFframe,

(5.2)

in F' frame .
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Mathematically , ( 5.2) means that we can use one single equation

x2 + y2 + z2 = c2t2 (5.3)

in F to describe the propagation of a light signal emitted from any source Si,

i=1,2.....,N. Similarly , we can use the equation

x'2 + y'2 + z'2 = c2t'2 (5.4)

in a different frame F' (moving at a constant speed relative to F) to describe

the propagation of light emitted from any of the sources Si, i=1 ,2.......,N.

However, (5.1) does not say explicitly whether c and c', i.e., the speeds of the

same light signals measured in F and F', are the same or not . We note that both

equations ( 5.3) and ( 5.4) have the same form and, therefore , are consistent

with the Poincare-Einstein principle of relativity. In other words, the

Poincare-Einstein principle by itself cannot tell us whether the values c and

c' are the same or not because it is concerned only with the form of physical

laws and not with the values of physical quantities which may appear in them.

Einstein 's second version of the second postulate has also been widely

used in the literature . In light of the previous discussions , we see that this is

also incomplete. A complete statement of the second postulate must address

both the motion of the source and the observer, as it does in (PII).

Much discussion and confusion has surrounded the second postulate of

relativity regarding the question of whether or not it can be tested

experimentally. Some physicists say that it can be tested, while others say it

cannot.3 Both sides are partially right , but remain incomplete in that they

consider only some of the physical properties implied in the universality of

the speed of light. Let us now see what we mean by this.

The universality of the speed of light c consists of two distinct physical

properties:

(a) The value of c is independent of the motion of the light source.

(b) The value of c is independent of the motion of the reference frame.

While (a) can be tested in any inertial frame, (b) cannot. The key to

understanding the difference lies in a subtle point concerning the

synchronization of clocks. Property (a) is independent of the synchronization
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of clocks. For example, to test (a), one may put two stable atomic clocks CA and

CB at rest at different places A and B in the same frame, making sure that they

tick with the same rate. To check whether they are ticking with the same

frequency, it could be arranged for the clocks to emit light pulses with every

tick and an observer standing halfway between the clocks could see whether

or not he receives the light signals at the same rate. It is not necessary to

synchronize the clocks to read the same time.

Now, we set things up so that a source S1 moving with a velocity V1 emits

a light signal from A when tA1=O and an observer records its arrival time tBl at

B. We repeat the same procedure for another source S2, where V2*V1r and

record the times tA2=O (by resetting clock A) and tB2. If tB1=tB2, then one

confirms the independence of the speed of light from the motion of its source

without ever knowing an explicit value for c in different frames.

Property (b) however, is interlocked with the synchronization of clocks

in different frames. To test (b), we must measure the value of the speed of the

same light signal in two different frames, F and F, which are in relative

motion. We stress that there is no substitute for measuring the (one-way)

speed of light in this way.4 Before we measure, we must synchronize the

readings of identical clocks at different places in F and F, where "identical"

means that the rate of ticking of the F-clocks measured in F is the same as that

of the F'-clocks measured in F. However, in order to synchronize their

readings by the usual procedure we must assume that the (one-way) speeds of

light in F and F are the same because this is the basis for fixing the relation

between t and V. After synchronization, times t and t' are related by the

Lorentz transformation. There is a vicious circle here: When we use these

synchronized clocks in F and F to measure the (one-way) speed of light, then

we get the same values because that is precisely what we have assumed in

order to adjust the readings of identical clocks in different frames in the first

place. Thus, property (b) is nothing but a truth by definition. A definition

cannot be proved wrong. As Einstein said, it is a free invention of mind.

In this connection, it is interesting to note that, in his book Science and

Hypothesis,5 Poincare examined with the utmost care the role of hypothesis:

"There are several kinds of hypothesis; that some are verifiable, and when

once confirmed by experiment become truths of great fertility; that others

may be useful to us in fixing our ideas; and finally, that others are hypothesis

only in appearance, and reduce to definitions or to conventions in disguise.
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The latter are to be met with especially in mathematics and in the sciences to

which it is applied. From them , indeed , the sciences derive their rigour, such

conventions are the result of the unrestricted activity of the mind, which in

this domain recognises no obstacle . For here the mind may affirm because it

lays down its own laws; but let us clearly understand that while these laws are

imposed on our science, which otherwise could not exist , they are not imposed

on Nature ." It is clear that property (b) of the second postulate of special

relativity , i.e., that the value of c is independent of the motion of the

reference frame, is of the latter sort.

Sometimes , following statements were made:6

(i) "From the principle of relativity it follows in particular that the velocity

of propagation of interaction is the same in all inertial systems of

reference. Thus the velocity of propagation of interactions is a universal

constant. This constant (..... ) is also the velocity of light"

(ii) "The consequence of the Maxwell-Lorentz equations that in a vacuum

light is propagated with the velocity c, at least with respect to a definite

inertial system K , must therefore be regarded as proved. According to the

principle of special relativity, we must also assume the truth of this

principle for every other inertial system."

These statements are not completely satisfactory because the principle of

relativity, in the sense that all inertial frames are equivalent, implies only

that the form of physical laws should be invariant but not that the values of

parameters in equations such as the speed of light should be invariant. We

shall show a counter example to these statements later: The existence of Taiji

Relativity solely based on the principle of relativity clearly shows that these

view points are incorrect. (See chapter 7.)

5c. The Derivation of the Lorentz Transformations

Einstein showed that the coordinate transformation between F and F'

can be derived from the two postulates . He started from the form invariance of

the law for the propagation of light, as shown in (5.3 ) and (5.4) with c'=c and

then obtained the transformation equations in (3.3 ) where K is an arbitrary

scale factor depending on V only. Based on the arguments that

(a) the product of this transformation (2.11) and its inverse should yield

the identity, so that K(V)K(-V)=1, and
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(b) the transformations on y and z should not change if V-, -V, thus

K(V)=K(-V),

it follows that K(V)= 1 for any V, because K(0)=+1 for V=O. The crucial point in

these arguments is that the inverse transformation must have the same form

as the original transformation , according to the principle of relativity. (Note

that eq .(4.1) corresponds to (3.3 ) with K(V)= '1_ -V2/c2 = 1/y. In this case, the

transformation and its inverse do not have the same form.)

These days the Lorentz transformation is usually derived from the

invariance of the four-dimensional space-time interval,

s2=c2 t2-r2 =c2 t'2- r'2=s'2, (5.5)

rather than using (5.3) and (5.4) with c'=c. In this way one immediately

obtains the Lorentz transformation without having to find K (V). Since

mathematically , ( 5.5) is a definition of the four-dimensional space-time

interval , but the Lorentz transformation is supposed to be derived from the

form invariance of a physical law, one may ask:

To what physical law does the equation in (5.5) correspond?

The answer depends on the values of s2. When s2 >0, (5.5) is equivalent to the

equation of motion of a non-interacting particle with a mass m>0 moving with

a constant velocity v=r/t in an inertial frame:

(F./c)2-p2=m2c2,

E_
mc2 my

p
_

1 -v2/c21-v2/c2 '

(5.6)

v=f , m>O. (5.6a)

When s2 =0, (5.5) is the equation of motion of a massless non-interacting

particle such as a photon . In this case , we still have the relation, (F/c)2 - p2 =

0, however, (5.6a) is no longer applicable. When s2<0, (5.5) has no physical

meaning , i.e. it is not a law of motion for any known physical object. (One

might say that (5.5) with s2<0 describes the motion of a "tachyon" with v>c and

m2<0, but tachyons have never been detected experimentally.)

A rigorous proof of the equivalence of the spacetime interval ( 5.5) and

the physical laws (5.6) can be done with the help of a covariant variational

calculus.?
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5d. Novel Relative Properties of Space and Time

The new properties of space and time are the most difficult concepts to

understand in special relativity. The first clear and complete explanations

were given by the young Einstein with little historic burden of

preconceptions in his 1905 paper. Let us consider the novel properties of

space and time in the Lorentz transformations (3.2), Le.,

x'=y(x - Vt) , y'=y , z'=z , t' = y(t - Vx/c2) ; y= 1
1-(V/c)2

(A) Relativity of length.

The length of a rod does not have an absolute meaning because its

length depends on who measures it. Suppose there is a rod at rest in the F'

frame, parallel to the x'-axis. Its length measured by observers in its rest

frame is called the proper length of a rod

Lo' '=xz- xi,

(5.7)

(5.8)

where x'2 and x'1 are the coordinates of the two ends of the rod in this frame F.

What is its length as measured in another frame F? To determine its length L

in F, one must find the coordinates x2 and x1 for the two ends of the rod at the

same time t2=tl=t in F. According to the Lorentz transformation (5.7), one finds

x2-Vt
x 2 = 2 2 ,

x1-Vt
xl

[J-V2/c2
(5.9)

which are the two ends of the rod as measured at the same time t in F. Thus,

one obtains the relation

L=x2-xi, t=t2=t1, (5.10)

which shows that a moving rod with a length L is contracted by a factor

1-V2/c2 in its direction of motion. We have seen that in the frame in which

the rod is at rest, it has its greatest length (which is also called the proper
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length of the rod). If the rod is parallel to the y- or z-axis, its length will not

be changed due to motion along the x-axis, but its thickness will be.

The contraction of length in ( 5.10) is called the Lorentz contraction. We

note that the original FitzGerald-Lorentz contraction is absolute rather than

relative, because it is assumed to be a real physical contraction when the rod

has absolute motion, i.e. motion relative to the aether . However, in special

relativity, there is no absolute motion and, hence, no absolute contraction. If

one puts a rod Lfl at rest in F and parallel to the x-axis , the length L' of this rod

as measured by observers in F at a certain time t' will be

L'=low , (t'=tz=t1) � (5.11)

Comparing (5.10) and (5.11), we see the relativity of length contraction. (This

is intimately related to the relativity of simultaneity, i.e. t2-ti=0 and t2-t1=0

cannot be both true when the relative velocity V between F and F frames is

not zero, V*0.)

Now suppose there is a meter stick at rest in F and another meter stick at

rest in F' . One may wonder : if one compares them , which meter stick is really

contracted ? This question cannot be answered until the conditions for their

comparison are defined in terms of measurement of length. Different results

for length contraction such as (5.10 ) and (5.11 ) are obtained under different

conditions of measurement . Nevertheless , if one does not use the Lorentz

transformations with a certain simultaneity condition to compare them, can

one know whether the length of a meter stick at rest in F has the same length

as another meter stick at rest in F? The answer is affirmative, according to

the Poincare-Einstein principle of relativity , which implies the complete

equivalence of the two inertial frames F and F'.

Why? If one is not satisfied with this answer, there is really no deeper

reason than the Poincare-Einstein principle of relativity. As mentioned

before in chapter 4, sec. 4f, the symmetry principles, as we understand them at

the present state of knowledge of physics, have transcended both kinetic and

dynamic properties and gone right into the very heart of our understanding

of the universe. However, one may explain it in a different way: Suppose two

identical meter sticks are made by the same factory in F, and one moves a

meter stick to another inertial frame F'. The rigidity of a meter stick depends

on the stability of atomic structure which , in turn , depends on fundamental
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constants and the Dirac equation . (Note that there are truly universal and

fundamental constants and there are 'fundamental constants' that appear

right now to be universal. This point will be elaborated later in chapter 10.)

If the fundamental constants and the Dirac equation are the same in F and F',

then the Bohr radius of a hydrogen atom at rest in F must be the same as that

of another hydrogen atom at rest in P. Therefore, the length of a meter stick

at rest in F has the same length as meter stick at rest in F':

LD(at rest in F') = I4(at rest in F) . (5.12)

(B) Relativity of time.

The time interval between two events does not have an absolute

meaning because it, too , depends on the conditions of measurement . To discuss

this , we must first set up a clock system in each frame . Suppose one has clocks

with identical mechanisms of ticking , some are at rest in F and others are at

rest in F' . Einstein 's procedure of synchronizing them is as follows:

A light signal is sent out from a point a at time tia (according to the

clock at a) to another point b, arriving at time tb (according to the clock at b),

and reflected back by a mirror to point a at time t2a (again , according to the

clock at a). We adjust the reading of the clock at b to satisfy the condition

1
tb=2(t2a-tia)+tia• (5.13)

This is called Einstein's synchronization of clocks in an inertial reference

frame. By this procedure, one can synchronize all clocks in any given frame.

As a result, the times t' and t in F' and F respectively will be related by the last

relation in the Lorentz transformation ( 5.7). Einstein 's synchronization

procedure is the operational definition of relativistic time. It gives the precise

physical meaning of time in the Lorentz transformation . Furthermore, it

helps us to see that Newtonian absolute time cannot be realized by an

operational procedure and, hence , that absolute and unique time for all

observers is unphysical.

Now suppose a clock is at rest in the F frame at the point r=(x,y,z). If a

ball hits this point r at time tl and another ball arrives at the same point r at

time t2, the time interval for these two events is
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At = t2 - ti , (5.14)

according to the clock at the point r. This is known as the proper time

between the two events. Now what is the time which elapses between these

two events in another frame F? From the transformation (5.7), we find

ti = tl - Vx/c2 t2 = t2 - Vx/c2

1-VZ/c2 1-V2/c2

It follows that

At'=t2-ti = At (ri = r2 =r) ,
1-V2/c2

(5.15)

(5.16)

as observed by people in the F' frame. To observers in F, the clock at r in F is

moving and the result (5.16) shows time dilation, that is, a moving clock

appears to slow down: At' > At.

We stress again, the time dilation is always relative in special relativity.

To compare the rate of ticking of clocks in two frames, we require two or more

clocks in one. frame and one clock in the other frame. The clocks that slows

down is always the one which is being compared with different clocks in the

other system.8 (See Appendix D.)

5e. Physical Implications of Einstein 's Special Relativity

After Einstein derived the Lorentz transformations, noted that they

form a group and proved the invariance of Maxwell' s equations under the

Lorentz transformations, he proceeded to derive and discuss many interesting

physical results . Apart from discussions of physical properties of space and

time, he obtained the law of velocity addition, the law of aberration, the

Doppler shift for any angle between a monochromatic light ray and the x-axis,

and the relativistic kinetic energy mc2(y - 1). All these are exact results.

However, when he discussed the equation of motion of a charged

particle in an external electromagnetic field, he obtained only approximate

results which hold for the first order terms in v/c:
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42X d2 d2Z
t2 = eEx , m = e(Ey - vHz/c) , m dt2 = e(Ei + vHy/c) , (5.17)m' S d

where the velocity v is in the x direction. This unsatisfactory situation was

noted and resolved by Max Planck in 1906 by using the correct relativistic

momentum p = mv/ 1-v2/c2 and its transformation laws, apparently without

being aware of Poincare's previous work published in 1906.9

We shall not go into details of Einstein 's 1905 paper since all physical

results in special relativity are included in our following discussions in this

book as a special case (i.e., by setting w = ct and w' = ct' in taiji relativity) or a

limiting case when accelerations are involved.

5f. Einstein and Poincare

Let us briefly compare Einstein's and Poincare's work up to 1905.

Poincare finished his last major paper on relativity at the peak of his fame and

intellectual power. The young Einstein wrote his first paper on special

relativity and started vigorously to pursue relativity and its generalization

with all his ingenuity and with many more fruitful results later. Both were

influenced by the pioneer work of Lorentz. These three physicists made the

fundamental contributions to the theory of special relativity.

It is fair to say that both Einstein and Poincare realized that "the only

possible way in which a person moving and a person standing still could

measure the speed (of light) to be the same was that their sense of time and

their sense of space are not the same, that the clocks inside the space ship are

ticking at a different speed from those on the ground, and so forth." 10

Einstein constructed the logical foundation of special relativity based on

two postulates and gave the clear and complete physical interpretation of

space and time in his theory, including the definition of simultaneity, the

relativity of length and time, and the physical meaning of the equations

obtained with respect to moving bodies and moving clocks. This physical

interpretation was the most difficult part of the theory and turned out to be

the greatest strength of Einstein's paper. In contrast, Poincare's formulation

was based on one postulate, the principle of relativity, and one definition c=1

by choosing suitable units of length and time. He did not give a clear and

complete physical interpretation of space and time. Although there are
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differences in their concepts and interpretations , the two formulations lead to

exactly the same set of basic equations for field and particle dynamics,

provided Einstein 's approximate dynamical equations for charged particles are

corrected . Thus, there is no experimental difference between them.

Einstein used about six pages to derive the Lorentz transformation based

on the invariance of the law of the propagation of light c2t2-x2-y2-z2=0, the

operational definitions of space and time, and the universal constancy of the

speed of light . In contrast , Poincare used one sentence to explain that the

Lorentz transformation can be derived as the result of "a linear

transformation that leaves invariant the quadratic form c2t2-x2 -y2-z2." 11

As a great mathematician , Poincare understood the Lorentz group

completely as a group with six parameters , three for spatial rotations and

three for constant linear motions , while Einstein showed it as a group with one

parameter for the constant motion in a given direction. (See chapter 9,

section 9b, after equation (9.18).) The understanding of the group property is

crucial because, mathematically , the special theory of relativity is the theory

of invariants of the Lorentz group and, physically , symmetry of the theory

completely depends on the group property.

Poincare believed in the existence of an as yet undetected aether, while

Einstein did not believe in the aether. It was widely believed by most people

that Einstein was right and Poincare was wrong . However, this belief is no

longer tenable from the viewpoint of modern gauge field theory and particle

physics. Based on the unified electroweak theory and quantum chromo-

dynamics , the physical vacuum is quite complicated , contrary to Einstein's

belief. (See chapter 4, sec . 4d.) Nevertheless , it was very important to separate

Maxwell's equations from mechanical model of the aether , and this was

accomplished by Einstein.

The basic formulation of relativistic electrodynamics consists of two

parts: the invariant equations of the electromagnetic fields and the invariant

equations of motion of the charged particles . Being a grandmaster of

mathematics , Poincare gave a complete formulation of electrodynamics, which

included the mathematical framework and the Lorentz invariant fundamental

equations of motion for charged particles and electromagnetic fields in his

relativity theory . He did all this elegantly by using the principle of least

action ( i.e., the Lagrangian formulation) and by choosing units so that c=1.12

In contrast , Einstein 's 1905 formulation of the covariant electrodynamics is
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mathematically less elegant and not completely satisfactory: His result for the

transverse mass m/(1-v2/c2) differs from the correct expression m/ 1-v2/c2

obtained by Lorentz and Poincar6.9 Moreover , his resultant equations of

motion for charged particles are not Lorentz invariant because they are only

approximations which hold for small velocities and accelerations.

It appears that the physicist Einstein and the mathematician Poincare

had quite different styles and tastes, as shown by the notations and emphases

in their papers. In particular, Einstein believed in the speed of light as a truly

universal constant. His paper was more appealing to physicists and had a

great impact on the development of physics. He derived results which could be

directly tested experimentally. In contrast, Poincare's Rendiconti paper

published in a mathematical journal was not widely read by physicists and,

hence, did not have much influence in the early development of relativity.13

He treated the constant speed of light as nothing more than a definition,

which was consistent with his conventionalism.14 However, his paper showed

elegance and generality based on the Lorentz covariant Lagrangian

formulation. The difference in their views concerning the constancy of the

speed of light is conceptually significant, and we shall return to this point in

chapters 7 and 17.

Having said all this, Einstein is generally considered to have a more

profound understanding of physical space, time and relativity. In the early

years, Lorentz was probably in the best position to appreciate and assess the

works of Poincare and Einstein. He was particularly impressed by "a

remarkable reciprocity that has been pointed out by Einstein" and credited

Einstein for "making us see in the negative result of experiments like those of

Michelson, Rayleigh and Brace, not a fortuitous compensation of opposing

effects, but the manifestation of a general and fundamental principle." 15

When Pauli discussed Einstein and the development of physics, he said:

'Nowadays we speak with some justification of the "Lorentz Group"; but as a

matter of history it was precisely the group property of his transformations

that Lorentz failed to recogniz; this was reserved for Poincare and Einstein

independently. It is regrettable that a certain amount of dispute about priority

has arisen over this.' 16
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Poincare and Einstein. It is somewhat odd that Pauli credited Poincare for

the principle of relativity, while Lorentz credited Einstein for it. They

discussed relativity theory and regarded it as Einstein's work. See, for
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Dover, New York, 1952), pp. 223-224, 226-228 and 321-325. In his book,

Lorentz discussed only the "Poincare stress" for the equilibrium of an

extended electron and not the formulation of relativity theory for the
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principle of relativity (and the definition c=1.)

16. W. Pauli, Writings on Physics and Philosophy (Edited by C. P. Enz and Karl

von Meyenn, translated by R. Schlapp, Springer-Verlag, Berlin, 1994), p.

118; Neue Zurcher Zeitung, 12. Januar 1958.



6.

Minkowski 's 4-Dimensional Spacetime,
Adjustable Clocks and Flexibility in the Concept of Time

6a. The Completion of Special Relativity by Minkowski 's Idea of

4-Dimensional Spacetime

The physical theory of special relativity is usually considered to have

been completed in 1905. The 4-dimensional symmetry framework of

Minkowski and Poincare is generally viewed to have been a purely

mathematical development. However, in view of the later development of

general relativity, covariant quantum electrodynamics, unified electroweak

theory and quantum chromodynamics, both the new physical ideas in special

relativity and the explicit 4-dimensional symmetry framework are necessary

for calculating physical results. Thus, it appears to be more reasonable to

consider the idea of the 4-dimensional spacetime as an integral and necessary

part of the physics of special relativity. We know that quantum mechanics is

incomplete without the probabilistic interpretation of the wave function.

Similarly, we stress that special relativity is not really complete without

having the 4-dimensional interpretation of the Lorentz transformation and of

the form of physical laws.

The radical idea of a 4-dimensional spacetime for physical laws was first

conceived by Poincare in 1905, as discussed in section 4c. In his Rendiconti

paper, Poincare considered (x, y, z, it), (with r_1), as coordinates of a point in a

space of 4-dimensions and stated that the Lorentz transformation is just a

rotation of this space about the origin, regarded as fixed. In this way, one has

an invariant distance between the point and the origin,

x2+ y2+ z2- t2-x2+ y2+ z2+ ( it)2, i= .

Thus, the geometry of such a 4-dimensional space (x, y, z, it) is closely related

to Euclidean geometry. Poincare further explained: "We know that the

transformations of this group (with K=1) are the linear transformations which

do not change the quadratic form x2+y2+z2-t2."
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Unfortunately, Poincare's idea remained almost completely unnoticed

until 1908. The same idea, its elegance and important applications were again

suggested and expounded by the Russian mathematician Hermann Minkowski

(1864-1909) at G6ttingen.1 The impact of Minkowski's work on 4-dimensional

spacetime has been enormous. His essential idea was that the invariant theory

of the Lorentz group can be represented geometrically, so that it is a natural

generalization of the tensor calculus for a 4-dimensional space. The presence

of tensor calculus forever changed the landscape of theoretical physics. It

greatly simplified calculations and proofs in theoretical physics. Einstein used

nearly six pages to prove the invariance of Maxwell's equations with sources

in his original paper.2 The same proof can be done in about six lines by using

tensor notation. Furthermore, a few years later the ideas of 4-dimensional

spacetime and tensor calculus paved the way for Einstein's creation of general

relativity - a theory of gravity based on a 4-dimensional curved spacetime

with Riemann geometry.

We know that, in principle, the electrodynamics of moving bodies was

solved in 1905 by Einstein and Poincar6. Nevertheless, Minkowski further

discussed phenomenological electrodynamics of moving bodies in 1908. When

the structure of matter is not completely known, the prediction of macroscopic

phenomena of moving bodies is not trivial even if phenomena associated with

bodies at rest are assumed to be known experimentally. Minkowski showed

that within the framework of special relativity, the equations and the

boundary conditions for phenomenological electrodynamics of moving bodies

can be derived from Maxwell's equations and the boundary conditions for

bodies at rest.3

It turns out that there is a flexibility in the concept of time within the

4-dimensional symmetry framework. The first specific example was discussed

by Reichenbach in 1928.4 He proposed a more general procedure for clock

synchronization using light signals, which includes Einstein's clock

synchronization as a special case. Although his idea was logically sound, for

many years it could not be implemented to derive a spacetime transformation

which is consistent with the 4-dimensional symmetry of the Lorentz and

Poincare groups.5 Seventy years later, it was shown that it is indeed possible

for Reichenbach's general concept of time to be implemented in

transformations compatible with the 4-dimensional symmetry of the Lorentz

and Poincare groups.6
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6b. The Collision of the Titanic and Haywire Clocks

To demonstrate the flexibility we have in defining a physical time, let us

consider an example . In the physical world , what happens will happen,

regardless of how we measure space and time. In our discussions , time usually

denotes the evolution variable measured in, for example, seconds. As an

example , let us consider the disastrous collision between the Titanic and an

iceberg . Suppose the Titanic is at location T at time tl and moves with a

constant velocity V=(dx/dt,0,0)=(V,0,0) to location C at time t2 where it collides

with an iceberg , which also happens to move to the position C at time t2. Thus,

the Titanic moves a distance D during the time interval t2-tl

t2 x2

D= I Vdt=V(t2-tl)= d dt=x2-Xl,
t1 f dt

xl

(6.1)

according to the stable, uniform clocks we are used to. This relation is the root

cause of the disastrous collision. Now suppose the clocks which measure the

velocity of the Titanic suddenly go haywire, ticking with different rates and

reading different times t' at different positions. The velocity V' measured by

these haywire clocks will now be some complicated function of t' rather than a

constant. Will the relation (6.1) be changed so that the collision would not

occur? Of course not. In other words, we can represent t' by any given

complicated function A(x,t), (assuming that the length of meter sticks does not

change),

t' = A(x,t ) , (6.2)

so that the velocity V measured by t',

(6.3)

is now a complicated function of space x and time t due to the factor dt/dt', in

contrast to the constant velocity dx/dt =V. However , during the time interval

t'1=A(xl,tl ) and t'2=A ( x2,t2 ) (corresponding to t1 and t2) the Titanic will still

move a distance
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tz' x2

dt'dt' = I dx = x2 -x1, (6.4)D= t V'(t')dt' = Jth

which is precisely the same as the distance D in (6.1), as we expected.

6c. The Primacy of the 4-Dimensional Symmetry

The same considerations . can be applied to the light beams in the

Michelson-Morley experiment instead of the Titanic. In this case, if we use

some crazy set of clocks , the speed of light may not be a constant, but the

experiment will still produce a null result.

Why, then , is the relativistic time so important and crucial in physics?

The answer to this question is that the important and crucial property

for understanding physical phenomena is the four-dimensional symmetry of

the Poincare-Einstein principle rather than the relativistic time . In other

words, the synchronization of clocks to realize relativistic time is a matter of

convention rather than something inherent in nature or essential in physics.

This viewpoint was stressed both by Poincare7 and Reichenbach .4 From a

physical viewpoint , the essence of relativity is the principle of relativity of

Poincare and Einstein for the form of physical laws rather than the

relativistic time or the universal value for the speed of light c . This will be

discussed and explicitly demonstrated in chapter 7, 8 and 12.

6d. A Flexible Concept of Time

First, however, we would like to make it absolutely clear that no matter

how complicated the function A(x,t) may be, the new time t o in (6.2 ) can always

be physically realized once A (x,t) is given , because with today's computer
technology , it is always possible to design a timepiece with the desired rate of

ticking aA/at which will show the desired time A (x,t) = t'.8

Secondly, if one wants to use the usual stable and uniform time in an

inertial frame, the synchronization of clocks in a given inertial frame, say, F,

can always be carried out, in principle , by anything with a constant velocity

- light, sound , a bullet, etc. by the method described in the previous chapter.
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In this way , the time t in F is completely defined . While this is intuitively

clear , the nontrivial part is how one should set up clocks in another frame F'
which is moving with a constant velocity V=(V,0,0 ). It must be stressed that it

is only when time in other inertial frames is specified do, we have a complete

definition of time in physics. The synchronized clock system in F' makes all

the difference in our concept of time . Each F' clock has a position r=(x,y,z) as

observed in F. For each of these F '-clocks at a particular position r at time t,
we can arrange for its time t' to read

t' = A(x,t) , V = (V,0,0) , (6.5)

where A(x,t) is some given function. A specific choice of A(x,t) corresponds to
a particular concept of time. For example, with the choice

t'=A(x,t)='(t-vC (6.6)

one has chosen to use "relativistic time " in one's universe. On the other hand,

if one chooses

t'=A(x,t)=t, (6.7)

one has "common time," that is , all observers in all frames of reference use the

same time . However , within the four-dimensional symmetry framework,

"common time " is not absolute in the sense of Newton and leads to different
predictions of physical results. (See chapter 12.)

By adjusting the reading and the rate of ticking of clocks in different

frames of reference , we have great flexibility in picking our particular
concept of time. It turns out that, within the four-dimensional symmetry
framework based on the Poincare-Einstein principle , (6.6) and (6.7) are the
two algebraically simplest concepts of time. As we shall demonstrate later, the
four-dimensional symmetry , and not relativistic time , is the crux ! In other
words, the physical world can be understood based on the four -dimensional
symmetry without ever specifying the function A(x,t) in (6.2) and the time t in
F to be uniform.8
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7.

Taiji Relativity Based Solely on 1 Principle
- the First Principle of Relativity

"Concepts which have proved useful for ordering things easily

assume so great an, authority over us, that we forget their

terrestrial origin and accept them as unalterable facts. They then

become labeled as 'conceptual necessities,' 'a priori situations,' etc.

The road of scientific progress is frequently blocked for long

periods by such errors. It is therefore not just an idle game to

exercise our ability to analyze familiar concepts, and to

demonstrate the conditions on which their justification and

usefulness depend, and the way in which these developed, little by

little, from the data of experience. In this way they are deprived

of their excessive authority."

Einstein (Phys. Zeitschr. 17,101 (1916))

7a. Refreshingly Innocent Questions

It is absolutely essential to insist that a fundamental physical theory

should be derivable from the simplest possible set of basic principles. With this

in mind, we turn our attention to the following questions: Can a theory of

relativity be formulated solely on the basis of the first principle of relativity,

without assuming the universal constancy of the speed of light? Is it necessary

for clock systems to be adjusted to satisfy a specific relation for t' and t?

It turns out that, indeed, a general theoretical framework for space and

'time' can be explicitly constructed solely on the basis of the Poincare- Einstein

principle of relativity. We term such a theory "taiji relativity,"1 which has

the ultimate logical simplicity with regard to its foundations. The 4

dimensional symmetry of the Poincare-Einstein principle of relativity dictates

that the four spacetime variables (w,x,y,z), where w is the evolution variable,

must be treated on equal footing and must all have the same units of length.

As a result, the basic dimensions of physics are reduced from the usual three

(i.e., time, length and mass) to two (i.e., length and mass.) Also, the usual three

87
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fundamental and universal constants (the speed of light c, the Planck constant

and the electric charge ) are reduced to two.1

We note that one fundamental difference of taiji relativity from special

relativity is that the evolution variable (i.e., the taiji- time w) must be

measured in units of length , just like the spatial components, x, y and z. The

first principle of relativity and Maxwell 's equations can determine the

relation between one centimeter of w and one second of time t, as defined

conventionally. The usual constant speed of light c=299792458m/sec is neither

necessary nor fundamental to physics . Physical laws expressed in terms of the

4-coordinate xµ=(w,x,y,z) display four-dimensional symmetry and are

consistent with all known experiments such as the Michelson-Morley

experiment, the Doppler shifts of wavelength and frequency , the energy-

momentum relations for a particle, and the decay-length dilatation.

Such a new theory of relativity suggests that the four-dimensional

symmetry itself is inherent and truly fundamental in the sense that it is a

fundamental and necessary component of any theory if it is to correctly

explain and predict phenomena in the physical world. In contrast, the

universal constancy of the speed of light c is neither necessary nor

fundamental in the physical world but instead, a human convention imposed

upon physical theories for describing nature. Thus it seems appropriate to

term such a theory of relativity "taiji relativity" because the word "taiji"

denotes, in ancient Chinese thought , the ultimate principles or the condition

which existed before the creation of the world.2

The purpose of our new formalism of four-dimensional taiji relativity is

not to show that special relativity is wrong in some way, but instead to show

that special relativity is in some sense overspecified and that removal of the

overspecification leads to a fresh view of the physical world and new concepts

and results which are unobtainable through conventional special relativity.

7b. 4-Dimensional Taiji Transformations

Based on four-dimensional symmetry considerations, we describe an

"event" with the coordinates

(w, x, y, z) = xµ , and (w', x', y', z') = X%, t = 0,1,2,3, (7.1)
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in two inertial frames F(w,x,y,z ) and F'(w',x',y',z') respectively. The variable w

or w' is interpreted as the evolution variable of a physical system.

We derive the four-dimensional transformation between these

coordinates . For simplicity , we start with the convention that F and F' frames

have relative motion along parallel x and x' axes, that the origins of F and F

coincide at the taiji-time w=w'=O, and that the transformation is linear (i.e.,
w'=alw+a2x, x'=blx+b2w, y'=y, z'=z). The principle of relativity implies that the

four-dimensional interval s2 is invariant:

s2=w92-ri2
=w2-r2=xµxµ;

r2 = r2 , xµ = (w, -x, -Y, -z) = (w, -r) , IL=0,1,2,3.

(7.2)

Its differential form is ds2 = dw2-dr2 . We note that this is not a separate

assumption because the relation (7.2) for the 4-dimensional interval is

actually the law of "energy-momentum" for the motion of a free particle with

mass m - 0 (if s2>>0),3

pot-p2= m2, (7.3)

where pµ=mdxµ/ds, µ=0 , 1,2,3. The relative motion between F and F satisfies a

condition that F' moves with a dimensionless velocity B, measured in terms of

w, i.e., when dx'/dw'=O, dx/dw=B. Using (7.2) and this condition, we can

determine all four unknown constants in terms of a single parameter B(=-

b2/bl ). We obtain the taiji transformations of coordinates:

w'=Y(w
- Bx), x'=Y (x-Bw), y' =y, z'=z, (7.4)

1

-I-B2

Its inverse transformation can be derived from (7.4) and (7.5):

(7.5)

w=Y(W'+Bx'), x=Y()e+Bw'), y=y', Z=z'. (7.6)
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The set of four-dimensional coordinate transformations (7.4) forms

precisely the Lorentz group. The Lorentz group properties of (7.4) can be

demonstrated by the usual method. As usual, these transformations can also be

generalized to form the Poincar@ group by including constant translations

bN=(bO,bl,b2,b3) along the four axes. (See eq. (9.30) in chapter 9.)

The propagation of light is described by setting s2=0 in (7.2) or ds2=dw2-

dr2=0. This is not a separate and independent assumption because it can be

derived from the free wave solution of the Maxwell equations, as shown in ref.

5 of chapter 5. We can now derive the taiji-speed of light himplied by (7.2) as

OL=Idr/dwI=1, ds2=dw2 -dr2=0, (7.7)

where we have used the differential form of (7.2). This holds in all inertial

frames since ds2 is invariant and also holds for lights emitted from any source.

Although it may look as if we are setting c=1, as we shall see later, this is not

the same as simply setting c=1 in special relativity.

7c. Taiji Time and Clock Systems

Now let us consider physical devices called " taiji-clocks" which show

taiji-time w . First, the four-dimensional symmetry naturally dictates that all

four variables w, x, y and z have the same dimension of length, the same units

(say, cm ) and are homogeneous in any inertial frame. The usual clocks, whose

readings of t have the unit of seconds , can be modified to become "taiji clocks"

in such a way that their readings of w have the unit of centimeters.

According to the four-dimensional symmetry or eq. (7.7 ), PL=1, the units of taiji

clocks must be such that during the passage of Aw=1cm, a light signal travels a

spatial distance IArI = 1cm along any direction in vacuum . In other words, the

duration of the usual time interval At=1 second corresponds to the taiji-time

interval Aw=29979245800cm. We note that this numerical value 29979245800

has no fundamental significance because it completely depends on our

definitions of the speed of light . (At present, one centimeter for lengths is

defined in terms of the defined value of the speed of light c and the frequency

of the atomic clock.) Since taiji relativity implies the invariant and absolute

taiji-speed (7.7) for light signals , ft=l, for all frames and all directions, we can



Chap. 7. Taiji Relativity Based Solely on 1 Principle... 91

set up a taiji-clock system in each frame , and use light signals to synchronize

these clocks as follows:

Suppose there are taiji clocks located at positions A and B in a frame.
The taiji-time interval required for a light signal to go from A to B must be

equal to the taiji-time interval required for a light signal to go from B to A,

according to the law (7.7). The taiji-time interval must also be equal to the
spatial distance between A and B, IrA-rBI, because PL=1. Thus, when a light
signal starts from A at wl, is reflected back by a mirror at B, and returns to A at
taiji-time w2, then the taiji-time at which the signal hits B is

Wl+ (w2- w1)=Wi+IrA-rBI. (7.8)

This synchronization procedure resembles that in special relativity, except
that (7.8) is not based on an additional second principle. Rather, it is dictated

by the law (7.7) which is implied by Maxwell's equations and the first

principle of relativity. Note that any change of the relation (7.8) for taiji-

time w by, say, including an extra parameter similar to that suggested by

Reichenbach will violate the 4-dimensional symmetry of taiji relativity.4

The taiji-time w can also be understood as an optical path length,

because, for a finite interval, the law for the propagation of a light signal,

starting from the origin r=0 at w=0, is described by the law:

wz-r2= 0, or w=r>O, (7.9)

where r is the distance traveled by the light signal during the taiji-time
interval Aw=w. Evidently, this law (7.9 ) or lL=r/w=1 is " taiji invariant", i.e.,

unchanged under the taiji transformation (7.4). All other particles with
masses m>O have a smaller taiji velocity, P<1, as implied by the transformation
(7.4).

7d. Taiji Velocity Transformations

From equations (7.4)-(7.5), we can derive the transformations of taiji-

velocities,
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(fix - B) ^- Py Oz (7.10)P x =(1 - PxB ) y
_

y( 1 - PxB)' 3z =.y(1 - PxB)

dx' " dz' dx 4 dz
a (dw"dwdw')Qw'dw'dw)

The form of (7.10) is exactly the same as that of the velocity transformation in

special relativity because both theories have the 4-dimensional symmetry of

the Lorentz group. The only difference is that the constant speed of light

c=29979245800cm/sec is not involved in (7.10) at all.

7e. Comparisons with Special Relativity

In order to avoid confusion, one must be very careful in comparing taiji

relativity and special relativity because of their conceptual differences, their

formal similarity due to the four-dimensional symmetry, and one's

preconception of space and time. For purposes of comparison with special

relativity, we formally introduce a time variable measured in seconds for each

frame and describe events with the coordinates

xµ= (w, x, y, z)=(bt,r),

x'µ = (w', x' , y', z') = (b't', r') , µ = 0,1,2,3,

(7.11)

in F and F', respectively. It must be emphasized that, in taiji relativity, the

usual concept of time is undefined, i.e., time variables t, t', t".... in F, F',

F",....respectively are not related by specific functions. Logically, nothing

can prevent one from defining t by setting up a specific clock system in one

frame, say, F. However, the relation between t and t', for example, can never

be specified within the framework of taiji relativity due to the lack of a second

postulate. If one specifies a relation for t and t', then one has made a second

postulate so that the time t is now defined for all frames (due to the group

properties of the coordinate transformations); one will then have a theory of

relativity which differs from taiji relativity. In (7.11) we include b and b' as

(unknown) variables with the dimensions of velocity, so that each coordinate

has the dimension of length. We cannot identify b and b' with a constant c as

is done in special relativity since we have no postulate regarding the
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universality of the speed of light . Although t' and b ' are separately undefined

in terms of b and t, their product b't''w ' is well-defined in terms of bttw in

taiji relativity.

To further simplify the comparison with special relativity , we may also

set things up so that the speed of light is constant and isotropic in the F frame

by synchronizing the clocks in the F frame by the usual method in special

relativity. It is important to note that we make this definition in one frame

only and that this could have been any frame, not just F, since all frames are

equivalent, according to the first postulate of relativity. Thus, we have not

picked out any preferred frame. Since we have abandoned Einstein 's second

postulate , we have no information as to what the speed of light is in any other

frame, and thus , do not know how to synchronize the clocks (which read time t

or t') in any other frame by using light signals . As we see, Einstein's second

postulate serves to fix a relation between the clocks in different inertial

frames . One might object here that we have simply introduced a different

postulate by requiring the speed of light to be constant and isotropic in one

frame. However , the existence of such a frame is not critical to our discussion,

as we have shown previously. The theory would stand just as well without it,

except that the comparison with special relativity and further explanations

would be made unnecessarily complicated mathematically.

Thus, keeping the conventional interpretation that s2 should equal 0

when discussing the propagation of light, we see that we can now identify b in

(7.11) with the constant c, which we use to denote the constant and isotropic

speed of light in the F frame only. We can now write the taiji transformations

(7.4) and (7.5) as

b't'=y(ct- Px), x'=y (x-,ct), y'=y, z'=z, (7.12)

where 0=V/c, y=l/ . (7.13)

Note that , with the definition b=c in the F frame, V in ( 7.13) is the usual

constant velocity of the F frame as measured by the F-observers.

Now let us characterize a formal relationship between the times t and t'

as follows:

t' = A(V• r,t) = A(x,t) , V = (V,0,0) , (7.14)
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where A(x,t) is some unspecified function . Again , we stress that t' is just a

symbol and has no physical meaning because its value is unknown or

unspecified in taiji relativity. Choosing a specific A(x,t) is equivalent to

making a second postulate and one will obtain a different theory of relativity,

as mentioned previously. In this case, the F ' clocks can then be synchronized

by a new method without relying on knowing the speed of a light signal. This

is possible because the reading and the rate of ticking of any clock are

adjustable. For example , our "clocks" in F' could be some kind of computerized

machines which have the capability to measure (or to accept information

concerning ) their positions in the F frame, obtain t from the nearest F clock,

and then compute and display t' using A (x,t). Such a clock may seem absurd

compared to our usual concept of time, but the conventional time system we

use is itself merely the result of a postulate (namely the second postulate of

special relativity regarding the universal speed of light ) which we have

grown used to. Any specific choice of A(x,t) for time t' must be regarded as a

valid and physical time of the F' frame, as long as it can be physically realized

by clocks and is consistent with known experimental results. It must be

emphasized that, according to taiji relativity, the inherent evolution variable

is the taiji- time w with the dimensions of length, rather than the usual

concept of time. Furthermore, taiji relativity gives no relation between the

times t and t' in (7.12). A concept of time is well defined if and only if the time

relation between any two inertial frames is explicitly stated.

From equations (7.12)-(7.14), we derive the transformations of

velocities,

'Kc - Pvx) 7tvx - Pc) , ^ ' `'z )c
B
u v'x = Bu vy

--Bu, V IZ =Bu; (7.15 )

V. ,a. v =(N,^'a) ,

aA dx aA A = A(x,t) ,Bu= x-(f , t'

where Bu is an unknown function dependent on A(x,t ) and we have again

made the definition
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C' - d(b't')dt' (7.16)

which is consistent with the law for the propagation of light: ds2=d(b't')2-dr'2=

c'2dt'2-dr'2=0. Equation (7.15) gives us a formal relation between c and c',

where c'=c'(vx) is actually undefined because it contains an unknown

function Bu. It is essential to note that c' and v' are separately unspecified.

However, their ratio v'/c' in (7.15) is independent of Bu and, hence, well-

defined.

7f. Einstein 's Time , Common Time , Reichenbach's Time

and Unspecified Time

Many different additional second postulates can be made to obtain

different theories of relativity. Although there are infinitely many

possibilities, let us consider three simple cases:

(a) If one makes the additional postulate that the taiji-times w and w'

are related to our usual concept of time t and t' by:

w=ct, w'=ct', (7.17)

then all of the above equations reduce to those of special relativity. In this

case, one has Einstein's relativistic time.

(b) If one makes the additional postulate that the taiji-times w and w'

are related to our usual concept of time t and t' by:

w = ct, w' = Wt, (or equivalently w = bt', w' = ct') , (7.18)

then one has what we term "common time."5 In this case, one has a 4-

dimensional theory with a common time for all observers. Such a theory is

called "common relativity" which will be discussed in detail in chapter 12. We

may remark that (7.18) can also be written as w=bt' and w'=ct', since all inertial

frames are equivalent. Also, common time is not unique as shown in (7.18)

and, hence, not absolute. It differs from Newtonian absolute time which is

embedded in a 3-dimensional symmetry framework.
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(c) If one makes the additional postulate that the two-way speed of light

(i.e., the round-trip distance divided by the round-trip time interval) in any

frame is a universal constant, then one has "extended relativity".6 In this case

one might have

w=ct, w'=b't',

where t and t' are an "extended relativistic time" which are related by

(7.19)

t'=Y[(1-pq' )t-(p-q')x/c], 0=V/c, (7.20)

which involves the parameter q'. One can verify that the special case q'=0

corresponds to special relativity.6

In taiji relativity, one may formally write w=bt and w'=b't' if one wishes.

However, we stress that b, t, b' and t' are separately undefined and unknown

because of the lack of a second postulate. Since there is no relation between t

and t', the concept of time measured in seconds is undefined in taiji relativity.

An infinite number of second postulates which are consistent with

experimental results are possible. In this sense, taiji relativity can generate

all kinds of different relativity theories with different concepts of time (i.e.,

different relations between t and t') and different properties of the speed of

light (i.e., different relations between c and c').

7g. Discussions and Remarks

Following are some commonly asked questions about taiji relativity and

their answers.
(A) Since the time t' in F' is, in general, non-uniform and a function of

r', the velocity of F is also, in general, a function of r', as shown in (7.15).

How then, can one define the concept of an "inertial frame" in taiji relativity?

An "inertial frame" in taiji relativity cannot be defined by the usual

criterion of constant velocity V' because the "velocity" in the sense of dr'/dt is

undefined. However, we define the taiji-velocity B'=dr'/dw' which is the ratio

between V' and c' because dr'/dw'= [dr'/dt']/[dw'/dt'] = V'/c'. An "inertial

frame" is thus one which has a constant taiji-velocity.
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(B) Is taiji relativity really based on only one single postulate?

According to (7.12), there is a second postulate that the speed of light is

constant in one frame F.

The relation w = ct for taiji-time w in the F frame is not necessary for

the formulation of taiji relativity. It is a technical 'definition' made solely to

simplify the comparison with special relativity. And we do not need to assume

the existence of F. The reason is that there are infinitely many frames, F, F',

F",... in taiji relativity, even if the F frame with w=ct does not exist, the physics

will not be changed.

(C) Isn't taiji relativity just a change of variables, ctE - Ä w=bt and ct'E -,

w'=b't', of special relativity with relativistic times tE and t'E ?

The answer is no because the physical results of taiji relativity cannot

be obtained from the corresponding expressions in special relativity merely

by a change of variables. Taiji relativity and special relativity are two

different and distinct theories. Special relativity has c, which is a universal

constant in all inertial frames. However, in taiji relativity, there is no

meaningful constant c related to the speed of light in all inertial frames. If

one compares these two theories, their differences involve more than a

change of variables in special relativity. The reasons are as follows: In

special relativity, tE and t'E have a definite relationship ( i.e., time tE is defined)

and the speed of light is a universal constant in all inertial frames. However,

in taiji relativity, t and t' have no relation whatsoever (i.e., time t is undefined)

and, moreover, speed of light, measured in terms of time , is undefined and

unknown. To be more specific, the basic laws such as Maxwell equations (see

eq.(10.20) in chapter 10) and the Dirac equation (see eq.(10.12)) are not related

to their corresponding equations in special relativity by a mere change of

variables. The fundamental difference between the two theories is that taiji

relativity is based solely on the first principle of relativity, while special

relativity is based on two principles. As a result, conventional QED involves

three fundamental and universal constants, while Q):D based on taiji relativity

has only two fundamental and universal constants.7

(D) Isn't it true that a formalism of space and time (as measured in

seconds) must have two postulates? How can taiji relativity be based only on

one postulate?

It is true that a formalism of space and time must involve two postulates.

However, taiji relativity is not a formalism of space and time t because the
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usual concept of time as measured in seconds is undefined. Rather, it is a

formalism of space and taiji- time w, which is measured in units of length.

(E) It seems that the difference between the taiji transformation (7.4)

and the Lorentz transformation is superfluous. Doesn't (7.4) indicate that one

can have w=ctE and w'=ct'E?

No, (7.4) does not indicate that. If one wants to relate w to a 'time

variable' t with the dimension of seconds in a general frame without making

an explicit second postulate, one can only write w=bt, where b is an undefined

variable which has the dimension of velocity. In taiji relativity, there are not

enough postulates to specify b separately from t in a physically meaningful

way. In a general frame, the time t is, therefore, also arbitrary and cannot by

itself be regarded as the fourth dimension. That role is taken by the evolution

variable w which we call the "taiji- time." We stress that the arbitrariness of

the time relation w=bt is not the motivation of our investigation. Rather, it is

merely a consequence of eliminating the second postulate of special relativity.

If and only if one makes a second postulate (the universal constancy of the

speed of light), does one have w=ctE and w'=ct'E and hence, special relativity.

As we shall show in the next chapters however, the loss of the usual concept of

time does not in any way prevent taiji relativity from being a physically

useful theory. It can still predict experimental results and is in agreement

with all of the experimental results which have been interpreted as

confirmations of special relativity. These experiments include the Michelson-

Morley experiment, the Fizeau experiment, the aberration of light,

experiments related to covariant Maxwell equations and Lorentz force, and so

on. Taiji relativity thus implies that relativistic time or any particular time

system, for that matter, is not a necessary component of a theory based solely

upon the first principle of relativity.
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8.

The Arbitrary Speed of Eight in Taiji Relativity
and the Michelson-Morley Experiment

8a. Does the Michelson-Morley Experiment Imply a Constant and

Isotropic Speed of Light?

The Michelson-Morley experiment was first carried out by A. A.

Michelson in 1881, more than twenty years before the birth of special

relativity . It had been suggested by Maxwell in 1878 that such an experiment

could reveal the absolute velocity of the Earth moving through the aether.

However , the experiment turned out to have a null result which indicated that

the absolute motion of the Earth could not be detected by optical phenomena.

This "alarming result" was the first experiment which stimulated the search

for the theory of relativity and it played a central role in the earlier work

(1886-1905 ) of Lorentz and Poincare , although not in Einstein 's work. Lorentz

was deeply concerned about the null result of the Michelson-Morley

experiment for a long time and corresponded with W. Voigt around 1888.

The null result of the Michelson-Morley experiment has been

interpreted in many different ways at different times by different people:

Originally, it was interpreted as the contraction of the absolute length

of a rod along the direction of its motion through the aether by FitzGerald and

Lorentz. Nowadays , it is widely seen as a confirmation of the universal

constancy of the speed of light . Some physicists, however , interpret it only as

support for the universal constancy of the two-way speed of lightl rather

than that of the one-way speed of light in special relativity. None of these are

completely correct, as we shall explain below.

What we shall now show is that the Michelson-Morley experiment does

not imply any specific property concerning the speed of light (measured in

traditional units such as cm/sec.) In fact, the null result can be shown to be

consistent with an arbitrary speed of light , as long as the propagation of light

is described by a law which displays the 4-dimensional symmetry of the

Poincare-Einstein principle (or of taiji relativity).

100
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Let us consider in detail the arbitrariness of the speed of light and the

great flexibility of the usual concept of time t within taiji relativity. Within

the conceptual framework of taiji relativity, both the time t and the speed of

light c are separately undefined and, hence, arbitrary. Nevertheless, we can

show that taiji relativity, with its 4-dimensional symmetry of Lorentz and

Poincare groups, is still consistent with experiments.

We start with the equation dsz=dw2-dr2=0, which describes the

propagation of a light signal using the taiji-time w in the frame F. This

equation is not an independent assumption for a light signal in vacuum

because it can be derived from Maxwell's equations, which are postulated to

describe electromagnetic fields.2 The equation for the propagation of this

light signal in F' must be dsz=dw'2-dr'2=0. In taiji relativity, although we

cannot say anything definite about the time t or the speed of light c when

taken separately, the Michelson-Morley experiment can still be understood in

terms of the optical path, where the optical path is defined as the distance

traveled by a light signal measured in units of the wavelengths of light. For

example, a distance of one meter in a vacuum would be equivalent to an optical

path of 2x106 for green light with a wavelength of 500 nm. Thus the optical

path depends on the wavelength of the light under consideration, the distance

traveled by the light signal, and the index of refraction n of the medium

through which the light travels. This number dictates the phase of a wave at a

certain point in space.

Taiji-time w in the present theory is precisely the same as the optical

path in vacuum (n=1) because the propagation of light satisfies the invariant

law

w'2-r'2=w2-r2=0 (8.1)

for a finite interval of taiji-time w.

Let us consider the case in which the apparatus of the Michelson-

Morley experiment3'4 is at rest in the F' frame . For purposes of the following

discussion , we consider the simplified diagram showing a Michelson -Morley

apparatus in figure 8 .1. Light from a source reaches an inclined half-silvered

mirror P which splits the light beam into two . One beam travels to mirror A

and is reflected back to P. A fraction of this first beam is then reflected into a

telescope . The second beam goes to a mirror B before being reflected back to P.
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A fraction of this second beam interferes with the first beam and travels with

it to the viewing device. If the light is monochromatic , an interference

pattern of light and dark bands or rings will be seen in the telescope. This

apparatus is known as a Michelson interferometer.

Suppose the angle between the direction of travel of the light signal

going out along one of the interferometer arms and the x'-axis is e' in F', as

shown in Fig . 8.1 below.

mirror A

x'

Fig. 8 . 1 A Michelson-Morley apparatus

in an arbitrary orientation in the F frame.

The corresponding angle as measured by observers in F is 0 . During the

return of the light signal along the arm PB, the angle is 9 'r= a+e' in F' . Putting
(Ax'/Aw') e'=(coso' ,0,0) and (Ax'/Aw')e'r (-cose',0,0) separately in (7.6), we have

ew(e) = yAw'(O')(1 + Bcoso') ,

Aw(er) = 7Aw'(O'r)(1 + Bcoso'r) = yAw'(O')( 1 - BcosO') ,

(8.2)

for a light signal going out and back along one of the arms of the
interferometer . The optical path Awrt for such a round-trip of light , observed

in the F frame , turns out to be independent of the angle 0,
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Awrt = Aw(O) + ew(er) = 2y L', L' = Aw'(e') , (8.3)

where L' is the length of the interferometer arm. The relation L'=Aw'(O') is a

consequence of the invariant law (8.1) for the F' frame. Since Awrt is

independent of the angle 0, its value for light signals traveling along each of

the two arms of the Michelson-Morley interferometer is identical. As a

consequence, when the interferometer is rotated through 900, we would not

expect to see any change in the interference pattern. Thus, taiji relativity, in

which the speed of light is not postulated to be a universal constant, can lead to

the null result for the Michelson-Morley experiment in any inertial frame.

8b. The Michelson-Morley Experiment Supports

the First Postulate of Relativity

We have shown that, contrary to the usual belief, the null result of the

Michelson-Morley experiment does not depend on postulating a universal

speed of light or having a particular transformation for time. All that is

required is that the law of propagation of light displays 4-dimensional

symmetry and satisfies the first postulate of relativity. In other words, only

the optical path needs to be well-defined, as given in equation (8.1). This

suffices for the understanding of the Michelson-Morley experiment.

In order to make this point clear, we will now show that although the

speed of light c' measured by F' observers using arbitrarily running clocks

may be a complicated and arbitrary function of space and time, the form of the

law for the propagation of light in F' turns out to be as simple as that in special

relativity:

(b't')2 - r'2 = 0 , (8.4)

d b't' ,
dt' = c or b't' = Jc'dt' = Jd(b't')

0 0

We stress that the fact that the quantities t', b' and c' are not well-defined

when taken separately does not upset the simplicity of the form of a physical

law such as (8.4). This reveals the power of the 4-dimensional symmetry
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inherent in the Poincare-Einstein principle . Equation ( 8.4) is merely (8.1)

with the well-defined taiji-time w' written in terms of the product of two

arbitrary functions c' and dt' (i.e., dw'=c'dt').

Let us try to use an arbitrary time t' and a correspondingly arbitrary

and anisotropic speed of light c' in the F' frame to discuss the same Michelson-

Morley experiment described previously. This example enables us to see the

real roles played by t' and c' and why their separate and individual

complications do not affect observable results . We again take the lengths of

the two arms of the interferometer to be L', as shown in Fig. 8.1. In this case, it

is clearly not physically meaningful to calculate time intervals At' for the

propagation of light signals . We can, however , calculate the optical path

length c'dt' with the help of the well-defined taiji-time dw'=c'dt'. The reason

for this is as follows: it is the optical path that actually defines the number of

wavelengths through which the two beams of light travel and this number is

what determines the phases of the two beams when they recombine at the

half-silvered mirror P. The phase relationship of these two beams then

determines the interference pattern which is seen in the telescope.

Let us use wi to denote the taiji-time interval required for a light signal

to go from the beam splitter P to the far end of one of the interferometer arms

say, mirror B, and w2' to denote the taiji -time interval for the same light signal

to make the return trip back to the beam splitting point P in Fig. 8.1. The

optical path lengths for the horizontal and vertical arms (L'h and L'v) are

given by

i 2
Lh= J c'dt'+ Jc'dt' =2L', c'dt'=d(b't')=dw', (8.5)

0 wi

W'2

L^ = J c'dt' = 2L'.
0

(8.6)

Since w'=b't' is defined by the transformation (7.4), we can express the limits

of integration , i.e., wi and w} in ( 8.5) and (8.6), in terms of the arm length,
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N'i=L

w2'-wi=L',

(8.7)

where we have used (8.4).

Note that the results (8.5) and (8 .6) obtained in the F' frame in terms of

the taiji- time (or optical path length ) appear to be as simple as those in special

relativity because all inertial frames are equivalent. In special relativity, it is

usually stressed that the nature of relativistic time is the key to understanding

physical phenomena in different frames. However, within the framework of

taiji relativity, it is the invariance of physical laws which is crucial. In

general , one might think that physical phenomena involving the propagation

of light cannot be discussed in terms of the time t' itself in taiji relativity

because t' by itself is undefined. What we want to stress is that none of the

previously established experimental results related to special relativity ever

actually depended on the properties of time alone. We note that, in the

Michelson-Morley experiment, it is the phase difference that matters, and the

phase of the wave depends on the optical path it has travelled. That is why

taiji relativity works and why the second postulate of special relativity is not

needed.

In fact, in the vast majority of such experiments, such as the

Michelson-Morley experiment, the measured quantities are actually lengths,

which are well-defined quantities in taiji relativity, and can be expressed in

terms of the product of c' and dt', (i.e., dw', or the optical path).

As we noted before, the two optical path lengths are identical for both

arms of the interferometer in the Michelson-Morley experiment, so that we

will obtain the null result in any inertial frame. From operational viewpoint,

the interference fringes shown in the telescope in this experiment are

directly determined by the phase difference k'-r' between the two beams,

which in turn is determined by the optical path lengths of the interferometer

arms. Thus, the time t', the speed of light and its frequency are not directly or

separately involved in the Michelson-Morley experiment. This is the reason

why the Michelson-Morley experiment cannot reveal any physical properties

of the speed of light.

In taiji relativity, both length and wavelength have well-defined 4-

dimensional transformation properties, while the time t' and the speed of light
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are undefined. In this connection, we note that the frequency v' of light is

also undefined because it is given by the relation v'=c'/X', where the

wavelength )' is well-defined, since it has a definite transformation property.

The speed of light c' however, is undefined. (See equations (10.15)-(10.17) in

chapter 10.)

To summarize, we have seen that the null result of the Michelson-

Morley experiment does not unambiguously show that the speed of light, or

even the two-way speed of light, is a universal constant. Even with an

arbitrary and anisotropic speed of light within the four-dimensional

symmetry framework of taiji relativity, a null result is still predicted for the

Michelson-Morley experiment in all inertial frames as long as physical laws

display 4-dimensional symmetry. Therefore, we conclude that the null result

in the Michelson-Morley experiment is actually experimental evidence for the

first postulate of relativity rather than evidence for the second postulate

concerning the universality of the speed of light.

8c. Do Any Experiments Really Show the Universal Constancy of

the Speed of Light c?

Given the previous discussion, why are all experiments related to the

speed of light interpreted to indicate that the speed of light is a universal

constant? This is related to the fact that the web that physicists weave with

concepts and laws often restricts their own thinking. The Michelson-Morley

and the Kennedy-Thorndike experiments are considered to be observational

evidence in support of Einstein's second postulate, i.e., the speed of light in

vacuum always has the same value c. However, in the preceding section, we

have shown that the Michelson-Morley experiment does not actually give us

any information regarding the speed of light. A similar analysis based on

optical path lengths can be carried out for all previous optical experiments

involving interference, including the Kennedy-Thorndike experiment, the

two masers experiment, the two laser experiment, the Fizeau experiment, etc.,5

to show that they are all consistent with taiji relativity.

In this connection, we note that in order to explain Fizeau experiment

in taiji relativity, one should calculate Fresnel's drag coefficient for light in a

medium with a refractive index n by using the transformation of taiji-

velocities (7.10). First, we note that the taiji speed of light in the medium (at
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rest in frame F) slows from Oi= 1 in vacuum to PL=1 /n, where n>1. Suppose a

medium is at rest in the F frame which moves with a taiji-velocity B parallel to

the direction of light, as observed in F. The taiji -speed of light in such a
moving medium observed by a stationary observer in F can be calculated from

the inverse of transformation (7.10):

IX+B 1 1
1 + B. 'n +B^1-n2 (8.8)

We see from this that Fresnel's drag coefficient, (1-n'2), in taiji relativity is

exactly the same as that obtained in special relativity. Its value does not

depend on the speed of light c. Thus, the optical path involved in the Fizeau

experiment3 can be still calculated using taiji-velocities (8.8) and taiji-time.

