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Preface

As with the previous editions, the range of material covered in this fifth edition is
regarded as appropriate for a first-level core studies course in mathematics for under-
graduate courses in all engineering disciplines. Whilst designed primarily for use by 
engineering students it is believed that the book is also highly suitable for students 
of the physical sciences and applied mathematics. Additional material appropriate for
second-level undergraduate core studies, or possibly elective studies for some engin-
eering disciplines, is contained in the companion text Advanced Modern Engineering
Mathematics.

The objective of the authoring team remains that of achieving a balance between 
the development of understanding and the mastering of solution techniques, with the
emphasis being on the development of the student’s ability to use mathematics with
understanding to solve engineering problems. Consequently, the book is not a collection
of recipes and techniques designed to teach students to solve routine exercises, nor is
mathematical rigour introduced for its own sake. To achieve the desired objective the
text contains:

l Worked examples
Approximately 500 worked examples, many of which incorporate mathematical
models and are designed both to provide relevance and to reinforce the role of
mathematics in various branches of engineering. In response to feedback from users,
additional worked examples have been incorporated within this revised edition.

l Applications
To provide further exposure to the use of mathematical models in engineering
practice, each chapter contains sections on engineering applications. These sec-
tions form an ideal framework for individual, or group, case study assignments
leading to a written report and/or oral presentation, thereby helping to develop
the skills of mathematical modelling necessary to prepare for the more open-
ended modelling exercises at a later stage of the course.

l Exercises
There are numerous exercise sections throughout the text, and at the end of each
chapter there is a comprehensive set of review exercises. While many of the
exercise problems are designed to develop skills in mathematical techniques,
others are designed to develop understanding and to encourage learning by doing,
and some are of an open-ended nature. This book contains over 1200 exercises
and answers to all the questions are given. It is hoped that this provision,
together with the large number of worked examples and style of presentation,
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also makes the book suitable for private or directed study. Again in response to
feedback from users, the frequency of exercises sections has been increased and
additional questions have been added to many of the sections.

l Numerical methods
Recognizing the increasing use of numerical methods in engineering practice,
which often complement the use of analytical methods in analysis and design
and are of ultimate relevance when solving complex engineering problems,
there is wide agreement that they should be integrated within the mathematics
curriculum. Consequently the treatment of numerical methods is integrated
within the analytical work throughout the book.

Much of the feedback from users relates to the role and use of software packages, 
particularly symbolic algebra packages, in the teaching of mathematics to engineering 
students. In response, use of such packages continues to be a significant feature of 
this new edition. Whilst any appropriate software package can be used, the authors 
recommend the use of MATLAB and/or MAPLE and have continued to adopt their 
use in this text. Throughout, emphasis will be on the use of MATLAB, with reference 
made to corresponding MAPLE commands and differences in syntax highlighted.
MATLAB/MAPLE commands have been introduced and illustrated, as inserts, throughout
the text so that their use can be integrated into the teaching and learning processes.
Students are strongly encouraged to use one of these packages to check the answers to
the examples and exercises. It is stressed that the MATLAB/MAPLE inserts are not
intended to be a first introduction of the package to students; it is anticipated that they
will receive an introductory course elsewhere and will be made aware of the excellent
‘help’ facility available. The purpose of incorporating the inserts is not only to improve
efficiency in the use of the package but also to provide a facility to help develop a 
better understanding of the related mathematics. Whilst use of such packages takes the
tedium out of arithmetic and algebraic manipulations it is important that they are used
to enhance understanding and not to avoid it. It is recognised that not all users of the
text will have access to either MATLAB or MAPLE, and consequently all the inserts
are highlighted and can be ‘omitted’ without loss of continuity in developing the sub-
ject content. Throughout the text two icons are used

l An open screen indicates that use of a software package would be useful 

(e.g. for checking solutions) but not essential

l A closed screen indicates that the use of a software package is essential or 

highly desirable.

Feedback, from users of the previous edition, on the subject content has been favour-
able, and consequently no new chapters have been introduced. However, in response 
to the feedback, chapters have been reviewed and amended/updated accordingly. 
Whilst subject content at this level has not changed much over the years the mode 
of delivery is being driven by developments in computer technology. Consequently
there has been a shift towards online teaching and learning, coupled with student self-
study programmes. In support of such programmes, worked examples and exercises
sections are seen by many as the backbone of the text. Consequently in this new edi-
tion emphasis is given to strengthening the ‘Worked Examples’ throughout the text and
increasing the frequency and number of questions in the ‘Exercises Sections’. This has
involved the restructuring, sometimes significant, of material within individual chapters. 

A01_JAME0734_05_SE_FM.qxd  11/03/2015  09:36  Page xxii



PREFACE xxiii

....

A comprehensive Solutions Manual is obtainable free of charge to lecturers 
using this textbook. It will also be available for download via the Web at 
www.pearsoned.co.uk/james.

Also available online is a set of ‘Refresher Units’ covering topics students should
have encountered at school but may not have used for some time.
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1.1 Introduction
Mathematics plays an important role in our lives. It is used in everyday activities from
buying food to organizing maintenance schedules for aircraft. Through applications
developed in various cultural and historical contexts, mathematics has been one of the
decisive factors in shaping the modern world. It continues to grow and to find new uses,
particularly in engineering and technology.

Mathematics provides a powerful, concise and unambiguous way of organizing and
communicating information. It is a means by which aspects of the physical universe can
be explained and predicted. It is a problem-solving activity supported by a body of
knowledge. Mathematics consists of facts, concepts, skills and thinking processes –
aspects that are closely interrelated. It is a hierarchical subject in that new ideas and
skills are developed from existing ones. This sometimes makes it a difficult subject for
learners who, at every stage of their mathematical development, need to have ready
recall of material learned earlier.

In the first two chapters we shall summarize the concepts and techniques that most
students will already understand and we shall extend them into further developments in
mathematics. There are four key areas of which students will already have considerable
knowledge.

l numbers
l algebra
l geometry
l functions

These areas are vital to making progress in engineering mathematics (indeed, they will
solve many important problems in engineering). Here we will aim to consolidate that
knowledge, to make it more precise and to develop it. In this first chapter we will deal
with the first three topics; functions are considered in Chapter 2.

1.2 Number and arithmetic

1.2.1 Number line

Mathematics has grown from primitive arithmetic and geometry into a vast body of
knowledge. The most ancient mathematical skill is counting, using, in the first instance,
the natural numbers and later the integers. The term natural numbers commonly refers
to the set � = {1, 2, 3, …}, and the term integers to the set � = {0, 1, −1, 2, −2, 3, 
−3, …}. The integers can be represented as equally spaced points on a line called the
number line as shown in Figure 1.1. In a computer the integers can be stored exactly.
The set of all points (not just those representing integers) on the number line represents
the real numbers (so named to distinguish them from the complex numbers, which are 

..

Figure 1.1
The number line.

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 2



..

1.2 NUMBER AND ARITHMETIC 3

discussed in Chapter 3). The set of real numbers is denoted by �. The general real num-
ber is usually denoted by the letter x and we write ‘x in �’, meaning x is a real number.
A real number that can be written as the ratio of two integers, like or − , is called a
rational number. Other numbers, like ÷2 and π, that cannot be expressed in that way
are called irrational numbers. In a computer the real numbers can be stored only to 
a limited number of figures. This is a basic difference between the ways in which 
computers treat integers and real numbers, and is the reason why the computer languages
commonly used by engineers distinguish between integer values and variables on the
one hand and real number values and variables on the other.

1.2.2 Representation of numbers

For everyday purposes we use a system of representation based on ten numerals: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. These ten symbols are sufficient to represent all numbers if a posi-
tion notation is adopted. For whole numbers this means that, starting from the right-
hand end of the number, the least significant end, the figures represent the number of
units, tens, hundreds, thousands, and so on. Thus one thousand, three hundred and sixty-
five is represented by 1365, and two hundred and nine is represented by 209. Notice the
role of the 0 in the latter example, acting as a position keeper. The use of a decimal point
makes it possible to represent fractions as well as whole numbers. This system uses ten
symbols. The number system is said to be ‘to base ten’ and is called the decimal sys-
tem. Other bases are possible: for example, the Babylonians used a number system to
base sixty, a fact that still influences our measurement of time. In some societies a num-
ber system evolved with more than one base, a survival of which can be seen in imper-
ial measures (inches, feet, yards, … ). For some applications it is more convenient to
use a base other than ten. Early electronic computers used binary numbers (to base
two); modern computers use hexadecimal numbers (to base sixteen). For elementary
(pen-and-paper) arithmetic a representation to base twelve would be more convenient
than the usual decimal notation because twelve has more integer divisors (2, 3, 4, 6)
than ten (2, 5).

In a decimal number the positions to the left of the decimal point represent units
(100), tens (101), hundreds (102) and so on, while those to the right of the decimal point
represent tenths (10−1), hundredths (10−2) and so on. Thus, for example

2 1 4 · 3 6
↓ ↓ ↓ ↓ ↓
102 101 100 10−1 10−2

so

214.36 = 2(102) + 1(101) + 4(100) +

= 200 + 10 + 4 +

=

In other number bases the pattern is the same: in base b the position values are b0,
b1, b2, … and b−1, b−2, … . Thus in binary (base two) the position values are units, twos,
fours, eights, sixteens and so on, and halves, quarters, eighths and so on. In hexadecimal
(base sixteen) the position values are units, sixteens, two hundred and fifty-sixes and so
on, and sixteenths, two hundred and fifty-sixths and so on.

21436
100

5359
25  =

3
10

6
100  +

3 61
10

1
100( )  ( )+

7
5

3
2

..
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Example 1.1 Write (a) the binary number 10111012 as a decimal number and (b) the decimal 
number 11510 as a binary number.

Solution (a) 10111012 = 1(26) + 0(25) + 1(24) + 1(23) + 1(22) + 0(21) + 1(20)

= 6410 + 0 + 1610 + 810 + 410 + 0 + 110

= 9310

(b) We achieve the conversion to binary by repeated division by 2. Thus

115 ÷ 2 = 57 remainder 1 (20)

57 ÷ 2 = 28 remainder 1 (21)

28 ÷ 2 = 14 remainder 0 (22)

14 ÷ 2 = 7 remainder 0 (23)

7 ÷ 2 = 3 remainder 1 (24)

3 ÷ 2 = 1 remainder 1 (25)

1 ÷ 2 = 0 remainder 1 (26)

so that

11510 = 11100112

Example 1.2 Represent the numbers (a) two hundred and one, (b) two hundred and seventy-five, 
(c) five and three-quarters and (d) one-third in

(i) decimal form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

(ii) binary form using the figures 0, 1;

(iii) duodecimal (base 12) form using the figures 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ∆, ε.

Solution (a) two hundred and one

(i) = 2 (hundreds) + 0 (tens) and 1 (units) = 20110

(ii) = 1 (one hundred and twenty-eight) + 1 (sixty-four) + 1 (eight) + 1 (unit) 
= 110010012

(iii) = 1 (gross) + 4 (dozens) + 9 (units) = 14912

Here the subscripts 10, 2, 12 indicate the number base.

(b) two hundred and seventy-five

(i) = 2 (hundreds) + 7 (tens) + 5 (units) = 27510

(ii) = 1 (two hundred and fifty-six) + 1 (sixteen) + 1 (two) + 1 (unit) = 1000100112

..
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1.2 NUMBER AND ARITHMETIC 5

(iii) = 1 (gross) + 10 (dozens) + eleven (units) = 1∆ε12

(∆ represents ten and ε represents eleven)

(c) five and three-quarters

(i) = 5 (units) + 7 (tenths) + 5 (hundredths) = 5.7510

(ii) = 1 (four) + 1 (unit) + 1 (half) + 1 (quarter) = 101.112

(iii) = 5 (units) + 9 (twelfths) = 5.912

(d) one-third

(i) = 3 (tenths) + 3 (hundredths) + 3 (thousandths) + … = 0.333 … 10

(ii) = 1 (quarter) + 1 (sixteenth) + 1 (sixty-fourth) + … = 0.010101 … 2

(iii) = 4 (twelfths) = 0.412

1.2.3 Rules of arithmetic

The basic arithmetical operations of addition, subtraction, multiplication and division are
performed subject to the Fundamental Rules of Arithmetic. For any three numbers 
a, b and c:

(a1) the commutative law of addition

a + b = b + a

(a2) the commutative law of multiplication

a × b = b × a

(b1) the associative law of addition

(a + b) + c = a + (b + c)

(b2) the associative law of multiplication

(a × b) × c = a × (b × c)

(c1) the distributive law of multiplication over addition and subtraction

(a + b) × c = (a × c) + (b × c)

(a − b) × c = (a × c) − (b × c)

(c2) the distributive law of division over addition and subtraction

(a + b) ÷ c = (a ÷ c) + (b ÷ c)

(a − b) ÷ c = (a ÷ c) − (b ÷ c)

Here the brackets indicate which operation is performed first. These operations are
called binary operations because they associate with every two members of the set of
real numbers a unique third member; for example,

2 + 5 = 7 and 3 × 6 = 18

..
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Example 1.3 Find the value of (100 + 20 + 3) × 456.

Solution Using the distributive law we have

(100 + 20 + 3) × 456 = 100 × 456 + 20 × 456 + 3 × 456

= 45 600 + 9120 + 1368 = 56 088

Here 100 × 456 has been evaluated as

100 × 400 + 100 × 50 + 100 × 6

and similarly 20 × 456 and 3 × 456.
This, of course, is normally set out in the traditional school arithmetic way:

456
123 ×

1 368
9 120

45 600
56 088

Example 1.4 Rewrite (a + b) × (c + d) as the sum of products.

Solution Using the distributive law we have

(a + b) × (c + d) = a × (c + d) + b × (c + d)

= (c + d) × a + (c + d) × b

= c × a + d × a + c × b + d × b

= a × c + a × d + b × c + b × d

applying the commutative laws several times.

A further operation used with real numbers is that of powering. For example, a × a
is written as a2, and a × a × a is written as a3. In general the product of n a’s where 
n is a positive integer is written as an. (Here the n is called the index or exponent.)
Operations with powering also obey simple rules:

an × am = an+m (1.1a)

an ÷ am = an−m (1.1b)

(an)m = anm (1.1c)

From rule (1.1b) it follows, by setting n = m and a ≠ 0, that a0 = 1. It is also convention
to take 00 = 1. The process of powering can be extended to include the fractional powers
like a1/2. Using rule (1.1c),

..
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(a1/n)n = an /n = a1

and we see that

a1/n = n÷a

the nth root of a. Also, we can define a−m using rule (1.1b) with n = 0, giving

1 ÷ am = a−m, a ≠ 0

Thus a−m is the reciprocal of am. In contrast with the binary operations +, ×, − and ÷,
which operate on two numbers, the powering operation ( )r operates on just one element
and is consequently called a unary operation. Notice that the fractional power

am/n = (n÷a)m = n÷(am)

is the nth root of am. If n is an even integer, then am/n is not defined when a is negative.
When n÷a is an irrational number then such a root is called a surd.

Numbers like ÷2 were described by the Greeks as a-logos, without a ratio number.
An Arabic translator took the alternative meaning ‘without a word’ and used the arabic
word for ‘deaf’, which subsequently became surdus, Latin for deaf, when translated
from Arabic to Latin in the mid-twelfth century.

Example 1.5 Find the values of

(a) 271/3 (b) (−8)2/3 (c) 16−3/2

(d) (−2)−2 (e) (−1/8)−2/3 (f ) (9)−1/2

Solution (a) 271/3 = 3÷27 = 3

(b) (−8)2/3 = (3÷(−8))2 = (−2)2 = 4

(c) 16−3/2 = (161/2)−3 = (4)−3 = =

(d) (−2)−2 =

(e) (−1/8)−2/3 = [3÷(−1/8)]−2 = [3÷(−1)/ 3÷(8)]−2 = [−1/2]−2 = 4

(f) (9)−1/2 = (3)−1 =

Example 1.6 Express (a) in terms of ÷2 and simplify (b) to (f ).

(a) ÷18 + ÷32 − ÷50 (b) 6/÷2 (c) (1 − ÷3)(1 + ÷3)

(d) (e) (1 + ÷6)(1 − ÷6) (f)
1 2

1 6

  

  

−
+

÷
÷

2

1 3  − ÷

1
3

1

2 2
1
4( )

  
−

=

1
64

1
43

..
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Solution (a) ÷18 = ÷(2 × 9) = ÷2 × ÷9 = 3÷2

÷32 = ÷(2 × 16) = ÷2 × ÷16 = 4÷2

÷50 = ÷(2 × 25) = ÷2 × ÷25 = 5÷2

Thus ÷18 + ÷32 − ÷50 = 2÷2.

(b) 6/÷2 = 3 × 2/÷2

Since 2 = ÷2 × ÷2, we have 6/÷2 = 3÷2.

(c) (1 − ÷3)(1 + ÷3) = 1 + ÷3 − ÷3 − 3 = −2

(d) Using the result of part (c) can be simplified by multiplying ‘top and

bottom’ by 1 + ÷3 (notice the sign change in front of the ÷). Thus

=

= −1 − ÷3

(e) (1 + ÷6)(1 − ÷6) = 1 − ÷6 + ÷6 − 6 = −5

(f) Using the same technique as in part (d) we have

=

= −(1 − ÷2 − ÷6 + 2÷3)/5

This process of expressing the irrational number so that all of the surds are in the
numerator is called rationalization.

When evaluating arithmetical expressions the following rules of precedence are observed:

l the powering operation ( )r is performed first
l then multiplication × and/or division ÷
l then addition + and/or subtraction −

When two operators of equal precedence are adjacent in an expression the left-hand
operation is performed first. For example

12 − 4 + 13 = 8 + 13 = 21

and

15 ÷ 3 × 2 = 5 × 2 = 10

 

1 2 6 1

1 6

      

  

− − +
−

÷ ÷ ÷ 2
 

1 2

1 6

1 2 1 6

1 6 1 6

  

  
  

(   )(   )

(   )(   )

−
+

=
− −
+ −

÷
÷

÷ ÷
÷ ÷

 

2 1 3

1 3

(   )

  

+
−

÷

2

1 3

2 1 3

1 3 1 3  
  

(   )

(   )(   )−
=

+
− +÷

÷
÷ ÷

2

1 3  − ÷
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The precedence rules are overridden by brackets; thus

12 − (4 + 13) = 12 − 17 = −5

and

15 ÷ (3 × 2) = 15 ÷ 6 = 2.5

Example 1.7 Evaluate 7 − 5 × 3 ÷ 22.

Solution Following the rules of precedence, we have

7 − 5 × 3 ÷ 22 = 7 − 5 × 3 ÷ 4 = 7 − 15 ÷ 4 = 7 − 3.75 = 3.25

1.2.4 Exercises

1 Find the decimal equivalent of 110110.1012.

2 Find the binary and octal (base eight) equivalents
of the decimal number 16 321. Obtain a simple
rule that relates these two representations of the
number, and hence write down the octal equivalent
of 10111001011012.

3 Find the binary and octal equivalents of the
decimal number 30.6. Does the rule obtained in
Question 2 still apply?

4 Use binary arithmetic to evaluate

(a) 100011.0112 + 1011.0012

(b) 111.100112 × 10.1112

5 Simplify the following expressions, giving the
answers with positive indices and without brackets:

(a) 23 × 2−4 (b) 23 ÷ 2−4 (c) (23)−4

(d) 31/3 × 35/3 (e) (36)−1/2 (f ) 163/4

6 The expression 7 − 2 × 32 + 8 may be evaluated
using the usual implicit rules of precedence. It
could be rewritten as ((7 − (2 × (32))) + 8) using
brackets to make the precedence explicit. Similarly
rewrite the following expressions in fully
bracketed form:

(a) 21 + 4 × 3 ÷ 2

(b) 17 − 62+3

(c) 4 × 23 − 7 ÷ 6 × 2

(d) 2 × 3 − 6 ÷ 4 + 32−5

7 Express the following in the form x + y÷2 with x
and y rational numbers:

(a) (7 + 5÷2)3 (b) (2 + ÷2)4

(c) 3÷(7 + 5÷2) (d) ÷( − 3÷2)

8 Show that

Hence express the following numbers in the form 
x + y÷n where x and y are rational numbers and n is
an integer:

(a) (b)

(c) (d)

9 Find the difference between 2 and the squares of

(a) Verify that successive terms of the sequence
stand in relation to each other as m/n does to 
(m + 2n)/(m + n).

(b) Verify that if m/n is a good approximation to 
÷2 then (m + 2n)/(m + n) is a better one, and that 
the errors in the two cases are in opposite directions.

(c) Find the next three terms of the above sequence.

1

1

3

2

7

5

17

12

41

29

99

70
, , , , , 

2 4 5

4 5

  

  

+
−

÷
÷

4 2 3

7 3 3

  

  

−
−

÷
÷

2 3 2

9 7 2

  

  

+
−

÷
÷

1

7 5 2  + ÷

1
2 2a b c

a b c

a b c  
  

  

  +
=

−
−÷

÷

11
2
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1.2.5 Inequalities

The number line (Figure 1.1) makes explicit a further property of the real numbers –
that of ordering. This enables us to make statements like ‘seven is greater than two’
and ‘five is less than six’. We represent this using the comparison symbols

�, ‘greater than’
�, ‘less than’

It also makes obvious two other comparators:

=, ‘equals’
≠, ‘does not equal’

These comparators obey simple rules when used in conjunction with the arithmetical
operations. For any four numbers a, b, c and d:

(a � b and c � d) implies a + c � b + d (1.2a)

(a � b and c � d) implies a − c � b − d (1.2b)

(a � b and b � c) implies a � c (1.2c)

a � b implies a + c � b + c (1.2d)

(a � b and c � 0) implies ac � bc (1.2e)

(a � b and c � 0) implies ac � bc (1.2f)

(a � b and ab � 0) implies (1.2g)

Example 1.8 Show, without using a calculator, that ÷2 + ÷3 � 2(4÷6).

Solution By squaring we have that

(÷2 + ÷3)2 = 2 + 2÷2÷3 + 3 = 5 + 2÷6

Also

(2÷6)2 = 24 � 25 = 52

implying that 5 � 2÷6. Thus

(÷2 + ÷3)2 � 2÷6 + 2÷6 = 4÷6

and, since ÷2 + ÷3 is a positive number, it follows that

÷2 + ÷3 � ÷(4÷6) = 2(4÷6)

1.2.6 Modulus and intervals

The size of a real number x is called its modulus and is denoted by | x | (or sometimes
by mod (x)). Thus

(1.3)| |x
x x

x x
  

      (   )

    (   )
=

−

⎧
⎨
⎩

�

�

0

0

1 1

a b
  �

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 10



.. ..

1.2 NUMBER AND ARITHMETIC 11

Figure 1.2
Illustration of 
| x − 4.3 | = 5.8.

where the comparator � indicates ‘greater than or equal to’. (Likewise � indicates ‘less
than or equal to’.)

Geometrically | x | is the distance of the point representing x on the number line from
the point representing zero. Similarly | x − a | is the distance of the point representing x
on the number line from that representing a.

The set of numbers between two numbers, a and b say, defines an open interval
on the real line. This is the set {x:a � x � b, x in �} and is usually denoted by (a, b).
(Set notation will be fully described in Chapter 6; here {x:P} denotes the set of all x that
have property P.) Here the double-sided inequality means that x is greater than a and
less than b; that is, the inequalities a � x and x � b apply simultaneously. An interval
that includes the end points is called a closed interval, denoted by [a, b], with

[a, b] = {x:a � x � b, x in �}

Note that the distance between two numbers a and b might either be a − b or b − a
depending on which was the larger. An immediate consequence of this is that

| a − b | = | b − a |

since a is the same distance from b as b is from a.

Example 1.9 Find the values of x so that

| x − 4.3 | = 5.8

Solution | x − 4.3 | = 5.8 means that the distance between the real numbers x and 4.3 is 5.8 units,
but does not tell us whether x � 4.3 or whether x � 4.3. The situation is illustrated in
Figure 1.2, from which it is clear that the two possible values of x are −1.5 and 10.1.

Example 1.10 Express the sets (a) {x: | x − 3 | � 5, x in �} and (b) {x: | x + 2 | � 3, x in �} as intervals.

Solution (a) | x − 3 | � 5 means that the distance of the point representing x on the number line
from the point representing 3 is less than 5 units, as shown in Figure 1.3(a). This
implies that

−5 � x − 3 � 5

Adding 3 to each member of this inequality, using rule (1.2d), gives

−2 � x � 8

and the set of numbers satisfying this inequality is the open interval (−2, 8).

(b) Similarly | x + 2 | � 3, which may be rewritten as | x − (−2) | � 3, means that the 
distance of the point x on the number line from the point representing −2 is less than 
or equal to 3 units, as shown in Figure 1.3(b). This implies

−3 � x + 2 � 3
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Subtracting 2 from each member of this inequality, using rule (1.2d), gives

−5 � x � 1

and the set of numbers satisfying this inequality is the closed interval [−5, 1].
It is easy (and sensible) to check these answers using spot values. For example,

putting x = −4 in (b) gives | −4 + 2 | � 3 correctly. Sometimes the sets | x + 2 | � 3 and
| x + 2 | � 3 are described verbally as ‘lies in the interval x equals −2 ± 3’.

Figure 1.3
(a) The open interval
(−2, 8). (b) The closed
interval [−5, 1].

We note in passing the following results. For any two real numbers x and y:

| xy | = | x | | y | (1.4a)

| x | � a, a � 0, implies −a � x � a (1.4b)

| x + y | � | x | + | y |, known as the ‘triangle inequality’ (1.4c)

(x + y) � ÷(xy), when x � 0 and y � 0 (1.4d)

Result (1.4d) is proved in Example 1.11 below and may be stated in words as

the arithmetic mean (x + y) of two positive numbers x and y is greater
than or equal to the geometric mean ÷(xy). Equality holds only when y = x.

Results (1.4a) to (1.4c) should be verified by the reader, who may find it helpful to
try some particular values first, for example, setting x = −2 and y = 3 in (1.4c).

Example 1.11 Prove that for any two positive numbers x and y, the arithmetic–geometric inequality

(x + y) � ÷(xy)

holds.

Deduce that for any positive number x.

Solution The quantity xy can be interpreted as the area of a rectangle with sides x and y. The
quantity (x + y)2 can be interpreted as the area of a square of side (x + y). Comparing
areas in Figure 1.4, where the broken lines cut the square into 4 equal quarters of size
A and it is assumed that x � y.

From Figure 1.4, we see that

(x + y)2 = x2 + y2 + 2xy (1.5)

 
x

x
    +

1
2�

1
2

1
2

1
2
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Figure 1.4
Illustration of 
x2 + y2 � 2xy.

..

Also, from Figure 1.4, we see that

xy = A − B + D

Since B � D, (B = D + C), it follows that

x2 + y2 � 2xy

In the particular case when x = y then B = D = 0 and

x2 + y2 = 2xy

so in general

x2 + y2 � 2xy (1.6)

Combining (1.5) and (1.6) we deduce

(x + y)2 � 4xy

and since x and y are both positive we have

x + y � 2÷(xy)

which is equivalent to

(x + y) � ÷(xy)

In the special case when we have

that is,

x
x

    +
1

2�

x
x

x
x

    + ⎛
⎝

⎞
⎠

1
2

1
� �

y
x

  =
1

1
2

x

y
x y

2

2
2 2

      

      
        

= + +
= − −

⎫
⎬
⎭

+ = + −
A 2B C

A 2D C
2A 2B 2D
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1.3 Algebra
The origins of algebra are to be found in Arabic mathematics as the name suggests,
coming from the word aljabara meaning ‘combination’ or ‘re-uniting’. Algorithms 
are rules for solving problems in mathematics by standard step-by-step methods. 
Such methods were first described by the ninth century mathematician Abu Ja’far
Mohammed ben Musa from Khwarizm, modern Khiva on the southern border of
Uzbekistan. The Arabic al-Khwarizm (‘from Khwarizm’) was Latinized to algorithm 
in the late Middle Ages. Often the letter x is used to denote an unassigned (or free) 
variable. It is thought that this is a corruption of the script letter r abbreviating the Latin
word res, thing. The use of unassigned variables enables us to form mathematical 
models of practical situations as illustrated in the following example. First we deal with
a specific case and then with the general case using unassigned variables.

The idea, first introduced in the seventeenth century, of using letters to represent
unspecified quantities led to the development of algebraic manipulation based on the
elementary laws of arithmetic. This development greatly enhanced the problem-solving
power of mathematics – so much so that it is difficult now to imagine doing mathematics
without this resource.

10 Show that (÷5 + ÷13)2 � 34 and determine
without using a calculator the larger of ÷5 + ÷13
and ÷3 + ÷19.

11 Show the following sets on number lines and
express them as intervals:

(a) {x:| x − 4 | � 6} (b) {x:| x + 3 | � 2}

(c) {x:| 2x − 1 | � 7} (d) {x:| x + 3 | � 3}

12 Show the following intervals on number lines and
express them as sets in the form {x:| ax + b | � c}
or {x:| ax + b | � c}:

(a) (1, 7) (b) [−4, −2]

(c) (17, 26) (d)

13 Given that a � b and c � d, which of the
following statements are always true?

(a) a − c � b − d (b) a − d � b − c

(c) ac � bd (d)
1 1

b a
  �

[ , ]− 1
2

3
4

1
4

In each case either prove that the statement is 
true or give a numerical example to show it can 
be false.

If, additionally, a, b, c and d are all greater 
than zero, how does that modify your 
answer?

14 The average speed for a journey is the distance
covered divided by the time taken.

(a) A journey is completed by travelling for the first
half of the time at speed v1 and the second half at
speed v2. Find the average speed va for the journey
in terms of v1 and v2.

(b) A journey is completed by travelling at speed v1

for half the distance and at speed v2 for the second
half. Find the average speed vb for the journey in
terms of v1 and v2.

Deduce that a journey completed by travelling 
at two different speeds for equal distances will take
longer than the same journey completed at the same
two speeds for equal times.

1.2.7 Exercises
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Example 1.12 A pipe has the form of a hollow cylinder as shown in Figure 1.5. Find its mass when

(a) its length is 1.5 m, its external diameter is 205 mm, its internal diameter is 160 mm
and its density is 5500 kg m−3;

(b) its length is l m, its external diameter is D mm, its internal diameter is d mm and its
density is ρ kg m−3. Notice here that the unassigned variables l, D, d, ρ are pure num-
bers and do not include units of measurement.

Solution (a) Standardizing the units of length, the internal and external diameters are 0.16 m and
0.205 m respectively. The area of cross-section of the pipe is

0.25π(0.2052 − 0.1602) m2

(Reminder: The area of a circle of diameter D is πD2/4.)
Hence the volume of the material of the pipe is

0.25π(0.2052 − 0.1602) × 1.5 m3

and the mass (volume × density) of the pipe is

0.25 × 5500 × π(0.2052 − 0.1602) × 1.5 kg

Evaluating this last expression by calculator gives the mass of the pipe as 106 kg to the
nearest kilogram.

(b) The internal and external diameters of the pipe are d/1000 and D/1000 metres,
respectively, so that the area of cross-section is

0.25π(D2 − d 2)/1 000 000 m2

The volume of the pipe is

0.25π l(D2 − d 2)/106 m3

Hence the mass M kg of the pipe of density ρ is given by the formulae

M = 0.25πρl(D2 − d 2)/106 = 2.5πρl(D + d)(D − d) × 10−5

1.3.1 Algebraic manipulation

Algebraic manipulation made possible concise statements of well-known results, such as

(a + b)2 = a2 + 2ab + b2 (1.7a)

Previously these results had been obtained by a combination of verbal reasoning and
elementary geometry as illustrated in Figure 1.6.

Figure 1.6
Illustration of 
(a + b)2 = a2 + 2ab + b2.

Figure 1.5
Cylindrical pipe 
of Example 1.12.
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Example 1.13 Prove that

ab = [(a + b)2 − (a − b)2]

Given 702 = 4900 and 362 = 1296, calculate 53 × 17.

Solution Since

(a + b)2 = a2 + 2ab + b2

we deduce

(a − b)2 = a2 − 2ab + b2

and

(a + b)2 − (a − b)2 = 4ab

and

ab = [(a + b)2 − (a − b)2]

The result is illustrated geometrically in Figure 1.7. Setting a = 53 and b = 17, we have

53 × 17 = [702 − 362] = 901

This method of calculating products was used by the Babylonians and is sometimes called
the ‘quarter-squares’ algorithm. It has been used in some analogue devices and simulators.

1
4

1
4

1
4

..

Figure 1.7
Illustration of ab =

[(a + b)2 − (a − b)2].1
4

Example 1.14 Show that

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Solution Rewriting a + b + c as (a + b) + c we have

((a + b) + c)2 = (a + b)2 + 2(a + b)c + c2 using (1.7a)

= a2 + 2ab + b2 + 2ac + 2bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac
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Example 1.15 Verify that

(x + p)2 + q − p2 = x2 + 2px + q

and deduce that

ax2 + bx + c =

Solution (x + p)2 = x2 + 2px + p2

so that

(x + p)2 + q − p2 = x2 + 2px + q

Working in the reverse direction is more difficult

ax2 + bx + c =

Comparing with x2 + 2px + q, we can identify

Thus we can write

ax2 + bx + c = a[(x + p)2 + q − p2]

where

giving

ax2 + bx + c =

=

This algebraic process is called ‘completing the square’.

We may summarize the results so far

(a + b)2 = a2 + 2ab + b2 (1.7a)

(a − b)2 = a2 − 2ab + b2 (1.7b)

a2 − b2 = (a + b)(a − b) (1.7c)

a2 + bx + c = (1.7d)

As shown in the previous examples, the ordinary rules of arithmetic carry over to the
generalized arithmetic of algebra. This is illustrated again in the following example.

a x
b

a
c

b

a
     +⎛

⎝
⎞
⎠ + −

2 4

2 2

a x
b

a
c

b

a
      +⎛

⎝
⎞
⎠ + −

2 4

2 2

a x
b

a
a

c

a

b

a
      +⎛

⎝
⎞
⎠ + −⎛

⎝⎜
⎞
⎠⎟2 4

2 2

2

p
b

a
q

c

a
      = =

2
and

b

a
p

c

a
q            = =2 and

x
b

a
x
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a
2     + +

a x
b

a
x

c

a
2     + +⎛

⎝
⎞
⎠

a x
b

a
c

b

a
      +⎛

⎝
⎞
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2 4

2 2

..
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Example 1.16 Express as a single fraction

(a)

(b)

Solution (a) The lowest common denominator of these fractions is 12, so we may write

(b) The lowest common multiple of the denominators of these fractions is (x + 1)(x + 2),
so we may write

Example 1.17 Use the method of completing the square to manipulate the following quadratic expres-
sions into the form of a number + (or −) the square of a term involving x.

(a) x2 + 3x − 7 (b) 5 − 4x − x2

(c) 3x2 − 5x + 4 (d) 1 + 2x − 2x2

Solution Remember (a + b)2 = a2 + 2ab + b2.

(a) To convert x2 + 3x into a perfect square we need to add . Thus we have

(b) 5 − 4x − x2 = 5 − (4x + x2)

To convert x2 + 4x into a perfect square we need to add 22. Thus we have

x2 + 4x = (x + 2)2 − 22

= + − (   )   x 3
2

2 37
4

x x x2 3
2

2 3
2

23 7 7      [(   )   ( ) ]  + − = + − −

( )3
2

2

=
+ +

 
(   )(   )1 2

x

x x

=
− − + +

+ +
 

        

(   )(   )

1 2 4 3 3

1 2

x x

x x

=
− + + +

+ +
 

  (   )  (   )

(   )(   )

1 2 2 3 1

1 2

x x

x x

=
+ +

−
+

+ +
+

+
+ +

 
(   )(   )

  
(   )

(   )(   )
  

(   )
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2 2
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3 1

1 2x x

x
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−
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2

12
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−
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3
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and

5 − 4x − x2 = 5 − [(x + 2)2 − 22] = 9 − (x + 2)2

(c) First we ‘take outside’ the coefficient of x2:

3x2 − 5x + 4 =

Then we rearrange

so that 3x2 − 5x + 4 = .

(d) Similarly

1 + 2x − 2x2 = 1 − 2(x2 − x)

and

x2 − x =

so that

1 + 2x − 2x2 =

The reader should confirm that these results agree with identity (1.7d)

The number 45 can be factorized as 3 × 3 × 5. Any product from 3, 3 and 5 is also a
factor of 45. Algebraic expressions can be factorized in a similar fashion. An algebraic
expression with more than one term can be factorized if each term contains common
factors (either numerical or algebraic). These factors are removed by division from each
term and the non-common factors remaining are grouped into brackets.

Example 1.18 Factorize xz + 2yz − 2y − x.

Solution There is no common factor to all four terms so we take them in pairs:

xz + 2yz − 2y − x = (x + 2y)z − (2y + x)

= (x + 2y)z − (x + 2y)

= (x + 2y)(z − 1)

Alternatively, we could have written

xz + 2yz − 2y − x = (xz − x) + (2yz − 2y)

= x(z − 1) + 2y(z − 1)

= (x + 2y)(z − 1)

to obtain the same result.

In many problems we are able to facilitate the solution by factorizing a quadratic
expression ax2 + bx + c ‘by-hand’, using knowledge of the factors of the numerical
coefficients a, b and c.

1 2 21
2

2 1
4

3
2

1
2

2  [(   )  ]    (   )− − − = − −x x

(   )  x − −1
2

2 1
4

3 35
6

2 25
36

4
3

5
6

2 23
36[(   )    ]  [(   )  ]x x− − + = − +

x x x2 5
3

5
6

2 25
36− = − −   (   )  

3 2 5
3

4
3(    )x x− +

..
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Example 1.19 Factorize the expressions

(a) x2 + 12x + 35 (b) 2x2 + 9x − 5

Solution (a) Since

(x + α)(x + β) = x2 + (α + β)x + αβ

we examine the factors of the constant term of the expression:

35 = 5 × 7 = 35 × 1

and notice that 5 + 7 = 12 while 35 + 1 = 36. So we can chose α = 5 and β = 7 and write

x2 + 12x + 35 = (x + 5)(x + 7)

(b) Since

(mx + α)(nx + β) = mnx2 + (nα + mβ)x + αβ

we examine the factors of the coefficient of x2 and of the constant to give the coefficient
of x. Here

2 = 2 × 1 and −5 = (−5) × 1 = 5 × (−1)

and we see that

2 × 5 + 1 × (−1) = 9

Thus we can write

(2x − 1)(x + 5) = 2x2 + 9x − 5

It is sensible to do a ‘spot-check’ on the factorization by inserting a sample value of x,
for example x = 1

(1)(6) = 2 + 9 − 5

Comment Some quadratic expressions, for example x2 + y2, do not have real factors.

The expansion of (a + b)2 in (1.7a) is a special case of a general result for (a + b)n

known as the binomial expansion. This is discussed again in Sections 1.3.6 and 7.7.2.
Here we shall look at the cases for n = 0, 1, … , 6.

Writing these out, we have

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

..

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 20



..

1.3 ALGEBRA 21

This table can be extended indefinitely. Each line can easily be obtained from the 
previous one. Thus, for example,

(a + b)4 = (a + b)(a + b)3

= a(a3 + 3a2b + 3ab2 + b3) + b(a3 + 3a2b + 3ab2 + b3)

= a4 + 3a3b + 3a2b2 + ab3 + a3b + 3a2b2 + 3ab3 + b4

= a4 + 4a3b + 6a2b2 + 4ab3 + b4

The coefficients involved form a pattern of numbers called Pascal’s triangle, shown 
in Figure 1.8. Each number in the interior of the triangle is obtained by summing the
numbers to its right and left in the row above, as indicated by the arrows in Figure 1.8.
This number pattern had been discovered prior to Pascal by the Chinese mathematician
Chu Shih-chieh.

Example 1.20 Expand

(a) (2x + 3y)2 (b) (2x − 3)3 (c) 

Solution (a) Here we use the expansion

(a + b)2 = a2 + 2ab + b2

with a = 2x and b = 3y to obtain

(2x + 3y)2 = (2x)2 + 2(2x)(3y) + (3y)2

= 4x2 + 12xy + 9y2

(b) Here we use the expansion

(a + b)3 = a3 + 3a2b + 3ab2 + b3

with a = 2x and b = −3 to obtain

(2x − 3)3 = 8x3 − 36x2 + 54x − 27

2
1 4

x
x

  −⎛
⎝

⎞
⎠

..

Figure 1.8
Pascal’s triangle.
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15 Simplify the following expressions:

(a) x3 × x−4 (b) x3 ÷ x−4 (c) (x3)−4

(d) x1/3 × x5/3 (e) (4x8)−1/2 (f)

(g) (h)

(i) ( j)

(k) (4ab2)−3/2

16 Factorize

(a) x2y − xy2

(b) x2yz − xy2z + 2xyz2

(c) ax − 2by − 2ay + bx

(d) x2 + 3x − 10

(e) x2 − (f) 81x4 − y4

17 Simplify

(a) (b)

(c)

(d) (3x + 2y)(x − 2y) + 4xy

18 An isosceles trapezium has non-parallel sides of
length 20 cm and the shorter parallel side is 30 cm,
as illustrated in Figure 1.9. The perpendicular
distance between the parallel sides is h cm. 
Show that the area of the trapezium is
h(30 + ÷(400 − h2)) cm2.
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Figure 1.10 Sheet of cardboard of Question 19.

Figure 1.9

(c) Here we use the expansion

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

with a = 2x and b = −1/x to obtain

= (2x)4 + 4(2x)3(−1/x) + 6(2x)2(−1/x)2 + 4(2x)(−1/x)3 + (−1/x)4

= 16x4 − 32x2 + 24 − 8/x2 + 1/x4

1.3.2 Exercises

2
1 4

x
x

  −⎛
⎝

⎞
⎠

20 Rearrange the following quadratic expressions by
completing the square.

(a) x2 + x − 12 (b) 3 − 2x + x2

(c) (x − 1)2 − (2x − 3)2 (d) 1 + 4x − x2

19 An open container is made from a sheet of
cardboard of size 200 mm × 300 mm using a 
simple fold, as shown in Figure 1.10. Show 
that the capacity C ml of the box is given by

C = x(150 − x)(100 − x)/250
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Figure 1.11
The cone and cylinder
of Example 1.21.

1.3.3 Equations, inequalities and identities

It commonly occurs in the application of mathematics to practical problem-solving that
the numerical value of an expression involving unassigned variables is specified and we
have to find the values of the unassigned variables which yield that value. We illustrate
the idea with the elementary examples that follow.

Example 1.21 A hollow cone of base diameter 100 mm and height 150 mm is held upside down and
filled with a liquid. The liquid is then transferred to a hollow circular cylinder of base
diameter 80 mm. To what height is the cylinder filled?

Solution The situation is illustrated in Figure 1.11. The capacity of the cone is

(base area) × (perpendicular height)

Thus the volume of liquid contained in the cone is

π(502)(150) = 125 000π mm3

The volume of the liquid in the circular cylinder is

(base area) × (height) = π(402)h mm3

where h mm is the height of the liquid in the cylinder. Equating these quantities (assuming
no liquid is lost in the transfer) we have

1600πh = 125 000π

This equation enables us to find the value of the unassigned variable h:

h = 1250/16 = 78.125

Thus the height of the liquid in the cylinder is 78mm to the nearest millimetre.

1
3

1
3
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In the previous example we made use of the formula for the volume V of a cone of base
diameter D and height H. We normally shorthand this as

V = πD2H

understanding that the units of measurement are compatible. This formula also tells us
the height of such a cone in terms of its volume and base diameter

This type of rearrangement is common and is generally described as ‘changing the 
subject of the formula’.

Example 1.22 A dealer bought a number of equally priced articles for a total cost of £120. He sold all
but one of them, making a profit of £1.50 on each article with a total revenue of £135.
How many articles did he buy?

Solution Let n be the number of articles bought. Then the cost of each article was £(120/n). 
Since (n − 1) articles were sold the selling price of each article was £(135/(n − 1)). 
Thus the profit per item was

which we are told is equal to £1.50. Thus

This implies

135n − 120(n − 1) = 1.50(n − 1)n

Dividing both sides by 1.5 gives

90n − 80(n − 1) = n2 − n

Simplifying and collecting terms we obtain

n2 − 11n − 80 = 0

This equation for n can be simplified further by factorizing the quadratic expression 
on the left-hand side

(n − 16)(n + 5) = 0

This implies either n = 16 or n = −5, so the dealer initially bought 16 articles (the 
solution n = −5 is not feasible).

Example 1.23 Using the method of completing the square (1.7a), obtain the formula for finding the
roots of the general quadratic equation

ax2 + bx + c = 0 (a ≠ 0)

135

1

120
1 50

n n  
    .

−
− =

£
  

  
135

1

120

n n−
−⎧

⎨
⎩

⎫
⎬
⎭

H
V

D
  =

12
2π

1
12
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Solution Dividing throughout by a gives

Completing the square leads to

giving

which on taking the square root gives

or

(1.8)

Here the ± symbol provides a neat shorthand for the two solutions.

Comments (a) The formula given in (1.8) makes clear the three cases: where for b2 � 4ac
we have two real roots to the equation, for b2 � 4ac we have no real roots, and for
b2 = 4ac we have one real root (which is repeated). 

(b) The condition for equality of the roots of a quadratic equation occurs in practical
applications, and we shall illustrate this in Example 2.48 after considering the trigono-
metric functions.

(c) The quadratic equation has many important applications. One, which is of historical
significance, concerned the electrical engineer Oliver Heaviside. In 1871 the telephone
cable between England and Denmark developed a fault caused by a short circuit under
the sea. His task was to locate that fault. The cable had a uniform resistance per unit
length. His method of solution was brilliantly simple. The situation can be represented
schematically as shown in Figure 1.12.
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Figure 1.12
The circuit for the
telephone line fault.
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In the figure the total resistance of the line between A and B is a ohms and is known;
x and y are unknown. If we can find x, we can locate the distance along the cable where
the fault has occurred. Heaviside solved the problem by applying two tests. First he
applied a battery, having voltage E, at A with the circuit open at B, and measured the
resulting current I1. Then he applied the same battery at A but with the cable earthed 
at B, and again measured the resulting current I2. Using Ohm’s law and the rules for
combining resistances in parallel and in series, this yields the pair of equations

E = I1(x + y)

E =

Writing b = E/I1 and c = E/I2, we can eliminate y from these equations to obtain an 
equation for x:

x2 − 2cx + c(a + b) − ab = 0

which, using (1.8), has solutions

x = c ± ÷[(a − c)(b − c)]

From his experimental data Heaviside was able to predict accurately the location of 
the fault.

In some problems we have to find the values of unassigned variables such that the 
value of an expression involving those variables satisfies an inequality condition (that
is, it is either greater than, or alternatively less than, a specified value). Solving such
inequalities requires careful observance of the rules for inequalities (1.2a–1.2g) set out
in Section 1.2.5.

Example 1.24 Find the values of x for which

(1.9)

Solution (a) When 3 − x � 0, that is x � 3, we may, using (1.2e), multiply (1.9) throughout by
3 − x to give

1 � 2(3 − x)

which, using (1.2d, e), reduces to

x �

so that (1.9) is satisfied when both x � 3 and x � are satisfied; that is, x � .5
2

5
2

5
2

1

3
2

  
  

− x
�

I x
y a x

2

1
1 1

    
  

+ +
−

⎛
⎝⎜

⎞
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⎡

⎣
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⎢

⎤

⎦
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⎥
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..
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(b) When 3 − x � 0, that is x � 3, we may, using (1.2f), multiply (1.9) throughout by
3 − x to give

1 � 2(3 − x)

which reduces to x � so that (1.9) is also satisfied when both x � 3 and x � ; that is,

x � 3. 
Thus inequality (1.9) is satisfied by values of x in the ranges x � 3 and x � .

Comment A common mistake made is simply to multiply (1.9) throughout by 3 − x to give the 
answer x � , forgetting to consider both cases of 3 − x � 0 and 3 − x � 0. We shall
return to consider this example from the graphical point of view in Example 2.36.

Example 1.25 Find the values of x such that

x2 + 2x + 2 � 50

Solution Completing the square on the left-hand side of the inequality we obtain

(x + 1)2 + 1 � 50

which gives

(x + 1)2 � 49

Taking the square root of both sides of this inequality we deduce that

either (x + 1) � −7 or (x + 1) � 7

Note particularly the first of these inequalities. From these we deduce that

x2 + 2x + 2 � 50 for x � −8 or x � 6

The reader should check these results using spot values of x, say x = −10 and x = 10.

Example 1.26 A food manufacturer found that the sales figure for a certain item depended on its 
selling price. The company’s market research department advised that the maximum
number of items that could be sold weekly was 20 000 and that the number sold
decreased by 100 for every 1p increase in its price. The total production cost consisted
of a set-up cost of £200 plus 50p for every item manufactured. What price should the
manufacturer adopt?

Solution The data supplied by the market research department suggests that if the price of the
item is p pence, then the number sold would be 20 000 − 100p. (So the company would
sell none with p = 200, when the price is £2.) The production cost in pounds would 

5
2

5
2

5
2

5
2

..
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be 200 + 0.5 × (number sold), so that in terms of p we have the production cost £C
given by

C = 200 + 0.5(20 000 − 100p)

The revenue £R accrued by the manufacturer for the sales is (number sold) × (price),
which gives

R = (20 000 − 100p)p/100

(remember to express the amount in pounds). Thus, the profit £P is given by

P = R − C

= (20 000 − 100p)p/100 − 200 − 0.5(20 000 − 100p)

= −p2 + 250p − 10 200

Completing the square we have

P = 1252 − (p − 125)2 − 10 200

= 5425 − (p − 125)2

Since (p − 125)2 � 0, we deduce that P � 5425 and that the maximum value of P is
5425. To achieve this weekly profit, the manufacturer should adopt the price £1.25.

It is important to distinguish between those equalities that are valid for a restricted 
set of values of the unassigned variable x and those that are true for all values of x. 
For example

(x − 5)(x + 7) = 0

is true only if x = 5 or x = −7. In contrast

(x − 5)(x + 7) = x2 + 2x − 35 (1.10)

is true for all values of x. The word ‘equals’ here is being used in subtly different ways.
In the first case ‘=’ means ‘is numerically equal to’; in the second case ‘=’ means ‘is
algebraically equal to’. Sometimes we emphasize the different meaning by means of 
the special symbol ≡, meaning ‘algebraically equal to’. (However, it is fairly common
practice in engineering to use ‘=’ in both cases.) Such equations are often called identities.
Identities that involve an unassigned variable x as in (1.10) are valid for all values of x,
and we can sometimes make use of this fact to simplify algebraic manipulations.

Example 1.27 Find the numbers A, B and C such that

x2 + 2x − 35 ≡ A(x − 1)2 + B(x − 1) + C

Solution Method (a): Since x2 + 2x − 35 ≡ A(x − 1)2 + B(x − 1) + C it will be true for any value
we give to x. So we choose values that make finding A, B and C easy.

..
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Choosing x = 0 gives −35 = A − B + C
Choosing x = 1 gives −32 = C
Choosing x = 2 gives −27 = A + B + C

So we obtain C = −32, with A − B = −3 and A + B = 5. Hence A = 1 and B = 4 to give
the identity

x2 + 2x − 35 ≡ (x − 1)2 + 4(x − 1) − 32

Method (b): Expanding the terms on the right-hand side, we have

x2 + 2x − 35 ≡ Ax2 + (B − 2A)x + A − B + C

The expressions on either side of the equals sign are algebraically equal, which means
that the coefficient of x2 on the left-hand side must equal the coefficient of x2 on the
right-hand side and so on. Thus

1 = A

2 = B − 2A

−35 = A − B + C

Hence we find A = 1, B = 4 and C = −32, as before.

Note: Method (a) assumes that a valid A, B and C exist.

Example 1.28 Find numbers A, B and C such that

x ≠ 1

Solution Expressing the right-hand side as a single term, we have

which, with x ≠ 1, is equivalent to

x2 ≡ (Ax + B)(x − 1) + C

Choosing x = 0 gives 0 = −B + C
Choosing x = 1 gives 1 = C
Choosing x = 2 gives 4 = 2A + B + C

Thus we obtain

C = 1, B = 1 and A = 1, yielding
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21 Rearrange the following formula to make s the
subject

22 Given find t in terms of u and x.

23 Solve for t

24 If

find the positive value of c when

x = 4, y = 6, V1 = 120, V2 = 315

25 Solve for p the equation

26 A rectangle has a perimeter of 30 m. If its length is
twice its breadth, find the length.

27 (a) A4 paper is such that a half sheet has the same 
shape as the whole sheet. Find the ratio of the
lengths of the sides of the paper.

(b) Foolscap paper is such that cutting off a
square whose sides equal the shorter side of
the paper leaves a rectangle which has the 
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same shape as the original sheet. Find the 
ratio of the sides of the original page.

28 Find the values of x for which

(a) (b)

(c) (d)

29 Find the values of x for which

x2 � 2 + | x |

30 Prove that

(a) x2 + 3x − 10 � −( )2

(b) 18 + 4x − x2 � 22

(c) x + � 4 where x � 0

(Hint: First complete the square of the left-hand
members.)

31 Find the values of A and B such that

(a)

(b) 3x + 2 ≡ A(x − 1) + B(x − 2)

(c)

32 Find the values of A, B and C such that

2x2 − 5x + 12 ≡ A(x − 1)2 + B(x − 1) + C
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1.3.4 Exercises

1.3.5 Suffix and sigma notation

We have seen in previous sections how letters are used to denote general or unspecified
values or numbers. This process has been extended in a variety of ways. In particular,
the introduction of suffixes enables us to deal with problems that involve a high 
degree of generality or whose solutions have the flexibility to apply in a large number of
situations. Consider for the moment an experiment involving measuring the temperature
of an object (for example, a piece of machinery or a cooling fin in a heat exchanger) at
intervals over a period of time. In giving a theoretical description of the experiment we
would talk about the total period of time in general terms, say T minutes, and the time
interval between measurements as h minutes, so that the total number n of time intervals
would be given by T/h. Assuming that the initial and final temperatures are recorded

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 30



1.3 ALGEBRA 31

....

there are (n + 1) measurements. In practice we would obtain a set of experimental
results, as illustrated partially in Figure 1.13.

Lapsed time (minutes) 0 5 10 15 … 170 175 180

Temperature (°C) 97.51 96.57 93.18 91.53 … 26.43 24.91 23.57

Here we could talk about the twenty-first reading and look it up in the table. In the 
theoretical description we would need to talk about any one of the (n + 1) temperature
measurements. To facilitate this we introduce a suffix notation. We label the times at
which the temperatures are recorded t0, t1, t2, … , tn, where t0 corresponds to the time
when the initial measurement is taken, tn to the time when the final measurement is
taken, and

t1 = t0 + h, t2 = t0 + 2h, … , tn = t0 + nh

so that tn = t0 + T. We label the corresponding temperatures by θ0, θ1, θ2, … , θn. We
can then talk about the general result θk as measuring the temperature at time tk.

In the analysis of the experimental results we may also wish to manipulate the data
we have obtained. For example, we might wish to work out the average value of the
temperature over the time period. With the 37 specific experimental results given in 
Figure 1.13 it is possible to compute the average directly as

(97.51 + 96.57 + 93.18 + 91.53 + … + 23.57)/37

In general, however, we have

(θ0 + θ1 + θ2 + … + θn)/(n + 1)

A compact way of writing this is to use the sigma notation for the extended summation
θ0 + θ1 + … + θn. We write

(Σ is the upper-case Greek letter sigma.)

to denote

θ0 + θ1 + θ2 + … + θn

Thus

= θ0 + θ1 + θ2 + θ3

and

= θ5 + θ6 + θ7 + θ8 + θ9 + θ10

The suffix k appearing in the quantity to be summed and underneath the sigma symbol
is the ‘counting variable’ or ‘counter’. We may use any letter we please as a counter,
provided that it is not being used at the same time for some other purpose. Thus

θk
k =
∑

5

10

θk
k =
∑

0

3

θk
k

n

=
∑

0

Figure 1.13
Experimental results:
temperature against
lapsed time.
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= θ0 + θ1 + θ2 + θ3 =

Thus, in general, if a0, a1, a2, … , an is a sequence of numbers or expressions, we write

= a0 + a1 + a2 + … + an

Example 1.29 Given a0 = 1, a1 = 5, a2 = 2, a3 = 7, a4 = −1 and b0 = 0, b1 = 2, b2 = −2, b3 = 11, b4 = 3,
calculate

(a) (b) (c) (d) 

Solution (a) = a0 + a1 + a2 + a3 + a4

Substituting the given values for ak (k = 0, … , 4) gives

= 1 + 5 + 2 + 7 + (−1) = 14

(b) = a2 + a3 = 2 + 7 = 9

(c) = a1b1 + a2 b2 + a3b3 = (5 × 2) + (2 × (−2)) + (7 × 11) = 83

(d) = b0
2 + b1

2 + b2
2 + b3

2 + b4
2 = 0 + 4 + 4 + 121 + 9 = 138

1.3.6 Factorial notation and the binomial expansion

The special extended product of integers

1 × 2 × 3 × … × n = n × (n − 1) × (n − 2) × … × 1

has a special notation and name. It is called factorial n and is denoted by n!. Thus with

n! = n(n − 1)(n − 2) … (1)

as examples

5! = 5 × 4 × 3 × 2 × 1 and 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

Notice that 5! = 5(4!) so that we can write in general

n! = (n − 1)! × n

bk
k
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=
∑
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∑
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∑
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∑
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This relationship enables us to define 0!, since 1! = 1 × 0! and 1! also equals 1. Thus 0!
is defined by

0! = 1

Example 1.30 Evaluate

(a) 4! (b) 3! × 2! (c) 6! (d) 7!/(2! × 5!)

Solution (a) 4! = 4 × 3 × 2 × 1 = 24

(b) 3! × 2! = (3 × 2 × 1) × (2 × 1) = 12

(c) 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720

Notice that 2! × 3! ≠ (2 × 3)!.

(d)

Notice that we could have simplified the last item by writing

7! = 7 × 6 × (5!)

then

An interpretation of n! is the total number of different ways it is possible to arrange n
different objects in a single line. For example, the word SEAT comprises four different
letters, and we can arrange the letters in 4! = 24 different ways.

SEAT EATS ATSE TSEA

SETA EAST ATES TSAE

SAET ESAT AETS TESA

SATE ESTA AEST TEAS

STAE ETSA ASET TAES

STEA ETAS ASTE TASE

This is because we can choose the first letter in four different ways (S, E, A or T).
Once that choice is made, we can choose the second letter in three different ways, then
we can choose the third letter in two different ways. Having chosen the first three 
letters, the last letter is automatically fixed. For each of the four possible first choices,
we have three possible choices for the second letter, giving us twelve (4 × 3) possible
choices of the first two letters. To each of these twelve possible choices we have two
possible choices of the third letter, giving us twenty-four (4 × 3 × 2) possible choices
of the first three letters. Having chosen the first three letters, there is only one possible
choice of last letter. So in all we have 4! possible choices.

7

2 5

7 6 5

2 5

7 6

2 1
21

!

!  !
  

    ( !)

!  !
  

  

  
  

×
=

× ×
×

=
×
×

=

7

2 5

7 6 5 4 3 2 1

2 1 5 4 3 2 1

7 6

2
21

!

!  !
  

            

            
  

  
  

×
=

× × × × × ×
× × × × × ×

=
×

=
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Example 1.31 In how many ways can the letters of the word REGAL be arranged in a line, and in how
many of those do the two letters A and E appear in adjacent positions?

Solution The word REGAL has five distinct letters, so they can be arranged in a line in 5! = 120
different ways. To find out in how many of those arrangements the A and E appear
together, we consider how many arrangements can be made of RGL(AE) and RGL(EA),
regarding the bracketed terms as a single symbol. There are 4! possible arrangements
of both of these, so of the 120 different ways in which the letters of the word REGAL
can be arranged, 48 contain the letters A and E in adjacent positions.

The introduction of the factorial notation facilitates the writing down of many com-
plicated expressions. In particular it enables us to write down the general form of the
binomial expansion discussed earlier in Section 1.3.1. There we wrote out long-hand 
the expansion of (a + b)n for n = 0, 1, 2, … , 6 and noted the relationship between 
the coefficients of (a + b)n and those of (a + b)n−1, shown clearly in Pascal’s triangle of
Figure 1.8.

If

(a + b)n−1 = c0an−1 + c1a
n−2b + c2an−3b2 + c3an−4b3 + … + cn−1b

n−1

and

(a + b)n = d0an + d1a
n−1b + d2an−2b2 + … + dn−1abn−1 + dnb

n

then, as described on p. 21 when developing Pascal’s triangle,

c0 = d0 = 1, d1 = c1 + c0, d2 = c2 + c1, d3 = c3 + c2, …

and in general

dr = cr + cr−1

It is easy to verify that this relationship is satisfied by

and it can be shown that the coefficient of an−rbr in the expansion of (a + b)n is

(1.11)

This is a very important result, with many applications. Using it we can write down the
general binomial expansion
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The coefficient is called the binomial coefficient and has the special notation

Thus we may write

(1.13)

which is referred to as the general binomial expansion.

Example 1.32 Expand the expression (2 + x)5.

Solution Setting a = 2 and b = x in the general binomial expansion we have

= (1)(25) + (5)(24)x + (10)(23)x2 + (10)(22)x3 + (5)(2)x4 + 1x5

since and so on. Thus

(2 + x)5 = 32 + 80x + 80x2 + 40x3 + 10x4 + x5

1.3.7 Exercises
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33 Given a0 = 2, a1 = −1, a2 = −4, a3 = 5, a4 = 3 and 
b0 = 1, b1 = 1, b2 = 2, b3 = −1, b4 = 2, calculate

(a) (b)

(c) (d) bj
j
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34 Evaluate

(a) 5! (b) 3!/4! (c) 7!/(3! × 4!)

(d) (e) (f)

35 Using the general binomial expansion expand 
the following expressions:

(a) (x − 3)4 (b) (x + )3

(c) (2x + 3)5 (d) (3x + 2y)4
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Cartesian coordinates
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1.4 Geometry

1.4.1 Coordinates

In addition to the introduction of algebraic manipulation another innovation made in the
seventeenth century was the use of coordinates to represent the position of a point P on a
plane as shown in Figure 1.14. Conventionally the point P is represented by an ordered pair
of numbers contained in brackets thus: (x, y). This innovation was largely due to Descartes
and consequently we often refer to (x, y) as the cartesian coordinates of P. This notation
is the same as that for an open interval on the number line introduced in Section 1.2.6,
but has an entirely separate meaning and the two should not be confused. Whether (x, y)
denotes an open interval or a coordinate pair is usually clear from the context.

1.4.2 Straight lines
The introduction of coordinates made possible the algebraic description of the plane
curves of classical geometry and the proof of standard results by algebraic methods.

Consider, for example, the point P lying on the line AB as shown in Figure 1.15. Let
P divide AB in the ratio λ :1 − λ. Then AP/AB = λ and, by similar triangles,

Let A, B and P have coordinates (x0, y0), (x1, y1) and (x, y) respectively, then from the diagram

AQ = x − x0, AC = x1 − x0, PQ = y − y0, BC = y1 − y0

Thus

from which we deduce, after some rearrangement,

(1.14)

which represents the equation of a straight line passing through two points (x0, y0) and
(x1, y1).

More simply, the equation of a straight line passing through the two points having
coordinates (x0, y0) and (x1, y1) may be written as

y = mx + c (1.15)

where is the gradient (slope) of the line and is the inter- 

cept on the y axis.

A line perpendicular to y = mx + c has gradient −1/m as shown in Figure 1.16. The
gradient of the line PQ is OP/QO = m. The gradient of the line PR is −OP/OR. By sim-
ilar triangles POQ, POR we have OP/OR = OQ/OP = 1/m.
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Figure 1.15 
Straight line

Figure 1.16
Perpendicular lines
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Equations of the form

y = mx + c

represent straight lines on the plane and, consequently, are called linear equations.

Example 1.33 Find the equation of the straight line that passes through the points (1, 2) and (3, 3).

Solution Taking (x0, y0) = (1, 2) and (x1, y1) = (3, 3)

slope of line =

so from formula (1.14) the equation of the straight line is

y = (x − 1) + 2

which simplifies to

y =

Example 1.34 Find the equation of the straight line passing through the point (3, 2) and parallel to the
line 2y = 3x + 4. Determine its x and y intercepts.

Solution Writing 2y = 3x + 4 as

y =

we have from (1.15) that the slope of this line is . Since the required line is parallel to
this line, it will also have a slope of . (The slope of the line perpendicular to it is − .)
Thus from (1.15) it has equation

y =

To determine the constant c, we use the fact that the line passes through the point (3, 2),
so that

2 = giving c =

Thus the equation of the required line is

y = or 2y = 3x − 5

The y intercept is c = .
To obtain the x intercept we substitute y = 0, giving , so that the x intercept 

is .
The graph of the line is shown in Figure 1.17.
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Figure 1.17
The straight line 
2y = 3x − 5.
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Figure 1.18
(a) A circle of centre
origin, radius r. (b) A
circle of centre (a, b),
radius r.

Thus the general equation

x2 + y2 + 2fx + 2gy + c = 0 (1.16b)

represents a circle having centre (−f, −g) and radius ÷( f 2 + g2 − c). Notice that the
general circle has three constants f, g and c in its equation. This implies that we need
three points to specify a circle completely.

Example 1.35 Find the equation of the circle with centre (1, 2) and radius 3.

Solution Using Pythagoras’ theorem, if the point P(x, y) lies on the circle then from (1.16a)

(x − 1)2 + (y − 2)2 = 32

Thus

x2 − 2x + 1 + y2 − 4y + 4 = 9

38 NUMBER,  ALGEBRA AND GEOMETRY
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1.4.3 Circles

A circle is the planar curve whose points are all equidistant from a fixed point 
called the centre of the circle. The simplest case is a circle centred at the origin with
radius r, as shown in Figure 1.18(a). Applying Pythagoras’ theorem to triangle OPQ 
we obtain

x2 + y2 = r2

(Note that r is a constant.) When the centre of the circle is at the point (a, b), rather than
the origin, the equation is

(x − a)2 + (y − b)2 = r2 (1.16a)

obtained by applying Pythagoras’ theorem in triangle O′PN of Figure 1.18(b). This
expands to

x2 + y2 − 2ax − 2by + (a2 + b2 − r2) = 0
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giving the equation as

x2 + y2 − 2x − 4y − 4 = 0

Example 1.36 Find the radius and the coordinates of the centre of the circle whose equation is

2x2 + 2y2 − 3x + 5y + 2 = 0

Solution Dividing through by the coefficient of x2 we obtain

x2 + y2 − + 1 = 0

Now completing the square on the x terms and the y terms separately gives

Hence, from (1.16a), the circle has radius (3÷2)/4 and centre (3/4, −5/4).

Example 1.37 Find the equation of the circle which passes through the points (0, 0), (0, 2), (4, 0).

Solution Method (a): From (1.16b) the general equation of a circle is

x2 + y2 + 2fx + 2gy + c = 0

Substituting the three points into this equation gives three equations for the unknowns
f, g and c.

Thus substituting (0, 0) gives c = 0, substituting (0, 2) gives 4 + 4g + c = 0 and 
substituting (4, 0) gives 16 + 8f + c = 0. Solving these equations gives g = −1, f = −2
and c = 0, so the required equation is

x2 + y2 − 4x − 2y = 0

Method (b): From Figure 1.19 using the geometrical properties of the circle, we see that
its centre lies at (2, 1) and since it passes through the origin its radius is ÷5. Hence, from
(1.16a), its equation is

(x − 2)2 + (y − 1)2 = (÷5)2

(   )   (   )         x y− + + = + − =3
4

2 5
4

2 9
16

25
16

18
161

3
2

5
2x y  +

Figure 1.19
The circle of 
Example 1.37.
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which simplifies to

x2 + y2 − 4x − 2y = 0

as before.

Example 1.38 Find the point of intersection of the line y = x − 1 with the circle x2 + y2 − 4y − 1 = 0.

Solution Substituting y = x − 1 into the formula for the circle gives

x2 + (x − 1)2 − 4(x − 1) − 1 = 0

which simplifies to

x2 − 3x + 2 = 0

This equation may be factored to give

(x − 2)(x − 1) = 0

so that x = 1 and x = 2 are the roots. Thus the points of intersection are (1, 0) and (2, 1).

Example 1.39 Find the equation of the tangent at the point (2, 1) of the circle x2 + y2 − 4y − 1 = 0.

Solution A tangent is a line, which is the critical case between a line intersecting the circle in 
two distinct points and it not intersecting at all. We can describe this as the case when
the line cuts the circle in two coincident points. Thus the line, which passes through 
(2, 1) with slope m

y = m(x − 2) + 1

is a tangent to the circle when the equation

x2 + [m(x − 2) + 1]2 − 4[m(x − 2) + 1] − 1 = 0

has two equal roots. Multiplying these terms out we obtain the equation

(m2 + 1)x2 − 2m(2m + 1)x + 4(m2 + m − 1) = 0

The condition for this equation to have equal roots is (using comment (a) of Example
1.23)

4m2(2m + 1)2 = 4[4(m2 + m − 1)(m2 + 1)]

This simplifies to

m2 − 4m + 4 = 0 or (m − 2)2 = 0

giving the result m = 2 and the equation of the tangent y = 2x − 3.

40 NUMBER,  ALGEBRA AND GEOMETRY
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1.4.4 Exercises

36 Find the equation of the straight line

(a) with gradient passing through the point 
(2, 1);

(b) with gradient −2 passing through the point 
(−2, 3);

(c) passing through the points (1, 2) 
and (3, 7);

(d) passing through the points (5, 0) 
and (0, 3);

(e) parallel to the line 3y − x = 5, passing through
(1, 1);

(f ) perpendicular to the line 3y − x = 5, passing
through (1, 1).

37 Write down the equation of the circle with centre
(1, 2) and radius 5.

3
2

38 Find the radius and the coordinates of the centre of
the circle with equation

x2 + y2 + 4x − 6y = 3

39 Find the equation of the circle with centre (−2, 3)
that passes through (1, −1).

40 Find the equation of the circle that passes through
the points (1, 0), (3, 4) and (5, 0).

41 Find the equation of the tangent to the circle

x2 + y2 − 4x − 1 = 0

at the point (1, 2).

42 A rod, 50 cm long, moves in a plane with its ends on
two perpendicular wires. Find the equation of the
curve followed by its midpoint.

1.4.5 Conics

The circle is one of the conic sections (Figure 1.20) introduced around 200 bc by
Apollonius, who published an extensive study of their properties in a textbook that 
he called Conics. He used this title because he visualized them as cuts made by a ‘flat’
or plane surface when it intersects the surface of a cone in different directions, as illus-
trated in Figures 1.21(a–d). Note that the conic sections degenerate into a point and
straight lines at the extremities, as illustrated in Figures 1.21(e–g). Although at the time
of Apollonius his work on conics appeared to be of little value in terms of applications,
it has since turned out to have considerable importance. This is primarily due to the fact
that the conic sections are the paths followed by projectiles, artificial satellites, moons
and the Earth under the influence of gravity around planets or stars. The early Greek
astronomers thought that the planets moved in circular orbits, and it was not until 1609
that the German astronomer Johannes Kepler described their paths correctly as being
elliptic, with the Sun at one focus. It is quite possible for an orbit to be a curve other
than an ellipse. Imagine a meteor or comet approaching the Sun from some distant
region in space. The path that the body will follow depends very much on the speed 
at which it is moving. If the body is small compared to the Sun, say of planetary 
dimensions, and its speed relative to the Sun is not very high, it will never escape and
will describe an elliptic path about it. An example is the comet observed by Edmond
Halley in 1682 and now known as Halley’s comet. He computed its elliptic orbit, 
found that it was the same comet that had been seen in 1066, 1456, 1531 and 1607, and
correctly forecast its reappearance in 1758. It was most recently seen in 1986. If the
speed of the body is very high, its path will be deviated by the Sun but it will not orbit
forever around the Sun. Rather, it will bend around the Sun in a path in the form of a
hyperbola and continue on its journey back to outer space. Somewhere between these
two extremes there is a certain critical speed that is just too great to allow the body to
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Figure 1.20
Standard equations 
of the four conics.

Figure 1.21
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Figure 1.25 Regions of equal area.
Figure 1.24 Reflection of a ray by an
elliptic mirror.
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Figure 1.22 
Orbital path.

Figure 1.23
(a) Car headlamp. 
(b) Radio telescope.

orbit the Sun, but not great enough for the path to be a hyperbola. In this case the path
is a parabola, and once again the body will bend around the Sun and continue on its
journey into outer space. These possibilities are illustrated in Figure 1.22.

Examples of where conic sections appear in engineering practice include the following.
(a) A parabolic surface, obtained by rotating a parabola about its axis of symmetry,

has the important property that an energy source placed at the focus will cause rays to
be reflected at the surface such that after reflection they will be parallel. Reversing the
process, a beam parallel to the axis impinging on the surface will be reflected onto 
the focus (Example 8.6). This property is involved in many engineering design pro-
jects: for example the design of a car headlamp or a radio telescope, as illustrated in
Figures 1.23(a) and (b) respectively. Other examples involving a parabola are the path
of a projectile (Example 2.39) and the shape of the cable on certain types of suspension
bridge (Example 8.60).

(b) A ray of light emitted from one focus of an elliptic mirror and reflected by the
mirror will pass through the other focus, as illustrated in Figure 1.24. This property is
sometimes used in designing mirror combinations for a reflecting telescope. Ellipses
have been used in other engineering designs, such as aircraft wings and stereo styli.
Elliptical pipes are used for foul and surface water drainage because the elliptical
profile is hydraulically efficient. As described earlier, every planet orbits around the
Sun in an elliptic path with the Sun at one of its foci. The planet’s speed depends on its
distance from the Sun; it speeds up as it nears the Sun and slows down as it moves fur-
ther away. The reason for this is that for an ellipse the line drawn from the focus S (Sun)
to a point P (planet) on the ellipse sweeps out areas at a constant rate as P moves around
the ellipse. Thus in Figure 1.25 the planet will take the same time to travel the two dif-
ferent distances shown, assuming that the two shaded regions are of equal area.

(c) Consider a supersonic aircraft flying over land. As it breaks the sound barrier 
(that is, it travels faster than the speed of sound, which is about 750 mph (331.4 m s−1)),
it will create a shock wave, which we hear on the ground as a sonic boom – this being
one of the major disadvantages of supersonic aircraft. This shock wave will trail behind

M01_JAME0734_05_SE_C01.qxd  11/03/2015  09:38  Page 43



44 NUMBER,  ALGEBRA AND GEOMETRY

.. ..

Figure 1.26
Sonic boom.

the aircraft in the form of a cone with the aircraft as vertex. This cone will intersect the
ground in a hyperbolic curve, as illustrated in Figure 1.26. The sonic boom will hit
every point on this curve at the same instant of time, so that people living on the curve
will hear it simultaneously. No boom will be heard by people living outside this curve,
but eventually it will be heard at every point inside it.

Figure 1.20 illustrates the conics in their standard positions, and the corresponding
equations may be interpreted as the standard equations for the four curves. More gener-
ally the conic sections may be represented by the general second-order equation

ax2 + by2 + 2fx + 2gy + 2hxy + c = 0 (1.17)

Provided its graph does not degenerate into a point or straight lines, (1.17) is represen-
tative of

l a circle if a = b ≠ 0 and h = 0
l a parabola if h2 = ab
l an ellipse if h2 � ab
l a hyperbola if h2 � ab

The conics can be defined mathematically in a number of (equivalent) ways, as we
will illustrate in the next examples.

Example 1.40 A point P moves in such a way that its total distance from two fixed points A and B is
constant. Show that it describes an ellipse.

Solution The definition of the curve implies that AP + BP = constant with the origin O being the
midpoint of AB. From symmetry considerations we choose x and y axes as shown in
Figure 1.27. Suppose the curve crosses the x axis at P0, then

AP0 + BP0 = AB + 2AP0 = 2OP0

so the constant in the definition is 2OP0 and for any point P on the curve

AP + BP = 2OP0

Let P = (x, y), P0 = (a, 0), P1 = (−a, 0), A = (c, 0) and B = (−c, 0). Then using Pythagoras’
theorem we have

AP = ÷[(x − c)2 + y2]

BP = ÷[(x + c)2 + y2]

so that the defining equation of the curve becomes

÷[(x − c)2 + y2] + ÷[(x + c)2 + y2] = 2a

Figure 1.27
Path of Example 1.40.
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To obtain the required equation we need to ‘remove’ the square root terms. This can
only be done by squaring both sides of the equation. First we rewrite the equation as

÷[(x − c)2 + y2] = 2a − ÷[(x + c)2 + y2]

and then square to give

(x − c)2 + y2 = 4a2 − 4a÷[(x + c)2 + y2] + (x + c)2 + y2

Expanding the squared terms we have

x2 − 2cx + c2 + y2 = 4a2 − 4a÷[(x + c)2 + y2] + x2 + 2cx + c2 + y2

Collecting together terms, we obtain

a÷[(x + c)2 + y2] = a2 + cx

Squaring both sides again gives

a2[x2 + 2cx + c2 + y2] = a4 + 2a2cx + c2x2

which simplifies to

(a2 − c2)x2 + a2y2 = a2(a2 − c2)

Noting that a � c we write a2 − c2 = b2, to obtain

b2x2 + a2y2 = a2b2

which yields the standard equation of the ellipse

The points A and B are the foci of the ellipse, and the property that the sum of the focal
distances is a constant is known as the string property of the ellipse since it enables us
to draw an ellipse using a piece of string.

For a hyperbola, the difference of the focal distances is constant.

Example 1.41 A point moves in such a way that its distance from a fixed point F is equal to its 
perpendicular distance from a fixed line. Show that it describes a parabola.

Solution Suppose the fixed line is LL′ shown in Figure 1.28, choosing the co-ordinate axes shown.
Since PF = PN for points on the curve we deduce that the curve bisects FM, so that 
if F is (a, 0), then M is (−a, 0). Let the general point P on the curve have coordinates
(x, y). Then by Pythagoras’ theorem

PF = ÷[(x − a)2 + y2]

Also PN = x + a, so that PN = PF implies that

x + a = ÷[(x − a)2 + y2]

Squaring both sides gives

(x + a)2 = (x − a)2 + y2

x

a

y

b

2

2

2

2
1    + =

Figure 1.28
Path of point in
Example 1.41.
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which simplifies to

y2 = 4ax

the standard equation of a parabola. The line LL′ is called the directrix of the parabola.

Example 1.42 (a) Find the equation of the tangent at the point (1, 1) to the parabola y = x2. Show that
it is parallel to the line through the points ( , ), ( , ), which also lie on the parabola.

(b) Find the equation of the tangent at the point (a, a2) to the parabola y = x2. Show that
it is parallel to the line through the points (a − h, (a − h)2), (a + h, (a + h)2).

Solution (a) Consider the general line through (1, 1). It has equation y = m(x − 1) + 1. This cuts
the parabola when

m(x − 1) + 1 = x2

that is, when

x2 − mx + m − 1 = 0

Factorizing this quadratic, we have

(x − 1)(x − m + 1) = 0

giving the roots x = 1 and x = m − 1
These two roots are equal when m − 1 = 1, that is, when m = 2. Hence the equation

of the tangent is y = 2x − 1. 
The line through the points ( , ), ( , ) has gradient

so that it is parallel to the tangent at (1, 1).

(b) Consider the general line through (a, a2). It has equation y = m(x − a) + a2. This
cuts the parabola y = x2 when

m(x − a) + a2 = x2

that is, where

x2 − mx + ma − a2 = 0

This factorizes into

(x − a)(x − m + a) = 0

giving the roots x = a and x = m − a. These two roots are equal when a = m − a, that is,
when m = 2a. Thus the equation of the tangent at (a, a2) is y = 2ax − a2.

The line through the points (a − h, (a − h)2), (a + h, (a + h)2) has gradient

= =   
4

2
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So the symmetrically disposed chord through (a − h, (a − h)2), (a + h, (a + h)2) is paral-
lel to the tangent at x = a. This result is true for all parabolas.

1.4.6 Exercises

43 Find the coordinates of the focus and the 
equation of the directrix of the parabola whose
equation is

3y2 = 8x

The chord which passes through the focus parallel 
to the directrix is called the latus rectum of the
parabola. Show that the latus rectum of the above
parabola has length 8/3.

1.5 Number and accuracy

Arithmetic that only involves integers can be performed to obtain an exact answer 
(that is, one without rounding errors). In general, this is not possible with real numbers,
and when solving practical problems such numbers are rounded to an appropriate 
number of digits. In this section we shall review the methods of recording numbers,
obtain estimates for the effect of rounding errors in elementary calculations and discuss
the implementation of arithmetic on computers.

