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Preface

Although there have been suggestions that mathematics is becoming
more ‘experimental,” and the notion of proof less salient, this
has provoked vigorous denials from the mathematical community
which continues to maintain that proof is one of the key concepts
which characterise the discipline. It is surprising therefore, that the
fundamentals of mathematical proof have rarely been taught in a
systematic way. Most students of mathematics are expected to develop
their understanding of proof and the associated theorem-proving
skills by a process of ‘osmosis’ through encounters with the various
techniques and methods. The result is that students frequently have
an inadequate appreciation of the underlying structure of proofs and
a consequent inability to distinguish a correct proof from a flawed
one. It is therefore no wonder that they have considerable difficulty
in constructing their own proofs, often not knowing how to start a
suitable line of reasoning.

Because it has not been the custom to teach the principles of mathe-
‘matical proof systematically, there are few, if any, books on ‘structured
theorem proving’. As a consequence some authors of textbooks in
abstract algebra and analysis, for example, have found it necessary to
include appendices outlining some of the principal methods of proof.
Naturally, such summaries tend to concentrate on describing proof
techniques without looking too deeply at their underlying structure.
On the other hand, the notion of ‘formal proof’ is covered well in many
books on mathematical logic, but the proofs that mathematicians write
are not formal proofs in this sense.

It is our intention in this book to explore the principles which underpin
the various methods of mathematical proof and to describe how
proofs may be discovered and communicated. We aim to examine the
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structural features common to all mathematical proofs as well as those
which are specific to particular techniques. We also consider some of the
less tangible skills associated with the discovery and communication
of proofs. These aspects are, of course, explored at greater depth in
Polya’s much admired book (Polya, 1957).

Whilst our primary aim has been to write a book for students of math-
ematics, we hope this text will also be useful to others interested in
unravelling and understanding the nature of mathematical proof—for
instance, teachers of mathematics or students of philosophy. The math-
ematical background we assume is little more than would be provided
by a GCSE course in the UK or a high-school algebra course in the
USA, although some degree of mathematical sophistication beyond this
is necessary. We have included, in examples and exercises, some proofs
drawn from more advanced mathematics but these can be omitted
without jeopardising the comprehensibility of the text.

University mathematics departments are becoming increasingly
concerned about their students’ inability to understand and write
mathematical proofs so that a number of institutions are introducing
courses in which proof is taught systematically. We hope that this
text will prove useful to those designing, teaching and studying such
courses. Of course, not everyone will agree with our approach to proof
and how (indeed, whether) it should be taught. However, we do believe
there is a need to address the question of ‘proof education’” more
directly than has hitherto been the case and we hope this book will
make some contribution.

Our sincere thanks are due to those colleagues who commented on
various parts of the manuscript, to Clifford Mould and Elizabeth Taylor
for their continued support, to Alice Tomic for her hospitality following
many ‘authors’ meetings’ and to Pam Taylor for, once again, providing
excellent cartoons on a less than promising subject at short notice.

RG and JT
Mepa Opsivng
August 1995



1 Proofs, Mathematical and
Non-mathematical

1.1 Introduction

This book is unusual so far as mathematics textbooks are concerned in
that its primary purpose is not to teach any specific body of mathe-
matics. Instead, the text considers mathematics itself in an attempt to
understand its modus operandi. In particular, we shall explore the notion
of rigorous proof which is unique to mathematics and logic. (It could be
argued that rigorous proofs are also employed in software engineering
where so-called ‘safety critical’ programs need to be proved correct.
For the purposes of this book, these aspects of software engineering
are regarded as being part of mathematics itself.)

The mathematician’s concept of proof is rather different from, say,
the lawyer’s. In criminal law, the prosecution seeks to prove ‘beyond
reasonable doubt’ that the accused is guilty of the alleged offence. Since
the courts deal with people and events in the real world, the criterion of
‘proof beyond reasonable doubt’ is the most rigorous practical require-
ment. Rarely, if ever, can guilt be established beyond all doubt. By
contrast, the mathematical notion of proof is (in principle) far more
rigorous. We do not speak, for example, of Pythagoras’ theorem being
true ‘beyond reasonable doubt.” This is not to say that mathematical
proofs are completely reliable; they are not. In practice, proofs do not
always conform to the ideal standard because they are constructed by
fallible human beings. However, in principle, there can be no room for
doubt in a formal mathematical proof.

Our purpose in this book is two-fold. One aim is to explain what mathe-
matical proofs are so that they may be better understood. Since proofs
are written by human beings (or in a very few limited situations by
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computer programs which are themselves written by human beings)
there are many different styles and approaches adopted. Proofs are
written for a variety of different audiences in various cultures and in
many languages. We shall attempt to delve beneath surface features
such as style and language to examine the underlying logical struc-
tures of proofs. This aspect of the book could be summarised as “proofs
dissected, examined and their structure revealed’.

Proofs dissected, examined and their structure revealed

Our second goal is more difficult to achieve. Put simply, it is to show
how to construct proofs. On one level, such a goal is unattainable.
There is no magic formula which, if learned, will enable us to construct
a proof of any result we care to choose. However, we can provide
hints and guidance which we hope will be useful. Traditionally, there
has been little systematic attempt to teach ‘theorem-proving’. Instead,
it is expected that proof techniques will be absorbed simply through
repeated exposure to examples of proofs. We hope this text will go
some way to redressing the balance.

1.2 Inductive and Deductive Reasoning

Most readers would, no doubt, be able to give an informal and
reasonably accurate description of what is, say, physics or psychology,
astronomy or anthropology. The educated person’s definition of any of
these disciplines is likely to be fairly close to the accepted definition
of the experts in the field. But, what of mathematics? What 1is
mathematics? And what is it that professional mathematicians do when



Inductive and Deductive Reasoning 3

they are engaged in their discipline? Perhaps a reasonable brief job
description of the (pure) mathematician is someone who proves things
about abstract objects such as numbers or geometrical configurations,
their interrelations and their generalisations.

We can safely assume that our readers will know that in mathematics
we prove things. It is really the notion of rigorous proof which
distinguishes mathematics from other fields of study. In most academic
disciplines, theories are proposed and explored, evidence for and
against is accumulated, differing opinions are expressed and so on.
It is true that certain facts are established: Christopher Columbus
discovered the New World in 1492, the metal copper will conduct
an electric current, the majority of the Earth’s surface is covered in
water, etc. But such facts are discovered by observation and collation
of data and not because they have been proved in the sense that
mathematicians use the word.

In science, theories are judged on the basis of how well they explain
and predict observable phenomena; in other words, by how well they
‘fit’" experimental data. The scientist draws on a mass of observations
to make inferences which become the building blocks for new theories
which are tested and then modified in the light of further experimental
data. The method of reasoning which makes inferences and draws
conclusions from observations is known as inductive reasoning.

There are limits to the power of inductive reasoning, however. It
is sometimes said that scientific theories are not provable, they are
only falsifiable. At best, experimental observations can be consistent
with a particular theory and give the scientist greater confidence in it.
However, no amount of experimental data can prove that a theory is
correct, because there is always the possibility that another experiment
will turn out to be inconsistent with the theory and hence show it to be
false. (We are assuming here that experiments accord with the rigorous
standards of scientific practice. One important criterion, for example,
is that experimental results should be essentially repeatable. A single
experiment could produce freak results and a successful theory would
not be modified on the basis of a single unrepeatable experiment.) In
short, data which agree with theoretical predictions increase confidence
in the theory whereas data which disagree with theoretical predictions
destroy the theory.

It is not only scientists who employ inductive reasoning—it is prob-
ably the basis of most human belief and knowledge. To illustrate the



Proofs, Mathematical and Non-mathematical

point, we would all presumably accept as a fact that the Sun will rise
tomorrow morning. (We ignore the problem that we may not be able
to see the Sun rise due to climatic conditions. Equally we ignore possi-
bilities such as being situated north of the arctic circle in mid-winter.)
Our belief in this "fact’ is based on inductive reasoning: we and our
forebears have observed the Sun to rise on many thousands of morn-
ings. Indeed, we have never known the Sun not to rise! In this way, we
have established ‘beyond all reasonable doubt’ that the Sun will rise
tomorrow morning.

In mathematics, on the other hand, conclusions based solely on obser-
vation are not sanctioned. Thus inductive reasoning is not acceptable
in a mathematical proof. For instance, we may observe that when-
ever we square an odd positive integer (whole number) the result is
always another odd positive integer. (For example, 32=9, 192 = 361,
321% = 103041, etc.) But, no matter how many times we perform the
‘experiment’ and obtain the expected outcome, this will not consti-
tute a mathematical proof that the square of an odd positive integer is
also an odd positive integer. The reasoning acceptable in a mathemat-
ical proof is of a different kind altogether. It is deductive reasoning,
whereby a conclusion is reached by logical inference from a collection
of assumptions.

Using correct deductive reasoning, we can be confident that a conclu-
sion does indeed follow from the assumptions in force at the time.
One can immediately appreciate the appeal of deductive reasoning
when compared to inductive reasoning. It appears to offer us certainty.
However, two words of caution are in order. The first is that any conclu-
sion obtained deductively can only be as ‘sound’ as the premises on
which it is based. Deductive reasoning allows us to pass with confi-
dence from assumptions to conclusions but any such conclusion will
be useless if it is based on incorrect assumptions. If the assumptions
are false then we cannot guarantee the truth of any conclusion deduced
from them. It is said that a chain is only as strong as its weakest link.
Similarly, a conclusion obtained by deduction is only as ‘strong’ as the
assumptions upon which it is based.

There is a more theoretical reason why we must temper any enthusiasm
for deductive arguments, though. In the 1930s, the Austrian logician
Kurt Godel showed that there are certain limitations to the power and
scope of deductive reasoning. Godel’s results, known as his incom-
pleteness theorems, are amongst the most profound of the twentieth
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century. In one of the theorems, Godel showed that there must always
be true results about the arithmetic of the positive integers which we
will never be able to prove using strict deductive reasoning. In other
words, even if deductive arguments offer some form of certainty, that
certainty can never extend to include all true facts about a system as
familiar to us as the positive integers.

Despite these limitations to the power of deduction, it is the basis of
the vast, powerful and applicable body of human knowledge known
as mathematics. It is our purpose in this book to explore the inner
workings of this discipline which is, regrettably, poorly understood by
that mythical being, the person in the street.

1.3 A Proof or Not a Proof?

In much of the remainder of the book we shall be illustrating various
techniques of proof using fairly short, elementary proofs. Naturally,
in ‘real’ mathematics, not all proofs are like this. In this section, we
shall examine briefly three well-known theorems whose proofs are
neither short nor elementary. Each of the theorems, or more accurately
their proofs, will tell us something about the nature of mathematical
proof. In many areas of human endeavour, actual practice does not
always conform to some theoretical ideal. So, too, it is in mathematics.
Although none of our three examples could be regarded as a typical
mathematical proof, the lessons we can learn from them are relevant.
They serve to keep in perspective the main thrust of this book which
is to explore the theoretical framework of proof. The choice of the
three theorems to consider is a personal one—there are many we could
have examined. Each theorem is either well-known, has an interesting
history or is remarkable in its own right. Each proof is particularly
demanding in some aspect; each is a remarkable achievement worthy
of examination.

Fermat’s last theorem

Pierre de Fermat (1601-1665) was a French jurist and amateur mathe-
matician who made many significant contributions to number theory.
The statement which was to become known as ‘Fermat’s last theorem’
originates from a note Fermat made in the margin of his copy of the
works of the ancient Greek mathematician Diophantus. Having stated
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the ‘theorem’ Fermat wrote, ‘I have discovered a truly remarkable proof
which this margin is too small to contain’. It would appear that Fermat
did not write down his ‘remarkable proof’ elsewhere either, as he never
communicated a proof to anyone, nor was a proof found amongst his
papers. In fact, Fermat rarely wrote down proofs of his discoveries
although virtually every one has subsequently been proved by others.

Fermat'’s last theorem can be understood by anyone who has studied
a little elementary algebra. We all know Pythagoras’ theorem. Symbol-
ically, it states that the sides x, y and hypotenuse z of a right-angled
triangle satisfy the equation x? + y? = z2. Furthermore, there are known
to be many solutions (infinitely many, in fact) of this equation where x,
y and z are integers. (Examples of solutions include (x,y,z) = (3,4,5),
(5,12,13), (517,1044, 1165).) Fermat's last theorem states that, for n > 2,
the corresponding equation x" + y" = z" has no solutions where x, y
and z are integers.

It is not surprising that such an easy-to-state theorem about familiar
objects, the integers, has attracted the attention of many mathemati-
cians, both professional and amateur. And yet, for some 350 years the
theorem defied all attempts at a proof (and all attempts at a disproof,
too). It earned the status of the most famous unsolved problem in math-
ematics. Lack of success in finding a proof or disproof was not for the
want of trying, though. Many thousands of person-hours have been
devoted to the problem since Fermat’s original marginal note.

In the nineteenth century, the Académie de Sciences de Paris twice
offered a prize for a solution to the problem. Later, in 1908, under
the terms of the will of Dr. Paul Wolfskehl, a prize of 100000 Marks
was offered for a proof of the theorem. The prize was to be conferred
by the Konigliche Gellschaft der Wissenschaften in Gottingen on or
before September 13, 2007. In the early years of the Wolfskehl Prize
several hundred attempts were received each year. In recent years, this
has dwindled to a few dozen. Over the years inflation and financial
charges have taken their toll on the value of the prize too; it is now
worth a little over DM 10000, a fraction of its original value. Of course,
the importance of Fermat'’s last theorem is not to be measured in mone-
tary terms.

In purely mathematical terms, too, the theorem itself is not of great
importance, although a great deal of significant mathematics has been
developed in the search for a proof. The importance of the theorem
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lies in its fame, the fact that it turned out to be inordinately difficult to
prove and, most importantly, in the mathematical spin-offs resulting
from attempts to prove the theorem.

By the 1980s much had been achieved, although a proof was still not
in sight. For example, it was known that the theorem was true for all
values of the index n less than 125000. Furthermore, if the equation
x" +y" = z" did have a solution (x,y,z) for some value of n, then the
number x would have to be at least 10'8900% 3 truly unimaginably
huge number which would take several hundred pages just to write
down in the usual decimal notation. In 1983 a German mathematician
Gerd Faltings proved that the equation had at most a finite number of
solutions where x, y and z have no common factors!. Faltings’ theorem
was the first major step towards a proof for several decades although it
was still far from a proof—proving that there are only a finite number
of solutions is a long way from showing that there are none.

Given the long history of unsuccessful attempts it was with much
delight and surprise (and not a little scepticism) that the mathematical
community received the news in June 1993 that a British mathematician,
Andrew Wiles, had finally succeeded in proving Fermat's theorem.
(Actually, Wiles had proved a highly technical theorem, known as the
Shimura-Taniyama-Weil conjecture; however Fermat’s last theorem
had previously been shown to follow from this result.) The ideas used
in the proof are very deep and complicated—a far cry, indeed, from
the simplicity of the last theorem itself. Until Wiles’ arguments have
been thoroughly examined and understood, there remains the possi-
bility that there is a flaw somewhere in his reasoning. However, the
experts agree that any flaw is likely to be minor and relatively easily
corrected. It appears, then, that mathematics’ most famous unsolved
problem has become one of its most celebrated solved problems. (In
fact, a few months after announcement of the proof a flaw was discov-
ered. However, in October 1994, Wiles and a colleague, Richard Taylor,
issued a manuscript which appears to have repaired the gap in the orig-
inal proof. At the time of writing—summer 1995—it is believed that the
proof is now complete.)

What are the major lessons we can learn from the history of Fermat’s
last theorem? An obvious lesson is that theorems which are simple to

! Faltings actually proved a result known as the Mordell conjecture, which implies the stated result. For
his work in this area, Faltings was awarded the Fields Medal in 1986. The Fields Medal is mathematics’
highest prize, equivalent in status to, if not so well known as, the Nobel prizes.
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state may not be simple to prove. Fermat's last theorem is probably the
supreme example—a little algebra is all that is needed to understand the
statement of the theorem, but it defeated mathematicians for three and
a half centuries. Another important ‘'moral’ is that failure to produce
a proof does not necessarily mean outright failure. It is undoubtedly
the case that the cause of number theory has been very well-served by
Fermat's last theorem. Much interesting and useful mathematics has
resulted from some of the unsuccessful attempts to prove the theorem.

In less mathematical terms, it is clear that the fame of a theorem is not
related to its importance. Naturally, it is difficult to define precisely
what makes a particular theorem important. Among the criteria are
its applicability within and outside mathematics, whether it provides
new insights, to what extent it paves the way for further work, and so
on. Most mathematicians would agree that there are more important
unsolved problems (the Riemann hypothesis, for instance) which are
completely unknown outside the mathematical community. Fermat’s
last theorem captured the imagination of generations primarily for non-
mathematical, even romantic, reasons. Important among these was, of
course, the possibility that an amateur mathematician would beat the
experts in the race to discover a proof.

The four-colour theorem

Like Fermat’s last theorem, the four-colour theorem is simple to
state and, as it transpired, extraordinarily difficult to prove. Also like
Fermat’s theorem (or will it now be the Fermat-Wiles theorem?), it
became very well-known and defied proof for a considerable period of
time. In contrast to Fermat'’s last theorem, the proof, when it eventually
appeared in 1976, was not greeted with universal acclaim and delight
in the mathematical community. Indeed, the proof sparked a vigorous
debate amongst mathematicians about the very nature of proof itself.

Consider a map of countries drawn on the plane or the surface of a
sphere. Is it always possible to colour the map in such a way that two
countries which share a common border are coloured differently and
to do so using only four colours? The four-colour theorem says that it
is always possible.

The question of whether four colours are always sufficient to colour
a map in this way originated with a young mathematician, Francis
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Guthrie, in 1852. Via Guthrie’s brother, the problem was drawn to the
attention of Augustus De Morgan, then Professor of Mathematics at
the University of London. Unable to prove the theorem, De Morgan
passed the problem on to fellow mathematicians, but it did not gain
widespread attention until 1878 when Arthur Cayley asked for a proof
at a meeting of the London Mathematical Society. Within a year, a
barrister called Alfred Kempe had published a ‘proof’ which was to
be accepted for eleven years. In 1890, Percy Heawood pointed out a
fatal flaw in Kempe’s "proof’. Heawood was able to salvage enough of
Kempe’s argument to prove that five colours would always be enough
to colour a map in the appropriate manner. Indeed, Heawood gener-
alised the problem and considered maps drawn on other surfaces with
‘handles’ and ‘twists’—see Figure 1.1. Heawood conjectured a formula
for the number of colours which are sufficient to colour a map on
any such surface (excluding the sphere and plane). Subsequently it
was shown that Heawood’s formula does indeed give the minimum
number of colours required for all these more complicated surfaces
except one, the so-called Klein bottle.

Although Kempe’s argument turned out to be flawed, the ideas
contained in his unsuccessful attempt were to be the basis of the
subsequent work on the problem, including the final proof itself.
Despite much work on the problem in the first half of the twentieth
century, there was little real progress; until 1976 that is, when Kenneth
Appel and Wolfgang Haken, working at the University of Illinois,
announced that they had proved the theorem.

Appel and Haken’s proof, though, is very unusual in that it used
some 1200 hours of computer time to examine thousands of possible
configurations of countries. It must be emphasised that they were not
using inductive reasoning. Their argument was definitely not along

Sphere with handle Mébius band Klein bottle

Figure 1.1
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the following lines: we have examined thousands of possible maps and have
found that all are four-colourable, therefore four colours must surely always
be sufficient. As we have mentioned, such reasoning is not acceptable
in a mathematical proof. (Their proof was deductive, but based on
a method confusingly called ‘proof by mathematical induction’—see
Chapter 9.) Nevertheless, the quantity of direct computation required
by their method was such that the use of a large amount of computer
time was essential. Thus the correctness of their proof could not be
checked by ‘hand calculation” alone.

This was the first example of a proof which used the computer in
an ¢ssential way and it generated considerable debate amongst math-
ematicians about its acceptability. The mathematical community had
been used to proofs which could be verified by direct examination of
the arguments. Some simply refused to accept that Appel and Haken’s
work did amount to a proof of the four-colour theorem. It is true that
software used in the proof, though complicated, could be checked by
others—but what of the occasional hardware errors to which every
machine is prone? Could not one such error render the proof useless?
In defence of the proof, it was argued that the possibility of error exists
in any long and complicated proof and that the likelihood of computer
error was considerably less than that of human error. Since its first
appearance, Appel and Haken’s proof has come under considerable
scrutiny and as a result it is now generally accepted.

There are a number of lessons to be learnt from the history and even-
tual proof of the four-colour theorem. Again we see a situation where
an incorrect ‘proof” was not worthless. Although Kempe’'s attempt was
unsuccessful, the underlying ideas were useful. They were the starting
point for much subsequent work as they were extensively modified
and extended over the years. Some of the important strands of the
final proof can trace their ancestors back to Kempe’s original incorrect
‘proof’. Of course, Kempe’s attempt was widely accepted for a number
of years. Such a situation is not uncommon—the level of complexity
of many proofs is such that errors may lie undetected for a consider-
able time.

It may be that the four-colour theorem is the first of many examples
of theorems whose proof will involve computers in an essential way.
Certainly Appel and Haken believed this to be the case although to date
there have been no further examples of major theorems of this type.
However, as hardware becomes increasingly powerful and software
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increasingly sophisticated, few would say with confidence that the four-
colour theorem is a unique example of this kind of theorem.

The classification of finite simple groups

Classification theorems must rank amongst the most satisfying of all
mathematical theorems. Given any class of mathematical objects, an
obvious question is: what examples are there? A classification theorem
answers this question in the most complete possible way. It provides
a list (often infinite) of all the examples of the particular mathemat-
ical object. In a sense, a classification theorem says two things—these
(the objects in the list) are all examples of the particular class of object
and there are no others. It is not only in mathematics where classifica-
tion ‘theorems’ are important. For instance, when physicists discover
that matter is composed of fundamental particles, they want to know
precisely what such particles there are. Exactly which particles are
regarded as fundamental has changed over time—in the early part of
this century, atoms were regarded a fundamental whereas now quarks
and leptons are given this status.

Unfortunately, in mathematics classification theorems are all too rare.
Our aim now is to consider some features of a particularly remarkable
classification theorem, that for the class of objects called finite simple

groups.

Unlike the two previous theorems, we cannot give a precise statement
of the classification theorem of finite simple groups. However, we can
give an idea of what the theorem is saying. A ‘group’ is a particular
kind of algebraic structure—it comprises a set with a binary operation
(like addition, multiplication or composition of functions) satisfying
three or four simple properties. (A definition is given in the appendix.)
It turns out that some groups can be ‘broken down’ or ‘factored’ into
simpler pieces; on the other hand, there are various ways of combining
two or more groups to form new groups. A loose analogy is often
used here: some integers (greater than 1) can be factored into the
product of smaller ones; similarly, multiplying two or more such inte-
gers together produces a larger integer. Molecular physics provides a
non-mathematical analogy. Molecules can be split into atoms of various
kinds and atoms can combine together to form complex molecules.

In the number theory analogy, those numbers which cannot be factored
are, of course, the prime numbers. Similarly, in molecular physics it is
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the atoms which cannot be split into smaller entities of a similar nature.
There is an analogous concept in group theory. A simple group is
one which cannot be ‘factored” into the ‘product’ of two groups. Note
that the word “simple’ here has a technical meaning. It most definitely
does not mean that such groups have a simple structure, as we shall
see. The finite simple groups are the basic building blocks for all finite
groups in the same way that prime numbers are the building blocks
for all positive integers and atoms are the basic building blocks for
molecules.

To classify finite simple groups, we need to know exactly what exam-
ples there are. What, then, is the complete list of finite simple groups?
Firstly, we can identify various ‘families’ of simple groups, each family
containing groups of the same kind but with different numbers of
elements. In fact there are 18 such families, each containing an infinite
number of different groups. Then, curiously, there are 26 finite simple
groups which do not fit into any of the families. These ‘outsiders’
are called the sporadic groups. They range considerably in size from
the smallest which has 7290 elements to the largest which has about
8 x 10 elements, more elements than there are atoms in the Earth!
(This latter group, which is known to group theorists as ‘the monster’
or ‘the friendly giant’ can be represented as a certain group of matrices
of dimension 196 883 x 196 883!) That is the complete list: 18 infinite
families and 26 sporadic groups.

Already, we can appreciate something of the scale of the theorem,
but the proof is even more remarkable. When the proof was finally
completed in 1981, it was estimated to run to between 10 000 and 15000
pages spread over many articles published in mathematical journals
during the previous four decades or so. Many mathematicians had
contributed to the proof and (we need hardly add) no one person had
read the whole proof. In contrast to the four-colour theorem, though,
computers were used very little in the overall proof.

What does the existence of such a monumental proof tell us about the
nature of proof itself? The most startling point to realise is that when
the proof was finally completed, it was almost certainly wrong! With
such a large and complicated proof, the chance that it was error-free
was very small indeed. To quote Michael Aschbacher (1981), one of the
major contributors to the proof, writing at the time:

The probability of an error in the Classification Theorem is virtu-
ally 1. On the other hand the probability that any single error cannot
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easily be corrected is virtually zero, and as the proof is finite, the
probability that the theorem is incorrect is close to zero. As time
passes and we have an opportunity to assimilate the proof, that
confidence level can only increase.

Aschbacher’s comments seem to run counter to the view of
mathematics as a precise, deductive science. It appears odd, to say the
least, for a highly regarded professional mathematician to be writing
about the probability that a theorem is correct and our confidence level
in its correctness. Where is the certainty of deductive reasoning? In
reality, Aschbacher is only stating the obvious. Mathematics is a human
endeavour and human beings make mistakes; therefore a very large
mathematical enterprise is almost certain to contain errors. In other
words, real mathematics like the classification theorem for finite simple
groups, remarkable though it certainly is, does not always live up to
the austere standards of the ideal.

Human beings make mistakes

The monumental nature of the proof is also testimony to the persever-
ance, dedication and collaborative spirit of those involved. Without the
collaboration of many mathematicians in several countries the venture
would not yet have been brought to a successful conclusion. There are
no immediate applications of the theorem which will benefit mankind—
this was a search for knowledge for its own sake. Whether or not one
regards that as a noble aspiration, it is impossible not to admire the
achievement itself.

There is one further lesson we can learn from our discussion of these
three famous theorems. In practice mathematical proofs do not always
conform to the ideal of a completely rigorous, logical argument. Perhaps
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a better description of most mathematical proofs is that of a plau-
sible argument sufficient to convince the mathematical community of
the truth of the particular theorem. Whether we regard a mathemat-
ical proof as completely rigorous or ‘merely’ an argument of sufficient
power and persuasiveness to convince the experts, there are standard
techniques and methods which are employed. It is the purpose of the
remaining chapters to explore and understand these methods.



2 Propositional Logic

2.1 Propositions and Truth Values

We shall consider the detailed structure of a mathematical proof later
but, very broadly speaking, constructing a proof consists of showing
that, given the truth of certain statements, the truth of the theorem to
be proved inevitably follows. Normally such a proof takes the form
of a sequence of statements whose truth is guaranteed either by the
truth of earlier statements in the sequence or because they follow from
other statements whose truth is assumed. For example, if we accept
that ‘“Today is Tuesday and it is raining’ is a true statement then we
could not dispute the truth of the statement ‘It is raining’. ‘It is raining’
follows from (or is implied by) ‘Today is Tuesday and it is raining’.

In claiming that the truth of one statement is guaranteed by the truth of
others we shall need to supply some justification. The only justification
which is acceptable in a mathematical proof is one which is sanctioned
by the laws of logic. It is these laws which govern what can be deduced
from what and as such they provide us with a means of distinguishing
a proof which is valid from one which has some fault in the sequence of
steps which purports to establish the inevitable truth of the ‘theorem’.

The statements which appear in a mathematical proof are ones which
can (under appropriate circumstances) be declared true or false. We
refer to such statements as propositions and we denote particular
propositions using upper case letters, e.g. P,Q,R,.... We use lower
case letters (e.g. p,q,7,...) to denote propositional variables, i.e. vari-
ables for which any proposition may be substituted. The following are
examples of propositions:

(@) P: Two is an even number.
(b) Q: I have three brothers.
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) R 4>7
(d) S: -1 does not exist.

The truth (T) or falsity (F) of a proposition is termed its truth value.
For our purposes a proposition which is not true will be regarded as
false and one which is not false will be viewed as true. It is important
to note that the truth value of a proposition may depend on the context
in which it is stated. Of the propositions listed above P is true and R
is false. However, Q is true only if uttered by someone who has three
brothers and is false otherwise. Proposition S is true if we have agreed
to restrict our discussion to the real numbers. However, if we make the
statement within the context of the complex numbers, then it is a false
proposition.

Sentences which cannot be viewed as true or false are not propositions.
These include questions, demands, exhortations and exclamations.
Hence the following are not propositions.

(e) Show your working clearly.
(f) Has a trapezium got four sides?
(g) Vote for Mickey Mouse!

It is clear that, for any proposition, adding the prefix ‘It is not the case
that ...” or inserting ‘not’ appropriately results in another proposition
with the reverse truth value. For example, if the proposition ‘I have
three brothers’ is true then the proposition ‘It is not the case that I
have three brothers” or ‘I do not have three brothers’ is false and vice
versa. If we reverse the truth value of any proposition P in this way, the
resulting proposition, denoted by P (or ~P or —P) is called the negation
of P. There are a variety of different ways of stating the negation of
a proposition but what is important about P is that it is true in all
circumstances that P is false and false whenever P is true. We can
summarise this in a table where we show, for each of the possible
truth values of the propositional variable p, the corresponding truth
value of p, the negation of p.

p
T
F

—= T

A table which summarises truth values in this way is called a truth
table.
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Truth table

2.2 Logical Connectives

Each of the propositions P, Q, R and S defined above makes a single
statement about an object or individual. Such propositions are called
simple propositions. The proposition ‘Today is Tuesday and it is
raining’ is not a simple proposition since it makes two statements, one
concerning the day of the week and the other about the state of the
weather. However, it can be viewed as being composed of the two
simple propositions ‘Today is Tuesday’ and ‘It is raining’ conjoined
using the word ‘and’. The truth value of ‘Today is Tuesday and it is
raining’ is dependent upon the truth values of these two component
simple propositions. It is true if both components are true and false
otherwise. We summarise this in the table below where we now use Q
and R denote ‘Today is Tuesday’ and ‘It is raining’ respectively.

O | R | QandR
T | T T
T | F F
F | T F
F | F F

The right hand column of the table gives the truth value of the
proposition ‘Q and R’ for each possible pair of truth values of the
individual propositions Q and R. For instance, the last line indicates
that, if Q and R are both false, then the proposition ‘Q and R’ is
also false.
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Propositions which are formed by joining two or more simple proposi-
tions are called compound propositions. The items which are used to
join the simple components are called logical connectives. The truth
value of a compound proposition is determined by two factors: the
truth value of each of its component simple propositions and how
particular logical connectives are used to link them. There are five
connectives which are important: conjunction, inclusive disjunction,
exclusive disjunction, conditional and biconditional. We now look at
the properties of each of these.

Conjunction

The truth table for the conjunction of any two propositional variables
p and g, denoted by p A g (or by p.q), is given below.

pArg

o 3
el He o s R BN
o om 3 >

The table shows that the conjunction p A g is true only when true propo-
sitions are substituted for each of p and q. Otherwise the conjunction
is false. As we have already seen, this sense is conveyed using the
word ‘and’ between the two component propositions (often termed the
conjuncts). For example, if B denotes the proposition ‘Bob is a foot-
baller’ and S denotes ‘Sue is a student’ then the conjunction of B and S
is expressed by ‘Bob is a footballer and Sue is a student” and is denoted
by B A S. Although ‘and’ is the most common linguistic expression for
logical conjunction, there are alternatives. The following would also be
denoted by B A S although they do have nuances which are slightly
different from when the two components are joined using ‘and”:

Bob is a footballer although Sue is a student;
Bob is a footballer whereas Sue is a student;
Bob is a footballer but Sue is a student.

These are conjunctions because, in each case, we would view the
compound proposition as true only when both of its two components
are true.
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Note that the conjunction p A g (read as ‘p and ¢q’) is symmetric in the
sense that it has exactly the same set of truth values as g A p. Both are
true only when each of the components p and q are true. Hence, from
the point of view of logic, ‘Bob is a footballer and Sue is a student’ and
‘Sue is a student and Bob is a footballer’ are equivalent propositions.
(We shall give a more precise definition of ‘equivalent propositions’
later.)

Disjunction

There are two forms of logical disjunction—the inclusive and exclu-
sive forms. The inclusive disjunction of two propositional variables p
and g is denoted by p v g and the exclusive disjunction of the two
components by p v g. The truth table for each of these is given below.

p q pvq pvYq
T T T F
T F T T
F T T T
F F F F

The only difference between the truth values of p v g and p v q is when
p and g (often termed the disjuncts) are both true propositions. In this
case the inclusive disjunction p Vv g is true but the exclusive disjunction
p Vv q is false. An inclusive disjunction is true only when either or both
of its disjuncts are true whereas an exclusive disjunction is true only
when one disjunct is true and the other is false.

Unfortunately, in English the word ‘or’ is used between disjuncts
(sometimes with the first disjunct preceded by ‘either’) as the linguistic
expression for both inclusive and exclusive disjunction. Therefore a
proposition containing ‘or’ is often ambiguous as to whether the
inclusive or exclusive sense is intended. Sometimes the context suggests
which form of disjunction is appropriate. For instance, ‘On Monday
I shall stay in London or visit a friend in Paris’ has components
which seem to be mutually exclusive and so we would interpret the
proposition as true only when just one of the disjuncts is true. Exclusive
disjunction therefore seems to be the intended interpretation of ‘or’. On
the other hand, ‘Applicants for the job must have a degree or three
years relevant experience’ does not seem to preclude applicants who
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satisfy both criteria and therefore suggests that the underlying logical
connective is inclusive disjunction.

The ambiguity surrounding the word ‘or’ can be resolved by adding ‘or
both’ to the proposition to indicate that the disjunction is inclusive or
by adding ‘but not both” to make clear the exclusive sense. For instance,
‘Tom has a brother or a sister, but not both’ is clearly to be read as the
exclusive disjunction of its two components whereas ‘Tom has a brother
or a sister, or both’ indicates inclusive disjunction. Sometimes ‘and/or’
is used between disjuncts to indicate inclusive disjunction. However,
where only the word ‘or’ is used and the disjunctive proposition is
ambiguous as to which form is intended, the convention in logic is to
interpret the connective as inclusive disjunction.

As with conjunction, both forms of disjunction are symmetric. The
forms p v q (usually read as ‘p or q') and g v p have exactly the same
set of truth values; they are false only when both p and g are false. The
forms p v q (often read as ‘p exclusive or q" or ‘p x-or q") and g v p also
have identical truth tables. Each is false only when propositions with
the same truth value are substituted for p and 4.

Conditional

A conditional proposition is denoted by P — Q (or by P 5 Q). The
truth table for this propositional form is given below.

p q pP—>4q
T T T
T F F
F T T
F F T

The component p of the conditional expression p — q is called
the antecedent and the component g is called the consequent. A
conditional proposition is true unless its antecedent is true and its
consequent is false. This sense is conveyed linguistically by preceding
the antecedent with ‘if’ and inserting ‘then’ between antecedent and
consequent (although ‘then’ can be omitted). For example, consider
the proposition ‘If you clean the car then I'll give you £10". Here the
antecedent is C: “You clean the car’ and the consequent is G: ‘T'll give
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you £10°. If you cleaned the car and didn’t get £10 (the case where
the antecedent is true and the consequent is false), then you could
justifiably claim that you had been told a falsehood. However the
proposition makes no claims about what will happen if you don’t clean
the car. I may give you £10 (if you mow the lawn instead, for instance)
or [ may not.

As with the other connectives, there are alternative ways of stating a
conditional proposition. With C and G defined as above, the following
would also be symbolised by C — G:

I'll give you £10 if you clean the car.

When (or whenever) you clean the car, I'll give you £10.
You will clean the car only if I give you £10.

That you clean the car implies that I'll give you £10.

Note that, when ‘only if’ is used to convey the conditional P — Q, it
precedes the consequent so that the proposition is expressed as ‘P only
if Q’. However, when the same proposition is expressed using ‘if’, this
precedes the antecedent as in ‘if P then Q’ or ‘Q if P’.

The conditional connective is also referred to as implication and P — Q
is often read as ‘P implies Q’. For any conditional proposition of the
form P — Q, P (the antecedent) is said to be a sufficient condition for
Q (the consequent) and Q is said to be a necessary condition for P.

As we can see from the truth table for the two forms given below, the
conditional p — g is not equivalent to g — p logically.

p q p—>4q 9P
T T T T
T F F T
F T T F
F F T T

The propositional form p — g is false if p is true and g is false.
However, for these truth values of p and q, § — p has a false antecedent
and a true consequent and is therefore true. Hence a conditional
proposition is not symmetric and the two propositions ‘If you clean
the car then I'll give you £10" and ‘If I give you £10 then you clean the
car’ do not mean the same.
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Biconditional

The truth table for a biconditional propositional form, symbolised by
p < q, is shown below. Note that a biconditional proposition is true
only when both its components have the same truth value. The form
p < q is false when p and g have different truth values.

p q peq
T T T
T F F
F T F
F F T

A biconditional proposition is expressed linguistically by preceding
either component by ‘if and only if’. If this phrase is used before the
first component, then the second component may be preceded by ‘then’.
Hence, if C and G are defined as above, each of the following would
be symbolised by C « G.

If and only if you clean the car then I'll give you £10.
You'll clean the car if and only if I give you £10.

The biconditional is also symmetric and p < g (usually read as ‘p if and
only if 4°) and g < p are equivalent logically. Hence the propositions
above could also be stated as follows.

If and only if I give you £10 then you'll clean the car.
I'll give you £10 if and only if you clean the car.

Examples 2.1

1. Symbolise the following propositions.

(i) Jane is at work or she is playing tennis.

(i)  If I win the lottery then I'll buy a racehorse.

(iii) Rain falls if and only if there is a northerly wind.
(iv) Today is Friday and I won’t go to college.

(v) If I don’t work hard then I won’t pass my exams.

Solution
(i) Define the following simple propositions:

W: Jane is at work.
T: Jane is playing tennis.
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Assuming that Jane’s work does not involve her in playing tennis, we
would interpret ‘or’ in its exclusive sense and symbolise this proposi-
tion as Wv T.

(i) We symbolise the two component simple propositions as follows:

L: I win the lottery.
R: T'll buy a racehorse.

The compound proposition given is then symbolised by the conditional
L — R.
(iii) We define:
R: Rain falls.
N: There is a northerly wind.
The proposition given is symbolised R < N.
(iv) We define:

F: Today is Friday.
C: 1 go to college.

The proposition given is the conjunction of F and the negation of
C, denoted by C. It is therefore symbolised as F A C. (Note that we
may have chosen instead to define C as ‘I won't go to college’ and to
symbolise the proposition by F A C.)

(v) We define:

W: I work hard.
P: TI'll pass my exams.

We are given a conditional proposition in which the antecedent and
consequent are the negations of W and of P respectively. This is
symbolised by W — P. (Again, we could have defined W: I don’t work
hard and P: I won’t pass my exams and symbolised the proposition by
W — P)

2. Let the propositions ] and M be defined as follows:

J: Jo spent September in New York.
M: Mary had a little lamb.
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Translate the following symbolised propositions into reasonable English
sentences:

i JAM i) Mv]
(i) M -] iv) J oM
Solution

(i) Jo spent September in New York and Mary didn’t have a
little lamb.

(i) Mary had a little lamb or Jo spent September in New York or
both. (Alternatively: Mary had a little lamb and/or Jo spent September
in New York.)

(iii) If Mary didn’t have a little lamb then Jo didn’t spend September
in New York. (This sounds a little odd but there is no cause and effect
implied between the antecedent and consequent of a conditional propo-
sition in logic!)

(iv) If and only if Jo spent September in New York then Mary had a
little lamb.

3. Let the propositions P, Q, R and S be defined as follows:

P: 6> 24.
Q: 12 is an even number.
R: 1000 = 10°.
S: g is a rational number.
State whether each of the propositions symbolised below is true or false.
i) P—Q ) RvQ (i) S <P
(ivy RAQ (vy PAS
Solution

Note that Q and R are true propositions whereas P and S are false.
(i) This is a conditional proposition with a false antecedent and a true
consequent. It is therefore true.

(i) Both of the disjuncts in the exclusive disjunction are true. Hence
the proposition is false.

(iii) Since both components of the biconditional are false, this propo-
sition is true.
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(iv) Since R is true, the negation R is false. The conjunction has compo-
nents of which one is true and one false. This proposition is therefore
false.

(v) Since P and S are both false, P and S are true propositions and
hence their conjunction is true.

As we have seen, logical connectives can be used to join two simple
propositions to form compound propositions. However, they can also
be used between compound propositions to form other compound
propositions. The following examples show how we can symbolise
more complicated compound propositions.

Examples 2.2

1. Consider the following propositions:

J: Jack ran.
K: Ken laughed.
S: Sally skipped.

Translate the following into reasonable English sentences:

i) UAK)—>S (i) JVEKAS)
(i) S —->K)A(J - K) (iv) JvS)«K
Solution

(i) Note that the conjunction of | and K forms the antecedent of a
conditional for which the consequent is S. This can be translated as ‘If
Jack ran and Ken laughed then Sally skipped’.

(i) This is an inclusive disjunction in which the two disjuncts are |
and K A S. We must be careful to ensure that our translation gives
the sense of ] v (K A S) rather than (J vK) A S since the two are not
equivalent. The best translation is probably ’Either Jack didn’t run or
both Ken laughed and Sally skipped'.

(iii) This is a conjunctive proposition with conjuncts which are the
conditionals S — K and ] — K. It can be translated as ‘If Sally didn't
skip then Ken didn’t laugh and, if Jack ran then Ken laughed’.

(iv) This biconditional translates as ‘Jack ran or Sally skipped (or both)
if and only if Ken didn’t laugh’.
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2. Consider the propositions defined as follows:

T: Tll have more time.
P: T'll learn to play the piano.
S: T'll double my salary.

Symbolise the following:

(i) If I have more time then I'll double my salary and I won't learn to
play the piano.

(ii) If and only if I double my salary or have more time then I won't
learn to play the piano.

(iii) If I have more time then I'll learn to play the piano and if I don’t
have more time then I'll double my salary.

(iv) TI'll learn to play the piano or I'll double my salary, and if I don't
learn to play the piano then I'll have more time.

Solution

(i) There is an ambiguity here and it is not entirely clear whether
this proposition should be symbolised T — (S AP) or (T — S)AP.
However, the former symbolisation seems to convey the sense better.

(ii) Inclusive disjunction seems to be the most appropriate interpre-
tation of ‘or’ in the first component of the biconditional. We would

therefore symbolise this as (S vV T) < D.
(iii) We symbolise this: (T — P)A (T — S).

(iv) Again inclusive disjunction seems appropriate and we therefore
symbolise this: (P v S)A (P — T).

Recall that we use upper case letters to denote particular propositions
and lower case letters for propositional variables. Therefore an expres-
sion such as (p Aq) — (F v p) does not denote a proposition. Such
an expression is termed a propositional form. When specific propo-
sitions are substituted for the variables in a propositional form, this
then becomes a proposition. Any proposition which can be obtained by
substituting propositions for propositional variables in a propositional
form is said to be a substitution instance of that form. Of course, the
same proposition must be substituted for each occurrence of the same
variable throughout the expression. For example, if T, P and S are
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defined as in Example 2.2.2, the following are all substitution instances
of the propositional form (p Aq) — (F V p):

(TAS)—> (PVvT)
(SAP)—= (PVS)
[(TVvS)A(P <+ R)]—>[(S—>R)Vv(TVvS)].

Note that in the second of these three propositions, we have substi-
tuted the same proposition, P, for each of the variables g and r. This is
permissible. We may substitute the same proposition for different vari-
ables but we must not substitute different propositions for different
occurrences of the same variable. There is an analogy here with substi-
tution into algebraic expressions. Given an expression such as f (x,y) =
x% + 4xy + y?, substituting 2 for x and 3 for y gives f(2,3) =22+
4 x 2 x 3+ 3% = 37. We may, of course, substitute the same values for
x and y. For instance, substituting 1 for x and 1 for y gives f(1,1) =
2+4x1x1+1%=6.

We may reasonably ask, for what truth values of its simple components
is a compound proposition true? For instance, given the propositional
form p — (g A7) (of which Example 2.2.2(i) is a substitution instance),
for what combinations of truth values of p, g and r is this true? (Strictly
speaking, it is the propositions which may be substituted for p,q and
r which have truth values rather than the variables themselves.)

One way of answering this question is to draw up a truth table in which
we list all the possible combinations of truth values of p, g and r and,
for each of these, evaluate the truth or falsity of p — (g A 7). The truth
table is built up in stages. We first list the possible combinations of
truth values of the component propositional variables. There are eight
of these as shown in the table below. (It is common practice to list the
combinations of truth values in the order used in this table.)

eo s Bes Mo Bu B B B H s
Mm-S m o HR
Mmoo~ m T
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Next we add a column which will show the truth values of 7 for each
of the listed truth values of r. Then we add a column of truth values
forqg A T.

p q r r qAarT
T T T F F
T T F T T
T F T F F
T F F T F
F T T F F
F T F T T
F F T F F
F F F T F

Note that the truth values of 7 are the reverse of those of r shown in
the adjacent column. The expression g A7 is true when both conjuncts
are true, that is in the second and sixth rows of the truth table. Other-
wise this propositional form is false.

We now add the final column to the truth table where we evaluate the
truth values of p — (g A 7). This is a conditional and is false only when
p is true and g A 7 is false. This occurs in the first, third and fourth rows
of the truth table. The final truth table is shown below.

|

q p— (qAT)

eslie s Bios Moo B IS IS IS N s
oo lie s B B Moo Mo o s I SN
oo T |
e e B Be s B le o] B
T oo T >
~ <~ mT -~

From the table we can see that the propositional form p — (g A7) is
true in all but the following three cases: p, ¢ and r are all true; p and
r are true but ¢ is false; p is true but g and r are false.

Example 2.3

Draw up the truth table for the propositional form (p v q) A (p — r).
(Example 2.2.2(iv) is a substitution instance of this form.)



Logical Connectives 29

Solution

Again we first list the possible combinations of truth values for p, g
and r and then add a column to the table listing the corresponding
truth values of p. The next column to add is one for p v g followed by
a further column listing the truth values of p — r. The truth table up
to this stage is shown below.

Y
|
~

Mmoo H A A

eslies oo Mies B B R B RIS
oo Bies B I B lile s ML P | RS
Mmoo |
e B B B Moo Bile s Bile s B o N S|
Mm-S H <

The proposition p v q is true when either or both of p and g are true,
i.e. in all rows of the truth table except the last two. The proposition
p — r is true except when p is true and r is false. This occurs in the
sixth and eighth rows of the table.

We now add the final column of the truth table listing the truth values
for (p vgq)A (p — r). This expression is the conjunction of the two
components p v g and p — r and is true only when both these compo-
nents are true (all rows of the truth table except the last three).

14 q r P | pVvq p—or (pvaIAP—>r)
T | T | T F T T T
T | T | F F T T T
T F | T F T T T
T F F F T T T
F | T | T | T T T T
F | T | F | T T F F
F F | T | T F T F
F F F | T F F F
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Exercises 2.1
1. Let the propositions S, W, R and T be defined as follows:

The sun shines.

The wind blows.

The rain falls.

The temperature rises.

4w I o

Translate the following into reasonable English sentences:

i) W - (SVR) (ii) WAR)©S
(iii) W VR)AT iv) SAW)—> RvT)
(v) RyT)—> (SAW)

2. With propositions S, W, R and T defined as in Exercise 1 above,
symbolise the following propositions.

(i) If and only if the temperature rises, then the sun shines and the
rain doesn’t fall.

(i) Whenever the sun shines or the rain falls (or both) then, if the
temperature rises, the wind doesn’t blow.

(iii) Either the sun shines and the temperature rises or the wind blows
and the rain falls.

(iv) The sun shines and the wind doesn’t blow, and the temperature
rises only if the rain falls.

(v) If the sun doesn’t shine or the wind blows with rain falling, then
the temperature doesn’t rise.

3. Suppose that the propositions S, W, R and T (as defined in Exer-
cise 1 above) are all true. Decide whether each of the following is true
or false:

i (S—>W)ARAT) (i) (RVYT)AS

(iii) (S AR) o (TVW) (iv) RAT)—> (WAS)
v) RvTHn(W —=S)

4. Let propositions S, W, R and T be defined as in Exercise 1 above.
Suppose that S and W are true propositions and that R and T are false.
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Find the truth value of each of the following compound propositions:

i) (SAW)V(W AR) (i) R->T)AW
(iii)y W — (T VR) iv) R->W)v(W —>T)
(v) RyT)e (WAS)

5. Draw up a truth table for each of the following propositional forms:
i) (prg) eq (i) pviq—p)

(iii) (p—=>rIA@Fr—q) (iv) rAp)v@np)
(v) (PAq)—= (pAT)

2.3 Tautologies and Contradictions

The truth table for the propositional form p — (p v q) is given below.

P |9 | pvqg | P>V
T | T T T
T | F T T
F | T T T
F | F F T

Note that, no matter what the truth values of the components p and g,
the propositional form p — (p Vv q) is always true. This means that, no
matter what propositions we substitute for the variables p and g, the
result will be a true proposition. A propositional form which has this
property is called a ‘tautology’.

There are also propositional forms whose structure is such that they
are always false no matter what the truth values of their components.
Such propositional forms are called ‘contradictions’. (Of course, the
negation of a tautology is a contradiction and vice versa.) An example
of a contradiction is the form (p Agq) A (p v §). This is shown in the
truth table below.

14 q p q Y| pvq @Arqg)n(p V)
T T F F F T F
T F F T F T F
F T T F T F F
F F T T F T F
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Definitions 2.1

A tautology is a propositional form which is true for all combi-
nations of truth values of its component propositional variables.

A contradiction is a propositional form which is false for all
combinations of truth values of its component propositional vari-
ables.

Note that any substitution instance of a tautology is a true proposition
and that any substitution instance of a contradiction is a false propo-
sition. The property of being a tautology or a contradiction is a direct
consequence of the structure of a propositional form. The two proposi-
tions ‘Paris is the capital of France’ and ‘If Paris is the capital of France,
then Paris is the capital of France or Florence is the capital of Italy” are
both true propositions but for fundamentally different reasons. The
former is true by virtue of its content—Paris really is the capital of
France. The latter is true by virtue of its structure—it is a substitu-
tion instance of the tautological form p — (p v gq). The content of the
component simple propositions has no bearing on the truth of any
substitution instance of this propositional form. In particular, if France
decided to move its capital to Lyons, the second proposition would still
be true whereas the first would not.

Exercises 2.2

Determine whether each of the following propositional forms is a
tautology, a contradiction or neither.

pAp

pvp

(pAq) < (qnp)

(pA@A(p—q)

(pA@APVq)

(p—=>q)e(pAg)

(pvan(pVeg) (Hint: compare with Exercise 1 above.)
(p=q)Vv(p— q) (Hint: compare with Exercise 2 above.)

(p—>1r)v(Gg—rp)

W XN oUW
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10. (pAp)—> (p—71)

11. (pvg)A(@GAT)

12. (pvg)e(@q@—>r)

13. [(p=>g9)A(pVvIAFTATG)

14. (a) Explain why, if p; is a contradiction, then p; — p; is a tauto-
logy for any propositional form p;.

(b) Explain why, if p; is a tautology, then p; — p; is a tautology

for any propositional form p;.

2.4 Logical Implication and Logical
Equivalence

At the beginning of this chapter, we described a mathematical proof
as a sequence of propositions where the truth of each is assumed or is
guaranteed by the truth of earlier propositions in the sequence. Part of
the skill in constructing a proof is being able to deduce what proposi-
tions can be shown to be true given the truth of other propositions. In
this section we consider some ways in which the truth of one proposi-
tion guarantees the truth of another.

A structure-dependent relation

There is a structure-dependent relation which may exist between a pair
of propositional forms p; and p, whereby, whenever p; is true, p, is
true also. In this case we say that p; logically implies p, and we write
p1 F p2. Consider for example the two forms p and p v §. The truth
values of each of these are shown in the truth table below.
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P |9 | P | 9| PVY
T | T | F | F F
T | F | F|T T
F | T | T]|F T
F|F | T |T T

From the table, we can see that whenever p is true (the third and fourth
rows of the table), p v 7 is also true. Hence p logically implies p v q
and we denote this by p - (p v 7). (We can also see from the table that
qE@Evy)

If the two propositional forms p; and p; are such that p; - p;, then there
is no combination of truth values of the propositional variables which
renders p; true and p; false. Recall that this is the only situation where
the conditional p; — p2 would be false. Hence if p; logically implies p,
then p; — pz is true for all truth values of its component propositional
variables and is therefore a tautology. (This can be illustrated by refer-
ence to the truth table above, where completing one further column for
p — (p v ) will show this propositional form to be a tautology.) It is
also the case that, if two propositional forms p; and p, are such that
p1 — p2 is a tautology, then p; - pz.

It is important to note that for the relationship p1 - p, all we require
is that p; is true in all circumstances that p; is true. The propositional
form p, may also be true in some or all of the cases where p; is false.
This is so in the second row of the table above where p is false and
p v 7 is true. What is useful about logical implication is that, if p; - py,
then, given a true substitution instance of p;, substituting the same
propositions for the variables in p; also results in a true proposition.
For example, if P and Q denote particular propositions and we know
that P is true, then the fact that p - (p v ) guarantees that P v Q is
also a true proposition.

If two propositional forms p; and p, are such that p; - p;, then we
know that p, is true whenever p; is true. However, p; - p2 gives us
no information about the truth value of p, when p; is false, so that we
cannot infer that p; logically implies p;. From the truth table above, we
established that p - (p v §). However, if we examine the cases where
p v 7 is true (all but the first row of the truth table) we note that p is
false in one of these so that p v § does not logically imply p. Consider,
however, the two propositional forms p — g and p v g for which the
truth table is given below.
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p q P pP—=>49 pPVvq
T T F T T
T F F F F
F T T T T
F F T T T

Whenever p — g is true then sois p v g so that (p — q) F (p v q). Also,
whenever p v g is true then so is p — g so that (p vgq) - (p — q). The
two propositional forms p v g and p — q have exactly the same set of
truth values. When this is the case, we say that the two forms are
logically equivalent and we write (pvg)=(p —» gq) (or (p —» q) =
(P v q)). Note that if the two propositional forms p; and p, are logically
equivalent so that p; = p, then p; - p2 and also p; + p1.

Logically equivalent propositional forms have identical truth values
for each assignment of truth values to their component propositional
variables. Recall that the biconditional form p < ¢ is true whenever
the components p and g have the same truth value. So, if we substi-
tute logically equivalent propositional forms p; and p; for p and g, the
biconditional p; <> p, cannot be false. Therefore, if p; = p, then p; © p»
is a tautology and also, if p; < p; is a tautology then p; = p,. Hence
we have a similar relation between logical equivalence and the bicon-
ditional as we have between logical implication and the conditional.

What is useful about logical equivalence is that we can replace one
propositional form by another which is logically equivalent, secure in
the knowledge that we have not altered the set of truth values. Logically
equivalent forms can therefore be regarded as alternative expressions
of a propositional form in the same way that (x +2)? and x% + 4x + 4
are regarded as equivalent algebraic expressions.