Suppose each tube has the length L and the taiji-speed of the water in Fizeau's

experiment is B. The difference in the optical path length is Aw = 21J[n-1 -

B(1-n-2)] - 21J[n-1 + B(1-n-2)] ffi 2LBn2(1-n-2). This result is exactly the same

as that obtained in special relativity because the taiji-speed B for the water has

the same numerical value as the usual expression v/c, (which can be seen by

using equation (8.11) below.) The optical path difference Aw observed in the

Fizeau experiment was given an ad hoc explanation by Fresnel in terms of a

partial dragging of the light by medium. Einstein explained it on the basis of

two postulates of special relativity. Here, again, we stress that it can be

explained solely on the basis of the first postulate of special relativity.

Let us consider the following high-energy experiment: Some physicists

have claimed that the existence of an ultimate velocity,6 c-3x108 m/sec, in the

universe has been established experimentally by the result that the measured

velocity v of an electron is always smaller than the speed of light, v < c, even

though its energy can be increased to about 15MeV, about 30 times larger than

its rest energy of 0.5 MeV. The ultimate velocity of this experiment is

consistent with the speed of light c=299792458m/sec. This experiment also

confirms the relativistic relation

E= mc2

1-(v/c)2 (8.9)

which is the zeroth component of the energy-momentum 4-vector pµ=(p°,p)=

(E/c2,p) in special relativity.
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At SLAC ( the Stanford Linear Accelerator Center in Stanford, CA),

electrons can be accelerated to an energy of about 50 GeV, which is 100,000

times larger than its rest energy , to support relation (8.9).7 Furthermore, the

relation ( 8.9) holds in many different inertial frames (i.e., because the earth

revolves on its own axis and orbits the sun , an earth laboratory is co-moving

with many different inertial frames for a short time interval during the

course of a year), so this experiment is often interpreted as confirmation that

the electron velocity v can only approach , but never exceed , c in any inertial

frame . Since all properties of physical experiments based on such a high-

energy electron beam are consistent with special relativity , the relation (8.9)

with E=50 GeV could be interpreted as a strong confirmation that the electron

velocity v can only approach, but never exceed , c in any inertial frame.

Indeed , within the available energy, the relation ( 9) is confirmed, so

that it appears to be impossible for the electron to move faster than light.

However, they do not unambiguously or objectively establish the existence of a

constant ultimate velocity in nature with the numerical value of 299792458

m/sec . The reason is that such experiments are also consistent with taiji

relativity , in which there is no well-defined universal and ultimate speed of

light c.

In taiji relativity , the "energy-momentum " 4-vector pµ=mdxµ/ds,

µ=0,1,2,3, satisfies the 4-dimensional symmetry relation (p°)2-p2 =m2, as shown

in equation (7.3). The zeroth component of pµ is given by

_ in _ in
r = (x,y,z)

1-(dr/dw)2 1-^2
(8.10)

From the framework of taiji relativity , we can then interpret the previously

described high-energy experiment as follows: The electron velocity has been

accelerated to a very large taiji-velocity P=0.99999998, which corresponds to

the ratio p°/m.20,000. Thus, the relation ( 10) of taiji relativity is also

consistent with "high-energy" experiments and, therefore , it appears that 0

can only approach, but never exceed, 1.

In order to compare ( 8.9) and (8.10) directly , one may introduce a

variable t which corresponds to the relativistic time . One can then express P

in (8.10) in the following form
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dr dr/dt dr/dt*
= dw = dw/dt = dw/dt* (8.11)

It must be stressed that only w and r have a definite transformation and that t

and t* can be arbitrary functions without affecting (8.10). Only when

Einstein's second postulate is made do we have a well-defined relation w=ct in

the F frame and w'=ct' in another frame F', so that P=dr/dw=v/c and (8.10)

reduces to (8.9). On the other hand, if t* denotes Reichenbach's more general

time, then 0 is the ratio v*/c* of two separate well-defined functions v* and c*

and one still does not have a constant speed of light. (See section 17d in

chapter 17 for details.) We have seen that the "energy" of a particle is given

by (8.10), and is independent of any particular time t or t*, as shown in (8.11).

This is dictated by the 4-dimensional symmetry of the Poincare-Einstein

principle of relativity.

There is a class of high-energy experiments, in which the speed of

light emitted from a moving source is shown to be the same as that emitted

from a source at rest.3.5 Although this supports the claim that the speed of

light is independent of any motion of its source, it does not prove the

universality of the speed of light (i.e., that the same value c of the speed of the

light signal will be measured by observers in different frames). (See

discussions in section 5b in chapter 5.) In this connection, it is worthwhile to

note that the taiji-speed of light is also independent of any motion of the

source because relation (7.7) does not refer to any specific source.

8d. Physical Quantities Measured by Using Taiji Time w

In any inertial frame , we can set up a synchronized clock system which

reads the taiji-time w, as discussed in chapter 7. If one compares the two
lengths Ax=x2-x1 and ex'=x2-xI at the same taiji-time w2=w1 we will obtain

the usual length contraction result

Ax'=TAx, Aw=0, (8.12)

from (7.4). However, if they are compared at the same taiji-time w2=wl, we

obtain the reciprocal relation:
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ex' = lrlex , (8.13)

showing the relativity between the F and F' frames, as in special relativity.
Let us also consider the measurement of "frequency" in terms of taiji-

time w. In the F frame with synchronized taiji-clocks, a plane wave is

described by

Aexp[-ikµxµl = Aexp[-i(k° w - k�r)] , (8.14)

where kµ=(k° ,k)=(k° rk) is the wave four-vector and xµ=(w,-r). In the F frame,

this plane wave is described by

A exp[-ik'µx'µ] = Ae+i4b', (8.15)

where kµ=(ko,-k') and x'µ=(w',x',y',z'). In the framework of taiji relativity, kµ

and k'µ are related by a 4-dimensional transformation (see eq. (10.15) in

chapter 10), where k°°  and k'0 are called the "frequency" measured by taiji-
times w and w', respectively. As with velocities and times, the frequency w'
measured in terms of the time t' in F has no definite transformation to relate it
to co, since the time t is undefined when taken alone. As we shall see later,

however, the quantity k'0=w'/c' is well-defined and plays an important role in
the emission and absorption of photons in the taiji framework. (See eq.(10.14)

in chapter 10.)

We have now seen that, in taiji relativity, all physical quantities which
are measured using the time t' have no definite transformation to relate them
to their corresponding quantities as measured from other inertial frames.
However, the laws of physics themselves are not affected since they are
dictated solely by the first principle of relativity, i.e., invariance of physical
laws under constant velocity. Thus, the Poincare-Einstein principle or the
four-dimensional symmetry in taiji relativity dictates that the most simple and
natural "time" is the taiji-time with the dimensions of length.
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9.

Lorentz and Poincare Invariance Without Involving
a Constant Corresponding to the Speed of Light

9a. Group Properties of Taiji Transformations

Lorentz and Poincar8 invariance is closely intertwined with the group

properties of the 4 -dimensional coordinate transformations . At first glance,

one sees that there is an obvious one-to-one correspondance between the 4-

dimensional taiji transformation ( 7.4) and the Lorentz transformation (5.7),

even though there is no universal constant corresponding to the speed of light

in the taiji transformations . Thus, one would expect the set of 4-dimensional

taiji transformations (7.4) to form a Lorentz group (see below ), just as the

Lorentz transformations do. This observation seems mathematically trivial.

However, the new concepts behind the taiji transformations ( i.e., that the

second postulate regarding a constant speed of light is superfluous, and that

there are infinitely many possibilities for specifying the time t through the

relations w=bt and w '=b't') are highly non-trivial.

In this chapter, we shall show that the taiji transformations , which are

derived solely from the first postulate of special relativity, (i.e., the Poincare-

Einstein principle) have precisely the properties of the Lorentz group and the

Poincar8 group . This is crucial to answering the historic question discussed by

Ritz, Tolman , Comstock and Pauli in chapter 0. Furthermore , it is also crucial'

for the formulation of quantum field theories and particle physics on the basis

of taiji relativity . Once the 4-dimensional group properties of the taiji

transformations are established , it follows that, regardless of which concept of

time one uses, (e.g., Reichenbach's more general time, Edwards' universality of

the 2-way speed of light, or common time) one always has a valid 4-dimensional

symmetry framework with which to understand and investigate phenomena in

the physical world.
Mathematically , a group consists of a set G °={go.g,.... gk, •• j of elements (or

operators ) gk and an operation (also known as a "multiplication rule" and

denoted by a •) such that:

112



Chap.9. Lorentz and Poincare Invariance ... 113

(a) Combining any two elements gi and gk using the operation leads to

another elements gn in the set G°,

gi•gk = gn

(b) There exists a unit element go in G° such that for any element gi, one

has the relation

g00g1=gi•go=g1.

(c) For any element gk, there exists an inverse element gf m 97k' such that

gk•gk = gk•gk=go•

(d) The operation obeys the associate rule,

(gi•gk)•gn = gi•(gk•gn)

The most important groups are those related to geometrical or physical

transformations .2 For the Lorentz group, these elements are the

transformation matrices in (9.11 ) below. Thus, the Lorentz group can be

defined as the set of all 4x4 real matrices that leave the 4-dimensional interval

w2-x2-y2-z2 invariant . These matrices are singled-valued and continuous

functions of six parameters , three angles for rotations and three velocities for

motion in 3-dimensional space . These parameters can change continuously, so

that the Lorentz group is a continuous group or lie group.

Let us consider the group properties of the taiji transformations which

relate two inertial frames, F and F', which have their axes oriented in the same

directions . First, we consider the special case where the relative motion

between the F and F' frames is characterized by a dimensionless constant taiji-

velocity B, measured in terms of taiji-time w, along parallel x and x' axes. The

origins of F(w,x,y,z) and F'(w',x',y',z') coincide at the taiji-time w=w'=O. In

addition to these two standard reference frames, let us also consider a third

frame F"(w",x",y",z"), with axes similarly oriented, which moves with a
constant taiji-velocity 0=(B1r0,0 ) as measured in terms of the taiji-time w by

observers in the F frame. For simplicity , we shall call P or B1 the velocity. The
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constant velocity of F" measured in F' is then denoted by P'=(Bi,0,0) and is

related to P by (7.10):

B
P'x = Bi =

B
1 1 BB1

(9.1)

In analogy with equation (7.4), the 4-dimensional transformations between F

and F" are given by

w"=Y1(w- B1x), x"=Y1(x-Blw), y"=y, z"=z; (9.2)

Y1 1-Bi

The inverse transformations can be easily obtained and are:

w=Y(w'+Bx'), x=Y(x'-Bw'), y=y', z=z'. (9.3)

Based on (9.2), (9.3) and (7.10), one can show that the taiji transformations

between F' and F' are

w"=Y1(w'-Blx'), x"=Yi(x'-Blw'), y"=y', z"=z'i (9.4)

B1 - B 1

B1 1 - B1B , Yi =YY1( 1 -B1B) _ ,Z
1-B1

which have the same form as the taiji transformations between F and F', or F

and F.

Other group properties , such as the existence of an identity

transformation [e.g., B=0 in (9.3)] , the existence of an inverse transformation

[e.g., (9.3 ) is the inverse transformation of (7.4)] and the fact that the

transformations obey the associative rule, can be verified. These properties

and result (9.4) show that the set of 4-dimensional taiji transformations forms

precisely the Lorentz group .3 These 4-dimensional group properties are

essential for taiji relativity to be consistent with the results of all known

experiments.
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Thus, we have shown that the Lorentz group can actually accommodate a

wide class of different concepts of the time t and that postulating the speed of

light to be a universal constant is not a requirement for transformations to

form such a group.

9b. The Lorentz Group Without Involving the Constant

Speed of Light

In the previous section, we discussed group properties of the taiji

transformations for inertial frames with relative motion solely along the x and

x' axes. In general , the taiji transformations relate quantities in inertial

frames with relative motion along x, y, and z directions that leave the 4-

dimensional interval w2-x2-y2-z2 invariant. Consequently, the contents of the

Lorentz group are much richer than what we have previously discussed. There

are many different transformations which leave w2-x2-y2-z2 invariant. For

example, there is a subset involving three discrete transformations: a spatial

inversion (w -^ w, r -* -r), a time inversion (w -a -w, r -> r) and a spacetime

inversion (w -a -w, r -a -r). Another subset is a six-parameter (three angles

for rotations and three constant velocities for boosts) continuous group, which

was first noted and discussed by Poincare in 1905.

As stated before, the Lorentz group is defined as the set of all 4x4 real

matrices that leave the interval s2 invariant, where

S2=w2-x2-y2-z2=gµvxµx°=xxV; (9.5)

goo = 1 , 911= 922 = 933 = -t gµv = 0 for µ#v , (9.6)

xl = (w, r) , xµ = gµvxv= (w, -r) , µ-0,1,2,3 .

The metric tensors gµv and gµv satisfy the relation gµvg9P=8„P.

Suppose xl and x2 denote two coordinate 4-vectors (related by the taiji

transformations), then we have the following three types of invariant

intervals in the 4-dimensional spacetime:

As2 = (x2V- xlv)(x2v- xlv) > 0 : a "time-like" interval, (9.7)
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AS2 = (X2v xlv)(xz"- XI") = 0 : a "light-like" interval, (9.8)

Asz = (X2v xlv)(xz"- xt" ) < 0 : a "space-like" interval. (9.9)

Physically, these invariant expressions describe the invariant laws of motion

for three types of particles: (See ref. 7 in chapter 5.)

(9.7) for massive particles, mz > 0,

(9.8) for massless particles, m2 = 0,

(9.9) for tachyons (moving faster than

the taiji-speed of light 1L=1), mz <0.

The first two laws have been experimentally demonstrated. However, it is not

known why the third law (9.9) for "tachyons" is not physically realized in

nature4 or why tachyons, if they "exist" at all, have no interaction with

ordinary particles.

Let us consider the continuous Lorentz group with six parameters. With

the help of tensor notation,3 the general 4-dimensional taiji transformations

can be parametrized as follows,

x'µ = Aµ"x", (9.10)

where we have employed the summation convention for repeated indices. Any

quantity Qµ with four components which satisfy the transformation (9.10),

Q'µ=Aµ"Q", is called a contravariant 4-vector. The transformation tensor Aµ" and

the metric tensor gap satisfy the relation

gµv = AaµA'vgq. (9.11)

The metric tensors gap and gaP can be used to raise and lower the indices of any

tensor. (For example , a covariant 4-vector Qµ is, by definition , related to the

corresponding contravariant vector Qv by Qµ=ggvQ", and in general one has

A•••9P•••• gµvA •••vP••••a.) The metric of the Lorentz group , given in (9.6), is ggv=

(t,-1,-t,-1 ) which has three negative signs and one positive sign . Thus, the

Lorentz group is denoted by 0(3,1).

The 4-dimensional taiji transformation (9.10) can be written in matrix
form and (Aµ") can be considered a 4x4 matrix. (See (9 . 15) below.) The matrix

form of (9.11 ) is g=ATgA , where the superscript T denotes the transpose of a
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matrix. The set of matrices {A}={A,A',A",...} leaves the interval s2 in (9.5)

invariant and can be considered as elements of the Lorentz group. Indeed, one

can verify that {A} satisfies the group properties mentioned previously in

section 9a.

The anti-symmetric operator Di" of the Lorentz group was first discussed

by Poincar6 in his Rendiconti paper. It is defined as follows:

lJ V = i(xµar - xVaµ) , aµ = a/axu. (9.12)

It can be verified that I)PP generates the algebra of the Lorentz group,

[Lµ", 1P"] = i(gµ6Lva + gva1J1 - gµaLVP - gVlLµa) . (9.13)

We can parametrize the matrix A of the taiji transformations (9.10) in terms of $

by using equation (7.4):

w' = y(w - Bx) = w cosh4 - x sinh$,

x' = y(x - Bw) = x cosh$ - w sinhO, (9.14)

Y'=Y, z'=z;

T = 1 = cosh*, yB = sinhO .
1B2

The Lorentz group is non-compact because the range of the parameter B

does not include the endpoint 1. If the the metric tensor is ggv=(1,1,1,1) [i.e.,

s'2=gµvxµx°=w2+x2+y2+z2] instead of that in (9.5)), then the group would be the 4-

dimensional orthogonal group 0(4) rather than 0(3,1). Since the coordinates

(w,x,y,z) are real numbers, this 0(4) is actually the 4-dimensional rotational

group. The parameters of the group 0(4) have finite ranges which include the

endpoints and, hence, is compact. The 4-dimensional space associated with 0(4)

is mathematically the perfect generalization of the ordinary 3-dimensional

space with the distance x2+y2+z2. However, such a perfect generalization is not

perfect from the physical viewpoint. The reason is that the invariant interval

si2=gµvxµxv=w2+x2+y2+z2 has only a geometric meaning and has nothing to do
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with laws of physics. This is in sharp contrast with the invariant interval (9.5)

or (9.7)-(9.9), which is also applicable to the laws of physics.

The taiji transformation (9.14) can also be written in matrix form

w' cosh -sinh' 0 0 w w
x? -sinhm cosh

@ 0. 0 x A(10,m) xy = 0 0 1 0 y y'
z' 0 0 0 1 z z

(9.15)

where the transformation matrix A(10,$) denotes a rotation in the wx (or xOx' )

plane in the 4-dimensional spacetime. For an infinitesimal transformation, A,

in (9.15) takes the form

AAv=&v+EX v, 7Uly=-Vµ. (9.16)

The infinitesimal generator m1O for the rotation in (9.15) is defined as

0 -1 0 0

m10 = -i - A(10,$)I,^ _ -i Ol 0 0 0 ' (9.17)

0 0 0 0

Similarly, for rotations in the xOx2 and xOx3 planes, the infinitesimal generators

are given by

0 0-1 0 rool 001
0

m2O=-t?100
0 m3O=

-i000
0 0 0 0 0 0 0

(9.18)

In equations (9.1)-(9.4), we see that two boosts in the x direction generate

another boost. However, a boost in the x direction followed by a boost in the y

direction does not generate another boost. Instead, it generates a spatial

rotation. In fact, this is the physical origin of the Thomas precession.5

Therefore, we must also introduce three generators for spatial rotations in

order to have a closed algebra. This important property was recognized by

Poincare, but not by Einstein, in their original works on relativity in 1905. The

infinitesimal generators for spatial rotations are
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00 00 000 0

m12=i 1 0 00 ' m23=-i 00 0 011]
-

00 0 0 00 -1 0

M.11 =-i

0 0 0
000-1
0000
01 0 0

(9.19)

In general, the infinitesimal generator mµv is defined to satisfy the

relation mµv=-mvµ. An arbitrary infinitesimal taiji transformation can be

written as

A((a) = 1 + 2 u)µvmµv , Wµv = - O) . (9.20)

A finite rotation in the gv plane (in the sense µ to v) is given by exponentiation

A(µv, $) = exp(i^mµv) . (9.21)

It can be shown that the generators mµv satisfy the commutation relation

[mµv, mµv] = i(gµPmva + gvamµ9 - gµamvp - gvltnµa) . (9.22)

Let us define the spatial-rotational generators Ji and boost-generators Ki

as follows:

Ji=1cilkmjk, Ki=mOi.

One can verify the following commutation relations:

[J1,JJ]=ieilkJk,

[K', KJ] _ - i cijkjk,

[1' , K)] = i elikKk.

(9.23)

(9.24)

(9.25)

(9.26)
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If one makes the following linear combinations of these rotational and

boost generators,

Mi = 2 (Ji + iK')

N'=2(J'-iK')

one can show that M' and Nk commute,

(9.27)

(9.28)

[Mi,Nk]=0, (9.29)

so that the algebra of the Lorentz group has been split up into two pieces. Each

piece generates a separate group called SU(2). One can use the irreducible

representations of SU( 2) to construct representations of the Lorentz group.6

9c. The Poincare Group with Ten Generators and Without

Involving the Constant Speed of Light

In order to have the most general transformations in flat 4-dimensional

spacetime , one can generalize (9.10) to include translations such as

x'p=Apvx"+b", (9.30)

where by is a constant and real 4-vector . These are known as the Poincare

transformations . Note that (9.30) does not leave the 4-dimensional interval

(9.5) invariant . Nevertheless, the interval esZ in (9.7)-(9.9) are still invariant.

The set of transformations ( 9.30) forms a Poincar6 group with 10 generators (3

angles for rotations , 3 constant velocities for boosts and 4 constants in b" for

translations .) Thus, in addition to the six generators I.u, given by (9.12), there

are four translation generators Pµ = iap (with a suitable choice of units, J=1).

These generators satisfy the following commutation relations:

[I)Lv, v) = i(gµPLva + gv°'LJ - gIUL"P - $"PI11a) , (9.31)

[Lpv, Pal = i(gvaPp- gpaPV) , (9.32)
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[Pµ, Pv] = 0. (9.33)

This is the lie algebra of the Poincar@ group (or the Poincar6 algebra.)

Based on these generators, one can construct two invariant (or Casimir)

operators:

pµpµ and WµWµ ,

where

Wµ = 2 EMVa6PVLap .

(9.34)

(9.35)

The tensor c" is the completely antisymmetric unit 4-tensor of the fourth

rank and satisfies 80123=1. Its components change sign upon interchange of

any two indices, so that the components different from zero are equal to t1.

The two invariant operators in (9.34), PµPµ and WµWµ, commute with all

generators of the Poincare group. The operator PµPµ has a clear physical

interpretation, namely, it is the square of the mass of a particle. It is easier to

see the meaning of WµWµ, if one makes a taiji transformation to the rest frame

of the particle. In this case, the eigenvalues of Pµ are given by (m,0,0,0) and

we have

wo = 0, WI = 2 EijkOmljk, (9.36)

where W1/m, i=1,2,3 are simply the usual rotational matrices in the three spatial

dimensions which obey the angular momentum commutation relations. Since

the particle is at rest, Wi is just the spin operator. The eigenvalues of the

square of W=(Wi) are therefore given by

WZ = mzs(s+1) , m> 0, (9.37)

where s is the spin eigenvalue of a particle, s = 0, 1/2, 1, 3/2, 2,.... Thus, if in > 0,

a particle with spin s has 2s+1 components (i.e., 2s+1 independent states for a

given momentum 4-vector). However, if in = 0, a particle with a spin s can have
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only 2 components . For example , the photon has spin s= 1, but only two

independent polarization states. This property of the photon is a purely

kinematic property dictated by the 4-dimensional symmetry of Lorentz and

Poincare groups.

It is interesting that all particles in the physical world can be classified

according to the eigenvalues of the two invariant operators in (9.34):

PPPµ> 0, s = 0,1,2,3 ,... (bosons), s = 2 , 2 , 2 ,... (fermions) (9.38)

PµPµ=0, s =±s, (9.39)

PµW = 0, continuous s , (9.40)

PµPW < 0, tachyons . (9.41)

Particles with the properties in (9.40) and (9 .41) have not been detected

experimentally . Nevertheless , it is of great significance to the Poincare group

that all particles (or fields ) can be classified by using the eigenvalues of the

two invariant operators , one related to the mass of the particle and the other to

its spin .? In contrast , the Lorentz group does not have the translation operator

Pµ (or P^, and so is inadequate for the classification of elementary particles.

Note that mass and spin are two fundamental properties of elementary

particles . The fact that particles have a discrete spin can be understood on the

basis of spacetime symmetry .8 However, the fact that elementary particles

(such as quarks and leptons) also have discrete masses is far from being

understood.9
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10.

Truly Universal Constants and Physical Laws
Based on Taiji Relativity

10a. Truly Universal Constants and Invariant Actions

One of the burning questions of taiji relativity is the following: If the

speed of light is not a truly universal constant, why do all experiments that

measure the speed of light in different inertial frames give the same definite

value c=29979245800cm/sec? (An earth laboratory at different times is co-

moving with different inertial frames for short time intervals.)

To answer this question, let us first consider physical laws involving the

momentum four-vector and the wave four-vector of a particle. In the

framework of taiji relativity, the speed of light c' in F is undefined, so that the

invariant action for a free particle cannot be written in the usual form -Jmc'ds',
where ds'2=dx'µdx'µ. Nevertheless, mds'=mds is invariant because the interval ds

(=ds') and the mass m are scalars . Thus, in order for the action to be consistent

with 4-dimensional symmetry principles, we assume that the action S for a

charged particle in an electromagnetic field in a general frame F has the form:

S = j(-mds - eadxµ) = fLdw , (10.1)

ds dxµ - dr
L = -mdw - eaµ dw = -m 1-02 - eao+ ea•(i, P= dw

ds = dw2-dr2 = dw 1-az ,

e = -1.6021891x10-20 (g•cm)112,

and is given in terms of quantities measured in an inertial frame F with taiji-

time w. The universal constant a is in Heaviside-Lorentz units. Comparing this

action with the corresponding action Ssr in special relativity for the F frame, we

see that S=Ssr/c, a=e/c (e in esu) and aµ=aµ(w,r)=Aµ(w,r)/c, where Aµ is the

125
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usual electromagnetic vector potential in special relativity. The "canonical

momentum" of the particle is defined as

P=aL=p+ ea, p= Z (10.2)

The Hamiltonian H is now defined as

H = [(aLiap) -P - L] = PO + ea0 , p° = In 2
a

(10.3)

We note that the quantities in both (10.2) and (10.3) have the dimensions

of mass. They can be interpreted as the "momentum" and the "energy"

associated with a charged particle moving in an electromagnetic field. From

(10.2), (10.3) and H = P° we have the canonical momentum 4-vector (P0, P) and

the invariant relation

(Po - eao )2 - (P - ea)2 = M2. (10.4)

We also have the usual "kinetic energy" p0 and momentum p in (10.3) and (10.2)

for a free particle. They are the components of pµ=(p0,p)=mdxL/ds=(m/ 1-02 ,

mp/,^1-j2) which satisfy the 4-dimensional taiji transformation and hence,

form the momentum four-vector in taiji relativity,

Po=Y(Po - BPx), Pz = Y(Px-BPo), Py=Py, Pz=Pz; (10.5)

1
Y= ,

1-B2

where po-p° and p=(px,py,pz)=(pl,p2,p3) have the dimensions of mass. As a

result, the concept of mass m and that of "energy" po are the same thing in taiji

relativity. In contrast, they are two related concepts in special relativity. In

this connection, it is worthwhile to note that quantities such as

mv' and mc'
1-V'2/C'2 1-v'2/c'2

have no physical meaning and are not conserved quantities in taiji relativity.



Chap.10. Truly Universal Constants and Physical Laws... 127

According to quantum mechanics, the wave four-vector kµ must be

proportional to the four-momentum pµ. Thus, in general we have

p'µ = J'k'F', in F' frame ; (10.6)

pR = Jkµ , in F frame . (10.7)

Based on symmetry considerations, the same proportional relation should hold

in any inertial frame such that J'=J. Therefore, the proportional constant j must

be a universal constant.1 Its value can be obtained by comparing (10.7) in F

with the usual relation in special relativity (SR) P SR=Zikµ, where pµ58/ce pµ,

k°sR=w/cc k° and ksR=k in F. Note that the last relation must be satisfied because

the spatial components r in taiji relativity is the same as the usual rsR. As a

result, we can deduce that the value of J must be li/c=h/(2ac):1

J = 3.5177293 x 10-38 g-cn. (10.8)

It must be emphasized that J is a truly universal constant because it is

independenvsvolution variable w in the 4-dimensional symmetry framework.

This is in sharp contrast to the conventional universal constants c and h, whose

universality depends on the second postulate of special relativity, which dictates

a certain specific transformation of the time t. The truly universal constant j in

taiji relativity plays the role of the Planck constant in the convenient theory.
For example, we have expressions such as p=iJV, exp(ipµx ►'/J), d3rd3p/(27LJ)3 and

U2(a2/awe)-J2V2 -m2J4(x41)=0.

For a charged particle moving in the electromagnetic 4-potential aµ(w,r),

we have the relation (10.4):

(po - eao)2 - (p - ea)2 = m2 ,

(po - eao )2 - (p' - ea')2 = M2, in F'.

in F,

(10.9)

If one compares equation (10.9) with the corresponding special

relativistic relation in the F frame , one has a=e/c (where e is measured in

electrostatic units, esu .) and aµ(w,r) e* Aµ(ct,r)/c; the latter is necessary , so that

the action for the free electromagnetic field
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-(1/4) jfµvfµ"d3rdw , fµ-, = aµa-, - a,aµ ,

has the same dimensions as Sf in ( 10.1), as is required for consistency . Thus, the

universal constant e in the taiji relativity is

e =-1.6021891x10'20 I:FX (g•cm)1"2. ( 10.10)

That is, only the electric charge measured in electromagnetic units (emu) is a

universal constant in taiji relativity. The electric charge e measured in

electrostatic units (esu) is not a universal constant in taiji relativity. It can be

verified that the dimensionless electromagnetic coupling strength ae has the

usual dimensionless value of

ae = e2/(4iJ) = 1/137.0359895.

Note that there are three fundamental and universal constants li, e and c

in quantum electrodynamics based on special relativity. However, from the

viewpoint of taiji relativity, there are only two such constants, j and e. It must

be stressed that j and a are truly universal constants because they are

independent of the specific transformation of the time L In other words, they

are independent of how time t is defined, or whether it is defined at all. In taiji

relativity, the speed of light is not defined and, hence, unknown.

There are other 4-dimensional formulations of relativity based on

different transformations of the time t. For example, if one looks at the speed of

light in the framework of common relativity,2 in which a common time for all

observers is well-defined, one sees that the speed of light is also not a truly

universal constant.

10b. Atomic Structures and Doppler Shifts

The covariant Dirac Hamiltonian for a hydrogen atom is HD = Po:

HD = - aD• p - pDm 4ar , P = iJo, (10.11)
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where aD and AD are constant Dirac matrices. Since HD transforms as the zeroth

component of pµ, the covariant Dirac equation is given by

iJ ^aV'P=HD"P, (10.12)

where a/aw and HD have the same transformation properties . Since the taiji-
time w plays the role of the evolution parameter for a physical system, HD has

the dimensions of mass and the Dirac equation leads to atomic mass levels rather
than the usual "energy levels." Following the usual method, we find that Dirac's
equation ( 10.12 ) gives the following atomic mass levels for a hydrogen atom:

Mn =

1+ a
{n' + [(j+Z)2-ai]h/212

E2
a= (4rzJ) .

(10.13)

We conclude that, in taiji relativity, an atomic system can only emit or absorb

"mass quanta" with a "moving mass" Jko determined by the transition between
two mass levels Mk and Mn:

Jk° , in F, (Mk - Mn = Jk°) ,

Jk'0 , in F', (M'k - M'n = Jk'0)
(10.14)

This concept is very important to the understanding of the experimental results

of Doppler shifts within the framework of taiji relativity.

The Doppler shift is given by the four-dimensional transformation of the

wave vectors kµ and k'µ (in F and F' frames):

k'0=T(k°-Bkx), k'x=y(kx-sk°), k'y=ky, k'z=kz. (10.15)

This satisfies the invariance relation, (k'0)2-k'2=(k°)2-k2=0, for electro-

magnetic waves. (It is the 4-dimensional form of the relations, v'V=c', where

k'0=2av'/c' and Ik'1=2x/)L'. Note that v' and c' are separately undefined in taiji
relativity; only their ratio k'0 is well-defined.) Since kx=lk1cosO=k°cosO, we have

the exact Doppler effect for "taiji-frequency" k° :
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k'0 = k°  1 - Bcose
I - \ -Fl-- B-2

which is consistent with experiments because of (10.14), (10.13) and (9.8).
The invariant phase, ik'µx'µ, of waves written as (9.8) is important because

in the F frame, the four-dimensional symmetry of taiji relativity dictates that
the mixture of two waves must be expressed in terms of (w',x',y',z') rather than

(t .x"Y.z)�

Aosin(k'oiw' - k',-r') + Bosin(k'02w' - k'2-r') , (10.17)

in the F frame. Also, suppose we set k'x=k'cose'=k'0cose' in (10.15). We then
obtain the usual formula for the aberration of star light

cose' = cosO - B k
x =

kcose. (10.18)1 - BcosO '

Thus, we see that precise experiments of Doppler shifts do not uniquely or
unambiguously imply that the speed of light is a universal constant because
they can also be understood from the point of view of taiji relativity, a theory in
which the speed of light is undefined. In this sense , the experimental result of
precise Doppler shifts is a confirmation of the four-dimensional symmetry of
physical laws rather than of the universality of the speed of light (or of
relativistic time.)

It is important to note that only when one makes the additional postulate
of the universal constancy of the speed of light does one have w'=ct' and w=ct.
In that case, (10.17) reduces to the usual expression A,,sin (wit'-kj�r ')+ Bosin((0Zt'-

kZ�r') in special relativity, because when one assumes a constant speed of light

c in F', one also has the relation k'0=w'/c. Therefore, if an experiment involves

using the conventional electromagnetic frequency to measure time, the result
will always be consistent with a constant speed of light. Such experiments are

nothing more than a check of the self-consistency of a theory. Why is this not

sufficient to confirm the object existence of an inherent constant speed of light

in nature ? The reason is that the additional postulate for the speed of light is

not necessary for understanding such experiments.
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10c. Dirac 's Conjecture of Truly Fundamental Constants vs.

Taiji Relativity 's Results , and the Origin of the

"Universal Value" c = 29979245800cm/sec

In his 1963 article "The Evolution of the Physicist's Picture of Nature",
Dirac gave an interesting account of how physical theory has developed in the
past and how it can perhaps be expected to develop in the future. Within the

conventional framework of physics based on special relativity and quantum

mechanics , there are some fundamental constants in nature : the charge e, the

Planck constant ti, and the speed of light c. Notes that a constant in physics
must be universal in order to be fundamental. Using these constants, one can

construct a dimensionless number ae=e2/(4xlic), which turns out to be very

close to 1/137. Why? Many physicists have proposed ideas to explain it, but

none is satisfactory or widely accepted. This has been a mystery for a long time

and no one knows why it should have this particular value. Dirac said that

"there will be a physics in the future that works when 1ic/e2 has the value 137

and that will not work when it has any other value." In this connection we may

remark that whether or not there is a factor of 4a in ae is simply a matter of

definition and not important since one can always choose suitable units (e.g.,
Gaussian units, as used by Dirac in the previous quotation) for the charge e such
that ae does not contain the factor of 4m.

Dirac gave an interesting outlook on the physics:

"The physics of the future, of course, cannot have the three quantities ?I, e, and

c all as fundamental quantities. Only two of them can be fundamental, and the

third must be derived from those two. It is almost certain that c will be one of

the two fundamental ones. The velocity of light, c, is so important in the four-

dimensional picture, and it plays such a fundamental role in the special theory

of relativity, correlating our units of space and time, that it has to be

fundamental. Then we are faced with the fact that of the two quantities li and e,

one will be fundamental and one will be derived. If II is fundamental, e will

have to be explained in some way in terms of the square root of Ti, and it seems

most unlikely that any fundamental theory can give e in terms of a square root,

since square roots do not occur in basic equations. It is much more likely that e

will be the fundamental quantity and that It will be explained in terms of e2.

Then there will be no square root in the basic equations. I think one is on safe



132 Einstein's Relativity and Beyond

ground if one makes the guess that in the physical picture we shall have at some

future stage e and c will be fundamental quantities and li will be derived."3

Compare Dirac's outlook in 1963 with our present understanding of

relativity and the 4-dimensional symmetry of physical laws based solely on the

first postulate of relativity , one sees a quite different perspective : The theory of

taiji relativity shows that the constant , c=29979245800cm/sec, is not necessary to

the formulation and understanding of physics . Dirac's conjecture was based on

the implicit assumption that the evolution (or temporal) variable must be

measured with a dimension different from that of space variables. This turns

out not to be necessary. As we have discussed in chapter 7, the first postulate

alone requires that the temporal variable w and the space variables x, y and z

have the same dimension. These four variables (w,x,y,z ) form the 4-dimensional

symmetry framework for physical laws and may be called 4-dimensional taiji

spacetime , to avoid confusion with the Minkowski 's spacetime based on special

relativity . In taiji spacetime , the quantity which correlates the units of 'time' w

and space is simply 1 , which turns out to be the dimensionless taiji-speed of

light derived from Maxwell's equations in taiji relativity.

Now let us analyze the origin of the constant value, c=29979245800cm/sec,

from the viewpoint of the Poincare-Einstein principle alone , i.e., by the

viewpoint of taiji relativity . Suppose a physicist would like to introduce the time

t' as the evolution variable in the F frame . It must be related to w' by w'=b't', as

required by 4-dimensional symmetry . In taiji relativity, the invariant phase of

an electromagnetic wave can be written as

kµx'µ=(W'/c')b't'-k' r' , c'=d(b't')/dt',

where c' and b' are functions which are separatedly undefined. These two

functions are different but related, because the speed of light c' is given by the

invariant law of propagation (7.7) in the frame F' with w'=b't', [d(b't')]2-dr'2=

(c'dt')2-r'2=0, i.e., d(b't')=c'dt' . Now, suppose he wants to measure the time t' by

using the electromagnetic frequency W. One may think that he does not need to

make any assumption about the speed of light . However, this is not true. The

requirement for measuring the time t' using the frequency W forces the

invariant phase to have the form, W't'-k'•r ' and the electromagnetic oscillation

to have a form similar to the sin ( W't') in (10.17). Therefore , this requirement

amounts to making the additional assumption c'=b'=c=constant in the invariant
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phase of electromagnetic waves in taiji relativity. Thus , we see that assuming

that the time t can be measured using the electromagnetic frequency (in any

inertial frame) within the four-dimensional symmetry framework is equivalent

to assuming that the speed of light is universal. With the definitions of the

length of a centimeter and the duration of one second, the speed of light turns

out to have the value 29979245800cm/sec experimentally, when one measures

frequency and wavelength. If the length of one centimeter or the duration of

one second changes, the value of c also changes. As a result, there is no

inherent significance to the units of length and time or the value of the speed

of light c. Furthermore, the assumption of the constancy of the speed of light is

not necessary. Therefore, previous experiments do not imply the existence of a

universal constant inherent in Nature. This answers the question raised in the

beginning of the chapter.

If one looks at the physical world from the simplest viewpoint, i.e., based

solely on the 4-dimensional symmetry of the Poincare-Einstein principle alone,

electromagnetic waves have two types of periodic behavior, one is related to our

perception of spatial length determined by IkI (or the wave length )L=2a/IkI) and

the other is related to our perception of "duration" determined by ko, as shown

in the expression (10.17). Since IkI=ko, the units for spatial and temporal

intervals must be the same and these waves propagate with a dimensionless

speed of 1. In other words, the relationship between units for the spatial

interval Ax=1cm and the "time" interval Aw=lcm are completely dictated by the

Maxwell equations and the Poincare-Einstein principle. Since our ancestors did

not know the Poincare-Einstein principle and their intuitive sense of time was

different from that of space, they used a quantity with a different dimension

(seconds) to measure time intervals . As a result, we have a quantity called

frequency w measured in the unit of 1 /second. It is purely by the artificial and

accidental choice of the duration of At=lsec that it is equal to the "taiji-time"

interval Aw=29,979,245,800cm. This is the reason why when one includes an

additional second postulate in taiji relativity, which amount to setting w=ct,

w'=ct', etc., the ratio of these two units appears as the "universal value" in all

inertial frames.

Presumably, in the future of particle physics, there will be a basic

principle or symmetry which will dictate a relation between the units of mass

and length.4 The quantum constant J in (10.8) and the electric charge a in

(10.10) will then be reduced to dimensionless constants, just like the taiji-speed
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of light RL= 1. However, the electromagnetic coupling strength (i.e., the fine

structure constant ) aea e2/J-1 /137 will not be changed as it is already

dimensionless. It is reasonable to make the guess that quantum mechanics of

the future will be able to determine the value of the electromagnetic coupling

strength ae and, hence, to explain the quantization of the electric charge. The

fundamental and universal constants, which are dimensionless , may be called

"taiji universal constants " since they are independent of any units of

measurement and inherent in nature.

10d. The Maxwell Equations Without the Constant Speed of Light c

The invariant action for a classical charged particle moving in the

electromagnetic field is assumed to be

Stot = J(-mds - eadxµ) - 4 Jfuvfµvd3rdw , (10.19)

where fµv=aµav-avaµ. The Lagrange equations of motion for a charged particle in

an electromagnetic field can be derived from (10.19) or from the Lagrangian in

(10.1), to be more specific. We then have

dsds = -j., dsv ,

p L = (P°,P) = ( mPZ , ) , x = (w,-r)[1 2

(10.20)

This can be generalized to the case of a continuous charge distribution in

space.5 The second term in (10.19) becomes -JaOAd3rdw . With the help of the

delta function J3(r-ro)d3r=1, one can formally replace edxµ by

J e8(r-ro)d3r dw dw=J(Pdw)d3rdw=Jj ►ki3rdw. (10.21)

We have the following forms of the Maxwell equations in taiji relativity

af+LV = j", a.X,fuv + aµfV1+ aµf = 0 ; (10.22)
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aµ axµ , x) = (w'r)

One can write the field-strength tensor Wv= aµa"-a"aµ in matrix form6

1 0 -Ex -Ey -EZ
"- Ex 0 -BZ

Ey BZ 0 -Bx '
Ez -By B, 0

(10.23)

where the electric fields E and the magnetic induction B are expressed in terms
of the 4-potentials aµ=(a°,a) as

E_- Va°, B=Vxa. (10.24)

Since aµ(w,r)aAA(ct,r)/c, the electromagnetic fields E(w,r) and B(w,r) are

related to the usual fields as defined in special relativity ESR(ct,r) and BSR(ct,r)

by:

E(w,r) ra E„S„(ct,r)/c , B(w,r ) a B151(ct,r)/c . (10.25)

In terms of E, B, and the 4-current Jµ=(p,J), the first equation in (10.22) can be

written as

V•E=p, VxB -aw=J.

The second equations in (10.22) can be written as

V•B=0, VxE+a-NBB=0.

(10.26)

(10.27)

We see that the speed of light does not explicitly appear in the new form of the

Maxwell equations in a general inertial frame. The Maxwell equations can be

written in the familiar form

V•B=0, VxE- ! aB =0, etc., (10.28)
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if and only if the speed of light is assumed to be a constant c. Thus, the

invariance of Maxwell 's equations alone does not logically imply the

universality of the speed of light c, contrary to many physicists ' beliefs.

Nevertheless , when p=O and J=O, the wave equations (10.26) and (10.27) can be

written in the form,

- V2f=0, f=EorB.a^zf (10.29)

This implies that there is a constant dimensionless taiji speed of light, PL=1,

measured in terms of taiji time w. This result of PL =1 is, of course, consistent

with equation ( 7.7) and with equations ( R5.4) and ( R5.5) in reference 5 of

chapter 5.
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11.

Quantum Electrodynamics Based on Taiji Relativity and
Dilatation of Lifetimes and Decay-Lengths

1la. Quantum Electrodynamics Based on Taiji Relativity

In quantum electrodynamics (QED), the invariant action Sq, involving

Dirac's electron field W, the photon field a., and the new quantum constant J, is

assumed to take the usual form,1

Sq= JLd4x, L= i[f(iJaµ- ea,) - m]W - (1 /4)fµvfµ", (11.1)

1,µ.Yv + yvyR = 2g►1V ,

J = 3.5177293x10-38 g•cm , e =-1.6021891x10'20 Nr4x (g•cm)1"2, (11.2)

where d4x=dwd3r and the electromagnetic coupling strength is ae = e2/(4,J)

1/137, as it should.2 Each term in the Lagrangian density L has the dimension of

mass/(length)4.
For quantization of the Dirac fields, the "canonical momentum" xb

conjugate to Vb and the Hamiltonian density for a free electron are defined as

a
xl, = a(aoWb)

H = aaoW- Iw.

For free photon (a.,) and electron (i,) fields, we have

a.,(w,r) =,-Y, J/(2po) [a(p,a) eµ ( a)exp(-ip-x/J)
P;a

+ at(p,a) eµ(a)exp (ip-x/J)]

',p = W[.4LiJa µ - m]W,

(11.3)

(11.4)

138
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W(w,r) _Y, m/po [b(p,s)u(p,s)exp(-ip'x/J)
p;s

+ dt(p,s)v(p,s)exp(ip•x/J)] , p'x = pµxµ , (11.5)

where

[a(p,a), at(p',a')I = SPP98«a'

[b(p,s), bt(p',s')I = 8pp,8ss, ' [d(p,s), dt(p',s')] = SPP'8ss', (11.6)

and all other commutators such as [a(p,a), a(p',a')] and [at(p,a), at(p',a')]
vanish. Of course, commutators for quantized fields V(w,r) and aµ(w,r) can be

derived from (11.4)-(11.6). The Dirac equation based on taiji relativity can be

derived from (11.1),

iJ a = [aD. (-iJV - ea) + PDm + ea0IV , aD = Y9Tk , OD = 1A (11.7)

where at, = (aD, aD , ap) and OD are the usual constant Dirac matrices.'

In view of the equations of motion (11.7), we must use the taiji-time w in a

general frame as the evolution variable for a state m(s)(w) in the Schrodinger

representation:

iJ ^'( ^`') = H(s)(w)4, (s)(w) ,
C)W

because the evolution of a physical system is assumed to be described by a

Hamiltonian operator which has the same transformation property as the taiji-

time w or a/aw.

The usual covariant formalism of perturbation theory can also be applied

to such a QED.3 To illustrate this, let us briefly consider the interaction

representation and the S-matrix based on taiji relativity. The transformations

of the state vector Z(w) and operator 0 from the Schrodinger representation to

the interaction representation are

O(w) _,DIn (w) = exp [iHo(s)w/J](b(s)(w) , (11.9)
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O(w) m 00 )(w) = exp[iHH(s )w/J]O(s)exp[-iH.(s ,/J] . (11.10)

Because O(s ) and O(w) are the same for w=0, we have

(s) /iH (s)a (s) / 11 11exp [- . wwiJ aw = HI(w)-D(w), HI = exp[iH. J] ,J]H . )(

O(w) = exp[iH(s,/J]O(0)exp[_iHo(s)w/J] . (11.12)

The U-matrix can be defined in terms of the taiji-time w: 4D(w)=U(w,wo) 4)(wo) ,

U(wo,wo)=1. It follows from (11.11) and (11.12) that

all (aw =
HI(w)U(w,wo)

If a physical system is in the initial state (Di at taiji-time wo, the probability of

finding it in the final state cz f at a later taiji-time w is given by

fI U(w,wo) .Oi) 1 2
=

I Ufi(w,wo) I 2.

The average transition probability per unit taiji-time for of 41i is

i(w,wo) -IUf SfI2
(w - wo)

(11.14)

As usual , we can express the S-matrix in terms of the U-matrix, i.e . S=U(=,-oo)

and obtain the following form

S = 1-^ JHI(w)dw + (J1)2 fdw JH1(w)H(w')dw' + ...... (11.16)

For w-dependent operators , one can introduce a w-product W* (corresponding to

the usual chronological product ), so that (11.16 ) can be written in an

exponential form:
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S = W*{exp[- J 5Hi(x►t)dwd3r]j , JHi(x$ )d3r = H,(w) . (11.17)

For simplicity, one may set j = 1 (the "natural unit" in taiji Q)JD) in the

following discussions, so that one has the relation of dimensions

[Lv4]
= [ ] = [W2/31 = [mass] = [1/length] . (11.18)

Consequently, the classical electron radius re and electron Compton wavelength

Ae, for example, are given by re=aeJ/me=ae/me and ae=J/me=1/me respectively,

and have the usual values.

To obtain the rules for Feynman diagrams in taiji QED, we follow the usual

quantization procedure and define LTQSD by adding a gauge fixing term in the

Lagrangian (10.30),

LrQjm = L - * (aµaµ)2 , J =l. (11.19)

where p is a gauge parameter. As usual, we define the M-matrix as follows:

Sif = gif - i(2a)484 (pf(tot) - pi(tot ))[n«t pu(n1N)]112Ma (11.20)

where "ext par" denotes external particles and nj = mj/poj for spin 1/2 fermions

and 1/2po for bosons.3 Because of the 4-dimensional symmetry in (11.19) and

(11.20), the rules for writing Mfr are formally the same as those in the usual QED,

except that certain quantities (e.g., w, J, pµ and e) have different dimensions

from the corresponding quantities in conventional ED. To wit,

(a) the covariant photon propagator is now given by

-i[gµv - (1 - p)kµkv/(k2 + is)]
(k2 + is) k2 = kola , (11.21)

(b) the electron propagator is

(11.22)
(')µpµ-m+ie),
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(c) the electron-photon vertex is

-i ems, (11.23)

and (d) each external photon line has an additional factor eµ. Also, each

external electron line has u(s,p) for the absorption of an electron and u(s,p) for

the emission of an electron, etc.

Other rules such as taking the trace with a factor of -1 for each closed

electron loop, integration with d4k/(2n)4 over a momentum kµ not fixed by the

conservation of four-momentum at each vertex, etc. are the same as usual.

Thus, if one calculates scattering cross sections and decay rates (with

respect to the taiji-time w) of a physical process, one will get formally the same

result as that in conventional QJD.3 Let us consider an example. For a scattering

process 1+2-*3+4+....+N, the differential cross section do, which has the

dimension of area, is given by

do=

Einstein's Relativity and Beyond

1 IM .f 2 [ II (2m )] d3P3
(P1•P2)2 - (m1m2)2 ext fer fer (2n)32Po3

d3P
x (2x)484(P1 + P2 - P3 - P4 ••••- PN)So,••••••(21G)32PON

(11.24)

where po= p2+m2 and So denotes a factor 1/(n!) for each kind of (n) identical

particles in the final state. If the initial particles are unpolarized, one takes the

average over initial spin states. When there is no external fermion in a process,

then [next fer (2mfer)] in (11.24) is replaced by 1.

11b. Experimental Measurements of Dilatation for Decay -Lengths

and Decay-Lifetimes

Now, let us consider the mean lifetime of an unstable particle. Since the

time t is undefined in taiji relativity, a burning question is:

How can taiji relativity explain the well-established experimental results

of the "lifetime dilatation" of unstable particles?



Chap. 1 1. Quantum Electrodynamics Based on Taiji Relativity 143

The answer is that experiments which purport to measure the mean lifetime of

unstable particles in flight actually measure the mean decay-lengths rather

than the lifetimes , where the decay length is the distance traveled by an

unstable particle before decaying. Furthermore, the decay-length dilatation

can be calculated and it can be shown that this length is dilated by a Y factor in

quantum field theory based on taiji relativity. Let us consider the decay rate

r(1-,2+3+...+N) for a physical process 1- 2+3+...+N. It is given by

r(1->2+3+...+N - Jim f I fl
(SIi)12 d3x2d3p2 d3 d3 (11.25)

-w-,,, J w (2aJ)3 ' (2aJ)3

which has the dimensions of inverse length in taiji relativity . Since a particle's

lifetime is measured in terms of taiji-time, which has the units of length, this

decay rate can be -interpreted as the inverse of the particle 's "decay-length" or

the mean distance which a group of such particles would travel before their

number is decreased by a factor of 1/e=1/2.71828 due to decay. The decay

length D is given by

D= 1/r(1-+2+3+...+N). (11.26)

Thus, in taiji relativity, one has the "rest decay length" Do for a particle decay at

rest, corresponding to the "rest lifetime " in the conventional theory. Also,

instead of the dilatation of the lifetime of a particle in flight , we have dilatation

of the distance it travels before decaying. Such a dilatation is physically correct

because it is equal to the experimentally determined distance travelled by the

particles.

Let us consider a simple specific example , i.e., the muon decay µ (pl) -*

e (p2)+vµ(p3)+ ve(p4) with the usual V-A coupling. The decay S-matrix in the

momentum space is given by

(fiSli) « (Poip02po3po4 )-1 84(P1-p2_p3-p4) Msc

(11.27)
Msc = (G/42 )( vµ(P3)_Y (1-Ys ) P(P1)j [ e ( P2)Ya.( 1-Ys) ve(P4)]

The decay length, defined by D=1/r(1-►2+3+...+N), can be calculated and is found

to be
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D« 1 rd3Pa d a p
84(P1-P2-P3-P4 ) IIMSCI2 . (11.28)

Poi Poe Poi Poo spin

Everything to the right of 1/pol in (11.28 ) is invariant under a taiji four-

dimensional transformation so that the decay length D is indeed proportional to

pie+mi2 = poi 4 We note that, when a particle at rest decays , its decay-length is

not zero and can be expressed in terms of taiji-time w. It should be stressed that

result ( 11.28) is sufficient to understand all previous experiments of the

"lifetime dilatation" of unstable particles because it is the decay-length of an

unstable particle in flight which is the quantity that is directly measured in

these experiments.

In order to see this, let us consider the "lifetime-dilatation experiment"

involving the muons produced by collisions of cosmic rays and air molecules in

the upper atmosphere , one counts the number of muons at the top of a mountain

of known height and then counts the number of muons again at sea level to find

out how many have lived long enough to reach the detectors there. Thus it is

the mean decay distance that is directly measured in the cosmic-ray

experiment.5

Similarly, the experimental setup in laboratories for measuring " lifetime

dilatation" is roughly as follows:

Si S2 S3 v S4

L

Fig. 11.1 Experimental arrangement for
measuring the mean life of particle decay
in flight

A narrow beam of unstable particles , for example , pions, passes through three

detectors , Si, S2 and S3. Some of the pions decay between detectors S3 and S4,



Chap.11. Quantum Electrodynamics Based on Taiji Relativity 145

according to the reaction x+ -+ lt++vµ. If the distance L between S3 and S4 is

sufficiently large, the probability of a µ+ entering the detector S4 is negligible

because the µ+'s produced in the decay move out in all directions. The

coincidence of signals in S1, S2 and S3 indicates a high-speed charged particle

passing all three detectors, i.e., moving in the horizontal beam direction. By

counting these coincident signals, one has the total number of charged pions No

in the beam before decay. Similarly, the coincidence of signals in S1, S2, S3 and S4

gives the number of pions, N' remaining after traveling a length L in the

horizontal direction of the beam. In taiji relativity, the relationship between No

and N' can be given in terms of taiji-time as,

N'= No exp[-rw']. r = r(x+ -+ µ++ vµ1, (11.29)

where w' is the proper taiji-time of the pion (at rest in the F' frame, i.e., Ax'=O)

moving from S3 to S4. This relationship can also be expressed in terms of the

taiji-time w of the laboratory frame F,

N''= 1-$2, (11.30)

where i=dx/dw is the known taiji-velocity of the pion. Thus, using w=L/p

equation (11.29) can be written as

N' = No exp[-r 1-p ] = No exp[- i-I2 Up] . (11.31)

Experimentally, one changes L and measures N' and No for each L and then plots

a graph of ln(N'/No) versus L to get a straight line with a slope of -r'/.

From the slope and the known taiji-velocity Ji, one can then obtain the mean life

of a positive pion,

w(x+) = D(x+) = F = 780.45 an. (11.32)

Since the time interval et=1 second corresponds to Aw=299792458 meters, as

discussed in section 7c, chapter 7, the result (11.32) corresponds to the

conventional pion mean life c(x+)=2.603x10-8 seconds.

Within the framework of special relativity with a universal speed of light

c, the decay-length D can be converted to the decay lifetime c by
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_D'1
c cr

(11.33)

in any frame. Thus, in special relativity , one has the dilatation of both the

decay-length and the lifetime. However, within the four-dimensional

symmetry framework of taiji relativity , one can only talk about the decay-

length dilatation in general . Such a decay-length dilatation is completely

relative within the framework of taiji relativity and special relativity. (See

Appendix D for a more detailed discussion of the relativity of "lifetimes" or

decay-length and the "twin paradox.")
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12.

Common Relativity: A Common Time for all Observers

12a. Why Common Time?

The formulation of physical concepts should provide a comprehensive

conceptual framework for the whole of physics , including both single particle

and many-particle systems . It is therefore necessary that the 4-dimensional

symmetry framework be based on concepts and equations that can be unified

with those used in statistical systems with many particles. We have so far talked

about taiji relativity with the 4-dimensional symmetry of the Lorentz and

Poincare groups and shown that it is consistent with all known experiments

even though the transformation property of time t is arbitrary. However, in

order to deal with many-particle systems, it is better to have a specific and

simple transformation for time t so that the canonical evolution of a statical

system is possible. Thus, we will explore one particularly simpe transformation

of t which is called common time. The 4-dimensional theoretical framework

with common time can be obtained from taiji relativity by making an additional

postulate of common time for all inertial frames , without upsetting the 4-

dimensional Lorentz and Poincar6 invariance . Such a 4-dimensional theory of

relativity is called "common relativity."

The treatment of common relativity and its physical implications given in

chapters 12-16 are based on two postulates: the Poincare-Einstein principle and

a common time for all observers. They are developed as far as possible and

involve a considerable departure from the conventional treatment.

The motivations for introducing common time into the 4-dimensional

symmetry framework1,2 are as follows:

(i) There appears to be an inborn psychological and physiological

tendency and limitation to the human perception of nature with one single

evolution variable independent of space. This was shown in the early

formulations of classical physics. From the pedagogical viewpoint, a theory of

relativity with common time could serve as an innovative approach to

explaining 4-dimensional physics to students and laymen, in harmony with the

intuition of daily life.

148
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(ii) The expansion of the universe as a whole suggests a single cosmic

time as the proper evolution variable.

(iii) Common time appears to be the only concept which enables us to

introduce the canonical evolution , so that we can describe enormously complex

macroscopic systems of N-particles by reducing N one -particle Liouville

equations to a single invariant Liouville equation . This is a significant

advantage of common time over relativistic time, taiji-time or any of the other

possible times allowed in the 4-dimensional symmetry framework.3,4

To avoid confusion , it should be stressed that common time in the 4-

dimensional symmetry framework is not unique and, hence, not absolute.

Common time is not the same as the Newtonian absolute time in 3-dimensional

symmetry framework, even though it does provide a concept of universal

simultaneity for observers in all inertial frames. Common relativity still

preserves the 4-dimensional symmetry of physical laws and is consistent with

all known experiments. It also reveals the truly universal and fundamental

constants in nature, J and e.1,2

12b. Two Basic Postulates of Common Relativity

Common relativity is entirely based on two postulates , which are

analogous to the two postualtes of Einstein's special relativity:

(I). The form of a physical law is the same in any inertial frame.

(II). Physical time tc is the same in any inertial frame.

The first postulate is identical to the principle of relativity of Poincare

and Einstein . It is satisfied by any one of the inclusive four-dimensional

symmetry frameworks; the second postulate selects a particular four-

dimensional framework with a common time tc for all observers,

t'c=tc• (12.1)

Thus, common time is a scalar, i.e., an invariant quantity.

It should be stressed that this postulate of common time in (12.1) is really

a definition rather than a postulate, just as the universality of the speed of light

in special relativity. It is a truth by definition which makes the theory self-

consistent and therefore, can never be proven wrong. This may sound strange

because we know that the same "definition" (12.1) in the Galilean transfor-
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mation leads to incorrect physical results. However, in this case the blame lies

with the 3-dimensional symmetry of the Galilean transformations rather than

the definition (12.1). When relation (12.1) is implemented within a 4-

dimensional symmetry framework, one gets correct physical results consistent

with experiments, as we shall see below.

In a general inertial frame, the 4-coordinate of an event is denoted by

xµ=(w,x,y,z), where w is the product of a function b and the invariant common

time tc, w=btc. I will call the function b the "ligh" so that w or btc will be called

the "lightime." In common relativity, (tc,x,y,z) is no longer a 4-vector, the

reason being that the common time tc is an invariant scalar and is not

proportional to the zeroth component of a coordinate 4-vector.

Of course, for common time to make sense, one must be able to physically

synchronize clocks which read the common time for all observers. Some have

argued that it would take signals with infinite speed to synchronize clocks in

such a way as to satisfy (12.1) and, hence, that it cannot be realized physically.

However, as we have discussed in chapter 7, there are, in fact, ways to realize

clock systems in different inertial frames in accordance with equation (7.14).

Common time can be physically realized through clock systems in F and F

because the reading and the rate of ticking of clocks in both frames can be

adjusted to read the same time. We shall return to this point in sections (12c)

and (12e) below.

12c. The Space-Lightime Transformations and Physical Clocks

Let us consider two inertial frames, F and F, which have relative motion

along a common x/x' axis. Suppose F moves with a constant velocity V=(V,0,0),

as measured by observers in F. Since F and F are equivalent, we may start with,

say, the F frame to synchronize F-clocks by assuming that the speed of light is

constant and isotropic in F. (Of course, one may choose the F' frame to

synchronize F'-clocks. This will be discussed in section 12e.) One may think

that this assumption constitutes a third postulate in common relativity.

However, the existence of this F frame is not necessary to common relativity.

One could imagine a physical world of frames F, F, F", etc. from which F

suddenly disappeared. No physics in common relativity would change. This is

just a technical assumption for convenience of our discussions.

Now the coordinate 4-vectors of an event as recorded by observers in F
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and F, and their derivatives with respect to the invariant common time can be

denoted by

xP = (ctc,x,y,z ) and x' ►+ = (w',x',y',z' ) , w' = b'tc,

dx 4i! dw'
d = (c,v) and d = (c',v') , = c'

(12.2)

in F and F' respectively, where the fourth (or the zeroth ) dimension is lightime

w'=b'tc in F (or ct in F). And c' denotes speeds of light measured in the F frame.

The Poincare-Einstein principle of relativity implies the symmetry

between F and F' in the following forms

x' = Ax - Bctc = y(x - Pctc) ,

x=Ax'+Bb'tc= y(x'+Pb'tc),

(12.3)

and y'=y and z'=z. If an object is at rest in F', dr'/dtc=0, then its velocity as

measured in F must be V=(V,0,0), because F' is moving with the velocity (V,0,0)

related to F. This condition leads to B/A=V/c=p, where we have used the first

relation in (12 .3). The invariant laws for the propagation of light in F and F'

are, as usual , assumed to be given by ds2=ds'2=0, i.e., dx2 - [d(ctc)]2 = dx2-c2dtc2 = 0

and dx'2-[d(b'tc)]2=dx'2-c'2dtc2 = 0, where c'=d(b'tc)/dtc and the "ligh" function b'

are in general not a constant . Evidently, these invariant laws for the

propagation of light lead to dx/dtc=c and dx'/dtc=c' for light moving along the +x

direction . It follows from (12.3) that A2-B2=y2 ( 1-P2)=1 . This result and p=V/c lead

to the relation Y=1/ 1-(V/c)2 . Thus, the 4-dimensional space-lightime trans-

formation is found to be

b'tc = ,y(ctc - Px) , x' = y(x - lctc) , y'=y, z'=z; (12.4)

Y= 1/ 1:2, l=V/c.