1.5.1 Rounding, decimal places and significant figures

The Fundamental Laws of Arithmetic are, of course, independent of the choice of 
representation of the numbers. Similarly, the representation of irrational numbers will
always be incomplete. Because of these numbers and because some rational numbers have
recurring representations (whether the representation of a particular rational number is
recurring or not will of course depend on the number base used – see Example 1.2d),
any arithmetical calculation will contain errors caused by truncation. In practical problems
it is usually known how many figures are meaningful, and the numbers are ‘rounded’
accordingly. In the decimal representation, for example, the numbers are approximated
by the closest decimal number with some prescribed number of figures after the decimal
point. Thus, to two decimal places (dp),

π = 3.14 and = 0.42

and to five decimal places

π = 3.141 59 and = 0.416 67

Normally this is abbreviated to

π = 3.141 59 (5dp) and = 0.416 67 (5dp)5
12

5
12

5
12

44 For the ellipse 25x2 + 16y2 = 400 find the
coordinates of the foci, the eccentricity, 
the equations of the directrices and the 
lengths of the semi-major and semi-minor 
axes.

45 For the hyperbola 9x2 − 16y2 = 144 find the
coordinates of the foci and the vertices and 
the equations of its asymptotes.
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Similarly

÷2 = 1.4142 (4dp) and = 0.667 (3dp)

In hand computation, by convention, when shortening a number ending with a five we
‘round to the even’. For example,

1.2345 and 1.2335

are both represented by 1.234 to three decimal places. In contrast, most calculators and
computers would ‘round up’ in the ambiguous case, giving 1.2345 and 1.2335 as 1.235
and 1.234 respectively.

Any number occurring in practical computation will either be given an error bound
or be correct to within half a unit in the least significant figure (sf). For example

π = 3.14 ± 0.005 or π = 3.14

Any number given in scientific or mathematical tables observes this convention. Thus

g0 = 9.806 65

implies

g0 = 9.806 65 ± 0.000 005

that is,

9.806 645 � g0 � 9.806 655

as illustrated in Figure 1.29.

Sometimes the decimal notation may create a false impression of accuracy. When
we write that the distance of the Earth from the Sun is ninety-three million miles, we
mean that the distance is nearer to 93 000 000 than to 94 000 000 or to 92 000 000, not
that it is nearer to 93 000 000 than to 93 000 001 or to 92 999 999. This possible mis-
interpretation of numerical data is avoided by either stating the number of significant
figures, giving an error estimate or using scientific notation. In this example the dis-
tance d miles is given in the forms

d = 93 000 000 (2sf)

or

d = 93 000 000 ± 500 000

or

d = 9.3 × 107

Notice how information about accuracy is discarded by the rounding-off process. The value
ninety-three million miles is actually correct to within fifty thousand miles, while the
convention about rounded numbers would imply an error bound of five hundred thousand.

The number of significant figures tells us about the relative accuracy of a number
when it is related to a measurement. Thus a number given to 3sf is relatively ten times
more accurate than one given to 2sf. The number of decimal places, dp, merely tells us
the number of digits including leading zeros after the decimal point. Thus

2
3

Figure 1.29
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2.321 and 0.000 059 71

both have 4sf, while the former has 3dp and the latter 8dp.
It is not clear how many significant figures a number like 3200 has. It might be 2, 3

or 4. To avoid this ambiguity it must be written in the form 3.2 × 103 (when it is correct
to 2sf) or 3.20 × 103 (3sf) or 3.200 × 103 (4sf). This is usually called scientific notation.
It is widely used to represent numbers that are very large or very small. Essentially, a
number x is written in the form

x = a × 10n

where 1 � | a | � 10 and n is an integer. Thus the mass of an electron at rest is 9.11 ×
10−28 g, while the velocity of light in a vacuum is 2.9978 × 1010 cm s−1.

Example 1.43 Express the number 150.4152

(a) correct to 1, 2 and 3 dp; (b) correct to 1, 2 and 3 sf.

Solution (a) 150.4152 = 150.4 (1dp)

= 150.42 (2dp)

= 150.415 (3dp)

(b) 150.4152 = 1.504 152 × 102

= 2 × 102 (1sf)

= 1.5 × 102 (2sf)

= 1.50 × 103 (3sf)

1.5.2 Estimating the effect of rounding errors

Numerical data obtained experimentally will often contain rounding errors due to 
the limited accuracy of measuring instruments. Also, because irrational numbers and 
some rational numbers do not have a terminating decimal representation, arithmetical
operations inevitably contain errors arising from rounding off. The effect of such errors
can accumulate in an arithmetical procedure and good engineering computations will
include an estimate for it. This process has become more important with the widespread
use of computers. When users are isolated from the computational chore, they often 
fail to develop a sense of the limits of accuracy of an answer. In this section we shall
develop the basic ideas for such sensitivity in analyses of calculations.

Example 1.44 Compute

(a) 3.142 + 4.126 (b) 5.164 − 2.341 (c) 235.12 × 0.531

Calculate estimates for the effects of rounding errors in each answer and give the
answer as a correctly rounded number.
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Solution (a) 3.142 + 4.126 = 7.268

Because of the convention about rounded numbers, 3.142 represents all the numbers a
between 3.1415 and 3.1425, and 4.126 represents all the numbers b between 4.1255 and
4.1265. Thus if a and b are correctly rounded numbers, their sum a + b lies between 
c1 = 7.2670 and c2 = 7.2690. Rounding c1 and c2 to 3dp gives c1 = 7.267 and c2 = 7.269.
Since these disagree, we cannot give an answer to 3dp. Rounding c1 and c2 to 2dp 
gives c1 = 7.27 and c2 = 7.27. Since these agree, we can give the answer to 2dp; thus 
a + b = 7.27, as shown in Figure 1.30.

(b) 5.164 − 2.341 = 2.823

Applying the same ‘worst case’ analysis to this implies that the difference lies between
5.1635 − 2.3415 and 5.1645 − 2.3405, that is, between 2.8220 and 2.8240. Thus the
answer should be written 2.823 ± 0.001 or, as a correctly rounded number, 2.82.

(c) 235.12 × 0.531 = 124.848 72

Clearly, writing an answer with so many decimal places is unjustified if we are using
rounded numbers, but how many decimal places are sensible? Using the ‘worst case’
analysis again, we deduce that the product lies between 235.115 × 0.5305 and 235.125
× 0.5315, that is, between c1 = 124.728 507 5 and c2 = 124.968 937 5. Thus the answer
should be written 124.85 ± 0.13. In this example, because of the place where the number
occurs on the number line, c1 and c2 only agree when we round them to 3sf (0dp). Thus
the product as a correctly rounded number is 125.

A competent computation will contain within it estimates of the effect of rounding
errors. Analysing the effect of such errors for complicated expressions has to be
approached systematically.

Definitions

(a) The error in a value is defined by

error = approximate value − true value

This is sometimes termed the dead error. Notice that the true value equals the approxi-
mate value minus the error.

(b) Similarly the correction is defined by

true value = approximate value + correction

so that

correction = −error

Figure 1.30
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(c) The error modulus is the size of the error, | error |, and the error bound (or 
absolute error bound) is the maximum possible error modulus.

(d) The relative error is the ratio of the size of the error to the size of the true value:

relative error =

The relative error bound is the maximum possible relative error.

(e) The per cent error (or percentage error) is 100 × relative error and the per cent
error bound is the maximum possible per cent error.

In some contexts we think of the true value as an approximation and a remainder. 
In such cases the remainder is given by

remainder = −error 

= correction

Example 1.45 Give the absolute and relative error bounds of the following correctly rounded numbers

(a) 29.92 (b) −0.015 23 (c) 3.9 × 1010

Solution (a) The number 29.92 is given to 2dp, which implies that it represents a number within
the domain 29.92 ± 0.005. Thus its absolute error bound is 0.005, half a unit of the least
significant figure, and its relative error bound is 0.005/29.92 or 0.000 17.

(b) The absolute error bound of −0.015 23 is half a unit of the least significant figure,
that is, 0.000 005. Notice that it is a positive quantity. Its relative error bound is
0.000 005/0.015 23 or 0.000 33.

(c) The absolute error bound of 3.9 × 1010 is 0.05 × 1010 = 5 × 108 and its relative error
bound is 0.05/3.9 or 0.013.

Usually, because we do not know the true values, we estimate the effects of error in 
a calculation in terms of the error bounds, the ‘worst case’ analysis illustrated in
Example 1.44. The error bound of a value v is denoted by εv.

Consider, first, the sum c = a + b. When we add together the two rounded numbers
a and b their sum will inherit a rounding error from both a and b. The true value of a
lies between a − εa and a + εa and the true value of b lies between b − εb and b + εb.
Thus the smallest value that the true value of c can have is a − εa + b − εb, and its largest
possible value is a + εa + b + εb. (Remember that εa and εb are positive.) Thus c = a + b
has an error bound

εc = εa + εb

as illustrated in Figure 1.31. A similar ‘worst case’ analysis shows that the difference 
d = a − b has an error bound that is the sum of the error bounds of a and b:

d = a − b, εd = εa + εb

error

value
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Thus for both addition and subtraction the error bound of the result is the sum of the
individual error bounds.

Next consider the product p = a × b, where a and b are positive numbers. The smallest
possible value of p will be equal to the product of the least possible values of a and b;
that is,

p � (a − εa) × (b − εb)

Similarly

p � (a + εa) × (b + εb)

Thus, on multiplying out the brackets, we obtain

ab − aεb − bεa + εaεb � p � ab + aεb + bεa + εaεb

Ignoring the very small term εaεb, we obtain an estimate for the error bound of the product:

εp = aεb + bεa, p = a × b

Dividing both sides of the equation by p, we obtain

Now the relative error of a is defined as the ratio of the error in a to the size of a. 
The above equation connects the relative error bounds for a, b and p:

rp = ra + rb

Here ra = εa / | a | allowing for a to be negative, and so on.
A similar worst case analysis for the quotient q = a/b leads to the estimate

rq = ra + rb

Thus for both multiplication and division, the relative error bound of the result is the
sum of the individual relative error bounds.

These elementary rules for estimating error bounds can be combined to obtain more
general results. For example, consider z = x2; then rz = 2rx. In general, if z = xy, where
x is a rounded number and y is exact, then

rz = yrx

ε ε εp a b

p a b
    = +

Figure 1.31
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Example 1.46 Evaluate 13.92 × 5.31 and 13.92 ÷ 5.31.

Assuming that these values are correctly rounded numbers, calculate error bounds 
for each answer and write them as correctly rounded numbers which have the greatest 
possible number of significant digits.

Solution 13.92 × 5.31 = 73.9152; 13.92 ÷ 5.31 = 2.621 468 927

Let a = 13.92 and b = 5.31, then ra = 0.000 36 and rb = 0.000 94, so that a × b and 
a ÷ b have relative error bounds 0.000 36 + 0.000 94 = 0.0013. We obtain the absolute
error bound of a × b by multiplying the relative error bound by a × b. Thus the 
absolute error bound of a × b is 0.0013 × 73.9152 = 0.0961. Similarly, the absolute error
bound of a ÷ b is 0.0013 × 2.6215 = 0.0034. Hence the values of a × b and a ÷ b lie in
the error intervals

73.9152 − 0.0961 � a × b � 73.9152 + 0.0961

and

2.6215 − 0.0034 � a ÷ b � 2.6215 + 0.0034

Thus 73.8191 � a × b � 74.0113 and 2.6181 � a ÷ b � 2.6249.
From these inequalities we can deduce the correctly rounded values of a × b and 

a ÷ b:

a × b = 74 and a ÷ b = 2.62

and we see how the rounding convention discards information. In a practical context, it
would probably be more helpful to write:

73.81 � a × b � 74.02

and

2.618 � a ÷ b � 2.625

Example 1.47 Evaluate

Assuming that all the values given are correctly rounded numbers, calculate an error
bound for your answer and write it as a correctly rounded number.

Solution Using a calculator, the answer obtained is

To estimate the effect of the rounding error of the data, we first draw up a tree diagram
representing the order in which the calculation is performed. Remember that +, −, ×

6 721
4 931 71 28

89 45
2 791 635 216.   

.   .

.
  .−

×
=

6 721
4 931 71 28

89 45
.   

.   .

.
−

×
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and ÷ are binary operations, so only one operation can be performed at each step. 
Here we are evaluating

We calculate this as b × c = p, then p ÷ d = q and then a − q = e, as shown in Figure
1.32(a). We set this calculation out in a table as shown in Figure 1.32(b), where the
arrows show the flow of the error analysis calculation. Thus the value of e lies between
2.790 235 … and 2.793 035 … , and the answer may be written as 2.7916 ± 0.0015 or
as the correctly rounded number 2.79.

The calculations shown in Figure 1.32 indicate the way in which errors may accumu-
late in simple arithmetical calculations. The error bounds given are rarely extreme and
their behaviour is ‘random’. This is discussed later in Example 13.31 in the work on
Statistics.

1.5.3 Exercises

a
b c

d
e  

  
  −

×
=
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Figure 1.32

46 State the numbers of decimal places and significant
figures of the following correctly rounded numbers:

(a) 980.665 (b) 9.11 × 10−28

(c) 2.9978 × 1010 (d) 2.00 × 1033

(e) 1.759 × 107 (f) 6.67 × 10−8

47 In a right-angled triangle the height is measured 
as 1 m and the base as 2 m, both measurements
being accurate to the nearest centimetre. Using
Pythagoras’ theorem, the hypotenuse is calculated 
as 2.236 07 m. Is this a sensible deduction? What
other source of error will occur?
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48 Determine the error bound and relative error
bound for x, where

(a) x = 35 min ± 5 s

(b) x = 35 min ± 4%

(c) x = 0.58 and x is correctly rounded to 2dp.

49 A value is calculated to be 12.9576, with a relative
error bound of 0.0003. Calculate its absolute error
bound and give the value as a correctly rounded
number with as many significant digits as possible.

50 Using exact arithmetic, compute the values of 
the expressions below. Assuming that all the
numbers given are correctly rounded, find absolute
and relative error bounds for each term in the
expressions and for your answers. Give the 
answers as correctly rounded numbers.

(a) 1.316 − 5.713 + 8.010

(b) 2.51 × 1.01

(c) 19.61 + 21.53 − 18.67

51 Evaluate 12.42 × 5.675/15.63, giving your answer 
as a correctly rounded number with the greatest
number of significant figures.

52 Evaluate

a + b, a − b, a × b, a/b

for a = 4.99 and b = 5.01. Give absolute and
relative error bounds for each answer.

53 Complete the table below for the computation

9.21 + (3.251 − 3.115)/0.112

and give the result as the correctly rounded answer
with the greatest number of significant figures.

Absolute RelatiVe 
Label Value error bound error bound

a 3.251
b 3.115
a − b
c 0.112
(a − b)/c
d 9.21
d + (a − b)/c

54 Evaluate uv/(u + v) for u = 1.135 and v = 2.332,
expressing your answer as a correctly rounded
number.

55 Working to 4dp, evaluate

E = 1 − 1.65 +

(a) by evaluating each term and then summing,

(b) by ‘nested multiplication’

E = 1 + 1.65(−1 +

Assuming that the number 1.65 is correctly rounded
and that all other numbers are exact, obtain error
bounds for both answers.

1 65 1 65 1 651
2

1
6

1
24. ( . ( ( . ))))+ − +

1
2

2 1
6

3 1
24

41 65 1 65 1 65( . )  ( . )  ( . )− +

1.5.4 Computer arithmetic

The error estimate outlined in Example 1.44 is a ‘worst case’ analysis. The actual error
will usually be considerably less than the error bound. For example, the maximum error
in the sum of 100 numbers, each rounded to three decimal places, is 0.05. This would
only occur in the unlikely event that each value has the greatest possible rounding error.
In contrast, the chance of the error being as large as one-tenth of this is only about 1 
in 20.

When calculations are performed on a computer the situation is modified a little by
the limited space available for number storage. Arithmetic is usually performed using
floating-point notation. Each number x is stored in the normal form

x = (sign)bn(a)

where b is the number base, usually 2 or 16, n is an integer, and the mantissa a is a
proper fraction with a fixed number of digits such that 1/b � a � 1. As there are a lim-
ited number of digits available to represent the mantissa, calculations will involve inter-
mediate rounding. As a consequence, the order in which a calculation is performed may
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affect the outcome – in other words the Fundamental Laws of Arithmetic may no longer
hold! We shall illustrate this by means of an exaggerated example for a small com-
puter using a decimal representation whose capacity for recording numbers is limited
to four figures only. In large-scale calculations in engineering such considerations are
sometimes important.

Consider a computer with storage capacity for real numbers limited to four figures;
each number is recorded in the form (±)10 n(a) where the exponent n is an integer, 
0.1 � a � 1 and a has four digits. For example,

π = +101(0.3142)

= −100(0.3333)

5764 = +104(0.5764)

−0.000 971 3 = −10−3(0.9713)

5 764 213 = +107(0.5764)

Addition is performed by first adjusting the exponent of the smaller number to that of
the larger, then adding the numbers, which now have the same multiplying power of 10,
and lastly truncating the number to four digits. Thus 7.182 + 0.053 81 becomes

+101(0.7182) + 10−1(0.5381) = 101(0.7182) + 101(0.005 381)

= 101(0.723 581)

= 101(0.7236)

With a = 31.68, b = −31.54 and c = 83.21, the two calculations (a + b) + c and (a + c) + b
yield different results on this computer:

(a + b) + c = 83.35, (a + c) + b = 83.34

Notice how the symbol ‘=’ is being used in the examples above. Sometimes it means
‘equals to 4sf’. This computerized arithmetic is usually called floating-point arithmetic,
and the number of digits used is normally specified.

1.5.5 Exercises

− 1
3

56 Two possible methods of adding five numbers are

(((a + b) + c) + d) + e

and

(((e + d) + c) + b) + a

Using 4dp floating-point arithmetic, evaluate the
sum

101(0.1000) + 101(0.1000) − 100(0.5000)

+ 100(0.1667) + 10−1(0.4167)

by both methods. Explain any discrepancy in the
results.

57 Find (10−2(0.3251) × 10−5(0.2011)) and 
(10−1(0.2168) ÷ 102(0.3211)) using 4-digit 
floating-point arithmetic.

58 Find the relative error resulting when 4-digit
floating-point arithmetic is used to evaluate

104(0.1000) + 102(0.1234) − 104(0.1013)
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1.6 Engineering applications
In this section we illustrate through two examples how some of the results developed
in this chapter may be used in an engineering application.

Example 1.48 A continuous belt of length L m passes over two wheels of radii r and R m with their
centres a distance l m apart, as illustrated in Figure 1.33. The belt is sufficiently tight for
any sag to be negligible. Show that L is given approximately by

L ≈ 2[l 2 − (R − r)2]1/2 + π(R + r)

Find the error inherent in this approximation and obtain error bounds for L given the
rounded data R = 1.5, r = 0.5 and l = 3.5.

Figure 1.33
Continuous belt of
Example 1.48.

Solution The length of the belt consists of the straight sections AB and CD and the wraps round
the wheels n and o. From Figure 1.33 it is clear that BT = OP = l and ∠OAB is 
a right-angle. Also, AT = AO − OT and OT = PB so that AT = R − r. Applying
Pythagoras’ theorem to the triangle TAB gives

AB2 = l 2 − (R − r)2

Since the length of an arc of a circle is the product of its radius and the angle (measured
in radians) subtended at the centre (see 2.17), the length of wrap o is given by

(2π − 2θ)R

where the angle is measured in radians. By geometry, , so that

o = πR + 2Rα

Similarly, the arc n = πr − 2rα. Thus the total length of the belt is

L = 2[l 2 − (R − r)2]1/2 + π(R + r) + 2(R − r)α

Taking the length to be given approximately by

L ≈ 2[l 2 − (R − r)2]1/2 + π(R + r)

the error of the approximation is given by −2(R − r)α, where the angle α is expressed
in radians (remember that error = approximation − true value). The angle α is found 
by elementary trigonometry, since sin α = (R − r)/l. (Trigonometric functions will be
reviewed in Section 2.6.)

θ π α    = −
2
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For the (rounded) data given, we deduce, following the procedures of Section 1.5.2,
that for R = 1.5, r = 0.5 and l = 3.5 we have an error interval for α of

Thus α = 0.29 ± 0.035, and similarly 2(R − r)α = 0.572 ± 0.111.
Evaluating the approximation for L gives

2[l 2 − (R − r)2]1/2 + π(R + r) = 12.991 ± 0.478

and the corresponding value for L is

L = 13.563 ± 0.589

Thus, allowing for both the truncation error of the approximation and for the rounding
errors in the data, the value 12.991 given by the approximation has an error interval
[12.974, 14.152]. Its error bound is the larger of | 12.991 − 14.152 | and | 12.991 − 12.974 |,
that is, 1.16. Its relative error is 0.089 and its per cent error is 8.9%, where the termino-
logy follows the definitions given in Section 1.5.2.

Example 1.49 A cable company is to run an optical cable from a relay station, A, on the shore to an
installation, B, on an island, as shown in Figure 1.34. The island is 6 km from the shore
at its nearest point, P, and A is 9 km from P measured along the shore. It is proposed to
run the cable from A along the shoreline and then underwater to the island. It costs 25%
more to run the cable underwater than along the shoreline. At what point should the
cable leave the shore in order to minimize the total cost?

sin
.   .

.
, sin

.   .

.
  [ . , . ]− −−⎛

⎝
⎞
⎠

−⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

=1 11 45 0 55

3 55

1 55 0 45

3 45
0 256 0 325
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Figure 1.34 Optical
cable of Example 1.49.

Solution Optimization problems frequently occur in engineering and technology and often their
solution is found algebraically.

If the cable leaves the shore at D, a distance x km from P, then the underwater 
distance is ÷(x2 + 36) km and the overland distance is (9 − x) km, assuming 0 � x � 9. If
the overland cost of laying the cable is £c per kilometre, then the total cost £C is given by

C(x) = [(9 − x) + 1.25÷(x2 + 36)]c
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We wish to find the value of x, 0 � x � 9, which minimizes C. To do this we first
change the variable x by substituting

such that x2 + 36 becomes a perfect square:

x2 + 36 = 36 + 9(t2 − 2 + 1/t2)

= 9(t + 1/t)2

Hence C(x) becomes

C(t) = [9 − 3(t − 1/t) + 3.75(t + 1/t)]c

= [9 + 0.75(t + 9/t)]c

Using the arithmetic–geometric inequality x + y � 2÷(xy), see (1.4d), we know that

and that the equality occurs where t = 9/t, that is where t = 3.
Thus the minimum cost is achieved where t = 3 and x = 3(3 − 1/3) = 8. Hence the

cable should leave the shore after laying the cable 1 km from its starting point at A.

 
t

t
    +

9
6�

x t
t

    = −⎛
⎝

⎞
⎠3

1

....

1.7 Review exercises (1–25)

1 (a) A formula in the theory of ventilation is

Express A in terms of the other symbols.

(b) Solve the equation

2 Factorize the following:

(a) ax − 2x − a + 2 (b) a2 − b2 + 2bc − c2

(c) 4k2 + 4kl + l2 − 9m2 (d) p2 − 3pq + 2q2

(e) l2 + lm + ln + mn

3 (a) Two small pegs are 8 cm apart on the same
horizontal line. An inextensible string of length 
16 cm has equal masses fastened at either end and
is placed symmetrically over the pegs. The middle

1

2

2 3

1x x x  
    

  +
− =

−

Q
H

K

A D

A D
  

  
=

+

2 2

2 2

point of the string is pulled down vertically until 
it is in line with the masses. How far does each
mass rise?

(b) Find an ‘acceptable’ value of x to three
decimal places if the shaded area in Figure 1.35 
is 10 square units.

Figure 1.35 Shaded area of Question 3(b).
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4 The impedance Z ohms of a circuit containing a
resistance R ohms, inductance L henries and
capacity C farads, when the frequency of the
oscillation is n per second, is given by

(a) Make L the subject of this formula.

(b) If n = 50, R = 15 and C = 10−4 show that there
are two values of L which make Z = 20 but only 
one value of L which will make Z = 100. Find the
values of Z in each case to two decimal places.

5 Expand out (a) and (b) and rationalize (c) to (e).

(a) (3÷2 − 2÷3)2

(b) (÷5 + 7÷3)(2÷5 − 3÷3)

(c)

(d)

(e)

6 Find integers m and n such that

÷(11 + 2÷30) = ÷m + ÷n

7 Show that

and deduce that

for any integer n � 1. Deduce that the sum

lies between 198 and 200.

8 Express each of the following subsets of � in 
terms of intervals:

(a) {x:4x2 − 3 � 4x, x in �}

(b) {x:1/(x + 2) � 2/(x − 1), x in �}

1

1

1

2

1

3

1 1
+ + + + +. . .

( (9999) 10 000)

(   )        (   )n n
n

n n+ − − −1
1

2
1� �

(   )    
 )  

n n
n n

+ − =
+ +

1
1

1(  

1

1 2 3    + −

3 2

2 3

  

  

+
−

4 3 2

5 2

  

  

+
+

Z R nL
nC

      = + −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟2

2

2
1

2
π

π

(c) {x:| x + 1 | � 2, x in �}

(d) {x:| x + 1 | � 1 + x, x in �}

9 It is known that of all plane curves that enclose a
given area, the circle has the least perimeter. Show
that if a plane curve of perimeter L encloses an area
A then 4πA � L2. Verify this inequality for a square
and a semicircle.

10 The arithmetic–geometric inequality

implies

Use the substitution x = (a + b), y = (c + d ),
where a, b, c and d � 0, to show that

and hence that

By applying the arithmetic–geometric inequality
to the first two terms of this inequality, deduce
that

and hence

11 Show that if a � b, b � 0 and c � 0 then

Obtain a similar inequality for the case a � b.

12 (a) If n = n1 + n2 + n3 show that

(This represents the number of ways in which 
n objects may be divided into three groups
containing respectively n1, n2 and n3 objects.)
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(b) Expand the following expressions

(i) (ii) (3 − 2x)6

13 (a) Evaluate 

(b) A square grid of dots may be divided up 
into a set of L-shaped groups as illustrated in
Figure 1.36.

[   ( ) ]nn

n

n+

= −
∑ + −1

2

3

3 1

1
2

5

  −⎛
⎝⎜

⎞
⎠⎟

x

17 For each of the two parabolas

(i) y2 = 8x + 4y − 12, and

(ii) x2 + 12y + 4x = 8

determine

(a) the coordinates of the vertex,

(b) the coordinates of the focus,

(c) the equation of the directrix,

(d) the equation of the axis of symmetry.

Sketch each parabola.

18 Find the coordinates of the centre and foci of the
ellipse with equation

25x2 + 16y2 − 100x − 256y + 724 = 0

What are the coordinates of its vertices and the
equations of its directrices? Sketch the ellipse.

19 Find the duodecimal equivalent of the decimal
number 10.386 23.

20 Show that if y = x1/2 then the relative error bound 
of y is one-half that of x. Hence complete the table
in Figure 1.37.

How many dots are inside the third L shape?
How many extra dots are needed to extend the 
3 by 3 square to one of side 4 by 4? How many
dots are needed to extend an (r − 1) by (r − 1)
square to one of size r by r? Denoting this
number by Pr, use a geometric argument to
obtain an expression for and verify your
conclusion by direct calculation in the case n = 10.

14 Find the equations of the straight line

(a) which passes through the points (−6, −11)
and (2, 5);

(b) which passes through the point (4, −1) and
has gradient ;

(c) which has the same intercept on the y axis as 
the line in (b) and is parallel to the line in (a).

15 Find the equation of the circle which touches 
the y axis at the point (0, 3) and passes through 
the point (1, 0).

16 Find the centres and radii of the following circles:

(a) x2 + y2 + 2x − 4y + 1 = 0

(b) 4x2 − 4x + 4y2 + 12y + 9 = 0

(c) 9x2 + 6x + 9y2 − 6y = 25

1
3

∑ =r
n

rP1

Figure 1.36

Absolute Relative 
Value error bound error bound

a 7.01 0.005 ⎯→ 0.0007
÷a 2.6476 0.0009 ←⎯ 0.000 35

b 52.13
÷b

c 0.010 11
÷c

d 5.631 × 1011

÷d

Correctly ÷a ÷b ÷c ÷d
rounded
values 2.65

Figure 1.37
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21 Assuming that all the numbers given are correctly
rounded, calculate the positive root together with 
its error bound of the quadratic equation

1.4x2 + 5.7x − 2.3 = 0

Give your answer also as a correctly rounded
number.

22 The quantities f, u and v are connected by

Find f when u = 3.00 and v = 4.00 are correctly
rounded numbers. Compare the error bounds
obtained for f when

(a) it is evaluated by taking the reciprocal of the
sum of the reciprocals of u and v,

(b) it is evaluated using the formula

23 If the number whose decimal representation is 
14 732 has the representation 152 112b to base b,
what is b?

24 A milk carton has capacity 2 pints (1136 ml). 
It is made from a rectangular waxed card using 
the net shown in Figure 1.38. Show that the total
area A (mm2) of card used is given by

A(h, w) = (2w + 145)(h + 80)

f
u

u
  

  
=

+
v

v

1 1 1

f u
    = +

v

Figure 1.39

with hw = 113 600/7. Show that

A(h, w) = C(h, w) +

where C(h, w) = 145h + 160w.
Use the arithmetic–geometric inequality to 

show that

C(h, w) � 2÷(160w × 145h)

with equality when 160w = 145h. Hence show 
that the minimum values of C(h, w) and A(h, w) 
are achieved when h = 133.8 and w = 121.3. 
Give these answers to more sensible accuracy.

25 A family of straight lines in the (x, y)-plane is 
such that each line joins the point (−p, p) on the 
line y = −x to the point (10 − p, 10 − p) on the line
y = x, as shown in Figure 1.39, for different values
of p. On a piece of graph paper, draw the lines
corresponding to p = 1, 2, 3, … , 9. The resulting
family is seen to envelop a curve. Show that the 
line which joins (−p, p) to (10 − p, 10 − p) has
equation

5y = 5x − px + 10p − p2

Show that two lines of the family pass through the
point (x0, y0) if x

2
0 � 20(y0 − 5), but no lines pass

through (x0, y0) if x
2
0 � 20(y0 − 5). Deduce that the

enveloping curve of the family of straight lines is

y = x 2 + 51
20

308 400

7
 

Figure 1.38 Milk carton of Question 24.
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2.1 Introduction
As we have remarked in the introductory section of  Chapter 1, mathematics provides
a means of solving the practical problems that occur in engineering. To do this, it uses
concepts and techniques that operate on and within the concepts. In this chapter we
shall describe the concept of a function – a concept that is both fundamental to math-
ematics and is also intuitive. We shall make the intuitive idea mathematically precise 
by formal definitions and is also describe why such formalism is needed for practical
problem-solving.

The function concept has taken many centuries to evolve. The intuitive basis for 
the concept is found in the analysis of cause and effect, which underpins develop-
ments in science, technology and commerce. As with many mathematical ideas, many
people use the concept in their everyday activities without being aware that they are
using mathematics, and many would be surprised if they were told that they were. 
The abstract manner in which the developed form of the concept is expressed by 
mathematicians often intimidates learners but the essential idea is very simple. A 
consequence of the long period of development is that the way in which the concept 
is described often makes an idiomatic use of words. Ordinary words which in common
parlance have many different shades of meaning are used in mathematics with very
specific meanings.

The key idea is that of the values of two variable quantities being related. For 
example, the amount of tax paid depends on the selling price of an item; the deflection
of a beam depends on the applied load; the cost of an article varies with the number 
produced, and so on. Historically, this idea has been expressed in a number of ways.
The oldest gave a verbal recipe for calculating the required value. Thus, in the early
Middle Ages, a very elaborate verbal recipe was given for calculating the monthly
interest payments on a loan which would now be expressed very compactly by a single
formula. John Napier, when he developed the logarithm function at the beginning of 
the seventeenth century, expressed the functional relationship in terms of two particles
moving along a straight line. One particle moved with constant velocity and the other
with a velocity that depended on its distance from a fixed point on the line. The relation-
ship between the distances travelled by the particles was used to define the logarithms
of numbers. This would now be described by the solution of a differential equation. The
introduction of algebraic notation led to the representation of functions by algebraic
rather than verbal formulae. That produced many theoretical problems. For example, a
considerable controversy was caused by Fourier when he used functions that did not
have the same algebraic formula for all values of the independent variable. Similarly,
the existence of functions that do not have a simple algebraic representation caused
considerable difficulties for mathematicians in the early nineteenth century.

2.2 Basic definitions

2.2.1 Concept of a function
The essential idea that flows through all of the developments is that of two quantities
whose values are related. One of these variables, the independent or free variable,

64 FUNCTIONS

.. ..
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2.2 BASIC DEFINITIONS 65

may take any value in a set of values. The value it actually takes fixes uniquely the
value of the second quantity, the dependent or slave variable. Thus for each value of
the independent variable there is one and only one value of the dependent variable. 
The way in which that value is calculated will vary between functions. Sometimes it
will be by means of a formula, sometimes by means of a graph and sometimes by means
of a table of values. Here the words ‘value’ and ‘quantity’ cover many very different
contexts, but in each case what we have is two sets of values X and Y and a rule that
assigns to each value x in the set X precisely one value y from the set Y. The elements
of X and Y need not be numbers, but the essential idea is that to every x in the set X
there corresponds exactly one y in the set Y. Whenever this situation arises we say that 
there is a function f that maps the set X to the set Y. Such a function may be illustrated
schematically as in Figure 2.1.

We represent a functional relationship symbolically in two ways: either

f:x → y (x in X )

or

y = f (x) (x in X )

The first emphasizes the fact that a function f associates each element (value) x of X
with exactly one element (value) y of Y: it ‘maps x to y’. The second method of nota-
tion emphasizes the dependence of the elements of Y on the elements of X under the
function f. In this case the value or variable appearing within the brackets is known 
as the argument of the function; we might say ‘the argument x of a function f(x)’. In
engineering it is more common to use the second notation y = f (x) and to refer to this
as the function f (x), while modern mathematics textbooks prefer the mapping notation,
on the grounds that it is less ambiguous. The set X is called the domain of the function
and the set Y is called its codomain. Knowing the domain and codomain is important
in computing. We need to know the type of variables, whether they are integers or reals,
and their size. When y = f (x), y is said to be the image of x under f. The set of all images
y = f (x), x in X, is called the image set or range of f. It is not necessary for all elements
y of the codomain set Y to be images under f. In the terminology of Chapter 6 the range
is a subset of the codomain. We may regard x as being a variable that can be replaced
by any element of the set X. The rule giving f is then completely determined if we know
f (x), and consequently in engineering it is common to refer to the function as being f (x)
rather than f. Likewise we can regard y = f (x) as being a variable. However, while x
can freely take any value from the set X, the variable y = f (x) depends on the particular
element chosen for x. We therefore refer to x as the free or independent variable and
to y as the slave or dependent variable. The function f (x) is therefore specified com-
pletely by the set of ordered pairs (x, y) for all x in X. For real variables a graphical 
representation of the function may then be obtained by plotting a graph determined 
by this set of ordered pairs (x, y), with the independent variable x measured along the
horizontal axis and the dependent variable y measured along the vertical axis. Obtaining
a good graph by hand is not always easy but there are now available excellent graphics
facilities on computers and calculators which assist in the task. Even so, some practice
is required to ensure that a good choice of ‘drawing window’ is selected to obtain a
meaningful graph.

.. ..

Figure 2.1
Schematic
representation 
of a function.
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Example 2.1 For the functions with formulae below, identify their domains, codomains and ranges
and calculate values of f (2), f (−3) and f(−x).

(a) f (x) = 3x2 + 1 (b) f:x → ÷[(x + 4)(3 − x)]

Solution (a) The formula for f (x) can be evaluated for all real values of x and so we can take a
domain which includes all the real numbers, RR. The values obtained are also real num-
bers, so we may take RR as the codomain. The range of f (x) is actually less than RR in this
example because the minimum value of y = 3x2 + 1 occurs at y = 1 where x = 0. Thus
the range of f is the set

{x:1 � x, x in RR} = [1, ∞)

Notice the convention here that the set is specified using the dummy variable x. 
We could also write {y:1 � y, y in RR}, any letter could be used but conventionally x
is used. Using the formula we find that f (2) = 13, f (−3) = 28 and f (−x) = 3(−x)2 + 1 =
3x2 + 1.

(b) The formula f:x → ÷[(x + 4)(3 − x)] only gives real values for −4 � x � 3, since we
cannot take square roots of negative numbers. Thus the domain of f is [−4,3]. Within 
its domain the function has real values so that its codomain is RR but its range is less 
than RR. The least value of f occurs at x = −4 and x = 3 when f (−4) = f (3) = 0. The
largest value of f occurs at x = when f ( ) = ÷(35)/2.

So the range of f in this example is [0, ÷(35)/2]. Using the formula we have f (2) = ÷6,
f (−3) = ÷6, f (−x) = ÷[(4 − x)(x + 3)].

Example 2.2 The function y = f (x) is given by the minimum diameter y of a circular pipe that can
contain x circular pipes of unit diameter, where x = 1, 2, 3, 4, 5, 6, 7. Find the domain,
codomain and range of f (x).

Solution This function is illustrated in Figure 2.2.

− 1
2  − 1

2  

Figure 2.2
Enclosing x circular
pipes in a circular
pipe.
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Here the domain is the set {1, 2, 3, 4, 5, 6, 7} and the codomain is RR. Calculating the 
range is more difficult as there is not a simple algebraic formula relating x and y. From
geometry we have

f (1) = 1, f (2) = 2, f (3) = 1 + 2/÷3, f (4) = 1 + ÷2, f (5) = ÷[2(5 − ÷5)], 
f (6) = 3, f (7) = 3

The range of f (x) is the set of these values.

Example 2.3 The relationship between the temperature T1 measured in degrees Celsius (°C) and the
corresponding temperature T2 measured in degrees Fahrenheit (°F) is

T2 = T1 + 32

Interpreting this as a function with T1 as the independent variable and T2 as the 
dependent variable:

(a) What are the domain and codomain of the function?

(b) What is the function rule?

(c) Plot a graph of the function.

(d) What is the image set or range of the function?

(e) Use the function to convert the following into °F:

(i) 60°C, (ii) 0°C, (iii) −50°C

Solution (a) Since temperature can vary continuously, the domain is the set T1 � T0 = −273.16
(absolute zero). The codomain can be chosen as the set of real numbers �.

(b) The function rule in words is

multiply by and then add 32

or algebraically

f (T1) = T1 + 32

(c) Since the domain is the set T1 � T0, there must be an image for every value of T1

on the horizontal axis which is greater than −273.16. The graph of the function is that
part of the line T2 = T1 + 32 for which T1 � −273.16, as illustrated in Figure 2.3.

(d) Since each value of T2 is an image of some value T1 in its domain, it follows that
the range of f (T1) is the set of real numbers greater than −459.69.

(e) The conversion may be done graphically by reading values of the graph, as illustrated
by the broken lines in Figure 2.3, or algebraically using the rule

T2 = T1 + 32

giving the values

(i) 140°F, (ii) 32°F, (iii) −58°F
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A value of the independent variable for which the value of a function is zero, is called
a zero of that function. Thus the function f (x) = (x − 1)(x + 2) has two zeros, x = 1 and
x = −2. These correspond to where the graph of the function crosses the x axis, as shown
in Figure 2.4. We can see from the diagram that, for this function, its values decrease as
the values of x increase from (say) −5 up to , and then its values increase with x. We can
demonstrate this algebraically by rearranging the formula for f (x):

f (x) = (x − 1)(x + 2)

= x2 + x − 2

= (x + )2 − ,

From this we can see that f(x) achieves its smallest value (− ) where x = and that the
value of the function is greater than − both sides of x = because (x + )2 � 0. The
function is said to be a decreasing function for x � and an increasing function for
x � . More formally, a function is said to be increasing on an interval (a, b) 
if f (x2) � f (x1) when x2 � x1 for all x1 and x2 lying in (a, b). Similarly for decreasing
functions, we have f (x2) � f (x1) when x2 � x1. 

The value of a function at the point where its behaviour changes from decreasing to
increasing is a minimum (plural minima) of the function. Often this is denoted by an
asterisk superscript f * and the corresponding value of the independent variable by x*
so that f(x*) = f *. Similarly a maximum (plural maxima) occurs when a function
changes from being increasing to being decreasing. In many cases the terms maximum
and minimum refer to the local values of the function, as illustrated in Example 2.4(a).
Sometimes, in practical problems, it is necessary to distinguish between the largest
value the function achieves on its domain and the local maxima it achieves elsewhere.
Similarly for local minima. Maxima and minima are jointly referred to as optimal 
values and as extremal values of the function. 

The point (x*, f *) of the graph of f (x) is often called a turning point of the graph,
whether it is a maximum or a minimum. These properties will be discussed in more
detail in Sections 8.2.7 and 8.5. For smooth functions as in Figure 2.5, the tangent to
the graph of the function is horizontal at a turning point. This property can be used to
locate maxima and minima.
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Figure 2.3
Graph of 
T2 = f (T1) = T1 + 32.9

5

Figure 2.4
Graph of 
y = (x − 1)(x + 2).
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Example 2.4 Draw graphs of the functions below, locating their zeros, intervals in which they are
increasing, intervals in which they are decreasing and their optimal values.

(a) y = 2x3 + 3x2 − 12x + 32 (b) y = (x − 1)2/3 − 1

Solution (a) The graph of the function is shown in Figure 2.5. From the graph we can see 
that the function has one zero at x = −4. It is an increasing function on the intervals 
−∞ � x � −2 and 1 � x � ∞ and a decreasing function on the interval −2 � x � 1. 
It achieves a maximum value of 52 at x = −2 and a minimum value of 25 at x = 1. 
In this example the extremal values at x = −2 and x = 1 are local maximum and local
minimum values. The function is defined on the set of real numbers RR. Thus it does not
have finite upper and lower values. If the domain were restricted to [−4, 4], say, then 
the global minimum would be f(−4) = 0 and the global maximum would be f (4) = 160.

..

Figure 2.5
Graph of y = 2x3 + 3x2

− 12x + 32.

Figure 2.6
Graph of 
y = (x − 1)2 /3 − 1.

(b) The graph of the function is shown in Figure 2.6. (Note that to evaluate (x − 1)2/3

on some calculators/computer packages it has to be expressed as ((x − 1)2)1/3 for x � 1.)
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From the graph, we see that the function has two zeros, one at x = 0 and the other
at x = 2. It is a decreasing function for x � 1 and an increasing function for x � 1. 
This is obvious algebraically since (x − 1)2/3 is greater than or equal to zero. This
example also provides an illustration of the behaviour of some algebraic functions at 
a maximum or minimum value. In contrast to (a) where the function changes from
decreasing to increasing at x = 1 quite smoothly, in this case the function changes 
from decreasing to increasing abruptly at x = 1. Such a minimum value is called a 
cusp. In this example, the value at x = 1 is both a local minimum and a global 
minimum.

It is important to appreciate the difference between a function and a formula. A 
function is a mapping that associates one and only one member of the codomain with
every member of its domain. It may be possible to express this association, as in
Example 2.3, by a formula. Some functions may be represented by different formulae
on different parts of their domain.

Example 2.5 A gas company charges its industrial users according to their gas usage. Their tariff is
as follows:

Quarterly usage/103 units Standing charge/£ Charge per 103 units/£

0–19.999 200 60
20–49.999 400 50
50–99.999 600 46

�100 800 44

What is the quarterly charge paid by a user?

Solution The charge £c paid by a user for a quarter’s gas is a function, since for any number 
of units used there is a unique charge. The charging tariff is expressed in terms of the
number u of thousands of units of gas consumed. In this situation the independent 
variable is the gas consumption u since that determines the charge £c which accrues to
the customer. The function f : usage → cost must, however, be expressed in the form 
c = f (u), where

Functions that are represented by different formulae on different parts of their domains
arise frequently in engineering and management applications.
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The basic MATLAB package is primarily a number crunching package. It does 
not perform symbolic manipulations and cannot undertake algebra containing
unknowns. However, such work can be undertaken by the Symbolic Math Toolbox,
which incorporates many MAPLE commands to implement the algebraic work.
Consequently, most of the commands in Symbolic Math Toolbox are identical to 
the MAPLE commands. In order to use any symbolic variables, such as x and y, 
in MATLAB these must be declared by entering a command, such as syms x y;.
MAPLE does not need to construct symbols since these are assumed in the 
package. Another important difference is that in MAPLE assignment is performed
by := rather than = and each statement must end with a semicolon ‘;’. In MATLAB
inserting a semicolon at the end of a statement suppresses display on screen of the
output to the command. In MAPLE output to the screen is suppressed using ‘:’. 
In this chapter, only MATLAB versions of any process are given since a MAPLE
user can easily adapt the codes. If there are significant syntax differences these 
will be noted.

The MATLAB operators for the basic arithmetic operations are + for addition, 
- for subtraction, * for multiplication, / for division and ^ for power. The colon
command x = a:dx:b generates an array of numbers which are the values of x
between a and b in steps of dx. For example, the command

x = 0:0.1:1

generates the array

x = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

When using the operations of multiplication, division and power on such arrays *, /
and ^ are replaced respectively by .*, ./ and .^ in which the ‘dot’ implies element
by element operations. For example, if x = [1 2 3] and y = [4 −3 5] are two arrays
then x.*y denotes the array [4 −6 15] and x.^2 denotes the array [1 4 9]. Note that
to enter an array it must be enclosed within square brackets [ ].

To plot the graph of y = f (x), a � x � b, an array of x values is first produced and
then a corresponding array of y values is produced. Then the command plot(x,y)
plots a graph of y against x. Check that the sequence of commands

x = -5:0.1:3;

y = 2*x.^3 + 3*x.^2 – 12*x + 32;

plot(x,y)

plots the graph of Figure 2.5. Entering a further command

grid

draws gridlines on the existing plot. The following commands may be used for
labelling the graph:

title(‘text’) prints ‘text’ at the top of the plot
xlabel(‘text’) labels the x-axis with ‘text’
ylabel(‘text’) labels the y-axis with ‘text’

.. ..

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 71



Plotting the graphs of y1 = f (x) and y2 = g(x), a � x � b, can be achieved using the
commands

x = [a:dx:b]’; y1 = f(x); y2 = g(x);

plot(x,y1, ‘-’,x,y2, ‘- -’)

with ‘-’ and ‘- -’ indicating that the graph of y1 = f (x) will appear as a ‘solid line’
and that of y2 = g(x) as a ‘dashed line’. These commands can be extended to include
more than two graphs as well as colour. To find out more, use the help facility in
MATLAB.

Using the Symbolic Math Toolbox the sym command enables us to construct
symbolic variables and expressions. For example

x = sym(‘x’)

creates the variable x, that prints as x; whilst the command

f = sym(‘2*x + 3’)

assigns the symbolic expression 2x + 3 to the variable f. If f includes parameters then
these must be declared as symbolic terms at the outset. For example, the sequence
of commands

syms x a b

f = sym(‘a*x + b’)

prints

f = ax + b

(Note the use of spacing when specifying variables under syms.)
The command ezplot(y) produces the plot of y = f (x), making a reasonable

choice for the range of the x axis and resulting scale of the y axis, the default domain
of the x axis being −2π � x � 2π. The domain can be changed to a � x � b using
the command ezplot(y,[a,b]). Check that the commands

syms x

y = sym(2*x^3 + 3*x^2 - 12*x + 32);

ezplot(y,[-5,3])

reproduce the graph of Figure 2.5 and that the commands

syms x

y = sym(((x - 1)^2)^(1/3) – 1)

ezplot(y,[-5,3])

reproduce the graph of Figure 2.6. (Note that in the second case the function is
expressed in the form indicated in the solution to Example 2.4(b).)

The corresponding commands in MAPLE are

y: = f(x);

plot(y,x = a..b);

72 FUNCTIONS
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1 Determine the largest valid domains for the
functions whose formulae are given below.
Identify the corresponding codomains and 
ranges and evaluate f (5), f (−4), f (−x).

(a) f (x) = ÷(25 − x2) (b) f:x → 3÷(x + 3)

2 A straight horizontal road is to be constructed
through rough terrain. The width of the road is 
to be 10 m, with the sides of the embankment
sloping at 1 (vertical) in 2 (horizontal), as shown
in Figure 2.7. Obtain a formula for the cross-
sectional area of the road and its embankment,
taken at right-angles to the road, where the rough
ground lies at a depth x below the level of the
proposed road. Use your formula to complete the
table below, and draw a graph to represent this
function.

x/m 0 1 2 3 4 5
Area/m2 0 28 100

.. ..

r/m 0.10 0.15 0.20 0.25 0.30 0.35 0.40
A/m2 3.05 1.71 1.50

The cost of the tank is proportional to the amount of
metal used in its manufacture. Estimate the value of
r that will minimize that cost, carefully listing the
assumptions you make in your analysis.
[Recall: the volume of a sphere of radius a is 4πa3/3
and its surface area is 4πa2]

4 An oil storage tank has the form of a circular
cylinder with its axis horizontal, as shown in 
Figure 2.9. The volume of oil in the tank when 
the depth is h is given in the table below.

hm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
V/1000l 7.3 19.7 34.4 50.3 66.1 80.9 93.9 100.5

2.2.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

Figure 2.7

What is the value given by the formula when 
x = −2, and what is the meaning of that value?

3 A hot-water tank has the form of a circular
cylinder of internal radius r, topped by a
hemisphere as shown in Figure 2.8. Show 
that the internal surface area A is given by

A = 2πrh + 3πr 2

and the volume V enclosed is

V = πr2h + πr 3

Find the formula relating the value of A to the
value of r for tanks with capacity 0.15 m3.
Complete the table below for A in terms of r
and draw a graph to represent the function.

2
3

Figure 2.8

Figure 2.9
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Draw a careful graph of V against h, and use it to
design the graduation marks on a dipstick to be
used to assess the volume of oil in the tank.

5 The initial cost of buying a car is £6000. Over the
years, its value depreciates and its running costs
increase, as shown in the table below.

t 1 2 3 4 5 6
Value after

t years 4090 2880 2030 1430 1010 710
Running cost

in year t 600 900 1200 1500 1800 2100

Draw up a table showing (a) the cumulative running
cost after t years, (b) the total cost (that is, running
cost plus depreciation) after t years and (c) the
average cost per year over t years. Estimate the
optimal time to replace the car.

6 Plot graphs of the functions below, locating their
zeros, intervals in which they are increasing,
intervals in which they are decreasing and their
optimal values.

(a) y = x(x − 2) (b) y = 2x3 − 3x2 − 12x + 20

(c) y = x2(x2 − 2) (d) y = 1/[x(x − 2)] 

2.2.3 Inverse functions

In some situations we may need to use the functional dependence in the reverse sense.
For example we may wish to use the function

T2 = f (T1) = + 32 (2.1)

of Example 2.3, relating T2 in °F to the corresponding T1 in °C to convert degrees
Fahrenheit to degrees Celsius. In this simple case we can rearrange the relationship
(2.1) algebraically

T1 = (T2 − 32)

giving us the function

T1 = g(T2) = (T2 − 32) (2.2)

having T2 as the independent variable and T1 as the dependent variable. We may then
use this to convert degrees Fahrenheit into degrees Celsius.

Looking more closely at the two functions f (T1) and g(T2) associated with (2.1) and
(2.2), we have the function rule for f (T1) as

multiply by and then add 32

If we reverse the process, we have the rule

take away 32 and then multiply by

which is precisely the function rule for g(T2). Thus the function T1 = g(T2) reverses 
the operations carried out by the function T2 = f (T1), and for this reason is called the
inverse function of T2 = f (T1).

In general, the inverse function of a function f is a function that reverses the 
operations carried out by f. It is denoted by f −1. Writing y = f (x), the function f may 
be represented by the block diagram of Figure 2.10(a), which indicates that the 
function operates on the input variable x to produce the output variable y = f (x). The
inverse function f −1 will reverse the process, and will take the value of y back to 
the original corresponding values of x. It can be represented by the block diagram of
Figure 2.10(b).
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Figure 2.10
Block diagram of 
(a) function and 
(b) inverse function.
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We therefore have

x = f −1(y), where y = f (x) (2.3)

that is, the independent variable x for f acts as the dependent variable for f −1, and 
correspondingly the dependent variable y for f becomes the independent variable for 
f −1. At the same time the range of f becomes the domain of f −1 and the domain of f
becomes the range of f −1.

Since it is usual to denote the independent variable of a function by x and the 
dependent variable by y, we interchange the variables x and y in (2.3) and define 
the inverse function by

if y = f −1(x) then x = f ( y) (2.4)

Again in engineering it is common to denote an inverse function by f −1(x) rather than
f −1. Writing x as the independent variable for both f (x) and f −1(x) sometimes leads to
confusion, so you need to be quite clear as to what is meant by an inverse function. 
It is also important not to confuse f −1(x) with [ f (x)]−1, which means 1/f (x).

Finding an explicit formula for f −1(x) is often impossible and its values are calcu-
lated by special numerical methods. Sometimes it is possible to find the formula for 
f −1(x) by algebraic methods. We illustrate the technique in the next two examples.

Example 2.6 Obtain the inverse function of the real function y = f (x) = (4x − 3).

Solution Here the formula for the inverse function can be found algebraically. First rearranging

y = f (x) = (4x − 3)

to express x in terms of y gives

x = f −1( y) = (5y + 3)

Interchanging the variables x and y then gives

y = f −1(x) = (5x + 3)

as the inverse function of

y = f (x) = (4x − 3)

As a check, we have

f (2) = (4 × 2 − 3) = 1

while

f −1(1) = (5 × 1 + 3) = 21
4
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Example 2.7 Obtain the inverse function of x ≠ −1.

Solution We rearrange to obtain x in terms of y. (Notice that y is not defined where

x = −1.) Thus

y(x + 1) = x + 2 so that x (y − 1) = 2 − y

giving y ≠ 1 (Notice that x is not defined where y = 1. Putting y = 1 into 

the formula for y results in the equation x + 1 = x + 2 which is not possible.)

Thus x ≠ 1

If we are given the graph of y = f (x) and wish to obtain the graph of the inverse func-
tion y = f −1(x) then what we really need to do is interchange the roles of x and y. Thus
we need to manipulate the graph of y = f (x) so that the x and y axes are interchanged.
This can be achieved by taking the mirror image in the line y = x and relabelling the
axes as illustrated in Figures 2.11(a) and (b). It is important to recognize that the graphs of
y = f(x) and y = f −1(x) are symmetrical about the line y = x, since this property is frequently
used in mathematical arguments. Notice that the x and y axes have the same scale.
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Figure 2.11
The graph of 
y = f −1(x).

Example 2.8 Obtain the graph of f −1(x) when (a) f(x) = x + 32, (b) x ≠ −1, (c) f(x) = x2.

Solution (a) This is the formula for converting the temperature measured in °C to the temper-
ature in °F and its graph is shown by the blue line in Figure 2.12(a). Reflecting the
graph in the line y = x yields the graph of the inverse function y = g(x) = (x − 32) as
illustrated by the black line in Figure 2.12(a).
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Figure 2.12 (a) Graph of f (x) = x + 32 and its inverse g(x), (b) Graph of f(x) = and its inverse g(x).
x

x

  

  

+
+

2

1
9
5

Figure 2.13
Graphs of f (x) = x2

and its inverse.

(b) The graph of , x ≠ −1 is shown in blue in Figure 2.12(b). The 

graph of its inverse function , x ≠ 1 can be seen as the mirror image 

illustrated in black in Figure 2.12(b).

(c) The graph of y = x2 is shown in Figure 2.13(a). Its mirror image in the line y = x
gives the graph of Figure 2.13(b). We note that this graph is not representative of a
function according to our definition, since for all values of x � 0 there are two images
– one positive and one negative – as indicated by the broken line. This follows because
y = x2 corresponds to x = +÷y or x = −÷y. In order to avoid this ambiguity, we define
the inverse function of f (x) = x2 to be f −1(x) = +÷x, which corresponds to the upper half
of the graph as illustrated in Figure 2.13(c). ÷x therefore denotes a positive number 
(cf. calculators), so the range of ÷x is x � 0. Thus the inverse function of y = f (x) = x2

(x � 0) is y = f −1(x) = ÷x. Note that the domain of f (x) had to be restricted to x � 0 
in order that an inverse could be defined. In modern usage, the symbol ÷x denotes a 
positive number.
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We see from Example 2.8(c) that there is no immediate inverse function correspond-
ing to f (x) = x2. This arises because for the function f (x) = x2 there is a codomain 
element that is the image of two domain elements x1 and −x1, as indicated by the 
broken arrowed lines in Figure 2.13(a). That is, f (x1) = f (−x1) = y1. If a function y = f (x)
is to have an immediate inverse f −1(x), without any imposed conditions, then every
element of its range must occur precisely once as an image under f (x). Such a function
is known as one-to-one (1:1) function.

2.2.4 Composite functions

In many practical problems the mathematical model will involve several different 
functions. For example, the kinetic energy T of a moving particle is a function of its
velocity v, so that

T = f (v)

Also, the velocity v itself is a function of time t, so that

v = g(t)

Clearly, by eliminating v, it is possible to express the kinetic energy as a function of
time according to

T = f (g(t))

A function of the form y = f (g(x)) is called a function of a function or a composite
of the functions f (x) and g(x). In modern mathematical texts it is common to denote 
the composite function by f ° g so that

y = f ° g(x) = f (g(x)) (2.5)

We can represent the composite function (2.5) schematically by the block diagram of
Figure 2.14, where u = g(x) is called the intermediate variable.

It is important to recognize that the composition of functions is not in general 
commutative. That is, for two general functions f (x) and g(x)

f (g(x)) ≠ g( f (x))

Algebraically, given two functions y = f (x) and y = g(x), the composite function 
y = f (g(x)) may be obtained by replacing x in the expression for f(x) by g(x). Likewise,
the composite function y = g( f (x)) may be obtained by replacing x in the expression 
for g(x) by f(x).

78 FUNCTIONS
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Figure 2.14
The composite
function f (g(x)).
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Example 2.9 If y = f (x) = x2 + 2x and y = g(x) = x − 1, obtain the composite functions f (g(x)) and
g( f (x)).

Solution To obtain f (g(x)), replace x in the expression for f (x) by g(x), giving

y = f (g(x)) = (g(x))2 + 2(g(x))

But g(x) = x − 1, so that

y = f (g(x)) = (x − 1)2 + 2(x − 1)

= x2 − 2x + 1 + 2x − 2

That is,

f (g(x)) = x2 − 1

Similarly,

y = g( f (x)) = ( f (x)) − 1

= (x2 + 2x) − 1

That is,

g( f (x)) = x2 + 2x − 1

Note that this example confirms the result that in general f (g(x)) ≠ g( f (x)).

Given a function y = f (x), two composite functions that occur frequently in engineering
are

y = f (x + k) and y = f (x − k)

where k is a positive constant. As illustrated in Figures 2.15(b) and (c), the graphs of
these two composite functions are readily obtained given the graph of y = f (x) as in
Figure 2.15(a). The graph of y = f (x − k) is obtained by displacing the graph of y = f (x)
by k units to the right, while the graph of y = f (x + k) is obtained by displacing the graph
of y = f (x) by k units to the left.

Viewing complicated functions as composites of simpler functions often enables us
to ‘get to the heart’ of a practical problem, and to obtain and understand the solution.
For example, recognizing that y = x2 + 2x − 3 is the composite function y = (x + 1)2 − 4,
tells us that the function is essentially the squaring function. Its graph is a parabola 
with minimum point at x = −1, y = −4 (rather than at x = 0, y = 0). A similar process of

.. ..

Figure 2.15
Graphs of f (x), 
f (x − k) and f(x + k),
with k � 0.
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reducing a complicated problem to a simpler one occurred in the solution of the prac-
tical problem discussed in Example 1.49 on p. 58.

Example 2.10 An open conical container is made from a sector of a circle of radius 10 cm as illustrated
in Figure 2.16, with sectional angle θ (radians). The capacity C cm3 of the cone depends
on θ. Find the algebraic formula for C in terms of θ and the simplest associated func-
tion that could be studied if we wish to maximize C with respect to θ.

Solution Let the cone have base radius r cm and height h cm. Then its capacity is given by 
C = with r and h dependent upon the sectorial angle θ (since the perimeter of 
the sector has to equal the circumference of the base of the cone). Thus, by Pythagoras’
theorem,

10θ = 2πr and h2 = 102 − r2

so that

0 � θ � 2π

Maximizing C(θ) with respect to θ is essentially the same problem as maximizing

D(x) = x(1 − x)1/2, 0 � x � 1

(where x = (θ/2π)2).
Maximizing D(x) with respect to x is essentially the same problem as maximizing

E(x) = x2(1 − x), 0 � x � 1

which is considerably easier than the original problem.
Plotting the graph of E(x) suggests that it has a minimum at x = where its value is .

We can prove that this is true by showing that the horizontal line y = is a tangent to
the graph at x = ; that is, the line cuts the graph at two coincident points at x = .2

3
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Figure 2.16
Conical container 
of Example 2.10.
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Setting x 2(1 − x) = gives 27x 3 − 27x 2 + 4 = 0 which factorizes into

(3x − 2)2(3x + 1) = 0

Thus the equation has a double root at x = and a single root at x = − . Thus E(x) has 

a maximum at x = and the corresponding optimal value of θ is 2π÷( ). (In Section 8.5
(see also Question 5 in Review Exercises 8.13) we shall consider theoretical methods
of confirming such results.)

When we compose a function with its inverse function, we usually obtain the identity
function y = x. Thus from Example 2.6, we have

f (x) = (4x − 3) and f −1(x) = (5x + 3)

and

f ( f −1(x)) = {4[ (5x + 3)] − 3} = x

and

f −1( f (x)) = {5[ (4x − 3)] + 3} = x

We need to take care with the exceptional cases that occur, like the square root function,
where the inverse function is defined only after restricting the domain of the original
function. Thus for f (x) = x2 (x � 0) and f −1(x) = ÷x (x � 0), we obtain

f ( f −1(x)) = x, for x � 0 only

and

2.2.5 Exercises

f f x
x x

x x
− =

−

⎧
⎨
⎩

1
0

0
( ( ))  

,    

,    

for

for

�

�

1
5

1
4

1
4

1
5

1
4

1
5

2
3

2
3

1
3

2
3

4
27

....

7 A function f (x) is defined by (10x + 10−x),
for x in �. Show that

(a) 2( f (x))2 = f (2x) + 1

(b) 2 f (x) f (y) = f (x + y) + f (x − y)

8 Draw separate graphs of the functions f and g where

f (x) = (x + 1)2 and g(x) = x − 2

The functions F and G are defined by

F(x) = f (g(x)) and G(x) = g( f (x))

Find formulae for F(x) and G(x) and sketch their
graphs. What relationships do the graphs of F
and G bear to those of f and g?

f x( )  = 1
2 9 A function f is defined by

Sketch on separate diagrams the graphs of f (x), 
, f (x + 1), f (x + 2), , f (x − 1) 

and f (x − 2).

10 Find the inverse function (if it is defined) of the
following functions:

f x(   ) − 1
2f x(   )+ 1

2

f x

x

x x

x x

x
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+ −
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(a) f (x) = 2x − 3 (x in �)

(b) (x in �, x ≠ −4)

(c) f (x) = x 2 + 1 (x in �)

If f (x) does not have an inverse function, suggest a
suitable restriction of the domain of f(x) that will
allow the definition of an inverse function.

11 Show that

may be expressed in the form

f (x) = g(h(l(x)))

where

l(x) = x + 4

h(x) = 1/x

g(x) = 2 − 11x

Interpret this result graphically.

12 The stiffness of a rectangular beam varies directly
with the cube of its height and directly with its 

f x
x

x
( )  

  

  
=

−
+

2 3

4

f x
x

x
( )  

  

  
=

−
+

2 3

4

82 FUNCTIONS

..

breadth. A beam of rectangular section is to be cut
from a circular log of diameter d. Show that the
optimal choice of height and breadth of the beam in
terms of its stiffness is related to the value of x
which maximizes the function

E(x) = x3(d 2 − x), 0 � x � d 2

13 A beam is used to support a building as shown in
Figure 2.17. The beam has to pass over a 3 m brick
wall which is 2 m from the building. Show that the
minimum length of the beam is associated with the
value of x which minimizes

E x x
x

( )  (   )   = + +⎛
⎝⎜

⎞
⎠⎟2 1

92
2

Figure 2.17 Beam of Question 13.

2.2.6 Odd, even and periodic functions

Some commonly occurring functions in engineering contexts have the special properties
of oddness or evenness or periodicity. These properties are best understood from the
graphs of the functions.

An even function is one that satisfies the functional equation

f (−x) = f (x)

Thus the value of f (−2) is the same as f(2), and so on. The graph of such a function is
symmetrical about the y axis, as shown in Figure 2.18.

In contrast, an odd function has a graph which is antisymmetrical about the origin,
as shown in Figure 2.19, and satisfies the equation

f (−x) = − f (x)

We notice that f(0) = 0 or is undefined.
Polynomial functions like y = x 4 − x 2 − 1, involving only even powers of x, are 

examples of even functions, while those like y = x − x 5, involving only odd powers of
x, provide examples of odd functions. Of course, not all functions have the property 
of oddness or evenness.
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Example 2.11 Which of the functions y = f (x) whose graphs are shown in Figure 2.20 are odd, even
or neither odd nor even?

....

Figure 2.19 Graph of an odd function.Figure 2.18 Graph of an even function.

Figure 2.20
Graphs of 
Example 2.11.
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Figure 2.21

Figure 2.22
A periodic function 
of period P.

(c) The graph is neither symmetrical nor antisymmetrical about the origin, so the 
function it represents is neither odd nor even.

(d) The graph is symmetrical about the y axis so it is an even function.

(e) The graph is neither symmetrical nor antisymmetrical about the origin, so it is 
neither an even nor an odd function.

(f) The graph is antisymmetrical about the origin, so it represents an odd function.

A periodic function is such that its image values are repeated at regular intervals in 
its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as shown in Figure 2.22. The width of each strip is called
the period of the function. We therefore say that a function f (x) is periodic with period
P if for all its domain values x

f (x + nP) = f (x)

for any integer n.

Solution (a) The graph for x � 0 is the mirror image of the graph for x � 0 when the mirror is
placed on the y axis. Thus the graph represents an even function.

(b) The mirror image of the graph for x � 0 in the y axis is shown in Figure 2.21(a). Now
reflecting that image in the x axis gives the graph shown in Figure 2.21(b). Thus Figure
2.20(b) represents an odd function since its graph is antisymmetrical about the origin.
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To provide a measure of the number of repetitions per unit of x, we define the 
frequency of a periodic function to be the reciprocal of its period, so that

The Greek letter ν (‘nu’) is usually used to denote the frequency, so that ν = 1/P. The
term circular frequency is also used in some engineering contexts. This is denoted by
the Greek letter ω (‘omega’) and is defined by

It is measured in radians per unit of x, the free variable. When the meaning is clear from
the context the adjective ‘circular’ is commonly omitted.

Example 2.12 A function f(x) has the graph on [0, 1] shown in Figure 2.23. Sketch its graph on [−3, 3]
given that

(a) f (x) is periodic with period 1;

(b) f (x) is periodic with period 2 and is even;

(c) f (x) is periodic with period 2 and is odd.

ω πν π
    = =2

2

P

frequency
period

  =
1

....

Figure 2.23
f (x) of Example 2.12
defined on [0, 1].

Solution (a) Since f (x) has period 1, strips of width 1 unit are simply replicas of the graph
between 0 and 1. Hence we obtain the graph shown in Figure 2.24.

Figure 2.24
f (x) having period 1.

(b) Since f (x) has period 2 we need to establish the graph over a complete period
before we can replicate it along the domain of f (x). Since it is an even function and we
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Figure 2.25
f (x) periodic with
period 2 and is even.

Figure 2.26
f (x) periodic with
period 2 and is odd.

know its values between 0 and 1, we also know its values between −1 and 0. We can
obtain the graph of f (x) between −1 and 0 by reflecting in the y axis, as shown in 
Figure 2.25(a). Thus we have the graph over a complete period, from −1 to +1, and 
so we can replicate along the x axis, as shown in Figure 2.25(b).

(c) Similarly, if f(x) is an odd function we can obtain the graph for the interval [−1, 0]
using antisymmetry and the graph for the interval [0, 1]. This gives us Figure 2.26(a)
and we then obtain the whole graph, Figure 2.26(b), by periodic extension.
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2.2.7 Exercises

14 Which of the functions y = f (x) whose graphs are
shown in Figure 2.27 are odd, even or neither odd
nor even?

15 Three different functions, f (x), g(x) and h(x), have
the same graph on [0, 2] as shown in Figure 2.28.
On separate diagrams, sketch their graphs for
[−4, 4] given that

(a) f (x) is periodic with period 2;

(b) g(x) is periodic with period 4 and is even;

(c) h(x) is periodic with period 4 and is odd.

Figure 2.27 Graphs of Question 14.

Figure 2.28 Graph of Question 15.

2.3 Linear and quadratic functions
Among the more commonly used functions in engineering contexts are the linear and
quadratic functions. This is because the mathematical models of practical problems
often involve linear functions and also because more complicated functions are often well
approximated locally by linear or quadratic functions. We will review the properties of
these functions and in the process describe some of the contexts in which they occur.

2.3.1 Linear functions

The linear function is the simplest function that occurs in practical problems. It
has the formula f (x) = mx + c where m and c are constant numbers and x is the 
unassigned or independent variable as usual. The graph of f (x) is the set of points (x, y)
where y = mx + c, which is the equation of a straight line on a cartesian coordinate 
plot (see Section 1.4.2). Hence, the function is called the linear function. An example 
of a linear function is the conversion of a temperature T1 °C to the temperature 
T2 °F. Here

16 Show that

h(x) = [ f(x) − f(−x)]

is an odd function and that any function f(x) may be
written as the sum of an odd and an even function.

Illustrate this result with f(x) = (x − 1)3.

1
2
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T2 = T1 + 32

and m = with c = 32.
To determine the formula for a particular linear function the two constants m and c

have to be found. This implies that we need two pieces of information to determine f (x).

Example 2.13 A manufacturer produces 5000 items at a total cost of £10 000 and sells them at £2.75
each. What is the manufacturer’s profit as a function of the number x of items sold?

Solution Let the manufacturer’s profit be £P. If x items are sold then the total revenue is £2.75x,
so that the amount of profit P(x) is given by

P(x) = revenue − cost = 2.75x − 10 000

Here the domain of the function is [0, 5000] and the range is [−10 000, 3750]. This
function has a zero at . Thus to make a profit, the manufacturer has to sell
more than 3636 items. (Note the modelling approximation in that, strictly, x is an 
integer variable, not a general real variable.)

If we know the values that the function f (x) takes at two values, x0 and x1, of the inde-
pendent variable x we can find the formula for f(x). Let f(x0) = f0 and f (x1) = f1, then

(2.6)

This formula is known as Lagrange’s formula. It is obvious that the function is linear
since we can arrange it as

The reader should verify from (2.6) that f (x0) = f0 and f (x1) = f1.

Example 2.14 Use Lagrange’s formula to find the linear function f (x) where f (10) = 1241 and
f (15) = 1556.

Solution Taking x0 = 10 and x1 = 15 so that f0 = 1241 and f1 = 1556 we obtain

= (1556 − 1241) + 3(1241) − 2(1556)

= (315) + (3723 − 3112) = 63x + 611
x
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The rate of change of a function, between two values x = x0 and x = x1 in its domain,
is defined by the ratio of the change in the values of the function to the change in the
values of x. Thus

For a linear function with formula f(x) = mx + c we have

=

which is a constant. If we know the rate of change m of a linear function f (x) and the
value f0 at a point x = x0, then we can write the formula for f(x) as

f (x) = mx + f0 − mx0

For a linear function, the slope (gradient) of the graph is the rate of change of the function.

Example 2.15 The labour cost of producing a certain item is £21 per 10 000 items and the raw 
materials cost is £4 for 1000 items. Each time a new production run is begun, there is
a set-up cost of £8. What is the cost, £C(x), of a production run of x items?

Solution Here the cost function has a rate of change comprising the labour cost per item
(21/10 000) and the materials cost per item (4/1000). Thus the rate of change is 0.0061.
We also know that if there is a production run with zero items, there is still a set-up 
cost of £8 so f (0) = 8. Thus the required function is

C(x) = 0.0061x + 8

2.3.2 Least squares fit of a linear function to experimental data

Because the linear function occurs in many mathematical models of practical problems,
we often have to ‘fit’ linear functions to experimental data. That is, we have to find the
values of m and c which yield the best overall description of the data. There are two dis-
tinct mathematical models that occur. These are given by the functions with formulae

(a) y = ax and (b) y = mx + c

For example, the extension of an ideal spring under load may be represented by a 
function of type (a), while the velocity of a projectile launched vertically may be 
represented by a function of type (b).

From experiments we obtain a set of data points (xk, yk), k = 1, 2, … , n. We wish 
to find the value of the constant(s) of the linear function that best describes the 
phenomenon the data represents.
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Case (a): the theoretical model has the form y == ax

The difference between theoretical value axk and the experimental value yk at xk is 
(axk − yk). This is the ‘error’ of the model at x = xk. We define the value of a for which
y = ax best represents the data to be that value which minimizes the sum S of the
squared errors:

(Hence the name ‘least squares fit’: the squares of the errors are chosen to avoid simple
cancellation of two large errors of opposite sign.)

It is easy to find the minimizing value of a since S is essentially a quadratic expres-
sion in a. (All the xk’s and yk’s are numbers.) Rewriting, we have

(Notice the ‘taking out’ of the common factors a2 and −2a in these sums.) Writing

we have

S = Pa2 − 2aQ + R

On ‘completing the square’

and we see that the minimizing value of a is given by Q/P, when the first term is zero.
Thus S is minimized when

(2.7)

Take care not to claim too high precision in the calculated value of a.

Example 2.16 Find the value of a which provides the least squares fit to the model y = ax for the data
given in Figure 2.29.

a

x y

x

k k
k

n

k
k

n  = =

=

∑

∑
1

2

1

S P a
Q

P

RP Q

P
      

  
= −⎛

⎝
⎞
⎠ +

−2 2

P x Q x y R yk
k

n

k
k

n

k k
k

n

  ,            = = =
= = =

∑ ∑ ∑2

1 1

2

1

and    

= − +
= = =

∑ ∑ ∑     a x a x y yk
k

n

k
k

n

k k
k

n
2 2

1 1

2

1

2

= + − +
= = =

∑ ∑ ∑ ( )  ( )  a x ax y yk
k

n

k
k

n

k k
k

n
2 2

1 1

2

1

2

S a x ax y y
k

n

k k k k  (     )= − +
=

∑ 2

1

2 22

S ax yk k
k

n

  (   )= −
=

∑
1

2

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 90



..

2.3 LINEAR AND QUADRATIC FUNCTIONS 91

k 1 2 3 4 5 6

xk 50 100 150 200 250 300

yk 5 8 9 11 12 15

Solution From (2.7) the least squares fit is provided by

Here

= 250 + 800 + 1350 + 2200 + 3000 + 4500 = 12 100

and

= 502 + 1002 + 1502 + 2002 + 2502 + 3002 = 227 500

so that a = 121/2275 = 0.053.

Case (b): the theoretical model has the form y == mx ++ c

Analagous to case (a), this can be seen as minimizing the sum

The algebraic approach to this minimization uses completion of squares in two variables.
The details are complicated but are given below. Working through the details provides
useful practice and consolidation of the use of the sigma notation.

Multiplying out the terms gives

Now and , where x and y are the mean values of the xk’s and
yk’s respectively, so S can be written

Completing the square with terms involving n gives
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Figure 2.29
Data of Example 2.16.
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Now completing the square with the remaining terms involving m we have

S = n(c − y + mx)2 + p(m − q/p)2 + r − q2/p

where

Thus S is minimized where

(2.8)

To avoid loss of significance, the formula for m is usually expressed in the form

(2.9)

We can observe that in this case the best straight line passes through the average data
point (x, y ), and the best straight line has the formula

y = mx + c

with c = y − mx.

Example 2.17 Find the values of m and c which provide the least squares fit to the linear model 
y = mx + c for the data given in Figure 2.30.

k 1 2 3 4 5

xk 0 1 2 3 4

yk 1 1 2 2 3

Solution From (2.9) the least squares fit is provided by

Here x = (10) = 2.0, y = (9) = 1.8, (xk − x)(yk − y) = 5.0 and (xk − x)2 = 10,
so that

m = 0.5
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Figure 2.30
Data of Example 2.17.
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and hence c = 1.8 − 0.5(2) = 0.8.
Thus the best straight line fit to the data is provided by y = 0.5x + 0.8.

See page 109 for MATLAB commands to reproduce the answer.

The formula for case (b) is the one most commonly given on calculators and in com-
puter packages (where it is called linear regression). It is important to have a theore-
tical justification to fitting data to a function, otherwise it is easy to produce nonsense.
For example, the data in Example 2.16 actually related to the extension of a soft spring
under a load, so that it would be inappropriate to fit that data to y = mx + c. A non-zero
value for c would imply an extension with zero load! A little care is needed when using
computer packages. Some use the form y = ax + b and others the form y = a + bx as the
basic formula.

2.3.3 Exercises

..

17 Obtain the formula for the linear functions f(x)
such that

(a) f (0) = 3 and f (2) = −1

(b) f (−1) = 2 and f (3) = 4

(c) f (1.231) = 2.791 and f (2.492) = 3.112

18 Calculate the rate of change of the linear functions
given by

(a) f (x) = 3x − 2

(b) f (x) = 2 − 3x

(c) f (−1) = 2 and f (3) = 4

19 The total labour cost of producing a certain 
item is £43 per 100 items produced. The raw
materials cost £25 per 1000 items. There is a 
set-up cost of £50 for each production run. 
Obtain the formula for the cost of a production 
run of x items.

The manufacturer decides to have a production
run of 2000 items. What is its cost? If the items
are sold at £1.20 each, write down a formula for
the manufacturer’s profit if x items are sold. What
is the breakeven number of items sold?

20 Find the least squares fit to the linear function 
y = ax of the data given in Figure 2.31.

k 1 2 3 4 5
xk 10.1 10.2 10.3 10.4 10.5
yk 3.10 3.12 3.21 3.25 3.32

Figure 2.31 Table of Question 20.

21 Find the least squares fit to the linear function 
y = mx + c for the experimental data given in 
Figure 2.32.

k 1 2 3 4 5
xk 55 60 65 70 75
yk 107 109 114 118 123

Figure 2.32 Table of Question 21.

22 On the graph of the line y = x, draw the lines y = 0, 
x = a and x = b. Show that the area enclosed by
these four lines is (b2 − a2) (assume b � a).

Deduce that this area is the average value of 
y = x on the interval [a, b] multiplied by the size of
that interval.

23 The velocity of an object falling under gravity is 
v(t) = gt where t is the lapsed time from its release
from rest and g is the acceleration due to gravity.
Draw a graph of v(t) to show that its average
velocity over that time period is gt and deduce that
the distance travelled is gt 2.1

2

1
2

1
2
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2.3.4 The quadratic function

The general quadratic function has the form

f (x) = ax2 + bx + c

where a, b and c are constants and a ≠ 0. By ‘completing the square’ we can show that
(see Example 1.15)

(2.10)

which implies that the graph of f (x) is either a ‘cup’ (a � 0) or a ‘cap’ (a � 0), as shown
in Figure 2.33, and is a parabola.

We can see that, because the quadratic function has three constants, to determine a
specific quadratic function requires three data points. The formula for the quadratic
function f (x) taking the values f0, f1, f2 at the values x0, x1, x2, of the independent 
variable x, may be written in Lagrange’s form:

(2.11)

The right-hand side of this formula is clearly a quadratic function. The reader should
spend a few minutes verifying that inserting the values x = x0, x1 and x2 yields f (x0) = f0,
f (x1) = f1 and f (x2) = f2.

f x
x x x x

x x x x
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− −
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− −
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− −
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1 2

0 1 0 2
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0 2

1 0 1 2
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2 0 2 1))
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f x a x
b

a

ac b

a
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= +⎛

⎝
⎞
⎠ +

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

4

4

2 2

2

Example 2.18 Find the formula of the quadratic function which satisfies the data points (1, 2), (2, 4)
and (3, 8).