Given two logically equivalent propositional forms, the substitution
instances obtained by substituting the same propositions for the same
variables throughout each form will be referred to as equivalent propo-
sitions. To all intents and purposes, equivalent propositions say the
same thing although they may express it differently. What is impor-
tant about a set of equivalent propositions is that, if one is true, then
so are all the others and if any one of the set is false, then we can be
sure that the rest are too. For instance, we have established the logical
equivalence of p v q and p — q. Hence, given two propositions P and
Q, PvQ and P — Q are equivalent propositions and therefore have
the same truth value. Of course we do not have to substitute simple
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propositions for the variables. Given four propositions P, Q,R and S,
if we replace p by P AR and q by Q A S we obtain the equivalent
propositions (P AR)V(Q AS)and (P AR) — (QAS).

Example 2.4

Draw up a truth table to establish the set of truth values for each of
the propositional forms g vp, § — p and p A 7. Between which pairs
of these forms does the relation of (a) logical equivalence, (b) logical
implication, exist?

Solution

The truth table for these three forms is given below.

P 19 | P |G | 9vP | 9P | PAT
T | T )| F | F T T F
T | F | F | T F F F
F | T | T |F T T F
F | F| T |T T T T

(@) We first look for logical equivalences. Since the fifth and sixth
columns of the table are identical, we can conclude thatq v pand § — p
are logically equivalent, i.e. (3 vp)= (g — p) (or (3 — p)=(q Vv P)).
None of the remaining columns are the same so there are no other
logical equivalences.

(b) Since q vp and § — p are logically equivalent, we have the two
logical implications (g VP)F (§ — p) and (7 — p) F (g v P). There are
other logical implications. Note that when p A § is true (the fourth row
of the truth table), each of 4 v p and § — p is also true. Hence we have
PAg)F(@Vvp) and (P AqG)F (G — P). (But note that g v p does not
logically imply p A @ because, as is shown in the first and third rows
of the truth table, it is possible for g v p to be true whilst p A7 is false.
For the same reason, § — p does not logically imply p A q.)

As we shall see later, there are instances when we shall find it helpful
to substitute for one propositional form another which is logically
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Table 2.1 Replacement Rules

Commutation (Com) pvg=qVvp
pAqg=qAnp
Association (Assoc) pv@vrys(pvqvr

pA@ATrY=(pAgIAT

Distribution (Dist) PA@VE)=(PAGIV(PAT)
pv@@Ary=(pVvgA(pVvr)
De Morgan’s laws (De M) pPAG=pVvyg
pPva=pAg
Double negation (DN) p=p
Transposition (Trans) p—>q=q—>p
Material implication (Impl) p—o>q=pVvqg
Material equivalence (Equiv) peqg=s((p—=>9)A(q—>p)
peoq=prqgvpng)
Tautology (Taut) pAp=p
pvrP=p
Exportation (Exp) (pAq)—>r=p—>(@q—>7)

equivalent. Table 2.1 shows a list of logical equivalences which we shall
find particularly useful. These are referred to as ‘replacement rules’ and
all can be verified using the techniques described in the last section. We
give the name of each rule and also the accepted abbreviation which
is normally used to refer to that rule.

(Note that the association rules imply that we can omit the brackets
from an expression such as (p vg)vr and simply write pvgvr
without fear of ambiguity.)

We can use these logical equivalences to establish other logical equiv-
alences as we show in the examples below.
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Examples 2.5

1. Show that Ap =p — 7.

Solution

We start with the left-hand side of the ‘equivalence’ and proceed in
steps, using the replacement rules to substitute one logically equivalent
propositional form for another within the expression until we obtain
the right-hand side. Each step is justified by referring to the rule which
allows us to make the substitution used in that step.

gAp=qvyp (DeM)
=pvq (Com)
=p—>q (Impl)

2. Show thatp A[(pAq)Vvri=pA(@vVvr).

Solution

Proceeding as in the example above:

pAlprgyvri=lpaaglv(par) (Dist)
=[(pAp)AqglVv(pAr) (Assoc)
=(pAq)V(pAr) (Taut)
=pA(@Vr) (Dist)
Note that the replacement rules can be used to substitute for part of a
propositional form as in the second line of the example above where the

association replacement rule was applied to the first disjunct p A (p A q)
and in the third line where we substitute p for p A p.

Exercises 2.3

1. In each of the following, two propositional forms p; and p, are
given. For each pair of propositional forms, draw up a truth table and
determine which, if any, of the following logical relationships hold:

p1Ep2 p2Fp1, p1 =pa2.
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P1 p2

(i) pvq Y]

(ii) pP—q q—>p

(iii) 14 gn(p <q)

(iv) 14 q—>p

v) pvq pvg

(vi) pP—q PAg

(vii) rvq pPvq

(viii) p<q (p—=>g9)n(@q—p)

(ix) pv(q@vr) (pvqg)vr
(x) pA(@Vvr) (pAq)V(pAr)
(xi) p—>q qg—p

2. Suppose that the following are true propositions:

If I pass my exams then I shall get a new job.
Tomorrow is my birthday.

Use the appropriate logical relations established in Exercise 1 above to
determine what, if anything, can be deduced about the truth value of
each of the following propositions:

(i) If I get a new job then I shall pass my exams.

(i) If Today is Tuesday then tomorrow is my birthday.

(iii) I shall get a new job.

(iv) TI'll throw a party and, if and only if tomorrow is my birthday,
then I'll throw a party.

(v) IfIdon’t get a new job then I won’t pass my exams.

3. Use the appropriate logical relations established in Exercise 1 above
to determine whether each of the following propositional forms is or
is not a tautology.

(@) PVvg o (Prg)

(ii) qG—->p)—vp

(iii) peolgnapeq)
iv) (pvq)— (pVq)
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V) @ADo@@->9

(vi) PVq > EVvy

(vil) [(pvgvn]elpvigvr)
(viii) p— (@ —p)

(ix) (peqg)—>[r—>q91r@G-—pl
x) [(p>pPAr@—pl-(peoq)

4. Given the propositional form p — g, we define the following:

(a) the converse of p — q: q — p;
(b) the inverseof p —» q: p — 7;
(c) the contrapositive of p — g: § — p.

Show that a conditional propositional form is logically equivalent to
its contrapositive (i.e. verify the replacement rule called ‘transposition’)
but not to either its converse or inverse. Show also that the converse
and inverse of a conditional propositional form are logically equivalent
(the transposition rule again).

5. Show that [(p > @) A (p = r)]=[p — (g Ar)]. Use this result to
show that, if p;, p, and p3 are propositional forms such that p; - p,
and p; - p3, then p1 F (p2 A p3).

6. Show that (p — q) A[(p A q) — r] logically implies p — r.

7. By considering the appropriate underlying propositional forms,
determine whether or not each of the following pairs of propositions
are equivalent:

i) PvQandPAQ

(i) RA(SvT)and (RAT)V (S AR)
(iii) P—>Qand PVvQ

(ivi R—-SandS — R

vy P> @QvRyand(QAR)—> P

8. (a) Use truth tables to demonstrate the following logical equiva-
lences, where t denotes any tautology and f denotes any contradiction.
(Note that all tautologies are logically equivalent as are all contradic-
tions.)
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Identity laws
pvf=p pnt=p
pvt=t prf=f
Complement laws
pvp=t
pApP=f
(b) Use the replacement rules together (where necessary) with the rules

established above to demonstrate each of the following logical equiva-
lences. Justify each step (as in Examples 2.5).

@ pvprgq)=pVvg

i) FVGHVFAG =P

(i) FApPA(PVH=(pV7)
(iv) pvign(pvl=pVvpArg)
V) pArllprg)vpl=png

2.5 Arguments and Argument Forms

The importance of logic is that it supplies us with a means of estab-
lishing whether a line of reasoning called an ‘argument’ is correct or
incorrect. An argument in this sense consists of a set of propositions
(simple or compound) called premises and another proposition called
the conclusion, which, it is claimed, is the inevitable consequence of the
premises. The proposition which constitutes the conclusion is usually
introduced by ‘therefore” or ‘hence’ to distinguish it from the premises.
The following are examples of arguments.

Examples 2.6

Symbolise the premises and conclusion in each of the following argu-
ments.

1. Today Sue has a biology exam or a maths exam or both. She doesn’t
have a biology exam today. Therefore she must have a maths exam
today.
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Solution

The premises of this argument are the two propositions ‘Today Sue
has a biology exam or a maths exam or both” and ‘Sue doesn’t have a
biology exam today’. The conclusion is ‘Sue has a maths exam today’.

We symbolise the component simple propositions of which the argu-
ment is constituted as follows:

B: Sue has a biology exam today.
M: Sue has a maths exam today.

The premises of the argument are: B v M and B.
The conclusion is: M.

2. If Jack plays the piano or Mary sings, then Pete will dance. Jack
won'’t play the piano. So Pete won't dance.

Solution
We define the following simple propositions:
J: Jack plays the piano.

M: Mary sings.
P: Pete will dance.

The premises of the argument are: (/ VM) — P and J.
The conclusion is: P.

In judging the ‘quality’ of each of these two arguments, there would
probably be no difficulty in correctly assessing the first one as ‘a good
argument’—even with no knowledge of formal logic. The justification
would probably run roughly as follows: ‘We know that Sue has either a
biology or a maths exam today. We also know that she hasn’t a biology
exam today. Assuming these statements to be true, we must conclude
that she has a maths exam today.” Given the truth of the premises, we
have no option but to accept the truth of the conclusion and hence we
would judge the argument to be ‘correct’ or ‘valid'.

With the second argument, however, it is not difficult to see that it
is possible for the premises to be true and the conclusion false. Such
would be the case, for instance, when Pete dances and Jack doesn’t play
the piano but Mary nevertheless sings. (It is also the case when Pete
dances, Jack doesn’t play the piano and Mary doesn’t sing, although
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this may not be so obvious.) What is important is that the truth of the
premises does not guarantee the truth of the conclusion and, for this
reason, we would say that the argument is not valid.

It is important to note that it is not the content of an argument which
determines whether or not it is valid. What is important is its structure.
For instance, if we accept the validity of the argument in Example 2.6.1,
then we must also accept the validity of the following: ‘There are either
unicorns or dinosaurs in my garden, or both. There are no unicorns in
my garden. Therefore there are dinosaurs in my garden.” Although we
might well question the truth of the premises, this has no relevance to
the validity of the argument. If the premises are true, then the conclu-
sion must be true also. The fact that we may believe that there are no
circumstances in which the premises could be true may well limit the
usefulness of that particular argument. However, it does not detract
from its validity. Both of these two arguments have premises which
are substitution instances of the propositional forms p v 4 and p and a
conclusion which is the corresponding substitution instance of 5. Any
proposition can be substituted for the propositional variables p and g
(as long as the same proposition is substituted for the same variable
throughout) and the result is a valid argument.

As we have seen, what an argument is about has no bearing upon its
validity. The only important factor is the structure of the propositional
forms of which its premises and conclusion are substitution instances.
We shall therefore make a distinction between arguments and argument
forms which parallels that between propositions and propositional
forms. An argument form has premises and conclusion expressed as
propositional variables or propositional forms. When propositions are
substituted for the propositional variables so that the premises and
conclusion are propositions, we shall call the structure an argument
and refer to it as a substitution instance of the corresponding argument
form. Hence the two arguments:

(@) “Today Sue has a biology exam or a maths exam or both. She
doesn’t have a biology exam today. Therefore she must have a
maths exam today.’

and

(b) ‘There are either unicorns or dinosaurs in my garden, or both.
There are no unicorns in my garden. Therefore there are dinosaurs
in my garden.’
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are both substitution instances of the argument form with premises
p v q, p and conclusion g. Similarly the argument in Example 2.6.2 is a
substitution instance of the argument form with premises (p v q) — r,
p and conclusion .

We shall define an argument form as valid if its conclusion is true in all
circumstances that its premises are true. What is important about argu-
ment forms is that, if we decide that a given argument form is valid,
then it follows that any substitution instance of it is a valid argument.
Argument forms therefore enable us to assess the validity of whole
families of arguments.

Definitions 2.2(a)

An argument form with premises py,ps,...,p, and conclusion g
is said to be valid if, whenever py,p,, ..., p, are true, then g is
also true. Otherwise the argument form is said to be invalid.

An argument is said to be valid if it is a substitution instance
of a valid argument form. Otherwise the argument is said to be
invalid.

To establish whether or not an argument is valid, we shall examine the
underlying argument form. If the argument form is valid, then so is
the argument. If the argument is a substitution instance of an invalid
argument form then it is an invalid argument.

Consider an argument form with premises py,p2, ...,p, and conclu-
sion . To decide whether or not the argument form is valid, we must
examine the possible truth values of g for the cases when py,p2, ..., p,
are all true. Note that when py, ps, ..., p, are all true then their conjunc-
tion py Ap2 A... Ap, is also true. The converse is also the case: when
the conjunction p; A p2 A ... A py is true, then its conjuncts p1, p2, ..., pu
are all true. The statement ‘py, p2, ..., p, are all true’ is therefore equiv-
alent to ‘py Apa A...Ap, is true’. For an argument form to be valid
we require that, whenever p; A py A ... A p, is true, the conclusion g is
also true. This, of course, is exactly the same as requiring that p; A p2 A
... A py logically implies g, i.e. (p1 Ap2A...Apy)Fq. This gives us
an alternative to Definition 2.2(a) for a valid argument form. An argu-
ment form is valid if the conjunction of its premises logically implies
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its conclusion. Of course the definition of a valid argument remains as
given in Definitions 2.2(a).

Definition 2.2(b)

An argument form with premises py, p2, ..., p, and conclusion q is
said to be valid if (p1 Ap2 A ... Ap,) F g. Otherwise the argument
form is said to be invalid.

We could also define validity in terms of the alternative way of
expressing logical implication. An argument form is valid if the
conditional with the conjunction of the premises as the antecedent and
the conclusion as the consequent is a tautology, i.e. if (p1 Ap2 A ... A
pu) — q is a tautology. If this is not the case, then the argument form
is invalid.

We now have a method for establishing whether or not an argument is
valid. We examine the corresponding argument form and test whether
the conjunction of the premises logically implies the conclusion using
the truth table technique described in Section 2.4.

Examples 2.7

1. Test the validity of the following argument.

If Jim arrives tomorrow then I'll eat my hat. Jim won'’t arrive tomorrow.
Therefore I won’t eat my hat.

Solution
We symbolise the component simple propositions as follows:

J: Jim arrives tomorrow.
H: Tll eat my hat.

The premises of the argument are: ] — H and J.

The conclusion is: H.

The underlying argument form has premises p — g and p. Its conclu-
sion is . We must therefore test whether or not (p — q) A p logically
implies 7. The appropriate truth table, drawn up in the usual way, is
given below.
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p q p q p—q (p =9 ~p
T T F F T F
T F F T F F
F T T F T T
F F T T T T

We now examine the table to determine the truth values of § when
(p = q) AP is true, i.e. in the third and fourth rows. We note that, in
the third row 7 is false when (p — q) A p is true. Hence the conjunction
of the premises of the argument form does not logically imply the
conclusion and the argument form is invalid. Hence the argument is
not valid.

2. Test the validity of the following argument.

If you work hard then you'll get a good job. If you get a good job then
you'll be a respected member of the community. Therefore if you work
hard then you’ll be a respected member of the community.

Solution
There are three underlying simple propositions:

W: You work hard.
J: You get a good job.
R: You'll be a respected member of the community.

The premises of the argument are W — | and | — R. The conclusion
is W — R.

The underlying argument form has premises p — g and ¢ — r and
it has conclusion p — r. We must therefore test whether or not
(p — q) A (g — r) logically implies p — r.

plalrlr—ala-r] porq-r|p->r]
TIT | T]| T T T T
T|T|F T F F F
T|F|T F T F T
T|F|F F T F F
FIT|T| T T T T
F|lT!|F T F F T
FlE|T| T T T T
FIF|F| T T T T
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Whenever (p — ) A (@ — r) is true (the first, fifth, seventh and eighth
rows), p — r is also true. Hence [(p > g)A (g - r)]F(p — r) and
so the argument form is valid. Since the argument is a substitution
instance of this argument form, it is a valid argument.

Inconsistent premises
Consider the following argument.

If Mike is on holiday then he’s in Bermuda. Either Mike is on holiday
or he’s in the office. Mike is not in the office and he’s not in Bermuda.
Therefore Mike is ill.

The underlying argument form has premises p — g, pvr and 7 A 7.
If we construct the truth table for the conjunction of these premises
(see Exercise 2.2.13), we find that this propositional form is false for all
combinations of truth values of the propositional variables p, g and r. In
other words, it is impossible for the premises to be true simultaneously.
We refer to a set of premises with this property as inconsistent.

For an argument form to be valid we require (p1 A p2 A - Apy) — g to
be a tautology where p1, py, ..., pn are premises and g is the conclusion.
For a set of inconsistent premises, the antecedent of this conditional is
a contradiction, i.e. it is always false. Since a conditional with a false
antecedent is true, it follows that (p1 Ap2 A -+ Ap,) — g is a tautology
regardless of the form of the conclusion q. We are therefore faced with
what might seem to be a rather disconcerting fact—an argument form
with inconsistent premises is always valid so that any substitution
instance is a valid argument. Hence the argument above is valid and
would remain so were we to replace the conclusion by ‘Mike is in
Bermuda’, ‘Pigs can fly’ or any other proposition.

Even though they are always valid, argument forms with inconsistent
premises are not particularly useful since they support any conclusion
whatsoever. We shall therefore find it useful to distinguish what are
known as ‘sound’ arguments from those which are ‘unsound’. A sound
argument is defined as one which is valid and whose premises are
all true. It follows that the conclusion of such an argument has two
desirable properties. Firstly it is justified by the rules of logic. Secondly,
because the premises are true, it is a true proposition. Of course, it is not
always possible to establish whether or not a valid argument is sound
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because we may be ignorant as to the truth value of one or more of
the premises. However, if an argument is a substitution instance of an
argument form with inconsistent premises, then it will certainly not be
sound. So, although the conclusion is justified on logical grounds, we
have no guarantee of its truth.

Exercises 2.4
Test the validity of each of the following arguments.

1. If you exercised regularly then you’d be healthy. You're not healthy.
Therefore you don’t exercise regularly.

2. If weapons are banned then we’ll all live in peace. We'll all live in
peace or the human race will become extinct. We won't live in peace.
Therefore weapons won'’t be banned.

3. You are rich only if you are clever or dishonest. You are neither
clever nor dishonest. Therefore you are not rich.

4. Jane will come to my party if and only if Mark doesn’t come. If
Jane doesn’t come to my party then Jim won’t come. Therefore, either
Jim or Mark will come to my party but not both.

5. The temperature rises if and only if the sun shines. The sun isn’t
shining and there are clouds in the sky. If there are clouds in the sky
then the temperature rises. Therefore it will not rain today.

6. If you read a lot then you will become a brilliant conversationalist.
If you become a brilliant conversationalist then you will have many
friends. Therefore if you haven’'t many friends then you don’t read
a lot.

7. I shall mow the lawn or clean the car but not both. If I mow the
lawn then it won't rain. Therefore, it rains only if I clean the car.

8. If the car’s out of oil then the engine has seized up. The engine
hasn’t seized up or the car’s out of petrol. The car’s not out of petrol
but it's out of oil. So the engine has seized up.

9. Either prices fall or there will be an election. If prices don’t fall
there will be widespread poverty. Therefore if there is an election then
there won't be widespread poverty.
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10. If I buy a new car then I will not go on holiday. If I don’t buy a
new car then I will buy a motorcycle. Therefore either I go on holiday
or I buy a motorcycle but not both.

2.6 Formal Proof of the Validity of Arguments

It is clear that the truth table method for assessing the validity of an
argument can become unwieldy if the premises are complicated. Also, if
the argument involves n simple propositions, the truth table requires 2"
rows. Hence the method becomes impractical if the number of simple
propositions exceeds three or four.

There is an alternative method for showing an argument to be valid
which does not necessitate constructing a truth table. The method
involves deriving a sequence of propositions all of which are known
to be true when the premises are true. The premises themselves form
the starting point for the list. From these, other propositions may be
added subject only to the constraint that their truth is guaranteed by
the truth of one or more propositions already included in the list. The
list is complete when the conclusion of the argument is shown to satisfy
this ‘eligibility criterion’. The list of propositions, terminating with the
argument’s conclusion, is called a formal proof of the validity of the
argument.

Premises are automatically eligible for inclusion in the sequence of
propositions which constitutes the formal proof. However, how do
we determine which other propositions may be included? Suppose
that the list currently contains the propositions (simple or compound)
Py, P, ..., P, with underlying propositional forms p1,pa, ..., p,. That is
to say, P; is a substitution instance of p; fori = 1,2,..., n with the same
proposition substituted for the same variable throughout the sequence.
Now suppose we have a propositional form p,.; which is logically
implied by the conjunction of some (or all) of the propositional forms
p1,p2, --.,pn. Then whenever the propositional forms in question are
true, p, 41 is true also. We may therefore add to the list the appropriate
substitution instance of p,,1. For example, suppose that the list contains
the propositions P and P — Q. These are substitution instances of p
and p — q. Since [p A (p = q)] - g, we may include in the formal proof
the proposition Q if we wish.

Note that in this example, to say that [p A (p > g)] g is the same
as saying that the argument form with premises p and p — g and
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conclusion q is valid. Therefore propositions which are eligible for
inclusion in the formal proof are those which form the conclusions of
valid arguments with premises which are propositions already included
in the proof. In constructing formal proofs it would therefore be helpful
to have a stock of valid argument forms from which to draw. These
are termed rules of inference and we will find that nine will suffice.
Each is an elementary argument form whose validity can be confirmed
using truth tables as in the previous section. We summarise these in
Table 2.2 together with the usual name of the rule and the abbreviation
by which we shall refer to it.

Elementary argument form

Of course, the “eligibility criterion” described above also allows us to
include in our proof the corresponding substitution instance of any
propositional form which is logically equivalent to one of the p;, i =
1,2,...,n.In other words, it allows us to include any proposition which
is equivalent to one already in the list. For instance if the proof contains

Table 2.2 Rules of inference for constructing formal proofs

Name of rule Premises Conclusion
Simplification (Simp) pAq p
Addition (Add) p pvq
Conjunction (Conj) P, q pPAq
Disjunctive syllogism (DS) pvaq,p q
Modus ponens (MP) p—>4q, p q
Modus tollens (MT) p—>4q, 7 p
Hypothetical syllogism (HS) p—>q, q—r por
Absorption (Abs) p—=q p—=>(pAg)
Constructive dilemma (CD) (p—=> )N —>s), qvs

pvr
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the proposition P A Q, then we may add, if we wish, the equivalent
proposition P v Q because of the logical equivalence of pAq and Vv §
(De Morgan’s law—see Section 2.4). We may also use logical equiv-
alence (but not logical implication) to substitute for any part of a
compound proposition. For instance, if our proof contains (RAS)V
(Q - R), we may add (RAS)V (R — Q). This is because the trans-
position rule states that p - g =4 — p, from which we can deduce
the logical equivalence of (3 A7)V (p — q) and (g Ar) Vv (F — p) and
hence the equivalence of the propositions (RAS) Vv (Q — R) and
(RAS)VR - Q—). To help us identify equivalent propositions, we
shall find it useful to refer to the replacement rules given in Section 2.4.

We summarise the essential features of the method of formal proof
below.

Method of formal proof

Given an argument with premises Py, P, ..., P, and conclusion
Q, a formal proof of the validity of the argument consists of a
list of propositions which terminates with Q. Every proposition
in the list must satisfy one or more of the following criteria:

(a) it is a premise of the argument;

(b) it canbe derived from one or more of the propositions already
included in the list using one of the rules of inference;

(c) it is equivalent to a proposition already included in the list
because one of the replacement rules guarantees the logical
equivalence of the appropriate underlying propositional
forms.

It is not always easy to see one’s way through a formal proof. Having
commenced the proof by listing the premises, it often helps to examine
the conclusion and to decide which propositions need to be added to
justify its inclusion. A justification for adding these propositions can
then be sought.

We now give some examples to illustrate how we can construct formal
proofs of the validity of simple arguments. We shall number each
proposition as it is added to the list so that we can refer to it. Also
we must provide a justification for the addition of each proposition.
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Examples 2.8
1. Construct a formal proof of the validity of the following argument:

Jack is in Paris only if Mary is in New York. Jack is in Paris and Fred
is in Rome. Therefore Mary is in New York.

Solution

We symbolise the component simple propositions:

J: Jack is in Paris.
M: Mary is in New York.
F: Fred is in Rome.

The premises of the argument are ] - M and /] A F. The conclusion
is M.

We commence our list with the premises:

1. - M (premise)
2. JAF (premise)

Note that if the proposition / could be added to the list then we could
add the conclusion by applying the modus ponens rule of inference to
] and ] — M. Is there any justification for | to be included? Yes—we
can apply the rule of simplification to the second premise | A F. The
following is the complete proof.

1. |- M (premise)
2. JAF (premise)
3. ] (2. Simp)
4 M (1, 3. MP)

Note that after each proposition we have indicated the proposition or
propositions from which it is derived and the rule which sanctions its
derivation.

2. Provide a formal proof of the validity of the following argument.

If Mark is correct then unemployment will rise and if Ann is correct
then there will be a hard winter. Ann is correct. Therefore unemploy-
ment will rise or there will be a hard winter or both.
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Solution
We symbolise the component simple propositions as follows:

M: Mark is correct.

U: Unemployment will rise.

A: Ann is correct.

H: There will be a hard winter.

The premises of the argument are: (M — U)A (A - H) and A.
The conclusion is: U v H.

We commence the formal proof, as usual, with the premises.

1. M ->U)AA—->H) (premise)
2. A (premise)

Note that we can add H to the list using modus ponens if we can first
add A — H. The conclusion then follows using the addition rule ot
inference (which allows us to deduce H v U from H) followed by the
commutation rule p v q =g v p. We can add A — H if we first reverse
the order of the conjuncts in the first premise. This is justified by the
commutation rule for conjunction, p A q =g A p. The complete proof is

as follows.

1. M ->UAA->H) (premise)
2. A (premise)
3. A-H)nM - U) (1. Com)
4. A—-H (3. Simp)
5. H (2, 4. MP)
6. HvU (5. Add)
7. UVvH (6. Comm)

For many arguments there are alternative formal proofs. The following
is also a formal proof for the argument above.

. M ->U)AA—-H) (premise)
2. A (premise)
3. AvM (2. Add)
4. MVA (3. Com)
5. UVvH (1, 4. CD)

3. Provide a formal proof of the validity of the following argument.

If he'd taken my advice or had his wits about him, he would have
sold his house and moved to the country. If he’d sold his house, Jenny
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would have bought it. Jenny didn’t buy his house. Therefore he didn’t
take my advice.

Solution
We symbolise the simple propositions as follows:

A: He took my advice.

W: He had his wits about him.

H: He sold his house.

C: He moved to the country.

J: Jenny bought his house.

The argument has premises: (Av W) — (H AC),H — ] and J.
The conclusion is A.

We commence the proof, as usual, with the premises.

1. AvW)—> (HAQC) (premise)
2. H-] (premise)
3. ] (premise)

The proof centres around the addition of H A C to the list which allows
us to deduce A v W using modus tollens. By De Morgan’s law p Vg =
pAgG sothat AVW and AA W are equivalent propositions. Having
added AA W we apply simplification and deduce the conclusion A.
Below is the complete proof.

1. (AvW)—> (HACQ) (premise)
2. H-] (premise)
3. T (premise)
4. H (2, 3. MT)
5. HvC (4. Add)

6. HAC (5. De M)
7. AvW (1, 6. MT)
8. AAW (7. De M)
9. A (8. Simp)

4. Prove the validity of the following argument.

If he didn't get the job then he didn’t become an lawyer. He didn’t get
the job and he took up golf. He became a lawyer or he didn’t take up
golf. Therefore he won the Ryder Cup.
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Solution

As usual we commence by symbolising the component simple propo-
sitions.

J: He got the job.

L: He became a lawyer.

G: He took up golf.

R: He won the Ryder Cup.

The premises are ] — L, ] AG, L v G and the conclusion is R.

At this stage (or earlier) we may be alerted to the fact that there is
something suspect about this argument. The simple proposition which
constitutes its conclusion is not a component of any premise. Presum-
ably, if we can provide a formal proof of the validity of this argument
then we could do so for any argument with the same premises, no
matter what its conclusion.

A formal proof is in fact quite easy to construct.

1. ] L (premise)
2. JAG (premise)
3. LvG (premise)
4. | (2. Simp)
5 L (1, 4. MP)
6. G 3, 5. DS)
7. GAJ (2. Com)

8. G (7. Simp)
9. GVR 8. Add)
10. R (6, 9. DS)

We now have further cause to view this argument with suspicion. We
have proved it to be valid but lines 6 and 8 indicate that the truth of
the premises allows us to infer the truth of the proposition G and also
that of its negation G.

The reason for this is that the premises are inconsistent—it is not
possible for all of them to be true simultaneously. This inconsistency
surfaces in the formal proof by supporting the inference of a proposition
together with its negation. Once this occurs, we can infer any
proposition whatsoever. We simply apply the addition rule of inference
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(as in line 9 above) followed by disjunctive syllogism (as in line 10).
As we demonstrated in Section 2.5, an argument with inconsistent
premises is always valid regardless of its conclusion.

Exercises 2.5

Provide formal proofs of the validity of each of the following argu-
ments.

1. I shall either play golf or I shall stay at home and read. Therefore
[ shall either play golf or stay at home.

2. The moon’s not a balloon only if I'm the Queen of Sheba. I'm not
the Queen of Sheba. Therefore the moon’s a balloon.

3. If the summer is hot then we won’t go on holiday in August. We'll
either go on holiday in August or we'll buy a new car (perhaps both).
Therefore, if the summer is hot, we'll buy a new car.

4. 1If she drinks wine or eats cheese, she gets a terrible headache.
She’s drinking wine and eating chocolates. Therefore she’ll get a terrible
headache.

5. People are happy if and only if they are charitable. Nobody is both
happy and charitable. Hence people are both unhappy and unchari-
table.

6. If the battery is flat or the car’s out of petrol then it won't start and
I shall be late for work. Either the car’s out of petrol or the battery is
flat. Therefore I shall be late for work.

7. You will win the game if and only if you follow the rules. If you
follow the rules then you are conventional. You are not conventional
and you are always successful. If you are always successful then you
will win the game. So you will win the game.

8. If roses are red and violets are blue then sugar is sweet and I love
you. Violets are blue and roses are red. Therefore sugar is sweet.

9. Either the project wasn’t a success or he didn’t invest his inheritance
or both. If he was sensible then he invested his inheritance. The project
was a success. If he wasn’t sensible and he didn’t invest his inheritance,
then he is ruined. Therefore he is ruined.
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10. Peter is either brave or brainy and also he is either brainy or bald.
Peter isn’t brainy. Therefore he is brave and bald.

11. The murder was committed either by A or by both B and C. If A
or B committed the murder then the victim was poisoned. Therefore
either C committed the murder or the victim was poisoned.

12. If it is useful then I shall keep it and if it is valuable then I shall
keep it. If it belonged to Ben then it is either useful or valuable. It
belonged to Ben. So I shall keep it.

13. If it doesn’t rain, then I'll go shopping. If I go shopping then, if
I don’t take an umbrella it’ll rain. If I go by car then I won't take an
umbrella. Hence it will rain or I won’t go by car.

14. If ghosts are a reality then there are spirits roaming the Earth and
if ghosts are not a reality then we do not fear the dark. Either we fear
the dark or we have no imagination. We do have an imagination and
ghosts are not a reality. Therefore there are spirits roaming the Earth.

2.7 The Method of Conditional Proof

We conclude this chapter by considering a method of formal proof
which is particularly useful for establishing the validity of valid argu-
ments which have a conclusion which can be expressed as a conditional
proposition. Since (as we shall see later) many mathematical theorems
can be expressed as conditionals, the ‘method of conditional proof” as
it is known, will be an important component of our theorem-proving
toolkit.

To justify the method, consider an argument form with premises
p1, P2, .., pn and conclusion g — r. This argument form is valid if and
only if (p1 Ap2 A--- Apy) = (@ — 1) is a tautology. Now the exporta-
tion replacement rule states that p — (g — r) = (p A q) — r so that the
validity condition

(pr ApP2A - Apn) = (g — 1) is a tautology
can be replaced by
(prAp2A - ApnAqg)— 1 is a tautology.

However, this condition is equivalent to saying that the argument form
with premises p1,p2,...,pn, 9 and conclusion r is valid. Therefore, if
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Theorem-proving toolkit

this argument form is valid then so is that with premises p1,pz, ..., ps
and conclusion q — r. Also, if the former argument form is invalid,
then so is the latter.

This suggests a method of formal proof for establishing the validity
of an argument with a conditional conclusion of the form Q — R. We
simply add the antecedent Q to the premises of the argument and
construct a formal proof (as described in Section 2.6) which terminates
with the consequent R. We can then add the conclusion of the argument
Q — R to the list of propositions in the proof. We shall justify this step
by referring to the method of conditional proof, abbreviated to CP.
We illustrate the method in the examples below.

Examples 2.9

1. Prove the validity of the following argument using the method of
conditional proof.

If we have a party then we'll invite Lana and Bob. If we invite Lana
or Bob then we must invite Jake. Therefore if we have a party then we
must invite Jake.

Solution

We symbolise the following simple propositions:



The Method of Conditional Proof 59

We have a party.
We'll invite Lana.
We'll invite Bob.

We must invite Jake.

Pl sl

The premises of the argument are: P - (LA B) and (LVv B) — ] and
the conclusion is the conditional P — J.

We commence the proof as usual by listing the two premises. We then
add the conclusion’s antecedent, P, and treat this as a further premise,
justifying this step by indicating that we are using the method of condi-
tional proof (CP). We then aim to produce a formal proof terminating
with ], the consequent of the conclusion. We are then justified in adding
P — ], the conclusion of the argument, to the proof. The full proof is
given below.

1. P—-> (LAB) (premise)
2. (LAB)—] (premise)
3. P (CP)

4. LAB (1, 3. MP)
5 L (4. Simp)
6. LAB (5. Add)
7. ] (2, 6. MP)
8. P—] (3-7.CP)

Note that the conclusion P — ] is justified by the sequence of propo-
sitions starting at line 3 where the antecedent was added to the list of
premises and finishing at line 7 where we infer the consequent J.

2. Use the method of conditional proof to establish the validity of the
following argument.

If we invite Lana then Jake will sulk, and if we invite Bob then Alice
will leave. So if we invite Lana and Bob then Jake will sulk and Alice
will leave.

Solution

We define the following simple propositions:

L: We invite Lana.
J: Jake will sulk.
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B: We invite Bob.
A:  Alice will leave.

The premise of the argument is: (L — J) A (B — A) and the conclusion
is(LAB)— (J AA).

Having commenced the proof with the premise, we add the antecedent
of the conclusion L A B. Once we have inferred the consequent | A A,
we can then use the method of conditional proof to justify the addition
of the conclusion (L A B) — (J A A). The full proof is as follows.

1. L->])AB - A) (premise)
2. LAB (CP)
3. L—] (1. Simp)
4, B->AArL->]) (1. Com)
5. B> A (4. Simp)
6. L (2. Simp)
7. ] (3, 6. MP)
8. BAL (2. Com)
9. B (8. Simp)
10. A (5, 9. MP)
11. JAA (7, 10. Conyj)
12. (LAB)— (J AA) (2-11. CP)

3. Using the method of conditional proof, provide a formal proof of
the validity of the following argument.

If I don’t go on holiday or I sell some shares then I'll buy a new car and
save some money. Therefore I'll go on holiday or I'll buy a new car.

Solution

We symbolise the component simple propositions of the argument as
follows:

H: Tl go on holiday.

S: Tl sell some shares.
C: TIll buy a new car.
M: Tl save some money.

The argument has premise (H v S) — (C A M) and conclusion H v C.
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It is not obvious that the method of conditional proof can be applied
to this argument since its conclusion is not a conditional. However, it
is equivalent to the conditional H — C. The justification for this is:

pva=pvq (DN)
=p—q (Impl).

So, if we wish to, we may apply the method of conditional proof to
infer H — C and then apply the two appropriate replacement rules to
obtain H v C. The full proof is given below.

1. HvS)— (CAM) (premise)
2. H (CP)

3. HvS 2. Add)
4. CAM (1, 3. MP)
5 C (4. Simp)
6. H—C (2-5. CP)
7. HvC (6. Impl)
8. HvC (7. DN)

The method of conditional proof provides an alternative for
constructing a formal proof for valid arguments with conclusions which
can be expressed as conditionals. However, although its use will often
result in a shorter proof for such arguments, this is not invariably
the case and the method described in Section 2.6 may sometimes be
preferable.

Exercises 2.6

Provide a formal proof of the validity of each of the following argu-
ments using (a) the method of conditional proof and (b) the method of
formal proof described in Section 2.6.

1. If you don’t confront him then you're a coward. Therefore if you
don’t confront him then you’re a coward or a fool.

2. If the Conservatives win the election then taxes will rise and there
will be mass unemployment. If taxes rise and there is mass unemploy-
ment then I shall stand for parliament. I won’t stand for parliament.
Therefore if the Conservatives win the election then taxes will rise.
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3. If you are happy then you are fortunate. So if you are happy then
you are happy and fortunate.

4. If France or Brazil wins the World Cup then we’ll drink champagne
and dance all night. Hence if France wins the World Cup then we'll
drink champagne.

5. Either you mow the lawn and clean the car or you'll get no pocket
money. If you get no pocket money then you’ll have to stay at home
this evening. Therefore, either you clean the car or you’ll have to stay
at home this evening.

6. If Steve robbed the bank then he’ll leave the country and we’ll
never see him again. If we see Steve again then he is not Al's friend.
Therefore if Steve robbed the bank or he is Al’s friend then we’ll never
see him again.



3 Predicate Logic

3.1 Introduction

There are certain types of argument which cannot be analysed using the
techniques developed in Chapter 2. Consider, for instance: ‘Al athletes
are physically fit. Dan is an athlete. Therefore Dan is physically fit.’
Identifying the simple propositions of which the argument is composed
gives:

A:  All athletes are physically fit.
D: Dan is an athlete.
P: Dan is physically fit.

The argument has premises A and D and conclusion P. The under-
lying argument form therefore has propositional variables p and q as
premises and another variable r as its conclusion. The argument is
clearly valid. However, truth table analysis of the associated argument
form would be of no use in proving this to be the case and, with
this symbolisation of premises and conclusion, any attempt at a formal
proof of validity would be equally unsuccessful.

The validity of the argument above rests on the fact that the first propo-
sition states that all members of the class of individuals having the
property of being athletes also possess the property of being physically
fit. Therefore, from knowing that a particular individual (for example,
Dan) belongs to the class of athletes, we may deduce that he or she
is physically fit. The validity of the argument does not depend upon
the structure of the premises and conclusion in the same way as the
arguments considered in Chapter 2. What is important is the common
content of its component simple propositions. The problem with our
previous method of denoting simple propositions is that it provides
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no means of showing that propositions refer to the same property.
Two propositions as similar as ‘Dan is an athlete’ and ‘Sheila is an
athlete’ must be denoted by, say, D and S. Our notation has no means
of conveying the fact that both propositions refer to the property of
‘being an athlete’.

A proposition of the form ‘Dan is an athlete’ may be viewed as having
two components. One is an object or individual (in this case ‘Dan’) and
the other is a property which that object or individual is said to possess.
We refer to that property as a predicate so that the predicate in this
example is ‘is an athlete’. We shall denote objects and individuals using
lower case letters—usually the first letter of the name of that object or
individual. For example:

d: Dan.
s:  Sheila.

Predicates are denoted using upper case letters:

A: is an athlete.
P: is physically fit.

The proposition ‘Dan is an athlete’ is then denoted by Ad. Note that
the letter denoting the predicate is written to the left of that denoting
the object or individual said to possess that particular attribute. Other
examples of propositions involving the individuals ‘Dan” and ‘Sheila’
and the predicates ‘is an athlete” and ‘is physically fit" are as follows:

As: Sheila is an athlete.
Pd: Dan is physically fit.
Ps: Sheila is physically fit.

Of course these propositions may be negated or conjoined using
logical connectives to form compound propositions in the same way as
described in Chapter 2. Hence we may have:

—As: Sheila is not an athlete.

(Note that we tend to use the symbol — to negate propositions expressed
in predicate form. The expression As is perfectly acceptable as the
negation of As but — tends to be more convenient for negating the nota-
tionally more complicated expressions which tend to occur in predicate

logic.)
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Examples of compound propositions are:

As A Ad: Sheila is an athlete and Dan is an athlete (or Sheila
and Dan are athletes).
—Pd — —Ad: If Dan is not physically fit then he is not an athlete.

To form these propositions, we combined a predicate with the name
of an object or individual. However, we may also form expressions
such as:

Ax: x is an athlete.
Py: y is physically fit.

Here the letters x and y are variables. Each acts as a place-marker
to indicate where the name of an object or individual may be substi-
tuted. Expressions such as Ax and Py are not propositions since they
cannot be declared true or false. They are called propositional func-
tions. A propositional function is converted to a proposition once a
specific name is substituted for the variable. We have an analogous
situation in such algebraic expressions as 2x > 7. As it stands, this is
neither true nor false and is not therefore a proposition. If we substitute
6 for the variable x, we obtain the (true) proposition 2 x 6 > 7.

Propositional functions can be negated in the same way as propositions
so that ~Ax and —Py denote the propositional functions ‘x is not an
athlete’ and ‘y is not physically fit’ respectively. They can also be joined
using logical connectives so that we can form such expressions as:

Ax A Py: x is an athlete and y is physically fit.
Ax — Px: If x is an athlete then x is physically fit.

Note that the first of these is a propositional function of the two vari-
ables x and y. We may therefore substitute the names of two different
individuals in each of the component propositional functions Ax and
Py. (We may also substitute the name of the same individual for x and
y.) The second expression is a propositional function of the single vari-
able x and the same individual must be substituted for x throughout
the expression.

3.2 Quantification of Propositional Functions

For the argument at the beginning of the previous section, we can now
symbolise the second premise ‘Dan is an athlete’ and the conclusion
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‘Dan is physically fit'. However, as yet, we have no means of symbol-
ising the first premise ‘All athletes are physically fit". This proposition
asserts that anyone who is an athlete has the property of being phys-
ically fit. We can therefore paraphrase it as follows: ‘For all x, if x is
an athlete then x is physically fit". Using the notation defined in the
previous section we denote ‘x is an athlete’ by Ax and ‘x is physi-
cally fit" by Px. We denote ‘for all x” (or ‘for every x’) by Vx and the
proposition ‘All athletes are physically fit" is denoted by Vx(Ax — Px).
The symbol V is called the universal quantifier. Note that, since the
expression Vx (Ax — Px) can be declared true or false, it does denote a
proposition even though it contains the variable x. The quantified vari-
able ¥x converts the propositional function Ax — Px into a proposition.

We shall also require a means of symbolising propositions such as
‘Some athletes are physically fit'. This proposition asserts that there
are certain individuals having the property of ‘being an athlete” who
also have the property of ‘being physically fit". We can therefore para-
phrase this as follows: ‘There exists at least one x such that x is an
athlete and x is physically fit". If we denote “there exists at least one x’
by 3x, then the proposition may be symbolised by 3x(Ax A Px). The
symbol 3 is called the existential quantifier and the quantified variable
dx converts the propositional function ‘x is an athlete and x is phys-
ically fit" (denoted by Ax A Px) to the proposition ‘Some athletes are
physically fit’".

Examples 3.1
Suppose that predicates and individuals are defined as follows:

should be shunned,

is prone to unruly behaviour,
is a friend of Peter’s,

is a friend of mine,

Ann,
David.

asRvSo

Symbolise the following:

(i) Annis a friend of Peter’s and David is a friend of mine.
(i) Some of Peter’s friends are prone to unruly behaviour.

(iii) Anyone who is a friend of Peter’s is not a friend of mine.
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(iv) If Annis a friend of Peter’s then she is prone to unruly behaviour
and should be shunned.

(v) Some of my friends are friends of Peter’s and some of Peter’s
friends are prone to unruly behaviour.

(vi) If all Peter’s friends are prone to unruly behaviour, then some of
his friends should be shunned.

Solution

(i) This is the conjunction of the two simple propositions “Ann is a
friend of Peter’s’ and ‘David is a friend of mine’ which are denoted by
Pa and Md respectively. The complete proposition is therefore symbol-
ised by Pa A Md.

(ii) This proposition may be paraphrased: ‘There exists at least one x
where x is a friend of Peter’s and x is prone to unruly behaviour’. It is
therefore symbolised using the existential quantifier thus: 3x (Px A Ux).

(iii) This proposition states that ‘For every x, if x is a friend of Peter’s
then x is not a friend of mine’. It can therefore be symbolised by
Vx(Px — —Mx).

(iv) This is a conditional proposition with antecedent “‘Ann is a friend
of Peter’s” and consequent which is the conjunction of the two proposi-
tions ‘Ann is prone to unruly behaviour’ and ‘Ann should be shunned’.
We can therefore symbolise it thus: Pa — (Ua A Sa).

(v) This is the conjunction of two propositions. The first conjunct is
‘Some of my friends are friends of Peter’s” which can be symbolised
by 3x(Mx A Px). The second conjunct is ‘Some of Peter’s friends are
prone to unruly behaviour’ symbolised by 3x (Px A Ux). The complete
proposition is therefore given by: 3x (Mx A Px) A 3x(Px A Ux).

Note that, although we use the same variable in each of the conjuncts,
this does not necessarily mean that there is any individual that satisfies
both of the properties Mx A Px and Px A Ux. Each of the conjunctive
components guarantees the existence of an individual with the given
property but there is no implication that an individual ¢ for which
Mc A Pc is a true proposition is also such that Pc A Uc is a true propo-
sition. For this reason, we could use different variables within each of
the two conjuncts, e.g. 3x (Mx A Px) A Jy(Py A Uy).

(vi) This is a conditional proposition with antecedent ‘All Peter’s
friends are prone to unruly behaviour’ and consequent ‘Some of Peter’s
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friends should be shunned’. The symbolisation is therefore:
Vx(Px — Ux) — 3Ix(Px A Sx).

As with example (v) above, we may use different variables within the
antecedent and consequent and write this as

¥x(Px — Ux) — 3y (Py A Sy).

Universe of discourse

There are often situations where our discussion is restricted to a partic-
ular set of objects or individuals. For instance, in the propositional
functions Ax (x is an athlete) and Px (x is physically fit) referred to
in the sections above, it is understood that, when substituting for the
variable x, we cannot choose the name of a fish or a piece of furniture.
The domain of the variable x is restricted to people. Given a propo-
sitional function Fx, the universe of discourse for the variable x is
defined to be the set from which we may select an object or individual
to substitute for x. Often this universe is unstated when it is obvious
from the nature of the propositional functions. However, defining a
universe of discourse can often simplify the symbolisation of quanti-
fied propositional functions. For example, suppose we are concerned
with investigating the validity of an argument wherein the premises
and conclusion are propositions concerning attributes of athletes, such
as: H: eats a healthy diet; T: trains daily. If we define the universe of
discourse as ‘athletes” then it can be assumed that any variables can
be replaced only by specific athletes. In this case the proposition “All
athletes eat a healthy diet’ can be symbolised by Vx Hx rather than
by ¥x(Ax — Hx), since there is now no need to specify that ‘x is an
athlete’. The proposition Vx Hx simply says that all x’s in the universe
of discourse (i.e. athletes) eat healthy diets. Similarly, with the same
universe defined, the proposition “There are athletes who train daily
and don't eat a healthy diet’ can be symbolised 3x (Tx A —Hx).

Whilst we are sometimes careless about defining the universe of
discourse, it is important to realise that the truth value of a proposition
may depend critically on this universe. For instance consider:

G: is greater than 0,
E: is even.
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A proposition such as Vx Gx is true if the universe of discourse is
the positive integers but it is false if the universe is the real numbers.
Similarly 3x (Ex A Gx) would be false in such universes as the negative
integers or the odd integers but would be true if the universe were
the real numbers or the integers. These examples serve to highlight the
need to ensure that, for quantified propositional functions, there is no
ambiguity concerning the underlying universe of discourse.

Negation of propositions involving quantifiers

At first glance the proposition ‘No athletes are physically fit" might
suggest the negation of Vx Px (where the universe of discourse
is ‘athletes’), i.e. —Vx Px. However, recall that the negation of a
proposition must be true in all circumstances that the proposition is
false and false whenever that proposition is true. Therefore the negation
of ‘All athletes are physically fit" is not ‘No athletes are physically
fit'’ since a state of affairs where, for instance, just one athlete is not
physically fit renders both propositions false. The negation of ‘All
athletes are physically fit’ is “There is at least one athlete who is not
physically fit". Hence the proposition which is equivalent to —=Vx Px (in
the sense that it makes the same statement) is 3x—Px.

The negation of the existentially quantified proposition ‘Some athletes
are physically fit" is the proposition which states that it is not the case
that some athletes are physically fit, i.e. ‘No athletes are physically fit’.
We can paraphrase this ‘For every x in the universe, x is not physically
fit' and symbolise it Vx—Px. Hence —3x Px is equivalent to Yx—Px.

These two rules are known as quantification denial (abbreviated to
QD) and are summarised below.

Rules of quantification denial (QD)

Suppose that a universe of discourse is defined for the variable x.
Then, for any propositional function Fx:

—Vx Fx is equivalent to 3x—Fx

and —3x Fx is equivalent to Vx—Fx.




70

Predicate Logic

Exercises 3.1

1. Assume that the replacement rules (see page 37) apply to propo-
sitional functions as well as to propositional forms. Use these and the
quantification denial rules above to show that:

—Vx(Fx — Gx) is equivalent to 3x (Fx A —~Gx)

and —3x(Fx A Gx) is equivalent to Vx (Fx — —Gx).

2. Suppose that the following predicates and individuals are defined:

p: Peter,

f: Peter’s father,

P: lives in Peru,

D: drives a Mercedes,

C: is a company director.

Symbolise the following:

(1) Peter lives in Peru and his father drives a Mercedes.
(ii)  If Peter drives a Mercedes then his father is a company director.

(ili)  Peter lives in Peru or he drives a Mercedes and his father is not
a company director.

(iv)  Everyone who lives in Peru drives a Mercedes.

(v)  Everyone who lives in Peru drives a Mercedes or is a company
director.

vi No-one who isn’t a company director drives a Mercedes.
y

(vil) Some people who live in Peru drive a Mercedes but are not
company directors.

(viii) If no-one living in Peru drives a Mercedes then Peter doesn’t
live in Peru and his father is not a company director.

3. Suppose that the following predicates are defined on the universe
of discourse ‘people’:

D: 1is dishonest,

S: wvalues success,

T: is to be trusted,

C: cannot make decisions.
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Express the following as idiomatic English sentences.

i) Vx(Dx — =Tx)

(ii) Ix[(-Dx v =Cx) A =Tx]

(ili) Vx[Sx — (=Dx A Tx)]

(iv) [Vx(Sx - Dx)] - (Ix—Tx)

v) [3x(Dx A Sx)] — (—3x Tx)

(vi)  Vx[Cx — (Dx v —=Tx)]

(vii)) [-Vx(Sx — Tx)] A[3x(Sx A =Dx)]
(viii) Vx([(Dx v =Tx) A Cx] - —=Sx)

4. Suppose that the following predicates are defined:

G: is greater than 15,
T: is an integer multiple of 3,
E: is a perfect square,
N: is an integer multiple of 9.

State the truth value of each of the following propositions for each of
the following universes of discourse:

(@) the real numbers;

(b) the positive integers;

(c) the negative integers;

(d) integer multiples of 9 (ie. ... —18,-9,0,9,18,...).

(i) VYx(Nx - Gx)

(i) 3Ix(Gx A—-Ex)

(iii)) Vx(Nx — Tx)

(iv) Vx[Nx — (Tx A Gx)]

(v) 3xTx — 3Ix Nx

(vi) [-3Ix(Gx ATx)] A (—=Vx Ex)

3.3 Two-place Predicates

The predicate ‘is an athlete’ is an example of a one-place predicate. To
convert a one-place predicate to a proposition requires the name of just
one member of the universe of discourse or quantification over a single
variable. There are predicates which require the names of more than
one object or individual to convert them to propositions. Consider, for
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example, ‘is greater than’. To form a proposition from this predicate we
need to supply the names of two items, one from each of two universes
of discourse. If we define both universes to be the positive integers,
then we can form such propositions as ‘3 is greater than 17 and ‘9
is greater than 9. The predicate ‘is greater than’ is an example of a
two-place predicate—it requires the names of two objects or individuals
to convert it to a proposition. Two-place predicates are often referred to
as ‘relational predicates’ because they express a relation between two
components.

We symbolise propositions formed from two-place predicates in a
similar way to the symbolisation of those using one-place predicates.
For example, if we denote ‘is frightened of’ by F and define d and s
as in Section 3.1, then Fds denotes ‘Dan is frightened of Sheila’. Note
that the order of the letters denoting the individuals is important. The
proposition denoted by Fsd is ‘Sheila is frightened of Dan” which is not
the same proposition. There are predicates where reversing the order of
these letters results in the same proposition. For example, if S denotes
‘is the same age as’, then Ssd and Sds are equivalent propositions in
the sense that they always have the same truth value.

We can form propositional functions from two-place predicates in the
same way as from one-place predicates. For example, if O denotes ‘is
older than’, Oxy denotes the propositional function ‘x is older than y’.
Of course, a propositional function resulting from a two-place predi-
cate will contain two variables, each with an underlying universe of
discourse. These two universes may or may not be the same. To form
a proposition, the name of an object or individual (chosen from the
appropriate universe) may be substituted for each variable. Substituting
for only one variable does not result in a proposition. For example, if
Oxy denotes the propositional function defined above and t denotes
‘Tom’, the expression Oty denotes ‘Tom is older than y’. This is a propo-
sitional function of the single variable y.

Two-variable propositional functions can be quantified. For instance,
assuming a universe of discourse of people for both x and y, we can
write Vx Oxy. This denotes ‘Everyone is older than y’. But note that this
is not a proposition since it still contains the variable y. It is therefore a
propositional function of y which can be converted to a proposition in
the usual way, either by substituting for y or by further quantification.
If we substitute t for y, we obtain the proposition ‘Everyone is older
than Tom’ denoted by Vx Oxt.
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The conversion of a two-variable propositional function to a proposi-
tion by quantification requires the use of two quantifiers. For instance,
vxV¥y Oxy may be read as ‘For all x and for all y, x is older than y".
Put into idiomatic English, this is equivalent to ‘Everyone is older than
everyone’. This is a proposition since it clearly has the truth value
‘false’.

There are eight propositions which can be formed by quantifying a
two-variable propositional function. For the propositional function Lxy
‘x likes y” and a universe of ‘people’ for each variable, these are:

1. VxVyLxy 2. VYyVx Lxy
3. Vx3dyLxy 4. 3JyVx Lxy
5. 3IxVyLxy 6. Vy3xLxy
7. 3x3y Lxy 8. 3Jy3Ix Lxy

These denote the following propositions:

Everyone likes everyone.

For everyone, everyone likes them (or Everyone is liked by
everyone).

Everyone likes someone.
There is someone who is liked by everyone.
There is someone who likes everyone.

AL

For everyone, there is someone who likes them (or Everyone is
liked by someone).

7. There is someone who likes someone.
8. There is someone who is liked by someone.

Clearly 1 and 2 denote equivalent propositions, as do 7 and 8. However,
although 3 and 4 contain the same quantifiers attached to the same vari-
able, the propositions are not equivalent. Proposition 3 claims that, for
every individual in the universe, there is someone whom that indi-
vidual likes. If this proposition is true then, if we select Tom from the
universe, we shall find that he likes Jim for example (amongst others
perhaps). Similarly, Jane likes Ben, etc. However, proposition 4 claims
that there is one particularly popular individual whom everyone likes.
If this is a true proposition, then we shall be able to identify one person
(at least), denoted by a, say, such that Vx Lxa is a true proposition, i.e.
every x in the universe likes individual a.
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Propositions 5 and 6 are also not equivalent. If proposition 5 is true,
then we shall be able to identify at least one generous spirited indi-
vidual in the universe who likes everyone. Proposition 6, on the other
hand, claims that everyone is liked by someone but, unlike 5, it does
not propose that the ‘someone’ is the same individual for everyone in
the universe.