This is precisely the result obtained by setting the coordinates xµ=(ctc,x,y,z) and

x'µ=(b'tc,x'y'z') in the 4-dimensional taiji transformations (7.4) with B replaced

by P=V/c, as it should.
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In a general frame , we denote the coordinate xµ of an event and the

distance squared (S12)2 between two events as

xµ = (w,x,Y,z) , w = bk ,

and

(s12)2 = (w1- w2)2 - (r1 - r2)2

J(CtC1-Ctc2)2 - (ri-r2)2 ; in F Wl=ctc1 , W2=CtC2 ,

(b'itci-b'2tc2)2 - (r'1-r'2)2 ; in F' W'1=b'ltci , w'2=b'2tc2

(12.5)

One can verify that (s12)2 is invariant under the space-lightime transfor-

mations (12.4). The ligh function b' in the F' frame is completely determined by

(12.4). Since the common time tc does not transform in (12.4), the ligh function

b' is necessary in order to keep the four-dimensional interval invariant in

common relativity. We note that for two events to occur at the same time tC2-

tCl=Atc=0 but at different places x2-x1=Ax#0, we have

(b2 - b1)tcl =(x2 - x1) (12.6)

from (12.4). Also, when t -> 0 and x*0, ( 12.4) leads to

b'tc=-'x, tc-40. (12.7)

That is, the ligh function b' tends to approach infinity such that b'tc*0 in the

limit tc-.O. This mathematical property of b' does not lead to any physical

problems in common relativity.

In inertial frames, we must have clocks which read common time for all

observers. How to realize such common time for observers in different frames?

A simple method is as follows: we choose any one of them, say, F, to synchronize

clocks by defining the speed of light is constant (or isotropic) in F and only in F.

In other words, we define that the one-way speed of light is the same as the two-

way speed of light (which can be measured by using just one stable atomic clock

without synchronization) in the F frame. Then, the reading and the rate of

ticking of any F'-clock can be adjusted to read the same time as the

synchronized F-clock nearby. In this way, observers in F and F have a common
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time. Or it is even simpler by requiring the F'-observers to use a nearly F-clock

to record time. In this way, one does not have to set up a grid of clocks in the F

frame and other inertial frames.

12d. Relativity of the Speed of Light Measured by Using

Common Time

With a common time tc for all observers, the velocities of a particle

measured in F and F are defined respectively by

dr
V=dtc

dr'
v'=dtc . (12.8)

These velocities transform like the spatial components of a coordinate 4-vector

in (12.4) because the common time t is a scalar. Thus, the four-dimensional

transformations of velocities in common relativity are given by

c' = Y(c - tlvx) = c'(vx) , v'x = Y(vx - pc) , v'y = vy, v'z = vz ; (12.9)

C, = d(b'tc)
dtc

This can also be derived from the space-lightime transformation (12.4). As we

shall see below, if v is the velocity of light, i.e., Ivl=c, then c' in (12.9) is the one-

way speed of this light signal as measured by F' observers. However, if v is the

velocity of any other object, OSIvk<c, then c' is a general two-way speed of light.

This will be amplified in section 12f below.

We note that there is an "apparent asymmetry" between the F and F

frames. This asymmetry appears in the space-lightime transformation (12.4)

and the velocity transformation (12.9):

(a) If observers in F and F compare the length of a rod, they find that

Ax -- yAx = Ax etc=0, (12.10)
1-V2/c2

,

regardless of whether the rod is at rest in F or at rest in F. It seems that the
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relativity of length contraction is lost.

(b) the speed of light is isotropic in F and anisotropic in F':

c+ V
C =

1-V2/c2 '
forvx=±c, (12.11)

where c=299792458 m/s.

However, none of these results implies an inherent asymmetry between F

and F', as we shall see below.

12e. The Symmetry Between Any Two Frames F and F'

It must be stressed that the apparent asymmetry between F and F' (as

shown in (12.10) and (12.11)) is completely due to the fact that we started with

the F frame to synchronize clocks by assuming that the speed of light is

isotropic in F. According to the Poincare-Einstein principle of relativity, there

can be no preferred inertial frame. Thus, if one wishes, this clock system could

be discarded and another one set up starting with the F' frame. The F' clocks

could be synchronized by using light signals which are !assumed to be isotropic

and to have the constant speed c'=299792458 m/s in the F' frame. We could then

require all observers to use this grid of clocks in F' to record the time of events.

In this way, we also have a common time Q for all observers in different

frames. Here, we see clearly that common time within the four- dimensional

symmetry framework is universal but not unique and, therefore, not absolute in

the sense of the Newtonian time. In the preceding case, we would have the

following space-lightime transformations between (c't',r') in F' and (bt', r) in F,

where t' is a common time:

btc=Y'(c't -P'x' ), x=1+(x'-O'c'Q ), y = y', z = z'; (12.12)

Y = 11,2' R'=c '

where V < 0 is the constant velocity of F as measured in F' and the "ligh" b is a

function in the transformation. We would obtain the following results:

(a') If observers in F and F' compare the length of a rod , they find that
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Ax = y'Ax', for Atc = 0, (12.13)

regardless of whether the rod is at rest in F or at rest in F.

(b') The speed of light is isotropic in F' and anisotropic in F:

dt =c=y'(c'-V'), for - =c'=const. (12.14)

Thus, there is no inherent asymmetry between any two inertial frames F and F.

12f. The Two-Way Speed of Light

Based on the transformation of velocities in (12.9), we can now discuss

properties of the two-way speed of light in the F frame, in which the (one-way)

speed of light is not isotropic. Suppose a light signal, starting from the origin

r'A=O at time tc=0, travels outward and reaches an arbitrary point r'B=(x',y',0) at

tc=tcg and then returns to r'A at time tc=tcA. The average speed (i.e. the two-way

speed) of light c'av in F' satisfies

c'av tcA = 2L' , L' = x'2+y'2 ,

where

L' U
tcA = c'(A-B) + c'(B--A)

(12.15)

Since the propagation of light satisfies the invariant law s2=0, we have the

relation c'2-v'x2-v'y2-v'Z2=0 in P. From (12.9) with vx=ccosei , and vx=ccoso2

corresponding to the light signals propagating from A to B and from B to A, we

have

c'(A-->B) = c'( ccosel ) = 7c(1-pcosel ), ccose1 = r1(c'ABC0Se'+c)

c'(B->A) = c'(-ccose2) = yc(1+flcose2), -ccose2 = r'(-c'BACOSO'+ylc)

vX = C'ABCOSO' = c'(A-.,B)coso', e'= e'1= 0'2-

(12.16)



156 Einstein's Relativity and Beyond

c'(A-►B)COSB'=C'(A->B)cose ' 1=-C'BACOSe'2.

It follows that

c'(A ,B) = l+ , c'(B-,A) = 1 (12.17)

Thus, the two-way speed of light is found to be

2L' 2
c av = 4A = c^Ti , (12.18)

which is indeed isotropic in the F' frame.

This isotropy of the two-way speed of light in (12.18) guarantees that the

Michelson-Morley experiment performed with an apparatus at rest in the F

frame will obtain a null result , even though the one-way speed of light is not

isotropic . This differs from the conventional explanation of the Michelson-

Morley experiment.

Next, let us consider the Kennedy-Thorndike experiment. It is an

important variation of the Michelson-Morley experiment , in which the

difference in length of the two arms in the Michelson interferometer is kept

large on purpose . Also, the apparatus is kept fixed in the laboratory and the

interference fringes are observed over a period of months . Nevertheless, the

velocity-dependence of the two-way speed of light in (12.18) cannot be detected

in the Kennedy-Thorndike experiment because the fringe shift is related to the

quantity 8

c. At+ c! At- 2IL2 - LII
(12.19)

where IL2' - LiI is the difference in the lengths of the two arms. Since there is

no relative motion between the light source and the apparatus in F, we have the
relation Thus the fringe shift turns out to be independent of the

motion of the F frame and common relativity is also consistent with the

Kennedy-Thorndike experiment: During the course of one day or half a year,

no fringe shift will be observed.

These results show the powerful and far-reaching consequence of the
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Poincar@-Einstein Principle of relativity, independent of a particular concept of

time being used in the 4-dimensional framework.

12g. The Inverse Transformations and the Lorentz Group

The inverse transformation of (12.4 ) in common relativity is

ck=Y(b'tc+ftx'), x=Y(x'+Pb'tc), y=y, z=z'. (12.20)

One could also express 0 and y=1/ in terms of quantities measured in F'.
Suppose an object is at rest in F, i .e. v=dr/dtc=0. Its velocity v'=(v',O,O) measured

in F is given by (12.9):

V'=vx'=1*=, vy'=y%=0, c'(0)=rc. (12.21)

Thus, we can write (12.20) in the following form,

ctc =1'(b'tc + p 'x') , x =1r(x' - §'b'tc) , y. = y' , z = z' ; (12.22)

fV=1 V1 1=0, Y =Y.

Note that the apparent asymmetric result in (12.21),

V'_-IV, (12.23)

is purely due to our convention that the speed of light is isotropic in the F

frame . If we instead assume that the speed of light is isotropic in the F' frame,

as discussed previously in section (12e) concerning the symmetry between F

and F, we will have the reciprocal relation

V = -YV', (12.24)

which can be derived from (12.12).

Apart from the inverse transformations, other group properties, such as

the 4-dimensional transformations having identity, associativity and obeying
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the law of composition, can be verified. These properties show that the set of 4-

dimensional transformations in common relativity forms the Lorentz group. In

general , the Lorentz and Poincar@ groups discussed in chapter 9 for taiji

relativity hold also for common relativity. This 4-dimensional symmetry of the

Lorentz and Poincare invariance is essential for common relativity to be

consistent with all previous experiments.

12h. 4-Dimensional Maxwell Equations and Lorentz Force with

Scalar Physical Time

In common relativity , the invariant action Scom for a classical charged

particle moving in the electromagnetic field is assumed to have the same form

as that in (10.19),

Scom= f {-mds - eaµdxµl - 4 Jfuvfµvd3rdw , (12.25)

xµ = (w,r) = (btc,r) , xµ = (w,-r) = (btc,-r) ,

ds2 = dx►Ld, = [d(btc)]2 - {dr]2,

fµ,= aµav - aaµ ,

where xµ is the coordinate 4-vector, tc is common time and ds2 is the differential

form of (12.5) in common relativity. The universal constant e<0 is in Heaviside-

Lorentz units, as given in (10.1). The invariant action for a charged particle

interacting with the electromagnetic field is given by

Scf= J{-mds - eaµdxj = Jltdtc , aµ = (a0, -a) , (12.26)

I.c = -m4-C-_2 v2 - eaoC + ea•v ,
ds d(btc)
dtc = C2-v2 , C = dtc

The canonical momentum P and the Hamiltonian He for a charged particle are

defined, as usual, by
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a_
P = av

= p+ea,

Hc = [(a4/av)'v - 4l = Cp0 + -d%C '

In

p0

_

1-v2/C2'

my/C_

1-v2/C2 ' pµpµ=m2,

(12.27)

where pµ=(p°,p) and pµ=(p0,pl,p2 ,p)=(p°,-p ) are the 4-momenta of the particle.

Note that the canonical momentum (P°,P), where P°=Hc/C, also forms a 4-vector.

The Lagrange equation of motion for a charged particle in the electromagnetic

field can be derived from (12.26) by the variational calculus. One has

dpµ ,,dx„
,ds = e fl1 ds

dx ( m mv/C d(btc)

Pµ = m ds _ ` 1-v2/C2 ' l-v2/C2 )' C = dtc

(12.28)

where pµ=(p°,p) is the usual momentum for a particle. Multiplying both sides of

(12.28) by ds/dtc, one obtains the equation of motion expressed in terms of

common time tc,

dpµ dxv
dtc RIA

V
dt '

i.e., - = E•v , ^P = e(EC + v xB) ,

(12.29)

where p° and p are given in (12.28) and e(EC+vxB) is the Lorentz force in

common relativity.

For a continuous charge distribution in space, the second term in (10.25)

becomes -f aµjµd3rdw, where w=btc, similar to that in (10.19). Maxwell's

equations in a general inertial frame in common relativity are thus

aµfu°=jV, ate"+aµf` +aµf4=0; (12.30)
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xx = (btc,r) , fµ"= aft" - a"aµ.

One can write the field-strength tensor Div in matrix form

1 0 -Ex -Ey -Ez

fµ" = Ex 0 -Bz
Ey Bz 0 -Bx '
Ez -By Bx 0

E= a(bt) -Va°, B=Vxa.

(12.31)

Since a µ(w,r)c*AI(ct,r)/c, the fields E(w,r) and B(w,r) are related to the usual

Eusu(ct,r) and Busu(ct,r) by the correspondences in (10.25).

The transformations of the field tensor fµ" are given by

a x'µ ax"'
f µ`' = fuft,W -W

(12.32)

where ax'µ/axa can be calculated from the coordinate transformation (12.4).

Since the fields E and B are elements of the field tensor faP, we have the explicit

transformation for the electromagnetic fields :

Fx=Ex, E'y=Y(Ey -PBz), E'z ='Y(Ez+PBy),

B'x=Bx, B'y = y(By + PEz) , Biz =y(Bz-PEy).

(12.33)

Note that one can use transformations (12.9) and (12.33) for velocities and

electromagnetic fields to show that EE'v and the Lorentz force e(EC+v xB) in

(12.29) form a 4-vector (eE•v, e(EC+vxB) ), i.e., they transform like a 4-vector

(dp°/dtc, dp/dtc) or (p°, p).

In terms of E, B, and the 4-current Jµ=(p,J), the first equation in (12.31)

can be written as

V-E=p, VxB - a(btc) =J.
(12.34)
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The second equation in (12 .31) can be written as

V•B=0, VxE
+ a(btc) =0.

(12.35)

In common relativity , the speed of light does not explicitly appear in the new

form of the Maxwell equations in a general inertial frame . Note that the

Maxwell equations can be written in the familiar form

V•B=0, VxE - 1aj = 0, etc., (12.36)

if and only if the speed of light is assumed to be a constant c. Thus, even if the

time measured in seconds is explicitly introduced in a theory , the 4-dimensional

invariance of Maxwell equations do not necessarily imply the universality of

the speed of light . Nevertheless , when p = 0 and J = 0, wave equations (12.34) and

(12.35) can be written in the 4-dimensional form,

- VZ =0, w=ba w2 g tc (12.37)

where the function g=g(btc,r ) stands for any component of E or B. Let us

consider the solution of (12.37) with y=z=0. Equation (12.37 ) with g=g(btc,x) leads

to the solution in a general inertial frame,

g(btc,x) = gi(x+btc) + g2(x-btc) ,

where gl and $2 are two arbitrary functions . Since b is a function in general, it

is not the speed of the wave. To obtain the speed of the wave, we may consider

the amplitude g2 which satisfies the equation x - btc = constant . Differentiating

with respect to the common time t, we find the speed of this wave to be

dx d(btc) C
dtc = -dtc (12.38)

where the speed of light C as measured by the common time tc in a general

inertial frame is not isotropic , as shown in equation ( 12.11). Only in the inertial

frame F(ctc,x,y,z ) does one have a constant speed of light because b=C=c.
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121. Quantum Electrodynamics Based on Common Relativity

In common relativity, the action SQ for quantum electrodynamics

involves Dirac's electron field jr, the photon field aµ and the new quantum

constant J. The invariant action SQis assumed to take the usual form,

SQ,= JL d4x , L= W[ `(iJaµ - eaµ) - m] i - µvB`", (12.39)

J = 3.5177293 x 10-38 g•cm , e = -1 .6021891x10"20 4TX (g•cm)1/2 ,

where d4x=d (btc)d3r. The electromagnetic coupling strength in common

relativity is the same as that in taiji relativity, ae=e2/(4itJ)- 1/137, as it should.

Also, Jaµ and Zap in (12.39) have the dimension of mass.

Following the steps from (10.32) to (10.48), we have the S-matrix and the

M-matrix for quantum electrodynamics as follows:

Sif = Sif - i ( 2n)484 (pf(tot) - pi(tot))[next par(nj/V)1112Mif (12.40)

where "ext par" denotes external particles , nj = mi/poi for spin 1/2 fermions and

nj = 1/(2poi ) for bosons.

It is important to note that quantum electrodynamics based on common

relativity possesses the 4-dimensional symmetry, i.e., the Lorentz and Poincar6

invariance , as shown in the action (12.39 ). The Lorentz and Poincare

invariance dictates that the evolution variable in basic physical laws must be

the lightime btc, as one can see in the Maxwell equations (12.34) and (12.35).

Therefore, the Feynman rules for writing Mif are formally the same as those in

the usual QJ D, except that certain quantities ( e.g., w=btc, J, pp and e) have

different dimensions from the corresponding quantities in conventional QED.

The Feynman rules for Q$D in common relativity are as follows:

(a) the covariant photon propagator is now given by

-i[gpv - (1 - p )k,,k"/(k2 + ic)J
(k2 + ie) k2 = kµkµ, (12.41)
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(b) the electron propagator is

-i
(fpµ - m + ic)'

(c) the electron-photon vertex is

163

(12.42)

-i ef . (12.43)

Also, each external photon line has an additional factor eµ, each external

electron line has u(s,p) for the absorption of an electron and u(s,p) for the
emission of an electron, etc. Other rules such as taking the trace with a factor
-1 for each closed electron loop , integration with d4k/(2a)4 over a momentum kµ

not fixed by the conservation of four-momentum at each vertex, etc. are the
same as the usual.

Thus, if one calculates scattering cross sections and decay rates (with
respect to the lightime w=btc ) of a physical process, one will get formally the

same result as that in conventional U D. For example, let us consider the decay
rate r(1-+2+3+...+N) for a physical process 1->2+3+...+N. It is given by

r(1-a2+3+ lim r I flSli 12 d3x2d3p2 d3 d3 (12)
...+N) = w4 J w (2xJ)3 ... (2aJ)3 , .44

w=btc.

The quantity r(1-*2+3+...+N) has the dimension of inverse length. Its inverse is
particle's "lifetime" measured in terms of lightime btc which has the dimension

of length and, hence, it may be called "decay-length." The decay- length D is
given by

D= 1/r(1-,2+3+...+N) . (12.45)

Thus, in common relativity, one has the "rest decay-length" Do for a particle

decay at rest , corresponding to the "rest lifetime" times the speed of light in the

conventional theory. The results in equations (12.44) and (12.45) imply that
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common relativity also has the dilatation of the decay-length consistent with

experiment.

12j. New Properties in Common Relativity

In common relativity, there are new properties which special relativity

simply cannot have. They are

1. invariant common time tc for all inertial frames,

d(btc)
2. invariant "genergy" G = C_2 _v2 = C° C = dtc (12.46)

i = (d4x Jibi 12.47)3. invariant volume V J S(tc =dxdydz,

where d4x=dxcdxldxzdx3 and co=-29979245800cm/sec is the scaling constant for

the invariant volume V, to have the same dimension as the usual volume. The

last two invariant quantities will be discussed at length in the next chapter.

These new physical properties have new and important consequences,

especially for many-particle systems. For example, in common relativity if we

generalize the equation of motion (12.29) to a system of charged particles such

as a plasma, we have

d
p^ 11; dt ' i=1,2.... N , (12.48)

where tc is the common time for all particles and Fµ is the electromagnetic field

tensor produced by all particles except the ith particle. On the other hand, in

special relativity, one must use the proper time Ti of the ith particle to express

the covariant equations of motion,

dpi` a
=

Fµv dxvi
... N N. (12.49)i=1 2

do c (1) d, , .

A proper time Ti, i=1,2,...N, for each particle or the lack of a single evolution

variable for a system of particles appears to be incompatible with the notion of
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canonical evolution of a many-particle system and with the evolution of a

stochastic process . This will be discussed in chapter 13.

To summarize the new features of common relativity:

1. Common relativity offers a new simple picture of the physical world,

incorporating the four-dimensional symmetry of physical laws while retaining

our intuitive picture of the physical world at one instant of time.

2. Within the four-dimensional framework , common time tc resembles

Newtonian absolute time because it is a universal time for all observers.

However, it is not unique as shown in equations (12.4) and (12.12) and,

therefore, not absolute in the sense of the Newtonian concept of time.

3. Common time is essentially the same as the intuitive common-sense

time which is taken for granted by people in daily life. If one uses this common

time in the three- dimensional symmetry framework of the Galilean

transformation, one gets experimentally incorrect results. However, common

time within a four-dimensional symmetry framework is consistent with all

known experiments.

4. When we perform experiments and observations, the external world

appears three-dimensional to our consciousness at each instant of time. Such

intuition about the physical world is lost when one employs the conventional

four-dimensional framework with the relativistic time to many-particle

systems. In particular, the concept of a Hamiltonian system with many degrees

of freedom breaks down, and one can no longer have the notion of canonical

evolution of a many-particle system because of the lack of .a single time for all

particles or all frames of reference .4 As the result, one cannot derive the

invariant Liouville equation in special relativity. However, one can derive the

invariant Liouville equation in common relativity.

5. Common time allows new concepts to be naturally introduced in

common relativity that is impossible to do in special relativity. In particular,

common relativity has a new invariant quantity which we call the "genergy" G

which is closely related to the energy of a particle. It allows us to have fuzziness

at short distances and to define an invariant temperature. In particular, we can

have an invariant Planck law for black-body radiation, in contrast to a non-

invariant Planck law in special. relativity. Thus, one may have to discuss the

small anisotropy in the cosmic back-ground radiation based on reasons other

than the 'absolute' motion of our solar system in the cosmic radiation.5
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13.

Common Time and Many-Particle Systems
in a 4-Dimensional Symmetry Framework

13a. Problems of Relative Simultaneity for Many-Particle Systems

In classical mechanics, the motion of a many-particle system can be

described in terms of the position of the center of mass rc, which has a well-

defined Galilean transformation property. Yet, in the usual relativistic

mechanics, one does not have a well-defined concept of the center of mass for a

system of particles because the moving mass is not a constant. The center of

energy RCE defined by

RCE = E Etrt
i Etot

Ftot=JEk,
k

in special relativity corresponds to the center of mass rc in classical physics,

where Ei and ri are the relativistic energy and position vector of the ith

particle, respectively. Clearly, RCE reduces to rc in the nonrelativistic limit

because Ei becomes the mass mi . However, the components of RCE do not

transform as components of a 4-vector under the Lorentz transformations. A

similar situation occurs with the total momentum

Pp=EPig

which is not a 4-vector in general. The reason is that the sums Pµ are, in fact,

sums of the values of pip at a given instant in the given frame. However, in a

different frame these values are no longer the momenta of each of the

individual particles at the same instant. Therefore, when one transforms the
total momentum P. to a new frame F', one has not only to form

lP'ip ,

according to the 4-vector rule, but also must recalculate these quantities

167
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appropriately to the simultaneity of the F frame.1 Only for noninteracting

particles is the sum P. a 4-vector because each pj is constant.

Apart from these problems , there are other difficulties within the

framework of special relativity:2

(i) The concept of a Hamiltonian system with many degrees of freedom

breaks down because of the lack of a single time for a system of N particles. The

relativistic time appears to be incompatible with the notion of the canonical

evolution of a many-particle system and with the evolution of a stochastic

process.

(ii) Since the notion of a 3-dimensional spatial volume is not a covariant

concept, the uniform density in configuration space is not normalizable.

These properties lead to several difficulties in treating many-particle

systems within the conceptual framework of special relativity because, in sharp

contrast to Newtonian mechanics, it does not have a single time which is

applicable to all particles or to all inertial frames of references.2,3

In contrast , common relativity does not have these difficulties. It is the

natural and unique four-dimensional generalization of the classical three-

dimensional framework with one single time . As demonstrated in chapter 12,

common time is universal but not unique and, hence, differs from the

Newtonian absolute time. However, it provides a universal simultaneity, just

like the absolute time in classical mechanics . As a result , common time

embedded in a 4-dimensional symmetry framework enables us to formulate the

Hamiltonian dynamics of a many-particle system and to define an effective and

invariant 6-dimensional µ-space and 6N-dimensional phase space for a

covariant statistical mechanics, in sharp contrast to relativistic time.3

We stress that the assumption of common time in space- lightime

necessitates the existence of the ligh function b in a general inertial frame, b=

xo/tc=w/tc, which transforms as the zeroth component of a 4-vector because the

common time tc is a scalar . This is important because the ligh function b

enables us to define an invariant volume VI in a general inertial frame:

Vi = f CO1 d4xS(tc - b) = J fib) dxdydz, co = c , (13.1)

where d4x=dxodxldxzdx3=dxodxdydz and the scaling constant cox is introduced to

preserve the usual dimension of the volume vi. Note that there is no restriction
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on the zeroth component x0 in d4x=dx°dxdydz, just as x0 v in equations (7.1) and

(7.4) within taiji relativity . The 8-function in (13 . 1) imposes on x0 a restriction

such that one has common time for all inertial frames. Since both b and x0

transform as the zeroth component of the coordinate 4-vector, the condition

imposed by the 8-function , i.e., tc-x°/b=0, is invariant. This can be seen as

follows:

From the expression for N and the constraint [tc -x'0M/(b'N)] = 0, one can obtain

the relation between M and N, N=1/[1-px'/(x'OM)]. Thus one has

_ x'0M _ x'0M[1 - px'/(x'OM)]
bN - b'

[x'0(1 + fix'/xb) - Px'] x10
= tc - b' = tc - '

It follows from (13.2) and (13.3), that the volume element dVI = ca ld4x8(tc -k°/b)

=(IbI/c0)dxdydz is invariant under the 4-dimensional coordinate transformation

in common relativity. The numerical value of co in a general inertial frame is

defined to be identical to the speed of light in F, c0=c=b, so that VI is the same as

the usual volume in the frame F. Even if the speed of light is not isotropic in an

inertial frame F, one can still make this definition without violating the 4-

dimensional symmetry of common relativity because co is just a scaling

constant. In the F'-frame, an invariant integral involving dVI=(Ib'I/c)dx'dy'dz'

is, in general, not simple for carrying out calculations because of the ligh

function W. Nevertheless, we can always transform to the F-frame, in which

b=c and dV1 =dxdydz, in order to calculate invariant integrals.

One can also understand the new invariant volume dV1 in (13.3) as the

volume of the parallelepiped in the space-lightime defined by four vectors aµ,

bv, ca, and dp:

dVI = e9`'00 aµbvcdp, (13.4)

where aµ=(b/c0i0,0,0), b„=(O,dx,0,0), ca=(0,0,dy,0) and dp=(0,0 ,0,dz). It is the same

as the invariant expression (13.4) provided aµ, bv, ca , dp are vectors lying in the
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direction of the coordinate axes and of length dw, dx, dy, dz, respectively. And

the hypersurface dYY in the 4 -dimensional space-lightime,

dFl1= (dLO,dE1,d12,d13) , (13.5)

transforms like a 4-vector, where dE°=dxdydz is equal to the three dimensional

volume element. Geometrically, the 4-vector dzµ is equal in absolute magnitude

to the "area" of the element of hypersurface and is in the direction

perpendicular to all lines lying in this element.
The existence of the invariant volume Vi is important to four-dimensional

thermodynamics and statistical mechanics. It enables us to define the notion of

a box (or a 3-dimensional spatial volume) and to normalize the uniform density

in configuration space.

13b. Invariant Hamiltonian Dynamics and Phase Space

In order to see what new quantities are covariant under the common

relativity transformation and properties of the invariant 6N-dimensional phase

space, let us briefly consider kinematics and the invariant Hamiltonian

dynamics. The invariant "action function" for a free particle is assumed to be

S= - fmds=- Jm v►`vµ dt JLdtc,

m / = =-m C2-v2, (13.6)

where ds2=dw2-dr2=(C2-v2)dtc2 and C=dw/dtc in a general inertial frame. The 4-

momentum pµ of a free particle is defined as

pµ a L - mvµ/C = Gvµ, vµ = (C,-v) , vµ = (C,v) , ( 13.7 )
i)Vµ 1-v2/CZ

where pµ has the dimension of mass . Note that (13.7) is consistent with the usual

definition of momentum p=aL/av . Also, although mvµ is a 4-vector, but it is not

the physical momentum. The quantity G,
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G= In
C2_v2 C C '
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(13.8)

is an invariant because it is the ratio of corresponding components of two 4-

vectors, pµ and vµ, with px/vx=p°/C. Its invariance can also be seen from (13.7)

because pµ and vµ are 4-vectors with the same transformation properties in

common relativity. We call G "genergy" because it is equivalent (except for a

multiplicative constant ) to the conserved energy pa in the F-frame, in which

C=c so that the conservation of energy implies the conservation of the invariant

genergy. Since special relativity does not have a four-velocity measured in

terms of a scalar common time, it does not have an invariant corresponding to

the genergy (13.8).

With the help of the invariant genergy G, we can define the four-

coordinate RP of the "center of mass" for an N-particle system in common

relativity,

Rµ-Qµ*

C EGk
Qµ* = tGixf . (13.9)

The spatial components Rc can be satisfactorily identified with the relativistic

center of mass for a system of particles in common relativity . It can be verified
that Rc reduces to the classical center of mass when the velocities of the

particles are small. Similarly , the total momentum

Pµ = ^Piµ

in common relativity is a 4-vector because the common time gives us a

universal definition of simultaneity which is applicable to all observers or all

inertial frames of reference.
Let us consider N charged particles with mass ma, a=1,2,. .., N, within the

framework of the common-relativistic Hamiltonian dynamics .3 We begin with
8N-dimensional "extended phase space " with the basic variables xav , pav, to

define the Poisson brackets and the generators of the Poincare group.

{X`a, xvb} = 0, {x a, Pvb( = gµvsab , {Pµa, Pvbl = 0, (13.10)
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where

We impose 2N constraints of the form

Ka . (Paµ - e aaµ )2 - mat = O ,
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Xa^= (wa,xa,Ya,za)

Za(Xa°,tc) = Xa° -batc = 0, (13.11)

where Paµ is the canonical momentum 4-vector, Paµ = paµ - eaaµ, and aaµ is the

electromagnetic potential acting on the particle a . Thus, we end up with 6N

basic independent variables . The Dirac Hamiltonian is

HD = WaKa, (13.12)

where Wa is determined by the constraints Za=O which must hold for all time tc,

i.e. dZ/dtc=O.

The Hamiltonian equations of motion with common time tc are then3

dxa;L = {xaµ,HD} _ a HD

where

Wa= Aab atc

aµ = {paµ,HD} a , (13.13)

Aab{Zb,Kc} = sac

One can verify that Hamilton 's equations of motion (13.13) with the Dirac
Hamiltonian HD in (13.12) and the constraints (13.11) lead to the equation of

motion for a charged particle,

dpi --
dtc a vav , a=1,2,...N, (13.14)

Ca(Pav - eaav)

vav = (Pa° - eaa°)
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dZa(xa°,tc) = dxa° - dba )(d dtc = dxa° - Cadtc,

Sac
Aac=

2(Pa° - eaa°) '

Wa=
2(Pa° - eaa°) '

aZa
atc
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where a is not summed. The resultant equation of motion (13.14) is the same as

that in (12.29), as it should. Thus, the evolution of the N-particle system in

terms of the common time tc is completely determined by Hamilton's equations

(13.13) and the initial data, i.e., the initial momenta and positions of the

particles.

A basic unsolved problem in statistical mechanics based on special

relativity is the phase space. In general inertial frames, it appears impossible to

have a meaningful and Lorentz-invariant phase space related to initial data at a

given time for all observers in different frames, in contrast with the classical

case based on Newtonian laws. In Newtonian physics, observers can, in

principle, perform measurements at a given absolute time. Thus one can

specify a system of N particles by the vectors (gl,•••,gN,Pl.....PN) which span the

phase space of the system.

In common relativity, suppose that there is a clock and an observer at

each point in space in every inertial frame. The F-frame observers can

perform instantaneous measurements of r and v for each particle at a given

common time tc using the nearest clock so as to remove the need to account for

the finiteness of the speed of light. Thus, we have the data of coordinates and

momenta of particles (ra,pa), a=1,2,..., N, at common time tc. These data and

dynamical equations completely determine the evolution of the system. Of

course, the data can also be transformed to another frame F using the space-

lightime transformations which relate

and

(ct, ra) and (c,va) in F, a=1 ,2,..., N,

(b'at, r'a) and ( c'a,v'a ) in F, a=1,2,..., N.

The initial positions and velocities of the particles in F can also be directly
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obtained by the F' observers by measuring r'a,v'a and computing b'a and c'a

with the help of eq. (12.4). In this way, we have global knowledge of the whole

system at a given instant of common time in statistical mechanics based on

common relativity.

With the help of (13.3) and (13.11), we can define in it-space an effective

six-dimensional volume element (for particles with mzO)

dµ = d4x s(b - 4) d4p &(pX2 - m2) 0(p°)2G , (13.15)

which is an invariant because the common time tc, the rest mass in, the genergy

G of a particle and the ratio x°/b are all scalars in common relativity. In the

particular frame F, one can see that eq. (13.15) reduces to d3xd3p by carrying out

the integrations over x° and p°. The 6N-dimensional phase space in common

relativity has the invariant volume element

7N-
di'=11 dµa.

a-i

(13.16)

The physical and independent variables in phase space are the only

really important ones. We can eliminate the nonphysical variables from the

theory by using the constraint equations. However, the elimination may be

awkward and may spoil the four-dimensional feature in the equations;

therefore, we shall retain the possibility of constraint equations in general

theory. That is, we treat the N-particle phase space as an invariant 8N-

dimensional extended phase space with 2N invariant constraints (13.11). In this

way, we have, effectively, a physical 6N-dimensional phase space which is

invariant under space-lightime transformations.

13c. The Invariant Kinetic Theory of Gases

Let us consider kinetic theory based on a one-particle distribution

function Dl(xA,tc) and a kinetic equation for D1(x^,tc) within the framework of

common relativity. In order to show explicitly the 4-dimensional symmetry of

the theory of gases, we use xA=(xµ,p ► ), where pµ is the 4-momentum of the

particle in (13.7), as the coordinates of the extended µ-space, i.e. the one-
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particle phase space . The reason for this is that the 4-dimensional

transformations of coordinates can only be expressed in terms of the Cartesian
coordinates xµ. The invariant time -dependent distribution function Di(x^,tc) in

the µ-space is normalized by the expression

f Dl(x^,tc )dµ = ID*d4xd4p = N,

D* - Di (xA,t) 8(tc - b) 8(px2 - m2) 0(p°)2G ,

(13.17)

where dµ is given by ( 13.15) and N(tc ) is the number of particles in the gas at

time tc. The function D*d4xd4p/N can be formally interpreted as the probability

of finding the particle at common time tc in the volume element d4xd4p around

the point xA in the 8-dimensional space . If one carries out the integration over
x° and p° from -- to +00, then [( 1/N)ID*dx°dp°]d3xd3p is the probability of

finding the particle at time tc in the spatial volume element d3x around the point

r and has values of its momentum in the region d3p around the point p.

This is in sharp contrast with the usual relativistic kinetic theory in

which the distribution D' is normalized on a six-dimensional manifold through a

current4

f D'2pµe(p°)8(px2-m2)d4pdz = N, (13.18)

because of the lack of a single evolution variable for a system of particles. In

other words , the usual relativistic kinetic theory is a statistics of curves rather

than a statistics of points . In the conventional theory, such a six-dimensional

manifold is , in general , not meaningful because of the arbitrariness of E (except

the case when the current is conserved ) and that the distribution D' is actually

not the probability density.2

The invariant distribution D1(x^,tc) is a function in the eight-dimensional

space with the property (13.17p The common-relativistic one-particle 11ouville
equation for the invariant distribution Dl(x^,tc) can be derived by considering

the eight-vectors xA( tc) of the particle coordinates , the corresponding velocities

dXA(

xA(tc) _ dttctC ) = (xµ(tc), pµ (tc)) = (vµ, D`) , (13.19)
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and the current density jA(xA,tc),

jA(XA,tC) = Di(XA,tc)XA(tc)•
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(13.20)

The current density jA(xA,tc ) satisfies the continuity equation in the eight-

dimensional space

atc Dl(xA,tc) + aXA [Dl(xA,tc) XA(tc)] = 0 . (13.21)

Using Hamilton 's equations of motion (13.13), we have

aicA a allD a aHD
0

(13 22)_
'axA = axp aPp + app axp =

.

and, therefore, we can write (13.21) as

atc Di(x ,tc) + [vp axp + W app ] D1(xA,tc) = dtc Dl(xA,tc) = 0 . (13.23)

This is a simple example of the Uouville theorem, to be discussed in section 13d

below . Clearly, if the one-particle distribution does not depend on tc explicitly,

i.e., D1=D1 ( xA), then we have an invariant distribution D1(xA) which obeys

equation ( 13.23 ) without having the first term.

In order to see its connection to the nonrelativistic case, we write the

invariant distribution Di(xA,tc) in the following form

DI(xA,tc ) = D(X°(tc ),r,P°(tc),P,tc)8( x° - x°(tc ) )S(p° - P°(tc)) , (13.24)

x°(tc) = btc , p°(tc) = PZ(tc)+m2 .

It follows from ( 13.23 ) and (13.24) that

aD +v•
al)

D
+ p• ap =0, (13.25)

because (a/atc ) S(x°-x°(tc )) 8(p°-p°(tc))=0 and
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D[vµ -i + FN -L ] 8(x°-x°(tc)) 8(p°-P°(tc))
axp

=5[:k°-
+ a8(x°-)°(tc)) 8(p°-p°(tc))

€[5°a +P° po1D}8(x°-x°(tc)) 8(p°-P°(tc)) , (13.26)

In the nonrelativistic case, we have Ip(tc)I - ImvI << p°(tc) - m and C - b - c in the

frame F, so that

3 3Ix°F°1 dµ = d xd p ,

!Di(xA,tc)8(xo - x°(tc))8(p° - P°(tc))dx°dpo

= D1(xA,tc)Ixo=btc; P°=P°(tc) = D(r,p,tc)

(13.27)

The last expression in (13.27) is the one-particle distribution in the classical six-

dimensional p-space (r,p) and it satisfies eq. (13.25). The non-relativistic

distribution D(r,p,tc) is the probability density of finding the particle at

common time tc around the point (r,p) in the F frame in which C=b=c.

A general 4-dimensional kinetic equation for a non-equilibrium gas is

given by

(--+v'- +w--µ)D1=P(D1), Di=Di(xA,tc), D`=de, (13.28)

where P(D1) is given by Boltzmann's collision postulate (i.e. the variation of Dl

per unit time due to collisions, see eq. (13.78) below) and it should fulfill certain

requirements.5

Once the solution of the kinetic equation (13.28) is obtained, one can

compute the energy-momentum tensor of the relativistic fluid in the theory:
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Tµy(x) = jd4p20(pO)8(px2-m2)pPproi(xA) , PA = m = Gvµ. (13.29)

The explicit knowledge of this tensor implies the equations of relativistic

hydrodynamics based on common relativity.

The average value of a measurable quantity Q( x,p) is defined as

<,Q(x,P)> = JQ(xP)D1 (xP)dµ , x^ = (x,P) • (13.30)

The particle current density j ►1(x) in the 4-dimensional spacetime can be defined

in terms of j ►1(x,p)=D1(x ,p)v►1 in ( 13.20) with A=0,1,2,3, as follows,

j11(x) = jd4p2G9(P°)8(PX2-m2)Dl(x,P)v11, Gvµ = p ►1. (13.31)

Also, the invariant density of a fluid can be defined as

JD1(x,P)8(PX2-m2)2G9(p°)d4p . (13.32)

This can be verified in the simple case where D1(x,p) = Ap(x)exp(G/s).

In the presence of the external electromagnetic-field tensor )1V, when

P(D1)=0 and aD1/atc=0, (13.29), (13.28), (12.29) and Gv ►1= pµ lead to

aµTµv = jµ(x) fl ►v , (13.33)

where jµ (x) is given by (13.31). Clearly, the result (13.33) reduces to the

conservation law a,T►1y=0 when fµv= 0.

13d. The Invariant Liouville Equation

We consider the Gibbs ensemble of similar systems of N particles, i.e.

identical in composition and macroscopic conditions, but in different states. (cf.

section (13e) below) Such an ensemble is represented by an invariant N-

particle density function DN(xa ,tc)spj(xa,pa,tc), a=1,2,...N, which is normalized by

the relation
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f p1(xa,Pa,tc)dr = J
I
P*b ld° °Pb = N, (xa,pa) _ (4,pa) , (13.34)

P*0 NP1(xa,Pa,tc) n 8(tr-xoa/ba)S(Pa - ma )$(Pa )(2Ga) ,2 2
a-i

(13.35)

where dr is given by (13.16). The density pi satisfies the continuity equation

(13.36)

where both a=1,2,...,N and µ=0,1,2,3, are summed over. With the help of the Dirac

Hamiltonian and eq. (13.13), we are able to obtain one single 4-dimensional

invariant Liouville equation in common relativity,

latc + aax
+ laaa p a )P, dtcPi-0,

a
(13.37)

for a system of N particles . We note that , in the framework of special relativity,

one can only obtain N one particle Liouville equations2 rather than one single

invariant Liouville equation:

a dxb̀ a dp^ a d
^5 b + dTb ax + dTb apab / Pl(xb,Pb ,2b) = dTb Pl(xb,Pb ,ib) = 0

b is not summed, b=1,2.... N ,

(13.38)

where rb is the proper time of the particle b. The basic reason for this property

is the absence of a universal (or common) time for all observers in special

relativity . As a result , within the framework of special relativity , there is no

notion of the canonical evolution of an N-particle system and the entire history

of the system of N particles is represented by an N-dimensional manifold rather

than a one-dimensional manifold.

With the help of (13.35) and the relation ( 13.26 ) for each particle, the

Liouville equation ( 13.37) takes the more familiar form
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a
atc + a

^,va'ara +
a
J:Fa. )P=O,

N
P1(xa,Pa,tc) - P(xa(tc),ra,Poa( tc),Pa,tc) n S(x , - x^i(tc)^S^P^i - P^i(tc)^

b-1

(13.39)

0

xa(tc) = batc , pa(tc) = Pa2(tc)+m2 , Ga = Pa ) , (a is not summed),

where the explicit four-dimensional feature of (13.37) has been spoiled.

However, the 3 -dimensional form in (13.39 ) is the same as the usual Uouville

equation in the nonrelativistic 'limit.
The ensemble average of a measurable property f(xa,pa ) of a system is

defined by

<f(xa,Pa)> =
f f(xa,Pa)P,(xa,Pa)dF

JP1(xa,Pa)dr
(13.40)

Relations poa= Pa+ma and xoa=batc are understood in the functions p(xa,Pa,tc)

and f(xa,Pa) in (13.40).

13e. Invariant Entropy, Temperature and Maxwell-Boltzmann

Distribution

Let us consider the distribution of momenta of a relativistic gas at

equilibrium in a box having the invariant volume (13.2). Suppose one divides

all the quantum states of an individual particle of the gas into groups denoted by

i=1,2,3..... Each group contains neighbouring states (having neighbouring

genergies .) Both the number of states wi in group i and the number of particles

ni in these states are very large. Then the set of numbers ni will completely

describe the macroscopic state of the gas. Each particle in group i has an

invariant genergy Gi. They satisfy the conditions

ni=N, niGi=Gtot. (13.41)
i i
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Putting each of the ni particles into one of the wi states, one obtains (wi)ne

possible distributions. Since all particles are identical , these possible

distributions contain some identical ones which differ only by a permutation of

the particles . The number of permutations of ni particles is nil . Thus the

statistical weight of the distribution of ni particles over wi states is (wi)ni/nil.

We define the entropy Sc of the gas as a whole to be

Sc = Y, In Ari , Ori = (Wl)ni/(ni!)
i

(13.42)

When the gas is in the equilibrium state, the entropy of the system must be a

maximum . Suppose the average number of particles in each of the quantum
states of the group i is denoted by ni> , i.e., <ni>=ni/wi. One can find those mj>,

which give Sc in (13.42) its maximum possible value subject to the conditions in

(13.41). By the usual methods of maximization of Sc and the Lagrange

multipliers , we obtain the most probable distribution

ati> = A exp [-Gi/t] , (13.43)

where A is a normalization constant and r is a "scalar temperature ." We stress

that <ni> is an invariant function and can be used to define invariant

thermodynamic quantities .3 (For a derivation of the form (13.43 ) with the

genergy, see also equation (13.95) below.)

Similarly, we can obtain the invariant Maxwell-Boltzmann equilibrium

distribution (normalized by (13.17))

Dir(p) = BN exp[-G/t] , (13.44)

with

pz+mz
G= C , B=4 pm2ViccK2(m),

where Kv(z) is the Bessel function of imaginary argument and can be expressed

in the terms of the Hankel function Hvl^(iz ): KK(z)=(ai/2)exp[-iwv/2]HWWW(iz). In

the nonrelativistic limit, we choose the frame F in which C=c and make the
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approximation of large mass m or p2+m2 - m+mv2 /2c2. We have

Nexp[-m/cs - p2/2mct]
- V1 4sm2cr xc exp[-m/cs]

N/V1
axP[-mvz/2c3s](2nc)3izm

(13.45)

Comparing it with the usual Maxwell-Boltzmann distribution - exp[-mvz /2kBT],

we see that the invariant temperatures is related to the usual temperature T and
the Boltzmann constant kB by the relation ( in the F frame):

Ox = kBT. (13.46)

Note that the concept of invariant temperature r is closely related to the fact

that the genergy G of a particle is invariant and proportional to the energy in

the frame F. In special relativity, the usual procedure is to introduce an inverse

temperature 4-vector for the invariant form of the Maxwell- Boltzmann

distribution. However, it is not at all clear that such a notion of a temperature 4-

vector has any physical meaning.2

13f. The Invariant Boltzmann-Vlasov Equation

For a non-equilibrium gas, one may describe the system in terms of the

coordinates xµ and velocities vP of the particles which comprise it. Suppose the

system is described by the distribution f(xµ,vµ). The rate of change of the

distribution f(xµ,vµ) in a general inertial frame is given by the invariant

equation

df d, of dvµ of of of
dtc dtc axµ + dtc avµ vµ axµ + W avµ

dxA
xµ = (btc,x,y,z) , = vµ = (C,v) , d4 = d1= (a0,a

) , C = d(dbt )

(13.47)

where the velocities vµ and accelerations aµ are 4-vectors in common relativity

because physical common time tc is a scalar. The physical meaning of the
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distribution f(xµ,vµ) can be seen from the following invariant relations

Jf(xµ,vµ)d4v8(s2_C2+v2) = n(xµ) = n(btc,x,y,z) , (13.48)

ds z dw z dr z dw d(btc)
S2 (d4) (dtc) = C2-v2, and dtc = dtc = C'

where n(btc,x,y,z ) is the number of molecules per unit volume at the time t and

position r=(x,y,z ) in a general inertial frame. The function 8(s2-C2+v2) is an

invariant constraint of the 4-dimensional velocity integration Jd4v. This is the

same as a mass-shell constraint , 8(pj,2-m2 ), in the momentum integration Jd4p.

In the framework of common relativity, we have, by definition, the simple

familiar form of the density function n(t,x,y,z) of molecules because of the

relation b=C=c=constant in the frame F. In a general inertial frame, by

integration over invariant volume given by (13. 1), one has the total number N

of the molecules,

Jn(xu)dVI = N, (13.49)

which is a constant, independent of the common time tc and the reference

frame.
If the molecules do not collide, then one has df/dtc = 0, i.e.,

v,, of + CP of = 0
, f = f(xµ,v►') . (13.50)

NA avµ

This is a special case of the Houville theorem. If the molecules collide with each

other, then df/dtc is not equal to zero and can be understood based on

Boltzmann 's collision postulates

For a high temperature plasma, let us consider the generalized 4-

dimensional Boltzmann-Vlasov equation based 'on common relativity. Vlasov

first used the equation for the plasma. The equation in a general inertial frame

is assumed to have the form of (13.50) with the acceleration aµ=(a°,a ) of charged

particles expressed in terms of the electromagnetic fields:

=0, (13.51)Ca(btc) + v • af + ac(E,B,v) af + a(E,B,v ) • af
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where f=f(btc,r ,C,v)mfl is the one-particle distribution function . The relation

between the 4-acceleration aµ=(a°,a) and the electromagnetic fields can be

obtained from the equation of motion (10.20) with the 4-coordinate

xµ=(w,r)i(btc,r) and the 4-dimensional transformations in common relativity.

The equation of motion of a charged particle can be written as

el"dsv or d = eP&°a^°,

where xp=(btc,-r) and

dxIL
PI` = n► ddss = (P°'P) = mpz FJT2

(13.52)

(13.53)

The fourth component of the equation of motion in (13.52) is not independent of

the three spatial components. The three independent equation of motion can be

written as

d = e(CE + vxB) .dtc
(13.54)

Using the expression of p in (13.53) and dvµ/dtc=(dC/dtc,dv/dtc)=(a°,a), eq.

(13.54) becomes

(a + yz
0

C(va)] - my = e(CE + vxBC ) , y= 1 -1vz/Cz (13.55)

Now let us consider the Boltzmann-Vlasov equation in the F frame, in

which the speed of light is constant , i.e., a° =C=O or C=c=constant. One can solve

for the acceleration a in terms of E and B by letting a= Z1(CE + vxB) + Zzv(vE)

and using ( 13.55 ) with t = 0 to determine Zl and Zz. We obtain

a = e-mcy
( cE + vxB) + e v(vE) , C=O. (13.56)

Thus, the generalized 4-dimensional Boltzmann-Vlasov equation based on

common relativity can be written as
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a +var +€ mY(cE+vxB)+ mYv(v•E) •af =0, (13.57)

in the F frame. If the second order terms in (v/c) are neglected , equation

(13.57) reduces to the'usual Boltzmanlt-Vlasov equation,

of + v of + ec2 (E + vxB ) • of =0.
atc ar m c av (13.58)

Let us consider another inertial frame F' in which the speed of light c' is

not a constant, (= 'x0 . To be specific , ( 13.55) is written in terms of primed

quantities measured by observers in the F' frame,

Ml^ [ a' + Y'2 2 (v'•a')] - mY' v3 c;2 = e(c'E' + v'xB') . (13.59)

The quantity ao = c' in F' can be solved by multiplying (13.59) with V. We obtain

v'•a' e v
12 2 13 v

Y 1-v'2/
c'2 • (13.60)

Substituting (13.60) into (13.59), one has

MYT,c [ a' +
1

ZC,2 v'-a' )] - ,ZC, ( E '-v') = e(C'E' + v'xB') . (13.61)

One can solve for the acceleration a' in terms of E' and B' by letting a' = Y1(c'E' +

v'xB') + Y2v '(v'•E') and using (13.61) to determine Yl and Y2. One finds that

ao={ mY,+Y2}v'•E', and

€c'E' + v'xB' + Y2 C, ( E'•v')}

(13.62)

where the function Y2 cannot be determined because we have four unknown

variables and there are only three independent equations of motion.

Fortunately, the 4-acceleration aµ in F and a'µ in F' must be related by the

following 4-dimensional transformation:
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ao = y(ao + Paz) , ax = Y(ax, + Sao ) , ay = ay' , az = az . (13.63)

For simplicity, let us consider the y-component in (13.63). From (13.56) and

(13.62), we have

my (cE + vxB)y + e vy(V E)

ec' v= my' { (c'E ' + v'xB')y + Y2 -1 Y, (E'-v')} (13.64)

Based on the transformations for E, B and vµ in equations (12.33) and (12.9), one

can show that

eC 2-V2 c2-y,2 = eC
my m m my' '

( cE + vxB)y = (c'E' + v'xB')y, and vy = vy .

It follows from (13.64) and (13.65) that

Y2=-
ec (E•v)/c
my (E' v')/c'

(13.65)

(13.66)

If one wishes, one may express c/y and (E.v)/c in ( 13.66 ) in terms of quantities

measured by observers in the F' frame with the help of the transformation

properties of (E•v)/c (or the 4-vector in (13.73) below) and the invariant c2-v2

c'2-v'2 . Note that this function Y2 can also be obtained from other relations

in the transformation (13.63) for the 4-acceleration aµ in common relativity.

Thus, the 4-acceleration a'µ is completely determined by (13.62) and

(13.66),

Y

( )2

(13.67)
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Thus, the generalized Boltzmann-Vlasov equation (13.51) in the F' frame can be

written as

S E)) ofatc +v ar'
+ m

ec '
y tv•E-c (vc Sac'a

+ ec' C (c'E' + v'xB') - e ,
v' (v•E) af', =0, (13.68)

MY, my' c av,

where f'=f(b'tc,r',c',v'). Since (v•E,cE+vxB) and (c,v) are 4-vectors, the

quantity (v.E)/c in (13.68) can be expressed in terms of the primed quantities

v', E', B' and c' measured by observers in F' by using transformations (12.9) and

(12.33). Nevertheless, it is convenient to leave the unprimed quantity in (13.67)

and (13.68). Using the velocity transformation (12.9), one can also show that the
accelerations aµ=(O,a) in (13.56) and a'µ in (13.67) are related by the 4-

dimensional transformation.

Furthermore, (13.56) and (13.67) give

a02 -a2 =-€ ec (cE+vxB)+ v(v•E)1 2my my

_- ( my ^2 (V-E)z[(cE + vxB)2 - (vE)z - y2 (13.69)

where ao=0, y =1/ 1-vz/c2 , and

(-M=T-,
ec' z r (v.E)]2 (V•E) z

a^0 - a'2 = ) I LV'.E' - c' C J - [(C'E' + V'XB') - V' c J '

_ - ( )2€(c'E '+ v'xB')2- (y2 - (v'•E')zI, (13.70)

where we have used the invariant relation c/y = c'/y'. Note that the unprimed
terms (v•E)2/y2 in (13.69) and (13.70) are the same . Thus, the invariant relation

a2-a2= - a2=a2-a'2
0 0 (13.71)

is equivalent to the invariant relation
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(cE + vxB )2 - (vE)2 = (c'E' + v'xB')2 - (v'•E')2. (13.72)

This is not surprising because

dpil
F►1° d̂ B)E Etc + vx= e((v. ), (c )= e (13.73)

is a 4-vector in common relativity . It is stressed that the acceleration is the

quantity with the simplest physical properties in common relativity because of

the presence of the common time tc and the 4-dimensional symmetry.

13g. Boltzmann 's Transport Equation with 4- Dimensional Symmetry

For the classical kinetic theory of dilute gases for a system of N molecules

enclosed in a box of volume VI, we are interested in the invariant distribution

function f under a 4-dimensional transformation. Let us define the distribution

f as a function of the coordinates and momenta, (xµ,p°)=(x,p), instead of a

function of the coordinates and velocities (xµ,vv). Such a definition of f(x,p) will

make the 4-dimensional symmetry more explicit, as we shall see below. In a

general inertial frame, the invariant volume element in the It-space given by

(13.15) can be rewritten as

dR = d4x 6(b - tc) d4p 6(px2 - m2 ) 0(p°)(2G)

= d3xdx° s(b - tc)d3pdp° s(pX2 - m2) O(p°)(-po

The distribution function f(x,p) is defined so that classically, the number of

molecules dN in a volume element d3x about r and within a momentum space

volume element d3p around p at common time tc is given by

dN= J f(x,p)dµ= f f(x,p)dV1 d3pC , (13.74)
[x°P°l

Vg(tc- b), (13.75)d Jd4x
1x01
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dap C - 22po (2Gco) . p1D = p2+m2 , (13.76)

where integrations over x0 and p0 have been carried out in (13.74) and co is a

scaling constant defined in ( 13.1) to give the correct dimensions for dV1 .

Note that both dV1 and d3p(co/C) are invariant in common relativity and

that they are large enough so that dN is a very large number (1010) of
molecules . Nevertheless , the volume elements dV1 and d3p(co/C) are very much

smaller than macroscopic dimensions . Also, if the distribution f(x,p) is
independent of the position r, we have the usual relation , Jf(x,p)d3p =N/V, in the

inertial frame F(ctc,r) in which co=c=C and JdV1=V1 , where V1 is the volume of a

box. The distribution f(x,p) can be identified with D1 in (13.28) when D1 does not

depend on tc explicitly, f(x,p)=D1(x,p).

Let us consider equation (13.28) with the collision term P(D), where we

use D to denote the one-particle distribution function for the following

discussions,

( atc + vµ axµ +
W as

)D = P(D) , D = D(x,p,tc) , (13.77)

dtc
(CV) W=A

dtc tc ' dtc

where the collision term P(D)=(aD/atc) coil must be specified for (13.77) to be

meaningful. In order to have an invariant expression for the collision term

P(D), we use quantum mechanics to treat the scattering process. Although the

molecules are regarded as classical objects, "they see each other as plane waves

of definite momenta rather than wave packets of well-defined positions"6 in

scattering processes . By considering the collision process, p1+p2-,p j+p2,6 one

can express (aD/atc)coll = (aDl/atc)coll in the invariant form,

3 3 ' 4 , ,
P(Dl) _ (tc)cou 21320 2Pio 2p2o S (PI+p2-PI-p

x IMiiI2(Dj Dz - D1D2) , (13.78)

where Di=D(x,pi,tc) and D'i=D(x,pi,tc ), i=1,2. From equations (13.77) and (13.78),
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we have the 4-dimensional Boltzmann transport equation based on common

relativity:

a a a dp1° a dpi a
ate + C ) + V1' ar + dtc P10 + dtc • aPl A

J 2PO 2P

d3pi

io 2Pzo s4(P1+P2-pi-Pz )IMRl2(D1DZ - D1D2) • (13.79)

In the inertial frame F (ctc,r) in which b=c=C, if the distribution function

D1 is a function of x and p only,7 then the LHS of (13.79) reduces to a more

familiar form

aD1 aD1 dpl° aD1 dpi aD1
ate + v1 ar + dtc ap,O + dtc • aP1 D1=D1(x,p). (13.80)

Note that the third and fourth terms are not independent because of the relation

p1O= p12+m2 . However , it is more convenient to leave Boltzmann 's transport

equation in the form (13.80) [or the LHS of (13.79)] to have an explicit 4-

dimensional form. We also note that (dplo/dtc) is smaller then Idp1/dtcl by a

factor v/c, as one can see from (13.73). Thus, if the velocity v=IvI is much

smaller than c, (13.80) reduces to the usual form:

d +ml•ar +dt •ap1
(13.81)

In this connection, it is worthwhile to note that if the Boltzmann-Vlasov

equation for high temperature plasma is expressed in terms of the distribution

function D1(x,p), we have

a(b c) +Po • art + P ap° + eE+ p
ero • apt =0, (13.82)

P

in a general inertial frame, where we have used the following relations

_ 2 _ m mv/C v -
Po P2+m 1-v2/C2, 1-v2/C2 ' C Po ' (13.83)
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1 dpo __ eE•v - e2 1 2 - e(E + "E)C dt C po ' C dtc Po

13h. Boltzmann 's H Theorem with 4-Dimensional Symmetry

(13.84)

In common relativity , the invariant Boltzmann functional H(tc) can be

defined in terms of the invariant distribution D(pµ,tc )=D(p,tc),

H(tc) = JD(Pl,tc)ln D(P1,tc) 2Pio P10 = p12+m2 , (13.85)

where the invariant distribution D is assumed to be a function of the 4-

momentum pig and common time tc and which satisfies8

3 3 3 4

(atcl^ 2P2o 2Pio Po S (P1+P2-Pi-Pi)

xIMFI2(DiDi - D1D2) , D1 = D(P1,tc) (13.86)

Note that both the distribution D1 and d3p1/(2P1o) are invariant. It follows from

(13.85) and (13.86) that

dH(tc) __ d3P1 d3Pz d3Pi d3Pi 84(p, +P2-P'-P2)
dtc 2Pio 2P2o 2Pio 2P2'o

xIMFR(DiDi - D1D2)(1 + In D1) . (13.87)

Note that the transition matrix Mf is invariant under the interchange of Pi and

Pz, so that the integrand in (13.87) is unchanged under plf+P2. From (13.87) and

the new expression obtained by P1 -+P2, we have

dH(tc) d3Pi d3P2 d3Pi d3Pi q
S (PI+Pz-P-Pi)

dtc __2Pio 2P2o 2Pio 2Pio

xIM f1I2(DjDi - D1D2)[1 + 2 In (D1D2)] (13.88)

For every scattering there is an inverse scattering with the same transition
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matrix Mfi. Thus, the integral (13.88) is invariant under the interchange

€P1,P21 H €P'1,P'2},

d3p, d3p2 ' d1WdH(tc
2P1o Po Ppo 2P 84(P1+Pz-Pi-P21)

xIMgI2(DiDz -D1D2)[1 + 2 In (DiDD)] . (13.89)

It follows from (13.

dH(tc) 1

88 ) and (13.89) that

f d3P1 d3p2 d3Pi d3pz g4(
z)dtc = 4 P1+Pz-Pi-P

2p;o 2P20 2Pio 2P2'0

xIM1I2(D1'Dz - D1D2)[ln (D1D2) - In (DIDD)] . (13.90)

Since the integrand of this equation is never negative, we have

dH(tc) 50 (13.91)
dtc

in all inertial frames.
We observe that equation (13.91) vanishes, i.e., dH(tc)/dtc=0, if and only if

the integrand of (13.90) vanishes identically. In other words, the condition

dH(tc)/dtc=0 is the same as

DO(PD)o(PD ) = Do(P2 ) Do(P1) , (13.92)

where D0(p) denotes the equilibrium distribution . This has an interesting

implication concerning the explicit form of the invariant equilibrium (or

Maxwell-Boltzmann ) distribution D0(p). Equation (13.92) leads to

In Do(p1 ) + In Do(pe ) = 1n Do(pj) + In D0(pz) (13.93)

for any possible collision process, P1+p2-'pi+p2. Thus the relation (13.93) can

be interpreted as a conservation law. Since the function lnDo(p ) is a scalar in

common relativity, the only quantity which is both a scalar and conserved is the

genergy G(p). In the F frame, in which C=c, we have G(p)=po/c= p2+m2/c.
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Clearly, the conservation of the genergy,

G(Pi) + G(p2) = G(pI) + G(Pz) , (13.94)

is the same as the conservation of the energy po in the F frame. Since the

genergy G(p1)=Pto/C1 is an invariant, the relation (13.94) holds for all inertial

frames. Thus, the only solution of (13.93) is

In Do(p) = -AG(p) + In B, or Do(p) = B exp[-AG(p)] , (13.95)

where A and B are arbitrary constants which can be determined by observing

the physical properties of a system.