Solution Choose x0 = 1, x1 = 2 and x2 = 3 so that f0 = 2, f1 = 4 and f2 = 8. Then using Lagrange’s
formula (2.10) we have

Figure 2.33
(a) a � 0; (b) a � 0.
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= (x − 2)(x − 3) − 4(x − 1)(x − 3) + 4(x − 1)(x − 2) = x2 − x + 2

Lagrange’s formula is not always the best way to obtain the formula of a quadratic
function. Sometimes we wish to obtain the formula as an expansion about a specific
point, as illustrated in Example 2.19.

Example 2.19 Find the quadratic function in the form

f (x) = A(x − 2)2 + B(x − 2) + C

which satisfies f(1) = 2, f (2) = 4, f (3) = 8.

Solution Setting x = 1, 2 and 3 into the formula for f (x) we obtain

f (1): A − B + C = 2

f (2): C = 4

f (3): A + B + C = 8

from which we quickly find A = 1, B = 3 and C = 4. Thus

f (x) = (x − 2)2 + 3(x − 2) + 4

The way we express the quadratic function depends on the problem context. The
form f (x) = ax2 + bx + c is convenient for values of x near x = 0, while the form 
f (x) = A(x − x0)

2 + B(x − x0) + C is convenient for values of x near x = x0. (The second
form here is sometimes called the Taylor expansion of f (x) about x = x0.) This is dis-
cussed for the general function in Section 9.4, where we make use of the differential
calculus to obtain the expansion.

Since we can write f (x) in the form (2.10), we see that when b2 � 4ac we can 
factorize f (x) into the product of two linear factors and f (x) has two zeros given as 
in (1.8) by

When b2 � 4ac, f (x) cannot be factorized and does not have a zero. In this case it is
called an irreducible quadratic function.

Example 2.20 Complete the squares of the following quadratics and specify which are irreducible.

(a) y = x2 + x + 1 (b) y = 3x2 − 2x − 1

(c) y = 4 + 3x − x2 (d) y = 2x − 1 − 2x2

x
b b ac

a
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=

− ± −2 4

2

f x
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Solution (a) In this case, a = b = c = 1 so that b2 − 4ac = −3 � 0 and we deduce that the quadratic
is irreducible. Alternatively, using the method of completing the square we have

Since this is a sum of squares, like A2 + B2, it cannot, unlike a difference of squares, 
A2 − B2 = (A − B)(A + B), be factorized. Thus this is an irreducible quadratic function.

(b) Here a = 3, b = −2 and c = −1, so that b2 − 4ac = 16 � 0 and we deduce that this is
not an irreducible quadratic. Alternatively, completing the square we have

y = 3x2 − 2x − 1 = 3(x2 − x − )

= 3[(x − )2 − ] = 3[(x − ) − ][(x − ) + ]

= 3[x − 1][x + ] = (x − 1)(3x + 1)

Thus this is not an irreducible quadratic function.

(c) Here a = −1, b = 3 and c = 4, so that b2 − 4ac = 25 � 0 and we deduce that the
quadratic is irreducible. Alternatively, completing the square we have

y = 4 + 3x − x2 = 4 + − (x − )2

= − (x − )2 = [ − (x − )][ + (x − )]

= (4 − x)(1 + x)

Thus y is a product of two linear factors and 4 + 3x − x2 is not an irreducible quadratic
function.

(d) Here a = −2, b = 2 and c = −1, so that b2 − 4ac = −4 � 0 and we deduce that the
quadratic is irreducible. Alternatively we may complete the square

y = 2x − 1 − 2x2 = −1 − 2(x2 − x)

= −1 + − 2(x − )2 = − − 2(x − )2

= −2[ + (x − )2]

Since the term inside the square brackets is the sum of squares, we have an irreducible
quadratic function.

The quadratic function

f (x) = ax2 + bx + c

has a maximum when a � 0 and a minimum when a � 0, as illustrated earlier in 
Figure 2.33. The position and value of that extremal point (that is, of the maximum 
or the minimum) can be obtained from the completed square form (2.10) of f (x). 
These occur where

Thus, when a � 0, f (x) has a minimum value (4ac − b2)/(4a) where x = −b/(2a).
When a � 0, f (x) has a maximum value (4ac − b2)/(4a) at x = −b/(2a). 

This result is important in engineering contexts when we are trying to optimize costs
or profits or to produce an optimal design (see Section 2.10).
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24 Find the formulae of the quadratic functions f (x)
such that

(a) f (1) = 3, f (2) = 7 and f (4) = 19

(b) f (−1) = 1, f (1) = −1 and f (4) = 2

25 Find the numbers A, B and C such that

f (x) = x2 − 8x + 10

= A(x − 2)2 + B(x − 2) + C

26 Determine which of the following quadratic
functions are irreducible.

(a) f (x) = x2 + 2x + 3 (b) f (x) = 4x2 − 12x + 9

(c) f (x) = 6 − 4x − 3x2 (d) f (x) = 3x − 1 − 5x2

27 Find the maximum or minimum values of the
quadratic functions given in Question 26.

28 For what values of x are the values of the
quadratic functions below greater than zero?

(a) f (x) = x2 − 6x + 8 (b) f (x) = 15 + x − 2x2

..

Example 2.21 Find the extremal values of the functions

(a) y = x2 + x + 1 (b) y = 3x2 − 2x − 1

(c) y = 4 + 3x − x2 (d) y = 2x − 1 − 2x2

Solution This uses the completed squares of Example 2.20.

(a) y = x2 + x + 1 = (x + )2 +

Clearly the smallest value y can take is and this occurs when x + = 0; that is, when
x = − .

(b) y = 3x2 − 2x − 1 = 3(x − )2 −

Clearly the smallest value of y occurs when x = and is equal to − .

(c) y = 4 + 3x − x2 = − (x − )2

Clearly the largest value y can take is and this occurs when x = .

(d) y = 2x − 1 − 2x2 = − − 2(x − )2

Thus the maximum value of y equals − and occurs where x = .

Confirm that these results conform with the theory above.

2.3.5 Exercises

1
2

1
2

1
2

1
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2
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29 A car travelling at u mph has to make an emergency
stop. There is an initial reaction time T1 before the
driver applies a constant braking deceleration of a
mph2. After a further time T2 the car comes to rest.
Show that T2 = u /a and that the average speed
during the braking period is u /2. Hence show that
the total stopping distance D may be expressed 
in the form

D = Au + Bu2

where A and B depend on T1 and a.
The stopping distances for a car travelling 

at 20 mph and 40 mph are 40 feet and 120 feet
respectively. Estimate the stopping distance for 
a car travelling at 70 mph.

A driver sees a hazard 150 feet ahead. What is
the maximum possible speed of the car at that
moment if a collision is to be avoided?
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2.4 Polynomial functions

A polynomial function has the general form

f (x) = anxn + an−1x
n−1 + … + a1x + a0, x in � (2.12)

where n is a positive integer and ar is a real number called the coefficient of xr, 
r = 0, 1, … , n. The index n of the highest power of x occurring is called the degree of
the polynomial. For n = 1 we obtain the linear function

f (x) = a1x + a0

and for n = 2 the quadratic function

f (x) = a2 x2 + a1x + a0

and so on.
We obtained in Sections 2.3.1 and 2.3.4 Lagrange’s formulae for linear and for

quadratic functions. The basic idea of the formulae can be used to obtain a formula 
for a polynomial of degree n which is such that f (x0) = f0, f (x1) = f1, f (x2) = f2, … , 
f (xn) = fn. Notice we need (n + 1) values to determine a polynomial of degree n. We can
write Lagrange’s formula in the form.

f (x) = L0(x) f0 + L1(x) f1 + L2(x) f2 + … + Ln(x) fn

where L0(x), L1(x), … , Ln(x) are polynomials of degree n such that

Lk(xj) = 0, xj ≠ xk (or j ≠ k)

Lk(xk) = 1

This implies that Lk has the form

(It is easy to verify that Lk has degree n and that Lk(xj) = 0, j ≠ k and Lk(xk) = 1.)

Example 2.22 Find the cubic function such that f (−3) = 528, f (0) = 1017, f (2) = 1433 and f (5) = 2312.

Solution Notice that we need four data points to determine a cubic function. We can write

f (x) = L0(x) f0 + L1(x) f1 + L2(x) f2 + L3(x) f3

where x0 = −3, f0 = 528, x1 = 0, f1 = 1017, x2 = 2, f2 = 1433, x3 = 5 and f3 = 2312. Thus

L x
x x x

x x x1
1

30
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0 3 0 2 0 5
4 11 30( )  
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Notice that each of the Lk’s is a cubic function, so that their sum will be a cubic function

f (x) = − (x3 − 7x2 + 10x)(528) + (x3 − 4x2 − 11x + 30)(1017)

− (x3 − 2x2 − 15x)(1433) + (x3 + x2 − 6x)(2312)

= x3 + 10x2 + 184x + 1017

2.4.1 Basic properties

Polynomials have two important mathematical properties.

Property (i)
If two polynomials are equal for all values of the independent variable then corres-
ponding coefficients of the powers of the variable are equal. Thus if

f (x) = anxn + an−1x
n−1 + … + a1x + a0

g(x) = bnxn + bn−1x
n−1 + … + b1x + b0

and

f (x) = g(x) for all x

then

ai = bi for i = 0, 1, 2, … , n

This property forms the basis of a technique called equating coefficients, which will
be used in determining partial fractions in Section 2.5.

Property (ii)
Any polynomial with real coefficients can be expressed as a product of linear and 
irreducible quadratic factors.

Example 2.23 Find the values of A, B and C that ensure that

x2 + 1 = A(x − 1) + B(x + 2) + C(x2 + 2)

for all values of x.

Solution Multiplying out the right-hand side, we have

x2 + 0x + 1 = Cx2 + (A + B)x + (−A + 2B + 2C)

Using Property (i), we compare, or equate, the coefficients of x2, x and x0 in turn to give

1
120

1
30

1
30

1
120

L x
x x x

x x x3
1

120
3 23 0 2

5 3 5 0 5 2
6( )  

(   )(   )(   )

(   )(   )(   )
  (     )=

+ − −
+ − −

= + −

L x
x x x

x x x2
1

30
3 23 0 5

2 3 2 0 2 5
2 15( )  
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  (     )=

+ − −
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= − − −

.. ..
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C = 1

A + B = 0

−A + 2B + 2C = 1

which we then solve to give

A = , B = − , C = 1

Checking, we have

(x −1) − (x + 2) + (x2 + 2) = x − − x − + x2 + 2 = x2 + 1

2.4.2 Factorization

Although Property (ii) was known earlier, the first rigorous proof was published by
Gauss in 1799. The result is an ‘existence theorem’. It tells us that polynomials can be
factored but does not indicate how to find the factors!

Example 2.24 Factorize the polynomials

(a) x3 − 3x2 + 6x − 4 (b) x4 − 16 (c) x4 + 16

Solution (a) The function f(x) = x3 − 3x2 + 6x − 4 clearly has the value zero at x = 1. Thus 
x − 1 must be a factor of f(x). We can now divide x3 − 3x2 + 6x − 4 by x − 1 using algebraic
division, a process akin to long division of numbers. The process may be set out as follows.

Step 1

x − 1)x3 − 3x2 + 6x − 4(

In order to produce the term x3, x − 1 must be multiplied by x2. Do this and subtract the
result from x3 − 3x2 + 6x − 4.

x − 1)x3 − 3x2 + 6x − 4(x2

x3 − x2

−2x2 + 6x − 4

Step 2
Now repeat the process on the polynomial −2x2 + 6x − 4. In this case, in order to elim-
inate the term −2x2, we must multiply x − 1 by −2x.

x − 1)x3 − 3x2 + 6x − 4(x2 − 2x

x3 − x2

−2x2 + 6x − 4

−2x2 + 2x

4x − 4

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3
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Step 3
Finally we must multiply x − 1 by 4 to eliminate 4x − 4 as follows:

x − 1)x3 − 3x2 + 6x − 4(x2 − 2x + 4

x3 − x2

−2x2 + 6x − 4

−2x2 + 2x

4x − 4

4x − 4

Thus

f (x) = (x − 1)(x2 − 2x + 4)

The quadratic factor x2 − 2x + 4 is an irreducible factor, as is shown by ‘completing
the square’:

x2 − 2x + 4 = (x − 1)2 + 3

(b) The functions f1(x) = x4 and f2(x) = x4 − 16 have similar graphs, as shown in 
Figures 2.34(a) and (b). It is clear from these graphs that f2(x) has zeros at two values
of x, where x4 = 16; that is, at x2 = 4 (x2 = −4 is not allowed for real x). Thus the zeros of
f2 are at x = 2 and x = −2, and we can write

f2(x) = x4 − 16 = (x2 − 4)(x2 + 4)

= (x − 2)(x + 2)(x2 + 4)

(c) The functions f1(x) = x4 and f3(x) = x4 + 16 have similar graphs, as shown in 
Figures 2.34(a) and (c). It is clear from these graphs that f3(x) does not have any real
zeros, so we expect it to be factored into two quadratic terms. We can write

x4 + 16 = (x2 + 4)2 − 8x2

which is a difference of squares and may be factored.

(x2 + 4)2 − 8x2 = (x2 + 4)2 − (x÷8)2 = [(x2 + 4) − x÷8][(x2 + 4) + x÷8]

.. ..

Figure 2.34 Graphs of (a) y = f1(x) = x4, (b) y = f2(x) = x4 − 16 and (c) y = f3(x) = x4 + 16.
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Thus we obtain

f3(x) = x4 + 16 = (x2 − 2x÷2 + 4)(x2 + 2x÷2 + 4)

Since x2 ± 2x÷2 + 4 = (x ± ÷2)2 + 2, we deduce that these are irreducible quadratics.

2.4.3 Nested multiplication and synthetic division

In Example 2.24(a) we found the image value of the polynomial at x = 1 by direct 
substitution. In general, however, the most efficient way to evaluate the image values
of a polynomial function is to use nested multiplication. Consider the cubic function

f (x) = 4x3 − 5x2 + 2x + 3

This may be written as

f (x) = [(4x − 5)x + 2]x + 3

We evaluate this by evaluating each bracketed expression in turn, working from the
innermost. Thus to find f (6), the following steps are taken:

(1) Multiply 4 by x and subtract 5; in this case 4 × 6 − 5 = 19.
(2) Multiply the result of step 1 by x and add 2; in this case 19 × 6 + 2 = 116.
(3) Multiply the result of step 2 by x and add 3; in this case 116 × 6 + 3 = 699.

Thus f (6) = 699.
On a computer this is performed by means of a simple recurrence relation. To 

evaluate

f (x) = anxn + an−1x
n−1 + … + a0

at x = t, we use the formulae

bn−1 = an

bn−2 = tbn−1 + an−1

bn−3 = tbn−2 + an−2

\

b1 = tb2 + a2

b0 = tb1 + a1

f (t) = tb0 + a0

which may be summarized as

(2.13)

(The reason for storing the intermediate values bk will become obvious below.)
Having evaluated f(x) at x = t, it follows that for a given t

f (x) − f (t) = 0

b a

b tb a k n

f t tb a

n n

n k n k n k

−

− − + − +

=

= + =

= +

⎫

⎬
⎪⎪

⎭
⎪
⎪

1

1 1

0 0

2 3

  

        (   , ,  , )

( )    

…
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at x = t; that is, f (x) − f (t) has a factor x − t. Thus we can write

f (x) − f (t) = (x − t)(cn−1x
n−1 + cn−2xn−2 + … + c1x + c0)

Multiplying out the right-hand side, we have

f (x) − f (t) = cn−1x
n + (cn−2 − tcn−1)x

n−1 + (cn−3 − tcn−2)x
n−2 + … + (c0 − tc1)x + (−tc0)

so that we may write

f (x) = cn−1x
n + (cn−2 − tcn−1)x

n−1 + (cn−3 − tcn−2)x
n−2 + … + (c0 − tc1)x + f (t) − tc0

But

f (x) = anxn + an−1x
n−1 + an−2xn−2 + … + a1x + a0

So, using Property (i) of Section 2.4.1 and comparing coefficients of like powers of x,
we have

cn−1 = an

cn−2 − tcn−1 = an−1 implying cn−2 = tcn−1 + an−1

cn−3 − tcn−2 = an−2 implying cn−3 = tcn−2 + an−2

\ \ \

c0 − tc1 = a1 implying c0 = tc1 + a1

f (t) − tc0 = a0 implying f (t) = tc0 + a0

Thus ck satisfies exactly the same formula as bk, so that the intermediate numbers gen-
erated by the method are the coefficients of the quotient polynomial. We can then write

f (x) = (bn−1x
n−1 + bn−2xn−2 + … + b1x + b0)(x − t) + f (t) (2.14)

or

Result (2.14) tells us that if the polynomial f (x) given in (2.12) is divided by x − t then
this results in a quotient polynomial q(x) given by

q(x) = bn−1x
n−1 + … + b0

and a remainder r = f (t) that is independent of x. Because of this property, the method
of nested multiplication is sometimes called synthetic division.

The coefficients bi, i = 0, … , n − 1, of the quotient polynomial and remainder term
f (t) may be determined using the formulae (2.13). The process may be carried out in the
following tabular form:

f x

x t
b x b x b x b

f t

x t
n

n
n

n( )

  
            

( )

  −
= + + + + +

−−
−

−
−

1
1

2
2

1 0…
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After the number below the line is calculated as the sum of the two numbers imme-
diately above it, it is multiplied by t and placed in the next space above the line as 
indicated by the arrows. This procedure is repeated until all the terms are calculated.

The method of synthetic division could have been used as an alternative to algebraic
division in Example 2.24.

Example 2.25 Show that f (x) = x3 − 3x2 + 6x − 4 is zero at x = 1, and hence factorize f (x).

Solution Using the nested multiplication procedure to divide x3 − 3x2 + 6x − 4 by x − 1 gives the
tabular form

Since the remainder f (1) is zero, it follows that f (x) is zero at x = 1. Thus

f (x) = (x2 − 2x + 4)(x − 1)

and we have extracted the factor x − 1. We may then examine the quadratic factor 
x2 − 2x + 4 as we did in Example 2.24(a) and show that it is an irreducible quadratic
factor.

Sometimes in problem-solving we need to rearrange the formula for the polynomial
function as an expansion about a point, x = a, other than x = 0. That is, we need to find
the numbers A0, A1, … , An such that

f (x) = an xn + an−1x
n−1 + … + a1x + a0

= An(x − a)n + An−1(x − a)n−1 + … + A1(x − a) + A0

This transformation can be achieved using the technique illustrated for the quadratic
function in Example 2.19 which depends on the identity property of polynomials. It can
be achieved more easily using repeated synthetic division, as is shown in Example 2.26.

Example 2.26 Obtain the expansion about x = 2 of the function y = x3 − 3x2 + 6x − 4.

Solution Using the numerical scheme as set out in Example 2.25 we have

1 −3 6 −4

× 2 0 2 −2 8

1 −1 4 4

104 FUNCTIONS

.. ..
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so that

x3 − 3x2 + 6x − 4 = (x − 2)(x2 − x + 4) + 4

Now repeating the process with y = x2 − x + 4, we have

1 −1 4

× 2 0 2 2

1 1 6

so that

x2 − x + 4 = (x − 2)(x + 1) + 6

and

x3 − 3x2 + 6x − 4 = (x − 2)[(x − 2)(x + 1) + 6] + 4

Lastly,

x + 1 = (x − 2) + 3

so that

y = (x − 2)[(x − 2)2 + 3(x − 2) + 6] + 4

= (x − 2)3 + 3(x − 2)2 + 6(x − 2) + 4

For hand computation the whole process can be set out as a single table:

1 −3 6 −4

× 2 0 2 −2 8

1 −1 4 \4

× 2 0 2 2

1 1 \6

× 2 0 2

1 \3

Here, then, 1, 3, 6 and 4 provide the coefficients of (x − 2)3, (x − 2)2, (x − 2)1 and (x − 2)0

in the Taylor expansion.

2.4.4 Roots of polynomial equations

Polynomial equations occur frequently in engineering applications, from the identifica-
tion of resonant frequencies when concerned with rotating machinery to the stability
analysis of circuits. It is often useful to see the connections between the roots of a 
polynomial equation and its coefficients.

Example 2.27 Show that any real roots of the equation

x3 − 3x2 + 6x − 4 = 0

lie between x = 0 and x = 2.

.. ..
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Solution From Example 2.26 we know that

x3 − 3x2 + 6x − 4 ≡ (x − 2)3 + 3(x − 2)2 + 6(x − 2) + 4

Now if x � 2, (x − 2)3, (x − 2)2 and (x − 2) are all positive numbers, so that for x � 2

(x − 2)3 + 3(x − 2)2 + 6(x − 2) + 4 � 0

Thus x3 − 3x2 + 6x − 4 = 0 does not have a root that is greater than x = 2.
Similarly for x � 0, x3 and x are both negative and x3 − 3x2 + 6x − 4 � 0 for x � 0.

Thus x3 − 3x2 + 6x − 4 = 0 does not have a root that is less than x = 0. Hence all the real
roots of

x3 − 3x2 + 6x − 4 = 0

lie between x = 0 and x = 2.

We can generalize the results of Example 2.27. Defining

then the polynomial equation f (x) = 0 has no roots greater than x = a if all of the Ak’s
have the same sign and has no roots less than x = a if the Ak’s alternate in sign.

The roots of a polynomial equation are related to its coefficients in more direct ways.
Consider, for the moment, the quadratic equation with roots α and β. Then we can write
the equation as

(x − α)(x − β) = 0

which is equivalent to

x2 − (α + β)x + αβ = 0

Comparing this to the standard quadratic equation we have

a(x2 − (α + β)x + αβ) ≡ ax2 + bx + c

Thus −a(α + β) = b and aαβ = c so that

α + β = −b/a and αβ = c/a

This gives us direct links between the sum of the roots of a quadratic equation and its
coefficients and between the product of the roots and the coefficients. Similarly, we can
show that if α, β and γ are the roots of the cubic equation

ax3 + bx2 + cx + d = 0

then

α + β + γ = −b/a, αβ + βγ + γα = c/a, αβγ = −d/a

f x A x an
n

k

n

( )  (   )= −
=
∑

0
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In general, for the polynomial equation

anxn + an−1x
n−1 + an−2xn−2 + … + a1x + a0 = 0

the sum of the products of the roots, k at a time, is (−1)kan−k /an.

Example 2.28 Show that the roots, α, β of the quadratic equation

ax2 + bx + c = 0

may be written in the form

Obtain the roots of the equation

1.0x2 + 17.8x + 1.5 = 0

Assuming the numbers given are correctly rounded, calculate error bounds for the roots.

Solution Using the formula for the roots of a quadratic equation we can select one root, α say,
so that

Then, since αβ = c/a, we have

Now consider the equation

1.0x2 + 17.8x + 1.5 = 0

whose coefficients are correctly rounded numbers. Using the quadratic formula we
obtain the roots

α ≈ −17.715 327 56

and

β ≈ −0.084 672 44

Using the results of Section 1.5.2 we can estimate error bounds for these answers as
shown in Figure 2.35. From that table we can see that using the form

to estimate α we have an error bound of 0.943, while using

 

− + −b b ac

a

  (   )÷ 2 4

2

 

− − −b b ac

a

  (   )÷ 2 4

2

 
β

α
    

  (   ) 
= =

− − −
c

a

c

b b ac

2

42÷

 
α   

  (   )
 =

− − −b b ac

a

÷ 2 4

2

 

− − −
− − −

b b ac

a

c

b b ac

  (   )
    

  (   ) 

÷
÷

2

2

4

2

2

4
and    

..
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to estimate β we have an error bound of 0.062. As this latter estimate of error is almost
as big as the root itself we might be inclined to regard the answer as valueless. But 
calculating the error bound using the form

gives an estimate of 0.003. Thus we can write

α = −17.7 ± 5% and β = −0.085 ± 4%

The reason for the discrepancy between the two error estimates for β lies in the fact that
in the traditional form of the formula we are subtracting two nearly equal numbers, and
consequently the error bounds dominate.

Example 2.29 The equation 3x3 − x2 − 3x + 1 = 0 has a root at x = 1. Obtain the other two roots.

Solution If α, β and γ are the roots of the equation then

α + β + γ =

αβ + βγ + γα = −

αβγ = −

Setting α = 1 simplifies these to

β + γ =

β + γ + βγ = −1

βγ = −

Hence γ = −1/(3β) and 3β2 + 2β − 1 = 0. Factorizing this equation gives

(3β − 1)(β + 1) = 0

from which we obtain the solution x = −1 and x = .1
3  

1
3  

− 2
3

1
3  

3
3

1
3  

 
β   

  (   ) 
=

− − −
2

42

c

b b ac÷
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Label Value Absolute error bound RelatiVe error bound

a 1.0 0.05 0.05
b 17.8 0.05 0.0028
c 1.5 0.05 0.0333
b2 316.84 1.77 0.0056
4ac 6.00 0.50 0.0833
b2 − 4ac 310.84 2.27 0.0073
d = ÷(b2 − 4ac) 17.630 66 0.065 0.0037
−b − d −35.430 66 0.115 0.0032
(−b − d)/(2a) −17.715 33 0.943 0.0532
−b + d −0.169 34 0.115 0.6791
(−b + d)/(2a) −0.084 67 0.062 0.7291
2c/(−b − d ) −0.084 67 0.003 0.0365

Figure 2.35
Estimating error
bounds for roots.
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The numerical method most often used for evaluating the roots of a polynomial is the
Newton–Raphson procedure. This will be described in Section 9.5.8.

In MATLAB a polynomial is represented by an array of its coefficients, with the
highest coefficient listed first. For example, the polynomial function

f (x) = x3 − 5x2 − 17x + 21

is represented by

f = [1 –5 -17 21]

The roots of the corresponding polynomial equation f (x) = 0 are obtained using the
command roots(f), so for the above example the command

r = roots(f)

returns the roots as

r = 7.0000

–3.0000

1.0000

which also indicate that the factors of f(x) are (x − 7), (x + 3) and (x − 1). It is noted
that the output gives the roots r as a column array of numbers (and not a row array).
If the roots are known and we wish to determine the corresponding polynomial f (x),
having unity as the coefficient of its highest power, then use is made of the command
poly(r). To use this command the roots r must be specified as a row array; so the
commands

r = [7 –3 1]

f = poly(r)

return the answer

f = 1.0000 –5.0000 –17.0000 21.0000

indicating that the polynomial is

f (x) = x3 − 5x2 − 17x + 21

To determine the polynomial of degree n that passes through n + 1 points we 
use the command polyfit(x,y,n); which outputs the array of coefficients of 
a polynomial of order n that fits the pairs (x, y). If the number of points (x, y) is
greater than n then the command will give the best fit in the least squares sense.
Check that the commands

x = [–3 0 2 5]; y = [528 1017 1433 2312];

f = polyfit(x,y,3)

reproduce the answer of Example 2.22 and that the commands

x = [0 1 2 3 4]; y = [1 1 2 2 3];

polyfit(x,y,1)

reproduce the answer to Example 2.17.
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Graphs of polynomial functions may be plotted using the commands given 
earlier (see p. 71). The result of multiplying two polynomials f (x) and g(x) is
obtained using the command conv(f,g), where f and g are the array specification
of f (x) and g(x) respectively. With reference to Example 2.25 confirm that the 
product f (x) = (x2 − 2x + 4)(x − 1) is obtained using the commands

f1 = [1 –2 4]; f2 = [1 –1];

f = conv(f1, f2)

The division of two polynomials f (x) and g(x) is obtained, by the process of decon-
volution, using the command

[Q,R] = deconv(f,g)

which produces two outputs Q and R, with Q being the coefficients of the quotient
polynomial and R the coefficients of the remainder polynomial. Again with refer-
ence to Example 2.25 check that x3 − 3x2 + 6x − 4 divided by x − 1 gives a quotient
x2 − 2x + 4 and a remainder of zero.

Using the Symbolic Math Toolbox operations on polynomials may be undertaken
in symbolic form. Some useful commands, for carrying out algebraic manipulations,
are:

(a) factor command

If f (x) is a polynomial function, expressed in symbolic form, with rational coeffi-
cients (see Section 1.2.1) then the commands

syms x

f = factor(f(x))

factorize f(x) as the product of polynomials of lower degree with rational coefficients.
For example, to factorize the cubic f(x) = x3 − 5x2 − 17x + 21 the commands

syms x

f = factor(x^3 - 5*x^2 – 17*x + 21)

return

f = (x – 1)*(x – 7)*(x + 3)

Using the pretty command

pretty(f)

returns the more readable display

f = (x – 1)(x – 7)(x + 3)

Using the factor command, confirm the factorization of polynomials (a) and (b) in
Example 2.24.

(b) horner command

This command transforms a polynomial f(x) expressed in symbolic form into its
nested (or Horner) representation. For example the commands
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syms x

f = horner(4*x^3 – 5*x^2 + 2*x + 3)

return

f = 3 + (2 + (–5 + 4*x)*x)*x

which confirms the nested representation at the outset of Section 2.4.3.

(c) collect command

This collects all the coefficients with the same power of x. For example, if

f (x) = 4x(x2 + 2x + 1) − 5(x(x + 2) − x3) + (x + 3)3

then the commands

syms x

f = collect(4*x*(x^2 + 2*x + 1) – 5*(x*(x + 2) – x^3) 

+ (x + 3)^3);

pretty(f)

return

f = 27 + 10x3 + 12x2 + 21x

The collect command may also be used to multiply two polynomials. With 
reference to Example 2.25 the product of the two polynomials x2 − 2x + 4 and x − 1
is returned by the commands

syms x

f = collect((x – 1)*(x^2 – 2*x + 4));

pretty(f)

as

f = x3 – 3x2 + 6x – 4

(d) simplify command

This is a powerful general purpose command that can be used with a wide range of
functions. For example, if f (x) = (9 − x2)/(3 + x) then the commands

syms x

f = simplify((9 – x^2)/(3 + x))

return

f = -x + 3

(e) simple command

This command seeks to find a simplification of a symbolic expression so that it 
has the fewest number of characters; that is, it seeks to obtain the shortest form of
the expression. The command sometimes improves on the result returned by the
simplify command. There is no corresponding command in MAPLE.

....
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(f) expand command

This is another general purpose command which can be used with a wide range 
of functions. It distributes products over sums and differences. For example, if 
f (x) = a(x + y) then the commands

syms x a y

f = expand(a*(x + y));

pretty(f)

return

f = ax + ay

(g) solve command

If f (x) is a symbolic expression in the variable x (the expression may also include
parameters) then the command

s = solve (f)

seeks to solve the equation f (x) = 0, returning the solution in a column array. To
solve an equation expressed in the form f (x) = g(x) use is made of the command

s = solve(‘f(x) = g(x)’)

For example, considering the general quadratic equation ax2 + bx + c = 0 the 
commands

syms x a b c

s = solve(a*x^2 + b*x + c);

pretty(s)

return the well-known answers (see Example 1.21)

1/2 

1/2 

2.4.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

JKL
-b - (b2 - 4ac)1/2

a

GHI

JKL
-b + (b2 - 4ac)1/2

a

GHI
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30 Factorize the following polynomial functions and
sketch their graphs:

(a) x3 − 2x2 − 11x + 12

(b) x3 + 2x2 − 5x − 6

(c) x4 + x2 − 2

(d) 2x4 + 5x3 − x2 − 6x

(e) 2x4 − 9x3 + 14x2 − 9x + 2

(f) x4 + 5x2 − 36
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31 Find the coefficients A, B, C, D and E such that

y = 2x4 − 9x3 + 145x2 − 9x + 2

= A(x − 2)4 + B(x − 2)3 + C(x − 2)2

+ D(x − 2) + E

32 Show that the zeros of

y = x4 − 5x3 + 5x2 − 10x + 6

lie between x = 0 and x = 5.

33 Show that the roots α, β of the equation

x2 + 4x + 1 = 0

satisfy the equations

α 2 + β 2 = 14
α 3 + β 3 = −52

Hence find the quadratic equations whose roots are

(a) α 2 and β 2 (b) α 3 and β 3

34 Use Lagrange’s formula to find the formula 
for the cubic function that passes through the
points (5.2, 6.408), (5.5, 16.125), (5.6, 19.816) 
and (5.8, 27.912).

35 Find a formula for the quadratic function whose
graph passes through the points (1, 403), (3, 471)
and (7, 679).

36 (a) Show that if the equation ax3 + bx + c = 0 has
a repeated root α then 3aα 2 + b = 0.

(b) A can is to be made in the form of a circular
cylinder of radius r (in cm) and height h (in cm), 
as shown in Figure 2.36. Its capacity is to be 

....

0.5 l. Show that the surface area A (in cm2) of the
can is

Using the result of (a), deduce that A has a
minimum value A* when 6πr2 − A* = 0. Hence find
the corresponding values of r and h.

37 A box is made from a sheet of plywood, 2 m × 1 m,
with the waste shown in Figure 2.37(a). Find the
maximum capacity of such a box and compare it
with the capacity of the box constructed without the
wastage, as shown in Figure 2.37(b).

A r
r

    = +2
10002π

38 Two ladders, of lengths 12 m and 8 m, lean against
buildings on opposite sides of an alley, as shown 
in Figure 2.38. Show that the heights x and y

Figure 2.36

Figure 2.37
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2.5 Rational functions
Rational functions have the general form

where p(x) and q(x) are polynomials. If the degree of p is less than the degree of q, 
f (x) is said to be a strictly proper rational function. If p and q have the same degree
then f (x) is a proper rational function. It is said to be an improper rational function
if the degree of p is greater than the degree of q.

An improper or proper rational function can always be expressed as a polynomial
plus a strictly proper rational function, for example, by algebraic division.

Example 2.30 Express the improper rational function

as the sum of a polynomial function and a strictly proper rational function.

Solution We can record the process of division in a manner similar to that of Example 2.22.

Step 1

x2 − 2x + 3)3x4 + 2x3 − 5x2 + 6x − 7(

In order to produce the term 3x4, x2 − 2x + 3 must be multiplied by 3x2. Do this and 
subtract the result from 3x4 + 2x3 − 5x2 + 6x − 7.

x2 − 2x + 3)3x4 + 2x3 − 5x2 + 6x − 7(3x2

3x4 − 6x3 + 9x2

8x3 − 14x2 + 6x − 7

Step 2
Now repeat the process on the polynomial 8x3 − 14x2 + 6x − 7. In this case, in order to
eliminate the term 8x3 we must multiply x2 − 2x + 3 by 8x.

f x
x x x x

x x
( )  

        

    
=

+ − + −
− +

3 2 5 6 7

2 3

4 3 2

2

f x
p x

q x
( )  

( )

( )
=
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(in metres) reached by the tops of the ladders in 
the positions shown satisfy the equations

and x2 − y2 = 80

Show that x satisfies the equation

x4 − 8x3 − 80x2 + 640x − 1280 = 0

1 1 1

4x y
    + =

and that the width of the alley is given by ÷(122 − x0
2),

where x0 is the positive root of this equation. By first
tabulating the polynomial over a suitable domain
and then drawing its graph, estimate the value of x0

and the width of the alley. Check your solution of
the quartic (to 2dp) using a suitable software
package.

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 114



..

2.5 RATIONAL FUNCTIONS 115

..

x2 − 2x + 3)3x4 + 2x3 − 5x2 + 6x − 7(3x2 + 8x

3x4 − 6x3 + 9x2

8x3 − 14x2 + 6x − 7

8x3 − 16x2 + 24x

2x2 − 18x − 7

Step 3
Finally, to eliminate the 2x2 term, we must multiply x2 − 2x + 3 by 2.

x2 − 2x + 3)3x4 + 2x3 − 5x2 + 6x − 7(3x2 + 8x + 2

3x4 − 6x3 + 9x2

8x3 − 14x2 + 6x − 7

8x3 − 16x2 + 24x

2x2 − 18x − 7

2x2 − 4x + 6

−14x − 13

We cannot eliminate the −14x − 13 terms, so we have

Any strictly proper rational function can be expressed as a sum of simpler functions whose
denominators are linear or irreducible quadratic functions. For example:

These simpler functions are called the partial fractions of the rational function, and are
often useful in the mathematical analysis and design of engineering systems. Notice
that strictly the equality above is an identity since it is true for all values of x in the
domain of the expressions. Here we are following the common practice of writing =
instead of ≡ (as we did in Section 1.3.3).

The construction of the partial fraction form of a rational function is the inverse pro-
cess to that of collecting together separate rational expressions into a single rational
function. For example:

1
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But it is clear from this example that reversing the process (working backwards from
the final expression) is not easy, and we require a different method in order to find the
partial fractions of a given function. To describe the method in its full generality is easy
but difficult to understand, so we will apply the method to a number of commonly
occurring types of function in the next section before stating the general algorithm.

2.5.1 Partial fractions

In this section we will illustrate how proper rational functions of the form p(x)/q(x) may
be expressed in partial fractions.

(a) Distinct linear factors

Each distinct linear factor, of the form (x + α), in the denominator q(x) will give rise to 

a partial fraction of the form , where A is a real constant.

Example 2.31 Express in partial fractions the rational function

Solution In this case we have two distinct linear factors (x − 1) and (x + 2) in the denominator,
so the corresponding partial fractions are of the form

where A and B are constants to be determined. Since both expressions are equal and
their denominators are identical we must therefore make their numerators equal, yielding

3x = A(x + 2) + B(x − 1)

This identity is true for all values of x, so we can find A and B by setting first x = 1 and
then x = −2. So

x = 1 gives 3 = A(3) + B(0); that is A = 1

and

x = −2 gives −6 = A(0) + B(−3); that is B = 2
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Thus

When the denominator q(x) of a strictly proper rational function is a product of linear 

factors, as in Example 2.31, there is a quick way of expressing in partial fractions.

Considering again Example 2.31, if

then to obtain A simply cover up the factor (x − 1) in

and evaluate what is left at x = 1, giving

Likewise, to obtain B cover up the factor (x + 2) in the left-hand side and evaluate what
is left at x = −2, giving

Thus, as before,

This method of obtaining partial fractions is called the cover up rule.

Example 2.32 Using the cover up rule, express in partial fractions the rational function

Solution The corresponding partial fractions are of the form
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Using the cover up rule

so that

Because it is easy to make an error with this process, it is sensible to check the answers
obtained. This can be done by using a ‘spot’ value to check that the left- and right-hand
sides yield the same value. When doing this avoid using x = 0 or any of the special values
of x that were used in finding the coefficients.

For example, taking x = 1 in the partial fraction expansion of Example 2.32, we have

left-hand side

right-hand side

giving a positive check.

(b) Repeated linear factors

Each k times repeated linear factor, of the form (x − α)k, in the denominator q(x) will
give rise to a partial fraction of the form

where A1, A2, … , Ak are real constants.

Example 2.33 Express as partial fractions the rational function

Solution In this case the denominator consists of the distinct linear factor (x + 2) and the 
twice repeated linear factor (x − 1). Thus, the corresponding partial fractions are of 
the form
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which gives

3x + 1 = A(x − 1)(x + 2) + B(x + 2) + C(x − 1)2

Setting x = 1 gives 4 = B(3) and . Setting x = −2 gives −5 = C(−3)2 and .
To obtain A we can give x any other value, so taking x = 0 gives

1 = (−2)A + 2B + C

and substituting the values of B and C gives . Hence

(c) Irreducible quadratic factors

Each distinct irreducible quadratic factor, of the form (ax2 + bx + c), in the denomin-
ator q(x) will give rise to a partial fraction of the form

where A and B are real constants.

Example 2.34 Express as partial fractions the rational function

Solution In this case the denominator consists of the distinct linear factor (x − 2) and the distinct
irreducible quadratic factor (x2 + x + 1). Thus, the corresponding partial fractions are of
the form

giving

5x = (Ax + B)(x − 2) + C(x2 + x + 1)

Setting x = 2 enables us to calculate C:

10 = (2A + B)(0) + C(7) and C  = 10
7
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Here, however, we cannot select special values of x that give A and B immediately,
because x2 + x + 1 is an irreducible quadratic and cannot be factorized. Instead we make
use of Property (i) of polynomials, described in Section 2.4.1, which stated that if two
polynomials are equal in value for all values of x then the corresponding coefficients
are equal. Applying this to

5x = (Ax + B)(x − 2) + C(x2 + x + 1)

we see that the coefficient of x2 on the right-hand side is A + C while that on the left-
hand side is zero. Thus

A + C = 0 and A =

Similarly the coefficient of x0 on the right-hand side is −2B + C and that on the left-
hand side is zero, and we obtain −2B + C = 0, which implies . Hence

Example 2.35 Express as partial fractions the rational function

Solution In this example the numerator has the same degree as the denominator.
The first step in such examples is to divide the bottom into the top to obtain a 

polynomial and a strictly proper rational function. Thus

We then apply the partial-fraction process to the remainder, setting

giving

6 − 3x = A(x + 2) + B(x − 1)

Setting first x = 1 and then x = −2 gives A = 1 and B = −4 respectively. Thus
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Summary of method

In general, the method for finding the partial fractions of a given function f (x) = p(x)/q(x) consists of
the following steps.

Step 1: If the degree of p is greater than or equal to the degree of q, divide q into p to obtain

where the degree of s is less than the degree of q.

Step 2: Factorize q(x) fully into real linear and irreducible quadratic factors, collecting together all
like factors.

Step 3: Each linear factor ax + b in q(x) will give rise to a fraction of the type

(Here a and b are known and A is to be found.)
Each repeated linear factor (ax + b)n will give rise to n fractions of the type

Each irreducible quadratic factor ax2 + bx + c in q(x) will give rise to a fraction of the type

Each repeated irreducible quadratic factor (ax2 + bx + c)n will give rise to n fractions of the type

Put p(x)/q(x) (or s(x)/q(x), if that case occurs) equal to the sum of all the fractions involved.

Step 4: Multiply both sides of the equation by q(x) to obtain an identity involving polynomials, from
which the multiplying constants of the linear combination may be found (because of Property (i) in
Section 2.4.1).

Step 5: To find these coefficients, two strategies are used.

l Strategy 1: Choose special values of x that make finding the values of the unknown coefficients
easy: for example, choose x equal to the roots of q(x) = 0 in turn and use the ‘cover up’ rule.

l Strategy 2: Compare the coefficients of like powers of x on both sides of the identity. Starting
with the highest and lowest powers usually makes it easier.

Strategy 1 may leave some coefficients undetermined. In that case we complete the process using
Strategy 2.

Step 6: Lastly, check the answer either by choosing a test value for x or by putting the partial
fractions over a common denominator.
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There is no command in MATLAB that will symbolically express rational functions
in partial fractions. However use of the maple command in MATLAB enables us 
to access MAPLE commands directly. Thus, adopting the convert command in
MAPLE a rational function f(x) may be expressed in partial fraction ‘pf ’ form using,
in MATLAB, the commands

syms x

pf = maple(‘convert’,f(x),‘ parfrac’,x);

pretty(pf)

For example, considering Example 2.32, the commands

syms x

pf = maple(‘convert’,(2*x + 1)/((x – 2)*(x + 1)*(x - 3)),

‘parfrac’,x);

pretty(pf)

return

-1/12 + 7/4 - 5/3 

confirming the answer in the example.
For practice, check the answers to Examples 2.33–2.35.

2.5.2 Exercises

Where appropriate, check your answers using MATLAB or MAPLE.

1

x - 2

1

x - 3

1

x + 1

39 Express the following improper rational functions
as the sum of a polynomial function and a strictly
proper rational function.

(a) f (x) = (x2 + x + 1)/[(x + 1)(x − 1)]

(b) f (x) = (x5 − x4 − x + 1)/(x2 + x + 1)

40 Express as a single fraction
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41 Express as partial fractions

(a) (b)

(c) (d)

(e) (f)

42 Express as partial fractions
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2.5.3 Asymptotes

Sketching the graphs of rational functions gives rise to the concept of an asymptote. To
illustrate, let us consider the graph of the function

and that of its inverse

Expressing x/(x + 1) as (x + 1 − 1)/(x + 1) = 1 − 1/(x + 1), we see that as x gets larger
and larger 1/(x + 1) gets smaller and smaller, so that x/(x + 1) approaches closer and
closer to the value 1. This is illustrated in the graph of y = f (x) shown in Figure 2.39(a).
The line y = 1 is called a horizontal asymptote to the curve, and we note that the graph
of f (x) approaches this asymptote as | x | becomes large.

 
y f x
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x
x  ( )  

  
    (     )= =
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−1

1
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y f x

x

x
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    (   )= =
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The graph of the inverse function y = f −1(x) is shown in Figure 2.39(b), and the line
x = 1 is called a vertical asymptote to the curve.

The existence of asymptotes is a common feature of the graphs of rational func-
tions. They feature in various engineering applications, such as in the plotting of root
locus plots in control engineering. In more advanced applications of mathematics 
to engineering the concept of an asymptote is widely used for the purposes of 
making approximations. Asymptotes need not necessarily be horizontal or vertical
lines; they may be sloping lines or indeed non-linear graphs, as we shall see in 
Example 2.37.

Figure 2.39
Horizontal and 
vertical asymptotes.
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Example 2.36 Sketch the graph of the function

(x ≠ 3)

and find the values of x for which

Solution We can see from the formula for y that the line x = 3 is a vertical asymptote of the func-
tion. As x gets closer and closer to the value x = 3 from the left-hand side (that is, x � 3),
y gets larger and larger and is positive. As x gets closer and closer to x = 3 from the right-
hand side (that is, x � 3), y is negative and large. As x gets larger and larger, y gets
smaller and smaller for both x � 0 and x � 0, so y = 0 is a horizontal asymptote. Thus
we obtain the sketch shown in Figure 2.40. By drawing the line y = 2 on the sketch, we
see at once that

for x � and x � 3. This result was obtained algebraically in Example 1.24. Generally
we use a mixture of algebraic and graphical methods to solve such problems.
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Example 2.37 Sketch the graph of the function

(x ≠ −1)

Solution We begin the task by locating points at which the function is zero. Now f (x) = 0 implies
that x2 − x − 6 = (x − 3)(x + 2) = 0, from which we deduce that x = 3 and x = −2 are
zeros of the function. Thus the graph y = f (x) crosses the x axis at x = −2 and x = 3.

Next we locate the points at which the denominator of the rational function is zero,
which in this case is x = −1. As x approaches such a point, the value of f (x) becomes
infinitely large in magnitude, and the value of the rational function is undefined at such
a point. Thus the graph of y = f (x) has a vertical asymptote at x = −1. (There is usually

y f x
x x

x
  ( )  

    

  
= =

− −
+

2 6

1

Figure 2.40

Graph of .y
x

  
  

=
−
1

3

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 124



..

2.5 RATIONAL FUNCTIONS 125

a vertical asymptote to the graph of the rational function y = p(x)/q(x) at points where
the denominator q(x) = 0.)

Next we consider the behaviour of the function as x gets larger and larger, that is 
as x → ∞ or x → −∞. To do this, we first simplify the rational function by algebraic
division, giving

As x → ±∞, 4/(x + 1) → 0. Thus, for large values of x, both positive and negative,
4/(x + 1) becomes negligible compared with x, so that f (x) tends to behave like x − 2.
Thus the line y = x − 2 is also an asymptote to the graph of y = f (x).

Having located the asymptotes, we then need to find how the graph approaches
them. When x is large and positive the term 4/(x + 1) will be small but positive, so that
f (x) is slightly less than x − 2. Hence the graph approaches the asymptote from below.
When x is large and negative the term 4/(x + 1) is small but negative, so the graph
approaches the asymptote from above. To consider the behaviour of the function near
x = −1, we examine the factorized form

When x is slightly less than −1, f (x) is positive. When x is slightly greater than −1, f (x)
is negative.

We are now in a position to sketch the graph of y = f (x) as shown in Figure 2.41.
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Modern computational aids have made graphing functions much easier, but to obtain
graphs of a reasonably good quality some preliminary analysis is always necessary.
This helps to select the correct range of values for the independent variable and for the
function. For example, asking a computer package to plot the function

y
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13 34 25
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Figure 2.41

Graph of y
x x
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2 6
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without prior analysis might result in the graph shown in Figure 2.42(a). A little analysis
shows that the function is undefined at x = 1 and 2. Excluding these points from the range
of values for x produces the more acceptable plot shown in Figure 2.42(b), although it
is not clear from either plot that the graph has a horizontal asymptote y = 13. Clearly,
much more preliminary work is needed to obtain a good quality graph of the function.

2.5.4 Parametric representation

In some practical situations the equation describing a curve in cartesian coordinates 
is very complicated and it is easier to specify the points in terms of a parameter. Some-
times this occurs in a very natural way. For example, in considering the trajectory of a
projectile, we might specify its height and horizontal displacement separately in terms
of the flight time. In the design of a safety guard for a moving part in a machine we
might specify the position of the part in terms of an angle it has turned through. Such
representation of curves is called parametric representation and we will illustrate 
the idea with an example. Later, in Section 2.6.6, we shall consider the polar form of 
specifying the equation of a curve.

Example 2.38 Sketch the graph of the curve given by x = t3, y = t2 (t � RR).

Solution The simplest approach to this type of curve sketching using pencil and paper is to draw
up a table of values, as in Figure 2.43.

t −4 −3 −2 −1 0 1 2 3 4

x −64 −27 −8 −1 0 1 8 27 64

y 16 9 4 1 0 1 4 9 16

Clearly in this example we need to evaluate x and y at intermediate values of t to obtain
a good drawing. A sketch is shown in Figure 2.44.

Figure 2.42

Figure 2.43
Table of values for
Example 2.38.
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Figure 2.44
Graph of the 
semi-cubical parabola
x = t3, y = t2 (t � RR).

Solution The velocity time graphs in the horizontal and vertical directions are shown in Figures
2.45(a) and (b). The horizontal displacement after time t is x = ut (velocity × time), and
the vertical displacement is y = (v − gt)t (average velocity × time). Thus the trajectory
of the projectile is given (parametrically) by

x = ut, y = vt − gt2

Since x = ut we may write t = x/u. Substituting this into the expression for y gives

which is the equation of a parabola.
Completing the square we obtain

from which we can see that the projectile attains its maximum height, at x = uv/g.

The range of the projectile is found by setting y = 0 which gives x = . The path
of the projectile is illustrated in Figure 2.45(c).
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Figure 2.45 (a) Velocity – time graph (horizontal). (b) Velocity – time graph (vertical). (c) Path of a projectile.

Example 2.39 Show that the horizontal and vertical displacements, x, y, of a projectile at time t are x
and y, respectively, where x = ut and y = vt − gt2 where u and v are the initial hori-
zontal and vertical velocities and g is the acceleration due to gravity. Show that its tra-
jectory is a parabola, that it attains a maximum height v2/2g and range 2uv/g.

1
2
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43 Plot the graphs of the functions

(a) (b)

(c) (d)

for the domain −3 � x � 3. Find the points on each
graph at which they intersect with the line y = x.

44 Sketch the graphs of the functions given below,
locating their turning points and asymptotes.

(a) (b)

(c)

(Hint: Writing (a) as

y = (÷x − ÷(15/x))2 + 2÷15 − 8

shows that there is a turning point at x = ÷15.)
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In MATLAB the command

ezplot(x,y)

plots the parametrically defined planar curve x = x(t), y = y(t) over the default
domain 0 � t � π, whilst the command

ezplot(x,y,[tmin,tmax])

plots x = x(t), y = y(t) over the domain tmin � t � tmax.
Check that the commands

syms x y t

x = t3; y = t2;

ezplot(x,y, [–4,4] )

return the plot of Figure 2.44.

2.5.5 Exercises

Check the graphs obtained using MATLAB or MAPLE.

45 Plot the curve whose parametric equations 
are x = t (t + 4), y = t + 1. Show that it is a
parabola.

46 Sketch the curve given parametrically by 

x = t 2 − 1, y = t 3 − t

showing that it describes a closed curve as 
t increases from −1 to 1.

47 Sketch the curve (the Cissoid of Diocles) given by

Show that the cartesian form of the curve is

y2 = x3/(2 − x)

x
t

t
y

t

t
  

  
,      

  
=

+
=

+
2

1

2

1

2

2

3

2

2.6 Circular functions
The study of circular functions has a long history. The earliest known table of a circu-
lar function dates from 425 BCE and was calculated using complicated geometrical
methods by the Greek astronomer-mathematician Hipparchus. He calculated the lengths
of chords subtended by angles at the centre of a circle from 0° to 60° at intervals of °
(see Figure 2.46(a)). His work was developed by succeeding generations of Greek

1
2
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2.6 CIRCULAR FUNCTIONS 129

mathematicians culminating in the publication in the second century CE of a book by
Ptolemy. His book Syntaxis, commonly called ‘The Great Collection’, was translated
first into Arabic, where it became Al-majisti and then into Latin, Almagestus.

Another contribution came from the Hindu mathematician Aryabhata (about 500 CE)
who developed a radial measure related to angle measures and the function we now 
call the sine function (see Figure 2.46(b)). His work was first translated from Hindi into
Arabic and then from Arabic into Latin. The various terms we use in studying these
functions reflect this rich history of applied mathematics (360° from the Babylonians
through the Greeks, degrees from the Latin degradus, minutes from pars minuta, sine
from the Latin sinus, a mistranslation of the Hindu-Arabic jiva).

There are two approaches to the definition of the circular or trigonometric func-
tions and this is reflected in their double name. One approach is static in nature and the
other dynamic.

2.6.1 Trigonometric ratios

The static approach began with practical problems of surveying and gave rise to the
mathematical problems of triangles and their measurement that we call trigonometry.
We consider a right-angled triangle ABC, where ∠CAB is the right-angle, and define the
sine, cosine and tangent functions in relation to that triangle. Thus in Figure 2.47 we have

The way in which these functions were defined led to their being called the ‘trigono-
metrical ratios’. The context of the applications implied that the angles were measured in
the sexagesimal system (degees, minutes, seconds): for example, 35°21′41″ which today
is written in the decimal form 35.36°. In modern textbooks this is shown explicitly,
writing, for example, sin 30°, or cos 35.36°, or tan θ°, so that the independent variable
θ is a pure number. For example, by considering the triangles shown in Figure 2.48(a),
we can readily write down the trigonometric ratios for 30°, 45° and 60°, as indicated in
the table of Figure 2.48(b).

tangent tan
opposite

adjacent
θ θ° = ° = =      

c

b

cosine cos
adjacent

hypotenuse
θ θ° = ° = =      

b

a

sine sin
opposite

hypotenuse
θ θ° = ° = =      

c

a

.. ..

Figure 2.46
(a) Hipparchus: chords
as a function of angle,
expressed as parts of a
radius. (b) Aryabhata:
half-chords as a
function of angle,
expressed as parts 
of the arc subtended
by the angle with 
π � 31 416/10 000.

Figure 2.47
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To extend trigonometry to problems involving triangles that are not necessarily
right-angled, we make use of the sine and cosine rules. Using the notation of Figure 2.49
(note that it is usual to label the side opposite an angle by the corresponding lower-case
letter), we have, for any triangle ABC:

The sine rule

(2.15)

The cosine rule

a2 = b2 + c2 − 2bc cos A (2.16)

or

b2 = a2 + c2 − 2ac cos B

or

c2 = a2 + b2 − 2ab cos C

Example 2.40 Consider the surveying problem illustrated in Figure 2.50. The height of the tower is to
be determined using the data measured at two points A and B, which are 20 m apart.
The angles of elevation at A and B are 28°53′ and 48°51′ respectively.

a

A

b

B

c

Csin sin sin
    = =

130 FUNCTIONS
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Figure 2.48

Figure 2.49

Figure 2.50
Tower of 
Example 2.40.

Solution By elementary geometry

∠ACB = 48°51′ − 28°53′ = 19°58′
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2.6 CIRCULAR FUNCTIONS 131

Using the sine rule, we have

=

so that

CB = 20 sin(28°53′)/sin(19°58′)

The height required CD is given by

CD = CB sin(48°51′)

= 20 sin(28°53′) × sin(48°51′)/sin(19°58′)

= 21.3027

Hence the height of the tower is 21.3 m.

2.6.2 Exercises

AB
sin(19°58′)

CB
sin(28°53′)

....

48 In the triangles shown in Figure 2.51, calculate 
sin θ°, cos θ° and tan θ°. Use a calculator to
determine the value of θ in each case.

Figure 2.51

49 In the triangle ABC shown in Figure 2.52,
calculate the lengths of the sides AB and BC.

Figure 2.52

Figure 2.53 Optical angle of mural of Question 54.

51 Calculate the value of θ where

cos θ° = 2 cos230° − 1

52 In triangle ABC, angle A is 40°, angle B is 60°
and side BC is 20 mm. Calculate the lengths of
the remaining two sides.

53 In triangle ABC, the angle C is 35° and the sides AC
and BC have lengths 42 mm and 73 mm respectively.
Calculate the length of the third side AB.

54 The lower edge of a mural, which is 4 m high, is 
2 m above an observer’s eye level, as shown in
Figure 2.53. Show that the optical angle θ° is 
given by

where d m is the distance of the observer from 
the mural. See Review exercises Question 23.

 
cos   

  

[(   )(   )]
θ° =

+
+ +
12

4 36

2

2 2

d

d d÷

50 Calculate the value of θ where

sin θ° = sin 10° cos 20° + cos 10° sin 20°
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2.6.3 Circular functions

The dynamic definition of the functions arises from considering the motion of a point
P around a circle, as shown in Figure 2.54. Many practical mechanisms involve this
mathematical model.

The distance OP is one unit, and the perpendicular distance NP of P from the initial
position OP0 of the rotating radius is the sine of the angle ∠P0OP. Note that we are 
measuring NP positive when P is above OP0 and negative when P is below OP0.
Similarly, the distance ON defines the cosine of ∠P0OP as being positive when N is to
the right of O and negative when it is to the left of O.

Because we are concerned with circles and rotations in these definitions, it is natural
to use circular measure so that ∠P0OP, which we denote by x, is measured in radians.
In this case we write simply sin x or cos x, where, as before, x is a pure number. One
radian is the angle that, in the notation of Figure 2.54, is subtended at the centre when
the arclength P0P is equal to the radius OP0. Obviously therefore

180° = π radians

a result we can use to convert degrees to radians and vice versa. It also follows from
the definition of a radian that

(a) the length of the arc AB shown in Figure 2.55(a), of a circle of radius r, subtending
an angle θ radians at the centre of the circle, is given by

length of arc = rθ (2.17)

(b) the area of the sector OAB of a circle of radius r, subtending an angle θ radians at
the centre of the circle (shown shaded in Figure 2.55(b)), is given by

area of sector = θ (2.18)1
2

2r
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Figure 2.54

Figure 2.55
(a) Arc of a circle. 
(b) Sector of a circle.

To obtain the graph of sin x, we simply need to read off the values of PN as the point
P moves around the circle, thus generating the graph of Figure 2.56. Note that as we
continue around the circle for a second revolution (that is, as x goes from 2π to 4π) the
graph produced is a replica of that produced as x goes from 0 to 2π, the same being true
for subsequent intervals of 2π. By allowing P to rotate clockwise around the circle, we
see that sin(−x) = −sin x, so that the graph of sin x can be extended to negative values
of x, as shown in Figure 2.57.

Since the graph replicates itself for every interval of 2π,

sin(x + 2πk) = sin x, k = 0, ±1, ±2, . . . (2.19)

and the function sin x is said to be periodic with period 2π.
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Figure 2.56
Generating the 
graph of sin x.

Figure 2.57
Graph of y = sin x.

Figure 2.58
Generating the 
graph of cos x.

Figure 2.59
Graph of y = cos x.

To obtain the graph of y = cos x, we need to read off the value of ON as the point P
moves around the circle. To make the plotting of the graph easier, we first rotate the 
circle through 90° anticlockwise and then proceed as for y = sin x to produce the graph of
Figure 2.58. By allowing P to rotate clockwise around the circle, we see that cos(−x) =
cos x, so that the graph can be extended to negative values of x, as shown in Figure 2.59.

Again, the function cos x is periodic with period 2π, so that

cos(x + 2πk) = cos x, k = 0, ±1, ±2, … (2.20)

Note also that the graph of y = sin x is that of y = cos x moved π units to the right, 
while that of y = cos x is the graph of y = sin x moved π units to the left. Thus, from 
Section 2.2.3,

sin x = cos(x − π) or cos x = sin(x + π) (2.21)1
2

1
2

1
2

1
2
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The definition of tan x is similar, and makes obvious the origin of the name ‘tangent’
for this function. In Figure 2.60 the rotating radius OP is extended until it cuts the tan-
gent P0M to the circle at the initial position P0. The length P0M is the tangent of ∠P0OP.
Allowing P to move around the circle, we generate the graph shown in Figure 2.60.
Again, by allowing P to move in a clockwise direction, we have tan(−x) = −tan x, and the
graph can readily be extended to negative values of x, as shown in Figure 2.61. In this
case the graph replicates itself every interval of duration π, so that

tan(x + πk) = tan x, k = 0, ±1, ±2, … (2.22)

and tan x is of period π.
These definitions of sine, cosine and tangent show how they are associated with the

properties of the circle, and consequently they are called circular functions. Often in
an engineering context, the static and dynamic uses of these functions occur simultan-
eously. Consequently, we often refer to them as trigonometric functions.

Using the results (2.19), (2.20) and (2.22), it is possible to calculate the values of the
trigonometric functions for angles greater than π using their values for angles between 
zero and π. The rule is: take the acute angle that the direction makes with the initial
direction, find the sine, cosine or tangent of this angle and multiply by +1 or −1 according
to the scheme of Figure 2.62. For example

1
2

1
2

Figure 2.60
Generating the graph
of tan x

Figure 2.62

Figure 2.61
Graph of y = tan x
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cos(135°) = cos(180° − 45°) = −cos 45° = −÷
sin(330°) = sin(360° − 30°) = −sin 30° = −

tan(240°) = tan(180° + 60°) = tan 60° = ÷3

As we frequently move between measuring angles in degrees and in radians, it is 
important to check that your calculator is in the correct mode.

If the radius OP is rotating with constant angular velocity ω (in rad s−1) about O then
x = ω t, where t is the time (in s). The time T taken for one complete revolution is given
by ωT = 2π; that is, T = 2π/ω. This is the period of the motion. In one second the radius
makes ω /2π such revolutions. This is the frequency, ν. Its value is given by

Thus, the function y = A sin ω t, which is associated with oscillatory motion in engineer-
ing, has period 2π/ω and amplitude A. The term amplitude is used to indicate the 
maximum distance of the graph of y = A sin ω t from the horizontal axis.

Example 2.41 Sketch using the same set of axes the graphs of the functions

(a) y = 2 sin t (b) y = sin t (c) y = sin t

and discuss.

Solution The graphs of the three functions are shown in Figure 2.63. The functions (a), (b) and
(c) have amplitudes 2, 1 and respectively. We note that the effect of changing the
amplitude is to alter the size of the ‘humps’ in the sine wave. Note that changing only
the amplitude does not alter the points at which the graph crosses the x axis. All three
functions have period 2π.

1
2

1
2

ν       = = =frequency
period

1

2

ω
π

1
2

1
2

Figure 2.63

Example 2.42 Sketch using the same axes the graphs of the functions

(a) y = sin t (b) y = sin 2t (c) y = sin t

and discuss.

Solution The graphs of the three functions (a), (b) and (c) are shown in Figure 2.64. All three
have amplitude 1 and periods 2π, π and 4π respectively. We note that the effect of
changing the parameter ω in sin ω t is to ‘squash’ or ‘stretch’ the basic sine wave sin t.
All that happens is that the basic pattern repeats itself less or more frequently; that is,
the period changes.

1
2
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In engineering we frequently encounter the sinusoidal function

y = A sin(ω t + α), ω � 0 (2.23)

Following the discussion in Section 2.2.4, we have that the graph of this function is
obtained by moving the graph of y = A sin ω t horizontally:

units to the left if α is positive

or

units to the right if α is negative

The sine wave of (2.23) is said to ‘lead’ the sine wave A sin ω t when α is positive
and to ‘lag’ it when α is negative.

Example 2.43 Sketch the graph of y = 3 sin(2t + π).

Solution First we sketch the graph of y = 3 sin 2t, which has amplitude 3 and period π, as 
shown in Figure 2.65(a). In this case α = π and ω = 2, so it follows that the graph 
of y = 3 sin(2t + π) is obtained by moving the graph of y = 3 sin 2t horizontally to 
the left by π units. This is shown in Figure 2.65(b).1

6

1
3

1
3

1
3

| |α
ω

α
ω
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Figure 2.64

Figure 2.65
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2.6 CIRCULAR FUNCTIONS 137

Example 2.44 Consider the crank and connecting rod mechanism illustrated in Figure 2.66. Determine
a functional relationship between the displacement of Q and the angle through which
the crank OP has turned.

.. ..

Solution As the crank OP rotates about O, the other end of the connecting rod moves backwards
and forwards along the slide AB. The displacement of Q from its initial position
depends on the angle through which the crank OP has turned. A mathematical model
for the mechanism replaces the crank and connecting rod, which have thickness as well
as length, by straight lines, which have length only, and we consider the motion of the
point Q as the line OP rotates about O, with PQ fixed in length and Q constrained to
move on the line AB, as shown in Figure 2.67. We can specify the dependence of Q on
the angle of rotation of OP by using some elementary trigonometry. Labelling the
length of OP as r units, the length of PQ as l units, the length of OQ as y units and the
angle ∠AOP as x radians, and applying the cosine formula gives

Figure 2.66
Crank and connecting
rod mechanism.

Figure 2.67
Model of crank and
connecting rod.

l2 = r2 + y2 − 2yr cos x

which implies

(y − r cos x)2 = l2 − r2 + r2 cos2x

= l2 − r2 sin2x

and

y = r cos x + ÷(l 2 − r2 sin2x)

Thus for any angle x we can calculate the corresponding value of y. We can represent
this relationship by means of a graph, as shown in Figure 2.68.Figure 2.68
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In MATLAB the circular functions are represented by sin(x), cos(x) and
tan(x) respectively. (Note that MATLAB uses radians in function evaluation.)
Also in MATLAB pi (Pi in MAPLE) is a predefined variable representing the
quantity π. As an example check that the commands

t = –2*pi : pi/90 : 2*pi;

y1 = sin(t); y2 = sin(2*t); y3 = sin(0.5*t);

plot(t, y1, ‘-’,t ,y2, ‘- -’, t, y3, ‘-.’)

output the basic plots of Figure 2.64.
In symbolic form graphs may be produced using the ezplot command. Check

that the commands

syms t

y = sym(3*sin(2*t + pi/3));

ezplot(y,[–2*pi,2*pi] )

grid

produce the plot of Figure 2.65(b).

2.6.4 Trigonometric identities

Other circular functions are defined in terms of the three basic functions sine, cosine
and tangent. In particular, we have

the secant function

the cosecant function

the cotangent function

In MATLAB these are determined by sec(x), csc(x) and cot(x) respectively.

From the basic definitions it is possible to deduce the following trigonometric identities
relating the functions.

Triangle identities

cos2x + sin2x = 1 (2.24a)

1 + tan2x = sec2x (2.24b)

1 + cot2x = cosec2x (2.24c)

The first of these follows immediately from the use of Pythagoras’ theorem in a
right-angled triangle with a unit hypotenuse. Dividing (2.24a) through by cos2x yields
identity (2.24b), and dividing through by sin2x yields identity (2.24c).

cot
tan

x
x

  ,=
1

cosec
sin

x
x

  ,=
1

sec
cos

x
x

  ,=
1

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 138
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Compound-angle identities

sin(x + y) = sin x cos y + cos x sin y (2.25a)

sin(x − y) = sin x cos y − cos x sin y (2.25b)

cos(x + y) = cos x cos y − sin x sin y (2.25c)

cos(x − y) = cos x cos y + sin x sin y (2.25d)

(2.25e)

(2.25f )

Sum and product identities

sin x + sin y = 2 sin (x + y) cos (x − y) (2.26a)

sin x − sin y = 2 sin (x − y) cos (x + y) (2.26b)

cos x + cos y = 2 cos (x + y) cos (x − y) (2.26c)

cos x − cos y = −2 sin (x + y) sin (x − y) (2.26d)

From identities (2.25a), (2.25c) and (2.25e) we can obtain the double-angle formulae.

sin 2x = 2 sin x cos x (2.27a)

cos 2x = cos2x − sin2x (2.27b)

= 2 cos2x − 1 (2.27c)

= 1 − 2 sin2x (2.27d)

(2.27e)

(Writing x = θ /2 we can obtain similar identities called half-angle formulae.)

Example 2.45 Express cos(π/2 + 2x) in terms of sin x and cos x.

Solution Using identity (2.25c) we obtain

cos(π/2 + 2x) = cosπ/2 cos 2x − sin π/2 sin 2x

Since cosπ/2 = 0 and sin π/2 = 1, we can simplify to obtain

cos(π/2 + 2x) = −sin 2x

Now using the double-angle formula (2.27a), we obtain

cos(π/2 + 2x) = −2 sin x cos x

tan
tan

tan
2

2

1 2
x

x

x
  

  
=

−

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

tan
tan tan

tan tan
(   )  

  

   
x y

x y

x y
− =

−
+1

tan
tan tan

tan tan
(   )  

  

   
x y

x y

x y
+ =

+
−1
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Example 2.46 Show that

sin(A + B) + sin(A − B) = 2 sin A cos B

and deduce that

sin x + sin y = 2 sin (x + y) cos (x − y)

Hence sketch the graph of y = sin 4x + sin 2x.

Solution Using identities (2.25a) and (2.25b) we have

sin(A + B) = sin A cos B + cos A sin B

sin(A − B) = sin A cos B − cos A sin B

Adding these two identities gives

sin(A + B) + sin(A − B) = 2 sin A cos B

Now setting A + B = x and A − B = y, we see that A = (x + y) and B = (x − y) so that

sin x + sin y = 2 sin (x + y) cos (x − y)

which is identity (2.26a). (The identities (2.26b–d) can be proved in the same manner.)
Applying the formula to

y = sin 4x + sin 2x

we obtain

y = 2 sin 3x cos x

The graphs of y = sin 3x and y = cos x are shown in Figures 2.69(a) and (b). The 
combination of these two graphs yields Figure 2.69(c). This type of combination of
oscillations in practical situations leads to the phenomena of ‘beats’.

1
2

1
2

1
2

1
2

1
2

1
2
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The identities 2.26(a–d) are useful for turning the sum or difference of sines and cosines
into a product of sines and/or cosines in many problems. But the reverse process is 
also useful in others! So we summarize here the expressing of products as sums or 
differences.

Figure 2.69 (a) y = sin 3x; (b) y = cos x; (c) y = 2 sin 3x cos x
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sin x cos y = [sin(x + y) + sin(x − y)] (2.28a)

cos x sin y = [sin(x + y) − sin(x − y)] (2.28b)

cos x cos y = [cos(x + y) + cos(x − y)] (2.28c)

sin x sin y = − [cos(x + y) − cos(x − y)] (2.28d)

Note the minus sign before the bracket in (2.28d). Before the invention of calculat-
ing machines, these identities were used to perform multiplications. Commonly the
mathematical tables used only tabulated the functions up to 45° to save space so that all
four identities were used.

Example 2.47 Solve the equation 2 cos2x + 3 sin x = 3 for 0 � x � 2π.

Solution First we express the equation in terms of sin x only. This can be done by eliminating
cos2x using the identity (2.24a), giving

2(1 − sin2x) + 3 sin x = 3

which reduces to

2 sin2x − 3 sin x + 1 = 0

This is now a quadratic equation in sin x, and it is convenient to write λ = sin x, giving

2λ2 − 3λ + 1 = 0

Factorizing then gives (2λ − 1)(λ − 1) = 0

leading to the two solutions λ = and λ = 1

We now return to the fact that λ = sin x to determine the corresponding values of x.

(i) If λ = then sin x = . Remembering that sin x is positive for x lying in the first 
and second quadrants and that sin , we have two solutions corresponding to 
λ = , namely x = π and x = π.

(ii) If λ = 1 then sin x = 1, giving the single solution λ = π.

Thus there are three solutions to the given equation, namely

x = π, π and π

Example 2.48 The path of a projectile fired with speed V at an angle α to the horizontal is given by

(See Example 2.39 with u = V cos α, v = V sin α.)

y x
gx

V
    

cos
= −tanα

α
1

2

2

2 2

5
6

1
2

1
6

1
2

5
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1
6

1
2

1
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1
2π   =

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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For fixed V a family of trajectories, for various angles of projection α, is obtained, as
shown in Figure 2.70. Find the condition for a point P with coordinates (X, Y ) to lie
beyond the reach of the projectile.

Solution Given the coordinates (X, Y ), the possible angles α of launch are given by the roots of
the equation

Using the trigonometric identity

gives

Writing T = tan α, this may be rewritten as

(gX 2)T 2 − (2XV 2)T + (gX 2 + 2V 2Y ) = 0

which is a quadratic equation in T. From (1.8), this equation will have two different real
roots if

(2XV 2)2 � 4(gX 2)(gX 2 + 2V 2Y )

but no real roots if

(2XV 2)2 � 4(gX 2)(gX 2 + 2V 2Y )

Thus the point P(X, Y ) is ‘safe’ if

V 4 � g2X 2 + 2gV 2Y

The critical case where the point (X, Y ) lies on the curve

V 4 = g2x2 + 2gV 2y

gives us the so-called ‘parabola of safety’, with the safety region being that above this
parabola

2.6.5 Amplitude and phase

Often in engineering contexts we are concerned with vibrations of parts of a struc-
ture or machine. These vibrations are a response to a periodic external force and will

y
V

g

gx

V
    = −

2 2

22 2

Y X
gX

V
     (   tan )= − +tanα α1

2
1

2

2
2

1
12

2
    + =tan

cos
α

α

Y X
gX

V
    

cos
= −tanα

α
1

2

2

2 2
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Figure 2.70
Trajectories for
different launch
angles.
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usually have the same frequency as that force. Usually, also, the response will lag behind
the exciting force. Mathematically this is often represented by an external force of the
form F sin ω t with a response of the form a sin ω t + b cos ω t, where a and b are con-
stants dependent on F, ω and the physical characteristics of the system. To find the size
of the response we need to write it in the form A sin(ω t + α), where

A sin(ω t + α) = a sin ω t + b cos ω t

This we can always do, as is illustrated in Example 2.49.

Example 2.49 Express y = 4 sin 3t − 3 cos 3t in the form y = A sin(3t + α).

Solution To determine the appropriate values of A and α, we proceed as follows. 
Using the identity (2.25a), we have

A sin(3t + α) = A(sin 3t cosα + cos 3t sinα)

= (A cos α) sin 3t + (A sin α) cos 3t

Since this must equal the expression

4 sin 3t − 3 cos 3t

for all values of t, the respective coefficients of sin 3t and cos 3t must be the same in
both expressions, so that

4 = A cos α (2.29)

and

−3 = A sin α (2.30)

The angle α is shown in Figure 2.71. By Pythagoras’ theorem,

A = ÷(16 + 9) = 5

and clearly

tan α =

The value of α may now be determined using a calculator. However, care must be taken
to ensure that the correct quadrant is chosen for α. Since A is taken to be positive, it 
follows from Figure 2.71 that α lies in the fourth quadrant. Thus, using a calculator, we
have α = −0.64 rad and

y = 4 sin 3t − 3 cos 3t = 5 sin(3t − 0.64)

− 3
4

Figure 2.71
The angle α.
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Using the Symbolic Math Toolbox in MATLAB, commands such as expand,
simplify and simple may be used to manipulate trigonometric functions, and the
command solve may be used to solve trigonometric equations (these commands
have been introduced earlier). Some illustrations are:

(a) The commands

syms x y

expand(cos(x + y))

return

cos(x)*cos(y) – sin(x)*sin(y)

(b) The commands

syms x

simplify(cos(x)^2 + sin(x)^2)

return

1

(c) The commands

syms (x)

simplify(cos(x)^2 – sin(x)^2)

return

2*cos(x)^2-1

whilst the command

simple(cos(x)^2 – sin(x)^2)

returns

cos(2*x)

(d) The commands

syms x

s = solve(‘2*cos(x)^2 + 3*sin(x) = 3’)

return

s = 1/2*pi

1/6*pi

5/6*pi

confirming the answer obtained in Example 2.47.
If numeric answers are required then use the command

double(s)

to obtain

s = 1.5708

0.5236

2.6180
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2.6.6 Exercises 

Check your answers using MATLAB or MAPLE whenever possible.

.. ..

55 Copy and complete the table in Figure 2.72.

Figure 2.72 Conversion table: degrees to radians.

56 Sketch for −3π � x � 3π the graphs of

(a) y = sin 2x (b) y = sin x

(c) y = sin2x (d) y = sin x2

(e) (x ≠ nπ, n = 0, ±1, ±2, … )

(f) (x ≠ 0)

57 Solve the following equations for 0 � x � 2π :

(a) 3 sin2x + 2 sin x − 1 = 0

(b) 4 cos2x + 5 cos x + 1 = 0

(c) 2 tan2x − tan x − 1 = 0

(d) sin 2x = cos x

58 By referring to an equilateral triangle, show that 
cos ÷3 and tan ÷3, and find values 
for sin π, tan π, cos π and sin π. Hence, 
using the double-angle formulae, find sin π, 
cos π and tan π. Using appropriate properties 
from Section 2.6, calculate

(a) sin π (b) tan (c) cos

(d) sin π (e) cos π (f) tan π

59 Given s = sin θ, where π � θ � π, find, in terms
of s,

(a) cosθ (b) sin 2θ

(c) sin 3θ (d) sin θ1
2

1
2

11
12

7
12

5
12

11
6 π7

6π2
3

1
12

1
12

1
12

1
6

1
6

1
3

1
3

1
6

1
3π   =1

3
1
2π   =

y
x

  = ⎛
⎝⎜

⎞
⎠⎟sin

1

y
x

  =
1

sin

1
2

60 Show that

61 Given t = tan x, prove that

(a)

(b)

(c)

Hence solve the equation

2 sin x − cos x = 1

62 In each of the following, the value of one of the 
six circular functions is given. Without using a
calculator, find the values of the remaining five.

(a) sin x = (b) cos x = − ÷3

(c) tan x = −1 (d) sec x = ÷2

(e) cosec x = −2 (f) cot x = ÷3

63 Express as a product of sines and/or cosines

(a) sin 3θ + sin θ (b) cosθ − cos 2θ

(c) cos 5θ + cos 2θ (d) sinθ − sin 2θ

64 Express as a sum or difference of sines or cosines

(a) sin 3θ sin θ (b) sin 3θ cosθ

(c) cos 3θ sin θ (d) cos 3θ cosθ

65 Express in the forms r cos(θ − α) and 
r sin(θ − β )

(a) ÷3 sin θ − cosθ (b) sin θ − cosθ

(c) sin θ + cosθ (d) 2 cosθ + 3 sin θ

66 Show that − � 2 cos x + cos 2x � 3 for all x, 
and determine those values of x for which the
equality holds. Plot the graph of y = 2 cos x + cos 2x
for 0 � x � 2π.

3
2

1
2

1
2

tan x
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t
  

  
=

−
2

1 2
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=
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+

1
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2

2
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t

t
  

  
=
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2
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1 2 2
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2.6.7 Inverse circular (trigonometric) functions

Considering the inverse of the trigonometric functions, it follows from the definition
given in (2.4) that the inverse sine function sin−1x (also sometimes denoted by arcsin x)
is such that

if y = sin−1x then x = sin y

Here x should not be interpreted as an angle – rather sin−1x represents the angle whose
sine is x. Applying the procedures for obtaining the graph of the inverse function given
in Section 2.2.3 to the graph of y = sin x (Figure 2.55) leads to the graph shown in
Figure 2.73(a). As we explained in Example 2.8, when considering the inverse of y = x2,
the graph of Figure 2.73(a) is not representative of a function, since for each value of x
in the domain −1 � x � 1 there are an infinite number of image values (as indicated by
the points of intersection of the broken vertical line with the graph). To overcome this
problem, we restrict the range of the inverse function sin−1x to − π � sin−1x � π and
define the inverse sine function by

if y = sin−1x then x = sin y, where − π � y � π and −1 � x � 1 (2.31)

The corresponding graph is shown in Figure 2.73(b).
Similarly, in order to define the inverse cosine and inverse tangent functions cos−1x

and tan−1x (also sometimes denoted by arccos x and arctan x), we have to restrict the
ranges. This is done according to the following definitions.

if y = cos−1x then x = cos y, where 0 � y � π and −1 � x � 1 (2.32)

if y = tan−1x then x = tan y, where − π � y � π and x is any 
real number (2.33)

1
2

1
2

1
2

1
2

1
2

1
2
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Figure 2.73
Graph of sin−1x.
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2.6 CIRCULAR FUNCTIONS 147

The corresponding graphs of y = cos−1x and y = tan−1x are shown in Figures 2.74 and
2.75, respectively.

In some books (2.31)–(2.33) are called the principal values of the inverse functions.
A calculator will automatically give these values.