Propositions formed from two-place predicates can, of course, be
negated in the same way as any other proposition. For example, if
we define:

Txy: x is taller than y,
a: Anne,
b: Brett,

then —Tab denotes ‘Anne is not taller than Brett’. Examples of the nega-
tion of quantified two-variable propositional functions are:

—-V¥xVy Txy: It is not the case that everyone is taller than
everyone.

vx—3y Txy: For all x, there does not exist a y such that x is
taller than y (i.e. every individual is not taller than
any other individual).

Jy—V¥x Txy: There is a y such that not everyone is taller than y
(i.e. there is an individual such that not everyone is
taller than that individual).

We can use logical connectives between propositions and propositional
functions formed from two-place predicates. The following examples
show how we symbolise more complex propositions using connectives,
quantifiers and one- and two-place predicates.

Examples 3.2
1. We define the following;:

Bxy: x belongs to y a: Anna
Dxy: x detests y b: Barry
Cx: xisacat ¢: Charlie
Fx: x is ferocious
Px: x is a person



Two-place Predicates 75

Write the propositions symbolised below as idiomatic English
sentences.

(i) Cb A Fb A Bbc

(i)  Vx(Cx — Dax)

(iii)  3x(Cx A Fx A Bxc)

(iv)  VxVy[(Cx A Fx) — (Py — Dyx)]
v) Vx[Cx — Jy(Py A Bxy)]

(vi)  VYx3y[Cx — (Py A Bxy)]

(vii) 3IxVYy(Cx A Fx A Py A Dyx)

(viiil) —3x(Cx A Bxa) A Vx(Fx — Dax)

Solution

(i) This is the conjunction of the three propositions ‘Barry is a cat’,
‘Barry is ferocious’ and ‘Barry belongs to Charlie’. We can express this
thus: ‘Barry is a ferocious cat who belongs to Charlie’.

(ii) The ‘literal’ translation of this proposition is ‘For all x, if x is a
cat, then Anna detests x’. The idiomatic version would be ‘Anna detests
(all) cats’.

(iii) This proposition states that there exists an x which has all the
three properties ‘is a cat’, “is ferocious’ and ‘belongs to Charlie’. The
proposition symbolised is therefore ‘There is a ferocious cat which
belongs to Charlie’ or ‘Charlie has a ferocious cat'.

(iv) Literally: ‘For all x and for all y, if x is a cat and x is ferocious
then, if y is a person, then y detests x’. Idiomatically: ‘Everyone detests
(all) ferocious cats’.

(v) Literally: ‘For all x, if x is a cat then there is a y such that y
is a person and x belongs to y’. Idiomatically: ‘Every cat belongs to
someone’.

(vi) This is an alternative way of writing proposition (v). Note that
the existential quantifier applies to y and therefore has no effect on
the propositional function Cx. It governs the propositional function
Py A Bxy and must therefore be written before this expression although
not necessarily immediately before it.

(vii) Literally: ‘There exists an x for all y such that x is a cat, x
is ferocious, y is a person and y detests x’. Idiomatically: ‘There is
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a ferocious cat which everyone detests’. Note that with the order of
the quantified variables reversed (i.e. Vy3x(Cx A Fx A Py A Dyx)) the
proposition would be ‘For everyone, there is a ferocious cat which he
or she detests’. The difference between these two is that the first claims
that everyone detests one particular ferocious cat whilst the second
allows the detested cat to be a different one for each person.

(viii) This is the conjunction of the two propositions ‘There does not
exist a cat which belongs to Anna’ and ‘Anna detests all ferocious
things’. It can therefore be expressed as ‘No cat belongs to Anna and
Anna detests anything which is ferocious’.

2. We define the following where the universe of discourse for each
variable is ‘people’:

Mxy: x is married to y,
Fxy: x is a friend of y,
Yxy: x is younger than y,

p: Paul,
¢: Esra.

Symbolise the following:

(i) Paul is married to Esra.

(i1) Esra is everyone’s friend.

(iii)  There is someone who is everyone’s friend.

(iv)  Everyone has a friend.

(v) Everyone has a friend who is younger than themselves.

(vi)  Paul is unmarried and has no friends.

(vil) Everyone who is married has a friend.

(viii) Everyone who is married is married to someone who is their

friend.
(ix)  No-one who is younger than Esra is married.

Solution

(i) To form this proposition we simply substitute ‘Paul’ for x and
‘Esra’ for y in the propositional function ‘x is married to y’. This is
symbolised Mpe.

(ii) Fey symbolises the propositional function ‘Esra is a friend of y’.
The proposition given states that, for any individual y, Esra is y's
friend. It is therefore symbolised Vy Fey.
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(iii) This proposition is the same as that in (ii) but with ‘Esra’ replaced
by an unspecified individual. It may be paraphrased ‘There exists an
x such that, for all y, x is the friend of y" and is symbolised IxVy Fxy.

(iv) Note that proposition (iii) claims that there is one particularly
popular individual whom everyone has as their friend. Proposition (iv)
similarly states that everyone has a friend but, unlike (iii), it does not
state that this friend is the same individual for every person. It can be
paraphrased ‘For every x there exists a y such that y is a friend of x".
It can therefore be symbolised ¥x3y Fyx (or Yy3x Fxy).

(v) This proposition, like proposition (iv), states that everyone has
a friend but further qualifies the friend as being younger. A possible
paraphrase is ‘For every x there exists a y such that y is a friend of
x and y is younger than x’. We symbolise this ¥Yx3y(Fyx A Yyx) (or
Vy3dx (Fxy A Yxy)).

(vi) This proposition states that there does not exist an individual
to whom Paul is married and also that there does not exist an
individual who is a friend of Paul’s. This is symbolised —3x Mpx A
—3x Fxp. We could, of course, use different variables in each of
the propositional functions. (However, note that the following is
not a correct symbolisation of the proposition: —=3x (Mpx A Fxp). This
proposition states that there does not exist an individual who is both
married to Paul and also a friend of Paul.)

(vii) The first stage might be to paraphrase this ‘For every x, if x
is married then x has a friend’. The phrase ‘x is married’ can be
symbolised by 3y Mxy and ‘x has a friend’ by 3y Fyx. The complete
proposition can therefore be written: Vx(3y Mxy — 3y Fyx). Note that
the use of the same variable in each of the two quantified parts of the
conditional does not imply that the spouse and the friend are the same
individual. We could, if we liked, use different variables and symbolise
the proposition: Vx (Iy Mxy — 3z Fzx).

(viii) Like proposition (vii) this states that everyone who is married
has a friend but goes further to claim that the spouse and the friend
are one and the same individual. A paraphrase is ‘For all x, if there is
a y such that x is married to y then y is a friend of x’. In symbols this
is: VxVy (Mxy — Fyx).

(ix) This states that, for all x, if x is younger than Esra, then there is
no-one to whom x is married. In symbols: ¥x(Yxe — —3y Mxy).
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Exercises 3.2

1. The following propositional functions are defined. The universe of
discourse for x is ‘students’ and for y it is ‘courses’.

Txy: x takesy,
Exy: x enjoysy,
Pxy: x passesy.

We also define:

¢: Carl,
s: statistics.

Symbolise the following:

(i) Carl passes every course that he takes.

(ii)  Every student who takes statistics enjoys it.

(ili) Some students who take statistics do not pass.

(iv)  There are students who take courses which they do not enjoy.
(v)  There are students who pass every course that they take.

(vi) If Carl passes statistics then any student who takes statistics
passes.

(vii) If all students take courses which they don’t enjoy then no
student passes any course.

If the propositional functions are defined as above but the universes
of discourse for x and y are not defined, symbolise each of the
propositions (i)-(vii) using two further propositional functions:

Sx: x is a student,
Cx: x is a course.

2. The following propositional functions are defined:

Sx: x is a sports car,
Mx: x is a motorcycle,
Exy: x is more expensive than y,
Fxy: x is more economical than y,
Lxy: x is slower than y.
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Write the following as idiomatic English sentences.

(i) —3Ix(Sx A Mx)

(i) VxVy(Exy — Lyx)

(iii) VxVy[(Mx A Sy) — Fxy]
(iv) Vvx[Sx — Jy(My A Exy)]
(v)  3IxVy(Sx AMy A Lxy)

3. Symbolise each of the following defining carefully all predicates.
The universe of discourse for each variable is ‘people’.

(i) People who are rich are not always happy.

(i)  Someone shouted and everyone clapped and sang.
(iii) Everyone who went to the auction bought something.
(iv)  No-one likes people who are rude.

(v)  No-one spends all their time working.

(vi)  Some people never give anything to anyone.

(vii) Everyone applauds someone who is courageous.
(viii) He who respects no-one has no friends.

3.4 Validation of Arguments in Predicate Logic

Having considered how we symbolise propositions using the notation
of predicate logic, we now look at how we might establish the
validity of arguments whose premises and conclusion are expressed
in this notation. The important difference between these arguments
and those considered in the last chapter is that some or all of
the propositions of which they are composed may be quantified
propositional functions. The problem with constructing formal proofs
of the validity of such arguments is that our rules of inference and
substitution rules are of very limited use when applied to propositions
containing quantifiers because they allow us to manipulate only
complete quantified propositions. What we need therefore are some
rules which will enable us to obtain propositions without quantifiers
whose truth follows from true quantified propositional functions.
There are two such rules. The first applies to universally quantified
propositional functions and is referred to as the ‘rule of universal
instantiation’. The second, called the ‘rule of existential instantiation’
applies to existentially quantified propositional functions.
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Rule of universal instantiation (UI)

Given any propositional function Fx, from the truth of Vx Fx, we
can infer the truth of Fa for any individual g in the universe of
discourse.

Rule of existential instantiation (EI)

Given any propositional function Fx, from the truth of 3x Fx, we
can infer that there is at least one individual a4 in the universe of
discourse for which Fa is true.

It is important to appreciate the difference between these two rules.
Suppose that we have propositional functions defined as follows on
the universe of ‘people’:

Sx: x is a student,
Tx: x is over twenty-one.

Suppose that t denotes ‘Tom’, a particular member of the universe of
discourse. From the truth of ‘Everyone is a student’ (denoted by ¥x Sx),
we can certainly deduce that St (i.e. “Tom is a student’) denotes a true
proposition. However, given that ‘Someone is over twenty-one’, we
cannot infer that Tom falls into that category. Hence the truth of Tt
does not follow from the truth of 3x Tx. All that the latter proposition
guarantees is that there is a subset of the universe containing at least
one individual a for which Ta is true. However, the subset may or may
not contain ‘Tom’.

The two instantiation rules allow us to deduce true propositions, free
of quantifiers, from premises which are in the form of quantified
propositional functions. We also need rules which will allow us to
deduce the truth of a conclusion containing a quantifier. Again there
are two rules, one for each type of quantifier.

Rule of universal generalisation (UG)

If the proposition Fa is true for any arbitrary member a of the
universe of discourse, then Vx Fx is true.
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Rule of existential generalisation (EG)

If Fa is true for some particular individual a in the universe of
discourse, then 3x Fx is true.

The word “arbitrary’ in the rule of universal generalisation may require
some clarification. An arbitrary member of the universe of discourse
is one having no special attributes to distinguish it from any other
member, ie. its only assumed attributes are those shared by all
members of the universe. The rule UG states that, if Fa is true for an
arbitrarily selected individual, then it must be true for every member
of the universe.

These four rules of inference allow us to infer true propositions without
quantifiers from true quantified propositional functions and vice versa.
We summarise this below.

Ul
—® [ where g is an arbitrary

Vx F
x e -—— member of the universe
UG
EI
I Fx —— ™ Fa wherea is an particular

-@————— member of the universe
EG

Adding these four extra rules gives us all the tools necessary to validate
arguments expressed in predicate notation. We first use the instantiation
rules to move from quantified premises to unquantified propositions.
We then apply rules of inference and substitution rules to these to infer
other propositions in the chain which leads towards the argument’s
conclusion. If the conclusion is a quantified propositional function then
we can apply the appropriate rule of generalisation to obtain it from
the final proposition in the chain. We demonstrate this in the examples
below.

Examples 3.3
1. Prove the validity of the following argument:

All athletes are physically fit. Dan is an athlete. Therefore Dan is phys-
ically fit.
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Solution

We denote the following propositional functions:

Ax: x is an athlete,
Px: x is physically fit,

and also
d: Dan.

The premises are Vx(Ax — Px) and Ad. The conclusion is Pd. We
commence our formal proof, as usual, with the premises.

1. Vx(Ax — Px) (premise)
2. Ad (premise)

From the premise ¥x(Ax — Px) we can infer (by applying universal
instantiation) the proposition Ad — Pd. The universal quantifier
guarantees that we can substitute any member of the universe for x
and obtain a true proposition. We now have:

1. Vx(Ax — Px) (premise)
2. Ad (premise)
3. Ad— Pd (1. UI)

By applying modus ponens to 2 and 3 we obtain the conclusion. The
full proof is therefore:

1. Vx(Ax — Px) (premise)
2. Ad (premise)
3. Ad— Pd (1. UI)

4. Pd (2, 3. MP)

2. Construct a formal proof of the validity of the following argument:

All elephants are mammals. Some elephants are playful. Therefore
some mammals are playful.

Solution
We define the following;:
Ex: x is an elephant

Mx: x is a mammal
Px: x is playful
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The argument has premises Vx(Ex — Mx), 3x (Ex A Px) and conclusion
3x (Px A Mx). Now we can apply universal instantiation to the first
premise and existential instantiation to the second but we must be
careful. If we apply U first we obtain Ez — Ma where g is an
arbitrary member of the universe. However, we cannot assume that
this particular individual a is also one for which Ea A Pa is a true
proposition. The premise 3x (Ex A Px) guarantees that there is at least
one member of the universe having both the properties ‘is an elephant’
and ‘is playful’ but we cannot assume that a falls into this category.

We get around this problem by applying EI first. The premise 3x (Ex A
Px) allows us to infer Ea A Pa for some member g of the universe. The
premise Vx(Ex — Mx) implies that we can substitute any individual
for the variable in Ex — Mx and obtain a true proposition. In particular
we can substitute 4 and obtain Ea — Ma. However, we must remember
that 2 is not an arbitrary individual but is a member of the subset of
the universe defined as ‘playful elephants’.

The first four steps in the proof are as follows:

1. Vx(Ex — Mx) (premise)
2. 3dx(Ex A Px) (premise)
3. EanPa (2. EI)
4. Ea - Ma (1. UI)

Note that, if we can obtain Pa A Ma, we can infer the conclusion by
applying EG. The full proof is the following:

1. Vx(Ex — Mx) (premise)
2. 3Ix(Ex A Px) (premise)
3. EanPa (2. EI)

4. Ea — Ma (1. UI)

5. PaAnEa (3. Com)
6. Pa (5. Simp)
7. Ea (3. Simp)
8. Ma 4, 7. MP)
9. PanMa (6, 8. Conj)
10. 3Ix(Px A Mx) 9. EG)

(Note that, because a is not an arbitrary member of the universe, we
could not apply UG to Pa A Ma and infer VYx(Px A Mx).)
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3. Provide a formal proof of the validity of the following argument:

Everything is expensive or bad for you. Not everything is bad for you.
Therefore there are some things which are expensive and not bad for
you.

Solution
We define the following:

Ex: x is expensive,
Bx: x is bad for you.

As always, the proof commences with the premises:

1. Vx(Ex v Bx) (premise)
2. —VxBx (premise)

Note that the rule UI does not give us a means of inferring a quantifier-
free proposition from the negation of a quantified propositional
function such as 2. However, we can use the quantification denial rules
(see page 69) to convert —Vx Bx to 3x—Bx. We can then apply EI to
obtain —Ba for some a in the universe.

Note that, as in the last example, we must apply EI to 3x —Bx before we
apply UI to the first premise. To obtain the conclusion, 3x(Ex A —Bx),
we derive Ea A —~Ba and apply EG. The full proof is given below.

1. Vx(Ex Vv Bx) (premise)
2. —VxBx (premise)
3. Ix—-Bx (2. QD)

4. —Ba (3. EI)

5. EavBa (1. Ul

6. Ba Vv Ea (5. Com)
7. Ea (6, 4. DS)
8. EaAn—-Ba (7, 4. Conj)
9. 3x(Ex A —Bx) (8. EG)

4. Prove the validity of the following:

Everyone is paid monthly or they work part-time. Everyone works a
two-day week or they don’t work part-time. Therefore everyone who
isn’t paid monthly works a two-day week.
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Solution

We define the following propositional functions on the universe of
‘people’:

Mx: x is paid monthly,
Px: x works part-time,
Tx: x works a two-day week.

The premises are Vx (Mx Vv Px) and Vx (Tx v —Px). We apply Ul to each
of these to obtain Ma v Pg and Ta v —Pa. Note that the ‘a’ in each of
these refers to the same individual and furthermore, this individual is
an arbitrary member of the universe. This means that we can apply
UG to any proposition containing only 4. In particular, we can apply
UG to ~Ma — Ta to obtain the conclusion Vx(=Mx — Tx). The proof
is as follows:

1. Vx(Mx v Px) (premise)
2. Vx(Tx v =Px) (premise)
3. MavDPa (1. UI)

4. Tav —Pa (2. UI)

5. =—=Ma v Pa (3. DN)
6. —-Ma — Pa (5. Impl)
7. =Ta — —=Pa (4. Impl)
8. ——=Pa— —--Ta (7. Trans)
9. Pa—>Ta (8. DN)
10. -Ma - Ta (6, 9. HS)
11. Vx(~Mx — Tx) (10. UG)

5. Prove the validity of the following argument:

Every student who attends class and takes the examination has enrolled
for the course. No student who has enrolled for the course has taken
the examination. There are students who attend class. Therefore there
are students who have not taken the examination.

Solution

We define the following propositional functions on the universe of
‘students”:

Cx: x attends class,
Tx: x takes the examination,
Ex: x has enrolled for the course.
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The proof commences with the premises followed by the application
of EI and then Ul We obtain —Ta to which we apply EG to obtain the
conclusion 3x—Tx. The full proof is given below.

1. Vx[(Cx ATx) — Ex)] (premise)
2. —3x(Ex A Tx) (premise)
3. IIxCx (premise)
4. Vx—(Ex ATx) (2. QD)
5 Ca (3. EI)

6. (CanTa)— Ea (1. UI

7. Ca— (Tn — Ea) (6. Exp)
8. Ta — Ea (7, 5. MP)
9. —(Ea nTa) (4. UI)
10. —Ea v —Ta (9. De M)
11. Ea — —-Ta (10. Impl)
12. Tn - =Ta (8, 11. HS)
13. =Tav-Ta (12. Impl)
14. —Ta (13. Taut)
15, Ix-Tx (14. EG)

6. Prove that the following is a valid argument.

Everyone who lives in London or New York is urbane and intellectual.
Therefore every one who lives in New York is urbane.

Solution

We define the following propositional functions:

Lx: x lives in London,
Nx: x lives in New York,
Ux: x is urbane,

Ix: x is intellectual.

The argument has premise Vx[(Lx v Nx) — (Ux A Ix)] and conclusion
Vx(Nx — Ux). Having applied Ul to the premise, we must prove Na —
Ua. For this we use the method of conditional proof (see Section 2.7).
We add Na to our list of propositions and deduce Ua. We can then
deduce Na — Ua to which we apply UG and obtain the conclusion of
the argument.
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1. V¥x[(Lx v Nx) —» (Ux A lx)] (premise)
2. (Lav Na)— (Uanla) (1. UI)

3. Na (CP)

4. Navla (3. Add)
5. La v Na (4. Com)
6. Uanl (2, 5. MP)
7. Ua (6. Simp)
8. Na — Ua (3-7. CP)
9. Vx(Nx —» Ux) 8. UG)

Exercises 3.3

Provide a formal proof of the validity of each of the following
arguments.

1. Some people are good-looking and rich. Everyone who is rich
is dishonest. Therefore there are people who are good-looking and
dishonest.

2. Some people are good-looking and rich. Everyone who is rich is
dishonest. Therefore not everyone who is good-looking is honest.

3. All even numbers are rational and are divisible by two. Some even
numbers are divisible by four. Hence some numbers are divisible by
two and by four.

4. All numbers which are integers are even or odd. All numbers which
are integers are even or non-zero. Some numbers are integers. Therefore
there are numbers which are either even or they are odd and non-zero.

5. All animals with feathers are not aquatic. There are aquatic animals
which live in the sea. So there are animals which live in the sea and
don’t have feathers.

6. Some functions are continuous and differentiable. All functions
which are continuous are defined for all values of x. Therefore some
functions which are defined for all values of x are differentiable.

7. Everyone who is a doctor or a lawyer commands the respect of the
community and earns a high salary. Hence everyone who is a lawyer
commands the respect of the community.
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8. Everything which is enjoyable and cheap is harmful to one’s health.
All holidays are enjoyable. There are holidays which are not harmful
to one’s health. Therefore some things are not cheap.

9. There are no polynomials which are not differentiable functions.
All differentiable functions are continuous. Therefore all polynomials
are continuous.



4 Axiom Systems and
Formal Proof

4.1 Introduction

In Chapter 1 we emphasised that mathematical ‘facts’ are obtained by a
process of deductive reasoning and in Chapters 2 and 3 we developed
the laws and principles of deductive reasoning. We are now equipped
with the basic ‘toolkit’ for a rigorous study of mathematics and we can
turn our attention in this direction.

Our task in this chapter will be to attempt to say something about
what mathematics actually is and how it develops. This is potentially
a hazardous task as there is no universally held view of the nature of
mathematics. However, it is not our aim to venture into controversial
philosophical territory. Rather, it is to explore enough of the formal
aspects of mathematics to gain a clear understanding of what mathe-
matical theorems and proofs actually are. In doing so, we shall give a
somewhat formal description of mathematics. This is not because we
are formalists. Rather it is because a formal description of mathematical
proof provides a useful framework for the subsequent chapters where
we shall look more closely at different methods of proof.

Of course, most mathematicians do not write formal proofs. It could
be argued persuasively that mathematical proofs are just convincing
arguments, i.e. in practice a proof is simply an argument which will
convince a fellow mathematician of the truth of the particular result.
However, a proof is a convincing argument of a particular kind and with a
definite structure. In order to understand what is and is not an acceptable
mathematical proof, it is useful to have a formal notion of proof as a
point of reference.
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4.2 Case Study of a Proof

In much of this chapter, we will be considering theorems and proofs
from a general standpoint. To help motivate our discussion, this section
is devoted to an informal look at a particular theorem from elementary
number theory together with a proof. Some of the points raised here
will be picked up in the more general context later in the chapter.

There is, of course, a logical difficulty with doing this. We are putting
the cart before the horse! So far, we have not said what is meant by
the terms ‘theorem’ and “proof’, so to present a particular theorem and
proof is somewhat problematic. However, it is probably safe to assume
that our readers have at least an intuitive understanding of what is
meant by ‘theorem’ and ‘proof’. For the purposes of this section, it is
sufficient to regard a theorem as a proposition (as defined in Chapter 2)
and its proof as a correct step-by-step argument which will convince a
reader with the relevant mathematical background of the truth of the
theorem. One of our main aims in this chapter is to give more rigorous
definitions of theorem and proof. At times our discussion will be rather
abstract, so a particular example to refer to may be helpful.

The theorem says that every integer greater than 1 can be factored into
prime numbers, and is part of the so-called ‘Fundamental Theorem of
Arithmetic’. The full fundamental theorem goes on to state that the
factorisation for a given integer is unique apart from the ordering of
the prime factors. However, the proof of the uniqueness part is more
sophisticated and can wait until later (see Chapter 7).

The Prime Factorisation Theorem: Every integer greater than 1 can be
expressed as a product of prime numbers.

Before embarking on a proof of the theorem, we need to understand
precisely what a prime number is. A simple definition is that a prime
number is an integer greater than 1 which is not divisible by any posi-
tive integer except 1 and itself. Thus 5 is a prime number since it is
not divisible by any positive integer except 1 and 5, whereas 6 is not a
prime number since it is divisible by 2, for instance, which is different
from both 1 and 6 itself. (Notice that according to the definition, 1 is
not a prime number.)

Now we understand the term ‘prime number’ (and, presumably, other
terms such as ‘integer’, ‘product’, ‘divisible’, etc.), we could embark
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on a search for a proof of the theorem. It is usually best though to
ensure that we first understand thoroughly what the theorem is really
saying. Often the most effective way of achieving this is to look at some
examples.

Consider the integer 24. We can write 24 = 2 x 12, which expresses 24
as the product of a prime number (2) and a non-prime number (12).
Since 12 is not prime, we can now look for its factors. We continue in
this way as follows:

24 =2x12
=2x3x4
=2x3x2x2.

We have now expressed 24 as a product of prime numbers: 2 x 3 x 2 x
2. Of course, there are other such expressions, for example 2 x 2 x 2 x 3,
but this just contains the same prime numbers written in a different
order. Carrying out this process on 1234567890, for example, takes
rather longer but eventually produce the expression:

1234567890 = 2 x 3 x 3 x 5 x 3607 x 3803.

The theorem says that we can obtain such an expression for any integer
bigger than 1.

Now that we have some intuitive ‘feel” for the theorem, we can begin
the search for a proof. In fact, the basis of the proof is already contained
in the example above. There, we rather laboriously found the prime
factors of 24 by first finding two factors (2 and 12) and then finding
factors of these where possible, and so on. Since this process can be
applied to any integer greater than 1, we can construct a proof of the
general result. (A shorter, more sophisticated proof of this result will
be given later—see Chapter 9.)

An informal proof

Let n be any integer greater than 1. If n is prime then there is nothing
to prove as n itself is already expressed as a ‘product’ of primes,
albeit in a rather trivial way.

If n is not prime then there exist factors 11 and 1, each greater than
1 such that

n =n; X np.
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Now consider 111 and 13 in turn. If n; is composite (that is, not prime)
then it can be expressed as a product of two integers each greater
than 1, say 1y = m1 x my. Similarly, either 1 is prime or it can be
expressed as a product 1y = m3 x my where m3 and my are greater
than 1. At this stage we have expressed n in one of the following
four ways:

H = H] X 02 (if both 1; and n, are prime),
H =y X M2 X 02 (if 17 is composite and 1, is prime),
Ho= Ny X I3 X My (if ny is prime and 1, is composite),

n=my x my x m3 x my (if m; and 1, are both composite).

Next consider each m; in turn and continue the process. At every
step in the process, each factor is either prime or is split into two
smaller factors. Therefore this ‘subdivision” process must eventually
stop. When the process stops, the result is an expression of the form

H=p1 Xp2X---XPpPg

where each p; is prime. Therefore we have shown that » can be
expressed as a product of primes.
O

Our treatment of this theorem and its proof is more detailed than is
usual for a mathematics text. There are several reasons for this. One
is our desire to give some indication at least of how the proof might
be discovered, rather than just presenting the proof itself. If we are
to learn how to construct proofs, it is clearly desirable to gain some
insight into how a proof evolves from underlying ideas. It will not be
sufficient just to study completed proofs. Another reason is to indicate
the importance of precisely defined terms, such as ‘prime number'.

Perhaps the most important lesson to learn from this example is that
any mathematical proof is an exercise in communication. A correct but
incomprehensible proof is of little use to anyone (and we hope ours
does not fall into that category). In writing proofs, clarity and compre-
hensibility, as well as correctness, are important goals. In the next two
sections, we develop a formal description of mathematical proof which
tends to underplay these more human aspects of clarity and compre-
hensibility. Ultimately, we must not lose sight of these goals, and we
shall return to them in later chapters.
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4.3 Axiom Systems

To understand properly what mathematicians mean by proof, we first
need to look a little more closely at the nature of mathematics itself.
From a formal standpoint, mathematics operates according to some-
thing known as the ‘axiomatic method’. This was first introduced by
Euclid over two thousand years ago and has subsequently evolved,
particularly during the last one hundred and fifty years, into the current
modus operandi of mathematics. It is the purpose of this section to give
a brief, if somewhat incomplete, description of the axiomatic method
which governs the development of any mathematical theory.

In outline, a branch of mathematics starts with a set of premises and
proceeds by making deductions from these assumptions using the
methods of logic described in the previous two chapters. The premises
are called ‘axioms’, the statements deduced from them are the theorems
and the sequences of deductions themselves are the proofs of the
theorems. In the rest of this section and the next, we shall expand upon
and make more precise this overview of the formal description of the
mathematics. Now, mathematics is of course a discipline engaged in
by human beings and in practice it does not develop in quite such a
precise and orderly manner as we have indicated. In the last section of
this chapter (and, indeed, in the remaining chapters), we shall consider
in more detail how mathematicians really go about exploring their
mathematical landscapes.

To state and understand any proposition, whether in mathematics or
elsewhere, we need to know two things. The first is the basic rules
of the language in which the proposition is stated, i.e. the rules for
constructing sentences in the language. These rules are the syntax
of the language. Secondly, we must be able to give meanings to
the words (and, in the case of mathematics, the symbols) employed.
This is the semantics of the language. For example, the sequence of
words ‘incomprehensible we is cricket agree that all’ is not a meaningful
sentence in English. It simply does not conform to the syntactic rules
of the language. (There is, of course, a re-ordering of the words which
is a meaningful English sentence—in fact, a proposition. The truth
value of the proposition will depend on the universe of people to
which it refers.) On the other hand, the sentence ‘A plicky is a large
smoggly.” does conform to the syntactic rules of English (provided
‘plicky” and ‘smoggly’ are nouns). Although syntactically correct, the
sentence makes no sense unless we know what ‘plicky” and ‘smoggly’
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mean. If, in some dialect of English, plicky means ‘tiger’ and smoggly
means ‘cat’, then the sentence is meaningful (and, furthermore, is a true
proposition).

Similar considerations apply to mathematics. Before we can develop
a mathematical theory, we need first to put in place the acceptable
language of the theory, that is, we need to agree the symbols we
will use and how we are allowed to combine these symbols. To illus-
trate the point, the formula (5 > +)2 =+ is not a well constructed
sentence, even though it employs standard mathematical symbols. The
collection of symbols does not obey the syntactic rules of mathematics.
On the other hand /542 > 3? is syntactically correct. Most of us
would agree that this statement is not only syntactically correct, but
is a meaningful proposition (which happens to be false). The sentence
is meaningful only because there is a generally accepted interpreta-
tion for the symbols employed; they are familiar to anyone who has
studied high school mathematics. Consider the collection of symbols:
n1(S') = (Z, +). Is this sentence meaningful? The answer depends on
whether it is syntactically correct and whether the symbols have any
meaning. An algebraic topologist would immediately recognise the
sentence as a meaningful (and true) proposition in the same way that
the rest of us would recognise v/5 + 2 > 32 as a meaningful (but false)
proposition. These examples illustrate the point that there are two
criteria which must be satisfied for a sentence to be meaningful—it
must be correctly constructed and the words and symbols used must
have accepted meanings. They also underline the fact that ‘meaningful’
is not synonymous with ‘true’.

Consider again the statement of the theorem we proved in the previous
section: every integer greater than 1 can be expressed as a product of prime
numbers. To comprehend the statement, we needed precise meanings
for the terms “divisible’, ‘prime number’ and so on. This shows that any
mathematical theory will need precisely stated definitions. However,
it is not possible to define all the terms used in a given mathematical
theory. A little thought should indicate why this is so. Consider the
definition of a prime number given in the previous section: a prime
number is an integer greater than 1 which is not divisible by any posi-
tive integer except 1 and itself. This relates the term ‘prime number’
to more basic concepts such as ‘integer’, ‘positive’, the number ‘1" and
‘divisible’. Any definition is like this—it relates the term being defined
to other terms. Some or all of these other terms may then be defined
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using yet more terms, and so on. Clearly this process of definition
must stop somewhere or we would spend all our time defining yet
more and more terms and never get round to doing any mathematics
proper. Therefore some terms must be left undefined.

The preceding discussion indicates what should be the first ingredients
in any axiomatic mathematical theory. They are allowable symbols
together with undefined or primitive terms and syntactic rules
which govern the correct formation of sentences from the symbols
and undefined terms. There is an omission here which may seem
surprising—we have made no reference to semantics. In an axiomatic
theory, the symbols and undefined terms are not given any meaning.
There are good reasons for this and we shall return to the question of
meaning later.

In the same way that we cannot define every term, so we cannot
prove every result. For example, in our proof of the prime factorisation
theorem, we used (implicitly as well as explicitly) various properties
of the integers and prime numbers. For the most part we assumed that
these properties were familiar and did not need referring to explicitly.
If we were required to prove these properties, the proofs would need to
be based on some other statements about the integers, and so on. Again
to avoid an infinite regression we are forced to have some statements
which will not be proved!. These are the axioms of the theory.

As we have mentioned, Euclid was the first person to state axioms
explicitly in around 300 BC. Just five axioms were the basis for his
famous development of geometry. To Euclid, however, axioms did
not require proof because they were basic statements about the real
physical world which he took to be self-evidently true. (The Greek
word axioma—a&iwpa—means ‘that which is thought fitting’.) Although
mathematicians no longer view axioms in this way, the Euclidean
perspective still lingers in our culture. In non-mathematical discourse
or writing we may come across the phrase ‘it is axiomatic that ...’
meaning that what follows is not open to question. To see why
mathematicians were forced to abandon the Euclidean view of axioms,

! The Greek philosopher Aristotle (384-322 BC) was well aware of this. In his Metaphysics, Aristotle
wrote, ‘Now it is impossible that there should be demonstration of absolutely everything, for there
would be an infinite regress, so that even then there would be no proof.’ Indeed, he went on to say
of those who took the contrary view, ‘Such a man, as such, is no better than a vegetable.” See The
History of Mathematics: A Reader edited by John Fauvel and Jeremy Gray, 1987, Macmillan, Basingstoke,
in association with The Open University.
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Figure 4.1

we indulge in a brief digression to describe the birth of non-Euclidean
geometry.

One of Euclid’s axioms, the parallel axiom, states that, for every line
I and every point P not lying on [, there exists a line m containing P
which is parallel to [ in the sense that the two lines never meet (see
Figure 4.1).

To claim that this statement is self-evidently true is problematic; the
problem lies in the word ‘never’ in the statement that the lines / and
m never meet. This means that, no matter how far they are extended,
the lines will not meet. Since it is not possible to extend the lines for
ever, to claim that the parallel axiom is self-evidently true seems at
best to be overstating the case. There was enough doubt about this
axiom for the mathematical community to spend some two thousand
years attempting to show that it could be deduced from Euclid’s other
axioms. If this could have been achieved, then there would have been
no need to include the proposition as an axiom because it would have
been a theorem. Eventually, however, it was discovered that the axiom
could not be deduced from the remaining Euclidean axioms.

In the first half of the nineteenth century, two young mathematicians,
the Hungarian Janos Bolyai and the Russian Nikolai Lobachevsky?,
independently of one another found a geometry in which the parallel
axiom is false. This new geometry shares the remaining Euclidean
axioms and its discovery or invention (depending on your point of
view) showed finally that the parallel axiom could not be deduced from
the remaining Euclidean axioms. The reason for this is quite simple. If
the parallel axiom were deducible from the remaining axioms, then it
would be a theorem and so it would not be possible to construct a

21t is probable that the great German mathematician Carl Friedrich Gauss shared this discovery.
Although he published relatively little, Gauss was the foremost mathematician of his time (many would
say the greatest ever) and he was acutely aware of the controversy which would inevitably result from
the discovery of non-Euclidean geometry.
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geometry where the axiom was false. Since Bolyai and Lobachevsky
found a geometry in which the parallel axiom was contradicted, it
follows that it is not possible to deduce the axiom from the other
Euclidean axioms.

The existence of two geometries, one in which the parallel axiom is
true and one in which it is false, has certain implications. In particular,
it is not possible for both the parallel axiom and its negation to be true,
self-evidently or otherwise! Mathematicians were therefore forced to
re-think their views of the nature of axioms.

Today, we no longer regard axioms as self-evident truths, but simply as
statements about the undefined terms which are taken as assumptions
to serve as the basic building blocks of the theory. It is not neces-
sary for axioms to reflect any perceived property of the ‘real world’.
In principle, we are free to choose any consistent set of axioms as the
starting point for a mathematical theory. The requirement of consis-
tency though is vitally important. A set of axioms is consistent if it is
not possible to deduce from it some proposition P as well as its nega-
tion P. If it were possible to infer P and P then the axioms contain a
hidden self-contradiction which make the system useless. Recall from
Chapter 2 (pages 47-8) that if an argument has inconsistent premises
then it is automatically valid no matter what the conclusion. Applied to
axiom systems, this means that it is possible to deduce any proposition
whatsoever from an inconsistent set of axioms. The modern perspective
has replaced self-evidence by consistency as the paramount criterion for
an axiom system®

We have said that, in principle, any consistent set of axioms can
serve as the framework for a mathematical theory. In practice, though,
mathematicians do not choose their axiom systems arbitrarily. Some
sets of axioms are tailor-made for a particular purpose and others are
studied because they have interesting and far-reaching applications.
The reasons for studying a particular axiom system lie outside the
system itself and relate to possible semantic interpretations of the
system. We shall consider these interpretations shortly.

3 Although crucially important, consistency is somewhat elusive. In 1931, the Austrian logician Kurt
Godel showed that any set of axioms for the arithmetic of the positive integers could not formally be
proved to be consistent. Since elementary arithmetic is fundamental to just about all of mathematics,
this is a rather depressing state of affairs. Although we know that axiom systems must be consistent,
we will frequently be unable to prove them to be so.
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There is one final ingredient in any axiom system, the rules of
inference. These are the rules which determine how theorems may
be deduced from the axioms. For us, every axiom system will have
the same rules of inference. These are the replacement rules (page 37),
the rules of inference for constructing formal proofs (page 50) and
the rules of instantiation and generalisation introduced in Chapter 3
(pages 80-1).

Our description of an axiom system is summarised in the box below.

Axiom systems

An axiom system comprises:

1. a collection of undefined terms and symbols;

2. syntactic rules for constructing ‘sentences” and formulae from
the symbols and undefined terms;

3. a collection of properly constructed sentences called axioms;

4. rules of inference.

A mathematical theory can now be defined as the evolution of an axiom
system by the use of deductive reasoning (the rules of inference) to
prove theorems about the terms of the system. Definitions can be, and in
practice always are, introduced to smooth the flow of the theory. They
serve to simplify notation. In principle definitions are unnecessary. In
practice, we could never get very far if we had only the language of
the undefined terms to use. For example, once we have introduced
the definition of a prime number we can use this concise term freely
without having to refer constantly to an ‘integer greater than 1 which is
not divisible by any positive integer other than 1 and itself’. The basic
core of the theory is its theorems and their proofs which we consider
in more detail in the next section.

There is an analogy for an axiom system which may prove helpful
here. We could loosely compare the development of an axiomatic
mathematical theory with the construction of a building from, say,
bricks and mortar. The raw materials—sand, cement, clay and so
on—are like the symbols and undefined terms of the system. The
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rules and procedures for turning the raw materials into useful building
components (for example, how to bake clay to form bricks) play the role
of the syntax rules which tell us how to construct sentences from the
‘raw materials’ of the symbols and undefined terms. The first layer of
bricks forming the foundations of the building represents the axioms. It
is vitally important that this first layer of bricks is laid properly if any
building constructed on top is not to collapse. This is analogous to the
consistency requirement of the axioms—if the axioms are inconsistent
then any theory developed from them will ‘collapse’. The rules of
inference are ‘rules of construction” which determine how further bricks
can be laid onto the existing structure. At this stage, of course, there is
no building but only foundations together with raw materials and rules
which will permit a building to be constructed. So it is with an axiom
system—the system itself is just the basic framework from which a
theory can be developed. A building rises from its foundations by brick
being laid on top of brick using mortar to hold the structure in place.
In the mathematical context each individual brick could be likened to
a theorem and the mortar holding it firmly in place is its proof.

Our discussion of axiom systems has so far been rather abstract. To help
clarify the ideas we have introduced and to motivate what follows, it
is time to consider a specific axiom system.

Example 4.1

We define a simple axiom system as follows.

The undefined terms are: point, line and contains.
There are four axioms (A1-A4):

Al: There exist exactly four points A, B, C, D.
A2: Every line contains at least two points.

A3: For every point P and every point Q not equal to P, there exists
a unique line which contains P and Q.

A4: There exist three distinct points such that no line contains all three
of the points.

Once we have set up the axiom system, we can begin to prove theo-
rems about it, i.e. we can build our mathematical theory. It is worth
remarking that we are taking an informal, descriptive approach to the
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axiom system. Technically, the axioms and theorems should be stated
and the theorems proved within the language of symbolic logic (plus
whatever symbols we decide to define within the system). For example,
using the convention that the universe for upper case letters is ‘points’,
the universe for lower case letters is ‘lines’ and using > to denote
‘contains’, one way of stating the third axiom is:

A3.VPYQUP #Q) —
[l >3PAl>QAVm[(m>3P Am>Q)— (I =m)]])

Whilst reading the previous example, most readers would probably
have had a mental picture of points and lines in the plane or in three-
dimensional space similar to one of the configurations in Figure 4.2.

Each of these represents a ‘'model’” of the axiom system and it is here
that semantics at last enters the picture. In a model, the undefined
terms are given meaning so that the axioms become true propositions.
In each of these models, the undefined terms “point” and ‘line’ are given

(i)

Figure 4.2
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their standard interpretations as referring to points and straight lines
in space and a line ‘contains’ a point is interpreted as meaning that the
point lies on the line.

When defining an axiom system, we often have an interpretation of the
axioms in mind, i.e. a situation where the undefined terms are given
meanings such that the axioms are true propositions. We define an
interpretation of an axiom system to be a situation where the unde-
fined terms of the system are given a meaning. In other words, it is
in an interpretation of the system where semantics is introduced. An
interpretation is called a model of the axiom system if the axioms, when
interpreted according to the given meanings, are true propositions.

Models are the raison d'étre of axiom systems. We could hardly claim
that the manipulation of meaningless undefined terms and symbols is a
worthwhile occupation in its own right. The reason that axiom systems
are useful is because they provide information about their models,
which is where meaning resides and hence is where our interest lies.
Indeed, it is the models which really determine which axioms systems
are studied. We have said that, in principle, any consistent axiom
system is just as valid or worthy of study as any other. In practice
though, some axiom systems are more important and hence more
deeply studied than others. The importance of any axiom system lies
in its models and not in some intrinsic property of the system itself.

We used the terms ‘point’, ‘line” and ‘contains’ in Example 4.1 because
we had geometric interpretations in mind. In principle, though, since
these are undefined terms any words would have been equally accept-
able. Suppose, for example, we had chosen to use ‘mog’ and ‘zog’ as
undefined terms in Example 4.1 instead of ‘point’ and ‘line’” respec-
tively. Then axiom A2 would have read, ‘every zog contains at least
two mogs’. (Using nonsense words like this emphasises the fact that the
axioms themselves are meaningless and are therefore neither true nor
false.) The German mathematician David Hilbert, who was one of the
chief exponents of the formal axiomatic view of mathematics, expressed
this idea more colourfully. He is reported to have said, ‘One must be
able to say at all times—instead of points, lines and planes—tables,
chairs and beer mugs’; or, we might add, mogs, zogs and pogs.

When studying geometry, most people understandably prefer to talk
about points and lines rather than tables and chairs or even mogs and
zogs! Choosing to label the undefined terms using words which have
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connotations suggesting a particular model or models can be helpful
as this may suggest possible theorems as well as potentially fruitful
lines of proof. However, there is the obvious drawback that other
models, which may turn out to be just as useful, do not come so readily
to mind.

There are many possible models of the axiom system in Example 4.1,
completely unrelated to geometry. For instance, suppose four people,
Annie, Bob, Carol and David, belong to a certain club and that the club
has four committees whose membership is as follows: {Annie, Bob},
{Bob, Carol}, {Bob, David} and {Annie, Carol, David}. Then there is
an interpretation of the axiom system in which ‘point" means person,
‘line” means committee and ‘contains’ has the obvious meaning that a
committee contains a person precisely when the person serves on the
committee. Under this interpretation, each of the axioms of Example 4.1
becomes a proposition about committees and their membership. For
example, axiom A3 is the proposition:

For every pair of people, there is a unique committee on which they
both serve (i.e. containing them both).

With this interpretation, each of the axioms is a true proposition, so
we have another model of the axiom system. This particular model
with four committees could be represented in diagrammatic form by
Figure 4.2(i) where the lines represent committees.

Axiom systems studied by mathematicians fall into one of two cate-
gories which serve separate purposes. Some axiom systems, like that
given in Example 4.1, have many different models. Examples which
some readers may have encountered are the axiom systems for various
kinds of algebraic objects such as groups, rings, fields, vector spaces,
Boolean algebras, monoids and the like. In each of these cases there
are many examples of the particular algebraic structure. Each example
is a model of the axiom system. An important advantage in studying
the axiom system in such cases is that of economy of labour. If we
can prove some theorem directly from the axioms then it must be the
case that the theorem becomes a true proposition in every model of the
axiom system. Thus we will know that every example of the particular
algebraic structure will possess whatever property is described by the
theorem. For instance, using the group theory axioms (see Appendix)
it is not too difficult to prove that inverses are unique. From this
we know that, in every example of a group, inverses are unique (see
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Exercise 7.4.6(ii)) and we do not need to prove this fact for each and
every group.

The second category of axiom systems commonly studied comprises
those which have essentially only one model. In other words, all models
are for all practical purposes the same. (The notion of two models being
‘essentially the same’ is one which can be made completely precise.
The word mathematicians use for this notion is isomorphic which is
derived from Greek and means literally ‘having the same shape or
form.” The details of how ‘being essentially the same’ is given a precise
meaning need not concern us here.) Usually in these cases, the model
is a familiar structure such as the set of integers or of real numbers
or the Euclidean geometry of two or three-dimensional space. Here,
the purpose of using axiom systems is rather different. The axioms
represent a few basic properties of the given structure from which it
is possible to deduce many other properties of the structure (the theo-
rems of the system). For example, there is an axiom system with thirteen
axioms, describing an algebraic object called a ‘complete ordered field'.
It can be shown that there is essentially only one example of a complete
ordered field in the sense that all models of the axiom system are equiv-
alent in a very precise way. ‘The’ example is the set R of real numbers
together with the operations of addition and multiplication as well
as the usual less-than-or-equal-to ordering, <, of real numbers. What
this means is that all the usual properties of the real numbers can be
deduced from just thirteen axioms. The advantage of the axiomatic
approach is that we need assume only a limited number of properties
as the remainder can be rigorously deduced from these. It also means
that, in a sense, the thirteen axioms define what we mean by the system
of real numbers, i.e. the axioms characterise the real number system.

Exercises 4.1

1. Express the axioms Al, A2 and A4 of Example 4.1 in the symbols
of logic.

2. In spherical geometry, ‘points’ are interpreted as points on the
surface of a sphere and ‘lines’ are interpreted as great circles on the
surface of the sphere (that is, circles whose diameter is equal to the
diameter of the sphere).

Explain how Euclid’s parallel axiom fails in spherical geometry.
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3. Consider the following axiom system.
Undefined terms: 0, /, +, x.

Syntax rules:

Valid expressions are defined by:

(i) 0is a valid expression.
(i) If x is a valid expression, then so is x'.
(iii) If x and y are valid expressions then so are x +y and x x y.

Valid sentences are of the form:
x =y where x and y are valid expressions.
Definition: for valid expressions x and y, x # y means —(x =y).
Axioms: The universe of discourse is the set of all valid expressions.
AL VxVy[(x' =y") > (x =y)]
A2. Vx(0#x")
A3 Vx[(x £0) - [Fy(x =y")]]
Ad. VYx(x +0=1x)
A5, VxVy[x +y' = (x +y)]
A6. VYx(x x0=0)
A7. VxVy[x xy' = (x xy)+x]
The following is an interpretation of the axiom system.

0 is interpreted as the integer 0.

'is interpreted as ‘the next largest integer’. For example, 0’ is interpreted
as 1, 0” is interpreted as 2, 0" as 3, etc.

+ is interpreted as addition of integers.
x is interpreted as multiplication of integers.
Show that, with this interpretation, the set of natural numbers N (non-

negative integers) with the operations of addition and multiplication is
a model of the axiom system.
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4. (For those readers familiar with modulo arithmetic.)
Let Z, ={0,1,...,n — 1} where n is a fixed integer greater than 1.

An interpretation of the axiom system introduced in Exercise 3 above
is given as follows.
0 is interpreted as the integer 0.

' is interpreted as ‘the next largest integer’ as in Exercise 3, but with
(n — 1) =0, of course.

+ is interpreted as addition modulo n.
x is interpreted as multiplication modulo n.

Show that this interpretation is not a model of the axiom system given
in Exercise 3. Which of the axiom(s) is/are false in the interpretation?

5. The axiom system given in Exercise 3 does not uniquely deter-
mine the system of natural numbers N. In other words, there are other
models of the system which are essentially different from N. We can
define one such model as follows.

Let N* be N with an additional element w, N* = N U {w}. We extend
the interpretation given in Exercise 3 as follows.

(l)/=(t)
Foraln eN*, n+w=w=w+n.
Foralln e N*, ifn#0thenn xw=w=wxn

and 0 xw=0=w x0.

Show that this interpretation is also a model of the axiom system given
in Exercise 3.

(In order to understand the motivation behind the definitions, it may
be helpful to think of w as, in some sense, an ‘infinitely large’ element
of N*)

4.4 Theorems and Formal Proofs

In the previous section we considered the foundations of mathematical
theories, namely axiom systems. It is now time to consider how such
a theory develops by proving theorems using the rules of logic. We
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need first to define precisely what we mean by a theorem. Consider,
for example, the theorem known to anyone who has studied elemen-
tary geometry: the sum of the angles of any triangle is 180°. In fact this
is a theorem of Euclidean geometry but is not a theorem of non-
Euclidean geometry. Non-Euclidean geometry has a different set of
axioms from Euclidean geometry (Euclid’s parallel axiom is replaced in
non-Euclidean geometry by a different axiom concerning parallel lines).
Hence the two axiom systems have different sets of theorems. In fact,
the corresponding theorem in the non-Euclidean geometry described by
Bolyai and Lobachevsky states: all triangles have angle sum less than 180°.
The important point here is that what is or is not a theorem depends
on the particular axiom system.

Suppose we are given a particular axiom system a, az,...,4,. A
theorem in this axiom system is a statement about the terms of the
system which can be inferred from the axioms using the rules of
inference. Formally, we can define a theorem in the axiom system to
be a statement about the terms of the system which is logically implied
by the conjunction of the axioms. Symbolically, ¢ is a theorem in the
system if

(agpnaxAn---nNay) b t.

Now we have previously said that an axiom system lacks semantics—its
sentences are constructed from undefined terms to which no meanings
have been given. This implies that the axioms, and hence the theorems
also, are not propositions since they do not have truth values. It is only
in an interpretation of the system, when the undefined terms are given
meanings, that the axioms and theorems become propositions.

It is important to realise that we are really interested in axioms systems
for what they tell us about their models—those interpretations where
the axioms are true propositions. Few mathematicians would seriously
claim that their discipline is nothing more than the manipulation of
meaningless symbols.

Associated with a given axiom system there is a universe of models.
As we mentioned in the previous section, sometimes this universe will
contain many different models and sometimes all the models will be
essentially the same (‘isomorphic’ in mathematical jargon). Whatever
the nature of the universe of models, the axiom system determines
those properties which are common to all models. To give an example,
we have mentioned that every group can be viewed as a model of the
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axiom system for groups. Now there are a great variety of groups, finite
and infinite, those with a relatively simple structure and those with a
highly complex structure, and so on. The axiom system for groups
governs the features which are common to all groups—the so-called
group-theoretic properties—but gives no information about other prop-
erties such as the number of elements in the group.

Since axiom systems are really studied for what they tell us about
their models, given an axiom system ay, a3, . ..,a,, we suppose that our
work is carried out in an arbitrary model of the system. By this we
mean a model which is assumed to have no properties other than those
possessed by all models. This corresponds precisely to the notion of an
arbitrary element of a universe of discourse. Anything we can prove
about our arbitrary model will be true for all models. Thus we have
a system of axioms, Ay, Ay, ..., A, which are now regarded as propo-
sitions in the arbitrary model. A not insignificant benefit of working
an arbitrary model, rather than the axiom system itself, is that it feels
more natural to be dealing with propositions instead of strings of unde-
fined terms. A theorem can be defined as a proposition which can be
inferred from the axioms using the by now familiar rules of inference
and replacement rules. Since our rules of inference are the laws of
logic introduced in Chapters 2 and 3, this means that a theorem is the
conclusion of a valid argument which has the axioms as premises. In
a model the axioms are all true propositions so a valid argument with
the axioms as premises is also sound. Recall from Chapter 2 that the
conclusion of a sound argument is a true proposition. Thus all theorems
will be true propositions in our model. Since the model is arbitrary, this
means that a theorem is a true proposition in every model of the axiom
system. This is precisely what theorems should be—statements which
are true in all possible situations where the axioms are true.

This notion of theorem illustrates the power of the axiomatic method
for those axiom systems which have many models. If we can prove a
theorem in an arbitrary model, then we can be sure that the theorem is
a true proposition in every model. This represents a great economy of
labour—proving a theorem in the setting of an arbitrary model gives
true results in many different situations, i.e. in all the models.

There is another benefit, too. Some models of the system may be very
familiar and well understood. They may be systems, such as that for
elementary geometry, for which we have a well-developed intuition.
Our understanding of a particular model may suggest theorems or
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methods of proof which we can extend to the more general setting of
an arbitrary model. If this is the case, then the methods developed for
the arbitrary model will apply to all models of the system. In this way
we obtain a cross fertilisation of ideas and techniques from one model
to another, via the axiom system (or, at least, an arbitrary model).

Now that we know what a theorem in an axiom system is, we turn
to the notion of proof. Since a theorem P is the conclusion of a valid
argument which has the axioms as premises, we define a formal proof
of P to be a formal proof of the validity of this argument as defined
in Section 2.6. Thus a formal proof of P is a sequence S1,Sz,..., Sy of
propositions where Sy = P and each S; satisfies one or more of the
following criteria:

(a) itis an axiom, or

(b) it can be inferred from earlier propositions in the list using the
rules of inference (page 50), or

(c) one of the replacement rules (page 37) guarantees that it is equiv-
alent to a previous proposition in the list.

Note that in cases (b) and (c), the proposition S; has underlying propo-
sitional form s; which is logically implied by the underlying forms of
earlier steps in the proof, i.e. (s As2 A -+ Asi_1) F s;. (It may well be
the case that not all the s1,s2,...,s;—1 will be required in order to infer
s; although we must allow this possibility.) This means that an alter-
native definition of a formal proof of P is a sequence of propositions
S1,Ss,...,Sv where Sy = P and for each i,

S; = Ay for some k or (s ASy A ASi_1) S,

where A is an axiom and s; is the underlying propositional form of
the proposition S;.

It would prove uneconomical to adhere rigidly to this notion of proof.
Although it must be possible in principle to provide a proof of a
theorem P with only the axioms as premises, such proofs would
inevitably be extremely long. Frequently in proving a theorem, we wish
to draw upon other theorems which have already been proved. Once
a theorem has been proved, we may use it together with the axioms
to prove further theorems. (Recall the analogy of the building—each
new brick is laid on the existing structure and not directly onto the
foundations.) Our notion of a proof of P may be modified accordingly.
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Suppose that Ty, Ts,..., T, are theorems which have already been
proved and let t;, t;,. .., t, be their underlying propositional forms. To
prove a new theorem P, with underlying form p, we need to show that

(mpnapn--nagAtiAb A Aty ED.