In the literature , most of the formalisms on relativistic statistical

mechanics are not manifestly covariant. Some of them are, strictly speaking,

not covariant because of the approximations involved. Some formalisms lack
proof of their effective covariance.2

We have demonstrated some novel and interesting features of the 4-

dimensional symmetry framework of common relativity. This framework has a

considerable advantage over the usual spacetime framework with regard to the

formulation of statistical mechanics within a 4-dimensional symmetry

framework . The existence of a scalar common time tc, the 4-coordinate

(btc,x,y,z ), and the genergy G in common relativity is the key to preserving the

invariant phase space of initial particle positions and velocities , the concept of a

Hamiltonian system with many degrees of freedom , the Liouville equation and

the invariant Maxwell-Boltzmann distribution with a scalar temperature.
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where (aD/atc)coll is given by (13.78), and Z(x,p) denotes the conserved

quantity associated with the collision process p1+p2-, p i+pZ, i.e.,

Z(x,pl)+Z(x,p2)=Z(x,pi)+Z(x,pf). These results are useful for deriving

conservation laws of mass, momentum, etc. in hydrodynamics in a 4-

dimensional symmetry framework.

& This is equivalent to assuming that the distribution function D(pl,tc) in a

general inertial frame is independent of the 4-coordinate xµ and satisfies

Boltzmann's transport equation (13.28) without an external force, FK=O, and

with the collision term P(D1) given by (13.78).



14.

Common Relativity and Quantum Mechanics

14a. Fuzziness at Short Distances and the Invariant 'Genergy'

In quantum mechanics , there is a problem related to the non-square-

integrable coordinate representation because such a representation is

incompatible with the usual probabilistic interpretation. This problem suggests

the need for introducing fuzzy coordinates to modify physics at short distances.'
Furthermore , the introduction of fuzzy coordinates is also motivated by the

problem of locality and the related ultraviolet divergence in quantum field

theories. Fuzzy coordinates may be significant because an inherent fuzziness at

short distances is characterized by a radical length R . The radical length R is
related to the concept of a fundamental length RD in quantum field theory

which has been discussed long time ago by Heisenberg and by Dirac .2 Such an
inherent fuzziness is also related to Feynman 's idea3 of a basic width for a
modified 8-function for interactions . In 1949 , Dirac made the following
comments:

"Presentday atomic theories involve the assumption of localizability, which

is sufficient but is very likely too stringent ••• A less drastic assumption may

be adequate , e.g., that there is a fundamental length ) such that the Poisson

bracket of two dynamical variables must vanish if they are localized at two

points whose separation is space-like and greater than X, but need not

vanish if it is less than X."

Schwinger ,4 Feynman5 and Wigner6 also had a similar view.

Common relativity has a new invariant G(p)=p0/C= p2+m2/C, which is

called the "genergy ." In the F frame in which the speed of light is, by

definition , a constant, i .e., C=c, the genergy G (p) is essentially the same as the

conserved quantity , energy, p0= p2+m2 . This invariant genergy G(p) can help

a theory to realize the inherent fuzziness at short distances without upsetting

the 4-dimensional symmetry within the framework of common relativity. Note

that the genergy G (p) is clearly not an invariant quantity in special relativity.

195
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Thus, the presence of the genergy G (p) allows a possible departure of the 4-

dimensional symmetry of special relativity at short distances. This is but one of

the examples which show that there may be real physical differences between

common relativity and special relativity.

First , let us show the invariance of the genergy G by direct calculations

based on the 4-dimensional space-lightime transformations :1 The 4-momentum

pµ in (13.7) has the same transformation property as the 4-coordinate x1 (or

dxll) in (12.4) and, hence , satisfies the following transformations:

P'0 = 7(P° - PPx) , P'x = Y(Px - OP°) , P'y = Py , P'z = Pz , (14.1)

where the spatial component of the momentum is p=(px,py,pz )=(pl,p2,p3). It

follows from (14.1) and the velocity transformations (12.9) that the ratio p°/c is

invariant under the 4-dimensional transformations:

I = = G(P) , P'0 = P'2+m2 , P° = PzTM2 . (14.2)

Note that the genergy G(p) involves the spatial momentum vector p. This

invariance is quite interesting because it suggests an invariant function

involving p and a new universal constant I which can be related to a radical (or

fundamental ) length . The constant I allows us to define a dimensionless

function D(p) in terms of the scalar genergy G(p) associated with a physical

particle with a mass in,

1
D(p) = 1 + 12G2(p) (14.3)

We have seen that the constant I has the dimension of length/(mass-time). In

this way, D(p) is a pure number and may be related to a probability. The

constant I can be related to a radical length R defined by the relation

R=co (14.4)

where co is a scaling constant defined in (13.2). The presence of co in (14.4) may

appear to be artificial, but, there is a good physical reason for it:
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The units of length and time in physics are arbitrary choices . However,

the fundamental constant of physics should be independent of such an

arbitrary choice of units . The electromagnetic coupling strength ae-1/137 is a

truly universal and fundamental constant which is a pure number and, hence,

is independent of any choice of units. In contrast , the constant I in (14.3) has

the dimension of length /(mass •time) which indicates that its value is implicitly

affected by such arbitrary choices of units . The presence of co in (14.4) is

precisely to remove the unwanted effects due to such artificial and arbitrary

choices of units for time and mass. Consequently , the radical length R in nature

represents a basic physical quantity which is independent of the artificial

choices of units for mass and time . Of course , the numerical value of R still

depends on an artificial choice of units for length . However, it should be

stressed that the radical length R, if exists , should be regarded as the unit of

length chosen by nature rather than by humans . This has physical

significances , as we shall see later. Note that special relativity cannot have the

invariant relations ( 14.2), (14 .3) and (14.4).

14b. Fuzzy Quantum Mechanics with an Inherent Fuzziness in

the Position of a Point Particle

In quantum mechanics and quantum field theories , basic physical objects

are assumed to be point particles which may have a definite and precise position

in space (or a definite momentum, but not both at the same time because of the

uncertainty principle). As a result , the Coulomb potential produced by a point

electron takes the form -e/(4xr), which diverges at r=0 and this is intimately

related to the fundamental divergence difficulty in quantum electrodynamics

and other field theories. Also, the point particle picture implies that a quantum

particle can have a position eigenstate Iq) of a position operator Q;

Qq) = qlq). (14.5)

Therefore , in principle , the position q of a quantum particle can be measured

precisely, i.e.,

Agmin= 0. (14.6)
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However , the properties ( 14.5) and ( 14.6) do not have operational meanings

because they cannot be realized . Furthermore , the position eigenstate (14.5) is,

strictly speaking , not physically meaningful because its wave function is not

square-integrable and, hence, cannot be normalized to have an elementary

probabilistic interpretation . Thus , in quantum mechanics , one gives up the

fundamental idea of a probabilistic interpretation of a state for the sake of

introducing certain mathematical idealizations of what can be realized. This is

not in harmony with the requirement of operational meaning in physics which

states that one should formulate a physical theory using observable quantities

and realizable states.
On the other hand, if one attempts to avoid the above difficulties by

assuming the particle to have a finite size, then one immediately encounters

many other difficult problems related to non-local interactions , non-local wave

functions and so on.
One way to depart from the conventional point particle picture without

these difficulties is as follows : We assume that the particle by itself has no size

and no structure , but that its position cannot be measured with unlimited

accuracy:1

Aqmin =R>0, (14.7)

where R is a very small radical length. The postulate (14.7) enables us to avoid

unknown tacit assumptions such as indefinitely short distances in spaces This

suggests a picture of a fuzzy-point particle, which closely resembles a fuzzy

point in the fuzzy set theory of Zadeh.7

According to postulate (14.7), we replace the improperly idealized state (ql

with zero width by a new base state (ql, which has the width R. To accomplish

this, it is convenient to use Klauder's continuous representation8 of Hilbert

space to express the new base (ql:

(ql = Jdp(pID(p)e'P9/J 1
2nJ

(14.8)

where (pl is the usual momentum eigenstate. In order to preserve known

properties of a physical state at low momenta , the new function D(p) must

satisfy
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1 IpI << J/R ; (14.9)

0 Ipl >> J/R .

Similarly, we can modify the usual momentum eigenstate (pI to have an

inherent fuzziness in the momentum state (pl which has the minimum
uncertainty,

APmin = S >0, (14.10)

where p and S have the dimension of mass and length , respectively. To be

consistent with known physical states at low momenta, the length scale S should

be extremely large. Presumably, it is related to the size of the observable

physical universe: S>1010 light years. For simplicity, we shall postulate that the

physical effects of a finite S are too small to be detected experimentally. Thus,

we shall take the limit that S approaches infinity so that

(pl = (PI, (14.11)

and concentrate on the new physical properties related to the finiteness of the

radical length W0.

Let us consider fuzzy base states . In the limit S-oo, base momentum states

(pl and Ip) have the usual orthogonal and completeness relations and so on,

(PIP') = 8(P - P') , I dplp)(PI = 1 ,

(PIP= (PIP , (PIQ= iJ ap (PI,

(14.12)

where O_ and P are Hermitian operators for positions and momenta. On the other

hand, since R>0, the position vector (ql, its dual vector Iq) and the Hermitian

operators Q and P satisfy

(qlq') = (q'lq)* = (2RJ)-1 JdPDZ(P) el(q-l')P/J = D2(a) 8(q-q') , (14.13)
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(qIP = -t) S4(gl PIg) = i11 q) , Jdglq)(gl = D2(P), (14.14)

Jdq[D-1(a)Iq)][D-1(a)(g1l = Jdglq)[D-2(a)(gI] = 1 , (14.15)

a^D(P)] Q)q) = [q + iJ 2 t---T )] Iq) , (14.16)(qIQ= (ql [q - iJ aP aP

where D2(a) and D-1(a) are integral operators given by9

f(a)0(q) = (2n1)-1 Jdpeipq/If(p) Jdq'e ipq'/!^(q') (14.17)

We have seen that the new continuous base states (ql defined in (14.8)

satisfy minimum requirements of coherent states : (ql is a strongly continuous

function of q and satisfies the relation (14.15). Nevertheless , the most important

physical property of (ql is given by (14.16), (14.13), (14.7): Namely, the position

operator Q has neither eigenstates nor eigenvalues . It has only a fuzzy value

with an uncertainty Aq z R. In other words , a "point particle" ( i.e., no size and

no structure ), if measured , will never be found at one and only one point q at a

time. Thus , it appears more appropriate to term (ql and Qfuzzy states and fuzzy

dynamical variables , respectively. (In principle, both P and Q should be fuzzy

dynamical variables if the length scale S is treated as a finite quantity .) We may

remark that (ql is formally an eigenstate of the operator

Qp = Q+ iJ alnD(P)
aP

with the eigenvalue q. However, such an operator Qa has no physical meaning

in the present formalism of fuzzy quantum mechanics.

The fuzziness of the base state (ql is completely determined by the

function D(p). Let us consider a plausible argument for the function D(p) to

have the following form:
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D(P) = a2pZ1 + 1
. (14.18)a2= JR

z

Classically, one can determine a particle's position by confining the particle in

a certain range Ax by an attractive square-well potential. If the potential is

narrower and deeper, we can determine the position more accurately. In the

limiting case, we have a 8-function potential, -VOS(x-xo), and the classical

particle is precisely located at the point xo. However, a quantum particle is

described by the Schrodinger (or Klein-Gordon) equation with the form

J2 d2^- Zin dxz - Vo8(x - xo)]O(x) = E O(x) , (14.19)

rather than the classical Newtonian equation. The solution to (14.19) has the

form

Ix-xol z
fi(x) = A exp[- R J R= ^JmV0 ' ( 14.20)

which shows that the position of the particle is fuzzy (with the uncertainty

Ax-R). The Fourier transform of the solution (14.20) leads to

JA expF Rl^exp[
uxxo)PI

= p2RZ JAR 1 ' (14.21)

which has the same form as that in (14.18). In light of this, it is reasonable to

use D(p) in (14.18) to describe the fuzzy base state (ql in (14.8) for a quantum

particle. It appears that the value R can only be determined by future

experiments. So far, there is no compelling reason to identify R with the Planck

length -10-33 cm or any other known length In physics.

According to the "probability axiom" of quantum mechanics, the physical

base states associated with the dynamical variables Q and P must have a

probabilistic meaning. Thus, these states should satisfy Klauder's postulates of

continuous representation rather than satisfy the usual eigenbras and

eigenkets. One might think that this is nothing new because one can always
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transform the fuzzy state (qi in (14.8) to the eigenstate (qI by a nonunitary

transformation. However, this is not true: Under such a nonunitary

transformation, which preserves PQ-Qp=-iJ, the position operator Q and the

states (qI and Iq) become

P Yl aaP) 14 22)QJ (P) = QQ.->Q = D( J ).(

(qI -, {ql = (qlD-l(P) = (qI, Iq) -> Iq} = D(P) Iq) * Iq) . (14.23)

Thus we have seen that the expectation value of the coordinate Q is not changed

(gtlQlg2) = {g1IQIg2} * (gglQlq2), (14.24)

i.e., the fuzzy feature of coordinates is not changed by such a nonunitary

transformation.

We postulate such a fuzziness as a fundamental and inherent property of

a particle 's position. That is, no matter how one improves the technique and the

apparatus,. there will be an uncertainty AgzR associated with each measurement,

even if the particle by itself has no size and structure . There emerges a new

strange picture of the fuzzy point particle : Namely, a particle is, at a given

instant of time, partially located at one point, partially elsewhere and can never

be completely at one point. Of course , this is in harmony with Zadeh's original

idea of fuzzy set theory7 and in sharp contrast with both the classical and the

conventional quantum-mechanical concept of a point particle.

14c. A Fuzzy Point and Modified Coulomb Potential at Short

Distances

We have seen that the Klauder representation in Hilbert space naturally

allows a basic length scale R to characterize continuous states. As long as W0,

our results indicate that space is continuous but fuzzy at short distances. The

length scale R characterizes the smallest width of a wave packet that can be

physically realized. Evidently, the fuzzy base vectors (qI form a submanifold in

Hilbert space.
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Since the radical length R seems to be so small that its effects have

remained undetected , one wonders what type of effects an experimentalist
should look for in the future. The fuzziness of the electron coordinates implies

that the electron must have an "R-inherent charge distribution" given by

PR(r) _ - e 3 1D2(p)e ip•rhld3p(2RJ)

10\T2
-R3 exp[-r/(I R)]

= - 10
i

D(p) = az 1 +
i '

a2 -
JR2

2
PZ

(14.25)

where the form of D(p) is assumed to be given by (14.18). Note that PR(r) -,

- e63(r) when R approaches 0, as it should. This R-inherent charge distribution

is consistent with the fuzzy point picture of a particle. The modified Coulomb

potential VR(r) produced by such a fuzzy point electron is given by

f d3r' PR(r')
J 4alr - r'I '

VR(r) = - e J 2x). D2(k)
a-ik•r

k = p/J

e
=-4 rr [1 -(1+2)F2R^

e/(4ar) r >> R ;

1-e/(8IsR) r << R

(14.26)

which is finite at r=0. This suggests that the electromagnetic interaction will be

asymptotically free at very high energies (or p>>h/R). The results (14.26) and

(14.25) indicate that the presence of R should appear in, say, the a+e- scattering

at very high energies:
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e-+ e+ -> a-+ e+ or e-+ e+ -+ g-+ µ+It. (14.27)

If one measures their differential cross sections carefully, a deviation from the

usual quantum electrodynamics results can be attributed to the radical length R,

provided that the electron is not a composite particle. The details of the

deviation are related to the specific form of the function D(p).

Of course, there is also the possibility that the constant R in Klauder's

continuous representation is so small that it will forever elude detection. In this

case , the present formalism is still advantageous to ordinary quantum

mechanics because this formalism enables us to apply the probabilistic

interpretation to all states of all observables regardless of whether they are

discrete or continuous.
It is likely that Klauder's continuous representations for coordinates and

momenta are not merely a matter of mathematical purism, but rather an

inherent property of the physical world at very small and very large distances.

Such representations are particularly interesting because they suggest a

connection between the microscopic physical world and the new mathematics

related to fuzzy set theory. Also, fuzziness at short distances is probably related

to the solution of the divergence problem in field theories.

Note that it is highly nontrivial to accommodate the fuzziness of the

coordinates and the usual 4-dimensional symmetry of spacetime in special

relativity. If the fuzziness of Q is really fundamental, then it would imply that

the usual 4-dimensional symmetry of special relativity becomes exact only at

low energies or in the limit R-,O.

14d. Inherent Probability for Suppression of Large Momentum

States

Let us assume that the inherent fuzziness of the coordinate variables (or

quantum particle's position) is a fundamental property of physics and is

independent of the 4-dimensional symmetry of spacetime. We would expect that,

apart from the usual relativistic time dilatation (or the dilatation of decay

length), the lifetime of an unstable particle decay in flight with the momentum

p will be further dilated due to the existence of the radical length R when p Z

J/R. (The new effect may be called 'radical dilatation.') Otherwise, the concept
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of quantum-mechanical probability is probably not really fundamental and

could be modified in the future.

The new effect 'radical dilatation ' for lifetimes of particles is related to

the radical length R in the following way:

The fuzzy coordinate base state (14.8) leads to

(q'Iq) = (2xJ )-3 JD2(p ) ei(q'-q)•P/Jd3p = D2(a')83(q'-q) , (14.28)

where

D2(a')f(q') = (2rzJ)-3 Jd3p eiP.q'/J D2(p) Jd3q e-ip•q/J f(q) , (14.29)

D2(p) = 1
[2R2p2/J2 + 1]2

This shows the suppression of the momentum p by an "inherent probability"

D2(p). This property can be properly implemented only in quantum field

theory. This will be discussed in chapter 15. However, we still can see its partial

effect in a physical process through an effective density of states, without

invoking quantized fields. We first note that, mathematically, the momentum p

can take any value between -oo and +oo. However, the region in which the

momentum of a particle can be physically realized is effectively finite. Thus,

the three-dimensional momentum space appears to be "non-Euclidean " because

one may picture the momentum space as having a volume element D2(p)d3p, as

shown in (14.28). As a result, the number of one particle states in the range p

and p+dp is given by the following "effective density of states,"

[Jd3q] IY(p) 3 p = M 1(2p)d3

3

p
(14.30)

for a spin-zero particle. This result shows roughly the effect of suppression of

large momentum contribution due to the new restriction (14.6) on the

Heisenberg uncertainty relation.
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15.

Common Relativity and Fuzzy Quantum Field Theory

15a. Fuzzy Quantum Field Theories

It has been observed that finite quantum electrodynamics cannot be

formulated consistently within the framework of special relativity. The reason

is that limiting the magnitude of interactions while retaining the customary

coordinate description is contradictory, since no mechanism is provided for

precisely localized measurements .1 This observation naturally suggests that the

physical properties of space at very short distances are much different from

those at macroscopic and atomic distances. The fact that no mechanism is

provided for precisely localized measurements indicates that there is an

inherent fuzziness at short distances and that the concept of a point-like

particle, which works very well in the atomic and nuclear domains, must be

modified so that it resembles some sort of non-point-like object. Spatially

extended particles, fuzzy particles and string-like objects have all been

discussed in the literature.2 It is very difficult to make extended particles and

string-like objects consistent with the 4-dimensional symmetry of the Lorentz

and the Poincare groups. So far, people have found strings which fit a

symmetry framework of spacetime with 26 dimensions or 10 dimensions, but this

has little relevance to present experiments and observations. Instead of trying

to explain why a 10 or 26 dimensional spacetime has only 4 observable

dimensions, if one can find a string-like object (no matter how strange it may

be) which can exist mathematically in the 4-dimensional spacetime, then it

would be a really surprising and important discovery.

On the other hand, one may ask: Is the 4-dimensional symmetry of

Lorentz and Poincare invariance so sacred that it must be absolutely preserved

at all costs? A physical principle is sacred only as long as it is supported by

experiments. However, experiments have limitations: Newton's law of motion is

known to be good for the macroscopic world and small speeds and the Dirac

equation is good for spatial regions where Ar>10-17 cm and for energies smaller

than roughly 103 GeV. Nevertheless, whether physical principles are valid for

describing the early universe or for particles when their energy reaches 1030

207
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GeV cannot be assured by anything. Based on the evolution of physical theories

and discoveries of physical laws in the past 100 years, it seems reasonable to

conjecture that most currently established physical laws will not last for

another 100 years without modification.

Dirac commented on the divergence difficulties in the quantum theory of

fields: "The difficulties, being of a profound character, can be removed only by

some drastic change in the foundations of the theory, probably a change as

drastic as the passage from Bohr's orbit theory to the present quantum

mechanics."3

It is reasonable to assume that the 4-dimensional symmetry of Lorentz

and Poincar@ groups is a good starting principle, which can also be realized in

different conceptual frameworks, as discussed in previous chapters. We shall

now explore the physical origin and implications of fuzzy particles, which can

be accommodated in the 4-dimensional symmetry of common relativity (but not

that of special relativity.)

It appears quite possible that the divergence difficulties originate from

the naive analogy between field quantities (qo(t,r), ac(t,r)/at) and generalized

coordinates and velocities (qi(t), dgi(t)/dt). For decades, it seemed quite certain

that one had to follow this "exact analogy" in order to apply the canonical

procedure for quantizing the fields. However, if one insists on preserving this

"exact analogy," one is led to the customary coordinate description at short

distances and encounters profound divergence difficulties. This leads to some

doubts about how fundamental this analogy in physics really is. According to

this analogy, one simply replaces the Fourier coefficients Ck and ck of a free

classical field p by the corresponding annihilation and creation operators:

Ck V- , Ck -4

In this way, the usual Hamiltonian Husu of the field p is

2),Husu = Ecok(akak + 1

(15.1)

(15.2)

where the field 9 is enclosed in a cubic box of side L=V113 and satisfies the

periodic boundary conditions. Result (15.2) shows the analogy with the
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harmonic oscillator.

In this section , I have attempted to modify the conventional quantum

field which allows , in principle , the existence of a physical wave with an

infinitesimal wavelength , so that one can measure spatial positions to an

arbitrary accuracy . The basic new idea is that such a wave does not exist even

in principle . Thus, according to quantum mechanics , spatial measurement

cannot be as accurate as one wants , in principle . In this sense , space is "fuzzy at

short distances." Such a fuzziness suggests that there exists a fundamental

probability distribution P(k,m) which approaches zero as the wavelength or

2a/k approaches zero. We assume that this is inherent in each harmonic

oscillator with the momentum k of a field with a mass m.4 Namely, instead of

(15.1), one should replace the Fourier coefficients of a free classical field by

Ck -,
akD(k,m)

agD(k,m)
Ck -► D(k,m) = -FP(km) , k = Ikl .

Thus, the Hamiltonian of the field p becomes

H = F,wkP (k,m)(akak + 2) .

(15.3)

(15.4)

The specific form of the probability distribution P(k,m) can only be determined

by future experiments. Nevertheless, based on known experiments at low

energies , the probability distribution P(k,m) must satisfy the following limits:

P(k,m) -4

1 k -4 0 ;

0 k -* oo .

(15.5)

Thus , the concept of an inherent probability distribution has the effect of

suppressing the large momentum contributions in (15 .4). In addition, field

oscillators have a finite zero-point energy, in contrast to the usual expression

(15.2) which has an infinite zero -point energy . To make our discussion

concrete , we will assume the invariant function D(k,m) in common relativity to
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be given by (14.3) with p=Jk,

2k m
C , (15.6)P(k,m) = [1 + I2G2(k)J ' G(k) =

where the quantity I is a new fundamental constant. Presumably, the value of I

is very small so that P(k,m)41 for presently available energies in the laboratory.

We may picture a field as a set of harmonic oscillators where each

harmonic oscillator is associated with an intrinsic probability determined by its

momentum. In the limit I-+0, the probability distribution P(k,m)-al and we have

the usual field in which all states of the harmonic oscillator of the field are

equally probable.

The probability distribution P(k,m) in (15.5) must have the following two

important properties:

(i) P(k,m) depends only on the spatial components of the four-

momentum vector of an oscillator. This dependence is necessary for unitarity of

quantum field theories, i.e., the probability for any physical process to occur

must be non-negative.

(ii) P(k,m) must be an invariant function, as required by the 4-

dimensional symmetry.

These two requirements can only be satisfied by field theories formulated

within the framework of common relativity. In sharp contrast, special

relativity does not have the invariant genergy (14.2), which is related only to

the spatial components of the momentum four-vector. Thus, quantum field

theories based on special relativity cannot satisfy (15.5) or possess the two

properties described above. Furthermore, the experimental evidence for the

presence of P(k,m)ml in the future would imply that the spacetime symmetry of

special relativity is only approximate at "low energies" and is not exact at very

high energies or short distances.

According to Maxwell's equations and the postulate of the universal

probability distribution for field oscillators, we expand the photon field A(oa,r)

as follows:

1 2

A(^,r)= f d3
k

e(k,X) P(k,0) I(a(k,k) e-ikx+at (k,^)eik•x)l , (15.7)

.J T2 2,)3 a 1
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k° = IkI, k•E(k,)L)=O, E(k,1))•E(k,)L') = 8iu.' ,

211

in the radiation gauge . Since photons are massless , m=0, they are associated

with the invariant probability distribution P(k,O) in (15.7). The operators a(k,)L)

and at(k,).) are assumed to satisfy the commutation relations,

[a(k)L), at (k',)A')] = 83 (k - k') 8u-,

[a(k)A), a(k',A')] = [at (k,X), at(k,)')] = 0 .

(15.8)

As usual, we assume the gauge invariant Iagrangian La for the photon

field aµ :

La 4 fµvfl+v fµv = aµaV - aVaµ . (15.9)

Note that all =(a°,a) in common relativity has the same dimensions as Aµ/c in the
special relativity because JLad4x and J have the same dimensions. The

Hamiltonian Ha and the momentum Q4 of the photon field can be written in the

form

Ha = Jd3klklP(k,0) Ja(k,X)at(k,X) ,

2
Qa = jd3kkP(k,0) 7,a(k,A.)at(k,X) .

I

(15.10)

The modified photon propagator involving the constant I is now given by

iDµ (x,I) = (OIa. (x)av(0)O(w)10) + (Olav ( 0)aTM(x)O(-w)I0)

d4k P (k,0)e-ik•x 2

(2n)4 + ie DTM(k,X)ev(k,X) ,

eµ(k,?.) _ (0, e(k, 1), e(k, 2), k/IkI) = (0, £(k, %)) .
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This propagator reduces to the Feynman propagator Mtr (x) in the limit I->0,
F;Lv

iDA (x, 0) = iDFµ`,() , (15.12)

as it should.

The Coulomb potential of a charged particle is now produced by a fuzzy

source rather than a point source. The fuzzy source is determined by the

probability function P(k,O) in (15.11).5 The modified Coulomb potential

V(r)=a°(r) is

V(r) = -F j (2x)3
P k20

a-ik•x , (15.13)

which is consistent with (14.26). It is important to remember that P (k,0) should

not be understood or interpreted as the form factor due to charge distribution in

the classical sense . Rather, it is a quantum mechanical property related to the

inherent probability distribution of photon field oscillators. In other words,

such a photon can be pictured as a "fuzzy particle" rather than a point particle.

A "fuzzy photon" can produce an effect similar to that produced by a non-point

charge distribution . In general, any departure from the point picture of

particles in electrodynamics implies a modification of the Coulomb potential at

short distances which can be tested by very high-energy experiments in the

future.

15b. Fuzzy Quantum Electrodynamics Based on Common Relativity

In fuzzy quantum electrodynamics (fuzzy QI;D), the invariant action Sq,

involving a fuzzy electron field W and a photon field aµ, is assumed to have the

usual form:

Sq = JL d4x , L= -r[*(iJaµ - ea,,) - m]yr - (1 /4)fµvDt ; (15.14)

J = 3.5177293 x 10-38 g•cm , are = e2/(4x)) m 1/137. ( 15.15)
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The wave equation of a free Dirac fields can be derived from (15.14). It

has the usual form:

[*iJaµ - m]W = 0 . (15.16)

Fuzzy quantum electrodynamics is based on a general postulate: There is an

inherent probability distribution P(p,m) associated with a field oscillator with

momentum p and mass m of all fields. This is a natural generalization of the idea

of "fuzzy quantum field" discussed in section 15a.

Based on the 4-dimensional formalism with a covariant gauge condition,

we have the following free photon and electron fields:

a.(w,r) = Y, J/(2Vpo) 4 P(p,0)[a(p,a)Eµ(a)exp(-ip x/J)
p;a

+ at(p,a) Eµ(a)exp(ip'x/J)] , (15.17)

W(w,r) = J (m/Vpo) P(p mm)[b(p,s)u(p,s)exp(-ip•x/J)
p;s

+ dt(p,s)v(p,s)exp(ip'x/J)], p'x = p,,xµ , (15.18)

where

[a(p,a), at(p',(x')]
(15.19)

[b(p,s), bt(p',s')] = 8pp'ssS' , [d(p,s), dt(p',s')l = 8PP'83s' ,

and all other commutators vanish. Of course, commutators for quantized fields
,#(w,r) and aµ(w,r) can be derived from (15.17)-(15.19). In a general inertial

frame, the Dirac equation in (15.16) can be written as

iJayr/aw = [ - iJUD• V + PDmlW (15.20)

Note that w = btc denotes the lightime, tc is common time, and OLD' PD are the usual

constant Dirac matrices.

Since the lightime w plays the role of evolution variable in the invariant
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equations of motion (15.20), it is also the evolution variable for a state o(s)(w) in

the SchrOdinger representation:

iJ spaw ^„ = H(s)(w)4 (S)(w) H(S)= H0(s)+ IVS) , (15.21)

because the evolution of a physical system is assumed to be described by a

Hamiltonian operator which has the same transformation property as the

lightime w or a/aw.

The conventional covariant formalism of perturbation theory can also be

applied to fuzzy QED. The steps from (10.38) to (10.46) in chapter 10 also hold for

fuzzy QED based on common relativity. For simplicity, we set J=1, so that the
dimensions of the Lagrangian density L, photon fields aµ and the electron field

, are given by the relation,

[L'14] = [aµ] = [y2/3] = [mass] = [1/length], J=1. (15.22)

To obtain the modified rules for Feynman diagrams in fuzzy QED, we

follow the usual quantization procedure and define the fuzzy QED Lagrangian

LFQ$D by adding a gauge fixing term in the Lagrangian (15.14),

I.FQ.ED = L- (aµaµ)2/2p , j = 1 ,

where p is a gauge parameter. We define the M-matrix as follows:

Sif = Si.- i(2a)484 (pf(tot) - pi(tot)) llext par(n)/V) Mff,

(15.23)

(15.24)

where "ext par" stands for external particles. The quantity n) denotes mj/poj for

spin 1/2 fermions and 1/(2poi) for bosons. Because of the 4 -dimensional

symmetry in (15.23) and (15.24), the rules for writing Ma are formally the same

as those in the usual QED :

(a) The fuzzy photon propagator is now given by

-iP(k,0)[ggv - (1 - p)kpkv/k2]
k2 = kµkµ . (15.25)

(k2 + ie)
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(b) The fuzzy electron propagator is

-iP(p,m
) (15.26)

(1fµ-m+ie)

(c) The electron-photon vertex is

- i e,yµ. (15.27)

(d) Each external photon line has an additional factor P(k,0) eµ. Also, each

external electron line has P(p,m) u(s,p) for the absorption of an electron and

P(p,m) u(s,p) for the emission of an electron, etc.

Other rules such as taking the trace with a factor (-1) for each closed
electron loop, integration with d4k/(21[)4 over a momentum )µ not fixed by the

conservation of four-momentum at each vertex, etc. are the same as the usual.

Thus, calculating scattering cross sections and decay rates (with respect

to the lightime w) of a physical process, one will get formally the same result as

that in conventional Q)D. For example, let us consider again the decay rate

r(1->2+3+...+N) for a physical process 1-,2+3+...+N given by

Jim f I fISIi Iz d3xzd3p2 d3xNd3PN
r(1-►2+3+...+N) =w-o J w (2zJ)3 ... (2iJ)3 , (15.28)

which has the dimensions of inverse length . Its inverse is a particle 's lifetime

measured in terms of lightime , w=btc , which has the dimension of length and,

hence, it may be called the "decay-length ." The decay-length D is given by

D= 1/r(1-,2+3+...+N) . (15.29)

Thus, in common relativity, one has the "rest decay-length" Do for a particle

decay at rest, corresponding to the "rest lifetime" in the conventional theory.

Also, instead of the dilatation of the lifetime of a particle in flight, we have

dilatation of the decay-length it travels before decaying. Such a dilatation is

physically correct because it is equal to the experimentally measured distance

traveled by a decaying particle. (See chapter 11.)

For a scattering process 1+2 -,3+4+....+N, the differential cross section do,
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which has the dimension of area, is given by

__ 1 12 [ n (2m )] d3p3

da 4[(Pl•P2)2 - (m1m2)21112 IMi ext fer fer JJ (2 ,t)32P03 ...

d3P
N (2n)481(P + P P P So (15.30)(2R)3 2Poty 1 z - 3 - a -....- PN) ,

where po = (p2+m2)v2 and So denotes a factor 1/n1 for each kind of (n) identical

particles in the final state. If the initial particles are unpolarized , one must take

the average over initial spin states. When there is no external fermion in a

process, then [IIext fer (2mfer)] in (15.30) is replaced by 1.

The formal expressions (15.28) and (15.30) are the same as the

conventional ones. The new and different effects in fuzzy QED came from the

M-matrix, which involves modified propagators related to an inherent fuzziness

at short distances as shown in eqs. (15.25) through (15.27).

15c. Experimental Tests of Possible Approximate 4-Dimensional

Symmetry of Special Relativity at Very High Energies and

Short Distances

Let us elaborate what new physical effects may be obtained due to an

inherent probability distribution P(k,m) for field oscillators. Suppose one

calculates the differential cross-section of unpolarized electrons scattered by an

external potential (or a point-like nucleus.) One obtains the result

df2 = 4 (Za)2P(P^ Pf,0)P(Pi,m)P(Pf,m) (Tp-i sin 012)

x( 1 - p2sin2 (Z)), (15.31)

P(Pi-p,O)_ (p-pf)2
Cd

pie+m2
P(pi,m) = MCi Ci

22 (15.32)

+mz L
P IP(Pftn) = PCf Ip^ pfl2 = 4lpilasina(2) , P _ 1 . ( 15.33)1 (OP
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If the laboratory is chosen to be the F frame in which the speed of light is, by

definition , isotropic , then one has Cd=Ci= Cf=c=29979245800cm/sec. (See section

12c in chapter 12.) The differential cross section for the scattering of

unpolarized electrons (15.31) is suppressed at large momenta by the inherent

probability distribution associated with the photon in the intermediate state and

the electrons in external states. In this calculation , the point-like nucleus is

assumed to be at rest and its inherent probability distribution is negligible.

Next, let us consider the differential cross section for Moller scattering,

(after C. Moller who first discussed this process in 1931) it is the scattering of

two electrons , e-(pl)+e-(P2 )->e-(pi)+e-( p2). Since we are interested in the

effect due to the inherent probability distribution, we calculate the differential

cross section at "high energies ," plo >> 0. The result is relatively simple to

calculate in the center-of-mass frame, _

do r z m z (1+cos4(e/2) 2 1+sin4(e/2) 2
dig a 8 ^Pio^ P4(Rm) L sin4(e/2) P_ + cos4(e/2) P+

2
cosz ( e/2)sin2 (e/2)P-P+]

P=P1=-P2, P'=PI=-P2 , P=1PI=Ip'I,

(15.34)

Pt=P(k,0), k=lp±p'I, ro=m=2.82x10-'3 cm,

where one may choose the center-of-mass frame to be the frame F in which the

speed of light is isotropic.
One may also consider the pair annihilation process, i.e., a-(p-) + e+(p+)

-+ y(kl) + y(kz). In the laboratory frame, in which p_=(m,0,0,0), the differential

cross section is

da
do

ro io
l

b
+ P+o))P(P-'m ) P(P+'m)P (ki'0)P(k2'0)

kIP+I(m

x€ (ki - 2(c1•kz)z^Pz + FY-k20 - 2(e2 ki)zPz
1

k20 kzom a io loom b

+ [ 2 - 4(E2•Ei)z + 2kio )Z + 2k20 z)z]PaPb (15.35)
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Pa = P(P--k1,m) , Pb = P(P- k2,m) , k4µ = (k10, k1) , i=1,2.

In the limit of zero radical length, R-,O, (i.e., I->0 in (15.6)), all inherent

probability distributions reduce to 1, and the terms involving (c2•k1) and (c1•k2)

cancel, so that (15.35) reduces to the usual result.

The new effects in the scattering cross sections (15.31) to (15.35) due to

fuzziness at short distances can all be tested by high-energy experiments in the

future. These are also experimental tests of the possible approximate nature of

the 4-dimensional symmetry of special relativity at very high energies and

short distances.

At present, there is experimental data for the decay of unstable particles

in flight at high energies (several hundreds of GeV), Ks(p)-* 7t+(p+) + 7r(p_).

They can be used to estimate the upper limit of the radical length R. The decay

rate of KS in flight is roughly modified by the inherent probability distribution

as follows:

r(Ks -+ n+ + 7r) $ Po P(P,mk)P(P+, mn+)P(P-,mg_)xconst . (15.36)

At several hundred GeV, the masses of these mesons can be neglected in the

estimate. The departure of P(p,mk)P(p+,mx+)P(p_,mx_) from 1 must be within

the experimental error. Based on the result of the decay rate of Ks in flight,6

we estimate that

I<2x10-4m ,
p

or R<4x10-1scm, (15.37)

where we have ignored the meson masses. Since mp.1GeV/c2, (15.37) and (15.6)

indicate that the inherent probability distribution P(k,m) becomes important

only at extremely large momenta (p>>104 GeV/c2).

In summary, if we treat the concept of probability in quantum mechanics

as fundamental so that the realizable position states of a particle must have a

probabilistic interpretation, then the physically realizable large momentum

states will be suppressed by an inherent probability distribution P(p,m). This

implies that dilatation of decay-lengths should come from both the usual

relativistic effect and the 'radical dilatation' due to Rm0 at very high energies.
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Note that the inherent probability P(p,m) is not a scalar under the Lorentz

transformations of special relativity . Therefore , the spacetime 4-dimensional

symmetry of special relativity is only approximate at extremely large

momentum if R*O or P(p,m);a1. Only in the limit of low energies or R- *O, does the

spacetime symmetry of special relativity become exact. However , the inherent

probability P(p,m) can be expressed in terms of the genergy G(p), which is an

invariant in common relativity . Therefore , the 4-dimensional symmetry of

common relativity is not violated by the presence of the inherent probability

distribution P(p,m)#1.
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16.

Common Relativity and the 3 K Cosmic Background Radiation

16a. Implications of Non-Invariant Planck 's Law of Blackbody

Radiation

Since the anisotropy of the 3 K radiation was experimentally established, I

many physicists have concluded that it is now possible to talk about "absolute

motion".2 This conclusion was reached within the framework of special

relativity, in which the Planck law for blackbody radiation is not invariant

under the Lorentz transformation. If one is not aware that the 4-dimensional

symmetry can be understood from a broader viewpoint than that of just special

relativity, this conclusion appears to be unavoidable.3 However, to have a non-

invariant Planck's law of the blackbody radiation is unnatural and is not in

harmony with the fundamental Poincar@-Einstein principle of relativity for

physical laws.

As we have shown in previous chapters, nature can be viewed from the

standpoint of a 4-dimensional theory of relativity with a common (but not

absolute) time for all observers. Existing experiments cannot distinguish

between common relativity and special relativity because they both have the 4-

dimensional symmetry of the Lorentz and the Poincare groups. Nevertheless,

the conceptual framework of common relativity is not exactly the same as that

of special relativity. For example, we can introduce the concepts of an invariant

genergy G=pO/C, as shown in (14.2), and the invariant volume of a box for a

many-particle system. With the help of these concepts, we can formulate a new

covariant thermodynamics which leads to an invariant Planck law and, hence,

the impossibility of detecting the Earth's motion relative to the cosmic

microwave background radiation.4

16b. The Invariant Partition Function

Let us consider systems with discrete states labelled by an index i, since

the generalization to systems with continuous states is straightforward. Each

state of the system corresponds to an invariant genergy G=p°/C > 0. Because of

221
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its invariance , the genergy G corresponds more closely to the scalar energy in
classical physics than the non-scalar energy p°, We assume , as usual, that the

interaction between molecules (or particles) is sufficiently weak so that there is

an exchange of genergy between molecules but no change in the structure and

properties of a molecule.
Consider a gas with N particles , where N* 1. The µ space volume is divided

into K cells with K* 1. Each particle in the cell wi is in the state i and has

genergy Gi. Suppose there are ni particles in the cell wi. Let us assume that the

a priori probability of the cell wi to be occupied is 1, we have the probability

W(nl,n2, ... ) = N!/(l lni!)
i

(16.1)

for nl particles in ml, n2 particles in w2, etc . The equilibrium state of the gas

corresponds to a state of maximum W(nl,n2, .. .) consistent with the constraints

(16.2)

Gt = Y_niGi = Nr,
i

(16.3)

where -0 is the average genergy of the constituent particles. (For simplicity, we

do not consider modifications due to the radical length.) In equilibrium, we

have ni = ni, where

ni = N exp[- 5Gil/Z, =parameter , (16.4)

which is obtained by varying W(nl,n2, ...) with constraints ( 16.2) and (16.3).

The invariant partition function Z is defined by

Z= Dxp[- Gil , >0, (16.5)
i

provided the summation over the states i does not change the invariance of

( 16.5). From ( 16.3) and ( 16.5), one has 11=-alnZ/a 5.
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Once the partition function Z is known, all other thermodynamic

quantities can now be derived. We can define an invariant "free genergy" Fc so

that

Z = exp[- -PFc] (16.6)

We note that (16.5) is the invariant partition function of the Gibbs

ensemble, in which there is no exchange of momentum, within the framework

of common relativity. This is to be compared with the conventional Lorentz-

invariant partition function, in which one has to introduce a 4-vector of the

inverse temperature whose operational meaning is in general not at all clear.

In a particular frame F, the partition function in (16.5) can be identified

with the usual partition function of the Gibbs ensemble Zi exp[-EIJKBT], and the

invariant parameter in (16.5) can be related to the Boltzmann constant kB =

1.38x10-16 erg/deg K and the usual absolute temperature T. Since Gi m m/c +

pit/2mc, pi - mvi/c, and F = mvi2/2 in the F frame, we have

1/3 = kBT/c3 - T . (16.7)

We term the invariant quantity r the "common temperature". Evidently, the

natural unit of r is genergy rather than energy. Note that the usual

temperature T is closely related to the energy Ei and that both T and Ei are not

invariants in common relativity.

16c. Covariant Thermodynamics

In conventional thermodynamics , the relation between the entropy S, the
heat Q and the absolute temperature T is given by

dS- (dQrev
(16.8)- T

This suggests that we relate the "common entropy" Sc and "common heat" Qc by

the relation,4

dS - (dQc)rev
(16.9)
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in the covariant thermodynamics formulated on the basis of common relativity.

Relations ( 16.8) and ( 16.9) are the same in the frame F in which the speed of

light has been defined to be isotropic, provided that Sc=S/kB and Qc=Q/c3. In

general, the definitions of Sc and Qc must be consistent with (16.9) and the

Boltzmann equation

Sc = lnW(ni,n2,...) =
S
kB .

(16.10)

Let us consider a change of the genergy of a closed system. It is given by

the invariant equation

NO ni8Gi + G1Sni) ,

where the first term is always considered to be the "work" and the second term

to be the "heat". Thus we can define the common heat Qc as

N(SQc)rev = GiS ni , (16.12)

where the reversibility of the change is achieved by letting S iii correspond to a

change in which the probability W defined in (16.1) remains maximum. We see

that the common heat Qc is the change of genergy of the whole system resulting

from a change in the statistical arrangement of its components. On the other

hand, "common work" is due to the change of genergy of every component of a

system without changing their statistical arrangement.5
The reversible change of hi in (16.12) can be defined as

a21nZ
1= - N aziazj szj ,

(16.13)

because Z in (16.5) can be considered to be a function of zi = ^Gi and (16.4) can

be written as

Siii =-N
a1nZ
azi

(16.14)
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It follows from (16.13) and (16.12) that

1 a2lnZ
(SQc)rev zi&zi aziazi (16.15)

where Gi=zi/4=szi. Thus (SQc)rev/s can be represented by a Pfaffian in the

variable zi and it is nothing but dSc according to (16 . 9). After integration, we

find the average common entropy '9c of a particle in the ensemble:

3`c=+inZ, (16.16)

where the constant of integration is neglected . Using (16.2)-(16.5) and (16.16),
one can verify that

Sc = N 3 ` c = lnW = - ^ e [- ^ Gi) In (e (- ^ G i) ) (16.17)

where we have used the Stirling formula: In N! - N(lnN-1).

For a thermodynamic system , the invariant entropy Sc can be expressed

as a function of N, Gt = NG and V1. The equations for thermodynamic equilibrium

are invariant:

pC=OG.N^

Tc SC)Gv,

(16.18)

(16.19)

(16.20)

where G - Gt and V = V1. The invariant pressure Pc and chemical potential µc are

related to the usual pressure P and chemical potential µ by the relations

Pc=P, Nc=IL (16.21)
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in the F frame . One can verify that, in the rest frame F of the thermodynamic

system , the present formalism reduces to the usual thermodynamics at low

energies.

16d. Canonical Distribution and Blackbody Radiation

Because of the existence of the new invariant genergy (14.2) and the

invariant volume V, in (13.1), we are able to define a meaningful invariant

density for particles. One cannot do this within the framework of special

relativity because of the lack of an invariant genergy. The number of states

available to a particle in dVI can be written as

dr = 2Gc°dVI &(pj, - m2)e(p°)d4p (2,J) 's

G = C , J = 3.5177x10-38 g•cm,

(16.22)

in an arbitrary frame, where p X and m20 are respectively the 4-momentum and

the mass of the particle. The invariance of dr in (16.22) ensures that the

summation over the states of a system (see eq. (16.5) does not change the

invariance of the expression. In the particular frame F, we have C=c=c° and

hence

d3xd3p
dr= (2,J)3

(in the F frame) ,

as it should.

For an ideal gas containing N particles with the same mass

the invariant canonical (or Gibbs) distribution

N(2EJ)3 (^/Tl di' 24)(16e ,
^= 4,m2TVic°K2(m/tic°)

.

1m
2

2+m2r
Z I

(16 25)
m K2(TC° J) =TC°

_
exPP TodP P .

0
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1
= Tco p02-m2 podpoexp[-p°/Tco]

-4 2(coT)z as m--0.

For blackbody radiation, we have the partition function Z

)kon
[ G GZ e (G / )]

,C=xp - n = nn T , (16.26)
n

where the wave 4-vector kµ=(kp, k) is related to the momentum pµ by

p` = Jkµ, kµ = ( , k) , j = 3.5177x10 -38g•cm . (16.27)

Note that for a massless particle, G is still invariant under the space-lightime

transformation:

G k'o y(ko - pkx) ko
J - c' -y(c - Ilvx) = c

because kx=kocose and vx=c coso. It follows from (16.26) that

(n) = Z E n elnG/Tl
= [G/ 1n e

(16.28)

(16.29)

which is the invariant Planck distribution for blackbody radiation in the
framework of common relativity . Comparing equation (16.29) with the usual
expression (n) =1/(exp [hkoc/k]gT] - 1) in the F-frame, we obtain

Jko tfkoc ti
cT - kBT ' c J' (16.30)

which is consistent with (16.7).

In the present formalism , we also have an invariant grand-canonical
distribution , the invariant " thermodynamic potential " Sec, and the invariant

Fermi-Dirac distribution, etc.:
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sic = - ,r In {jeXp(tc/T - Gn/T)} ,
n

(n)m = 1/{exp[G/T - Nc/T] + 11 .
(16.31)

16e. Question on Earth 's "Absolute" Motion in the 3 K Radiation

The cosmic 3 K radiation was detected by Penzias and Wilson in 1965. It is

an important discovery for understanding the Universe and is believed to be the

left-over radiation from the early epoch of the Universe in which matter and

radiation were in thermal equilibrium. The cosmic 3 K radiation involves about

103 photons per cm3 and this temperature is assumed to be the present

temperature of the universe because the effect of hot stars is negligible when

one averages their temperature over all space. The cosmic 3 K radiation appears

to be isotropic, having the same radiation intensity in all directions, as observed

on the Earth. However, a very small anisotropy in the cosmic blackbody

radiation has been detected. One usually interprets it as caused by Earth's

motion relative to the radiation background. The interpretation is made within

the usual framework of special relativity with certain implicit assumptions: one

must consider two frames F and F (which is moving with the speed V along the

x-axis of F) immersed in the blackbody radiation. According to special

relativity, suppose one has the usual Planck distribution in the F frame,

1
(n) = (16 32)

exp[hv/kgT] - 1
.

Observers in the F frame will detect a modified distribution,

1
(n) = ' '

(16.33)
(1-Vcose /c)i

exp
rhv - 1 '

L kgT 1-V2/c2

which is derived from (16.32) with the usual relation of special relativity

v(1-Vcose/c) cose+V/c
(16.34)

v - 1_V2/c2 cow - 1+Vcose/c
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and the assumptions that the Boltzmann constant kB and the temperature T are

Lorentz scalars. It follows that the spectral distribution of the energy of the

blackbody radiation is given by

2d3xd3k by
dE(ko) = (2X)3 exp[hv/kBT] - 1

(16.35)

2d3x'd3k' hv'
dE'(ko) = (2R)3 exp[hv'(1+Vcos9'/c)y/kBT] - 1 ' in F',

in F

according to special relativity. The photon energies by and hv' in (16.35) are

related by the relativistic Doppler effect (16.34). Thus, the cosmic microwave

background plays the role of a new "ether" and the frame F is the privileged and

absolute frame in which the law of the Planck distribution takes a particular

simple form, as one can see from (16.35). According to this view, nature

provides an absolute frame of reference: the cosmic 3 K radiation represents a

fixed system of coordinates in the Universe. Most physicists were impressed by

this and concluded that we now are justified in talking about absolute motion.

Nevertheless, one notes that this interpretation is not in harmony with

the Poincare-Einstein principle of relativity for physical laws. Furthermore,

this conclusion is untenable from the viewpoint of the present covariant

thermodynamics based on common relativity. According to the present

framework, the Planck formula corresponding to (16.35) in F and F' can be

obtained by combining the invariant density of states (16.22) with two

polarizations (i.e. 2dr), the invariant Planck distribution (16.29) and the

covariant photon "energy" Jko (which has the dimension of mass):

dM(ko
) = 2drJko

exp[G/T] - 1 in F,

dM'(ko) = 2drJko
exp[G/T] - 1 in F',

(16.36)

where we have used the invariant genergy in (16.28). The photon "energy" Jko

and Jko in (16.36) are related by the Doppler effect in common relativity:

ko = (ko - Okx)y, k'x = (kx - Oko)y, k'y = ky, k'z = kz ,
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,
kµ=(T,k), k'µ=( ,k').

(16.37)

Since the density of states (16.22 ) and the Planck distribution av={exp[G/T-1 }-1

are invariant , the quantity dM'(ko) is covariant and transforms like ka in

common relativity. Therefore , from this viewpoint, the observed anisotropy in

the cosmic 3 K radiation should not be interpreted as the "absolute" motion of

the Earth. This is in contrast with the corresponding result of special relativity,

in which dE '(k'o) in (16.35) does not have a covariant form and does not

transform like ko' because the Planck distribution is not invariant and takes the

simplest form only in the frame F. Note that the Doppler shift of hv' in (16.35)

and Jk'o in (16.36) cannot be distinguished by previous experiments . The reason

for this can be seen clearly by considering the quantities involved in the

Doppler shift experiment.

Note that the relation between the frequency v=cko/2x and v'=c'k'0/2g in

(16.37) is quite different from that given by (16.34) in special relativity . This is

because we have used common time to measure the speed of light c and c' and to

define the frequency of a wave in our formalism . However, this does not

contradict laboratory experiments testing the Doppler effect involving shifts of

atomic-level structure , lasers , etc. The reason has been discussed in chapter 10

[eqs. (10.13)-( 10.18)].

Experimentally, the anisotropy of the cosmic 3 K radiation was established

at the level of one part in 103 to 104. According to common relativity, it should

not be interpreted as being related to the angular dependence of the Planck

distribution due to the absolute motion of the Earth . This conclusion is more in

harmony with the principle of relativity if one formulates thermodynamics in

such a way that the Planck distribution is angular independent and, hence, has

the same form in all inertial frames.

From the present viewpoint , the anisotropy of the 3 K radiation indicates

a new phenomenon in the cosmological scale . For example, it may be related to a

small nonsymmetric expansion of the Universe or large -scale irregularities in

the distribution of energy in the Universe . This could be clarified in the future

when one is able to measure the dipole anisotropy (- 10-5) due to the Earth's

orbital motion and the quadruple anisotropy.
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17.

Extended Relativity:
A Weaker Postulate for the Speed of Light

17a. 4-Dimensional Symmetry as a Guiding Principle

Only at the beginning of the twentieth century after the creation of the

4-dimensional symmetry, was it recognized that the concept of symmetry played

a fundamental role in physics.1 The 4-dimensional symmetry is one of the most

thoroughly tested symmetry principles in physics. In his Nobel Lecture, C. N.

Yang made the following piercing observation:

"Nature seems to take advantage of the simple mathematical

representations of the symmetry laws. When one pauses to consider the

elegance and the beautiful perfection of the mathematical reasoning

involved and contrast it with the complex and far-reaching physical

consequences, a deep sense of respect for the power of the symmetry laws

never fails to develop."2

This quotation summarizes the essence of symmetry in physics, which

will be illustrated below by an analysis of different viewpoints of the physical

world to show how 4-dimensional symmetry is critical to any theory.

Let us consider the viewpoint of Reichenbach's more general concept of

time and Edwards' universal two-way speed of light. This includes relativistic

time and the universal speed of light of special relativity as a special case.

Unfortunately, Reichenbach's and Edwards' treatments were, in general, not

consistent with the Lorentz and Poincare symmetry groups. The lack of the 4-

dimensional symmetry of the Lorentz group will cause many problems in the

formulation of quantum field theories, especially the Feynman rules for

calculations in quantum electrodynamics or chromodynamics.3 For the purpose

of comparison, we shall explain in some detail the application of 4-dimensional

symmetry to the ideas of Reichenbach and Edwards. In this way, we will also

show their implications and complete consistency with experiments.

232
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We term such a 4-dimensional theory "extended relativity." As a matter of

fact, extended relativity is just the theory of taiji relativity with an additional
second postulate , namely, the universal 2-way speed of light.

Using 4-dimensional symmetry as a guiding principle for discussing

physical laws , we first analyze Edwards' original attempt in 1963 to formulate a

relativity theory based on a weaker postulate for the speed of light. Edwards

postulated that "the two-way speed of light in a vacuum as measured in two

coordinate systems moving with constant relative velocity is the same constant

regardless of any assumptions concerning the one-way speed ."4 He derived

space and time transformations involving infinitely many possible physical

times which can be physically realized through Reichenbach 's convention of

clock synchronization and which include relativistic time as a special case.

Edwards' transformations were shown to be consistent with many experiments

related to the propagation of light. Nevertheless , we show that they do not form

the Lorentz group so that, in general, physical laws are not invariant under

such transformations. As a result , it leads to an incorrect expression for the

relativistic energy-momentum of a particle in the Lagrangian formalism.3

In view of these results , one may conclude that assuming the universality

of the 2-way speed of light and Reichenbach's concept of time is wrong.

However, that is not the case . We show that , Reichenbach 's general convention

of time and Edwards' universal 2-way speed of light can be accommodated in a 4-

dimensional formalism which is consistent with the relativistic energy-

momentum of a particle and the Lorentz and Poincare groups. Such a theory,

extended relativity , includes special relativity as a special case.

These results are physically and pedagogically interesting for the

following reason : Physics students are usually puzzled by discussions of
Reichenbach 's convention of time and the impossibility of the unambiguous

measurement of the one-way speed of light in the literature.4 They ask: Can

Reichenbach 's convention of time be consistent with the Lorentz group

properties of transformation between two inertial frames? Are the ideas of

Reichenbach and Edwards viable? Our results suggest that the key to answering

these questions is the 4-dimensional symmetry of the Lorentz group. The

physical theory of taiji relativity based solely on the first postulate of relativity,

i.e., the principle of relativity for physical laws, has been discussed in chapter

7. We show that the correct formalism of Edwards' theory based on weaker

postulate for the speed of light can be obtained by imposing the additional
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second postulate of universal 2-way speed of light to taiji relativity. Thus,

extended relativity gives a more restricted view of the 4-dimensional physical

world than that of taiji relativity. It also shows the power of the first postulate

of relativity from the vantage point of 4-dimensional symmetry.

17b. Edwards ' Transformations with Reichenbach's Time

Let us consider two inertial frames F and F', where F' is moving along the

x-axis. Suppose there are two identical clocks, clock 1 located at the origin of

the F frame and clock 2 at point x on the x-axis. A light signal starts from the

origin (event 1) at time tl, it reaches clock 2 (event 2) at time t2 and returns to

the origin (event 3) at time t3. Reichenbach's concept of time can be realized by

synchronizing clock 2 to read t2 by the relation4

t2=tl+e[t3-t1l, (17.1)

where a is restricted by 0< e <1 , so that causality is preserved, i.e., t2 cannot be

earlier than t1 . The same synchronization procedure can be performed on

clocks in the F' frame:

t'2 = t'l + e' [t'3 - t'11

By definition, the two-way speed c2w of light along the x-axis in F is given by

c2W = 2L/[t3 - t1l , (17.3)

which is independent of t2 and Reichenbach's parameter E. Similarly, in the F'

frame, we also have a constant two-way speed of light,

cI2w = 2L'/[t'3 - t'll (17.4)

Following Edwards, we shall assume these two-way speeds of light to have the

same value,

c'2w=c2W=c. (17.5)
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The synchronization of clocks in F and F according to (17.1)-(17.5) defines the

Reichenbach time which clearly includes relativistic time as a special case (E = e'

=1/2.)

In special relativity, an Einstein clock at x is synchronized according to tE
= to + x/c (where to is the time of the clock at the origin of F). The corres-
ponding Reichenbach clock at x reads tR = to + 2ex /c2w G t, which follows from
(17.1), (17.4) and (17 .5). Thus, tE and t are related by

tE=t-(2e-1 ) - =t-qc , q=2e-1.

Similarly, in the F' frame , we have the relation

'x'
t'E=t'- q' =2e'-1.

(17.6)

(17.7)

For simplicity and without loss of generality , we set q = 0 in (17.6) , so that

physics in the F frame is identical to that in special relativity. We now

concentrate on physical implications of (17.7) in the F frame to see whether

Edwards' transformation is in contradiction with experimental results. Using

(17.6) with q = 0, (17. 7) and the Lorentz transformation involving Einstein time

tE and t'E, one obtains the Edwards transformation between inertial frames F and

F,

t'=T{(1-pq')t-(p-q')x }, x'=T(x-Pct), Y'=Y, z' =z; (17.8)

V

where V is the speed of F' as seen from F. This type of transformation with

Reichenbach's time was first derived and discussed by Edward.4

It is important to note that

(A) The coordinate vector (ct',x',y',z') is no longer a four-vector under the

transformation (17.8) because (17.8) does not have the explicit 4-dimensional

symmetry of the Lorentz group in general.

(B) In the limit V-,0, i.e., F and F' become the same inertial frame, but

(17.8) does not reduce to the identity transformation:
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t'=(t-q'x), x'=x, y'=y, z' =z. (17.9)

This shows that Edwards' transformations do not form the Lorentz group, except

in the special case q'=q=0.

(C) Under Edwards' transformations, one has

c2t'2 + 2q'x'ct' - x'2(1 -q'2) - y'2 - z'2 = c2t2 - x2 - y2 - Z2, q--O. (17.10)

Note that if q * 0, then c2t2-x2-y2-z2 will be replaced by c2t2+2gxct-x2(1-q2)-y2-

z2. It can be shown that this quadratic form holds also for infinitesimal

intervals.

17c. Difficulties of Edwards' Transformations

The Edwards transformation ( 17.8) has been shown to be consistent with

many experiments related to the propagation of light.4 Moreover, since

Edwards' transformation appears to be obtainable by a "change of time

variables", ( 17.6) and (17.7), in the Lorentz transformation , one might think

that it is equivalent to the Lorentz transformation . However, we have shown

that this is not the case because Edwards' transformation ( 17.8) does not have the

Lorentz group properties (except when q=q'=O) due to the transformation of t.3

Thus, Edwards ' transformation (17.8), as it stands, violates the 4-dimensional

symmetry of the Lorentz group . As a result , one can show explicitly (see (17.14)

below) that the time t' leads to an incorrect expression for the relativistic

energy-momentum of a particle in the Lagrange formalism. This contradicts

experiments in general, except when q'=q=0.