Example 2.50 Evaluate sin−1x, cos−1x, tan−1x where (a) x = 0.35 and (b) x = −0.7, expressing the
answers correct to 4dp.

Solution (a) sin−1(0.35) is the angle α which lies between −π/2 and +π/2 and is such that 
sin α = 0.35. Using a calculator we have

sin−1(0.35) = 0.3576 (4dp) = 0.1138π

which clearly lies between −π/2 and +π/2.
cos−1(0.35) is the angle β which lies between 0 and π and is such that cos β = 0.35.

Using a calculator we obtain

cos−1(0.35) = 1.2132 (4dp) = 0.3862π

which lies between 0 and π.
tan−1(0.35) is the angle γ which lies between −π/2 and +π/2 and is such that 

tan γ = 0.35. Using a calculator we have

tan−1(0.35) = 0.3367 (4dp) = 0.1072π

which lies in the correct range of values.
Notice

(b) sin−1(−0.7) is the angle α which lies between −π/2 and +π/2 and is such that
sin α = −0.7. Again using a calculator we obtain

sin−1(−0.7) = −0.7754 (4dp)

which lies in the correct range of values.
cos−1(−0.7) is the angle β which lies between 0 and π and is such that cosβ = −0.7.

sin

cos
tan

−

−
−≠

1

1
10 35

0 35
0 35

( . )

( . )
  ( . )

.. ..

Figure 2.74 Graph of cos−1x. Figure 2.75 Graph of tan−1x.

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:39  Page 147



..

Thus β = 2.3462, which lies in the second quadrant as expected.
tan−1(−0.7) is the angle γ which lies between −π/2 and +π/2 and is such that tan

γ = −0.7. Thus γ = −0.6107, lying in the fourth quadrant, as expected.

Example 2.51 Sketch the graph of the function y = sin−1(sin x).

Solution Before beginning to sketch the graph we need to examine the algebraic properties of 
the function. Because of the way sin−1 is defined we know that for −π/2 � x � π/2, 
sin−1(sin x) = x. (The function sin−1x strictly is the inverse function of sin x with the
restricted domain −π/2 � x � π/2.) We also know that sin x is an odd function, so that
sin(−x) = −sin x. This implies that sin−1x is an odd function. In fact, this is obvious from
its graph (Figure 2.73(b)). Thus, sin−1(sin x) is an odd function. Lastly, since sin x is a
periodic function with period 2π we conclude that sin−1(sin x) is also a periodic func-
tion of period 2π. Thus, if we can sketch the graph between 0 and π, we can obtain 
the graph between −π and 0 by antisymmetry about x = 0 and the whole graph by 
periodicity elsewhere. Using Figures 2.73(a) and 2.73(b) we can obtain the graph of 
the function for 0 � x � π, as shown in Figure 2.76 (blue). The graph between −π
and 0 is obtained by antisymmetry about the origin, as shown with the broken line in
Figure 2.76, and the whole graph is obtained making use of the piece between −π and
+π and periodicity.

148 FUNCTIONS
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Figure 2.76
Graph of 
y = sin−1(sin x).

2.6.8 Polar coordinates

In some applications the position of a point P in a plane is represented by its distance r
from a fixed point O and the angle θ that the line joining P to O makes with some fixed
direction. The pair (r, θ) determine the point uniquely and are called the polar coordin-
ates of P. If polar coordinates are chosen, sharing the same origin O as rectangular 
cartesian coordinates and with the angle θ measured from the direction of the Ox axis
then, as can be seen from Figure 2.77, the polar coordinates (r, θ) and the cartesian
coordinates (x, y) of a point are related by

x = r cos θ, y = r sin θ (2.34)

and alsoFigure 2.77
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r = ÷(x2 + y2),

Note that the origin does not have a well-defined θ. Some care must be taken when evalu-
ating θ using the above formula to ensure that it is located in the correct quadrant. The
angle tan−1(y/x) obtained from tables or a calculator will usually lie between ± π and
will give the correct value of θ if P lies in the first or fourth quadrant. If P lies in the
second or third quadrant then θ = tan−1(y/x) + π. It is sensible to use the values of sin θ
and cos θ to check that θ lies in the correct quadrant.

Note that the angle θ is positive when measured in an anticlockwise direction and
negative when measured in a clockwise direction. Many calculators have rectangular
(cartesian) to polar conversion and vice versa.

Example 2.52 (a) Find the polar coordinates of the points whose cartesian coordinates are (1, 2), 
(−1, 3), (−1, −1), (1, −2), (1, 0), (0, 2), (0, −2).

(b) Find the cartesian coordinates of the points whose polar coordinates are (3, π/4),
(2, −π/6), (2, −π/2), (5, 3π/4).

Solution (a) Using the formula (2.34) we see that:

(x = 1, y = 2) ≡ (r = ÷5, θ = tan−1(2/1) = 1.107)

(x = −1, y = 3) ≡ (r = ÷10, θ = 1.893)

(x = −1, y = −1) ≡ (r = ÷2, θ = 5π/4)

(x = 1, y = −2) ≡ (r = ÷5, θ = −1.107)

(x = 1, y = 0) ≡ (r = 1, θ = 0)

(x = 0, y = 2) ≡ (r = 2, θ = π/2)

(x = 0, y = −2) ≡ (r = 2, θ = −π/2)

(Here answers, where appropriate, are given to 3dp.)

(b) Using the formula (2.34) we see that

(r = 3, θ = π/4) ≡ (x = 3/÷2, y = 3/÷2)

(r = 2, θ = −π/6) ≡ (x = ÷3, y = −1)

(r = 2, θ = −π/2) ≡ (x = 0, y = −2)

(r = 5, θ = 3π/4) ≡ (x = −5/÷2, y = 5÷2)

To plot a curve specified using polar coordinates we first look for any features, for
example, symmetry, which would reduce the amount of calculation, and then we draw
up a table of values of r against values of θ. This is a tedious process and we usually
use a graphics calculator or a computer package to perform the task. There are, how-
ever, different conventions in use about polar plotting. Some packages are designed to

1
2

tanθ   =
y

x

....
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plot only points where r is positive, so that plotting r = 2a cos θ for 0 � θ � π would
yield Figure 2.78(a) while other packages plot negative values of r, treating r as a 
number line, so that r = 2a cos θ for 0 � θ � π yields Figure 2.78(b).

Example 2.53 Express the equation of the circle

(x − a)2 + y2 = a2

in polar form.

Solution Expanding the squared term, the equation of the given circle becomes

x 2 + y2 − 2ax = 0

Using the relationships (2.34), we have

r 2(cos2θ + sin2θ) − 2ar cos θ = 0

Using the trigonometric identity (2.24a),

r(r − 2a cosθ) = 0, −π/2 � θ � π/2

Since r = 0 gives the point (0, 0), we can ignore this, and the equation of the circle
becomes

r = 2a cos θ, −π/2 � θ � π/2

Example 2.54 Sketch the curve whose polar equation is r = 1 + cos θ.

Solution The simplest approach when sketching a curve given in polar coordinate form is to
draw up a table of values as in Figure 2.79.

θ 0 15 30 45 60 75 90 105 120 135 150 165 180

r 2 1.97 1.87 1.71 1.50 1.26 1 0.74 0.50 0.29 0.13 0.03 0

Because it is difficult to measure angles accurately it is easier to convert these values
into the cartesian coordinate values using (2.34) when polar coordinate graph paper is
not available. The sketch of the curve, a cardioid, is shown in Figure 2.80. Here we
have made use of the symmetry of the curve about the line θ = 0, that is, the line y = 0.

150 FUNCTIONS
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Figure 2.78
(a) r = 2a cosθ, 
0 � θ � π, r � 0; 
(b) r = 2a cosθ, 
0 � θ � π, 
r unrestricted.

Figure 2.79
Table of values for 
r = 1 + cos θ.
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Figure 2.80
The cardioid 
r = 1 + cos θ.

In MATLAB the inverse circular functions sin−1(x), cos−1(x) and tan−1(x) are denoted
by asin(x), acos(x) and atan(x) respectively. (In MAPLE these are denoted by
arcsin, arccos and arctan respectively.) Using the graphical commands given
on page 71, check the graphs of Figures 2.71–2.74.

Symbolically a plot of the polar curve r = f(θ) is obtained using the com-
mand ezpolar(f), over the default domain 0 � θ � 2π; whilst the command 
ezpolar(f,[a,b]) plots the curve over the domain a � θ � b. Check that the 
commands

syms theta

r = 1 + cos(theta);

ezpolar(r)

plot the graph of the cardioid in Example 2.54.

2.6.9 Exercises

67 Evaluate

(a) sin−1(0.5) (b) sin−1(−0.5)

(c) cos−1(0.5) (d) cos−1(−0.5)

(e) tan−1(÷3) (f) tan−1(−÷3)

68 Sketch the graph of the functions

(a) y = sin−1(cos x)

(b) y = cos−1(sin x)

(c) y = cos−1(cos x)

(d) y = cos−1(cos x) − sin−1(sin x)

69 If tan−1x = α and tan−1y = β, show that

tan(   )  
  

  
α β+ =

+
−

x y

xy1

Deduce that

where k = −1, 0, 1 depending on the values of x
and y.

70 Sketch the curve with polar form

r = 1 + 2 cos θ

71 Sketch the curve whose polar form is 

r = 1/(1 + 2 cos θ )

Show that its cartesian form is

3x2 − 4x − y2 + 1 = 0

tan  tan   tan
  

  
  − − −+ =

+
−

⎛
⎝⎜

⎞
⎠⎟

+1 1 1

1
x y

x y

xy
kπ
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2.7 Exponential, logarithmic and hyperbolic functions
The members of this family of functions are closely interconnected. They occur in
widely varied applications, from heat transfer analysis to bridge design, from trans-
mission line modelling to the production of chemicals. Historically the exponential and
logarithmic functions arose in very different contexts, the former in the calculation of
compound interest and the latter in computational mathematics, but, as often happens
in mathematics, the discoveries in specialized areas of applicable mathematics have
found applications widely elsewhere.

2.7.1 Exponential functions

Functions of the type f (x) = ax where a is a positive constant (and x is the independent
variable as usual) are called exponential functions.

The graphs of the exponential functions, shown in Figure 2.81, are similar. By a 
simple scaling of the x axis, we can obtain the same graphs for y = 2x, y = 3x and y = 4x,
as shown in Figure 2.82. The reason for this is that we can write 3x = 2kx where k ≈ 1.585
and 4x = 22x. Thus all exponential functions can be expressed in terms of one exponen-
tial function. The standard exponential function that is used is y = e x, where e is a 
special number approximately equal to

2.718 281 828 459 045 2…
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Figure 2.81
Graphs of exponential
functions.

Figure 2.82
Scaled graphs of
exponential functions.
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This number e is chosen because the graph of y = e x (Figure 2.83) has the property that
the slope of the tangent at any point on the curve is equal to the value of the function
at that point. We shall discuss this property again in Section 8.3.12.

We note that the following properties are satisfied by the exponential function:

ex1ex2 = ex1+x2 (2.35a)

ex +c = exec = Aex, where A = ec (2.35b)

(2.35c)

ekx = (ek )x = ax, where a = ek (2.35d)

Often ex is written as exp x for clarity when ‘x’ is a complicated expression. For example,

Example 2.55 A tank is initially filled with 1000 litres of brine containing 0.25 kg of salt/litre. 
Fresh brine containing 0.5 kg of salt / litre flows in at a rate of 3 litres per second and a
uniform mixture flows out at the same rate. The quantity Q(t) kg of salt in the tank 
t seconds later is given by

Q(t) = A + Be−3t/1000

Find the values of A and B and sketch a graph of Q(t). Use the graph to estimate the
time taken for Q(t) to achieve the value 375.

Solution Initially there is 1000 × 0.25 kg of salt in the tank, so Q(0) = 250. Ultimately the brine
in the tank will contain 0.5 kg of salt/litre, so the terminal value of Q will be 500. The
terminal value of A + Be−3t/1000 is A, so we deduce A = 500. From initial data we have

250 = 500 + Be0

and since e0 = 1, B = −250 and

Q(t) = 500 − 250e−3t/1000

e( )/( )   exp
  

  
x x x

x
+ + =

+
+

⎛
⎝

⎞
⎠

1 2 1

2

e

e
e

x

x
x x

1

2

1 2  = −

Figure 2.83
The standard
exponential 
function y = ex.
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The graph of Q(t) is shown in Figure 2.84. From the graph, an estimate for the time
taken for Q(t) to achieve the value 375 is 234 seconds. From the formula this gives
Q(234) = 376.1. Investigating values near t = 234 using a calculator gives the more
accurate time of 231 seconds.

Example 2.56 The temperature T of a body cooling in an environment, whose unknown ambient 
temperature is α , is given by

T(t) = α + (T0 − α)e−kt

where T0 is the initial temperature of the body and k is a physical constant. To deter-
mine the value of α, the temperature of the body is recorded at two times, t1 and t2,
where t2 = 2t1 and T(t1) = T1, T(t2) = T2. Show that

Solution From the formula for T(t) we have

T1 − α = (T0 − α)e−kt1

and

T2 − α = (T0 − α)e−2kt1

Squaring the first of these two equations and then dividing by the second gives

This simplifies to

(T1 − α)2 = (T2 − α)(T0 − α)

Multiplying out both sides, we obtain

− 2αT1 + α 2 = T0T2 − (T0 + T2)α + α 2T 1
2

(   )

  
  

(   )

(   )

T

T

T

T

kt

kt
1

2

2

0
2 2

0
2

1

1

−
−

=
−
−

−

−

α
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α
α

e
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Figure 2.84
The timeline of Q(t).
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which gives

(T0 − 2T1 + T2)α = T0T2 −

Hence the result.

2.7.2 Logarithmic functions

From the graph of y = ex, given in Figure 2.83, it is clear that it is a one-to-one func-
tion, so that its inverse function is defined. This inverse is called the natural logarithm
function and is written as

y = ln x

(In some textbooks it is written as logex, while in many pure mathematics books it is
written simply as log x.) Using the procedures given in Section 2.2.3, its graph can be
drawn as in Figure 2.85. From the definition we have

if y = ex then x = ln y (2.36)

which implies that

ln ex = x, eln y = y

In the same way as there are many exponential functions (2x, 3x, 4x, … ), there are
also many logarithmic functions. In general,

y = ax gives x = logay (2.37)

which can be expressed verbally as ‘x equals log to base a of y’. (Note that log10x is
often written, except in advanced mathematics books, simply as log x.) Recalling that
a x = ekx for some constant k, we see now that a x = (ek)x, so that a = ek and k = ln a.

From the definition of logax it follows that

T 1
2

.. ..

Figure 2.85
Graph of y = ln x.
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loga(x1x2) = logax1 + logax2 (2.38a)

= logax1 − logax2 (2.38b)

logaxn = n logax (2.38c)

x = a loga x (2.38d)

yx = ax loga y (2.38e)

logax = (2.38f )

Example 2.57 (a) Evaluate log232.

(b) Simplify .

(c) Expand 

(d) Use the change of base formula (2.36f ) to evaluate .

(e) Evaluate .

Solution (a) Since 32 = 25, log232 = log22
5 = 5log22 = 5, since log22 = 1.

(b) =

= log22 − [log22 − log27] = log27

(c) = ln(÷(10x)) − ln(y2) = ln(10x) − 2 ln y

= ln(10) + ln x − 2 ln y

(d) log1032 = log232 log102, hence

= log232 = log22
5 = 5log22 = 5

(e) log9x = log3x log9 3, so that

But 3 = 91/2 so that log93 = log99
1/2 = log99 = , hence

= 2
log

log
3

9

x

x

1
2

1
2

log

log
  

log

log log
  

log
3

9

3

3 9 93

1

3

x

x

x

x
= =

log

log
10

10

32

2

1
2

1
2

1
2ln

÷( )10
2

x

y

⎛
⎝⎜

⎞
⎠⎟

log   log/
2

1 3
2

2
78 −1

3 2 2
2
78log   log−

log

log
3

9

x

x

log

log
10

10

32

2

 
ln

÷( )
.

10
2

x

y

⎛
⎝⎜

⎞
⎠⎟

1
3 2 2

2
78log   log−

log

log
b

b

x

a

loga
x

x
1

2

⎛
⎝⎜

⎞
⎠⎟
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Despite the fact that these functions occur widely in engineering analysis, they first
occurred in computational mathematics. Property (2.38a) transforms the problem of
multiplying two numbers to that of adding their logarithms. The widespread use of 
scientific calculators has now made the computational application of logarithms largely
irrelevant. They are, however, still used in the analysis of experimental data.

In MATLAB the exponential and logarithmic functions are represented by

exponential: exp(x)

natural logarithm ln: log(x)

logarithm to base 10: log10(x)

(MAPLE uses ln(x) and log10(x) for the last two, respectively, and uses log(x)
for work with a general base.)

2.7.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

72 Simplify

(a) (e2)3 + e2 × e3 + (e3)2 (b) e7x/e3x

(c) (e3)2 (d) exp(32) (e) ÷(e x)

73 Sketch the graphs of y = e−2x and y = e−x2

on the
same axes. Note that (e−x)2 ≠ e−x2

.

74 Find the following logarithms without using a
calculator:

(a) log28 (b) log2

(c) log2 (d) log381

(e) log93 (f) log40.5

75 Express in terms of ln x and ln y

(a) ln(x2 y) (b) ln ÷(xy) (c) ln(x5/y2)

76 Express as a single logarithm

(a) ln 14 − ln 21 + ln 6

(b) 4 ln 2 − ln 251
2

1
2÷

1
4

(c) 1.5 ln 9 − 2 ln 6

(d) 2 ln(2/3) − ln(8/9)

77 Simplify (a) (b) e2 ln x

78 Sketch carefully the graphs of the functions

(a) y = 2x, y = log2x (on the same axes)

(b) y = ex, y = ln x (on the same axes)

(c) y = 10x, y = log x (on the same axes)

79 Sketch the graph of y = e−x − e−2x. Prove that the
maximum of y is and find the corresponding value
of x. Find the two values of x corresponding 
to y = .

80 Express ln y as simply as possible when

y
x

x x
  

(   )

(   ) (   )

/

/ /
=

+
+ +

2 3 2

4 1 3 4 1 5

1

1 4

1
40

1
4

exp ln
  

  
1
2

1

1

−
+

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

x

x

2.7.4 Hyperbolic functions
In applications, certain combinations of exponential functions recur many times and
these combinations are given special names. For example, the mathematical model for
the steady state heat transfer in a straight bar leads to an expression for the temperature
T(x) at a point distance x from one end, given by
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where l is the total length of the bar, T0 and T1 are the temperatures at the ends and m
is a physical constant. To simplify such expressions a family of functions, called the
hyperbolic functions, is defined as follows:

cosh x = (ex + e−x), the hyperbolic cosine

sinh x = (ex − e−x), the hyperbolic sine

the hyperbolic tangent

The abbreviation cosh comes from the original Latin name cosinus hyperbolicus; simi-
larly sinh and tanh.

Thus, the expression for T(x) becomes

The reason for the names of these functions is geometric. They bear the same relation-
ship to the hyperbola as the circular functions do to the circle, as shown in Figure 2.86.

Following the pattern of the circular or trigonometric functions, other hyperbolic
functions are defined as follows:

the hyperbolic secant

the hyperbolic cosecant

the hyperbolic cotangent

The graphs of sinh x, cosh x and tanh x are shown in Figure 2.87, where the black broken
lines indicate asymptotes.

coth
tanh

x
x

x      (   ),= ≠
1

0

cosech
sinh

x
x

x      (   ),= ≠
1

0

sech
cosh

x
x

  ,=
1

T x
T m l x T mx

ml
( )  

(   )  
=

− +0 1sinh sinh

sinh

tanh
sinh

cosh
x

x

x
  ,=

1
2

1
2

T x
T Tm l x m l x mx mx

ml ml
( )  

(  )  (   )

 

( ) ( )

=
− + −

−

− − − −

−
0 1e e e e

e e

Figure 2.86
The analogy between
circular and hyperbolic
functions. The circle
has parametric
equations x = cosθ, 
y = sinθ. The
hyperbola has
parametric equations 
x = cosh t, y = sinh t.
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The hyperbolic functions satisfy identities analogous to those satisfied by the circular
functions. From their definitions we have

(2.39)

from which we deduce

cosh x + sinh x = e x

cosh x − sinh x = e−x

and

(cosh x + sinh x)(cosh x − sinh x) = e xe−x

that is,

cosh2x − sinh2x = 1 (2.40)

Similarly, we can show that

sinh(x ± y) = sinh x cosh y ± cosh x sinh y (2.41a)

cosh(x ± y) = cosh x cosh y ± sinh x sinh y (2.41b)

(2.41c)

To prove the first two of these results, it is easier to begin with the expressions on the
right-hand sides and replace each hyperbolic function by its exponential form. The third
result follows immediately from the previous two by dividing them. Thus

sinh x cosh y = (e x − e−x)(e y + e−y)

= (e x+y + e x−y − e−x+y − e−x−y)

and interchanging x and y we have

cosh x sinh y = (e x+y + e y−x − e−y+x − e−x−y)1
4

1
4

1
4

tanh
tanh tanh

tanh tanh
(   )  

  

  
x y

x y

x y
± =

±
±1

cosh   (   )

sinh   (   )

x

x

x x

x x

= +

= −

⎫
⎬
⎪

⎭⎪

−

−

1
2

1
2

e e

e e

Figure 2.87
Graphs of the
hyperbolic functions.
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Adding these two expressions we obtain

sinh x cosh y + cosh x sinh y = (e x+y − e−x−y) 

= sinh(x + y)

Example 2.58 A function is given by f (x) = A cosh 2x + B sinh 2x, where A and B are constants and
f (0) = 5 and f (1) = 0. Find A and B and express f (x) as simply as possible.

Solution Given f (x) = A cosh 2x + B sinh 2x with the conditions f (0) = 5, f (1) = 0, we see that 

A(1) + B(0) = 5

and

A cosh 2 + B sinh 2 = 0

Hence we have A = 5 and B = −5 cosh 2/sinh 2. Substituting into the formula for f (x)
we obtain

Example 2.59 Solve the equation

5 cosh x + 3 sinh x = 4

Solution The first step in solving problems of this type is to express the hyperbolic functions in
terms of exponential functions. Thus we obtain

(e x + e−x) + (e x − e−x) = 4

On rearranging, this gives

4e x − 4 + e−x = 0

or

4e2x − 4e x + 1 = 0

which may be written as

(2e x − 1)2 = 0

from which we deduce

e x = (twice)

and hence

1
2

3
2

5
2

=
−

=
−

=
−

 
  

 
(   )

,    

 
(   )

5 2 2 5 2 2

2

5 2 2

2

5 2 1

2

sinh cosh cosh sinh

sinh

sinh

sinh
using (2.41a)

sinh

sinh

x x

x

x

f x x x( )  cosh   cosh sinh /sinh= −5 2 5 2 2 2

1
2
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x = −ln 2

is a repeated root of the equation.

Osborn’s rule

In general, to obtain the formula for hyperbolic functions from the analogous identity for
the circular functions, we replace each circular function by the corresponding hyperbolic
function and change the sign of every product or implied product of two sines. This
result is called Osborn’s rule. Its justification will be discussed in Section 3.2.9.

Example 2.60 Verify the identity

using the definition of tanh x. Confirm that it obeys Osborn’s rule.

Solution From the definition

and

Thus

= tanh 2x as required

The formula for tan 2θ from (2.27e) is

We see that this has an implied product of two sines (tan2θ ), so that in terms of hyper-
bolic functions we have, using Osborn’s rule,

which confirms the proof above.

tanh   
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2

2

1 2
x

x

x
=

+
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  tan
2

2

1 2
θ θ
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=

−
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−
+

−
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e e

e e

2 2

2 2

x x

x x

2

1

2

22 2 2 2 2 2
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(  )/(  )
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2.7.5 Inverse hyperbolic functions
The inverse hyperbolic functions, illustrated in Figure 2.88, are defined in a completely
natural way:

y = sinh−1x (x in �)

y = cosh−1x (x � 1, y � 0)

y = tanh−1x (−1 � x � 1)

162 FUNCTIONS

.. ..

Figure 2.88
Graphs of the inverse
hyperbolic functions.

(These are also sometimes denoted as arsinh x, arcosh x and artanh x – not arcsinh x,
etc.) Note the restriction on the range of the inverse hyperbolic cosine to meet the 
condition that exactly one value of y be obtained. These functions, not surprisingly, can
be expressed in terms of logarithms.

For example,

y = sinh−1x implies x = sinh y = (e y − e−y)

Thus

(e y )2 − 2x(e y ) − 1 = 0

and

e y = x ± ÷(x2 + 1)

Since e y � 0, we can discount the negative root, and we have, on taking logarithms,

y = sinh−1x = ln[x + ÷(x2 + 1)] (2.42)

Similarly,

cosh−1x = ln[x + ÷(x2 − 1)] (x � 1) (2.43)

and

(2.44)tanh   ln
  

  
    (     )− =

+
−

⎛
⎝

⎞
⎠ −1 1

2

1

1
1 1x

x

x
x� �

1
2
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Example 2.61 Evaluate (to 4sf)

(a) sinh−1(0.5) (b) cosh−1(3) (c) tanh−1(−2/5)

using the logarithmic forms of these functions. Check your answers directly using a 
calculator.

Solution (a) Using formula (2.42), we have

sinh−1(0.5) = ln[0.5 + ÷(0.25 + 1)]

= ln(0.5 + 1.118 034)

= ln(1.618 034)

= 0.4812

(b) Using formula (2.43), we have

cosh−1(3) = ln(3 + ÷8) = 1.7627

(c) Using formula (2.44), we have

In MATLAB, notation associated with the hyperbolic functions is

hyperbolic cosine: cosh(x)

hyperbolic sine: sinh(x)

hyperbolic tangent: tanh(x)

inverse hyperbolic cosine: acosh(x)

inverse hyperbolic sine: asinh(x)

inverse hyperbolic tangent: atanh(x)

with the last three denoted by arccosh(x), arcsinh(x) and arctanh(x), respect-
ively, in MAPLE.

As an example, the commands

syms x

s = solve(‘5*cosh(x) + 3*sinh(x) = 4’)

return

s = –log(2)

–log(2)

confirming the answer in Example 2.60. (Note that it produces –log(2) twice
because it is a repeated root. MAPLE only produces it once.)

= = − ln   .
1

2

3

7
0 4236

=
−
+

⎛
⎝

⎞
⎠ ln

  

  

1

2

5 2

5 2

tanh ( / )  ln
  

  
− − =

−
+

⎛
⎝⎜

⎞
⎠⎟

1
2
5
2
5

2 5
1

2

1

1
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2.7.6 Exercises

164 FUNCTIONS

.. ..

81 In each of the following exercises a value of one
of the six hyperbolic functions of x is given. Find
the remaining five.

(a) cosh (b) sinh

(c) tanh (d) sech

(e) cosech (f) coth

82 Use Osborn’s rule to write down formulae
corresponding to

(a)

(b) cos(x + y) = cos x cos y − sin x sin y

(c) cosh 2x = 1 + 2 sinh2x

(d) sin x − sin y = 2 sin (x − y) cos (x + y)

83 Prove that

(a) cosh−1x = ln[x + ÷(x2 − 1)] (x � 1)

(b) (|x | � 1)

84 Find to 4dp

(a) sinh−10.8

(b) cosh−12

(c) tanh−1(−0.5)

85 The speed V of waves in shallow water is given by

V L
d

L
2 1 8

6 3
  . tanh

.
=

tanh   ln
  

  
− =

+
−

⎛
⎝⎜

⎞
⎠⎟

1 1
2

1

1
x

x

x

1
2

1
2

tan   
(   tan )tan 

  tan
3

3

1 3

2

2
x

x x

x
=

−
−

x  = 13
12x  = − 3

4

x  = 5
13x  = − 7

25

x  = 8
15x  = 5

4

where d is the depth and L the wavelength. If d = 30
and L = 270, calculate the value of V.

86 The formula

gives the increase in resistance of strip conductors
due to eddy currents at power frequencies. Calculate
λ when α = 1.075 and t = 1.

87 The functions

are two different forms of activating functions
representing the output of a neuron in a typical
neural network. Sketch the graphs of f1(x) and f2(x)
and show that f1(x) − f2(x) = .

88 The potential difference E (in V) between a
telegraph line and earth is given by

where A and B are constants, x is the distance in km
from the transmitting end, r is the resistance per km
of the conductor and R is the insulation resistance
per km. Find the values of A and B when the length
of the line is 400 km, r = 8 Ω, R = 3.2 × 107 Ω and
the voltages at the transmitting and receiving ends
are 250 and 200 V respectively.

E A x
r

R
B x

r

R
  cosh   sinh=

⎛

⎝
⎜

⎞

⎠
⎟ +
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⎜
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⎟� �
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f x f x x
x1 2

1
2

1
2

1

1
( )  

  
,    ( )  tanh=

+
=−e

λ α α α
α α

  
sinh   sin

cosh   cos
=

+
−

t t t

t t2

2.8 Irrational functions
The circular and exponential functions are examples of transcendental functions. They
cannot be expressed as rational functions, that is, as the quotient of two polynomials.
Other irrational functions occur in engineering, and they may be classified either as
algebraic or as transcendental functions. For example

 
y

x

x
x  

(   )  

(   )  
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+ +

−
√
√

1 1
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is an algebraic irrational function. Here y is a root of the algebraic equation

xy2 − 2(2 + x)y + x = 0

which has polynomial coefficients in x.
On the other hand, y = |x | , although it satisfies y2 = x2, is not a root of that equation

(whose roots are y = x and y = −x). The modulus function | x | is an example of a non-
algebraic irrational function.

2.8.1 Algebraic functions

In general we have an algebraic function y = f (x) defined when y is the root of a 
polynomial equation of the form

an(x)yn + an−1(x)yn−1 + … + a1(x)y + a0(x) = 0

Note that here all the coefficients a0 … an may be polynomial functions of the 
independent variable x. For example, consider

y2 − 2xy − 8x = 0

This defines, for x � 0, two algebraic functions with formulae

y = x + ÷(x2 + 8x) and y = x − ÷(x2 + 8x)

One of these corresponds to y2 − 2xy − 8x = 0 with y � 0 and the other to y2 − 2xy − 8x = 0
with y � 0. So, when we specify a function implicitly by means of an equation we 
often need some extra information to define it uniquely. Often, too, we cannot obtain
an explicit algebraic formula for y in terms of x and we have to evaluate the function at
each point of its domain by solving the polynomial equation for y numerically.

Care has to be exercised when using algebraic functions in a larger computation 
in case special values of parameters produce sudden changes in value, as illustrated in
Example 2.62.

Example 2.62 Sketch the graphs of the function

y = ÷(a + bx2 + cx3)/(d − x)

for the domain −3 � x � 3, where

(a) a = 18, b = 1, c = −1 and d = 6

(b) a = 0, b = 1, c = −1 and d = 0

Solution (a) y = ÷(18 + x2 − x3)/(6 − x)
We can see that the term inside the square root is positive only when 18 + x2 − x3 � 0.

Since we can factorize this as (18 + x2 − x3) = (3 − x)(x2 + 2x + 6), we deduce that y is
not defined for x � 3. Also, for large negative values of x it behaves like ÷(−x). A sketch
of the graph is shown in Figure 2.89.

(b) y = −÷(x2 − x3)/x
Here we can see that the function is defined for x � 1, x ≠ 0. Near x = 0, since we

can write x = ÷x2 for x � 0 and x = −÷x2 for x � 0, we see that

y = −÷(1 − x) for x � 0

..
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and

y = ÷(1 − x) for x � 0

At x = 0 the function is not defined. The graph of the function is shown in Figure 2.90.

2.8.2 Implicit functions

We have seen in Section 2.8.1 that some algebraic functions are defined implicitly
because we cannot obtain an algebraic formula for them. This applies to a wider 
class of functions where we have an equation relating the dependent and independent 
variables, but where finding the value of y corresponding to a given value of x requires
a numerical solution of the equation. Generally we have an equation connecting x and
y, such as

f (x, y) = 0

Sometimes we are able to draw a curve which represents the relationship (using 
algebraic methods), but more commonly we have to calculate for each value of x the
corresponding value of y. Most computer graphics packages have an implicit function
option which will perform the task efficiently.

Figure 2.90
Graph of 
y = −÷(x2 − x3)/x.

Figure 2.89
Graph of y = ÷(18 +
x2 − x3)/(6 − x).
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Example 2.63 The velocity v and the displacement x of a mass attached to a non-linear spring satisfy
the equation

v2 = −4x2 + x4 + A

where A depends on the initial velocity v0 and displacement x0 of the mass. Sketch the
graph of v against x where

(a) x0 = 1, v0 = 0

(b) x0 = 3, v0 = 0

and interpret your graph.

Solution (a) With x0 = 1, v0 = 0 we have A = 3 and

v2 = x4 − 4x2 + 3 = (x2 − 3)(x2 − 1)

To sketch the graph by hand it is easiest first to sketch the graph of v2 against x, as shown
in Figure 2.91(a). Taking the ‘square root’ of the graph is only possible for v2 � 0, but
we also know we want that part of the graph which has the initial point (x0, v0) on it. 
So we obtain the closed loop shown in Figure 2.91(b). The arrows on the closed curve
indicate the variation of v with x as time increases. Where the velocity v is positive, the
displacement x increases. Where the velocity is negative, the displacement decreases.
The closed curve indicates that this motion repeats after completing one circuit of the
curve, that is, there is a periodic motion.

Figure 2.91 Graphs for Example 2.63(a).

(b) With x0 = 3, v0 = 0 we have A = −45 and

v2 = x4 − 4x2 − 45 = (x2 − 9)(x2 + 5)

Using the same technique as in part (a), we see that when the mass is released from 
rest at x = 3, its displacement increases without a bound and the motion is not periodic.
The corresponding graphs are shown in Figures 2.92(a) and (b).
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Example 2.64 The concentrations of two substances in a chemical process are related by the equation

xye2−y = 2e x−1, 0 � x � 3, 0 � y � 3

Investigate this relationship graphically and discover whether it defines a function.

Solution Separating the variables in the equation, we have

ye−y = 2e−3e x/x

Substituting u = e x/x and v = ye−y reduces this equation to

v = 2e−3u

so on the u–v plane the relationship is represented by a straight line. Putting the first
quadrants of the four planes x–y, v–y, u–x, u–v together we obtain the diagram shown
in Figure 2.93. From that diagram it is clear that the smallest value of u that occurs is

168 FUNCTIONS

..

Figure 2.92 Graphs
for Example 2.63(b).

Figure 2.93 First
quadrant of four
planes.
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Figure 2.94 Closed
form solution for
Example 2.90.

at P and the largest value of v that occurs is at Q, so all the solutions of the equation lie
between P and Q. Any point R which lies between P and Q on the line corresponds to
two values of y and two values of x. So each point R corresponds to four points of the
x−y plane. By considering all the points between P and Q we obtain the closed curve
shown in Figure 2.94. We can see from that diagram that the equation does not define a
function, since one value of x can give rise to two values of y. It is, of course, possible
to specify the range of y and obtain, in this case, two functions, one for y � 1 and the
other for y � 1.

This graphical method of studying the problem was first used in the study of predator–
prey relations in fish stocks by Volterra. It is sometimes called Volterra’s method. In
that context the closed curve solution indicated the periodic nature of the fish stocks.

In MATLAB, using the Symbolic Math Toolbox, commands for plotting the graph
of an implicitly defined function f = f (x, y) = 0 are

ezplot(f) plots f (x, y) = 0 over the default domain −2π � x � 2π, 
−2π � y � 2π
ezplot(f, [xmin, xmax ,ymin ,ymax]) plots f (x, y) = 0 over
xmin � x � xmax, ymin � y � ymax

ezplot(f,[min,max]) plots f (x, y) = 0 over min � x � max and
min � y � max

If f is a function of the two variables u and v (rather than x and y) then the domain
end points umin, umax, vmin and vmax are sorted alphabetically.

Check that the commands

syms x y

ezplot(x*y*exp(2 – y) - 2*exp(x – 1),[0,3])

return the plot of Figure 2.94 and that the commands

syms x y

ezplot(y^2 – 2*y*cos(x) – 24, [0,3*pi])

return a plot similar to Figure 2.68.
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2.8.3 Piecewise defined functions

Such functions often occur in the mathematical models of practical problems. For
example, friction always opposes the motion of an object, so that the force F is −R when
the velocity v is positive and +R when the velocity is negative. To represent the force,
we can write

F = −R sgn(v)

where sgn is the abbreviation for the signum function defined by

and shown in Figure 2.95. The signum function is used in modelling relays.
The Heaviside unit step function is often used in modelling physical systems. It is

defined by

(2.45)

and its graph is shown in Figure 2.96.
Three other useful functions of this type are the floor function 8x9, the ceiling 

function 6x7 and the fractional-part function FRACPT (x). (In older textbooks 8x9
is denoted by [x] and is sometimes called the integer-part function.) These are 
defined by

8x9 = greatest integer not greater than x (2.46)

6x7 = least integer not less than x (2.47)

and

FRACPT(x) = x − 8x9 (2.48)

These definitions need to be interpreted with care. Notice, for example, that

83.439 = 3

while

8−3.439 = −4

Similarly,

FRACPT(3.43) = 0.43 and FRACPT(−3.43) = 0.57

The graphs of these functions are shown in Figure 2.97.
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Figure 2.95
y = sgn x.

Figure 2.96
y = H(x).
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Care must be exercised when using the integer-part and fractional-part functions. Some
calculators and computer implementations are different from the above definitions.

Example 2.65 Sketch the graphs of the functions with formula y = f (x), where f (x) is

(a) H(x − 1) − H(x − 2) (b) 8x9 − 2 8 x9

Solution (a) From the definition (2.45) of the Heaviside unit function H(x) as

the effect of composing it with the linear function f (x) = x − 1 is to shift its graph one
unit to the right, as shown in Figure 2.98(a). Similarly, H(x − 2) has the same graph as
H(x), but shifted two units to the right (Figure 2.98(b)). Combining the graphs in
Figures 2.98(a) and (b), we can find the graph of their difference, H(x − 1) − H(x − 2),
as illustrated in Figure 2.98(c). Analytically, we can write this as

H x
x

x
( )  

    (   )

    (   )
=

⎧
⎨
⎩

0 0

1 0

�

�

1
2

Figure 2.97
The graphs of the
‘floor’, ‘ceiling’ and
‘fractional-part’
functions.

Figure 2.98

(b) The graphs of 8x9 and 28 x9 are shown in Figure 2.99. Combining these, we can find
the graph of their difference, which is also shown in the figure.
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89 Sketch the graphs of the functions

(a) y = ÷(x2)

(b) y = ÷(x2 + x3), x � −1

(c) y = x÷(1 + x), x � −1

(d) y = ÷(1 + x) + ÷(1 − x), −1 � x � 1

90 Sketch the curves represented by

(a) y2 = x(x2 − 1)

(b) y2 = (x − 1)(x − 3)/x2

91 Sketch the curves represented by the following
equations, locating their turning points and
asymptotes:

(a) x3 + y3 = 6x2 (b) y
x

x
2

2

1
  

  
=

−

92 Sketch the graphs of

(a) y = |x |

(b) y = (x + | x |)

(c) y = | x + 1 |

(d) y = | x | + | x + 1 | − 2 | x + 2 | + 3

(e) | x + y | = 1

93 Sketch the graph of the functions f (x) with 
formulae

(a)

(b) f x
ax

l
H x H x l( )  [ ( )  (   )]= − −

f x
ax

l
H x( )  ( )=

1
2

Figure 2.99

In MATLAB the Heaviside step, floor and ceiling functions are denoted by
Heaviside(x), floor(x) and ceil(x) respectively. The FRACPT function 
may then be denoted by x–floor(x). For example, taking x = −3.43 then

floor(–3.43) returns the answer –4
ceil(–3.43) returns the answer –3
FRACPT = –3.43 – floor(–3.43) returns the answer 0.5700

In symbolic form using Symbolic Math Toolbox we have

x = sym(–3.43);

floor(x) returns –4
ceil(x) returns –3
FRACPT = x – floor(x) returns 57/100

Similar commands are available in MAPLE.

2.8.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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(c)

(d)

94 Show that the function g(x) = [H(x − a) −
H(x − b)] f (x), a � b, may alternatively be
expressed as

In other words, g(x) is a function that is identical
to the function f (x) in the interval [a, b] and zero
elsewhere. Hence express as simply as possible 
in terms of Heaviside functions the function
defined by

f x
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f x
ax

l
H x

a

l
x l H x l( )  ( )  (   ) (   )= − − −

2

f x
ax

l
H x

a

l
x l H x l( )  ( )  (   ) (   )= − − − 95 Sketch the graph of the function

Express the formula for y in terms of Heaviside
functions.

96 The function INT(x) is defined as the ‘nearest integer 
to x, with rounding up in the ambiguous case’. Sketch 
the graph of this function and express it in terms of 8x9.

97 Sketch the graphs of the functions

(a) y = 8x9 − 8x − 9

(b) y = | FRACPT(x) − |

98 It is a familiar observation that spoked wheels do
not always appear to be rotating at the correct speed
when seen on films. Show that if a wheel has s
spokes and is rotating at n revolutions per second,
and the camera operates at f frames per second, 
then the image of the wheel appears to rotate at 
N revolutions per second, where

Hence explain the illusion.
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2.9 Numerical evaluation of functions

The introduction of calculators has greatly eased the burden of the numerical evaluation
of functions. Often, however, the functions encountered in solving practical problems
are not standard ones, and we have to devise methods of representing them numerically.
The simplest method is to use a graph, a second method is to draw up a table of values
of the function, and the third method is to give an analytical approximation to the 
function in terms of simpler functions. To illustrate this, consider the function e−x. We
can represent this by a graph, as shown in Figure 2.100.

To evaluate the function for a given value of x, we read the corresponding value of
y from the graph. For example, x = 0.322 gives y = 0.73 or thereabouts. Alternatively,
we can tabulate the function, as shown in Figure 2.101. Note that the notation 
x = 0.00(0.05)0.50 means for x from 0.00 to 0.50 in steps of 0.05.

x 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
e−x 1.0000 0.9512 0.9048 0.8607 0.8187 0.7788 0.7408 0.7047 0.6703 0.6376 0.6065

Figure 2.100
The graph of y = e−x

for 0 � x � 0.5.

Figure 2.101
Table of e−x values for
x = 0.00(0.05)0.50.
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To evaluate the function for a given value of x, we interpolate linearly within the
table of values, to obtain the value of y. For example, x = 0.322 gives

= 0.7408 + (0.44)(−0.0361) = 0.7480 − 0.015 884

= 0.7249

Another way of representing the function is to use the approximation

which will be obtained in Section 7.11, Example 7.38. Setting x = 0.322 gives

= 0.724 70 . . .

The question remains as to how accurate these representations of the function are. 
The graphical method of representation has within it an implicit error bound. When 
we read the graph, we make a judgement about the number of significant digits in the
answer. In the other two methods it is more difficult to assess the error – but it is also
more important, since it is easy to write down more digits than can be justified. Are 
the answers correct to one decimal place or two, or how many? We shall discuss the
accuracy of the tabular representation now and defer the algebraic approximation case
until Section 7.11.

2.9.1 Tabulated functions and interpolation

To estimate the error involved in evaluating a function from a table of values as above,
we need to look more closely at the process involved. Essentially the process assumes
that the function behaves like a straight line between tabular points, as illustrated in
Figure 2.102. Consequently it is called linear interpolation. The error involved depends
on how closely a linear function approximates the function between tabular points, and
this in turn depends on how close the tabular points are.

If the distance h between tabular points is sufficiently small, most functions arising
from applications of mathematics behave locally like linear functions; that is to say, the
error involved in approximating to the function between tabular points by a linear func-
tion is less than a rounding error. (Note that we have to use a different linear function

y  
( .   ) .   

( .   ) .   
  

.

.
≈

− +
+ +

=
0 322 6 0 322 12
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10 171 684
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x x x
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.   .
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−
−

−0 7408
0 322 0 30

0 35 0 30
0 7047 0 7408
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Figure 2.102
Linear interpolation
for e−x

(0.30 � x � 0.35).

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:40  Page 174



2.9 NUMERICAL EVALUATION OF FUNCTIONS 175

between each consecutive pair of values of the function. We have a piecewise-linear
approximation.) This, however, is a qualitative description of the process, and we need
a quantitative description. In general, consider the function f (x) with values fi = f (xi)
where xi = x0 + ih, i = 0, 1, 2, … , n. To calculate the value f (x) at a non-tabular point,
where x = xi + θh and 0 � θ � 1, using linear interpolation, we have

(2.49)

as shown in Figure 2.103.
The formula (2.49) may be written in a number of different ways, but it always gives

the same numerical result. The form used will depend on the computational context.
Thus we may write

f (x) ≈ fi + θ ( fi+1 − fi), where  (2.50)

or

(Lagrange’s form) (2.51)

The difference fi+1 − fi between successive values in the table is often denoted by ∆ fi, 
so that (2.49) may be rewritten as

f (x) ≈ fi + θ∆ fi

Example 2.66 Use linear interpolation and the data of Figure 2.101 to estimate the value of

(a) e−x where x = 0.235 (b) x where e−x = 0.7107

Solution (a) From the table of values in Figure 2.101 we see that x = 0.235 lies between the tabular
points x = 0.20 and x = 0.25. Applying the formula (2.49) with xi = 0.20, xi+1 = 0.25, 
fi = 0.8187 and fi+1 = 0.7788 we have

(b) From the table of values we see that e−x = 0.7107 occurs between x = 0.30 and 
x = 0.35. Thus the value of x is given, using formula (2.49), by the equation

Hence
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Figure 2.103
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The difficulty with both the estimates obtained in Example 2.66 is that we do not 
know how accurate the answers are. Are they correct to 4dp or 3dp or less? The size of
the error in the answer depends on the curvature of the function. Because any linear
interpolation formula is, by definition, a straight line it cannot reflect the curvature of
the function it is trying to model. In order to model curvature a parabola is required,
that is a quadratic interpolating function. The difference between the quadratic inter-
polation formula and the linear formula will give us a measure of the accuracy of the
linear formula. We have

function value = linear interpolation value + C1

and

function value = quadratic interpolation value + C2

where ideally C2 is very much smaller than C1. Subtracting these equations we see that

C1 ≈ quadratic interpolation value – linear interpolation value

Now to determine a quadratic function we require three points. Using formula (2.11)
obtained earlier, we see that the quadratic function which passes through (xi, fi), 
(xi+1, fi+1) and (xi+2, fi+2) may be expressed as

We can simplify p(x), when the data points are equally spaced, by remembering that 
xi +2 = xi + 2h, xi +1 = xi + h and x = xi + θh, with 0 � θ � 1, giving

This formula looks intimidatingly unlike that for linear interpolation, but, after some
rearrangement, we have

p(x) = [ fi + θ( fi +1 − fi)] + (θ − 1)( fi+2 − 2 fi+1 + fi)

= [ fi + θ∆ fi] + (θ − 1)(∆ fi+1 − ∆ fi)

where 0 � θ � 1. Here the term in square brackets is the linear interpolation approxi-
mation to f (x), so that

(θ − 1)(∆ fi +1 − ∆ fi)

is the quadratic correction for that approximation (remember: the correction is added 
to eliminate the error). Note that this involves the difference of two successive differ-
ences, so we may write it as (θ − 1)∆2fi , where ∆2 fi = ∆(∆ fi) = ∆ fi+1 − ∆ fi .

1
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Error in linear interpolation

We can use this to estimate the error in linear interpolation for a function. If

f (x) ≈ fi + θ∆ fi + (θ − 1)∆2 fi

in the interval [xi , xi+1] then the error in using the linear interpolation

f (x) ≈ fi + θ∆ fi

will be approximately (θ − 1)∆2 fi , and an estimate of the error bound of the linear
approximation is given by

Now θ(θ − 1) = (θ − )2 − , so that , and our estimate of the error
bound is

| ∆2 fi |

For accurate linear interpolation we require this error bound to be less than a rounding
error. That is, it must be less than unit in the least significant figure. This implies

| ∆2 fi | � unit of least significant figure

giving the condition

| ∆2 fi | � 4 units of the least significant figure

for linear interpolation to yield answers as accurate as those in the original table.
Thus, from the table of values of the function e−x shown in Figure 2.101 we can 

construct the table shown in Figure 2.104. The final row shows the estimate of the 
maximum error incurred in linear interpolation within each interval [xi, xi+1]. In order to
complete the table with error estimates for the intervals [0.00, 0.05] and [0.45, 0.50],
we need values of e−x for x = −0.05 and 0.55. From the information we have in 
Figure 2.103 we can say that the largest error likely in using linear interpolation 
from this table of 11 values of e−x is approximately 3 units in the fourth decimal place.
Values obtained could therefore safely be quoted to 3dp.

Critical tables

An ordinary table of values uses equally spaced values of the independent variable 
and tabulates the corresponding values of the dependent variable (the function values).

1
2

1
8

1
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1
8

max (   )   
0 1

1
41

� �θ
θ θ| |− =1

4
1
2

max [ (   ) ]
0 1

1
2

21
� �θ

θ θ| |− ∆ fi

1
2θ

1
2θ

.. ..

i 0 1 2 3 4 5 6 7 8 9 10
xi 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

e−xi 1.0000 0.9512 0.9048 0.8607 0.8187 0.7788 0.7408 0.7047 0.6703 0.6376 0.6065
| ∆2fi | 0.000 29 0.000 28 0.000 26 0.000 25 0.000 24 0.000 23 0.000 21 0.000 201

8

Figure 2.104 Table of values of e−x, with error estimates for linear interpolation.
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2.9.2 Exercises

99 Tabulate the function f (x) = sin x for 
x = 0.0(0.2)1.6. From this table estimate, by linear
interpolation, the value of sin 1.23. Construct a
table equivalent to Figure 2.102, and so estimate
the error in your value of sin 1.23. Use a pocket
calculator to obtain a value of sin 1.23 and
compare this with your estimates.

100 Tabulate the function f (x) = x3 for x = 4.8(0.1)5.6.
Construct a table equivalent to Figure 2.102, and
hence estimate the largest error that would be
incurred in using linear interpolation in your table
of values over the range [5.0, 5.4]. Construct a
similar table for x = 4.8(0.2)5.6 (that is, for linear
interpolation with twice the tabulation interval)
and estimate the largest error that would be
incurred by linear interpolation from this table 
in the range [5.0, 5.4]. What do you think the
maximum error in interpolating in a similar table
formed for x = 4.8(0.05)5.6 might be? What
tabulation interval do you think would be needed
to allow linear interpolation accurate to 3dp?

101 The function f (x) is tabulated at unequal intervals
as follows:

x 15 18 20
f (x) 0.2316 0.3464 0.4864

Use linear interpolation to estimate f(17), f (16.34)
and f −1(0.3).

102 Assess the accuracy of the answers obtained in
Question 96 using quadratic interpolation
(Lagrange’s formula, (2.11)).

103 Show that Lagrange’s interpolation formula for
cubic interpolation (see Section 2.4) is

Use this formula to find a cubic polynomial that
fits the function f given in the following table:

x −1 0 1 8
f (x) −1 0 1 2

Draw the graph of the cubic for −1 � x � 8 and
compare it with the graph of y = x1/3.

104 Construct a critical table for 

y = 3÷x

for y = 14.50(0.01)14.55.
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=
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A critical table gives the function values at equal intervals, usually a unit of the last
decimal place, and then tabulates the limits between which the independent variable gives
each value. Thus, for example, cos x° = 0.999 for 1.82 � x � 3.14 and cos x° = 0.998
for 3.14 � x � 4.06 and so on. Thus we obtain the table of values shown in Figure 2.105.
If a value of the independent variable falls between two tabular values, the value of 
the dependent variable is that printed between these values. Thus cos 2.62° = 0.999.
The advantages of critical tables are that they do not require interpolation, they always
give answers that are accurate to within half a unit of the last decimal place and they
require less space.
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Figure 2.105
A critical table 
for cos x°.
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2.10 Engineering application: a design problem
Mathematics plays an important role in engineering design. We shall illustrate how
some of the elementary ideas described in this chapter are used to produce optimal
designs. Consider the open container shown in Figure 2.106. The base and long sides
are constructed from material of thickness t cm and the short sides from material of
thickness 3t cm. The internal dimensions of the container are l cm × b cm × h cm. The
design problem is to produce a container of a given capacity that uses the least amount
of material. (Mass production of such items implies that small savings on individual
items produce large savings in the bulk product.) First we obtain an expression for the
volume A of material used in the manufacture of the container.

Figure 2.106

The capacity C of the box is C(l, b, h) = lbh. Then

A(l, b, h, t) = C(l + 6t, b + 2t, h + t) − C(l, b, h)

= (l + 6t)(b + 2t)(h + t) − lbh

= (lb + 6bh + 2hl )t + (2l + 6b + 12h)t2 + 12t3 (2.52)

For a specific design the thickness t of the material and the capacity K of the container
would be specified, so, since lbh = K, we can define one of the variables l, b and h in
terms of the other two. For example l = K/bh.

For various reasons, for example, ease of handling, marketing display and so on, the
manufacturer may impose other constraints on the design. We shall illustrate this by
first considering a special case, and then look at the more general case.

Special case

Let us seek the optimal design of a container whose breadth b is four times its height h
and whose capacity is 10 000 cm3, using material of thickness 0.4 cm and 1.2 cm (so 
that t = 0.4). The function f (h) that we wish to minimize is given by A(l, b, h, t), where
t = 0.4, b = 4h and lbh = 10 000 (so that l = 2500/h2). Substituting these values in (2.52)
gives, after some rearrangement,

f (h) = 9.6h2 + 5.76h + 0.768 + 6000/h + 800/h2

The graph of this function is shown in Figure 2.107. The graph has a minimum point
near h = 7. We can obtain a better estimate for the optimal choice for h by approxim-
ating f (h) locally by a quadratic function. Evaluating f at h = 6, 7 and 8 givesFigure 2.107

M02_JAME0734_05_SE_C02.qxd  11/03/2015  09:40  Page 179



..

f (6) = 1403.2, f (7) = 1385.0, f (8) = 1423.7

This shows clearly that the minimum value occurs between h = 6 and h = 8.
We approximate to f(h) using a local quadratic approximation of the form

f (h) � A(h − 7)2 + B(h − 7) + C

Setting h = 7 gives C = 1385.0
Setting h = 6 gives A − B + C = 1403.2
Setting h = 8 gives A + B + C = 1423.7

Hence C = 1385.0, A = 28.45 and B = 10.25. The minimum of the approximating
quadratic function occurs where h − 7 = −B/(2A), that is, at h = 7 − 0.18 = 6.82. Thus
the optimal choice for h is approximately 6.82 giving a value for f (h) at that point of
1383.5.

The corresponding values for b and l are b = 27.3 and l = 53.7. Thus we have
obtained an optimal design of the container in this special case.

General case

Here we seek the optimal design without restricting the ratio of b to h. For a container
of capacity K, we have to minimize A(l, b, h, t) subject to the constraint C(l, b, h) = K.
Here

A(l, b, h, t) = (lb + 6bh + 2hl)t + (2l + 6b + 12h)t2 + 12t3

and

C(l, b, h) = lbh

These functions have certain algebraic symmetries that enable us to solve the problem
algebraically. Consider the formula for A and set x = 2h and y = l/3, then

A(l, b, h, t) = 3(by + bx + xy)t + 6(y + b + x)t2 + 12t3

= A*(y, b, x, t)

and

C(l, b, h) = 3bxy/2

From this we can conclude that if A*(y, b, x, t) has a minimum value at (y0, b0, x0) 
for a given value of t, then it has the same value at (x0, b0, y0), (x0, y0, b0), (y0, x0, b0),
(b0, y0, x0) and (b0, x0, y0). Assuming that the function has a unique minimum point, we
conclude that these six points are the same, that is b0 = y0 = x0. Thus we deduce that the
minimum occurs where l = 6h and b = 2h. Since the capacity is fixed, we have lbh = K,
which implies that 12h3 = K.

Thus the optimal choice for h in the general case is ( K )1/3.
Returning to the special case where K = 10 000 and t = 0.4, we obtain an optimal

design when

h = 9.41, b = 18.82, l = 56.46

using 1330.1 cm3 of material. Note that the amount of material used is close to that used
in the special case where b = 4h. This indicates that the design is not sensitive to small
errors made during its construction.

1
12
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2.11 Engineering application: an optimization problem
A company owns two mines: mine X produces 1 ton of high grade ore, 3 tons of
medium grade ore and 5 tons of low grade ore each day while mine Y produces 2 tons
of each grade ore each day. The company needs 80 tons of high, 160 tons of medium
and 200 tons of low grade ore. It costs £2000 a day to operate each mine. How many
days should each mine be operated to minimize the cost?

We can summarize the information using a table:

Mine X Y Requirements

Grade
High 1 2 80
Medium 3 2 160
Low 5 2 200
Cost/day 2000 2000

Running X for x days and Y for y days to meet the requirements gives the inequalities

x + 2y � 80

3x + 2y � 160

5x + 2y � 200

with the associated cost C = 2000x + 2000y. Also we know that x � 0 and y � 0.
The set of feasible solutions is shown tinted in Figure 2.108. The feasible costs are

also shown in the diagram. They are represented by lines parallel to x + y = C/2000. The
minimum cost is given by the cost line closest to the origin. This is the line that passes
through the point A(40, 20).

Thus the company should operate mine X for 40 days and mine Y for 20 days to
minimize the cost. This is an example of optimization using linear programming.

....
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2.12 Review exercises (1–23)

Check your answers using MATLAB or MAPLE whenever possible.

1 The functions f and g are defined by

f (x) = x2 − 4 (x in [−20, 20])

g(x) = x1/2 (x in [0, 200])

Let h(x) and k(x) be the compositions f ° g(x) and
g ° f (x) respectively. Determine h(x) and k(x). Is
the composite function k(x) defined for all x in the
domain of f (x)? If not, then for what part of the
domain of f (x) is k(x) defined?

2 The perimeter of an ellipse depends on the lengths
of its major and minor axes, and is given by

perimeter = 2 × (major axis) × E(m)

where

and E is the function whose graph is given in
Figure 2.109.

(a) Calculate the perimeter of the ellipse whose
axes are of length 10 cm and 6 cm.

(b) A fairing is to be made from sheet metal bent
into the shape of an ellipse of major axis 55 cm 

m  
( )   ( )

( )
=

−major axis minor axis

major axis

2 2

2

and minor axis 13 cm, and is to be of length 2 m.
Estimate the area of sheet metal required.

3 The sales volume of a product depends on its price
as follows:

Price/£ 1.00 1.05 1.10 1.15 1.20 1.25 1.30
Sales/000 8 7 6 5 4 3 2

The cost of production is £1 per unit. Draw up a
table showing the sales revenue, the cost and the
profits for each selling price, and deduce the selling
price to be adopted.

4 A function f is defined by

Draw the graphs of f(x), f (x − 2) and f(2x). The
function g(x) is defined as f(x + 2) − f (2x − 1). 
Draw a graph of g(x).

5 The function f (x) has formula y = x2 for 0 � x � 1.
Sketch the graphs of f (x) for −4 � x � 4 when

(a) f (x) is periodic with period 1;

(b) f (x) is even and periodic with period 2;

(c) f (x) is odd and periodic with period 2.

6 Assuming that all the numbers given are correctly
rounded, calculate the positive root together with
its error bound of the quadratic equation

1.4x2 + 5.7x − 2.3 = 0

Give your answer also as a correctly rounded number.

7 Sketch the functions

(a) x2 − 4x + 7 (b) x3 − 2x2 + 4x − 3

(c) (d) 

8 Find the Taylor expansion of

x4 + 3x3 − x2 + 2x − 1 about x = 1

x x

x x

2

2

2 3

2 3

    

    

− +
+ −

x

x

  

  

+
−

4

12

f

x x

x

x x

 =

+ −

−

−

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

  (   )

(     )

  (   )

1 1

0 1 1

1 1

�

� �

�

Figure 2.109
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9 Find the partial fractions of

(a) (b) 

(c) (d) 

10 Express as products of sines and/or cosines

(a) sin 2θ − sin θ (b) cos 2θ + cos 3θ

(c) sin 4θ − sin 7θ

11 Express in the form r sin(θ − α)

(a) 4 sin θ − 2 cos θ (b) sin θ + 8 cos θ

(c) ÷3 sin θ + cos θ

12 (a) From the definition of the hyperbolic sine
function prove

sinh 3x = 3 sinh x + 4 sinh3x

(b) Sketch the graph of y = x3 + x carefully, and
show that for each value of y there is exactly one
value of x. Setting z = x÷3, show that

and using (a), deduce that

13 The parts produced by three machines along a
factory aisle (shown in Figure 2.110 as the x axis)
are to be taken to a nearby bench for assembly
before they undergo further processing. Each
assembly takes one part from each machine. There
is a fixed cost per metre for moving any of the
parts. Show that if x represents the position of the
assembly bench the cost C(x) of moving the parts
for each assembled item is given by

C(x) ∝ d(x)

where d(x) = | x + 3 | + | x − 2 | + | x − 4 | .

x  sinh sinh= ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥−2

3

1

3

3 3

2
1 y

4 3
3 3

2
3z z y    + =

1
2

x x

x x x

(   )

(     )(   )

2 1

1 32

−
− + +

x x

x x

2

2

2 3

2 1

    

(   ) (   )

− +
+ −

x

x x

2 4

1 3

  

(   )(   )

+
+ −

x

x x

  

(   )(   )
 

+
− −

2

1 4

Draw the graph of d(x) and find the optimal
position of the bench.

14 Sketch the graphs of the functions

(a) 8 x9 − 8 x9

(b) xH(x) − (x − 1)H(x − 1) + (x − 2)H(x − 2)

15 Draw up a table of values of the function 
f (x) = x2e−x for x = −0.1(0.1)1.1. Determine the
maximum error incurred in linearly interpolating 
for the function f(x) in this table, and hence 
estimate the value of f (0.83), giving your estimate 
to an appropriate number of decimal places.

16 By setting t = tan x, find the maximum value of
(sin x)/(2 − cos x).

17 (a) Show that a root x0 of the equation

x4 − px3 + q = 0

is a repeated root if and only if

4x0 − 3p = 0

(b) The stiffness of a rectangular beam varies 
with the cube of its height h and directly with its
breadth b. Find the section of the beam that can be
cut from a circular log of diameter D that has the
maximum stiffness.

18 Starting at the point (x0, y0) = (1, 0), a sequence 
of right-angled triangles is constructed as shown 
in Figure 2.111. Show that the coordinates of the
vertices satisfy the recurrence relations

xi = xi−1 − wiyi−1

yi = wixi−1 + yi −1

where wi = tan α i°, x0 = 1 and y0 = 0.

1
2

1
3

3
2

1
2

Figure 2.110 Figure 2.111
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Any angle 0° � θ° � 360° can be expressed in
the form

where tan φ i° = 10−i and ni is a non-negative 
integer. Express θ = 56.5 in this form and, using 
the recurrence relations above, calculate sin θ°
and cos θ° to 5dp. (This method of calculating 
the trigonometric functions is used in some
calculators.)

19 A mechanism consists of the linkage of three rods
AB, BC and CD, as shown in Figure 2.112, where
AB = CD (= a, say), BC = AD = a÷2, and M is 
the midpoint. The rods are freely jointed at B 
and C, and are free to rotate about A and D. 
Using polar coordinates with their pole O at the 
midpoint of AD and initial line OD, show that 
the curve described by M as CD rotates about D 

θ φ  =
=

∞

∑ ni i
i 0

is r2 = a 2 cos 2θ. Draw a careful graph of this curve,
the ‘lemniscate’ of Bernoulli.

Show that

(a) the cartesian coordinates of M satisfy

(x2 + y2)2 = a2(x2 − y2)

(b) AM × DM = a2.

20 Show that the equation

r = p/sin(θ − α)

represents a straight line which cuts the x axis 
at the angle α and whose perpendicular distance
from the origin is p.

21 Use the result of Question 20 to find the polar
coordinate representation of the line which passes
through the points (1, 2) and (3, 3).

22 Show that the equation

r = ep/(1 + e cos θ )

where e and p are constants, represents an ellipse
where 0 � e � 1, a parabola where e = 1 and a
hyperbola where e � 1, the origin of the coordinate
system being at a focus of the conic concerned.

23 Continuing Question 54 of Exercises 2.6.2, show that

and by applying the arithmetic-geometric inequality
to 

deduce that θ° achieves its maximum value where 
d = 2÷3.

3

4d

d
  +

cot   
  θ =
+12

4

2d

d

1
2

Figure 2.112
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3.1 Introduction
Complex numbers first arose in the solution of cubic equations in the sixteenth century
using a method known as Cardano’s solution. This gives the solution of the equation

x3 + qx + r = 0

as

which may be verified by direct substitution. This solution gave difficulties when it
unexpectedly involved square roots of negative numbers. For example, the equation

x3 − 15x − 4 = 0

was known to have three roots. An obvious one is x = 4, but the corresponding root
obtained using the formula was

x = 3÷[2 + ÷(−121)] + 3÷[2 − ÷(−121)]

Writing in 1572, Bombelli showed that

2 + ÷(−121) = [2 + ÷(−1)]3

and

2 − ÷(−121) = [2 − ÷(−1)]3

and so

x = [2 + ÷(−1)] + [2 − ÷(−1)] = 4

as expected. Since

÷(−x) = ÷(−1)÷x

where x is a positive number, the square roots of negative numbers can be represented
as a number multiplied by ÷(−1). Thus ÷(−121) = 11÷(−1), ÷(−4900) = 70÷(−1) and so
on. Because the introduction of the special number ÷(−1) simplified calculations, it
quickly gained acceptance by mathematicians. Denoting ÷(−1) by the letter j, we obtain
the general number z where

z = x + jy

Here x and y are ordinary real numbers and obey the Fundamental Rules of
Arithmetic. (Most mathematics and physics texts use the letter i instead of j. However,
we shall follow the standard engineering practice and use j.) The number z is called a
complex number. The ordinary processes of arithmetic still apply, but become a little
more complicated. As well as simplifying the process of obtaining roots as above, the
introduction of j = ÷(−1) simplified the theory of equations, so that, for example, the
quadratic equation

ax2 + bx + c = 0

always has two roots

 
x

b b ac

a
  

  (   )
=

− ± −÷ 2 4

2

 x r r q r r q     )]      )]= + + + − +3 2 3 3 2 3÷ ÷ ÷ ÷[− ( [− (1
2

1
4

1
27

1
2

1
4

1
27
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These roots are real numbers when b2 � 4ac and complex numbers when b2 � 4ac.
Thus, any irreducible quadratic (see Section 2.3.4) may be factorized into two complex
factors. Thus x2 + 2x + 5 = (x + 1 + j2)(x + 1 − j2). It then follows from property (ii) 
of the polynomial functions, given in Section 2.4.1, that any polynomial equation of
degree n having real coefficients has exactly n roots which may be real or complex.
This is a result known as the Fundamental Theorem of Algebra, which is also valid
for polynomial equations having complex coefficients. Thus

x7 − 7x5 − 6x4 + 4x3 − 28x − 24 = 0

is an equation of degree seven and has the seven roots

x = −1, −2, −3, −1 − j, −1 + j, 1 − j, 1 + j

As has often been the case, what began as a mathematical curiosity has turned out to
be of considerable practical importance, and complex numbers are invaluable in many
aspects of engineering analysis. An elementary, but important, application is discussed
later in this chapter.

3.2 Properties
To specify a complex number z, we use two real numbers, x and y, and write

z = x + jy

where j = ÷(−1), and x is called the real part of z and y its imaginary part. This is often
abbreviated to

z = x + jy, where x = Re(z) and y = Im(z)

Note that the imaginary part of z does not include the j. For example, if z = 3 − j2 then
Re(z) = 3 and Im(z) = −2. If x = 0, the complex number is said to be purely imaginary
and if y = 0 it is said to be purely real.

3.2.1 The Argand diagram

Geometrically, complex numbers can be represented as points on a plane similar to the
way in which real numbers are represented by points on a straight line (see Section
1.2.1). The number z = x + jy is represented by the point P with coordinates (x, y), as
shown in Figure 3.1. Such a diagram is called an Argand diagram, after one of its
inventors. The x axis is called the real axis and the y axis is called the imaginary axis.

Figure 3.1
The Argand diagram: 
z = x + jy.
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Example 3.1 Represent on an Argand diagram the complex numbers

(a) 3 + j2 (b) −5 + j3 (c) 8 − j5 (d) −2 − j3

Solution (a) The number 3 + j2 is represented by the point A(3, 2)

(b) The number −5 + j3 is represented by the point B(−5, 3)

(c) The number 8 − j5 is represented by the point C(8, −5)

(d) The number −2 − j3 is represented by the point D(−2, −3) 

as shown in Figure 3.2.

Figure 3.2

3.2.2 The arithmetic of complex numbers

(i) Equality

If two complex numbers z1 = x1 + jy1 and z2 = x2 + jy2 are equal then they are represented
by the same point on the Argand diagram and it clearly follows that

x1 = x2 and y1 = y2

That is, when two complex numbers are equal we can equate their respective real and
imaginary parts.

Example 3.2 If the two complex numbers

z1 = (3a + 2) + j(3b − 1) and z2 = (b + 1) − j(a + 2 − b)

are equal

(a) find the values of the real numbers a and b;

(b) write down the real and imaginary parts of z1 and z2.
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Solution (a) Since z1 = z2 we can equate their respective real and imaginary parts, giving

(3a + 2) = (b + 1) or 3a − b = −1

and

(3b − 1) = −(a + 2 − b) or a + 2b = −1

Solving for a and b then gives

a = , b =

(b)

(ii) Addition and subtraction

To add or subtract two complex numbers, we simply perform the operations on their
corresponding real and imaginary parts. In general, if z1 = x1 + jy1 and z2 = x2 + jy2 then

z1 + z2 = (x1 + x2) + j(y1 + y2)

and

z1 − z2 = (x1 − x2) + j(y1 − y2)

In Section 4.2.5 we shall interpret complex numbers geometrically as two-dimensional
vectors and illustrate how the rules for the addition of vectors can be used to represent
addition of complex numbers in the Argand diagram.

Example 3.3 If z1 = 3 + j2 and z2 = 5 − j3 determine

(a) z1 + z2 (b) z1 − z2

Solution (a) Adding the corresponding real and imaginary parts gives

z1 + z2 = (3 + 5) + j(2 − 3) = 8 − j1

(b) Subtracting the corresponding real and imaginary parts gives

z1 − z2 = (3 − 5) + j(2 − (−3)) = −2 + j5

(iii) Multiplication

When multiplying two complex numbers the normal rules for multiplying out brackets
hold. Thus, in general, if z1 = x1 + jy1 and z2 = x2 + jy2 then

Im( )      

Im( )  (     )  
        Im( )  Im( )  

z b

z a b
z z

1
13
7

2
13
7

1 2
13
7

3 1

2

= − = −

= − + − = −

⎫
⎬
⎪

⎭⎪
= = −thus

Re( )      

Re( )      
    Re( )  Re( )  

z a

z b
z z

1
5
7

2
5
7

1 2
5
7

3 2

1

= + =

= + =

⎫
⎬
⎪

⎭⎪
= =thus

− 2
7− 3

7
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z1z2 = (x1 + jy1)(x2 + jy2)

= x1x2 + jy1x2 + jx1y2 + j2y1y2

Making use of the fact that j2 = −1 then gives

z1z2 = x1x2 − y1 y2 + j(x1y2 + x2 y1)

Example 3.4 If z1 = 3 + j2 and z2 = 5 + j3 determine z1z2.

Solution z1z2 = (3 + j2)(5 + j3) = 15 + j10 + j9 + j26

= 15 − 6 + j(10 + 9), using the fact that j2 = −1

= 9 + j19

(iv) Division

The division of two complex numbers is less straightforward. If z1 = x1 + jy1 and 
z2 = x2 + jy2, then we use the following technique to obtain the quotient. We multiply
‘top and bottom’ by x2 − jy2, giving

Multiplying out ‘top and bottom’, we obtain

giving

The number x − jy is called the complex conjugate of z = x + jy and is denoted by z*.
(Sometimes the complex conjugate is denoted with an overbar as z.) Note that the 
complex conjugate z* is obtained by changing the sign of the imaginary part of z.

Example 3.5 If z1 = 3 + j2 and z2 = 5 + j3

Solution

Multiplying ‘top and bottom’ by the conjugate 5 − j3 of the denominator gives

z

z
1

2

3 2 5 3

5 3 5 3
  

(   )(   )

(   )(   )
=

+ −
+ −

j j

j j

z

z
1

2

3 2

5 3
  

  

  
=

+
+

j

j

determine 1

2

 .
z

z

z

z

x x y y

x y

x y x y

x y
1

2

1 2 1 2

2
2

2
2

2 1 1 2

2
2

2
2

  
(   )

  
  

(   )

  
=

+
+

+
−
+

j

z

z

x x y y x y x y

x y
1

2

1 2 1 2 2 1 1 2

2
2

2
2

  
(   )  (   )

  
=

+ + −
+

j

z

z

x y

x y

x y x y

x y x y
1

2

1 1

2 2

1 1 2 2

2 2 2 2
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j

j
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Multiplying out ‘top and bottom’ we obtain

Example 3.6 Find the real and imaginary parts of the complex number z + 1/z for z = (2 + j)/(1 − j).

Solution

then

so that

giving

3.2.3 Complex conjugate

As we have seen above, the complex conjugate of z = x + jy is z* = x − jy. In the Argand
diagram z* is the mirror image of z in the real or x axis. The following important 
results are readily deduced.

z + z* = 2x = 2 Re(z)

z − z* = 2jy = 2j Im(z) (3.1)

zz* = (x + jy)(x − jy) = x2 + y2

(z1z2)* = z 1*z 2*

with the next to last result indicating that the product of a complex number and its 
complex conjugate is a real number.

The zeros of an irreducible quadratic function, which has real coefficients, are 
complex conjugates of each other.

Example 3.7 Express the zeros of f (x) = x 2 − 6x + 13 as complex numbers.

Solution The zeros of f (x) are the roots of the equation

x 2 − 6x + 13 = 0
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Using the quadratic formula (1.8) we obtain

So the two zeros form a conjugate pair.

Example 3.8 Find all the roots of the quartic equation

x 4 + 4x 2 + 16 = 0

Solution Rewriting the equation we can achieve a difference of squares which makes possible a
first factorization

x 4 + 8x 2 + 16 − 4x 2 = (x 2 + 4)2 − 4x 2

= [(x 2 + 4) − 2x][(x 2 + 4) + 2x]

Now x 2 − 2x + 4 = (x − 1)2 + 3 and x 2 + 2x + 4 = (x + 1)2 + 3, so we obtain the equations

x − 1 = ±j√3 and x + 1 = ±j√3

and the four roots of the quartic equation are

x = 1 + j√3, 1 − j√3, −1 + j√3, −1 − j√3

These roots form two conjugate pairs.

Example 3.9 For the complex numbers z1 = 5 + j3 and z2 = 3 − j2 verify the identity

(z1z2)* = z 1*z 2*

Solution z1z2 = (5 + j3)(3 − j2) = 15 + 6 + j(9 − 10) = 21 − j

(z1z2)* = 21 + j

z 1*z 2* = (5 − j3)(3 + j2) = 15 + 6 + j(10 − 9) = 21 + j

Thus (z1z2)* = z 1*z 2*.

3.2.4 Modulus and argument

As indicated in the Argand diagram of Figure 3.3, the point P is specified uniquely if
we know the length of the line OP and the angle it makes with the positive x direction.
The length of OP is a measure of the size of z and is called the modulus of z, which is
usually denoted by mod z or | z |. The angle between the positive real axis and OP is
called the argument of z and is denoted by arg z. Since the polar coordinates (r, θ) and
(r, θ + 2π) represent the same point, a convention is used to determine the argument 

=
± −

= ± 
  )

    
6 4 1

2
3 2

÷(
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    )

  
  )

=
± −

=
± −6 36 52

2

6 16
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of z uniquely, restricting its range so that −π � arg z � π. (In some textbooks this 
is referred to as the ‘principal value’ of the argument.) The argument of the complex
number 0 + j0 is not defined.

Thus from Figure 3.3, | z | and arg z are given by

(3.2)

Note that from equations (3.1)

zz* = x2 + y2 = | z |2

There are two common mistakes to avoid when calculating | z | and arg z using (3.2).
First note that the modulus of z is the square root of the sum of squares of x and y, not
of x and jy. The j part of the number has been accounted for in the representation of the
Argand diagram. The second common mistake is to place θ in the wrong quadrant. To
avoid this, it is advisable when evaluating arg z to draw a sketch of the Argand diagram
showing the location of the number.

Example 3.10 Determine the modulus and argument of

(a) 3 + j2 (b) 1 − j (c) −1 + j (d) −÷6 − j÷2

Solution Note that the sketches of the Argand diagrams locating the positions of the complex
numbers are given in Figure 3.4(a–d).

(a) | 3 + j2 | = ÷(32 + 22) = ÷(9 + 4) = ÷13 = 3.606

arg(3 + j2) = = 0.588

(b) | 1 − j | = ÷[12 + (−1)2] = ÷2 = 1.414

arg(1 − j) = − ⎛
⎝

⎞
⎠ = −−tan   1 1

4

1

1
π

tan− ⎛
⎝

⎞
⎠

1 2

3

| |z r x y

z y x z

    (   )

arg        tan   / ,   

= = +

= = ≠

⎫
⎬
⎪

⎭⎪

2 2

0θ θwhere

Figure 3.3
Modulus (r) and
argument (θ ) of the
complex number 
z = x + jy.

Figure 3.4
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(c) | −1 + j | = ÷[(−1)2 + 12] = ÷2 = 1.414

arg(−1 + j) =

(d) | −÷6 − j÷2 | = ÷(6 + 2) = ÷8 = 2.828

arg(−÷6 − j÷2) = −(π − tan−1 ) = −(π − tan−1÷ ) = −(π − π) = − π

MATLAB handles complex numbers automatically. Either i or j can be used to
denote the imaginary part, but in any output to a command, MATLAB will always
use i. Consequently, to avoid confusion i will be used throughout when using
MATLAB, so, for example, the complex number z = 4 + j3 will be entered as:

z = 4 + 3i

Note that the i is located after the number 3 and there is no need to insert the 
multiplication sign * between the 3 and the i (if it is located before then * must 
be included). However, in some cases it is necessary to insert *; for example, the
complex number must be entered as

z = –1/2 + (1/2)*i

MAPLE is similar to MATLAB in dealing with complex numbers, except it uses I
and * is always required.

The complex conjugate z* of a complex number z is obtained using the command
conj; for example, to obtain the conjugate of z = 4 + j3 enter the commands

MATLAB MAPLE
z = 4 + 3i; z:= 4 + 3*I;

zbar = conj(z) zbar:= conjugate(z);

which return
zbar = 4 - 3i zbar = 4 - 3I

The arithmetical operations of addition, subtraction, multiplication and division are
carried out by the standard operators +, –, *, and / respectively. For example, if 
z1 = 4 + j3 and z2 = −3 + j2 then z3 = z1 + z2 and z4 = z1/z2 are determined as follows:

MATLAB MAPLE
z1 = 4 + 3i; z1:= 4 + 3*I; 

z2 = -3 + 2i; z2:= -3 + 2*I;

z3 = z1 + z2 z3:= z1 + z2;

return
z3 = 1.0000 + 5.0000i z3 = 1 + 5I

and the further command
z4 = z1/z2 z4:= z1/z2;

returns
z4 = –0.4615 – 1.3077i z4:= – 6––13 – 17––13I

evalf(%);

returns z4 = –0.4615 – 1.3077I

Note that MAPLE produces exact arithmetic; the command evalf is used to pro-
duce the numerical answer. Exact arithmetic may be undertaken in MATLAB using

z    = − +1
2

1
2j

5
6

1
6

1
3
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÷

2
6
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4
3
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1
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the Symbolic Math Toolbox with the command double used to obtain numerical
results. For example the commands

syms z1 z2 z4

z1 = sym(4 + 3i); z2 = sym(3 + 2i); z4 = z1/z2

return

z4 = – 6––13 – 17––13*i

and

double(z4)

returns

z4 = –0.4615 – 1.3077i

The real and imaginary parts of a complex number are determined using the 
commands real and imag respectively. Considering Example 3.6 the MATLAB
commands

z = (2 + i)/(1 – i); z1 = z + 1/z;

real(z1)

return the answer 0.7000 and the further command

imag(z1)

returns the answer 0.9000, thus confirming the answers obtained in the given solu-
tion. MAPLE uses Re and Im.