A proof of P is a sequence of propositions Si, S, ..., Sy where Sy = P
and each S; satisfies one or more of the following criteria:

(a) it is an axiom or previously proved theorem, or

(b) it can be inferred from earlier propositions in the list using the
rules of inference, or

(c) it is equivalent, using the replacement rules, to a previous propo-
sition in the list.

Intuitively it seems reasonable to allow the previously proved theorems
as premises in addition to the axioms and it is not hard to justify. Let
a be the conjunction of the axioms,

a=day NdxN---Ndy
and t be the conjunction of the theorems so far proved,
t=tintan-- Aty

Then a + t. (This follows from a repeated application of the fact that, if
att; and a - t, then a b (t; A t;)—see Exercise 2.3.5.) Now suppose
(a At)F p, that is, we can prove P provided we allow the previously
proved theorems as well as the axioms as premises. Then both a — ¢
and (a A t) — p are tautologies (since p g is equivalent to p — g,
being a tautology). It can be shown that (see Exercise 2.3.6)

(a->t)r((ant)y->p)k(a—p).

Therefore, since a — t and (a A t) — p are both tautologies, it follows
that a — p is also a tautology and so a + p. This shows that if P can
be deduced from the axioms and previously proved theorems, then P
can be deduced from the axioms alone.

Frequently, the theorems we prove are in the form of a conditional
P — Q. For such theorems, we generally use the method of conditional
proof introduced in Section 2.7. That is, we add the antecedent P to
the premises (axioms and previously proved theorems) and construct
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a formal proof whose last line is the consequent Q. (The justification
of the method is given in Section 2.7.)

The structure of a formal proof is summarised in the box below.

Formal proof
Proof of a Proof of a conditional proposition
proposition P P — Q using conditional proof
1. A1 1. Ax
: axioms : axioms
n. A n. Ay
n+1. T n+1. Tq
: theorems | : theorems
n+m. Ty n+m. T
n+m+1. P (CP)
r. P S. Q
s + 1. P—-Q ((n+m+1)—s.CP)

To give some flavour for what a formal proof might look like,
we consider a very elementary proposition from number theory.
Example 4.2 below is a formal proof, based on the axiom system
given in Exercise 4.1.3. The axiom system is intended to formalise the
arithmetic properties of the natural numbers (non-negative integers)
although the proof does not require all the axioms. (Recall from
Exercise 4.1.3 that the set of natural numbers N is a model for this
axiom system.) The example is included for two main reasons. One
is that it shows that ‘obvious’ properties of familiar systems can be
proved formally using only a very few axioms as the starting point.
It is indeed surprising that the arithmetic properties of the natural
numbers can be deduced from a handful of axioms. (There is an
important axiom—the induction axiom—not included in the system
given in Exercise 4.1.3. The importance of this axiom is demonstrated
in Chapter 9.) The second reason for including the example is to show
that formal proofs can be quite complicated, even for the very simplest
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propositions. The example shows clearly why mathematicians almost
never give formal proofs of their theorems.

Example 4.2 Theorem. 1 x 2 = 2.

Note: to distinguish the natural numbers 0, 1, 2 used in the proof from
the line numbers of the proof, the natural numbers are printed in bold
face type. The symbol ' denotes ‘successor’ so that x’ is the successor
of x, which is the number x + 1. Thus we may define number 1 to be
0, 2 to be 1’ or 0” etc.

Proof

1. Vx(x+0=x)

2. VxVy[x +y' = (x +y)]

3. V¥x(x x0=0)

4. VxVy[x xy' = (x xy)-+x]

5. Wy[lxy =1 xy)+1]

6. 1x1=(1Ax1)+1

7. 1x2=(01Ax1)+1

8 WA x1D+y =((1x1)+y)]
9. Ax1)+0=(1x1)+0)

100 Ax1)+0=(1x1)

1. AxD+0=(1x1)

12 Ax1)+1=@1Ax1)

13. 1x2=@1Ax1Y

14, 1x0=(1Ax0+1

15, Yy[Ax0)+y =(1x0)+y)]

(axiom)

(axiom)

(axiom)

(axiom)

4. UI)

(5. UI)

(6. definition of 2)
(2. UI)

(8. UI)

(1. Ul

(9, 10. substitution?)
(11. definition of 1)
(7, 12. substitution)
(5. Ul

(2. UI)

4 We are using here the familiar property of equality which states that if 2 = b and b = ¢ are two lines
of a formal proof, then we may add the line 2 = ¢. There is an axiom of formal logic, sometimes called
the substitution rule, which governs when this substitution is acceptable. We shall consider this rule
again in Chapter 8.
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16 1x0)+0 =(1x0)+0)y (15. UI)

17 A x0)+1=(1Ax0)+0) (16. definition of 1)
18. 1I1x0)+0=1x0 (1. UI)

19. A x0)+1=(1x0) (17, 18. substitution)
200 1x0=(@1x0y (14, 19. substitution)
21. 1x0=0 (3. Ul

22. 1x0 =0 (20, 21. substitution)
23, 1x1=1 (22. definition of 1)
24, 1x2=7 (13, 23. substitution)
25, 1x2=2 (24. definition of 2)

a

Many, perhaps most, theorems take the form of a quantified proposi-
tional function of the form Vx Tx or VxVy Txy. The prime factorisation
theorem in Section 4.2 was of this form. We can see this if we write the
theorem in the form: for all integers n greater than 1, n can be expressed
as the product of prime numbers. The proof we gave began by assuming
that n is an integer greater than 1, that is, n is an arbitrary integer
greater than 1. The required result, that n is expressible as a product of
prime numbers, was then proved for this arbitrarily chosen n. Thus we
really proved Tn for an arbitrary n in the universe (of integers greater
than 1). However, since n was chosen arbitrarily, we made no special
assumptions about n other than that it was an integer greater than 1.
This means that we could use the rule of universal generalisation (see
Section 3.4) to deduce the theorem Vx Tx.

Note, however, that no specific mention of the use of universal
generalisation was made in the proof itself. This implicit use of
universal generalisation is very common. We can describe the general
technique as follows. Suppose we are required to prove Vx Tx. We
simply prove Tz where a is an arbitrary element of the universe of
discourse and then, as a final step, infer Yx Tx justified by universal
generalisation. If, as is frequently the case, the theorem to be proved is
a quantified conditional, ¥x(Px — Qx), then we may use the method
of conditional proof to prove Pa — Qua, where a is an arbitrary element
of the universe of discourse. That is we assume Pa and deduce Qa.



Theorems and Formal Proofs 113

Hence we can infer Pa — Qu, justified by conditional proof, and then
Vx(Px — Qx) justified by universal generalisation. This technique is
summarised below.

Formal proof using universal generalisation

Proof of ¥x Px Proof of Vx(Px — Qx)
using conditional proof

1. Al 1. Ax

: axioms : axioms

n. An n. An

n+1. T1 n+1. Tl

: theorems : theorems

n+m. Ty n -+ m. T

: n+m+1. Pa (CP)

r. Pa :

r+1. VvxPx (r.UG) S. Qa
s +1. Pa — Qa

(n+m+1)—s.CP)

s + 2. Vx(Px — Qx)

(s +1. UG)

The axioms and previously proved theorems themselves will also
generally be quantified propositional functions. Thus, in the body of
the formal proof we will usually need to apply the laws of instantiation
to those axioms and theorems in order to obtain unquantified
propositions. In fact we have seen this process before in Section 3.4. To
provide the formal proof of validity of an argument whose conclusion
is a quantified propositional function, we first apply the rules of
instantiation to any premises which are quantified propositional
functions to obtain non-quantified propositions. Then we give a formal
proof in propositional logic and finally apply one of the laws of
generalisation to obtain the desired conclusion.

As an illustration of this, consider Example 3.3.4. In the example we
provided a proof of the validity of an argument which had two
premises and a conclusion, each of which was a universally quantified
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propositional function. The essential structure of the proof given in
Example 3.3.4 is summarised below where the premises are denoted
Vx P1(x) and Vx P2(x) and the conclusion is Vx Q(x).

1. VxPi(x) (premise)
2. Vx Py(x) (premise)
3. Pi(a) (1. UI)

4. Py@a) (2. UD)

5

a formal proof in propositional logic

10. Q(a)
11. VxQ(x) (10. UG)

Of course, in formal mathematical proofs there are likely to be
many more premises. Also the formal proof in propositional logic
will generally be considerably more complicated than that given in
Example 3.3.4 as Example 4.2 illustrates. Nevertheless, the underlying
process is similar to that shown here.

There is one final piece of notation which we wish to introduce to
conclude this section. Very many mathematical theorems are expressed
in the form of the conditional P — Q. We shall use the symbol =
between propositions to mean that the second follows logically from
the first within the current axiom system. More precisely, we shall use
P = Q to mean that

@ ANaAN---NagpAtitAb A Aty AP) g,

with our usual notation for axioms and previously proved theorems.
In other words, P = Q means that the underlying form of Q is logi-
cally implied by the conjunction of the underlying forms of P and the
axioms and previously proved theorems. Using the method of condi-
tional proof, we then have

@Anagn--ANap AL AB A Aly)E(p - q).

This means that an alternative definition of P = Q is that the condi-
tional P — Q is a theorem in the given axiom system. Our definition
is just a way of making more precise the common informal usage of
P = Q to mean ‘P implies Q’.



Theorems and Formal Proofs 115

It should be noted that = is a relation between propositions. It is not a
connective like — which joins two propositions or propositional forms
to form a new proposition or propositional form. If P = Q then, in any
model of the system, if P is a true proposition then Q must also be true,
which conforms to the informal usage of the symbol =. (Wheeler (1981)
similarly distinguishes between the connective — and the relation =,
although many texts do not make this important distinction.)

It is important to understand the properties of this relation. In mathe-
matical jargon, it is reflexive and transitive but not symmetric. To say
that = is reflexive just means that P = P for all propositions P. The
important transitive property means that if P = Q and Q = R then
P = R as well. This seems intuitively reasonable and can be justified as
follows. Suppose that P = Q and Q = R. Then P - Q and Q — R are
both theorems of the current axiom system. Therefore, using hypothet-
ical syllogism (see Section 2.6), P — R is also a theorem of the current
axiom system so that P = R.

It is also important to note that = is not symmetric. In other words,
knowing P = Q gives no information about the validity of the converse
relation Q = P. We shall adopt the obvious and standard notation and
write P < Q in the case where both P = Q and Q = P.

Exercises 4.2

1. Using the axiom system introduced in Exercise 4.1.3 together with
the definitions 0' =1, 1' = 2, 2’ = 3 etc., give a formal proof of each of
the following theorems.

i 1+1=2.
(i) 2+1=3.
(iii) Vx(x +1=x").
(iv) 1+2=3.
(v) 1+3=4

Note that although the proof of Vx(x +1 = x') is not too difficult, and
although it is possible to prove 1+2=3,1+3=4,1+4=5 and so
on, it is not possible to prove Vx (1 + x = x’) from these axioms. To prove
this another axiom, the axiom of induction, is required—see Chapter 9.
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2. Consider the following axiom system.
Undefined terms: g, b, string.
Syntax rules: a and b are valid expressions.
If x is a valid expression then so are xa and xb.

Axioms: 1. g is a string.
2. ab is a string.

3. If x is a string such that x = ya (for some valid expres-
sion y) then xb is a string.

4. If x is a string such that x = yb (for some valid expres-
sion y) then xa and xbb are both strings.

(We regard two strings as equal if they are identical as sequences of
symbols.)

(a) Find proofs of each of the following theorems.

(i) abab is a string.
(ii) abababbb is a string.

(b) Discover and prove further theorems.

Note that axiom systems such as this may seem arbitrary and rather
useless. However, there are situations, such as in group theory, where
important results can be proved using arguments about strings.

4.5 Informal Proofs

The previous section considered in some detail the formal notion of
a mathematical proof. The briefest glance at Example 4.2 will indicate
that most proofs that we come across do not conform to the rigid stan-
dards of formal proofs. Also, we hope that the case study in Section 4.2
indicated that proofs are not generally conceived as a logical step-by-
step deduction from premises to conclusion. In this section, we look at
proofs from a more practical point of view and try to answer (partially
at least) questions such as: What makes a good proof? How are proofs
arrived at? How much detail should be included in a proof?

We will use the term informal proof to cover any proof which does
not adhere to the definition of formal proof given in Section 4.4. The
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overwhelming majority of proofs ever written fall into this category so
that the spectrum of informal proofs is clearly very wide. At one end of
the spectrum, we find very detailed and highly structured arguments
like those given in Chapters 2 and 3. Towards the other end of the
spectrum we have proofs with a loose, even chatty, style where many
of the details have been omitted.

On one level, we may regard an informal proof as an approximation
to, and a more reader-friendly version of, a formal proof which under-
lies it. Formal proofs are frequently too detailed and are difficult to
follow; witness Example 4.2. The aim of an informal proof should be
to communicate the essential reasons why a particular result holds. The
important steps are stressed, but much of the routine detail is omitted,
leaving the main reasoning highlighted for scrutiny by the reader. The
emphasis of an informal proof should be on effective communication.
To achieve understanding by the reader, a blend of words, symbols,
diagrams, analogies and the like can be employed.

It is probably impossible to define what makes a good proof, just as
it is impossible to define good art or literature. Of course, it is much
easier recognise a good proof when we see it and probably easier still
to recognise a bad proof! In fact, a proof cannot really be judged in
isolation as the intended audience or readership is also important. The
style and level of detail appropriate for communication between experts
in a particular mathematical field will be considerably different from
that which is appropriate for, say, undergraduate students.

In the proof of the prime factorisation theorem in Section 4.2, a lot of
background information about the natural numbers was assumed and
many of the small details were omitted. This is acceptable because,
we hope, the intended readership of that proof is sufficiently familiar
with the properties of the natural numbers to render the details both
unnecessary and somewhat tiresome. In any proof, there is always a
balance to be struck between giving too many details, in which case
the proof is laborious and the key ideas may be obscured, or too few,
in which case the intended reader may not follow the argument. In
general it is better to err on the side of giving too much detail. Too few
details may render a proof unintelligible whereas too many should
‘merely’ make it tedious to follow. More importantly perhaps, errors
in incorrect “proofs’ are frequently to be found in the details which the
writer has omitted. It is tempting to assume that the details fit into
place in the manner in which we expect. Mathematics is often more
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subtle than we anticipate and glossing over details can sometimes be
hazardous for the proof writer.

The formal description of mathematics diverges from actual practice
in another important respect also. Mathematicians do not generally
discover theorems by a rigid step-by-step deduction from a set of
axioms, contrary perhaps to popular belief. The role of human intuition,
experience and inspiration is vitally important. Usually a theorem origi-
nates as a conjecture which is a belief, or hunch even, that the particular
result ought to be true. The mathematician may come to believe in the
conjecture for a number of different reasons. There may be many partic-
ular examples where the results holds, and no known example where it
fails; the result may be the generalisation of a known theorem to a new
setting; the result may be strongly analogous to other known theorems
in similar settings; or the conjecture may be that inspiration of a gifted
individual which is so hard to explain. In formulating conjectures,
therefore, inductive reasoning often plays an important role. However,
this does not contradict our comments regarding inductive and deduc-
tive reasoning in Chapter 1. Although inductive reasoning may play
a part in formulating conjectures and suggesting possible methods of
proof, only deductive reasoning is allowed in the proofs themselves.

Eu,o?p(ac !

Inspiration is vitally important

Regardless of how a particular conjecture arose, for it to be promoted
to a theorem, a proof must be found. Here, too, human intuition, expe-
rience and inspiration are usually vital. Anyone who has tried to prove
mathematical results will have had the experience of attempting several
different lines of attack which turn out to be fruitless before (hopefully)
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hitting on the right idea which then develops into a sound proof. Math-
ematics has been described as 90% perspiration and 10% inspiration
although this breakdown does not take account of that other important
element—luck. (Perhaps the reader would like to devise a subtitle for
this book in the form ‘x% perspiration, y % inspiration, z% luck’ based
on his or her own experience!) The formal description of mathematics
given earlier cannot hope to explain these human aspects of the subject.
So, even if axiomatic systems and formal proofs provide a reasonable
description of mathematics itself (although some people would dispute
even that), there is wide agreement that they do not explain at all well
the human process of doing mathematics. Our aim in the remaining
chapters of this book is to give some insight into this process.

Exercises 4.3

1. Using the axiom system introduced in Example 4.1, give informal
proofs of the following theorems.

(i) There exist at most six different lines.
(ii) There exist at least four different lines.

2. Modify the axiom system introduced in Example 4.1 by replacing
axiom Al by:

ATl. There exist exactly five points A, B, C, D, E
whilst keeping the remaining axioms unchanged.

What can you now prove about the maximum and minimum number
of distinct lines?

3. Consider the axiom system introduced in Exercise 4.2.2.

(a) Give informal proofs of each of the following. (We shall see in
later chapters how such proofs can be made rigorous.)

(i) abab...ab (i.e. ab repeated n times) is a string.

(ii) There is no string of the form yabb (where y is some valid
expression).

(b) Suppose the following axiom is added to the system.
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5. If xb is a string then x is a string.

(i) Give a formal proof that abbbbb is a string.
(i) Give an informal proof that abb ...b is a string, where the number
of bs is arbitrary.

4. Probability axioms. Assuming set theory (see the appendix for the
basic definitions) and the arithmetic of the real numbers, probability
theory can be developed from just three axioms. We assume that a set
S, called the sample space, is given. An event is defined to be a subset
of the sample space S. The axioms are the following.

Al. For every event A there is a non-negative real number p(A) (called
the probability of A).

A2, p(S)=1.

A3. For any infinite collection of pairwise disjoint events A1, Az, A3, ...
(thatis A; NA; = for all i # ),

p (U A") = Zp(An)
n=1

n=1
Prove each of the following theorems.

i pw)=0.
(ii)) For any finite collection of pairwise disjoint events A1, A, ..., AN,

N N
p (U An) = Zp(An)-
n=1 n=1
(iii) For any event A, p(A) = 1 — p(A).
(iv) For any events A and B, if A C B then p(A) < p(B)
(v) For any events A and B, p(AUB) = p(A) +p(B) — p(ANB).



5 Direct Proof

5.1 The Method of Direct Proof

Direct proof

In this chapter, we are concerned with the proofs of theorems which
are, or can be expressed, in one of the following four forms.

1. (i) A simple proposition P.
(ii) A universally quantified propositional function Vx P (x).

2. (i) A conditional proposition P — Q.
(i) A universally quantified conditional propositional function

Vx[P(x) = Q(x)].

Note that there is a slight change of notation here regarding
propositional functions. In mathematics, it is usual to write P(x) for
a propositional function rather than Px which we used in Chapter 3.
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This does lead to a liberal use of brackets in some circumstances, but
conforms more closely to usual practice and to other mathematical
notation.

The four categories of theorem are not mutually exclusive, as the
following examples indicate.

Examples 5.1

1. Examples of theorems which are simple propositions include the
following.

(@) 59 is a prime number.
(b) A triangle with sides 6 cm, 8 cm, 10 cm has area 24 cm?.

(c) The quadrilateral whose vertices have coordinates (—1,1), (2, —1),
(4,2) and (1, 4) is a square.

(d) The sum of the first 100 positive integers is 5050.
(e) 27 + 3! is divisible by 7.

It should be noted that each of these propositions could be expressed
as a conditional proposition instead as follows.

(@) If n =59 then n is prime.

(b) If A is a triangle with sides 6 cm, 8 cm and 10 cm, then A has area
24 cm?.

(c) If Q is the quadrilateral whose vertices have coordinates (-1, 1),
(2,-1), (4,2) and (1, 4), then Q is a square.

(d) fN=1+2+3+---+100, then N = 5050.

(e) If N =27 4+ 3! then N is divisible by 7.

This shows that the categories 1(i) and 2(i) above are not mutually
exclusive. Whether we choose to express each of these theorems as a
simple proposition or as a conditional proposition is largely a matter
of taste.

2. Consider the following theorem:

Theorem: All even integers have even squares.
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Clearly this is a universally quantified propositional function. If we
define the universe of discourse to be the even integers and we define
P(x): x? is even, then the theorem can be symbolised as the quantified
propositional function Vx P (x).

If, on the other hand, we do not restrict the universe of discourse and
define
E(x): x is an even integer,

then the theorem can be symbolised as the quantified conditional
propositional function ¥x[E (x) — E (x?)].

This example shows that the categories 1(ii) and 2(ii) described above
are not mutually exclusive. Again it is a matter of choice as to whether
we define universes over which to quantify or instead define additional
propositional functions.

From the discussion of the previous example, it should be clear that a
proposition of the form

all objects of a certain type have a certain property

can be symbolised either as Vx P (x) or as Vx[T (x) — P(x)] depending
on the choice of universe of discourse. Let P(x) symbolise: x has the
certain property. If we define the universe to be objects of the required
type, then the proposition is Vx P (x). However, if we do not restrict the
universe to be the objects of the required type, then the proposition may
be symbolised as Vx[T(x) - P(x)], where T(x) is the propositional
function: x is an object of the required type.

In Section 44 we gave the outline structure of a formal proof
of a proposition which is a universally quantified propositional
function—see page 113. To prove Vx P (x) we actually prove P (a) where
a is an arbitrary element of the universe and then appeal to the rule
of universal generalisation introduced in Section 3.4. To infer P(a),
we shall invariably need to apply the rules of instantiation to (some
of) the axioms and previously proved theorems. Similarly, to prove
Vx[P(x) —» Q(x)] we will, in fact, prove P(a) - Q(a) for an arbitrary
a in the universe. In practice, as we shall see, the use of the rules
of instantiation and generalisation is almost always not made explicit
in informal proofs. (For theorems whose conclusion is an existentially
quantified propositional function 3x P(x), we would prove P(a) for a
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specific element a of the universe. The rule of existential specification
would then be applied to give the desired conclusion. We shall consider
proofs of existentially quantified propositional functions 3x P(x) in
Chapter 7.)

The preceding discussion shows that using the rules of instantiation
and generalisation, the four classes of theorem defined at the beginning
of this chapter (page 121) can be reduced to just the following two.

1. A simple proposition P.
2. A conditional proposition P — Q.

As we have previously remarked, mathematicians generally do not
construct formal proofs. Our aim now is to give a general scheme for
proofs which maintains the basic structure of formal proofs but which
is less rigid and better describes how proofs are actually constructed by
mathematicians. Looking at Example 4.2, it is clear that a greater degree
of flexibility will need to be built in to the description of proof. For
instance, we certainly do not want to be required to list all the axioms
and all previously proved theorems as premises at the beginning of
each and every proof. Rather, we wish to introduce only what is actually
needed for the proof at hand and we wish to introduce what is required
when it is needed. Thus, in the sequence of propositions which will form
a proof, we shall allow an axiom or previously proved theorem to be
introduced at any stage.

We may regard the axioms and previously proved theorems as, in
a sense, our ‘background knowledge’ of the system. They represent
those propositions which are given (the axioms) or are already known
to be true (the theorems). Now we can say that a proof of a proposi-
tion P is a sequence of propositions, the last of which is P, such that
each proposition is either background knowledge or ‘follows logically’
from previous propositions in the sequence. Suppose that the sequence
of propositions comprising the proof of P is Py, P1,..., Py where, of
course, Py = P. To say that P; ‘follows logically’ from the previous
propositions in the sequence, we mean:

(PoAPiA---AP;i_1)=>P;

From our discussion in Chapter 4, this means that if all of the proposi-
tions Py, Py,...,P;_;1 are true, then P; is guaranteed to be true also.
It should be noted that, although the general step is (P AP1 A---
A Pi_1) = P;, it is by no means the case that we will always require all
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of the propositions Py, Py, ..., P;—1 in order to infer P;. It will be the case
in many instances that P;_; = P;, for example. However, in general we
must allow the possibility that all the propositions Py, Py, ..., P;_1 are
necessary in order to infer P;.

This notion of proof, which we call the method of direct proof, is
summarised in the box below. It is best thought of as a translation
of the method of formal proof given on page 110 into a scheme which
governs how proofs are constructed in practice. As with formal proofs
there are two schemes in the method of direct proof depending on
whether the proposition being proved is P or P — Q. For a conditional
proposition, the method is based on the method of conditional proof.

Method of direct proof
Proposition P

Construct a sequence of propositions Py, P, ..., Py where Py is
background knowledge, Py = P and, for eachi =1,2,...,N, the
proposition P; is such that

(a) P; is background knowledge, or
(b) (PoAPyA---APi_1)= P;.

Conditional proposition P — Q

Construct a sequence of propositions Py, Py, ..., Py where Pp = P,
Py =Q and, for each i =1,2,...,N, the proposition P; is such
that:

(@) P; is background knowledge, or
(b) (PoAPiA---APi_1)= P;.

Note that a direct proof of a simple proposition P must begin with
a proposition Py which is an axiom or previously proved theorem—in
other words, which is part of our background knowledge of the system.
Informally, we must begin with a proposition whose truth we have
accepted or already proved. From this we proceed in a direct manner
to the desired conclusion.

To prove a conditional proposition P — Q, we use the method of condi-
tional proof. That is, we add the antecedent P to the premises and
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produce a direct proof whose last line is the consequent Q. Thus, the
first! proposition in the proof is the antecedent P. This is often signalled
by the phrase ‘Assume P ..." or ‘Let P ...". Informally, we assume the
truth of P (together with our background knowledge of the system)
and deduce a sequence of true propositions, the last of which is Q.
Note that it is common to speak informally of ‘assuming the truth of
P’ rather than ‘adding P to the premises’ which is strictly correct.

Our background knowledge of the system (the axioms and previously
proved theorems) falls broadly into two categories. In one category
are those propositions which may be regarded as basic or elemen-
tary. These would generally not be mentioned explicitly in a proof. An
example of such a proposition is the commutative law for addition of
real numbers: VxVy(x +y =y + x). This is such a familiar property of
the real numbers that we tend to use it “automatically’, without giving
the property itself a conscious thought. Certainly, we would not appeal
explicitly to the law each and every time it was used in a proof.

The second category of propositions which we may regard as back-
ground knowledge are those which are more directly relevant to the
proof at hand. These are the propositions which will be appealed to
explicitly in the proof. Generally such propositions will not be mere
elementary facts. Often they will be theorems which have ‘recently’
been proved. Using our analogy, given in Chapter 4, of the develop-
ment of an axiom system being akin to the construction of a building
from bricks and mortar, the propositions in this second category are
more likely to be comparable to those bricks immediately supporting
the current brick (that is, theorem), rather than those bricks near the
bottom of the construction.

Whilst some propositions clearly fall into one or other category of
background knowledge, the boundary between the categories is by no
means clear cut. For a given proof, what does and what does not need
stating explicitly depends in part on who the proof is for. What may
be an elementary fact for an expert in a particular branch of mathe-
matics may require mentioning explicitly in a proof aimed at a more
general audience. The proof-writer will always need to exercise his
or her judgement as to what needs explicit mention and what may
be taken for granted. These judgements will depend in part on the

! Actually we may choose to introduce some propositions which are background knowledge before
writing the antecedent P. This is a stylistic choice; any proof could be structured along the lines described.
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intended readership of the proof. The author should always have an
intended audience in mind when writing a proof. Such considerations
are part of the art of proof-writing—sufficient information must be
included for the reader to follow the argument without introducing
trivial details which tend to obscure the main thrust of the argument.

Our discussion thus far has been somewhat abstract. It is time now to
look at some simple proofs and see how they fit into the framework
we have outlined.

Examples 5.2
1. Theorem: 173 is prime.

The naive proof of this theorem would be to test each integer n from 2
to 172 to determine whether it is a factor of 173. If none of the integers
is a factor, then 173 is prime. Although not difficult, this would be a
laborious task and the resulting proof would be somewhat tedious both
to write and to read. In fact, it is sufficient to test far fewer integers
to see whether they are factors of 173, but to justify this reduction in
workload we need a theorem which we shall not prove here.

Proof
To reduce the amount of work involved, we make use of the
following theorem. (See Exercise 6.2.6 for a proof.)

If n is an integer greater than 1 which has no factor k
where k is prime and 2 < k < /n, then n is prime. *)

Since /173 =13.15..., we need to show that each of the prime
numbers from 2 to 13 (inclusive) is not a factor of 173.

Now:
173 =86 x 2 +1 so 2 is not a factor of 173.

173 =57 x 3+ 2 so 3 is not a factor of 173.
173=34 x5+3 so 5is not a factor of 173.
173=24x7+5 so 7 is not a factor of 173.
173=15x11+8 so 11 is not a factor of 173.
173 =13 x 13+4 so 13 is not a factor of 173.
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We have shown that 173 does not have a prime factor between 2 and
13 (inclusive). Therefore, from the theorem (*), we can conclude that
173 is prime.

O

Let’s examine the structure of this proof. The first step is to quote
a theorem about prime numbers. For the purposes of the proof, we
suppose that this theorem is part of our background knowledge. We do
not regard it as an elementary fact, however, which is why the theorem
is explicitly mentioned. The next step is to apply the rule of universal
instantiation to the theorem to obtain the corresponding result for the
integer 173. This is the conditional proposition:

if 173 has no prime factors in the range 2, ...,13 then 173 is a prime
number.

The subsequent lines of the proof verify the truth of the antecedent,
i.e. 173 has no prime factors in the range 2,...,13. Finally, the desired
conclusion follows using modus ponens.

It should be noted that, although the structure of the proof is indeed
that of a direct proof, it is expressed in an informal manner. We have
not written out each detailed step line by line, with explicit justifications
of each line. Provided we have the necessary background knowledge,
the informal proof is considerably easier to follow than its formal coun-
terpart would be. Nevertheless we ought to be aware that there is a
formal version underlying our proof.

2. Theorem: The square of any even integer is even.

As explained earlier, this theorem may be stated in a number of
different ways. For example, each of the following could be regarded
as acceptable alternatives.

All even integers have even squares.
If n is an even integer, then n? is even.

The first of these is in the form ‘all objects of a given type have a certain
property’ and the second is the conditional form ‘if n is an object of
the required type, then n has the required property.” In Example 5.1.2,
we expressed the first symbolically as Vx[E (x) — E(x?)], where the
universe of discourse is the set of integers and E (x) denotes: x is even.
The second version is E (n) — E (n?) for an arbitrary integer n. The rules



The Method of Direct Proof 129

of universal instantiation and generalisation allow us to pass between
these two formulations of the theorem. If we know Vx[E (x) — E (x?)]
then applying Ul allows us to deduce E(n) — E(n?) for an arbitrary
integer n. Equally, if we know E (n) — E (n?) for an arbitrary integer
n, then UG allows us to deduce Vx[E (x) — E (x?)].

To apply the method of direct proof, we use the second formulation,
E(n) —» E(n?); we assume the truth of E(n) and deduce the truth of
E (n?). Of course, before we can even contemplate writing a proof, we
need to understand the precise meanings or definitions of the terms
employed in the statement of the theorem. In our proofs we use the
definition:

n is an even integer if and only if there exists an integer m

such that n = 2m.

Note that the definition applies to all integers and not just to the
positive integers. There is a general point about definitions, which is
also worth noting. Any definition is a biconditional. Most frequently,
though, definitions are stated as conditionals. There is no apparent
reason for this potentially confusing practice. However, it does seem
to be a tradition in mathematics and we should be aware of it. In the
course of the proof, we shall need to use both

(n is an even integer) = (n = 2m for some integer m)
and its converse (see page 115)

(n = 2m for some integer m) = (n is an even integer).

First Proof

Let n be an even integer. Then n = 2m for some integer m, so
n® = @2m)* = 4m? =2 x 2m?)=2M

where M = 2m? is an integer. Therefore n is even, as required.
g

Note that the structure of the proof follows the method of direct proof of
a conditional proposition, given on page 125. The first line of the proof
is the antecedent, E (n) in this case. This is signalled by the phrase ‘Let
n be an even integer’, and it amounts to assuming the truth of E (n) (or,
more correctly, adding E (n) to the premises). It is quite common for
conditional direct proofs to begin in this way with a sentence ‘Let ...
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or ‘Suppose ...". The last line of the proof is the consequent E (n2), n?
is an even integer, although the fact that n? is an integer is not explic-
itly mentioned. (The implication ‘n is an integer = n? is an integer’
is assumed to be an elementary fact which does not require explicit
mention.) The proof ends at this point, but the formal proof underlying
it would have two further lines. These would be E (n) — E (n?), justi-
fied by conditional proof and Vx[E (x) — E (x?)], justified by universal
generalisation.

As an alternative, we give below a version of this proof using a chain
of implications.
Second proof
n is an even integer
n = 2m where m is an integer
n® = (Zm)2 =4m? =2 x (2m2)

n? = 2M where M = 2m? is an integer

L4 4l

n? is even.
O

Note that, although our second proof is more symbolic than the first,
we have still given explanations of the various steps in words. It is very
common when first starting to produce proofs to fail to give sufficient
explanation of the steps in the proof. Mathematics uses words as well
as symbols. An example of poor style is the following. We regard it as
incomplete because it does not mention the crucial facts that m and M
are integers. This proof is also unacceptable because it does not give
sufficient explanation of the steps involved.

Not-a-good proof

n=2m= n?=02m)?=4m?*=2x 2m?) = n?=2M.
Od

3. Theorem: If A, B and C are sets such that C € A and C C B then
C CANB).

For those readers not familiar with the rudiments of set theory, the
basic facts needed to understand the proof of the theorem are given in
the appendix.
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The theorem is clearly a conditional proposition. If a universe is not
defined, the antecedent is the conjunction of five simple propositions:
Ais aset, B is a set, C is a set, C is a subset of A and C is a subset of B.
The consequent is: C is a subset of AN B. Of course, if we are working
within the universe of sets then the antecedent is just the conjunction
of C is a subset of A and C is a subset of B.

There is a standard way of visualising sets, called a Venn diagram, in
which the sets are represented as regions of the plane. Sets A, B and
C satisfying the conditions of the theorem could be represented by the
following diagram.

ANB

)

Figure 5.1

In the diagram, we draw the region representing C inside that repre-
senting A since C is a subset of A. Similarly we draw the region for C
inside that for B. This means that we are forced to draw C inside the
overlap region between A and B which represents the set AN B. It may
seem rather obvious, therefore, that C C (A N B). However a diagram is
not by itself a proof even though it may seem extremely convincing.
The reason is that although the regions in the plane represent the sets,
they are not the sets themselves. We need, therefore, to give a proof
based on the definitions and terminology of set theory (outlined in the
appendix).

First proof

Let A, B and C be sets such that C €A and C € B. To prove
C € (ANB), we need to show that, for all x,

xeC=>xeANB).

So let x be an arbitrary element of C, x € C. Since C C A it follows
that x € A. Similarly, since C C B it follows that x € B. Now we
have shown that x € A and x € B so it follows from the defini-
tion of intersection that x € (A N B). Hence we have shownx € C =
x € (AN B) and can therefore conclude C € (AN B).

O
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We could re-write this proof somewhat more symbolically and indeed
more economically as follows. Those well-versed in set theory will
probably prefer this second version. However, the first proof gives
clearer and more detailed explanations of the steps involved and is
probably more appropriate for those who are learning set theory for
the first time. This illustrates a point we have made previously: there
are various acceptable styles for a proof. What is an appropriate style
and level of detail depends on the intended audience.

Second proof

Let A, B and C be sets such that C € A and C C B.
Then xeC=>xeA (sinceC CA)

and xeC =>xeB (sinceC CB).

Therefore x e C = x e Aand x € B

= x € (ANB) (from the definition of A N B).
Hence C € (ANB).
O

Sometimes it is the case that the proof of a proposition needs to be
split into several ‘sub-proofs’, each of which covers one of a number of
different possible cases. Of course, it is preferable to keep the number
of cases under consideration to a minimum. Also, it may be possible to
restrict consideration of separate cases to just a portion of the proof. The
following example illustrates that considerable savings in the length of
a proof can be obtained by a careful choice of cases to consider.

Example 5.3
Theorem: For all real numbers x and y, |x +y| < |x| + |y|.

As usual, before we embark on a proof, we need to understand clearly
what is meant by the modulus |a| of a real number a. This is defined by:

a ifa>0
la| = .
—a ifa <0.

Thus, if a is non-negative, |a| is just a itself, but if a is negative then
la| = —a which is positive. For example, |4| = 4and | — 4| = —(—4) = 4.
It is clear therefore that |a| > O for all real numbers a. The fact that |a|
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is defined by considering two cases separately indicates that the proof
of our theorem may involve consideration of more than one case. In
fact, our first proof of the theorem requires four cases, since there are
two possibilities for x (x > 0 or x < 0) and two fory (y >0 ory < 0).

First proof
There are four cases to consider.
Casel: x >0and y > 0.

Here |x| = x and |y| = y. Also, since x +y > 0, we have |x +y| =
x +y. Therefore |x +y| = |x| + |y| so that the inequality |x +y| <
|x| + |y| is certainly satisfied.

Case2: x >0and y <0.

This time we have |x| = x and |y| = —y but we do not know whether
x +y >0orx +y < 0. Hence there are two sub-cases to consider.

If x +y >0, then

x+yl=x+y
<x—y (sincey <0 we have —y > 0so thaty < —y)
=Xx+(=Y)
= x|+ lyl.

If x +y <0, then

Ix +yl=—(x+y)
=(—x)+ (-y)
<x+(-y) (sincex >0, —x <0so0o —x <x)

= x| +lyl.

Case 3: x <0Oand y > 0.

This is the same as case 2 with x and y interchanged. This means
that we could obtain a proof of case 3 simply by interchanging x
and y in the proof given for case 2. There is little to be gained by
actually writing out such a proof as it is tedious for both author and
reader. Therefore, in situations such as this we simply state that the
result follows from case 2, by symmetry.
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Case4: x <0andy < 0.

Here |x|=-x and |y| = —y and, since x +y is also negative,
|x +y| = —(x + y). Therefore

x +y|=—-(x+y)
=(—=x)+(-y)
= lxl+y|,

50 x +y| < Ixl+y].

We have established the required inequality in each of the four
possible cases, which completes the proof.
O

In this proof we have really given three separate direct proofs (the
second and third cases being dealt with by a single proof). There is
another proof of the theorem which requires consideration of only
two separate cases. This is our second proof. Further, it is only in
one portion of the second proof where separate arguments need be
provided for the two cases—for much of the proof, a single argument
is sufficient.

Second proof

We begin by showing that 2 < |a| for all real numbers a. Here there
are two cases to consider.

Case A:a > 0. Then g = |a].
Case B:a < 0. Thena <0 < |a|.
Hence a < |a| for all real numbers a.

Since xy < |xy|, it follows that x? + 2xy +y? < x? + 2|xy| + y2. But
x? = x|, y* = |y|* and |xy| = |x|ly| so that the inequality becomes

x% 4+ 2xy +y? < x>+ 20x|ly| + |y

Therefore (x + y)2 < (x| + Iyl)2 and taking (positive) square roots
gives the required result

|x +y| < Ix| +y].

(Note that the last step involves the identity va2 = |a|.)
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The second proof is more economical than the first as it keeps to a
minimum the proportion of the argument which needs to be split into
separate cases. Figure 5.2 gives a diagrammatic representation of the
structure of the two proofs. Clearly a proof with few ‘strands’ (that is,
cases to consider) is likely to be more economical than one with many.

Case1 Case2 Case3d Case4

Case A Case B

First proof Second proof

Figure 5.2

Exercises 5.1
1. For each of the following theorems:

(i)  define a universe of discourse and a propositional function Q(x)
so that the theorem can be symbolised as Yx Q(x);

(ii) suppose that no universe of discourse has been defined; now
define a propositional function P(x) so that the theorem can be
symbolised as Vx[P(x) — Q(x)].

(@) All prime numbers greater than 2 are odd.

(b) Every integer of the form 42"+1 4+ 3"*2 is divisible by 13.

(c) For all positive integers n, 2" > n.

(d) All rectangles are parallelograms.

() If Ais a set with n elements then its power set P(A) has 2"
elements.

2. Find a direct proof of each of the following theorems.

(@) 27+ 3! is divisible by 7.

(b) 437 is composite (not prime).

(c) A triangle with sides 20 cm, 21 cm and 29 cm is right-angled.
(d) A triangle with sides 11 cm, 13 cm and 20 cm has area 66 cm?.
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3. Consider the following theorem and proof.

Theorem: A triangle with sides 6 cm, 8 cm and 10 cm has area 24 cm?.

Proof

Since 62 + 82 = 36 + 64 = 100 = 10?, the triangle is right-angled, with
the right angle between the sides of length 6 cm and 8 cm. Therefore,
its area is 1/2 x 6 x 8 = 24 cm?.

O

Re-write the proof in greater detail. Indicate what assumptions are
being made and how the various lines are justified.

4. Without using a calculator, prove each of the following.

@ (1+2+3+ - +1000) < 4(1 +2+3+--- + 500).
200 1 1 200

®) 702 < 500 ~ 700 ~ 5002°
Note: There are two things to prove here:
112000 11200
500 700 5002 500 700 = 7002
1 1 1 1 1 1
R R R W B Tl —.
© Z<3t3tatst ot 0%

(Again there are two inequalities to prove.)

5. Consider the following theorems and ‘proofs’. Each proof is
incomplete. Re-write each proof including the missing steps and
justifications.

(a) Theorem: The square of an odd integer is odd.

‘Proof ' n=C2m+1)=>n2=Qm+1?=4m®> +4m +1=2M +1
so n? is odd.
O

(b) Theorem: Forallsets A, BandC,if ACBandB CC then ACC.

‘Proof’. Let x € A. Then x € B so x € C. Therefore A CC as
required.
4
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6. Prove each of the following theorems. In each case try to identify
what background knowledge is being assumed.

(@) Theorem: For any integer n, n®+ n is even.

(b) Theorem: If m and n are positive integers such that m is a factor of
n and n is a factor of m, then m = n.

(c) Theorem: For every positive integer n, n! < n".
Note:n'=nxmn—-1)xn—-2)x---x3x2x1.
(d) Theorem: Forallsets A, B and C, ANB)—C =ANB -C).

7. Each of the following proofs is incorrect. Identify what is wrong
with each of them. (The first and third are theorems but, of course, the
second is not.)

x(x —1)*—5x +8

(@) Theorem: Forall x # -2, = (x —2)%
x+2
‘Proof . Suppose that x # —2. Then:
— 12—
x(x ) 5x+8=(x_2)2

x+2

= x(x —1)% —=5x +8 = (x +2)(x —2)?

= x(x2=2x +1)—5x +8 = (x +2)(x% — 4x +4)

= x3—2x2+x —5x +8=x3—-2x>—4x +8

= x3—2x%2 —4x +8=x3—2x%—4x +8.
—_1)2 —

Therefore xx -7 —5x+8 = (x —2)%

x+2

(b) ‘Theorem”: 1=2.

"Proof. x=2
= x—1=1
= (x—-12=1
= x-—1r=x-1
=

x2—2x+1=x-1
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= x2—2x=x -2
= xX(x =2)=x -2
N x(x—2)_x—2
x—-2  x-=2
= x=1.

a

() Theorem: Forall sets A, Band C,ifC C(AUB)and BNC =(,
then C C A.

‘Proof’. Let A=1{a,b,c,d,e} and B ={d,e,f,g}. If C € (AUB) then
the elements of C must be drawn from the lista, b, ¢, d, e, f, g. But
B NC = Jso that B and C have no elements in common. Therefore
the elements of C must, in fact, be drawn from the list a, b, ¢. Since
each of these elements is also an element of A, it follows that C C A.

ad

8. Give valid proofs of the theorems in Exercise 7, parts (a) and (c).

5.2 Finding Proofs

In the previous section we explained what is meant by the method
of direct proof and gave some examples. However, so far we have
given little indication as to how we might discover a line of reasoning
which underlies the proof. For example, if we are required to prove a
theorem of the form P — Q, how do we find a sequence of intermediate

Py,

Finding proofs
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propositions which links P to Q? It is one thing to understand what is
meant by a direct proof and to follow some examples, but it is quite
another to be able to sit down and actually construct proofs for oneself.

Our aim in this section is to offer some guidance which we hope will
assist in developing theorem-proving abilities. Although we hope our
guidance and examples will be helpful, there is really no substitute
for practice and there is a wide variety of exercises at the end of this
section and the next. It may be argued that, just as it is not possible
to teach someone to write great literature or become a chess grand-
master, so it is not possible to teach someone to prove theorems. We can
certainly teach the laws of logical deduction (as, indeed, we can teach
the rules of grammar or of chess), but the more creative aspects are
much harder to communicate, whether to the aspiring mathematician,
writer or grandmaster.

Perhaps the most important ingredient in theorem-proving is experi-
ence of proving theorems. However, there are some general guidelines
which will prove useful. The first point sounds obvious, but its impor-
tance should not be underestimated: before attempting a proof, the
statement of the theorem must first be understood. We have seen,
for example, that conditional propositions P — Q can be expressed
in a variety of ways, so it is important to understand what is the
antecedent P and what is the consequent Q. There are, in fact, several
further ways in which a conditional proposition P — Q is sometimes
expressed which we have not yet considered in this chapter. These
include the following (see Section 2.2).

P is sufficient for Q or P is a sufficient condition for Q;
Q is necessary for P or Q) is a necessary condition for P; and
P only if Q.

From the statement of the theorem, we must ascertain what it is that
we may assume (P) and what it is that we must deduce (Q). Achieving
a clear understanding of the statement of the theorem is often half the
battle in proving it.

Once the statement of the theorem is clearly understood, the next ques-
tion is: have we seen a similar theorem before? If so, how was that other
theorem proved, and can the proof be adapted to the present theorem?
(It is here, of course, where the vital ingredient ‘experience’ is so impor-
tant.) Even if the subject matter of the result to be proved is new and
unfamiliar, it may be analogous to other results—it may have a flavour
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similar to something more familiar. We try to explore any similarities
or analogies that occur to us as they may be just what is needed to get
us started in the right direction.

Another very helpful technique is to explore some examples of the
result we are trying to prove. Often we are more comfortable working
with specific, concrete examples, so we try to see why the result is
true in one or two well-chosen cases. It should always be remembered,
though, that a specific example, even if it seems to be typical, will not
serve to prove a general result.

In a similar vein, it is often productive to begin a search for a proof by
first considering a simpler special case. Depending on the theorem,
there are various ways in which this may be done. We might, for
example, restrict the number of variables or consider objects with
special properties (equilateral triangles instead of general triangles,
finite sets instead of arbitrary sets, the real numbers instead of an
arbitrary field, etc.). Not surprisingly, we may be able to obtain a
proof of the special case when the general case initially proved to be
intractable. Having thoroughly understood the special case, it may then
be possible to generalise and modify the arguments so that they apply
to the general case. This process is sometimes called the specialisation-
generalisation process’—we first specialise to a simpler situation and
then generalise the resulting insights to the more general environment.
We shall see an example of the specialisation-generalisation process
in Example 5.5 below. It was also used in developing the proof of the
prime factorisation theorem in Chapter 4.

We could liken the process of finding a proof to that of finding a route
through a maze. (To the novice, a more apt analogy might seem to
be finding the proverbial needle in the haystack.) To prove a condi-
tional proposition P — Q, for example, we need to find a ‘route’ from
antecedent P to consequent Q (Figure 5.3). At each step there may be
several choices of path to take, although the choices available are only
those sanctioned by logical inference. Some choices will lead eventu-
ally to a dead end, even though they may initially look promising. At
times we may seem to be doubling back on ourselves. Each choice we
make will open a new set of possibilities and so on until hopefully we
finally emerge from the maze at our destination Q.

*In his widely read book, Polya (1957) explores this and other problem-solving heuristics which are
highly relevant to the task of discovering a proof. Polya’s book is recommended reading for the aspiring
‘proof-finder.’
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When walking through a real-life maze (as opposed to one drawn on
paper), a good sense of direction is an extremely useful attribute. So,
too, it is with theorem-proving. It is always important to keep the desti-
nation in mind. It is by no means the case that each step on the way will
apparently bring us nearer our goal, the consequent Q. Nevertheless
we should always be aware of where we are and in which direction
our destination lies so that we can avoid travelling in completely the
wrong direction.

There is one technique which is often helpful when solving mazes
drawn on paper. A paper maze can be tackled from both ends by
working backwards from the end, as well as forwards from the starting
point, in the hope that the two paths may meet, in which case a path
from beginning to end has been constructed.

Solow (1990) has pointed out that the same idea is often extremely
useful when trying to construct a direct proof. As well as trying to
work ‘forwards’ by deducing propositions which follow logically from
the antecedent P, we can also work backwards. This means seeking
propositions which from which we may deduce the antecedent Q. In
other words, we may seek a proposition Q; the truth of which would
be sufficient to deduce Q, i.e. Q; = Q. If we can find such a proposition
Q1 we have reduced the problem to showing P = Q. (This is because
of the transitive property of =: P = Q; and Q; = Q together imply
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P = Q, see Section 4.4.) Then we can again ask what proposition Q,
would be sufficient to guarantee the truth of Q;, Q2 = Q, and so on.
Working both forwards and backwards we obtain two sequences of
propositions

P = P;,P1= P3,P,=>P3,... and ...,Q3= (7, 0Q>= Q1,01 = Q.

If we can get the two sequences to meet in the middle—that is, to have a
common proposition R such that P, = R and R = Q,, for some values
of m and n—then the proof will be complete. We simply splice the two
sequences of deductions together to produce the final direct proof:

P=>P1:>P2:"'=>Pn—1=>Pn:R$Qm
Q-1 =2>Q0=>0=0.

A word of caution is in order when working backwards from Q. We
are seeking a proposition Q; such that Q; = Q; it is a common error to
find Q; such that Q = Q. It may be that the converse Q; = Q is also
valid, but we cannot just assume this—we must be able to prove it.

Thus far, we have emphasised the linear nature of proofs—both formal
proofs of the validity of arguments in Chapters 2 and 3 and in our
discussion of mathematical proofs. Starting from the premises, the proof
progresses in a linear fashion to the conclusion. However, proofs are not
always discovered in this way. Indeed, very often proofs are not pieced
together by working linearly in two directions, one forwards and one
backwards. To use an analogy from software engineering, many proofs
are discovered using a top-down approach. At the highest level, we
outline the broad overall structure of the proof. At the next level, we
may try to work from premises to conclusion, but temporarily ignoring
any complications which may arise. At this stage we do not worry too
much about any details which we cannot prove. Typically, we may
reason (to ourselves): if I can prove such-and-such, then the proof can
proceed along these lines. If the proof can be ‘completed” assuming the
various such-and-such’s then we can go back and try to fill the various
gaps by proving each of the missing pieces. Figure 5.4 illustrates this
process. As we proceed further down the diagram so we fill in more
and more of the required details.

Figure 5.5 shows the corresponding linear version of the proof shown
in Figure 5.4. Note that in this linear version, the need for various
phases of the proof may not become apparent until later. For example,
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Understand what is required

P=Q

Assuming R, Assuming R, Assuming R,

deduce P = P, deduce P, = P, deduce P, = Q

l l l

Assuming S

Proof of R, Proof of R,
deduce R,

Proof of S

Figure 5.4

someone reading the linear version may wonder why it begins with
a proof of Ry; it is only later in the proof that its relevance becomes
apparent.

Given that proofs are often discovered in a top-down fashion, it is
not surprising that they are frequently best understood, and therefore
presented, in this way. (Leron (1983) contends that proofs are more
comprehensible when presented in a top-down fashion, which he calls
the ‘structural method.”) For complex proofs where there are many
levels, it is often desirable to present the propositions at the lowest
level (for example, R;, S and R3 in Figure 5.4) as separate theorems.
These would be proved before the main theorem P = Q, thus removing
some of the complications from the main proof. Often such ‘little’
theorems which are used to help prove a ‘main’ theorem are called
lemmas. (Mathematicians often use the term corollary for a theorem
which follows in a very straightforward manner from a theorem just
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Proof of A,

l

Assuming A,
deduce P = P,

l

Proof of S

l

Assuming S
deduce A,

l

Assuming A,
deduce P, = P,

l

Proof of R,

l

Assuming Ag
deduce P, = Q

l

Deduce P = Q

Figure 5.5
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proved. Thus it is fairly common to see theorems grouped as lemma 1,
lemma 2, ..., theorem 1, corollary 1, corollary 2, ... . The lemmas assist
the proof of the ‘main” theorem and the corollaries are simple conse-
quences of it. Of course, whether a theorem should be labelled a lemma,
a theorem or a corollary is a matter of subjective judgement.)

To illustrate our discussion so far, we now look at a few examples in
some detail. We shall try to give some insight into the process of finding
a proof rather than concentrating on the presentation of the proof itself.
Each example will be relatively long and at times messy—but then so,
all too frequently, is the discovery process. Proofs don’t roll off some
imaginary production line as immaculately finished objects!

Proofs don’t roll off some imaginary production line. ..

Example 5.4

Theorem: For all non-negative real numbers x and y, (x +y)/2 > . /xy.

Note: (x +y)/2 is the arithmetic mean and /Xy is the geometric mean
of x and y, so the theorem says that the arithmetic mean of two non-
negative real numbers is always at least as great as their geometric
mean.
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First note that the theorem can be reformulated as a conditional:

if x and y are real numbers such that x > 0and y >0
X +Yy
> = VAV

Therefore our initial assumption is: x and y are non-negative real numbers
and our goal is to deduce the inequality (x +y)/2 > . /xy.

then

The antecedent is very general so there are many possible deductions
which could be made from it and it is not clear which is the best
(forward) direction in which we should proceed. For example, from
the proposition x and y are real numbers such that x > 0 and y > 0 we
could deduce any of the following:

x+y=>0

xy >0
x—y>0ory—x>0
x

—>0ory=0

y

x —y is a real number.

It is by no means clear if any of these provides a useful direction in
which to proceed. Actually, one of these statements will be the first
step in our final proof but it is not obvious which. Instead we turn
to the conclusion and try working backwards. From (x +y)/2 > . /xy,
it may seem sensible to ‘remove’ the square root so we square both
sides and conclude ((x + y)/2)2 > xy. (This is permissible since both
sides of the inequality (x +y)/2 > ./xy are non-negative.) However,
the implication here is in the wrong direction: we could deduce

2
e (1)

but what we really need is the converse

2
(x;y) ny=>x—;—yz\/@.

Unfortunately, the converse does not hold for arbitrary real numbers
x and y. (Consider, for example, the case where x = -1, y = -2.)
However, for non-negative real numbers x and y the converse
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implication does hold:

2
<x42-y> >xyandx >0,y>0 = 5 > JXY.

(This follows from the theorem: if a and b are real numbers such that
a>0andb >0, then a*> > b> = a > b. The proof of this theorem is left
as an exercise (Exercise 5.2.1(a)). For the purposes of the present proof
we shall regard this as part of our background knowledge.)

Since x > 0 and y > 0 is part of the antecedent, we have completed the
first backwards step: if we can prove

2
(57) =

then we can complete the proof. Using some elementary algebra, this
inequality is equivalent to

2
(x Zy) > xy

which in turn is equivalent to (x + y)* > 4xy, by multiplying both sides
by 4. In symbols, what we are saying here is:

<x+y

2 2
! ) >y o (x+Yy)

>xy &  (x +y) > 4dxy.

In the proof (when we eventually come to write it down) we will need
to proceed in the direction:

2 2
x+yP>dxy = (xzy) >xy = <£¥> > xy.

Still working backwards, we now ask the question: how can we prove
(x +y)? > 4xy? In general, there are two useful ways of showing a > b
for non-negative real numbers a and b. We could show a —b >0 or,
if b # 0, we could show a/b > 1. Using the first of these, our problem
becomes that of showing

(x +y)* —dxy > 0.

Now (x +y)* —4xy = x2 +2xy +y? —dxy = x2 = 2xy +y2 = (x —y)?
so we are required to show (x — y)? > 0. But this we know to be true
since the square of any real number is non-negative. We have, therefore,
worked our way back right back to the starting point and it is time to
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write down the proof in a readable form, proceeding in the forwards
direction from antecedent to consequent. Again we give the proof twice
using slightly different styles of presentation.