To wit, let us consider Edwards' transformation ( 17.8), where we have

chosen a frame F in which the Reichenbach time equals the Einstein time by

setting q=0. We stress that this frame can be chosen arbitrarily. (If one wishes,

one can set q '=0 instead of q=0 . The following arguments still hold with F and F'

interchanged .) For a free particle, we have the actions S and S' in F and F'

respectively:

S = - Jmc ds = JL dt, ds2 = c2dt2 - dx2 - dy2 - dz2,
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L = - mc2 1-v2/c2 , in F (with q = 0),

S' = - f me ds '= JL'dt' , ds'2 = c2dt'2 + 2q'dx'cdt' - dx'2(1-q'2) - dy'2- dz'2 ,

L'(E) _ - mc2 ( 1-q'v'x/c)2-v'2/c2 , in F (with 1 > q'> -1). (17.12)

Note that S = S' because ds = ds' which can be verified by taking differentials of

(17.8) . The constant c in (17.12) is the universal 2-way speed of light measured

in F. The Lagrangians L and L' lead to the following momenta in F and F

respectively,

px(E) = aL = mvx = Px, etc. in F ,
- av 1-v2/c2

P'x(E) _ aL' (mcq' - mq'v'x + mv'x)
av_'x (1-q'v'x/c)2-v'2/c2

(17.13)

etc. in F. (17.14)

We see clearly that the momentum p'x(E) in F' contradicts experimental

results, except when q '=q=0. Similarly , one can show that the result for the

kinetic energy , defined by p'(E)•v' - L', in F' is also incorrect.

Before dismissing the expression (17.14), one should check whether

(17.14) is the same as the result of changing the time variable in the normal
special relativistic momentum p'x(SR),

P'x(SR) =
mu'x

1-u'2/c2

dx'
ux = dt'E , etc. in F'. (17.15)

Under a change of time variable given in (17.7), we have the relation
dx'/dt'=(dx'/dt'E)(dt'E/dt'), etc ., i.e.,

v'
u - (1 - q'v'x/c) .

From equations (17.15) and (17.16), we obtain

P'x(SR) =
mv'x

(1-q'v'x/c)2-v'2/c2

(17.16)

* P'x(E) , (17.17)
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which differs from the momentum p'x(E) in (17.14). This example shows that

the lack of 4-dimensional symmetry in Edwards ' formalism based on

transformation (17.8) with 1> q'> -1 make it untenable . Of course, there are

many other difficulties related to the lack of symmetry such as the non-

invariance of the Maxwell equations , the Klein-Gordon equation and laws in

quantum electrodynamics under the transformations (17.8).

In the next section, however , we show that if one uses 4-dimensional

symmetry of taiji relativity as a guiding principle, all these difficulties can be

resolved.

17d. Extended Relativity -A 4-dimensional Theory with

Reichenbach's Time

The method for the construction of a 4 -dimensional symmetry framework

without the usual relativistic time has been discussed before.3'5 The logically

simplest case is the 4-dimensional symmetry of taiji relativity which is based

solely on the first postulate of relativity . It can be applied to guide the

construction of a 4-dimensional framework for the present case with

Reichenbach's time. For simplicity and without loss of generality , we choose q=0

in synchronizing clocks in the F frame, so that we have the usual relativistic

time t=tE. In the F' frame , clocks are synchronized to read the Reichenbach time

V. An event is, as usual, denoted by (w,x,y,z), where w=ct, in F. However,

following taiji relativity discussed in chapter 7, the same event must be denoted

by (w',x',y',z'), with w'=b't', in F' within the 4-dimensional symmetry framework.

We stress that it is necessary to introduce the function b' so that (w,x;y,z')=

(w',r') transforms like a four vector and the laws of physics can display 4-

dimensional symmetry . Otherwise, the laws of physics cannot be invariant

under the transformation from F to F'. With clocks in F and F' synchronized as

discussed previously, the times t and t' are related as in (17.8):

t'=Y[(1-pq')t-(p-q')^], q'= 2c' -1 . (17.18)

This may be considered as an assumption . Indeed, from the viewpoint of taiji

relativity, this is a second postulate which is the analogous to assuming the
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universality of the two-way speed of light over a closed path in any inertial

frame, as discussed in section 17b. As usual, we start with the invariance of the

4-dimensional interval s2,

s2 = b'2t'2 - X'2 - y'2- Z'2 = c2t2- x2- y2- Z2 , (17.19)

to derive the 4-dimensional transformation. Note that relation (17.19) follows

from the first postulate of relativity, i.e., the Poincar@-Einstein principle,

because it is equivalent to the law of motion, pot-p2=m2, for a free particle with

mass m>0. (See ref. 7 in chapter 5.) By the usual method for deriving the

Lorentz transformation or the taiji transformation (7.4), we can derive the

extended 4-dimensional transformation involving Reichenbach's time,

w'ab't'=Y(ct-px), x'=Y(x-pct), Y'=Y, z'=z; (17.20)

1
V 1

where t' is given by equation (17.18). This extended transformation completely

determines the function b'

b' = (ct - px)

[(1-pq')t-(p-q'c ]
(17.21)

i.e., if x and t are known, we can always calculate the value of b' in (17.20) and

(17.21). Note that the fourth dimension in F' is now b't =w' rather than t' or ct,

where w'=b't' may be called "lightime". Although the function b' in (17:21) and

the time t' in (17.18) separately have complicated transformation properties, we

stress that b' and t' are separately well-defined and that the product b't'aw'

transforms as the fourth component of the coordinate 4-vector. The property of

b' is completely determined by (17.21) or the transformation (17.20). From now

on we will use w'=b't' to display explicitly the 4-dimensional symmetry of

physical laws.

The extended transformation of velocities can be derived from (17.20):

jY(c-pvx)cd(N') _kdt dt
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dt
vy=dt,vy,

dt
v y dt' vZ ,

where dt/dt' may be obtained from, differentiation of (17.18),

1 dt'
[dt/dt'] = dt = Y 1(1 - pq') - (p - q ') cdt} .

(17.22)

(17.23)

We stress that the definition c' - d(w')/dt' is quite natural because dw'z- dr'2 - 0

is to be interpreted as the law of light propagation , c'2dt'2- dr'2 = 0 . Note that

the transformation of the ratios v'/c' are precisely the same as those in special

relativity

v,X _X_0) vY
c. (1 - -) c, = Y

( 1 - ^X) etc.

(17.24)

Let us consider the property of c' in F'. Its value depends on its direction

of propagation. Suppose a light signal propagates along an angle 0 as measured

in F and 0' as measured in F', we have

vX=ccos0, v'X=c'cos0'. (17.25)

From the inverse transformation of (17.22), we obtain c = (dt'/dt)[-y(c'+ pv'X)], i.e.,

c
c' = (dt'/dt)[y(1 + pcos0 ')] = c'(0') . (17.26)

Evidently, the average speed of light over any closed path in F is a

constant which is equal to c. Now we will prove that the average speed of a light

signal over any closed path is also c, though the speed of light is no longer

isotropic in F'.
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Suppose a light signal travels along the vectors r'i, where i = 1,2,...N,

which form a closed path on the x'-y' plane in F'. The total distance L[ot and the

total time T't,t are given by

:tot = - r'i , and Toot
r'i

►-i i-1
N> 1.

The average speed c'av of the light signal over this closed path is

L'- L'tot
cav= T, = L' =c,

c tt + g, r'lcose'il
i- i

where we have used

v'xi = c'(e'i)cos e 'i,

c
c (6 i) = ((dt '/dt)i[r(1+ Pcose'i)]

(dt'/dt)i = (1 + q'cose'1 )
NO + bcose i)]

i r'icose'i = 0.
i-1

(17.27)

(17.28)

(17.29)

(17.30)

i= 1,2.....,N , (17.31)

(17.32)

Equation (17.32) is a property of a closed path in F'. Thus, the average speed of

light over an arbitrary closed path is a universal constant c in extended

relativity.

We note that a closed path for a light signal as observed by F observers is,

in general, not a closed path as observed by F' observers. Suppose a signal

starting from O(or 0'), i.e., the origin of F (F'), travels to a point A (A') on the x-

axis and is reflected back to B = 0 (B'# 0) as observed in F (F'). The two-way speed

of this signal in F is c. One may ask however, what is the average speed of this

light signal as measured in F'? From Reichenbach' s time (17.18) and extended

transformation (17.20), we derive the space and time coordinates of these events

in F',
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t'(O') = x'(O') = o, (17.33)

t'(A') = y €[1 - pq']t(A) - (P + q') xcA)}, x'(A') ='Y (x(A) - pct(A)) , (17.34)

t'(B') = Y €[1 - pq']t(B) - (P + q') x(B )}, x'(B') = y (x(B) - P ct ( B)) . (17.35)

Since t(O)=x(O)=x(B)=O, x(A)=ct(A)=L and t(B)= 2Vc, the equations in (17.33)-

(17.35) lead to the "average speed" c'av(nc) for such a non-closed path in F:

c'av(nc) = x'(A') + Ix'(B' ) - x'(A')I
t(A) + It '(B ') - t'(A')I

c
=[1 -pq] (17.36)

Result (17.36) can also be derived from (17.22) directly because this

average speed of light can be considered as two events which satisfy Ax =

x(B) - x(O) = 0. As far as constant velocities are concerned, Ax = 0 is equivalent
to dx = 0 or dx/dt = vx = 0. Now we use the relation (17.23) with the condition vx =

0, we obtain

(dt'/dt) =y(1-pq'), vx=0. (17.37)

Thus using the expression for c' in (17.22) for a non-closed path in F , we also

have the relation

c'(vv-o) = c(1-pq')

which is precisely the result (17.36).

17e. Two Basic Postulates of Extended Relativity

(17.38)

The physical foundation of the extended transformation (17.20) is based

on two postulates: The invariance of the form of physical laws and

Reichenbach's time (17.18). The latter may also be regarded as a definition of

time.
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As we have discussed previously , relation (17.18) is directly related to

clock synchronization . To be specific , we have used the relation between

Reichenbach 's and Einstein 's times, together with the Lorentz transformation,

to obtain (17.18).

One may ask: Is it possible to derive the extended transformations (17.20)

and (17.18) without using Einstein's time and the Lorentz transformation as a

crutch? The answer is yes. Instead of postulating (17.18), one can use its

equivalent postulate : Namely, that the 2-way speed of light over a closed path in

any frame is a universal constant and independent of the motion of the light

sources. This (second ) postulate was first made by Edwards for his formalism.4

Let us now derive the relation (17.18) based on the two basic postulates of

extended relativity:

[1]. The principle of relativity for physical laws: The form of a physical law

must be invariant under coordinate transformations. (In other words,

physical laws must display 4-dimensional symmetry.)

[2]. The 2-way speed of light over a closed path is a universal constant and is

independent of the motion of sources.

To derive (17.18) from these two postulates, we first observe that, starting

from (17.19) and following the steps from (7.2) to (7.4), we obtain (17.20) but not

(17.18). Since the F frame moves along the x-axis, its time t' can only be a

linear function of t and x,

t'=Pt+Qg. (17.39)

where unknown coefficients P and Q are to be determined . From (17.22) and

(17.39), we have

c'(+)=(d,)lcy(1-0), =+c,

c'(-)=(d')ZCi(1+W, dt =-c,

where

P+Qs,(dt,)1 -

(17.40)

(17.41)

(17.42)
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=P-QC-(ae)2 (17.43)

Postulate [2] implies that

L' L' 2L' 2L'
17 44( . )

It follows from equations (17.40) -(17.44) that

P + PcQ= (17.45)

Without loss of generality , we may express Q in terms of another parameter q'

such that ( 17.39 ) is more closely related to the form ( 17.18) in Edwards'

transformation,

(17.46)

Relations (17.39), (17.45) and (17.46) lead to

t'=1'[(1- Oq ')t-(p+q')^ (17.47)

which is precisely the basic transformation of Reichenbach's time (17.18) .

17f. Invariant Action for a Free Particle in Extended Relativity

Although extended relativity involves a class of different concepts of

time, realized by Reichenbach 's procedures for clock synchronization based on

a universal 2-way speed of light (over a closed path), all physical laws have the

4-dimensional form which are identical to those in special relativity.

Let us first demonstrate that extended relativity leads to a correct

expression for momentum , in contrast to Edwards ' formalism. The invariant

action for a free particle in F' is

S' = - J me ds' = j L'dt', c = c'Zw = c2w, (17.48)
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ds'2 = c'2dt '2 - dx'2 - dy'2 - dz'2 c' = d(w')dt'

Note that c in (17.48) is the two-way speed of light, c2w, which is a universal

constant. The Lagrangian L' in the F frame takes the form

L' = - mcc'41-v'2/c'2 , (17.49)

which leads to the momentum p',

p, - (mcv'/c')

1-v'2/c'2
(17.50)

The "energy" p'0 is defined as the zeroth component of the momentum by

(p'-v' - L') me

Po' c' - 1-v'2/c'2
(17.51)

These form the momentum 4-vector p'µ= (po,-p') which satisfies the 4-

dimensional invariant relation

pot -p'2= m2c2• (17.52)

By Noether's theorem, this is the conserved energy- momentum in extended

relativity.
We see clearly that the momentum p' and the energy p'o in F is

consistent with that measured in high energy experiments. As a matter of fact,

the momentum p'x given by (17.50) is precisely the same as the momentum

p'x(SR) in (17.15) for the F frame in special relativity. The reason is that

relations (17.16) and (17.7) and the invariant property that ds2 in Ffor special

relativity is the same as ds'2 given by (17.48), (i.e. ds2 = c2dt'2 - dx'2 - dy'2 - dz'2 =

c'2dt'2 - dx'2 - dy'2 - dz'21:

p'(SR) = mv'c =P,•
(1 - q'v'x/c) c2 - u'2

(17.53)
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This example shows that for Reichenbach's time to be viable it must be embedded

within a 4-dimensional framework.

Of course, the Klein-Gordon equation takes the form

(aµ -m2)q, = 0. (17.54)

It can be shown to be invariant under the extended transformation (17.20) as

well because the differential operators

a aaµ = axR and a,µ =
ax%

(17.55)

are 4-vectors, where xP=(ct,r), x'µ=(w',r')=(b't',r'). It is interesting to see from

(17.54) that, although one has times t and t' in extended relativity, the evolution

variable in basic 4-dimensional equation is the lightime w '=b't' rather than

Reichenbach's time t' in the F frame. This is dictated by the 4-dimensional

symmetry of the Lorentz and Poincar6 groups and is in harmony with the

evolution variable in taiji relativity.
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18.

Extended Relativity with the Lorentz Group and
Lifetime Dilatation

18a. A Comparison of Extended Relativity and Special Relativity

Although Edwards' original transformations (17.8) can be obtained by a

"change" of the time variable (17.7) in the Lorentz transformations, this does

not imply that the two transformations are completely equivalent

experimentally and theoretically. The reason is that it is not simply a change of

variable within the framework of special relativity. To be specific, such a

change of variable violates the second postulate of special relativity, i.e. the

universal constancy of the speed of light. As a result, after the "change" of the

time variable in (17.7), one is no longer within the same conceptual framework

because, strictly speaking, special relativity is a theory which possesses the 4-

dimensional symmetry with the Einstein time t'E which has the usual time

dilatation property. However, after the change of time variable in (17.7), one

has extended relativity which possesses the 4-dimensional symmetry with the

Reichenbach time t' given by (17.47) which does not have in general the usual

time dilatation property. Nevertheless, we show in section 18d below that the

experimental results of lifetime dilatation of unstable particles' decay in flight

can be understood within extended relativity in terms of the dilatation of decay

length.

We have shown in (17.12) that Edwards' original transformations lead to

an incorrect momentum in the Lagrangian formalism because of its lack of 4-

dimensional symmetry, as shown in equations (17.13)-(17.17). In this sense, the

first principle of relativity for physical laws has not been really incorporated

in Edwards' formalism of relativity. The basic reason is that his formalism does

not have 4-dimensional symmetry. In particular, (ct',x',y',z') is not a four-

vector. In sharp contrast, the present formalism of extended relativity based on

the new transformations (17.20) between the coordinate four-vectors (w,x,y,z)

and (w',x',y',z'), where w=ct and w'=b't', is explicitly consistent with the 4-

dimensional symmetry of the Lorentz and the Poincare groups or the Poincare-

Einstein principle of relativity.

248
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If one compares the space- lightime transformations (17.20) with the

Lorentz transformations , one sees that

ct'E=b't', (18.1)

where t'E and t' are Einstein's time and Reichenbach's time, respectively. We

note that the relation (18.1) does not imply that extended relativity is an

ordinary change of the time variable within the framework of special

relativity. All that it implies is that if the fourth component ct'E of a coordinate

4-vector in special relativity is replaced by b't', where b' is a function , one will

get another 4-dimensional symmetry framework without the universal constant

of the speed of light c. Therefore, (18.1) is simply the direct consequence of

replacing Einstein's second postulate by Edwards' weaker second postulate.

If one takes the viewpoint that extended relativity is just a change of time

variables given by (18.1), one should be able to obtain all results in extended

relativity from the corresponding result in special relativity by the relation

(18.1). For instance, the momentum (17.50) indeed can be obtained from the

usual relativistic momentum (17.15) by a simple change of variable ( 18.1).

However , this is not always the case. For example, a plane wave in F is described

by a Lorentz invariant function,

exp{i( w't'E - k ' -r')} , (18.2)

in special relativity. By a simple change of time variable (18.1), one obtains

exp{i(b't' - r'-k')) (18.3)

which leads to an incorrect wave 4-vector ( w'/c, k') in extended relativity. The

correct wave 4-vector in the F frame should be

(k'°,k')=(V„k').

This is the only wave 4-vector which is consistent with the relation

(18.4)

V,V=c', (18.5)
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defined in extended relativity. We note that if quantum mechanics is formulated

on the basis of extended relativity, the 4-momentum of a photon should be

proportional to the extended wave 4-vector (18.4) rather than (w'/c, k').

As a matter of fact, based on equation (18.2) one can obtain the correct

invariant phase, involving (18.5) and the 4-coordinate (w',x',y',z') by changing

both time and quantities related to time (e.g., frequency). In doing this,

essentially one must first know the correct wave 4-vector in extended relativity,

i.e., one must be able to formulate 4-dimensional extended relativity

independent of special relativity. In this sense, it is gratifying that we are able

to formulate a 4-dimensional theory of extended relativity based on its own basic

postulates, as shown in section 17e.

From previous discussions, we conclude that extended relativity and

special relativity are two logically different theories - the first has universal

one-way speed of light and the second has universal two-way speed of light

(which includes the former as a special case.) Nevertheless, they both have 4-

dimensional symmetry of the Lorentz group, so that physical laws have the same

forms in all inertial frames. (See section 18c.)

We have examined all known experiments. It turns out that these

experiments cannot distinguish extended relativity from special relativity. For

any invariant law in special relativity, there is a corresponding law of the same

form in extended relativity. This suggests that extended relativity is

experimentally equivalent to special relativity. We believe this indicates that

physical properties such as the concepts of time ( e.g., Einstein 's time or

Reichenbach's time, etc.) and the corresponding speed of light in the 4-

dimensional symmetry framework are human conventions rather than the

inherent nature of the physical world. This conclusion was already indicated by

the results of taiji relativity.

18b. An Unpassable Limit and Non-Constant Speed of Light

From the expressions for extended relativistic momentum and energy in

(17.50) and (17.51) or the extended transformations of velocities (17.22), one can

see an interesting property of the non-constant speed of light c'. Namely,

although c' differs in different directions in F, if one compares speeds of

various physical objects in a given direction in F, the speed of light is the
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maximum speed in the universe. This holds for all values of the parameter q' in

(17.22). We stress that this "maximum speed" is a more general property than

the speed of light being a universal constant because the latter corresponds to

the special case q'=0 in (17.22). It is interesting to note that this property was

discussed as a "character" of an entirely new mechanics by Poincar6 in his

vision of a relativity theory in 1904:1

"No velocity could surpass that of light."

According to taiji relativity, this property of unpassable limit is true for

any relation between t and t', as the 4-dimensional theory holds for their

unspecified relation (7.14). If one replaces (7.14) by any specific relation such

as (7.17), (7.18) or (17.18), one still has this "character," provided the law of

propagation of light displays the 4-dimensional symmetry. In this sense, the

character of an entirely new mechanics is logically implied by Poincare's first

postulate, i.e., the principle of relativity.

Furthermore, even though the velocities c' and v' measured by using

Reichenbach's time depend on the parameter q', the experimental results (such

as the Michelson-Morley experiment, the conservation laws of momentum p'

and 'energy' p'°, the dilatation of lifetimes, etc.) turn out to be independent of q'.

For example, the momentum p' in (17.50) depends on the ratio

v'/c'=(dr'/dt')/(dw'/dt')=dr'/dw' which is independent of time t' or q'. Thus, the

restriction for q' in (17.12) is really not necessary from an experimental

viewpoint. The basic reason for these properties is that, within the 4-

dimensional symmetry framework, the inherent evolution variable in the laws

of physics is the lightime w' rather than Reichenbach's time t', as already

indicated by taiji relativity. (See chapter 7.)

18c. The Lorentz Group and the Space-Lightime Transformations

If an object is at rest in the F frame, i.e., v = (0,0,0), the extended velocity

transformations (17.22) lead to

c'_(1 cIq') 00)
(18.6)

PC
vk =-(1 - sq ') =vk(0), vy =vZ=0.
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The result ( 18.6) implies vk (0) * -V (= -ac), which shows that the speed of the F

frame, measured from F', is different from the speed of F' measured from F and,

moreover, the difference depends on the parameter q'. When one thinks about

it, one may be puzzled because common sense tells us that the speed of F

measured from F' should be -V. However, as can be seen from special relativity

and quantum mechanics , common sense is often a poor guide in modem physics.

Let us consider the ratio v'x(0)/c'(0) in (18.6). This ratio is a constant,

independent of dt/dt', and satisfies

v' 0 (18.7)

Thus, using the ratios of velocities, 0' and p, one has the symmetry of velocities

between F and P. The reason for the simplicity shown in (18.7) is simply that

the real evolution variable in extended relativity is the lightime w'=b't' rather

than the Reichenbach time t' in P. The inverse transformation of (17.20) can be

obtained. It takes the form:

ct=y(b't'+P'x')=y' (b't'+P'x'),

x=y'(x'+O'b't'), y=y', z= z'; y'=y. (18.8)

Let us consider also another frame F" moving with a constant velocity V1

_ (V1i0,0), as measured from F and Vj=(Vj,0,0), as measured in F'. Note that the

ratio Vi/c' is related to V1 by (17.24):

V1, (Vl/c - 0)
C, (1 - PVl/c) (18.9)

From (18.6), (18.7) and (18.9), we see that instead of V or V', one should use the

ratio V/c or V'/c' to characterize the relative motion between inertial frames in

extended relativity, as this ratio will always be constant and more importantly, is

independent of the parameter q

The 4-dimensional transformations between F and F" are given by

b"t" =y1(ct'- a1x), x' =y1 (x- P1ct) ,
y"

=y,
z" =Z, (18.10)
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where

t" = Y,[(1 - Piq")ct - (pi - q")xl c

253

(18.11)

From (17.20) and (18.10), we can obtain the transformations between F' and F',

b"t" =Y1(b't'-P1'x'), x" =Yi()e-Pib't'), Y" =Y', z"=z', (18.12)

where

01 - 0) Vi Vi
of - (I - pip) - c, c (18.13)

1, I=YY( - PIP)=TI Yi- (18.14)
i 1$iz V 14'z

t" = -[,'[(l - Piq")b 't' - (pI - q"))' 1J (18 15)c .

This result ( 18.12 ), together with other properties such as the existence of an

inverse transformation and associativity, demonstrates that the set of extended

4-dimensional transformations forms precisely the Lorentz group. This shows

explicitly that the Lorentz group can accommodate a weaker postulate for the

speed of light. Lorentz group property is the core of the 4-dimensional

symmetry and is crucial for extended relativity to be consistent with

experiments and to be applicable to quantum field theories.

18d. The Decay Rate and "Lifetime Dilatation"

Fundamental wave equations such as (17 .53) with (17.54) show that 4-

dimensional symmetry dictates the evolution parameter to be the lightime w

rather than t in a general inertial frame. If we consider the decay rate r(1-+

2+3+...+N) for a physical process 1-, 2+3+...+N, we can follow steps from (11.1) to

(11.4) because we have 4-dimensional symmetry in extended relativity. We may

remark that this cannot be done in Edwards' original formulation because of the

lack of explicit 4-dimensional symmetry in his transformations . In a general

inertial frame with (w,x,y,z), we obtain precisely the same form as (11.4) for the
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decay rate:

r(1-> 2+3+...+N) =
Jim f cI(fflSli)

12 d2p0dh
)p3 d3xNd3pN

(18.16)
w

This definition of decay rate has the dimension of inverse time because of the

presence of c in (18.16). The decay lifetimec is given by T=1/r(1- ► 2+3+...+N).

To illustrate the calculation of a decay rate, let us consider a simple example, i.e.,

the muon decay µ-(pl)- a-(P2) + v9(p2) + v e(p4) with the usual V-A coupling.

Following the steps in chapter 11, the muon lifetime t can be calculated and the

result is2

1 =T r(1-4 2+3+...+N)

1 fd3P2 d P3 Pa 84(P1-P2-P3-P4) IIMscI2 .
Poi Poe P03 P04 spin

(18.17)

Everything to the right of 1/pol in (18 .17) is invariant under the

extended transformation so that the "decay lifetime" c is indeed dilated by the

usual y factor:

pt2+mt2 =Poi °° y. ( 18.18)

One should keep in mind, however, that it is really the decay length cc which is

measured in the laboratory. We stress that such a "decay time" as measured in

the F' frame is directly related to lightime (w'=b't') rather than Reichenbach's

time t', as one can see from (18.16).
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19.

Physical Implications of Extended Relativity

19a. 4-Dimensional Symmetry with a Universal 2-Way Speed of

Light

Guided by the 4-dimensional symmetry of taiji relativity, Reichenbach's

general convention of time (or, equivalently , the universal 2-way speed of

light) can be used as the "second postulate" for the construction of a theory of

extended relativity with new 4-dimensional coordinate transformations. A

second postulate is necessary to factorize, say, w' in the F' frame into a well-

defined function b' (i.e., 'ligh' function) and Reichenbach's time t', i.e., w'=b't'

which is called 'lightime'. It turns out that the lightime w', rather than

Reichenbach's time, plays the role of evolution variable in physical laws

because the lightime w' transforms as the zeroth component of a 4-vector and

Reichenbach's time does not. This property and w'=b't' are crucial and they

make extended relativity consistent with established energy-momentum of a

particle, the Lorentz group and so on, as shown in chapters 17 and 18.

Furthermore, we shall show below that the covariant lightime embedded in the

4-dimensional symmetry is also crucial for the formulation of a covariant

quantum electrodynamics (Q);D) based on extended relativity.

Using Reichenbach's procedure to synchronize clocks in every inertial

frame amounts to imposing a second postulatel ,2 upon taiji relativity, so that we

have a well-defined 'extended' time, which includes Einstein's time as a special

case. For simplicity and without loss of generality, we choose q = 0 in the

synchronization of clocks in the F frame, so that we have Einstein's time t = tE in

F as one can see from the relation (17.6); while in the F' frame, clocks are

synchronized to read Reichenbach's time V. Thus, an event is denoted by

(ct,x,y,z) in F. Following taiji relativity, the same event must be denoted by

(b't',x',y',z') in F' which is moving along the +x axis with a constant velocity 0 =

V/c, as measured in F. We stress that it is necessary to introduce the "ligh

function" b' so that (b't,x',y,z') = (w, r') transforms like a four vector and the

laws of physics can display 4-dimensional symmetry. It was shown by Edwards

256
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on the basis of the universal 2-way speed of light that times t and t' were related
by

t'=Y[(1-(iq')t-(p-q'c], q'=2E'-1 , O=V/c, (19.1)

which was the basic property of Reichenbach 's time.2'3 Assuming the validity

of relation (19.1) is effectively the same as assuming the universality of the 2-

way speed of light over a closed path in any inertial frame within a 4-

dimensional framework , as shown in (17 . 1)-(17.8 ). In analogy to the derivation

of transformations for taiji relativity in chapter 7, the 4-dimensional space-

lightime transformations for (ct,x,y ,z) and (b't',x',y',z' ) in extended relativity

can be obtained as follows:

w'm b't'=Y (ct-px) , x'=Y(x - Oct) , y'=y, z' = z; (19.2)

qY
b'=c- t,

where the transformation of t' and b ' are separately given by ( 19.1) and (17.21).

Note that t' and b' in ( 19.1) and ( 19.2) separately are non-covariant and have

complicated transformation properties . However, their product, w '=b't', is a

covariant quantity and has a simple transformation property as the zeroth

component of a 4-vector. The physical realization of a clock system for the

lightime w' in the F frame will be discussed later in section 19f. It should be

noted that without having this " ligh function " b' one cannot formulate a

physical theory of extended relativity with the 4 -dimensional symmetry of the

Lorentz and Poincare groups.

The extended transformations of velocities and accelerations , v = dr/dt,
v'= dr'/dt', a = dv/dt and a' = dv'/dt', can be derived from ( 19.2). We obtain

c dtt ) = dt'y(c-Ovx) ,

v x = dtdt' Y (vx - Oc) v'y=d,vy, v'z=d,vz;

(19.3)

and
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dc' d2t
apt' dt' = dt'2 Y( c - Ovx) - (

dt
dt')ZYpax

d2t dt 2
a x = dtn Y(vx - pc) + (at, ) Yak ,

d2t dt 2 d2t dt 2
ay=dt'2vy+ (at')ay, az=dt'2vz + (dt')az;

where dt/dt' may be obtained from (19.1),

(19.4)

1 '] x)' (19 5)
dddt, _ - pq ] - [p - q= Y € [ .

d2t dt (P-q')ax/c
dt'2 = dt' Z 70 (1-pq ')-( r-q')vx/c '

We stress that the definition c' = d(b't')/dt' is quite natural because the invariant

equation ds2 = 0, i.e., [d(b't')]2 - dr'2 = 0, is the law of the propagation of light,

c'2dt'2 - dr'2 = 0, in extended relativity. Thus,we still have an invariant law for

the propagation of light in all inertial frames, although the speed of light is not

a constant and Reichenbach 's time is not covariant. Furthermore, the

transformations of the velocity ratios v'/c' turn out to be precisely the same as

those in special relativity and taiji relativity:

vIx _ (vx/c - P) v' (v /c)
c' (1-vxP/c) v, cam' Y(1-Pvx/c) , etc. (19.6)

These relations are necessary for the space- lightime coordinate

transformations (19.2) to form the Lorentz group. For the ratios of

accelerations, we have

a'x Z(vx - co) + (dt/dt')lax

aft = Z(vx - co) - (dt/dt')j3ax
(19.7)

ay - Zvy + (dt/dt')ay
aft - Z(vx - co) - (dt/dt' )j3ax , etc. ,
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which are more complicated than those in special relativity because of the

parameter q' * 0 in the function Z given by (19.5).

19b. Some Experimental Implications of Extended Relativity

The momentum 4-vector pµ = (po,p) = (po,px,py,pz) and wave 4-vector kµ =

(ko,kx,ky,kz) transform like a coordinate four-vector (19.2). For example, we

have

ko'= Y (ko - Pkx) , k'x = Y(kx - Pko) , k'=k, k'=k. (19.8)

For a light wave, k = (k cose, k sine, 0) and k' = (k'cose', k'sine', 0), eq. (19.8)
leads to the usual formula for the aberration of star light,

(case - 0)
case = (1 - Pcose) '

sine
sine '= y(1 - Ocose) '

(19.9)

(19.10)

where we have used k = Ikl = ko for a light wave.

In the Fizeau experiment, the observed drag coefficient can be explained

by the addition law (19.6) for velocity ratios with vx/c = 1/n:

v'x (1/n - )
c' =(1 - p/n)

The speed of light relative to the medium (at rest in the F frame) is vx = c/n in F,

where n is the refractive index of the medium. Now, if the medium is moving

with speed V = Oc parallel to the direction of the light, the ratio v'x/c' observed

by a person at rest in F' is given by (19.11) as

v'x 1 (1/n - p) 1 1
c' - n'_ _ (1 - O/n) = n - n2) (19.12)

where n'_ is the "effective refractive index" of the moving medium with

velocity +V. Assuming each tube in the Fizeau experiment has the length L' and
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the speed of the water is ± V = ± 11c, the optical path difference AL' of the two

beams of light turns out to be consistent with experiment:

AL' = 2L'n' - 2L'n'+ = 4L'n2 c (1- n2) ,

1 1 V 1
n-f = n t c (1- n2)

(19.13)

(19.14)

because the optical path is just the distance in vacuum equivalent to the actual

path length traveled by each beam.

The usual formula for the aberration of star light has been confirmed by

experiments. It can be obtained from the inverse transformations of (19.9) and

(19.10),

sing'
tang = y(cos9'+P) (19.15)

This relation shows that both the deviation of light when transforming to a new

reference frame and the relation between two angles 0 and 0' are independent of

whether or not the one-way speed of light is a universal constant.

Note that the invariant law for the propagation of light,

c'2dt'2 - dr'2 = 0 , (19.16)

does not refer to any specific source and, hence, it holds for light emitted from

any source. From a microscopic viewpoint of light emission by atoms, the state

of motion of a macroscopic source of light is actually irrelevant . The reason is

that photons are emitted from atoms which may be in violent motion and whose

electrons make transition from one state to another state without having a

definite momentum or velocity because of the uncertainty principle.

The results ( 19.8)-(19.10 ) and (19 .13)-(19. 15) in extended relativity are

the same as those in special relativity . The reason is that they actually depend

only on the 4-dimensional symmetry of physical laws and are independent of

the constancy of the speed of light.
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19c. Doppler Shifts of Frequency and Atomic Energy Levels

The extended transformation of wave four-vectors kµ=((o/c,k) and k'µ=

(m'/c', k') is given by (19.8):

m'

c, k'x = T (kx - T) , k'y,= ky , k'z = kz , (19.17)

This implies the Doppler shift of wavelength in extended relativity to be

(19.18)

where kx = 2a/) , ky = kZ = 0, k'x = 2x/X'. This result is precisely the same as that

in special relativity.

However, the consistency of the Doppler frequency shift in ( 19.17) with

the result of laser experiments is more subtle because c' is not a constant in
extended relativity . Since experiments which measure the frequency shift

involve the absorption of photons by atoms, we must first re-examine the

nature of atomic levels from the point of view of extended relativity.
In extended relativity , Dirac's Hamiltonian HD for a hydrogen atom is

given by

i cli i)w = HD V,

e2
HD = aD•Pc + ODmc2 - Oar ' P=-ihV, (19.19)

Using the usual method, it can be shown that (19.19) leads to atomic energy

levels

En=
mc2

a2

[n - (xl + Ix2 - a2] 2

(19.20)

lid = j + 1 1 a = e2/(4acli) .
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Thus when an electron jumps from a state nl to another state n2, it will emit or

absorb an energy quantum cliko :

En z-En, = cfiko = rim, inF, (19.21)

EnZ - Enl = cPilco = cii °c-, in F' . (19.22)

where c in (19.22) is the constant 2-way speed of light. Note that c' and c in

(19.22 ) do not cancel in F', except for the special case, q' = 0. If two photons with

"energy" (wo/c)cf and (wo/c')cn are emitted from two hydrogen atoms at rest in

F and F' respectively, then by the equivalence of F and F' frames we have

°cli=C°CIT. (19.23)

Here, the ratio w'o/c' is isotropic . However, if ( w/c)ch and (w'/c')c?I are the

energies of the same photon measured from F and F' respectively, then they are

related by the Doppler shift (19.17)

cowC , = y 0 (1 - Ocose) , kx = kcose = c cos e . (19.24)

Evidently, only when c'=c do we have the usual relation for the Doppler

frequency shift. In general, we can only talk about an 'energy shift' or a 'ko

shift' in extended relativity because the energy of a quantum particle is not

always proportional to the corresponding frequency in all frames. From the

operational viewpoint, the energyl of a particle or ko is the zeroth component

of a 4-vector and observable in the Doppler effect, but frequency (defined on

the basis of Reichenbach 's time ) in general is not.

Experimentally , one never measures the frequency directly unless

constant one-way speed of light is presupposed ( so that frequency becomes

well-defined in all frames ); instead, what one really measures is the shift of

atomic levels in interaction with radiation in a general frame . Thus, ( 19.20)-

(19.24) are consistent with experiments of precision Doppler shifts. The

situation is similar to that in taiji relativity discussed in section 10b.
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Since Reichenbach 's time is used in the F' frame, the speed c' and the

frequency w' of a photon emitted from an atom at rest in F is anisotropic in

general; however, the ratio w'/c' is isotropic. The 4-dimensional symmetry

dictates the mixture of two waves in F' to be expressed in terms of (w',r') and

(w'/c',k') rather than (t',r') and (w',k'). Thus the superposition of two waves is

in general given by

Aosin(kolw' - k,- r') + Bosin(k02w' - kZ•r'), w' = MI. (19.25)

Only in the F frame, where c is, by definition, isotropic and constant, does one
have the usual expression Aosin ((olt - kl•r) + Bosin (w2t - k2•r).

19d. Classical Electrodynamics Based on Extended Relativity

Although the (one-way) speed of light in extended relativity is not a

universal constant, one still has the universal 2-way speed of light c. Thus, the

usual action for a free particle, - Jmcds, is an invariant in extended relativity.

If a charged particle with mass in and charge e moves in the presence of an

electromagnetic field in a general frame, the invariant action can be assumed to

have the usual forml

S = - fmcds - c JAµdxµ - JFµvFµvd3rdw , (19.26)

Fµv = aµAv - avA, , (19.27)

ds = gµvdxµdxV = dt C2-v2 , C = , v = dd , ( 19.28)

e=-c 1.6021891x10-20 g'cm ' (19.29)

where gµv = (1,-1,-1,-1), xl = (w,x,y,z), e/c is in Heaviside-Lorentz units and Aµ

is the same as the usual electromagnetic vector potential in special relativity.

However, there is an important difference from special relativity, namely, the

speed of light C = dw/dt in (19.28) in a general inertial frame is not a constant in

extended relativity.
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For a charged particle moving in an electromagnetic potential field Aµ,

the invariant action is given by Scp,

Scp = f 1 cpdt , Lcp = - mcC 1-v2/C2 - Aµd
dt

(19.30)

where dxµ/dt = (C,v), Ap = (Ao,-A) and Scp equals the first two terms in (19.26).

The canonical momentum of a charged particle is now given by

P=Act) = p+e,

where
(mcv/C)

p _ l-v2/C2

(19.31)

We have used the universal 2-way speed of light c to make p in (19.31) having

the usual dimension of mass times velocity. In contrast, there is no universal

speed of light in taiji relativity, so that the covariant momentum in (10.3) and

(10.5) must have the dimension of mass.4 The covariant Hamiltonian H is

defined as

al, c
- v - L) Z = cp° + eA°,

H = (dv

me

p0

_

1-v2/C2

(19.32)

Note that the factor c/C in the definition (19.32) is necessary for the expression

H/c to transform as the zeroth component of the momentum 4-vector, H/c - Po.

Otherwise, the Hamiltonian will not be meaningful. From (19.31), (19.33) and

H/c = P° we have

(Pp - . Ap)2 - (p - A)2 = m2c2 . (19.33)

The Lagrange equation of motion for a charged particle in the electromagnetic

field has the usual form

ds c. ds'
(19.34)
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where pu = (p°,p) and xu = (w,-r).

Making the substitutions P -> - ihV and Po -, ilia /aw based on symmetry

considerations , we obtain the extended relativistic Klein-Gordon equation

[(ilia - AD)2 -(-ihV - A)21 4(w,r) = m2c20(w,r) . (19.35)

For a continuous charge distribution in space, the second term in (19.26)
should be replaced by - JA,,J d3rdw. In this case, the variation of (19.26) leads to

the invariant Maxwell equations in a general frame

avFµv =Ju ,

a. wv + aMFvx + avF = o,
(19.36)

where Fu„=auAv-aVA.,, aµ=a/axu and xX =(w, r). Thus, Maxwell 's equations have the

invariant form , even if the one-way speed of light is not universal . This is
consistent with the result in taiji relativity.

One can write the field-strength tensor Fuv= aIAA - aVAI in matrix form

0 -Ex -Ey -Ez

Fuv - E, 0 B.
Ey Bz 0 -B
Ez -By Bx 0

(19.37)

where the fields E and B have the usual dimension. Note that they differ by a

constant factor c from the corresponding fields in taiji relativity discussed in

section 10c . They can be expressed in terms of the usual 4-vector potentials
Au=(A0,A) as

E= aw -VA0, B=VxA. (19.38)

In terms of E, B, and the 4-current Ju=(p,J), the first equation in (19.36) can be

written as
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V-E =p, V xB - aj, =J.

The second equation in (19.36) can be written as

V•B=O, VxE - aw = 0.

(19.39)

(19.40)

We have seen that the universal 2-way speed of light c does not explicitly

appear in the Maxwell equations in a general inertial frame. The situation

resembles that of taiji relativity discussed in section 10c.

19e. Quantum Electrodynamics Based on Extended Relativity

We will demonstrate that an extended quantum electrodynamics (QED) can

be formulated because extended relativity has the 4-dimensional symmetry with

the lightime w as the evolution parameter in a general inertial frame. The

formulation is formally the same as U D based on taiji relativity, as discussed in

section lOe. It should be stressed that extended Q);D cannot be formulated

covariantly if one uses Reichenbach's time t' in Edwards' original

transformations3 as the evolution parameter, because t' does not transform as

the zeroth component of the coordinate 4-vector. Within extended quantum
electrodynamics, the invariant action Sq involves an electron field W. The

electromagnetic 4-potential Aµ (i.e., the photon field) is assumed to be given by

the usual expressions

Sq = JLd4x ,

9 - c Aµ) - mcly -:W Fl,,P ,L= WI (ilia
1

(19.41)

where e is given by (19.29) and d4x = dwd3r. We may remark that there are two

differences between (19.41) and the corresponding Lagrangian density in

conventional QD, namely, the constant c in (19.41) is the universal 2-way speed

of light and d4x is not the same as cdtd3r in a general reference frame (in which

xµ = (w,x,y,z) * (ct,x,y,z).) For quantization of the electron fields, for example,

the "canonical momentum" xb conjugate to Vb is defined as usual to be5
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_ a
a(aoVb)

4r = W [ lillaµ - mc]v, aao=aw

(19.42)

and the Hamiltonian density for a free electron is H = aa0V - I,,. Suppose free

photon fields are enclosed in a box taken to be a cube of side V"3 and the

electron field is normalized in a box with volume V. We have

A.,(w,r) = Vii2^(l1/2po)1i2IA(p,a) eµ(a)exp (-ip•x/ll)
P,a

+ At(p,a) e,, ( a)exp ( ip•x/fi)] , (19.43)

,(tn/po)ti2[b(p,s)u(p,s)exp (-ip•x/li)W(w,r) = Vii2Y
p;s

+ dt(p,s)v(p,s)exp ( ip•x/1-i)], p•x = pµx►1 , (19.44)

where

[A(p,a), At(p',a')] = sp'psaa',

[b(p,s), bt(p',s')] = sp,psss,, [d(p,s), dt(p',s')] = sp'psss' , (19.45)

and all other commutators vanish.5

The Dirac equation in extended relativity can be derived from (19.41). We

obtain

ilia - e eaw - (ap
(-i1lV-cA)+PDmc+cAo]W. (19.46)

In view of the equations of motion (19.35) and (19.46), we must use the

lightime w rather than Reichenbach's time t in a general inertial frame as the

evolution variable for a state c(s)(w) in the Schrodinger representation:

ill aoaww) = H(s)(w)4, (s)(w) , H (S)= H.(S)+ HI(S), (19.47)
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because the evolution of a physical system is assumed to be described by a

Hamiltonian operator which has the same transformation property as that of w.

The usual covariant formalism of perturbation theory5 can also be

applied to quantum field theory based on extended relativity. To illustrate this

point, let us briefly consider the interaction representation and the S-matrix

based on extended relativity. The transformations of the state vector 4D(w) and

operator 0 from the SchrOdinger representation to the interaction

representation are

a,(w) 4,(')(w) = exp[iH (s)w/h](b(s)(w) ,

O(w) = O("(w) = exp[iH.(s)w/H]O(s)exp[-iH (s)w/$]

Because O(s) and O(w) are the same for w = 0, we have

ili a aww) = HI(w)4'(w) ,

where

(19.48)

(19.49)

(19.50)

H1(w) = exp[iH0(s)w/N]H,(s)exp[_iH (s)w/11]

O(w) = exp[iH(s)w/h]0(0)exp[-iH(s)w/ri] , (19.51)

The U-matrix can be defined in terms of the lightime w: 1(w) = U(w,wo )44(wo)

U(wo,wo) = 1. It follows from (19.50) and (19.51), that

ih aU(awwo) = H)(w)U(w,wo) , (19.52)

If a physical system is in the initial state Oi at lightime wo, the probability of

finding it in the final state 4bf at a later lightime w is

I (-DfI U(w,wo)bi) 12 = I Ufi(W,wo)12 . (19.53)

Evidently, the average transition probability per unit lightime for Of-4 Ii is
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IUF(w,wo) - 8g12

(w - wo)
(19.54)

As usual , we can express the S-matrix in terms of the U-matrix, i.e. S = U(o', -o)

and obtain the following form

w

S = 1 - (i/lt ) JH1(w)dw + (-i/t)2 f HI(w)dw JH,(w')dw' + ...... (19.55)

For w-dependent operators, one can introduce a w-product W(corresponding to

the usual chronological product), so that one can write ( 19.55 ) in an exponential

form:

S = W(exp[- (i/lt) JHH(xµ)dwd3r]} , (19.56)

JH.(xµ)d3r = H1(w) . (19.57)

For simplicity, one may set It = c = 1, where c is the 2-way speed of light.

(These are the "natural units" in extended relativity, similar to those in the

conventional field theory based on special relativity.)

For the Q);D Lagrangian (19.41), we can derive Feynman rules based on

extended relativity. Let us summarize the Feynman rules for Q);D with the

Lagrangian L in (19.41) with a gauge-fixing term (aµAµ)2/(2p):

LQwp=L - 1 (aMAµ)2, 11=c=1, a <0. (19.58)

The covariant photon and electron propagators are

-i[gµv - (1 - p)kµkv/(k2 + ie)]
(k2 + iE)

i
(7µPµ-m+ie)*

(19.59)

(19.60)
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The vertex factor is

- iey4+.
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(19.61)

There is a factor eµ for the polarization vector of each external photon line and a

factor u(p,s) for each absorbed electron, a factor -1 for each closed fermion

loop, etc . These rules are identical to those in the conventional theory, if the

natural units (Ii = c = 1) are used.

Thus, if one calculates scattering cross sections and decay rates (with

respect to the lightime w) of a physical process in a general frame, one will get

the same result as that in special relativity,5 as discussed in section 18d in

chapter 18 . This is not surprising because one has the same 4-dimensionally

symmetric Lagrangian (19.41) as that in special relativity.

19f. A Clock System for Lightime, Lifetime Dilatation and the

Maximum Speed of Physical Objects

One may ask : How does one realize the evolution variable w' in the

extended coordinate transformation ( 19.2) by a physical device? Since the

invariant phase of an electromagnetic wave in the F' frame is given by (kow' -

k'•r'), where ko = Ik'I, we can define lightime w ' in terms of k$, just as length

can be defined , as usual, by wave length X' or Ik'I . The "clocks", which show

lightime in this theory , are the same as those in taiji relativity because they

have exactly the same 4-dimensional transformation property . However, the

taiji-time w' in F' cannot be factorized into two well-defined b' and t' because of

the absence of a second postulate ; while lightime w' in common relativity and

extended relativity can be factorized into two well-defined functions b' and t', as

shown in equations (12.4) with common time t'=t, and (19 .2) with Reichenbach's

time ( 19.1). Another method of setting up a "clock system" which reads lightime

w' = b't' is to use the expression for b ' [i.e., b' = c - q'x'/t' given in (19 .2)] and the

value t', which is known through Reichenbach 's synchronization procedure for

a grid of ordinary clocks . Any clock has two adjustable parameters , its rate of

ticking and reading . We may base our " clock system" on computer chips. We

can program any "clock" in F' to obtain a time reading t' from the nearest F

clock in the grid and, based on its position x' and given values c and q ', compute

the lightime w' it should display.



Chap.19. Physical Implications of Extended Relativity 271

Our discussions show that it is important to be aware of what quantities

are actually measured in the experiments and what effects the assumption of a

universal speed of light may have had on the interpretation of the results. For

example, we have seen in section 18d that the " lifetime dilatation " of unstable

particle decay in flight has little to do with the non-covariant property of

Reichenbach 's time with a general parameter q or q ', because the lifetime T is

defined as the decay length divided by the constant 2-way speed of light c. The

basic reason is as follows : The 4-dimensional symmetry dictates that the decay

rates in any quantum field theory based on extended relativity can only be

defined in terms of the covariant lightime w or w'. The lightime has the

dimension of length and transforms as the zeroth component of a coordinate 4-

vector.

We stress that the constant 2-way speed of light in extended relativity is

in general not the maximum speed of physical objects in the universe. Rather,

it is the one way speed of light in a given direction that is the maximum speed of

objects in that direction, as shown in (19.3). This holds for any inertial frame.

It is worthwhile to note that this property of light, being the "maximum speed"

of all physical objects in any given direction , is the logical consequence of the

first postulate of relativity, as shown in taiji relativity in chapter 7.

We have examined a number of experimental tests of special relativity

and the formulations of classical electrodynamics and U D. All of them are

consistent with extended relativity . These discussions can be generalized to

other field theories such as unified electroweak theory and quantum

chromodynamics. As we have seen, only the 4-dimensional symmetry of

physical laws in extended relativity is absolutely essential for understanding

experiments and for the formulation of classical electrodynamics and Q);D; the

universality of the one-way speed of light is physically unnecessary. Similarly,

from the viewpoint of taiji relativity, the second postulate of the constancy of

the 2-way speed of light is also physically unnecessary.

In this connection, we stress that according to taiji relativity, the

universality of the one-way or the two-way speed of light is a convention

rather than an inherent property of the physical world. In other words, all

experimental results in taiji relativity or extended relativity can be derived by

simply using the quantities (w,x,y,z ) and (w',x',y',z') without ever mentioning

time t (or t') and the speed of light c=29979245800 cm/sec.
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20.

Determination of the Parameters of General Linear
Transformations by Precision Experiments*

20a. A General Parameterization of Linear Transformations

Can the Lorentz transformation of special relativity be deduced entirely

from experiments?

This question has been discussed and answered by several physicists.1

Postulating a general parameterization of linear coordinate transformations

between two inertial frames , it has been concluded that the Lorentz

transformation of special relativity can be deduced entirely from three

precision experiments : 1 the Michelson-Morley,2 Kennedy-Thorndike3 and

Ives-Stilwell4 experiments.

If true, this would experimentally exclude Reichenbach 's extended

concept of time, Edwards ' postulate of the universal two-way speed of light,

common time and the concept of taiji-time within the 4-dimensional symmetry

framework . Thus, it is important to look into the analysis of these three

experiments carefully.

Guided by a general parameterization of linear 4-dimensional transfor-

mations , Leon Hsu, then an undergraduate , re-examined the implications of the

three precision experiments in a term paper for a physics course.5 He found

that, using the Einstein method for clock synchronization , one obtains the

Lorentz transformations; without it , the three precision experiments are

insufficient to specify a relation between times t and t ' in two inertial frames.

Furthermore , he obtained an infinite set of 4-dimensional coordinate

transformations which has precisely the Lorentz group properties . Later, it was

realized that no known experiment can specify a definite relation for times t

and t'.6

*Although this chapter lies somewhat out of this book' s main line of development, it

complements the reasoning. Historically, the analysis in this chapter stimulated the new

ideas of taiji relativity discussed in chapter 7.
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Suppose we have two inertial frames, a rest frame F and a frame F which

moves along the x-axis of F with velocity V in a positive sense. In a general flat

4-dimensional framework, we use four variables to describe the coordinate of an

event in F or F'

(w, x, y, Z) W x9 or (w ', x', y', z') =
3eµ

, (20.1)

where wEbt and w '=b't'.

For simplicity and without loss of generality , we define the speed of light

to be isotropic in one of the two frames, say , F.6 Using light signals to

synchronize the clocks in F (i la Einstein ), we have

bt = ct, but b't' * ct' , (20.2)

since we know nothing about the speed of light or the time t' in F. We write our

parameterization of a most general linear transformation as follows:

b't'=D(Ect+Gx), x'=D(Ax+Bct), y'=Dy, z'=Dz. (20.3)

Because b' is as yet undetermined , we assume a linear relation between t and t',

t'=Mt+Nx, (20.4)

for simplicity of the discussion. This linear relation is not necessary, but

without it, the ensuing discussion would become more involved. This relation

can be physically realized by clock systems for any choice of M and N (which

may be constants or functions of V) since the reading and rate of ticking of a

clock may be arbitrarily set.6 The only thing implied by (20.4) is that a clock

moving with velocity V at any position x shows time Mt + Nx, while a clock at

rest at the same position x in F shows time t.

To determine our parameters , we first use the condition that an object at

rest in F has the velocity V when measured from F. Setting dx' to 0 and dx/dt to

V in (20.3), we get

(20.5)
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Other parameters can only be determined by experiments.

20b. Determinations of Parameters by Three Experiments

The result of the Michelson-Morley experiment implies that the speed of

light, averaged over a round trip, is the same in all directions for a given V.

Note that, strictly speaking, the Michelson-Morley experiment cannot tell us the

one-way speed of light. Suppose we have the apparatus set up in F so that one

arm is in the direction of motion while the other is perpendicular to it. Both

arms have length L' as seen from F'. Using (20.3), the averaged velocity of the

perpendicular path as measured from F is

c'1=d =(M + NV) dt,=dt =0'

where O=V/c, while the average velocity of the parallel path is

(20.6)

2 (Dc/A)(A2 - B2) (20.7)
Cp 1 1 = (M + NV) c-< 0;

4c'+) +

c'+ = d with = c ; c'_ = d^ with c .

Setting these two average speeds equal to each other and using (20.5), we get

A- B- -
1

(20.8)-Y, - Pr, 112

The positive root has been taken for A in order to make x and x' parallel rather

than antiparallel.

Now we use the results of Kennedy and Thorndike, first writing the

metric in terms of primed and unprimed variables by using (20.3) and (20.8),

S2= (ct)2- x2-y2-z2=[(E + OG )YD] -21(b't')2-x'2 (E2-G2)

- 2b't'x'y (G+E)P} - D-2(y'2 + z'2) . (20.9)
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The unchanging interference pattern seen in the original experiment and the

constant frequency of the cavity laser observed by Hils and Halll indicate that

the final phase of a light signal making a round trip is independent of the

velocity of the observer. This implies that over a round trip, the quantity b't'=

f(r') (s2=0 for the propagation of light) is also independent of V, since b't'=f(r')
is merely the distance traveled by light in time t', {b't'= Jod(b't') = Joc'dt' = light

path, see (20.19) below] and the wavelength of that light does not depend on the

relation between t and V. Solving for b't' m w' from s2=0 in (20.9) for the

propagation of light, we obtain

w'(9') = (L'cos 9')y(G + PE) + L'y(E + PG) > 0, for all 0', s2 = 0 , (20.10)

where

x' = L'cos 9' , y'2 + z'2 = L'2sin2 01. (20.11)

So over a round trip, we have the light path

w'(9')+w'(a+9 ')= 2L'y(E+3G), s = 0, w'=b't'. (20.12)

From (20.3), we see that A, E, and D equal 1 while B and G equal 0 when V = 0, so

y (E + OG)IP-0 = 1 . (20.13)

Since the Kennedy-Thorndike results require the light path (20.12) to be

independent of velocity, (20.13 ) must hold for all V. Using (20.13) and (20.8), we

then have

yE=1- fyG,
1 (20.14)1-02

Finally, we turn to the Ives-Stilwell experiment to try to determine the

remaining parameters . In order to proceed , we note that , within the 4-

dimensional symmetry framework , the transformation property of a wave 4-

vector kp must be the same as that of the differential operator aµ= a/axµ, where xµ
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= (w,r) and kµ = (ko, -k). Thus, (20.3) leads to the transformation of the wave

four-vector

ko = D(Eko + fykX) , kx = D(ykz - Gko) , ky = Dky , (20.15)

where, for simplicity, the wave is assumed to have no z-component.

In the Ives-Stilwell experiment (which was carried out in the frame F),

the experimental equivalent to observing a moving light source (at rest in F)

perpendicularly to its direction of motion was performed, in order to observe

only the second order Doppler shift.4 The calculational equivalent is to set b-- 90

degrees in F or kx = 0.

Using the equation ko - k2 = 0 (or ko = ky for kx = kz = 0) and the

transformation equation for ko, we derive two expressions for ko. Setting these

equal to each other and using (20.14), we obtain values for G and E

G= - py, E _ y, (20.16)

where G is chosen to be negative so that t and t' always have the same sign.

Only three parameters, D, M, and N, remain undetermined at this point.

Since ko = 2x/1, we take the equations in (20.15) (where kx= kocos$ and a = x/2)

together with (20.16) to get

(20.17)

Here, ?' m )'(0) is the wavelength of the radiation emitted by the light source as

seen by an F'-observer who is co-moving with it. This quantity cannot be

measured directly in the laboratory frame F, but one can measure 7M(0), the

wavelength of an identical emitter which is at rest in the laboratory frame F. If

we assume that X'(0) = X(0), then the results of Ives and Stilwell indicate that the

second order wavelength shift [? - ?.(0)]/? (0) of a moving light source is related

to its velocity by V2/2c2. For our proposed transformation to be consistent with

these experimental results, we must have D = 1. Note, however, that assuming

that 1(0) = A'(0) implies the equivalence of the frames F and F or the absence of

any kind of "absolute" velocity. This equivalence is actually postulated by the
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principle of relativity for physical laws. So, in this sense, the result D - 1 is

assumed rather than derived from these experiments.

Having culled as much information as possible out of the three

experiments, we can now write the transformation equations (20.3) as

b't'=Y(ct- Rx), x' =T(x-Oct), y'=y, z' =z. (20.18)

It is interesting to note that the resultant 4-dimensional transformation (20.18)

is precisely the taiji transformation that one would obtain by assuming only the

principle of relativity for physical laws, without postulating the universality of

the speed of light, as discussed in chapter 7.

20c. Flexibility of the Relation for t and t' in 4-dimensional

Symmetry Framework

The expression (20.1) with w=bt and w'.b't' expressed the concept of taiji-

time w as follows:

The taiji-times w and w' in F and F', respectively, have well defined values

in the unit of length. Furthermore, if one wants to introduce the conventional

time t and t', one can only have w=bt and w'=b't' where the relation for t and t'

cannot be specified in taiji relativity due to the lack of a second postulate. In

other words, taiji-time implied that the relation between t and t' is completely

flexible and can be arbitrary. In this sense, taiji relativity implies a new "time

gauge symmetry," as long as physical laws display the 4-dimensional symmetry.

The 4-dimensional symmetry property of (20.18) can be seen through, for

example, the invariance of the law for propagation of light emitted from an

arbitrary source,

c2dt2 - dx2 - dy2 - dz2= 0 ,

(d(b't'))2 - dx'2 - dy'2 - dz'2 = c'2dt'2 - dx'2 - dy'2 - dz'2= 0, (20.19)

where c' = d(b't')/dt' is in general unknown6 but c'dt' = dw' is well-defined. The

result (20.18) lead to the transformations of velocity ratios:
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v'x vx/c - V/c v'am vy/c v'Z Vz/c
C' - 1 - vxV/c2 ' c' - 1 - vxV/c2 ' c' - 1 - vxV/c2. (20.20)

where v'x = dx'/dt', vx = dx/dt, etc. Based on (20.20), we can show that the taiji

transformation (20.18) forms precisely the Lorentz group, even though t' is

actually unspecified and unknown because the relation between t and t' cannot

be specified by experiments.6 We stress that the velocity ratio v'/c' is

independent of the unspecified time t' because v'/c'=(dr'/dt')/(dw'/dt')=dr'/dw',

where w'=b't' is well defined in (20.18).

These transformations are independent of M and N so that the infinite set

of transformations given by (20.18) and (20.4) with unspecified M and N all have

the Lorentz group properties.? The Lorentz transformation in special relativity

is only a special case with

M = (1 _ p2)-in and N =-(p/c )(1-p2)-v2. (20.21)

We observe that there is another simple and interesting case , i.e.,8

t' = t, (or M = 1 and N = 0 in eq. (20.4)). (20.22)

This choice leads to the 4-dimensional symmetry framework with a common

time for all observers.

It is important to note that taiji relativity never specifies M and N. The

specification of M and N is equivalent to making an additional postulate. For

example, if one imposes the additional postulate (20.21) [(20.22)] in taiji

relativity, one will get special relativity [common relativity] which is logically a

different theory. We may remark that the postulate (20.21) is effectively the

same as assuming b'=b=c.

Finally, notice that at no point did we ever postulate a method of clock

synchronization for all inertial frames, as Hils and Hall did in order to set their

parameter e.' As a result, it was impossible to separate b' from t' in our

transformation, or equivalently, to determine M and N.8,6 As we did, Hils and

Hall defined the speed of light to be isotropic in the rest frame F. But, by using

relativistic clock synchronization and thus assuming that the speed of light was

the same in both directions along a line in the moving frame F', they have

actually fixed the speed of light to be a universal constant.1 Without this
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stipulation , we see that an infinite number of transformations are allowed, each

with the Lorentz group properties and each fully consistent with the results of

these three experiments . We stress that other experiments such as 'lifetime

dilatation ' etc. cannot give more information to restrict the function b' in

(20.18).6

We conclude that these three precision experiments are consistent with

taiji-time and that they do not exclude either Reichenbach's extended concept of

time or Edwards ' weaker postulate for the speed of light embedded in a 4

dimensional symmetry framework.
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21.