To represent complex numbers as points on an Argand diagram check that the
following commands reaffirm the solution given in Example 3.1:

z1 = 3 + 2i; x = real(z1); y = imag(z1);

plot(x,y,’*’)

xlabel(‘x = Re(z)’)

ylabel(‘y = Im(z)’)

hold on

plot([–6,9],[0,0], ‘k’)

plot([0,0],[–6,4], ‘k’)

z2 = –5 + 3i; x = real(z2); y = imag(z2);

plot(x,y, ‘*’)

z3 = 8 – 5i; x = real(z3); y = imag(z3);

plot(x,y, ‘*’)

z4 = –2 – 3i; x = real(z4); y = imag(z4);

plot(x,y, ‘*’)

To label the points add the additional commands

text(3.2,2 ‘A(3,2)’)

text(–5,3.3, ‘B(–5,3)’)

text(8.2,–5, ‘C(8,–5)’)

text(–2,–3.3, ‘D(–2,3)’)

plot(x,y,’*’)

hold off
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[Note: (1) The ‘*’ in the plot commands means that the point will be printed as an
asterisk; alternatives include ‘.’, ‘x’ and ‘+’.

(2) The hold on command holds the current axes for subsequent plots.
(3) The two plot commands following the hold on command draw the x

and y axes with the entry k indicating that the lines are drawn in black
(alternatives include b for blue, r for red and g for green).]

Symbolically the MATLAB commands

syms x y real

z = x + i*y

create symbolic variables x and y that have the additional property that they are real.
Then z is a complex variable and can be manipulated as such. For example

conj(z) returns x – i*y and expand(z*conj(z)) returns x^2 + y^2

The modulus and argument (measured in radians) of a complex number z can be 
calculated directly using the commands abs and angle respectively (abs and
argument in MAPLE). For example, considering Example 3.10(a) the commands

z = 3 + 2i;

modz = abs(z)

return

modz = 3.6056

and the additional command

argz = angle(z)

returns

argz = 0.5880

confirming the answers obtained in the given solution. Using these commands check
the answers to Examples 3.10(b)–(d).

3.2.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

1 Show in an Argand diagram the points
representing the following complex numbers:

(a) 1 + j (b) ÷3 − j

(c) −3 + j4 (d) 1 − j÷3

(e) −1 + j÷3 (f) −1 − j÷3

2 Find z1 + z2, z1 − z2, 2z1, −3z2, 5z1 − 2z2, 2z1 + z2

where z1 and z2 are the complex numbers 
z1 = 1 + j2, z2 = 3 − j.

3 Obtain the roots of the equations below using
complex numbers where necessary:

(a) x2 + 6x + 13 = 0

(b) x2 − x + 2 = 0

(c) 4x2 + 4x + 5 = 0

(d) x3 + 2x − 3 = 0

(e) x4 − x2 − 6 = 0
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4 Express in the form x + jy:

(a) (6 − j3)(2 + j4) (b) (7 + j)(2 − j3)

(c) (−1 + j)(−2 + j3) (d) (−3 + j2)(4 + j7)

5 Express in the form x + jy:

(a) (4 − j6)/(1 + j) (b) (5 + j3)/(3 − j2)

(c) (1 − j)/(4 + j3) (d) (−4 − j3)/(2 − j)

6 Express in the form x + jy where x and y are real
numbers:

(a) (5 + j3)(2 − j) − (3 + j) (b) (1 − j2)2

(c) (d)

(e) (1 + j)2 (f ) (3 − j2)2

(g) (h)

7 What is the complex conjugate of

(a) 2 + j7 (b) −3 − j (c) −j6 (d) − j

8 Find the roots of the equations

(a) x2 + 2x + 2 = 0 (b) x3 + 8 = 0

9 Find z such that

zz* + 3(z − z*) = 13 + j12

10 With z = 2 − j3, find

(a) jz (b) z* (c) 1/z (d) (z*)*

11 Find the modulus and argument of each of the
complex numbers given in Question 1.
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12 Find the complex numbers w, z which satisfy 
the simultaneous equations

4z + 3w = 23

z + jw = 6 + j8

13 For z = x + jy (x and y real) satisfying

find x and y.

14 Given z = 2 − j2 is a root of

2z3 − 9z2 + 20z − 8 = 0

find the remaining roots of the equation.

15 Find the real and imaginary parts of z when

16 Find z = z1 + z2z3/(z2 + z3) when z1 = 2 + j3,
z2 = 3 + j4 and z3 = −5 + j12.

17 Find the values of the real numbers x and y which
satisfy the equation

18 Find z3 in the form x + jy, where x and y are real
numbers, given that

where z1 = 3 − j4 and z2 = 5 + j2.

1 1 1

3 1 1 2z z z z
    = +

2

3
1 2

    

  
    

+ −
+

= +
x y

x y

j

j
j

1 2

2 3

1

3 2z
  

  
  

  
=

+
+

−j j

2

1

2 5

2

z z

  
    

  +
− =

+j j j

3.2.6 Polar form of a complex number

Figure 3.3 on page 193 shows that the relationships between (x, y) and (r, θ) are

x = r cos θ and y = r sin θ

Hence the complex number z = x + jy can be expressed in the form

z = r cos θ + jr sin θ = r(cos θ + j sin θ) (3.3)

This is called the polar form of the complex number. In engineering it is frequently
written as r ∠ θ, so that

z = r ∠ θ = r(cos θ + j sin θ)
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Example 3.11 Express the following complex numbers in polar form.

(a) 12 + j5 (b) −3 + j4 (c) −4 − j3

Solution (a) A sketch of the Argand diagram locating the position of 12 + j5 is given in 
Figure 3.5(a). Thus

| 12 + j5 | = ÷(144 + 25) = 13

arg(12 + j5) = tan−1 = 0.395

Thus in polar form

12 + j5 = 13[cos(0.395) + j sin(0.395)]

(b) A sketch of the Argand diagram locating the position of −3 + j4 is given in 
Figure 3.5(b). Thus

| −3 + j4 | = ÷(9 + 16) = 5

arg(−3 + j4) = π − tan−1 = π − 0.9273

= 2.214

Thus in polar form

−3 + j4 = 5[cos(2.214) + j sin(2.214)]

(c) A sketch of the Argand diagram locating the position of −4 − j3 is given in 
Figure 3.5(c). Thus

| −4 − j3 | = ÷(16 + 9) = 5

arg(−4 − j3) = −(π − tan−1 ) = −(π − 0.643)

= −2.498

Thus in polar form

−4 − j3 = 5[cos (−2.498) + j sin (−2.498)] 

= 5[cos (2.498) − j sin (2.498)]

using the results cos(−t) = cos t and sin(−t) = −sin t.

Note: Rectangular to polar conversion can be done using a calculator and students are
encouraged to check the answers in this way.

Multiplication in polar form

Let

z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2)

then

z1z2 = r1r2(cos θ1 + j sin θ1)(cos θ2 + j sin θ2)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + j(sin θ1 cos θ2 + cos θ1 sin θ2)]

3
4

4
3

5
12

Figure 3.5
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which, on using the trigonometric identities (2.24a, c), gives

z1z2 = r1r2[cos(θ1 + θ2) + j sin(θ1 + θ2)] (3.4)

Hence

| z1z2 | = r1r2 = | z1 | | z2 | (3.5a)

and

arg(z1z2) = θ1 + θ2 = arg z1 + arg z2 (3.5b)

When using these results, care must be taken to ensure that −π � arg(z1z2) � π.

Example 3.12 If z1 = −12 + j5 and z2 = −4 + j3, determine, using (3.5a) and (3.5b), | z1z2 | and arg(z1z2).

Solution | z1 | = ÷(144 + 25) = ÷(169) = 13

arg(z1) = π − tan−1 = π − 0.395 = 2.747

| z2 | = ÷(16 + 9) = 5

arg(z2) = π − tan−1 = 2.498

Thus from (3.4) and (3.5)

| z1z2 | = | z1 | | z2 | = (13)(5) = 65

arg(z1z2) = arg z1 + arg z2 = 2.747 + 2.498 

= 5.245 (or 300.51°)

However, this does not express arg(z1z2) within the defined range −π � arg � π. Thus 

arg(z1z2) = −2π + 5.245 = −1.038

Geometrical representation of multiplication by j

Since

z = r(cos θ + j sin θ) and j = 1(cos π + j sin π)

it follows from (3.4) that

jz = r[cos(θ + π) + j sin(θ + π)]

Thus the effect of multiplying a complex number by j is to leave the modulus unaltered
but to increase the argument by π, as indicated in Figure 3.6. This property is of import-
ance in the application of complex numbers to the theory of alternating current.

1
2

1
2

1
2

1
2

1
2

3
4

5
12

Figure 3.6
Relationship between 
z and jz.
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Division in polar form

Now

= cos θ − j sin θ, since cos2θ + sin2θ = 1

Thus if

z1 = r1(cos θ1 + j sin θ1) and z2 = r2(cos θ2 + j sin θ2)

then

= (cos θ1 + j sin θ1)(cos θ2 − j sin θ2) (from above)

= [(cos θ1 cos θ2 + sin θ1 sin θ2) + j(sin θ1 cos θ2 − cos θ1 sin θ2)]

or

[cos(θ1 − θ2) + j sin(θ1 − θ2)] (3.6)

using the trigonometric identities (2.25b, d). Hence

(3.7)

and

= θ1 − θ2 = arg z1 − arg z2 (3.8)

Again some adjustment may be necessary to ensure that −π � arg(z1/z2) � π.

Example 3.13 For the following pairs of complex numbers obtain z1/z2 and z2/z1.

(a) z1 = 4(cos π/2 + j sin π/2), z2 = 9(cos π/3 + j sin π/3)

(b) z1 = cos 3π/4 + j sin 3π/4, z2 = 2(cos π/8 + j sin π/8)

arg
z

z
1

2

⎛
⎝⎜

⎞
⎠⎟

z

z

r

r

z

z
1

2

1

2

1

2

    = =
| |
| |

z

z

r

r
1

2

1

2

  =

r

r
1

2

r

r
1

2

z

z

r

r
1

2

1 1 1

2 2 2

  
(cos   sin )

(cos   sin )
=

+
+

θ θ
θ θ

j

j

1 1

2 2

cos   sin
  

cos   sin

cos   sin

cos   sin

 
cos   sin

cos   sin

θ θ θ θ
θ θ
θ θ

θ θ
θ θ

+
=

+
−
−

=
−
+

j j

j

j

j

M03_JAME0734_05_SE_C03.qxd  11/03/2015  09:46  Page 200



3.2 PROPERTIES 201

....

Solution (a) | z1 | = 4, arg z1 = π/2; | z2 | = 9, arg z2 = π/3

From (3.7)

From (3.8)

Thus

and

(b) | z1 | = 1, arg z1 = 3π/4; | z2 | = 2, arg z2 = π/8

From (3.7)

From (3.8)

Thus

and

Example 3.14 Find the modulus and argument of

Solution

arg z = 2 arg(1 + j2) + 3 arg(4 − j3) − 4 arg(3 + j4) − 3 arg(2 − j)

= 2(1.107) + 3(−0.643) − 4(0.927) − 3(−0.461) = −2.035
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3.2.7 Euler’s formula
In Section 2.7.3 we obtained the result

ex = cosh x + sinh x

which links the exponential and hyperbolic functions. A similar, but more important,
formula links the exponential and circular functions. It is

e jθ = cos θ + j sin θ (3.9)

This formula is known as Euler’s formula. The justification for this definition depends
on the following facts.

We know from the properties of the exponential function that

When expressed in terms of Euler’s formula this becomes

(cos θ1 + j sin θ1)(cos θ2 + j sin θ2) = cos(θ1 + θ2) + j sin(θ1 + θ2)

which is just (3.4) with r1 = r2 = 1.
Similarly

becomes

which is just (3.6) with r1 = r2 = 1.
Euler’s formula enables us to write down the polar form of the complex number z

very concisely:

z = r(cos θ + j sin θ) = re jθ = r ∠ θ (3.10)

This is known as the exponential form of the complex number z.

Example 3.15 Express the following complex numbers in exponential form:

(a) 2 + j3 (b) −2 + j

Solution (a) A sketch of the Argand diagram showing the position of 2 + j3 is given in 
Figure 3.7(a).

| 2 + j3 | = ÷(22 + 32) = ÷13

arg(2 + j3) = tan−1(3/2) = 0.9828

Thus 2 + j3 = ÷13ej0.9828

(b) A sketch of the Argand diagram showing the position of −2 + j is given in 
Figure 3.7(b).

cos   sin

cos   sin
  cos(   )  sin(   )

θ θ
θ θ

θ θ θ θ1 1

2 2
1 2 1 2

+
+

= − + −
j

j
j

e

e
e

j

j
j(

θ

θ
θ θ

1

2

1 2  )= −

e e ej j j(θ θ θ θ1 2 1 2= + )
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| −2 + j | = ÷5

arg(−2 + j) = π − tan−1(1/2) = 2.6779

Thus −2 + j = ÷5e j2.6779

Example 3.16 Express in cartesian form the complex number e2+jπ/3.

Solution e2+jπ/3 = e2ejπ/3 = e2(cos π/3 + j sin π/3)

Now e2 = 7.3891, cos π/3 = 0.5 and sin π/3 = 0.8660, so that

e2+jπ/3 = 3.6945 + j6.3991

Having determined the modulus r and argument theta of a complex number, its
polar form is given in MATLAB by

r*(cos(theta) + i*sin(theta))

and its exponential form by

r*exp(i*theta)

3.2.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

19 If z1 = 1 + j and z2 = ÷3 + j, determine | z1z2 |,
| z1/z2 |, arg(z1z2) and arg(z1/z2).

20 For the following pairs of numbers obtain z1z2,
z1/z2, and z2/z1:

(a) z1 =

z2 = 8
6 6

cos   sin
π π⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥j

2
3

4

3

4
cos   sin

π π⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥j

(b) z1 =

z2 =

21 Obtain the modulus and argument of z where

z =

and write z in the form x + jy.

(   ) (   )

(   ) (   )

2 3 4

12 5 1

3 2

4 4

+ − +
− −
j j

j j

5
5

6

5

6
cos   sin

π π⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥j

3
3 3

cos   sin
π π⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥j

Figure 3.7
Argand diagrams for
Example 3.15.
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3.2.9 Relationship between circular and hyperbolic functions
Euler’s formula provides the theoretical link between circular and hyperbolic functions.
Since

ejθ = cos θ + j sin θ and e−jθ = cos θ − j sin θ

we deduce that

(3.11a)

and

(3.11b)

In Section 2.7 we defined the hyperbolic functions by

(3.12a)

and

(3.12b)

Comparing (3.12a, b) with (3.11a, b), we have

(3.13a)

(3.13b)sinh   
  

  sinj
e e

j
j j

x x
x x

=
−

=
−

2

cosh   
  

  cosj
e ej j

x x
x x

=
+

=
−

2

sinh   
  

x
x x

=
− −e e

2

cosh   
  

x
x x

=
+ −e e

2

sin   
  θ

θ θ
=

− −e e

j

j j

2

cos   
  θ

θ θ
=

+ −e ej j

2
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22 Express the following complex numbers in
exponential form:

(a) 3 + j4 (b) −1 + j÷3

23 Express the following complex numbers in
cartesian form:

(a) (b)

24 Express in polar form the complex numbers

(a) j (b) 1

(c) −1 (d) 1 − j

(e) ÷3 − j÷3 (f) −2 + j

e j− +1 3
π

e j3 4+ π

(g) −3 − j2 (h) 7 − j5

(i) (2 − j)(2 + j) ( j) (−2 + j7)2

25 Express z = (2 − j)(3 + j2)/(3 − j4) in the form 
x + jy and also in polar form.

26 Given z1 = e jπ/4 and z2 = e−jπ/3, find

(a) the arguments of z1z
2
2 and z3

1/z2

(b) the real and imaginary parts of z2
1 + jz2

27 Given z1 = 2e jπ/3 and z2 = 4e−2jπ/3, find the modulus
and argument of

(a) z3
1z

2
2 (b) z2

1z
4
2 (c) z2

1/z
3
2
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so that

tanh jx = j tan x (3.13c)

Also,

(3.14a)

(3.14b)

so that

tan jx = j tanh x (3.14c)

These relationships provide the justification for Osborn’s rule used in Section 2.7.4 for
obtaining hyperbolic function identities from those satisfied by circular functions, since
whenever a product of two sines occurs, j2 will also occur.

Using these results we can evaluate functions such as sin z, cos z, tan z, sinh z, cosh z
and tanh z. For example, to evaluate

cos z = cos(x + jy)

we use the identity

cos(A + B) = cos A cos B − sin A sin B

and obtain

cos z = cos x cos jy − sin x sin jy

Using results (3.14a, b), this gives

cos z = cos x cosh y − j sin x sinh y

Example 3.17 Find the values of

(a) sin[ (1 + j)] (b) sinh(3 + j4)

(c) tan( − j3) (d) z such that cos z = 2

(e) z such that tanh z = 2

Solution (a) We may use the identity

sin(A + B) = sin A cos B + cos A sin B

and obtain

sin( + j ) = sin cos j + cos sin j

Here sin and cos are evaluated as usual (= ÷ ), while we make use of results
(3.14a, b) to obtain

cos j = cosh and sin j = j sinh 1
4 π1

4 π1
4 π1

4 π

1
2

1
4 π1

4 π

1
4 π1

4 π1
4 π1

4 π1
4 π1

4 π

π
4

1
4 π

sin   
 

  
 

  sinhj
e e

j

e e

j
j

j j

x x
x x x x

=
−

=
−

=
− −2 2

2 2

cos   
  

  
  

  coshj
e e e ej j2

x x
x x x x

=
+

=
+

=
− −2

2 2
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giving

sin[ (1 + j)] = sin cosh + j cos sinh

= (0.7071)(1.3246) + j(0.7071)(0.8687)

= 0.9366 + j0.6142

(b) Using the identity

sinh(A + B) = sinh A cosh B + cosh A sinh B

we obtain

sinh(3 + j4) = sinh 3 cosh j4 + cosh 3 sinh j4

which, on using results (3.13a, b), gives

sinh(3 + j4) = sinh 3 cos 4 + j cosh 3 sin 4

= (10.0179)(−0.6536) + j(10.0677)(−0.7568)

= −6.548 − j7.619

(c) Using the identity

we obtain

which, on using result (3.14c) and tan = 1, gives

(d) Writing z = x + jy, we have

2 = cos(x + jy)

Expanding the right-hand side gives

2 = cos x cos jy − sin x sin jy 

= cos x cosh y − sin x (j sinh y)

2 = cos x cosh y − j sin x sinh y

=
−
+

−
+

=
+

−
+

= + = −

 
  tanh

  tanh
  

tanh

  tanh

 
cosh   sinh

  
sinh cosh

cosh   sinh
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  .   .

1 3

1 3

2 3

1 3

1

3 3

2 3 3

3 3
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6

6

6
0 005 1 000

2

2 2

2 2 2 2

j

j

j j

tan(   )  
  tanh

  tanh
  

(   tanh )

  tanh
1
4

2

2
3

1 3

1 3

1 3

1 3
π − =

−
+

=
−
+

j
j

j

j

1
4 π

tan(   )  
tan   tan

  tan tan
1
4

1
4

1
4

3
3

1 3
π

π
π

− =
−

+
j

j

j

tan(   )  
tan   tan

  tan tan
A B

A B

A B
− =

−
+1

1
4 π1

4 π1
4 π1

4 π1
4 π
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Equating real and imaginary parts of each side of this equation gives

2 = cos x cosh y

and

0 = sin x sinh y

The latter equation implies either sin x = 0 or y = 0. If y = 0 then the first equation
implies 2 = cos x, so clearly that is not a solution since x is a real number . The alter-
native, sin x = 0, implies x = 0, ±π, ±2π, ±3π, … , and hence

2 = cos(±nπ) cosh y, n = 0, 1, 2, …

This gives

2 = cos nπ cosh y 

= (−1)n cosh y

But cosh y � 1, so n must be an even number. Thus the values of z such that cos z = 2
are

z = ±2nπ ± j cosh−12, n = 0, 1, 2, …

= ±2nπ ± j(1.3170)

(e) Writing z = x + jy we obtain

tanh(x + jy) = 2

which implies

sinh(x + jy) = 2 cosh(x + jy)

Expanding both sides we have

sinh x cosh jy + cosh x sinh jy = 2 cosh x cosh jy + 2 sinh x sinh jy

or

sinh x cos y + j cosh x sin y = 2 cosh x cos y + 2j sinh x sin y

Equating real and imaginary parts we obtain

sinh x cos y = 2 cosh x cos y

cosh x sin y = 2 sinh x sin y.

Since sinh x ≠ 2 cosh x for real values of x, cos y = 0 so that

y = (2n + 1)π/2 for n = 0, ±1, ±2, …

This implies that sin y ≠ 0, so that tanh z = . Thus

z = tanh−1 + j π, n = 0, ±1, ±2, …

= ln 3 + j π,   n = 0, ±1, ±2, …

using the identity 2.44.

2 1
2
n+1

2

2 1
2
n+1

2

1
2
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3.2.10 Logarithm of a complex number

Consider the equation

z = ew

Writing z = x + jy and w = u + jv, we have

x + jy = eu+jv = eue jv

= eu(cos v + j sin v), by Euler’s formula

Equating real and imaginary parts,

x = eu cos v and y = eu sin v

Squaring both these equations and adding gives

x2 + y2 = e2u(cos2v + sin2v) = e2u

so that

u = ln(x2 + y2) = ln | z |

Dividing the two equations,

From this and x = eu cos v

v = arg z + 2nπ, n = 0, ±1, ±2, …

Hence

v = ln | z | + j arg z + j2nπ, n = 0, ±1, ±2, …

We select just one of these solutions to define for us the logarithm of the complex 
number z, writing

ln z = ln | z | + j arg z (3.15)

This is sometimes called its principal value.

Example 3.18 Evaluate ln(−3 + j4) in the form x + jy.

Solution | −3 + j4 | = ÷(9 + 16) = 5

arg(−3 + j4) = π − tan−1 = 2.214

Thus from (3.15)

ln(−3 + j4) = ln 5 + j2.214 = 1.609 + j2.214

4
3

 
tan   v =

y

x

1
2
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In MATLAB functions of a complex variable can be evaluated as easily as functions
of a real variable. For example, in relation to Example 3.17 (a) and (b), entering

sin((pi/4)*(1 + i)) returns the answer 0.9366 + 0.6142i

whilst entering

sinh(3 + 4i) returns the answer –6.5481 – 7.6192i

confirming the answers obtained in the given solution. Similarly, considering
Example 3.18, entering

log(–3 + 4i) returns the answer 1.6094 + 2.2143i

confirming the answer obtained in the solution. In MAPLE, functions of a complex
variable must be evaluated using evalc. The result is exact and the numerical 
values require evalf; for example

evalc(sin((Pi/4)*(1 + I)));

returns

1–2÷2cosh(1–4π) + 1–2÷2Isinh(1–4π)

and evalf(%); returns 0.9366 + 0.6142I.

3.2.11 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

..

28 Using the exponential forms of cos θ and 
sin θ given in (3.11a, b), prove the following
trigonometric identities:

(a) sin(α + β ) = sin α cos β + cos α sin β

(b) sin3θ = sin θ − sin 3θ

29 Express in the form x + jy

(a) sin( + j) (b) cos( )

(c) sinh (d) cosh( )

30 Solve z = x + jy when

(a) sin z = 2 (b) cos z =

(c) sin z = 3 (d) cosh z = −2

j 3
4

j π
4[ (   )]π

3 1 + j

j 3
4

5
6π

1
4

3
4

31 Show that

(a) ln(5 + j12) = ln 13 + j1.176

(b) 

32 Writing tanh(u + jv) = x + jy, with x, y, u and v
real, determine x and y in terms of u and v. 
Hence evaluate tanh(2 + j ) in the form
x + jy.

33 In a certain cable of length l the current I0 at the
sending end when it is raised to a potential V0

and the other end is earthed is given by

Calculate the value of I0 when V0 = 100, 
Z0 = 500 + j400, l = 10 and P = 0.1 + j0.15.

I
V

Z
Pl0

0

0

   tanh=

1
4π

ln(   )  − − = −1
2

1
2

2
33j j÷ π
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3.3 Powers of complex numbers
In earlier sections we have discussed the extensions of ordinary arithmetic, including 
+, −, ×, ÷, to complex numbers. We now extend the arithmetical operations to include
the operation of powers.

3.3.1 De Moivre’s theorem
From (3.10) a complex number z may be expressed in terms of its modulus r and 
argument θ in the exponential form

z = re jθ

Using the rules of indices and the property (2.33a) of the exponential function, we have,
for any n,

zn = rn(e jθ )n = rne j(nθ )

so that

zn = rn(cos nθ + j sin nθ) (3.16)

This result is known as de Moivre’s theorem.

Example 3.19 Express 1 − j in the form r (cos θ + j sin θ) and hence evaluate (1 − j)12.

Solution From Example 3.7(b)

| 1 − j | = ÷2 and arg(1 − j) = −

so that

1 − j = ÷2[cos(− ) + j sin(− )]

= ÷2(cos − j sin )

Then

(1 − j)12 = (÷2)12(cos − j sin )12

which, on using de Moivre’s theorem (3.16), gives

(1 − j)12 = 26[cos(12 × ) − j sin(12 × )]

= 26(cos 3π − j sin 3π)

= 26(−1 − j0)

= −64

Most commonly, we use de Moivre’s theorem to find the roots of complex numbers like
÷z and 3÷z. More generally, we want to find z1/n, the nth root, where n is a natural number.
Setting w = z1/n, we see that z = wn, and by (3.16),

1
4 π1

4 π

1
4 π1

4 π

1
4 π1

4 π

1
4 π1

4 π

1
4 π
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wn = Rn(cos nφ + j sin nφ), where | w | = R and arg w = φ

z = r(cos θ + j sin θ), where | z | = r and arg z = θ

Comparing real and imaginary parts in the equality z = w n, we deduce that

r cos θ = Rn cos nφ

and

r sin θ = Rn sin nφ

Squaring and adding these two equations gives r2 = R2n; that is, R = r1/n. Substituting
this value into the equations gives

cos θ = cos nφ
and

sin θ = sin nφ

This pair of simultaneous equations has an infinite number of solutions because of the
2π-periodicity of the sine and cosine functions. Thus

nφ = θ + 2πk, where k is an integer

and

where k = 0, 1, −1, 2, −2, 3, −3, …

Substituting these values for R and φ into the formula for w gives

(3.17)

where k is an integer. This expression yields exactly n different roots, corresponding 
to k = 0, 1, 2, … , n − 1. The value for k = n is the same as that for k = 0, the value for
k = n + 1 is the same as that for k = 1, and so on. The n values of z1/n are equally spaced
around a circle of radius r1/n whose centre is the origin of the Argand diagram. Also, the
arguments increase in arithmetic progression, so that joining the roots on the circle 
creates a regular polygon inscribed in the latter.

Equation (3.17) may be written alternatively in the exponential form

z1/n = r1/ne j(θ/n+2πk/n), k = 0, 1, 2, … , n − 1 (3.18)

Example 3.20 Given evaluate

(a) z1/2 (b) z1/3

and display the roots on an Argand diagram.

Solution We first express z in polar form. 
Since r = | z | = ÷ = 2−1/2, and θ = arg(z) = π − tan−11 = , we have

z = 2−1/2(cos + j sin )3
4 π3

4 π

3
4 π(   )1

4
1
4+

z    ,= − +1
2

1
2j

z r
n

k

n n

k

n
n n1 1 2 2/ /  cos

  
  sin   = + + +

θ π θ π
j

⎡
⎢
⎣

⎡
⎢
⎣

φ θ π
    ,= +

n

k

n

2
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(a) From (3.17)

= 2−1/4[cos( + πk) + j sin( + πk)], k = 0, 1

Thus we have two square roots:

z1/2 = 2−1/4(cos + j sin ) (for k = 0)

and

z1/2 = 2−1/4(cos + j sin ) (for k = 1)

as shown in Figure 3.8(a). These can be evaluated numerically, giving respectively (to
4dp) z = 0.3218 + j0.7769 and z = −0.3218 − j0.7769.

(b) From (3.17)

k = 0, 1, 2

= 2−1/6[cos( + ) + j sin( + )], k = 0, 1, 2

Thus we obtain three cube roots:

z1/3 = 2−1/6(cos + j sin ) (for k = 0)

z1/3 = 2−1/6(cos + j sin ) (for k = 1)

and

z1/3 = 2−1/6(cos + j sin ) (for k = 2)

as shown in Figure 3.8(b). Note that the three roots are equally spaced around a circle
of radius 2−1/6 with centre at the origin.

Formula (3.17) can easily be extended to deal with the general rational power zp of z. 

Let where n is a natural number and m is an integer, thenp
m

n
  ,=

19
12 π19

12 π

11
12 π11

12 π

1
4 π1

4 π

2
3 πk1

4 π2
3 πk1

4 π

z r
k k1 3 1 3

3

2

3 3

2

3
/ /  cos     sin   ,= +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

θ π θ π
j

11
8 π11

8 π

3
8π3

8π

3
8π3

8π

z r
k k

k1 2 1 2

2

2

2 2

2

2
0 1/ /  cos     sin   ,      , = +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

=
θ π θ π

j

Figure 3.8
Roots on an Argand
diagram for 
Example 3.20.
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zp = (z1/n)m

= r p[cos(pθ + 2πkp) + j sin(pθ + 2πkp)], k = 0, 1, 2, … , (n − 1)

Example 3.21 Evaluate and display the roots on an Argand diagram.

Solution From Example 3.17, we can write

giving

k = 0, 1, 2

= 21/3[cos(− − ) + j sin(− − )], k = 0, 1, 2

Thus we obtain three values:

z−2/3 = 21/3[cos(− ) + j sin(− )] (for k = 0)

z−2/3 = 21/3(cos + j sin ) (for k = 1)

and

z−2/3 = 21/3(cos + j sin ) (for k = 2)

as shown in Figure 3.9.

5
6 π5

6 π
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/
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j

…

⎦⎦⎥

Figure 3.9
Roots on an Argand
diagram for 
Example 3.2.1.

Example 3.22 Solve the quadratic equation

z2 + (2j − 3)z + (5 − j) = 0

Solution Using formula (1.5)

 
z  

(   )  [(   )   (   )]
=

− − ± − − −2 3 2 3 4 5

2

2j j j÷
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that is,

(3.19)

Now we need to determine (−15 − j8)1/2 so first we express it in polar form. Since

| −15 − j8 | = ÷[(15)2 + (8)2] = 17

and from Figure 3.10

arg(−15 − j8) = −(π − tan−1 )

= −2.6516

we have

−15 − j8 = 17[cos(2.6516) − j sin(2.6516)]

From (3.17)

= (17)1/2[cos(1.3258 + πk) − j sin(1.3258 + πk)], k = 0, 1

Thus we have the two square roots

(−15 − j8)1/2 = (17)1/2[cos(1.3258) − j sin(1.3258)] = 1 − j4 (for k = 0)

(the reader should verify that (1 − j4)2 = −15 − j8)

and

(−15 − j8)1/2 = (17)1/2[cos(4.4674) − j sin(4.4674)] = −1 + j4 (for k = 1)

Substituting back in (3.19) gives the roots of the quadratic as

z = 2 − j3 and 1 + j

3.3.2 Powers of trigonometric functions and multiple angles

Euler’s formula may be used to express sinnθ and cosnθ in terms of sines and cosines of
multiple angles. If z = cos θ + j sin θ then

z n = cos nθ + j sin nθ

(   )   ( ) cos
.

    sin
.

  / /− − = +⎛
⎝

⎞
⎠ − +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

15 17
2 6516

2

2

2

2 6516

2

2

2
1 2 1 2j8 j

π πk k

8
15

 
z  

(   )  (   )
=

− − ± − −2 3 15

2

j j8÷

Figure 3.10
The complex 
number −15 − j8.
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and

z−n = cos nθ − j sin nθ

so that

zn + z−n = 2 cos nθ (3.20a)

zn − z−n = 2j sin nθ (3.20b)

Using these results, cosnθ and sinnθ can be expressed in terms of sines and cosines of
multiple angles, as illustrated in Example 3.23.

Example 3.23 Expand in terms of sines and cosines of multiple angles

(a) cos5θ (b) sin6θ

Solution (a) Using (3.20a) with n = 1,

so that

which, on using (3.20a) with n = 5, 3 and 1, gives

cos5θ = (2 cos 5θ + 10 cos 3θ + 20 cos θ) = (cos 5θ + 5 cos 3θ + 10 cos θ)

(b) Using (3.20b) with n = 1,

which, on noting that j6 = −1, gives

Using (3.20a) with n = 6, 4 and 2 then gives

sin6θ = − (2 cos 6θ − 12 cos 4θ + 30 cos 2θ − 20)

= (10 − 15 cos 2θ + 6 cos 4θ − cos 6θ)

Conversely, de Moivre’s theorem may be used to expand cos nθ and sin nθ, where n is
a positive integer, as polynomials in cos θ and sin θ. From the theorem

cos nθ + j sin nθ = (cos θ + j sin θ)n

we obtain, writing s = sin θ and c = cos θ for convenience,

cos nθ + j sin nθ = (c + js)n = + +
−

+ +− −     
(   )

!
    c nc s

n n
c s sn n n n nj j j1 2 2 21

2
…

1
32

1
64

− = +⎛
⎝

⎞
⎠ − +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠ −64

1
6

1
15

1
206 6

6
4

4
2

2
sin               θ z

z
z

z
z

z

( sin )                   2
1
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6
6 4 2

2 4 6
j θ = −⎛

⎝
⎞
⎠ = − + − + − +z

z
z z z

z z z

1
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1
32
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1

5
1
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5
3

3
cos             θ = +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
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z
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Equating real and imaginary parts yields

and

Using the trigonometric identity cos2θ = 1 − sin2θ (so that c2 = 1 − s2), we see that

(a) cos nθ can be expanded in terms of (cos θ)n for any n or in terms of (sin θ)n if 
n is even;

(b) sin nθ can be expanded in terms of (sin θ)n if n is odd.

Example 3.24 Expand cos 4θ as a polynomial in cos θ.

Solution By de Moivre’s theorem,

(cos 4θ + j sin 4θ) = (cos θ + j sin θ)4 = (c + js)4

= c4 + j4c3s + j26c2s2 + j34cs3 + j4s4

= c4 + j4c3s − 6c2s2 − j4cs3 + s4

Equating real parts,

cos 4θ = c4 − 6c2s2 + s4

which on using s2 = 1 − c2 gives

cos 4θ = c4 − 6c2(1 − c2) + (1 − c2)2 = 8c4 − 8c2 + 1

Thus

cos 4θ = 8 cos4θ − 8 cos2θ + 1

Note that by equating imaginary parts we could have obtained a polynomial expansion
for sin 4θ.

In MATLAB, raising to a power is obtained using the standard operator ^. For 
example, considering Example 3.19, entering

(1 – i)^12 returns the answer –64

as determined in the given solution. Considering Example 3.20(a), entering the 
commands

z = –1/2 + (1/2)*i; z1 = z^1/2

returns

z1 = 0.3218 + 0.7769i

sin     
(   )(   )

!
  n nc s

n n n
c sn nθ = −

− −
+− −1 3 31 2

3
…

cos     
(   )

!
  

(   )(   )(   )

!
  n c

n n
c s

n n n n
c sn n nθ = −

−
+

− − −
+− −1

2

1 2 3

4
2 2 4 4 …
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which is the root corresponding to k = 0. From knowledge that the two roots are
equally spaced around a circle the second root may be easily written down.

In Example 3.22 the solution may be obtained symbolically using the solve
command. Entering

syms z

solve(z^2 + (2*i – 3)*z + (5 – i))

returns the answer

2 – 3*i

1 + i

which checks with the answer given in the solution.
Expanding in terms of sines and cosines of multiple angles may be undertaken

symbolically using the expand command. For example, considering Example 3.24
the commands

syms theta

expand(cos(4*theta))

return the answer

8*cos(theta)^4 – 8*cos(theta)^2 + 1

which checks with the answer obtained in the given solution.
With the usual small modifications, MAPLE uses the same instructions.

3.3.3 Exercises

Check your answer using MATLAB or MAPLE whenever possible.

34 Use de Moivre’s theorem to calculate the third and
fourth powers of the complex numbers

(a) 1 + j (b) ÷3 − j (c) −3 + j4

(d) 1 − j÷3 (e) −1 + j÷3 (f) −1 − j÷3

(The moduli and arguments of these numbers were
found in Exercises 3.2.5, Question 11.)

35 Expand in terms of multiple angles

(a) cos4θ (b) sin3θ

36 Use the method of Section 3.3.2 to prove the
following results:

(a) sin 3θ = 3 cos2θ sin θ − sin3θ

(b) cos 8θ = 128 cos8θ − 256 cos6θ + 160 cos4θ
− 32 cos2θ + 1

(c) 

37 Find the three values of (8 + j8)1/3 and show them
on an Argand diagram.

tan   
tan   tan   tan

  tan   tan
5

5 10

1 10 5

3 5

2 4
θ θ θ θ

θ θ
=

− +
− +

38 Find the following complex numbers in their polar
forms:

(a) (÷3 − j)1/4 (b) ( j8)1/3

(c) (3 − j3)−2/3 (d) (−1)1/4

(e) (2 + j2)4/3 (f) (5 − j3)−1/2

39 Obtain the four solutions of the equation

z4 = 3 − j4

giving your answers to three decimal places.

40 Solve the quadratic equation

z2 − (3 + j5)z + j8 − 5 = 0

41 Find the values of z1/3, where z = cos 2π + j sin 2π.
Generalize this to an expression for 11/n. Hence solve
the equations

(a)

(b) (z − 3)6 − z6 = 0

z

z

  

  
      (

−
+

⎡
⎣⎢

⎤
⎦⎥

=
2

2
1

5

Hint: First show that there are
only 4 roots)
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3.4 Loci in the complex plane

A locus (plural loci) is the set of points that have a specified property. For example, a
circle is the locus of the points in a plane that are a fixed distance, its radius, from a
fixed point, its centre. The property may be specified in words or algebraically. Loci
occur frequently in engineering contexts, from the design of safety guards around 
moving machinery to the design of aircraft wing sections. The Argand diagram repres-
entation of complex numbers as points on a plane often makes it possible to represent
complicated loci very concisely in terms of a complex variable, and this simplifies the
engineering analysis. This occurs in a wide range of engineering problems, from the
water percolation through dams to the design of microelectronic devices.

3.4.1 Straight lines

There are many ways in which straight lines may be represented using complex numbers.
We will illustrate these with a number of examples.

Example 3.25 Describe the locus of z given by

(a) Re(z) = 4 (b) arg(z − 1 − j) = π/4

(c) (d) Im((1 − j2)z) = 3

Solution (a) Here z = 4 + jy for any real y, so that the locus is the vertical straight line with 
equation x = 4 illustrated in Figure 3.11(a).

(b) Here z = 1 + j + r(cos π /4 + j sin π /4) for any positive (� 0) real number r, so that
the locus is a half-line making an angle π /4 with the positive x direction with the end
point (1, 1) excluded (since arg 0 is not defined). Algebraically we can write it as y = x,
x � 1, and it is illustrated in Figure 3.11(b).

(c) The equation, in this case, may be written

| z − j2 | = | z − 1 |

Recalling the definition of modulus, we can rewrite this as

÷[x2 + (y − 2)2] = ÷[(x − 1)2 + y2]

Squaring both sides and multiplying out, we obtain

x2 + y2 − 4y + 4 = x2 − 2x + 1 + y2

which simplifies to

the equation of a straight line.

y x    = +1
2

3
4

z

z

  

  
  

−
−

=
j2

1
1

Figure 3.11
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Alternatively, we can interpret | z − j2 | as the distance on the Argand diagram from
the point 0 + j2 to the point z, and | z − 1 | as the distance from the point 1 + j0 to the
point z, so that

| z − j2 | = | z − 1|

is the locus of points that are equidistant from the two fixed points (0, 2) and (1, 0), as
shown in Figure 3.11(c).

(d) Writing z = x + jy,

(1 − j2)z = (1 − j2)(x + jy) = x + 2y + j(y − 2x)

so that Im((1 − j2)z) = 3, implies y − 2x = 3.
Thus Im((1 − j2)z) = 3 describes the straight line

y = 2x + 3

illustrated in Figure 3.11(d).

3.4.2 Circles

The simplest representation of a circle on the Argand diagram makes use of the fact 
that | z − z1 | is the distance between the point z = x + jy and the point z1 = a + jb on the
diagram. Thus a circle of radius R and centre (a, b), illustrated in Figure 3.12, may be
written

| z − z1 | = R

We can also write this as z − z1 = Rejt, where t is a parameter such that

−π � t � π

Example 3.26 Find the cartesian equation of the circle

| z − (2 + j3) | = 2

Solution Now,

z − (2 + j3) = (x − 2) + j(y − 3)

Figure 3.11
continued

Figure 3.12
The circle | z − z1 | = R.
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so that

| z − (2 + j3) | = ÷[(x − 2)2 + (y − 3)2]

and hence on the circle

| z − (2 + j3) | = 2

we have

÷[(x − 2)2 + (y − 3)2] = 2

which implies

(x − 2)2 + (y − 3)2 = 4

indicating that the circle has centre (2, 3) and radius 2.
This may be written in the standard form

x2 + y2 − 4x − 6y + 9 = 0

This is not the only method of representing a circle, as is shown in the following two
examples.

Example 3.27 Find the cartesian equation of the curve whose equation on the Argand diagram is 

Solution By expressing it in the form | z − j | = ÷2 | z − (1 + j2) | we can interpret this equation as
‘the distance between z and j is ÷2 times the distance between z and (1 + j2)’, so this is
different from Example 3.25(d).

Putting z = x + jy into the equation gives

| x + j(y − 1) | = ÷2 | (x − 1) + j(y − 2) |

Thus

÷[x2 + (y − 1)2] = ÷2÷[(x − 1)2 + (y − 2)2]

which, on squaring both sides, implies

x2 + (y − 1)2 = 2[(x − 1)2 + (y − 2)2]

Multiplying out the brackets and collecting terms we obtain

x2 + y2 − 4x − 6y + 9 = 0 or (x − 2)2 + (y − 3)2 = 4

which, from (1.14), is the equation of the circle of centre (2, 3), and radius 2.
This is a special case of a general result. If z1 and z2 are fixed complex numbers and 

k is a positive real number, then the locus of z which satisfies is a circle, 

known as the circle of Apollonius, unless k = 1. When k = 1, the locus is a straight line,
as we saw in Example 3.25(d).

z z

z z
k

  

  
  

−
−

=1

2

z

z

  

    
  

−
− −

=
j

j1 2
2÷
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Example 3.28 Find the locus of z in the Argand diagram such that

Re[(z − j)/(z + 1)] = 0

Solution Setting z = x + jy, as usual, we obtain

Hence Re[(z − j)/(z + 1)] = 0 implies x(x + 1) + y(y − 1) = 0.
Rearranging this, we have

x2 + y2 + x − y = 0

and

Hence the locus of z on the Argand diagram is a circle of centre and radius
÷2/2.

3.4.3 More general loci

In general we approach the problem of finding the locus of z on the Argand diagram
using a mixture of elementary pure geometry and algebraic manipulation of expressions
involving z = x + jy. We illustrate this in Example 3.29.

Example 3.29 Find the cartesian equation of the locus of z given by

| z + 1 | + | z − 1 | = 4

Solution The defining equation here may be interpreted as the sum of the distances of the point z
from the points 1 and −1 is a constant (= 4). By elementary considerations (Figure 3.13)
we can see that the locus passes through (2, 0), (0, ÷3), (−2, 0) and (0, −÷3). Results
from classical geometry would identify the locus as an ellipse with foci at (1, 0) and 
(−1, 0), using the ‘string property’ (see Example 1.40). Using algebraic methods, 
however, we set z = x + jy into the equation, giving

÷[(x + 1)2 + y2] + ÷[(x − 1)2 + y2] = 4

( , )− 1
2

1
2

(   )   (   )   x y+ + − =1
2

2 1
2

2 1
2

z

z

x y

x y

x y x y

x y

  

  
  

  (   ) 

(   )  
  

[   (   )][(   )  ]

(   )   

−
+

=
+ −
+ +

=
+ − + −

+ +
j j

j

j j

1

1

1

1 1

1 2 2

Figure 3.13
The ellipse of
Example 3.29.
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Rewriting this equation as

÷[(x + 1)2 + y2] = 4 − ÷[(x − 1)2 + y2]

and squaring both sides gives

(x + 1)2 + y2 = 16 − 8÷[(x − 1)2 + y2] + (x − 1)2 + y2

This simplifies to give

4 − x = 2÷[(x − 1)2 + y2]

so that squaring both sides again gives

16 − 8x + x2 = 4[x2 − 2x + 1 + y2]

which reduces to

in the standard form of an ellipse.

3.4.4 Exercises

x y2 2

4 3
1    + =

42 Let z = 8 + j and w = 4 + j4. Calculate the distance
on the Argand diagram from z to w and from z to
−w.

43 Describe the locus of z when

(a) Re z = 5 (b) | z − 1 | = 3

(c) (d) arg(z − 2) = π /4

44 The circle x2 + y2 + 4x = 0 and the straight line 
y = 3x + 2 are taken to lie on the Argand diagram.
Describe the circle and the straight line in terms 
of z.

45 Identify and sketch the loci on the complex plane
given by

(a) (b) 

(c) (d) 

(e) Im(z2) = 2 (f) | z + j | + | z − 1 | = 2

(g) | z + j | − | z − 1 | = (h) arg(z + j2) =

(i) arg(2z − 3) = ( j) | z − j2 | = 1− 2
3 π

1
4 π1

2

tan arg
  

  
  

z

z

+
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⎛
⎝⎜

⎞
⎠⎟

=
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j
√3

z
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+
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=
j

j
3
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z

z

+
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⎛
⎝⎜

⎞
⎠⎟
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j
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z
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⎛
⎝⎜

⎞
⎠⎟

=
j

j
1

z

z

  

  
  

−
+

=
1

1
3

46 Express as simply as possible the following loci in
terms of a complex variable:

(a) y = 3x − 2 (b) x2 + y2 + 4x = 0

(c) x2 + y2 + 2x − 4y − 4 = 0 (d) x2 − y2 = 1

47 Find the locus of the point z in the Argand diagram
which satisfies the equation

(a) | z − 1 | = 2 (b) | 2z − 1 | = 3

(c) | z − 2 − j3 | = 4 (d) arg(z) = 0

(e) | z − 4 | = 3| z + 1 | (f)

48 Find the cartesian equation of the circle given by

and give two other representations of the circle in
terms of z.

49 Given that the argument of (z − 1)/(z + 1) is ,
show that the locus of z in the Argand diagram is
part of a circle of centre (0, 1) and radius ÷2.

50 Find the cartesian equation of the locus of the point
z = x + jy that moves in the Argand diagram such
that | (z + 1)/(z − 2) | = 2.
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3.5 Functions of a complex variable
In Section 2.2.1 the basic idea of a function was described. Essentially it involves two
sets X and Y and a rule that assigns to every element x in the set X precisely one ele-
ment y in the set Y. In Chapter 2 we were concerned with real functions so that x and 
y were real numbers. When the independent variable is a complex number z = x + jy
then, in general, a function f (z) of z will have values which are complex numbers.
Conventionally w = u + jv is used to denote the dependent variable of a function of a
complex variable, thus

w = u + jv = f (z) where z = x + jy

Example 3.30 Express u and v in terms of x and y where w = u + jv, z = x + jy, w = f (z) and

(a) f (z) = z2 (b) f (z) = , z ≠ −1

Solution (a) When w = z2, we have u + jv = (x + jy)2. This may be rewritten as

u + jv = x 2 − y2 + j2xy

so that comparing real and imaginary parts on either side of this equation we have

u = x 2 − y2 and v = 2xy

(b) When w = , we have

Hence comparing real and imaginary parts we have

These may be written as

The graphical representation of functions of a complex variable requires two planes,
one for the independent variable z = x + jy and another for the dependent variable 
w = u + jv. Thus the function w = f (z) can be regarded as a mapping of points on the 
z plane to points on the w plane. Under such a mapping a region A on the z plane is
transformed into the region A′ on the w plane.

Example 3.31 Find the image on the w plane of the strip between x = 1 and x = 2 on the z plane under
the mapping defined by
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Solution The easiest approach to this problem is firstly to find x in terms of u and v. So solving 

for z we have

and

Equating real parts then gives

The line x = 1 maps into

which simplifies to give the circle on the w plane

(u − 2)2 + v2 = 1

The line x = 2 maps into

which simplifies to give the circle on the w plane

(u − )2 + v2 =

Thus the strip between x = 1 and x = 2 maps into that portion of the w plane between
these two circles, as illustrated in Figure 3.14. The point maps to con-
firming that the shaded areas correspond.

As will be shown in the companion text Advanced Modern Engineering Mathematics,
these properties are used to solve steady state potential problems in two dimensions.
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Figure 3.14
Transformation of the
strip 1 � Re z � 2
onto the w plane.
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3.5.1 Exercises

3.6 Engineering application: alternating currents in
electrical networks
When an alternating current i = I sin ω t (ω is a constant and t is the time) flows in a 
circuit the corresponding voltage depends on ω and on the resistance, capacitance and
inductance of the circuit. (Note that the frequency of the current is ω /2π.) For sim-
plicity we shall separate these three elements and consider their effects individually.

For a resistor of resistance R the corresponding voltage is v = IR sin ω t. This voltage
is ‘in phase’ with the current. It is zero at the same times as i and achieves its maxima
at the same times as i, as shown in Figure 3.15. For a capacitor of capacitance C
the corresponding voltage is v = (I/ωC) sin(ω t − ), as shown in Figure 3.16. Here 
the voltage ‘lags’ behind the current by a phase of . For an inductor of inductance 1

2 π

1
2 π

51 Find u and v in terms of x and y where w = f (z), 
z = x + jy, w = u + jv and

(a) f (z) = (1 − j)z (b) f (z) = (z − 1)2

(c) f (z) =

52 Find the values of the complex numbers a
and b such that the function w = az + b maps 
the point z = 1 + j to w = j and the point z = −1 
to the point w = 1 + j.

53 Show that the line y = 1 on the z plane is
transformed into the line u = 1 on the w plane 
by the function w = (z + j)/(z − j).

54 Show that the function w = ( jz − 1)/(z − 1) maps
the line y = x on the z plane onto the circle

(u − 1)2 + (v − 1)2 = 1

on the w plane.

z
z

  +
1

55 Show that the line x = 1 on the z plane is
transformed into the circle

u2 + v2 − u = 0

on the w plane by the function

w = (z − 1)/(z + 1).

56 By writing z = x + jy and w = u + jv, show that the 

line y = on the z plane is transformed into the line 

v = u on the w plane by the function

w = ez

Find the image of the line x = 0 under the same
function.

π
4

Figure 3.15
A resistor of 
resistance R.

Figure 3.16
A capacitor of
capacitance C.
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L the corresponding voltage is v = ωLI sin(ω t + ), as shown in Figure 3.17. Here 
the voltage ‘leads’ the current by a phase of .

Combining these results to find v in the case of a general network is easily done
using the properties of complex numbers. Remembering that sin θ = Im(e jθ ), we can
summarize the results as

Now e jπ/2 = cos + j sin = j and e−jπ/2 = −j, so we may rewrite these as

v = Im(IZe jωt)

where

Z is called the complex impedance of the element, and V = IZ is the complex voltage.
For the general LCR circuit shown in Figure 3.18 the complex voltage V is the 

algebraic sum of the complex voltages of the individual elements; that is,

where

The actual voltage

v = Im(Ve jωt) = I | Z | sin(ω t + φ)

where

| |Z R L
C

      

/

= + −⎛
⎝
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⎥
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2 1 2
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ω
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Figure 3.18
A linear LCR circuit.

Figure 3.17
An inductor of
inductance L.
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is the impedance of the circuit and

is the phase. The impedance | Z | clearly varies with ω, and the graph of this dependence
is shown in Figure 3.19. The minimum value occurs when Lω = 1/Cω; that is, when 
ω = 1/÷(LC). This implies that the circuit ‘blocks’ currents with low and high frequencies,
and ‘passes’ currents with frequencies near 1/(2π ÷ (LC)).

Example 3.32 Calculate the complex impedance of the element shown in Figure 3.20 when an altern-
ating current of frequency 100 Hz flows.

Solution The complex impedance is the sum of the individual impedances. Thus

Z = R + jωL

Here R = 15 Ω, ω = 2π × 100 rad s−1 and L = 41.3 × 10−3 H, so that

Z = 15 + j25.9

and | Z | = 30 Ω and φ = .

3.6.1 Exercises

1
3π

φ ω ω
  tan

  /
=

−⎛
⎝

⎞
⎠

−1 1L C

R

Figure 3.20
The element of
Example 3.32.

Figure 3.22

Figure 3.23

57 Calculate the complex impedance for the circuit
shown in Figure 3.21 when an alternating current
of frequency 50 Hz flows.

58 The complex impedance of two circuit elements in
series as shown in Figure 3.22(a) is the sum of the
complex impedances of the individual elements,
and the reciprocal of the impedance of two
elements in parallel is the sum of the reciprocals 
of the individual impendances, as shown in 
Figure 3.22(b). Use these results to calculate the
complex impedance of the network shown in
Figure 3.23, where Z1 = 1 + j Ω, Z 2 = 5 − j5 Ω
and Z 3 = 1 + j2 Ω.

Figure 3.21

Figure 3.19
The impedance of 
an LCR circuit.
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3.7 Review exercises (1–34)

Check your answers using MATLAB or MAPLE whenever possible.

8 Show that the solutions of

z4 − 3z2 + 1 = 0

are given by

z = 2 cos36°, 2 cos72°, 2 cos216°, 2 cos252°

Hence show that

(a) cos 36° =

(b) cos 72° =

9 Prove that if p(z) is a polynomial in z with real
coefficients then [ p(z)]* = p(z*). Deduce that 
the roots of a polynomial equation with real
coefficients occur in complex-conjugate pairs.

10 Show that

(a) sin4θ = [cos 4θ − 4 cos 2θ + 3]

(b) sin5θ = [sin 5θ − 5 sin 3θ + 10 sin θ ]

(c) cos6θ = [cos 6θ + 6 cos 4θ + 15 cos 2θ + 10]

(d) cos2θ sin3θ = [2 sin θ + sin 3θ − sin 5θ ]

11 Prove that the statements

(a) | z + 1 | � | z − 1 | (b) Re(z) � 0

are equivalent.

12 For a certain network the impedance Z is given by

Sketch the variation of | Z | and arg Z with the
frequency ω. (Take values of ω � 0.)

13 The characteristic impedance Z0 and the 
propagation constant C of a transmission line 
are given by

Z0 = ÷(Z /Y ) and C = ÷(ZY)

where Z is the series impedance and Y the
admittance of the line, and Re(Z0) � 0 and 
Re(C) � 0. Find Z0 and C when Z = 0.5 + j0.3 Ω
and Y = (1 − j250) × 10−8 Ω.

14 The input impedance Z of a particular network 
is related to the terminating impedance z by the
equation

Z
z

z
  

(   )     

    
=

+ − +
+ +

1 2 4

1

j j

j

Z   
  

    
=

+
+ −
1

1 2

j

j

ω
ω ω

1
16

1
32

1
16

1
8

1
4 5 1(   )−

1
4 5 1(   )+

1 Let z = 4 + j3 and w = 2 − j. Calculate

(a) 3z (b) w* (c) zw

(d) z2 (e) |z | (f ) w/z

(g) z − (h) arg z (i)

2 For x and y real solve the equation

3 Given z = (2 + j)/(1 − j), find the real and 
imaginary parts of z + z−1.

4 (a) Find the loci in the Argand diagram
corresponding to the equation

| z − 1 | = 2 | z − j |

(b) If the point z = x + jy describes the circle 
| z − 1 | = 1, show that the real part of 1/(z − 2) 
is constant.

5 Writing ln[(x + jy + a)/(x + jy − a)] = u + jv, 
show that

(a) x2 + y2 − 2ax coth u + a2 = 0

(b) x = a sinh u/(cosh u − cos v)

(c) | x + jy | 2 = a2(cosh u + cos v)/(cosh u − cos v)

6 A circuit consists of a resistance R1 and an
inductance L in parallel connected in series with 
a second resistance R2. When a voltage V of
frequency ω /2π is applied to the circuit the 
complex impedance Z is given by

Show that if R1 varies from zero to infinity the 
locus of Z on the Argand diagram is part of a 
circle and find its centre and radius.

7 (a) Express cos 6θ as a polynomial in cos θ.

(b) Given z = cos θ + j sin θ show, by expanding 
(z + 1/z)5(z − 1/z)5 or otherwise, that

sin5θ cos5θ = (sin 10θ − 5 sin 6θ

+ 10 sin 2θ)

1

29

1 1 1

2 1Z R R L  
    

−
= +

jω

j

j
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x

y

x y  
  

  

  
  

+
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+
+

=
1

3 4

3
0

z
3
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1
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Find Z when z = 0, 1 and j Ω and sketch the
variation of | Z | and arg Z as z moves along 
the positive real axis from the origin.

15 Find the modulus and argument of

16 Express in the form a + jb, with a and b expressed
to 2dp

(a) sin(0.2 + j0.48) (b) cosh−1( j2)

(c) cosh(3.8 − j5.2) (d) ln(2 + j)

(e) cos( π − j)

17 Using complex numbers, show that

sin7θ = (35 sin θ − 21 sin 3θ

+ 7 sin 5θ − sin 7θ )

18 Two impedances Z1 and Z0 are related by the
equation

Z1 = Z0 tanh(α l + jβ l )

where α, β and l are real. If α l is so small that 
we may take sinh α l = α l, cosh α l = 1 and (α l)2

as negligible, show that

Z1 = Z0[α l sec2β l + j tan β l]

19 In a transmission line the voltage reflection 
equation is given by

where K is a real constant, Z = R + jX and Z0 =
R0 + jX0. Obtain an expression for θ, the phase
angle, in terms of R0, R, X0 and X. Hence show 
that if Z0 is purely resistive (that is, real) then

assuming R 2
0 � R2 + X2.

20 The voltage in a cable is given by the expression

Calculate its value in the form a + jb, giving a and 
b correct to 2dp, when

nx = 0.40 + j0.93

Z0 = 15 − j20 Zr = 3 + j4

cosh   sinhnx
Z

Z
nx

r

+ 0

θ   tan
    

=
+ −

⎡

⎣
⎢

⎤

⎦
⎥−1 0

2 2
0
2

2R X

R X R

K
Z Z

Z Z
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=

−
+

0

0

1
64

1
4

(   ) (   )

(   ) (   )

3 4 12 5

3 4 12 5

4 2

2 3

+ −
− +

j j

j j

21 Express Z = cosh(0.5 + j π) in the forms

(a) x + jy (b) re jθ

The current in a cable is equal to the real part 
of the expression e j0.7/Z. Calculate the current,
giving your answer correct to 3dp.

22 Show that if the propagation constant of a cable is
given by

X + jY = ÷[(R + jωL)(G + jωC )]

where R, G, ω, L and C are real, then the value of
X2 is given by

X2 = [RG − ω2LC + ÷{(R2 + ω 2L2)

× (G2 + ω2C2)}]

23 Given Z = (1 + j)/(3 − j4) obtain

(a) Z (b) ÷Z (c) eZ

(d) ln Z (e) sin Z

in the form a + jb, a, b real, giving a and b correct
to 2dp.

24 Find, in exponential form, the four values of

Denoting any one of these by p, show that the
other three are given by jnp (n = 1, 2, 3).

25 Determine the six roots of the complex number 
−1 + j÷3, in the form re jθ where −π � θ � π, and
show that three of these are also solutions of the
equation

÷2Z 3 + 1 + j÷3 = 0

26 Find the real part of

and deduce that if R2 is negligible compared 
with (ωL)2 and (LCω 2)2 is negligible compared 
with unity then the real part is approximately 
R(1 + 2LCω 2).

27 Show that if ω is a complex cube root of unity, 
then ω 2 + ω + 1 = 0. Deduce that

(x + y + z)(x + ωy + ω 2z)(x + ω 2y + ωz)

= x3 + y3 + z3 − 3xyz

(   )/

    /

R L C

L R C

+
+ +

j j

j j

ω ω
ω ω1

7 24
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1 4  
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1
2

1
4
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Hence show that the three roots of

x3 + (−3yz)x + ( y3 + z3) = 0

are

x = −(y + z), −(ωy + ω 2z), −(ω 2y + ωz)

Use this result to obtain Cardano’s solution to the
cubic equation

x3 + qx + r = 0

in the form

−(u + v)

where u3 = r + ÷[ r 2 + q3]

and v3 = r − ÷[ r 2 + q3]

Express the remaining two roots in terms of u, v and
ω and find the condition that all three roots are real.

28 ABCD is a square, lettered anticlockwise, on 
an Argand diagram. If the points A, B represent 
3 + j2, −1 + j4 respectively, show that C lies on 
the real axis, and find the number represented by 
D and the length of AB.

29 If z1 = 3 + j2 and z2 = 1 + j, and O, P, Q, R 
represent the numbers 0, z1, z1z2, z1/z2 on the
Argand diagram, show that RP is parallel to OQ
and is half its length.

30 Show that as z describes the circle z = be jθ, 
u + jv = z + a2/z describes an ellipse (a ≠ b). 
What is the image locus when a = b?

31 Show that the function

where z = x + jy and w = u + jv, maps the line 
3x + 4y = 1 in the z plane onto a circle in the 
w plane and determine its radius and centre.

32 Show that the function

w = (1 + j)z + 1

where z = x + jy and w = u + jv, maps the line 
y = 2x − 1 in the z plane onto a line in the w plane
and determine its equation.

w
z

  =
4

1
27

1
4

1
2

1
27

1
4

1
2

33 Show that the function

where z = x + jy and w = u + jv, maps the circle 
| z | = 3 on the z plane onto a circle in the 
w plane.

Find the centre and radius of this circle in 
the w plane and indicate, by means of shading 
on a sketch, the region in the w plane that
corresponds to the interior of the circle | z | = 3 
in the z plane.

34 Show that as θ varies the point z = a(h + cos θ) +
ja(k + sin θ ) describes a circle. The Joukowski
transformation u + jv = z + l 2/z is applied to 
this circle to produce an aerofoil shape in the 
u–v plane. Show that the coordinates of the 
aerofoil can be written in the form

Taking the case a = 1 and l 2 = 8, trace the aerofoil
where

(a) h = k = 0, and show that it is an ellipse;

(b) h = 0.04, k = 0 and show that it is a 
symmetrical aerofoil with a blunt leading 
and trailing edge;

(c) h = 0, k = 0.1 and show that it is a symmetrical 
aerofoil (about v axis) with camber;

(d) h = 0.04, k = 0.1 and show that it is a non-
symmetrical aerofoil with camber and rounded 
leading and trailing edges.
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4.1 Introduction

Much of the work of engineers and scientists involves forces. Ensuring the structural
integrity of a building or a bridge involves knowing the forces acting on the system and
designing the structural members to withstand them. Many have seen the dramatic 
pictures of the Tacoma bridge disaster (see also Section 10.10.3), when the forces acting
on the bridge were not predicted accurately. To analyse such a system requires the use of
Newton’s laws in a situation where vector notation is essential. Similarly, in a reciprocat-
ing engine, periodic forces act, and Newton’s laws are used to design a crankshaft 
that will reduce the side forces to zero, thereby minimizing wear on the moving parts.
Forces are three-dimensional quantities and provide one of the commonest examples of
vectors. Associated with these forces are accelerations and velocities, which can also
be represented by vectors. The use of formal mathematical notation and rules becomes
progressively more important as problems become complicated and, in particular, in
three-dimensional situations. Forces, velocities and accelerations all satisfy rules of
addition that identify them as vectors. In this chapter we shall construct an algebraic
theory for the manipulation of vectors and see how it can be applied to some simple
practical problems.

The ideas behind vectors as formal quantities developed mainly during the nine-
teenth century, and they became a well-established tool in the twentieth century. Vectors
provide a convenient and compact way of dealing with multi-dimensional situations
without the problem of writing down every bit of information. They allow the principles
of the subject to be developed without being obscured by complicated notation.

It is inconceivable that modern scientists and engineers could work successfully
without computers. Since such machines cannot think like an engineer or scientist, they
have to be told in a totally precise and formal way what to do. For instance, a robot arm
needs to be given instructions on how to position itself to perform a spot weld. Three-
dimensional vectors prove to be the perfect way to tell the computer how to specify the
position of the workpiece of the robot arm and a set of rules then tells the robot how to
move to its working position.

Computers have put a great power at the disposal of the engineer; problems that
proved to be impossible fifty years ago are now routine. With the aid of numerical algo-
rithms, equations can often be solved very quickly. The stressing of a large structure 
or an aircraft wing, the lubrication of shafts and bearings, the flow of sewage in pipes
and the flow past the fuselage of an aircraft are all examples of systems that were well
understood in principle but could not be analysed until the necessary computer power
became available. Algorithms are usually written in terms of vectors and matrices (see
Chapter 5), since these form a natural setting for the numerical solution of engineering
problems and are also ideal for the computer. It is vital that the manipulation of vectors
be understood before embarking on more complex mathematical structures used in
engineering computations.

Perhaps the most powerful influence of computers is in their graphical capabilities,
which have proved invaluable in displaying the static and dynamic behaviour of sys-
tems. We accept this tool without thinking how it works. A simple example shows the
complexity. How do we display a box with an open top with ‘hidden’ lines when we
look at it from a given angle? The problem is a complicated three-dimensional one that
must be analysed instantly by a computer. Vectors allow us to define lines that can be
projected onto the screen, and intersections can then be computed so that the ‘hidden’

232 VECTOR ALGEBRA

....
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4.2 BASIC DEFINITIONS AND RESULTS 233

portion can be eliminated. Extending the analysis to a less regular shape is a formidable
vector problem. Work of this type is the basis of CAD/CAM systems, which now assist
engineers in all stages of the manufacturing process, from design to production of a
finished product. Such systems typically allow engineers to manipulate the product
geometry during initial design, to produce working drawings, to generate toolpaths in
the production process and generally to automate a host of previously tedious and time-
consuming tasks.

The general development of the theory of vectors is closely associated with coordin-
ate geometry, so we shall introduce a few ideas in the next section that will be used later
in the chapter. The comments largely concern the two- and three-dimensional cases, but
we shall mention higher-dimensional extensions where they are relevant to later work,
such as on the theory of matrices. While in two and three dimensions we can appeal 
to geometrical intuition, it is necessary to work in a much more formal way in higher
dimensions, as with many other areas of mathematics.

4.2 Basic definitions and results

4.2.1 Cartesian coordinates

Setting up rectangular cartesian axes Oxyz or Ox1x2x3, we define the position of a point
by coordinates or components (x, y, z) or (x1, x2, x3), as indicated in Figure 4.1(a). The
indicial notation is particularly important when we consider vectors in many dimensions
(x1, x2, … , xn). The axes Ox, Oy, Oz, in that order, are assumed to be right-handed in
the sense of Figure 4.1(b), so that a rotation of a right-handed screw from Ox to Oy
advances it along Oz, a rotation from Oy to Oz advances it along Ox and a rotation from
Oz to Ox advances it along Oy. This is an accepted convention, and it will be seen to
be particularly important in Section 4.2.10 when we deal with the vector product.

The length of OP in Figure 4.1(a) is obtained from Pythagoras’ theorem as

r = (x2 + y2 + z2)1/2

The angle α = ∠POA in the right-angled triangle OAP is the angle that OP makes with
the positive x direction, as in Figure 4.2. We can see that

....

Figure 4.1
(a) Right-handed
coordinate axes. 
(b) Right-hand rule.
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Likewise, β and γ are the angles that OP makes with y and z directions respectively, so

The triad (l, m, n) are called the direction cosines of the line OP. Note that

Example 4.1 If P has coordinates (2, −1, 3), find the length OP and the direction cosines of OP.

Solution OP2 = (2)2 + (−1)2 + (3)2 = 4 + 1 + 9, so that OP = ÷14

The direction cosines are

l = 2÷ , m = −÷ , n = 3÷

Example 4.2 A surveyor sets up his theodolite on horizontal ground, at a point O, and observes the top
of a church spire, as illustrated in Figure 4.3. Relative to axes Oxyz, with Oz vertical,
the surveyor measures the angles ∠TOx = 66° and ∠TOz = 57°. The church is known
to have height 35 m. Find the angle ∠TOy and calculate the coordinates of T with
respect to the given axes.

Solution The direction cosines

l = cos 66° = 0.406 74 and n = cos 57° = 0.544 64

are known and hence the third direction cosine can be computed as

m2 = 1 − l 2 − n2 = 0.537 93

Thus, m = 0.733 44 and hence ∠TOy = cos−1(0.733 44) = 42.82°. The length OT = r can
now be computed from the known height, 35 m, and the direction cosine n, as

1
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Figure 4.2
Direction cosines 
of OP, l = cos α, 
m = cos β, n = cos γ.
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4.2 BASIC DEFINITIONS AND RESULTS 235

cos 57° = 35/r, so r = 64.26 m

The remaining coordinates are obtained from

x/r = cos 66° and y/r = cos 42.82°

giving x = r cos 66° = 26.14 and y = r cos 42.82° = 47.13
Hence the coordinates of T are (26.14, 47.13, 35).

4.2.2 Scalars and vectors

Quantities like distance or temperature are represented by real numbers in appropriate
units, for instance 5 m or 10°C. Such quantities are called scalars – they obey the usual
rules of real numbers and they have no direction associated with them. However, 
vectors have both a magnitude and a direction associated with them; these include
force, velocity and magnetic field. To qualify as vectors, the quantities must have more
than just magnitude and direction – they must also satisfy some particular rules of 
combination. Angular displacement in three dimensions gives an example of a quantity
which has a direction and magnitude but which does not add by the addition rules of
vectors, so angular displacements are not vectors.

We represent a vector geometrically by a line segment whose length represents the
vector’s magnitude in some appropriate units and whose direction represents the 
vector’s direction, with the arrowhead indicating the sense of the vector, as shown in
Figure 4.4. According to this definition, the starting point of the vector is irrelevant. In
Figure 4.4, the two line segments OA and O′A′ represent the same vector because their
lengths are the same, their directions are the same and the sense of the arrows is the
same. Thus each of these vectors is equivalent to the vector through the origin, with A
given by its coordinates (a1, a2, a3), as in Figure 4.5. We can therefore represent a 
vector in a three-dimensional space by an ordered set of three numbers or a 3-tuple. 
We shall see how this representation is used in Section 4.2.5.

We shall now introduce some of the basic notation and definitions for vectors. The
vector of Figure 4.5 is handwritten or typewritten as b, a, o1a2. On the printed page,
bold-face type a is used. Using the coordinate definition, the vector could equally be
written as (a1, a2, a3). (Note: There are several possible coordinate notations; the tradi-
tional one is (a1, a2, a3), but in Section 5.2.1 of Chapter 5 on matrices we shall use an
alternative standard notation.)

....

Figure 4.3
Representation of the
axes and church spire
in Example 4.2.

Figure 4.4
Line segments
representing a 
vector a.
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Some basic properties of vectors are:

(a) Equality
As we considered earlier, two vectors a and b are equal if and only if they have the
same modulus and the same direction and sense. We write this in the usual way

a = b

We shall see in Section 4.2.5 that in component form, two vectors a = (a1, a2, a3) and 
b = (b1, b2, b3) are equal if and only if the components are equal, that is

a1 = b1, a2 = b2, a3 = b3

(b) Multiplication by a scalar
If λ is a scalar and the vectors are related by a = λb then

• if λ � 0, a is a vector in the same direction as b with magnitude λ times the
magnitude of b;

• if λ � 0, a is a vector in the opposite direction to b with magnitude | λ | times
the magnitude of b.

(c) Parallel Vectors
The vectors a and b in (b) are said to be parallel or antiparallel according as λ � 0 or 
λ � 0 respectively. (Note that we do not insert any multiplication symbol between λ
and b since the common symbols · and × are reserved for special uses that we shall 
discuss later.)

(d) Modulus
The modulus or length or magnitude of a vector a is written as | a | or | o1a2 | or a if
there is no ambiguity. A vector with modulus one is called a unit vector and is written
â, with the hat (ˆ) indicating a unit vector. Clearly

a = | a |â or

(e) Zero Vector
The zero or null vector has zero modulus; it is written as 0 or often just as 0 when there
is no ambiguity whether it is a vector or not.

â
a
a

  =
| |
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Figure 4.5
Representation of the
vector a by the line
segment OA.
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Example 4.3 A cyclist travels at a steady 16 km/h on the four legs of his journey. From his origin,
O, he travels for one hour in a NE direction to the point A; he then travels due E for
half an hour to point B. He then cycles in a NW direction until he reaches the point C,
which is due N of his starting point. He returns due S to the starting point. Indicate the
path of the cyclist using vectors and calculate the modulus of the vectors along BC 
and CO.

Solution The four vectors are shown in Figure 4.6. If / and - are the unit vectors along the two
axes then by property (b)

a1b2 = 8/ and c1o2 = −L-

where L is still to be determined. By trigonometry

DB = 8 + 16 sin 45° = 8 + 8÷2

and hence the modulus of the vector b1c2 is

| BC | = = 8÷2 + 16

The modulus L of the vector c1o2 is

L = | c1o2 | = CD + DO = (8 + 8÷2) + 16 cos 45° = 8 + 16÷2

DB

cos 45°

..
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Figure 4.6 Cyclist’s
path in Example 4.3.

4.2.3 Addition of vectors

Having introduced vectors and their basic properties, it is natural to ask if vectors can be
combined. The simplest form of vector combination is addition and it is the definition of
addition that finally identifies a vector. Consider the following situation. The helmsman
of a small motor boat steers his vessel due east (E) at 4 knots for one hour. The path
taken by the boat could be represented by the line OA, or a, in Figure 4.7. Unfortunately
there is also a tidal stream, b, running north-north-east (NNE) at knots. Where will
the boat actually be at the end of one hour?

If we imagine the vessel to be steaming E for one hour through still water, and then
lying still in the water and drifting with the tidal stream for one hour, we can see that it
will travel from O to A in the first hour and from A to C in the second hour. If, on the

2 1
2
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other hand, the vessel steams due E through water that is simultaneously moving 
NNE with the tidal stream then the result will be to arrive at C after one hour. The net
velocity of the boat is represented by the line OC. Putting this another way, the result of
subjecting the boat to a velocity o1a2 and a velocity a1c2 simultaneously is the same 
as the result of subjecting it to a velocity o1c2. Thus the velocity o1c2 = a + b is the sum
of the velocity o1a2 = a and the velocity a1c22 = b.

This leads us to the parallelogram rule for vector addition illustrated in Figure 4.8
and stated as follows:

The sum, or resultant, of two vectors a and b is found by forming a paral-
lelogram with a and b as two adjacent sides. The sum a + b is the vector
represented by the diagonal of the parallelogram.

In Figure 4.8 the vectors o1b2 and a1c2 are the same, so we can rewrite the parallelo-
gram rule as an equivalent triangle law (Figure 4.9), which can be stated as follows:

If two vectors a and b are represented in magnitude and direction by the
two sides of a triangle taken in order then their sum is represented in 
magnitude and direction by the closing third side.

The triangle law for the addition of vectors can be extended to the addition of any 
number of vectors. If from a point O (Figure 4.10), displacements o1a2, a1b2, b1c2, … , l1k2
are drawn along the adjacent sides of a polygon to represent in magnitude and direction
the vectors a, b, c, … , k respectively then the sum

r = a + b + c + … + k

of these vectors is represented in magnitude and direction by the closing side OK of the
polygon, the sense of the sum vector being represented by the arrow in Figure 4.10.
This is referred to as the polygon law for the addition of vectors.

We now need to look at the usual rules of algebra for scalar quantities to check
whether or not they are satisfied for vectors.

(a) CommutatiVe law

a + b = b + a

This result is obvious from the geometrical definition, and says that order does not 
matter.

238 VECTOR ALGEBRA

Figure 4.7
Addition of 
two vectors.

Figure 4.8
Parallelogram rule for
addition of vectors.

Figure 4.9
Triangle law for
addition of vectors.

Figure 4.10
Polygon law for
addition of vectors.

....
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Figure 4.11
Deduction of the
associative law.

Figure 4.12
Similar triangles for
the proof of the
distributive law.

(b) AssociatiVe law

(a + b) + c = a + (b + c)

Geometrically, the result can be deduced using the triangle and polygon laws, as shown
in Figure 4.11. We see that brackets do not matter and can be omitted.

....

(d) Subtraction
We define subtraction in the obvious way:

a − b = a + (−b)

This is illustrated geometrically in Figure 4.13. Applying the triangle rule to triangle
OAB gives

b1a2 = b1o2 + o1a2 = o1a2 + b1o2

= o1a2 − o1b2 since b1o2 = −o1b2

(c) DistributiVe law

λ(a + b) = λa + λb

The result follows from similar triangles. In Figure 4.12 the side O′B′ is just λ times
OB in length and in the same direction, so o1′1b1′2 = λ(a + b). The triangle law therefore
gives the required result since o1′1b1′2 = o1′1a1′2 + a1′1b1′2 = λa + λb. This result just says that
we can multiply brackets out by the usual laws of algebra.
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from which the important result is obtained, namely

b1a2 = o1a2 − o1b2

Example 4.4 From Figure 4.14, evaluate

g in terms of a and b, f in terms of b and c

e in terms of c and d, e in terms of f, g and h

240 VECTOR ALGEBRA

....

Figure 4.13
Subtraction of vectors.

Figure 4.14
Figure of Example 4.4.

Solution From the triangle OAB: a1b2 = a1o2 + o1b2 and hence g = a + b

From the triangle OBC: c1b2 = o1b2 − o1c2 and hence f = b − c

From the triangle OCD: c1d2 = o1d2 − o1c2 and hence e = d − c

From the quadrilateral CBAD the polygon rule gives

c1d2 + d1a2 + a1b2 + b1c2 = 0 and hence e + (−h) + g + (−f ) = 0 so e = f − g + h

Example 4.5 A quadrilateral OACB is defined in terms of the vectors o1a2 = a, o1b2 = b and o1c2 =
b + a. Calculate the vector representing the other two sides b1c2 and c1a2.1

2
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Solution Now as in rule (d)

b1c2 = b1o2 + o1c2 = −o1b2 + o1c2

so 

b1c2 = o1c2 − o1b2 = (b + a) − b = a

and similarly c1a2 = o1a2 − o1c2 = a − (b + a) = a − b

Example 4.6 A force F has magnitude 2 N and a second force F ′ has magnitude 1 N and is inclined
at an angle of 60° to F, as illustrated in Figure 4.15. Find the magnitude of the resultant
force R and the angle it makes to the force F.

Solution (i) Now, from Figure 4.15 we have R = F + F′, so we require the length OC and the 
angle CON.

1
2

1
2

1
2

1
2

....

Figure 4.15
Figure of Example 4.6.

(ii) We first need to calculate CN and AN using trigonometry. Noting that | F′| =
OB = AC = 1 we see that

CN = AC sin and AN = AC cos 

(iii) Noting that | F | = OA = 2 then ON = OA + AN . Thus using Pythagoras’
theorem

and hence the resultant has magnitude ÷7.

(iv) The angle CON is determined from tan giving angle

CON = 19.1°.

Example 4.7 An aeroplane is flying at 400 knots in a strong NW wind of 50 knots. The pilot wishes
to fly due west. In which direction should the pilot fly the plane to achieve this end, and
what will be his actual speed over the ground?

Solution The resultant velocity of the plane is the vector sum of 50 knots from the NW direction
and 400 knots in a direction α° north of west. In appropriate units the situation is shown
in Figure 4.16(a). The vector o1a2 represents the wind velocity and o1b2 represents the
aeroplane velocity. The resultant velocity is o1p2, which is required to be due W. We
wish to determine the angle α (giving the direction of flight) and magnitude of the
resultant velocity (giving the ground speed).

 
CON

CN

ON
    = = ÷3

5

OC ON CN2 2 2 3
2

2
5
2

2
7          = + = ( ) + ( ) =÷

= 5
2

60 1
2° =   60 3

2° =  ÷
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Figure 4.16 (a) The track of the aeroplane in Example 4.7. (b) Resolving the velocity into components.

Figure 4.17
Quadrilateral of
Example 4.8.

Resolving the velocity into components as illustrated in Figure 4.16(b) and recogniz-
ing that the resultant velocity is in the westerly direction, we have no resultant velocity
perpendicular to this direction. Thus

400 sin α° = 50 sin 45°

so that

α = 5.07°

The resultant speed due west is

400 cos α° − 50 cos 45° = 363 knots

Example 4.8 If ABCD is any quadrilateral, show that a1d2 + b1c2 = 2e1f2, where E and F are the 
midpoints of AB and DC respectively, and that

a1b2 + a1d2 + c1b2 + c1d2 = 4x1y2

where X and Y are the midpoints of the diagonals AC and BD respectively.