First proof
Suppose that x and y are real numbers such that x >0 and y > 0.
Then x —y is a real number so that (x — y)2 > 0. Expanding the
right-hand side gives x% —2xy +y%2 >0 and adding 4xy to both
sides produces x2 + 2xy + y2 > 4xy which is equivalent to (x +y)? >
4xy. Since both x +y and 4xy are non-negative, we may take the
(positive) square root of both sides: x +y > \/4xy = 2,/xy. Finally,
dividing by 2 gives the desired result: (x +y)/2 > ,/xy.

O

This proof is very descriptive. We could re-write it more symbolically
as follows. This second version of the proof shows its structure more
clearly and so may be preferred to the first.

Second proof

Suppose that x and y are real numbers such that x > 0 and y > 0.
Then x — y is real so that

(x—y)*=0

x2—2xy +y2>0

x4+ 2xy + y* > dxy (adding 4xy to both sides)
(x +y)* > 4xy

x+y > Jdxy =2 /Xy (taking square roots which is
valid since x +y > 0,xy > 0)

AU

e .

4

Example 5.5

Theorem: Let P(x1, y1, z1) and Q(x2, y2, z2) be two points in three-
dimensional space. Then the distance between them is

d= \/(xl —x2)% + (Y1 — y2)* + (21 — 22)%
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The theorem is clearly a conditional proposition. The antecedent is the
conjunction of

P(x1, y1, z1) is a point in three-dimensional space
and

Q(x2, y2, z2) is a point in three-dimensional space
and the consequent is

the distance between P and Q is d, where

d= \/(xl —x2)% + (Y1 — ¥2)* + (21 — 22)2.

Since the theorem is geometric in nature, we begin by drawing a
diagram. This is very useful in setting the scene, but we must be a little
careful. In Figure 5.6, we have drawn both points P and Q in the first
octant, that is, with their coordinates all positive. This is convenient, but
we must ensure that the argument we produce for our proof applies
equally well to any pair of points.

Figure 5.6

Perhaps the most useful question to ask first is: have we seen anything
similar before? It may be that we have seen the corresponding theorem
for points in two-dimensional space. Even if we have not previously
met the distance formula for points in the xy-plane, we may be led to
consider it as a useful special case.

Points in the plane are defined by pairs of coordinates (x,y), so the
corresponding theorem in this restricted case is the following.
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Let P(x1, y1) and Q(x2, y2) be two points in two-dimensional space.
Then the distance between them is d, where

d= \/(Xl —x2)% + (Y1 — y2)*.

Again a good starting point is a diagram (Figure 5.7). A little doodling
on the diagram leads to us draw something familiar, namely a right-
angled triangle PQR. This is useful because we all know something
about right-angled triangles, namely Pythagoras’ theorem. With our
notation, Pythagoras’ theorem says PQ? = QR? + PR?, where PQ is
shorthand for the distance between P and Q, etc.

Figure 5.7

Now PQ? =d?, so it is useful to perform one step backwards from
our conclusion and note that, since all the distances are non-negative
quantities,

A= -0+ —-yp)? = d= \/(xl —x2)% + (y1 — y2)%.
(We used a similar result in the previous example.)

From Figure 5.7, we can see that R has the same x-coordinate as P and
the same y-coordinate as Q, so R is the point (x1, y2). Therefore QR =
x1 — x2 and PR = y1 — y; so from Pythagoras’ theorem it follows that:

d2 = (x1 — x2)* + (y1 — y2)°

which is the antecedent of our single backwards step. It would appear
that we have joined the forward and backward trails, but we need to be
just a little more careful. The equations QR = x; — xz and PR = y1 — y2
assume that P lies above and to the right of Q in the diagram so that
x1 > xz and y1 > y,. In other words, we are assuming special properties
of the points and this is not acceptable since they should be arbitrary
points in the plane.
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This slight deficiency is easily remedied. If P lies to the left of Q then
QR =x2 — x1 and if P lies below Q then PR =y, — y;. Note that we
are still defining R to be the point (x1, ). Geometrically, R is the point
of intersection of the horizontal line through Q and the vertical line
through P regardless of the relative positions of P and Q. (It is a useful
exercise to draw diagrams to illustrate the other possibilities for the
relative positions of P, Q and R.)

All the cases are covered by the equations QR = |x; — x2| and PR =

ly1 — yal. Since |x; —x21® = (x1 — x2)? and |y1 — y2* = (y1 — y2)* we
may still conclude

d? = (x; — x2)* + 1 — y2)2
as required.

It is time to organise these considerations into a coherent proof of the
two-dimensional special case.

Proof of the two-dimensional case

Let P(x1,y1) and Q(x2,y2) be any two points in the xy-plane. Define
the point R to be (x1,y2). Then PR is a vertical line (parallel to
the y-axis) and QR is a horizontal line (parallel to the x-axis)—see
Figure 5.7. Therefore the triangle PQR is right-angled with right
angle at R, so

PQ? = QR? + PR?

by Pythagoras’ theorem.
Now QR = |x1 — xz| and PR = |y; — y2| so
d? = PQ?
= |x1 — x2l* + ly1 — y2l?
= (x1 = x2)* + (y1 — y2)?

and, since d is non-negative, taking square roots gives

d = \ﬂxl - x2)% + (y1 — yz)z-
O

Now that we have considered in some detail the special case, we are in
a position to move on to the three-dimensional situation (Figure 5.6).
Since Pythagoras’ theorem played such a key role in our special case,
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Figure 5.8

it is natural to ask how we can construct a right-angled triangle in
the more general diagram. Imagine drawing a vertical line through P
(as we did before) and constructing a horizontal plane through Q. (In
the two-dimensional situation, we draw a horizontal line through 1,
but we have now moved up a dimension.) The line and plane meet in
a point R and produce a right-angled triangle POQR—Figure 5.8. (The
triangle is right-angled because the vertical line through P is at right
angles to any line drawn in the horizontal plane through Q.) For this
triangle, Pythagoras’ theorem gives:

PQ? = QR? + PR? (1)

We need expressions for the lengths QR and PR. Note that P and R
have the same x and y-coordinates and differ only in their z-coordinate.
In fact R is the point (x1,y1,2z2) so the distance PR is just |z; — z3|. In
our diagram PR = z; — z; but we need also to take care of the situation
where Q lies above P. Therefore

PR? = |21 — 25 = (z1 — 22)*. 2)

To find an expression for QR, we note that both points lie on the same
horizontal plane so that the situation here is much the same as our
two-dimensional special case. Instead of repeating all our arguments
in the proof of the two-dimensional case, we can simply use the result.
(We are at liberty to use any previously proved theorems.) To do this
draw vertical lines from Q and R to points Q' and R’ respectively in
the xy-plane. Then Q’ is the point (x3,y2) and R’ is the point (x1, y1).
Also, since QQ'R'R is a rectangle, QR = Q’R’. Therefore

QR? = (Q'R")? = (x1 — x2)% + (y1 — y2)°. 3)
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We can now piece together equations (1), (2) and (3) as follows:

d* = pQ?
= QR* + PR? 1)
= (x1 —x2)* + y1 — yz)2 + (21 — 22)* (2) and (3)

so taking square roots gives

d = \/(x1 = x2% + (y1 — y2)? + (21 — 22)2.

We leave as an exercise to re-organise these arguments into a coherent
proof proceeding from antecedent to consequent.

Exercises 5.2

1. (a)

(b)
2. (a)
(b)
3. ()
(i)
4. (1)

(ii)

Prove that, if 2 and b are non-negative real numbers, then
a2>b%=aq>b.
Hint: consider the expression a? — b2,

Prove that, for all real numbers a and b, a% > b? = |a| > |b|.

Show that the roots (solutions) of the quadratic equation
x2— 2k +Dx + k2 +k)=0
differ by 1.
Prove that, if both the roots of the quadratic equation
xX4ax +b=0

are even integers, then a and b are also even integers.

Show that, if the line y = mx — 2 intersects the parabola y =
3x% +1, then |m| > 6.
Show that, if |m| > 6, then the line y = mx — 2 intersects the
parabola y = 3x? + 1.

Prove that x(x —3)>10=x < -2 or x > 5.
Prove the converse of (i): x < =2 or x > 5 = x(x — 3) > 10.
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5. Let x and y be real numbers. Prove that, if x # 0 or y # 0 then
x?+xy +y2>0.

6. Let n and m be positive integers. We say m divides n, written m|n,
if there exists a positive integer k such that n = km. Prove each of the
following for all positive integers m,n and p.

(i) m|n and n|p = m|p.

(il) m|n and n|jm = m = n.

(iii) plm and p|n = p|(am + bn), for all positive integers a, b.

7. Prove that, given any three points in the plane which do not lie on
a straight line, there exists a circle on which all three points lie.

8. Let x and y be positive real numbers such that x +y = 1. Show
that:

i

i) xy <
. 12 1\* 25

5.3 More Advanced Examples

We conclude this chapter with a section devoted to some examples
drawn from more advanced mathematics. This is not to say that the
proofs themselves are necessarily more difficult than those of the
previous section, just that the subject matter is more sophisticated. It
is not our intention that all readers will be interested in or equipped
to follow all of these. However, we expect that many of our readers
will be required to produce proofs in ‘higher mathematics’, so we hope
these examples will be useful.

Examples 5.6

1. We shall prove a result about symmetric matrices. (See the appendix
for the relevant matrix terminology.)

Theorem: For all matrices A, ATA is symmetric.
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To begin with, we may look at a couple of examples to get a feel for
what is going on.

/2 -1 T (27

Let A_(7 5>,thenA —(_1 5)
. [ 2 7\ (2 -1\ _ (53 33

50 AA_(—] 5) (7 5)‘(33 26

which is clearly symmetric.

We might try an example with a non-square matrix.

3 01
Let p=(3 ¢ 0 ,thenBT=| -4 6
1 6 -5 .

. 3 1 3 1
SO B'B=| —4 6 1 =
0 -5

which again is symmetric.

0 6
—6 —30
-5 —30 25

Of course, we know that examples do not prove general results. Unfor-
tunately, the examples here have not given a great deal of insight
into why ATA is symmetric. We might be tempted to work more
generally:

a b\'(a b\ _(a c\(a b\ _[(a*+c® ab+cd

c d c d) \b d)\c d) \ba+dc c?+d?
which is symmetric since ab + cd = ba + dc. However such an argu-
ment is not acceptable for a general proof as it refers only to 2 x 2

matrices. (It is the basis of a proof in the 2 x 2 case, but not one that is
very useful because it does not easily generalise to n x n matrices.)

Since the examples have not helped us a great deal, we are forced back
to basics. We need to show that ATA is symmetric. How can we show
that a matrix is symmetric? According to the definition of a symmetric
matrix, we need to show that the transpose of the matrix is equal to
the matrix itself. Since ATA is a product, we turn to the background
information regarding the transpose of a product: (AB)T = BTAT. For
the product ATA, this gives:

(ATA)T = AT(AT)T,
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But we also know that (AT)T = A, so that AT(AT)T = ATA and we are
‘back to” our original matrix. All the pieces are now in place and we
can write what is, in fact, a very simple proof.

Proof
Let A be any matrix. Then

ATA)T = ATIATYT  (since (AB)T = BTAT)
=ATA (since (AT)T = A).

Since ATA equals its own transpose, ATA is symmetric.
O

2. It is often in courses in analysis where we are first required to
produce rigorous proofs—and are tested on them. When they are first
encountered, proofs of convergence, continuity, differentiability and the
like often present profound difficulties. Therefore we present in some
detail the reasoning which might go into the construction of a typical
such proof.

Theorem: Let {a,} and {by} be two convergent sequences of real numbers
with limits a and b respectively. Then the sequence {a, + b,} is also conver-
gent with limit a +b.

As usual, before even thinking about the proof, we must understand
the terms used in the theorem. A sequence {a,} converges to a limit a
if, given any & > 0 there exists a positive real number® N such that:

n>N =|a, —al <e.

This definition is the mathematical way of formulating the intuitive
notion that we can make the distance between a, and the limit a as
small as we like (|a, — a| < ¢) provided we take n sufficiently large (n >
N). Put more colloquially, by travelling far enough down the sequence,
the difference between 4, and the limit becomes arbitrarily small.

Now that we have (hopefully) understood the terms employed in the
theorem, we must unravel its structure. The theorem is a conditional

3 Some authors require N to be a positive integer. However, this is not necessary and the proofs are
slightly simpler without this requirement.
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where the antecedent is the conjunction of

{an} is a real sequence which converges to a
and

{bs} is a real sequence which converges to b

and the consequent is

the sequence {a, + b,} converges to a + b.

Thus, in the proof, we assume that {a,} is a real sequence which
converges to a and we assume that {b,} is a real sequence which
converges to b. From these assumptions, we need to deduce that the
sequence {a, + b,} converges to a + b.

Working forwards, we know that whatever positive real numbers ¢;
and &, we care to choose, there exist positive real numbers N1 and N
such that

n>N;=la, —al<e and n > N; = |b, —b| < ¢,.

Working backwards, we must show that given any positive real number
¢ we should be able to find a positive real number N such that

n>N = |, +by)— (@@ +b)| <e.

Now to show |(a, + b,) — (2 + b)| < € we must surely need to use the
inequalities |a, —a| < ¢1 and |b, — b| < & (given in the forward step)
so we try splitting up the term |(a, + b,) — (a + b)|. We have

[(an + bn) — @ +b)| = |an + by —a — bl = |(@x —a) + (by — b)|
and, using the result of Example 5.3,
|(@n —a) + (by — b)| < lan —al + |by — bl.
Therefore
[(an + bn) — (@ + b)| < lay —al + |by — b|.

From our forwards step, we know that we can control the size of each of
the terms |a, —a| and |b, — b| on the right-hand side of this inequality.
To make their sum less than ¢ it would be sufficient to make each of
these terms less than ¢/2. So, working forwards, we take ¢; = ¢/2 = ¢;.
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Then there exist positive real numbers Ni and N, such that

n>Ni=lan—al <> and n>Nz=lby—bl <.
We have almost joined the forward and backward processes together.
The only remaining hurdle is that these two inequalities must be true
simultaneously. This can be achieved by taking n to be greater than
the larger of the two numbers N; and N,.

All the pieces for the proof are now in place, but our forwards and
backwards approach has left a rather messy trail of disjointed pieces
of reasoning. In the finished proof, we need to organise these into a
coherent path from beginning to end.

First proof
Suppose that {a,} and {b,} are two convergent sequences of real
numbers with limits 2 and b respectively.

Let ¢ be any positive real number.

Then /2 > 0 so, by the definition of convergence for sequences, there
exist positive real numbers N1 and N; such that

n>N1:>|a,,—a|<% and n>N2:>|bn—b|<§.

Define N = max{Ny, N2}. Then, provided n > N we have both n >
Ni and n > N3, so that |a,, —a| < ¢/2 and |b,, — b| < &/2.
If n > N then

(@ +bn) — (@ + b)| = [(an —a) + (by — b)|
<l|ay —al+1|by, —b|  (from Example 5.3)

£ N £
—+ - =¢.
~272
Therefore, by definition, {a, + b,} converges to limit a + b.
O

The proof as presented is the standard one which would be found
in most introductory books on analysis. However, it does not really
reflect the discovery process. The following version of the proof is
structured in a more top-down manner. Although slightly longer than
the first proof, it could be argued that in the second version it is easier
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to understand the structure of the proof and how the definition of
convergence is being used.

Second proof

Suppose that {a,} and {b,} are two convergent sequences of real
numbers with limits 2 and b respectively.

We need to show that {a, + b,} converges to limit 4 + b. In other
words, given any positive real number ¢, we must find a positive
real number N such that

n>N =|@a,+b,)—(a+b) <e.
Now
@y +by) — (@ +b)] = [(an —a) + (bn — b)|
<|an —al + |b, — b| (from Example 5.3).
Therefore

(@ +by) — (@ + b)| < ¢ provided |a, —a| < g and |b, — b| < g 1)

Since {a,} converges to a, there exists a positive real number N such
that n > N1 = |a, —a| < ¢/2. Similarly, since {b,} converges to b,
there exists a positive real number N, such that n > Ny = |b, — b| <
e/2.

Let N = max{Ni, Na}.
Then n>N=n>Njandn >N,
€ £
= |a, —a| < 5 and |b, — b| < 5
= |(a, +by)— (@ +b)| <e (from (1)).
ad

3. Our last example in this section comes from group theory. (The
basic terminology of group theory is given in the appendix.)

Theorem: Let G be any group. For all x,y € G, (xy) ! =y~ 1x~1,

Learning from our experience with Example 1 above, we shall not
begin this time with a consideration of examples. Instead, let’s first
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try to understand clearly what the theorem is saying. Since x and y
are elements of the group, so too is xy. The theorem is concerned
with inverses, so we shall need to use axiom G3. This gives the
defining property of inverses: h = g~! if and only if hg =e = gh. In
other words, in order to show one element of a group is an inverse
of another element, we need to show that their product (both ways
round) is the identity e. In the theorem, to show y~1x~! is an inverse
of xy we need to verify

(xy)(y_lx'l) =¢ and (y‘lx_l)(xy) =e,

We consider one of these expressions: (xy)(y~'x~!). If we could ignore
the brackets, then we could proceed as follows:

xyy Ix™t = xex™! (since yy~! = by G3)
=xx~! (since xe = x by G2)
=e (since xx~! = e by G3).

This is precisely what we wanted to show. However, we have just
assumed we may ignore the brackets and combine pairs of elements in
any sequence we find convenient. In order to deal properly with the
brackets, we need to make use of G1. We are ready to write down our
proof.

Proof
Let x,y € G. To show (xy)~! = y~1x~! we need to verify
)y x T =eand vy IxHy) =e.
For the first of these:
Gy = (Gy)y Hx ! (by G1)
=@y N~ (by G1)

= (xe)x ! (by G3)
= xx! (by G2)
=e (by G3).

The second equation (y ~!x~!)(xy) = e is verified in an entirely simi-
lar manner. The details are left as an exercise.
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Since we have shown (xy)(y~!x 1) =e and (y~'xHxy) =, it
follows from G3 that
(xy)—l — y—lx—l.

a

Our proof is more-or-less the standard one given in most introductory
texts of group theory. Most books would omit the brackets, however,
and present the simplified argument given prior to our proof. This is
justifiable provided it is realised that a product xjx,...x, in a group
is not ambiguous as any way of bracketing the terms produces the
same element of the group. (This can be proved using the second prin-
ciple of mathematical induction—see Section 9.2—although the proof is
somewhat messy and it is rarely, if ever, given.)

To conclude, we summarise some of the tips offered in the course of
the chapter (which are not listed in any particular order).

Summary of important points

1. Try some examples, but remember that an example does not
prove a general result.

2. Try specialising to a particular case which can be more fully
understood, then generalise to the more general situation.

3. Try to think of similar or analogous theorems the method of
whose proof is known.

4. If the theorem is a conditional, try working backwards from
the consequent as well as forwards from the antecedent.

5. Where appropriate, draw a diagram.

6. When writing a proof, explain the steps using words as well
as symbols. It is better to give too much explanation than not
enough.

7. When writing a proof, consider a top-down approach.
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Exercises 5.3

1. Two elements x,y of a group G are said to commute if xy = yx.
Prove that, if x and y commute then:
(i) x~!andy~! commute.

(ii) g !xg and g7lyg commute for all elements g of the group G.

2. Let A and B be n x n matrices and define A x B = AB — BA. Prove
that, for all n x n matrices:

i) AxB=-BxA.

(i) Ax(B+C)=A*B)+ (AxC).

(iii) A x (BC) = (A xB)C + B(A % C).

3.(a) Let G be a group and x an element of G. Show that, if |x| =6
then |x%| =3, |x3| =2, |x* =3 and |x®| = 6.

(b) Let G be a group and x and y be elements of G. Show that,
if x#e, y#e x®=¢, x® =¢ and xyx = y? then |x| =2 and
ly| = 3.
(See the appendix for the definition of the order, |x|, of x € G.)

4. An n x n matrix B is said to be anti-symmetric if BT = —B. Prove
that, if A, B and P are n x n matrices such that A is symmetric and B
is anti-symmetric, then:

(i)  A?is symmetric.

(ii) B?is symmetric.

(ili) A *B = AB — BA is symmetric (see Exercise 2, above).

(iv) PTAP is symmetric.

(v) PTBP is anti-symmetric.

5. Let{a,}and {b,} be two convergent sequences of real numbers with
limits a and b respectively. Prove each of the following.

@) The sequence {2a,} converges to limit 2a.
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(ii)

(iii)
(iv)

(vi)

(vii)

More generally, if k is any real number then the sequence {ka,}
converges to limit ka.

Note: the case k = 0 needs to be treated as a special case. Why?
The sequence {2, — b,} converges to limit a — b.

If k and | are real numbers then the sequence {ka, + Ib,}
converges to limit ka + Ib.

Note: remember that you can use any previously proved theo-
rems. In particular, Example 5.6.2 and part (ii) may be useful
here.

The sequence {a,b,} converges to limit ab.
If b # 0 then the sequence {1/b,} converges to limit 1/b.
If b # 0 then the sequence {a,/b,} converges to limit a/b.

Hint: use parts (v) and (vi).

6. Let x and y be elements of a group G such that y~!x?y = x3 and

-1,,2

x~1y2x = y3 Show that x =y =e.

7. An n x n matrix A is orthogonal if AT = A~! or, equivalently,
ATA =1,, where I, is the n x n identity matrix. Show that if A and B
are orthogonal n x n matrices, then ATB is also orthogonal.

8. Let X be a non-empty set. A metric on X is a distance function
d,ie. forall x,y € X, d(x,y) is a real number such that the following
four axioms are satisfied.

@)

Ml. dx,y)>0forall x,y € X.

M2, dx,y)=0&x =y forallx,y € X.

M3. d(x,y)=d(y,x)forall x,y € X.

M4. d(x,z)<d(x,y)+d(y,z) forall x,y,z € X.

Try to understand what each of these axioms is saying in the case
of the usual distance between points in the plane R2.

(The set R? together with usual distance function is a model of
the axiom system.)
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(b) Prove that, forall x,y,z,t € X,
i ldx,z)—dy,z) <d(x,y).
(i) d(x,z)+dy,t)>|d(x,y)—d(z,1t)|

(c) Prove that axiom M1 is redundant. In other words, show that M1
follows from the other axioms: M2 A M3 AM4) = M1.

Hint: use M4 with x = z.
(d) Show that d(x,y) = |x — y| defines a metric on R.

(e) Let X be any non-empty set and let d be defined by:

Oifx =y
1if x #y.

Show that d is a metric on X. (This metric is called the discrete
metric on the set X.)

d(x,y)={

9. Given two n x n matrices A and B, we say that A is similar to B if
there exists a non-singular (invertible) matrix P such that B = P~1AP.
Prove the following for all n x n matrices A, B and C.

(i) A is similar to itself.
(i) If A is similar to B then B is similar to A.
(iii) If A is similar to B and B is similar to C, then A is similar to C.

Note: These three results together show that the relation of similarity
on the set of n x n matrices is an equivalence relation.

10. The completeness axiom for R.

Let S be a non-empty subset of the real numbers R. A supremum for
S is a real number « which satisfies the following two conditions:

S1. ForallseS,a>s.

S2. If B is any real number such that § > s for all s € S, then « < 8.
The property S1 says that « is at least as large as every element of S

and the property S2 says that « is the smallest real number with the
property S1. If « is the supremum of S, we write « = sup S.

A non-empty subset S of R is bounded above if there exists « € R
satisfying S1. The completeness axiom for R states that every non-
empty subset of R which is bounded above has a supremum.



More Advanced Examples 165

(@) Show thatsup{l1-1/n:neZ%}=1.

Prove each of the following for all non-empty subsets A and B of R
which are bounded above.

(b) If A< B then supA < supB.
() IfxeRand B={x+a:a € R)thensupB =x +supA.
(d) IfxeR x>0and B = {xa:a € R} then supB = x sup A.

The infimum of a non-empty subset S of R denoted inf§, is defined
by interchanging > and < in the definition of supremum.

(e) Let AC R be non-empty and bounded above and let B = {—a :
a € A}. Show that supB = —inf A.

Deduce that every non-empty subset of R which is bounded below
has an infimum.



6 Direct Proof: Variations

6.1 Introduction

In Chapter 5 we examined how we might construct a direct proof of
a theorem expressible as a conditional proposition of the form P — Q.
We also saw how the proof design could be applied to theorems of the
form Vx[P (x) — Q(x)]. However, there are conditional theorems where
P (or P(a)) adds nothing useful to our background knowledge. In other
words, the assumption of P (or P(a)) is not helpful in our attempt to
construct a logical chain of propositions culminating in the consequent
of the theorem. In such cases we must look for an alternative to the
method of direct proof as described in the last chapter.

In the next section of this chapter we look at another technique for
proving conditional theorems. In the following section, we will examine
an important method of proof which can be applied to a variety of
theorems, whether or not expressed in conditional form. In Section 6.4
we will look at proofs of theorems expressed as biconditionals. Whilst
these three types of proof differ in fundamental ways, each will use
the method of direct proof just as described in Chapter 5. However,
this will be used to produce a proof, not of the theorem as stated,
but of a proposition whose underlying propositional form is logically
equivalent to that of the theorem. In other words, we use it to produce
a proof of an equivalent theorem.

6.2 Proof using the Contrapositive

Recall that the replacement rule known as ‘transposition’ states that
the conditional propositional form p — g is logically equivalent to
its contrapositive § — 7 (see also Exercise 2.3.4). This means that, if
we can provide a formal proof of the validity of an argument with
conclusion Q — P, then we can also prove the validity of the argument
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with the same premises but with conclusion P — Q. The proofs will
be identical except that the latter will have P — Q appended, justified
by the transposition rule.

This suggests a method by which we may prove conditional theorems
of the form P — Q. We simply prove Q — P and then infer the equiv-
alent proposition P — Q. We proceed similarly for theorems which
take the form of universally quantified conditional propositional func-
tions, i.e. theorems which can be written Vx[P(x) — Q(x)]. We prove
—Q(a) » —P(a) for an arbitrary a in the universe of discourse by the
direct method and infer P(a) - Q(a) by applying the transposition
rule. Finally, universal generalisation allows us to infer Vx[P(x) —
Q(x)] and the theorem is proved. The structure of the underlying
formal proof for theorems of each type is shown below.

Formal proof using the contrapositive
Proof of P — Q Proof of Vx[P(x) = Q(x)]
1. Ap 1. Ar
: axioms : axioms
n. A, n. Ay
n+1. T, n+1. T
: theorems : theorems
n+m. Tm n-+m. T
n+m+1.Q (CP) n+m+1 -Q) (CP)
r. P r. —P(a)
r+1. QP r+1. -Q(a) - —P(a)
(n+m+1)—r.CP) (n+m+1)—r.CP)
r+ 2. P—>Q (r+1. Trans) | r +2. P(@)— Q(a)
(r + 1. Trans)
r+3. Vx[P(x) = Q(x)]
(r+2. UG)

Proving that P — Q (or P(a) — Q(a)) is a theorem via a proof of 0 -
P (or =Q(a) — —P(a)) is usually thought of as an indirect method
of proof. However, to prove the contrapositive, we use the method
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of direct proof exactly as described in the last chapter. We add Q (or
—Q(a)) to our background knowledge (axioms and theorems) and show
that we can infer P (or —P(a)).

Examples 6.1
1. Theorem: For every integer n, if n? is even, then n is even.
(Note that this is the converse of the theorem proved in Example 5.2.2.)
The theorem may be stated Vx[E (x?) — E(x)] where
E(x): x is even

and the universe of discourse is the integers. As usual we prove
E(n%) — E(n) where n is an arbitrary integer. Taking our cue from
Example 5.2.2, we might try a direct proof of the theorem. This would
commence:

Let n? be an even integer.
Then n? = 2k for some integer k.

In an attempt to find out something useful about n, we might proceed

with:
Hence
n= :}:«/ﬁ
= +v2Vk.

Now we have a problem because we cannot deduce that n has a factor
2 from this expression nor is there any obvious way of re-writing it
which would reveal that it has 2 as a factor.

Our attempt at a direct proof has not been successful (although a direct
proof does exist—see Exercise 6.1.8.). We now try and see if it is possible
to prove the contrapositive, ~E(n) - —E (n?), i.e. if n is not even, then
n? is not even. ('Not even’ of course is equivalent to ‘odd’.) We employ
the method of direct proof: we add —E (n) to our list of assumptions
and show that we can infer —E (n2). The proof (which is very similar

to that used in Example 5.2.2) proceeds as follows.
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Proof
Let n be an odd integer.
Then
n=2m+1 for some integer m

= n® = 2m + 1)2

= 4m* + 4m + 1

=2(2m* +2m) + 1

=2M +1 where M is an integer
= n? is odd.

This completes the proof of the contrapositive. We can therefore
deduce that, if n is an arbitrary integer such that n? is even, then
n is even. It follows that, for every integer n, if n? is even, then n

is even.
O

2. Theorem: For any positive integers m and n, if m + n is odd, then
either m is odd or n is odd.

Again we might commence by attempting a direct proof as follows.

Let m and n be integers such that m + n is odd.
Then m + n = 2k + 1 for some integer k.

Here we encounter the same sort of problem as in the previous
example—there is no obvious deduction to be made about the
individual integers m and n. So we try instead to prove the
contrapositive.

We define the following propositional functions on the universe Z+,
the set of positive integers:

P(m,n). m+ nis odd,
Q(m): mis odd.

Then the theorem may be written: P(m,n) — (Q(m) v Q(n)) for arbi-
trary integers m and n.

The consequent of the theorem is Q(m) v Q(n). The antecedent of the
contrapositive is therefore —~(Q(m) v Q(n)) and it is this proposition
which we add to our assumptions. However, in this form it is not
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particularly useful because it tells us nothing about the integers m and
n individually. Applying De Morgan’s replacement rule, we find that
this proposition is equivalent to —~Q(m) A =R(n). Since both of —~Q(m)
(m is even) and —R(n) (n is even) can be inferred from this conjunction,
we may commence our proof by assuming each of these. We then show
that we can infer =P (m,n): m + n is even. The proof is as follows.

Proof

Suppose that m and n are even so that m = 2r and n = 2s for some
positive integers r and s.

Then
m+n=2r+2s
=2(r+s)
=2t where t is an integer
= m + n is even.

This proves the contrapositive from which we can deduce that, for
arbitrary positive integers m and n, if m + n is odd, then m is odd
or n is odd.

|

Exercises 6.1

Prove each of the theorems 1-7 by proving the contrapositive. For each
one, also attempt a direct proof.

1. For any integer n, if n? is not divisible by 7, then # is not divisible
by 7.

2. For any integers m and n, if mn is even, then m is even or n is even.
3. For any integers m and n, if mn is odd then m is odd and » is odd.

4. If m and n are positive integers and mn = 100, then either m < 10
or n < 10.

2

5. If a is an odd integer, then the quadratic equation x* —x —a =0

has no roots which are integers.
6. If x is any real number such that 0 < x < 1, then x > x°.

7. If n e N and 2" — 1 is prime, then 1 is prime.
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8. Use the prime factorisation theorem (see Section 4.2) as background
knowledge to give a direct proof of the theorem in Example 6.1.1.

6.3 Proof by Contradiction

Suppose we assume the truth of some proposition P and in so doing
we find that this forces us to accept the truth of another proposition
Q which is in fact known to be false. Our only option would be to re-
examine our assumption that P was true. Since this led us to deduce
a falsehood, we would have no alternative but to conclude that it was
an incorrect assumption and that P must therefore be false. This is the
basis of a proof by contradiction.

As an illustration of the method, consider the following simple
example. Suppose we have the proposition:

In any group of thirteen people, there must be at least two born under
the same star sign.

To prove that this is true we might argue as follows. Suppose everyone
in the group is born under a different star sign. This implies that there
are at least thirteen star signs. However we know that this is not the
case—there are exactly twelve. So it cannot be that everyone is born
under a different star sign and we must conclude that at least two
members of the group have the same star sign.

To prove a theorem T (not necessarily a conditional) using the method
of contradiction, we begin by assuming that the theorem is false and
add T to our background knowledge. We then show that this leads
to the deduction of a proposition which is patently false. Usually this
takes the form R AR for some proposition R, i.e. adding T to our
axioms and theorems allows us to deduce both R and R. Note that
the proposition R A R is a substitution instance of the propositional
form p Ap. This form is a contradiction—it is false no matter what
proposition is substituted for p. If our assumption that T is false turns
out to support the deduction of a proposition which is always false,
then we have no alternative but to reject that assumption. We must
therefore accept the truth of the theorem.

A proof by contradiction feels rather different from the methods of
proof which we have described so far and it is often referred to as a
‘method of indirect proof’. However, it can be shown to be another form
of direct proof—again, not of the theorem as stated, but of another with



Proof by Contradiction 173

a logically equivalent underlying propositional form. The following
shows the logical equivalence of p — p and p:

p—>p=pvp (Impl)
=pvVvp (DN)
=p (Taut)

Hence, to prove a theorem T, we may instead prove T — T. This
can be achieved using a direct proof. We add T, the negation of the
theorem, to our axioms and theorems and show that we can deduce
T. Now we can deduce a proposition T from a list of assumptions
which includes its negation if we can, en route, deduce propositions R
and R. (Remember that we can deduce any proposition whatsoever in
these circumstances—see Section 2.5 and Example 2.8.4.) Once we have
obtained these contradictory propositions, we can deduce T and this
completes the proof.

If the theorem is a universally quantified propositional function of the
form Vx T(x) we proceed, as always, with the proof of T(a) for an
arbitrary a. This is achieved as described above, by proving —~T(a) —
T (a) via the deduction of a proposition together with its negation. The
structure of the underlying formal proof for each of the two forms of
theorem is given below.

In practice an informal proof by contradiction does not include the
steps s + 1 to s 4+ 6 (or s + 7) and the proof terminates once it has been
shown that it is possible to deduce the contradictory propositions R
and R.

In showing how this method may be used to prove a theorem, we
have made no assumptions about the forms of either the proposition
T or that of the propositional function T(x). These may or may not
be conditionals. However, it is important to note that in a proof of
T by contradiction, the negation of the whole theorem is added to
the list of assumptions. For example, if the theorem is of the form
P — Q, then the proposition to be added to the axioms and theorems
is P — Q. Of course we may;, if we wish, use the replacement rules and

from P — Q deduce in turn the equivalent propositions P v Q (Impl),

P AQ (De M) and P A Q (DN). Similarly, if the theorem is of the form
Vx[P(x) A Q(x)] (so that we are aiming to prove P(a) A Q(a) for an
arbitrary a), then it is =[P (a) A Q(a)] which must be added.
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Formal proof by contradiction

Proof of T
1.

n.

n+1.

n—+m,

s+ 1.
s+ 2.
s+ 3.

s + 4.
s + 5.
s+ 6.

n+m+1. T

Al

axioms

Ty
theorems
Tm

RvT (r. Add)
T (s,s+1.DS)
T>T
((n+m+1)

—(s +2). CP)
TvT (s+3. Imp)
TvT (s+4.DN)
T (s + 5. Taut)

Proof of Vx T (x)

1.

n+1.

n-+m.

n+m+1.

s+ 1.
s+ 2.
s+ 3.

s + 4.
s+ 5.
s+ 6.
s+7.

Ay

axioms
A"
T

theorems
TI"
-T(@) (CP)
R
R
RvT() (r.Add)
T@) (s,s+1.DS)
=T@)— T(a)

((n+m+1)—(s+2).CP)

—=T(@)vT(a) (s+3.Imp)
T@yvT@) (s+4. DN)
T(a) (s + 5. Taut)
VxT(x) (s+6.UG)

Note that, although it might appear that we have deduced the theorem
at line s +2 of the proof, this is not the case. At this stage we are
still involved in the conditional proof so that the correct deduction is
T —> Tor—-T@)— T@).

Whilst we have justified proof by contradiction by appealing to the laws
of logic, the method makes intuitive sense. We show that, if we assume
that the theorem is false then ‘nonsense’ (in the form of a contradictory
pair of propositions) follows. We therefore deduce that the theorem
cannot be false. Because it necessitates the inference of an ‘absurdity’,
the method is often known by its latin name reductio ad absurdum. It
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was this method of proof which the great mathematician G. H. Hardy
(1877-1947) viewed as ‘... one of a mathematician’s finest weapons'.
He went on to say: ‘It is a far finer gambit than any chess gambit: a
chess player may offer the sacrifice of a pawn or even a piece, but the
mathematician offers the game.’

In our first illustration of a proof by contradiction, we prove that the
square root of 2 is not a rational number. This is probably one of the
best known examples of this method of proof. The second example is
also generally regarded as a classic example of a proof by contradiction.
The theorem states that there are an infinite number of prime numbers
and this particular proof is attributed to Euclid.

Examples 6.2

1. Theorem: The square root of 2 is not rational.

We first note that the statement of this theorem is not a conditional
nor could it be converted to a conditional in any useful way. Methods
of proof appropriate to conditional theorems are therefore not likely
to succeed. The other problem is that it is often difficult to show that
something is not the case. This is particularly so in this example where,
to prove that v2 is not rational, we must rule out infinitely many
possibilities of the form p/q (g # 0). However, from assuming that
V2 is rational there are things which we can deduce and, with luck,
these may lead to a contradiction.

To commence our proof by contradiction, we add the negation of the
theorem to our assumptions. This proposition states that +/2 is rational.
We can then use as background knowledge the theorem which states
that any rational number can be written as m/n, where m and n are
integers with no common factors and n # 0. The proof proceeds as
follows. Note that it also uses as background knowledge the result
proved in Example 6.1.1: if n is any integer and n® is even, then n
is even.

Proof
Suppose that +/2 is rational.
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Then
V2="" where m, n are integers with no

n common factors and n # 0

m2
= 2= o)
= 2n% = m?
= m? is even
= m is even (see Example 6.1.1 above)
= m=2r for some integer r
= m? = 4r*
= 2n% = 4r? (since 2n2 = m?)
= n®=2r?
= n? is even
= n is even.

We have shown that both m and n are even, i.e. they have a common
factor. But this contradicts our earlier deduction that m and n had
no common factors. Hence the assumption that +/2 is rational must
be false and so +/2 is irrational.

|

2. Theorem: There is an infinite number of prime numbers.

The difficulties here are associated with the need to establish the exis-
tence of an infinite number of primes. In the previous example there
were infinitely many possibilities which needed to be ‘ruled out’. Here
we need to ‘rule in’ (to the category of prime numbers) infinitely many
integers. However, from assuming that the number of primes is finite
there is the possibility that we might be able to produce a chain of
deductions leading to a contradiction.

Proof
We first assume the negation of the theorem, i.e. that there is a finite
number of prime numbers. We can therefore list these: p, pa, ..., pu.

Now consider P, the product of all the prime numbers.
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P = pip2...pPn
= P+1=pip2...pn +1
Now P +1 is not prime since it is different from pq,p2,...,py and

these are the only prime numbers. Applying the prime factorisation
theorem (see Section 4.2) we conclude that P + 1 must be divisible
by one of p1, p2, ..., pn so that we can write

P+1=p,Q forsome r suchthatl <r <n.
But P=pi...pr...pn
=pPr(p1..-Pr-1Prs1---Pn)
=p,S where S =pip2...pr-1Pr1-..Pn
= P+1=pS +1.

Hence P + 1 gives a remainder of 1 when divided by p, and so is not
divisible by p,. The contradiction has surfaced and we can therefore

infer the theorem, i.e. the number of primes is infinite.
O

The method of proof by contradiction is very commonly used to prove
the uniqueness of some property, i.e. that there is only one element of
the universe having the given property. We shall look at such proofs
in Chapter 7.

Exercises 6.2

1. Ina proof by contradiction, we assume the negation of the theorem
T and show that this allows us to infer a proposition with a contradic-
tion f as its underlying propositional form. Use the replacement rules
together with any of the rules established in Exercise 2.3.8(a) to show
that p — f = p. (This provides another justification for the method of
proof by contradiction.)

Prove each of the following theorems using proof by contradiction.
2. For any integers m and n where n # 0, m + +/2n is not rational.
3. The smallest factor greater than 1 of any integer n > 1 is prime.

4. For any set A,J C A.
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5. Foranysets Aand B,(A—-B)NB =@.

6. Prove the theorem used in Example 5.2.1: if n is an integer greater
than 1 which has no factor k where k is prime and 2 < k < \/n, then n
is prime. (Use a proof by contradiction to prove the contrapositive.)

7. Use the probability axioms together with any of the theorems given
in Exercise 4.3.4 to prove that, for any event A, 0 < p(A) < 1.

8. Let A1, Az, ..., A, be a collection of sets and define
B = A;
By =A;— A
B3 =A3 - (A1 UA2)

Bn =An - (Al UAZU“‘UAn—l)~
Prove that B; N B; = & for all i # .

9. Let {x,} be a real sequence with limit /. Prove that, if x,, > a for all
n, then! > a.

10. Prove that the set {1 —1/n:n € Z*} has no greatest element.
(Compare with Exercise 5.3.10(a).)

11. Let G be a group with 6 elements, i.e. |G| = 6. Prove that G has
no element of order 5.

12. Let {a,} be the sequence defined by a, = (-1)".

(@) Prove that {a,} does not converge to limit / = 1.
(b) Prove that {a,} does not converge to any limit /.
(The definition of a limit of a sequence is given on page 156.)

13. Use the completeness axiom for R (see Exercise 5.3.10) to prove
that the set N of natural numbers is not bounded above. (This is called
the Archimedean property of N.)

6.4 Proof of a Biconditional

If we are required to provide a formal proof of a biconditional
proposition of the form P « Q it suffices to deduce each of the two
conditionals P — Q and its converse Q — P. We can then use the
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inference rule referred to as ‘conjunction’ to infer (P — Q) A (Q — P)
and then ‘material equivalence’ to infer P « Q. Hence to prove a
biconditional theorem of the form P « Q, we prove that P — Q and
Q — P are each theorems. If the theorem is a quantified biconditional
of the form Vx[P(x) « Q(x)] we proceed in the usual way and prove
that, for an arbitrary a in the universe, P(a) - Q(a) and Q(a) — P(a)
are true propositions. The application of the same two inference rules
allows us to infer P(a) < Q(a) and the theorem follows after applying
universal generalisation. The proof of a biconditional theorem therefore
involves the proof of two conditional ‘sub-theorems’. Of course each
of these individual conditionals may be proved by any of the methods
which we have described. The structure of the formal proofs underlying
the method are shown below.

Formal proof of a biconditional

Proof of P & Q Proof of Vx[P(x) « Q(x)]

1. A 1. A

: } axioms : } axioms

n. A, n. Ay

n+1. T, n+1 T,

: } theorems : } theorems

n+m.T, n+m.T,

r. P—->Q r. P(a)— Qa)

s. Q-—->P S. Q(a) > P(a)

s+l P->QDAQ->P) | s+1. (P@)— Q@)A(Q@)— Pa))
(r,s. Conj) (r,s. Conj)

s+2. PeQ s+2. P)e Q) (s + 1. Equiv)

(s + 1. Equiv) s+3. Vx[P(x) e Qx)] (s+2. UG)

Biconditional theorems of the form P « () are normally expressed as
‘P if and only if Q' and are often abbreviated to ‘P iff Q’. Recall that
an alternative expression is ‘P is a necessary and sufficient condition
for Q’.
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Examples 6.3

1.

2

Theorem: For any integer n, n® is even if and only if n is even.

Proof

This theorem can be symbolised Vx [E(x2) <> E(x)] where E(x)
denotes ‘x is even’ and the universe is the integers. In Example 5.2.2
we provided a direct proof of the theorem: for any integer n, if
n is even then n? is even. Example 6.1.1 gives a proof (using the
contrapositive) of: for any integer 1, if n* is even then n is even.

Since we have proofs of E(n?) — E(n) and of E(n) — E(n?), we
can splice them together to produce the proof of E (1) < E (n?).

2

We can therefore infer the theorem: for any integer n,n“ is even if

and only if n is even.
a

Theorem: 2x* +3x —1=x2>+8x-5 iff x=40rx =1.

Proof

We first prove that, if 2x* +3x — 1 =x2+8x — 5, thenx =4 or x =
1. The proof is simply a matter of showing that these two values of
x are roots of the quadratic equation.

2x243x -1 =x24+8x -5
= x2=5x+4 =0
= x—4Hx-1) =0
= x=4orx=1.
To complete the proof of the biconditional, we must now show that,
if x=4or x =1, then 2x2+3x — 1 = x2%+ 8x — 5. Of course, this
could be achieved by evaluating each side of the equation for x =1

and x = 4 and demonstrating the equality. Alternatively, we may
proceed as follows:

x=4orx =1
= x—4)(x-1) =0
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= x2—5x+4 =0
= 2x24+3x -1 =x%+8x —5.
O

Notice that the second part of the proof consists of exactly the same
steps as the first part, but with the order reversed. We can therefore
condense both parts of the proof neatly into the following alterna-
tive proof.

Proof

2x243x—1 =x2+8x-5
& x2—-5x+4 =0
& x—-4Hx-1) =0
< x=4orx=1.

3. Theorem: Forany sets Aand B, AUB =ANB.

(This theorem is known as De Morgan’s law for sets. Note the similarity
with De Morgan'’s replacement rule.)

The usual way of proving that two sets X and Y are equal is to prove
that X €Y and that Y € X. As we saw in Example 5.2.3, to prove
that X €Y we need to show that, if x is an arbitrary element of X
then x € Y. To prove the theorem therefore, we must show that if
x € AUB then x e ANB and also that if x € ANB then x e AUB. In
other words, we must prove the biconditional x € AUB iff x € ANB.
As in the last example the proofs of the two conditional ‘subtheorems’
contain exactly the same steps but reversed. We can therefore write the
proof as follows.

Proof

x € AUB
& x¢AUB
& x¢Aand x ¢ B
& xe€Aandx € B
& x e ANB.
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Of course, if a proof of P — Q can be reversed to prove Q — P, then
our task of producing a proof of P « Q is greatly simplified. However,
for most biconditional theorems, this is not the case. For example, note
that the proof of the theorem ‘if n is an even integer, then n? is an even
integer’ (Example 5.2.2) cannot readily be reversed to produce a proof
of the converse ‘if n2 is an even integer, then n is an even integer’.

Our final example of a biconditional proof is also one where we cannot
easily reverse the proof of P — Q to prove Q — P.

4. Theorem: For all non-empty sets Aand B, A x B =B x A if and only
if A=B.

Proof
Suppose that A and B are non-empty sets such that A x B = B x A.

Let a € A and choose any b € B.

Then (a,b)e AxB=>(a,byeBxA
=aeB.

Since a € A = a € B, we have proved that A C B.

Now suppose b € B and choose any a € A.

Then (a,b)e AxB=@b)eBxA
=>beA

Since b € B = b € A, we have proved that B C A.

We have A C B and B € A so that A =B.

We have proved that, if A x B =B x A, then A = B. We now prove
the converse.

Suppose that A = B.
ThenAxB=AxA=B x A.
Hence, if A=B then A x B =B x A.

This completes the proof of the theorem.
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Exercises 6.3
1. Prove that, for all sets A, B and C,
AUBNC)=(AUB)N(AUC).

2. Prove that, for all sets A and B, A C B is a necessary and sufficient
condition for P(A) € P(B).

3. Prove that, for all integers m and n, m and n have the same
remainder when divided by 5 if and only if 5 is a factor of m — n.

4. Prove that, for all integers m and n, if p is prime then p is a factor
of mn if and only if either p is a factor of m or p is a factor of n.

5. Prove that the line y = mx — 2 intersects the parabola y = 3x* + 1
iff [m| > 6. (See Exercise 5.2.3.)

6. Prove that a =cm is a necessary and sufficient condition for the
line y = mx + ¢ to be a tangent to the parabola y* = 4ax.

7. Prove that, if 2 and b are non-negative real numbers, then a’? > p?
iff a > b. (See Exercise 5.2.1.)

8. Suppose that x = x1, y = y is a solution of the equation ax + by =
c. Prove that the pair x = x1, y = y is a solution of the equation a;x +
b1y = ¢y if and only if it is a solution of (a + daj)x + (b + dby)y = ¢ + dcy
(for any d # 0).

9. Prove that a necessary and sufficient condition for the quadratic
equations mx%+bix +c;=0and axx? + box + ¢ =0 (a1 #0 and a2 #
0) to have a common root is

(@1bz — azb1)(bic2 — byc1) = (142 — cam ).
10. Prove that a group G is abelian if and only if
@) '=a'foralla,beG.
11. Prove that, for any sets A and B, AC B if and only if ANB = .
12. Let A be a 2 x 2 matrix with non-zero real entries. Prove that:

(i) A®=0,,; if and only if
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for some non-zero real numbers g, b.
(i) A? = A if and only if

a b
Az(a(l—a) l—a>
b

for some non-zero real numbers a,b such that a # 1.

13. Let m and n be integers. Prove that m + n+/2 is rational if and
only if n = 0.



7 Existence and
Uniqueness Proofs

7.1 Introduction

So far in this book we have concerned ourselves with the proof of
theorems which are propositions P or universally quantified proposi-
tional functions, ¥x P (x). For much of the current chapter we shall turn
our attention to proofs of existence theorems—that is, theorems which
assert the existence within the universe of an object or objects with a
certain property, P. We can symbolise such a theorem by: 3x P(x).

Some examples of theorems of this form are the following.

(@) Some prime numbers are of the form 32n + 1, where n is an
integer.

(b) Some quadratic equations do not have real roots.

(c) Not all real numbers are rational.

(d) There exist sets which have the same cardinality as some of their
proper subsets.

() There exist non-abelian simple groups.

Typically, existence theorems are stated using the phraseology
‘Some. .. or ‘There exist...”. Notice, however, that example (c) above
is expressed rather differently, as the negation of a universally
quantified propositional function, —=Vx P(x). The rule of quantification
denial, QD (see Section 3.2), states that this is logically equivalent to
3x—P(x), which is an existence theorem. In our example, the equivalent
existentially quantified statement may be expressed as ‘Some real
numbers are irrational (not rational)’ or ‘There exist irrational real
numbers’. The manner in which these theorems are expressed seems
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to suggest that they are asserting the existence of several objects of
the required type. However, this is merely convention and each of
the theorems could be expressed in the form ‘There exists at least one
object with the required property’. To prove a theorem of this type
it is sufficient to demonstrate the existence of a single object of the
appropriate type whether or not there actually exist many such objects.
(In Section 7.5 we shall consider how we might prove that there is only
one object with the required property if this is the case.)

7.2 Proof by Construction

The most obvious way to prove a theorem of the form 3x P(x) is to
find a specific object a in the universe for which P(a) is true. We can
then use the rule of existential generalisation (EG) to infer the theorem
3x P(x). This method of proof is called proof by construction because
we construct (or find) a specific object 2 with the required property.
How we actually go about finding or constructing the desired object a
will, of course, depend on the particular theorem under consideration.
The proof of P(a) may employ any of the methods we have discussed
in the previous two chapters.

The underlying formal proof of a proof by construction is given in the
box below.

Proof by construction
1. Aq
: axioms
n. Aj
n+1. T1
: theorems
n+m. Ty
r. P(a)
r+1. dx P(x) (r. UG)

The following examples illustrate the method.
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Examples 7.1

1. Theorem: Some prime numbers are of the form 32n + 1, where n is an
integer.

If we define the universe of discourse to be the integers and we define
propositional functions P(x):x s prime and Q(x):x =32n +1, for
some integer n, then the theorem can be symbolised as 3x [P (x) A Q(x)].
We need, therefore, to find a specific integer a for which P(a) and Q(a)
are both true propositions. The simplest approach is to list (some of)
the integers a for which Q(a) is true and then find one of these for
which P(a) is also true. (Alternatively, we could list integers a for
which P (a) is true—the primes—and find one of these for which Q(a)
is true. However, it is easier to list integers of the form 32n + 1 than it
is to list primes, so we adopt the former approach.)

The positive integers of the form 32n + 1 are: 1, 33, 65, 97, 129, 161,
193, ... . Which, if any, of these are also prime? We begin:

1 is not prime (by definition),
33 =3 x 11, so 33 is not prime,
65 =5 x 13, so 65 is not prime.

However, on testing 97 for factors (see Example 5.2.1 for a way of doing
this which requires only a few potential factors to be tested), we find
that 97 is, indeed, prime. Therefore we have found an object with the
desired properties and we can now proceed to the proof.

Proof

97 =32 x 3+ 1 and 97 is prime.
O

The proof itself is, of course, almost trivial. It is often the case with
constructive proofs that the proofs themselves are relatively simple.
The hard work goes into finding the required object 4, but this does not
show in the written proof. In our example, we have merely exhibited
an object @ = 97 with the desired properties. We have not proved that
97 is prime. In other words, this is taken as part of our background
knowledge of the integers. If a proof of this were deemed necessary, we
could follow the method given in Example 5.2.1. In Chapters 5 and 6,
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we noted frequently that the use of the rule of universal generalisation
was not made explicit. Similarly, in this example, the application of the
rule of existential generalisation is left to the reader. The proof simply
exhibits an object a for which P (a) is a true proposition. The underlying
formal proof has a final line, 3x P(x), justified by EG.

2. Theorem: Not all real numbers are rational.

We have noted that the theorem is equivalent to the proposition: there
exists a real number which is irrational. With universe the real numbers
and denoting 'x is irrational” by P(x), the theorem may be symbolised
as 3x P(x). In Example 6.2.1 we proved (by contradiction) that v/2, is
irrational. In other words, we proved P(+/2), which now becomes part
of our background knowledge of the real numbers. Adopting the usual
practice that the application of EG is left to the reader, we therefore
have the following one-line proof of the theorem.

Proof

V2 is irrational, by Example 6.2.1.
O

The hard work is first discovering that +/2 is a suitable real number to
consider and then proving that +/2 is indeed irrational. Of course, this
is hidden from view in our one-line proof.

There is also a nice non-constructive proof of this theorem, that is,
a proof which does not actually produce any specific irrational real
numbers. See Example 8.4.2.

3. Theorem: For any positive integer n, multiplication of n x n matrices
is not commutative.

The commutative law for multiplication says that the two products
xy and yx are always equal: VxVy(xy = yx). The given theorem is the
negation of this law for matrix multiplication (so the quantification is
over the universe of matrices). Using the rule of quantification denial
twice (see Section 3.2), we can show that —=VxVy(xy = yx) is equivalent
to AxJy (xy # yx). Thus, to prove the theorem, we must find two square
matrices of the same dimension, A and B, with the property that AB #
BA. Two such matrices are easily found using a little trial and error.
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For simplicity, we consider 2 x 2 matrices. Suppose we try A = ( 12 )

3 4
-1 1
andB:( 3 2).

1 2\ /-1 1 5 5
Then AB:<3 4)( 3 2):<9 11)
101\ /1 2 2 2
and BA:( 3 2) (3 4>=(9 14)

so AB # BA. Since we have found a suitable example, we can proceed
directly to a proof.

Proof

LetA:(é i) andB=<_; ;)

men A= (1 2) (71 1)=(53)
and BA:<_:1:, ;) (; i):(g 12“1)
so AB # BA.

g

In this example, trial and error easily produces elements of the universe
with the required property. Indeed a random choice of matrices is likely
to give the desired result. However, this will not always be the case
and sometimes we really do need to sit down and carefully construct a
suitable example. Staying with 2 x 2 matrices for simplicity, we could
do this here by first considering arbitrary products and then making
simple choices for the entries as follows.

a b u v\ _ (au+bw av+bx
c d w x /) \cu+dw cv+dx
u v a b\ _[ua+vc ub+vd
w o x c d) \wa4+xc wb+xd)’

We wish to choose the entries of the two matrices so that the two
products are different. Recall that two matrices are not equal if they

First note

and
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differ in at least one entry. Now, since au = ua, we can ensure that the
top-left entry of the products are different if bw # vc. A simple choice
would be b =w =0, v = ¢ = 1. With these choices and any choice of
a, d, u and x, we can construct matrices with the required property.
Taking a =d = u = x =1 gives matrices

10 1 1
A_(l 1) and B_<O l)

such that AB # BA.