Generalized Lorentz Transformations for Non-Inertial
Frames Based on the Limiting 4-Dimensional Symmetry

"Every generalization is a hypothesis.... It is clear that any fact can

be generalized in an infinite number of ways, and it is a question

of choice. The choice can only be guided by considerations of

simplicity."

H. Poincare, Science and Hypothesis

21a. An Answer to Young Einstein 's Question and its Implications

Ever since the precise formalisms for mechanics and electrodynamics in

inertial frames were discovered and understood, physicists have attempted to

explore the exact laws of physics in non-inertial frames.

"Is it conceivable that the principle of relativity also holds for systems

which are accelerated relative to each other?"

This was the question the young Einstein asked in his 1907 paper, two years

after he created special relativity for inertial frames (or systems).1 He said that

this question must occur to everyone who has followed the applications of the

relativity principle. He considered two reference frames El and L. The frame El

is accelerated in the +x direction with a constant acceleration g, and the frame E2

is at rest in a homogeneous gravitational field which gives all objects an

acceleration of -g in the x-direction. Einstein extended the principle of

relativity to the case of the "uniformly accelerated frame" by assuming the

complete physical equivalence of a homogenenous gravitational field and the

corresponding constant acceleration of a reference frame.1

However, such an idea of extension does not seem to enable physicists to

derive an exact generalization of the Lorentz transformation for frames with

uniform accelerations or rotations. One might think that perhaps this is

partially due to the fact that the essential 4-dimensional symmetry of the

Lorentz transformation was not understood at that time. But even today,

282
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although special relativity can deal with accelerations of particles, the exact

operational meanings of constant linear accelerations and uniform rotations of

non-inertial frames are still not completely clear.2

There is a difficulty in the conventional notion of constant acceleration.
Such a constant acceleration g implies a velocity v1= gt1 as measured in an

inertial frame, in which the time t1 is not limited in any way. Therefore, this

velocity v1 will eventually exceed the speed of light after a sufficiently long time
t1, however small g may be. This violates special relativity and experimental

results of particle kinematics and, therefore, the exact operational meaning of

"constant linear acceleration" (CIA) cannot be satisfactorily based on the

conventional concept of acceleration, namely, dv1/dt1= constant in an inertial

frame. Nevertheless, by considering small gt1, Einstein in 1907 was able to

obtain two results related to time in accelerated frames:

(A) 2(x) = c(0)(1 +) (21.1)

(B) The Maxwell equations in a uniformly accelerated frame EI have the same

form as in an inertial frame , but with the velocity of light c replaced by

c(1 +) (21.2)

Based on the equivalence principle, result (A) was experimentally confirmed by

the gravitational red shift. On the other hand, result (B) was not completely

satisfactory.

Evidently, the answer to Einstein's question concerning the applicability

of the relativity principle to accelerated frames depends on the relationship

between 4-dimensional symmetry of spacetime and non-inertial frames. The 4-
dimensional spacetime symmetry of relativity was introduced by Poincare and

Minkowski,3 and is now one of the most thoroughly tested symmetry principles

of the 20th century. It is the mathematical manifestation of the first postulate of

special relativity, i.e., the symmetry or invariance of physical laws. The 4-

dimensional symmetry is fundamental and is extremely powerful in helping us

to understand physics.4

Although there is a definite non-equivalence between an inertial and a

non-inertial frame, we shall demonstrate in this chapter that the question
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raised by Einstein in 1907, namely, whether "the principle of relativity also

holds for systems which are accelerated relative to each other " can be answered

affirmatively to a large extent . The reasons are as follows:

(A) Any accelerated frame F(w,xy,z) must smoothly reduce to an inertial

frame FI(whxl,yyz1) in the limit of zero acceleration.

(B) The principle of relativity states that the laws of physics are invariant

under a coordinate transformation between inertial frames.

Logically, this is equivalent to the statement that the laws of

physics in inertial frames must display the four-dimensional

symmetry of the Lorentz and the Poincare group.

Thus, it is natural and worthwhile to investigate accelerated transformations on

the basis of the principle of "limiting 4-dimensional symmetry". This principle

states that the laws of physics in non-inertial frames must display the 4-

dimensional symmetry of the Lorentz group in the limit of zero acceleration.

As a result , accelerations of reference frames can be investigated on the basis of

a purely kinematic approach and independent of the gravitational field. And

physical results can be obtained without using gravity as a crutch, in contrast to

the conventional approach based on general relativity.

The "4-dimensional " spacetime (w,x,y,z) of non-inertial frames is, of

course, no longer the same as the relative spacetime of inertial frames in taiji

relativity. This is obvious because there is no relativity or reciprocity between

an inertial frame and a non-inertial frame. In other words , such a spacetime

(w,x,y,z) cannot have the 4- dimensional symmetry of the Lorentz and the

Poincar8 groups . It is a more general 4-dimensional spacetime which includes

the 4-dimensional spacetime of inertial frames as a special case when the

acceleration approaches zero. To avoid confusion , let us call such a more

general spacetime and evolution variable w of non- inertial frames "taiji

spacetime " and "taiji time." Thus, taiji spacetime contains both non -relative

spacetime and relative spacetime of taiji relativity. As usual , we use non-

relativistic to describe properties or quantities in Newtonian physics; but we

shall use non-relative to denote properties or quantities associated with non-

inertial frames. Moreover , taiji spacetime for non-inertial frames is not a

general covariant theory (such as general relativity) because only a particular

type of coordinates can be used in an accelerated transformation , just as that

only the Cartesian coordinates can be used in the Lorentz transformation.
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Based on this limiting 4-dimensional symmetry principle, the answer to

Einstein 's question is affirmative because we can obtain a "minimal

generalization" of Lorentz transformations for non-inertial frames with

constant-linear-accelerations (CIA). "Minimal generalization" means the
resultant equations involve minimal departure from the simple case with zero

acceleration.

As we have discussed in chapter 4, the 4-dimensional symmetry of the

Lorentz and the Poincare groups is directly implied by and is the essence of the
Poincare-Einstein principle of relativity. It must be stressed that limiting 4-

dimensional symmetry is simply the 4-dimensional symmetry of the Lorentz and

the Poincarc groups applied to non-inertial frames in the limit of zero

acceleration. We note that it is only the first postulate, but not the second

postulate, of relativity theory or the 4-dimensional symmetry principle that is

applied to non-inertial frames. The reason is obvious because the speed of light

cannot be a universal constant in non-inertial frames.

Since 1909, accelerated motions and transformations have been discussed

by many people.5-8 These results are not satisfactory because they do not have

the limiting 4-dimensional symmetry. In sections 21d, 21e and 21f below, we

show that the idea of limiting symmetry leads to a linearly accelerated

transformation (with two parameters, the constant acceleration and the initial

velocity,) which reduces to the 4-dimensional symmetry form of taiji or special

relativity theory in the limit of zero acceleration.

It is interesting and gratifying that the principle of limiting 4-

dimensional symmetry has further physical implications: It can also lead to

transformations for rotational frames and reveal the truly universal constants

for physics in both non-inertial and inertial frames.

Suppose F1(wj,xl,yI,zt ) is an inertial laboratory frame and F(w,x,y,z) is a

second, non-inertial frame whose origin rotates with an 'angular velocity' a

(measured in terms of w) on a circle of radius R, and whose y-axis always points

towards the origin of the F1(x1µ) frame. The principle of limiting 4-dimensional

symmetry states that in the limit R-wo and a- 0 such that Rig=00#0, the rotational

transformation relating those two frames must reduce smoothly to the 4-

dimensional symmetry form of relativity theory. On the other hand, when R

approaches zero, R-,0, the general rotational transformation leads to an exact

rotational transformation with a fixed origin. The result turns out to be



286 Einstein 's Relativity and Beyond

approximately the same as the usual rotational transformation (with t'=t). The

transformations for rotating frames will be discussed in chapter 25.

When one examines the formulations of physical theories in these non-

inertial frames, one notes that the speed of light is not a universal constant.

Consequently, the charge e measured in the electrostatic units and the Planck

constant li are also no longer universal constants of physics in non-inertial

frames. They are replaced by the charge e = -1.6021891x10-20(4x)112(g,cm)1/2

and the new quantum constant j = 3.5177293x10-38 g•cm, where a is the electric

charge measured in electromagnetic (Heavyside-Lorentz) units. In this

connection, we note that if we consider the unified electroweak theory instead

of quantum electrodynamics, we have one more constant, i.e., the Weinberg (or

weak) angle, which is a dimensionless and truly universal constant. The

dimensionless electromagnetic coupling strength ae = e2/(4,J) $ 1/137 is still a

universal constant, as it should be. These truly universal constants, a and J, are

exactly the same as those in 'taiji relativity' which is based solely on the first

postulate of relativity.9 They are truly universal constants because their

universal constancy holds in both inertial and non-inertial frames.

21b. Physical Time and Clocks in Linearly Accelerated Frames

The limiting 4-dimensional symmetry naturally dictates the smooth

connection between the physical time of inertial frames and that of accelerated

frames in the limit of zero acceleration. Since lifetime dilatations of particles

with constant velocities can be described by the physical time in inertial

frames, the corresponding "physical time" in accelerated frames must be able to

describe, say, the accelerated "lifetime dilatation" or "decay-length dilatation" of

an accelerated particle which decays in flight. In this sense, "times" in both

inertial and non-inertial frames should have equal physical significance.

Thus, it is important to find out first what is the "physical time" in

accelerated frames and how one can realize it through the setup of a clock

system. These are very difficult problems in a general non-inertial frame,

especially in rotating frames, because the speed of light becomes very

complicated, so that the usual synchronization procedure based on light signals

cannot be applied. However, the principle of limiting 4-dimensional symmetry

can dictate certain properties of the "physical time" in a non-inertial frame.
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Since there is no constant speed of light c in an accelerated frame F from

the operational viewpoint , one can only denote the 4-coordinate of an event by
(w,x,y,z) in general , according to the principle of limiting 4-dimensional
symmetry . Note that w has the dimension of length and plays the role of the
evolution variable . We avoid introducing the constant c = 29979245800 cm/sec
into the formalism of physics in non -inertial frames . Although it is not
physically or logically wrong to do so, defining w=ct for non -inertial frames is

unnecessary and can hide and confuse truly universal constants. For example,

if one uses c , one would be led to the conclusion that, for example, the Planck
constant If is universal . However, if one does not introduce c, one can see that

the truly universal constant for quantum mechanics in non -inertial frames is j
= 3.5177293x10-38g•cm rather than IT. This can also be demonstrated in the
physical theory of relativity ( i.e., taiji relativity ) which is based solely on the
first principle of relativity and does not make the second postulate concerning
the universal speed of light.9

For simplicity , let us first consider the physical time in CIA frames. In

the twentieth century, there have been a number of attempts to define a

transformation between the times in an inertial frame and one with a constant

linear acceleration . Through an ingenious trick of clock synchronization with

the help of three reference frames , Einstein in 1907 was able to obtain an

important result (21.1) for clocks at different positions in a CIA frame F with

small accelerations in the x direction:'

tX - to( 1 +) , F=F(ct,x,y,z) (21.3)

But this approximate result is inadequate to reveal the relation between time in

an inertial frame and that in a CIA frame.
In 1909, Born solved the relativistic equation of motion, dp,/dtI = F using a

constant force F=mg in an inertial frame.
pI, he obtained

^xl+g)Z-(ct,)2=^g)z

Using the relativistic momentum for

(21.4)

which is a hyperbola in the x^t, plane. The above results still do not lead to an

exact transformation between an inertial frame and a CIA frame.
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In. 1943, M0ller6 obtained a transformation for time (and space) between

an inertial frame FI(ctl,xl,yl ,zl) and a CIA frame F(ct,x,y,z ) moving with a constant

acceleration "a" in the xI (or x) direction:

s
ct1 = a sinh at + x sink at , (21.5)

based on Einstein 's vacuum equation Rµ„=0 and a postulated time-independent

metric tensor of the form, gµv=(goo (x),-1.,-1,-1). His transformation involves

only one parameter, i.e., the constant acceleration , and hence it does not reduce

to the Lorentz transformation with a non-zero constant velocity in the limit of

zero acceleration.
In 1972, Wu and Lee7 used a kinematical approach to derive a uniformly

accelerated transformation in the x-direction by assuming a time-independent

metric tensor gµv(x) = (g00 (x),-1,-1,-1 ) and local Lorentz contraction of length.

Their transformations turned out to be identical to that of Moller.

Recently, Hsu and Kleff10 used Wu-Lee's kinematical approach to obtain a

generalized transformation of time from an inertial frame to a CIA frame

F(ct,x,y,z) with an arbitrary initial velocity vo and a constant acceleration "a" in

the x direction. We have defined w=ct in the CIA frame for easy comparison

with Moller 's and Wu-Lee's works . This may be called the generalized Moller-

Wu-Lee (MWL) transformation. One has the following transformation of

physical time between an inertial frame FI and a CLA frame F,

ct, = (x+ ayo)sinh(ac0t + tanh-lJo) - Pa 22 (21.6)

1 V0
Yo = l^z , 00 = c ,

0
_ = tanh( -- + tanh-l^o) . (21.7)

One can verify that eq. (21.6) reduces to (21.5) in the limit of zero initial
velocity, Po -, 0. Moreover, (21.6) reduces to the usual 4-dimensional form, ctl=

yo[ct+pox], in the limit of zero acceleration, a-,0.

However, based on the limiting 4 -dimensional symmetry (see section 21f

below ), one can obtain yet another transformation between an inertial frame F1

and a CIA frame F(w,x,y,z):11
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1 _ 00ct[=7^(x+a o) a o'

1 1
x[ = 7(x + ay07)-- a7o Y[ = Y z[ =Z;

where 1 1
7= 142 7d= 1 02 0=aw+0o.

(21.8)

This is called the Wu transformations for CIA frames. Note that S in (21.8) has

the usual form of a linear function of the evolution parameter w, 0 = aw + 00, in

contrast to the more complicated function of p = v/c = tanh(gt/c + tanh-lpo) in

(21.5) and (21.6). In this sense, (21.8) is formally a minimal generalization of

the classical transformations for accelerated frames.

We stress that all the above results (21.3), (21.5), (21.6) and (21.8) are

consistent for small velocities. Einstein's result (21.3) is equivalent to the metric

tensor goo-(1+2gx/c2) for the space associated with an accelerated frame.6

Indeed, (21.5), (21.6) and (21.8) all imply the same metric tensor in the case of
zero initial velocity, ll0=0, and small velocity, P«l. (cf. Equations (21.39), (21.40),

(21.49) and (21.50) below.)

From the Wu transformation (21.8) one can solve for w,

_ (w[ + Po/aYo) Po
w (ax[ +1/Yo) -

a , w1 ct[ . (21.9)

The F clocks can be synchronized without relying on knowledge of the speed of

a light signal. This is possible because any "clock" (in the sense of a device

which shows the time) can be adjusted to run at an arbitrary rate and show an

arbitrary time.9 For example, our F "clocks" could be some kind of computerized

machines which have the capability to measure their position x[ in the F[ frame,

obtain w[ = ct[ from the nearest F[ clock, and then compute and display w using

(21.9) on some readout. Such clocks may seem strange compared to our usual

concept of time. However, the conventional time system in an inertial frame

which we use is itself merely the result of a postulate (namely the second

postulate of special relativity regarding the universal speed of light) which we

have grown used to. As long as it can be physically realized by clocks and is

consistent with known experimental results (see sec. 7.), the relation (21.9) for
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the "time" w must be regarded as a valid and physical time of the CIA frame F.

Such a grid of computerized clocks will automatically become the more familiar

Einstein clocks of inertial frames, provided w=ct, when the acceleration in

(21.9) becomes zero. Therefore, the coordinates (w,x,y,z) in (21.8) for a CIA

frame play the same role and have a similar physical meaning to the Cartesian

coordinates in the transformations for inertial frames. We may remark that

these discussions of computerized clocks and their synchronizations can be

applied to any other accelerated and inertial9 frames and their transformations.

In the following discussions, we shall use

(w,x,Y,z) and (w1,x1,Y1,z1) (21.10)

as coordinates of non-inertial and inertial frames respectively. For simplicity,

w and w1 are called "time", and they are related to the "decay-length dilatation"

experimentally.

21 c. Moller's Gravitational Approach to Accelerated

Transformations

It appears that physical phenomena in a constant-linear-acceleration

(CLA) frame have not been thoroughly investigated. Although there were

lifetime dilatation experiments for particles in uniform circular motion, these

results cannot be applied to the case of CIA motion in which a particle's speed

changes. Also, we still do not have a satisfactory transformation between an

inertial frame and a CIA frame which can be smoothly and naturally connected

to the Lorentz transformation when the accelerated frame becomes an inertial

frame. Moller used Einstein's vacuum equations Rik = 0 and postulated a time-

independent goo and g11 = g22 = 933 = -1, ds2 = goo(x)dw2 - dr2, to obtain goo(x)=

(1+gx/c2)2 and a transformation between an accelerated frame and an inertial

frame.6 But his accelerated transformation cannot be smoothly connected to the

Lorentz transformation in the limit of zero acceleration.

In this section, Einstein's equation Rik = 0 is used as a guiding principle to

obtain CIA transformations. Although Einstein's covariant equation holds for

any coordinates, the Lorentz transformation prefers the Cartesian coordinates.

Thus, the natural assumption of smooth connection between a CIA frame and an

inertial frame dictates the CIA transformation to be expressed in quasi-
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Cartesian coordinates which become Cartesian in the limit of zero acceleration.

The reason for using Rik = 0 is suggested by a heuristic view that the 'inertial

force' of accelerated frames and the 'gravitational force' may be considered as

being "unified" by Einstein's equation. Nevertheless, these two forces satisfy

different "boundary conditions": Namely, in contrast to the gravitational force,

the inertial force does not vanish at spatial infinity, and the transformations for

accelerated frames should reduce to the Lorentz transformation when inertial

forces vanish.

Let us first consider an inertial frame FI(wl,xl,yl,zl) with w, = ctI, and a CIA

frame F(w,x,y,z) moving with a constant acceleration along the x-axis. Based on

the preceding discussions , it is natural to assume that dsz takes the form

dsz = c2dt,z- dx,z- dyl2- dzl2

= goo(x,w)dw2+ g,t(x)dx2+ 922(x)dy2+ gss( x)dz2, (21.11)

where goo is assumed to be a function of w and x in general. Time t, is shown by

the Einstein clocks in the inertial frame FI. As usual, one may define w = ct in

the CIA frame F if one wishes. Although Rik = 0 holds for arbitrary coordinates,

we postulate the metric (21.11) so that ds2 and the resultant transformations are

consistent with both Einstein's vacuum equation Rik=O and the new "boundary

conditions" when the acceleration vanishes. Since the CLA frame F moves along

the x-axis, we look for axial symmetric solutions with

g22 = gas = - Y2(x) (21.12)

and all metric tensors are functions of x, except that goo may be a function of x

and w.

This physical property of goo(x,w) is crucial for the new CLA

transformation; and it will be determined later. Now we can calculate

Christoffel symbols Gijk = gim( akgmj + ajgmk - amgjk) and the Ricci tensor Rik=

amGmik+ akGmim+ GnikG1},m- GminGnkm. The equations Rii = 0, i=0,1,2, lead to

(21.13)
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azxW
+

2 azxY axX 2 aXY + aXW 0
W Y -(X)I Y

azxY _ axYaxX + IaxY)2 + axYaxW
Y YX

=0Y YW '

respectively, where Y is given by (21.12) and

W2 = goo(x,w) , X2 = - g11 (x) ; W = W1(x)Wz(

(21.14)

(21.15)

We note that R33 = 0 gives the same equation as (21.15) and other components of

Rik vanish identically.

If azxY = 0, equations ( 21.13 )-(21.15 ) lead to an exact solution

W1= f3 X = f2 flx+fo , Y = f1x + CO , (21.17)
flx+fo

where fl, f2 and f3 are constants . We stress that W2(w) in (21.16) is arbitrary

because it cannot be determined by Einstein's equation . Physically , one expects

that the metric tensor g22 should satisfy -g22 = Y2 = 1 rather than Y2 = (fix + fo)2,

since there is no motion at all along the y-axis. Furthermore, the accelerated

transformation based on this solution cannot be smoothly connected to the

Lorentz transformation (i.e., it does not satisfy the "limiting four-dimensional

symmetry" or integrability conditions in (21 .23) below). Therefore , the solution

(21.17 ) with f1#0 is not physically meaningful . Note that the case f1=0 in (21.17)

is trivial and uninteresting because it is equivalent to that of zero acceleration.

Let us concentrate on the non-trivial case axY = 0 and axW = 0. We have

the solution

Y=1, (21.18)

which satisfies the boundary conditions g22(0) = 833(0) = - 1 at the origin. From

(21.13 ) and (21.18 ), we deduce a general relation between W1(x) and X(x):

dW1(x) = ix(x)dx
(21.19)
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where f is a constant of integration. Note that W1(x) can be determined if X(x) is

given or postulated. Furthermore, the time-dependent part of goo, i.e., W2(w),

still cannot be determined by Einstein's equation, just like the previous case axY

= 0. Thus we have seen that Einstein's covariant equation by itself does not lead

to a specific form for X(x), W1(x) and W2(w). We may remark that one must have

specific functional forms for X(x) and W in order to have finite transformations

between a linearly accelerated frame and an inertial frame. Moller postulated

W=W1(x) and X(x)=1 in (21.16) (i.e., time-independent goo and g11 = 922 = g33 = -1)

to obtain gOO(x) = (l+gx/c2)2 and a transformation between an accelerated frame

and an inertial frame.6

21d. A Kinematical Approach to Accelerated Transformations
Based on the limiting 4-Dimensional Symmetry

Let us consider now the implications of the Poincare-Einstein principle

of relativity for the transformations between a CLA frame F and an inertial

frame F1. Suppose that a CIA frame F moves along parallel x and x1 axes and that

the origins of F and F1 coincide at the taij i-time w = w,= 0. We postulate that the

invariant infinitesimal intervals for a CIA frame F and an inertial frame F1 are

given by

ds2 = W (w,x)dw2 - dx2 - dy2 - dz2 = dw12 - dx12 - dy12 - dz12 . (21.20)

The principle of relativity dictates that W(w,x) must approach 1 in the limit of

zero acceleration. This is equivalent to satisfying the requirement of the

limiting 4-dimensional symmetry. The presence of the function W(w,x)*l

indicates the physical non-equivalence of F and Fl. The local relation between
F(xµ) and F1(x1 µ) may be written in the form,

dw1= y(Wdw + l dx) ,

dx1= y(dx + A Wdw) , dy1= dy, dzt = dz,

where y and (I are functions of the time w in general, and

(21.21)
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1 (21.22)

The local transformation (21.21) preserves the invariance of ds2 in (21.20). In

order for F(w,x,y,z) to smoothly reduce to an inertial frame in the limit of zero

acceleration , there must exist a global transformation related to (21 .21). In

other words , the limiting 4-dimensional symmetry also dictates that the two

unknown function W(w,x) and p(w) must satisfy the following two integrability

conditions for the differential relations in (21.21):

a(rw) = a(Y) _ a(7&W)
ax aw ' and aw ax

(21.23)

By separation of variables, W(w,x)=WwWx, the two equations in (21.23) lead to the

same relation

z
dw kx

(21 24)dw = i'd = w
.

where kl is a constant . Thus we have two solutions

Wx = klx + k2, (21.25)

(dp/dw)
W = (21 26)w [kl(1 - p2)] .

The implication of the principle of limiting 4-dimensional symmetry is as

follows: the solution of the differential equation (21.26) depends on the physical

properties of either II or Ww. Namely, if the "velocity function" 0 is known, then

Ww can be determined, and vice versa. In other words, the principle of limiting

4-dimensional symmetry by itself cannot uniquely determine the function

W(w,x). In general, there are infinitely many solutions for (21.24). We observe

that the present case resembles the situation in which gauge symmetry cannot

uniquely determine the electromagnetic action,12 so that one must further

postulate a minimal electromagnetic coupling. In the present case, we also

postulate the minimal generalization of the Lorentz transformation:

The minimal generalization of the Lorentz transformation is to give up

the untenable relation v, = gt1 + v10 in an inertial frame FI (as discussed in section
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2la), and to retain the velocity function ft as the usual linear function of time w

only in the CIA frame,

P=aw+fo. (21.27)

It follows from (21.25) and (21.26) that we have a time-dependent metric tensor

goo(w,x)=W2, where

W = WwWx = YZ(Yo 2 + (Xx ) = ((i 2_+^2aX) , (21.28)

where the constants k2 and kl in the product WN,Wx are determined by the

limiting condition W(w,x) -,1 as a-> 0.

However, there is another relatively simple generalization of the Lorentz

transformation that can be obtained by postulating a time-independent metric

tensor goo , i.e.,

goo = Wx or WN, = 1. (21.29)

It then follows from ( 21.25 ) and (21.26) that,

Wx=ktx+k2r (21.30)

0 = tanh(klw + k3), (21.31)

with parameters k1, k2, and k3 determined as follows . The constant k3 in ( 21.31)

can be determined by the initial condition that 0 = fo when time w = 0, i.e., k3 =

tanh- lfIo. Furthermore , since 0 is equal to 0O when the acceleration approaches

zero , kl in (21 .31) should be proportional to the constant acceleration , although

kl may also depend on 00 , as shown in eq. (21 .35) below. Finally, since Wx must

be 1 if the acceleration ( and thus k1) vanishes , we see that k2=1. Relations

(21.30 ) and (21.31 ) are now determined as follows:

Wx = 1 + klx , and 0 = tanh (klw* + tanh-lfIo) , (21.32)
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where we denote the time as w* in order to distinguish it from w in (21.27). Note

that in this case, the usual simple relation between the velocity and time

variables in (21.27) is replaced by the more complicated relation in (21.32). In

this sense, (21.32) is not the minimal generalization. Nevertheless, we will also

discuss the solution (21.32) because the assumption of a time-independent

metric tensor was also made by Moller and by Wu and Lee,6'7. Equation (21.32)

leads to a generalization of the transformation obtained by them to the case of

non-zero initial velocity, though it is based on entirely different considera-

tions.10

21e. Generalized Moller-Wu-Lee Transformations Based on the

Limiting 4-Dimensional Symmetry

Substituting (21.32) in (21 .21), one can carry out the integration and

obtain the relations

wr = (x+ kl) sinh(klw* + tanh-10o) + k6 ,

xi = (x+ kr )cosh(kiw* + tanh-1lo) + k7,

Yr=Y, zr=z.

(21.33)

Using the usual initial condition that if w* = x = 0, then wr = x1 = 0, the constants of

integration k6 and k7 in (21.33) can be determined in terms of kr as

-Yo'o -Yo
k6= kt , k7= kl . (21.34)

In order to determine the role of constant acceleration in (21.33) and to

compare it with the transformation obtained by Moller and by Wu and Lee,6'7

we follow Wu and Lee and impose the boundary condition that the velocity 5 is
related to the constant acceleration a* by the usual relation 3 = a*wr+Po at xr = 0.7

From (21.32), (21.33) and (21.34), kl is found to be

kr = Yoa*, (21.35)
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because

=
sinh (klw*+tanh-lpo) - wI +yo^kl

cosh ( klw*+tanh-lpo) xi +yo/kI = d*wI+Po, for xq =0.

Thus, the generalized Moller-Wu-Lee (MWL) transformation between the
frames FI and F is given by

WI = (x +Y a*)sinh(yoa*w* + tanh-'Ro) -
a00

xI = x+ yoa* cosh(yoa*w* + tank- No) - a* ,

YI=Y, zl=z.

(21.36)

In the limit of zero acceleration a*-^0, the transformation (21.36) indeed

reduces to a form with the four-dimensional symmetry of the Lorentz group

wl = yo(w* + pox) , x4 = yo(x + Pow* ) , YI = y ,

where

sinh(tanh-lfto) = Poyo, and cosh(tanh-llbo) = yo.

(21.37)

The resultant transformation (21.36) is obtained on the basis of the principle of

limiting 4-dimensional symmetry and time-independent goo given in (21.29).

Interestingly enough, it turns out to be the same transformation as (21.6) with

a/c2 = a*, w = w* and ct1 = wi, obtained by using Wu-Lee's kinematic assumptions

with non-zero initial velocity 00.10

The inverse transformation of (21.36) is

W* 1 (tanh-1 (wI + lbo/a*) 1 lb
yoa* L(xj + 1/a*) i - tank-o} ,

1 1 1

X= (xi + 1/a*)2 - (WI + Po/a*)2 - yoa* (21.38)
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YI =Y,

Differentiation of (21.36) give

dwi = Y(Wxdw* + Pdx) , dx1 = Y(dx + P Wxdw*) , dy1=dy , dz1=dz , (21.39)

Wx = 1+Yoa*x , P = tanh(yoa*w* + tanh-100) ,

It follows from (21.39) that

ds2 = dw12 - dx12 - dy12 - dz12

1

= Wx2dw*2 - dx2 - dy2 - dz2 =- g*µvdxµdxv , (21.40)

where Wx = 1+Yoa*x, diagonal elements of g*gv are g*µv = (Wx2, -1, -1,-1) and µ,

v = 0,1,2,3.

We stress that the coordinate xµ =(w*,x,y,z) with metric tensor g*gv given

by (21.40) is the preferred coordinate system for the generalized MWL

transformation. Contrary to the usual covariant formalism, the coordinates x1

cannot be arbitrary because the principle of limiting 4-dimensional symmetry

dictates that the transformation (21.38) or (21.36) must be expressed in terms of

such coordinates (w,x,y,z), so that they can smoothly connect to the Cartesian

coordinates in the limit of zero acceleration. This is similar to the case that the

coordinate system chosen for the Lorentz transformation should be Cartesian

and cannot be arbitrary. The distance x is measured by the usual meter stick (or

the Bohr radius of a hydrogen atom) at rest in the CIA frame. Similarly, w can

be determined by a grid of computerized clocks in the CIA frame F, as discussed

in section 21b.

The speed of a light signal in the CIA frame is described by ds=0, i.e.,

(aNr*i = Wx= (1+a*Yox) , (21.41)

and is consistent with Einstein's result (21.2) when one sets w*=ct and PO=0.
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If a particle is at rest in F1, using (21.39) and (21.40) with dxI=O and y1=z1=0,

we obtain the relation of the proper time (or decay-length ) w1, of a particle at

the time w*, wlv Jdw1=Jds, i.e.,

w*

wlP = f dw*Wx2 - - a*YO,J dw*
1

cosh2(a*Yow*+tanh-lpo)
0

^ dx 2

_ (a + xl)[tanh(a*Yow* + tank-loo) - 001 (21.42)

where xl is the fixed position of the particle . On the other hand, if a particle is at

rest at x in F, the proper time (or decay-length ) is w*p=Jdw*=(1/Wx)Jds

=(1/Wx)Jdw1 [1 -(dx1/dw1) 2]1i2, where x is fixed , so that we have

W.

jdwl 1-^2
l+a Yox)o

=Y tanh-lZ(x,w1) - tanh-lZ (x,0)] ,

where

Z(x,wl) = (wl + Pole)

(x + 1/Yoa*)2 + (W1 + po/a*)2

dwl I -O = 0 = tanh(a*Yow* + tanh- lpo) _

((XI

+ 1 /a
))

(21.43)

Moreover, the usual acceleration , d2x1/dw12=dp/dw1 of a fixed point r in F, as

measured in F1, is

d2x1 (x + 1/yoa*)2

dW12 = [(x + 1/Yoa* ) 2 + (WI + 501e ) 2]312 (21.44)

which is clearly not a constant . However,

d =Y3-_ - a*Yo- (21 45)dw1 ( 1+xyoa* )1-p dw1
.
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is a constant because x is fixed. This is consistent with Born's result (21.4) [or

dpI/dt1 = constant.]

21f. Minimal Generalization of the Lorentz Transformations

- the Wu Transformations

For the minimal generalization of the Lorentz transformation (first

described in section 21d), we retain the usual relation P=aw+0. The postulate of

limiting 4-dimensional symmetry and such a minimal generalization lead to the

interval (21.20) with W given by (21.28). Substituting (21.28) into (21.22) and

integrating, one obtains the CLA transformation (21.8):

1)-00
wi=yP x+a ayo

1 1
x1= y(x + a o) _ ayo , YI=Y, zI=z; wl=ctI, (21.46)

where the constants of integration, 0o/ayo and 1/ayo, are determined by initial

conditions, i.e., when w1=x1=0, one has w=x=0. This is called the Wu transfor-

mation.8 One can verify that the Wu transformation (21.46) indeed reduces to

the 4-dimensional symmetry form (21.37) in the limit of zero acceleration.

The inverse Wu transformation can be derived from (21.46),

_ (w, + Ro/ayo) _ 00
w = (ax1 + 1/yo) a '

x = (x1 + 1/y0a)2-(w1 + po/ayo)2 - aToz ' Y = Y1 , z = z1

(21.47)

Differentiation of (21.46) gives

dw1 = y(Wdw + Pdx), dx1 = y[dx + PWdw)], dyI = dy, dz1 = dz ; (21.48)

1 W = y2(y0 2+ax) .^=anv +^, Y= 12 , (21.49)

The invariant infinitesimal interval is thus
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ds2 = dw12 - dx12 - dy12 - dz1 = gµrdxt'dxv , (21.50)

gµv= (W2,-1,-1,-1) = (y [Yo 2+ax]2,-1,-1,-1) .

The factor W in the metric tensor (21.50) and the differential form of the Wu

transformation (21.48) may be called the Wu factor. Again, we note that the
coordinates (w,x,y,z) with the metric tensor gµv given by (21.50) are the

preferred coordinates for the accelerated Wu transformations and that the time

w in (21.46) and (21.47) differs from that in (21.36) and (21.38). We shall discuss

physical implications of this important difference in chapter 23.

The propagation of light is described by ds=0 in (21.50), so that the speed

of light measured in terms of w in a CIA frame is now given by the Wu factor W:

I aW I=W =Y2 (Ya2+ax), (21.51)

which is consistent with Moller's result (21.41) and Einstein's result (21.2) for

small velocities, 00-0 and 1f121«l. For large velocities, however, they have

significant differences.

If a particle is at rest in F1 at the location (x1r0,0), (21.50) implies the

proper time w1p at time w to be w1p=Jdw1=Ids, i.e.,

w

w1p= Jdw W2 - (dx/dw)2 = (Yo + a)1)w.. (21.52)

On the other hand, if a particle is at rest in F, r=const., (21.50) gives the proper

time wp at time w1:

W
d 1

W1
an2f d /d1 dJ w = JW P =

W
(Yo 2 )

+ax
]w1)w1 [ - ( x1

d

=1 (w1 + Po/aYo)

a (x + 1/y 2a)2 + (w1 + Po/aTo)2

(0o/aYo) } . (21.53)
(x + 1/Yo2(X)2 + (po/(Xyo)2
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This can also be written as

wI=(x+Yoza) I Y0-TOPOI P=ocw+00. (21.54)

These relations for proper times can be tested experimentally by measuring the

decay-length (or "lifetime ") dilatation of a particle with constant linear

acceleration.
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22.

Dynamics of Classical and Quantum Particles in Non-Inertial
Frames with the Limiting 4-Dimensional Symmetry

22a. Classical Electrodynamics in Constant-Linear-Acceleration

Frames

Within the 4-dimensional framework of taiji relativity, there are only

two truly universal and fundamental constants in quantum electrodynamics:

J = 3.5177293x10-38g-cm and e = -1.6021891x10-20(4x)1"2(g•cm)"2, instead of the

usual three, c, ti, e (in the electrostatic unit, esu.)1 These results of truly

universal constants still hold in the present formalism of physics in accelerated

frames, in which the speed of light is not a constant.

To be specific, let us assume that CLA frames satisfy the Wu

transformation (21.46). Since the speed of light in an accelerated frame F is no

longer a universal constant, the invariant action for a charged particle moving
in the electromagnetic potential aµ(x) is assumed to bet

S = J(-mds - -eadxµ ) - 4 JfµvW"Wd4x

= JLdw - 4 Jfµvf^"Wd4x , (22.1)

ds2 = W2dw2 - dx2 - dy2 - dz2, -jet gµv = W = YZ(To 2 + (Xx) , (22.2)

fµv = aµav - avaµ , dxµ = (dw,dr) , dxµ = gµvdxv = (W2dw,-dr) , (22.3)

in a CIA frame F. The differential of the coordinate dxµ=(dw,dr) is, by definition,

a contravariant vector. The covariant coordinate dxµ is given by (22.3). Note

that the invariant action S for a CIA frame does not involve the constant c and

that Wd4x = -det gv dwdxdydz is the invariant volume element in taiji

spacetime . We use taiji-time w as the evolution variable, so that the Lagrangian

L, defined in (22.1), takes the form,

L = -m W2_ py p2 - E( ao + aiDi) , i=1,2,3,)c z (22.4)

304
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dr/dw

Note that 0 in (22.4) is the 'velocity ' of the particle measured in terms of Taiji
time w. In the limit a -, 0, F becomes an inertial frame and, hence, a and aµ

correspond to the charge e(in esu ) and the usual electromagnetic potential

A4(ct,r ) by -e = e/c and aµ(w , r).a Aµ(ct,r)/c respectively . The canonical
momentum Pi of a particle in the CIA frame F is defined by

Pi = - ai
=

pi+ eai ; Pi = -Pi, i = 1,2,3 ; (22.5)

Pi = (-m'Px/W, -mr /W, -mF /W) = gikPk , Px = 01 = -PI , etc . (22.6)

1
I= = ^ +^ ^i$ - p+P i =a 7)(221-p2 , ,yx i i .

The "Hamiltonian " H = Po, which has the same dimension as that of Pi, is

defined by

dL
P. ^ api 111 - L) = po + (Pj-eai)2+m2

Po = mFW = goop°,

+ eao = H ; (22.8)

P°=mds =moils (22.9)

Note that the contravariant momentum pµ and the covariant momentum pµ are

related by pµ=gµvp , i.e., Pµ= (Po,Pi , Pz,P3 )=(W2P°, pt ,-p2,-P3 )=(W2p0, p) and the

function W is given in (22.2).

We observe that the covariant momentum pµ=(po,P1,P2,P3 ) in (22.6) and

(22.9) can be written as pµ=mdxµ/ds=mgµvdxv /ds. Since m and ds are invariant, pg

should transform as gµvdxv . From the transformations of dxv in ( 21.48) and gµv

given in ( 21.50), we obtain the transformations of the covariant momentum

P10=Y(
Po
W- OP,), P11 = Y(P1 PPoN,), P12=P2 1 P13=P3; (22.10)

aw + _ (W1 + Ro/aYo) __ (xi + 1/yoa)2 - (x + 1/aio2)2
^o (x1 + 1/aYo) ( x1 + 1/ayo)
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where we have used dxµ=gµvdxv, dxx=tlµvdxly , nµv=(1 ,-1,-1,-1) and (21.47). Note

that 0 in (22 .10) is the velocity of the CIA frame F and differs from that in

(22.4)-(22.9). This transformation allows us to see how the particle 's energy P1o

increases as a function of distance it travels in an inertial laboratory. Suppose

the particle is in the CIA frame at x'=(x0,0,0)=constant, so that dxi /dw=0, r=1 and

po=mW in (22.7) and (22.9). We have p1o=mr-m/ 1-j2, which leads to

1p10 _
ma = constant,

dx1 (Yo-o 2 + axo)
(22.11)

where we have used 0 in (22.10) with x=x0=constant. This result gives the

operational meaning of constant acceleration in an inertial laboratory such as

the Stanford linear Accelerator Center. To be more specific, if xo=0 and the

initial velocity 00=0, the constant acceleration a of a charged particle with mass

m can be obtained by measuring (1/m)(dp10/dx1), where (dp10/dx1) is related to

the potential gradient of the accelerator.

The Lagrange equation of motion of a charged particle can be derived

from the invariant action (22.1). We obtain

Dug
m ds = efµvuv ,

e = -1.6021891x10-204:Fn g7cm ,

dxv
u°=ds , Duµ = u;vdxv=Dvuµdxv,,

Dvuµ = a rPµvuP = avuµ - rPgvuP , Duµ = avuP + rµvpuP ,

row = 21 gPa(aµgav + avgaµ - aaggv ) = row

(22.12)

where ;v or Dv denotes the partial covariant differentiation3 with respect to xv.

And the Christoffel symbols rPµv can be calculated with the metric tensor given

by (21.50) for the space of a CIA frame with the Wu transformation. On the

other hand, if one works in the space of a frame with the generalized MWL
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transformation, one uses the metric tensor in (21.40), i.e., gµv=(Wx2,-1,-1,-1)

where Wx=l+yoac*x, to calculate the Christoffel symbols and so on.

For a continuous charge distribution in space, the invariant action for

the electromagnetic fields and their interaction is assumed to be

Sem = - JaN I1Wd°x - 4 Jfµ,ft+WVd4x . (22.13)

It leads to the following Maxwell's equations

gµvDµfva = Ja, kfgv + aµfX + aft = 0 , (22.14)

fµv = Dµav - Dva i = aav - avaµ ,

Dafµv = aafµv - TPµafp,, - I'QvafµP

These Maxwell's equations are invariant under the Wu transformations for CIA

frames. Note that the coordinates in the Wu transformations (21.46) for a CIA

frame F(w,x,y,z) is not arbitrary. Rather, they are a particular coordinates with

the metric tensor given by (21.48) and (21.50).

22b. Quantum Particles and Dirac's Equation in a CIA Frame

Equation (22.10) implies the invariant relation ggvpµpv=m2, which can be

written as gµv(PA-eaµ)(P--eav)=m2 by using equations (22.5) through (22.9) and

Pµ=gµvPv. This resultant equation for a classical charged particle suggests that

the generalized Klein-Gordon equation for a quantum charged particle in a CIA

frame should have the form

[gµv(iJDµ -'Eaµ) (iJDv - Zav) - m2]4, = 0 , gµv = (W-2, -1, -1, -1) ,

i.e., [W-2(iJDo- Lrao)2 - (iJDI - -dal)2 - (iJD2 - 19a2)2

- (1JD3- ea3 )2-m2,$= 0 . (22.15)
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Note that the canonical momentum Pµ/(iJ) has to be replaced by covariant

derivatives Dµ as defined in Riemannian Geometry. Similarly, the generalized

Dirac equation for a CIA frame F should have the form

[lL(x)(Pµ - zaµ) - m],y=0, (22.16)

or [W-1yo(Po-Eao) +yl(P,-leas) +y2(P2 -lea2) +y3(P3-Za3)- m]W=0,

where

Pµ- (Po.P) , W= W(w,)(,Y,z) ,

pa,,bI -nab,

rµ(x) = (W-lyo, yl, , y3),

qab=(1,-1,-1,-1), a,b=0,1,2,3.
(22.17)

The explicit form of the operator Pµ for the Dirac spinor turns out to be different

from that for a scalar function . (See equations (24.41 ) and (24.49 ) in chapter

24.) Evidently , the generalized Dirac equation (22.16 ) reduces to the usual

equation in the limit of zero acceleration , a -> 0 or W -s 1. Note that Po and the

momentum operator P have the dimensions of mass and the universal constant j

has the dimension of (mass •length ). 1 If one wishes , one can relate r ►1(x) in

(22.16 ) to constant Dirac matrices ya , a=0,1,2,3, by the relation rµ(x)= eaµ(x)ya,

where eaµ (x) is a tetrad, i.e., a unit tangent vector and satisfies the relations:

3 3

E ea►1(x)eav(x) = gµv and F, eaµ(x) eav(x) = gµv. . (22.18)

a-o a-o

Note that the subscript a has no significance of covariance.

It turns out that when a=0, we have the "free" Dirac equation in a CIA

frame involving a "gauge covariant differentiation":

(ir Jvµ - m)yr=0, Vµ=(ao+2(akW )7oyk , al, a2, a3 ) , (22.19)
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which will be discussed in chapter 24. In the absence of the electromagnetic
potential aµ(x), or when the potentials do not involve time explicitly, one can

use the separation of variables in (22.19) to find the w-dependent part of yr :

W = Fw(w)Wr(r) , (22.20)

s w 2
Fw=Fwoexp €Jyo21 y2(w')Mdw'l

SS -iM (1+0)( 1-Mo)ln
I

2 21
1(1 - 0)(1 + fo)= Fwo eXPt2ajyo2 5

( . )

where M is a constant, P=aw+po and we have combined the space-dependent

terms involving the same Dirac matrices together (e.g., ykW-lakW. and ykak,

k=1,2,3.) We note that (22.21) reduces to the usual form Fw FN,oexp(-iMw/J) in the

limit of vanishing acceleration, a-, 0.

22c. Stability of Atomic Levels Against Constant Accelerations

A physical system is described by a Hamiltonian ( e.g., given Po in (22.16))

and the Hamiltonian in our formalism for accelerated frames has the dimension

of mass. Thus, let us now consider the "mass level" of a hydrogen atom at rest in

the CIA frame F. First, we must find out what is the generalized Coulomb

potential produced by a charged particle which is at rest in a CIA frame. Such a

Coulomb potential can be obtained by solving generalized Maxwell's equation
gµ"Dµf"a = ja, (or gµ"[DµD"aa-DgDaa"] = ja,) given by (22.14) in a CIA frame with

the 4-potential aµ = (ao,0,0,0) and the current density jg = (e5(r),0,0,0) in a CIA

frame.

Based on the covariant differentiations in (22.12) and (22.14), and the

metric tensor gµ" in (21.50) and that in (21.40), one can verify that DDDaA" =

DaDµA" for an arbitrary vector A. (This is related to the fact that the Riemann

curvature tensor R"0,µa vanishes, (DµDa-DaDµ)A" = -R"6,gc Aa = 0, for the spaces of

CIA frames with both the metric tensors given in (21.50) and in (21.40).) As

usual , we can choose a gauge condition Dvav = g"LDµa" = 0 to simplify Maxwell's

equations. Thus, we have gµ"DµDvaa= ja. When aµ(w,r)=(ao,0,0,0), this equation

leads to the following generalized Coulomb equations for CIA frames:
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1 - 2 gooaoao - a
gµvDµDvao = gµ°aµavao - Yo 2 + ax a1a° = jo,

for gµ°=(y-4(To2+ax)-2'_1,-lrl),

a*
gµvDµDvao = gµvaµavao - 1 +o Toa*x alao = )o ,

for gµv=((1 + Toa*x)-2,-1,-1,-1) .

(22.22)

These equations in general give complicated potentials produced by a simple

point charge. Let us consider the static case, ao= ao(r) and jo= eS(r), with the

first order approximation, a/(ya 2+ax) -a and so on. Under these conditions,

both equations in (22.22) lead to the differential equation and the solution for

the generalized Coulomb potential in CIA frame:

(VZ+aax)ao =-eS(r)

is ax
ao = Oar (1 - 2

(22.23)

Indeed, they approach the usual equation and the Coulomb potential in the limit

of zero acceleration, a -+ 0.

The generalized Dirac equation for the electron in an accelerated

hydrogen atom (i.e., at rest in a CIA frame) is given by (22.19) with rµ given by

(22.17) and with the usual replacement: Vµ-+ (Vµ eaµ):

s 1
ax)a0+ 2W (ajW)a0x W 4ar (1 2

where aD = (aDx ,aDY,aDZ) _ (YD7II 1 D1'2, RDr ) and PD-=Yo .

If one uses the Wu factor W given by (21.49), i.e., W = y2(yo 2+ax) asso-

ciated with the transformation (21.48), the effective potential eao/W =
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-(Z2/4xr)(1+ax/2)/W becomes time-dependent due to acceleration of the whole

atom because y involves w. In this case , the atom is unstable and will radiate

during acceleration . The radiation of a charged particle under acceleration is

not completely solved.

On the other hand, suppose one uses the time-independent W given by

(21.40), i.e., W = Wx= (1+yoa*x) which is related to the generalized MWL trans-

formation . The effective Coulomb potential -Cao/W is also time-independent and

one has a stable atom , just as in an inertial frame.

We note that the generalized Dirac equation in (22 .24) is, in general,

complicated and does not have the usual spherical symmetry because of the

presence of the metric tensor gµv and the generalized Coulomb potential given

by (22.23). However, the violation of spherical symmetry turns out to be

extremely small and the Dirac equation for the hydrogen atom can be well

approximated by the usual form in an inertial frame . The reason is that we are

interested only in the atomic domain, r-.10-8cm. We have at present linear

accelerators in an inertial frame F, (laboratory ) with a maximum voltage

gradient of about 70 MeV per meter . We estimate the acceleration of a hydrogen

atom to be

a*-0.05/m for 00=0.1. (22.25)

Thus, the extra x-dependent part in ( 1+yoa*x) and the generalized Coulomb

potential given by (22.23) is extremely small in comparison with 1,

a*x - 10-11 , (22.26)

where x is roughly the size of the atom, x-10-8 cm. Therefore, the violation of

spherical symmetry in the generalized Dirac equation is negligible for all

practical purposes . As a result , the generalized Dirac equation in (22.24) can be

well approximated by the usual Dirac equation, so that the mass level of an

accelerated hydrogen atom is also given byl

M(n) =
m

ae2
hd+2, (22.27)

(n - hd + hd2 - ae2 )2
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where ae = le e/(4iJ) - 1/137. We have seen that the atomic mass level structure is

extremely stable against linear accelerations in this case. When an electron

jumps from a state ni to another state n2, it will emit or absorb a 'mass quantum'

Jko:

MI(n2)-MI(nl)=Jk1o, in Fl, (22.28)

M(n2) - M(nl) = Jko, in F. (22.29)

If two photons with "moving masses," Jklo and Jko, are emitted from two

hydrogen atoms at rest in FI and F respectively and measured immediately, then

the results (22.27) through (22.29) imply

ko(rest ) = k1a(rest) , (22.30)

where the symbols (rest) associated with ko and k1o refer to sources of photons.

The result in (22.30) is isotropic when the photon is emitted and immediately

measured in F. On the other hand, if the measurement is delayed, then the

acceleration of the F frame will cause a Doppler-type shift.

22d. Electromagnetic Fields Produced by a Charge with Constant

Linear Acceleration

In 1909, M. Born first discussed the motion of a charge with a constant

linear acceleration based on special relativity.4 Suppose the motion of the

charge is along the x1-axis of an inertial frame F1(w1,x1,y1,z1), he obtained the

hyperbolic motion (21.4), i.e.,

2 Z
t
I

xI (c2/g)2+(ct1)2 -
g C

2
v=

(c2/g)2+(ct1)2 (22.31)

This motion can be viewed as the motion of a particle under a constant external

force, Flext=const., along the x-axis,

d ext
dt, =FI ,

mv1
v1=(v1i0,0) , (22.32)
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in special relativity. Born also obtained the electromagnetic fields associated

with this motion of a charged particle.

Let us compare the motion described by (22.31) with the motion implied

by the Wu transformation (21.46) for a CIA frame F(w,x,y,z ). Suppose a particle

is at rest in the CIA frame F at x=xo and y=z=O. Its position (xlr0,0) and velocity

dx1/dw1 can be expressed in terms of the time w1 in the inertial laboratory frame

FI(wl,xl,yl,z1),

I ( 1 z ^O z 1 (22.33)
xI \^ + a + (wI + aTO) aT0 '

Wl 00

dw = aw + 0O = TO for x = xo , (22.34)
t

(xo + i .)2+(w1 + 00 )z0170 QYO

where we have used the Wu transformation (21.46) and (21.47 ). We observe that
there are non-trivial dependencies on the initial velocity 00 and position xo in

the CIA motion in (22 .33) and (22.34). The initial position x1(0) at w1= 0 can be

obtained from (22.33),

1
x1(0) _ 4(x. + aj- -) + G z - am WI =0, (22.35)

=x0, for 00=0, 7o= 1 .

From (22.31), (22.33) and (22.34), we see that (22.31) corresponds to the

special case of (22.33) and (22.34) when both the initial position and the initial

velocity of the F frame are zero, x0 = 0 and 00 = 0. However, there is an important

difference: The acceleration of the hyperbolic motion (22.31) is dzv1/dt, =

(c6/gz)/[(cz/g)z+(ctl)2]3n, so that in the limit of zero acceleration g--+ O one has

the result x1-> 0. It does not reduce to a constant motion with non-zero velocity.

Note that the constant acceleration of a particle in special relativity is defined

in its instantaneous rest frame v1 = 0, i.e., t1= 0 from (22.31) and, hence dzv1/dt12 =

g = constant. On the contrary, the limit of zero acceleration of the motion

implied by the Wu transformation has a well-defined constant motion:

xI = (xo+TOw1)/TO as a-,O. In other words , in this zero acceleration limit, we
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obtain exactly the 4-dimensional transformation with the constant velocity 00.

The reason for this difference is that the CIA motion in (22.33) and (22.34)

satisfies the limiting 4-dimensional symmetry, while the hyperbolic motion

(22.31) in general does not.

In the CIA motion, the acceleration of this particle can be derived from

(22.34):

1 2
d2xl (xo + aro2)

dWI2 L\x0 + a'Y02)2 + (wi + ^^2^3/2'
aTO

for x=xo. (22.36)

Thus, the Wu transformation implies that the acceleration of this particle
depends on its position xo and the initial velocity 00 of the CIA frame. The

relativistic equation of motion (22.32) cannot give this detailed information. As

a result, if one uses (22.31) or (22.32) to derive transformations for reference

frames with constant linear acceleration , one obtains the 4-dimensional group

of conformal transformations in spacetime,5 which turns out to be not

physically meaningful and does not satisfy limiting 4-dimensional symmetry.

Now we have a more satisfactory Wu transformation which satisfies the

limiting 4-dimensional symmetry and can provide more detailed information

concerning accelerations . We would like to apply it to investigate electro-

magnetic fields produced by an accelerated charge, classical radiation and

energy conservation.

First, let us consider the electromagnetic fields produced by a charge -e,

whose motion is described by (22.33) and (22.34). According to Maxwell's
equations , the retarded 4-potentials aI µ(f ) at the field point f are the covariant

Ui nard-Wiechert potentials6 as observed in an inertial frame FI:

Uuµ(s )
a1µ0 = 4a

( xxx-xI )µuµ(s)

f f f f s S S S
f= (WIrx1,YI,ZI), S=(WI,x1,YI,ZI)

(22.37)

uµ(s) = 11µvuv (S) , '1µv =
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where s denotes the source point and u"(s ) the 4-velocity of the charged particle

(source)

S sdwi
u"(s)=(

dwI 1 (XO +
aY 2^2 + (wf + 0^2

ds X., +
aYo2

dx4 dxI/dwI wf + a
ds = 1T2 = 00X0 +

Of

(22.38)

where we have used (22.33) and (22.34). Note that the charged particle is

assumed to be at rest at the position (xo,0,0) in the CIA frame F(w,x,y,z), i.e., rs=

(xi ,0,0) in the inertial frame Ff.

It is important to note that the field time wi is related to the source (or

emission) time wI by the relation

wi - wi=lrif -riI>0. (22.39)

This is the causality condition by which the I.ienard-Wiechert potential (22.37)

must be retarded in order to be consistent with experiments and observations.
To find the potential afµ(f) at the field point f = (will xlf , yff, z1 f), we must

express the source coordinate (wi , xi , Ys , zi ) in terms of the field point f. This

can be done because the square of the causality condition (22.39) enables us to
solve wi in terms of (wi , xf, Yi , zcf ),

(wi- wi)2 = (rjf - ri )2

/ 2
_ [Xf

f
- (XO

+ a

1
)2 + (w► + ay-) +

,70]2+p2,

p2 =
(y1' - YI)2 + (zi - z1)2 = (Yf ) 2 + (z1)2.

(22.40)

For calculations, it is convenient to set
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Wf=Wi +aa , ws=wi +a , xf=^t+a ,o k=xo+az.

By straightforward calculations, we obtain

^o
(WI + a )A* - (xi + ago)B*

WI+ -=

aTo 2[(4 + a-lfo)2 - (wi f PO+ a )z]

A* (xi+^o )z+pz+kz -(wi +a00 )z,

B* _ [(WIf + ao ) Z _ (xi + aTo)z - p2 + k2]2 + 4k2p2

(22.41)

Similarly, we can also express the coordinate x1 of the charged particle in terms

of the field point f,

x,+aYo = `1kz + (wI + Q)z

00
(xi + aYo )A* - (wi + )B*

2 [(xi + 10 )z - (wi + ayo)2^
(22.42)

where we have used ( 22.33), (22.34) and (22.41). It follows from (22.38), ( 22.41)

and (22.42) that

B
(xi - xi)µuµ(s) = 1 z

2(xo + ayoz^

(22.43)

Thus, the retarded potentials ai µ(f) in (22.37 ) produced by a charged particle at

rest at a point (xo,0,0) in the CIA frame F are given by

(x' + To )A* - (wif + a) B*
(22.44)

alo(^ 4n f 1 f 00
B* [(xi + a1o)z - (wI + aYo)z
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(wi + aFO)A* - (xI + y;- )B*
aiI(f)=-aII(f

)=-4x f 1 f Qo 1
B* [(x, + aY0

)
2 - (WI + aY0)2J

au(f) = a13(f) = 0 .

(22.45)

(22.46)

The electromagnetic field E(f) can be calculated from equations (22.44) through
(22.46). We have

F41(f) =aB*3(^+ap )2[(, +ap xi+aT012+
(wf

+ao)2+ J'

E12(f) = xB 3 (xo+a )2yif (xi+aTO) ,

Similarly, the magnetic induction B(f) is found to be

BII(f) = 0,

1 fBI2(f) =- aB*3 (xo+ p)2zf (wi +O 0

1 f
BI3(f)=xB*3lxo +ao )2ZI `wIf+a^ ).

In these calculations, we have used

F1 aa1 110
-IwI

(22.47)

(22.48)

(22.49)

where [ ] f denotes that the quantities in the bracket [ ] refer to the field point f.

The function B* is given by (22.41) and the coordinate of the charged particle in
FI is (xsl,ys ,zs) = (xI,0,0). One can verify that Born's results correspond to the
results (22.44)-(22.48) in the special case x0 = 0 and Po = 0. We may remark that



318 Einstein's Relativity and Beyond

although these expressions involve 1/a, they do not diverge in the limit of zero

acceleration a-+0. As a matter of fact, in the limit a->0, the retarded potentials in

(22.44)-(22.46) reduce to the usual ones in standard textbooks.6 Moreover, all

these electromagnetic fields in equations (22.47 )-(22.48) vanish at the "black

wall" xo = - 1/ay02, the singularity wall of the CLA frame.

The causality condition (22.39) can be expressed in terms of the field
f

point f s (wIf,xfI ,yif,zi ),

f S 1
WI-WI = 2[(xi + T 2 - (wi + )2]

00

x^xl+a1o^B*^wf )[("I +a-ŷO_'2- (xl +ayo^2+p
2 + k21>0. (22.50)

When a-,0, it reduces to

w1-WI = y02P,I O )YO- 0o2WIf]

+ yo2 (xi - X,/yo - Powi ) 2 + p2 > 0. (22.51)

Thus, we have seen that the restriction on (wlf,xf ,yjf ,zlf) to satisfy the causality

condition is not simple even in the limit a-,0.

According to classical electrodynamics , an accelerated charge emits

electro-magnetic radiation . The radiation rate for a charge with arbitrary

motion can be calculated by using the Renard-Wiechert potentials (22.37):

2 U2 dun( s) dun(s)
lad=3e ds ds

(22.52)

This holds generally for any source point s with the retarded velocity 4-vector

un(s) = (dwI/ds,d)l/ds, 0,0) of any source point s. For the CIA motion of a charge,

the acceleration 4-vector dun(s)/ds can be obtained from (22.38). We have

dun(s) wi + 00

ds - (xo + 2 ) 2

(22.53)
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dut(s) (xo + a o )2 + `wi + a o)2

ds 2
(xo + aY02)

dun(s) dun(s)

They lead to the relation

dun(s) dun(s) 1
ds ds = 2

(xO
+
ao2^

Thus, the radiation rate for a charge with a CIA motion is a constant

U 2 Z2
"taa=-3 2

xo aYo2

(22.54)

(22.55)

(22.56)

The radiation rate Rrad has the dimension of mass/length because -d has the

dimension (massxlength ) 112, as given by (22. 12) and x0 has the dimension of

length.

Let us estimate the radiation rate for an electron at a high energy

laboratory, say, the Stanford Linear Accelerator with w1=ct and a potential

gradient of 60 MeV per meter. Let us set xo=0, 00=0 and use'd in (22.12), the result

(22.11) with (dp10/dx1)=6OMeV/c2 per meter and the electron mass m-0.5MeV/c2 •.

10-30 Kg, we obtain

R,a _ - e2 a2 $ -10-40 Kg/m , (22.57)

which corresponds to about 10-23 watts in conventional units. This is extremely

small in comparison with the energy loss in circular motion. For example, in

the 10 GeV Cornell electron synchrotron with an orbital radius of 100 meters,

the loss of electron energy per turn is about 9 MeV,6 which corresponds to about

10-2 MeV/m or 10-6 Watts. This is a significant loss of the electron energy.

Thus, r-f power must be supplied to maintain electrons at a constant energy as
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they circulate. For the electron with a CIA motion, the loss of energy is

completely negligible in the presently available energies.

22e. Covariant Radiative Reaction Force in Special Relativity and

Common Relativity , and Conservation Laws for Radiations

A complete satisfactory treatment of the radiative reaction forces and

their effects exist neither in classical electrodynamics nor in quantum

electrodynamics. This is a profound difficulty which is intimately related to the

conceptual framework of spacetime and elementary particles. Whenever a

charged particle is accelerated by an external force, it emits radiation which

carries away linear momentum and angular momentum in general. Thus, the

emitted radiation must influence the particle's subsequent motion.