Solution Applying the polygon law for the addition of vectors to Figure 4.17,

e1f2 = e1a2 + a1d2 + d1f2

and

e1f2 = e1b2 + b1c2 + c1f2

Adding these two then gives

2e1f2 = e1a2 + a1d2 + d1f2 + e1b2 + b1c2 + c1f2

= a1d2 + b1c2 + ( b1a2 + c1d2 − b1a2 − c1d2)

since E and F are the midpoints of AB and CD respectively. Thus

2e1f2 = a1d2 + b1c2

Also, by the polygon law for addition of vectors,

x1y2 = x1a2 + a1b2 + b1y2

1
2

1
2

1
2

1
2
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and

x1y2 = x1c2 + c1b2 + b1y2

Adding and multiplying by two gives

4x1y2 = 2x1a2 + 2a1b2 + 2b1y2 + 2x1c2 + 2c1b2 + 2b1y2

= 2a1b2 + 2c1b2 + 4b1y2 (since x1a2 = −x1c2)

= 2a1b2 + 2c1b2 + 2b1d2 (since b1d2 = 2b1y2)

= a1b2 + c1b2 + (a1b2 + b1d2) + (c1b2 + b1d2)
so that

4x1y2 = a1b2 + c1b2 + a1d2 + c1d2

4.2.4 Exercises

....

1 Given two non-parallel vectors a and b, indicate
on a diagram the vectors a + b, a + b, b − a, 

a − b.

2 An aeroplane flies 100 km in a NE direction, then
120 km in a ESE direction and finally S for a
further 50 km. Sketch the vectors representing this
flight path. What is the distance from start to finish
and also the length of the flight path?

3 (a) Given two non-parallel vectors a and b, show
on a diagram that any other vector r can be written
as r = αa + βb with constants α and β.

(b) Given three non-coplanar, non-parallel vectors
a, b and c, show on a diagram that any other
vector r can be written as r = αa + βb + γc with
constants α, β and γ.

4 The vector o1p2 makes an angle of 60° with the
positive x axis and 45° with the positive y axis.
Find the possible angles that the vector can make
with the z axis.

5 The vectors o1a2 = a and o1b2 = b are given. Find
the vector o1c2 representing the point C on AB that
divides AB in the ratio AC:CB = 1:2.

6 (a) For two vectors a = o1a2 and b = o1b2 show that
the midpoint of AB has the vector (a + b).

(b) The midpoints of the sides of the quadrilateral
ABCD are PQRS. Show that PQRS forms a
parallelogram.

1
2

3
2

1
2

1
2

7 A regular hexagon OACDEB has adjacent sides 
o1a2 = a and o1b2 = b. Find the vectors o11c2, o1d2, o1e2
representing the other three corners in terms of a
and b.

8 A bird flies N at a speed of 20 m/s but the wind 
is simutaneously carrying it E at 5 m/s. Find the
actual speed of the bird and the angle it deviates
from N.

9 A cyclist travelling east at 8 kilometres per hour
finds that the wind appears to blow directly from 
the north. On doubling his speed it appears to blow
from the north-east. Find the actual velocity of the
wind.

10 A weight of 100 N is suspended by two wires from
a horizontal beam, as in Figure 4.18. Find the
tension in the wires.

Figure 4.18 Suspended weight in Exercise 10
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4.2.5 Cartesian components and basic properties

In Section 4.2.2 we saw that vectors could be written as an ordered set of three numbers
or 3-tuple. We shall now explore the properties of these ordered triples and how they
relate to the geometrical definitions used in previous sections.

In Figure 4.19, we denote mutually perpendicular unit vectors in the three coordinate
directions by i, j and k. (Sometimes the alternative notation ê1, ê2 and ê3 is used.) 
The notation i, j, k is so standard that the ‘hats’ indicating unit vectors are usually 
omitted.

244 VECTOR ALGEBRA
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Figure 4.19
The component form
of a vector.

Applying the triangle law to the triangle OXM, we have

o1m2 = o1x2 + X111M2 = xi + yj

Applying the triangle law to the triangle OMP then yields

o1p2 = o1m2 + m1p2 = xi + yj + zk (4.1)

The analysis applies to any point, so we can write any vector r in terms of its 
components x, y, z with respect to the unit vectors i, j, k as

r = xi + yj + zk

Indeed, the vector notation r = (x, y, z) should be intepreted as the vector given in (4.1).
In some contexts it is more convenient to use a suffix notation for the coordinates, and

(x1, x2, x3) = x1ê1 + x2ê2 + x3ê3

is interpreted in exactly the same way. It is assumed that the three basic unit vectors are
known, and all vectors in coordinate form are referred to them.

The modulus of a vector is just the length OP, so from Figure 4.19 we have, using
Pythagoras’ theorem,

| r | = (x 2 + y 2 + z 2 )1/2

The basic properties of vectors follow easily from the component definition in (4.1). 
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(a) Equality
Two vectors a = (a1, a2, a3) and b = (b1, b2, b3) are equal if and only if the three 
components are equal, that is

a1 = b1, a2 = b2, a3 = b3

(b) Zero Vector
The zero vector has zero components, so

0 = (0, 0, 0)

(c) Addition
The addition rule is expressed very simply in terms of vector components:

a + b = (a1 + b1, a2 + b2, a3 + b3)

The equivalence of this definition with the geometrical definition for addition using the
parallelogram rule can be deduced from Figure 4.20. We know that o1b2 = a1c2, since
they are equivalent displacements, and hence their x components are the same, so that
we have OL = MN. Thus if we take the x component of a + b

(a + b)1 = ON = OM + MN = OM + OL = a1 + b1

the y and z components can be considered in a similar manner, giving (a + b)2 = a2 + b2

and (a + b)3 = a3 + b3.

....

Figure 4.20
Parallelogram rule, x
component.

(d) Multiplication by a scalar
If λ is a scalar and the vectors are related by a = λb then the components satisfy

a1 = λb1, a2 = λb2, a3 = λb3

which follows from the similar triangles of Figure 4.12.

(e) DistributiVe law
The distributive law in components is simply a restatement of the distributive law for
the addition of numbers:
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λ(a + b) = λ(a1 + b1, a2 + b2, a3 + b3)

= (λ(a1 + b1), λ(a2 + b2), λ(a3 + b3))

= (λa1 + λb1, λa2 + λb2, λa3 + λb3)

= (λa1, λa2, λa3) + (λb1, λb2, λb3)

= λa + λb

(f) Subtraction
Subtraction is again straightforward and the components are just subtracted from 
each other:

a − b = (a1 − b1, a2 − b2, a3 − b3)

The component form of vectors allows problems to be solved algebraically and
results can be interpreted either as algebraic ideas or in a geometrical manner. Both
these interpretations can be very useful in applications of vectors to engineering.

In MATLAB a vector is inserted as an array within square brackets, so, for 
example, a vector a = (1, 2, 3) is inserted as a = [1 2 3] or a = [1,2,3], where
in the latter commas have been used instead of spaces. It is inserted as
a:= array([1,2,3]); in MAPLE, where it is usually necessary to invoke the
linalg package first. The operations of addition, subtraction and multiplication by 
a scalar are represented by +, - and * respectively, but to evaluate the operations
numerically requires the instruction evalm. The magnitude or length of a vector 
a appears in MATLAB as norm(a) and in MAPLE as norm(a,2).

Example 4.9 Determine whether constants α and β can be found to satisfy the vector equations

(a) (2, 1, 0) = α(−2, 0, 2) + β(1, 1, 1)

(b) (−3, 1, 2) = α(−2, 0, 2) + β(1, 1, 1)

and interpret the results.

Solution (a) For the two vectors to be the same each of the components must be equal, and
hence

2 = −2α + β

1 = β

0 = 2α + β

Thus the second equation gives β = 1 and both of the other two equations give the same
value of α, namely α = − , so the equations can be satisfied.

(b) A similar argument gives

−3 = −2α + β

1 = β

2 = 2α + β

1
2
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Again, the second equation gives β = 1 but the first equation leads to α = 2 and the third
to α = . The equations are now not consistent and no appropriate α and β can be
found.

In case (a) the three vectors lie in a plane, and any vector in a plane, including the one
given, can be written as the vector sum of the two vectors (−2, 0, 2) and (1, 1, 1) with
appropriate multipliers. In case (b), however, the vector (−3, 1, 2) does not lie in the
plane of the two vectors (−2, 0, 2) and (1, 1, 1) and can, therefore, never be written as
the vector sum of the two vectors (−2, 0, 2) and (1, 1, 1) with appropriate multipliers.

Example 4.10 Given the vectors a = (1, 1, 1), b = (−1, 2, 3) and c = (0, 3, 4), find

(a) a + b (b) 2a − b (c) a + b − c

(d) the unit vector in the direction of c

Solution (a) a + b = (1 − 1, 1 + 2, 1 + 3) = (0, 3, 4)

(b) 2a − b = (2 × 1 − (−1), 2 × 1 − 2, 2 × 1 − 3) = (3, 0, −1)

(c) a + b − c = (1 − 1 + 0, 1 + 2 − 3, 1 + 3 − 4) = (0, 0, 0) = 0

(d) | c | = (32 + 42)1/2 = 5, so

Example 4.11 Given a = (2, −3, 1) = 2i − 3j + k, b = (1, 5, −2) = i + 5j − 2k and c = (3, −4, 3) = 3i −
4 j + 3k

(a) find the vector d = a − 2b + 3c;

(b) find the magnitude of d and write down a unit vector in the direction of d;

(c) what are the direction cosines of d?

Solution (a) d = a − 2b + 3c

= (2i − 3j + k) − 2(i + 5j − 2k) + 3(3i − 4 j + 3k)

= (2i − 3j + k) − (2i + 10j − 4k) + (9i − 12 j + 9k)

= (2 − 2 + 9)i + (−3 − 10 − 12) j + (1 + 4 + 9)k

that is, d = 9i − 25j + 14k.

(b) The magnitude of d is d = ÷[92 + (−25)2 + 142] = ÷902 
A unit vector in the direction of d is R, where

R
÷ ÷ ÷

        = = − +
d

i j k
d

9

902

25

902

14

902

  
Q    ( , , )= =

c
5

0 3
5

4
5

1
2

....
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(c) The direction cosines of d are 9/÷902, −25/÷902 and 14/÷902.

Check that in MATLAB the commands

a = [2 –3 1]; b = [1 5 –2]; c = [3 –4 3];

d = a – 2*b + 3*c

return the answer given in (a) and that the further command

norm(d)

gives the magnitude of d as 30.0333. Here MATLAB gives the numeric answer; to
obtain the answer in the exact form then the calculation in MATLAB must be done
symbolically using the Symbolic Math Toolbox. To do this the vector d must first
be expressed in symbolic form using the sym command. Since the command norm
does not appear to be available directly in the Toolbox, use can be made of the
maple command to access the command in MAPLE. Check that the commands

d = sym(d);

maple(‘norm’,d,2)

return the answer 902^(1/2) given in (b).

Example 4.12 A molecule XY3 has a tetrahedral form; the position vector of the X atom is (2÷3 + ÷2,
0, −2 + ÷6) and those of the three Y atoms are

o1y2 = (÷3, −2, −1), o1y1′2 = (÷3, 2, −1), o1y111″2 = (÷2, 0, ÷6)

(a) Show that all of the bond lengths are equal.

(b) Show that x1y2 + y1y1′2 + y1′1y1″2 + y1″1x2 = 0

Solution (a) x1y2 = o1y2 − o1x2 = (−÷3 − ÷2, −2, 1 − ÷6) and the bond length is 

| x1y2 | = [(−÷3 − ÷2)2 + (−2)2 + (1 − ÷6)2]1/2 = 4

y1y1′2 = o1y1′2 − o1y2 = (0, 4, 0) and clearly the bond length is again 4.

The other four bonds x1y1′2, x1y1″2, y1′1y1″2, y1″1y2 are treated in exactly the same way, and
each gives a bond length of 4.

(b) Now y1′1y1″2 = o1y1″2 − o1y1′2 = (÷2 − ÷3, −2, ÷6 + 1) and y1″1x2 = o1x2 − o1y1″2
= (2÷3, 0, −2), so adding the four vectors gives

x1y2 + y1y1′2 + y1′1y1″2 + y1″1x2

= (−÷3 − ÷2, −2, 1 − ÷6) + (0, 4, 0) + (÷2 − ÷3, −2, ÷6 + 1) + (2÷3, 0, −2)

= 0

and is just a verification of the polygon law.

Example 4.13 Three forces, with units of newtons,

F1 = (1, 1, 1)
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F2 has magnitude 6 and acts in the direction (1, 2, −2)

F3 has magnitude 10 and acts in the direction (3, −4, 0)

act on a particle. Find the resultant force that acts on the particle. What additional force
must be imposed on the particle to reduce the resultant force to zero?

Solution The first force is given in the usual vector form. The second two are given in an equally
acceptable way but it is necessary to convert the information to the normal vector form
so that the resultant can be found by vector addition. First the unit vector in the given
direction of F2 is required:

| (1, 2, −2) | = (1 + 22 + (−2)2)1/2 = 3

and hence the unit vector in this direction is (1, 2, −2). Since F2 is in the direction of
this unit vector and has magnitude 6 it can be written F2 = 6( , , − ) = (2, 4, −4)

Similarly for F3, the unit vector is (3, −4, 0) and hence F3 = (6, −8, 0). The resultant
force is obtained by vector addition.

F = F1 + F2 + F3 = (1, 1, 1) + (2, 4, −4) + (6, −8, 0) = (9, −3, −3)

Clearly to make the resultant force zero, the additional force (−9, 3, 3) must be imposed
on the particle.

Example 4.14 Two geostationary satellites have known positions (0, 0, h) and (0, A, H) relative to a
fixed set of axes on the earth’s surface (which is assumed flat, with the x and y axes
lying on the surface and the z axis vertical). Radar signals measure the distance of a ship
from the satellites. Find the position of the ship relative to the given axes.

Solution Figure 4.21 illustrates the situation described, with R (a, b, 0) describing the position
of the ship and P and Q the positions of the satellites.

The radar signals measure PR and QR which are denoted by p and q respectively.
The vectors

p1r2 = o1r2 − o1p2 = (a, b, 0) − (0, 0, h) = (a, b, −h)

q1r2 = o1r2 − o1q2 = (a, b, 0) − (0, A, H) = (a, b − A, −H)

1
5

2
3

2
3

1
3

1
3

Figure 4.21
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are calculated by the triangle law. The lengths of the two vectors are

p2 = |p1r2 |2 = a2 + b2 + h2 and q2 = |q1r2 |2 = a2 + (b − A)2 + H 2

Subtracting gives

p2 − q2 = A(2b − A) + h2 − H 2

and hence

b = (p2 − q2 − h2 + H 2 + A2)/2A

Having calculated b then a can be calculated from

a = ±÷(p2 − b2 − h2)

Note the ambiguity in sign; clearly it will need to be known on which side of the y axis
the ship is lying.

Comment In practice the axes will need to be transformed to standard latitude and longitude and
the curvature of the earth will need to be taken into consideration.

4.2.6 Complex numbers as vectors

We saw in Section 3.2.1, that a complex number z = x + jy can be represented geome-
trically by the point P in the Argand diagram, as illustrated in Figure 4.22. We could
equally well represent the point P by the vector o1p2. Hence we can express the complex
number z as a two-dimensional vector

z = o1p2

With this interpretation of a complex number we can use the parallelogram rule to 
represent the addition and subtraction of complex numbers geometrically, as illustrated
in Figures 4.23(a, b).

250 VECTOR ALGEBRA
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Figure 4.22 Argand
diagram representation
of z = x + jy.

Figure 4.23
(a) Addition of
complex numbers. 
(b) Subtraction of
complex numbers.
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Example 4.15 A square is formed in the first and second quadrant with OP as one side of the square
and o1p2 = (1, 2). Find the coordinates of the other two vertices of the square.

Solution The situation is illustrated in Figure 4.24. Using the complex form o1p2 = 1 + 2j the side
OQ is obtained by rotating OP through π/2 radians, then

o1q2 = j(1 + 2j) = −2 + j

The fourth point R is found by observing that o1r2 is the vector sum of o1p2 and o1q2, and
hence

o1r2 = o1p2 + o1q2 = −1 + j3

The four coordinates are therefore

(0, 0), (1, 2), (−2, 1) and (−1, 3)

Example 4.16 M is the centre of a square with vertices A, B, C and D taken anticlockwise in that
order. If, in the Argand diagram, M and A are represented by the complex numbers 
−2 + j and 1 + j5 respectively, find the complex numbers represented by the vertices B,
C and D.

Solution Applying the triangle law for addition of vectors of Figure 4.25 gives

m1a2 = m1o2 + o1a2

= o1a2 − o1m2

≡ (1 + j5) − (−2 + j)

= 3 + j4

Since ABCD is a square,

MA = MB = MC = MD

∠AMB = ∠BMC = ∠CMD = ∠DMA = π

Remembering that multiplying a complex number by j rotates it through π radians in
an anticlockwise direction, we have

m1b2 = jm1a2 ≡ j(3 + j4) = −4 + j3

giving

o1b2 = o1m2 + m1b2 ≡ (−2 + j) + (−4 + j3) = −6 + j4

Likewise

m1c2 = jm1b2 ≡ j(−4 + j3) = −3 − j4

giving

o1c2 = o1m2 + m1c2 ≡ −5 − j3

1
2

1
2

....

Figure 4.24
Square of 
Example 4.15.

Figure 4.25
Square of 
Example 4.16.
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and

m1d2 = jm1c2 ≡ j(−3 − j4) = 4 − j3

giving

o1d2 = o1m2 + m1d2 ≡ 2 − j2

Thus the vertices B, C and D are represented by the complex numbers −6 + j4, −5 − j3
and 2 − j2 respectively.

4.2.7 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

252 VECTOR ALGEBRA

....

11 Given a = (1, 1, 0), b = (2, 2, 1) and c = (0, 1, 1),
evaluate

(a) a + b (b) a + + 2c (c) b − 2a

(d) | a | (e) | b | (f) | a − b |

(g) â (h) P

12 If the position vectors of the points P and Q are 
i + 3j − 7k and 5i − 2j + 4k respectively, find p1q2
and determine its length and direction cosines.

13 A particle P is acted upon by forces (measured 
in newtons) F1 = 3i − 2j + 5k, F2 = −i + 7j − 3k,
F3 = 5i − j + 4k and F4 = −2j + 3k. Determine the
magnitude and direction of the resultant force
acting on P.

14 If a = 3i − 2j + k, b = −2i + 5j + 4k, c = −4i + j
− 2k and d = 2i − j + 4k, determine α, β and γ
such that

d = αa + βb + γc

15 Prove that the vectors 2i − 4j − k, 3i + 2j − 2k
and 5i − 2j − 3k can form the sides of a triangle.
Find the lengths of each side of the triangle and
show that it is right-angled.

16 Find the components of the vector a of magnitude
2 units which makes angles 60°, 60° and 135° with
axes Ox, Oy, Oz respectively.

17 The points A, B and C have coordinates (1, 2, 2),
(7, 2, 1) and (2, 4, 1) relative to rectangular
coordinate axes. Find:

1
2 b

(a) the vectors a1b2 and a1c2

(b) | a1b2 − 3a1c2 |

(c) the unit vector in the direction of a1b2 − 3a1c2

(d) the lengths of the vectors a1b2 and a1c2

(e) the vector a1m2 where M is the midpoint of BC.

18 In the xy plane a1b2 = (1, −2) and B is the point with
coordinates (2, 2). Find the coordinates of the point
A. The point C has coordinates (3, 2); find D so that
a1b2 = c1d2.

19 Given the points P(1, −3, 4), Q(2, 2, 1) 
and R(3, 7, −2), find the vectors p1q2 and q1r2. 
Show that P, Q and R lie on a straight line and 
find the ratio PQ: QR.

20 Relative to a landing stage, the position vectors in
kilometres of two boats A and B at noon are

3i + j and i − 2j

respectively. The velocities of A and B, which are
constant and in kilometres per hour, are

10i + 24 j and 24i + 32j

Find the distance between the boats t hours after
noon and find the time at which this distance is a
minimum.

21 If the complex numbers z1, z2 and z3 are represented
on the Argand diagram by the points P1, P2 and P3

respectively and

o1p22 = 2jo1p21 and o1p23 = jp1111121p112

prove that P3 is the foot of the perpendicular from O
onto the line P1P2.

2
5
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22 ABCD is a square, lettered anticlockwise, on an
Argand diagram, with A representing 3 + j2 and B
representing −1 + j4. Show that C lies on the real
axis and find the complex number represented by
D and the length of AB.

23 A triangle has vertices A, B, C represented by 
1 + j, 2 − j and −1 respectively. Find the point 
that is equidistant from A, B and C.

24 Given the triangle OAB, where O is the origin, 
and denoting the midpoints of the opposite sides as
O′, A′ and B′, show vectorially that the lines OO′,
AA′ and BB′ meet at a point. (Note that this is the
result that the medians of a triangle meet at the
centroid.)

25 Three weights W1, W2 and W3 hang in equilibrium
on the pulley system shown in Figure 4.26. The
pulleys are considered to be smooth and the forces
add by the rules of vector addition. Calculate θ and
φ, the angles the ropes make with the horizontal.

26 A telegraph pole OP has three wires connected to 
it at P. The other ends of the wires are connected 
to houses at A, B and C. Axes are set up as shown
in Figure 4.27. The points relative to these axes,
with distances in metres, are o1p2 = 8k, 
o1a2 = 20j + 6k, o1b2 = −i − 18j + 10k and 
o1c2 = −22i + 3j + 7k. The tension in each 
wire is 900 N. Find the total force acting at P. 
A tie cable at an angle of 45° is connected to 
P and fixed in the ground. Where should the 
ground fixing be placed, and what is the tension
required to ensure a zero horizontal resultant 
force at P?

Figure 4.26 Pulley system in Question 25. Figure 4.27 The telegraph pole of Question 26.

4.2.8 The scalar product
A natural idea in mathematics, explored in Chapter 1, is not only to add quantities but
also to multiply them together. The concept of multiplication of vectors translates into
a useful tool for many engineering applications, with two different products of vectors
– the ‘scalar’ and ‘vector’ products – turning out to be particularly important.

The determination of a component of a vector is a basic procedure in analysing many
physical problems. For the vector a shown in Figure 4.28 the component of a in the
direction of OP is just ON = | a | cos θ. The component is relevant in the physical con-
text of work done by a force. Suppose the point of application, O, of a constant force F
is moved along the vector a from O to the point A, as in Figure 4.29. The component
of F in the a direction is | F | cos θ, and O is moved a distance | a |. The work done is
defined as the product of the distance moved by the point of application and the com-
ponent of the force in this direction. It is thus given by

work done = | F | | a | cos θ

Figure 4.28
The component of a
in the direction OP is
ON = | a | cos θ.
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The definition of the scalar product in geometrical terms takes the form of this
expression for the work done by a force. Again there is an equivalent component
definition, and both are now presented.

Definition

The scalar (or dot or inner) product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3)
is defined as follows:

In components

a · b = a1b1 + a2b2 + a3b3 (4.2a)

Geometrically

a · b = | a | | b | cos θ, where θ (0 � θ � π) is the angle between the two vectors

Both definitions prove to be useful in different contexts, but to establish the basic rules
the component definition is the simpler. The equivalence of the two definitions can 
easily be established from the cosine rule for a triangle. Using Figure 4.30 the cosine
rule (2.16) states

AB2 = OA2 + OB2 − 2(OA)(OB) cos θ

which in appropriate vector or component notation gives

(a1 − b1)
2 + (a2 − b2)

2 + (a3 − b3)
2 =

− 2 | a | | b | cos θ

Thus expanding the left-hand side gives

= − 2 | a | | b | cos θ

and hence

a · b = a1b1 + a2b2 + a3b3 = | a | | b | cos θ (4.2b)

Two important points to note are: (i) the scalar product of two vectors gives a number.
(ii) the scalar product is only defined as the product of two vectors and not between any
other two quantities. For this reason, the presence of the dot (·) in a · b is essential
between the two vectors.

Basic rules and properties

The basic rules are now very straightforward to establish.

(a) CommutatiVe law

a · b = b · a

+ b3
2+ +   b a2

2
3
2+ +   b a1

2
2
2a1

2

a a b b a a b b a a b b1
2

1 1 1
2

2
2

2 2 2
2

3
2

3 3 3
22 2 2               − + + − + + − +

(     )  (     )a a a b b b1
2

2
2

3
2

1
2

2
2

3
2+ + + + +
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Figure 4.29
The work done by a
constant force F with
point of application
moved from O to A 
is | F | | a | cos θ.

Figure 4.30
Cosine rule for a
triangle; equivalence
of the geometrical and
component definitions
of the scalar product.

M04_JAME0734_05_SE_C04.qxd  11/03/2015  09:47  Page 254



4.2 BASIC DEFINITIONS AND RESULTS 255

This rule follows immediately from the component definition (4.2a), since interchanging
ai and bi does not make any difference to the products. The rule says that ‘order does 
not matter’.

(b) AssociatiVe law
The idea of associativity involves the product of three vectors. Since a · b is a scalar, it
cannot be dotted with a third vector, so the idea of associativity is not applicable here
and a · b · c is not defined.

(c) DistributiVe law for products with a scalar λλ

a · (λb) = (λa) · b = λ(a · b)

These results follow directly from the component definition (4.2a). The implication is
that scalars can be multiplied out in the normal manner.

(d) DistributiVe law oVer addition

a · (b + c) = a · b + a · c

The proof is straightforward, since

a · (b + c) = a1(b1 + c1) + a2(b2 + c2) + a3(b3 + c3)

= (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3)

= a · b + a · c

Thus the normal rules of algebra apply, and brackets can be multiplied out in the 
usual way.

(e) Powers of a
One simple point to note is that

a · a = = | a | | a | cos 0 = | a |2

in agreement with Section 4.2.5. This expression is written a2 = a · a and, where there
is no ambiguity, a2 = a2 is also used. No other powers of vectors can be constructed,
since, as in (b) above, scalar products of more than two vectors do not exist. For the
standard unit vectors, i, j and k,

i2 = i · i = 1, j 2 = j · j = 1, k2 = k · k = 1 (4.3)

( f ) Perpendicular Vectors
It is clear from (4.2b) that if a and b are perpendicular (orthogonal) then cos θ =
cos = 0, and hence a · b = 0, or in component notation

a · b = a1b1 + a2b2 + a3b3 = 0

1
2 π

a a a1
2

2
2

3
2    + +

....
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However, the other way round, a · b = 0, does not imply that a and b are perpendicular.
There are three possibilities:

either a = 0 or b = 0 or θ =

It is only when the first two possibilities have been dismissed that perpendicularity can
be deduced.

The commonest mistake is to deduce from

a · b = a · c

that b = c. This is only one of three possible solutions – the other two being a = 0 and
a perpendicular to b − c. The rule to follow is that you can’t cancel vectors in the same
way as scalars.

Since the unit vectors i, j and k are mutually perpendicular,

i · j = j · k = k · i = 0 (4.4)

Using the distributive law over addition, we obtain using (4.3) and (4.4)

(a1, a2, a3) · (b1, b2, b3) = (a1i + a2 j + a3k) · (b1i + b2 j + b3k)

= a1b1i · i + a1b2i · j + a1b3i · k + a2b1 j · i + a2b2 j · j

+ a2b3 j · k + a3b1k · i + a3b2k · j + a3b3k · k

= a1b1 + a2b2 + a3b3

which is consistent with the component definition of a scalar product.
Perpendicularity is a very important idea, which is used a great deal in both math-

ematics and engineering. Pressure acts on a surface in a direction perpendicular to the 
surface, so that the force per unit area is given by pT, where p is the pressure and T is
the unit normal. To perform many calculations, we must be able to find a vector that is
perpendicular to another vector. We shall also see that many matrix methods rely on
being able to construct a set of mutually orthogonal vectors. Such constructions are not
only of theoretical interest, but form the basis of many practical numerical methods used
in engineering (see Chapter 6 of the companion text Advanced Modern Engineering
Mathematics). The whole of the study of Fourier series (considered in Chapter 12),
which is central to much of signal processing and is heavily used by electrical 
engineers, is based on constructing functions that are orthogonal.

In MATLAB the scalar product of two vectors a and b is given by the command
dot(a,b). In MAPLE it is given by innerprod(a,b).

Example 4.17 Given the vectors a = (1, −1, 2), b = (−2, 0, 2) and c = (3, 2, 1), evaluate

(a) a · c (b) b · c (c) (a + b) · c

(d) a · (2b + 3c) (e) (a · b)c

1
2 π
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Solution (a) a · c = (1 × 3) + (−1 × 2) + (2 × 1) = 3

(b) b · c = (−2 × 3) + (0 × 2) + (2 × 1) = −4

(c) (a + b) = (1, −1, 2) + (−2, 0, 2) = (−1, −1, 4) so that 

(a + b) · c = (−1, −1, 4) · (3, 2, 1) = −3 − 2 + 4 = −1

(note that (a + b) · c = a · c + b · c)

(d) a · (2b + 3c) = (1, −1, 2) · [(−4, 0, 4) + (9, 6, 3)]

= (1, −1, 2) · (5, 6, 7) = (5 − 6 + 14) = 13

(note that 2(a · b) + 3(a · c) = 4 + 9 = 13)

(e) (a · b)c = [(1, −1, 2) · (−2, 0, 2)](3, 2, 1) = [−2 + 0 + 4](3, 2, 1)

= 2(3, 2, 1) = (6, 4, 2)

(note that a · b is a scalar, so (a · b)c is a vector parallel or antiparallel to c)

Check that in MATLAB the commands

a = [1 –1 2]; b = [–2 0 2]; c = [3 2 1];

dot(a,c), dot(b,c), dot(a + b,c), dot(a,2*b + 3*c),

dot(a,b)*c

return the answers given in this example.

Example 4.18 Find the angle between the vectors a = (1, 2, 3) and b = (2, 0, 4).

Solution By definition

a · b = | a | | b | cos θ = a1b1 + a2b2 + a3b3

We have in the right-hand side

(1, 2, 3) · (2, 0, 4) = 2 + 0 + 12 = 14

Also

| (1, 2, 3) | = ÷(12 + 22 + 32) = ÷14

and

| (2, 0, 4) | = ÷(22 + 02 + 42) = ÷20

Thus, from the definition of the scalar product,

14 = ÷(14)÷(20) cos θ

giving

θ = cos−1÷ 7
10

M04_JAME0734_05_SE_C04.qxd  11/03/2015  09:47  Page 257



Example 4.19 Given a = (1, 0, 1) and b = (0, 1, 0), show that a · b = 0, and interpret this result.

Solution a · b = (1, 0, 1) · (0, 1, 0) = 0

Since | a | ≠ 0 and | b | ≠ 0, the two vectors are perpendicular. We can see this result 
geometrically, since a lies in the x–z plane and b is parallel to the y axis.

Example 4.20 The three vectors

a = (1, 1, 1), b = (3, 2, −3) and c = (−1, 4, −1)

are given. Show that a · b = a · c and interpret the result.

Solution Now a · b = 1 × 3 + 1 × 2 − 1 × 3 = 2

and a · c = 1 × (−1) + 1 × 4 + 1 × (−1) = 2

so the two scalar products are clearly equal. Certainly b ≠ c since they are given to be
unequal and a is non-zero, so the conclusion from

a · (b − c) = 0

is that the vectors a and (b − c) = (4, −2, −2) are perpendicular.

Example 4.21 In a triangle ABC show that the perpendiculars from the vertices to the opposite sides
intersect in a point.

Solution Let the perpendiculars AD and BE meet in O, as indicated in Figure 4.31, and choose
O to be the origin. Define o1a2 = a, o1b2 = b and o1c2 = c. Then

AD perpendicular to BC implies a · (b − c) = 0

BE perpendicular to AC implies b · (c − a) = 0

Hence, adding,

a · b − a · c + b · c − b · a = 0

so

b · c − a · c = c · (b − a) = 0

This statement implies that b − a is perpendicular to c or AB is perpendicular to CF, 
as required. The case b − a = 0 is dismissed, since then the triangle would collapse. 
The case c = 0 implies that C is at O; the triangle is then right-angled and the result is
trivial.

Example 4.22 Find the work done by the force F = (3, −2, 5) in moving a particle from a point P to a
point Q having position vectors (1, 4, −1) and (−2, 3, 1) respectively.

258 VECTOR ALGEBRA
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Figure 4.31
The altitudes of a
triangle meet in a
point (Example 4.21).
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Solution Applying the triangle law to Figure 4.32, we have the displacement of the particle 
given by

r = p1q2 = p1o2 + o1q2 = o1q2 − o1p2

= (−2, 3, 1) − (1, 4, −1) = (−3, −1, 2)

Then the work done by the force F is

F · r = (3, −2, 5) · (−3, −1, 2) = −9 + 2 + 10

= 3 units

The component of a vector in a given direction was discussed at the start of this sec-
tion, and, as indicated in Figure 4.28, the component of F in the a direction is | F | cos θ.
Taking â to be the unit vector in the a direction,

F · â = | F | | â | cos θ = | F | cos θ

= the component of F in the a direction

Example 4.23 Find the component of the vector F = (2, −1, 3) in

(a) the i direction

(b) the direction

(c) the direction (4, 2, −1)

Solution (a) The direction i is represented by the vector (1, 0, 0), so the component of F in the
i direction is

F · (1, 0, 0) = (2, −1, 3) · (1, 0, 0) = 2

(note how this result just picks out the x component and agrees with the usual idea of a
component).

(b) Since ÷ = 1, the vector is a unit vector. Thus the component 

of F in the direction is 

F ·

(c) Since ÷(16 + 4 + 1) ≠ 1, the vector (4, 2, −1) is not a unit vector. Therefore we must
first compute its magnitude as

÷(42 + 22 + 12) = ÷21

indicating that a unit vector in the direction of (4, 2, −1) is (4, 2, −1)/÷21. Thus the 
component of F in the direction of (4, 2, −1) is

F · (4, 2, −1)/÷21 = 3/÷21

( , , )        1
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3

2
3
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3

2
3 2 2= − + =

( , , )1
3

2
3

2
3

( , , )1
3

2
3

2
3(     )1

9
4
9

4
9+ +

( , , )1
3

2
3

2
3

....

Figure 4.32
Triangle law for
Example 4.22.
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4.2.9 Exercises

Where appropiate check your answers using MATLAB or MAPLE.
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27 Given that u = (4, 0, −2), v = (3, 1, −1), 
w = (2, 1, 6) and s = (1, 4, 1), evaluate 

(a) u · v (b) v · s

(c) Z (d) (v · s)Y

(e) (u · w)(v · s) (f ) (u · i)v + (w · s)k

28 Given u, v, w and s as for Question 27, find

(a) the angle between u and w;

(b) the angle between v and s;

(c) the value of λ for which the vectors u + λk
and v − λ i are perpendicular;

(d) the value of µ for which the vectors w + µi
and s − µi are perpendicular.

29 Given the vectors u = (1, 0, 0), v = (1, 1, 0), 
w = (1, 1, 1) and s = (2, 1, 2), find α, β, γ that
satisfy s = α u + β v + γ w. If u′ = (1, −1, 0), 
v ′ = (0, 1, −1) and w ′ = (0, 0, 1) show that

s = (s · u)u′ + (s · v)v′ + (s · w)w′

30 Given | a | = 3, | b | = 2 and a · b = 5 find | a + 2b |
and | 3a − b |. Find the angle between the vectors 
a + 2b and 3a − b.

31 Find the work done by the force F = (−2, −1, 3) 
in moving a particle from the point P to the 
point Q having position vectors (−1, 2, 3) and 
(1, −3, 4) respectively.

32 Find the resolved part in the direction of the vector
(3, 2, 1) of a force of 5 units acting in the direction
of the vector (2, −3, 1).

33 Find the value of t that makes the angle between 
the two vectors a = (3, 1, 0) and b = (t, 0, 1) equal
to 45°.

34 For any four points A, B, C and D in space, prove
that

(d1a2 · b1c2) + (d1b2 · c1a2) + (d1c2 · a1b2) = 0

35 If (c − a) · a = (c − b) · b = 0, prove that the

vector c − (a + b) is perpendicular to a − b.1
2

1
2

1
2

Figure 4.33 Davit in Question 40.

36 Prove that the line joining the points (2, 3, 4) and 
(1, 2, 3) is perpendicular to the line joining the
points (1, 0, 2) and (2, 3, −2).

37 Show that the diagonals of a rhombus intersect at
right-angles. If one diagonal is twice the length of
the other, show that the diagonals have length 2a/√5
and 4a/√5, where a is the length of the side of the
rhombus.

38 Find the equation of a circular cylinder with the
origin on the axis of the cylinder, the unit vector a
along the axis and radius R.

39 A cube has corners with coordinates (0, 0, 0), (1, 0, 0),
(0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) and 
(1, 1, 1). Find the vectors representing the diagonals
of the cube and hence find the length of the
diagonals and the angle between the diagonals.

40 A lifeboat hangs from a davit, as shown in 
Figure 4.33, with the x direction, the vertical 
part of the davit and the arm of the davit being 
mutually perpendicular. The rope is fastened to 
the deck at a distance X from the davit. It is 
known that the maximum force in the x direction
that the davit can withstand is 200 N. If the weight
supported is 500 N and the pulley system is a single
loop so that the tension is 250 N, then determine the
maximum value that X can take.
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4.2.10 The vector product

The vector or cross product was developed during the nineteenth century, its main
practical use being to define the moment of a force in three dimensions. It is generally only
in three dimensions that the vector product is used. The adaptation for two-dimensional
vectors is of restricted scope, since for two-dimensional problems, where all vectors are
confined to a plane, the direction of the vector product is always perpendicular to that
plane.

Definition

Given two vectors a and b, we define the vector product geometrically as

a × b = | a | | b | sin θ T (4.5)

where θ is the angle between a and b (0 � θ � π), and T is the unit vector perpendicu-
lar to both a and b such that a, b, T form a right-handed set – see Figure 4.34 and the
definition at the beginning of Section 4.2.1.

..

4.2 BASIC DEFINITIONS AND RESULTS 261

..

Figure 4.34
Vector product a × b,
right-hand rule.

It is important to recognize that the vector product of two vectors is itself a vector.
The alternative notation a ∧ b is also sometimes used to denote the vector product, but
this is less common since the similar wedge symbol ∧ is also used for other purposes
(see e.g. Section 6.4.2).

There are wide-ranging applications of the vector product.

Motion of a charged particle in a magnetic field

l If a charged particle has velocity v and moves in a magnetic field H then the 
particle experiences a force perpendicular to both v and H, which is proportional
to v × H. It is this force that is used to direct the beam in a television tube. 

l Similarly a wire moving with velocity v in a magnetic field H produces a cur-
rent proportional to v × H (see Figure 4.35), thus converting mechanical energy
into electric current, and provides the principle of the dynamo.

l For an electric motor the idea depends on the observation that an electric 
current C in a wire that lies in a magnetic field H produces a mechanical force
proportional to C × H; again see Figure 4.35. Thus electrical energy is converted
to a mechanical force.
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Moment of a force

The moment or torque of a force F provides the classical application of the vector prod-
uct in a mechanical context. Although moments are easy to define in two dimensions,
the extension to three dimensions is not so easy. In vector notation, however, if the
force passes through the point P and o1p2 = r, as illustrated in Figure 4.36, then the
moment M of the force about O is simply defined as

M = r × F = | r | | F | sin θ T = OQ | F | T (4.6)

This is a vector in the direction of the normal T, and moments add by the usual paral-
lelogram law.

Angular velocity of a rigid body

A further application of the vector product relates to rotating bodies. Consider a 
rigid body rotating with angular speed ω (in rad s−1) about a fixed axis LM that passes
through a fixed point O, as illustrated in Figure 4.37. A point P of the rigid body having
position vector r relative to O will move in a circular path whose plane is perpendicular
to OM and whose centre N is on OM. If NQ is a fixed direction and the angle QNP is
equal to χ then

the magnitude of angular velocity = =   
d

d

χ ω
t

Figure 4.35
In a magnetic field H,
(i) motion of the wire
in the V direction
creates a current in 
the H × v (dynamo),
(ii) a current C causes
motion v in the C × H
direction (electric
motor).

Figure 4.36
Moment of a force.
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(Note that we have used here the idea of a derivative, which will be introduced in
Chapter 8.) The velocity v of P will be in the direction of the tangent shown and will
have magnitude

If we define ωω to be a vector of magnitude ω and having direction along the axis of
rotation, in the sense in which the rotation would drive a right-handed screw, then

v = ωω × r (4.7)

correctly defines the velocity of P in both magnitude and direction. This vector ωω is
called the angular velocity of the rigid body.

Area of parallelogram and a triangle

Geometrically we have from Figure 4.38 that the area of a parallelogram ABCD is
given by

area = h | a1b2 | = | a1d2 | sin θ | a1b2 | = | a1d2 × a1b2 |

Note also that the area of the triangle ABD is | a1d2 × a1b2 |, which corresponds to 
the result

area of triangle ABD = (AD)(AB) sin θ

We now examine the properties of vector products in order to determine whether or
not the usual laws of algebra apply.

Basic properties

(a) Anti-commutatiVe law

a × b = −(b × a)

This follows directly from the right-handedness of the set in the geometrical definition
(4.5), since T changes direction when the order of multiplication is reversed. Thus the
vector product does not commute, but rather anti-commutes, unlike the multiplication
of scalars or the scalar product of two vectors. Therefore the order of multiplication

1
2

1
2

v    = =NP
d

d
NP

χ ω
t

....

Figure 4.37
Angular velocity of a
rigid body.

Figure 4.38
Representation of a
parallelogram.
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matters when using the vector product. For example, it is important that the moment of
a force is calculated as M = r × F and not F × r.

(b) Non-associatiVe multiplication
Since the vector product of two vectors is a vector, we can take the vector product with
a third vector, and associativity can be tested. It turns out to fail in general, and

a × (b × c) ≠ (a × b) × c

except in special cases, such as when a = 0. This can be seen to be the case from geo-
metrical considerations using the definition (4.5). The vector b × c is perpendicular to
both b and c, and is thus perpendicular to the plane containing b and c. Also, by
definition, a × (b × c) is perpendicular to b × c, and is therefore in the plane of b and c.
Similarly, (a × b) × c is in the plane of a and b. Hence, in general, a × (b × c) and 
(a × b) × c are different vectors.

Since the associative law does not hold in general, we never write a × b × c, since 
it is ambiguous. Care must be taken to maintain the correct order and thus brackets must
be inserted when more than two vectors are involved in a vector product.

(c) DistributiVe law oVer multiplication by a scalar
The definition (4.5) shows trivially that

a × (λb) = λ(a × b) = (λa) × b

and the usual algebraic rule applies.

(d) DistributiVe law oVer addition

a × (b + c) = (a × b) + (a × c)

This law holds for the vector product. It can be proved geometrically using the defi-
nition (4.5). The proof, however, is rather protracted and is omitted here.

(e) Parallel Vectors
It is obvious from the definition (4.5) that if a and b are parallel or antiparallel then 
θ = 0 or π, so that a × b = 0, and this includes the case a × a = 0. We note, however,
that if a × b = 0 then we have three possible cases: either a = 0 or b = 0 or a and b are
parallel. As with the scalar product, if we have a × b = a × c then we cannot deduce that
b = c. We first have to show that a ≠ 0 and that a is not parallel to b − c.

( f ) Cartesian form
From the definition (4.5), it clearly follows that the three unit vectors, i, j and k parallel
to the coordinate axes satisfy

i × i = j × j = k × k = 0

i × j = k, j × k = i, k × i = j (4.8)

264 VECTOR ALGEBRA
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Note the cyclic order of these latter equations. Using these results, we can obtain the
cartesian or component form of the vector product. Taking

a = (a1, a2, a3) = a1i + a2 j + a3k

and

b = (b1, b2, b3) = b1i + b2 j + b3k

then, using rules (c), (d) and (a),

a × b = (a1i + a2 j + a3k) × (b1i + b2 j + b3k)

= a1b1(i × i) + a1b2(i × j) + a1b3(i × k) + a2b1( j × i) + a2b2( j × j) 

+ a2b3( j × k) + a3b1(k × i) + a3b2(k × j) + a3b3(k × k)

= a1b2k + a1b3(− j) + a2b1(−k) + a2b3i + a3b1 j + a3b2(−i)

so that

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3) j + (a1b2 − a2b1)k (4.9)

The cartesian form (4.9) can be more easily remembered in its determinant form 
(actually an accepted misuse of the determinant form)

= (a2b3 − b2a3)i − (a1b3 − b1a3) j + (a1b2 − b1a2)k (4.10)

This notation is so convenient that we use it here before formally introducing deter-
minants in the next chapter.

An alternative way to work out the cross product, which is easy to memorize, is to
write the vectors (a, b, c) and (A, B, C ) twice and read off the components by taking
the products as indicated in Figure 4.39.

a b

i j k

i j k    

   

       

       

  
    

    
  

   

    
  

    

    
× = = − +a a a

b b b

a a

b b

a a

b b

a a

b b
1 2 3

1 2 3

2 3

2 3

1 3

1 3

1 2

1 2

..

Figure 4.39
Gives the three
components as 
bC − cB, cA − aC, 
aB − bA.

In MATLAB the vector product of two vectors a and b is given by the command
cross(a,b). In MAPLE it is given by crossprod(a,b).

Example 4.24 Given the vectors a = (2, 1, 0), b = (2, −1, 1) and c = (0, 1, 1), evaluate

(a) a × b (b) (a × b) × c (c) (a · c)b − (b · c)a

(d) b × c (e) a × (b × c) (f) (a · c)b − (a · b)c
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Solution

(a) = (1, −2, −4)

(b) = (2, −1, 1)

(c) a · c = (2, 1, 0) · (0, 1, 1) = 1, b · c = (2, −1, 1) · (0, 1, 1) = 0 and hence (a · c)b −
(b · c)a = 1b − 0a = (2, −1, 1)

(Note that (b) and (c) give the same result.)

(d) = (−2, −2, 2)

(e) a × (b × c) = = (2, −4, −2)

(Note that (b) and (e) do not give the same result and the cross product is not
associative.)

(f) a · c = (2, 1, 0) · (0, 1, 1) = 1, a · b = (2, 1, 0) · (2, −1, 1) = 3 and hence (a · c)b −
(a · b)c = 1b − 3c = (2, −4, −2)

(Note that (e) and (f) give the same result.)

Check that in MATLAB the commands

a = [2 1 0]; b = [2 –1 1]; c = [0 1 1];

cross(a,b)

cross(cross(a,b),c)

return the answers to (a) and (b).

Example 4.25 Find a unit vector perpendicular to the plane of the vectors a = (2, −3, 1) and b = (1, 2, −4).

Solution A vector perpendicular to the plane of the two vectors is the vector product
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whose modulus is

| a × b | = ÷(100 + 81 + 49) = ÷230

Hence a unit vector perpendicular to the plane of a and b is (10/÷230, 9/÷230, 7/÷230).

Example 4.26 Find the area of the triangle having vertices at P(1, 3, 2), Q(−2, 1, 3) and R(3, −2, −1).

Solution We have seen in Figure 4.38 that the area of the parallelogram formed with sides PQ
and PR is | p1q@ × p1r2 |, so the area of the triangle PQR is | p1q2 × p1r2 |. Now

p1q2 = (−2 − 1, 1 − 3, 3 − 2) = (−3, −2, 1)

and

p1r2 = (3 − 1, −2 − 3, −1 − 2) = (2, −5, −3)

so that

Hence the area of the triangle PQR is

| p1q2 × p1r2 | = ÷(121 + 49 + 361) = ÷531 ≈ 11.52 square units.

Example 4.27 Four vectors are constructed corresponding to the four faces of a tetrahedron. The mag-
nitude of a vector is equal to the area of the corresponding face and its direction is the
outward perpendicular to the face, as shown in Figure 4.40. Show that the sum of the
four vectors is zero.

Solution In Figure 4.40(a) let a1b2 = b, a1c2 = c and a1d2 = d. The outward perpendicular to triangle
ABD is parallel to

n = a1d2 × a1b2 = d × b

1
2

1
2

1
2

  

p1q2 p1r2    

             

          

         

  ( , , )× = − −

− −

= −

i j k

3 2 1

2 5 3

11 7 19

1
2

Figure 4.40
(a) Tetrahedron
for Example 4.27; 
(b) triangle from (a).
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and the unit vector in the outward normal direction is

From Figure 4.40(b) the area of triangle ABD follows from the definition of cross 
product as

area = AD(AB sin θ) = | d × b |

so the vector we require is

v1 = area × 9 = d × b

In a similar manner for triangles ACB and ADC the vectors are

v2 = b × c and v3 = c × d

For the fourth face BCD the appropriate vector is

v4 = b1d2 × b1c2 = (d − b) × (c − b) = (d × c − d × b − b × c)

Adding the four vectors v1, v2, v3 and v4 together gives the zero vector.

Example 4.28 A force of 4 units acts through the point P(2, 3, −5) in the direction of the vector 
(4, 5, −2). Find its moment about the point A(1, 2, −3). See Figure 4.41.

What are the moments of the force about axes through A parallel to the coordinate
axes?

Solution To express the force in vector form we first need the unit vector in the direction of the
force.

  

4 5 2

16 25 4

1

45
4 5 2

i j k    

(     )
   ( , , )

+ −
+ +

= −
÷ ÷

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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×
×

d b
d b
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Figure 4.41
Moment of the force F
about the point A in
Example 4.28.
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Since the force F has a magnitude of 4 units

The position vector of P relative to A is

a1p2 = (1, 1, −2)

Thus from (4.6) the moment M of the force about A is

= (32/÷45, −24/÷45, 4/÷45)

The moments about axes through A parallel to the coordinate axes are 32/÷45, −24/÷45
and 4/÷45.

Example 4.29 A rigid body is rotating with an angular velocity of 5 rad s−1 about an axis in the direc-
tion of the vector (1, 3, −2) and passing through the point A(2, 3, −1). Find the linear
velocity of the point P(−2, 3, 1) of the body.

Solution A unit vector in the direction of the axis of rotation is Thus the angular 

velocity vector of the rigid body is

ωω = (5/÷14)(1, 3, −2)

The position vector of P relative to A is

a1p2 = (−2 − 2, 3 − 3, 1 + 1) = (−4, 0, 2)

Thus from (4.7) the linear velocity of P is

= (30/÷14, 30/÷14, 60/÷14)

Example 4.30 A trapdoor is raised and lowered by a rope attached to one of its corners. The rope is
pulled via a pulley fixed to a point A, 50 cm above the hinge, as shown in Figure 4.42.
If the trapdoor is uniform and of weight 20 N, what is the tension required to lift 
the door?

   

v

i j k
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−
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1 3 2

4 0 2
÷ 4
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Solution From the data given we can calculate various vectors immediately.

o1a2 = (0, 30, 50), o1b2 = (60, −50, 0), o1h2 = (0, 30, 0)

If M is the midpoint of the trapdoor then

o1m2 = (30, 0, 0)

The forces acting are the tension T in the rope along BA, the weight W through M in
the −z direction and reactions R and S at the hinges. Now

a1b2 = o1b2 − o1a2 = (60, −80, −50)

so that | a1b2 | = 112, and hence

T = −T(60, −80, −50)/112

Taking moments about the hinge H, we first note that there is no moment of the reaction
at H. For the remaining forces

MH = h1m2 × W + h1b2 × T + h1k2 × R

= (30, −30, 0) × (0, 0, −20) + (60, −80, 0) × (60, −80, −50)(−T/112) + h1k2 × R

= (600, 600, 0) + T(−35.8, −26.8, 0) + h1k2 × R

Since we require the moment about the y axis, we take the scalar product of MH and 
j. The vector h1k2 is along j, so j · (h1k2 × R) must be zero. Thus the j component of MH

must be zero as the trapdoor just opens; that is,

0 = 600 − 26.8T

so

T = 22.4 N

270 VECTOR ALGEBRA

....

Figure 4.42
Trapdoor in 
Example 4.30.
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4.2.11 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

41 Given p = (1, 1, 1), q = (0, −1, 2) and r = (2, 2, 1),
evaluate

(a) p × q (b) p × r

(c) r × q (d) (p × r) · q

(e) q · (r × p) (f) (p × r) × q

42 The vectors a = (1, −1, 2), b = (0, 1, 3), 
c = (−2, 2, −4) are given.

(a) Evaluate a × b and b × c

(b) Write down the vectors b × a and c × b

(c) Show that c × a = 0 and explain this result.

43 Evaluate 2j × (3i − 4k) and (i + 2j ) × k.

44 Given the vectors a = (−3, −1, −2) and b =
(2, 3, 1), find | a × b| and (a + 2b) × (2a − b).

45 Let a = (1, 2, 3), b = (2, 1, 4) and c = (1, −1, 2).
Calculate (a × b) × c and a × (b × c) and verify
that these two vectors are not equal.

46 Show that the area of the triangle ABC in 
Figure 4.43 is | a1b2 × a1c2 |. Show that

a1b2 × a1c2 = b1c2 × b1a2 = c1a2 × c1b2

and hence deduce the sine rule

sin
  

sin
  

sinA

a

B

b

C

c
= =

1
2

48 The points A, B and C have coordinates (1, −1, 2),
(9, 0, 8) and (5, 0, 5) relative to rectangular
cartesian axes. Find

(a) the vectors a1b2 and a1c2;

(b) a unit vector perpendicular to the triangle ABC;

(c) the area of the triangle ABC.

49 Use the definitions of the scalar and vector products
to show that

| a · b |2 + | a × b |2 = a2b2

50 If a, b and c are three vectors such that 
a + b + c = 0, prove that

a × b = b × c = c × a

and interpret geometrically.

51 A rigid body is rotating with angular velocity 
6 rad s−1 about an axis in the direction of 
the vector (3, −2, 1) and passing through the 
point A(3, −2, 5). Find the linear velocity of 
the point P(3, −2, 1) on the body.

52 A force of 4 units acts through the point 
P(4, −1, 2) in the direction of the vector (2, −1, 4).
Find its moment about the point A(3, −1, 4).

53 The moment of a force F acting at a point P about 
a point O is defined to be a vector M perpendicular
to the plane containing F and the point O such that
| M | = p| F |, where p is the perpendicular distance
from O to the line of action of r. Figure 4.44
illustrates such a force F. Show that the
perpendicular distance from O to the line of action

Figure 4.43 Sine rule: Section 2.6.1.

47 Prove that

(a − b) × (a + b) = 2(a × b)

and interpret geometrically. Figure 4.44 Moment of force F about O.
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A satellite is stationary at P(2, 5, 4) and a warning
signal is activated if any object comes within a
distance of 3 units. Determine whether a rocket
moving in a straight line passing through A(1, 5, 2)
and B(3, −1, 5) activates the warning signal.

56 The position vector r, with respect to a given origin
O, of a charged particle of mass m and charge e at
time t is given by

where E, B, a and ω are constants. The
corresponding velocity and acceleration are

f = −aω 2 sin(ωt)i − aω 2 cos(ωt) j

For the case when B = Bk, show that the equation of
motion

mf = e(Ej + v × B)

is satisfied provided ω is chosen suitably.

v i j k    cos( )   sin( )   = +⎛
⎝⎜

⎞
⎠⎟ − +

E

B
a t a t cω ω ω ω

r i j k    sin( )   cos( )   = +⎛
⎝⎜

⎞
⎠⎟ + +

Et

B
a t a t ctω ω

of F is | r | sin θ, where r is the position vector of 
P. Hence deduce that M = r × F. Show that the
moment of F about O is the same for any point P
on the line of action of F.

Forces (1, 0, 0), (1, 2, 0) and (1, 2, 3) act
through the points (1, 1, 1), (0, 1, 1) and (0, 0, 1)
respectively:

(a) Find the moment of each force about the 
origin.

(b) Find the moment of each force about the point
(1, 1, 1).

(c) Find the total moment of the three forces
about the point (1, 1, 1).

54 Find a unit vector perpendicular to the plane of the
two vectors (2, −1, 1) and (3, 4, −1). What is the
sine of the angle between these two vectors?

55 Prove that the shortest distance of a point P from
the line through the points A and B is

| |

| |

a1p2 a1b2

a1b2

  ×

4.2.12 Triple products

In Example 4.24, products of several vectors were computed: the product (a × b) · c is
called the triple scalar product and the product (a × b) × c is called the triple vector
product.

Triple scalar product

The triple scalar product is of interest because of its geometrical interpretation. Looking
at Figure 4.45, we see that

a × b = | a | | b | sin θ k

= (area of the parallelogram OACB)k

Thus, by definition,

(a × b) · c = (area of OACB)k · c

= (area of OACB) | k | | c | cos φ

= (area of OACB)h (where h is the height of the parallelepiped)

= volume of the parallelepiped

Considering (a × b) · c to be the volume of the parallelepiped mounted on a, b, c has
several useful consequences.
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(a) If two of the vectors a, b and c are parallel then (a × b) · c = 0. This follows imme-
diately since the parallelepiped collapses to a plane and has zero volume. In particular,

(a × b) · a = 0 and (a × b) · b = 0

(b) If the three vectors are coplanar then (a × b) · c = 0. The same reasoning as in (a)
gives this result.

(c) If (a × b) · c = 0 then either a = 0 or b = 0 or c = 0 or two of the vectors are parallel
or the three vectors are coplanar.

(d) In the triple scalar product the dot · and the cross × can be interchanged:

(a × b) · c = a · (b × c)

since it is easily checked that they measure the same volume mounted on a, b, c. If we
retain the same cyclic order of the three vectors then we obtain

a · (b × c) = b · (c × a) = c · (a × b) (4.11)

(e) In cartesian form the scalar triple product can be written as the determinant

= a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

(4.12)

Example 4.31 Find λ so that a = (2, −1, 1), b = (1, 2, −3) and c = (3, λ, 5) are coplanar.

Solution None of these vectors are zero or parallel, so by property (b) the three vectors are 
coplanar if (a × b) · c = 0. Now

a × b = (1, 7, 5)

so

(a × b) · c = 3 + 7λ + 25

This will be zero, and the three vectors coplanar, when λ = −4.

⋅ × =(   )  

        

        

        

a a a

b b b

c c c

1 2 3

1 2 3

1 2 3

Figure 4.45
Triple scalar product
as the volume of a
parallelepiped.

..
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Example 4.32 In a triangle OAB the sides o1a2 = a and o1b2 = b are given. Find the point P, with 
c = o1p2, where the perpendicular bisectors of the two sides intersect. Hence prove that
the perpendicular bisectors of the sides of a triangle meet at a point.

Solution Let 0 be the unit vector perpendicular to the plane of the triangle; the situation is illus-
trated in Figure 4.46.

Figure 4.46
Perpendicular
bisectors in
Example 4.32.

Now

o1p2 = o1a2′ + a1′1p2 = a + α 0 × a

for some α, since the vector 0 × a is in the direction perpendicular to a. Similarly

o1p2 = o1b2′ + b1′1p2 = b + β0 × b

Subtracting these two equations

a + α 0 × a = b + β0 × b

Take the dot product of this equation with b, which eliminates the final term, since 
b · (0 × b) = 0, and gives

b · (b − a) = αb·(0 × a)

Hence α has been computed in terms of the known data, so assuming b · (0 × a) ≠ 0

We now need to check that PQ is perpendicular to AB:

a1b2 = o1b2 − o1a2 = b − a

and

   
p1q2 o1q2 o1p2      (   )    

(   )

(   )
  = − = + − −

⋅ −
⋅ ×

×1
2

1
2

1
2a b a

b b a
b a

a
0

0

   
o1p2     = +

⋅ −
⋅ ×

×1
2

1
2a

b b a
b a

a  
(   )

(   )
  

0
0

1
2

1
2

1
2

1
2

1
2
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Now take the dot product of these two vectors

Since neither p1q2 nor a1b2 is zero, the two vectors must therefore be perpendicular.
Hence the three perpendicular bisectors of the sides of a triangle meet at a point.

Example 4.33 Three non-zero, non-parallel and non-coplanar vectors a, b and c are given. Three 
further vectors are written in terms of a, b and c as

A = αa + βb + γc

B = α′a + β′b + γ ′c

C = α″a + β″b + γ ″c

Find how the triple scalar product A · (B × C ) is related to a · (b × c).

Solution To find the result we use the facts that (i) the vector product of identical vectors is 
zero and (ii) the triple scalar product is zero if two of the vectors in the product are the
same. Now

A · (B × C ) = (αa + βb + γ c) · [(α′a + β′b + γ ′c) × (α″a + β″b + γ ″c)]

= (αa + βb + γ c) · [α′β″a × b + α′γ ″a × c + β′α″b × a

+ β′γ ″b × c + γ ′α″c × a + γ ′β″c × b]

= (αa + βb + γc) · [(α′β″ − β′α″ )a × b + (β′γ ″ − γ ′β″ )b × c

+ (γ ′α″ − α′γ ″ )c × a]

= γ (α′β″ − β′α″)c · a × b + α(β′γ ″ − γ ′β″ )a · b × c

+ β(γ ′α″ − α′γ ″ )b · c × a

= (a · b × c)[α(β′γ ″ − γ ′β″ ) + β(γ ′α″ − α′γ ″ ) + γ (α′β″ − β′α″ )]

The result can be written most conveniently in determinant form (see Section 5.3 of the
next chapter) as

Triple vector product

For the triple vector product we shall show in general that

(a × b) × c = (a · c)b − (b · c)a (4.13)

 

A B C a b c⋅ × = ′ ′ ′

′′ ′′ ′′

⋅ ×(   )   (   )

α β γ

α β γ

α β γ

1
2

1
2 1

2

1
2 0b

b b a
b a

a b a b b a
b b a

b a
b a  

(   )

(   )
     (   )  (   )  

(   )

(   )
(   )  −

⋅ −
⋅ ×

×
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ − = ⋅ − −

⋅ −
⋅ ×

⋅ × =
0

0
0

0

....
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as suggested in Example 4.24. We have from (4.9)

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

and hence

(a × b) × c = ((a3b1 − a1b3)c3 − (a1b2 − a2b1)c2,

(a1b2 − a2b1)c1 − (a2b3 − a3b2)c3,

(a2b3 − a3b2)c2 − (a3b1 − a1b3)c1)

The first component of this vector is

a3c3b1 − b3c3a1 − b2c2a1 + a2c2b1 = (a1c1 + a2c2 + a3c3)b1 − (b1c1 + b2c2 + b3c3)a1

= (a · c)b1 − (b · c)a1

Treating the second and third components similarly, we find

(a × b) × c = ((a · c)b1 − (b · c)a1, (a · c)b2 − (b · c)a2, (a · c)b3 − (b · c)a3)

= (a · c)b − (b · c)a

In a similar way we can show that

a × (b × c) = (a · c)b − (a · b)c (4.14)

We can now see why the associativity of the vector product does not hold in general.
The vector in (4.13) is in the plane of b and a, while the vector in (4.14) is in the plane
of b and c; hence they are not in the same planes in general, as we inferred geometric-
ally in Section 4.2.10. Consequently, in general 

a × (b × c) ≠ (a × b) × c

so use of brackets is essential.

Example 4.34 If a = (3, −2, 1), b = (−1, 3, 4) and c = (2, 1, −3), confirm that

a × (b × c) = (a · c)b − (a · b)c

Solution

 

a b c

i j k

  (   )  

 

  ( , , )× × = −

− −

= −3 2 1

13 5 7

9 8 11

b c

i j k

    

            

          

          

  ( , , )× = −

−

= − −1 3 4

2 1 3

13 5 7
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(a · c)b − (a · b)c = [(3)(2) + (−2)(1) + (1)(−3)](−1, 3, 4) 

− [(3)(−1) + (−2)(3) + (1)(4)](2, 1, −3)

= (−1, 3, 4) + 5(2, 1, −3)

= (9, 8, −11)

thus confirming the result

a × (b × c) = (a · c)b − (a · b)c

Example 4.35 Verify that a × (b × c) ≠ (a × b) × c for the three vectors a = (1, 0, 0), b = (−1, 2, 0) and 
c = (1, 1, 1).

Solution Evaluate the cross products in turn:

b × c = (−1, 2, 0) × (1, 1, 1) = (2, 1, −3)

and therefore

a × (b × c) = (1, 0, 0) × (2, 1, −3) = (0, 3, 1)

Similarly for the right-hand side:

a × b = (1, 0, 0) × (−1, 2, 0) = (0, 0, 2)

and hence

(a × b) × c = (0, 0, 2) × (1, 1, 1) = (−2, 2, 0)

Clearly for these three vectors a × (b × c) ≠ (a × b) × c.

Example 4.36 The vectors a, b and c and the scalar p satisfy the equations

a · b = p and a × b = c

and a is not parallel to b. Solve for a in terms of the other quantities and give a geo-
metrical interpretation of the result.

Solution First evaluate the cross product of the second equation with b

b × (a × b) = b × c

gives

(b · b)a − (b · a)b = b × c

and hence, using a · b = p, and collecting the terms

Since b × c is in the plane of a and b, any vector in the plane can be written as a linear
combination of b and b × c. The expression for a gives the values of the coefficients in
the linear combination.

a
b b c

b
  

    
=

+ ×p

| |2
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4.2.13 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

57 Find the volume of the parallelepiped whose edges
are represented by the vectors (2, −3, 4), (1, 3, −1),
(3, −1, 2).

58 Prove that the vectors (3, 2, −1), (5, −7, 3) and 
(11, −3, 1) are coplanar.

59 Find the constant λ such that the three vectors 
(3, 2, −1), (1, −1, 3) and (2, −3, λ) are 
coplanar.

60 Prove that the four points having position vectors 
(2, 1, 0), (2, −2, −2), (7, −3, −1) and (13, 3, 5) are
coplanar.

61 Given p = (1, 4, 1), q = (2, 1, −1) and r = (1, −3, 2),
find

(a) a unit vector perpendicular to the plane
containing p and q;

(b) a unit vector in the plane containing p × q and
p × r that has zero x component.

62 Show that if a is any vector and Y any unit vector 
then

a = (a · Y)Y + Y × (a × Y)

and draw a diagram to illustrate this relation
geometrically.

The vector (3, −2, 6) is resolved into two
vectors along and perpendicular to the line whose
direction cosines are proportional to (1, 1, 1). Find
these vectors.

63 Three vectors u, v, w are expressed in terms of the
three vectors l, m, n in the form

u = u1l + u2 m + u3 n

v = v1l + v2 m + v3 n

w = w1l + w2 m + w3n

Show that

u · (v × w) = λ l · (m × n)

and evaluate λ.

64 Forces F1, F2, … , Fn act at the points r1, r2, … , rn

respectively. The total force and the total moment
about the origin O are

F = ∑ Fi and G = ∑ ri × Fi

Show that for any other origin O′ the moment is
given by

G′ = G + o1′1o2 × F

If O′ lies on the line

o1o1′2 = r = α(F × G) + tF

find the constant α that ensures that G′ is parallel to
F. This line is called the central axis of the system
of forces.

65 Extended exercise on products of four vectors.

(a) Use (4.11) to show

(a × b) · (c × d) = [(a × b) × c] · d

and use (4.13) to simplify the expression on the
right-hand side.

(b) Use (4.13) to show that

(a × b) × (a × c) = [a · (a × c)]b

− [b · (a × c)]a

and show that the right-hand side can be 
simplified to

[(a × b) · c]a

(c) Use (4.14) to show that

a × [b × (a × c)] 

= a × [(b · c)a − (b · a)c]

and simplify the right-hand side further. Note 
that the product is different from the result in (b),
verifying that the position of the brackets matters 
in cross products.

(d) Use the result in (a) to show that

(l × m) · (l × n) = l2(m · n) − (l · m)(l · n)

Take l, m and n to be unit vectors along the sides of
a regular tetrahedron. Deduce that the angle between
two faces of the tetrahedron is cos−1 .1

3
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4.3 The vector treatment of the geometry of lines 
and planes

4.3.1 Vector equation of a line

Take an arbitrary origin O and let o1a2 = a, o1b2 = b and o1p2 = r, as in Figure 4.47. If P
is any point on the line then

o1p2 = o1a2 + a1p2, by the triangle law

giving

r = a + ta1b2 (since a1p2 is a multiple of a1b2)

= a + t(b − a) (since a + a1b2 = b)

Thus the equation of the line is

r = (1 − t)a + tb (4.15)

As t varies from −∞ to +∞, the point P sweeps along the line, with t = 0 corresponding
to point A and t = 1 to point B.

Since o1p2 = o1a2 + a1p2 = o1a2 + ta1b2, we have r = a + t(b − a). If we write c = b − a
then we have an alternative intepretation of a line through A in the direction c:

r = a + tc (4.16)

The cartesian or component form of this equation is

(4.17)

where a = (a1, a2, a3) and c = (c1, c2, c3). Alternatively the cartesian equation of (4.15)
may be written in the form

where a = (a1, a2, a3) and b = (b1, b2, b3) are two points on the line. If any of the 
denominators is zero, then both forms of the equation of a line are interpreted as the
corresponding numerator is zero.

Example 4.37 Find the equation of the lines L1 through the points (0, 1, 0) and (1, 3, −1) and L2

through (1, 1, 1) and (−1, −1, 1). Do the two lines intersect and, if so, at what point?

Solution From (4.15) L1 has the equation

r = (0, 1 − t, 0) + (t, 3t, −t) = (t, 1 + 2t, −t)

x a

b a

y a

b a

z a

b a
t

  

  
  

  

  
  

  

  
(  )

−
−

=
−
−

=
−
−

=1

1 1

2

2 2

3

3 3

x a

c

y a

c

z a

c
t

  
  

  
  

  
(  )

−
=

−
=

−
=1

1

2

2

3

3

Figure 4.47
Line AB in terms of 
r = o1p2.
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and L2 has the equation

r = (1 − s, 1 − s, 1 − s) + (−s, −s, s) = (1 − 2s, 1 − 2s, 1)

Note that the cartesian equation of L2 reduces to x = y; z = 1. The two lines intersect if
it is possible to find s and t such that

t = 1 − 2s, 1 + 2t = 1 − 2s, −t = 1

Solving two of these equations will give the values of s and t. If these values satisfy the
remaining equation then the lines intersect; however, if they do not satisfy the remaining
equation then the lines do not intersect. In this particular case, the third equation gives
t = −1 and the first equation s = 1. Putting these values into the second equation the 
left-hand side equals −1 and the right-hand side equals −1, so the equations are all
satisfied and therefore the lines intersect. Substituting back into either equation, the
point of intersection is (−1, −1, 1).

Example 4.38 The position vectors of the points A and B are

(1, 4, 6) and (3, 5, 7)

Find the vector equation of the line AB and find the points where the line intersects the
coordinate planes.

Solution The line has equation

r = (1, 4, 6) + t(2, 1, 1)

or in components

x = 1 + 2t

y = 4 + t

z = 6 + t

Thus the line meets the y–z plane when x = 0 and hence t = and the point of 
intersection with the plane is (0, ).

The line meets the z–x plane when y = 0 and hence t = −4 and the point of intersection
with the plane is (−7, 0, 2).

The line meets the x–y plane when z = 0 and hence t = −6 and the point of intersection
with the plane is (−11, −2, 0).

Example 4.39 The line L1 passes through the points with position vectors

(5, 1, 7) and (6, 0, 8)

and the line L2 passes through the points with position vectors

(3, 1, 3) and (−1, 3, α)

Find the value of α for which the two lines L1 and L2 intersect.

7
2

11
2, 

− 1
2
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Solution Using the vector form:
From (4.15) the equations of the two lines can be written in vector form as

L1: r = (5, 1, 7) + t(1, −1, 1)

L2: r = (3, 1, 3) + s(−4, 2, α − 3)

These two lines intersect if t, s and α can be chosen so that the two vectors are equal,
that is, they have the same components. Thus

5 + t = 3 − 4s

1 − t = 1 + 2s

7 + t = 3 + s(α − 3)

The first two of these equations are simultaneous equations for t and s. Solving gives 
t = 2 and s = −1. Putting these values into the third equation

9 = 3 − (α − 3) ⇒ α = −3

and it can be checked that the point of intersection is (7, −1, 9).

Using the cartesian form:
Equation (4.17) gives the equations of the lines as

L1:

L2:

The two equations for x and y are

x − 5 = 1 − y

(3 − x) = (y − 1)

and are solved to give x = 7 and y = −1. Putting in these values, the equations for z and
α become

z − 7 = 2

which give z = 9 and α = −3.

Example 4.40 A tracking station observes an aeroplane at two successive times to be

(−500, 0, 1000) and (400, 400, 1050)

relative to axes x in an easterly direction, y in a northerly direction and z vertically
upwards, with distances in metres. Find the equation of the path of the aeroplane.
Control advises the aeroplane to change course from its present position to level flight
at the current height and turn east through an angle of 90°; what is the equation of the
new path?
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Solution The situation is illustrated in Figure 4.48. The equation of the path of the aeroplane is

r = (−500, 0, 1000) + t(900, 400, 50)

The new path starts at the point (400, 400, 1050). The vector a1b2 × 0 is a vector in the
direction b1d2 which is perpendicular to 0, and is therefore horizontal, and at 90° to 
AB in the easterly direction. Thus we have a 90° turn to horizontal flight. Since

(900, 400, 0) × k = (400, −900, 0)

the new path is

r = (400, 400, 1050) + s(400, −900, 0)

Equating the components

x = 400 + 400s

y = 400 − 900s

z = 1050

In cartesian coordinates the equations are

9x + 4y = 5200

z = 1050

Example 4.41 It is necessary to drill to an underground pipeline in order to undertake repairs, so it is
decided to aim for the nearest point from the measuring point. Relative to axes x, y in
the horizontal ground and with z vertically downwards, remote measuring instruments
locate two points on the pipeline at

(20, 20, 30) and (0, 15, 32)

with distances in metres. Find the nearest point on the pipeline from the origin O.

Solution The situation is illustrated in Figure 4.49. The direction of the pipeline is

d = (0, 15, 32) − (20, 20, 30) = (−20, −5, 2). 

Thus any point on the pipeline will have position vector

r = (20, 20, 30) + t(−20, −5, 2)

Figure 4.48
Path of aeroplane in
Example 4.40.
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for some t. Note that this is just the equation of the line given in (4.15). At the shortest
distance from O to the pipeline the vector r = o1p2 is perpendicular to d, so r · d = 0 gives
the required condition to evaluate t. Thus

(−20, −5, 2) · [(20, 20, 30) + t(−20, −5, 2)] = 0

and hence −440 + 429t = 0. Putting this value back into r gives

r = (−0.51, 14.87, 32.05)

Note that the value of t is close to 1, so the optimum point is not far from the second of
the points located.

Example 4.42 Find the shortest distance between the two skew lines

Also determine the equation of the common perpendicular. (Note that two lines are said
to be skew if they do not intersect and are not parallel.)

Solution In vector form the equations of the lines are

r = (0, 9, 2) + t(3, −1, 1)

and

r = (−6, −5, 10) + s(−3, 2, 4)

The shortest distance between the two lines will be their common perpendicular; see
Figure 4.50. Let P1 and P2 be the end points of the common perpendicular, having 
position vectors r1 and r2 respectively, where

r1 = (0, 9, 2) + t1(3, −1, 1)

and

r2 = (−6, −5, 10) + t2(−3, 2, 4)
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Figure 4.49
Pipeline of 
Example 4.41
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Then the vector p121p112 is given by

p121p112 = r1 − r2 = (6, 14, −8) + t1(3, −1, 1) − t2(−3, 2, 4) (4.18)

Since (3, −1, 1) and (−3, 2, 4) are vectors in the direction of each of the lines, it 
follows that a vector n perpendicular to both lines is

n = (−3, 2, 4) × (3, −1, 1) = (6, 15, −3)

So a unit vector perpendicular to both lines is

T = (6, 15, −3)/÷270 = (2, 5, −1)/÷30

Thus we can also express p121p112 as

p121p112 = dT

where d is the shortest distance between the two lines.
Equating the two expressions for p121p112 gives

(6, 14, −8) + t1(3, −1, 1) − t2(−3, 2, 4) = (2, 5, −1)d/÷30

Taking the scalar product throughout with the vector (2, 5, −1) gives

(6, 14, −8) · (2, 5, −1) + t1(3, −1, 1) · (2, 5, −1) − t2(−3, 2, 4) · (2, 5, −1)

= (2, 5, −1) · (2, 5, −1)d/÷30

which reduces to

90 + 0t1 + 0t2 = 30d/÷30

giving the shortest distance between the two lines as

d = 3÷30

To obtain the equation of the common perpendicular, we need to find the coordinates
of either P1 or P2 – and to achieve this we need to find the value of either t1 or t2. We
therefore take the scalar product of (4.18) with (3, −1, 1) and (−3, 2, 4) in turn, giving
respectively

11t1 + 7t2 = 4

and

−7t1 − 29t2 = 22

which on solving simultaneously give t1 = 1 and t2 = −1. Hence the coordinates of the
end points P1 and P2 of the common perpendicular are

Figure 4.50
Skew lines in 
Example 4.42.
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r1 = (0, 9, 2) + 1(3, −1, 1) = (3, 8, 3)

and

r2 = (−6, −5, 10) − 1(−3, 2, 4) = (−3, −7, 6)

From (4.16) the equation of the common perpendicular is

r = (3, 8, 3) + s(2, 5, −1)

or in cartesian form

MAPLE contains a geometry package which takes a bit of time to master but which
can solve many coordinate geometry problems. For the current problem the code is
given: note that printing has been largely suppressed, but replace ‘:’ by ‘;’ at the end
of statements for more information.

with (geom3d):

point (A, [0, 9, 2]): v:= [3, -1, 1]: line

(L1, [A, v]): detail (L1);

point (B, [-6, -5, 10]): w:= [-3, 2, 4]: line

(L2, [B, w]): detail (L2);

distance (L1, L2); (gives result 3÷30 in the text)
z:= Equation (L1, t): y:= Equation (L2, s):

with (linalg):

m:= innerprod (z - y, v): n:= innerprod (z - y, w):

solve ({m, n}, {s, t}); (gives solution t = 1 and s = −1)
point (P, eval (z, t = 1)): point (Q, eval (y, s = -1)):

line (L3, [P, Q]): detail (L3); (gives the required equation of 
the common perpendicular)

Note that the package may give parameters different from the hand computation cal-
culation, but they still represent the same line – for instance in the final result of
Example 4.42, s was replaced by −3t in the version of MAPLE used.

Example 4.43 A box with an open top and unit side length is observed from the direction (a, b, c), as
in Figure 4.51. Determine the part of OC that is visible.

Solution The line or ray through Q(0, 0, α) parallel to the line of sight has the equation

r = (0, 0, α) + t(a, b, c)

where 0 � α � 1 to ensure that Q lies between O and C. The line RS passes through
R(1, 0, 1) and is in the direction (0, 1, 0), so from (4.16) it has the equation

r = (1, 0, 1) + s(0, 1, 0)

The ray that intersects RS must therefore satisfy

ta = 1, tb = s, α     = −1
c

a
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66 If A and B have position vectors (1, 2, 3) and 
(4, 5, 6) respectively, find

(a) the direction vector of the line through A and B;

(b) the vector equation of the line through A and B;

(c) the cartesian equation of the line.

67 Find the vector equation of the line through the
point A with position vector o1a2 = (2, 1, 1) in the
direction d = (1, 0, 1). Does this line pass through
any of the points (1, 1, 0), (1, 1, 1), (3, 1, 3), 
( , 1, − )? Find the vector equation of the line
through the point A and perpendicular to the 
plane of o1a2 and d.

68 Show that the line joining (2, 3, 4) to (1, 2, 3) 
is perpendicular to the line joining (1, 0, 2) to 
(2, 3, −2).

69 Prove that the lines r = (1, 2, −1) + t(2, 2, 1) and 
r = (−1, −2, 3) + s(4, 6, −3) intersect, and find the
coordinates of their point of intersection. Also find
the acute angle between the lines.

1
2

1
2
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Note that if c = 0 then we are looking parallel to the open top and can only see the
point C. If c � 0 then we are looking up at the box; since α � 1, we cannot see any 
of side OC, so the line is hidden. If, however, c � a then the solution gives α to be 
negative, so that all of the side OC is visible. For 0 � c � a the parameter α lies between
0 and 1, and only part of the line is visible. A similar analysis needs to be performed for
the other sides of the open top. Other edges of the box also need to be analysed to check
whether or not they are visible to the ray.