Exercises 7.1

1. Prove each of the following existence theorems.

(a) Not all prime numbers are odd.

(b) There exists an integer k such that k, k + 2 and k + 4 are all prime.

(c) There exist consecutive positive integers n, n + 1 which are both
the sum of squares of two positive integers, i.e.n =a® +b*,n +1 =
¢t +d2.

(d) There exists a triple of consecutive positive integers n, n + 1, n + 2
each of which is the sum of squares of two positive integers a* + b2,

(e) There exists a complex number z such that z* = —1.

(f) There exists an irrational number x such that x is also irrational.

(g) There exist positive integers n which can be expressed as the sum
of two squares (of positive integers) in two distinct ways: n = a® +
b® = c* 4+ d* where {a,b} # {c,d}.

(h) There exist positive integers n which can be expressed as the sum
of two distinct squares (of positive integers) in two distinct ways,
ie.n =a*+b*=c*>+d*> wherea #b,c #d and {a,b} # {c,d}.

(i) There exist positive integers n which are both the square of a posi-
tive integer and the cube of a positive integer: n = 2> and n = b>.

(j) There exist positive integers n which can be expressed as the sum
of two distinct cubes (of positive integers) in two distinct ways, i.e.
n=a>+b>=c3+d> wherea #b,c #d and {a,b} # {c,d).

2. Prove each of the following existence theorems about matrices.
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(i) There exists a matrix A not equal to 0,., for any n such that
AZ = onxn-

(ii) There exists a matrix A not equal to I,, for any n such that A> = 1,,.

(iii) There exists a matrix A not equal either to 0,., or to I, for any
n such that A2 = A.

(iv) There exist matrices A, B such that AB =1, but BA #1,, for
any m.

(v) LetA:(1 2

(5 2)

3. This question refers to the set Zg = {0,1, 2,3, 4, 5, 6,7} with the oper-
ation of multiplication modulo 8 defined by:

21 ) There exists a 2 x 2 matrix B such that BAB =

n xg m = remainder when nm is divided by 8.

For example, 2 xg 6 = 4,3 xg 7 = 5, etc. A multiplicative inverse of an
element n € Zg is an element m € Zg such that n xgm = 1.

Prove each of the following.

(i) In Zg there exists a multiplicative inverse of 5.

(ii) Not all elements of Zg have a multiplicative inverse.

(iif) The equation 3 xg x =2 has a solution in Zg.

(iv) The equation x xgx =1 has a solution in Zg.

(v) There exist elements x and y in Zg, both different from 1, such
that x xgy =7.

4. Prove each of the following existence theorems from the realm of
group theory.

(a) Not all groups are cyclic.
(b) There exist non-abelian groups.
() There exist groups which have no proper subgroups.

7.3 Non-constructive Existence Proofs

There are methods of proof of an existence theorem 3Ix P (x) which do
not identify any specific element a4 in the universe of discourse which
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has the property defined by the predicate P. Any such proof is termed
a non-constructive existence proof or an indirect existence proof.

Usually, the method used is that of proof by contradiction. We prove
that the negation of the theorem, that is —3x P(x), leads us to infer
a false proposition. Now —3x P(x) asserts that there is no element of
the universe which has the property P. By the rule of quantification
denial, QD (see Section 3.2), —3x P(x) is equivalent to Yx—P(x). Thus,
we assume Vx—P (x) and show that this inevitably leads to a falsehood.
Using the method of proof by contradiction we can infer =Vx—P(x)
which is equivalent to ——3x P (x) by QD and hence to 3x P(x) by DN.
The structure of the underlying formal proof is shown in the box below
(where we have omitted the details of the proof by contradiction).

Non-constructive existence proof

1. Al

: axioms

n. An }

n+1. T,

: } theorems
m. Tm

n+m+1. Vx—P(x) (CpP)
n+m+2. -P(@) (UI)

r. Q

S. -Q

s + 1. —Vx—=P(x) ((n+ m + 1) —s. Proof by contradiction)
s + 2. ——3Ax P(x) (s +1. QD)
s + 3. dx P(x) (s +2. DN)

Examples 7.2

1. Theorem: There exists a prime number greater than 10'%,
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Before embarking on a non-constructive proof, it is worth reflecting on
the difficulties associated with a constructive proof. The number 10'%
is enormous, greater than the number of atoms in the universe.

Despite the obvious difficulties, there are constructive proofs of the
theorem. In other words there are specific known primes larger than
10'%. For example, several very large Mersenne numbers of the form
M, =27 — 1 (where p is prime) are known to be prime. The first of these
greater than 10'® which is also prime is 252! — 1, which has 157 digits
in its decimal notation. (The largest of the currently known primes have
many thousands of digits in their decimal expansions.)

The proof that any one of these extremely large integers is prime
requires a computer (a very fast supercomputer in the case of the
largest) to perform all the necessary calculations. This should be
contrasted with our non-constructive proof which follows readily from
Euclid’s theorem that there exist infinitely many primes (which we
have proved in Example 6.2.2 and so becomes part of our background
knowledge). It is also worth noting that Euclid’s theorem itself had a
non-constructive proof.

Proof

Suppose that every prime number p satisfies 2 < p < 10!%. Then,
since there are only finitely many integers between 2 and 10'%, there
can be only finitely many primes. This contradicts Euclid’s theorem
(Example 6.2.2). Therefore our initial supposition is incorrect and

hence there are prime numbers greater than 10'%,
O

2. Theorem: In any n-sided polygon there is an interior angle 6 such that

0 < (n_2>7r.
n

Figure 7.1 shows an 8-sided polygon with an interior angle § marked.

Figure 7.1
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Note that this is a slightly different kind of existence theorem in that it
is not simply asserting the existence of an object with a particular prop-
erty. Let T(P,6) denote the propositional function: 6 is an internal angle
of P such that 6 < [(n — 2)/n]n; then the theorem can be symbolised
VP36 T (P, 6). Here the universe for P is the set of all n-sided polygons.
We can therefore think of the theorem as asserting the existence of a
property possessed by all members of this universe. As explained in
Chapter 5, we will prove 30 T (P, 6) for an arbitrary n-sided polygon P
and then (implicitly) apply UG at the end to obtain YP36 T (P, 8). Now
39 T(P,6) is a ‘simple’ existence theorem of the type we have been
discussing.

In our proof, we shall assume as background knowledge the result: in
any n-sided polygon the sum of the interior angles is (n — 2)m. For a proof
of this result, see Exercise 9.2.3.

Proof

Let P be an arbitrary n-sided polygon and suppose that every interior
angle 0 of P satisfies 8 > [(n — 2)/n]r. Since P has n interior angles,

n
sum of interior angles > n <—1_) T =(n-—2)m.
1

which contradicts our background knowledge result. Therefore at
least one of the interior angles must satisfy

6 < (n_2>7r.
n

Exercises 7.2

Further examples of non-constructive existence proofs are given in
Exercises 8.2.

1. A polygon is convex if every interior angle 6 is such that § < r.
Prove that, in any n-sided non-convex polygon, there is an interior

angle 6 such that
0 < (n — 3) .
n—1
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This theorem appears to assert that every non-convex triangle has a
negative internal angle. Explain this apparent contradiction.

2. (a) Let {aj,az,...,a,} be a set of non-zero integers such that
S k—1ak < n. Prove that at least one of the integers in the set
is negative.

(b) Let {by,bz,...,b,) be a set of integers such that S°}_, b < n.
Prove that at least one of the integers in the set is zero.

3. A tennis club has 2n + 1 members, where n is a positive integer.
During one week, n + 1 singles matches were played between mem-
bers. Prove that some member played more than once during the week.

4. The following theorem is given as background knowledge.

Theorem: Let f:[a,b] > R be a continuous function defined on the
closed interval [a,b] = {x € R:a <x <b). Then the image of f, {f(x):
x € [a,b]}, is also a closed interval [c,d] for some real numbers ¢ < d.

Use this theorem to prove the following existence theorem.

Intermediate value theorem: Let f: [a,b] — R be continuous and suppose
k lies between f (a) and f (b) in the sense that k satisfies f(a) <k < f(b) or
f(b) <k <f(a). Then there exists x € [a,b] such that f(x) = k.

5. The completeness axiom for R (Exercise 5.3.10) can be used to
establish the existence of real numbers satisfying certain properties.

Prove that there exists a positive real number x which satisfies the
equation x% = 2.

Essentially, this asserts the existence of the real number V2.

Hint:let S = {x € R: x > 0 and x? < 2}. Prove that S is (a) non-empty
and (b) bounded above. Use the completeness axiom to deduce the
existence of a supremum « for S. Finally prove that ¢* = 2.

7.4 Use of Counter-examples

So far in this book, we have been concerned with finding and under-
standing proofs of theorems. Of course, given a particular proposition,
we will not know whether it really is a theorem until a proof has
been found. Suppose we are presented with a proposition of the form
Vx P(x) which may or may not be a theorem. If it turns out that the
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proposition is not a theorem then all our techniques and strategies
for finding a proof are bound to fail for the glaringly obvious reason
that no proof exists! Unfortunately, there is no way of showing that a
proposition is a theorem in advance of finding a proof—finding a proof
is precisely how a proposition is shown to be a theorem.

Consider, for example, the proposition:
For all non-negative integers n, the integer F, = 2" + 1 is prime.

In 1640, Fermat asserted his belief that this proposition was a theorem,
although he was unable to supply a proof. Was Fermat correct in his
belief? The first stage in investigating the question is to look at some
of the smaller examples.

Fo=2""4+1=214+1=3

Fi=22 +1=2241=5
F,=2241=2041=17
F,=2241=2841=257
Fa=2"4+1=2141=65537

Fs =22 +1=2% 11 = 4294967297

Fo =22 +1=2% +1 = 18446744 073709551 617

It is clear that Fo, F1 and F, are prime and we can fairly quickly verify
that F3 is prime (see Example 5.2.1). With rather more work, F; can
be shown to be prime. (Even with a standard scientific calculator,
this would be a lengthy and tedious task.) Beyond F; these so-called
Fermat numbers grow very rapidly indeed. We cannot imagine anyone
wishing to use the method of Example 5.2.1 to test whether or not Fs is
prime aided only by a pocket calculator. Indeed, it was not until 1732,
nearly one hundred years after Fermat proposed the conjecture, that
Euler established that Fs is composite by showing that

Fs = 4294967297 = 641 x 6700417.

Of course, this factorisation of Fs5 shows that Fermat’s conjecture is
not a theorem. The factorisation provides a ‘counter-example’ to the
proposition.

LA word of warning! Some pocket calculators will evaluate Fs incorrectly as 4294 967 296 due to the
method they employ to evaluate powers.



Use of Counter-examples 197

As an aside, it is interesting to note that what took the mathematical
community nearly 100 years to achieve now takes a modest desktop
computer just a few seconds. There are various computer algebra
packages which will obtain these factors in under a second.
Indeed the factorisation of the next Fermat number Fg = 274177 x
67280421310721 is also achieved by some such packages in a second or
two. Lest we become too complacent about their ability, two different
computer algebra packages each running on a personal computer for
over 100 hours failed to find the (known) factorisation of F7.

Let us consider again the general situation: suppose we are presented
with a proposition which is a universally quantified propositional func-
tion Vx P(x). If we can find a single specific member a of the universe
such that P(a) is false, then Vx P (x) is not a theorem. Any element 4 in
the universe such that P(a) is false is called a counter-example to the
proposition Vx P(x). The method of finding the appropriate element a
and showing P(a) is false is often called proof by counter-example.
Since the existence of a counter-example establishes that Vx P (x) is not
a theorem, perhaps ‘disproof by counter-example’ would be a better
term. It should be noted that the existence of a counter-example does
prove the proposition —=Vx P(x) or its equivalent (by the rule of quan-
tification denial) 3x—P (x). The formal proof underlying the method is
given in the box below.

Proof by counter-example

1. Ar

: axioms

n. Ay

n+1 T,

: theorems

n+m. T,

r. =P(a) (where 7 is a specific

element of the universe)
r+1. Ax—-P(x) (r.- EG)
r+ 2. -Vx P(x) (r+1. QD)

Given a proposition ¥Yx P (x) which may or may not be a theorem, we
are faced with a dilemma. Do we search for a proof or do we try to find
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a counter-example? If Vx P(x) is a theorem and we opt to search for a
counter-example, then our quest is bound to fail. On the other hand,
if Vx P(x) is not a theorem then any search for a proof will inevitably
be unsuccessful. The choice of which path to take—proof or counter-
example—is often based on experience, intuition or pure instinct. In
practice the situation is not as bad as it appears. The first step in the
search for a proof is frequently to look at some examples and during
this initial phase we may come across a counter-example anyway.

Actually, there is a third possibility which is rather disturbing. It may be
impossible to find a proof of, or a counter-example to, the proposition
Vx P(x). Essentially, we have defined a theorem to be a proposition
which is provable from the axioms. There are some situations when
neither Vx P(x) nor —Vx P(x) is provable from the axioms. In other
words, the given axiom system is not sufficiently powerful to determine
the “truth’ of Vx P(x). In this case, we say that Vx P(x) is undecidable
from the given axioms. Fortunately, such situations are rare and tend
to crop up only in the more esoteric areas of mathematics.

Examples 7.3

1. Find a counter-example to the proposition: for all real numbers x and
y, if x <y then |x| < |y|.

The proposition can be symbolised as VxVy[(x <y)— (x| < |y])],
where the universe for x and y is the set of real numbers. For a
counter-example, we need to find real numbers 2 and b such that
(@ <b)— (la] < |b]) is false. This is a conditional proposition of the
form P — Q which is false only when P is true and Q is false.
Thus a counter-example will be such that 4 <b is true and |a| < |b]
is false. Since |x| = x for all non-negative real numbers x, any counter-
example must be such that at least one of the real numbers a or b is
negative. An example wherea < bistrueisa = —2,b = —1. In this case,
al=|—-2] =2 and |b| =| — 1| =1 so the statement |a| < |b| becomes
2 <1, which is clearly false. We have found our counter-example.

2. Find a counter-example to the proposition: for all sets A, B and C,
AUB -C)=(AUB)-C.

Recall (or see the appendix) that for sets X and Y, the set X — Y
contains all those elements of X which do not belong to Y:
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X-Y={x:xeXandx &Y}

Although one or more Venn diagrams will not constitute a proof of
a theorem, they can be extremely useful in pointing the way towards
a proof or counter-example. Figure 7.2 represents the sets AU (B — C)
and (AUB) — C on two Venn diagrams.

AUB-C) (AUB)-C

Figure 7.2

From the diagrams, we can see that the ‘difference’ between the two
sets is that AU (B — C) contains A N C as a subset whereas (AUB) — C
does not. This indicates that a counter-example will require the set
ANC to be non-empty.

Counter-example
Let A={1,23,4,5}, B=(2,4,6} and C = {2,3,5}.

Then B-C={4,6}) so AUMB-C)=1{1,2,3,4,5,6).
However AUB ={1,2,3,4,5,6} so (AUB)-C ={1,4,6]}.

Therefore AU(B — C)# (AUB)—C for these sets.
O

In terms of proving a particular proposition to be false, any counter-
example is as good as any other. However, simpler counter-examples
are to be preferred to more complicated ones. A complicated example
may be difficult to understand and can obscure the real reason why
the particular proposition is false. A simpler example is more likely
to come close to the heart of why the proposition is false and
thus provide greater insight. For instance, another counter-example
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to the proposition "AU(B - C)=(AUB)—-C for all sets A, B, C’
is provided by A = {positive real numbers}, B = {integers} and C =
{irrational real numbers}. (We leave it as an exercise to verify that
these sets do, indeed, provide a counter-example—see Exercise 7.3.3.)
However, it is more difficult to evaluate the various sets involved
here and we may wonder whether the reason that AU(B —C) #
(AU B) — C has something to do with the fact that the sets are infinite
or involve irrational numbers.

Exercises 7.3

1. Let f(n)=n?>+4+n+41. Then f(0)=41, f(1)=43, fQ2)=47,
f(3)=053, f(4) =61,... are all prime. Find a counter-example to the
proposition:
for all non-negative integers n, f(n) is prime.

(This formula, which does produce a long sequence of primes, was
discovered by Euler. In fact, amongst all expressions of the form
n? +an +b where a and b are non-negative integers less than 10 000,
there is none which produces a longer sequence of primes.)

2. Find a counter-example to each of the following propositions.

(a) For all real numbersa, b, cand d, ifa > b and ¢ > d then (a — ¢) >
(b—-4a).

(b) For all positive integers a, b and ¢, if c is a factor of a + b then ¢
is a factor of a4 or c is a factor of b.

() f(n)=n?—n+17 is prime for all positive integers n.

(d) 6" +4n* is divisible by 5 for all positive integers n.

(e) 3" < 4n* for all even positive integers n.

() n*+1is prime for all even positive integers n.

3. Verify that the sets A = {positive real numbers}, B = {integers} and
C = {irrational real numbers} provide a counter-example to the propo-
sitiont- AU(B—-C)=(AUB)~—C for all sets A, B, C as claimed in
Example 7.3.2.

4. Find a counter-example to each of the following propositions
defined over the universe of all 2 x 2 matrices with real number entries.

(i) If AB=AC and A # 0,5, then B = C.
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(i)

(iii)
(iv)

The only matrices satisfying the equation A% = A are (8 8)

10
and (0 1).

10 1 0
4 _ 2 _
If A _(0 1>thenA _(O 1).

If A and B are distinct (i.e. non-equal) matrices such that AB = BA

. . 0 0 10
then either A or B is equal to (O O) or (O 1).

5. Prove or disprove each of the following propositions.

(i)
(ii)
(i)

(iv)

If 4 and b are rational numbers, then ab is a rational number.
If 2 and b are irrational numbers, then ab is an irrational number.
If 2 and b are rational numbers and b # 0, then a /b is a rational

number.
If a and b are irrational numbers, then a /b is an irrational number.

6. Find a counter-example to each of the following propositions.

()
(b)

(©

Every continuous function f: R — R is differentiable.

Every continuous function f: (a,b) - R is bounded.

Here (a,b) is the open interval {x € R:a < x <b}. A function
is bounded if there exists a positive real number M such that
|f (x)] <M for all x in its domain.

Note: there is a theorem which states that every continuous
function f: [a,b] — R is bounded, where [a,b] denotes the closed
interval {x € R:a < x < b}. Your counter-example shows that this
theorem does not extend to open intervals.

If f: R - R is twice differentiable and f has a local maximum at
x =a then f"(@) < 0.

If g: R —» R is twice differentiable and g has a local minimum at
x =b then g"(a) > 0.

Note: your counter-examples indicate the limitations of the second
derivative test for local maxima and minima.

7. Prove or disprove each of the following propositions.

(a)
(b)

If A,B and C are sets such that AC B, B CC thenACC.
If A,B and C are sets such that AZ B, B £ C then A € C. (The
symbol € means ‘is not a subset of.")
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() If A and B are n x n matrices such that both A and AB are
symmetric, then B is symmetric.

(d) If G is a group and a,b € G then (ab)" =a"b" for all positive
integers n.

() If A, B and C are sets such that C CA x B, thenC =X x Y for
some X C A and Y C B. (Informally, this says that every subset
of a Cartesian product is itself a Cartesian product.)

7.5 Uniqueness Proofs

Sometimes in mathematics, we wish to prove not only that an object
with certain properties exists but also that there is only one such object,
i.e. that the object is unique. The existence part of such a proof was
discussed in Sections 7.2 and 7.3. Here we focus on the uniqueness
part. To see what is required in such a proof, suppose we define the
natural number N to be the number of objects with the required prop-
erty. An existence proof amounts to showing N > 1; in other words,
that there is at least one such object. Given this, to establish uniqueness
as well we must show that N = 1 so that there is exactly one object of
the required type.

The method of proving that N = 1 is essentially the method of proof by
contradiction, although it is frequently phrased in a slightly different
manner, as we shall explain. We suppose that existence has been estab-

. lished, so that we know N > 1. Since N is an integer and N > 1, the

negation of N = 1is N > 2. Thus we suppose that there are at least two
different objects in the universe satisfying the required conditions. We
can therefore choose two such objects and deduce a false proposition.

To investigate the structure of the proof more closely, we need to intro-
duce some notation. Let P (x) denote the propositional function: x is an
object with the required properties. Then N > 2 is equivalent to the propo-
sition 3x3y[P(x) A P(y) A (x # y)] which asserts that there exist two
distinct objects with the required property. Using existential instantia-
tion (EI) twice we deduce P(a) A P(b) A (a # b) for specific elements a
and b of the universe. The false conclusion which is generally obtained
from this assumption is a = b.

Now uniqueness proofs are often not expressed as proofs by contradic-
tion but rather as direct proofs. It is possible to prove ~(N > 2) directly.
It is not too difficult to show (see Exercise 7.4.8) that
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=@y Px)APY) A (x #y))]
is equivalent to
VxVy[(P(x) AP(y)) — (x =y)].

This means that uniqueness can be proved directly using the method of
conditional proof. We need to prove P(a) A P(b) — (a = b) for arbitrary
a and b in the universe and then (implicitly) use UG twice. Thus we
add P(a) and P(b) to our assumptions and infer a = b. (Strictly, it is
P(a) A P(b) which is added to the assumptions, but this is equivalent
to adding both P(a) and P(b).) In other words, we suppose that 2 and
b are objects of the required type and deduce thata = b.

In practice, the difference between the two versions of a uniqueness
proof is minimal. Both assume a2 and b are objects in the universe with
the required property. In the proof by contradiction it is additionally
assumed that the two objects are distinct, a # b. The ‘contradiction’
which arises is almost always a = b. The direct proof version is slightly
simpler as the additional assumption that 4 and b are distinct is not
made. The formal proof underlying the direct proof version is given
below. We leave as an exercise to construct the formal proof underlying
the proof by contradiction version.

Direct proof of uniqueness of x satisfying P(x)

1. A

: axioms
n. A,

n+1. T]

: theorems
i+ m. T

n+m+1. P@)AP®) (CP) (wherea and b are arbitrary
: elements of the universe)

r. a=b=
r+ 1. (P@)AP®) - (a=0b) (m+m+1)—r. CP)
r+2. VxVYy[(P(x)AP(y)) —» (x =y)] (r+1. UG)
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Examples 7.4

1. Theorem: For every real number a, the equation x*> = a has a unique
real solution.

The existence part of the proof is both subtle and difficult—it amounts
to proving that every real number a has a cube root J/a. How can we
prove, for example, that the real number v/2 exists? The existence part
uses the completeness axiom for the real numbers—see Exercises 5.3.10
and 7.2.5.

Proof

We shall assume the existence part of the theorem (as background
knowledge!) and prove only the uniqueness part.

Suppose x and y are real numbers such that x> =4 and y* = a. Then
PPy =0
= @ -y)P+xy +y?) =0
=>x-y=0 or x*4+xy+y>=0
=>x=y or x*+xy+y*=0.

We are required to show that x = y. This would now follow (using
commutation and disjunctive syllogism) if we could show that x* +
xy +y* # 0. Unfortunately, we cannot! However, from Exercise 5.2.5,

(x#00ry #0)= x> +xy +y* #0.
The contrapositive relation is:
X*+xy+y*=0= (x =0and y = 0).
In particular, x> +xy+y’=0=x=y.
From the argument above, it now follows that:

x—yE*+xy+y)=0=>x=y or x*+xy+y*=0
=>x=Y.

Therefore the equation x* = a has a unique real solution.
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2. Theorem: Let A bea 2 x 2 matrix. If det A # 0 then A has a unique
inverse.

This time we shall prove both the existence and uniqueness part of the
theorem. The existence part is proved by construction, that is, given
A we find a matrix B such that AB = BA = I,. We shall simply define
the matrix B and show that it is the inverse of A. (For an explanation
of where the matrix B comes from, a textbook covering basic matrix
theory can be consulted.)

Proof

Let A = (i Z) and suppose det A =ad — bc # 0. Define B to be
the 2 x 2 matrix
d -b
B_ 1 ( d —b>: ad —bc  ad — bc
ad —bc \ —¢c 4 —c a
ad —bc ad —bc

_[(a b) 1 d -b
AB_(C d/xad—bc'(—c a)
~awe e ) (£ )
T ad —bc\c d —-c a

1 (ad—bc —ab +ab
ad —bc \cd —cd ad — bc

1 ad — bc 0 )
" ad = be 0 ad — bc

10
=(0 1)=IZ'

Therefore AB = I,. Verifying that BA = I, is similar. Hence B is an
inverse of A.

Then

We now turn to the uniqueness part of the theorem. We shall need
to assume, as background knowledge, the associative property of
multiplication of 2 x 2 matrices which states that X(YZ) = (XY)Z for
all 2 x 2 matrices X, Y and Z.
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Suppose that B and C are 2 x 2 matrices such that AB=BA =1,
and AC = CA = L,. Then

B = BL, (property of I)
=B(AC) (since AC=1,)
= (BA)C (associative law for matrix multiplication)
=I,C (since BA = I,)
=C (property of I).

Therefore the inverse of A is unique.
O

The proof of uniqueness clearly relies on the associative law for matrix
multiplication. In fact the proof is valid for any associative binary oper-
ation (with an identity element). In particular, the proof can be used to
show that in any group the inverse of each element is unique.

3. For our last example, we prove the uniqueness part of the
fundamental theorem of arithmetic. The proof of the existence part
was outlined in Section 4.2 and will be dealt with more rigorously in
Chapter 9.

Fundamental theorem of arithmetic: Every integer greater than 1 can
be expressed as a product of prime numbers in a manner which is unique
apart from the ordering of the prime factors.

Proof of uniqueness
Let a be an integer greater than 1 and let

a=pip2:-Pn = Q142" qm (%)

be two factorisations of a into prime factors. Without loss of gener-
ality we may suppose that n > m.

Now gy, is a factor of a so g,, divides the product pip; - - - p,. If a prime
number divides a product, it must divide one of the factors (see
Exercises 6.3.4 and 9.1.12 (a)—the first of these is plab = pla v pl|b,
the second is the extension to several factors) so g, divides one of
the p’s, px say. But pi is prime so it has no factors other than 1 and
px; therefore g, = px.
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Dividing (*) by g, = pr and renumbering the p’s (if necessary) gives

Pip2 - Pn-1=q192 - Gm-1.

Repeat the argument above using gm_1, - - -, g2 in turn. This produces:

pip2---pi =q (%)

where | =n —m +1>1. As before g; divides pip2---p; so must
divide one of the ps. However, if [ > 1 so that there is more than
one factor on the left-hand side of (xx), then dividing by 4; would
give a product of prime numbers equal to 1. This is impossible since
every prime is strictly greater than 1. Therefore [ =1 so n = m and

(*x) is just p1 = q1.

In summary, we have shown that with a suitable re-numbering of
the p’s if necessary,

n=mand p1 =q1,P2=92,---,Pn = Gm

so the prime factorisation is unique apart from the ordering of the
factors.
O

Exercises 7.4

1. Prove that the equation ax =b, where a and b are fixed real
numbers and a # 0, has a unique solution.

2. Prove that, if a > 0 then the equation x> = a has a unique positive

solution. (As in Example 7.4.1, you may assume the existence of \/a for
a>0)

3. Prove that, for every real number a4, the equation x> =g has a

unique solution. (Again, assume the necessary existence theorem and
concentrate on the uniqueness part of the proof.)

4. Prove that, if a, b, ¢, d are real numbers such that ad — bc # 0,
then for all real numbers s, t there exists a unique solution (x,y) to the
simultaneous equations

ax +by =s
cx +dy =t.
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5. Prove that every integer a > 2 can be expressed uniquely asa =2"b
where n is an integer and b is an odd integer.

6. Let G be a group. Prove that:

(i) the identity element ¢ is unique.
(ii) for each x € G the inverse of x is unique.

(iii) for all a, b € G, the equation ax = b has a unique solution in G.

7. The completeness axiom for R states that every non-empty subset
of R which is bounded above has a supremum. (See Exercise 5.3.10.)

Let A be a non-empty subset of R which is bounded above. Prove that
the supremum of A is unique.

8. Prove the result used on page 203 that
—~[@xIy (P(x) APy) A (x #y))]
is equivalent to

VxVYy[(P(x) AP(y)) — (x =y)].



8 Further Proof Techniques

8.1 Introduction

In the previous three chapters we have described some general methods
and techniques of proof. In doing so we have not made any specific
assumptions about the nature of the assumed background knowledge,
the axioms and previously proved theorems. Of course, when consid-
ering particular examples we do need some detailed knowledge of the
system, but as far as the general proof techniques are concerned no
specific background knowledge was assumed. In this chapter and the
next we explore some proof techniques based upon specific axioms or
theorems which must therefore be part of the background knowledge
of the system within which the theorems are proved.

It should be emphasised that it is techniques based on particular axioms
or theorems which are of interest here. For example, we are not dealing
with situations such as the following (see Example 5.4.):

background knowledge: for all real numbers x, 2 >0

theorem: for all non-negative real numbers x and y, al ;y > J/xy.

The point here is that the theorem, and therefore its proof, relates
directly in content to the given background knowledge. Instead, we
shall consider situations where a theorem provides a framework for
proofs in many different contexts. Of necessity any theorem which
serves such a purpose must be very general in nature. For convenience,
we call the theorem on which a particular proof technique is based the
‘special theorem’ for that technique.

In each of the cases we shall consider the special theorem is a univer-
sally quantified conditional propositional function, Vx[P(x) — Q(x)].
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The universe of discourse of the variable x needs to be sufficiently
general to allow the theorem to have wide applicability. One possibility,
for instance, would be the case where x is defined over the universe of
sets. Since theorems in many different contexts can be phrased in terms
of set theory, such a theorem is likely to be applicable in many different
situations. The proof technique based on a special theorem of the form
Vx[P(x) — Q(x)] is summarised below. The method is used to prove
a theorem of the form Vx Q(x). Provided VYx[P(x) - Q(x)] is part of
our background knowledge, universal instantiation gives P(a) — Q(a)
where a is an arbitrary element of the universe. The main body of
the proof establishes P(a) from which we may infer Q(a), by modus
ponens, and then Vx Q(x), by universal generalisation.

Proof technique based on a special theorem

1. Aq

: axioms

n. A,

n+1. T;

: theorems

n+ m. T

n+m+1. Vx[P(x) - Q(x)] special theorem
n+m+2. P@)— Q@) (n+m+1.UD
r. P(a)

r+ 1. Q@) (n+m+2,r. MP)
r+ 2. Yx Q(x) r+1.UG)

Before considering particular instances of proof techniques based on
special theorems, a word of caution is in order. As we shall see, our
special theorems are frequently very simple, almost trivial, to state.
This does not mean, however, that particular proofs based on the
corresponding technique are trivial! A given special theorem provides
the structure for a corresponding proof. Even when the structure of
a proof is relatively straightforward, the detailed arguments involved
need not be.
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8.2 Proofs of Identities

Consider the two equations:

(x+1)2=x2+2x+1

and x> —2x —3=0.
The first of these is true for all real numbers x, whereas the second
has two real number solutions, x = —1 and x = 3. When an equation

is true for all elements in the universe, we refer to it as an identity. For
the equations above, we can regard the identity (x + 1) = x? +2x + 1,
which is true for all real x, as telling us something about the algebraic
properties of the real numbers. By contrast, the equation x> —2x — 3 =
0 is telling us something about the real number x. It is equations of
the first kind, the identities, which are of principal concern to us in
this section.

Some authors use a different symbol for identities and write (x + 12 =
x2 4 2x 4 1, where the symbol = is interpreted as meaning ‘is identi-
cally equal to’. We may regard (x + 1)*> = x? 4 2x + 1 as an abbreviation
for: forall x, (x +1)> = x> 4 2x + 1.

Crucial in proving identities (and solving equations) is the transitive
property of equality: if a =b and b =c then a =c. Although this
appears to be an almost trivial property, some care needs to be exercised
when applying it—see Example 8.2.4 below, for instance.

Example 8.1
To illustrate the use of the transitive property consider the following
simple theorem.

Theorem: For all real numbers x, (x + 1) = (x> + 1) + 3x(x + 1).

Proof
Let x be a real number. Then:
(x+1)3=x3+3x2+3x +1
= x>+ 1)+ 3x% +3x)
=>4+ 1)+3x(x +1).
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Analysing the proof in Example 8.1, we see that it comprises the
following three steps.

1. (x+1P=x343x2+3x+1
2. x343x243x+1=0(x3+1)+3x(x+1)
3. x4+12=x3+1)+3x(x+1) (from 1 and 2).

The justification of line 3 is the transitive property. More generally, a
proof of an identity will involve many steps. In order to avoid having to
appeal to the transitive property at each stage, it is convenient to prove
a theorem which will cover proofs with several steps. The following
theorem will be the special theorem for the proof technique used in
Example 8.1.

Theorem of identities: Ifaj,ay,...,a, are members of some universe such
that a1y = az,a2 = a3,...,4,_1 = a, then a; = a,.

Proof

We shall give a somewhat informal proof. For a more rigorous
version of the argument, we would need to use the method of proof
by induction—see Chapter 9.

Suppose that aq,ay,...,a, are such thata; =az,a2 =a3,...,a,_1 = a,.

Since a1 = a; and a; = a3 it follows from the transitive property that
a1 = a3. We therefore have a; = a3 and a3 = a4 so a; = a4, again by
the transitive property.

Continuing in this way we eventually obtain a; = a,, as required.
d

With the theorem of identities as the special theorem, the proof
technique given on page 210 gives the following method for proving
identities.

Proof of identities

Suppose thataj, a, . .. ,a, are members of some universe such that
the following are true propositions:

1. al = 612, 21. ﬂ2 = 03, “ oy n — 1. a”_l = an.

Then a; = a, is a true proposition.
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Sometimes it is not convenient to organise the proof of an identity
a; = a, as an unbroken chain a; = a; = - -+ = a,, from the left-hand side
a; to the right-hand side a,,. Instead, it may be easier to construct two
chains, one from the left-hand side to some element b and the other
from the right-hand side also to the same element b:

a1:a2:"‘=b and an:an_lz"'zb.

From these, we may deduce a; = b and a, = b using the theorem of
identities. We now need to appeal to the commutative property of
equality: if a = b then b =a. Using this, we may now deduce a; =b
and b = a,. Finally, we apply the transitive property to obtain a; = a,,.
Which of the two structures to adopt in a given proof is frequently
a matter of taste, although sometimes one version is easier to explain
than the other.

Examples 8.2

1. The binomial coefficients (n are defined for all non-negative

‘)
integers n and k such that k < n by:

n _ n!
(k)_m

where n! =n(n —1)y(n —2)---2x1forn>1 (and 0! = 1).

The binomial coefficients are also denoted by C (1, k), ,Ci or "Cy. There
are various identities which can be proved involving the binomial coef-
ficients. The following is a typical example.

Binomial coefficient
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Theorem: If nn and k are positive integers such that k < n, then

()= (e20) = ("),

To prove the identity, we consider one side of the equation and, using
algebraic manipulation, construct a chain of equal expressions ending
with the other side of the equation. Usually in mathematics, it is easier
to combine two terms and simplify than to divide a single term in two.
Thus it is sensible to begin with the left-hand side of the equation and
work towards the right-hand side.

Proof
Suppose that n and k are positive integers such that k < n. Then

i 1
(k)+(k_1)
mn! n!
= +
(m=kyk! (m—(k—=1)k-1)
n! n!

- (n— k) k! + (n—k+ Dtk = 1)

(using the definitions)

_ ntn—k+1) + n'k
T m—k+Lm—kk! m—k+Dkk—=1)
n'mn—k+1) n!k

= (since (1 —k+1)x (n—k)!
(n—k+l)!k!+(n—k—+-l)!k! =()n—k+1))!

and k x (k—1!=k!

ntn—k+14+k)
(m—k+1)k!
nl(n+1)
T m—k+ 1)k
(n+1)

=((n+l)—k)'k' (since n!'x (n+1)y=m+ 1)

= (” : 1 ) (using the definition).
([

2. The following “proof’ claims to establish a similar kind of identity
for the so-called falling factorial
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n!
(n —k)!

(n)y =

also denoted variously by P(n,k), ,Px or "P,. However the ‘proof’
exhibits an error common in the construction of proofs of identities.
What is wrong with it?

Theorem:

‘Proof.”

If r and n are positive integers such that r < n + 1 then

(n+1), =) +rn),_1.

Suppose n and r are positive integers such that ¥ < n + 1. Then

=

m+1)y=m)+rn)y

(n+ 1)! _ n! Ly x n!
i+ —n = =D
(n+1)! _ n! X n!
n+1-rt" (mn—=r) (n—r+1)
(m+D! nln—-r+1) r x n!
nm+1-nrt m=r+n—=r o—r+1)
(n+ 1! _n!(n—r+1) r x n!
m+1-=r)  —r+1) (n—r+ 1!
(n+1)! _n!(n—r—+—1—+—r)
m+1-r)" m—=r+1)
(n + 1! _ onln+1)
m+1-r) (m—r+1)
mn+D (m+ 1)
m+1-r) m—-r+1

Since this is clearly true, it follows that (n + 1), = (1), 4+ r(n),_1.

u

It could be argued, with some justification, that the proof is flawed
because it fails to justify or explain the steps. However, each step
follows from the previous one by a little algebraic manipulation in
a similar manner to the proof given in the previous example.
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In fact, there is a serious structural, rather than stylistic, problem with
the claimed proof. In the first line, the identity to be proved is written
down; subsequent lines are consequences of this until, at the end,
a statement is deduced which is clearly true. This means that the
structure of the ‘proof’ is to assume the identity and then deduce an
obviously true proposition:

(proposition to be proved) = (obviously true proposition).

However, we know from the method of direct proof that we should
proceed from what is known (background knowledge) to the proposi-
tion being proved. In other words, the direction of the argument in the
claimed proof is wrong.

Using this invalid method of ‘proof,” it is easy to produce ‘proofs’ of
obviously false propositions. A simple example is the following, which
claims to prove that 1 = —1.

1=-1=1=1 (by squaring both sides).
Since 1 =1 is true, we deduce 1 = —1.

This shows clearly what is wrong with the method. Although1 = -1 =
1 =1 is a valid implication, the converse 1 =1 = 1= —1 is not.

Returning to the theorem about falling factorials, it is a simple matter to
re-organise the given argument into a correct proof. We simply need to
restructure the argument to obtain a chain of equal expressions linking
one side of the equation to the other. As in the previous example, it
is easiest to work from the expression with two terms towards the
expression with a single term.

Correct proof

Suppose n and r are positive integers such that r < n + 1. Then

n! n!
(n)y +r(n)-1= o= 1) +r X m
n! n!
L ————
n'(n—-r+1) r x n!

:(n—r+1)(n—r)! n—r+1)
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ntin —r+1) r x n!
T i—r+ 1) (n—r+1)
nfn—r+1+r)
(n—r+1)
ni(n +1)
:(n——r+1)!
(n +1)!
=(n—~r+l)!
=(n+1),.

O

3. Another realm in which identities frequently appear is set theory.
The basic laws for the algebra of sets are given in the appendix. We
shall assume these laws as background knowledge in much the same
way that we assume the basic algebraic properties of the real numbers
as background knowledge.

The ‘standard’ method of proving that two sets A and B are equal is
to show each is a subset of the other: A € B and B C A. In a situation
where A = B is actually an identity, i.e. it is true for all sets, then using
the laws for the algebra of sets often provides a simpler proof. The
following example illustrates a proof using the laws. We leave as an
exercise to construct an alternative proof by showing that each set is a
subset of the other—it is longer and more involved.

Theorem: Forall sets A, Band C,A—-(BUC)=(A-B)-C.

Proof
Let A, B, and C be arbitrary sets. Then

A—(BUC)=AN(BUC) (definition of set difference)
=AN(BNC) (DeMorgan's law)
=(ANB)NC (associative law)
= (A-B)NC (definition of set difference)
=(A—-B)—C (definition of set difference).
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4. Consider the following ‘solution’ of a pair of simultaneous
quadratic equations:

x24+3x+2=0 (a)
2x2-5x +2=0 (b)

‘Solution’

From (a) and (b) x?43x +2=2x>-5x 42
= x?—8x =0

= x(x —8)=0.

Hence x =0 or x = 8.
O

There is clearly a problem here because the “solutions’ x =0 and x =8
satisfy neither of the original equations (a) and (b). So what is wrong
with our argument? In fact, there is nothing wrong with the argument
itself which establishes the conditional proposition:

if x is a real number such that x> + 3x +2=0and 2x> - 5x +2=0
then x =0 or x = 8. (%)

The equation x?+3x +2=0 has solutions x =—1,-2 and the
equation 2x? — 5x +2 = 0 has solutions x = },2. This means that the
antecedent, x is a real number such that x*>+3x +2=0 and 2x?—
5x +2 =0, is true for no real number x. Therefore the conditional
proposition (x) is true for every real number x since it has a false
antecedent. This situation will not arise when we are manipulating
identities (rather than solving equations) because identities are true for
all elements of the appropriate universe.

There is a rule in formal logic (sometimes called the substitution rule)
which governs when it is appropriate to add a = ¢ to a formal proof
which already contains the lines ¢ = b and b = c. The precise statement
of the rule is beyond the scope of this text—it involves the notion of free
and bound variables. Provided we are careful to interpret an argument
which involves the use of the transitive property of equality we can
avoid proving true but unhelpful propositions such as (x) above.
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Exercises 8.1

Prove each of the following identities.

xt-1

. =x34+xr4+x+1

1. Forall real x # 1,

2. For all real numbers x and y, (x + y)* — (x — y)* = 8xy (x> + y?).

3. For all positive integers k, n such that k <n,

<Z>=n__kL+—lx<kfl>'

4. For all positive integers n, m, k such thatk <m <mn,

() (8)= () (R 25)

5. For all positive integers n, m, k such that k <m, k <n,

(Z)(m)kz (’,’:)m)k.

6. For all positive integers m, n such that m > 2, n > 2,

(3)+(3) om=("3")

7. For all positive integers m, n, r such that m >3, n >3, r > 3,
n m r n+m-+4r
(3)*(3)*(3)*( 3 )
_[(m+n m4+r r+n
_( ; )+( ] )+( ! )+mnr.

For all positive integers n, r such that r <n + 2.

e

(n+2), =) +2r(n),_1+rr—1)(n), 2.

Give two proofs: (i) using direct algebraic manipulation;
(ii) using the theorem in Example 8.2.2.

9. For all positive integers m > 3, n > 3,

(m+n)3 = (m)3 +3(m)(n) +3(m)(n)y + (n)3.
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10. For all sets A, B, C which are subsets of some universe U:

(i) (AUB)—C =(A-C)U(B-_C).
(i) (A—B)UB—-A)=(AUB)— (ANB).
(i) (A—B)NnC =(ANC)-B.

(ivi. A—(BNC)=(A—-B)UA-C).

8.3 Use of Counting Arguments

Although counting is apparently an ‘elementary’ activity, many quite
advanced theorems can be proved using counting arguments. In fact,
counting can be a complex task and there is a branch of mathematics,
called enumeration theory, devoted to techniques of counting. Our aim
in this section is to present some simple counting theorems which form
the basis of proof techniques.

The first technique provides another method of proving identities. The
basic idea is very simple. Suppose the elements of a finite set can
be counted in two different ways, providing two expressions for the
number of elements of the set. Then, by the transitive and commutative
properties of equality, the two expressions must be equal.

The identity counting theorem: Let A be a finite set such that |A| = n
and |A| = m, then n = m.
O

Although this theorem is the basis for proofs in many and varied situ-
ations, we shall illustrate the technique using an identity involving

binomial coefficients ': ) and falling factorials (n),. The reason that
such an identity may be proved using a counting argument is that both
(’: ) and (n), can be interpreted as the number of ways certain selec-

tions can be made from a collection of objects. For completeness, we
describe (without justification) the basic results about binomial coeffi-
cients and falling factorials below.

Suppose we are given a collection of n distinguishable objects and we
wish to select r of the objects. If the order in which the objects are
selected is significant in the sense that we count different orderings of
a given collection of objects as different selections, then the number of
ways of selecting r of the n objects is (n),. We can think of an ordered
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selection as producing a list of objects: Ay, A, ..., A,. If, on the other
hand, the order in which the objects are selected is not significant, the

number of ways of selecting r of the n objects is (': ) We can think of

an unordered selection as producing a set of objects: {A;, Az, ..., Ar}.
In summary:

e The number of different lists of length r which can be formed from
a collection of n distinguishable objects is (11),.

e The number of different sets of r elements which can be formed
from a collection of n distinguishable objects is (’rl

Example 8.3

The following theorem generalises the identities given in Example 8.2.2
and Exercises 8.1.8 and 8.1.9.

Theorem: Let m, n and r be positive integers such that r <m and r < n.
Then

r

(m+n)y =Y <£>(m)k ()r k-

k:o

Before embarking on the proof, it may be worth reflecting on the diffi-
culty of proving the identity using direct algebraic manipulation. The
right-hand side is the sum of r + 1 terms:

<6>(m)o(n)r + <;>(m)1 (n)r—1+ (;>(m)z(n)r_z+

4 (1) o

Clearly, to manipulate this expression with general values of m, n and
r would be a fearsome task with a high probability of error.

The key to the proof is to interpret the expressions as the number of
ways of counting certain selections.

Proof

Let S ={Aj,Az ..., An, B1,Ba,..., By} be a set of m + n distinguish-
able objects of two different types—the A’s and the B’s. Suppose we
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are to make an ordered selection of r objects from S. Since there are
m + n objects in S, this can be done in (m + n), ways, which is the
left-hand side of the identity. If we can also interpret the right-hand
side of the identity as the number of possible ordered selections of
r objects from S, the proof will be complete.

Any selection of r objects from S contains k objects of type A and
r —k objects of type B for some k =0,1,...,r. Therefore adding
the number of selections with k objects of type A for all values of
k=0,1,...,r will give the total number of selections. Hence:
(4 )y = Xr: number of selections with k objects of )
T & \type A and r —k objects of type B.
For any particular value of k, an ordered selection of r objects
containing k objects of type A and r — k objects of type B can be
made as follows.

First make an ordered selection of k objects from {A;, Az, ..., Am});
this can be done in (m); different ways.

Next make an ordered selection of r — k objects from {By, By, ..., By };
this can be done in (n),_x different ways.

Finally we need to ‘splice together’ these two selections. At this stage,
we have two ordered lists:

Aiy, Ay, A

and Bj,,Bj,, ..., Bj,_; (the ordered selection of B’s).

it (the ordered selection of A’s)

Imagine that these r = k + (r — k) objects are to be placed into a row
of r boxes, one object per box. To do this we simply need to select
k of the boxes to take the A’s in order; the remaining r — k boxes
will take the B’s in order. The number of selections of the k boxes is

’: which represents the number of ways of splicing together the
selections of the A’s and the B’s.
Therefore, the number of ordered selections of r objects containing k

objects of type A and r — k objects of type B for any particular value
of k is:
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(;)(m)k (n)r—k.

Hence, from equation (x) we have, as required,

r

(m+n)y =3 (;)(m)k ().

k=0
O

Although the detailed explanations given in the proof are somewhat
lengthy, this should not obscure its simple structure based on the iden-
tity counting theorem. We calculate the number of ways of making a
certain selection of objects from a set in two different ways. Since the
two expressions are counting the same thing, they must be equal.

Non-constructive Existence Proofs Based on Counting Arguments

Counting the elements of finite sets can also be used to give non-
constructive proofs of existence theorems. The method is based on the
following simple theorem.

The subset counting theorem: If A and B are finite sets such that A C B
and |A| # |B| then A C B. Therefore there exists an element of B which does
not belong to A.

Proof

It is clear that, for all finite sets A and B, A =B = |A| = |B|. The
contrapositive is: |A| # |B| = A # B.

Now suppose that A and B are finite sets such that A C B and |A| #
|B|. Using the result above, this implies that A € B and A # B. Hence
A is a proper subset of B, A C B, so there exists at least one element
of B which does not belong to A.

ad

With this theorem as the special theorem, the formal proof given on
page 210 gives rise to the following method of proof. Note that proofs
which follow the method will be non-constructive existence proofs—we
can be sure that there exists at least one element of B which is not an
element of A without actually finding such an element.
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A counting argument for non-constructive existence proofs

Suppose that A and B are finite sets such that the following are
true propositions:

1. ACB, 2. |Al#B)

Then there exists at least one element of B which does not belong
to A.

This argument may be interpreted in terms of predicates. Let P and Q
be predicates such that every object x (in a finite universe) which has
property P also has property Q. In other words, Yx[P(x) — Q(x)] is
a true proposition. Let A = {x : P(x)} and B = {x : Q(x)}; then A C B.
Suppose we can show that the sets A and B have different numbers of
elements. It follows that there is at least one element of B which does
not belong to A. This means that there exists at least one object x which
has property Q but does not have property P, i.e. Ix[-P(x) A Q(x)].

Examples 8.4

1. Theorem: Let G be a finite group with an even number of elements.
Then there exists an element x € G such that x # e and x~! = x.

The idea of the proof is to compare the set G with its subset consisting
of the identity e together with all those elements for which ¢! # g.
We then show that the subset contains a different number of elements
from G. Hence there exists at least one element x in G not belonging
to the subset and this element satisfies the required conditions: x # e
and x ! = x.

Proof

Let G be a finite group with an even number of elements. Let S be
the subset of G comprising the identity element ¢ together with all
those elements ¢ such that g~! # ¢.

Apart from the identity element (which satisfies e~ = e), all the other
elements of S may be grouped together in pairs g, g~!. (We are using
here the fact that each element of a group has a unique inverse—see
Exercise 7.4.6). There are clearly an even number of elements which
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may be grouped together in pairs like this. Since S also contains
the identity element, S has an odd number of elements. But |G| is
even, so |G| # |S|. Therefore there exists an element x belonging to
G which does not belong to S and x satisfies the conditions x # e
and x! = x.

a

2. Theorem: There exist irrational real numbers.

The non-constructive proof we shall give is due to Georg Cantor!.
In fact Cantor’'s method can be used to prove rather more than the
existence of a (single) irrational real number, as we shall explain. In
the 1870s and 1880s, Cantor developed a theory of infinite sets which
allows comparison between the sizes of different infinite sets. At the
core of Cantor’s theory was his extension of the notion of cardinality
to infinite sets. If two finite sets have the same cardinality, then their
elements can be placed in one-to-one correspondence: each element
of the first set can be paired with a unique element of the second
and vice versa. Extending this idea to arbitrary sets, we say that any
two sets have the same cardinality if their elements can be placed in
one-to-one correspondence. This gives a well-defined notion of cardi-
nality for arbitrary sets. (By ‘well-defined” we mean that it satisfies:
A = B = |A| = |B|.) However, some of the cardinality properties of infi-
nite sets are rather different from the corresponding properties of finite
sets. For instance, a finite set cannot have the same cardinality as a
proper subset (see Exercise 9.2.8). Surprisingly perhaps, the same is
not true for infinite sets. It can be shown, for example, that the set of
integers Z has the same cardinality as the set of rational numbers Q,
even though Z is a proper subset of Q, Z C Q.

To prove our theorem we need a comparison between the sets of
rational numbers Q and real numbers R. Using a clever argument
(using the method of proof by contradiction), Cantor showed that these
two sets have different cardinalities, that is, |Q| # |R|. (See Garnier and
Taylor (1992), for example.)

With this result as part of our background knowledge, we can now use
the counting argument for finite sets in Example 1 above as a model for
our proof. Of course, we need to assume that, with cardinality defined

1 Georg Cantor, born in St Petersberg in 1845, trod the fine line between genius and mental illness,
especially in his later years when he was plagued by self-doubt. His theory of the infinite, which aroused
intense controversy in its day, is now regarded as one of the jewels of modern mathematics.
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as above, the subset counting theorem extends from the universe of
finite sets to that of arbitrary sets. However, our proof of the subset
counting theorem does not refer to the finite nature of the sets and is
valid for arbitrary sets.

Proof (of Theorem: There exist irrational real numbers)

Since every rational number is a real number, we have Q C R.
However, |Q| # |R| (Cantor’s theorem). Therefore there exists at least
one element of R which is not an element of Q. In other words, there
exists at least one real number which is not rational.

a

Although the structure of this proof is simple, it does assume a
considerable amount of background knowledge. We have only sketched
the bare bones of Cantor’s theory and have taken a great deal
for granted. For example, Cantor's proof that |Q|# |R| is quite
sophisticated. However, this non-constructive proof gives rather more
than the existence of a (single) irrational real number. It can be shown
that adding a finite number of elements to an infinite set does not
change its cardinality. Since |Q| # |R]|, it follows that we cannot add a
finite number of elements to Q and obtain R. Thus there are infinitely
many irrational real numbers.

Pigeon hole principle

The pigeon hole principle is a simple observation which is the basis
for many existence proofs. To illustrate the principle, suppose seven
letters are to be distributed in a rack containing six pigeon holes. Then
clearly at least one of the pigeon holes must receive more than one
letter. We will shortly state the principle in more mathematical terms.
However, the following non-mathematical statement is more memo-
rable and comprehensible than its mathematical counterpart.

The pigeon hole principle

If k objects are placed in n pigeon holes where k > n then some
pigeon hole contains more than one object.
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It should be clear that the pigeon hole principle is well suited to
non-constructive proofs which assert the existence of more than one
object of a given type. In mathematical proofs, we do not have actual
pigeon holes, of course. The principle is similar to the Subset Counting
Theorem in that it compares two finite sets (pigeon holes and objects
to be placed in them) containing different numbers of elements. In the
pigeon hole principle, however, one of the sets is not a subset of the
other. To express the principle more formally in mathematical terms,
we need a way of linking the set of pigeon holes with the set of objects.
Let A denote the set of objects and B the set of pigeon holes. Define a
function

f: A — B by f(object) = pigeon hole in which it is placed.

To say that some pigeon hole contains more than one object is equiva-
lent to saying that there exist two objects, object 1 and object 2, such that

f (object 1) = f (object 2).

A function with this property is said to be not injective. We can there-
fore state the pigeon hole principle in mathematical terms as follows.

Pigeon hole theorem: If f: A — B is a function between finite sets where
|A| > |B|, then f is not injective. Hence there exist ai,az € A such that
ay # az and f(a1) = f (a2).

Proof
Let f : A — B be a function between finite sets such that |A| > |B|.

The proof uses the subset counting theorem. Define a subset C of
A by

C={aeA: f(a)#f(x)for any x € A}.

Informally, C is the subset of those objects which are placed in
a pigeon hole by themselves. The set C certainly has no more
elements than B itself. Since |C| < |B| and, by hypothesis, |A| > |B|,
we have |C| < |A| so |C| # |A|. This shows that C and A satisfy the
hypotheses of the subset counting theorem. Therefore there exists an
element 2 of A not belonging to C. Since a does not belong to C,
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there exists an x € A — {a} such that f(x) = f(a), so f is not injective,
as required.
a

Examples 8.5

1. Theorem: Inany set containing 6 distinct positive integers there exists
a pair whose difference is a multiple of 5.

Proof

Let {a;1,a2,a3,a4,a5,a6) be a set of six distinct positive integers and
let r1, 72,13, 14,15, 16 be their respective remainders after division by
5. Since there are only five possible values for the remainders (0, 1,
2, 3 or 4), it follows by the pigeon hole principle that at least two of
the remainders are equal, say r; = r;. Therefore 4; — a; has remainder
0 after division by 5, so that a; — 4; is a multiple of 5.

O

The role of the pigeon holes in this example is played by the potential
remainders after division by 5. Each of the elements of the set is “placed’
in the pigeon hole labelled by its remainder. In the proof itself the
analogy between the possible remainders and pigeon holes is not made
explicitly.