However, the situation in special relativity is not satisfactory because the

covariant radiative reaction force vanishes for a charged particle which moves

with a constant linear acceleration and radiates. In contrast, common relativity

does not have this problem and is more satisfactory.

In the following discussions in this section, all coordinates and momenta

refer to the charged particle (i.e., the source of electromagnetic emission) in a

general inertial frame. So the superscript s for source and the subscript i for

inertial frame will be suppressed in this section. Only the constant (xo,0,0) refer

to the position of the particle in a CIA frame.

First, let us consider the covariant radiative reaction force in special

relativity. The usual form of the equation of motion such as (10.20) or (22.12) is

not completely satisfactory because they do not take the radiative reaction force

into account. Once the radiative reaction force appears, the system becomes

non-holonomic because such a force cannot be derived from a potential in the

Lagrangian formalism. The Abraham-Lorentz model of finite size (extended)

electron was studied in detail and it leads to the Abraham radiative reaction 4-

vector.7 Dirac's formalism of Lorentz covariant classical electrodynamics8 also

had the same result:

dpµ
F« +FL 1 22 58), ,ds = c= , ( .

F«c = i=FF"uv, (22.59)
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d2pg pg dpa dpa
F"a = 3m ^ ds2 + m2 ds ds (22.60)

Let us consider the CIA motion described by (22.33) and (22.34), which include

hyperbolic motion as a special case. Since pg = mdxg/ds, the differentiation of

(22.38) leads to

2Po
1 2

N
1d2pg (

)
+

(w+a
)(XO +a w+a

m ds2 1 3 00
0,0

(xo+ ao^ (XO+ ao

pg
f0 2

m(x0+ao

(22.61)

This second order derivative of momentum may be called the "jerk" 4-vector,

since the time derivative of the acceleration is known as jerk in mechanics.

Although this quantity "jerk" never appears in the fundamental laws of nature

(i.e., elementary particle physics or quantum field theories ), it is needed for the

designs in robotics and in tracking systems for fast moving objects. From

(22.54), (22.60), (22.61) and pg=mug we have the following result based on special

relativity:

2L" pp (-PA)
F„d=3m^ 2 + 2,=0, c=1. (22.62)

f61\(xo+a0-)
!(Xo+

O- )

This implies that, for CIA motions, the force of radiative reaction vanishes, so

that equation (22.58) turns out to be the same as the conventional equation

dpu/ds = EF"u", even though the charge emits electromagnetic radiation. This is

indeed a very strange result. In the literature, Pauli and von Laue said that

charges with CIA motion (i.e., the hyperbolic motion) do not radiate.9 If they

were right, the result (22.62) would be satisfactory. However, their statement is

incorrect.5 Other physicists such as Langevin, Poincar6 and Heisler concluded

that there is radiation.4 The result (22.60) for the radiative reaction force of

Abraham and Dirac appears to be unique because any force must satisfy the
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relation pµFµ=O which follows logically from the basic 4-dimensional law dsz =

dxµdxµ, xµ = (ct,x,y,z ), and the definitions pµ = muµ and c = 1 in special relativity.

Furthermore , the 4-dimensional symmetry of the constant linear acceleration

requires that the jerk 4-vector is proportional to the velocity 4-vector, as shown

in (22.61 ). So the situation appears to be quite hopeless because 4-dimensional

symmetry of special relativity seems to be exceedingly restrictive.

Fortunately, there is a different and distinct 4-dimensional symmetry of

common relativity, as discussed in chapter 12. Within the framework of

common relativity , one has the basic law dsz = dxµdxµ with xµ = (btc,x,y,z), where

b is a function , but common time tc is an invariant quantity, just like ds.

Consequently , one also has pµpµ = m2, where pµ = mdxµ/ds. (See equations ( 12.25),

(12.27) and (12.28 ).) By differentiating pµpµ =m2 with respect to common time tc

twice, one obtains (dpµ/dtc)pµ = 0 and ( d2pµ/dt^)pµ+(dpµ/dtc )(dpµ/cite) = 0. These

relations imply that the covariant radiative reaction force has the form

d2pµ pµ dpa dpa
dT + m2 dtC dt

(22.63)

Note that in the absence of the radiative reaction force F&;d in (22 .58), the

equation of motion , mduµ/ds = -dfµ"dxv/ds, can be written in terms of invariant

common time tc, dpµ/dtc = -efµ°dxv,/dtc, as shown in eq . ( 12.29 ) in chapter 12.

Thus, based on common relativity , we can postulate the basic equation of motion

for a charged particle emitting radiation to be

dpµ
+ F L (22 64).ddtc = F«t .

F« = U f LV v
(22 65)t dt

µ 2U2 cite d2pµ pµ dpa dpa
F

.

tad __ 3m cis cite + m2 cite cite (22.66)

The invariant factor dtc /ds in ( 22.66 ) is necessary for the dimension to be

correct.

Let us now consider the conservation of "energy" p° in the general

equation of motion ( 22.64 ). The zeroth component F Oxt and Flad in (22 .64) are
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respectively the rate of work done by the external force (i.e., dWext/dtc) and by

the radiative reaction force, as measured in common time tc. Since d/dtc =

(ds/dtc)(d/ds) = C2-v2 (d/ds), where C = d(btc)/dtc, we have

d2pµ pµ dpa dpa
d^tc + m2 dtc dtc

C2-v2 ( C2-v2 )4PtdPt + (C2 - v2) ds + m ds ds

_ va ds ds ' vµ = d (C,v) .

where we have used (22.61). The result in (22.38) gives

va I (dw dx
= dtc = dtc dtc , 0, 0^

(xo + a _ )2 + (w + aIo `z

(22.67)

(22.68)

From equations (22.66) through ( 22.68 ), we obtain a new non-zero radiative

reaction force in common relativity,

o 2U2 dtc
O -

dva dpµ
F = T m ds ds

C(w + 00122e2 ayo (22 69)
3m 1 z / 1 2 PO 2

.

(xo+ ao) -1)
(xo +a+ (w+ aTo)

in contrast to the result (22.62) in special relativity. We have used dC/dtc = 0 by

choosing the inertial frame to be the one in which the speed of light is constant.
This can be done because va(dva/ds) is invariant in common relativity. (See

equation (12.9).) Note that F, is never positive, as it should.
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In general , the zeroth component of (22.64 ) can be written as the

conservation law of " energy" (which has the dimension of mass) for an

arbitrary motion,

dp0 dW^j dWrd
= -

(22.70)
dtcdtc dtc

d
0 0

a Ca
P0 22 71te _ - ^c d4 ( R-d)) + u = ( . )

where Rnd is a scalar quantity given by (22.52). Its physical meaning is that the

rate of change in the kinetic energy of a particle equals the rate of work done

by the external force minus the rate of work done by the radiative reaction

force. The work done by the radiative reaction force is always negative and

involves two parts:

(i) One part is related to the rate of change in (2-e2/3)(du°/dtc) which

may be called "acceleration charge energy." The idea of "acceleration energy"

was discussed by Schott.4 This "acceleration charge energy" is independent of

the sign of the charge and depends only on the rate of change of u° = y, just like

the energy p° of a particle.
(ii) Another part is related to the radiation rate Rid which is never

positive, as one can see from (22.56).
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23.

Experimental Tests of Generalized Lorentz Transformations
for Constant-Linear-Acceleration Frames

23a. Tests of Physical Time in Non -Inertial Frames

In the discussions of chapter 21, we obtained two simple transformations

for constant-linear-acceleration (CIA) frames on the basis of the principle of

limiting 4-dimensional symmetry. First are the Wu transformations ( 21.46)

which are obtained by assuming minimal generalization of the Lorentz

transformations , i.e., to preserve the usual linear expression for acceleration

and velocity , P = aw + A, , in accelerated frames . Second are the generalized

Moller-Wu-Lee (MWL) transformations ( 21.36 ), which are obtained by assuming

the metric tensor ( goo,-1 ,- 1,-1) to be time-independent and has a more

complicated and unusual relation for acceleration and velocity , p = tanh(yoa*w*

+ tanh- lp0). Both of the evolution variables w and w* in these two

transformations can be considered as a generalization of the 'time ' in inertial

frames . Although the physical 'time ' in CIA frames cannot be uniquely

determined by the limiting 4-dimensional symmetry principle , neither is it

arbitrary . Let us summarize the generalized MWL transformations and the Wu

transformations based on the limiting 4-dimensional symmetry principle with

an additional assumption:

(A) Generalized MWL transformations:

Additional assumption : goo(xµ ) = goo(x)

Result: goo ( x) = [1+a*yox]2 , ( )x = tanh(a*yow*+ tanh- lpo) ; (23.1)dw,

(B) Wu transformations:

Additional assumption: (d i )x = aw + 00,

Result: goo(w.x) = [y2(yo z+ax)]2. (23.2)

327



328 Einstein's Relativity and Beyond

It is interesting to observe that time w* in the generalized MWL

transformation (21.36) and time w in the Wu transformation (21.46) are related

by the following relation:1

w = a [ tanh(a*yow* + tanh-1Po ) - Po] , a*= ayo . (23.3)

This relation between w and w* can be seen by comparing (dxi/dw1 )x in (23.1)

and (23.2). It follows that

Wxdw*=( 1+a*yox)dw[tanh-1(aw + P0)] = W(w,x)dw, (23.4)

ds2 = dw12 - dr12 = Wx2dw*2 - dr2 = W(w,x)2dw2 - dr2. (23.5)

Although both times w* in (21.36) and w in (21 .46) reduce to the same "taiji

time" (measured in, say, centimeters rather than seconds) for inertial frames in

the limit of zero acceleration , a burning question is:

"What is the physical time in constant-linear-acceleration frames?"

Since the physical time in inertial frames is the one which is directly related to

the dilatation of "lifetime" or the decay-length of an unstable particle decaying

in flight, the same property must hold also for the physical time in CIA frames

because of the requirement of the limiting 4-dimensional symmetry principle.

Therefore , the question of physical time for accelerated frames can only be

settled by experiments . One way to answer this question is to measure the

decay-length dilatation to test the predictions of the Wu transformations and the

generalized MWL transformations.

In order to conduct an experimental test of the predictions for these two

different CIA transformations , there are two crucial questions to be answered:

How can one measure the lifetime or decay-length of a particle at rest in a CIA

frame? How do we measure the constant linear acceleration a* or 0 We will

show that , according to limiting 4-dimensional symmetry, a "constant linear

acceleration" means a constant change in the kinetic energy po of an object per

unit length , as measured in an inertial laboratory. To see this, let us consider

the invariant action S f for a "free particle" in a CIA frame (which may be

associated with the generalized MWL transformations with time w* or the Wu
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transformations with time w):

b
Sf=- Jmds= f WbLwdw , (23.6)

a Wa

ds2=W2dw2- dx2 - dy2 - dz2, gµ, = (W2,_1,_1,_1),

Lw = -m gµyuµuy , ups - = (14') .

The function W in (23.6) may be either Wx = (1+a*yox) with w replaced by w* or

W(w,x) = yz(yo 2+ax).
As usual, the covariant momentum pi and the corresponding "energy" po

(or the Hamiltonian) with the dimensions of mass are given in (22.5) and (22.8)

with e = 0. Thus, the covariant momentum 4-vector pµ= (po,P1,P2,P3) = (Po,-P)

transforms like the covariant coordinate dxµ=gµvdxv:

Po (i Po
Pro=y(y -YP1), Pu= 1'(Pl - PW), P12 =P2• PI3 =P3.

One can verify the invariant relation

p,62-p12 = ^W)2-p2 = m2.

(23.7)

(23.8)

Now suppose a particle is at rest in the CIA frame, p = 0. We have po = mW and

pio= my from (23.7) and (23.8). Thus, when r is fixed, we obtain

(d%
dxi ) x = my3 d^xx

ma/(yo 2+ax) ; maw+po
=1

tmyoa*/(1+a*yox) ; P=tanh[a*yow*+tanh-lpol

(23.9)

The last relation involving a* is consistent with constant acceleration given in

(21.45).

We stress that the result (23.9) is intimately related to the "limiting four-
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dimensional symmetry." The concept of linear and uniform acceleration of a

particle can be defined in the sense of (23.9), i.e., constant change of a particle's

"energy" p1o per unit length , as measured in an inertial frame F1. It is

gratifying to see that this is precisely what is used in high energy laboratories

these days. Therefore, the theories with limiting 4-dimensional symmetry

already have partial experimental support.

23b. Experiments of Accelerated Decay-Length Dilatation and the

Limiting 4-Dimensional Symmetry

For particle decay in flight with constant velocity, one can carry out

calculations of the transition probability in quantum field theory (with the help

of the Feynman rules) or use the Lorentz transformation to obtain the dilatation

of the decay-length (or the lifetime) in any inertial frame. Strictly speaking, a

particle's decay-length depends on the dynamics of its interactions.2 We note

that one cannot use the conventional quantum field theory based on

perturbation calculations to calculate directly the accelerated dilatation of the

decay-length in CLA frames because the conventional S-matrix (or the

Feynman rules) are applicable only for free external particles. In inertial

frames, free particles move with constant velocities in the initial and the final

states of a physical process and have simple wave functions. However, in CIA

frames the wave functions for these "free particles" are not simple.

Fortunately, the dilatation of an accelerated particle's decay-length is a purely

kinematic effect, in sharp contrast to the decay-length itself. This is true for

measurements carried out in both inertial and CIA frames. Therefore, we can

use the generalized MWL transformations or the Wu transformations to obtain

the decay-length dilatation of particle decay in flight with constant

acceleration. 1,3

Let us consider a positive pion n+ at rest at the origin r = 0 in the CLA

frame F. Suppose its 'lifetime' measured in terms of w (or decay-length) in F is
Do = wo. According to the Wu transformation (21.46), its decay length DI = w1

measured in the inertial laboratory F1 is given by

1
D1=Tl/ayo2- Po/ayo , 7 1p , P=aDo+0. (23.10)
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To see the new effect of acceleration a on the decay-length dilatation, let us
expand D[ in terms of Do and small a and 00. Equation (23.10) leads to

DI - DoYo[1 + 1.5aD46 + 0.5a2Do2] ; (23.11)

1
Yo= 1l2 0=aD,,+f6 << 1.

This result predicts that the first order correction due to the acceleration a will

make the lifetime more dilated when a and the velocity P. are parallel to each

other.

Suppose we have a linear accelerator in the inertial frame F, with a

voltage gradient of 10 MeV per meter. (Currently available voltage gradients

are about 67 MeV per meter.) It is feasible to test the prediction ( 23.11) by

measuring the decay lifetime of , say, a positive pion x+. Using the relations

(22.9) in the inertial laboratory,

Pio - Pion = mn(Y- Yo) , m,, $ 140 MeV/c2, (23.12)

Pro - P100 = mxaYo2AxI , Ax1= 1 M, r=0, (23.13)

we estimate the acceleration a to be

a = 0.0631, for f6 = 0.1 ; and a - 0 .0025-1, for 00 = 0.943 ; (23.14)

for plo - plo, = 10 MeV/c2. Based on the rough approximation (23.11) with Do -

7.8m for a+, we obtain its decay-length DI in flight under acceleration of a

voltage4 gradient 10 MeV/m in the inertial laboratory frame FI ,

Di-7.8 [1+ 0.07+0 . 12]m, 00 = 0.1, (23.15)

11=7 .8x3[1 + 0.03+0 .0002]m, f6 = 0.94, (23.16)

where the approximation is not good for large 0o - 0.94. If we use the exact

relation (23.10), we obtain
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D, =9.92m=7.8[1+0.27] m, for Po - 0.1 ,

and D, =30.93m=7.8x3 [1+0.32]m , for f1o - 0.943.

(23.17)

(23.18)

Here, for a simple illustration of the feasibility of this experimental test, we

have used Do - 7.8m, i.e., the decay-length of a particle at rest in the CIA frame F

and measured by F-observers is approximately equal to that of the same kind of

particle at rest in the inertial frame F, and measured by Fr-observers. (Of course;

this is only a crude approximation because there is no relativity or equivalence

between an inertial frame F, and a CIA frame. In this approximation of Do, the

'rest decay-length ' Do - 7.8m is numerically the same as soc, where To is pion's

rest lifetime in special relativity.) However, the decay-length Do in (23.11) can

be measured if one has data for several different values of a and po.

We can also consider the decay of the same positive pion x+ (at rest at the

origin r = 0 in the CIA frame F) based on the generalized MWL transformations.

Suppose its 'lifetime' measured in terms of w (or decay-length) in F is Do = wo.

According to the generalized MWL transformation (21.36), its decay length D, = w,

measured in the inertial laboratory F, is given by

14 (MWL) = a [sinh (a*YoLo)+ Po(cosh(a*YoLo) - 1)] w, . (23.19)

Note that both (23.10) and (23.19 ) reduce to the usual relativistic decay length

dilatation in the limit of zero acceleration,

L1(MWL) = LI(Wu) = YoL,, a* = a= 0 , (23.20)

as they should.

So far, the decay-length dilatation of linearly accelerated particles have

not been directly measured. Our results (23.15)-(23.18) show that it is feasible to

test them in linear accelerators. It is important to test the new effect of decay-

length dilatation due to constant accelerations predicted by the Wu transfor-

mations and by the generalized MWL transformations. If such a new effect is

confirmed, it could be useful for increasing the beam intensity of unstable

particles in linear accelerators under some circumstances.
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23c. Experiments on Wu-Doppler Effects of Waves Emitted from

Accelerated Atoms

The new accelerated transformations (21.36) and (21.46) can also be

experimentally tested by measuring a Doppler-type shift of wavelength of light

emitted from an accelerated sources From eq. (23.7) one obtains the Wu
transformation of the covariant wave 4-vector kµ = pµ/J between an inertial

frame Fl and a CIA frame F:

klo=y(W -Oki), ktl=y(kl-^W ), k2=k3=0. (23.21)

where k1 = (kto,-kI) and kµ = (ko, k). Note that Jklo and Jko are moving masses

of the same photon measured from FI and F respectively. Suppose the radiation

source is at rest at the origin of the F frame, r = 0. Experimentally, it is difficult

to measure ko(rest) and ko(rest) for such a radiation source by observers in the

accelerated frame F. Thus we have to express them in terms of quantities

measured in the inertial frame (or laboratory) FI. Using the approximate

relation (22.30), i.e. ko(rest) = k1O(rest), and the Wu factor W(w,0) = y2yo 2, we

obtain a Doppler-type shift of kio (related to photon's moving mass or atomic

mass level) and wavelength XI

k10 = k10 (rest) (
1 + p)

yyo-2

1 (1 +P)
= TI(rest) TYo 2 0=aw+l,

(23.22)

for waves emitted from a CIA radiation source. These new results predicted by

the Wu transformation were termed the Wu-Doppler shift.5

For an experimental test, it is more convenient to express 'velocities' in

(23.22) in terms of distances. Suppose the radiation source (at r = 0) enters the
accelerated potential at xI = 0 in FI with an initial velocity 0o and emits radiation

when it was accelerated to the point xI = L with the velocity PI. We have

N _ (d I ) = II = 1 - yo -2(l + Layo)-2 , (23.23)
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1Y1 - 41 Yo(1+aLYo)
-^2=

(23.24)

It follows from (23.22)-(23.24) that the wavelength shift is given by

87k = X, - X1(rest) s X,(rest) [aL - ^2 + 2aL - 2 P27 . (23.25)

Also, according to (22.28) and (23.22), the shift of mass levels of a CIA atom is

8MI = Jklo - Jklo(rest) _- Jklo(rest) [ Z2 + 2aL + 2 2 - aL] . (23.26)

The predictions (23.25) and (23.26) can be measured in the laboratory frame F1

by using a method similar to that of Ives-Stilwell.6
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24.

Quantizations of Scalar , Spinor and Electromagnetic Fields
in Constant-Linear-Acceleration Frames

24a. Scalar Fields in Constant -Linear-Acceleration Frames

In constant-linear-acceleration (CIA) frames, physical equations and

calculations are generally more complicated than those in inertial frames. The

reason for this is that the differential time-axis dw in CIA frames is altered by

the Wu factor W(w,x)=y2(y0 2+ax) > 0, as shown in (22.2), so that the physical

space is bounded by a "black wall" at x=-1/ay02. It is a wall-singularity where

the speed of any physical signal or particle vanishes. Nevertheless, the CIA

frame with a constant-linear-acceleration is the simplest non-inertial frame, so

it offers the best opportunity to explore physical properties of quantum fields

beyond inertial frames or the framework of relativity theory.

The investigation of quantum field theory in CIA frames may shed light

on more complicated non-inertial frames and, perhaps, quantum gravity. Also,

in quantum field theory, especially when considering the S-matrix and the

Feynman rules, we must use a plane wave (for a free particle) which is very

simple in inertial frames, but complicated in CIA frames. As a result, many

calculations in CIA frames are most easily carried out by a change of variables.

Such a change of variables effectively transforms calculations from a CIA

frame to an inertial frame. Of course, there are non-trivial problems which

need to be solved in CIA frames. For example, finding the Coulomb potential

generated by a charged particle at rest in a CIA frame and solving "energy

states" for such a potential, as discussed in chapter 22.

Since we have coordinate transformations between inertial frames and

CIA frames, we can explore their implications for possible new physics of

particles and fields in non-inertial frames. The equation of motion of a classical

particle in CIA frames has been discussed in chapter 22. Even the simplest

motion, i.e., constant velocity or momentum of a particle in an inertial frame,

will have more complicated properties from the viewpoint of a CIA frame, as

shown in the transformations of momentum (22. 10).

A similar complication occurs in field theory: The Klein-Gordon equation

336
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for a "free" (i.e., non-interacting) particle in a CIA frame can be obtained from

(22.15) by setting e=0:

[J2g►1"DµDv + m2]tb(w,x) = 0, (24.1)

where x denotes the spatial vector and Dµ is the partial covariant derivative as

defined in (22.12) with the fundamental metric tensor given by (21.40),

g*µv $ (Wx2, -1, -1'-1) _ ([1+yon*x]2, -1,-lrl) , (24.2)

based on the generalized MWL transformations (21.36), or given by (2.50)

gµv=(W2, -1, -1,-i) = (y1[yo 2+ax]2, -1,-1,-1) , (24.3)

based on the Wu transformations (21.46). In the following discussion, the form

of physical equations (or laws) involving W hold for both metric tensors in

(24.2) and in (24.3). That is, the function W stands for either [1 + you*x] > 0 or

y2 [yo 2 + ax] > 0.

Using the covariant expression for d'Alembert's operator g ►1VDgDv, we find

that

g►"'DLDv4= S aµ`1 gµvavo)

= {W-%2 - V2 - W-3 (a0W)ao - W-1(a,W)a,10, (24.4)

_ Diet gap = W > 0 ,

where

aµ = (ao, a1 , a2, a3) = (a/aw, a/ax) , x = (x1,x2,x3) . (24.5)

The partial differential operators ( 24.5) are related to those in an inertial frame
ay1=(a10i 011, a12 , a13)=(a/aw1r a/axle , a/axe, a/ax13 ) by the following relations,

a10 = y(W la0 - fa t) , a 11 = y(a1- PW la0) , 0'12=a2, a [3 = a3 , (24.6)
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which can be derived from the transformations in (21.46) (or (21.36) with W in

(24.6) replaced by Wx.) They transform in the same way as the covariant

momentum 4-vector pg in (22.10), as they should. It follows from (24.6) that

a102 - V12 = w-2a02 - V2 - W-3(a0W)a0 - w-1(a1W)al , (24.7)

which is consistent with the invariant expression for d'Alembert's operator

g "DµD„ in (24.4).

For the CIA frame with the Wu transformations , W is given by (24.3), and

the free Klein-Gordon equation (24.1) takes the form,

W a02 - J2V2 2 W2py2J2 ao (Yo 2+2 ax)
a1+ m21,b = 0. (24.8)

The solution of this "free" Klein-Gordon equation in a CIA frame takes the form

mi(x) _ tboexp €
-IJ(x)5, xa xµ,

P(x) = P1owI(w,xl) + Pllxll (w,xl) + P12x12 + P13x13

= P101YP(x1 + ay ) - ] + Pll[Y(xl + aY ) - y

+ P12 X2 + p13X3

= W [YP(xI + aY
1 00

) - ] -YPPI [YP(xI + ajjj) - a 0°d]-y

+YplfY(xl + ay3) - ayo] -w 101 + -) aYo]

+ P2x2+ P3X3, W = W(w,xl) ,

(24.9)

where we have used (22.10). The phase P(x) reduces to the usual expression

(pow + p1x1 + p2x2 + p3x3) in the limit of zero acceleration a-,0. Note that Pro and

Pll are constant momenta measured in F1 and that they are related to non-
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constant momenta pµ in the CIA frame F by the transformation shown in

(22.10). This "free" wave function (24.9) with the complicated phase P(x) in a

CIA frame is actually a simple plane wave in an inertial frame Fl. If one

substitutes the solution (24.9) with the phase P(x) in ( 24.8), one obtains

gµ°pµpv-m2= (W2p02-p2-m2)=0. (24.10)

This is the invariant relation for the momentum 4-vector, which takes the
Lorentz invariant form p1" pn,--m2=0 in an inertial frame.

24b. Quantization of Scalar Fields in CIA Frames

The canonical quantization of fields mimics the dynamics in quantum

mechanics. As a matter of fact, it is a generalization of the quantum mechanics

of a finite system to an infinite system. In the following discussion, we shall

closely follow the canonical quantization of fields in inertial frames. For

simplicity, we will set J=3.5177293x10-38g•cm=1. The invariant action S for a

neutral scalar field in CIA frames is assumed to take the form:

S = JLsd4x , Ls = 2(gµ`'aµ^dVD - m2^2)

g=detgp, J= 1,

(24.11)

where the metric tensors are given in (24.2) or (24.3). The extra function of

spacetime in the scalar Lagrangian density Ls comes from the invariant

volume element d4x=Wd4x. In the conventional field theory formulated in

inertial frames, the Lagrangian density is required to be a functional only of

the fields and their first derivatives. It is also required that the Lagrangian

density does not have explicit dependence on the spacetime coordinates.1

However, when one generalizes field theory from inertial frames to non-

inertial frames, these requirements become too stringent and must be relaxed.
This is because the fundamental metric tensor gµv(x) will show up in the

invariant action. As a result, the Lagrangian density will effectively involve
explicit spacetime dependence through gµv which stems from linear

accelerations and is not a physical field in our formalism. We stress that the



340 Einstein's Relativity and Beyond

geometrical property of spacetime in a CIA frame is completely described by the

metric tensor gµv and that the Riemann curvature tensor can be shown to be

zero, so that the spacetime is flat and there is no gravity.2

By varying the scalar field 4b, one obtains the free Klein-Gordon equation

for CLA frames

aµ(Nr--g gµ`' 4)
+m2$=0,g

(24.12)

which is the same as (24.1). The energy-momentum tensor Tµv for the scalar

field is defined by

rV = as a„o - eV L.

_ aµoa„' - a 8 ( g°Pa&Iap4 - m2i2 ) . (24.13)

The momentum a(w,x) conjugate to 1(w,x) is defined by

z(w,x) = a(ao4) _ 900ao4' a041 X = (xl, x2, x3) , (24.14)

where the function W appears in (24.14) due to the acceleration of the reference

frame. The Hamiltonian density Hs and the momentum density Pi of the scalar

field are defined by

Hs=zaoT -Ls= 2( g00a2 + 1o^12+m2^2)= 740, (24.15)

Pi = Toi = x(w,x)aid .

To quantize the neutral scalar field, we postulate the equal-time commutation

relation

[,D(w,x),z(w,x')] = i63(X - x') , (24.16)

['P(w,x),4(w,x')] = [z(w,x),z(w,x')] = 0.
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As usual, we may express the scalar field operator O(w,x) in terms of an
operator-valued amplitude A(k), kµ=pµ/J=pp, and its Hermitian conjugate At(k):

a
40(w,x) = (2 )3iz yy 8(kµkµ - mz)e(ko) [A(k)e-iP + At(k)eiP] , (24.17)

8(kµkµ- mz) = 8(koko/W2 - k2 - mz)

6(ko - Wok) + 8(ko + W)k)
, wk = kZ+m2 (24.18)22ko/W 21kol/W2

P=P(x)_(TW -jlkl)[yP(xt+ a )- a^ ]

+ ('yk 1 - yP k`-o) [y(x1 + aT f) - aYo ] + k2x2 + k3x3 , (24.19)

where W=W(w,xt) and P(x)=P(xµ). We observe that the validity of the

commutation relations (24.16) for canonical quantization and the Fourier

transform (24.17) for the field 4(w,x) are independent of the detailed form of

the Lagrangian density. This is the reason why one can carry out canonical

quantization of fields in non-inertial frames. Before quantization, At(k) in

(24.17) is the complex conjugate amplitude of A(k). After the quantization

postulate (24.16) is made, one has quantum fields and the amplitude becomes an

operator with At(k) the Hermitian conjugate to A(k).

The relation (24.18) follows from the formula3

81"1(f(x)) = \)K 8(f(x)) = n If (xn)I (f'(x) dx)K 8(x- xn) (24.20)

f(xn) = 0, n=1,2,3... P (x) = df(x)/dx,

with x=0 and n=2. It is important to note that the quantities (yko/W--ffik1) and

(yk1-ko/W) in (24.19) are both constants associated with "plane waves,"

(yko/W - ypk1 ) = constant and (yk1- -ffiko/W) = constant , (24.21)
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even though P,1; ko, kt and W are separately non-constants in a CIA frame, as

shown in (22.10). The invariant volume element d4k/''goo = d4k/W in the

momentum space of a CIA frame can be obtained from d4k1 in an inertial frame

by the momentum transformation (22.10) with the covariant momentum 4-

vector p11 replaced by kµ:

d4k1= J(k1)Jkx)d4k - d4k/W, (24.22)

where J(k1 )L/kx)=1/W is the Jacobian.

With the help of (24.18), we can write the Fourier decomposition (24.17)

for O(w,x) and (24.14) for a(w,x) in the form

d3k t k iP-iP A
k 24 23)m(w,x) = + a ( )e[a(k)e ] , ) = ,a( .(

(2rz)32'k

d3k i

V L

a(w,x) -
oik [-a(k)e-iP + at(k)eiP] k2+m2 . (24.24)

(2n)32Wk

where ko in the phase P is equal to Wwk, i.e., ko=W k2+m2. We can also express

the operators a(k) and at(k), which are functions of the spatial momentum

vector k, in terms of the scalar field operator (b:

a(k) = i f d3x [eiPaod, - (aoeiP)d►l
J W (2x)32fk

at(k) i d3x [e-iPaoD - (aoe-iP)4] .
(2,)32'k

One can verify that the commutation relations

(24.25)

(24.26)

[a(k), at (k')] = 81(k - k')
(24.27)

[a(k), a(k ')] = [at(k), at(k')] = 0,

are consistent with the equal-time commutators in (24.16). To see this, let us

substitute (24.23) and (24.24) into the equal-time commutator (24.16). We have
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d3k d3k' ip)k'

J I(Zii)32t f ( 2a)32wk.

x [a(k)e iP(x) + at (k)eiP(x), _a(k)e iP'(x') + at(k)eiP '(x')]Iw,w,

d3k d3k ' i4)k,_ P(k - k')[e-iP+iP' + eiP-iP'J w-w'

(2R)32ft (2x)32(ok•

id3k [e_iP+iP' + eiP-iP']1 w-w , k=k (24.28)= 2(2x)3 ',

where the phase functions P and P' are given by (24.19),

P = P(x) = P(x,k) , P'= P(x-,x', k-*k') , x = x1 l, k = kA, etc. (24.29)

Let us calculate the term e-iP+iP' in (24.28). We obtain

^oe-iP+iP'lw-,. k-k' = exp [-i { of W - y3kl) [y P(xl + .̂- - PO

+ (ykl - ►0 W { [ xl + a alto] + k2x2 + k3x3[

+ it (yy-rypkl)[yi(x'1 + or o^ -ayo]

+(ykl- W) [y(x^l +a)-ro] +k2xi2+k3xi3

= expr- i 120ko (xl - x'l ) + iy2p2ki (xl - x") - iy2ki(xl - x")

+ i -Poko (xl - x't) - ik2 (X2 - x'2 ) - ik3(X3 - x'3)]

= exp[-ik•(x - x')] . (24.30)

The other term eiP-iP' is just the complex conjugate of (24.30). Thus, equation

(24.28) is the same as the equal-time commutator (24.16).
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The Hamiltonian H of the scalar field,

H = JHsd3x = Jd3x 2[g + IV 112 + mom] , (24.31)

cannot in general be expressed in terms of the operators a(k) and at(k),

because of the presence of the spacetime-dependent function -,-g = W in the

integrand. Nevertheless, one still can derive physical results from the theory.

The Hamiltonian H in (24.31) can be expressed in terms of the operators a(k) and

at(k) only in the limit of zero acceleration, i.e.,W-,1,. This suggests that one can

define Hm by the relation

Ho) = J'd3x 15- = J d3k e' k[at (k)a(k) + a(k)at(k)] . (24.32)
g

This HW is not exactly the "Hamiltonian" of the scalar field defined in (24.31). It

corresponds to po/W and is related to an "instantaneous conservation of energy"

in a collision process. (See chapter 25.) Nevertheless, the momentum Pi of the

scalar field can be expressed in terms of the operators a(k) and at(k):

Pi = Jlid3x = Jd3k ki[at (k)a(k) + a(k)at(k)] , (24.33)

where a(k) and at(k) are respectively the annihilation and the creation

operators. We observe that the momentum Pi is not constant:

[H, Pi] * 0, (24.34)

in contrast to the corresponding Pi in quantum field theory in inertial frames.

The reason is obvious: a constant momentum in an inertial frame can no longer

be a constant when it is measured in a CIA frame. The Hamiltonian H in (24.31)

contains = W which is an explicit function of space and time. Only in the

limit of zero acceleration does (24.34) vanish as it must.
One can verify that the operators Pµ=(Po,Pi)=(H,Pi) and Mµv generate

translations and rotations in CIA frames:

i[Pµ,.*] =aµb, (24.35)
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i[Mµv,Ol = (xµav - xvaµ )4 , (24.36)

where MRV is given by

Mµv = Sd3xi [Ta'xµ - Ta ►xv] . (24.37)

The Heisenberg equations of motion are given by

aw= (OH-HD)= =if-b,H], (24.38)

ax 1
= [n,Hl ,C)w j m 1. (24.39)

Equations (24.14), (24.16) and (24.39 ) reproduce the field equation ( 24.12), as

they should for consistency of quantization.

24c. Quantization of Spinor Fields in CIA Frames

The previous discussion of canonical quantization of scalar fields in non-

inertial frames with constant linear acceleration can be applied to other fields.

In this section, we will give a brief derivation of the main results for spinor

fields.

The invariant action S. for a free electron field yr in CIA frames is

assumed to be given by

SY, = five x , i.4 v = Z gg Wn`iaµ , - (aµW)rm,# - mVN, , (24.40)

{ri`,r" = 2gµv(x) , '= W> 0, rµ = (W-'y°, yl, 72,13) ,

where f=(y°, yl, y2, y3) are the constant Dirac matrices. The presence of the

metric tensor gµv(x) is a new feature in the formalism of quantum field theory

in CIA frames. The fermion Lagrangian must be symmetrized because rµ is now

a function of spacetime rather than a constant. Also, the non-universal speed

of light does not appear in the Lagrangian density LW. Thus, with the help of
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integration by parts, the Lagrangian in (24.40) can be written in the usual form

in terms of a "gauge covariant differentiation" Vµ,

ly = ^yr+^iaµTy + [i(aµ rµ)ly► - 4gmyny

=WS rviVµly -Wmyny, (24.41)

1
vµ = (a0+ 20kW)Y'7", a i , a2, a3) .

The presence of the gauge covariant derivative can also be seen explicitly if one

introduces vierbeins (or tetrads) to express the matrices rµ. Four mutually

orthogonal unit vectors, denoted by eav, a=0,1,2,3, form an orthonormal tetrad,

where v is the covariant tensor index and the Latin suffix "a" is a label

distinguishing the particular vector. The contravariant components of the

same tetrad can be obtained by using gµv to raise the index v, eaµ - gµveav. The

labels on the vectors have no tensorial meaning, but for convenience we shall

raise and lower them by using nab = (1, -1, -1, -1). We have

,rK = Yaµ , eaµebvAab = gµv, eaµebvgµv - nab , eaµ = gµ,eav, , (24.42)

where Ya are the usual constant Dirac matrices, and Latin suffixes a, b, c,... may

be called Lorentz indices because they are related to the Lorentz group. We have

the following expressions for the non-zero diagonal elements:

gµv = (, -1, -1, -1), Tiab = (1, -1, -1, -1) , eaµ = (W, 1, 1, 1) , (24.43)

eaµ = (W, -1, -1, -1) , eaµ = (W-I, 1, 1, 1 ) , eaµ = (W 1, -1, -1, -1) .

These vierbeins in (24.41) correspond to "scale gauge fields" (which differ from

Yang-Mills fields or gauge fields) in the Poincare gauge-invariant Lagrangian

involving fermions.4
One can introduce the local Lorentz transformation of the spinor

y --, exp[ieab (x)aab ]+y, Cab - (W2)[YaYb - YbYal • (24.44)
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Corresponding to this local transformation, one has the gauge covariant partial
derivative

Vµ10= [aµ - 1-4 (0 tabaab] V . (24.45)

The connection (0µab(x) is introduced so that one can gauge the Lorentz group. It

is given by5

(0µab(x) = 2 eAa(a e b - alteµb) + 4 epae) .b(a epc - aPezc )eµc - (a4-+b)

= - e2'a,,W8bo8µ0 + e)ba,,W8a08µo . (24.46)

There are only two non-vanishing components for ulµab(x):

(0001=-CIO 10 =-a1W. (24.47)

It follows from (24.45) and (24.47) that

Vow= [ao+ f y0y1aiw7 W. (24.48)

Vk f = akW , for k = 1,2,3.

One can verify that the results in (24.48) are precisely the same as Vµyr, with Vµ =
I

(a0 + Z(akW)'yY, a1, a2, a3), in (24.41) because the metric tensor gµv or the Wu

factor W does not depend on y and z, i.e. a2W=a3W=0.

From the Lagrangian (24.41), we obtain generalized Dirac equations for

CIA frames:

(iI31Vµ- m)'r = 0 , V(-µi111-m) = 0 . (24.49)

For covariant quantization of the spinor fields in such CIA frames, we use

the gauge covariant derivative (24.45) or (24.41) consistently and follow the

canonical quantization as closely as possible. The "canonical momentum" ab

conjugate to 1yb is defined as



348 Einstein's Relativity and Beyond

aLy, i
bb= a(Vowb) = WWt

where the presence of W(w,x) in the Lagrangian , the canonical momentum

(24.50) and the field equations (24.49) are the only source of complication of

field quantization in CIA frames . The Hamiltonian density H. for a free electron

is defined as

JIV = nVOW - LW = - ykiakW + mVV, (24.51)

where we have used rk, k=1,2,3, in (24.40) and Vk in (24.41). The energy-

momentum tensor Tµv for the spinor field is defined by

a
µV vLw .v = a(oµW) VvW - S (24.52)

Thus, we have the energy H and momentum Pk of the spinor field:

H = Jd3xToo = Jd3xq---g (- iW ykakW + mWW) Too = Hyr (24.53)

Pk = Jd3xTok = Jd3xNF--g iv -PVki = Jd3x W WtakW . (24.54)

The fundamental equal-time anticommutation relations for spinor fields are

postulated to be

{Wa(w, x), np (w, y)) = i&3(x - y)sap, (24.55)

{Wa(w, x), Wp(w, Y)) = 0 , {na(w, x), np(w, Y)} = 0 ,

where na(w,y ) is given by (24.50) and W must be treated as an ordinary function

rather than an operator. From equations (24.53)-(24.55), one can verify that

i[Pµ, W(x)l = VRV(x) , Pµ =(H, Pk) • (24.56)
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In the calculation of [Pk, W(x)], the extra function 1/W in (24.54) disappears
after the anticommutator (24.55) is used. Similar cancellations of W's occur in
[H, V(x)] when (24.55 ) and the free equation irkvkW-mv = - irWoW in (24.49) are

used.

In order to carry out quantization in momentum space in terms of the

creation and annihilation operators , we must first find the solution to the

generalized free Dirac equation (24.49) in linearly accelerated frames. Because
of the presence of the gauge covariant derivative vµ, the time and space

dependence of the wave function f is not just the phase iP(x) for a free fermion.

There is an additional gauge factor G(w), which changes the magnitude of the

"plane wave function," due to the acceleration of reference frames:

W = u(k)exp[-iP(x) - G (w)] , P(x) = P(xµ) = P(w,x,y,z) (24.57)

(rvkµ- m)u(k) = 0, (24.58)

where u(k) is a 4-component spinor . The phase factor P (x) is given by (24.19)
and the time-dependent gauge factor G(w) is found to be

w

G(w) =Jdw2 yoY1(a1W) = 2 ^py1 tanh- I(aw + po) , for

G(w) = i 1'oy a*w , for W = [1+yoa*x] ,

(24.59)

where y= 1/ 1-(aw+0)2 and yo=1/ and yOy1 satisfies the relation (yoyl)2=1

because of the anti-commutation in (24.40).

For a free spinor field W , the Fourier expansion of a solution (24.57) for a
"free" electron takes the form

3
W(w,x )

k M
F-d I [b(k,s ) u(k,s)exp(-iP - G)

+ dt(k,s)v(k,s)exp(iP - G)] , (24.60)

W = y2[y0-2+ax] ,

ko =Wink , a = k2+m2 ,
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where the phase P=P(x) is given by (24.19) and the gauge factor G=G(w) is given

by (24.58)-(24.59). According to (24.58), the spinors u(k,s) and v(k,s) satisfy the

equations

(rvk. m)u(k,s) = 0, u(k,s)(P'k. - m) = 0 ,

(24.61)
(r-#kµ+ m)v(k,s) = 0, v(k,s)(ruk.,+ m) = 0,

and the orthonormality relations

u(k,s)u(k,s') = -v(k,s)v(k,s') = Sss' ,

ut(k,s)u(k,s') = vt(k,s)v(k,s' ) = m Sss', k o =W k2+m2 . (24.62)

v(k,s)u(k,s') = u(k,s)v(k,s') = 0.

We normalize the spinors so that ut(k,s)u(k,s')=(ko/m)Sss,. This is a covariant

relation since both sides transform like the zeroth component of a 4-vector

under accelerated Wu (or MWL) transformations. We also have the following

completeness relations

2
1 [ua(k,s)up(k ,s) - va(k,s)vp(k, s)] = Sap ,
s=1

s=1

-I va(k, s)vp(k,s) = n' 2m ) co .
s=1

(24.63)

Upon second quantization of the spinor field , the Fourier expansion

coefficients b(k,s), bt(k',s'), d(k ,s) and dt ( k',s') become operators which

annihilate and create particles . They are assumed to satisfy the

anticommutation relations,

2 to
E ua(k,s)up(k,s) = r \m +2m ) °`p'
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{b(k,s), bt(k',s')l = 83 (k-k')8ss,

(24.64)
{d(k,s), dt(k',s')l = 83(k-k ')88s',

and all other anticommutators vanish . We may remark that anticommutators for

the quantized fields W(w,x) and Wt (w,x) in (24.55 ) can be shown to be consistent

with ( 24.60 ) and (24.64 ). In the calculation of these anticommutators, the gauge

factor G(w) in W and Wt cancels because of the relation y0y1=-yty0, or

e-G(w)y0 = y0 eG(w) G(w) =Jdw 2 y0yt(a1W) . (24.65)

Finally, we may remark that the Hamiltonian operator H=Id3xT00 cannot

be expressed in terms of the operators b, bt, d and dt because of the presence of

W in the integrand . This restriction occurs because the Hamiltonian H

transforms like k0 and ko=Wwk =W k2+m2 . However, we have

H, = Id3xT00 /W = Id3kwk[bt(k)b (k) + d(k)dt (k)] , (24.66)

Pi = Id3xToi = Id3k ki [bt (k)b(k) + d(k)dt(k)] . (24.67)

The quantity Hm in (24.66) is not exactly the Hamiltonian , in contrast to H in

(24.53). Instead , it corresponds to p0/W which is useful for treating scattering

processes in field theory.

24d. Quantization of the Electromagnetic Field In CIA Frames

The action of the electromagnetic field is assumed to be that of the usual

invariant form with a gauge fixing term involving a gauge parameter p,

S = Id4xLem Lem 4 fµ,fµ` - (p, )2 , (24.68)

fµ-, = Dµav - D„aµ = aµa" - avaµ , (24.69)

Map = Dpaµ = Dµ(agµa) = a,(agP-) - aargµ°
g

aM4 g
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= gµaaµaa - as S aµ(gµa ) X . (24.70)

Varying the action S, we obtain the free electromagnetic equation

aµ( f") - P MV I aµX = 0 . (24.71)

Since P v is antisymmetric , the scalar field UDµaµ satisfies the free equation in

CIA frames

1
`DpX = 0av(gµ -g aµx ) = DF

which corresponds to the free equation aµaµX=O in inertial frames.

The electromagnetic 4-potential can be written in the form

(24.72)

f d3kaµ(w,x) =
J

Y. [a(k,a) eµ (a)exp(-iP(x))
(2a)32wk a=0

+ at(k,a) Eµ ( a)exp (iP(x))] , ko = Wft = WIkI. (24.73)

3 kµkv
(a) _ -gE (a) E v + ( 1 - P) (24 74)7 µ µv kvkp

[a(k,a), at (k',a')] = - 83 (k-k')gaa' ,

.

(24.75)

[a(k,a), a(k',a')] = 0, [at(k,a), at(k',a')l = 0 .

The sum over - a in (24 .73) for four linearly independent unit polarization

vectors Eµ ( a), a=0,1,2 , 3, is an ordinary sum and not a scalar product in 4-

dimensional space . It can be quantized covariantly by using the Gupta-Bleuler

method generalized for non-inertial frames.

Equation (24.72) is important for covariant quantization of the

electromagnetic field by the Gupta-Bleuler method which involves both

physical photons (i.e., the two transverse components ) and unphysical photons

(i.e., longitudinal and time-like photons ). In the Gupta-Bleuler method,
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equation (24.72 ) guarantees that the unphysical photons do not interact and,

hence, can be easily excluded from physical states and do not contribute to

physical amplitudes .6 In other words , it assures that when the condition for

physical states I`I'> ,

3

kµaµ(k)IYti = 0, for all k, ko = IkI, aµ(k)= Y, a(k,a)eµ(a) , (24.76)
a=O

is imposed at, say, time w=0, it will hold for all times.
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25.

Taiji Rotational Transformations with the
Limiting 4-Dimensional Symmetry

25a. A Smooth connection of Rotational and inertial frames

The 4-dimensional symmetry framework is the foundation of relativity

theory and is perhaps the most thoroughly tested symmetry principle in the

20th century. It is the mathematical manifestation of the Poincare-Einstein

principle of relativity, i.e., the 4-dimensional symmetry (or invariance) of

physical laws, which is extremely powerful in helping us to understand

physics.1 The power of 4-dimensional symmetry will be demonstrated by an

analysis for a novel viewpoint of rotating non-inertial frames.

"Is it conceivable that the principle of relativity also holds for systems

which are accelerated relative to each other ?"

This was the question young Einstein asked in 1907.2 The answer to Einstein's

question is affirmative in a limiting sense because any non-inertial frame must

reduce to an inertial frame in the limit of zero acceleration. This indicates that

the 4-dimensional symmetry of physical laws must hold in the limit of zero

acceleration for all non-inertial frames. We call this the principle of limiting

4-dimensional symmetry. Indeed, we are able to obtain a "minimal generali-

zation" of the Lorentz transformation for noninertial frames with a constant-

linear-acceleration, as discussed in chapter 21. "Minimal generalization" means

that the resultant equations involve a minimal departure from the limiting case

of zero acceleration. The resultant transformation for frames with constant-

linear-acceleration gives a satisfactory explanation for the "constant -linear

acceleration": Namely, it is better defined as a constant change in a particle's

energy per unit distance travelled rather than the traditional definition of the

rate of change of velocity with time in an inertial frame or laboratory.

In this chapter, we show that the affirmative answer to Einstein's

question also holds in a limiting sense for rotational frames.3 The reason is that

the principle of "limiting 4-dimensional symmetry" also enables us to obtain a

satisfactory minimal extension of the conventional classical rotational

transformation to a rotating frame whose origin moves in a circle of non-zero

355
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radius around a fixed point in an inertial frame. Our results agree with high

energy experiments involving unstable particles in a circular storage ring and

are smoothly connected to the 4-dimensional transformations for inertial

frames in the limit of zero acceleration. Furthermore, they turn out to support

Pellegrini-Swift's analysis of the Wilson experiment,4 in which they pointed out

that rotational transformations cannot be locally replaced by Lorentz

transformations.

25b. Taiji Rotational Transformations with the Limiting

4-Dimensional Symmetry

Suppose FI(wl,xl,yl,zl) is an inertial laboratory frame and F(w,x,y,z) is a

non-inertial frame whose origin moves in a circle of radius R around the origin

of F, with an 'angular velocity' S2 in such a way that the y-axis of the F frame

always points to the origin of FI(xK). Physical quantities without the subscript

"I" are those measured by observers in the rotating frame F(w,x,y,z).

In our discussions, we use wI and w, respectively, as the evolution

variables in FI and F. This 'time' w can be physically realized in a rotating

frame without relying on light signals. To avoid confusion, let us call w the

"taiji time" which will reduce to Einstein time in the limit of zero acceleration.

An operational meaning for w will be explained later.

Based on limiting 4-dimensional symmetry considerations and the

classical rotational transformation

wI = w , xi = x cos(i2w) - ysin(i2w

yI = x sin(t2w) + ycos(i2w) , zI = z ; (25.1)

we write the general rotational transformation for FI(x1µ) and F(xµ) in the form:

wI = Aw + Bp-0, xI = Gx cos(FQw) + E(y-R)sin(FfQw) ,

yI = Ix sin(Ff w) + H(y-R)cos(Fiiw) , zI = z ; (25.2)

P=(x,y), S= (x, y-R) = 11 xS , L2=(O,O,s2).
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Note that the constant 'angular velocity' n is measured in terms of w by

observers in F:

a = d$/dw . (25.3)

Thus, s2 has the dimension of inverse length and, hence, the 'velocity' P = flxS

and DDw are dimensionless . The functions A, B, E, F, G, H and I may depend on the
coordinates xI in general , and will be determined by the limiting 4-dimensional

symmetry principle.

In the limit R-,O and small n (or IQxSI =P«l), the transformation (25.1)

should reduce to the form of a classical rotational transformation (25.1). Thus,

we have

-E-G-H=I-1, F •1, for small 11 . (25.4)

Furthermore, when R=O, the rotational transformation (25.1) must exhibit an

x-y symmetry. This implies that

-E=G=H=I; forR=O. (25.5)

On the other hand, in the limit where R-+- and t2-,0 such that their product Rd

= Ro is a non-zero constant velocity along the xj-axis, (25.1) must reduce to the 4-

dimensional form

wI = Yo (w + POX) , xj = Yo(x + how) , YI = --I

1
Yo= 1 - j Po=Ru.

zI =z; (25.6)

Note that we have yI = - °° instead of yI = y because R-^- in this limit.

Finally, the existence of the limiting transformation should hold for both

finite and differential forms of the transformation. Thus, we also have the well-

defined differential form,

dwI = Yo(dw + Podx) , dx1 = Yo(dx + Podw)) , dy1 = dy, dz1 = dz . (25.7)
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The limiting requirements in (25.6) and (25.7) lead respectively to

AB=G=-EF=yo,

and H=1.

(25.8)

(25.9)

These limiting 4-dimensional symmetry relations in (25 .5), (25.8) and (25.9) do

not lead to a unique solution for the unknown functions . The situation

resembles the fact that gauge symmetry does not uniquely determine the

electromagnetic action , 5 and one must postulate a minimal electromagnetic

coupling . Here , we postulate the minimal generalization of the classical

rotational transformation ( 25.1): Based on the relations in (25 . 5), (25.8) and

(25.9), it is natural to have the following two properties: (i) The functions A, B,

G, I and - E are simply extended from yo= ( 1-p02)-1/2 to y=(1-p2)-1/2, where p=Si1,

for non-vanishing 'angular velocity ' L2 and finite R. (ii) Only the function H

depends on R, i.e., H = y for R = 0 and H = 1 for R-+. Thus, the limiting relations

(25.5), (25 . 8), (25.9)' together with the minimal generalization of (25 . 1) lead to

the simplest and the most natural solution for the unknown functions in (25.1):

1
A=B=G=I=y=

F= 1,

E = -y,
1 -p2 '

(y+R/Ro)
H =(1+R/Ro)

(25.10)

where p = IIIxSl < 1 and H is also obtained by requiring it to be the simplest

function involving only the first power of y. As we shall see below, this

simplest solution (25.10) turns out to be consistent with all previous experiments

of particles' energy-momentum in high energy accelerators involving

rotational motion. The exact general rotational transformation is thus given by

(25.1) and (25.10):

w1 = y(w + p.) = y(w + xRs1) , x1 = y[xcos(i1w) - (y-R)sin(tlw)] ,

(25.11)

y1 = y[xsin(ilw) + (H/y)(y-R)cos (QQw)] , z1 =z.
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We stress that it is necessary for A, B, G, I and -E in (25.2) to approach y in the

limit R-, so that the limiting 4-dimensional symmetry is satisfied. To avoid

confusion, let us call (25.11) the "taiji rotational transformation" in which wi

and w are evolution variables. Let us call (w,r) the 'limiting Cartesian

coordinates' to distinguish it from the usual Cartesian coordinates (w1,rl). [The

metric tensor ggv for the space of a rotating frame is given in (25.19) below.]

The presence of the -t-factor and the 'scaling factor' H in (25.11) are new

properties implied by the limiting 4-dimensional symmetry.

It is tedious, but straightforward, to show that the set of taiji rotational

transformations (25.11) form a "taiji rotational group" which includes the

Lorentz group as a special case.

25c. Physical Properties of Taiji Rotational Transformations

Presumably, the physical effects related to the terms R/Ro in (25.10)

could be observed only in rotational motion with a large R. When the term R/Ro

is small and negligible, H/yml. In this case, the taiji rotational transformation

(25.11) become very simple and closely resembles the classical form (25.1). In

fact, all previous rotational experiments were performed under the condition

R=0. It appears that this approximation is sufficient for experiments in Earth

laboratories. From now on, we shall ignore R/Ro so that (25.11) becomes

wI = y(w+P•[S) = y(w+xRS2) , x, = y[xcos(t1w)-(y-R) sin(Qw)]

yj = y[xsin(Qw)+(y-R)cos(Qw)] , zi=z.

The inverse transformation of (25.12) is then

w = (w, -yxRQ)/y, x = [x1cos(t2w) + y1sin(f2w)]/y,

(25.12)

y - R = [-x1sin(c w) + yicos(S2w)]/y, , z = 74. (25.13)

We stress that the exact taiji rotational transformation (25.11) can only be

expressed by using the limiting Cartesian coordinate for the rotating frame F

and cannot be written in terms of, say, the cylindrical coordinate, in sharp

contrast to the conventional classical rotational transformation. This property
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is dictated by the limiting 4-dimensional symmetry and is similar to the fact that

the Cartesian coordinate is preferred in the Lorentz transformation.

For discussions of experiments, it suffices to concentrate on the special

case R=0 of (25.11):

WI =Yw, x1 = y[xcos( ilw) - ysin(aw)] ,

Yl = y[xsin(ilw) + ycos(Qw)] , zl =z; (25.14)

0=pf2.

Let us compare the taiji rotational transformation (25.14) and the classical

rotational transformation (25.1):

(A) The taiji rotational transformation and the Lorentz transformation

are both exact and in harmony with the four-dimensional symmetry. In

contrast, the classical rotational transformation (25.1) and the Galilean

transformation are only approximately true to the first order in 'velocity' P.

(B) It is interesting that the taiji rotational transformation (25.14)

predicts the length of a rotating radius to be contracted by a y factor :

x1 2+Y1 2= ,? [x2+y2] , (25.15)

independent of the variables w and w1. If one replaces a rotational

transformation at a very short time interval by a Lorentz transformation, one

would be led to a completely different conclusion, namely, that a rotating radius

does not contract because it is always perpendicular to the direction of motion.

(C) For a fixed y, (25.14) gives At, = yAt which is independent of the

spatial distance between two events, if we set w = ct and w1 = ct1. That is, the time t

of clocks at rest in a rotating frame and located at a distance p = (x2 + y2)U2 from

the center of rotation slows down by a factor of y = (1 - p2)-1/2 in comparison

with the time t1 of clocks in the inertial frame Fl. We stress that this is an

absolute effect in that observers in both F1 and F agree that it is the accelerated

clocks which are slowed. This effect is implied by the limiting four-dimensional

symmetry.
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Certain properties of the taiji rotational transformation (25.14) have been

confirmed by high-energy particle kinematics experiments and "lifetime

dilatation",6 as we shall see later. In a sense, the unexpected relation (25.15) has

been indirectly verified because the confirmed results [see equations in (25.31)

and (25.32) below] are intimately related to the presence of the y factors in (14)

and, hence, (15).

25d. The Metric Tensors for Rotating Frames

The transformation of contravariant 4-vectors dxj+=(dwI,dxl,dyi,dz1) and

dxµ=(dw,dx,dy,dz) can be derived from (25.11):

dwI = y[dw + (y2L22wx)dx + (y2L22wy)dy] ,

dxI = y[{cos(L2w) + y2t22x2cos(L2w) - y2L22xy sin(L1w)}dx

- {sin(t2w) + y2c22y2 - y2Q2xy}dy - {L2x sin(L2w) + Qycos(t2w)}dw]

dyi = y[{sin(L2w) + y2L22x2sin(L2w) + y2L22xycos(L2w)}dx (25.16)

+ {cos(L2w) + y2L22y2cos(L2w) + y2L22xysin(Qw)}dy

+ {L2x cos(L2w) - c ysin(L2w)}dw] ,

dz4 =dz.

To find the metric tensor gµ" in the rotating frame F with R = 0, it is convenient

to use (25.11) to write ds2= dw12 - dxj2 - dy,2 - dz12 in the following form first:

ds2 = d(yw)2 - (x2+ y2)y2f22dw2 - d(yx)2 - d(yy)2 - dz2

+ 2yL2yd(yx)dw - 2L2yxd(yy)dw. . (25.17)

Then with the help of the relation dy = y3L12(xdx+ydy), eq.(25.17) can be written

as
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ds2 = gµvdx►` W, µ,v=O,1,2,3,

where the non-vanishing components of gµ" are given by

g00=1 , 833=-1,

g11 =-y2 [ 1 + 2y2i22x2 - f fl4x2 (w2 - x2 - y2)] ,

g22=- 12 [1 + 2y2i12y2 - Y4L4Y2 (w2 - x2 - Y2)l ,

g01 ='1'2 [Qy + y2j12wx] , g02 = 72 [-i2x + y'2LI2wY] ,

g12=- -eQ2xy [2 - '!'2n2 (w2 - x2 - y2)] .

The contravariant metric tensor gµ" is found to be

goo = Y2 [1 - i24w2 (x2 + Y2)] , 833 = -1 ,

g11 = - r2[r2( l - 522x2 ) - 2r2i23wxy + i26w2y2 (x2 + y2)] ,

g22 = - r2[r2(l - i22y2) + 2r2t23wxy + il6w2x2 (x2 + YZ)]

g01 = - r2[- ily - r2122wx + i25w2Y(x2 + y2)] ,

g02 = - r2[i2x - r2fj2wy - i25w2x(x2 + y2)] ,

912 = r2[r2jj2xy - r2i23w(x2 - y2) + i26w2xy(x2 + y2)]

(25.18)

(25.19)

(25.20)

(Its components can be obtained by using the momentum transformation (25.29)
below and the invariant relation , p1"p1"= gµ"pµp".) All other components in

(25.19 ) and (25.20 ) vanish . Indeed , we have also verified gµ2,g)"= S"µ based on

(25.19) and (25.20).



Chap.25. Taiji Rotational Transformations with the Limiting... 363

25e. The Invariant Action for Electromagnetic Fields and Charged

Particles in Rotating Frames and Truly Universal Constants

Now we are able to write the invariant action Sem in a rotating frame for

a charged particle with mass m and charge -6 moving in the 4-potential a.,:

Sem = -Jmds - e jaµdxµ - 4 lfµvfµ" _det gµv d4x , (25.21)

fµ-, = aav - ava. , _IX = a/axe. (25.22)

where ds is given by (25.18) and (25.19). Each term in (25.21) must have the

same dimension (mass-length). In other words, -ea. must have the dimension of

mass. This can be satisfied if a and a., are related to the usual charge e measured

in electrostatic units (esu) and the usual 4-potential A., in special relativity (SR)

by the relation

e = e(in esu)/c = - 1.6021891 x 10-204:Fn 9.cm , (25.23)

a. (w,r) - [A.,(t,r)/c]SR,

where the truly universal constant le is in Heavyside-Lorentz units and the

symbol - denotes correspondence. If one directly uses w as evolution variable

and does not set w=ct in (25.21), then the truly universal charge7 for rotating

frames is a rather than the usual e(measured in esu), where a turns out to be the

same as the usual charge measured in electromagnetic unit (emu). Also, the

potential a., has the dimension (g/cm)1"2, so that eaµ has the correct dimension

of mass.