4.3.2 Exercises

Figure 4.51
Looking for hidden
lines in Example 4.43.

70 P is a point on a straight line with position vector 
r = a + tb. Show that

r2 = a2 + 2a · bt + b2t2

By completing the square, show that r2 is a
minimum for the point P for which t = −a · b/b2.
Show that at this point o1p2 is perpendicular to the
line r = a + tb. (This proves the well-known result
that the shortest distance from a point to a line is
the length of the perpendicular from that point to 
the line.)

71 Find the vector equation of the line through the
points with position vectors a = (2, 0, −1) and 
b = (1, 2, 3). Write down the equivalent cartesian
coordinate form. Does this line intersect the line
through the points c = (0, 0, 1) and d = (1, 0, 1)?

72 Find the shortest distance between the two lines

r = (4, −2, 3) + t(2, 1, −1)

and

r = (−7, −2, 1) + s(3, 2, 1)
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4.3.3 Vector equation of a plane

To obtain the equation of a plane, we use the result that the line joining any two points
in the plane is perpendicular to the normal to the plane, as illustrated in Figure 4.52. The
vector n is perpendicular to the plane, a is the position vector of a given point A in the
plane and r is the position vector of any point P on the plane. The vector a1p2 = r − a is
perpendicular to n, and hence

(r − a) · n = 0

so that

r · n = a · n or r · n = p (4.19)

is the general form for the equation of a plane with normal n. In the particular case
when n is a unit vector, p in (4.19) represents the perpendicular distance from the 
origin to the plane. In cartesian form we take n = (α, β, γ), and the equation becomes

αx + βy + γ z = p (4.20)

which is just a linear relation between the variables x, y and z.

Example 4.44 Find the equation of the plane through the three points

a = (1, 1, 1), b = (0, 1, 2) and c = (−1, 1, −1)

Solution The vectors a − b = (1, 0, −1) and a − c = (2, 0, 2) will lie in the plane. The normal n
to the plane can thus be constructed as (a − b) × (a − c), giving

n = (1, 0, −1) × (2, 0, 2) = (0, −4, 0)

Thus from (4.19) the equation of the plane is given by

r · n = a · n

or

r · (0, −4, 0) = (1, 1, 1) · (0, −4, 0)

giving

r · (0, −4, 0) = −4

In cartesian form

(x, y, z) · (0, −4, 0) = −4

or simply y = 1.

Example 4.45 A metal has a simple cubic lattice structure so that the atoms lie on the lattice points
given by

r = a(l, m, n)

Figure 4.52
Equation of a plane; 
n is perpendicular to
the plane.
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where a is the lattice spacing and l, m, n are integers. The metallurgist needs to 
identify the points that lie on two lattice planes

LP1 through a(0, 0, 0), a(1, 1, 0) and a(0, 1, 2)

LP2 through a(0, 0, 2), a(1, 1, 0) and a(0, 1, 0)

Solution The direction perpendicular to LP1 is (1, 1, 0) × (0, 1, 2) = (2, −2, 1) and hence the 
equation of LP1 is

r · (2, −2, 1) = 0 or in cartesian form 2x − 2y + z = 0 (4.21)

The direction perpendicular to LP2 is (1, 1, −2) × (0, 1, −2) = (0, 2, 1) and hence the
equation of LP2 is

r · (0, 2, 1) = 2 or in cartesian form 2y + z = 2 (4.22)

Points that lie on both lattice planes must satisfy both (4.21) and (4.22). It is easiest to
solve these equations in their cartesian form. The coordinates must be integers, so take
y = m, then z can easily be calculated from (4.22) as

z = 2 − 2m

and then x is computed from (4.21) to be x = 2m − 1.
Hence the required points all lie on a line and take the form

r = a(2m − 1, m, 2 − 2m)

where m is an integer.

Example 4.46 Find the point where the plane

r · (1, 1, 2) = 3

meets the line

r = (2, 1, 1) + λ(0, 1, 2)

Solution At the point of intersection, r must satisfy both equations, so

[(2, 1, 1) + λ(0, 1, 2)] · (1, 1, 2) = 3

or

5 + 5λ = 3

so

λ =

Substituting back into the equation of the line gives the point of intersection as

r = (2, )

Example 4.47 Find the equation of the line of intersection of the two planes x + y + z = 5 and 
4x + y + 2z = 15.

3
5

1
5, 

− 2
5
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Solution In vector form the equations of the two planes are

r · (1, 1, 1) = 5

and

r · (4, 1, 2) = 15

The required line lies in both planes, and is therefore perpendicular to the vectors (1, 1, 1)
and (4, 1, 2), which are normal to the individual planes. Hence a vector c in the direction
of the line is

c = (1, 1, 1) × (4, 1, 2) = (1, 2, −3)

To find the equation of the line, it remains only to find the coordinates of any point on the
line. To do this, we are required to find the coordinates of a point satisfying the equation
of the two planes. Taking x = 0, the corresponding values of y and z are given by

y + z = 5 and y + 2z = 15

that is, y = −5 and z = 10. Hence it can be checked that the point (0, −5, 10) lies in both
planes and is therefore a point on the line. From (4.16) the equation of the line is

r = (0, −5, 10) + t(1, 2, −3)

or in cartesian form

The MAPLE instructions to solve this example are

with (geom3d):

plane (P1, x + y + z = 5, [x, y, z]): plane (P2, 4*x 

+ y + 2*z = 15, [x, y, z]): intersection (L, P1, P2):

detail (L);

Example 4.48 Find the perpendicular distance from the point P(2, −3, 4) to the plane x + 2y + 2z = 13.

Solution In vector form the equation of the plane is

r · (1, 2, 2) = 13

and a vector perpendicular to the plane is

n = (1, 2, 2)

Thus from (4.16) the equation of a line perpendicular to the plane and passing through
P(2, −3, 4) is

r = (2, −3, 4) + t(1, 2, 2)

This will meet the plane when

r · (1, 2, 2) = (2, −3, 4) · (1, 2, 2) + t(1, 2, 2) · (1, 2, 2) = 13

x y z
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giving

4 + 9t = 13

so that

t = 1

Thus the line meets the plane at N having position vector

r = (2, −3, 4) + 1(1, 2, 2) = (3, −1, 6)

Hence the perpendicular distance is

PN = ÷[(3 − 2)2 + (−1 + 3)2 + (6 − 4)2] = 3

4.3.4 Exercises

Many of the exercises can be checked using the geom3d package in MAPLE.
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73 Find the vector equation of the plane that passes
through the points (1, 2, 3), (2, 4, 5) and (4, 5, 6).
What is its cartesian equation?

74 Find the equation of the plane with perpendicular
n = (1, −1, 1) that passes through the point with
position vector (2, 3, 3). Show that the line with
equation r = (−1, −1, 2) + t(2, 0, −2) lies in this
plane.

75 Find the vector equation of the plane that contains
the line r = a + λb and passes through the point
with position vector c.

76 The line of intersection of two planes r · n1 = p1

and r · n2 = p2 lies in both planes. It is therefore
perpendicular to both n1 and n2. Give an
expression for this direction, and so show that 
the equation of the line of intersection may be
written as r = r0 + t(n1 × n2), where r0 is any
vector satisfying r0 · n1 = p1 and r0 · n2 = p2. 
Hence find the line of intersection of the planes
r · (1, 1, 1) = 5 and r · (4, 1, 2) = 15.

77 Find the equation of the line through the point 
(1, 2, 4) and in the direction of the vector (1, 1, 2).
Find where this line meets the plane x + 3y − 4z = 5.

78 Find the acute angle between the planes 
2x + y − 2z = 5 and 3x − 6y − 2z = 7.

79 Given that a = (3, 1, 2) and b = (1, −2, −4) are 
the position vectors of the points P and Q
respectively, find

(a) the equation of the plane passing through Q 
and perpendicular to PQ;

(b) the distance from the point (−1, 1, 1) to the
plane obtained in (a).

80 Find the equation of the line joining (1, −1, 3) to 
(3, 3, −1). Show that it is perpendicular to the plane
2x + 4y − 4z = 5, and find the angle that the line
makes with the plane 12x − 15y + 16z = 10.

81 Find the equation of the plane through the line

r = (1, −3, 4) + t(2, 1, 1)

and parallel to the line

r = s(1, 2, 3)

82 Find the equation of the line through P(−1, 0, 1) that
cuts the line r = (3, 2, 1) + t(1, 2, 2) at right-angles
at Q. Also find the length PQ and the equation of
the plane containing the two lines.

83 Show that the equation of the plane through the
points P1, P2 and P3 with position vectors r1, r2

and r3 respectively takes the form

r · [(r1 × r2) + (r2 × r3) + (r3 × r1)] = r1 · (r2 × r3)
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Figure 4.53
The particle P is
attached by equal
springs to the eight
corners of the cube.

4.4 Engineering application: spin-dryer suspension
Vectors are at their most powerful when dealing with complicated three-dimensional
situations. Geometrical and physical intuition are often difficult to use, and it becomes
necessary to work quite formally to analyse such situations. For example, the front 
suspension of a motor car has two struts supported by a spring-and-damper system and
subject to a variety of forces and torques from both the car and the wheels. To analyse
the stresses and the vibrations in the various components of the structure is non-trivial,
even in a two-dimensional version; the true three-dimensional problem provides a testing
exercise for even the most experienced automobile engineer. In the present text a much
simpler situation is analysed to illustrate the use of vectors.

4.4.1 Point-particle model

As with the car suspension, many machines are mounted on springs to isolate vibra-
tions. A typical example is a spin-dryer, which consists of a drum connected to the 
casing by heavy springs. Oscillations can be very severe when spinning at high speed,
and it is essential to know what forces are transmitted to the casing and hence to the
mounts. Before the dynamical situation can be analysed, it is necessary to compute 
the restoring forces on the drum when it is displaced from its equilibrium position. This
is a static problem that is best studied using vectors.

We model the spin-dryer as a heavy point particle connected to the eight corners of
the casing by springs (Figure 4.53). The drum has weight W and the casing is taken to
be a cube of side 2L. The springs are all equal, having spring constant k and natural
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length L÷3. Thus when the drum is at the midpoint of the cube the springs are neither
compressed nor extended.

The particle is displaced from its central position by a small amount (a, b, c), where
the natural coordinates illustrated in Figure 4.53 are used; the origin is at the centre of
the cube and the axes are parallel to the sides. What is required is the total force acting
on the particle arising from the weight and the springs. Clearly, this information is
needed before any dynamical calculations can be performed. It will be assumed that the
displacements are sufficiently small that squares (a /L)2, (b/L)2, (c/L)2 and higher powers
are neglected.

Consider a typical spring PA. The tension in the spring is assumed to obey Hooke’s 
law: that the force is along PA and has magnitude proportional to extension. p1a2 / | p1a2 |
is the unit vector in the direction along PA, and | p1a2 | − L÷3 is the extension of the spring
over its natural length L÷3, so in vector form the tension can be written as

(4.23)

where k is the proportionality constant. 
Now

p1a2 = o1a2 − o1p2 = (L − a, L − b, L − c)

so calculating the modulus squared gives

| p1a2 |2 = (L − a)2 + (L − b)2 + (L − c)2

= 3L2 − 2L(a + b + c) + quadratic terms

Thus

and, on using the binomial expansion (see equation (7.16)) and neglecting quadratic
and higher terms, we obtain

Putting the information acquired back into (4.23) gives

and by expanding again, using the binomial expansion to first order in a/L and so on,
we obtain

TA = (a + b + c)(1, 1, 1)

Similar calculations give

TB = (−a + b + c)(−1, 1, 1)

TC = (−a − b + c)(−1, −1, 1)

TD = (a − b + c)(1, −1, 1)− 1
3 k
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TE = (a + b − c)(1, 1, −1)

TF = (−a + b − c)(−1, 1, −1)

TG = (−a − b − c)(−1, −1, −1)

TH = (a − b − c)(1, −1, −1)

The total spring force is therefore obtained by adding these eight tensions together:

T = (a, b, c)

The restoring force is therefore towards the centre of the cube, as expected, in the 
direction PO and with magnitude times the length of PO.

When the weight is included, the total force is

If the drum just hangs in equilibrium then F = 0, and hence

a = b = 0 and

Typical values are W = 400 N and k = 10 000 N m−1, and hence

c = −3 × 400/8 × 10 000 = −0.015 m

so that the centre of the drum hangs 1.5 cm below the midpoint of the centre of the casing.
It is clear that the model used in this section is an idealized one, but it is helpful in

describing how to calculate spring forces in complicated three-dimensional static 
situations. It also gives an idea of the size of the forces involved and the deflections. The
next major step is to put these forces into the equations of motion of the drum; this,
however, requires a good knowledge of calculus – and, in particular, of differential
equations – so it is not appropriate at this point. You may wish to consider this problem
after studying the relevant chapters later in this book. A more advanced model must
include the fact that the drum is of finite size.

4.5 Engineering application: cable-stayed bridge

One of the standard methods of supporting bridges is with cables. Readers will no doubt
be familiar with suspension bridges such as the Golden Gate in the USA, the Humber
bridge in the UK and the Tsing Ma bridge in Hong Kong with their spectacular form.
Cable-stayed bridges are similar in that they have towers and cables that support a 
roadway but they are not usually on such a grand scale as suspension bridges. They 
are often used when the foundations can only support a single tower at one end of the
roadway. They are commonly seen on bridges over motorways and footbridges over
steep narrow valleys.

In any of the situations described it is essential that information is available on the
tension in the wire supports and the forces on the towers. The geometry is fully three-
dimensional and quite complicated. Vectors provide a logical and efficient way of dealing
with the situation.

c
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k
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4.5.1 A simple stayed bridge

There are many configurations that stayed bridges can take; they can have one or more
towers and a variety of arrangements of stays. In Figure 4.54 a simple example of a
cable-stayed footbridge is illustrated. It is constructed with a central vertical pillar with
four ties attached by wires to the sides of the pathway.

Relative to the axes, with the z axis vertical, the various points are given, in metres,
as A(5, −2, 0.5), B(10, 2, 1), C(15, −2, 1.5), D(20, 2, 1) and S(0, 0, 10). Assuming the
weight is evenly distributed, there is an equivalent weight of 2 KN at each of the four
points A, B, C and D. An estimate is required of the tensions in the wires and the force
at the tie point S.

The vectors along the ties can easily be evaluated:

a1s2 = (−5, 2, 9.5), b1s2 = (−10, −2, 9)

c1s2 = (−15, 2, 8.5), d1s2 = (−20, −2, 9)

The tension at S in the tie AS can be written TA = tAs1a2. Assuming the whole system is
in equilibrium, the vertical components at A must be equal

TA · k = 2 and hence

and the four tensions can be computed similarly.

TA = (5, −2, −9.5) = (1.052, −0.421, −2) and | TA | = 2.299 kN

TB = (10, 2, −9) = (2.222, 0.444, −2) and | TB | = 3.022 kN

TC = (15, −2, −8.5) = (3.529, −0.471, −2) and | TC | = 4.084 kN

TD = (20, 2, −9) = (4.444, 0.444, −2) and | TD | = 4.894 kN

The total force acting at the tie point S is

T = TA + TB + TC + TD = (11.25, −0.004, −8)

Thus with straightforward addition of vectors we have been able to compute the 
tensions and the total force on the tower.

The question now is how to compensate for the total force on the tower and to try to
ensure that it is subject to zero force or a force as small as possible. Suppose that it is
decided to have just a single compensating tie wire attached to S and to one side on the
pathway at P. It is assumed that on this side of the footbridge the pathway is flat and
lies in the x–y plane. Where should we position the attachment of the compensating
wire so that it produces zero horizontal force at S?

2
9

2
8 5.

2
9

2
9 5.

tA   
.

=
2

9 5

Figure 4.54
Model of a stayed
bridge. 
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1 Given that a = 3i − j − 4k, b = −2i + 4j − 3k and 
c = i + 2j − k, find

(a) the magnitude of the vector a + b + c;

(b) a unit vector parallel to 3a − 2b + 4c;

(c) the angles between the vectors a and b and
between b and c;

(d) the position vector of the centre of mass of
particles of masses 1, 2 and 3 placed at points A, 
B and C with position vectors a, b and c
respectively.

2 If the vertices X, Y and Z of a triangle have 
position vectors

x = (2, 2, 6), y = (4, 6, 4) and z = (4, 1, 7)

relative to the origin O, find

(a) the midpoint of the side XY of the triangle;

(b) the area of the triangle;

(c) the volume of the tetrahedron OXYZ.

3 The vertices of a tetrahedron are the points

W(2, 1, 3), X(3, 3, 3), Y(4, 2, 4) and
Z(3, 3, 5)

Determine

(a) the vectors w1x2 and w1y2;

(b) the area of the face WXZ;

(c) the volume of the tetrahedron WXZY;

(d) the angles between the faces WXY and WYZ.

Let the attachment point P on the side of the footbridge be (−a, 2, 0) so that the 
tension in the compensating cable is

TP = tPs1p2 = tP(−a, 2, −10)

We require the y component of (T + TP) to be zero so that

2tP − 0.004 = 0 and hence tP = 0.002

which in turn gives for the x component

atP = 11.248 and hence a = 5624 metres!

Clearly the answer is ridiculous and either more than one compensating cable must be
used or the y component can be neglected completely since the force in this direction is
only 4 N.

As a second attempt we specify the attachment wire at P(−5, 2, 0). Requiring the x
component of T + TP to be zero we see that

T + TP = T + tPs1p2 = (11.25, −0.004, −8) + tP(−5, 2, −10)

gives tP = 2.25. Hence the total force at S is (0, 4.5, −30.5). Although the force in the x
direction has been reduced to zero, an unacceptable side force on the tower in the y
direction has been introduced.

In a further effort, we introduce two equal compensating wires connected to the
points P(−5, −2, 0) and P′(−5, 2, 0). The total force at S is now

T + TP + TP ′ = T + tPs1p2 + tPs1p1′2

= (11.25, −0.004, −8) + tP(−5, 2, −10) + tP(−5, −2, −10)

Now choosing tP = 1.125 gives a total force (0, −0.004, −30.5). We now have a 
satisfactory resolution of the problem with the only significant force being in the down-
wards direction.

The different forms of stayed-bridge construction will require a similar analysis 
to obtain an estimate of the forces involved. The example given should be viewed as
illustrative.

4.6 Review exercises (1–22)

Check your answers using MATLAB or MAPLE whenever possible.
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4 Given a = (−1, −3, −1), b = (q, 1, 1) and 
c = (1, 1, q) determine the values of q for which

(a) a is perpendicular to b

(b) a × (b × c) = 0

5 Given the vectors a = (2, 1, 2) and b = (−3, 0, 4),
evaluate the unit vectors â and P. Use these unit
vectors to find a vector that bisects the angle
between a and b.

6 A triangle, ABC, is inscribed in a circle, centre O,
with AOC as a diameter of the circle. Take o1a2 = a
and OB = b. By evaluating a1b2 · c1b2 show that
angle ABC is a right angle.

7 According to the inverse square law, the force on a
particle of mass m1 at the point P1 due to a particle
of mass m2 at the point P2 is given by

where r = P!1!P!2@

Particles of mass 3m, 3m, m are fixed at the points
A(1, 0, 1), B(0, 1, 2) and C(2, 1, 2) respectively.
Show that the force on the particle at A due to the
presence of B and C is

8 Show that the vector a which satisfies the vector
equation

a × (i + 2j) = −2i + j + k

must take the form a = (α, 2α − 1, 1). If in 
addition the vector a makes an angle
with the vector (i − j + k) show that there 
are now two such vectors that satisfy both
conditions.

9 The electric field at a point having position vector 
r, due to a charge e at R, is e(r − R) / | r − R| 3. 
Find the electric field E at the point P(2, 1, 1) 
given that there is a charge e at each of the 
points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

10 Given that o1p2 = (3, 1, 2) and o1q2 = (1, −2, −4) 
are the position vectors of the points P and Q
respectively, find

(a) the equation of the plane passing through Q 
and perpendicular to PQ;

(b) the perpendicular distance from the point 
(−1, 1, 1) to the plane.

11 (a) Determine the equation of the plane that 
passes through the points (1, 2, −2), (−1, 1, −9) 

cos ( )−1 1
3

2

3
1 2 2

2γ m
( , , )−

γ m m

r
1 2

2

and (2, −2, −12). Find the perpendicular distance
from the origin to this plane.

(b) Calculate the area of the triangle whose vertices
are at the points (1, 1, 0), (1, 0, 1) and (0, 1, 1).

12 Find the point P on the line L through the points 

A(5, 1, 7) and B(6, 0, 8)

and the point Q on the line M through the points 

C(3, 1, 3) and D(−1, 3, 3)

such that the line through P and Q is perpendicular
to both lines L and M. Verify that P and Q are at 
a distance ÷6 apart, and find the point where the line
through P and Q intersects the coordinate plane Oxy.

13 The angular momentum vector H of a particle of
mass m is defined by

H = r × (mνν)

where νν = ωω × r.
Using the result

a × (b × c) = (a · c)b − (a · b)c

show that if r is perpendicular to ωω then H = mr2ωω .
Given that m = 100, r = 0.1(i + j + k) and 

ωω = 5i + 5j − 10k calculate

(a) (r · ωω) (b) H

14 A particle of mass m, charge e and moving with
velocity νν in a magnetic field of strength H is 
known to have acceleration

where c is the speed of light. Show that the
component of acceleration parallel to H is zero.

15 A force F is of magnitude 14 N and acts at the 
point A(3, 2, 4) in the direction of the vector 
−2i + 6j + 3k. Find the moment of the force about
the point B(1, 5, −2). Find also the angle between 
F and a1b2.

16 Points A, B, C have coordinates (1, 2, 1), (−1, 1, 3)
and (−2, −2, −2) respectively.

Calculate the vector product a1b2 × a1c2, the 
angle BAC and a unit vector perpendicular to the
plane containing A, B and C. Hence obtain

(a) the equation of the plane ABC;

(b) the equation of a second plane, parallel to 
ABC, and containing the point D(1, 1, 1);

(c) the shortest distance between the point D and
the plane containing A, B and C.

e

mc
(   )ν ×
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17 A plane Π passes through the three non-collinear
points A, B and C having position vectors a, b and 
c respectively. Show that the parametric vector
equation of the plane Π is

r = a + λ(b − a) + µ(c − a)

The plane Π passes through the points (−3, 0, 1), 
(5, −8, −7) and (2, 1, −2) and the plane Θ passes
through the points (3, −1, 1), (1, −2, 1) and 
(2, −1, 2). Find the parametric vector equation 
of Π and the normal vector equation of Θ, and
hence show that their line of intersection is

r = (1, −4, −3) + t(5, 1, −3)

where t is a scalar variable.

18 Two skew lines L1, L2 have respective equations

Obtain the equation of a plane through L1 parallel
to L2 and show that the shortest distance between
the lines is 6.

19 The three vectors a = (1, 0, 0), b = (1, 1, 0) and 
c = (1, 1, 1) are given. Evaluate

(a) a × b, b × c, c × a

(b) a · (b × c)

For the vector d = (2, −1, 2) calculate

(c) the parameters α, β, γ in the expression 

d = αa + βb + γc

(d) the parameters p, q, r in the expression

d = pa × b + qb × c + rc × a

and show that

20 Given the line with parametric equation

r = a + λd

show that the perpendicular distance p from the
origin to this line can take either of the forms

(i)  (ii)  p p  
  

        =
×

= −
⋅
⋅

| |
| |

r  
(   )

=
⋅

⋅ ×

p q  
(   )

,      
(   )

    =
⋅

⋅ ×
=

⋅
⋅ ×

and

x y z  
  

  
  

  −
=

−
=

+1

2

5

1

3

2

x y z  
  

  
  

  
    

+
=

−
−

=
−3

4

3

1

2

1
and

Find the parametric equation of the straight line
through the points

A(1, 0, 2) and B(2, 3, 0)

and determine

(a) the length of the perpendicular from the origin
to the line;

(b) the point at which the line intersects the 
y–z plane;

(c) the coordinates of the foot of the perpendicular
to the line from the point (1, 1, 1).

21 Given the three non-coplanar vectors a, b, c, and
defining v = a · b × c, three further vectors are
defined as

a′ = b × c/v b′ = c × a/v c′ = a × b/v

Show that

a = b′ × c′/v′ b = c′ × a′/v′ c = a′ × b′/v′

where

v′ = a′ · b′ × c′

Deduce that

a · a′ = b · b′ = c · c′ = 1

a · b′ = a · c′ = b · a′ = b · c′ = c · a′

= c · b′ = 0

If a vector is written in terms of a, b, c as

r = αa + βb + γc

evaluate α, β, γ in terms of a′, b′ and c′.

Note: These sets of vectors are called 
reciprocal sets and are widely used 
in crystallography and materials 
science.

22 An unbalanced machine can be approximated by
two masses, 2 kg and 1.5 kg, placed at the ends 
A and B respectively of light rods OA and OB 
of lengths 0.7 m and 1.1 m. The point O lies 
on the axis of rotation and OAB forms a plane
perpendicular to this axis; OA and OB are at right-
angles. The machine rotates about the axis with 
an angular velocity ω, which gives a centrifugal
force mrω 2 for a mass m and rod length r. Find 
the unbalanced force at the axis. To balance the
machine a mass of 1 kg is placed at the end of 
a light rod OC so that C is coplanar with OAB.
Determine the position of C.
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5.1 Introduction

The solution of simultaneous equations is part of elementary algebra. Many engineering
problems can be formulated in terms of simultaneous equations, but in most practical
situations the number of equations is extremely large and traditional methods of solu-
tion are not feasible. Even the question of whether solutions exist is not easy to answer.
Setting the equations up in matrix form provides a systematic way of answering this
question and also suggests practical methods of solution. Over the past 150 years or 
so, a large number of matrix techniques have been developed, and many have been
applied to the solution of engineering and scientific problems. The advent of quantum
mechanics and the matrix representation developed by Heisenberg did much to stimu-
late their popularity, since scientists and engineers were then able to appreciate the 
convenience and economy of matrix formulations.

In many problems the relationships between vector quantities can be represented by
matrices. We saw in Chapter 4 that vectors in three dimensions are represented by three
numbers (x1, x2, x3) with respect to some coordinate system. If the coordinate system is
changed, the representation of the vector changes to another triple (x ′1, x ′2, x ′3), related
to the original through a matrix. In this three-dimensional case the matrix is a 3 × 3
array of numbers. Such matrices satisfy various addition and multiplication properties,
which we shall develop in this chapter, and indeed it is change of axes that provides the
most natural way of introducing the matrix product.

In the previous chapter we noted that forces provide an excellent example of vectors
and that they have wide use in engineering. When we are dealing with a continuous
medium – for instance when we try to specify the forces in a beam or an aircraft wing
or the forces due to the flow of a fluid – we have to extend our ideas and define the stress
at a point. This can be represented by a 3 × 3 matrix, and matrix algebra is therefore
required for a better understanding of the mathematical manipulations involved.

Perhaps the major impact on engineering applications came with the advent of 
computers since these are ideally set up to deal with vectors and arrays (matrices), and
matrix formulations of problems are therefore already in a form highly suitable for
computation. Indeed, all of the widely used aspects of matrices are incorporated into
most computer packages, either just for calculation or for the algebraic manipulation of
matrices. Packages that are currently popular with students include MATLAB, which
is highly suitable for numerical computation, and either, MAPLE or the Symbolic Math
Toolbox in MATLAB, for algebraic manipulation. These packages are used throughout
this chapter.

Many physical problems can be modelled using differential equations, and such models
form the basis of much modern science and technology. Most of these equations 
cannot be solved analytically because of their complexity, and it is necessary to revert
to numerical solution. This almost always involves convenient vector and matrix 
formulations. For instance, a popular method of analysing structures is in terms of finite
elements. Finite-element packages have been developed over the past 50 years or so 
to deal with problems having 105 or more variables. A major part of such packages
involves setting up the data in matrix form and then solving the resulting matrix 
equations. They are now used to design large buildings, to stress aircraft, to determine
the flow through a turbine, to study waveguides and in many other situations of great
interest to engineers and scientists.
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In most of the previous comments, matrices are used to simplify the notation in prob-
lems that require the solution of sets of linear equations. It is in this context that engi-
neers and scientists usually encounter matrices. The chapter will therefore focus largely
on matrix properties and methods that relate to the solution of such linear equations.

5.2 Basic concepts, definitions and properties
Some examples will be used to introduce the basic concepts of matrices which will then
be formally defined and developed. In particular, they will illustrate the matrix product,
which is the most interesting property in the theory since it enables complicated sets of
equations to be written in a convenient and compact way.

Intersection of planes

The first example is one from geometry. In Section 4.3.3, we saw that the equation of
a plane can be written in the form

αx + βy + γz = p

where α, β, γ and p are constants. The four planes

(5.1)

meet in a single point. What are the coordinates of that point? Obviously they are those
values of x, y and z that satisfy all four of (5.1) simultaneously.

Equations (5.1) provide an example of a mathematical problem that arises in a wide
range of engineering problems: the simultaneous solution of a set of linear equations,
as mentioned in the introduction. The general form of a linear equation is the sum of a
set of variables, each multiplied only by a numerical factor, set equal to a constant. No
variable is raised to any power or multiplied by any other variable. In this case we have
four linear equations in three variables x, y and z. We shall see that there is a large body
of mathematical theory concerning the solution of such equations.

As is common in mathematics, one of the first stages in solving the problem is to
introduce a better notation to represent the problem. In this case we introduce the idea
of an array of numbers called a matrix. We write

and call A a 4 × 3 (read as ‘4 by 3’) matrix; that is, a matrix with four rows and three
columns. We also introduce an alternative notation for a vector, writing

A  

            

          

            

        

=
−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

4 2 1

2 1 1

1 2 2

3 2 1

4 2 7

2 5

2 2 3

3 2 0

x y z

x y z

x y z

x y z

      

      

      

      

+ + =

+ − =

+ + =

− − =

⎫

⎬

⎪
⎪

⎭

⎪
⎪
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We call these column vectors; they are 3 × 1 and 4 × 1 matrices respectively. Equations
(5.1) can then be expressed in the form

AX = b

where the product of the matrix A and the vector X is understood to produce the left-
hand sides of (5.1).

Change of axes

In many problems it is convenient to change rectangular axes Oxy coordinates to a new
Ox′y′ coordinate system by rotating the Oxy system anticlockwise about the origin O
through an angle θ, as illustrated in Figure 5.1. We then seek the relation between the
coordinates (x, y) of a point P in the Oxy system and the coordinates (x′, y′) of P in the
Ox′y′ system. Trigonometry gives

x = r cos φ, y = r sin φ

and

x′ = r cos(φ − θ ), y′ = r sin(φ − θ )

Expanding the trigonometrical expressions gives

x′ = r cos φ cos θ + r sin φ sin θ = x cos θ + y sin θ (5.2)

y′ = r sin φ cos θ − r cos φ sin θ = y cos θ − x sin θ

If we take

B  
  cos     sin

sin     cos
,      ,      =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥ =

′

′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ θ

θ θ
X X

x

y

x

y
′

X b            =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x

y

z

and

7

5

3

0

Figure 5.1
Change of axes 
from Oxy to Ox′y′.
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then (5.2) can be written in standard matrix notation as

X′ = BX

We see that a change of axes can be written in a natural manner in matrix form, with B
containing all the information about the transformation.

‘Ore’ problem

A more physical problem concerns the mixing of ores. Three ores are known to contain
fractions of Pb, Fe, Cu and Mn as indicated in Figure 5.2. If we mix the ores so that there
are x1 kg of ore 1, x2 kg of ore 2 and x3 kg of ore 3 then we can compute the amount of
each element as

(5.3)

We can rewrite the array in Figure 5.2 as a matrix

and if we define the vectors

then the equations can be written in matrix form

M = AX

with the product interpreted as in (5.3). The matrix A has 4 rows and 3 columns, so 
it is a 4 × 3 matrix. M and X are column vectors; they are 4 × 1 and 3 × 1 matrices
respectively.

M X      =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A

A

A

A

x

x

x
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Cu

Mn
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1

2

3

A  

.     .     .

.     .     .

.     .     .

.     .     .
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⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
⎥
⎥
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0 2 0 3 0 3
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0 1 0 3 0 2

amount of Pb

amount of Fe

amount of Cu

amount of Mn

Pb

Fe

Cu

Mn

= = + +

= = + +

= = + +

= = + +

⎫

⎬

  .   .   .

  .   .   .

  .   .   .

  .   .   .

A x x x

A x x x

A x x x

A x x x

0 1 0 2 0 3

0 2 0 3 0 3

0 6 0 2 0 2

0 1 0 3 0 2

1 2 3

1 2 3

1 2 3

1 2 3

⎪⎪
⎪

⎭

⎪
⎪

Ore 1 Ore 2 Ore 3

Pb 0.1 0.2 0.3
Fe 0.2 0.3 0.3
Cu 0.6 0.2 0.2
Mn 0.1 0.3 0.2

Figure 5.2
Table of fractions in
each kilogram of ore.
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In each of these examples arrays A and B and vectors X and X′ appear in a natural
way, and the method of multiplication of the arrays and vectors is consistent. We build
on this idea to define matrices generally.

5.2.1 Definitions

An array of real numbers

(5.4)

is called a matrix of order m × n, with m rows and n columns. The entry aij denotes the 
element in the ith row and jth column. The element can be real or complex (but in this
chapter we deal mainly with real matrices). If m = n then the array is square, and A is
then called a square matrix of order n. If the matrix has one column or one row

(5.5)

then it is called a column vector or a row vector respectively. The row vector was used
in Section 4.2.2 as the basic definition of a vector, but in matrix theory a vector is nor-
mally taken to be a column vector unless otherwise stated. This slight inconsistency in
the notation between vector theory and matrix theory can be inconvenient, but it is so
standard in the literature that we must accept it. We have to get used to vectors appear-
ing in several different notations. It is also a common convention to use upper-case let-
ters to represent matrices and lower-case ones for vectors. We shall adopt this
convention in this chapter with one exception: the vectors

will be denoted by X. (Vectors and matrices are further distinguished here by the use
of a ‘serif ’ bold face for the former (e.g. b) and a ‘sans serif ’ bold face for the latter
(e.g. A).) As an example of the notation used, consider the matrix A and the vector b

The matrix A is a 2 × 3 matrix with elements a11 = 0, a12 = −1, a13 = 2, a21 = 3 and so
on. The vector b is a column vector with elements b1 = 0.15, b2 = 1.11 and b3 = −3.01.

A  
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⎢
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⎥ =

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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3 01
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⎥
⎥
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⎢
⎢
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⎢
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⎥
⎥
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1 2
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m m m mn

11 12 13 1
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In a square matrix of order n the diagonal containing the elements a11, a22, … , ann is
called the principal, main or leading diagonal. The sum of the elements of the leading
diagonal is called the trace of the square matrix A, that is

trace A = a11 + a22 + … + ann =

A diagonal matrix is a square matrix that has its only non-zero elements along the
leading diagonal. (It may have zeros on the leading diagonal also.)

An important special case of a diagonal matrix is the unit matrix or identity matrix I,
for which a11 = a22 = … = ann = 1.

The unit matrix can be written conveniently in terms of the Kronecker delta. This is
defined as

The unit matrix thus has elements δij. The notation In is sometimes used to denote the
n × n unit matrix where its size is important or not clear.

The zero or null matrix is the matrix with every element zero, and is written as
either 0 or 0. Sometimes a zero matrix of order m × n is written Om×n.

The transposed matrix AT of (5.4) is the matrix with elements bij = aji and is written
in full as the n × m matrix

AT   
  

    

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a a a a

a a a a

a a a a

m

m

n n n mn

11 21 31 1

12 22 32 2

1 2 3

K

K

M M M M

K

δij

i j

i j
  

          

       
=

=

≠

⎧
⎨
⎩

1

0

if

if    

  

I  

           

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

K

K

K

M M M M

K

a

a

a

ann

11

22

33

0 0 0

0 0 0

0 0 0

0 0 0

K

K

K

M M M M

K

 

 

 

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

aii
i

n

=
∑

1

M05A_JAME0734_05_SE_C05A.qxd  11/03/2015  09:49  Page 304



.. ..

5.2 BASIC CONCEPTS,  DEFINITIONS AND PROPERTIES 305

This is just the matrix in (5.4) with rows and columns interchanged. We may note from
(5.5) that

so that a column vector is transposed to a row vector and vice versa.
If a square matrix is such that AT = A then aij = aji, and the elements are therefore

symmetric about the diagonal. Such a matrix is called a symmetric matrix; symmetric
matrices play important roles in many computations. If AT = −A, so that aij = −aji, the
matrix is called skew-symmetric or antisymmetric. Obviously the diagonal elements
of a skew-symmetric matrix satisfy aii = −aii and so must all be zero.

A few examples will illustrate these definitions:

trace B = 1 + 3 + 5 = 9

trace D = 2 + 3 + 4 = 9

 

I   )=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4 4 4is the    unit matrix (sometimes written I

D  

        

        

        

     =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×

2 0 0

0 3 0

0 0 4

3 3is a diagonal matrix

C C  

            

      

      

          

       

  

 

 =

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ ×

0 7 1

7 0 4

1 4 0

0 7 1

7 0 4

1 4 0

and are skew-symmetric

3  3 matrices

T

B  

        

        

        

     =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×

1 2 3

2 3 4

3 4 5

3 3is a symmetric matrix

AT is a matrix  
        

        
     =

⎡

⎣
⎢

⎤

⎦
⎥ ×

2 1 4

3 2 5
2 3

A  

    

    

    

     =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

×

2 3

1 2

4 5

3 2is a matrix

  

b cT Tand  [             ]          
 

= =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

b b b

c

c

c

m

n

1 2

1

2
K

M
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5.2.2 Basic operations of matrices

(a) Equality

Two matrices A and B are said to be equal if and only if all their elements are the same,
aij = bij for 1 � i � m, 1 � j � n, and this equality is written as

A = B

Note that this requires the two matrices to be of the same order m × n.

(b) Addition and subtraction

Addition of matrices is straightforward; we can only add an m × n matrix to another 
m × n matrix, and an element of the sum is the sum of the corresponding elements. 
If A has elements aij and B has elements bij then A + B has elements aij + bij.

Similarly for subtraction, A − B has elements aij − bij.

(c) Multiplication by a scalar

The matrix λA has elements λaij; that is, we just multiply each element by the scalar λ

(d) Properties of the transpose

From the definition, the transpose of a matrix is such that

(A + B)T = AT + BT

Similarly, we observe that

(AT)T = A

so that transposing twice gives back the original matrix.

λ

λ λ λ

λ λ λ

a a a

a a a

a a a

a a a

11 12 13

21 22 23

11 12 13

21 22 23

        

        

                 

  

        

        

                      

K

K

M M M

K

K

M M M

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

+ + +

+ + +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

              

              

                                           

a b a b a b

a b a b a b

11 11 12 12 13 13

21 21 22 22 23 23

K

K

M M M

a a a

a a a

b b b

b b b

11 12 13

21 22 23

11 12 13

21 22 23

            

            

                 

  

        

        

                 

K

K

M M M

K

K

M M M

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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We may note as a special case of this result that for a square matrix A

(AT + A)T = (AT)T + AT = A + AT

and hence AT + A must be a symmetric matrix. This proves to be a very useful result,
which we shall see used in several places. Similarly, A − AT is a skew-symmetric
matrix, so that any square matrix A may be expressed as the sum of a symmetric and a
skew-symmetric matrix:

A = (A + AT) + (A − AT)

(e) Basic rules of addition

Because the usual rules of arithmetic are followed in the definitions of the sum of 
matrices and of multiplication by scalars, the

commutative law A + B = B + A

associative law (A + B) + C = A + (B + C)

and

distributive law λ(A + B) = λA + λB

all hold for matrices.

Example 5.1 Let

Find, where possible, (a) A + B, (b) A + C, (c) C − A, (d) 3A, (e) 4B, (f ) C + B,
(g) 3A + 2C, (h) AT + A and (i) A + CT + BT.

Solution (a) A + B is not possible, since A is 3 × 3 and B is 3 × 2.

(b)

(c) C A    

          

          

              

  

  

− =

− − −

− − −

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

− −

− − −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 1 2 1 1

0 1 0 1 1 2

1 1 0 1 0 1

1 1 0

1 1 1

0 1 1

A C    

              

              

              

  

        

        

        

+ =

+ + +

+ + +

+ + +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 2 1 1 1

1 0 1 0 2 1

1 1 1 0 1 0

1 3 2

1 1 3

2 1 1

A B C  

        

        

        

,      

    

    

    

,      =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 1

1 1 2

1 1 1

2 1

1 0

1 1

0 1 1

0 0 1

1 0 0

1
2

1
2
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(d)

(e)

(f) C + B is not possible, since C and B are not of the same order.

(g)

(h)

(Note that this matrix is symmetric.)

(i) A + CT + BT is not possible, since BT is not of the same order as A and CT.

Example 5.2 A local roadside cafe serves beefburgers, eggs, chips and beans in four combination
meals:

Slimmers – 150 g chips 100 g beans 1 burger
Normal 1 egg 250 g chips 150 g beans 1 burger
Jumbo 2 eggs 350 g chips 200 g beans 2 burgers
Veggie 1 egg 200 g chips 150 g beans –

A party orders 1 slimmer, 4 normal, 2 jumbo and 2 veggie meals. What is the total
amount of materials that the kitchen staff need to cook? One of the customers sees the
size of a jumbo meal and changes his order to a normal meal. How much less material
will the kitchen staff need?

Solution The meals written in matrix form are

and hence the kitchen requirements are

j v  ,      =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

350

200

2

1

200

150

0

s n  ,      ,=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0

150

100

1

1

250

150

1

A AT      

        

        

        

  

        

        

        

  

        

        

        

+ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

2 1 1

1 2 1

1 2 1

1 1 2

1 1 1

2 3 2

3 2 3

2 3 2

3 2

3 6 3

3 3 6

3 3 3

0 2 2

0 0 2

2 0 0

3 8 5

3 3 8

5 3 3

A C    

        

        

        

  

        

        

        

  

        

        

        

+ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4

8 4

4 0

4 4

B  

    

    

    

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

3

3 6 3

3 3 6

3 3 3

A  

        

        

        

=

⎡

⎣

⎢
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⎥
⎥
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The change in requirements is

less materials needed.
Although this may appear to be a rather trivial example, the basic problem is ident-

ical to any production process that requires a supply of parts.

Example 5.3 (a) Show that the only solution to the vector equation

is α = β = γ = 0.

(b) Find a non-zero solution for α, β, γ, δ to the vector equation

Solution (a) Rewrite as

Hence α = 0, α + β = 0 and α + β + γ = 0, equations which only have the solution 
α = β = γ = 0.

(b) Adding the four row entries, which are all zero, gives the equations

α + β = 0

α + 2β + δ = 0

α β γ

α

α β

α β γ

1

1

1

0

1

1

0

0

1

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +

+ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=        

    

  

α β γ δ

1

1

0

0

1

2

1

0

0

0

1

1

0

1

0

1

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=        

α β γ

1

1

1

0

1

1

0

0

1

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=      

j n        − =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

350

200

2

1

250

150

1

1

100
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1

s n j v        + + + =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

4 2 2

10

2250

1400

9
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β + γ = 0

γ − δ = 0

The first equation gives β = −α, the third gives γ = −β = α and the fourth δ = γ = α.
Substituting, the second equation is satisfied identically. Thus for any t the solution 
α = t, β = −t, γ = t, δ = t satisfies all the equations.

The important concept of linear dependence/independence is illustrated in Example
5.3. It will be used later in the chapter and particularly in Section 5.7.4 in the discus-
sion of the number of eigenvectors associated with a repeated eigenvalue. The vectors
a1, a2, . . . , an form a linearly independent set if the only solution to the equation

α1a1 + α2a2 + . . . + αnan = 0

is α1 = α2 = . . . = αn = 0. Otherwise the set is said to be linearly dependent. Note that
in Example 5.3 the vectors in (a) are linearly independent and those in (b) are linearly
dependent.

All the basic matrix operations may be implemented in MATLAB and MAPLE
using simple commands.

310 MATRIX ALGEBRA

..

MATLAB
A matrix is entered as an array, with
row elements separated by a space 
(or a comma) and each row of elements
separated by a semicolon. Thus, for
example

A = [1 2 3; 4 0 5; 7 6 2]

gives A as

A =

1 2 3

4 0 5

7 6 2

The transpose of a matrix is written A’,
with an apostrophe.

A’ = 

1 4 7

2 0 6

3 5 2

and trace(A) produces the obvious
answer = 3.

Having specified two matrices A and
B the usual operations are written

C = A + B, C = A – B

and multiplication with a scalar as

C = 2*A + 3*B

MAPLE
There are several ways of setting up
arrays in MAPLE; the simplest is to use
the linear algebra package

with (linalg):

array([list of elements]);

Thus, for example

A:=array([[1,2,3],[4,0,5],

[7,6,2]]);

produces

1 2 3

A = 4 0 5

7 6 2

The transpose and trace are obtained from

transpose(A); and trace(A);

Having specified two matrices A and B
the usual operations are written

C := evalm (A + B); and 
C := evalm (A – B);

because MAPLE is a symbolic package.
The evaluation of the multiplication of a
matrix by a scalar requires the command

C:= evalm(2*A + 3*B);
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5.2.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

1 Given the matrices

evaluate, where possible, (a) a + b, (b) bT + a,
(c) b + CT, (d) C + D, (e) DT + C.

2 Given the matrices

evaluate C in the three cases.

(a) C = A + B (b) 2A + 3C = 4B

(c) A − C = B + C

3 Solve for the matrix X

4 If

(a) show that

trace(A + B) = trace A + trace B;

(b) find D so that A + D = C;

(c) verify the associative law

(A + B) + C = A + (B + C ).

 

and       C =

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎢
⎢
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⎥
⎥
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⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
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⎥
⎥

1 0 1

2 2 0

0 1 2

1 1 0
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0 1 1
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,      

     

     

    

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦
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⎥
⎥
⎥
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a b  ,      [          ],=

⎡

⎣

⎢
⎢
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⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1

2

0

0 1 1

5 Find the values of x, y, z and t from the equation

6 Find the values of α, β, γ that satisfy

7 (a) Show that the vectors are 

linearly independent.

(b) Show that the vectors are 

linearly dependent. 

8 Show that, for any vector , constants α, β, γ can 

always be found so that

Note: Exercises 7(b) and 8 are special cases of 
a general result that given three 3 × 1 linearly
independent vectors a, b, c then any 3 × 1 vector
can be written αa + βb + γc).

9 Given the matrix

(a) find the value of λ, µ, ν so that

(b) show that no solution is possible if
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10 Market researchers are testing customers’
preferences for five products. There are four
researchers who are allocated to different groups:
researcher R1 deals with men under 40, R2 deals
with men over 40, R3 deals with women under 40
and R4 deals with women over 40. They return their
findings as a vector giving the number of customers
with first preference for a particular product.

Product R1 R2 R3 R4

a

b

c

d

e

Find the average over the whole sample. The
company decides that their main target is older
women, so they weight the returns in the ratio 
1 : 1 : 2 : 3; find the weighted average.

11 A builder’s yard organizes its stock in the form of
a vector

Bricks – type A
Bricks – type B
Bricks – type C
Bags of cement
Tons of sand

The current stock, S, and the minimum stock, 
M, required to avoid running out of materials, are
given as
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The firm has five lorries which take materials from
stock for deliveries; Lorry1 makes three deliveries
in the day with the same load each time; Lorry2
makes two deliveries in the day with the same load
each time; the other lorries make one delivery. The
loads are

How much material has gone from stock, what is 
the current stock position and has any element 
gone below the minimum?
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and

5.2.4 Matrix multiplication

The most important property of matrices as far as their practical applications are con-
cerned is the multiplication of one matrix by another. We saw informally in Section 5.2
how multiplication arose and how to define multiplication of a matrix and a vector. The
idea can be extended further by looking again at change of axes. We consider three
coordinate systems in a plane, denoted by Ox1x2, Oy1y2, Oz1z2 and related by the linear
transformations, illustrated as mappings A and B in Figure 5.3.

z1 = a11y1 + a12y2, y1 = b11x1 + b12x2

z2 = a21y1 + a22y2, y2 = b21x1 + b22x2

We then seek the composite transformation that expresses z1, z2 in terms of x1, x2. This
we can do by straight substitution:

z1 = (a11b11 + a12b21)x1 + (a11b12 + a12b22)x2

z2 = (a21b11 + a22b21)x1 + (a21b12 + a22b22)x2
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If we write the first two transformations as

then the composite transformation is written

and this is precisely how we define the matrix product.

Definition

If A is an m × p matrix with elements aij and B a p × n matrix with elements bij then we
define the product C = AB as the m × n matrix with components

for i = 1, … , m and j = 1, … , n

In pictorial form, the ith row of A is multiplied term by term with the jth column of
B and the products are added to form the ijth component of C. This is commonly
referred to as the ‘row-by-column’ method of multiplication. Clearly, in order for multi-
plication to be possible, A must have p columns and B must have p rows otherwise the
product AB is not defined.
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....
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Illustration

z1 = y1 + 3y2

z2 = 2y1 − y2

y1 = −x1 + 2x2

y2 = 2x1 − x2

Substitute to get

z1 = 5x1 − x2

z2 = −4x1 + 5x2

In matrix form
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Figure 5.3
Linear transformation, 
A, from Ox1x2 to 
Oy1y2 and linear
transformation, B,
from Oy1y2 to Oz1z2

and the composite,
AB, from Ox1x2 to
Oz1z2.
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Example 5.4 Given

find (a) AB, (b) BA, (c) Bb, (d) ATb, (e) cT(ATb) and (f) AC.

Solution

(a)

(b)

(Note that BA is not equal to AB.)

(c)

(d)

(e)

(Note that this matrix is the zero 1 × 1 matrix, which can just be written 0.)

(f )

(Note that the product AC is zero even though neither A nor C is zero.)
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Example 5.5 If

evaluate (a) XTX, (b) AX, (c) XT(AX ) and (d) XT[(AT + A)X].

Solution

(a)

(b)

(c)

= x 2 + y2 + z 2 + 3xy + 2xz + yz

(d)

and

Therefore

= x2 + y2 + z2 + 3xy + 2xz + yz

(Note that this is the same as the result of part (c).)

There are several points to note from the preceding examples. One-by-one matrices 
are just numbers, so the square brackets become redundant and are usually omitted. The
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5.2 BASIC CONCEPTS,  DEFINITIONS AND PROPERTIES 315

M05A_JAME0734_05_SE_C05A.qxd  11/03/2015  09:49  Page 315



..

316 MATRIX ALGEBRA

..

expression XTX just gives the square of the length of the vector X in the usual sense,
namely X TX = x2 + y2 + z2. Similarly,

which is the usual scalar or inner product, here written in matrix form. The expression
AX gives a column vector with linear expressions as its elements. Using Example 5.5(b),
we can rewrite the linear equations

x + 2y = 3

x + y = 4

2x + y + z = 5

as

which may be written in the standard matrix form for linear equations as

AX = b

It is also important to realize that if AB = 0 it does not follow that either A or B is zero.
In Example 5.4(f) we saw that the product AC = 0, but neither A nor C is the zero
matrix.
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MATLAB
If A and B have been defined and have
the correct dimensions then

A * B and A^2

have the usual meaning of matrix 
multiplication and squaring.

For matrices involving algebraic
quantities, or when exact arithmetic is
desirable, use of the Symbolic Math
Toolbox is required; in which case the
matrices A and B must be expressed in
symbolic form using the sym command,
that is

A = sym(A); B = sym(B)

MAPLE
If A and B have been defined and have
the correct dimensions then it is best
first to invoke the linalg package

with(linalg):

multiply(A,B);

evalm(A &* B);

both produce the product of the two
matrices.

evalm(A&^2);

squares the matrix A.
Because MAPLE is a symbolic 

package all variables are assumed to be 
symbols and there is no need to declare
them to be so.

Matrix multiplication is an important part of computer packages and is easily 
implemented.

M05A_JAME0734_05_SE_C05A.qxd  11/03/2015  09:49  Page 316



....

5.2 BASIC CONCEPTS,  DEFINITIONS AND PROPERTIES 317

5.2.5 Exercises

Most of these exercises can be checked using MATLAB. For non-numerical exercises use either MAPLE or the
Symbolic Math Toolbox of MATLAB.

12 Given the matrices

and

evaluate AB, AC, BC, CA and BAT. Which if any
of these are diagonal, unit or symmetric?

13 The matrices

and

are given.

(a) Which of the following make sense: AB, AC,
BC, ABT, ACT and BCT?

(b) Evaluate those products that do exist.

(c) Evaluate (ATB )C and AT(BC ) and show that
they are equal.

14 (a) Represent each of the linear transformations

y1 = x1 + 2x2
and

z1 = 2y2

y2 = x1 − x2 z2 = y1 + y2

in matrix form and find the composite
transformation that expresses z1, z2 in terms of 
x1, x2

 

C   

    

    

    

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2

3 1

2 3

 
A B  

        

        
,      

        

        
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2 1

3 0 2

4 1 3

0 2 1

 

C   

  

=

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 2

1 1

1 1

 

A B  
        

        
,      

    

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1 1

1 1 1

1 1 0

1 1 0

0 0 1

(b) Represent each of the linear transformations

y1 = x1 + 2x2 z1 = y1

y2 = x2 + x3 and z2 = y1 − y2

y3 = 3x1 + x3 z3 = y1 + 2y2 + 3y3

in matrix form and find the composite
transformation that expresses z1, z2, z3 in terms of x1,
x2, x3.

15 Given

evaluate AB and BA and hence show that these two
matrices commute. Solve the equation

for the vector X by multplying both sides by B.

16 Show that for any x the matrix

satisfies the relation A2 = I.

17 If

show that the product AB has exactly the same
form.

18 Given

evaluate XTX and XTAX and write out the 
equations given by AX = b.

  

A  

        

        

        

,                =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2 3

3 4 5

5 6 7

2

3

4

X

x

y

z

and b

 
A B            =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a b

b a

c d

d c
and

 
A  

cos( )   sin( )

sin( ) cos( )
=

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2

2 2

x x

x x

  
AX   =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

0

 
A B  

    

    
          

      

      
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 2

5 4

4 2

5 3
and
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5.2.6 Properties of matrix multiplication

We now consider the basic properties of matrix multiplication. These may be proved
using the definition of matrix multiplication and this is left as an exercise for the reader.

(a) CommutatiVe law
Matrices do not commute in general, although they may do in special cases. In Example
5.4 we saw that AB ≠ BA, and a further example illustrates the same result:

so again AB ≠ BA. The products do not necessarily have the same size, as shown in
Example 5.4(a and b), where AB is a 2 × 2 matrix while BA is 3 × 3. In fact, even
if AB exists, it does not follow that BA does. Take, for example, the matrices

The product aB = [4 4] is well defined but Ba

cannot be computed since a 3 × 2 matrix cannot be multiplied on the right by a 1 × 3
matrix. Thus order matters, and we need to distinguish between AB and BA. To do this,
we talk of pre-multiplication of B by A to form AB, and post-multiplication of B by
A to form BA.

(b) AssociatiVe law
It follows from the definition of the matrix product and a careful use of double sum-
mations that

A(BC ) = (AB)C

where A is m × p, B is p × q and C is q × n.
Matrix multiplication is associative and we can therefore omit the brackets.

(c) DistributiVe law oVer multiplication by a scalar

(λA)B = A(λB) = λAB holds

(d) DistributiVe law oVer addition

(A + B)C = AC + BC and A(B + C ) = AB + AC

so we can multiply out brackets in the usual way, but making sure that the order of the
products is maintained.

a  [         ]          

    

    

    

.= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

1 2

2 1

1 1

and B

AB BA  
    

    
,      

    

    
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 2

0 0

1 0

1 0

A   B  
    

    
,      

    

    
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 0

1 2

1 0
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(e) Multiplication by unit matrices
If A is an m × n matrix and if Im and In are the unit matrices of orders m and n then

ImA = AIn = A

Thus pre- or post-multiplication by the appropriate unit matrix leaves A unchanged.

( f ) Transpose of a product

(AB)T = BTAT

where A is an m × p matrix and B a p × n matrix. The proof follows from the definition
of matrix transpose and matrix multiplication but requires careful treatment of summa-
tion signs. Thus the transpose of the product of matrices is the product of the transposed
matrices in the reverse order.

Example 5.6 Given the matrices

(a) find (i) AB, (ii) (AB)T and (iii) BTAT;

(b) pre-multiply each side of the equation BX = c by A.

Solution (a) It would be a useful exercise to check these products using MATLAB or MAPLE.

(i) 

The MATLAB commands

A = [1 2 2; 0 1 1; 1 0 1];

B = [1 −2 0; 1 −1 −1; −1 2 1]; A*B

produce the correct unit matrix.

(ii) ( )     AB IT =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 0 0

0 1 0

0 0 1

AB I  

        

        

        

 

           

          

            

  

       

        

        

  =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 2 2

0 1 1

1 0 1

1 2 0

1 1 1

1 2 1

1 0 0

0 1 0

0 0 1

A B  ,      ,                =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 2

0 1 1

1 0 1

1 2 0

1 1 1

1 2 1

1

0

1

X c

x

y

z

and
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(iii) 

(b) The equation BX = c can be rewritten as

or

If we now pre-multiply the equation by A we obtain

ABX = Ac

and since AB = I, we obtain

and we see that we have a solution to our set of linear equations. 

In MATLAB the solution X to the set of linear equations BX = c is determined by
the command B\c. Check that the commands

B = [1 –2 0; 1 –1 –1; –1 2 1];

c = [1;0;1];

B\c

return the given answer.

Example 5.7 Given the three matrices

verify the associative law and the distributive law over addition.

Solution

Now BC =

A(BC) =

1 1 1

2 0 3

0 1 2

3 1

11 7

9 10

1 4

21 28

7 13

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   

0 0 1

0 2 3

1 2 3

2 3

1 2

3 1

3 1

11 7

9 10

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

       and

A B C  ,                =

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

2 0 3

0 1 2

0 0 1

0 2 3

1 2 3

2 3

1 2

3 1

and

IX          =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 2

0 1 1

1 0 1

1

0

1

3

1

2

3

1

2

   or    

x

y

z

x y

x y z

x y z

   

     

      

− =

− − =

− + + =

2 1

0

2 1

      

      

      

   

1 2 0

1 1 1

1 2 1

1

0

1

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

z

B A IT T   

             

          

            

 

        

        

        

  

        

        

        

  =

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

1 1 1

2 1 2

0 1 1

1 0 1

2 1 0

2 1 1

1 0 0

0 1 0

0 0 1
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Likewise AB = 

(AB)C = 

Thus the associative law is satisfied for these three matrices. For the distributive law we
need to evaluate

and

The two matrices are equal, so the distributive law is verified for the three given matrices.

Example 5.8 Show that the transformation

with θ = 60°, maps the square with corners onto a square.

Solution Substituting the given vectors in turn for into the equation

′

′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣
⎢
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⎥
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⎢
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⎥
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. .
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⎥
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⎢
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⎢
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⎢
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⎢
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⎢
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⎥

=
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⎣
⎢
⎢

⎤

⎦
⎥
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⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y
  

  cos     sin

sin     cos
 

θ θ
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= − −
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⎣

⎢
⎢
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⎤

⎦

⎥
⎥
⎥

+

−

−
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⎣

⎢
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⎥
⎥
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⎥
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⎢
⎢
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⎥
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⎥
⎥
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3 6 7

2 2 3

2 3

1 2
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1 4
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Figure 5.4
Transformation of a
square in Example 5.8.

we find the following vectors for

Plotting these points on the plane, as in Figure 5.4, we see that the square has been
rotated through an angle of 60° about the origin. It is left as an exercise for the reader
to verify the result.

This type of analysis forms the basis of manipulation of diagrams on a computer
screen, and is used in many CAD/CAM situations.

Example 5.9 In quantum mechanics the components of the spin of an electron can be repesented by
the Pauli matrices

Show that

(a) the matrices anticommute:

AB + BA = 0, BC + CB = 0, CA + AC = 0

(b) AB − BA = 2jC, BC − CB = 2jA, CA − AC = 2jB

(c) AB = jC, BC = jA, CA = jB

A B C  ,      ,      =
⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥

0 1

1 0

0

0

1 0

0 1

j

j

  .

.
,    

.

.
,    

  .

.
        

  .

.

1 366

0 366

2 232
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2 732

0 732

1 866

1 232−
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⎢
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⎢
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⎢
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⎢
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′
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⎥

x

y
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Solution (a)

so

AB + BA = 0

and the other two results follow similarly.

(b) From part (a)

and again the other two results follow similarly.

(c) These results can be obtained directly from part (a) since AB has already been 
calculated, similarly for BC and CA.

Note: This example illustrates the use of matrices that have complex elements. Pauli
discovered that the matrices A, B and C have the properties (a), (b) and (c) required of
the components of the spin of an electron.

Example 5.10 A rectangular site is to be levelled, and the amount of earth that needs to be removed
must be determined. A survey of the site at a regular mesh of points 10 m apart is made.
The heights in metres above the level required are given in the following table.

0 0.31 0.40 0.45 0.51 0.60

0.12 0.33 0.51 0.58 0.66 0.75

0.19 0.38 0.60 0.69 0.78 0.86

0.25 0.46 0.68 0.77 0.89 0.97

It is known that the approximate volume of a cell of side x and with corner heights of
a, b, c and d is

V = (a + b + c + d )

Write the total approximate volume in matrix form and hence estimate the volume to
be removed.

Solution Note that for the first row of cells the volume is

25( 0 + 0.31 +0.31 + 0.40 +0.40 + 0.45 +0.45 + 0.51 +0.51 + 0.60
+0.12 + 0.33 +0.33 + 0.51 +0.51 + 0.58 +0.58 + 0.66 +0.66 + 0.75)

= 25[0 + 2(0.31 + 0.40 + 0.45 + 0.51) + 0.60]
+ 25[0.12 + 2(0.33 + 0.51 + 0.58 + 0.66) + 0.75]

The second and third rows of cells are dealt with in a similar manner, so that, when we
compute the total volume, we need to multiply the corner values by 1, the other side values
by 2 and the centre values by 4. In matrix form this multiplication can be performed as

1
4

2x

AB BA C          − =
−

⎡

⎣
⎢

⎤

⎦
⎥ −

−⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥ =

j 0

0 j

j 0

0 j

2j 0

0 j
j

2
2

AB BA             =
⎡

⎣
⎢

⎤

⎦
⎥

−⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

0 1

1 0

0 j

j

j 0

0 j
and  

j

j

j

j0

0

0

0 1

1 0

0

0
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This can be checked by multiplying the matrices out. The checking can be done on 
one of the symbolic manipulation packages, such as MAPLE or the Symbolic Math
Toolbox of MATLAB, by putting in general symbols for the matrix and verifying that,
after the matrix multiplications, the elements are multiplied by the stated factors. Per-
forming the calculation and multiplying by the 25 gives the total volume as 816.5 m3.

A similar analysis can be applied to other situations – all that is needed is measured
heights and a matrix multiplication routine on a computer to deal with the large amount
of data that would be required. For other mesh shapes, or even irregular meshes, the
method is similar, but the multiplying vectors will need careful calculation.

Example 5.11 A contractor makes two products P1 and P2. The four components required to make 
the products are subcontracted out and each of the components is made up from three
ingredients A, B and C as follows:

Make-up cost
and profit for

Component Units of A Units of B Units of C subcontractor

1 requires 5 4 3 10
2 requires 2 1 1 7
3 requires 0 1 3 5
4 requires 3 4 1 2

The cost per unit of the ingredients A, B and C are a, b and c respectively. The 
contractor makes the product P1 with 2 of component 1, 3 of component 2 and 4 of
component 4, and the make-up cost is 15; product P2 requires 1 of component 1, 1 
of component 2, 1 of component 3 and 2 of component 4, and the make-up cost is 12.
Find the cost to the contractor for P1 and P2. What is the change in costs if a increases
to (a + 1)? It is found that the 5 units of A required for component 1 can be reduced to
4. What is the effect on the costs?

Solution The information presented can be written naturally in matrix form. Let C1, C2, C3 and
C4 be the cost the subcontractor charges the contractor for the four components, then
the cost C1 is computed as C1 = 5a + 4b + 3c + 10. This expression is the first row of
the matrix equation

[             ]

 

         .     .     .     .     .

.     .     .     .     .     .

.     .     .     .     .     .

.     .     .     .     .     .

1 2 2 1 0 0 31 0 40 0 45 0 51 0 60

0 12 0 33 0 51 0 58 0 66 0 75

0 19 0 38 0 60 0 69 0 78 0 86

0 25 0 46 0 68 0 77 0 86 0 97

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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and the other three costs follow in a similar manner. Now let p1, p2 be the costs of
producing the final products. The costs are constructed in exactly the same way as

Substituting gives

or

Thus a simple matrix formulation gives a convenient way of coding the data. If a is
increased to (a + 1) then multiplying out shows that p1 increases by 28 and p2 by 13. If
the 5 in the first matrix is reduced to 4 then the costs will be

so p1 is reduced by 2a and p2 by a.

A similar approach can be used in more complicated, realistic situations. Storing and
processing the information is convenient, particularly in conjunction with a computer
package or spreadsheet.

Example 5.12 (a) Given the matrix A = verify that
3
2 1

1 1

−
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⎢
⎢
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⎥
⎥
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⎢
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⎢
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⎥

+
⎡

⎣
⎢

⎤

⎦
⎥     

p

p

a

b

c

1

2

28 27 13

13 14 9

64

38

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥  

        

         
   

p

p

a

b

c

1

2

2 3 0 4

1 1 1 2

5 4 3

2 1 1

0 1 3

3 4 1

2 3 0 4

1 1 1 2

10

7

5

2

15

12

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥         

p

p

C

C

C

C

1

2

1

2

3

4

2 3 0 4

1 1 1 2

15

12

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥  

            

            
   

C

C

C

C

a

b

c

1

2

3

4

5 4 3

2 1 1

0 1 3

3 4 1

10

7

5

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

     

M05A_JAME0734_05_SE_C05A.qxd  11/03/2015  09:49  Page 325



..

326 MATRIX ALGEBRA

..

and 

and show that 2A2 = A + I.

(b) By repeated application of this result show also that for any integer n

An = αA + βI

for some α, β.

Solution (a) The first two results follow by applying matrix multiplication; the importance of
such results will be seen in Section 5.7 on eigenvalues. The next result follows since

and

and hence 2A2 = A + I.

(b) To show the final result, note that multiplying by 2A gives

4A3 = 2A2 + 2A = (A + I) + 2A = 3A + I

and repeating the process, multiplying by 2A

8A4 = 6A2 + 2A = 3(A + I) + 2A = 5A + 3I

The process of multiplying by 2A and replacing 2A2 by (A + I) can be applied repeat-
edly to give the final result.

Example 5.13 Find the values of x that make the matrix Z5 a diagonal matrix, where

Solution Although this problem can be done by hand it is tedious and a MAPLE solution is given.

with (linalg):

Z:= array ([[x, 0, 0], [0, x, 1], [0, –1, 0]]):
Z5:= simplify (multiply (Z, Z, Z, Z, Z));

Z5:=

evalf (solve ({Z5 [2, 3] = 0}, {x}));

{x = 1.618}, {x = −0.618}, {x = 0.618}, {x = −1.618}

  

x

x x x x x

x x x x

5

3 5 2 4

2 4 3

0 0

0 3  - 4  + 1 - 3  + 
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⎢
⎢
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⎥
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⎥
⎥
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⎥
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Using MATLAB’s Symbolic Math Toolbox the commands

syms x

Z = syms([x 0 0; 0 x 1; 0 –1 0]);

Z5 = Z^5; simplify(Z5);

pretty(ans)

produce the same matrix as above. The additional commands

solve(1 – 3*x^2 + x^4); double(ans)

produce the same values of x.

5.2.7 Exercises

Check the answers to the exercises using MATLAB or MAPLE whenever possible.

19 Given the matrices

evaluate where possible

AB, BA, BC, CB, CA, AC

20 For the matrices

(a) evaluate (A + B)2 and A2 + 2AB + B2

(b) evaluate (A + B)(A − B) and A2 − B2

Repeat the calculations with the matrices

and explain the differences between the results for
the two sets.

21 Show that for a square matrix (A2)T = (AT)2.

22 Show that AAT is a symmetric matrix.

23 Find all the 2 × 2 matrices that commute (that is 

AB = BA) with .
1 1

0 2

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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⎡
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⎢
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⎥
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⎦
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⎥
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2 2

5 1
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⎢
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⎥
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⎢
⎢
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⎥
⎥

1 1

0 1
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1 0
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⎡

⎣
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⎢
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⎦
⎥
⎥

2 1

1 2

 

A B  ,      ,=
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⎢
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⎥
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⎡
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 1

2 1 2

0 1

1 0

0 1

24 A matrix with m rows and n columns is said to be 
of type m × n. Give simple examples of matrices 
A and B to illustrate the following situations:

(a) AB is defined but BA is not;

(b) AB and BA are both defined but have 
different type;

(c) AB and BA are both defined and have the 
same type but are unequal.

25 Given

determine a symmetric matrix C and a skew-
symmetric matrix D such that

A = C + D

26 Given the matrices

determine the elements of G where
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⎥
⎥
⎥

4 1 1

1 7 3

1 3 5
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⎢
⎢
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⎥
⎥
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⎢
⎢
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⎥
⎥
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1 4 1
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(ab)l + C2 = CT + G

and I is the unit matrix.

27 A firm allocates staff into four categories: welders,
fitters, designers and administrators. It is estimated
that for their three main products the time spent, in 
hours, on each item is given in the following matrix.

Boiler Water tank Holding frame
Welder 2 0.75 1.25
Fitter 1.4 0.5 1.75
Designer 0.3 0.1 0.1
Admin 0.1 0.25 0.3

The wages, pension contributions and overheads,
in £ per hour, are known to be 

Welder Fitter Designer Administrator
Wages 12 8 20 10
Pension 1 0.5 2 1
O/heads 0 0 1 3

Write the problem in matrix form and use matrix
products to find the total cost of producing 
10 boilers, 25 water tanks and 35 frames.

28 Given

evaluate A2 and A3. Verify that

A3 − A2 − 3A + I = 0

29 Given

show that

XTAX = 27 (5.6)

implies that

5x 2
1 + 6x 2

2 + 7x 2
3 − 4x1x2 + 4x2x3 = 27

Under the transformation

X = BY

show that (5.6) becomes

YT(BTAB)Y = 27
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⎢
⎢
⎢
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⎥
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⎥
⎥
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⎢
⎢
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⎤

⎦

⎥
⎥
⎥
⎥
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2 1 1

If

evaluate BTAB, and hence show that

y 2
1 + 2y 2

2 + 3y 2
3 = 1

30 A well-known problem concerns a mythical 
country that has three cities, A, B and C, with a
total population of 2400. At the end of each year 
it is decreed that all people must move to another
city, half to one and half to the other. If a, b and 
c are the populations in the cities A, B and C
respectively, show that in the next year the
populations are given by

Supposing that the three cities have initial
populations of 600, 800 and 1000, what are the
populations after 10 years and after a very long 
time (a package such as MATLAB is ideal for the
calculations)? (Note that this example is a version 
of a Markov chain problem. Markov chains have
applications in many areas of science and
engineering.)

31 Find values of h, k, l and m so that A ≠ 0, B ≠ 0, 
A2 = A, B2 = B and AB = 0, where

32 A computer screen has dimensions 20 cm × 30 cm.
Axes are set up at the centre of the screen, as
illustrated in Figure 5.5. A box containing an arrow
has dimensions 2 cm × 2 cm and is situated with its
centre at the point (−16, 10). It is first to be rotated
through 45° in an anticlockwise direction. Find this
transformation in the form
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The rotated box is now moved to a new position
with its centre at (16, −10). Find the overall
transformation in the form
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y

a

b

x

y
    B

33 Given the matrix

it is known that An = I, the unit matrix, for some
integer n; find this value.
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0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

00 0 0 0 0 1 0 0                            

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
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⎥
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⎥
⎥

Figure 5.5 Manipulation of a computer screen in
Question 32.

5.3 Determinants

The idea of a determinant is closely related to that of a square matrix and is crucial 
to the solution of linear equations. We shall deal here mainly with 2 × 2 and 3 × 3 
determinants.

Given the square matrices

the determinant of A, denoted by det A or | A | , is given by

| A | = a11a22 − a12a21 (5.7)

For the 3 × 3 matrix B

(5.8)

This is known as the expansion of the determinant along the first row.
The determinant of a 1 × 1 matrix, A = [a], having a single entry a is simply its entry.

Thus

| A | = a

It is important that this be distinguished from mod a which is also written as | a |.
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Example 5.14 Evaluate the third-order determinant

Solution Expanding along the first row as in (5.8), we have

= 1[(0)(−2) − (1)(3)] − 2[(−1)(−2) − (3)(3)] 

+ 4[(−1)(1) − (3)(0)] (using (5.7))

= 1(−3) − 2(−7) + 4(−1)

= 7

If we take a determinant and delete row i and column j then the determinant remaining is
called the minor Mij . In general we can take any row (or column) and evaluate an
n × n determinant | A | as

(5.9)

The fact that the determinant is the same for any i requires detailed proof. The deter-
minant in (5.8) is just the expansion (5.9) with i = 1 and n = 3 and gives the expansion
by the first row.

The sign associated with a minor is given in the array

A minor multiplied by the appropriate sign is called the cofactor Aij of the element, so

Aij = (−1)i+jMij

and thus

| |A   = ∑ a Aij ij
j
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K

M M M M M

| |  ( )= − +

=
∑ 1

1

i j
ij ij

j

n

a M

 

  
     

    
  

      

      
  

  

1 2 4

1 0 3

3 1 2

1
0 3

1 2
2

1 3

3 2
4

1 0

3 1
−

−

=
−

−
−

−
+

−

             

          

          

1 2 4

1 0 3

3 1 2

−

−
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Example 5.15 Evaluate the minors and cofactors of the determinant

associated with the first row, and hence evaluate the determinant.

Solution

Element a11 has minor M11 = −2 and cofactor A11 = −2.

Element a12 has minor M12 = 2 and cofactor A12 = −2.

Element a13 has minor M13 = 2 and cofactor A13 = 2. Thus the determinant is

| A | = 3 × (−2) + 4 × (−2) + 5 × 2 = −4

It may be checked that the same result is obtained by expanding along any row (or 
column), care being taken to incorporate the correct signs.

The properties of determinants are not always obvious, and are often quite difficult to
prove in full generality. The commonly useful row operations are as follows.

(a) Two rows (or columns) equal

Thus if two rows (or columns) are the same, the determinant is zero.

| |A   

        

        

        

  
    

    
  

    

    
  

    

    
  = = − + =

a a a

a a a

a a a

a
a a

a a
a

a a

a a
a

a a

a a

11 12 13

21 22 23

21 22 23

11

22 23

22 23
12

21 23

21 23
13

21 22

21 22

0

3 4 5

6 4 2

2 1 1

6 4

2 1
2−

−

→
−

−
=    

3 4 5

6 4 2

2 1 1

6 2

2 1
2−

−

→ =    

3 4 5

6 4 2

2 1 1

4 2

1 1
4 2 2−

−

→
−

−
= − − − = −      ( )  

| |A   

          

        

        

= −

−

3 4 5

6 4 2

2 1 1
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(b) Multiple of a row by a scalar

The proof of this result follows from the definition. A consequence of (a) and (b) is that
if any row (or column) is a multiple of another row (or column) then the determinant is
zero.

(c) Interchange of two rows (or columns)
Consider | A | and | B | in which rows 1 and 2 are interchanged

Expanding | A | by the first row,

and | B | by the second row

Thus

| A | = −| B |

so that interchanging two rows changes the sign of the determinant. Entirely similar
results apply when changing two columns.

(d) Addition rule
Expanding by the first row:

= (a11 + b11)A11 + (a12 + b12)A12 + (a13 + b13)A13

= (a11A11 + a12A12 + a13A13) + (b11A11 + b12A12 + b13A13)

It should be noted that | A + B | is not equal to | A | + | B | in general.

= + 

        

        

        

  

         

        

        

a a a

a a a

a a a

b b b

a a a

a a a

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

a b a b a b

a a a

a a a

11 11 12 12 13 13

21 22 23

31 32 33

      + + +

 
| |B   

    

    
  

    

    
  

    

    
= − + −a

a a

a a
a

a a

a a
a

a a

a a
11

22 23

32 33
12

21 23

31 33
13

21 22

31 32

 
| |A   

    

    
  

    

    
  

    

    
= − +a

a a

a a
a

a a

a a
a

a a

a a
11

22 23

32 33
12

21 23

31 33
13

21 22

31 32

 

| | | |A B  

        

       

        

          

        

        

        

= =

a a a

a a a

a a a

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

21 22 23

11 12 13

31 32 33

and

| | | |B A   

 

  = =

λ λ λ

λ

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33
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(e) Adding multiples of rows (or columns)
Consider

Then

= | A | (since, by (a), the second determinant is zero)

This means that adding multiples of rows (or columns) together makes no difference to
the determinant.

(f ) Transpose

| AT | = | A |

This just states that expanding by the first row or the first column gives the same result.

(g) Product

| AB | = | A | | B |

This result is difficult to prove generally, but it can be verified rather tediously for the
2 × 2 or 3 × 3 cases. For the 2 × 2 case

| A | | B | = (a11a22 − a12a21)(b11b22 − b12b21)

= a11a22b11b22 − a11a22b12b21 − a12a21b11b22 + a12a21b12b21

and

= (a11b11 + a12b21)(a21b12 + a22b22) − (a11b12 + a12b22)(a21b11 + a22b21)

= a11a22b11b22 − a11a22b12b21 − a12a21b11b22 + a12a21b12b21

 
| |AB   

        

        
=

+ +

+ +

a b a b a b a b

a b a b a b a b

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

= + 

        

        

        

  

        

        

        

    

a a a

a a a

a a a

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

21 22 23

21 22 23

31 32 33

λ (using (d) and then (b))

| |B   

      

=

+ + +a a a a a a

a a a

a a a

11 21 12 22 13 23

21 22 23

31 32 33

λ λ λ

| |A   

        

        

        

=

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33
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Example 5.16 Evaluate the 3 × 3 determinants

Solution (a) Expand by the first row:

(b) Expand by the first column:

Note that (a) and (b) are the same determinant, but with two rows interchanged. The
result confirms property (c) just stated above.

(c) Expand by the third row:

Note that the matrix associated with the determinant in (c) is just the transpose of the
matrix associated with the determinant in (b).

(d)

Note that we have used the multiple of a row rule on two occasions; the final deter-
minant is the same as (a).

In MATLAB and MAPLE the determinant of a matrix A is given by the command
det(A). Considering Example 5.16(d) the MATLAB commands

A = [1 0 1; 0 2 4; 3 3 0];

det(A)

return the answer –18.

1 0 1

0 2 4

3 3 0

2

1 0 1

0 1 2

3 3 0

6

1 0 1

0 1 2

1 1 0

18

        

        

        

  

        

        

        

    = = = −

1 1 0

0 1 1

1 0 2

1
1 0

1 1
0

1 0

0 1
2

1 1

0 1
1 0 2 3

        

        

        

  
    

    
  

    

    
  

    

    
        = − + = − + =

1 0 1

1 1 0

0 1 2

1
1 0

1 2
1

0 1

1 2
0

0 1

1 0
2 1 0 3              = − + = + + =

1 0 1

0 1 2

1 1 0

1
1 2

1 0
0

0 2

1 0
1

0 1

1 1
2 0 1 3              = − + = − − − = −

( )  

        

       

        

,    ( )  

        

        

        

,    ( )  

        

        

        

,    ( )  

        

        

        

a b c d

1 0 1

0 1 2

1 1 0

1 0 1

1 1 0

0 1 2

1 1 0

0 1 1

1 0 2

1 0 1

0 2 4

3 3 0
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Example 5.17 Given the matrices

evaluate (a) | A |, (b) | B | and (c) | AB |.

Solution
(a)

= 1 × (−2) − 2 × (−4) + 3 × (−2) = 0

(b)

(c)

= 6[(11)(27) − (17)(17)] − 8[(9)(27) − (17)(15)] + 12[(9)(17) − (11)(15)]

= 48 + 96 − 144 = 0

We can use properties (a)–(e) to reduce the amount of computation involved in 
evaluating a determinant. We introduce as many zeros as possible into a row or column,
and then expand along that row or column.