Using the mathematical formulation, we could write the proof as

follows.
Proof
Let S = {a1,42,a3,4a4, 05,06} be a set of six positive integers and define
a function

f:S —10,1,2,3,4,5)
f (a;) = remainder when a; is divided by 5.

Since |{ai,az,a3,a4,a5,a6}| > |{0,1,2,3,4}|, the pigeon hole theorem
implies that f is not injective. Therefore, there exist elements a; # a;
of S such that f(a;) = f(a;). In other words, there exist two distinct
elements of S with the same remainder after division by 5. The differ-
ence between these two elements is therefore a multiple of 5.

a

2. The following example is, in fact, a theorem in graph theory. We
have formulated the statement of the theorem here in non-graph-
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theoretic terms. For the graph theory version of the theorem, see
Exercise 8.2.2(iv).

Theorem: Let S be a network of bus stations connected by various bus
routes. Suppose, further, that there are n bus stations and m bus routes
connecting them, where each route connects exactly two stations. If m >
In(n — 1) then there exists a pair of bus stations connected by at least two
distinct bus routes.

Proof

Since each bus route connects exactly two stations, we need to
compare the number of bus routes with the number of pairs of bus
stations.

To define a pair of bus stations we need to select 2 stations from
the n given. This can be done in (;) = %n(n —1) ways—see

page 221. Therefore there are %n(n — 1) pairs of bus stations. Since
m > In(n — 1), the number of routes m is greater than the number of
pairs of stations. Therefore, there exists a pair of stations connected

by more than one route, by the pigeon hole principle.
g

In the proof, the role of the pigeon holes is taken by the set of pairs
of bus stations and the role of the objects is taken by the bus routes.
Each bus route is ‘placed in’ the pigeon hole corresponding to the bus
stations which it connects. In the mathematical formulation, define sets
A = {bus routes}, B = {pairs of bus stations} and define a function

f:A— B,

f (bus route) = the pair of bus stations which the route connects.

Exercises 8.2
1. Use counting arguments to prove each of the following identities.

(i) For all positive integers n, k such that k < n,

() = (Z) k).
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(if) For all positive integers m, n and r such thatr <m, r <n,

(") =5 () ()

(iii) For all positive integers n, r such that 1 <r <n +1,
(n+1), = (n) +rn)-1.

(This identity was proved using algebraic manipulation in
Example 8.2.2.)

(iv) The identity given in Exercise 8.1.6.

2. A graph is a mathematical object which comprises a set of vertices
and a set of edges such that each edge connects either a pair of distinct
vertices or a vertex with itself. Graphs can be represented by diagrams
such as Figure 8.1. (For further details, see Garnier and Taylor (1992),
for example.)

First some terminology: A loop is an edge connecting a vertex to itself.
If v is a vertex of a graph, its degree is the number of edges connecting
it except that each loop contributes 2 towards the degree of the vertex
which it connects to itself.

Prove each of the following theorems about graphs, using counting
arguments.

(i) In any graph, the sum of all the vertex degrees is twice the
number of edges.

This result is known as the handshaking lemma—why?

(i) In any graph, the number of vertices which have odd degree is
even.
(iii) A graph is regular of degree r if every vertex has degree r.

Figure 8.1
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A graph which has n vertices and is regular of degree r has

1
anr edges.

(iv) If a graph has no loops, n vertices and m edges, where m >
%n(n — 1), then there exists a pair of vertices which is connected
by more than one edge.

(This is the graph-theoretic version of the theorem proved in
Example 8.5.2.)

3. (i) Prove the identity

no_ on n n-1 n n-2 .. n

3" =2 +(1)2 +(2>2 + +<n_1>2+1
= (1)

=> 2"k,
k=0 k

Hint: Consider the number of sequences of length n which can
be constructed from the letters a, b, c; then consider the number
of times the letter 2 occurs in such a sequence.

(ii) By considering the number of sequences in part (i) where a
occurs an even number of times, prove the identity

n
3 2+1 =2n+(g)2n_2+<Z>2'1_4+“'+(2)2n—q

n if n is even
n—1 if nisodd.

(iii) Generalise your argument from part (i) to prove the identity

where g = {

== (1) e — e () o -1

~-+(n'il)(r—1)+1=Z<Z)(r—l)”_k.

k=0

4. (a) Prove that, for any set of five points located in a rectangle of
dimensions 6 units by 8 units, there exists a pair which are no
more than 5 units apart.

(b) Prove that, for any set of n? + 1 points in a square of side 1,
there exists a pair which are no more than v/2 units apart.
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(c) Prove that, for any set of n + 1 points in an equilateral triangle
of side n, there exists a pair which are no more than 1 unit apart.

5. Prove that in any collection of 12 distinct integers chosen from the
set {1,2,3,...,30} there exists a pair with common factor greater than 1.

6. Let G be a finite group with |G| = n and let ¢ be an element of G.
Prove that ¢* = e for some positive integer k < 1.

7. Prove the following generalised pigeon hole principle.

If k objects are placed in n pigeon holes where k > rn (and r is a
positive integer) then some pigeon hole contains more than r objects.

8. Use the generalised pigeon hole principle (see Exercise 7) to prove
each of the following theorems.

(@) In any set of 750 people there exist three people with the same
birthday (day and month, but not necessarily year, of birth).

(b) If a pair of dice are thrown 45 times there exists a score which
occurred (at least) five times.

(¢) In a certain lottery, six numbers are drawn at random each week
from the set {1,2,3,...,49} to determine a winner. Prove that, in a
year of lottery draws, some number was drawn on at least seven
occasions.

8.4 The Method of Exhaustion

Suppose a universally quantified propositional function Vx P(x) is
defined over a finite universe A = {ay,a3,...,a,}. Then the proposition
Vx P(x)is equivalent to P(a1) A P(az) A --- A P(ay). So to prove ¥Yx P(x),
it is sufficient to prove each of the propositions P(a1), P(az),...,P(ay,)
separately. A proof of ¥x P(x) which follows this approach is called a
‘proof by exhaustion” because it exhausts each of the elements of the
universe ai,dz,...,4, in turn. We leave it as an exercise to construct the
formal proof underlying this method.

Note that the inference

P@)AP@a)nAn---AP@y;) = Vx P(x)
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Proof by exhaustion

is not quite the same as an inference justified by universal generali-
sation, UG. In the case of UG, we prove P(a) where 4 is an arbitrary
element of the universe and then infer ¥x P (x). In other words, P (a) is
proved for a single, arbitrary element of the universe, rather than for
each and every element of the universe as is the case with a proof by
exhaustion.

The method of proof by exhaustion outlined above is not very widely
used. It is really feasible to use the technique only if the finite universe
A ={ay,az,...,a,} is reasonably small. If n is large, the work involved
in proving P(a;) for every element g; is formidable. However, it is
more often feasible to prove P(a) for each of several possible cases
rather than for each of many elements. (We saw this technique used in
Example 5.3.) We could refer to this as exhaustion of cases rather than
exhaustion of elements as described above. There is the added advantage
that, even if the universe A is infinite (so that exhaustion of elements
would be impossible) there may still be only finitely many cases to
consider. This was the situation in Example 5.3. As we shall explain,
exhaustion of elements is, in fact, a special case of exhaustion of cases,
so we concentrate our attention on the latter.

The following theorem is the special theorem for the method of proof
by exhaustion of cases. It is essentially a re-statement of the definition
of the union of n sets (see the appendix).

Union theorem: Suppose A=A UA,U---UA,. Thenx € A ifand only
if x € A forsome i =1,2,...,n.

Let Vx P(x) be a quantified propositional function where x is defined
over a universe A and let A = A; UA, U ---UA,. We regard the subsets
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A1, Az, ..., An as defining separate cases. Suppose we can prove the
theorem Vx P(x) when x is defined over each of the ‘sub-universes’ A;
in turn. Then, by the union theorem, it follows that Vx P(x) is a true
proposition for x defined over the whole universe A.

Note that the condition A = A UA, U --- UA, does not imply that the
cases are mutually exclusive. In other words, we may have A; N Aj # &
for some i and j. Most frequently, however, we would consider mutu-
ally exclusive cases. For example, to prove a theorem about the real
numbers we would probably not consider x > 0 and x < 0 as separate
cases since they both include the case x = 0. It would, of course, be
sufficient to prove the theorem for x > 0 and x < 0 but the mutually
exclusive cases x > 0 and x < 0 would also suffice.

A collection of non-empty subsets Ay, Ay, ..., A, of a set A which satisfy
the conditions

o A=A1UAU---UA,
o ANA;=Cforalli #j

is called a (finite) partition of the set A. In this situation we may
strengthen the conclusion of the union theorem to state that: x € A
if and only if x € A; for a unique 1 € {1,2,...,n}. In terms of cases, this
is the situation where the cases are mutually exclusive and, although
this is not necessary for the method summarised below, it is usual.

Proof by exhaustion
Suppose that Vx P(x) is defined over the universe A where
A=A UA U- - UA,.

If Vx P(x) is a true proposition when x is defined over each
universe Ay, Az, ..., A, in turn, then Vx P (x) is a true proposition
when x is defined over the universe A.

As we have mentioned, a universe A suchthat A=A UAU---UA,
can be thought of as defining separate cases and thus gives rise to the
method of proof by exhaustion of cases. How does the method of proof
by exhaustion of elements, considered at the beginning of the section,
fit into this framework? Suppose A = {a1,4z,...,4,} is a finite universe.
Then the sets Ay = {a1}, A2 = {a2},..., Ay = {a,} define a partition of A
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and, for each subset A;, the theorem Vx P(x) defined over universe A; is
equivalent to the proposition P (a;). Therefore, proving Vx P(x) for each
sub-universe amounts to proving propositions P(a1), P(az),...,P(an)
and we recover the original proof by exhaustion of elements. In other
words, proof by exhaustion of elements is simply a special case of our
method of proof by exhaustion (of cases).

Examples 8.6

1. Recall from Exercise 7.1.3 that the operation of multiplication
modulo 8 is defined on the set Zg = {0,1,2,3,4,5,6,7} by:

n xg m = remainder when nm is divided by 8.
Theorem: The equation x* = 5 has no solution in Zs.

Note that we use x? as shorthand for x xg x. Since the universe Zg is
finite (and, indeed, not too large) the method of proof by exhaustion
of elements seems to be an appropriate strategy.

Proof
In Zg we have:

0°=0,12=1,22=4,3"=1,4=0,5=1, 6" =4, 7 =1.
(For example, 5* = 5 xg 5 = (remainder when 25 is divided by 8) = 1.)

Therefore each x € Zg satisfies x% # 5, and the theorem is proved, by

exhaustion.
a

2. (Example 5.3 revisited.)
Theorem:  For all real numbers x and y, |x +y| < |x| + |y|.

In Example 5.3, we gave two proofs of this theorem, both based on a
consideration of cases. It is not our intention to re-prove the theorem
here, but to show how the proofs in Example 5.3 fit into the framework
outlined above.

The first proof given in Example 5.3 split the proof into the following
four cases:
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x>0, y>0.
x>0, y<O.
x<0, y>0.
x <0, y<0.

Ll e

The theorem is of the form of a doubly quantified propositional func-
tion VxVy P (x,y) where x and y are defined over the universe of real
numbers. Since the cases deal with x and y separately, it is not immedi-
ately clear how to fit the four cases into our framework. One approach
is to regard the theorem as having the form V(x,y) P (x,y) defined over
the universe R? of all ordered pairs of real numbers (x,y). Let A;, Az,
As, Ay be the following subsets of R?:

Ar={x,y) e R?: x >0,y >0}
A2 ={(x,y) € R?: x >0,y <0}
As={(x,y) e R*:x <0,y >0)
Ag={(x,y) e R?:x < 0,y <0}.

These subsets A;, Az, A3, A4 form a partition of the universe R2. Each
of the cases given in the first proof of Example 5.3 is the proof of the
proposition V(x,y) P(x,y) over one of the sub-universes A;.

The second proof given in Example 5.3 has a slightly different structure.
First the mini-theorem, for all real numbers a, a < |a|, was proved; using
this, the main theorem was then proved. Recall that a theorem proved
before a ‘main’ theorem in order to assist in its proof is often called a
lemma. To prove the lemma, two cases were considered corresponding
to the partition of the universe R into two subsets {x € R : x > 0} and
{x € R:x < 0}. Having proved the lemma, by exhaustion of cases, the
main theorem was then proved by a direct argument without having
to resort to cases.

Exercises 8.3

1. Prove each of the following theorems about multiplication modulo
8 defined on the universe Zg.

Hint: it may help to draw up a multiplication table showing all the
possible products n xg m in Zs.
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(i)

(if)
(iii)
(iv)
v)
(vi)

If x xgy = 2 then either x or y is equal to 2 or 6.

For all x € Zg, x> =0 or x3

For all integers n > 2, 4" =0 in Zs.

=X.

For all b € Z3, the equation 3 xg x = b has a unique solution for x.
If x #£0, then x = 3 xg x if and only if x = 4.
If x #0, then 2 xgx =6 xg x if and only x = 2,4 or 6.

2. Prove each of the following considering cases where necessary.

(@)

(b)
(©

For all integers 1, if n is not a multiple of 3 then n? has remainder
1 after division by 3.

For all integers n, n* has remainder 0 or 1 after division by 4.

For all integers n, if 1 is not a multiple of 5 then n* has remainder
1 after division by 5.

3. By considering cases when appropriate, prove each of the following
theorems.

(@)
(b)
©

(d)

For all real numbers x and y, |xy| = |x||y|.
For all real numbers x and y, [x —y| > [|x]| — |yl

For all real numbers x and y, max{x,y} = %(x +y + |x — y|) where
max({x,y} is the larger of x and y.

For all real numbers x and y, min{x, y} = %(x +y — |x —y|) where
min{x, y} is the smaller of x and y.

4. By considering the possible remainders after division by 12, prove
each of the following.

(i)

(ii)

(iii)

If k is an integer such that k — 1 is divisible by 3 and k(k — 1)
is divisible by 12, then k =12n +1 or k =12n +4 for some
integer .

If k is an integer such that k — 1 is divisible by 4 and k(k — 1)
is divisible by 12, then k =12n +1 or k =12n +9 for some
integer n.

For every integer k, k% is of the form 12n,12n +1,12n +4 or
12n + 9 for some integer n.
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5. Prove each of the following theorems over the universe of sets.

(@) fAC X and B € X then (AUB) C X.
(b) For all sets A,B,X,(AUB)x X =(Ax X)U(B x X).



9 Mathematical Induction

9.1 The Principle of Mathematical Induction

In this chapter, we consider a method of proof which is important
because of its applicability to a large family of useful theorems. As
with the proof techniques considered in the last chapter, this one relies
upon a special theorem which constitutes essential background knowl-
edge. This theorem is generally known as ‘the principle of mathematical
induction’ and the method of proof which it sanctions is referred to
as ‘proof by mathematical induction’. (However, note that, despite its
misleading title, this is nevertheless a deductive method of proof. As
we pointed out in Chapter 1, inductive reasoning is not acceptable as
a mathematical proof.)

There are many mathematical theorems which can be formulated as
vn P(n) where the universe of discourse for n is N, the set of natural
numbers. Consider, for example, the following:

(a) The sum of the first n + 1 natural numbers is n(n + 1)/2,

n
1
ie. Zi=o+1+2+-~-+n=ﬂ1§—)forauneN.

i=0
(b) For every natural number n,2"*2 + 3#"+1 is divisible by 7.

(c) For all natural numbers n, a set with cardinality n has power
set with cardinality 2", ie. if A is a set such that |A| =n, then
|P(A)| = 2" for all n € N.

What these theorems have in common is that each can be expressed as a
universally quantified propositional function with the natural numbers
as the universe of discourse. For instance, if we define the following
propositional functions on the universe N:
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n
P(n): Zi = M;
=0 2

Q) 2"t2 432741 is divisible by 7;

R(n): |A| =n (where A denotes a set);
S(n): |PA)| =2" (where P(A) denotes the power set of the set A);

the three theorems above may then be written:

(@ VvnP(n)

(b) vVnQ(n);
(c) Vn[R(n)— Sn)].

Note that a theorem which can be expressed as a propositional function
universally quantified over the natural numbers may not be asserting
some property of the set N itself. Of the three theorems above, the first
states that some property is shared by all natural numbers. It is there-
fore a theorem about natural numbers. However, the second theorem
is about integers of the form 2"*2 4 32'+! (where n € N) and the third
theorem concerns sets. Nevertheless both of these can be expressed
in the form Vn T(n) where the universe is N and they are therefore
members of the family of theorems which concern us in this chapter.

The difficulty with proving theorems of this type is that we must show
that the appropriate propositional function is true for all values of n
within the universe of discourse, i.e. for all natural numbers. Verifying
that the propositional functions are true for particular values of » is not
usually a problem. For instance, substituting n = 4 in 2"+2 4 321+1 gives
20+ 3% = 64 + 19683 = 19747 = 2821 x 7, so that Q(n) is true when
n =4,ie.Q(4)is a true proposition. In a similar way, we can check that
P(n)is true for,say,n =10:0+1+2+---+9+10=55= (10 x 11)/2.
This verifies that P(10) is a true proposition. However, no matter how
many natural numbers we substitute for n, this will not constitute
a proof that the propositional function is true for all values in the
universe. All it can show is that the propositional function is a theorem
for the specific values of n which we have checked.

The method of proof known as ‘mathematical induction” gives us an
alternative to direct proof in the case where the universe of discourse
is N. It depends upon an axiom of the natural numbers which can be
stated as follows.
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Axiom of induction

Suppose that S is a subset of N and that the following are true
propositions:

@ 0eS,
(b) Vn[neS - (n+1)eS].

Then S contains all the natural numbers, i.e. S = N.

If we consider for a moment exactly what this axiom is saying, we
shall see that it has an intuitive appeal. Proposition (b) (strictly, the
proposition obtained by applying Ul to proposition (b)) states that the
set S is such that, if it contains any particular natural number, k say,
then it also contains the natural number which follows k, that is k + 1.
Proposition (a) states that 0 belongs to S. Hence, from the truth of
(b), we can conclude that 0 + 1 = 1 also belongs to S. Since 1 is a
member of S, we deduce that 1 + 1 = 2 is an element of S. Since this
chain of deduction can (in theory at least) be continued indefinitely, we
can conclude that all the natural numbers belong to S. Of course, this
line of reasoning does not constitute a proof of what is stated in the
axiom, although it could be used to prove that k € S for any specific
k, no matter how large. Extending the argument to prove that k € S
for any natural number would necessitate an infinite number of steps
and therefore no such proof could be constructed. (Indeed, proofs are
defined as having only a finite number of steps.) Hence the necessity
for the axiom.

A finite number of steps
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Suppose that, given a theorem such as one of the three stated at
the beginning of this section, we define S to be the subset of the
natural numbers for which the associated propositional function is
a true proposition. This means that, if the theorem can be stated
as the quantified propositional function Vn F(n), then S contains all
those natural numbers for which F(n) is true. Hence we can write
S ={n € N: F(n) is true}. With this interpretation, the truth of ‘0 € S’
((a) in the axiom above) is equivalent to ‘F(0) is true’, and proposition
(b) in the axiom, Yn{n € S — (n + 1) € S}, is equivalent to Vn[F(n) —
F(n + D]. If F(0) and Vn[F(n) — F(n + 1)] are both true propositions,
the final part of the axiom will then allow us to deduce that S = N.
For the set S which we have defined, this is equivalent to saying that
F(n) is true for all natural numbers n, i.e. Vn F(n) is a true proposition.
This interpretation of the axiom is a theorem known as the principle
of mathematical induction. We state this formally below.

Principle of mathematical induction

Suppose that F(n) is a propositional function with universe of
discourse N and that the following are true propositions:

(a) F(0),
(b) Vn[F(n) - F(n +1)].

Then Vn F(n) is a true proposition.

The principle of mathematical induction points to a method whereby
we may prove theorems which can be stated in the form vn F (1) where
n € N. We first show that the conditions stated in the principle are
satisfied. This necessitates verifying that:

(@) F(0) is a true proposition, and
(b) Vn[F(n) — F(n +1)] is a true proposition.

These two stages are essential to any proof which appeals to the
principle of mathematical induction. They amount to proving two “sub-
theorems'—F (0) and Vn[F(n) — F(n + 1)]. Proving the first (that is,
checking that F(0) is true) is referred to as the initial step or basis of
induction. This is usually a simple matter. The proof of the second sub-
theorem is known as the inductive step. This is carried out in the usual
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way by proving that F(k) — F(k + 1) is a true proposition when k is
an arbitrary member of the universe N. The sub-theorem follows from
applying universal generalisation (UG) to this result. However, explicit
mention of the application of UG is nearly always omitted in more
informal proofs and the inductive step often terminates once the truth
of F(k) — F(k + 1) is established. Usually, the proof of F (k) — F(k + 1)
will be achieved using the method of conditional proof. We add F (k),
referred to as the induction hypothesis, to our set of assumptions and
we show that the truth of F (k + 1) necessarily follows. Once the initial
and inductive steps have been completed, we can then use the principle
of mathematical induction to deduce the theorem Vn F(n). A proof
which has this overall structure is often referred to informally as a
‘proof by induction” although it is nevertheless a deductive proof.

For a proof which utilises mathematical induction, the underlying
formal proof will include the axiom of induction along with other
axioms of the system and the principle of mathematical induction as
a theorem. The general structure of the underlying formal proof is
shown below.

Proof by mathematical induction
1 Ay
axioms (including the axiom of induction)
n Ay
n+1. T
_ theorems (including the principle of
: mathematical induction)
n+m. T,
: } Initial step
r. F(0)
r+1. F(k) (CP—induction hypothesis)
'5. Fk+1) Inductive step
s+1. F(k)—> F(k+1) ((r +1)—s.CP)
s+2. Vn[F(n)—> F(n +1)] (s +1. UG)
s+3. VnF(n) (r,s + 2. Principle of mathematical induction.)
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There is an analogy which may be useful in clarifying the structure of a
proof by mathematical induction. Consider an infinite row of fireworks
numbered 0, 1, 2, ... connected together so that each is ignited by its
immediate predecessor in the line. The process of arranging the set-
up so that the firework numbered k will ignite that numbered k + 1
is analogous to the inductive step. However, nothing happens until
the first firework in the line is ignited. This stage corresponds to the
initial step which is necessary to set the whole process into operation.
Once the initial step is carried out and firework number 0 is lit, it sets
off the second (numbered 1) which sets off the third and so on to the
‘end’ of the infinite line. What the axiom of induction tells us is that,
under certain conditions, we can be sure that all the fireworks will light
even if we don’t actually observe them. If we know that they are set up
properly (analogous to the inductive step) and that the first has been lit
(analogous to the initial step) then we can be secure in the knowledge
that every one in the line will ignite.

Proof by induction

We now illustrate the method by proving the theorems (a), (b) and (c)
stated at the beginning of this section.

Examples 9.1

1. Theorem: The sum of the first n + 1 natural numbers is n(n + 1)/2.
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Proof

Defining P(n): Y. i = n(n +1)/2 as before, we commence with
the initial step and show that P (0) is a true proposition. Taking the
left hand side of the equation and substituting n = 0 gives:

0
i=0.

i=0

Substituting n = 0 in the right hand side gives:
00+1)

2
Hence the equation holds for n =0 so that P(0) is true. This
completes the initial step.

=0.

We now proceed to the inductive step. We add the induction hypoth-
esis, P (k) (where k is an arbitrary member of the universe), to our list
of assumptions, i.e. we assume that the sum of the first k + 1 natural
numbers, 0 +1+2 +--- +k, is k(k + 1)/2. The sum of the first k + 2
natural numbers, 0 +1+2+---+k + (k + 1), is then obtained by
adding k + 1 to k(k + 1)/2. In this way we show that the truth of P (k)
guarantees the truth of P (k + 1). It helps to bear in mind that P (k + 1)
is obtained from P(n) by replacing n by k + 1. Hence P(k + 1) is
k+1
doi=[k+1)k+1+1)]/2
i=0
or equivalently,
k+1
i =k + Dk +2)]/2.
i=0
The inductive step proceeds as follows:
k
Suppose » i=0+142+---+k
i=0
_kk+1)
2

(induction hypothesis).

Then Zi=0+1+2+---+k+(k+1)

=<fi>+(k+1)

i=0
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k(k +1)
T2
k% +k +2k +2
- 2
k2 + 3k +2
-2
_(k+ 1)k +2)
=
We have established the truth of P(k + 1) and hence of P(k) —
P(k +1) for an arbitrary natural number k. This completes the

inductive step and we deduce that Vn[P(n) - P(n +1)] is a true
proposition through the tacit application of UG.

+k +1 (from the induction hypothesis)

We have now proved conditions (a) and (b) of the principle of math-
ematical induction. It follows that ¥n P(n) is a theorem, i.e. that

i_ol = n(n +1)/2 where n is any natural number.
g

Our proof as presented contains much more in the way of detailed
explanation than would normally be given and something along the
following lines would be acceptable as a proof of the theorem.

Proof
. nn+1)
Defi : = .
efine P(n) ;l >
0
1
Then Zi=0=0(02+ !

Hence P (0) is true.

Suppose that P (k) is true for an arbitrary k € N,

k
. . kkk+1) . .
ie. 1= induction hypothesis).
g 5 yp )
k+1 k
Then i = Zi +k+1)
i=0 i=0

+k+1 (by the induction hypothesis)
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k% +k + 2k +2
- 2
kP 43k +2
N 2
Ck+ DKk +2)
=
Hence P (k) = P(k + 1) for an arbitrary k € N and therefore it follows

by mathematical induction that 3"/ ;i = n(n +1)/2 for all n € N.
O

2. Theorem: For every natural number n, 2"+2 + 32"+1 is divisible by 7.

Proof

As before, we define Q(n) to be the propositional function 2"+2 +
3%1+1 is divisible by 7'. The condition that the expression 27+ 4 327+1
is divisible by 7 simply means that it can be written as 7 multiplied
by some integer. Hence, an equivalent but more convenient interpre-
tation for this propositional function is Q(n): 2"*+2 4 3¥+1 = 75 for
some integer 4.

We commence with the initial step and show that Q(0) is true, i.e. we
show that when we substitute n = 0 in the expression 2"*2 4 321+1,
the result is divisible by 7.

2042 | 3@x0+1) _ 2 | 3l
=443
=7
=7x1.

Hence Q(0) is true and we have completed the initial step.

We now proceed with the inductive step. The induction hypothesis
is Q(k):2%+2 4 3%+1 is divisible by 7. We start by assuming that
this is true. Now Q(k + 1) is the proposition ‘2k+1+2 4 32(+D+1 g
divisible by 7’; in other words, ‘2¥*3 4+ 3%+3 = 7b for some integer b’.
Hence the inductive step consists of using the fact that 2k+2 4 3%+1
is divisible by 7 to show that 2k*3 + 3%+3 also has a factor 7.
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Assume 22 4 3%+1— 7. for some integer ¢ (induction
hypothesis).

Now 2k+3 + 32k+3= 2 % 2k+2 + 32 x 32k+1

=2 x 2k+2 +9x 32k+1.
We now make use of the induction hypothesis and substitute 7c —
3%+1 for 2542 in the last equation. (We could equally well use the
induction hypothesis to substitute for 3%+1.)
We have  2F%3 4 3%#3= 2 x k42 4 9 5 3%+

=2(7c — 3%+1) 4 9 x 3%k+1  (from the
induction hypothesis)

= 14¢c — 2 x 3%+1 4 g x 32k+1
= 14c + 7 x 3%+1
=7(2c + 3%+1),

Now, since c is an integer, then so is 2c + 3%+! Hence we have
completed the inductive step. We have shown Q(k) = Q(k + 1) for
an arbitrary k in the universe so that vn[Q(n) — Q(n + 1)] is a true
proposition.

Finally, the principle of mathematical induction allows us to
deduce that Vn Q(n) is a theorem, i.e. for every natural number #,
27+2 4 327+l jg divisible by 7.

O

The proof with extraneous explanations omitted might be written as

follows.
Proof
Define Q(n): 2"*%+43%"*!1 =73 for some integer a.
We have 2042 4 32x0+1 _ 52 4 3l
=7
=7x1.

Hence Q(0) is true.
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Assume that for an arbitrary k € N,
2k+2 4 3%+1 — 7¢ for some integer ¢  (induction hypothesis).

Then
2k+3 +32k+3 — 2 % 2k+2 +32 x 32k+1
=2 x 2k+2 +9 % 32k+1

= 2(7c — 3%+ 4+ 9 x 3%+ (by the induction
hypothesis)

= 14c — 2 x 3%+1 4 9 3%+]
= 14c +7 x 3%+
=72+ 32k+1)
= 7b where b is an integer.
Hence Q (k) = Q(k + 1) for an arbitrary natural number k. Therefore,

for all n € N, 2"*% 4 32"+1 is divisible by 7.
O

3. Theorem: If A is a set such that |A| = n, then |P(n)| = 2" foralln € N.

Proof

As before we define the propositional functions R(n) : |A| = n and
Sn):|Pm) =2". We also define T(n):R(n)— S(n) so that the
theorem can be written ¥n T (n).

We first establish the truth of T(0), i.e. the truth of R(0) — S (0). We
therefore add R(0) to our assumptions. This corresponds to assuming
the truth of the proposition |A| = 0. It follows that A = &, the empty
set, in which case P(A) = {@} and |P(A)| = 1 = 2°. The last proposi-
tion is S (0) and the proof of R(0) — S (0) is complete. We can write
this more succinctly as follows:

|Al =0
= A=0
= PA) = (D)
= [PAI=1

=20
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We have shown that, if R(0) is true, then so is S(0) and we can
therefore conclude that the conditional T(0): R(0) — S (0) is a true
proposition. This constitutes the initial step.

We now move to the inductive step. This entails proving that T (k) =
T(k + 1), i.e. that

[Rk) > S(K)] = [Rk +1) - S(k + 1)].

The induction hypothesis is T (k), i.e. R(k) — S (k). With this as an
assumption, our task is to deduce the truth of R(k +1) — S(k +1).
Since this is a conditional proposition we shall, as usual, employ the
method of conditional proof. We add R(k + 1) to our list of assump-
tions (which now includes the induction hypothesis) and show that
this implies the truth of S (k + 1). The truthof T(k +1) : R(k + 1) —
S (k +1) follows. A further application of conditional proof allows
us to deduce the truth of T (k) — T (k + 1). The structure of this part
of the proof is summarised below.

T(k): R(k)—> S(k) (induction hypothesis)
Rk +1)

: cr CP
Sk+1)

Tk+1): Rk+1)—-Sk+1)
Tk)—> Tk +1): [R(k)—> Sk)] - [Rtk+1)— Sk +1)]

Proceeding with the first step, we add to our assumptions the induc-
tion hypothesis. This is the conditional (|A| = k) — (|P(A)| = 2¥), i.e.
we assume that, if an arbitrary set A has k elements, then its power
set P(A) has 2% elements. The conditional R(k +1) »> S(k +1) is
equivalent to (|B| =k + 1) - (|P(B)| = 2*1), i.e. that an arbitrary
set with k + 1 elements is such that its power set has 2! elements.
(We use a different symbol for each of the two sets involved since
clearly a set with k elements cannot be the same set as one with k + 1
elements.) We add to our list of assumptions R(k +1) : [B| =k + 1.
We then infer S (k + 1) : |P(B)| = 2K+1.

We have (JA| = k) — (|P(A)| = 2¥) (induction hypothesis) and |B| =
k +1. Now a set B which has k +1 elements can be written as
the union of two disjoint sets, one with k elements and one with
1 element. Let us call these sets C and D respectively. We then have
B =C U D where |C| =k and |D| = 1. (Of course the sets C and D
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are not unique. For example, denoting B = {b;, b, ..., by, bx11}, we
could have C = {by,by,..., bk} and D = {bx 1} or C = {by,..., by, bxs1}
and D = {b;}. In fact, there are k + 1 different ways of choosing the
sets C and D.)

Now what about P(B), the power set of B—how many elements
does it contain? Consider, for example the sets B,C and D where
B = {by,b2,b3},C = {b1,b2} and D = {b3}. Now P(C) = (O, {b1}, (b2},
{b1,b2}} and, since C C B, each subset of C is also a subset of B.
In other words, each element of P(C) is also a member of P(B) so
that P(C) c P(B). What additional elements are included in P(B)?
We have not yet considered those subsets of B which contain the
single element of D, namely b;. These can be obtained by taking
each subset of C and adding b3 as an additional element. Hence
P(B) contains all 4 elements in P(C) together with the additional 4
elements listed below:

DU {b3} = {b3},
{b1} U {b3} = {b1, b3},
{b2} U {b3} = {b2, b3}
and {b1,b2} U (b3} = {b1, b2, b3}

In general, if P(C) contains n elements, P(B) contains these n
elements together with an additional n elements formed by taking
the union of the single element set D with each set in P(C). The set
P(B) therefore contains 2n elements.

We have
|P(B)| =2 x |P(C)]

=2 x 2" (applying the induction hypothesis
to the set C which has k elements)
= 2K+,

We have established the truth of S(k +1) and hence (by CP) of
T (k + 1). This in turn guarantees the truth of T (k) — T (k + 1) (again
using CP) and the truth of vn[T(n) —» T(n + 1)] follows as usual
by universal generalisation. This completes the inductive step and
the principle of mathematical induction allows us to infer that
Vn[R(n) — S(n)] is a theorem, i.e. that, if A is a set such that |A| = n,
then |P(A)| = 2" for all n e N.

O
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Once again, this proof contains more explanation than is really neces-
sary. We leave it as an exercise to present an acceptable shortened, less
wordy version.

It is useful to return to our firework analogy for a moment and to
consider what would happen if we lit, say, the fifth firework (numbered
4) in the line rather than the first. If the fireworks are linked so that
each ignites only its successor (not its predecessor), only the fifth and
subsequent fireworks would ignite leaving the first four intact. This is
analogous to commencing the initial step, not at n = 0, but at n = 4.

This leads us to a rather more general statement of the principle of
mathematical induction. It may be that the propositional function F (1)
is false or meaningless for values of n less than some natural number
m. In this case we wish to prove that F (1) is true for all integers n > m.
Suppose we alter the initial step and show that the associated proposi-
tional function F (n) is true for n = m. Having established the inductive
step for n > m, the principle of mathematical induction will allow us
to infer that F (n) is a true proposition for all natural numbers greater
than or equal to m. In other words, to prove that Vn F(n) is true for
the universe of discourse {m,m +1,m +2,...}, we show that F(m) is
true and that within this universe Yn[F (n) — F(n + 1)] is also true. We
state this formally below.

Principle of mathematical induction

Suppose that F(n) is a propositional function with universe of
discourse N —{0,1,2,...,m — 1} and that the following are true
propositions:

(@ F(m),

(b) Vn[F(n) > F(n + 1]

Then Vn F(n) is a true proposition.

This, of course, includes the previous principle where m = 0.

Examples 9.2

1. Theorem: For all integers n > 4, n! > 2",
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Proof

As we saw in Section 5.1, this theorem may be expressed in two
alternative forms. We may state it as the universally quantified condi-
tional propositional function Yn[P(n) — F(n)] where P(n) is 'n is
greater than or equal to 4', F(n) is ‘n! > 2" and the universe is
the integers. Alternatively, we may restrict the universe to integers
greater than or equal to 4 and symbolise the theorem simply as
Vn F (n). Taking our cue from the statement of the principle of mathe-
matical induction above, we choose the second alternative. The initial
step then consists of showing that F(4) is a true proposition.

Now
4'=4x3x2x1
=24
> 16
=24
We have shown that 4! > 2%, This establishes the truth of F(4) and
completes the initial step.

We now tackle the inductive step. The induction hypothesis is k! > 2¥
where k is an arbitrary member of the set of integers greater than
or equal to 4. We add this to our list of assumptions and we then
proceed with the intention of inferring (k + 1)! > 2k+1,

(k+1)!=(k+1) xk!
> (k 4+ 1) x 2¥ (applying the induction hypothesis)

> 2 x 2K (since k > 4)
— 2k+1.

We have shown that, for an arbitrary integer k > 4,F (k) — F(k + 1)
is a true proposition so that Vn[F(n) — F(n + 1)] is true for the
universe of integers greater than or equal to 4. This completes the
inductive step. Applying the principle of mathematical induction,
we conclude that ¥n F(n) is a true proposition for this universe or,

equivalently, n! > 2" for all integers n such that n > 4.
O

2. What is wrong with the following ‘proof by mathematical induc-
tion’?

Conjecture: All triangles have the same area.
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‘Proof’

Let S(n) denote the proposition ‘Any set of n triangles (n > 1) is
such that all n triangles have the same area’. The theorem can then
be stated ¥n S (n).

We establish the initial step for n = 1. Clearly any set containing a
single triangle is such that all triangles within the set have the same
number of elements. Hence S (1) is a true proposition.

The induction hypothesis is ‘Any set of k triangles (k > 1) is such
that all k triangles within the set have the same area’. To establish
the inductive step we must show that this implies that any set of
k + 1 triangles is such that all have the same area.

Consider the arbitrary set of k + 1 triangles with elements denoted
by A1, Az, ..., Ak, Aks1. Now the set {Aj, A, ..., Ak} contains k trian-
gles and, by the induction hypothesis, these all have the same area.
Similarly the set {A3, A3, ..., Ak, Ax+1} contains k triangles and so
these too must have the same area.

Therefore it follows that all of the triangles Ay, Az, ..., Ak, Ax+1 have
the same area and, by mathematical induction, we deduce that
Vn S(n) is true. Hence any set of n triangles is such that all have
the same area and so all triangles have the same area.

O

Solution

Since the theorem is clearly preposterous, there must be some flaw in
what appears to be its proof. But where is the error? The argument
used in the initial step is clearly valid. It is therefore the inductive step
which must be scrutinised for some fallacious reasoning.

The inductive step relies implicitly on the two sets of triangles
{A1,Az,..., A} and {A3, A3, ..., Ak, Ak 41} having elements in common
so that the ‘same area’ property can be transferred from the first set to
the second. This is indeed the case so long as k > 2. The problem lies
in the assumption that the truth of S(1) implies the truth of S(2). A
set containing the two triangles, A; and A; say, can be split into two
sets each containing one triangle. Within each of these sets all triangles
certainly have the same area. However, we cannot deduce from this that
the single triangle in the set {A;} has the same area as that in the set
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{A2}. The proof is therefore not valid because we have not established
the inductive step for every integer k > 1.

(A subtle but important point is that, even if it did not contain this flaw,
the above would not constitute a proof of the conjecture as stated. What
it would prove is the weaker proposition: Any finite set of triangles is
such that all have the same area. The ‘theorem’ claims that all triangles
have the same area and, since there are uncountably many triangles,
the set containing them all is not finite.)

Exercises 9.1

1. Prove that n < 2" for all n € N.
2. Prove that:
(a) the sum of the squares of the first n + 1 natural numbers is
nn +1)2n +1)
3 .
(b) the sum of the cubes of the first n +1 natural numbers is
[n (n + 1)]2
5 .

3. Prove that, for all natural numbers 1, 42+ 4 3"+2 is divisible by 13.

4. Prove that, for all n € N, if x is a real number and x # 1,

xn+1 -1

n .
Yo =X
i=0

x—1

5. Prove that:

(i) for all integers n > 4, n3 < 3.
(ii) for all integers n > 5, n? < 2".

6. (i) Use mathematical induction to show that, for all n € Z*, the nth
odd positive integer is 2n — 1.

(ii) Use (ordinary) induction to formulate a conjecture for the sum
of the first n odd integers. Attempt to prove that your conjecture is a
theorem using mathematical induction.

7. Use mathematical induction to prove that x +1 is a factor of
x?=1 4+ 1forallneZ*.
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8. Prove by mathematical induction that 13" — 5" is divisible by 8 for
all n e Z+.

9. Prove that, for all positive integers n,

n 1 n
;i(i+l)=n+l'

10. Prove that, for all positive integers n,

sinm +1w 1
cost + cos26 + - -+ + cosnf = _(_1_2)_ _
2sin 36 2

11. Prove thatif Ay, Ay, ..., A, are non-singular m x m matrices, then

(AIAZ"'An)_l =A,71A_1 --Al_l

n-1"
for any integer n > 2.

12. (a) Prove that, if ay,...,a, are positive integers and p is a prime
number such that p|(a; - - -a,,), then p divides one of the integers a;,i =
1,...,n. (See page 206.)

(b) Prove the theorem of identities (see page 212): If ay,az,...,a,
are members of some universe such that a; = a,,4 = as,...,0p-1 = an,
then a; = a,.

13. In Example 5.2.2 we proved that the square of an even integer is
even. Suppose that we define the following propositional functions on
the universe of positive integers:

E(n): n is even
T(n): E(n) — En?).

This theorem can then be written in the form Vn[E(n) — E (n?)] or
vn T (n). This suggests that mathematical induction may be a suitable
method of proof. Attempt to prove the theorem by mathematical induc-
tion. What goes wrong?

9.2 The Second Principle of Mathematical
Induction

In Section 4.2 we referred to the prime factorisation theorem which
states that every integer greater than 1 can be expressed as the product
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of prime numbers. If we define the propositional function:
P(n) : n can be expressed as the product of prime numbers

on the universe of positive integers, then proving the theorem amounts
to showing that P(n) is true for all integers n such that n > 1. This
therefore falls into the class of theorems for which mathematical induc-
tion may be an appropriate method of proof.

The initial step for the inductive proof is simple enough. Clearly P(2)
is a true proposition since 2 is already expressed as the product of
prime numbers, albeit in a rather trivial way. The inductive step is a
little more problematic. We assume the truth of P(k) (the induction
hypothesis) so that

k = pip2---pm, where pi,p2,...,pm are prime numbers.

We must now establish the truth of P (k + 1), that is, we must show that
the integer k + 1 can be expressed as the product of prime numbers.
However, the factorisation of k above does not help us to determine
whether k + 1 can be factorised and, if so, how.

Now clearly the integer k + 1 must be either prime or composite. If it
is prime then P(k + 1) is a true proposition. On the other hand, if k + 1
is composite then it can be expressed as

k+1=4qg19, where 2<gqi,q2 <k.

Now we have a problem. Whilst our induction hypothesis allows us
to assume that k can be expressed as the product of prime numbers, it
does not allow us to assume that this is the case for integers less than
k, in particular g; and g,. What we need is an induction hypothesis
which allows us to assume P(gq1) and P(gz) as well as P (k). If we had
an induction hypothesis which stated that P(n) was true for all n <k,
this would entitle us to express g; and g, as the product of prime
numbers and thereby to complete the inductive step.

In fact we can modify our principle of induction to accommodate proofs
wherein the inductive step depends upon an induction hypothesis that
F(n) is true, not just for n = k, but for each n < k. Suppose that we are
given a theorem of the type described in Section 9.1, i.e. one which can
be stated as the universally quantified propositional form Vn F (n) with
N as the universe of discourse. Recall that we previously defined the
set S in the axiom of induction to be {n € N: F(n) is true}. Suppose
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instead that we define S = {m € N : F(n) is true for all n < m}. This
means that S contains all natural numbers m which are such that F (n)
is true for n =0,1,..., m. Now we can re-interpret parts (a) and (b) of
the axiom and arrive at what appears to be a slightly different principle
of mathematical induction.

Part (a) of the axiom requires the truth of 0 € S, which is equivalent to
the truth of F(0) exactly as before. Hence the initial step is identical to
that described previously. Part (b) of the axiom requires us to establish
the truth of the conditional (k € S) — ((k +1) € S) where k is an arbi-
trary element of N. The induction hypothesis is k € S where k is an
arbitrary natural number. In our new interpretation this is equivalent to
the assumption ‘F(n) is true foralln <k’ orto ‘F(O) AF(1) A--- AF(k)
is a true proposition’. The inductive step involves showing that the
truth of (k + 1) € S necessarily follows. The proposition (k +1) € S is
now equivalent to ‘F(n) is true forall n <k +1"or ' FO)AF(I)A--- A
F(k) AF(k +1) is a true proposition’. Clearly, to show the truth of this
proposition, all that is necessary is to establish the truth of F(k + 1).
The truth of F(n) for all values of n less than k + 1 is incorporated
within the induction hypothesis. Having successfully carried out the
initial and inductive steps, we may conclude that Vn F(n) is a true
proposition as before.

This modified principle of mathematical induction is often referred to
as the ‘second principle of mathematical induction’ (or ‘the strong prin-
ciple of mathematical induction’). We state it formally below.

Second principle of mathematical induction

Suppose that F(n) is a propositional function with universe of
discourse N and that the following are true propositions:

(@ F(),
(b) Vn[(FO)AFA)A---AF#n))— F(n +1)].

Then Vn F(n) is a true proposition.

It is possible to derive the second principle of induction directly from
the original principle rather than from the axiom of induction. We leave
this as an exercise (Exercise 9.2.1).
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Of course, the second principle of mathematical induction can be modi-
fied as before so that it can be used to show that F(n) is true for
all n > m. This again involves restating the principle for a proposi-
tional function F(n) defined on the universe of discourse {m,m + 1,
m+2,...}.

Second principle of mathematical induction

Suppose that F(n) is a propositional function with universe of
discourse N —{0,1,...,m — 1} and that the following are true
propositions:

(@) F(m),
(b) Yn[(Fim)AF(m+1)A---AF(n)) - F(n+1)].

Then Vn F (n) is a true proposition.

We are now in a position to prove the ‘prime factorisation theorem’
referred to earlier. We do this in the example below.

Examples 9.3

1. Theorem: Every integer greater than 1 can be expressed as the product
of prime numbers.

Proof

We define P (n): n can be expressed as the product of prime numbers.
Since we have to prove that P(n) is true for n > 2, we shall be using
the more general of the two statements of the second principle of
mathematical induction with m = 2.

Initial step: Since 2 is an expression of the product of prime
numbers, P (2) is true.

Inductive step: The induction hypothesis is P(2) A P(3) A --- A P(k)
for an arbitrary k € N, i.e. each integer from 2 to k can be expressed
as a product of prime numbers. As usual, we add this to our assump-
tions.

Now k + 1 is either prime or composite. If it is prime then the induc-
tive step is complete. If k + 1 is composite, then
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k+1=qg192 where 2<g;,q <k.

By the induction hypothesis, 41 and g, can each be expressed as the
product of prime numbers so that

g1 =maz---ar and g2 = biby - - - by
wherea;, i =1,2,...,r and b;, j =1,2,...,s are prime numbers.

Hence
k+1 =a1a2"'arb1b2"‘b5

where a;, 1 =1,2,---,r and bj, j = 1,2,---,s are prime numbers.

Since k +1 can be expressed as the product of prime numbers,
we have established the truth of [P(2) A--- A P(k)] - P(k +1) and
therefore of Vn[(P(2) A --- A P(n)) — P(n + 1)]. Applying the second
principle of mathematical induction, we conclude that P(n) is true
for all n > 2.

O

2. Theorem: Suppose that a,, the nth term in an infinite sequence, is defined
as follows:

a1 = 0, az = 1
and an = 351"_1 - Zan_z fOI' n 2 3.

Then a, =2""1—1foralln e Z*.

(Note that, apart from the first two terms of the sequence, the definition
of the general term incorporates the two preceding terms. Any sequence
where each term is defined using previous terms in the sequence is said
to be recursively defined.)

Suppose that we define F(n) :a, = 2"~! — 1. We are required to prove
that F(n) is true for all positive integers. However, the definition
ay = 3a,-1 — 2a,- holds only for n > 3 and it is this equation which we
shall need to use in the inductive step. Hence we shall use mathematical
induction to prove that F(n) is true for positive integers greater than
or equal to 3 so that our starting step will need to establish the truth
of F(3). To complete the proof that F (n) is true for all positive integers,
we must also establish the truth of F(1) and F(2).

The proof is as follows.
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Proof
We have
ap = 3ap_1 —2a,_, forn >3
so that
az = 302 - 201

=3x1-2x0

=3

=2%1_1.

Hence F(3) is true.

Suppose that, for some arbitrary integer k > 3, F(3),F(4),...,F(k)
are all true propositions, i.e. a, =2""1 — 1 for n = 3,4,...,k. (This is
the induction hypothesis.)

Then
Ak +1 = 3ax — 2a5_4
=3@21-1)-22*%2-1) (by the induction hypothesis)
=3x2k1_3_2k142
=2x21-1
=2k_1.

Hence, for an arbitrary integer k >3, FG)AF#4)A---AF(k) >
F(k +1) and, by the second principle of mathematical induction,
we conclude that a, =2""1 — 1 is true for all n > 3.

Also
a = 0
— 21—1 -1
= F(1) is true
and
ap; = 1
=211
= F(2) is true.

Hence F(n) is true for all n > 1 and the result is proved.
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Note that an induction hypothesis which assumed only gy = 2F~1 - 1
would not have been sufficient. To complete the inductive step, we also
needed a;_; = 22 — 1 and hence the second principle of induction.

There is a modification of the second principle of induction by which
F(1) and F (2) are incorporated into the main proof and which does not
therefore require F(3) to be verified directly—see Exercise 9.2.2.

Exercises 9.2

1. Show that the second principle of induction can be derived directly
from the original principle of induction as follows. Given a theorem of
the form Vn F(n) (where F(n) is defined on the universe of natural
numbers), define G(n): F(0) A F(1) A --- A F(n). Show that the condi-
tions (a) and (b) of the principle applied to G (1) are equivalent to those
of the second principle applied to F(n).

2. For inductive proofs involving recursively defined sequences, it is
often convenient to include the checking of the truth of the proposi-
tion for the first few explicitly defined terms as part of the initial step
rather than separating them from the inductive proof itself. There is a
modification of the second principle which allows us to achieve this.

(i) Establish the following principle of induction.

Let F(n) be a propositional function with universe of discourse N —
{0,...,m} and let r be a fixed element of the universe (i.e. r > m).
Suppose the following are true propositions:

(@@ F(m)yn---AF(r),
(b) vnl[((n =r)AF(m)A---AF(n)) > F(n +1)]

Then Vn F (n) is a true proposition.
Condition (b) is often written less formally as
~vn=r){(Fm)An---AFn))— F(n +1)].

(ii)) Re-write the proof given in Example 9.3.2 using this principle. The
initial step must establish the truth of F (1) A F(2). The inductive step
then consists of showing that (F(1) AF(2)A--- AF(k)) = F(k +1).
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For each of the following, prove the theorem given using either the
first or second principle of induction as appropriate.

3. In any n-sided polygon (n > 3), the sum of the interior angles is
(n — 2)m.

4. The following is an infinite sequence known as ‘the sequence of
Fibonacci numbers’:

1,1,2,3,5,8,13,21,....

Each term in the sequence after the first two is defined recursively as
the sum of the two preceding terms. Therefore, denoting the nth term
in the sequence by f,, we can define f, for n € Z* as follows:

h=1 fo=1
and fy =fy-1+fu—2 forn >3
Prove each of the following;:

(i) fa<2"forallnelZ?
) fi+tfat - +fa=fasz2—1 foralneZ*

5. Suppose that a,, the nth term in an infinite sequence, is defined
recursively as follows:

a =3/
and a, =a,-1+3 forn>2.

Prove that a,, = 3n.

6. Suppose that a,, the nth term in an infinite sequence, is defined
recursively as follows:

m=6 a=11
and a, =3a,_1—-2a,_, forn>3.

Prove that, for n > 1,a, =5 x 2" 1 + 1.

7. Suppose that a,, the nth term in an infinite sequence, is defined
recursively as follows:
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m=1,a=2a=3
and a4, =dy_1+an_y+an_3 foralln > 4.

Prove that g, < 2" foralln € Z*.

8. Prove that, for all finite sets A and B, if B C A, then |B| < |A|.
Hint: use induction on |A].

9. Prove the binomial theorem: for all x,y e R,n € Z*

(x +y)" =x"+('ll)x”_1y+<g)x”_2y +- 4 y”
n n o
:Z(l )x"_’yl.
i=0

Hint: the identity (Z ) + (k Z 1) = (n : 1) might be useful—see

Example 8.2.1.

10. Suppose that P(n) is defined over the universe N and that the
following are true propositions:

(@) PQ@);
(b) Vvn[P(n) > P(2n)];
(¢) Vvn[P(n+1)— P(n)].

Prove that Vn P(n) is a true proposition.
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Logic

Replacement Rules

Commutation (Com)
Association (Assoc)
Distribution (Dist)

De Morgan’s laws (De M)

Double negation (DN)
Transposition (Trans)
Material implication (Impl)

Material equivalence (Equiv)
Tautology (Taut)

Exportation (Exp)

pvg=qVvyp

pAg=EqAp
pvi@vry=(pvg)Vvr
pA@Anr)y=(pAgINT

pA@Vvr)=(pAq)V(pATY)
pv@Ar)={pVvg n(pVvr)

PRG=pvT
PVag=PAg
p=p
p>qg=4->p
p—>qg=pVvq

peoq={p—=>q9)n@—>p)
peoq=spaqvpnag)

pAp=p
pvp=p

(prhg)—>r=p—->(q—r)
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Rules of inference for constructing formal proofs

Name of rule Premises Conclusion
Simplification (Simp) pAq p
Addition (Add) p pvyq
Conjunction (Conj) P, q pAq
Disjunctive syllogism (DS) pvag, P q
Modus ponens (MP) p—>q,p q
Modus tollens (MT) p—>4q q 7
Hypothetical syllogism (HS) p—>q,q—r p—>r
Absorption (Abs) p—q p—>{(pAg)
Constructive dilemma (CD) (p=>g)A@r—>5s), pvr qvVvs

Rules for quantification denial (QD)

Suppose that a universe of discourse is defined for the variable x.
Then, for any propositional function Fx:

—Vx Fx is equivalent to 3x—Fx,

and —3x Fx is equivalent to Vx—Fx.
Rules of instantiation and generalisation

Universal Given any propositional function Fx, from the
instantiation truth of Vx Fx, we can infer the truth of Fa for
(8))) any individual a in the universe of discourse.
Existential Given any propositional function Fx, from the
instantiation truth of 3x Fx, we can infer that there is at least
(ED) one individual 4 in the universe of discourse for

which Fa is true.
Universal If the proposition Fa is true for an arbitrary
generalisation ~member a of the universe of discourse, then
(UG) Vx Fx is true.
Existential If the proposition Fa is true for some particular
generalisation  individual a in the universe of discourse, then

(EG)

3x Fx is true.
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Set Theory

A set is to be thought of as any collection of objects whatsoever'. If an
object x belongs to a set A we say 'x is an element of A" and write this
as x € A. If x does not belong to A, we write x ¢ A. The empty set, J,
is the set which contains no elements at all.

A set A is a subset of a set B, written A C B, if and only if every
element of A is also an element of B. Symbolically, A C B if and only
if x e A= x € B. A set A is a proper subset of a set B, written A C B,
if and only if A € B and A # B.

One way to avoid the problems alluded to in the footnote is to insist
that all sets are subsets of some universal set U. This set U plays a
similar role to the universe of discourse in predicate logic. In particular,
the universal set is not fixed for all time so that different universal sets
may be defined for different tasks.

Given a set A, we define:

e its complement, A, to be the set of all elements (in the universal set
U) which do not belong to A, A = {x: x ¢ A)}.

e its power set, P(A), to be the set containing all the subsets of A,
P(A) = {B: B C A). Thus B € P(A) & B C A.

The intersection of two sets A, B is the set containing all the elements
which belong both to A and to B; the intersection is denoted AN B.
Symbolically, x e ANB < x € AAx € B. The union of two sets A, B
is the set containing all the elements which belong to A or to B or to
both; the union is denoted AU B. Symbolically, x e AUB & (x € A) v
(x € B). The definitions of intersection and union generalise to more
than two sets:

AlNAN.--NA, ={x:x €A foreachi =1,2,...,1},
AilUAU- -UA, =[x :x €A, forsomei=1,2,...,n}.
Two sets A and B are said to be disjoint if they have no elements in

common, i.e. if ANB = .