The Lagrange equation of motion of a charged particle can be derived

from (25.21). We obtain

Dug
m ds = efµvu" , u" = dxv/ds , uµ = gµvu° , (25.24)

where Duµ= uµvdx", and ;v denotes covariant differentiation with respect to xv.8
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Starting with the invariant action (25.21) and replacing the second term

with

- Jaµj -det gµv d4x (25.25)

for a continuous charge distribution in space, we obtain the invariant Maxwell

equations in a rotating frame:

iµv;v = jµ , a .fµv + agfvx + o f = 0 . (25.26)

Based on gauge invariance and the taiji rotational invariance of the

action (25.21), the electromagnetic potential must be a covariant vector, aµ, in

noninertial frames. Since the force F and the fields E, B are naturally related to

a change of the potential aµ with respect to a change in coordinate (i.e., xµ, by

definition), the fields E and B are naturally identified with components of the

covariant tensor fµv as given by (25.22) in noninertial frames.

25f. The 4-Momentum and 'Lifetime Dilatation' of a Particle at Rest

in a Rotating Frame

Although the speed of light is not a universal constant in a rotating

frame F, we still can have a covariant four- momentum pg = (po, pi) by using w,

with units of length, rather than the more traditional t, with units of time, as

the evolution variable in the Lagrangian formalism. From the invariant action

Sf = -Jmds = JLdw for a 'non-interacting particle' with mass m in the rotating

frame F, we have the spatial components of the covariant four-momentum,

aL dxv
pi = - avi = mgvi ds s gvipv , i = 1,2,3 ; (25.27)

L= -m gvvµvv

where L and pi both have the dimension of mass, and vµ sE dx'/dw = (1,0). The

zeroth component po (or the Hamiltonian) with the dimension of mass is defined

as usual:
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dxv
Po av vi - L = mgr = g,OPV . (25.28)

The taiji rotational transformation of the differential operators a/axe and

a/axµ can be calculated from the inverse of (25 . 16). The covariant momentum pµ

has the same transformation properties as the covariant differential operator
a/axµ. This can also be seen from the quantum-mechanical relation pA-a/axµ.

Thus, we have

Pio = r1 (P0 + ayp1 - slxp2) ,

Pu = [-r2s12wx1 ]po + r2[ycos( slw) - tl2xix - S12wxly]p1

+ r2[-ysin(slw) - s12x1 y + sl3wx1 x]p2

P12 = [-1r2(2wy1 ]po + r2 [ysin(ilw) -112y1 x - n3wy1 y]Pl (25.29)

+ r2[ycos(slw) - f22y1 y + Q3wyl x]P2

P13=P3•

Let us consider the kinematic properties of a particle . Suppose a particle

is at rest in the rotating frame F , so that dxi = 0 and , hence, ds = dw. Based on pV =

mdxv/ds in (25.27), the contravariant momenta are pi = 0, i = 1,2,3 , and po = m. In

this case the covariant momenta of this particle in F are

Po=m, p1 = my2 (ciy + yZn2wx)

P2 = my2 (-slx + y2112wy) , P3 = 0. (25.30)

This difference between pµ and pµ is due to the presence of the metric tensor

components gol and g02. Its covariant momenta, as measured in an inertial

frame F1, are given by ( 25.29 )-( 25.30):

Plo = ym , pll = my[tlx sin(Ow ) + sly cos (slw)] ,
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P12 = - my[fx cos (slw) - sly sin (Qw)] , pn = 0. (25.31)

It is gratifying that the expression for the energy of a rotating particle,

Pio in (25.31), agrees with the results of high energy experiments performed in

an inertial laboratory frame F1. If one uses the classical rotational transforma-

tion (25.1), one will obtain plo = m(1+ p2s12) for the energy of such a particle at

rest in F, which is clearly inconsistent with high energy experiments.

For the decay of a particle in flight in a storage ring, the particle can be

considered to be at rest in the rotating frame F. The taiji rotational transforma-

tion (25.14) gives

1
Awl = YAW 0 P=PQ. (25.32)

Since w and wl have the dimension of length, (25.32) can be understood as the

dilatation of the decay length which is the quantity that is directly measured in

experiments measuring decays of muons in flight in a storage ring.6 We stress

that this is an absolute effect in that observers in both FI and F agree that it is

the accelerated muons whose mean decay length is dilated. If one replaces a

rotational transformation at a very short time interval by a Lorentz

transformation, one obtains the same expression for the time interval At, = yAtI

or, Awl = yew} with wl = ctI and wi = cti, by imposing a spatial relation Ax'l =0 for

two events. One notes that, however, the time dilatation effect implied by the

Lorentz transformations is relative rather than absolute. In this connection, we

may remark that the relation wl = w for any 0 = pil * 0 in the classical rotational

transformation (25.1) is inconsistent with the muon experiment in a storage

ring.

The new transformation (25.11) has several advantages for purposes of

analyzing physical phenomena in rotating reference frames. One advantage

relative to the Lorentz transformation is that since we derive our transfor-

mation from first principles, there are no conceptual difficulties arising from

the improper use of a transformation designed to treat only inertial reference

frames. Secondly, the coordinates involved in our transformation are

physically meaningful. In contrast, the arbitrary coordinate systems devised

for non-inertial frames based on general relativity in general, have no

correspondence with physically measurable distances and times .9
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26.

Epilogue

We end this account of relativity theory by returning to the four main

questions posed in chapter zero and briefly summarizing their answers.

Question #1: Can the theory of relativity be formulated solely on the

basis of the first principle of relativity (without assuming the

constancy of the speed of light)?

The Poincare-Einstein principle of relativity (i.e., the form of a physical

law is the same in any inertial frame) is a fundamental and necessary

component of any theory if it is to correctly explain and predict phenomena in

the physical world. We have shown that the theory of taiji relativity can be

formulated solely on the basis of the first principle of relativity, i.e., the

Poincar8-Einstein principle, without assuming the constancy of the speed of

light.

Einstein's second postulate of special relativity, namely that the speed of

light is a universal constant c, is not a necessary component of a correct theory,

according to the analysis of taiji relativity. Although the constant c has been

described as "the foundation stone of Einstein's special theory of relativity" l and

"so important in the four-dimensional picture, [playing] such a fundamental

role in the special theory of relativity... that it has to be fundamental,"2 the

universality of the speed of light has not and can not be unambiguously

established by experiments.3

Question #2: Can one generalize the 4-dimensional transformation

for inertial frames to non-inertial frames with a constant acceleration

or rotation? In accelerated frames, the speed of light is no longer a

universal constant; is the Planck constant still a universal constant?

Wu's kinematic approach to the investigation of spacetime transforma-

tions for non-inertial frames appears to be a viable one. This is supported by

the analysis of transformations for reference frames with a constant-linear-

368
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acceleration or constant rotational motion , on the basis of limiting 4-
dimensional symmetry. The results indicate that the physical taiji spacetime of
non-inertial frames is more closely related to the limiting 4-dimensional

symmetry rather than to the gravitational field equation. This result is
important because it indicates that the spacetime coordinates (w,x,y,z) for both

inertial and non-inertial frames must correspond to physically measurable
distances and ' times.' This is in sharp contrast to the arbitrary coordinate
systems devised for non-inertial frames based on general relativity, as discussed
in section 25f.

Truly fundamental constants in physics should be universal in both

inertial and non-inertial frames of references. According to this criterion, the

constants J and a (or ae = e2/J = 1/137) are truly fundamental,4 while h, e (in

esu), and c are not. This result has been substantiated by our generalization of

the 4-dimensional transformation for inertial frames to non-inertial frames

with a constant acceleration or rotation, and by the analysis of physics in non-

inertial frames.

Question #3: Within the 4-dimensional symmetry framework of

special relativity, it appears to be impossible, in principle, to generalize

the classical Liouville equation for many-particle systems to a Lorentz

invariant Liouville equation. Can we overcome this difficulty?

The difficulty in this question can be overcome by using common

relativity, a 4-dimensional theory of relativity with common time for all

observers, to describe many-particle systems, as expounded in chapter 13.

Question #4: In view of the profound divergence difficulties in

quantum field theory, is the spacetime 4-dimensional symmetry exact at
very large momenta or short distances?

The divergence difficulties have been a long-standing problem in

particle physics and quantum field theories. So far, we can only conjecture

that there might be an inherent fuzziness at short distances and discuss some of

its implications. This fuzziness is intimately related to the property that an

elementary particle should be pictured as a fuzzy point (in the sense of fuzzy set

theory) rather than as a conventional geometrical point. Furthermore, it
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suggests a modification of the uncertainty principle as discussed in equation

(14.7) and, hence, a greater departure from classical physics than quantum

mechanics. The concept of a fuzzy point particle also suggests a modification of

the concept of locality in quantum field theory, as shown in equations (14.26),

(15.13), and section 15b. Such a picture of a fuzzy particle deserves to be

theoretically and experimentally investigated further . According to the

discussions in chapters 14 and 15, the 4-dimensional symmetry framework of

common relativity appears to have advantages over special relativity for

addressing this problem.
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Appendix A.

Noether's Theorem in Both
Linearly Accelerated and Inertial Frames

Aa. Noether's Theorem

In physics , Noether's theorem is of fundamental importance because it

reveals an intimate relation between conservation laws or conserved quantities

and symmetries of a physical system. It was first proved by Emmy Noether

(1882-1935) in 1918 . 1 It is usually employed in inertial frames. There was little

discussion of its implications in non-inertial frames because the symmetry

properties of a physical system viewed from non-inertial frames are not

obvious. Furthermore , the conventional Noether's theorem based on symmetry

in spacetime is generalized to the case with symmetry in the phase space.

In classical mechanics , Noether's Theorem can be stated as follows:

Suppose a physical system is described by the Lagrangian equation with the

Lagrangian L = L(gi,cji ,w), where qi = dqi/dw. Let

w' = w + eT(gi,4i,w) ,
(A.1)

q'i = qi + cQ(9i,4i,w) ,

be a set of infinitesimal transformations with a continuous parameter e. If the

Lagrangian L( q'j,4'j,w '), where 4'1 = dq'i/dw', satisfies

_ dfSS r "
Zae LdwL8=0 dw

IpiQa -HT-f
i

is a constant of motion, where

(A.2)

(A.3)

372
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pi =aVav and H= J:piih -L.
i

(A.4)

To see the result (A.2) it suffices to calculate (dw'/dw)L(q'i,q'i,w') in (A.2)
to the first order in e. Since

d,V d
g'i= =qi + e -egjad' ,

we have

rrdw, 2
ae Ldw L(g'i,g 'i,w')] S

=
tae [ (1 +ed) L(qi+cQj,4i +e dg -BCLd ,w + ET)]SE=O

(A.5)

L ^ (1 + ea) L(gi,gt,w) + a9i eQi + e (aL/a9i)( dw - 9ia ) + aw eT] Sri

= L dW + + (alJacji)(d - 9i d ) + L T=
df

.a%
A

Td = Tdw
d (Wagi]9i)-TLgi -T[aIJ64] i -TaL

ag► dw aw

Substituting (alaw)T in (A. 6) into (A.7) and using (A.4), one obtains

(A.6)

(A.7)

d
dw(y,PiCA -HT-f) =(Qi-Tgi)(dN [aL/a9i]- a-) 0, (A.8)

which vanishes because of the Lagrangian equation

dw aqi = 0. (A.9)

The result (A.8) implies that the quantity in (A.3) is a constant of motion.
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To see the intimate relation among Noether's theorem and symmetry of a

physical system, we observe that, if df/dw = 0, the condition (A.2) is equivalent

to the property that the action of a physical system is invariant under the

transformation (A.1) because

S a _ 22
tae Itd L I.g'I,w')] Std

- a [L(q'I,4 'I,w')dw' - L(gi,4j,w)dw] 1 S,.= 0. (A.10)
ae dw

In general, even if the difference, [L(q'i,q'i,w')dw' - L(gi,gi,w)dw], is a total

differential of some function f(gi,gi,w) rather than zero, we still have a

conservation law, according to Noether's theorem. This is related to the fact that

a total differential in the action of a physical system does not affect the equation

of motion.
Now, let us consider a few specific cases to illustrate Noether's theorem.

Ab. Symmetry of Time and Space Translations in Inertial Frames

Let us consider a simple action,

b WIb

S = I -mds = I L dw1,
a Wia

L = L(rl,ii,wJ = - in d dsw, = -m 1 - zrz - yrz -

(A.11)

where r1 = (xi y1 zi) is the Cartesian coordinate and the velocity is ii = dri/dwi.

This Lagrangian L depends only on the velocities and does not depend on space

and time. Suppose we consider infinitesimal translations in time and space

WI-,W'1=wi+eTO'

x1 -+x'I=x1+cQo , YI -4 Y'I=YI, z1->z'1=z1,

(A.12)

where To and Qo are constant. One can verify that df/dw in (A.2) vanishes,
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{C
a '

(a6 I

'tae - m 1 -X42 - Y12 - jj2 ^ } - 0, (A.13)

so that f is simply a constant. Therefore, the result (A.3) of Noether' s theorem
implies

pxQo - HTo = constant. (A.14)

If one considers only the time translation , i.e., To = 1 and Qo = 0 in (A. 12), the

result (A.14) leads to the conservation of energy,

H = constant, (A.15 )

where H = E. Similarly, the symmetry of the Lagrangian (A. 11) under space

translations along the x-axis, i.e., To = 0 and Qo = 1 in (A.12), implies by Noether's

theorem the conservation of momentum , px = constant.

Ac. Symmetry of the Lorentz Group for Inertial Frames

We know that the action (A. 11) is invariant under the infinitesimal 4-

dimensional transformation

w'I = W I - P x l, x'I = x1- o w l, Y'I = YI , Z'1= 7j . (A.16)

Indeed, it follows from (A. 11) and (A. 16) that

^1 L(r'1,r'Lw'I))J p=0

-€a-m(1- ^xI )[(1-r^)(1-2P:4)]1/2) 2P=0 a0. (A.17)
0

Thus, fin (A.2) is a constant. Noether's theorem (A.3) implies
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pawl - Hx1 = constant, (A.18)

where

pix = al/a;4 = m(di4/dw1)/[1- r>z]L2 , H = pI 'rI - L = m/[1- j12]1/2.

The invariance of the quantity (A. 18) can also be directly verified by using the

4-dimensional transformations of coordinates and momenta , (7.4) and (10.5).

The form (A.18) resembles that of angular momentum because, mathematically,

it is related to the property that the Lorentz transformation (A.16) can be viewed

as a rotation of wI and xI axes in a 4-dimensional space with yI and zI fixed.

If one pauses and reflects for a moment concerning the physical

implications of (A. 18 ), one cannot refrain from wondering : Why a splendid and

useful Lorentz invariance turns out to be associated with such a dull and useless

conservation law (A. 18)?!

Ad. Generalized Translational Symmetry of the Wu Group in

Accelerated Frames

In a non- inertial frame such as F(w ,x,y,z) with a constant- linear-

acceleration along the x axis, the energy p0 and momentum px of a "free" (or

non-interacting ) particle are clearly not constant, as one can see from (22.6)

and (22.9). Evidently, this is intimately related to the fact that the action (22.1)

in F for a "free" particle, i .e., aµ=0, does not have the usual symmetries of

translations in time w and space in the x direction , in contrast to the action in

(A.11) in FI .

However, there are more sophisticated symmetries associated with the

action (22.1) with aµ=0 in non-inertial frames. They are the generalizations of

translations (A.12) from an inertial frame FI to an non-inertial frame F. Let us

substitute the infinitesimal translations in (A.12) into the inverse Wu

transformation (21.47)

(w'I + po/ayo) _ Do
w = (ax'I + 1/7o) a '

x' = (x'i + 1/yOa)2 - (w'I + po/ayo)2
1

(A.19)

OCy 2 , Y=YI, Z=ZI•
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Using (A.19) and (A.12), we have the generalized translations in a CIA frame

F(w,x,y,z),

w'=w+ET,

(A.20
x'=xteQ., y'=y, Z'=Z,

where c is an infinitesimal parameter and the functions T and Q are given by

To - Qo(wt + Po/acy0)
T=a(xI + 1/acyo ) a(x1 + 1 /acyo)2 =To(W) -Qo( ), (A.21)

Qo(xI + 1 /ayo ) - To(wI + Po/ayo)

(xI + 1/yoa)Z - (WI + po/ayo)2

Let us evaluate (A.2) with the Lagrangian ( 22.4) with a=0 and primed variables.
We find that df/dw/dw = 0,

[tdae Ldw L(r',r',w')] 1e-0

_ dw ae l W'Zdw'Z - dr'2Ie-O

Wdw2(2a WT + w?Q) + W2dwdT - dxdQ = 0

dw W2dw2 - dr2

)

(A.23)

where we have used

ZaeWS^ = 2WaWT +ayzQ, (A.24)

tae dw'2 o =2dwdT, €ae dr'2 } = 2dxdQ, (A.25)

dT - a^y3V o dw - ary3 dx - W ay- ap2y3]dw + QW_o2 Wdx , (A.26)

dQ= 4y3Qo dw - ay3To dw . (A.27)
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Thus, Noether 's theorem implies

Px(7Qo - -ffiTO) - H(LOTY - QOPY ) = constant,

Einstein 's Relativity and Beyond

(A.28)

in CLA frames. This is the generalization of the conservation (A.14) of inertial

frames. For the generalized time translational symmetry , i.e., To=l, Q,0=0, the

result (A.28) leads to

Px(- yo) - H (W) = - Y(W + PPx) = constant, (A.29)

where po, px and W are functions of space r and time w. Similarly, the

generalized space translational symmetry (i.e., To=O, Qo=1) implies

px(y) - H (- W) = 7(Px + V-WH) = constant. (A.30)

Equations (A.29) and (A.30) are consistent with the constant energy pIo and

momentum pii=-pit =-Pix in an inertial frame , as shown in the 4-momentum

transformation (22.10).

Ae. Classical and Quantum Rings (or Closed Strings) in a Central

Force Field

Some conservation laws for the motion of physical objects in a potential

field are not related to Noether's theorem. For example, a string-like object,

which has been extensively discussed in recent years, may have a different type

of symmetry from that of ordinary particles. Let us consider a simple string

which is closed and moves in a potential field with a constant radius. Based on a

formal analogy between the equation of the Nambu string2 and the massless

Klein-Gordon equation with cyclic radial momentum Pr and cyclic angular

momentum Pe, it has been suggested that a closed quantum string with a

constant radius could be described by a Hamiltonian with cyclic radial momenta

Pr and Pe.3 The Lagrangian Lr for such a "ring" moving in a Coulomb-like

potential V(r) was assumed to have the form
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_ -m(1-r22sin29)1/2 - V(r) , (A.31)

which has cyclic velocities i=dr/dw and 6=d9/dw. Since the generalized

coordinates are q1=(g1,g2,q3 )=(r,9,$), their conjugate momenta are given by

a4 aL aLr mr2msin29
Pr =0, Pe=-=O, P4_ (A.32)

ar a6 a4 (1-r2 2sin2g) 1/2

Thus, one cannot obtain a relation for the velocity r (or 6) in terms of pr (or pe)

and coordinates. In some cases, the lack of these relations will render the

Legendre transformation and, hence, the Hamiltonian undefined.4 However, in

this case one can follow Routh's procedure for treating cyclic variables5 and
define a new Hamiltonian Hr for the ring

Hr(r,9,$,p.) = p# j - li = Jm2+p,2( r2sin29) + V(r) , (A.33)

where we have used the equations in (A.32). The usual Hamiltonian equations

for $ and p# can be obtained. The momenta pr and pe are cyclic in Hr. We also

have the following equations (in which Hr plays the role of the Lagrangian) for

the ring's motion:

ar = Uw- (Mr/-r) = 0 , (aHr/a6) = 0.0-9 aw-

r=ar, 9=ae.

(A.34)

(A.35)

For an arbitrary central potential V(r), the second equation in (A.34) leads to
ae=n/2, while the numerical value of r depends on the specific form of the

potential V(r) in the model.

Classically, the Hamiltonian (A.33) describes a particle with a mass in

moving in a circular orbit. Since a rotating ring with a constant radius can be

pictured as a collection of N particles moving in the same orbit, we can also

interpret (A.33) as the Hamiltonian for a rotating ring with a total rest mass m.
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The Hamiltonian (A.33) has the cyclic momenta pr and Pe which can be used to

construct a "ring - model of quarks " with permanent confinement of the

quantum ring.3

Af. A Generalized Noether 's Theorem for Symmetry in Phase Space

The constants of motion in (A.35) for inertial frames are not covered by

the conventional Noether 's theorem based on symmetry in spacetime. However,

one can generalize Noether's theorem to imply (A.35) as a special case by

considering symmetry in the phase space.

Let us introduce a new function called "Jingsian " is which symmetrizes

the p and q variables explicitly and plays a double role of the Lagrangian and

the Hamiltonian:

Js(gi,..gn,Pi,•,Ps, is+l,..gn,t) = L(gi,gi,t) - 1(Pi gl - qi Pi)
i-1

s l 05s^ii-Z(Pigi), (A.36)

This form enables us to treat pi and qi on a more equal footing in performing

variational calculations than the usual Hamiltonian form. That is, the Jingsian

is makes the p-q symmetry more explicit and does not depend on pi, so that one

can deal with symmetry related to the momenta pi, P2...... p5 and the coordinates

qi, g2......gs•

When s=0, the Jingsian Jo is just the Lagrangian L, which is defined in a

configuration space formed from the n generalized coordinates. And when s=n,

Jn reduces to the negative Hamiltonian -H(q,p,t) defined in the phase space. The

general Jingsian Js, 1 s s <- n-1, is defined in a combined phase space (pi,..,ps,

gi,..,gs.) and configuration space (qs+i, qs+2...... qn), which may be called "Jingsian
z

space" for short. The Hamilton's principle 8S = 81Ldt = 0 indicates that one can

have the modified Hamilton's principle in the Jingsian space by expressing L in

terms of the Jingsian is in (A.36). We have
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+ Js(gi... .gn,p,.... .ps,4s+ 1.... 4n,t) Idt ,

2

J { E
(918P1 - P18g1) +

rags
8gi+api&p►

]

n r a J s d U s-
+ , , qi dt aqi" Sqi dt = 0, qi L (A.37)

where we have used the following conditions in the Jingsian space,

8g1(tl ) = 8%(t2) = 0, i = 1,2....n

(A.38)

8p1(t1 ) = 8p1(t2 ) = 0, i= 1,2....s .

We obtain the desired equations of motion

dpk _ aJs dqk aJs
k=1 2 ... s.' (A.39), , ,dt aqk dt apk '

Equations (A.39) involving the coordinates gi,...,gs and the momenta pl,...,ps are

in the form of Hamilton 's equations with the negative Jingsian, -Js, as the

Hamiltonian . However, the (n-s) coordinates and velocities obey the Lagrange

equations2

dt (aJs/a91) - (aJs/aq1) = 0, i = s+1......n . (A.40)

Suppose a physical system is described by the equations of motion (A.39)

and (A.40). The last term involving a total differential in (A.37) does not

contribute to the equations of motion and it can be ignored in the action

functional without affecting physics. Thus , the action functional S of a physical

system can be written in the following symmetrized form:
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2

S= J{i (
'A . q- 22W) + Js(gl.•••gn,PL••.Ps ,4s+ 1,.. 4n,t) } dt (A.41)

1

Suppose this action S is invariant under the following infinitesimal

transformations in the Jingsian space,

P'k = Pk + EPk', k=1.... s ;

q'1=qt+eQ,

t'=t+eT.

That is,

i=1,...,n ; (A.42)

2p ,t q'i - 2l'1 P't)+Js( q'1. ...q'n;P '1,•••,P's,q ' s+1,....q'n,t') Sil 18=0taeIk i_1

df dP'k
- & , P,k = dt, , (A.43)

where Pk*, Qi', T and f are functions of (gl,••gn,Pl,•,Ps,4s+1,..,4n,t). Following

similar steps from (A.5) to (A.9), we have the generalized Noether's theorem for

the case with symmetry in the phase space:

dt [HT + f - E P,, + E qk Pk]= 0,
i-l k-i

(A.44)

1 1 1 1
where Pi= (zp1*,••, *) and Q1= (zQ1*,••, (W,Qs+l...... Q.:)•
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Appendix B.

Quantum Electrodynamics in Both
Linearly Accelerated and Inertial Frames

Ba. Quantum Electrodynamics of Bosons in CIA and Inertial Frames

Quantum scalar field operators obey equation (24.35) in CIA frames. This

suggests that we use the taiji-time w in a general frame as the evolution

variable for a state 40)(w) in the Schrodinger representation:

i a`^aww) = H(s)(w)^(s)(w) , H(S)= Hos)+ H1(S), J= 1. (B.1)

The reason is that the evolution of a physical system is assumed to be described

by a Hamiltonian operator which has the same transformation property as a/aw.
A covariant partial derivative is the same as an ordinary partial derivative, Dµ =

aµ, when they operate on scalar functions. We may remark that the form (B.1) is

no longer true if the Hamiltonian involves spinor fields; in this case, the time
derivative as has to be replaced by the gauge covariant derivative Vo, according

to equation (24.56).

It is natural to assume that the usual covariant formalism of perturbation

theoryl can also be applied to QBD of scalar bosons in CIA frames, which are

smoothly connected to inertial frames in the limit of zero acceleration. Let us

briefly consider the interaction representation and the S-matrix in CIA frames.

The transformations of the state vector O(w) and operator O(w) from the

SchrOdinger representation to the interaction representation are defined as

D(W) 41(')(w) = exp [iH(o)w]m(s)(w)

O(w) = O(')(w) = exp[iH(o)w]O(s)exp[-iH(o )w] .

Because O(s) and O(w) are the same for w = 0, we have

(B.2)

(B.3)

i s aww) H (w)4'(w), H= e [iH w H a iH w (B.4)

384
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O(w)=exp[iH^o)w]O(0)exp[-iH^o)w] • (B.5)

The U-matrix can be defined in terms of the time w: 4'(w) = U(w,wo)O(wo),

U(wo,wo) = I. It follows from (B.4) and (B.5) that

aU(w,wo)
i ', = HI(w)U(w,w0)

If a physical system is in the initial state 4)1 at time

finding it in the final state of at a later time w is
Wo,

(B.6)

the probability of

I(4bfI U(w,wo) bi) 11 = I Ufi(w,wo)12. (B.7)

Evidently, the average transition probability per unit time for o f -4 Oi is

U fi(w,wo) - 8f.12/ (w - wo) . (B.8)

As usual, we can express the S-matrix in terms of the U-matrix, i.e. S = U(oo, -m)

and obtain the following form

w

S = 1- i fH1(W)dW + (-i)2 JH,(w)dw JH1(w')dw' + ...... (B.9)

For w-dependent operators, one can introduce a w-product W'k (corresponding

to the usual chronological product), so that (B.9) can be written in an

exponential form:

S = W`[exp[- i 5HI(xµ)dwd3r]I , JHi(x►t)d3r = HI(w) . (B.10)

Since J is a truly universal constant, we can have the "natural units" J = 1
in both CIA and inertial frames . Thus, we have the relation of dimensions

[aµ] = [V2,13] = [mass] = [1/length], (B.11)

in CIA and inertial frames.
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To obtain the rules for Feynman diagrams for scalar QED in CIA frames,

we follow the usual procedure) and assume 1sW to be

LSQFD = I-sp - (aIaµ)2/(2p) ,

Isp = € gµv[(iaµ - eaµ )fi*]I(iav - eav)fi] - m2fi*O - 4 fµvfµv ,

fµv = Dµav-Dvaµ = aµav-avaµ , e = -1.6021891x10-2O4TX(g•cm)1n

(B.12)

where p is a gauge parameter. The lagrangian Lsp is gauge invariant and

observable results are independent of the gauge parameter p.

To see that there is a "conservation" of 4-momentum at each vertex of the

Feynman diagram in CIA frames, let us consider the wave function fi(w,x) _

4b(x) for a "free particle" given by (24.23) with the phase P given by (24.19) and

the condition (24.21) for a plane wave. In CIA frames, one can verify that

aw P = kio(xl + 1/ay02)y3a+ kI1(xl + 1/ayo2)y3ap

= (ykl0 + 7Rki1)W = k0 ,

T P=ktoyP +klly=kl, a P=k2, a3P=k3,

where we have used (a/aw)yl = y3a and (a/aw)_y= y3ap. Thus, the relation

i a e-iP = kµ a-iP
NP

(B.13)

(B.14)

holds for a "free wave" in CIA frames, just as in inertial frames.

However, the zeroth component po (or ko) of the covariant 4-momentum

depends on the Wu alteration function W(w,x), as shown in (22.9), and is not

conserved in a particle collision process. Fortuately, the conservation of

"momentum" in a collision process, e.g., a+b-,c+d, as observed in CIA frames can

be expressed in terms of
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(Po/W, P1, P2, P3 ) Pµ; (Po, P1, 02, 03), (B.15)

gµvpµpv = (Po/W) 2 - (p1)2 - (P2)2 - (P3)2 = TIIL ppPv , ^lMV = (1. 1 ,-1,-1)

This Pµ may be termed "alteration momentum" which is not exactly a 4-vector

under the Wu or the MWL transformation. But the momentum space of Pµ is

formally closer to the space of the 4-momentum p in inertial frames than that

of the true 4-momentum pp as far as the S-matrix and Feynman rules are

concerned. For the scattering process a+b-ac+d, we have the following relations

for momentum:

Poa+ POb= YB(Ploa+ PIOb- OBIP[la+ Pub]) ,

P1a+P1b= TB(P[1a+ Pub - PB[P[oa+ p[Ob]) ,

P22+ Pzb= P[za+ P12b' p3a+ P3b= PI3a+ Pub

Poc+ Pod= YA(PIot+ Plod- PAIP[lc+ PIld])

Plc+ Pid= TA(puic+ P11d - YAIPIoc+ P[od]) ,

P2c+ P2d= P12c+ P12d, P3c+ Pad= P13c+ Pud ; P,

(B.16)

which can be derived from the inverse transformation of (22.10) and (B.15).
Since the 4-monentum is conserved in the inertial frame F1, i.e., Ptoc + Plod= Pioa

+ p[ob = constant and plc + P [d = Pia + Pub = constant, we have the conservation of

the alteration momentum in CIA frames:

Poc+ Pod= Poa+ Pob and Pc+Pd=Pa+Pb, (B.17)

at the "instant of collision," so to speak. The reason for their conservation is

that, although both sides are not constant as shown in (B.16), they must be the

same when OB = DA which is realized at the instant of collision.

Based on the Wu transformation for coordinates and 4-momenta, we have
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Jd4x exp(-ipIµxe) = ( 2x)484(Pt) = J'd4x e_11

= (2E)48(fpO-Y&P1)8(1'P1-?PPo)8(P2)8(P3) (B.18)

= (2n)48(P0)8(P1)8(P2)8(P3) = (2x)484(P) = (2n)4W84(P) ,

8(P1o)8(P11) = 6(77po- ypPl)S(fpj - y0P0) = S(Po)S(PI) = S(po)S(Pl)
J(Pa./P0

where we have used the 'free-wave' (24.9), the momentum transformation

(22.10) and the Wu transformation (21.46). In the last equation, J(pa/px) is the

Jacobian of the pv,, with respect to the P2, which can be calculated by using

(22.10). This result is the 2-dimensional generalization of the 1-dimensional

case given by (24.20) with x = 0.2 In a CIA frame, the integral of a "plane wave"

over the "whole spacetime" is limited and complicated by the presence of a

"black wall" (i.e., a wall singularity) at x = -1/(ayo2). The integration can be

carried out by a change of variables and this amounts to using variables in an

inertial frame as a crutch to obtain the result. The relation (B.17) or (B.18)

implies that we have a conservation of momentum at a vertex in the generalized

Feynman rules in CIA frames. Those properties in (B.13)-(B.18) are convenient

for writing down the generalized Feynman rules for quantum electrodynamics

in CIA frames.

As usual, if there are no identical particles in the final state, we define

the relationship between the M- and S-matrices for initial (i) and final (f)

states as follows:

Sfl = Sn - i(2a)484 (Pt( tot> - PI(tot))[next P.(ni/V)] 1/2Mfl , (B.19)

where "ext par" denotes external particles, nj = mi/o'kjfor spin 1/2 fermions and

nj = 1/(2(ukj) for bosons. Note that the S-matrix elements for physical processes

which are observed and measured in CIA frames are defined only for those

cases in which the momenta of the initial and final states are constant in an

inertial frame.

Because of the 4-dimensional symmetry in (B.12) and (B.19), the

generalized Feynman rules for writing the amplitude Mn are formally the same
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as those in the usual QJED, except that certain quantities (e.g., w, J and 1d) have

different dimensions from the corresponding quantities in conventional QhD.

One can use a more intuitive method of Feynman to obtain the generalized

rules for Feynman diagrams in CIA frames . For example , the scalar boson

propagator can be obtained from the scalar wave equations ( 24.1) and the

relation (B.14) for a "free boson " with the momentum pp. The vertex of

interaction can be obtained from the interaction Lagrangian density LSQ);D in

(B.12).3

The generalized Feynman rules for the amplitude Mt, in both constant-

linear-acceleration frames and inertial frames are as follows:

(a) The covariant photon propagator is given by

kµkv

P) (kXkj. + ie)

(kak(Y + ie)

where p = 1 is the Feynman gauge, and p = 0 the Landau gauge.

(b) The scalar boson propagator is

i
(p'p -m2+ie).

(c) The vertex <D(p)+y(k,µ) -, 4(p') is

-ie(pµ+pµ),

(B.20)

(B.21)

(B.22)

where y(k,µ) is an incoming photon line toward the vertex with the momentum

k), and a polarization index g.

(d) The vertex 't+y(µ) -* b+y(v) has the factor

2i -E2ggV. (B.23)

(e) Each external photon line with an index µ has a polarization vector eµ.

(f) A factor 1/2 for each closed loop containing only two photon lines, e.g., 4+'

-^ Y(N)+y( v) -j 4D+4.

Other rules such as a integration with W-1d4k/(2a)4 = d4k/(2x)4 over a
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momentum kµ not fixed by the "conservation" of momentum at each vertex are

the same as the usual rules in inertial frames.

Bb. Feynman Rules for QED in both CIA and Inertial Frames

To obtain the rules for Feynman diagrams of spinor QJD in CIA frames, we

have to replace the time derivative ao = a/aw by the gauge covariant time

derivative V0, according to equation ( 24.56). We follow the usual quantization

procedure and define LTQED by adding a gauge fixing term in the Lagrangian

density,

LTQ$D = L - (Dµaµ)2/2p , (B.24)

L = yjr►1(iVµ-eaµ)W-11-9 Inw, (B.25)

V µ = (a0 + 2(akW) I ', a1, a2, a3)

where p is a gauge parameter. As usual, the M-matrix is defined in (B. 19). One

can verify that the plane-wave solution (24.57) of a free fermion satisfies

Vµe(-iP(x) - G(w)) = kµe(-iP(x) - G(w)) (B.26)

in CIA frames.
The generalized Feynman rules for the amplitude Mn of QED in both CIA

frames and inertial frames are as follows:

(a) The covariant photon propagator is given by (B.20).

(b) The electron propagator is

-i (B.27)
(rupµ - m + ic)

(c) The electron-photon vertex is

-iel'µ. (B.28)
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(d) Each external photon line has an additional factor eµ. Each external electron

line has u(s,p) for the annihilation of an electron and u(s,p) for the creation of

an electron. Each external positron line has v (s,p) for the annihilation of a

positron and v(s,p ) for the creation of a positron.

Other rules such as taking the trace with a factor (- 1) for each closed

electron loop , integration with d4k/[W(2a)4] over a momentum kµ not fixed by

the conservation of alteration momentum at each vertex are the same as the

usual.

Thus , if one calculates scattering cross sections and decay rates (with

respect to the taiji-time w) of a physical process, one will get formally a similar

result as that in conventional U D. For example, let us consider the decay rate

r(1-,2+3+...+N) for a physical process 1-,2+3+...+ N. It is given by the expression

r(1^2+3+...+N) =1wtmm J I(flSlli)I2 d3xzd3Pz d3x3d3p3 ... d3xd3pN

( 270)3 (2903 (211)3

,...=f-1- IMflR II (2m^)] d3pz ......
2.P1 ext rer (2n)320)P2

d3 _ _

x (27t)32WPN
(2a)4S4(pl + p2 - P3 - P4 ""- PN)SO ,

(B.29)

where (fSli) = Sfl is the S-matrix element between the initial state i and the final

state f given by (B.19). The decay rate r(1-42+3+...+N) has the dimension of

inverse length and So denotes a factor 1/n! for each kind of (n) identical

particles in the final state. When there is no external fermion in a process,

then [next rer (2mrer )] in (B.29 ) is replaced by 1. The decay length D is given by

D= 1/r(1-,2+3+...+N).

For a scattering process 1+2-,3+4+ ....+N, the differential cross section do,

which has the dimension of area, is given by

dcr - 1 2[ II (2m )] d3P3
4[(p1.p2)2-(m1m2 )2]v2I I ext fer rer (2x )320)P3....

d3PN + P P P P )so , (B.30)
••••• (2X)32wpN

(2g)484(p
, 2 3 4 ....- N
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where p1= pi, i = 1, 2, 3 and po = mp = (p2+m2 )1/2. If the initial particles are

unpolarized , one takes the average over initial spin states. When there is no
external fermion in a process, then [r t fer ( 2mf.. )] in (B.30) is replaced by 1.

Bc. Some QED Results in Both CIA and Inertial Frames

Let us consider some well-known physical processes in QEDD4 to illustrate

the generalized Feynman rules in both CLA frames and inertial frames, and see

how the conventional results in inertial frames are modified if they are

measured in a laboratory with constant-linear-acceleration.

A. Electron Scattering from a Point Like Proton

According to the generalized Feynman rules , the amplitude Mfl for such

an electron scattering from a point-like proton , e(pl + p ( Pj) -> e(pf) + p(Pf) with

the exchange of a photon y(q), where qµ = pfµ - pyf, is given by

M[1 = u(sf,pf)[- i er1 ]u ( s1,p1) [(qaq +ie ) ]u(SfPf)[- i erti] u(Sl,P1) , (B.31)

where we have used the Feynman gauge for the photon propagator (p = 1). The

S-matrix element Sf1 in (B.19) takes the form

m m M M 1 1/2
Sfi = - i(2n)484(P f + pf - P1- A)

r

`mpf mpi mpf mPi
`J4] M11 , (B.32)

where m and M are , respectively , masses for the electron and the proton. The

differential cross section is given by ( B.30),

_ mM 2 md3p f Md3Pf

[(pj P1)2- (mM)2]1/2 IMfI (2rz) 3mpf (2a )3 mpf

x(2n)484 (pf + Of - pl - P1) , (B.33)

where po = mpf= (pf2+m2 ) 1/2, mpf = ( P12+M2 )1/2 and IM I2 is given by
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F4
IMfl12 = 2m2Mzg4 [Pf.pfPfpi + Pf piPfpf - m2PfPi

- M2pf pi + 2M2m2], (B.34)

Since Pfpf = PWp 1, etc . we see that the differential cross section is formally the

same as the usual one in an inertial frame, except that each individual

momentum is not constant in CIA frames,

da(CIA frame) = do(inertial frame) . (B.35)

The origin of this identical result is the limiting 4-dimensional symmetry which

dictates the invariance of the action or the S-matrix.

After integration, (B.35) gives the total cross section which can be

pictured as the effective size of the target particle, i.e., proton. This effective

size of the proton depends of the strength of the interaction. For the

electromagnetic interaction, the coupling strength is ae - 1/137 - 10-2, the weak

interaction coupling strength is about 10-12. The size (or cross section) of a

proton is about 10-24 cm2 from the 'viewpoint' of the electron. But from the

'viewpoint' of a neutrino, which has only weak interactions with the proton, the

size of a proton is extremely small, about 1"4 cm2.

B. Compton Scattering
The S-matrix element for the Compton scattering process, y(k) + e(pi) -^

y(k') + e(pf), is given by

Sfi i ( 2n)484(k + pf - k - p) fap
m m 1 1 4 1 /2 . (B.36)

= - f aOpi 2cok 2a1k, V

where 0k = IkI= Iki, opf = pf2+m2 and the M-matrix element is given by

Mi = u(sf,pf) € [-ierae'el -1 [_ier^evl
yµ (p4µ+1cµ)-m+ie

+ [-ieruEj _t ^[-ier^e'vl u(s►,p) , (B.37)
(P4µ7k'µ)-m+ie



394 Einstein 's Relativity and Beyond

according to the generalized Feynman rules.

We have seen that the differential cross section for the Compton

scattering is also the same as that in an inertial frame,

dacompton(CLA frame) = do compton(inertial frame) . (B.38)

C. Self-Mass of the Electron

The self-mass of the electron is given by the expression

d4k µ
-8 = [lcak6+ie) [- ierK] [- i erW(2 )a [tp(pp-kp)-m+ie)

= Sm(inertial frame) , (B.39)

where we have set p=1 for simplicity and used (24.43) and (B.15). This is
consistent with the fact that the (rest) mass of the electron in an inertial frame
is the same as that of the electron in CIA frames, as shown in (23.8).

In all these calculations, the particles must move with constant velocities

as measured in an inertial frame. This is the condition imposed in defining the

S-matrix and for obtaining the generalized Feynman rules in both linearly

accelerated and inertial frames. These discussons for Q)ID can also be applied to

non-inertial frames with a constant rotational motion, since we have the taiji

rotational transformations (25.11) with limiting 4-dimensional symmetry.
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Appendix C.

De Sitter and Poincare Gauge-Invariant
Fermion Lagrangians and Gravity*

We present a new fermion lagrangian which possesses exact

symmetry under the local de Sitter group . The lagrangian involves

new "scale gauge fields " related to the newtonian force and the usual

Yang-Mills "phase gauge fields " related to a new "gravitational spin

force" between two fermions . Generalization of the usual gauge

theory for external symmetry groups is also discussed.

It has been suggested that gravity is related to gauge fields of

four-dimensional symmetry such as the de Sitter group [1,2] . The idea is quite

interesting because the de Sitter group possesses the maximum four-dimen-

sional symmetry [3 ] and is the unique generalization of the Poincare group. It

also suggests the existence of a new "gravitational spin force" between objects

with nonzero net spin densities . The de Sitter group is a rotational group in de

Sitter space, which is the hypersurface of a four-dimensional sphere of a

hyperbolic character in one direction, embedded in a five-dimensional space.

The radius of the sphere is denoted by L The de Sitter group reduces to the

Poincare group in the flat space limit L-*o.

One important ingredient in a realistic gauge theory of gravity is the

fermion field - a source of the gravitational field. But in previous discussions

[1,2] one either ignored the fermion field or discussed a fermion lagrangian

which has only approximate symmetry under local de Sitter gauge

transformations . It appears that one cannot get a fermion lagrangian with

exact external gauge symmetry if one just employs the usual Yang -Mills fields,

i.e. "phase gauge fields" [4].

*by J. P. Hsu, Physics Department, University of Massachusetts Dartmouth , N. Dartmouth,

MA 02747, USA. The work is supported in part by University of Massachusetts Dartmouth.

Reprint from Physics Letters 119B, 328 (1982).

396



Chap.26. Epilogue 397

In this paper, we present a new fermion lagrangian , which has exact

symmetry under the local de Sitter group. It is necessary that the lagrangian

involves new "scale gauge fields" in addition to the usual Yang-Mills "phase

gauge fields". They have different transformation property and, therefore,

must be treated as different and independent fields.
Let us consider the generalization of 4aµy in the form for a non-abelian

external symmetry group:

e Dµiy (C.1)

where rµ involves both the Dirac matrices and scale gauge fields eA and the

gauge-covariant derivative Dµ contains phase gauge fields b' = (b^, bj ):

r eA yA = ek rk + eik i(YiYi` - 14)/4L A ZA, (C.2)

l = aµ-igbµ, bµ- bOZA' (C.3)

ZA =(Zi,Za) = (Ti/2L, i(Yi'k - y )/4) , a = jk ,

{lj,'Yk) = 211jk , 11jk s (1, -I, -1, -1)

OA = (2Le;` , eik/L) .

Tile quantity ZA is the matrix representation of the SO( 3,2) de Sitter group

generators:

[ZB, ZC] = if ZA A = i, jk ; etc. (C.4)

The local de Sitter gauge transformations are given by

40

bµ->b'µ bµ +(aµ)ta/(ig) , (C.5)

rµ -, r'µ = Edrµ4a
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where

4d= exp[iwA(x)ZA] .

The gauge functions wA(x)=(w1 (x), coa(x)) are real and arbitrary.
It can be shown that W(r►' Dµ+m)yr is invariant under the local de Sitter

gauge transformations (C.5):

W'(r'M D'µ+m
)W' = W(r1` D^+m)W. (C.6)

We stress that this symmetry property holds if and only if both ey and elk are

introduced.

Note that the field eA is dimensionless and is related to a change in the

scale rather than a change in the phase [4], so that eA may be termed a "scale

gauge field". In view of the presence of this new scale gauge field , the present

gauge theory is a generalization of the Yang-Mills theory. Such a

generalization appears to be necessary because the de Sitter group is an

external symmetry group , in which the generator ZA does not commute with yk,

in contrast to the case of an internal symmetry group.

The phase field strength Fµ„ is given by

(r LD, - DvDµ )W = igFµ,ZAV, (C.7)

FA = a,b^ - ^,bµ + gif bµb^ . (C.8)

One can verify that Fµv = F IZA is gauge covariant and transforms as follows:

Fµv F'µv = gdFµvta

Thus, Tr(FµvFap) is a gauge-invariant quantity:

Tr(F'µvF'ap) = Tr(FµvFcp)

which is usually used as the lagrangian for the phase field bVV.

(C.9)

(C.10)
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We observe that Tr(rµrv) is gauge invariant:

Tr(r'µr'v) = Tr(r1tr°') .
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(C.11)

Thus, we expect that eA enters the lagrangian for the scale field through the

combination

$µv n Tr(rµrv/4)

= Tl j ek + e j ekn1likTUn/(2L)

-, gµv as L-+-. (C.12)

gµv a Tlikeµek .

For large I, gµv is approximately the same as gµv. In the limit L-+-, it is natural

to interpret eµ as the vierbein component and gµv as the spacetime metric. Thus

we can interpret gµv as the spacetime metric in the present theory with the de

Sitter gauge group. We are able to define the affine connection Tµv and the

Riemann curvature tensor R°C^,µv in terms of the new gauge-invariant metric gµv

by the usual relations:

Flaw = 2 !Xa(avgµ7^ + aS^.v - aRgvµ) , $^` -gxv = 8gv .

R Aµv = a v r 7 y i - aµrA + r µ -F - r v rM `µ • (C.13)

In this way, rµv, , R ;,µv and gµv are all invariant under the local de Sitter gauge

transformations (C.5). The invariant lagrangian for these fields is uniquely

determined by the principle of gauge invariance and the principle of general

covariance:

Jd4x(det $µv)in L2(i^yri'Dµy + h.c.) - im,#- 8Tr(FµvWv) + 8 R^ , (C.14)
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where G is a constant and R = R µvagµv. Field equations for eµ, bo and ty can be

determined from the lagrangian (C.14).
When we take the limit L-^-, some components of gauge fields , i.e. bA and

eij disappear from the theory and we obtain the following lagrangian L

L = (de[ gµv ) In [A, - 8 Tr(FµvZaF.$Zb)gµagvP + R]

R = Raµvagµv = (aarµv - avrA + rµ rr - r fv) gµv ,

rµv = 2 gAA (avggl + aµgIv - a)Lgvµ)

gµv = ei
µ
e

v
k71ik, gµv = e4e1ik ,

e^e i = svµ , eµeI` = 8'k,

Tr(FµvZaF4$Zb) = 2FµvF7nimnkn a=ik, b=nm ,

LW = 2 iWn` ( aµ - igbµ)W + 2 iW( 'aµ - igbµ)r►L W -iymW ,

(C.15)

where the last term in (C.15) is identical with Einstein 's lagrangian. The

lagrangian (C.15) is invariant under local Poincare gauge transformations (i.e.

the transformations (C.5) with L--) and general coordinate transformations

(with the spacetime metric tensor gµa). The Poincar@ gauge-invariant

lagrangian (C.15) differs from that discussed by Kibble [5]. From the viewpoint

of symmetry, the lagrangian (C.15) is more satisfactory than Kibble's

lagrangian involving fermions.

Physically, the radius L of the de Sitter space is probably very large. In

this case, physical effects of ba and e j are negligible . Experimentally, the

difference between the de Sitter gauge-invariant lagrangian (C.14) and the

Poincare gauge-invariant lagrangian (C.15) cannot be distinguished in the near

future. So the important fields are ba and eµ, which are generated by the spin

density and mass density, respectively. This can be seen from the field

equations derived from (C.15). For example, the source of b^ in the

approximation of static and weak fields is
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b^ = ge'k1U(r)a,U(r) , µ=0,

=0, µ:0,

401

(C.16)

where U(r) and ai are respectively the positive-energy Pauli spinor and the

Pauli matrices. Of course, the result (C.16) can also be derived from the de Sitter

gauge-invariant lagrangian (C.14) with the approximation of very large L.

These gauge fields are interpreted as follows: Gravity is related to scale

gauge fields rather than the usual Yang-Mills gauge fields because the scale

gauge field is generated by the mass density, according to gauge-invariant

lagrangians . The massless Yang-Mills field bµ is generated by the spin density

of fermions and corresponds to a new long-range force between two bodies with

nonzero spin densities. The strength of this new force is determined by a new

dimensionless coupling constant g2, which is independent of the newtonian

gravitational constant G. These hold for both finite G. These hold for both finite

L (i.e. the de Sitter group) and infinite L (i.e. the Poincar(! group).

Our interpretation of gauge fields for external symmetry groups differs

from previous interpretations by Kibble and others [5-7] (see also refs. [2,8] ).

We may remark that a "contact spin force" between fermions has been discussed

by Kibble based on a non-gauge-invariant fermion lagrangian. Since the

external four-dimensional symmetry group is a fundamental symmetry of

nature, the prediction of the new long-range gravitational. spin force should be

taken seriously.

We conclude that gauge field theory based on external four-dimensional

symmetry groups dictates the presence of a new "scale gauge field", which

differs from the Yang-Mills "phase gauge field" [9]. Furthermore, the theory

predicts a new long-range gravitational spin force between fermions. It

appears that the quantization of these fields cannot be accomplished by a

straightforward application of the usual quantization procedure for Yang-Mills

fields. This needs further investigation.
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Appendix D.

The Relativity of Lifetime Dilatation and an Experimental
Test of "Twin Particles " Involving Linear Accelerations

Da. Three Relations of t' and t (At'-yAt, At'-At /y, At20-At10) for "Twin

Particles " Under Different Conditions of Measurements in
Special Relativity

Let us consider the relativity of the lifetime dilatation in special relativity
(or, equivalently , that of decay-length dilatation in taiji relativity) and
experimental tests of " twin particles" involving linear accelerations. The

discussion can also illustrate some interesting and puzzling aspects of problems

related to the so-called "clock paradox" or "twin paradox." 1,2. Some physicists3

insist that the effect of acceleration on the twin is very important and must be

taken into account, in sharp contrast to the conventional interpretation, which

will be discussed below. In view of different and incompatible views in the

literature, it is highly desirable that the matter can be resolved by a direct and

unambiguous experimental test with linear accelerators . This can be done in
the near future.

When one talks about the lifetime of unstable particles such as pions, it is

understood that one is talking about the mean lifetime which is measured by

observing the decays of many pions. The basic reason for this is that the decay

of a single unstable pion is dictated by quantum-mechanical laws of probability

and does not have a single fixed value of lifetime for all pions. Nevertheless, the

physical time should have the same property as the mean lifetime of unstable
particles.

In order to observe relativistic motions and effects , clocks and twins must

be accelerated to speeds comparable to that of light, but since they are

macroscopic objects, the task is difficult. However, it is useful to note that as far

as "twins" are concerned , no pair of human identical twins are more twin-like

than two identical unstable particles. At the present time, the decay lifetime

dilatation of unstable particles in flight has been experimentally established

beyond a reasonable doubt. Furthermore, if the acceleration is neglected in

numerical calculations, then the "twin-particle paradox" can be treated and

calculated completely within special relativity.

403
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Within the conceptual framework of special relativity, some people have

used the experimental results of the lifetime dilatation of unstable particles to

support the conventional interpretation of the twin paradox.4 This goes as

follows: The traveler twin's rocket lifts off and reaches a constant velocity V in

a negligibly short time. After traveling for a very long distance Lo as measured

by the stay-at-home twin on the earth, the rocket reverses its velocity, comes

back to the earth and stops. Reversal and stopping again occur in a negligibly

short time. The stay-at-home twin records an elapsed time To=2LoN. However,

the traveler twin will have recorded an elapsed time of 2To 1-V2/c2, and will be

younger than his stay-at-home twin.5 This result agrees with the experimental

evidence for the lifetime dilatation of particles decaying in flight .4

However, this argument is not completely satisfactory because the

relation for the lifetime dilatation involving constant linear velocity is

completely relative and is symmetric (or reciprocal) between the twins or any

two inertial frames. Thus, it cannot be used to conclude that the stay-at-home

twin is absolutely younger than his traveler twin within the framework of

special relativity.

To see the flaw in the preceding line of reasoning, let us consider the

"twin-particle paradox" in detail within the framework of special relativity.

Suppose an unstable pion ni is at rest in an inertial frame F and another pion n2

is at rest in a second inertial frame F' which moves relative to F with a constant

velocity V along the +x direction. Let us consider the pion xj. Its mean lifetime

is At10 as measured by observers in F and At" as measured by observers in F.

These two time intervals are related by

At1 =
At10

V _J-V2/c2
Ax=O, (D. 1)

because x, is at rest in F (i .e. Ax=O in the Lorentz transformations ( 5.7)) and At10

is the "proper lifetime ." Similarly, for the second pion 7[2, its lifetimes as

measured by observers in F and F ( i.e. Ate and At20) satisfy the relation

et -
At20

Ax'=0, (D.2)
2 1-V2/c2 '

because 92 is at rest in F' (i.e. Ax'=O). It should be stressed that the result (D.1) [or

(D.2)] is a relationship between the lifetime of a single pion as measured by two
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different observers and thus is not yet related to the experimental result, in

which a single observer compares the lifetimes of two different pions x, and x2,

one at rest and one in motion . For example, if F is the laboratory frame,

experiments show that

At -
At10

2 1-V2/c2.
(D.3)

i.e., the lifetime of 92 decaying in flight is longer than that of xl, which is at rest

in the laboratory frame F. It follows from relations (D.1)-(D.3) that

and

At10 = At;o , (D.4)

At; = Ate . (D.5)

Result (D.4) implies that the lifetime At10 of xl at rest in F as measured by

observers at rest in F is the same as the lifetime At '20 of 92 at rest in F' as

measured by observers at rest in P. The physical reason for the equality in

(D.4) is exactly the same as that for the equality of meter sticks in equation

(5.12). This is completely in harmony with the equivalence of the two inertial

frames F and F' in special relativity. The two time intervals, At10 and At'20, in

(D.4) are not related by the Lorentz transformations.

The results in (D.1 ), (D.2), (D.4) and (D.5) bring out the most puzzling

aspect of relativity theory.

Logically, (D.4) is directly implied by the first principle of relativity. One

should say that the relation (D.4) together with the relation (D.2) derived from

the Lorentz transformations, leads to the experimental prediction (D.3). Now

suppose the decay process, the clock ticking, and the aging process are the

same . Then it could be argued that the result (D.4) suggests that the aging of the

twin brothers in F(earth ) and F' (rocket ship ) are the same , when they are

brought back together both have the same age, provided that the time intervals

of accelerations are negligible and the ages are measured according to the

conditions related in (D.4). For example, the twins may express their ages in

terms of the mean lifetime of the particles decaying at rest relative to them.

This appears to be the qualitative argument of Dingle.6 It must be stressed that

the equality in the relation (D.4), i.e ., the twins have the "same age, " cannot be
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observed by a single observer, until they are brought back together with

negligible effects due to acceleration.

Clearly, the results (D.1) and (D.2) are just another way of saying that two

observers in different frames comparing two time intervals will arrive at

different conclusions depending on how the intervals are measured . This is one

of the most basic traits of relativity theory. One cannot use the lifetime

dilatation experiment , which gives a relationship between measurements made

by a single observer, to rule out result (D.4) because it refers to measurements

made by two different observers. Similarly, to design an experiment to rule out

(D.4) and confirm (D.2) (or vice versa) is impossible. If one reflects for a

moment, one can see that both (D.2) and (D.4) are correct for different

conditions of measurement within the conceptual framework of special

relativity. This is the so-called "paradox"-the heart of the problem which is the

source of a long controversy.6 So far, all experiments support the first postulate

of relativity that two inertial frames F and F' are equivalent and symmetrical as

long as their relative velocity is constant. However, in the final analysis, it can

be asserted unequivocally that, logically, there is absolutely no paradox in

relativity theory.

As a result of this analysis, it appears reasonable to conclude that (i) the

relativity (or the reciprocal relation of the two particles' lifetimes) can only be

broken by taking into account the acceleration7 of one of the particles and (ii)

the numerical difference between the two lifetimes must be determined by

taking the effects of linear accelerations into account. All physicists appear to

agree with the conclusion (i), but not (ii).8 Thus, a direct experimental test of

these different views is warranted.

Db. A Direct Experiment on the interpretations of the "Twin

Paradox" by Using Twin Particles

Since special relativity has been tested by hundreds of experiments, one

might think that there is no point in doing one more experiment to test it.

However , this experiment involving constant -linear-acceleration is necessary.

The reason is that it really does not test special relativity. Rather, it tests

various interpretations of the "twin paradox." Furthermore, it tests the

transformations for linearly accelerated frames and gives clues to the

understanding of physics in non-inertial frames, as discussed in chapter 23.
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An idealized experimental setup for testing the "paradox" of the twins by
using identical particles is as follows:

pions V

stop and decay

+a -V

Fig. D. 1 An idealized experimental arrangement to
illustrate the test of the "twin paradox"

To be specific for comparisons, let us first consider an idealized trip (as
shown in Fig. D. 1 ). We have two twin brothers , Tl and T2, who were born at the

same time in the earth laboratory and have the same life expectancy. (The
following discussions hold also for two identical clocks with the same 'life
expectancy.') Let us omit the initial acceleration and suppose Tl (travelling
twin ) moves with a constant velocity V over a very long distance L. He then

turns 180° and travels with the same speed V over the same distance. Then twin
Tl decelerates and stops within a certain time interval . There are two ways to

check whether he is absolutely younger. One is to measure his age when he

returns and one is to measure his remaining lifetime, and to compare with his
stay-at-home brother Ts.

Now suppose one replaces the two twin brothers by two "identical groups"

of identical pions in an inertial laboratory . One has the following clear

analogous experimental situation:

A bunch of identical pions are created in a high-energy laboratory. They

are separated into two groups , denoted by G(al) and G(az), and both groups move

with a constant velocity V. The first group G( al) (representing the travelling

twin ) moves with a constant velocity V over a suitable distance 1.0, as measured

from the earth laboratory frame F. Then it undergoes an acceleration which

reverses its velocity , so that it returns with a constant velocity V' = -V. After it

travels a distance 4r it is decelerated (by a field) within a certain time to zero
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velocity. When the group G(al) stops, one counts the number of pions left in the

group and deduces the mean lifetime T(al).

On the other hand, the second group G(a2) is allowed to move with the

constant velocity without any acceleration or deceleration. One can measure its

mean lifetime decaying in flight with the velocity V. As discussed in section

llb, after the effect due to motion is taken into account, the result can lead to

the "rest lifetime" 'CO(X2) which is the same as the lifetime of the pions produced

at rest in the laboratory. Therefore, T°(a2) corresponds to the lifetime of the

stay-at-home twin because these pions in the second group G(a2) are neither

accelerated nor decelerated. With the help of To(n2), one can calculate the

number of pions left in the G(a2), if it is produced at rest, at the time when the

group G(al) stops.

Note that, in this experiment, one compares the lifetimes of both groups,

G(al) and G(a2), when they are at rest in the earth laboratory, after the traveler

group of pions has returned. This measurement is free from the reciprocal

relations of the lifetime dilatation when they have constant relative motion.

One can perform experiments with different distance I. and/or the

acceleration. The result can test the conventional relation

T(ai) - To(a2) = V (1- 1 V2/c2) > 0 . (D.6)

provided twin's lifetime (or clocks' time) and particles' mean lifetime have the

same physical property-9

In order to test the "twin paradox", one should choose particles with

suitable lifetimes, vary the distance to of the particle moving with a constant

velocity and to should be sufficiently large, so that the difference in (D.6) can

be detected. In view of these considerations, the muon with a longer lifetime (ct

6.6x104 cm) is more suitable than the pion (cT - 780 cm) for such an

experiment.

Actually, it is not necessary for the angle between V and V' to be 180°.

All that is needed is for the traveler group to have the experience of

acceleration. This property could simplify the experiment. A much more

simplified version of the "twin paradox" experiment is to do just half of the

round-trip as follows:
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pions V -a

stop and
decay

Fig. D.2 An idealized half-trip test of the
"twin paradox" by using twin particles

The traveler twin can be represented the pions in Fig. D.2 because they

travel a certain distance Lo and are decelerated by a field to stop and decay. In

this case their age difference will be just half of that in (D.6):

't(ni) -'CO(n2) = V (1 - NT-I > 0 . (D.7)

This is the simplest experiment to test the "twin paradox." 10

The effect on lifetime due to the acceleration "a" of charged particles in a

potential field should be investigated. The experimental results can also test

another two views:

"Naive view": T(al) - To(a2) = 0, (D.8)

"Noninertial view": T(111) -'CO(92) = f(Lo,V,a). (D.9)

The function f(1o,V,a) can be calculated if one has accelerated transformations,

as discussed in chapter 23.

It must be stressed that this type of experiment tests only various

interpretations of the theory of special relativity regarding the "twin paradox"

or the "clock paradox," but not the theory itself. In other words, even if, say,

(D.9) is confirmed by future experiments, this does not invalidate Einstein's

theory of special relativity because it involves assumptions related to

accelerations of reference frames.
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