!n fact, there are difficulties which arise from such a general definition of a set, such as Russell's
paradox—see Garnier and Taylor (1992), for example. To avoid the difficulties, we would need to take
an axiomatic approach to set theory, which is beyond the scope of this text.
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The difference between two sets A and B is the set containing all
the elements which belong to A but not to B; the difference is
denoted A — B. Symbolically, x € A— B & (x € A) A (x ¢ B). Note that
the complement of A may be defined as the difference A = U — A.

The cardinality of a finite set A, denoted |A|, is the number of (distinct)
elements belonging to A.

An ordered pair (a,b) where a € A and b € B satisfies the property:
(a,b) = (c,d) if and only if a = c and b = d. The Cartesian product of
two sets A and B is the set of all ordered pairs (a, b) such that a € A
and b € B; the Cartesian product is denoted A x B. Symbolically,

AxB=1{@a,b):a € Aand b € B}.

These definitions generalise to the case of more than two sets as follows.
An ordered n-tuple (a1,43,...,a,) such that a; € Aj,a2 € Ay, ...,a, €
An satisfies the property: (a1,a2,...,a,) = (b1, b2,...,b,) if and only
if ay=b and a; =by,..., and a, =b,. The Cartesian product of n
sets A1, A, ..., A, is the set of all ordered n-tuples (a1,42,...,4,) such
thata; € Ay, a2 € Az, ..., a, € Ay; the Cartesian product is denoted A; x
Az x -+ x A,. Symbolically,

Al x Ay x -« x Ay =1{(ay,az,...,ay) .01 € Ar,a3 € Ay, ..., 4, € Ayl

The Algebra of Sets

The following identities are satisfied for all sets A,B and C which are
subsets of some universal set U.

Idempotent laws ANA=A AUA=A
Commutative laws ANB=BNA AUB=BUA
Associative laws ANBNC)=ANB)NC
AUBUC)=(AUuB)UC
Absorption laws ANAUB)=A AUANB)=A
Distributive laws ANBUC)=(ANBYUANC)
AUBNC)=AUB)NAUC)
Involution law A=A
De Morgan’s laws AUB =ANB ANB=AUB
Identity laws AU =A AN =0

Aul=U ANU=A
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D

Complement laws AUA=U

|
=

Some Commonly Used Sets

The set of natural numbers is N = {0,1,2,3,...}.

The set of integersis Z =1{...,-3,-2,-1,0,1,2,3,...}
= {O/ l/ _1/2/ _2, 3, _3,. . }

The set of rational numbers is the set of numbers which can be
expressed as fractions, Q = {p/q : p,q € Z and g # 0}.

The set R of real numbers is harder to define precisely, but we may
think of a real number as a number which can be expressed as a
decimal which may be infinite. Examples of real numbers (which do not
belong to the sets above) are = = 3.14159265. .., /2 = 1.41421356 .. .,
and log,,3 =0.47712125... .

These sets are related as follows: N Cc Z ¢ Q ¢ R.

The set of positive integersis Z*t = {n € Z : n > 0} = (1,2,3,4,...}. Simi-
larly, the sets of positive rational numbers and positive real numbers are,
respectively, Q" = {x e Q: x >0} and R* = {x e R:x > 0}.

Matrices

An n x m matrix A is a rectangular array of numbers or symbols which
has n rows and m columns. The entry in row i and column j is called
the (i,7)-entry and is denoted a@jj.

a11 412 ... Am

a1 422 ... a2m
A= . .. .

ant an2 ... Aum

Let A be an n x m matrix and B be a p x g matrix.

The sum A + B is defined if and only if n =p and m = g. If this is
the case then A + B is an n x m (= p x q) matrix whose (i, j )-entry is
aij + b,‘ji



270

Appendix: Some Definitions and Terminology
A B
an a2 ... dim bu bz ... bim
a1 ax ... G | + | by b ... by
An1 An2 ... Amm b1 bz ... bum
A+B
an+bn ap+b ... aim+bim
= |axn+by ax+bn ... am+bu
an1 +bu1 an2+bu2 ... Anm + bum

The product AB is defined if and only if m = p. If this is the case then
m

AB is an n x q matrix whose (i, j)-entry is 3 ik by
k=1

A B AB
b j
. sz e = .
ai1 42 ... Qim : Cij
. ) . by )

where
m
cij = aitbyj + aizbyj + - + Aimbmj = Y _ aixbyg.
k=1
The m x n zero matrix 0, ., has (i,j)-entry equal to O forall1 <i <m

and 1 <j <n. The m x n zero matrix 0y, satisfies the property that
A+ 0y =A =0, + A for all m x n matrices A.

The n x n identity matrix I, has (i,i)-entry equal to 1 for all i and
(i,j)-entry equal to O for all i # j:

1 0 ... 0
0 1 0
Li=1. . . .
00 ... 1

The n x n identity matrix I,, satisfies the property that AI, = A = I, A
for all n x n matrices A.
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The inverse of an n x n matrix A is an n x n matrix A~! such that
AA-! =1, = A~1A. Not all n x n matrices have inverses. If A has an
inverse it is said to be non-singular or invertible.

The transpose of an n x m matrix A is the m x n matrix AT obtained
by interchanging the rows and columns of A:

an 412 ... 4im a1 421 ... dnl
. ay dx ... 4y a2 4dp ... 4ap2
ifA=] . . 7 | then AT = . . !
an1 Gn2 ... dum Aim @2m .- Qum
-1 2
. -1 31
For example, if A= | 3 -6 | then AT = (1))
10 1 2 -6 3
2

The transpose satisfies the following properties:

1. For all matrices, A, (AT)T = A.
2. For all matrices such that A + B is defined, (A + B)" = AT + BT.
3. For all matrices such that AB is defined, (AB)T = BTAT.

The determinant, det A, of a 2 x 2 matrix is defined by det(i S ) =
ad — bc.
An n x n matrix A is symmetric if AT = A. Intuitively, to say AT =

A for a square matrix means that A is symmetric about its 'leading
diagonal’ which runs from top-left to bottom-right.

5 14 -2 5 14 -2
Forexample,ifA=(14 -1 §)thenAT=(14 -1 %):A.

-2 % 9 -2 % 9

Group Theory

A group is a set G together with a binary operation which we will write
multiplicatively, so that ab € G for all a, b € G, satisfying the following
three axioms:

G1. Foralla,b,c € G, a(bc) = (ab)c.

G2. There exists an element e € G, called an identity, such that, for
alla € G, en =a = ae.



272

Appendix: Some Definitions and Terminology

G3. For each a € G there exists an element ! € G, called an inverse
of a, such thataa= ! = ¢ =a~14a.

Furthermore, the group is said to be abelian? if, in addition, for all
a,beG,ab=uba.

The order of a group G is |G|, the cardinality of G as a set.

The order of an element x of a group G, denoted |x|, is the smallest

positive integer n such that x" =¢ (where x" = xx ---x). If no such
<«-ntimes—
positive integer exists, then x has infinite order.

A group G is cyclic if there exists an element x € G such that every
g € G can be expressed as g = x" for some n € Z.

A subset H of a group G is a subgroup of G if H is itself a group
under the same binary operation as that defined in G. Further, H is
a proper subgroup of G if it is a subgroup different from {e} and G
itself.

2Named after the Norwegian mathematician Niels Henrik Abel (1802-29) who contributed to the
theory of equations and infinite series. Abel showed that there is no formula giving the roots of a
general quintic (fifth power) equation. A year after his early death from tuberculosis he was awarded
the Grand Prize in mathematics by the Royal Academy of France.



References and
Further Reading

Andrews G E (1994) The death of proof? Semi-rigorous mathematics? You've
got to be kidding, The Mathematical Intelligencer, 16, 16-18.

Aschbacher M (1981) The classification of finite simple groups, The Mathemat-
ical Intelligencer, 3, 59-65.

Benacerraf P and Putnam H (eds) (1983) Philosophy of Mathematics, Selected
Readings (2nd edn), Cambridge University Press, Cambridge.

Davis P J and Hersh R (1981) Proof, In: Davis P J and Hersh R (1981) The Math-
ematical Experience, Birkhduser, Boston, pp. 147-151.

Franklin ] and Daoud A (1988) Introduction to Proofs in Mathematics, Prentice
Hall, Englewood Cliffs, N.]J.

Friske M (1985) Teaching proof: a lesson from software engineering, American
Mathematical Monthly, 92, 142-144.

Garnier R and Taylor J (1992) Discrete Mathematics for New Technology, Adam
Hilger, Bristol.

Goodstein R L (1965) The axiomatic method, in: Goodstein R L (1965) Essays
in the Philosophy of Mathematics, Leicester University Press, Leicester,
pp. 116-125.

Horgan ] (1993) The death of proof, Scientific American, 269, 74-82.

Leron U (1983) Structuring mathematical proofs, American Mathematical
Monthly, 90, 174-185.

Polya G (1957) How to Solve It. A New Aspect of Mathematical Method (2nd edn),
Doubleday, New York.

Solow D (1990) How To Read and Do Proofs: An Introduction to Mathematical
Thought Processes (2nd edn), Wiley, New York.

Tieszen R (1992) What is a proof? in: Detlefsen M (1992) Proof, Logic and Formal-
isation, Routledge, London & New York.

Velleman D ] (1994) How to Prove it, a Structured Approach, Cambridge Univer-
sity Press, Cambridge.

Wells D (1986) The Penguin Dictionary of Curious and Interesting Numbers,
Penguin, Harmondsworth.



274 References and Further Reading

Wheeler R F (1981) Rethinking Mathematical Concepts, Ellis Horwood, Chich-
ester.

Zeilberger D (1993) Theorems for a price: tomorrow’s semi-rigorous mathe-
matical culture, Notices of the American Mathematical Society, 48, 978-981.



Hints and Solutions to
Selected Exercises

Exercises 2.1

1. (i) If the wind blows then the sun doesn’t shine or the rain falls (or
both).

(ii) The wind blows and the rain falls if and only if the sun doesn’t
shine.

(v) If the rain doesn’t fall or the temperature rises (but not both)
then the sun shines and the wind doesn’t blow.

2.()) T o (SAR).
(i) (S AT)v (W AR).
vy [SVWAR)] - T.

3. (i) False. (i) False. (iv) True.
4. (i) False. (iii) True. (iv) True.

5. (iii)

-
~

(p—=>rIn(r—q)

=

mmmom o TS
mom o T g S
s Bl Moo B Mo By M o B B
S m
oo o
- m T
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(iv)

plag|r|rap g | P | @rp)| rAp)V(GAP)
T T T T F F F T
T| T]| F F F | F F F
T F T T T F F T
T| F | F F T | F F F
F| T T F F| T F F
F|T]|F F F| T F F
F|F | T F T | T T T
F{F | F F T | T T T
Exercises 2.2
1. Contradiction.
3. Tautology.
5. Contradiction.
9. Neither.
12. Neither.
Exercises 2.3
1. (i) p1 b p2,p2 b p1,p1 = pe.
(ii) None.
(i) p2Fp1.
(Vi) prFpup2tpupr=p2.
(vili) p1 bk p2,p2 - pL,p1 =p2.
2. (i) True. (iiiy  Nothing.
(v) True.
3.(1)  Yes. (iii) No.
(vii) Yes. (ix) Yes.
4.
14 q p—q q—>p p q p—>q q—>p
T T T T F F T T
T F F T F T T F
F T T F T F F T
F F T T T T T T
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From the truth table, we have: (p > 9)=@->p),P—->q)=q—>p
and no other logical equivalences.

6.
plajr|p—=>q|prqg | (pAQ—>r | (P>PN |p—or
[((prg)—> 7]
TIT|T| T T T T T
TIT|F| T T F F F
T|F|T| F F T F T
T|F|F| F F T F F
F|T|T| T F T T T
F|T|F| T F T T T
F|F|T| T F T T T
F|F|F| T F T T T

Whenever (p Aq) A[(p Aq) — r] is true (rows 1 and 5-8), p — r is
true. Therefore (p A q) A [(p A q) — r] logically implies p — r.

7. (1) Yes.
(iv) No.

8. (b)
i) pviprg)=@Evp)A{@EvVvg) (Dist)
=(pvpAr@Evg (Com)

=tAn(pVvq) (Complement law)
={@EVvq At (Com)
=pvyqg (Identity law)

(i) PADAGPVD=@EVPA(PVE (DeM)
=(pVvyAr(pvyg (DN)

=pvyg (Taut)

V) pAllprg)vpl=lp A Ag]v (pAp) (Dist)
=pAr(pArg]VS (Complement law)
=pA(pPAg) (Identity law)
=(pApPIAg (Assoc)

=pAgq (Taut)
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Exercises 2.4

1. Argument form: premises: p — ¢,q; conclusion p.

P |9 | P4 | 9| p=>9Drqg | P
T T T F F F
T F F T F F
F T T F F T
F F T T T T

Whenever the conjunction of the premises is true (row 4 only), the
conclusion is true also. Hence the argument is valid.

4. Argument form: premises: p < q,p — 7; conclusion: r v q

pPla|r|Pld|T|peq|p2T | (poDAP—>T)|rvg
TIT|T|F|F|F F T F F
TIT|F|F|F|T F T F T
T/ F|T|F|T|F T T T T
TIF|F|F|T|T T T T F
F|T|T|T|F|F T F F F
FIT|F|T|F|T T T T T
F\F|T|T|T|F F F F T
FIF|F|T|T|T F T F F

In row 4, the conjunction of the premises is true but the conclusion is
false. Hence the argument is invalid.

5. Argument form: premises:p < g, gqAr, r — p;
conclusion: §.

The truth table shows the conjunction of the premises to be a contradic-
tion so that the premises are inconsistent. Hence the argument is valid.

7. Argument form: premises:pVvq,p —T;
conclusion: r — q.

The argument is valid.

9. Argument form: premisespVvq,p — r;
conclusion: ¢ — 7.

The argument is invalid.
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Exercises 2.5

1. We define: G: I shall play golf.
H: I shall stay at home.
R: I shall read.

1. GV(HAR) (premise)
2. (GVH)A(GVR) (1. Dist)
3. GVH (2. Simp)
5. We define: H: People are happy.
C: People are charitable.
1. HeC (premise)
2. HaC (premise)
3. (HAC)V(HAC) (2. Equiv)
4. (HAO) (2, 3.DS)
7. We define: W: You will win the game.
R: You follow the rules.
C: You are conventional.
S: You are always successful.
1. WeR (premise)
2. R->C (premise)
3. CAS (premise)
4. S ->W (premise)
5. SAC (3. Com)
6. S (5. Simp)
7. W 4, 6. MP)

(It is worth noting that this argument has inconsistent premises so that
any conclusion could be substituted for W, for example W, and the
resulting argument would also be valid.)

10. Define: V: Peter is brave.
N: Peter is brainy.
L: DPeter is bald.

1. WVvN)ANNVL) (premise)
2. N (premise)
3. VVN (1. Simp)
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4. NvV (3. Com)
5. V (2, 4. DS)
6. (NVLYA(V VN) (1. Com)
7. NvL (6. Simp)
8. L (2, 7. DS)
9. VAL (5, 8. Conj)

14. Define: G: Ghosts are a reality.
S: There are spirits roaming the earth.
D: We fear the dark.
I: We have an imagination.

(G- SYA G — D)
DvI
IAG

—

NS S A S S o
|D~‘”""
<
oy -l
CJIU|

—
©
>

—

12.
13.
14.

.
[y
wo o ooy
<
w

Exercises 2.6

(premise)
(premise)
(premise)
(3. Simp)
(2. Com)
(4. DN)

(5, 6. DS)
(1. Com)
(8. Simp)
(3. Com)
(10. Simp)
(9, 11. MP)
(7. Add)
(12, 13. DS)

1. We define: C: You confront him.
Y: You're a coward.

F: You're a fool.

(@ C-Y
C
Y
Y vF

C->(YVF)

Sl Sl

(premise)
(CP)

(1, 2. MP)
(3. Add)
(2-4. CP)
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(b)

1.
2.
3.
4
5

5. (a)

G

SRR —
_— o

—
M=o

O XN DR R

W0 N e W N

C->Y (premise)
Cvy (1. Impl)
(CVY)VF (2. Add)
Cv(YvV F) (3. Assoc)
C—-(YVF) (4. Impl)
We define: M: You mow the lawn.
C: You clean the car.
P: You'll get pocket money.
S: You'll stay at home this evening.
MAC)VP (premise)
P—-S (premise)
C (CP)
CvM (3. Add)
MvC (4. Com)
M AC) (5. De M)
P (1, 6. DS)
S 2, 7. MP)
C-S (3-8. CP)
Cvs (9. Impl)
CvSs (10. DN)
M AC)VP (premise)
P—-S (premise)
M AC)VP (1. DN)
MAC)—>P (3. Impl)
MAC)—>S (2, 4. HS)
MAC)VS (5. Impl)
MAC)VS (6. DN)
SviMAaC) (7. Com)
Sv(CAM) (8. Com)
SVvCOHAS VM) (9. Dist)
SvC (10. Simp)
Cvs (11. Com)



282

Hints and Solutions to Selected Exercises

Exercises 3.1

2. (There are acceptable alternatives to each of the following.)

(i) PpnADf

(iii) (Ppv Dp) A —Cf

(v) Vx[Px — (Dx v Cx)]
(vii) 3Ix (Px A Dx A —Cx)

3.(i)) Everyone who is dishonest is not to be trusted.
(iii) Everyone who values success is honest and can be trusted.
(v)  If there are people who are dishonest and value success, then
no-one can be trusted.

(vil) Not everyone who values success is to be trusted and some
people who value success are honest.

4. (i) (@ F (b) F ) F (d F
(i) @ T (b) T (© T (d T
(vi) (@ F (b) F © T (d) F

Exercises 3.2

1. (Once again, there are acceptable alternatives to each of the follow-
ing. For instance, other variables may be used within each expression.)

(i) Vy(Icy — Pcy)

(iii) 3Ix (Txs A —Pxs)

(v) 3IxVy(Txy — Pxy)

(vii) Vx3y (Txy A —Exy) — ¥xVy (—~Pxy)

With no universes of discourse defined:

(i) Vvy[Cy — (Tcy — Pey)]

(iii) 3x (Sx A Txs A —Pxs)

(v) 3xVy[(Sx ACy A Txy) — Pxy]

(vii) Vx3y (Sx ACy A Txy A —Exy) — ¥xVy [(Sx A Cy) - —Pxy]

2. (i) No sports cars are motorcycles.
(iii) Any motorcycle is more economical than any sports car.
(v) There are sports cars which are slower than any motorcycle.
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3.(1) Rx: «xisrich,
Hx: x is always happy.

dx (Rx A ~Hx)

(iii) Ax: x went to the auction,
Bx: x bought something.

Vx (Ax — Bx)
(v) Wx: x spends all his or her time working.
—3x Wx

(vii) Cx:  x is courageous,
Axy: x applauds y.

VxVx (Cx — Ayx) or Vx (Cx — Vy Ayx)

Exercises 3.3

1. We define the following propositional functions on the universe of
"people’:

Gx: x is good-looking,
Rx: x is rich,
Dx: x is dishonest.

1. 3x (Gx ARx) (premise)
2. Vx (Rx — Dx) (premise)
3. GaARa (1. ET)

4. Ra — Da (2. UD)

5. RanGa (3. Com)
6. Ra (5. Simp)
7. Da (4, 6. MP)
8. Ga (3. Simp)
9. GanDa (7, 8. Conj)
10. 3x (Gx A Dx) 9. EG)

3. We define the following on the universe of ‘numbers”:

Ex: x is an even number,
Rx: x is rational,
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Tx: x is divisible by two,
Fx: x is divisible by four.

Pk
P

1. Vx[Ex — (Rx A Tx)] (premise)

2. 3Ix (Ex A Fx) (premise)

3. EanFa (2. EI)

4. Ea — (Ra ATa) (1. UD

5. Ea (3. Simp)

6. RanTa (4, 5. MP)

7. FanEa (3. Com)

8. Fa (7. Simp)

9. TanRa (6. Com)
10. Ta (9. Simp)

. TanFa (8, 10. Conj)
12. 3x (Tx A Fx) (11. EG)
We define the following on the universe of ‘people’:

N

Dx: x is a doctor,

Lx: x is a lawyer,

Rx: x commands the respect of the community,
Hx: x earns a high salary.

XN A=

o

Vx [(Dx v Lx) - (Rx AHx)] (premise)
(Da v La) — (Ra A Ha) (1. U1
La (CP)
La v Da (3. Add)
Da v La (4. Com)
Ra A Ha (2, 5. MP)
Ra (6. Simp)
La — Ra (3-8. CP)
Vx (Lx — Rx) (8. UG)
We define the following on the universe of "functions”:
Px: x is a polynomial,
Dx: x is differentiable,
Cx: x is continuous.

1. —-3x (Px A —=Dx) (premise)

2. Vx(Dx - Cx) (premise)
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3. Vx—(Px A —-Dx) (1. QD)
4. Da — Ca (2. U

5. =(Pa n-Da) (3. Ul

6. —Pav —=-Da (5. De M)
7. —Pav Da (6. DN)
8 Pa—» Da (7. Imp)
9. Pa— Ca (4, 8. HS)
10. Vvx (Px — Cx) 9. UG)

Exercises 4.1

2. Any two great circles intersect at two antipodal points on the
sphere. Therefore given a ‘line’ / and a point P not on [, there is nc
'line” containing P which is parallel to /.

3. Under the given interpretation, each of the axioms is an ‘elementary
property’ of the set of natural numbers.

4. Axiom A2 is false in the interpretation: 0 = (n — 1) + 1.
The remaining axioms are true in the interpretation.

5. Since we know that N is a model of the axiom system, we need
only consider how the axioms ‘apply to” w. For example:

A5. If x = o then, for all y € N,
x+yY =0ty =w=0d=(@+y) =(x+y).
If y = w then, for all x € N,

x+y=x+o=x+to=w=0=x+0) =x+y).

Exercises 4.2

1. (i) Statement Justification
1. xVx(x +y'=(x +y)) (axiom)
2. ¥x(x+0=x) (axiom)
3. vxA+y' =1+y)) (1. Un
4. 1+0=@1+0y (3. Ul
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5. 1+0=1 (2. UD

6. 1+0=1 (4, 5. substitution)

7. 1+1=1 (6. definition of 1)

8 1+1=2 (7. definition of 2)
(iv) Statement Justification

1. Vxvx(x+y =(x+y)) (axiom)

2. VWyd+y' =1+y)) (1. U

3. 1+41'=Q1+1) (3. UI

4, 1+1=2 (theorem: part (i) above)

5 1+1 =2 (3, 4. substitution)

6. 1+1 =3 (5. definition of 3)

7. 1+2=3 (6. definition of 2)

Exercises 4.3

1. (ii) By A4 there exist three distinct points such that no line contains
all three points. Suppose the points A, B and C satisfy this property.
Let /pg denote the unique line containing points P and Q. Then [ap
does not contain C so lac # lap and Ipc # lap. Similarly /pc does not
contain A so lac # lgc. Therefore the three lines l4p,lac and lpc are
distinct.

It is not possible for D to lie on more than one of these lines. (For
example, if [4p and lac both contain D then these are two distinct
lines both containing A and D, contradicting the uniqueness part of
A3.) Therefore there exists a pair of these lines, say /; and [/, neither
of which contains D. Now /1 and /; have a point, P say, in common
and none of the lines l4p,lac and lgc contain both D and P. Therefore
there exists a fourth line containing these points.

Therefore, there exist at least four distinct lines.
2. The number of lines is now at least 5 and at most 10.

3. (@) (i) Sincea andab are strings (axioms 1 and 2) we can use axiom
4 to deduce that aba is a string and then axiom 3 to deduce that abab is
a string. Repeated use of axioms 4 and 3 in this way has the effect of
adding ab to the end of the ‘current’ string. Therefore abab .. .ab (where
ab is repeated n times) is a string for any positive integer n.
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(ii) If a string ends in b then it must end in either ab (by axioms
2 and 3) or bbb (by axiom 4). Therefore, it is not possible for a string to
end in abb.

4. (i) Define an infinite collection of events Ay =S, A, =T, A3 =0,
Ay =(,.... These events are clearly pairwise disjoint and (5., A, =
S. Therefore, from axioms A2 and A3, we have 1 =1+ p(J) + p(D) +
p(D) + - -- which implies p(J) = 0.

(ii) Suppose that Aj, A, A3, ..., An is a finite collection of pairwise
disjoint events. Extend this to an infinite collection of pairwise disjoint
events by defining A; = & for all i > N. Then

oc N o) N N
UAnz(UAn>U( U An)=(UAn>U®=<UAn)
n=1 n=1 n=N+1 n=1 n=1

and, using part (i),

oo N oo N N
ZP(A11)=ZP(An)+ Z p(An):ZP(AM)"F():ZP(An)-

n=1 n=1 n=N+1 n=1 n=1

Therefore axiom A3 now gives,

N o0 oo N
p <U An) =p (U An> = ZP(AII) = ZP(An)
n=1 n=1 n=1

n=1

The remaining parts of the exercise rely on part (ii) with suitably chosen
pairwise disjoint families.

Exercises 5.1
1. (b) (i) Universe = {integers of the form 4%'*! 4 3"+2} Q(x): «x
is divisible by 13.
(ii) P(x): x is an integer of the form 42'*1 4 3"+2,
(d) (i) Universe = {rectangles}, Q(x): x is a parallelogram.
(i) P(x): x is a rectangle.

2. (b) 437 =19 x 23 so 437 is composite (not prime).

(d) We assume, as background knowledge, the following result:
if a triangle has sides a, b and c then the area A satisfies A =
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Vs(s —a)(s —b)(s —c) where s = %(a + b + ¢). Then direct calculation
gives A = 66 cm?.

4 (b) 1 1 200 200
. —— - = >
500 700 500 x 700 700 x 700
1 1 200 200
an

500 700 _ 500 x 700 ~ 500 x 500’
2000 1 1 200

7002 ~ 500 700 ~ 500%°

6. (b) Suppose that n and m are positive integers such that m is a
factor of n and n is a factor of m. Since m is a factor of n, it follows
that m < n; similarly, since n is a factor of m, it follows that n < m.
From m <n and n < m we deduce n = m. (For an alternative proof,
see Exercise 5.2.6.)

hence

(d) Let A, B and C be sets. Then
(ANB)—C =(ANB)NC (definition of set difference)
=ANBNC) (associative law)
=AN(B —C) (definition of set difference).

7. (b) The problem is in the step

x(x—2)_x—2

—2)=x-2 ==2
Xm2)=x x-2  x-2

Since x = 2 (from the first line of the proof), we are attempting to divide
by 0 which is meaningless. In general, for real numbers a,b and ¢, we
havea =bandc#0=a/c =b/c.

Exercises 5.2

1. (@) Let a and b be non-negative real numbers and suppose that
a2>b% Thena?—b>=@—-b)a+b)>0.fa+b=0thena=b=0
so a > b. Otherwise a +b >0 so (a —b)@a +b) >0 implies a —b >0
and thus a > b.

2. (b) Lettherootsbeaand 8. Thena + B = —a and «f = b. Therefore,
if @ and B are even integers then so, too, are 4 = — (¢ + B) and b = «B.
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3. (i) If the line y = mx — 2 intersects the parabola y = 3x2 + 1, then
the pair of simultaneous equations

y=mx —2
y = 3x2+1
has real solutions for x and y. Now

y =mx —2

2 } = 3x24+l=mx-2 = 3x* —mx+3=0.
y =3x“+1 ’

If the quadratic equation 3x% — mx + 3 = 0 has a real solution then its
discriminant (—m)? — 4 x 3 x 3 > 0. This implies m? > 36 so |m| > 6.

5. Let x and y be real numbers which are not both zero. Then

2 2 2 1> 3 2 13? 32
x"+xy+y :<x +xy+1y>+zl~y :<x+§y> +Zy > 0.

6. (ii) Let m and n be positive integers such that m|n and n|m. Then
there exist positive integers k1 and k; such that n = kym and m = kyn.
Therefore kik; = 1. Since k; and ky are positive integers, this implies
ki =k, =1. Hence m = n.

7. Suppose two points A and B lie on a circle. Then the centre O of
the circle lies on the perpendicular bisector of AB (because OA = OB).

Now, let A, B and C be three points in the plane which do not lie on a
straight line. Consider the perpendicular bisectors of AB and AC. Since
A, B and C do not lie on a straight line, AB and AC are not parallel
and hence their perpendicular bisectors are also not parallel. Therefore
the perpendicular bisectors of AB and AC intersect at a point, X say.
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c

Now the circle with centre X and radius XA passes through B (since
XA = XB as X lies on the perpendicular bisector of AB) and passes
through C (since XA = XC as X lies on the perpendicular bisector of
AC). Therefore all three points lie on the circle with centre X and radius
XA.

8. (i) Let x and y be positive real numbers such that x +y =1.

x-y?>0
x2—2xy +y*>0
x2+y222xy
x% 4+ 2xy +y* > 4xy
(x +y)224xy.
1> 4xy (sincex +y =1)

1
1

L T

xy <

Exercises 5.3

1. (ii) Let G be a group and let x,y € G be two elements which
commute.

Let ¢ € G. Then (using the associativity property of groups (group
axiom 1) to bracket expressions as we please), we have:
Xy = yx
= g8 'xyg =g~ 'yxg
= g 'x(8g7yg =87y (887 )xg
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= (87'xg)(87yg) = (87 'yg)(g ™ xg)
so ¢ 'xg and g~!yg commute.
2. (ii) Let A, B and C be n x n matrices.
AxB+C)=AB+C)—(B+OA
=AB+AC-BA-CA
=AB-BA+AC-CA
— (A*B)+ (A*C).

3.(b) Let x and y be elements of a group G such that x #e¢, y #e,
6 28 2

x° =e, x*° = ¢ and xyx = y*.
First note that x** = (x®)* =e¢?* =¢. Hence x®¥ =¢ = x%x¥ =x*=e¢.

6 2.4

Therefore xX® =¢ = x2%x 2

= = x“=¢, 50 |x| =2

Now xyx =y? = (xyx)yx) =y* = xyx’yx =y* = xyix =y

But y2 = xyx so, substituting for y? in the equation xy?x = y* gives
y* = x%yx?. Since x> =¢, we have y = y* so y3 =e.
Since y> = e and y # e, it follows that |y| = 3. (To prove this rigorously,

we must also show that y2 # e. This can be proved quite simply using
the method of proof by contradiction—see Section 6.3.)

4. (ii)) Let A and B be n x n matrices such that A is symmetric and B
is anti-symmetric.

(B8*)T = (BB)!

=B'B” (since, in general, (AB)T = BTAT)
= (—B)(—B) (since B is anti-symmetric)
= B2

Since (B*)T = B?, it follows that B? is symmetric, by definition.

7. Let A and B be orthogonal n x n matrices. Then ATA =1, so A =
(AT)~1. Hence

(ATB)T — BT(AT)T — BTA — B—I(AT)—I — (ATB)_I.

Therefore ATB is also orthogonal.
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8. (c) Assume d satisfies M2, M3 and M4. Then, for all x,y € X, we
have:
d(x,x)<d(x,y)+d(y,x) (from M4 with z = x)

= 0<d(x,y)+d(y,x) (from M2)
= 0<d(x,y)+d(x,y) (from M3)
= 0<d(x,y).

Hence d satisfies M1.
(d) Verify that d satisfies M1, M2, M3 and M4.
10. (a) Verify that o = 1 satisfies the conditions S1 and S2.

(b) Let A and B be non-empty subsets of R which are bounded
above. Suppose AC B. Then x e A= x € B = x <supB, sosupB is
an upper bound for A. Therefore sup A < sup B, by property S2 applied
to sup A.

(c) Let A be a non-empty subset of R, which is bounded above,
xeRand B={x +a:a € R}.

Let b€ B. Then b =x +a for some a € A. But 2 <supA so x +a
x + sup A. Therefore x + sup A is an upper bound for B, so sup B
x + sup A by property S2 applied to sup B.

=
=

Now seAex+aeB soacecAsa=(—x)+b for some b€ B.
Therefore A = {(—x) +b:b € B}. Reversing the roles of A and B in
the argument above, we obtain supA < (—x)+supB so supB > x +
sup A.

Since supB < x +supA and supB > x +supA we have supB =x +
sup A, as required.

(d) Similar to (c).

Exercises 6.1

1. The contrapositive is ‘if n is divisible by 7, then n? is divisible by
7" where n is any integer. The proof is similar to Example 5.2.2.

2. The negation of the (inclusive) disjunction ‘m is even or n is even’ is
the conjunction ‘m and n are both odd’. (This follows from De Morgan’s
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replacement rule.) The contrapositive is therefore “if m and n are odd,
then mn is odd” where m and n are any integers. This is proved using
the fact that an integer p is odd if and only if p =2k + 1 for some
integer k.

3. The contrapositive is 'if m is even or n is even (or both), then mn
is even’. This can be proved by considering the two cases:

(@) m is even regardless of n;
(b) n is even regardless of m.

(Of course these two cases overlap when both m and n are even but
this does not affect the proof.)

5. The contrapositive is 'if x2 — x —a = 0 has at least one integer root,
then g is not an odd integer’.

An outline of the proof is given below.

Suppose that x2 — x —a = 0 has roots xj and x; and that x; is an integer.
Then x?>—-x-a=0

= x1+xx=1and x1x; = —a.

The first of these equations implies that x; is also an integer. We can
then show that x;x; is even (using x; + x2 = 1) and hence that a is not
an odd integer.

Exercises 6.2

2. Suppose that m + +/2n is rational, where m and n are integers and
n # 0 and show that this implies that +/2 is rational.

3. Suppose that there is some integer n > 1 for which the smallest
factor, k > 1, is not prime.

Then n = ki for some integer /.

But k is not prime so that k = kjk, for some integers k; and k, where
1 <ki,ky <k.

Hence n = kika!

= k is not the smallest factor of n.
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This contradiction allows us to conclude that the smallest factor greater
than one of any integer greater than one must be prime.

5. Suppose there exist sets A and B such that (A — B)N B # . Then
there exists an element a such that

aeA—-—BandaeB
= aeANBandacB

= aeAandaeBanda € B.

Clearly there is a contradiction here. We cannot have a € B and a € B.
Hence the theorem is proved.

6. Assume a universe for n of integers greater than 1. The contra-
positive of the theorem is then ‘for any n, if n is not prime, then n
has a prime factor k where 2 < k < /n’. From Exercise 3 above, we do
know that the smallest factor of n is prime. Suppose that this factor is
| and that | > \/n (i.e [ is not in the range 2 <! < \/n) and deduce a
contradiction.

8. Suppose that the sets Ay,...,A,, By, ..., B, are as given in the exer-
cise and suppose B; N B; # J for some i < j.
Choose x € B; N B;.
Then x € B;
ie. xeA —(AU---UA;1)
= x €A
Also  x € B;
ie. x €A —-(A1U---UAj1)
= x¢AU---UA_1)
= x¢A.

We’ve proved x € A; and x ¢ A;, a contradiction.

Hence B; N B; =J for all i #j.
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9. Let {x,} be a real sequence with limit / and suppose x, > a for all
nbut! <a.

Thene=a—-1 > 0.
Therefore there exists N > 0 such that [x, — | <& forall n > N.
Show that this implies that x, < a for all n > N.

11. Suppose that G is a group with 6 elements and that g € G has
order 5.

Then e, g, g% ¢>, ¢* are distinct elements of G (and g° = e).
Therefore G = {¢,g, % ¢, g* h) where h # g" for any n.
Consider gh € G. Since h # g", it follows that gh # ¢" for any n.
Therefore gh = h, so g = e, a contradiction.
12. (a) Suppose that {a,} converges to limit 1.
Let ¢ = % Since ¢ > 0, there exists an N > 0 such that

lan — 1| <s=%foralln > N.
But if n is odd and n > N, then

lan =11 = 1(=1)" = 1|
=[-2

>

[NS R

This is a contradiction.

(b) Suppose {a,} converges to a limit /.

Let ¢ = 1. Since ¢ > 0, there exists an N > 0 such that
[a, — 1] <1foralln > N.

Choose n,m such that n > N,m > N and n is even, m is odd. By
writing 2 = |2| = [(1 — ) + (1 + 1)|, show that this leads to the contra-
diction 2 < 2.
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Exercises 6.3

1. xeAUBNC)

xeAorxeBnNC

xeAor(xeBandx €(C)

(xeAorxeB)and (x e Aor x € C) (see note below)
x€eAUBand x e AUC

& xe(AUB)NAUC).

Therefore AUBNC)=(AUB)N(AUC).

¢ ¢ ¢

Note: We can think of the statement in the third line of the proof as
being the disjunction of two propositions. One is "x € A’ and the other is
the conjunction of 'x € B’ and 'x € C’, where x is an arbitrary element
of AU(B NC). By the distribution replacement rule, (x € A) v [(x €
B)A (x € C)] is equivalent to [(x e A)v(x e B)]A[(x e A) v (x € C)]
and hence to the fourth line of the proof.

3. Suppose that m and n are integers which have the same remainder
after division by 5 and show that this implies that m —n = 5(k — 1) for
some integers k and [.

Then suppose that 5 is a factor of m — n. Let m have remainder r; and
let n have remainder r; after division by 5. Then consider m — n and
show that r; = r;.

4. Suppose that p is a prime factor of mn and use the fact that m and
n can each be expressed uniquely (apart from ordering) as a product
of prime factors (see Section 4.2) to show that p is a factor of m or of n.

The converse is straightforward.

5. y =mx —2 and y = 3x2 + 1 intersect
&  mx —2 =3x% +1 has real roots
& 3x% — mx + 3 =0 has real roots
& b?>4ac wherea =3,b=—-m,c =3
& m?>36
& |m| = 6.

Hencey =mx —2andy = 3x% + 1 intersect if and only if [m| > 6.
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9. Suppose that the two quadratic equations have a common root x;.
Then a1x12 +bix;1 +cp =0and alez + byx1 + ¢2 = 0. Subtracting a; times
the first equation from a; times the second gives

x1(a1by — axb) + a1 —axcy =0
_ 01 —me
- = aiby — aby

Similarly, subtracting b, times the first equation from b; times the
second, we have (after a little algebra)

2= bacr — c2by ‘
axby — mbs

Putting these together gives

(azcl — a1 >2 bac1 — by
a1b2 - a2b1 - azbl - a1b2‘

The result follows after a little algebra.

Now suppose that (a1b; — azb1)(b1cz — bac1) = (c1a2 — c2a1)>. Taking our
cue from the first part of the proof, we write

axcy —a102
=~ Then we show that a1x% + bix +¢; = 0.
a1by — axby
axcp —acy .
Hence x = ———= is a root of a;x% + b1x +¢; = 0.
a1by — axby

a1 —a102

is also a root of
a1by — azb

In a similar way we can show that x =
a2x2 +byx +c3=0.

This shows that the two quadratic equations have a common root and
completes the proof of the theorem.

10. Suppose that G is abelian and let a,b € G.

Then @b) ' =b7'a"! (see Example 5.6.3)
=a'"! (since G is abelian).

Now suppose that (ab)~! =a~1b~1 for all a,b € G.

Ifa,beG,thenb 1,471 eG.
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Hence (a~'b1)"! = @ 1)~'(v~!)~! (by the assumption)

= (@b~ H1=ab
= b HlaHl=ab
= ba= ab.

Therefore G is abelian.

12. (i) LetA = (i S ) where a,b,c and d are non-zero real numbers.

Then A2=03, = a’+bc=0 (1)
ba+d)=0 (2)

ca+d)=0 (3

bc+d*=0  (4)

2

Now, (2) = a = —d (as does (3)) and (1) = ¢ = Ta.

a b
Hence A = | ;2 )
? —a

The converse is proved directly by evaluating A2,

a b
where A = | 42 )
—b— —a

(i) A2=A = a’+bc=a (1)
ba+d)=b (2
cla+d)=c 3)
bc+d*=d (4
a(l—a)
b

The converse is proved by direct calculation.

These equations gived =1 —a and c = (a#1).

13. To prove that, if m + n+/2 is rational, then n = 0 (see Exercise 6.2.2
which is the contrapositive of this theorem).
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If n =0, then m + n+/2 = m, which is clearly rational since it is an
integer.

Exercises 7.1

1. (b) 3,5 and 7 are all prime.
(d) 72=6>+6%73=3%+8%and 74 =5 + 72
(f) ¥2 and +/2 are both irrational.
(h) 65=124+8%=4%+72
Gy 1729 =13 +123 =9 +10°.

There is a famous story associated with this example. G. H. Hardy
was visiting his protégé, the brilliant and largely self-taught Indian
mathematician Srinivasa Ramanujan, who was ill. In his book about
Ramanujan!, Hardy recalls:

It was Littlewood who said that every positive integer was one of Ramanujan’s
personal friends. I remember going to see him once when he was lying ill in
Putney. I had ridden in a taxi-cab No. 1729, and had remarked that the number
seemed to me a rather dull one, and that I hoped it was not an unfavourable
omen. 'No,” he reflected, it is a very interesting number; it is the smallest
number expressible as the sum of two cubes in two different ways.’

2. (ii) IfA=<_(1) _g’) then A2 = L.
10
(iv) IfA= 100 andB=|0 1
010 -

1 00
then AB=L butBA={0 1 0].
0 00

3. (i) 2 has no multiplicative inverse.
(Proof: for all x € Zg,2 xg x is even and so cannot be equal to 1.)

(iv)  x =5is a solution.

! G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Works, Chelsea, New York,
1959, page 12. (Reprint of 1940 Cambridge University Press edition.)
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Exercises 7.2

1. Let P be an n-sided non-convex polygon and suppose that every
interior angle satisfies 6 > (n — 3)/(n — 1). Since P is non-convex there
exists an interior angle, ¢ > m. Then:

sum of interior angles = ¢ + sum of remaining interior angles

n—3
>m+(n —1)(————>Jr=(n - 2)m.
n—1
This contradicts the theorem given as background knowledge in
Example 7.2.2. Therefore there exists an interior angle satisfying 6 <
(n—=3)r/(n —1).

There is no contradiction since every triangle is convex. (The angle-sum
in a triangle is 7, so every interior angle satisfies 6 < m.)

3. Suppose that n + 1 matches were played and that no-one played
more than once. Since each match has two players, there were 2n + 2
different members involved in the matches. However the club has only
2n + 1 members. Therefore some member played more than once.

5 Let S ={x e R:x >0and x? <2}. Clearly S # &, since 1 € S for
example. Note also that if x > 3 then x> >9so x ¢ S. Hence if x € S
then x < 3 so S is bounded above (by 3).

By the completeness axiom for R, the bounded, non-empty set S has
a supremum, « say. We can prove that o? = 2 using the method of
proof by contradiction. (Show that o < 2 and o? > 2 each leads to a
contradiction.)

Exercises 7.3

2.(b) a=5 b=4 c=3.
(d n=5: 6 +4x5*=10276.
) n=8: 8 +1=4097 =17 x 241.

3. V2€¢AUB-C) but vV2¢(AUB)-C.
Hence AUB-C)#(AUB)-C.

4. (i) A=(‘l) ?) (iv) A=<(l) g) and B:(g g)
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5. () Proof. Suppose a and b are rational numbers. Then there exist
integers m,n,p,q such that n # 0,9 #0,a =m/n and b = p/q. Now

oM PP

noq nq

where mp and ng are integers and ngq # 0. Therefore ab is rational.
g

(i) Counter-example. Let a = /2 = b; then a and b are irrational but
ab = 2 is rational.

6.(c) f:R—> R, f(x)=-x* is twice differentiable, has a local
maximum at x =0 but f”(0) = 0. Similarly g: R - R, g(x) = x*, is
twice differentiable, has a local minimum at x = 0 but g”(0) = 0.

7. (b) Counter-example. A = (1,2}, B ={2,4} and C = {1,2,3}.

4 2 2 1
(c) Counter-example. A = (2 1) and B = (2 1).

Exercises 7.4
4. Suppose ad — bc # 0.

ds — bt _at —cs
ad —be’ Y T ad —be

Existence. A solution is x =

Uniqueness. Suppose that:

axy +by; =s (1) axy + by =s (3)
cx1+dy; =t () an cxy+dyy =t 4)

Subtracting (3) from (1) and subtracting (4) from (2) gives:
a(x;—x2)+by1 —y2) =0 )
cx1—x)+dy1—y2)=0  (6)

Now subtract b x (6) from d x (5):

(ad — bc)(x1 — x3) = 0.

Since ad — bc # 0, it now follows that x; — x, = 0 so x; = x;. Equations
(5) and (6) now simplify to
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byi—y2)=0
dyi—y2) =0

Since b and d cannot both be zero (otherwise ad — bc would be zero),
one of these equations (at least) implies y; — y, = 0 so y; = y».

Therefore the solution is unique.
6. (i) Suppose a and b are inverses of x. Then
a = (bx)a (since bx = e because b is an inverse of x)
= b(xa) (associativity)
=b (since xa = e because a is an inverse of x).

7. Let S be a non-empty subset of R which is bounded above and let
« and @ be suprema for S.

Since @ is an upper bound for S, the supremum property S2 for « (see
Exercise 5.3.10) implies « < @. Similarly, since « is an upper bound for
S, the supremum property S2 for @ implies @ < «. Hence @ = a.

Exercises 8.1

2. For all real numbers x and y,
x+1)f = (x —y)t = (2 + 4%y + 6x2y? + 4y 4yt
— (x4 - 4x3y + 6x2y2 - 4xy3 + y4)
= x* + 4x3y + 6x%y? + 4xy® + y*
—x* +4x3y — 6x%y? + dxy® -yt
= 8x%y + 8xy>
= 8xy(x? +y?).

3. Let k and n be positive integers such that k < n. Then

n—k+1 ( n ) n—k+1 nt
—_— X = X
k k-1 k (n —(k —IHk — 1)
n—k+1 n!

kK S i—k+ Dik = 1)
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_ n—k+1)xn!

T m—k+D(n=k)!xkk -1
n!

= k!

_(n
={¢
8. (i) Let n and r be positive integers such that r < n + 2. Then

(n), +2r(n)y_1+r(r —1(n)_2

n! n! n!

e et U — v
!
=('1—_’:—+-2T((n—r+2)(n—r+1)+2r(n—r+2)+r(r_1))
!
:(n—_’:'—_*_z?(nZ_an+r2+3n—3r+2+2nr_2r2+4r+r2_r)
!
ETEEST R
n!
BCETE S A
GRS
S (n—r+2)
=(n+2),.

(ii) Let n and r be positive integers such that r < n + 2. Using the
theorem in Example 8.2.2. we have:

n+2),=m+1),+r(n+1),
=)y +r()—1+r((M)-1+ (r — D(n)r-2)
= (n)y +2r(n)—1 +r(r — D).
10. (i) For all sets A, B and C belonging to U,
(AUB)-C =(AuB)NC (definition of set difference)
=CN(AUB) (commutative law)
=(CNA)UCNB) (distributive law)
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=ANC)UMBNC) (commutative law)
=(A—-C)U(B —C) (definition of set difference).

Exercises 8.2

1. (i) (n)c is the number of lists of length k chosen from a set of n
distinguishable objects. Such a list may be constructed in two stages as
follows.

First choose a set of k objects from the n given. This can be done in

") ways

k ys:
Then order the chosen k objects in a list. This can be done in k! = (k)¢
ways.

Therefore, the total number of lists is (Z ) k)k.

We have counted the number of lists in two different ways so (1), =

(Z ) k).

3. (i) Consider a sequence xx;...x, of length n constructed from the
letters a,b and c. Since there are 3 choices for each letter x;, the total
number of such sequences is 3".

Next, we count the number of such sequences in which the letter a
appears exactly k times, for some fixed value of k where 0 <k < n.
We can construct such a sequence by first selecting k positions in the
sequence to take the letter 2. This amounts to choosing k members of

the ‘set of positions’ {1,2,...,n}, so there are (Z) such choices. The

remaining n — k positions form a sequence constructed from the letters
b and c, so there are 2"~% such sequences (using a similar argument
to that in the previous paragraph). Therefore the number of sequences
containing exactly k a’s is
n n—k
L

Since there must be k a’s for some value of k =0,1,2,...,n,

3" = total number of sequences
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n
= Z (number of sequences with k letter a’s)
k=0

=§(z>2"-k.

4. (a) Divide the rectangle into four equally sized sub-rectangles, as

shown.
3 R3 R4
3 R1 R2
4 4

By the pigeon hole principle, if five points are located in the rectangle
then at least two of them are situated in one of the sub-rectangles. The
maximum distance apart of two points in one of the sub-rectangles is
the length of a diagonal which is v/32 + 42 = 5 units, by Pythagoras’
theorem. Therefore there exists a pair of points which are no more than
5 units apart.

5. There are 10 prime numbers less that 30, namely 2, 3, 5, 7, 11, 13,
17, 19, 23, 29. Suppose that 12 distinct integers are chosen from the set
{1,2,3,...,30}). At least 11 of the chosen integers are different from 1.
For each such integer, consider its smallest prime factor. Since there are
only 10 possible distinct prime factors, at least one pair has a common
(smallest prime) factor greater than 1, by the pigeon hole principle.

Exercises 8.3

2. (a) If n is not a multiple of 3 then n = 3k + 1 or n = 3k + 2 for some
integer k. Now consider n? in each case.

(c) The multiplication table for {0,1,2,3,4} under multiplication
modulo 5 is:

X5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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If n is not a multiple of 5, then n # 0 modulo 5. Considering the top-left
to bottom-right diagonal of the table, we see that n? is 1 or 4 modulo
5. Therefore n* = 12 = 1 or n* = 4> = 1 modulo 5. Hence if n is not a
multiple of 5, then n* has remainder 1 after division by 5.

3. (b) We use the inequality |x +y| < |x|+ |y| (see Example 8.6.2.)
Using this, we have

x| =[x —y)+yl <Ix —yl+lylso|x —y|=|x|— |yl
Hence [x —y| =y — x| > |y| — |x].

Since |x — y| is at least as large as both |x| — |y| and |y| — |x| = —(|x| —
ly|), it follows that [x —y| > [|x| — |y|| as required.

4. (i) Let k be an integer such that k — 1 is divisible by 3 and k(k — 1)
is divisible by 12. Since k — 1 is divisible by 3, it follows that k = 1,4,7
or 10 modulo 12.

If k=1 or 4 modulo 12 then k(k — 1) =0 modulo 12 so k(k —1) is
divisible by 12.
If k =7 or 10 modulo 12 then k(k — 1) = 6 modulo 12 so k(k — 1) is not
divisible by 12.

Therefore k =1 or 4 modulo 12 so k = 12n + 1 or k = 12n + 4 for some
integer n.

5.(a) Let A,B and X be sets such that AC X and B € X and let x €
AUB.Then x € A or x € B (or both). If x € A then x € X since A C X;
if x € B then x € X since B € X. We have proved x e AUB = x € X
so (AUB) C X.

Exercises 9.1
1. Clearly 0 < 2° so that n < 2" holds for n = 0.

Suppose that k < 2X for some arbitrary natural number k. (This is the
induction hypothesis.)

Now k < 2
= k+1<2k+1
<2 + 2% (since 2F > 1 for all k € N)
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=2x2k
=2k+1.

This completes the inductive step. So, by mathematical induction, we
can conclude that n < 2" for all n € N.

4. If n =0, we have

xMl_1 x-1

x—1 x—1

This completes the initial step.

The induction hypothesis is

Then
k+1 xk+1 -1

Y i = -7 4k

xK+1 1 4 xk+l(x — 1)
x—1

xk+2_1
x—1

This completes the inductive step and the theorem follows by mathe-
matical induction.

5. (i) If n =4,n%3 =64 and 3" = 81. Hence n3 < 3" for n = 4.
Induction hypothesis: k3 < 3% for some arbitrary integer k > 4.

We have
k +1)° =k3+3k% +3k + 1.

Now 3k2 < k x k2 = k3 since k > 4
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and
3k+1 <k x 3k
= 3k?
< k3 from the result above.
So k+1° <k3+k3+k°
= 3k3

<3x3% by the induction hypothesis
— 3k+1.

This completes the inductive step and the theorem follows by mathe-
matical induction.

1
6. (ii) The conjecture is Z': (2i —1) =n2
i=1

7. Ifn=1x*14+1=x+1. Hence, for n =1,(x +1) is a factor of
x2n—1 +1.

Suppose that for some positive integer k, (x + 1) is a factor of x*~1 + 1,
e x®*1y1=(x+ 1) f (x) where f (x) is a polynomial of degree 2k — 2.

Then show that x2%+D-1 41 =(x +1)[x*f(x)—(x —1)] where
x%f (x) — (x — 1) is a polynomial of degree 2k.

9. Initial step:

5 11
~iG+1) 10+1)
1
S 1+1

Induction hypothesis:
i :
i+ 1) k+1

i=1

Inductive step:

kZH Lo ko 1
~i(+1) k+1 0 (k+ Dk +2)
k(k +2)+1

- (k + 1k +2)
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K42kt
Tk + Dk +2)

(e +1)?
~k+ Dk +2)
_k+1
Ck+2

The theorem follows by mathematical induction.

12. (a) The initial step is trivial.

Induction hypothesis: suppose that, for some positive integer k, if p is
prime and ay,ay, .. .,a; are positive integers such that p|(a; ...ay), then
p divides one of the positive integers 4y, . .., ax.

Inductive step: Let p|(a; .. . akak4+1).
Then p|(a1 .. .ax) or plax,1 (see Exercise 6.3.4).
So play or plaz or ... or plax or plaxs1 (by the induction hypothesis).
The result follows by mathematical induction.
(b) The initial step is trivial.

Induction hypothesis: suppose that, for some positive integer k, if
ai,az,...,dr are members of some universe such that a1 =ay,a; =
as,...,dx—1 = ax, then a1 = ax.

Inductive step: suppose that a; = a3,a2 = a3, ..., ak-1 = ax, ax = ax41-
Then a; = ax and ax = a4 (by the induction hypothesis).
S0 a; = ax41 by the transitive property of equality (see page 211).

The result follows by mathematical induction.

Exercises 9.2

3. To effect the inductive step, consider dividing the (k + 1)-sided
polygon into a k-sided polygon and a triangle.

4.(1) Wehavefy=f,+fi=1+1=2, so that f3 < 23
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Suppose that there is a k € Z* such that f, < 2" for all n € Z* such that
3<n<k.

Now
fer1 = +fia

<254+ 251  (by the induction hypothesis
y yp

1 1
2 +4

3

4
< 2k+1.

2k+1

Hence we have shown by mathematical induction that f, < 2" for all
n > 3.

However, f; < 2! and f, < 22 so that f, < 2" for all positive integers n.

7. The inductive step is achieved in a similar way to that of Exer-
cise 4(i) above.

8. Define P(n): If A and B are sets such that [A| = n and B C A, then
(B| < |A].

Then P(0) is true since its antecedent is false.
Assume that P (k) is true for some positive integer k.
Let A be a set with k + 1 elements and let B C A.

If B=O then |B|=0= [B| <k +1=|A]

If B # & then choose x € B.

Then x € A and (B — {x}) C (A — {x}).

But |A — {x}| = k so, by the induction hypothesis,

IB —{x}| < 1A —{x}|
= |B — {x}| <k.

Now |B — {x}| = |B| — 1
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= Bl — 1<k
= Bl <k +1
= |B| < |A].

This completes the inductive step and the result follows by mathemat-
ical induction.

10. Suppose that P(n) satisfies the conditions given.
Initial step: P (2) is true (from condition (a))
= P(1) is true (from condition (c))

Inductive step: Suppose P (k) is true.
Then P (2k) is true (from (b))
= P2k — 1) is true (from (c))
= P2k —2) is true (from (c))

= Pk —(k—1)) =Pk +1)is true (from (c)).

The theorem follows by mathematical induction.