Example 5.18 Evaluate

D
a

b

c

  

       

      

         

         

=
+

+

+

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

| |AB   

       

      

    

=

6 8 12

9 11 17

15 17 27

= 
    

    
(expanding by first row)1

1 0

2 2
2      =

=  

        

        

        

(

1 0 0

1 1 0

1 2 2

subtracting column 1 from column 3)

| |B   

        

        

        

=

1 0 1

1 1 1

1 2 3

 
| |A   

    

    
  

    

    
  

    

    
= − +1

3 4

5 6
2

2 4

4 6
3

2 3

4 5

A B  

        

        

        

      

        

        

        

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3

2 3 4

4 5 6

1 0 1

1 1 1

1 2 3

and    
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Solution

A solution using MAPLE is given by the commands

with (linalg):

E:= array ([[1, 1, 1, 1], [1, 1+a, 1, 1], 

[1, 1, 1+b, 1], [1, 1, 1, 1+c]]):

det(E);

Using MATLAB’s Symbolic Math Toolbox the commands

syms a b c

E = sym([1 1 1 1; 1 1+a 1 1; 1 1 1+b 1; 1 1 1 1+c]);

det(E);

pretty(ans)

return the answer abc.

A point that should be carefully noted concerns large determinants; they are extremely
difficult and time-consuming to evaluate (using the basic definition (5.9) for an n × n
determinant involves n!(n − 1) multiplications). This is a problem even with computers
– which in fact use alternative methods. If at all possible, evaluation of large deter-
minants should be avoided. They do, however, play a central role in matrix theory.

The cofactors A11, A12, … defined earlier have the property that

| A | = a11 A11 + a12 A12 + a13 A13

Consider the expression a21A11 + a22 A12 + a23 A13. In determinant form we have

since two rows are identical. Similarly,

a31A11 + a32 A12 + a33 A13 = 0

a A a A a A

a a a

a a a

a a a

21 11 22 12 23 13

21 22 23

21 22 23

31 32 33

0      

        

        

        

  + + = =

= = 
    

    
  a

b

c
abc

0

0

=  

        

        

        

(1

0 0

0 0

0 0

a

b

c

by expanding by the top row)

D
a

b

c

  

            

            

            

            

    (=

1 0 0 0

1 0 0

1 0 0

1 0 0

by subtracting col. 1 from col. 2, col. 3 and col. 4)
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In general it can be shown that

(5.10)

and, expanding by columns that,

(5.11)

A numerical example illustrates these points.

Example 5.19 Illustrate the use of cofactors in the expansion of determinants on the matrix

Solution The cofactors are evaluated as

and continuing in the same way

A21 = 22, A22 = −20, A23 = 6, A31 = −7, A32 = 14 and A33 = −7

A selection of the evaluations in (5.10), that is expansion by rows, is

a11A11 + a12A12 + a13A13 = 1 × (−27) + 2 × 22 + 3 × 13 = 56

a21A11 + a22A12 + a23A13 = 6 × (−27) + 5 × 22 + 4 × 13 = 0

a31A21 + a32A22 + a33A23 = 7 × 22 + 8 × (−20) + 1 × 6 = 0

and in (5.11), that is expansion by columns, is

a11A12 + a21A22 + a31A32 = 1 × 22 + 6 × (−20) + 7 × 14 = 0

a12A12 + a22A22 + a32A32 = 2 × 22 + 5 × (−20) + 8 × 14 = 56

a13A11 + a23A21 + a33A31 = 3 × (−27) + 4 × 22 + 1 × (−7) = 0

The other expansions in (5.10) and (5.11) can be verified in this example. It may be
noted that the determinant of the matrix is 56.

A matrix with particularly interesting properties is the adjoint or adjugate matrix,
which is defined as the transpose of the matrix of cofactors; that is,

A A A11 12 13

5 4

8 1
27

6 4

7 1
22

6 5

7 8
13  

    

    
  ,      

    

    
  ,      

    

    
  = = − = − = = =

A  

        

        

        

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3

6 5 4

7 8 1

a A
i j

i j
ki kj

k

  
   

    
=

=

≠

⎧
⎨
⎪

⎩⎪
∑

| | if

if0

a A
i j

i j
ik jk

k

  
   

    
=

=

≠

⎧
⎨
⎪

⎩⎪
∑

| | if

if0
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If we now calculate A (adj A), we have

So

(5.13)

and we have thus discovered a matrix that when multiplied by A gives a scalar times
the unit matrix.

If A is a square matrix of order n then, taking determinants on both sides of (5.13),

| A | | adj A | = | A(adj A) | = | | A | In | = | A |n

If | A | ≠ 0, it follows that

| adj A | = | A |n−1 (5.14)

a result known as Cauchy’s theorem.
It is also the case that

adj(AB) = (adj B)(adj A) (5.15)

so in taking the adjoint of a product the order is reversed.
An important piece of notation that has significant implications for the solution of

sets of linear equations concerns whether or not a matrix has zero determinant. A square
matrix A is called non-singular if | A | ≠ 0 and singular if | A | = 0.

Example 5.20 Derive the adjoint of the 2 × 2 matrices

and verify the results in (5.13), (5.14) and (5.15).

 
A B  

    

    
          

      

    
=

⎡

⎣
⎢

⎤

⎦
⎥ =

−

− −

⎡

⎣
⎢

⎤

⎦
⎥

1 3

2 8

1 2

3 4
and

A A

A

A

A

A I( )    adj =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

| |

| |

| |

| |

0 0

0 0

0 0

 
=

=

≠

⎧
⎨
⎪

⎩⎪
 

       

    

| |A if (from (5.10))

if

i j

i j0

 
[  ( )]   ( )   A A Aadj adjij ik kj ik jk

kk

a a A= = ∑∑

adj

T

  

        

        

        

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A A A

A A A

A A A

11 12 13

21 22 23

31 32 33
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Solution The cofactors are very easy to evaluate in the 2 × 2 case: for the matrix A

A11 = 8, A12 = −2, A21 = −3 and A22 = 1

and for the matrix B

B11 = −4, B12 = 3, B21 = −2 and B22 = −1

The adjoint or adjugate matrices can be written down immediately as

Now (5.13) gives

so the property is satisfied and the determinants are 2 and 10 respectively. For (5.14)
we have n = 2, so

as required.
Evaluating the matrices in (5.15)

and

and the statement is clearly verified. It is left as an exercise to show that the product of
the matrices the other way round, adj A adj B, gives a totally different matrix.

Example 5.21 Given

determine adj A and show that A(adj A) = (adj A)A = | A | I.

 

A  

        

        

        

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2

2 0 1

3 1 1

 
adj adjB A  

    

      

      

      
  

      

      
=

− −

−

⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢

⎤

⎦
⎥

4 2

3 1

8 3

2 1

28 10

26 10

 
adj adj( )  

    

    
  

      

      
AB =

− −

− −

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢

⎤

⎦
⎥

10 10

26 28

28 10

26 10

 
| | | |adj and adjA B  

      

      
            

    

       
  =

−

−
= =

− −

−
=

8 3

2 1
2

4 2

3 1
10

 
B B I( )  

      

    

    

      
  

     

     
  adj =

−

− −

⎡

⎣
⎢

⎤

⎦
⎥

− −

−

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

1 2

3 4

4 2

3 1

10 0

0 10
10

 
A A I( )  

    

    

      

      
  

    

    
  adj =

⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

1 3

2 8

8 3

2 1

2 0

0 2
2

 
adj and    adjA B  

      

      
      

    

      
=

−

−

⎡

⎣
⎢

⎤

⎦
⎥ =

− −

−

⎡

⎣
⎢

⎤

⎦
⎥

8 3

2 1

4 2

3 1
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Solution The matrix of cofactors is

so, from (5.12)

Since | A | = 4 the last result then follows.

In MAPLE the adjoint of a matrix A is determined by the command adj(A). There
appears to be no equivalent command in either MATLAB or its Symbolic Math
Toolbox. However, the maple command in the Toolbox may be used to access the
command in MAPLE, having first expressed the matrix A in symbolic form using
the sym command. Consequently in MATLAB’s Symbolic Math Toolbox the
adjoint is determined by the commands

A = sym(A);

adjA = maple(‘adj’, A)

Check that in MATLAB the commands

A = [1 1 2; 2 0 1; 3 1 1];

A = sym(A);

adjA = maple(‘adj’,A)

return the first answer in Example 5.21.

( )   

      

  

        

        

        

adj A A =

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

1 5 3

2 2 2

1 1 2

2 0 1

3 1 1

4 0 0

0 4 0

0 0 4

A A( )    

        

        

        

adj =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2

2 0 1

3 1 1

1 1 1

1 5 3

2 2 2

4 0 0

0 4 0

0 0 4

adj

T

A    =

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2

1 5 2

1 3 2

1 1 1

1 5 3

2 2 2

  
    

    
    

    

    
     

    

    

    

    
     

    

    
    

    

    

  
    

    
    

    

    
      

     

    

  

             

            

            

0 1

1 1

2 1

3 1

2 0

3 1

1 2

1 1

1 2

3 1

1 1

3 1

1 2

0 1

1 2

2 1

1 1

2 0

1 1 2

1 5 2

1 3

−

− −

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−

−

−−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2
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5.3.1 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

34 Find all the minors and cofactors of the
determinant

Hence evaluate the determinant.

35 Evaluate the determinants of the following
matrices:

36 Given the matrix

determine | A |, | AAT |, | A 2 | and | A + A |.

37 Find a series of row manipulations that takes

to − and hence evaluate 

the determinant.

38 Determine adj A when

 
A  

    

    
=

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a b

c d

2 1 0

0 1

0 0 3

1
2−

1 0 1

2 1 0

0 1 1

 

A  =

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 1

1 0 1

2 2 2

( )  e

1 1 0

1 1 1

0 1 1

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )      ( )  c d

2 1 3

4 2 9

1 3 4

1 0 1

0 1 0

1 0 2

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )      ( )   a b
1 7

4 9

1 4 3

2 4 1

3 2 6

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2 3

1 0 1

1 1 1

39 Determine adj A when

Check that A(adj A) = (adj A)A = | A | I.

40 For the matrix

evaluate | A |, adj(A), B = and AB.

41 Show that the matrix

is non-singular and verify Cauchy’s theorem,
namely | adj B | = | B |2.

42 If |A| = 0 deduce that |An | = 0 for any integer n.

43 Given

verify that adj(AB) = (adj B)(adj A).

44 Find the values of λ that make the following
determinants zero:

 

B  =

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 2

3 4 0

6 2 1

 

A      =

−

− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 1 0

4 3 1

1 1 1

and

 

B  =

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 2

3 4 0

6 2 1

 

adj( )A
A| |

 
A  =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 0

3 1

 

A          =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 1 1

3 2 2

1 1 2

M05A_JAME0734_05_SE_C05A.qxd  11/03/2015  09:49  Page 341



..

342 MATRIX ALGEBRA

..

45 Evaluate the determinants of the square 
matrices

46 Show that the area of a triangle with vertices 
(x1, y1), (x2, y2) and (x3, y3) is given by the 
absolute value of

( )  

            

            

            

            

b

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( )  

. . .

. . .

. . .

a

0 42 0 31 0 16

0 17 0 22 0 63

0 89 0 93 0 41

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )  

  

  

  

c

0 2 0

2 4 1

2 3 4

−

−

− −

λ

λ

λ

( )  

    

  

  

b

1 3 4

4 2 1

1 6 2

−

− −

−

λ

λ

λ

( )  
  

   
a

2 7

4 6

−

−

λ

λ

Refer to Question 46 in Exercises (4.2.11) and the
definition of the vector product in Section 4.2.10.

47 Show that x + x2 − 2x3 is a factor of the determinant
D where

and hence express D as a product of linear factors.

48 Show that

= (b − a)(x − a)(x − b)(x + a + b)

Such an exercise can be solved in two lines of 
code of a symbolic manipulation package such as
MAPLE or MATLAB’s Symbolic Math Toolbox.

49 Verify that if A is a symmetric matrix then so is adj A.

50 If A is a skew-symmetric n × n matrix, verify that
adj A is symmetric or skew-symmetric according 
to whether n is odd or even.

x a b

x a b

a b x b x a

2 2 2

      + + +

D

x x

x x

x x

  

         

       

      

    

=
−

− −

− − −

0 2

0 1

2 1 0 1

1 0

2

3

2 3

1

2

1

1

1

1 1

2 2

3 3

    

    

    

x y

x y

x y

5.4 The inverse matrix

In Section 5.3 we constructed adj A and saw that it had interesting properties in rela-
tion to the unit matrix. We also saw, in Example 5.6, that we had a method of solving
linear equations if we could construct B such that AB = I. These ideas can be brought
together to provide a comprehensive theory of the solution of linear equations, which
we will consider in Section 5.5.

Given a square matrix A, if we can construct a matrix B such that

BA = AB = I

then we call B the inverse of A and write it as A−1. From (5.13)

A(adj A) = | A | I
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so that we have gone a long way to constructing the inverse. We have two cases:

l If A is non-singular then | A | ≠ 0 and

l If A is singular then | A | = 0 and it can be shown that the inverse A−1 does 
not exist.

If the inverse exists then it is unique. Suppose for a given A we have two inverses 
B and C. Then

AB = BA = I, AC = CA = I

and therefore

AB = AC

Pre-multiplying by C, we have

C(AB) = C(AC)

But matrix multiplication is associative, so we can write this as

(CA)B = (CA)C

Hence

IB = IC (since CA = I )

and so

B = C

The inverse is therefore unique.
It should be noted that if both A and B are square matrices then AB = I if and only

if BA = I.

Example 5.22 Find A−1 and B−1 for the matrices

Solution
(a)

so that

 
A

A
A

− = =
−

−

⎡

⎣
⎢

⎤

⎦
⎥1

3 2

2 1
    

      

      

adj

| |

 
adj and

T

A A  
      

      
  

      

      
         =

−

−

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢

⎤

⎦
⎥ = −

3 2

2 1

3 2

2 1
1| |

 

( )    
    

    
        ( )    

           

          

          

a and bA B=
⎡

⎣
⎢

⎤

⎦
⎥ = −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2

2 3

5 2 4

3 1 2

1 4 3

| |
− =1  

adj

....
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(b)

so that

In both cases it can be checked that AA−1 = I and BB−1 = I.

Finding the inverse of a 2 × 2 matrix is very easy, since for

Unfortunately there is no simple extension of this result to higher-order matrices. On
the other hand, in most practical situations the inverse itself is rarely required – it is 
the solution of the corresponding linear equations that is important. To understand the
power and applicability of the various methods of solution of linear equations, the 
role of the inverse is essential. The consideration of the adjoint matrix provides a 
theoretical framework for this study, but as a practical method for finding the inverse
of a matrix it is virtually useless, since, as we saw earlier, it is so time-consuming to
compute determinants.

To find the inverse of a product of two matrices, the order is reversed:

(AB)−1 = B−1A−1 (5.16)

(provided that A and B are invertible). To prove this, let C = B−1A−1. Then

C(AB) = (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

and thus

C = B−1A−1 = (AB)−1

Since matrices do not commute in general A−1B−1 ≠ B−1A−1.

In MATLAB the inverse of a matrix A is determined by the command inv(A); first
expressing A in symbolic form using the sym command if the Symbolic Math
Toolbox is used. In MAPLE the corresponding command is inverse(A).

 
A− =

−

−

−

⎡

⎣
⎢

⎤

⎦
⎥ − ≠1 1

0  
  

      

      
    (     )

ad bc

d b

c a
ad bcprovided that 

 
A  

    

    
 =

⎡

⎣
⎢

⎤

⎦
⎥

a b

c d

 

B− =

−

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1

49

5 22 8

11 19 2

13 18 11

  

              

             

         

 

adj and

T

B B             =

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

5 11 13

22 19 18

8 2 11

5 22 8

11 19 2

13 18 11

49| |
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Example 5.23 Given

evaluate (AB)−1, A−1B−1, B−1A−1 and show that (AB)−1 = B−1A−1.

Solution

Example 5.24 Given the two matrices

show that the matrix T −1AT is diagonal.

Solution The inverse is best computed using MATLAB or a similar package. It may be verified by
direct multiplication that

The further multiplications give

1

6

25 15 5

40 48 20

30 54 30

0 0

0

0 6 6

0 6 0 3 0 1

1 1 0 5

1 2 1 5 1

1 0 0

0 2 0

0 0 3

3
5

5
3

5
3

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

. . .

.

. .

  

            

            

            
⎥⎥

 

T − =

−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1

6

25 15 5

40 48 20

30 54 30

  

 

A T  

    

          

. . .

.

. .

=

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0

0 6 6

0 6 0 3 0 1

1 1 0 5

1 2 1 5 1

3
5

5
3

5
3 and

B A AB− − −=
−⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=1 1
1
3

2
3

2
3

1
3

1
3

2
3

1
1 1

1 0

1 1
  

  
  

  
  ( )

A B− − =
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 1
1
3

2
3

2
3

1
3

1
3

2
3

1 1

1 0

1

1
  

      

      

    
  

AB AB  ,    ( )   
      

     
=

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
2 3

1 3

1 1
1

1
3

2
3

A B− −=
−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−⎡

⎣
⎢

⎤

⎦
⎥1

1
3

2
3

2
3

1
3

1
1 1

1 0
  ,      

 
A B            =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 2

2 1

0 1

1 1
and
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This technique is an important one mathematically (see the companion text Advanced
Modern Engineering Mathematics) since it provides a method of uncoupling a system
of coupled equations. Practically it is the process used to reduce a physical system to
principal axes; in elasticity it provides the principal stresses in a body.

Check that in MATLAB the commands

T = [0.6 0.3 0.1; 1 1 0.5; 1.2 1.5 1];

inv(T)

return the inverse T −1 in the numeric form

Check also that, using the Symbolic Math Toolbox, the exact form given in the 
solution is obtained using the commands

T = [0.6 0.3 0.1; 1 1 0.5; 1.2 1.5 1];

T = sym(T);

inv(T)

5.4.1 Exercises

Check your answers to the exercises using MATLAB.

 

4.1667 2.5000 0.8333

6.6667 8.0000 3.3333

5.0000 9.0000 5.0000

−

− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

51 Determine whether the following matrices are
singular or non-singular and find the inverse of 
the non-singular matrices.

52 Find the inverses of the matrices

( )      ( )  a

1 1 1

0 1 0

0 0 1

b

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

( )      ( )  c d

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

1 0 1

0 1 0

1 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )      ( )  a b
1 2

2 1

1 2 3

2 2 1

5 6 5

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

53 Verify that

has an inverse

and hence solve the equation

 

ACA  =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1 1

0 2 3

2 1 0

 

A− = − −

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1

13

1 5 3

2 3 6

5 1 2

  

 

A  =

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 3

2 1 0

1 2 1

( )     ( ) c
j

j 2
d

1 2 3

0 1 2

2 3 1

1

−
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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54 (a) If a square matrix A satisfies A2 = A and has
an inverse, show that A is the unit matrix.

(b) Show that A = satisfies A2 = A.

Note: Matrices that satisfy A2 = A are called
idempotent.

55 If

show that AB = C. Find the inverse of A and B
and hence of C.

Note: This is an example of a powerful method
called LU decomposition.

56 Given the matrix

and the elementary matrices

evaluate E1A, E2E1A, E3E2E1A and E4E3E2E1A and
hence find the inverse of A.

Note: The elementary matrices manipulate the
rows of the matrix A.

 

E    E3 4

1 0 0

0 1 2

0 0 1

1 1 0

0 1 0

0 0 1

= −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   

 

E    E1 2

1 0 0

0 1 0

1 0 1

1 0 0

0 1 0

0 1 1

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   

 

A  =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1 0

0 1 2

1 2 3

 

and      C =

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 4 1

1 6 0

0 4 4

 

A B  ,     =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

1 1 0

0 2 1

1 4 1

0 2 1

0 0 2

1 0

0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

57 For the matrix

show that A2 − 4A − 5I = 0 and hence that 
A−1 = (A − 4I). Calculate A−1 from this result.
Further show that the inverse of A2 is given by 

(21I − 4A) and evaluate.

58 Given

find A−1 and B−1. Verify that (AB)−1 = B−1A−1.

59 Given the matrices

show that A2 = I and B3 = I, and hence find A−1, 
B−1 and (AB)−1. 

Note: The matrices A and B in this exercise are
examples of permutation matrices. For instance, 
A gives

and the suffices are just permuted; B has similar
properties.

 

A

x

x

x

x

x

x

x

x

1

2

3

4

1

3

2

4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

 

A B           =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

and

 

A B            =

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 2

6 4 0

6 2 1

5 2 4

3 1 2

1 4 3

and

1
25

1
5

 

A  

        

        

        

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2 2

2 1 2

2 2 1
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5.5 Linear equations

Although matrices are of great importance in themselves, their practical importance lies
in the solution of sets of linear equations. Such sets of equations occur in a wide range
of scientific and engineering problems. In the first part of this section we shall consider
whether or not a solution exists, and then in Sections 5.5.2 and 5.5.4 we shall look at
practical methods of solution.

We now make some definitive statements about the solution of the system of simul-
taneous linear equations.

(5.17)

or, in matrix notation,

that is,

AX = b (5.18)

where A is the matrix of coefficients and X the vector of unknowns. If b = 0 the 
equations are called homogeneous, while if b ≠ 0 they are called nonhomogeneous
(or inhomogeneous). There are several cases to consider.

Case (a) b ≠≠ 0 and || A || ≠≠ 0
We know that A−1 exists, and hence

A−1AX = A−1b

so that

X = A−1b (5.19)

and we have a unique solution to (5.17) and (5.18).

Case (b) b == 0 and || A || ≠≠ 0
Again A−1 exists, and the homogeneous equations

AX = 0

give

a a a

a a a

a a a

x

x

x

b

b

b

n

n

n n nn n n

11 12 1

21 22 2

1 2

1

2

1

2

    

            

  

            

 
  

 

K

K

M

K

M M

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

n n nn n n

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

         

        

 

        

+ + + =

+ + + =

+ + + =

⎫

⎬

⎪
⎪

⎭

⎪
⎪

K

K

M M

K
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A−1AX = A−10 or X = 0

We therefore only have the trivial solution X = 0.

Case (c) b ≠≠ 0 and || A || == 0
The inverse matrix does not exist, and this is perhaps the most complicated case. We
have two possibilities: either we have no solution or we have infinitely many solutions.
A simple example will illustrate the situation. The equations

are clearly inconsistent, and no solution exists. However, in the case of

where one equation is a multiple of the other, we have infinitely many solutions: x = λ ,
y = 1 − is a solution for any value of λ.

The same behaviour is observed for problems involving more than two variables, but
the situation is then much more difficult to analyse. The problem of determining
whether or not a set of equations has a solution will be discussed in Section 5.6.

Case (d) b == 0 and || A || == 0
As in case (c), we have infinitely many solutions. For instance, the case of two equa-
tions takes the form

px + qy = 0

αpx + αqy = 0

so that | A | = 0 and we find a solution x = λ, y = −pλ /q if q ≠ 0. If q = 0 then x = 0, 
y = λ is a solution. 

This case is one of the most important, since we can deduce the important general
result that the equation

AX = 0

has a non-trivial solution if and only if | A | = 0.

Again the general result will be discussed further in Section 5.6 which looks at the
rank of a matrix.

Example 5.25 Write the five sets of equations in matrix form and decide whether they have or do not
have a solution.

(a) 2x + y = 5 (b) 2x + y = 0 (c) −3x + 6y = 15
x − 2y = −5 x − 2y = 0 x − 2y = −5

(d) −3x + 6y = 10 (e) −3x + 6y = 0
x − 2y = −5 x − 2y = 0

3
2 λ

3 2 2

6 4 4

3 2

6 4

2

4

x y

x y

x

y

    

    
,        

    

    
  

+ =

+ =

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥or

3 2 2

3 2 6

3 2

3 2

2

6

x y

x y

x

y

    

    
,        

    

    
  

+ =

+ =

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥or

....
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Solution (a) In matrix form the equations are The determinant of the matrix 

has the value −5 and the right-hand side is non-zero, so the problem is of the type Case
(a) and hence has a unique solution, namely x = 1, y = 3.

(b) In matrix form the equations are The determinant of the matrix  

has the value −5 and the right-hand side is now zero, so the problem is of the type Case
(b) and hence only has the trivial solution, namely x = 0, y = 0.

(c) In matrix form the equations are The determinant of the matrix

matrix is now zero and the right-hand side is non-zero, so the problem is of the type
Case (c) and hence the solution is not so easy. Essentially the first equation is just (−3)
times the second equation, so a solution can be computed. A bit of rearrangement soon
gives x = 2t − 5, y = t for any t, and thus there are infinitely many solutions to this set
of equations.

(d) In matrix form the equations are The determinant of the matrix 

is zero again and the right-hand side is non-zero, so the problem is once more of the type
Case (c) and hence the solution is not so easy. The left-hand side of the first equation
is (−3) times the second equation but the right-hand side is only (−2) times the second
equation, so the equations are inconsistent and there is no solution to this set of equations.

(e) In matrix form the equations are The determinant of the matrix 

is zero again and the right-hand side is also zero, so the problem is of the type Case (d)
and hence a non-trivial solution can be found. It can be seen that x = 2s and y = s gives
the solution for any s.

Example 5.26 Find a solution of

x + y + z = 6

x + 2y + 3z = 14

x + 4y + 9z = 36

Solution Expressing the equations in matrix form AX = b

1 1 1

1 2 3

1 4 9

6

14

36

        

        

        

  

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

z

−

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

3 6

1 2

0

0

      

      
  .

x

y

−

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥

3 6

1 2

10

5

      

      
  .

x

y

−

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 6

1 2

15

5

      

      
  .

x

y

      

    
  .

2 1

1 2

0

0−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

x

y

2 1

1 2

5

5

      

    
  .

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x

y
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we have

so that a solution does exist and is unique. The inverse of A can be computed as

and hence, from (5.19),

so the solution is x = 1, y = 2 and z = 3.

Example 5.27 Find the values of k for which the equations

x + 5y + 3z = 0

5x + y − kz = 0

x + 2y + kz = 0

have a non-trivial solution.

Solution The matrix of coefficients is

For a non-zero solution, | A | = 0. Hence

Thus the equations have a non-trivial solution if k = 1; if k ≠ 1, the only solution is 
x = y = z = 0. For k = 1 a simple calculation gives x = λ, y = −2λ and z = 3λ for any λ.

Example 5.28 Find the values of λ and the corresponding column vector X such that

(A − λ I )X = 0

 

0

1 5 3

5 1

1 2

27 27    

          

        

         

    = = − = −| |A k

k

k

 

A  

          

        

          

= −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 5 3

5 1

1 2

k

k

  

X       =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

x

y

z

A 1

6

14

36

1

2

3

 

A− =

−

− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

5
2

1
2

3
2

1
2

3

3 4 1

1

  

           

      

            

| |A   

        

        

        

  

        

         

        

       = = = ≠

1 1 1

1 2 3

1 4 9

1 0 0

1 1 2

1 3 8

2 0 (subtracting column 1 from columns 2
and 3)

....
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has a non-trivial solution, given

Solution We require

= −3λ + λ2 + 2 = (λ − 2)(λ − 1)

Non-trivial solutions occur only if λ = 1 or 2.
If λ = 1,

If λ = 2,

(Note: The problem described here is an important one. The λ and X are called eigen-
values and eigenvectors, which are introduced in Section 5.7.)

It is possible to write down the solution of a set of equations explicitly in terms of the
cofactors of a matrix. However, as a method for computing the solution, this is
extremely inefficient; a set of ten equations, for example, will require 4 × 108 multi-
plications – which takes a long time even on modern computers. The method is of 
great theoretical interest though. Consider the set of equations

(5.20)

Denoting the matrix of coefficients by A and recalling the definitions of the cofactors
in Section 5.3, we multiply the equations by A11, A21 and A31 respectively and add 
to give

(a11 A11 + a21 A21 + a31A31)x1 + (a12 A11 + a22 A21 + a32A31)x2

+ (a13 A11 + a23 A21 + a33A31)x3

= b1A11 + b2A21 + b3A31

a x a x a x b

a x a x a x b

a x a x a x b

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

      

      

      

+ + =

+ + =

+ + =

⎫

⎬
⎪

⎭
⎪

 

         

    
  ,         

  
    

1 1

2 2
0

1

1− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = =

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y
so for any X β β

 

        

    
  ,         

  
    

2 1

2 1
0

1

2− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = =

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥

x

y

x

y
so for any X α α

0
3 1

2
      

  
= − =

−

− −
| |A Iλ

λ

λ

 
A  

      

    
=

−

⎡

⎣
⎢

⎤

⎦
⎥

3 1

2 0
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Using (5.11), we obtain

| A |x1 + 0x2 + 0x3 = b1A11 + b2 A21 + b3A31

The right-hand side can be written as a determinant, so

The other xi follow similarly, and we derive Cramer’s rule that a solution of (5.20) is

provided | A | ≠ 0. Again it should be stressed that this rule should not be used as a com-
putational method because of the large effort required to evaluate determinants.

Example 5.29 A function u(x, y) is known to take values u1, u2 and u3 at the points (x1, y1), (x2, y2) and
(x3, y3) respectively. Find the linear interpolating function 

u = a + bx + cy

within the triangle having its vertices at these three points.

Solution To fit the data to the linear interpolating function

u1 = a + bx1 + cy1

u2 = a + bx2 + cy2 or in matrix form

u3 = a + bx3 + cy3

The values of a, b and c can be obtained from Cramer’s rule as

 

a

u x y

u x y

u x y

b

u y

u y

u y

  

    

    

    

/det ( ),      

        

        

        

/det ( )    = =
1 1 1

2 2 2

3 3 3

1 1

2 2

3 3

1

1

1

A A and

u

u

u

x y

x y

x y

a

b

c

1

2

3

1 1

2 2

3 3

1

1

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

        

        

        

 

x

a a b

a a b

a a b

3
1

11 12 1

21 22 2

31 32 3

  

        

        

        

= −| |A

 

x

a b a

a b a

a b a

2
1

11 1 13

21 2 23

31 3 33

  

        

        

        

,= −| |A

 

x

b a a

b a a

b a a

1
1

1 12 13

2 22 23

3 32 33

  

        

        

        

,= −| |A

 

| |A x

b a a

b a a

b a a

1

1 12 13

2 22 23

3 32 33

  

        

        

        

=
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where A is the matrix of coefficients. The interpolation formula is now known. In finite-
element analysis the evaluation of interpolation functions, such as the one described, is
of great importance. Finite elements are central to many large-scale calculations in all
branches of engineering; an introduction is given in Chapter 9 of the companion text
Advanced Modern Engineering Mathematics.

Example 5.30 Solve the matrix equation AX = c where

Solution The solution of such a problem is beyond the scope of hand computation; Cramer’s
rule, evaluation of the adjoint and direct evaluation of the inverse are all impracticable.
Even the more practical methods in the next sections struggle with this size of problem 
if hand computation is tried. A computer package must be used. In MATLAB the 
relevant instructions are given.

b = zeros (10, 10);

for i = 1 : 9, b (i, i) = 4; b (i, i + 1) = 1; b (i + 1, 1)

= 1; end

b (10, 10) = 4;

c = [1; 2; 3; 4; 5; 5; 4; 3; 2; 1];

b\c

gives the solution

0.1685 0.3258 0.5282 0.7188 0.9563 1.0063 0.8063

0.6064 0.4059 0.2079

  

A  

                                    

                                    

                                    

                                    

                                    

                
=

4 1 0 0 0 0 0 0 0 0

1 4 1 0 0 0 0 0 0 0

1 0 4 1 0 0 0 0 0 0

1 0 0 4 1 0 0 0 0 0

1 0 0 0 4 1 0 0 0 0

1 0 0 0 0                        

                                    

                                    

                                    

                                    

4 1 0 0 0

1 0 0 0 0 0 4 1 0 0

1 0 0 0 0 0 0 4 1 0

1 0 0 0 0 0 0 0 4 1

1 0 0 0 0 0 0 0 0 4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

          and c

1

2

3

4

5

5

4

3

2

1

 

c

x u

x u

x u

  

        

        

        

/det ( )=

1

1

1

1 1

2 2

3 3

A
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5.5.1 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

60 Solve the matrix equation AX = b for the vector X
in the following:

61 If

show that

and hence solve for the vector X in the equation

62 Solve the complex matrix equation

 

1 0

0 1 0

0

0

1

0

j

j j

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

X  

 

cos sin

sin cos
  

cos

sin

π π

π π

π

π

8 8

8 8

4

4

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

X

 
A− =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1  
cos sin

sin cos

α α

α α

 
A  

cos sin

sin cos
=

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α α

α α

  

( )          d A =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 0

0 3 1 0

0 1 2 0

0 0 0 1

4

11

7

1

b

  
( )          c A =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1

0 1

1 0

3 1

3

1
b

  

( )          b A = −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

2 1 0

2 2 2

1

6

6

b

  
( )          a A =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3

5 2

8

1
b

63 Find the inverse of the matrix

and hence solve the equations

−x + 2y + z = 2

y − 2z = −3

x + 4y − z = 4

64 Show that there are two values of α for which the
equations

αx − 3y + (1 + α)z = 0

2x + y − αz = 0

(α + 2)x − 2y + αz = 0

have non-trivial solutions. Find the solutions
corresponding to these two values of α.

65 If

find the values of λ for which the equation 
AX = λX has non-trivial solutions.

66 Given the matrix

(a) solve | A | = 0 for real a,

(b) if a = 2, find A−1 and hence solve

 

A

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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⎣

⎢
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⎢
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⎤
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⎥
⎥

  

1
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−

−

−

⎡
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⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1

2 2

1 1

a

a

a

 

A        =
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−
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⎡
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⎢
⎢
⎢
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⎥
⎥
⎥

3 1 1

1 5 1
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⎢
⎢
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⎥
⎥
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1 4 1
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(c) if a = 0, find the general solution of

(d) if a = 1, show that

can be solved for non-zero x, y and z.

67 Use MATLAB or a similar package to find the
inverse of the matrix 

and hence solve the matrix equation

AX = c

where cT = [1 0 0 0 0 1].

68 In finite-element calculations the bilinear function

u(x, y) = a + bx + cy + dxy

is commonly used for interpolation over a
quadrilateral and data is always stored in matrix
form. If the function fits the data u(0, 0) = u1, 
u(p, 0) = u2, u(0, q) = u3 and u(p, q) = u4 at the 
four corners of a rectangle, use matrices to find 
the coefficients a, b, c and d.

69 In an industrial process, water flows through 
three tanks in succession, as illustrated in 
Figure 5.6.

The tanks have unit cross-section and have 
heads of water x, y and z respectively. The rate 
of inflow into the first tank is u, the flowrate in 
the tube connecting tanks 1 and 2 is 6(x − y), 
the flowrate in the tube connecting tanks 2 and
3 is 5(y − z) and the rate of outflow from tank 3 
is 4.5z. 
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Show that the equations of the system in the steady
flow situation are

u = 6x − 6y

0 = 6x − 11y + 5z

0 = 5y − 9.5z

and hence find x, y and z.

70 A function is known to fit closely to the
approximate function

It is fitted to the three points (z = 0, f = 1), (z = 0.5,
f = 1.128) and (z = 1.3, f = 1.971). Show that the
parameters satisfy

Find a, b and c and hence the approximating
function (use of MATLAB is recommended).
Check the value f (1) = 1.543. (Note that the values
were chosen from tables of cosh z.)

The method described here is a simple example
of a powerful approximation method.

71 A cantilever beam bends under a uniform load w
per unit length and is subject to an axial force P 
at its free end. For small deflections a numerical
approximation to the shape of the beam is given 
by the set of equations

−vy1 + y2 = −u

y1 − vy2 + y3 = −4u

y2 − vy3 + y4 = −9u

2y3 − vy4 = −16u
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Figure 5.6 Flow through three tanks in Question 69.
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Figure 5.7 Cantilever beam in Question 71.

The deflections are indicated on Figure 5.7. The
parameter v is defined as

where EI is the flexural rigidity and L is the length
of the beam. The parameter u = wL4/32EI.

Use either Cramer’s rule or the adjoint matrix
to solve the equations when v = 3 and u = 1.

Note the immense effort required to solve this
very simple problem using these methods. In later
sections much more efficient methods will be
described. A computer package such as MATLAB
should be used to check the results.

v    = +2
16

2PL

EI

5.5.2 The solution of linear equations: elimination methods

The idea behind elimination techniques can be seen by considering the solution of two
simultaneous equations

x + 2y = 4

2x + y = 5

Subtract 2 × (equation 1) from (equation 2) to give

x + 2y = 4

−3y = −3

Divide the second equation by −3

x + 2y = 4

y = 1

From the second of these equations y = 1 and substituting into the first equation gives
x = 2.

This example illustrates the basic technique for the solution of a set of linear equa-
tions by Gaussian elimination, which is very straightforward in principle. However, it
needs considerable care to ensure that the calculations are carried out efficiently. Given
n linear equations in the variables x1, x2, … , xn, we solve in a series of steps:

(1) We solve the first equation for x1 in terms of x2, … , xn, and eliminate x1 from
the remaining equations.

(2) We then solve the second equation of the remaining set for x2 in terms of 
x3, … , xn and eliminate x2 from the remaining equations.

(3) We repeat the process in turn on x3, x4, … until we arrive at a final equation for
xn, which we can then solve.

(4) We substitute back to get in turn xn−1, xn−2, … , x1.

For a small number of variables, say two, three or four, the method is easy to apply and
efficiency is not of the highest priority. In most science and engineering problems we
are normally dealing with a large number of variables – a simple stability analysis of 
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a vibrating system can lead to seven or eight variables, and a plate-bending problem
could easily give rise to several hundred variables.

As a further example of the basic technique, we solve

x1 + x2 = 3 (5.21)

2x1 + x2 + x3 = 7 (5.22)

x1 + 2x2 + 3x3 = 14 (5.23)

First, we eliminate x1:

(5.21) gives x1 = 3 − x2 (5.21′′)
(5.22) gives 2(3 − x2) + x2 + x3 = 7, or −x2 + x3 = 1 (5.22′′)
(5.23) gives (3 − x2) + 2x2 + 3x3 = 14, or x2 + 3x3 = 11 (5.23′′)
Secondly we eliminate x2:

(5.22′) gives x2 = x3 − 1 (5.22″″)

(5.23′) gives (x3 − 1) + 3x3 = 11, or 4x3 = 12 (5.23″″)

Equation (5.23″) gives x3 = 3; we put this into (5.22″) to obtain x2 = 2; we then put this
into (5.21′) to obtain x1 = 1. Thus the values x1 = 1, x2 = 2 and x3 = 3 give a solution to
the original problem.

Equations (5.21)–(5.23) in matrix form become

The elimination procedure has reduced the equations to (5.21), (5.22′) and (5.23″),
which in matrix form become

Essentially the elimination has brought the equations to upper-triangular form (that
is, a form in which the matrix of coefficients has zeros in every position below the 
diagonal), which are then very easy to solve.

Elimination procedures rely on the manipulation of equations or, equivalently, the
rows of the matrix equation. There are various elementary row operations used which
do not alter the solution of the equations:

(a) multiply a row by a constant;
(b) interchange any two rows;
(c) add or subtract one row from another.

To illustrate these, we take the matrix equation

which has the solution x1 = 1, x2 = 2, x3 = 3.
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Multiplying the first row by 2 (a row operation of type (a)) yields

Interchanging rows 1 and 3 (a row operation of type (b)) yields

Subtracting row 1 from row 2 (a row operation of type (c)) yields

In each case we see that the solution of the modified equations is still x1 = 1, x2 = 2,
x3 = 3.

Elimination procedures use repeated applications of (a), (b) and (c) in some system-
atic manner until the equations are processed into a required form such as the upper-
triangular equations

(5.24)

The solution of the equations in upper-triangular form can be written as

xn = bn /ann

xn−1 = (bn−1 − an−1,nxn)/an−1, n−1

xn−2 = (bn−2 − an−2,nxn − an−2, n−1xn−1)/an−2, n−2

\

x1 = (b1 − a1nxn − a1, n−1xn−1 − … − a12 x2)/a11

A MATLAB function procedure implementing these equations is shown in Figure 5.8. 
The elementary row operations and the elimination technique are illustrated in 
Example 5.31.
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Example 5.31 Use elementary row operations and elimination to solve the set of linear equations

x + 2y + 3z = 10

−x + y + z = 0

y − z = 1

Solution In matrix form the equations are

Add row 1 to row 2:

Divide row 2 by 3:

Subtract row 2 from row 3:

Divide row 3 by ( ):

The equations are now in a standard upper-triangular form for the application of the
back substitution procedure described formally in Figure 5.8.
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Figure 5.8
Procedure to solve 
the upper-triangular
system (5.24).

function x = uppertrisolve(A,b,n)
% uppertrisolve solves A*x=b where A is an nxn upper
triangular matrix with
%nonzero diagonal elements, b is an n vector
%Note the use of the 'colon' notation
%Note that if semicolons are replaced by commas intermediate
results are
%displayed
z=zeros(n,1);
z(n) = b(n)/A(n,n);
for i=n-1:-1:1

z(i) = (b(i) –A(i,i+1:n)*z(i+1:n))/A(i,i);
end
x=z;
end
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From the third row z = 1

From the second row y = − z = 2

From the first row x = 10 − 2y − 3z = 3

It remains to undertake the operations in the example in a routine and logical manner
to make the method into one of the most powerful techniques, called elimination 
methods, available for the solution of sets of linear equations. The method is available
on all computer packages. Such packages are excellent at undertaking the rather tedious
arithmetic and some will even illustrate the computational detail also. They are well
worth mastering. However, writing and checking your own procedures, implementing
the MATLAB code in Figure 5.8 for instance, is a powerful learning tool and gives
great understanding of the method, the difficulties and errors involved in a method.

Tridiagonal or Thomas algorithm

Because of the ease of solution of upper-triangular systems, many methods use the 
general strategy of reducing the equations to this form. As an example of this strategy,
we shall look at a tridiagonal system, which takes the form

(5.25)

or

a1x1 + b1x2 = d1

c2x1 + a2x2 + b2x3 = d2

c3x2 + a3x3 + b3x4 = d3

O O \

cnxn−1 + an xn = dn

First we eliminate x1:

x1 + b′1x2 = d ′1
a′2x2 + b2x3 = d ′2
c3x2 + a3x3 + b3x4 = d3

and so on
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where

a ′2 = a2 − c2b′1 and d ′2 = d2 − c2d ′1

Next we eliminate x2:

x1 + b′1x2 = d ′1
x2 + b″2x3 = d″2

a″3x3 + b3x4 = d″3
c4x3 + a4x4 + b4x5 = d4

and so on

where

a″3 = a3 − c3b″2 and d″3 = d3 − c3d″2

We can proceed to eliminate all the variables down to the nth. We have then converted
the problem to an upper-triangular form, which can be solved by the procedure in
Figure 5.8. A MATLAB function to solve (5.25) called the tridiagonal or Thomas
algorithm is shown in Figure 5.9. The algorithm is written so that each primed value,
when it is computed, replaces the previous value. Similarly the double-primed values
replace the primed values. This is called overwriting, and reduces the storage required to
implement the algorithm on a computer. It should be noted, however, that the algorithm
is written for clarity and not minimum storage or maximum efficiency. The algorithm is
very widely used; it is exceptionally fast and requires very little storage. Again writing
your own code based on Figure 5.9 can greatly enhance the understanding of the method.

Example 5.32 Use the tridiagonal procedure to solve
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Figure 5.9
Tridiagonal or Thomas
algorithm for the
solution of (5.25).

function x = tridiag(a,b,c,d,n)
%Solves a tridiagonal system
% a=diag(1 to n), b=upper diag(1 to n-1), c=lower diag(2 to
n), d=RHS, %all vectors of dimension n ; note c(1) and b(n)
are not used

% elimination stage
for i=1:n-1,
b(i)=b(i)/a(i);d(i)=d(i)/a(i);a(i)=1; 
a(i+1)=a(i+1)-c(i+1)*b(i);d(i+1)=d(i+1)-
c(i+1)*d(i);c(i+1)=0;
end
% back substitution
x=zeros(n,1);
d(n)=d(n)/a(n);a(n)=1;
x(n)=d(n);
for j=n-1:-1:1,x(j)=d(j)-b(j)*x(j+1);end
%[a,b,c,d] %remove comment at the beginning of the line to 
see final a,b,c,d
end
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Solution The sequence of matrices is given by

The elimination stage is now complete, and we substitute back to give

t = −2, z = − t = 2, y = − z = −1 and x = − y = 1

so that the complete solution is x = 1, y = −1, z = 2, t = −2.

Although the Thomas algorithm is efficient, the procedure in Figure 5.9 is not fool-
proof, as illustrated by the simple example

After the first step we have

The next step divides by the diagonal element a22. Since this element is zero, the
method crashes to a halt. There is a perfectly good solution, however, since simply
interchanging the last two rows,

gives an upper-triangular matrix with the obvious solution z = 1, y = 2, x = 3. It is clear
that checks must be put into the algorithm to prevent such failures.

Gaussian elimination

Since most matrix equations are not tridiagonal, we should like to extend the idea to a
general matrix
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(5.26)

The result of doing this is a method known as Gaussian elimination. It is a little more
involved than the Thomas algorithm. First we eliminate x1:

where

a′22 = a22 − a21a′12, a′23 = a23 − a21a′13, … , b′2 = b2 − a21b′1
a′32 = a32 − a31a′12, a′33 = a33 − a31a′13, … , b′3 = b3 − a31b′1
and so on.

Generally these can be written as

We now operate in an identical manner on the (n − 1) × (n − 1) submatrix, formed by
ignoring row 1 and column 1, and repeat the process until the equations are of upper-
triangular form. At the general step in the algorithm the equations will take the form

(5.27)
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Again overwriting avoids the need for introducing primed symbols; the algorithm is
shown in Figure 5.10.

The procedure is written for a general m × n matrix. To solve the matrix equation
AX = b, where A is a non-singular square n × n matrix, append b to A and then use the
function files elim and uppertrisolve

B = [A,b]

C == elim (n,n+1, B)
z == uppertrisolve (C(:,[1:n]), C(:,n+1),n)

Although packages give the solution very efficiently, for instance X = A\ b, the 
MATLAB procedures in Figures 5.9 and 5.10, together with these few lines of code,
provide an opportunity to look at the intermediate results which can greatly enhance the
understanding of the method.

This algorithm, sharing the merits of the Thomas algorithm, is very widely used by
engineers to solve linear equations.

Example 5.33 Using elimination and back substitution, solve the equations

Solution From the method in Figure 5.10 the steps are

Divide first row by 2:

Subtract row 1 from row 2 and row 3:
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Figure 5.10
Elimination procedure
for (5.26).

function A= elim(m,n,a)
% elim implements Gaussian elimination for a mxn matrix a
% If a(k,k)=0 at any time the method will fail
% remove semicolons at the ends of lines 8,9 and 12 to print
all steps

for k=1:m-1
if k<n
a(k,:)=a(k,:)/a(k,k);
a(k+1:m,k:n)=a(k+1:m,k:n)-a(k+1:m,k)*a(k,k:n);
end

end
A=a;
end
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Divide second row by :

Subtract × (row 2) from row 3:

Divide row 3 by (−2):

The elimination procedure is now complete and the back substitution (from Figure 5.8)
is applied to the upper-triangular matrix.

From the third row z =

From the second row y = 1 − 2z = 0

From the first row x = − y − 2z =

so the solution is x = , y = 0, z = .

Example 5.34 Solve

Solution The elimination sequence is

and application of the upper-triangular procedure gives t = −1, z = 1, y = 1 and x = 1.

It is clear again that if, in the algorithm shown in Figure 5.10, A(i, i) is zero at 
any time, the method will fail. It is, in fact, also found to be beneficial to the stability
of the method to have A(i, i) as large as possible. Thus in (5.27) it is usual to 
perform a ‘partial pivoting’ so that the largest value in the column, | A(p, i) |, is  

chosen and the equations are swapped around to make this element the pivot. In 
Figure 5.11 partial pivoting is included in the elim procedure:

max
i p n� �

1 2 3 1

0 1

0 0 1

0 0 0 2

5

2

5
3

1
3
1
2

7
3
1
2

            

            

            

            

   

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

z

t

1 2 3 1

0 3 5 1

0 0 2 1

0 1 1 2

5

7

1

0

1 2 3 1

0 1

0 0 2 1

0 0

5
3

1
3

                  

            

              

                   

   ,    

                 

                

            

    

− − −
− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− −

x

y

z

t              

   

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥2

3
5
3

7
3

7
3

5

1

x

y

z

t

1 2 3 1

2 1 1 1

1 2 1 0

0 1 1 2

5

3

4

0

            

            

            

            

   

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

z

t

1
2− 1

2

− 1
2

3
2

1
2

1
2

1 2

0 1 2

0 0 1

1

3
2

1
2

1
2

       

        

        

   

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

z

1 2

0 1 2

0 0 2

1

1

3
2

1
2          

          

        

   

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

z

5
2

1 2

0 1 2

0 3

1

3
2

5
2

1
2

3
2

        

        

        

   

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

y

z

1
2

M05B_JAME0734_05_SE_C05B.qxd  11/03/2015  09:52  Page 366



In practical computer implementations of the algorithm the elements of the rows would
not be swapped explicitly. Instead, a pointer system would be used to implement a 
technique known as indirect addressing, which allows much faster computations. The
interested reader is referred to texts on computer programming techniques for a full
explanation of this method.

In a hand-computation version of this elimination procedure there are methods
that maintain running checks and minimize the amount of writing. In this book the
emphasis is on a computer implementation, and the hand computations are provided to
illustrate the principle of the method. It is a powerful learning technique to write your
own programs, but the practising professional engineer will normally use procedures
from a computer software library, where these are available.

In MATLAB the instruction [L, U] = lu(A) provides in U the eliminated matrix.
The method used in MATLAB always uses partial pivoting. The instruction A\b will
give the solution for a square matrix in one step. The MAPLE package can deal with
any size matrix, so the right-hand side of the matrix equation should be appended 
to A and hence included in the elimination, and the instruction gausselim(A); 
provides the elimination. The instruction gaussjord(A); uses a much more subtle
elimination process – see any advanced textbook on numerical linear algebra – and
gives the solution in the most convenient form. The instruction backsub(B) is also
available for the back substitution. The instruction linsolve(A,b); gives the
solution in one step.

Example 5.35 Solve the matrix equation

by Gaussian elimination with partial pivoting.
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5.5 LINEAR EQUATIONS 367

Figure 5.11
Elimination procedure
for (5.26) with partial
pivoting

function A= elimpp(m,n,a )
% elimpp implements Gaussian elimination
% with partial pivoting for an mxn matrix a
% remove semicolons at the ends of lines 8,11,12 and 13
% to print all
for k=1:m-1
if k<n
M=max(abs(a(k:m,k)));
if M>0 %ensures pivot is non-zero

kk=k;while abs(a(kk,k))<M,kk=kk+1;end
a([k,kk],:)=a([kk,k],:);   % row swap
a(k,:)=a(k,:)/a(k,k);
a(k+1:m,k:n)=a(k+1:m,k:n)-
a(k+1:m,k)*a(k,k:n);

end
end

A=a;
end
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Solution The sequence is as follows. We first interchange rows 1 and 2 and eliminate:

We then interchange rows 2 and 3 and eliminate:

There is no need to interchange rows at this stage, and the elimination proceeds 
immediately:

Back substitution now gives t = 0, z = 1, y = 0 and x = 1.

Ill-conditioning

Elimination methods are not without their difficulties, and the following example will
highlight some of them.

Example 5.36 Solve, by elimination, the equations

(a) (b)

Solution Keeping the calculations parallel,

(a) (b)

with solution with solution

y = 4500, x = −2249.85 y = −4500, x = 2250.15
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In Example 5.36 simple equations that have only marginally different coefficients
have wildly different solutions. This situation is likely to cause problems, so it must be
analysed carefully. To do so in full detail is not appropriate here, but the problem is
clearly connected with taking differences of numbers that are almost equal: 0.5001 −
0.5 = 0.0001.

Systems of equations that exhibit such awkward behaviour are called ill-conditioned.
It is not straightforward to identify ill-conditioning in matrices involving many vari-
ables, but an example will illustrate the difficulties in the two-variable case. Suppose
we solve

2x + y = 0.3

x − αy = 0

where α = 1 ± 0.05 has some error in its value. We easily obtain x = 0.3α /(1 + 2α) and
y = 0.3/(1 + 2α), and putting in the range of α values we get 0.0983 � x � 0.1016 and
0.0968 � y � 0.1034. Thus an error of ±5% in the value of α produces an error of ±2%
in x and an error of ±3% in y.

If we now try to solve

2x + y = 0.3

x + αy = 0.3

where α = 0.4 ± 0.05, then we get the solution x = 0.3(1 − α)/(1 − 2α), y = −0.3/(1 −
2α). Putting in the range of α values now gives 0.65 � x � 1.65 and −3 � y � −1, and
an error of ±12% in the value of α produces errors in x and y of up to 100%.

Figure 5.12 illustrates these equations geometrically. We see that a small change in
the slope of the line x − αy = 0 makes only a small difference in the solution. However,
changing the slope of the line x + αy = 0.3 makes a large difference, because the lines
are nearly parallel. Identifying such behaviour for higher-dimensional problems is not
at all easy. Sets of equations of this kind do occur in engineering contexts, so the
difficulties outlined here should be appreciated. In each of the ill-conditioned cases 
we have studied, the determinant of the system is ‘small’:

= −0.2 ± 0.1

Thus the equations are ‘nearly singular’ – and this is one means of identifying the prob-
lem. However, the reader should refer to a more advanced book on numerical analysis
to see how to identify and deal with ill-conditioning in the general case.
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5.5.3 Exercises

Most of these exercises will require MATLAB or MAPLE for their solution. To appreciate the elimination
method, hand computation should be tried on the first few exercises.

Figure 5.12 Solution of (a) 2x + y = 0.3, x − αy = 0 with α = 1 ± 0.05; and (b) 2x + y = 0.3, x + αy = 0.3 with 
α = 0.4 ± 0.05. The heavy black lines indicate the ranges of the solutions.

72 Use elimination with or without partial pivoting, 
to solve the equations
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73 Solve the equations

4x − y = 2

−x + 4y − z = 5

−y + 4z − t = 3

−z + 4t = 10

using the tridiagonal algorithm.

74 Solve the equations

4x − y − t = −4

−x + 4y − z = 1

−y + 4z − t = 4

−x − z + 4t = 10

using Gaussian elimination.
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75 Solve, using Gaussian elimination with partial
pivoting, the following equations:

(a)

(b)

(c)

76 The two almost identical matrix equations 
are given

Use MATLAB or MAPLE to show that the
solutions are wildly different. Evaluate the
determinants of the two 3 × 3 matrices.

77 Show that a tridiagonal matrix can be written in
the form
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A matrix that has zeros in every position below 
the diagonal is called an upper-triangular matrix
and one with zeros everywhere above the diagonal
is called a lower-triangular matrix. A matrix that
only has non-zero elements in certain diagonal lines
is called a banded matrix. In this case we have
shown that a tridiagonal matrix can be written as the
product of a lower-triangular banded matrix and an
upper-triangular banded matrix.

78 A wire is loaded with equal weights W at 
nine uniformly spaced points, as illustrated in 
Figure 5.13. The wire is sufficiently taut that 
the tension T may be considered to be constant. 
The end points are at the same level, so that 
u0 = u10 = 0 and the system is symmetrical about 
its midpoint. The equations to determine the
displacements ui are 

W = (T/d)(2u1 − u2 )

W = (T/d)(−u1 + 2u2 − u3 )

W = (T/d)( −u2 + 2u3 − u4 )

W = (T/d)( −u3 + 2u4 − u5)

W = (T/d)( − 2u4 + 2u5)

Taking Wd/T = l, calculate ui /l for i = 1, … , 5.
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Figure 5.13 Loaded wire.
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5.5.4 The solution of linear equations: iterative methods

An alternative and very popular way of solving linear equations is by iteration. This 
has the attraction of being easy to program. In practice, the availability of efficient 
procedures in computer libraries means that elimination methods are usually preferred
for small problems. However, when the number of variables gets large, say several
hundred, elimination methods struggle because the matrices can contain 106 or more
elements. Problems of such size commonly occur in those scientific and engineering
computations that require numerical solution on a mesh. Typically, in a turbine flow,
we have a three-dimensional fluid flow problem that would need to be solved for three
velocities and pressure on a 30 × 30 × 30 mesh. The problem would require the solu-
tion of a 27 000 × 27 000 matrix equation. The saving feature of such problems is that
it is very common for almost all the entries in the matrix to be zero. Matrices in which
the large majority of elements are zero are called sparse matrices. Unless there is 
special structure to the equations, elimination will quickly destroy the sparseness. On
the other hand, iterative methods only have to deal with the non-zero terms, so there 
is considerable computational saving. As usual, there is a price to pay:

(a) it is not always easy to decide when the method has converged;
(b) if the method takes a very large number of iterations to converge, any savings

are quickly consumed.

A simple example will illustrate the way the method proceeds; in this example exact
fractions will be used.

To solve the equations

4x + y = 2

x + 4y = −7

we first rearrange them as

x = (2 − y)

y = (−7 − x)

and start with x = 0, y = 0.

Putting these values into the right-hand side gives x = , y = −

Putting these new values into the right-hand side gives x = , y = −

Putting these new values into the right-hand side gives x = , y = −

Putting these new values into the right-hand side gives x = , y = −

Putting these new values into the right-hand side gives x = , y = −

Performing the same procedure repeatedly, normally called iteration, gives a set of
numbers that appear to be tending to the solution x = 1, y = −2.

This particular example shows the strength of the method but we are not always so
fortunate, as illustrated in the next example.
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Consider the tridiagonal equations in Example 5.32:

2x + y = 1

x + 2y + z = 1

y + 2z + t = 1

z + 2t = −2

We can rearrange these as

(5.28)

Suppose we start with x = y = z = t = 0. We substitute these into the right-hand side and
evaluate the new x, y, z and t; we then substitute the new values back in and repeat the
process. Such iteration gives the results shown in Figure 5.14. This shows values going
depressingly slowly to the solution 1, −1, 2, −2: even after 20 iterations the values are
0.9381, −0.9767, 1.9727, −1.9856. The method just described is called the Jacobi
method, and can be written, using superscripts as iteration counters, in the form

x(r+1) = (1 − y(r))

y(r+1) = (1 − x(r) − z(r))

z(r+1) = (1 − y(r) − t(r))

t(r+1) = (−2 − z(r))

An obvious step is to use the new values as soon as they are available. In the two-
variable example the same equations

x = (2 − y)

y = (−7 − x)1
4
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Iteration 0 1 2 3 4 5 6 7 8 9 10

x 0 0.5 0.25 0.5 0.5 0.6562 0.6719 0.7734 0.7852 0.8516 0.8594
y 0 0.5 0 0 −0.3125 −0.3437 −0.5469 −0.5703 −0.7031 −0.7187 −0.8057
z 0 0.5 0.75 1.1250 1.1875 1.4375 1.4687 1.6328 1.6523 1.7598 1.7725
t 0 −1 −1.25 −1.3750 −1.5625 −1.5937 −1.7187 −1.7344 −1.8164 −1.8262 −1.8799

Figure 5.14 Iterative solution of (5.28) using Jacobi iteration.
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Iteration 0 1 2 3 4 5 6 7 8 9 10

x 0 0.5 0.375 0.4375 0.6172 0.7480 0.8350 0.8920 0.9293 0.9537 0.9697
y 0 0.25 0.125 −0.2344 −0.4961 −0.6699 −0.7839 −0.8586 −0.9074 −0.9394 −0.9603
z 0 0.375 1.0312 1.3750 1.5918 1.7329 1.8252 1.8856 1.9251 1.9510 1.9679
t 0 −1.1875 −1.5156 −1.6875 −1.7959 −1.8665 −1.9126 −1.9426 −1.9626 −1.9755 −1.9840

Figure 5.15 Iterative solution of (5.28) using Gauss–Seidel iteration.

are used and the same starting point x = 0, y = 0 is used. The iteration proceeds slightly
differently:

Put the values 0, 0 in the first equation ⇒ x =

Put the values , 0 in the second equation ⇒ y =

Put the values ,  in the first equation ⇒ x =

Put the values , in the second equation ⇒ y =

Put the values ,  in the first equation ⇒ x =

and continue in the same way. It can be seen that already the convergence is very much
faster.

In the second example we use the new values of x, y, z and t as soon as they are 
calculated: the method is called Gauss–Seidel iteration. This can be written as

x(r+1) = (1 − y(r))

y(r+1) = (1 − x(r+1) − z(r))

z(r+1) = (1 − y(r+1) − t(r))

t(r+1) = (−2 − z(r+1))

The calculation now yields the results shown in Figure 5.15. We see that, after the ten
iterations quoted, the solution obtained by Gauss–Seidel iteration is within 4% of the
actual solution whereas that obtained by Jacobi iteration still has an error of about 20%.
The Gauss–Seidel method is both faster and more convenient for computer imple-
mentation. Within 20 iterations the Gauss–Seidel solution is accurate to three decimal
places.

Although the two iteration methods have been described in terms of a particular
example, the method is quite general. To solve

AX = b

we rewrite

A = D + L + U

where D is diagonal, L only has non-zero elements below the diagonal and U only has
non-zero elements above the diagonal, so that
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The Jacobi method is written in this notation as

DX(r+1) = −(L + U )X(r) + b

and the Gauss–Seidel method as

DX(r+1) = −LX(r+1) − UX(r) + b

(Remember that X(r) denotes the rth iteration of X, not X raised to the power r.)
By changing the method slightly, we have been able to speed up the method, so it 

is natural to ask if it can be speeded up even further. A popular method for doing this
is successive over-relaxation (SOR). This anticipates what the xi values might be 
and overshoots the values obtained by Gauss–Seidel iteration. The new value of each
component of the vector X(r+1) is taken to be

wxi
(r+1) + (1 − w)x i

(r) (5.29)

which is the weighted average of the previous value and the new value given by
Gauss–Seidel iteration. In the two-variable example the weighted average rearranges
the equations as

x = w[ (2 − y)] + (1 − w)x = x + w[ (2 − y − 4x)]

y = w[ (−7 − x)] + (1 − w)y = y + w[ (−7 − x − 4y)]

The convergence for this example is so rapid that the enhanced convergence of 
SOR is hardly worth the effort; an optimum value of w = 1.05 reduces the con-
vergence, to six significant figures, from seven to six iterations. However, for most
problems the improved convergence is significant. Note that w = 1 gives the Gauss–
Seidel method.

If we repeat the calculation for (5.28) including (5.29) with w = 1.2, we obtain the
results shown in Figure 5.16, together with a comparison of the other two methods. It
may be noted that the iterations converge even faster than the two previous methods,
with a solution accurate to about 0.1% after ten steps. The optimum value of w is of

1
4

1
4

1
4

1
4

 

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

 

                  

                       

                                 

                          

                                    

,

0

0

0

0

12 13 1

23 2

10

a a a

a a

a

n

n

n n

K

K

O M

  

A  

                      

  

 

  

,

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥−

a

a

a

a

a

a a

a a ann n n n n

11

22

33

21

31 32

1 2 1

0

0

0
0

0

0

0

O M M O

K

M05B_JAME0734_05_SE_C05B.qxd  11/03/2015  09:52  Page 375



..

376 MATRIX ALGEBRA

..

great interest, and specialist books on numerical analysis give details of how this can
be computed (for example, Applied Linear Algebra, Peter Olver and Cheri Shakiban
(2005), Pearson). Usually the best approach is a heuristic one – experiment with w to
find a value that gives the fastest convergence. For ‘one-off’ problems this is hardly
worth the effort so long as convergence is achieved, but in many scientific and engin-
eering problems the same calculation may be done many hundreds of times, so the opti-
mum value of w can reduce calculation time by half or more. For the current problem
the number of iterations required to give four-decimal-place accuracy is shown in
Figure 5.17.

It can be shown that outside the region 0 � w � 2 the method will diverge but that
inside it may or may not converge. The case w � 1 is called under-relaxation and 
w � 1 is called over-relaxation. In straightforward problems, w in the range 1.2–1.8
usually gives the most rapid convergence, and this is normally the region to explore 
as a first guess. In the problem studied, a value of w = 1.4 gives just about the fastest
convergence, requiring only about two-thirds of the iterations required for the Gauss–
Seidel method. In some physical problems, however, under-relaxation is required in
order to avoid too rapid variation from iteration to iteration.

Great care must be taken with iterative methods, and convergence for some equa-
tions can be particularly difficult. Considerable experience is needed in looking at sets
of equations to decide whether or not convergence can be expected, and often – even
for the experienced mathematician – the answer is ‘try it and see’. A rearrangement of
equations can greatly affect the convergence of iterative methods. For instance, in the
2 × 2 example, if the equations are interchanged

Gauss–Seidel

X=[0.5;0.5;0.5;0.5];
Xold=X; XX=X; 
for i=1:20

X(1)=(1-Xold(2))/2;
X(2)=(1-X(1)-Xold(3))/2;
X(3)=(1-X(2)-Xold(4))/2;
X(4)=(-2-X(3))/2;
Xold=X;XX=[XX,X];

end

After 20 iterations

0.9995
X = −0.9994

1.9995
−1.9998

Jacobi

X=[0.5;0.5;0.5;0.5]; Xold=X;
XX=X; 
for i=1:20

X(1)=(1-Xold(2))/2;
X(2)=(1-Xold(1)-Xold(3))/2;
X(3)=(1-Xold(2)-Xold(4))/2;
X(4)=(-2-Xold(3))/2;
Xold=X;XX=[XX,X];

end

After 20 iterations

0.9883
X = −0.9682

1.9811
−1.9804

SOR with w = 1.2

X=[0.5;0.5;0.5;0.5]; Xold=X;
XX=X; w=1.2; 
for i=1:20

X(1)=(1-w)*Xold(1)+w*(1-
Xold(2))/2;

X(2)=(1-w)*Xold(2)+w*(1-X(1)-
Xold(3))/2;

X(3)=(1-w)*Xold(3)+w*(1-X(2)-
Xold(4))/2;

X(4)=(1-w)*Xold(4)+w*(-2-
X(3))/2;

Xold=X;XX=[XX,X];
end

After 20 iterations

1.0000
X = −1.0000

2.0000
−2.0000

Figure 5.16 Algorithm to implement Jacobi, Gauss–Seidel and SOR iterations for (5.28) starting at 
XT = [0.5, 0.5, 0.5, 0.5]

SOR factor w 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Iterations required for convergence �50 �50 47 34 26 21 17 29 �50

Figure 5.17 Variation of rate of convergence with SOR factor w.
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x + 4y = −7 
and the Jacobi iteration is written

x(r+1) = −7 − 4y(r)

4x + y = 2 y(r+1) = 2 − x(r)

the iteration diverges wildly even from a starting value x = 1.1, y = −2.1, which is close
to the exact solution. One simple test that will guarantee convergence is to test whether
the matrix is diagonally dominant. This means that the magnitude of a diagonal ele-
ment is larger than or equal to the sum of the magnitudes of the off-diagonal elements

in that row, or for each i. If the system is not diagonally dominant, the 

iteration method may or may not converge.
A detailed analysis of the convergence of iterative methods is not possible without

a study of eigenvalues, and can be found in specialist numerical analysis books.
Iterative methods described in this section are fairly easy to program and an imple-

mentation in MATLAB, or similar package, is highly suitable, as in Figure 5.16.

5.5.5 Exercises

| | | |a aii
j
i j

n

ij  �
=
≠

∑
1

Note: All of these exercises are best solved 
using a computer matrix package such as
MATLAB.

79 Solve the equations in Question 73 
(Exercises 5.5.3) using Jacobi iteration 
starting from the estimate X = [1 1 1 1]T. 
How accurate is the solution obtained after five
iterations?

80 Solve the equations in Question 74 (Exercises 5.5.3)
using Gauss–Seidel iteration, starting from the
estimate X = [1 0 0 0]T. How accurate is 
the solution obtained after three iterations?

81 Write a computer program in MATLAB or
similar package to obtain the solution, by SOR, 
to the equations in Question 75 (Exercises 5.5.3).
Determine the optimum SOR factor for each
equation.

82 Use a SOR program to solve the equations

x − 0.7y = −4

−0.7x + y − 0.7z = 34

−0.7y + z = −44

so that successive iterations differ by no more
than 1 in the fourth decimal place. Find a SOR
factor that produces this convergence in less than 
50 iterations.

83 Show that the circuit in Figure 5.18 has equations

Take R1 = 1, R2 = 2, R3 = 2, R4 = 2 and R5 = 3 
(all in Ω) and E = 1.5 V. Show that the equations
are diagonally dominant, and hence solve the
equations by an iterative method.

84 Solve the 10 × 10 matrix equation in Example 5.30
using an iterative method starting from 
X = [1 1 1 1 1 1 1 1 1 1]T. 
Verify that a solution to four-figure accuracy 
can be obtained in less than ten iterations.
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Figure 5.18 Circuit for Question 83.
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5.6 Rank

The solution of sets of linear equations has been considered in Section 5.5. Provided the
determinant of a matrix is non-zero, we can obtain explicit solutions in terms of the
inverse matrix. However, when we looked at cases with zero determinant the results
were much less clear. The idea of the rank of a matrix helps to make these results 
more precise. Unfortunately, rank is not an easy concept, and it is usually difficult to
compute. We shall take an informal approach that is not fully general but is sufficient
to deal with the cases (c) and (d) of Section 5.5. The method we shall use is to take the
Gaussian elimination procedure described in Figure 5.11 (Section 5.5.2) and examine
the consequences for a zero-determinant situation.

If we start with the equations

(5.30)

and proceed with the elimination, the first and second steps are quite normal:

The next step in the elimination procedure looks for a non-zero entry in the third 
column on or below the diagonal element. All the entries are zero – so the procedure,
as it stands, fails. To overcome the problem, we just proceed to the next column and
repeat the normal sequence of operations. We interchange the third and fourth rows and
perform the elimination on column 4. Finally we interchange rows 4 and 5 to give

(5.31)
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To perform the back substitution we put x6 = µ. Then

row 4 gives x5 = −3x6 = −3µ

row 3 gives x4 = 1 + x5 + 3x6 = 1

put x3 = λ

row 2 gives x2 = 1 − x3 − x5 − 2x6 = 1 − λ + µ

row 1 gives x1 = 1 − x3 − x4 = −λ

Thus our solution is

x1 = −λ, x2 = 1 − λ + µ, x3 = λ, x4 = 1, x5 = −3µ, x6 = µ

The equations have been reduced to echelon form, and it is clear that the same process
can be followed for any matrix.

In general we use the elementary row operations, introduced in Section 5.5.2, to
manipulate the equation or matrix to echelon form:

Below the line all the entries are zero, and the leading element, marked ×, in each row
above the line is non-zero. The row operations do not change the solution to the set of
equations corresponding to the matrix.

When this procedure is applied to a non-singular matrix, the method reduces to that
shown in Figure 5.10, the final matrix has non-zero diagonal elements, and back sub-
stitution gives a unique solution. When the determinant is zero, as in (5.30), the elimina-
tion gives a matrix with some zeros in the diagonal and some zero rows, as in (5.31).
The number of non-zero rows in the echelon form is called the rank of the matrix, 
rank A; in the case of the matrix in (5.30) and that derived from it by row manipulation
(5.31), we have rank A = 4.

Example 5.37 Find the rank of the matrices

( )     ( )     ( ) a b c

1 1 1

2 1 2

0 3 4

1 1 1

2 2 2

1 1 1

1 0 0

0 1 1

2 0 1
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−
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Solution Using the usual elimination method gives in each case

(a)

(b)

(c)

The more common definition of rank is given by the order of the largest square sub-
matrix with non-zero determinant. A square submatrix is formed by deleting rows and
columns to form a square matrix. In (5.30) the 6 × 6 determinant is zero and all the 
5 × 5 submatrices have zero determinant; however, if we delete columns 3 and 6 and
rows 3 and 4, we obtain

which has determinant equal to one, hence confirming that the matrix is of rank 4. To
show equivalence of the two definitions is not straightforward and is omitted here. To
determine the rank of a matrix, it is very much easier to look at the echelon form.

If we find any of the rows of the echelon matrix to be zero then, for consistency, the
corresponding right-hand sides of the matrix equation must also be zero. The elementary
row operations reduce the equation to echelon form, so that the equations take the form

1 0 1 0
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0 0 0 1

1 1 0 2
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where u is a vector with m elements and v is a vector with (n − m) elements. Note that
each of the m non-zero rows will have a leading non-zero entry of 1 but this entry will
not necessarily be on a diagonal, as illustrated for example in (5.31). Three statements
follow from this reduction.

(i) The matrix has rank (A) = m.
(ii) If x ≠ 0 then the equations are inconsistent.
(iii) If v = 0 then the equations are consistent and have a solution. In addition the

solution has (n − m) free parameters.

For rows 1, 2, . . . , m the leading term 1 occurs in columns c1, c2, . . . , cm and hence the
variables xc1

, xc2
, . . . , xcm

can be calculated in terms of the RHS and the other (n − m)
variables, which can be specified arbitrarily. Thus the solution has (n − m) free param-
eters and establishes result (iii).

Writing the equations as

AX = b (5.32)

we define the augmented matrix (A : b) as the matrix A with the b column added to it.
When reduced to echelon form the matrix and the augmented matrix take the form 

and the solution of the equations can be written in terms of rank. It is easy to see from
the echelon form that A and (A : b) must have the same rank to ensure consistency. The
original equations must have the same property, so we can state the results (c) and (d)
of Section 5.5 more clearly in terms of rank.
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If A and the augmented matrix (A : b) have different rank then we have  
no solution to the equations (5.32). If the two matrices have the same rank
then a solution exists, and furthermore the solution will contain a number
of free parameters equal to n − rank A.

The calculation of rank is not easy, so, while the result is rigorous, it is not simple
to apply. Reducing equations to echelon form tells us immediately the rank of the asso-
ciated matrix, and gives a constructive method of solution. There is a large amount of
arithmetic in the reduction, but if the solution is required then this is inevitable anyway.
The numerical calculation of rank does not normally entail reduction to echelon form;
rather more advanced methods such as singular value decomposition are used.

The instruction rank(A) evaluates the rank of an m × n matrix A in both
MATLAB and MAPLE.

Example 5.38 Reduce the following equations to echelon form, calculate the rank of the matrices and
find the solutions of the equations (if they exist):

(a) (b)

Solution (a) Rows 1 and 3 are interchanged, and the elimination then proceeds as follows:
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Eliminate elements in column 2:

Interchange row 3 and row 4:

The rank of the matrix is 3 while that of the augmented matrix (A : b) is 4, so the 
equations represented by the matrix equation (a) are not consistent. Note that the last
row cannot be satisfied and hence the equations have no solution.

(b) Interchanging the first and last rows, making the pivot 1 and performing the first
elimination, we obtain 

The matrix and the augmented matrix both have rank 2, so the equations are consistent
and we can compute the solution:

x1 = 1 − λ, x2 = λ, x3 = 1 − λ + µ − v, x4 = µ, x5 = v

As expected, the solution contains three free parameters, since the order of the equation
is 5 and the rank is 2.

In most practical problems that reduce to the solution of linear equations, it is usual
that there are n independent variables to be computed from n equations. This is not
always the case and the resulting matrix form is not square. A geometrical example 
of four equations and three unknowns was described in equation (5.1). The idea of 
a determinant is only sensible if matrices are square, so the simple results about the 
solution of the equations cannot be used. However, the ideas of elementary row oper-
ations, reduction to echelon form and rank still hold and the existence or non-existence
of solutions can be written in terms of these concepts. Some examples will illustrate the
possible situations that can occur.
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Underspecified sets of equations

Here there are more variables than equations.

Case (a)

Subtract row 1 from row 2:

The elimination is now complete and the back substitution starts:

Put z = t

From row 2 y = 1 − 2t

From row 1 x = 1 − y − z = t

so the full solution is

x = t, y = 1 − 2t, z = t

for any t. Note that rank (A) = rank (A : b) = 2 and n = 3 so the solution has one free
parameter.

Case (b)

Subtract 2 × (row 1) from row 2:

and it is clear that rank (A) = 1 and rank (A : b) = 2 so there is no solution. Obviously
the last row is inconsistent. Although this example may be seen to be almost trivial
since the equations are obviously inconsistent [x + y + z = 1 and 2(x + y + z) = 1], in
larger systems the situation is hardly ever obvious.

Overspecified sets of equations

Here there are more equations than variables.
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Case (c)

Subtract row 1 from rows 2 and 3:

Subtract 2 × (row 2) from row 3:

It can be observed that rank (A) = rank (A : b) = 2 and that the equations are consistent
since the last row contains all zeros. Since n = 2 a unique solution is obtained as 
x = −2 and y = 1 using back substitution.

However, for overspecified equations the more common situation is that no solution
is possible.

Case (d)

Subtract row 1 from rows 2 and 3:

Subtract 2 × (row 2) from row 3:

The equations are now clearly inconsistent since the last row says 0 = −4 and rank
(A) = 2, rank (A : b) = 3 confirms this observation.

The existence or non-existence of solutions can be deduced from the echelon form
and hence the idea of rank, and we can understand the solution of matrix equations
involving non-square matrices. If A is a p × q matrix and b a p × 1 column vector, the
matrix equation AX = b represents p linear equations in q variables. The rank of a
matrix, being the number of non-zero rows in the echelon form of the matrix, cannot
exceed p. On the other hand, the row reduction process will produce an echelon form
with at most q non-zero rows. Hence the rank of a p × q matrix cannot exceed the
smaller of p and q. Figure 5.19 summarizes the results.
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Notes:
(i) In Section 5.5 the existence of solutions for p equations in p unknowns was stated in Cases (a) to (d). These results are

clarified in the table. In particular, it establishes the very important result that AX = 0 has a non-trivial solution if and
only if det(A) = 0.

(ii) The MAPLE instruction linsolve(A,b) produces a null reply if no solution exists and gives a solution with
the r free parameters when appropriate. MATLAB requires the use of pinv and null instructions to obtain the
full r free parameter solution; there is no single instruction for the task.

(iii) An alternative view of linear dependence/independence can be extracted from the table for the case b = 0. Recall from
Section 5.2.2 and Example 5.3 that the vectors a1, a2, . . . , aq of order p × 1 are linearly dependent/independent if the
equation

α1a1 + α2a2 + . . . +αqaq = 0

has a non-zero/zero solution for α1, α2, . . . , αq. Write the vectors as the columns of a p × q matrix and the coefficients
as a q × 1 column vector

A = [a1, a2, . . . , aq] and XT = [α1, α2, . . . , αq]

We are therefore looking for a solution of the matrix equation

AX = 0

Since rank(A : 0) = rank(A), reading from the last two columns of the table:

(a) if r = q − rank(A) > 0 then X ≠ 0 exists, so the vectors are linearly dependent;
(b) if r = q − rank(A) = 0 with p > q then X = 0 is the only solution and the vectors are linearly independent.

(iv) From (iii) (a) any (p + 1) vectors of order p × 1 are linearly dependent.

(v) For the square matrix case, p vectors of order p × 1 placed in the columns of A, linear dependence/independence is
determined by det(A) = 0/det(A) ≠ 0.

386 MATRIX ALGEBRA

....

rank(A : b) > rank(A)
rank(A : b) = rank(A)

p < q No solution for X

p > q No solution for X

p = q No solution for X

Figure 5.19 Summary of the existence of solutions of the matrix equation AX = b where A is p × q matrix
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Solution for X with r free
parameters

b = 0, a solution X ≠ 0 exists

Solution for X with r free
parameters

b = 0, a solution X ≠ 0 exists

Solution for X with r free
parameters

det(A) = 0

b = 0, a solution X ≠ 0 exists

q = rank(A)

Not possible since 
rank(A) ≤ p < q

Unique solution for X

b = 0, only solution is X = 0

Unique solution for X

det(A) ≠ 0

b = 0, only solution is X = 0
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Example 5.39 Determine whether the following sets of vectors are linearly dependent or independent

(a) (b) (c) (d) 

Solution (a) only has the solution α = β = 0. Alternatively, the matrix of 

vectors has the number of columns q = 2 and rank = 2 so [q − rank(A)] = 0 

and the vectors are linearly independent.

(b) so the vectors are linearly dependent. Alternatively, in the matrix of 

vectors we have col 3 = col 1 + col 2, so has zero determinant and  

rank = 2. The vectors are linearly dependent since [q − rank(B)] = 1.

(c) The matrix has non-zero determinant, so the vectors are linearly 

independent.

(d) The matrix has rank = 3 since the last three columns have a 

determinant of −4. There are four columns, so [q − rank(C)] = 1; the vectors are linearly 

dependent, in agreement with note (iii)(a). It may be checked that 
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5.6.1 Exercises

Check your answers using MATLAB or MAPLE whenever possible. 

85 Find the rank of A and of the augmented 
matrix (A : b). Solve AX == b where possible 
and check that there are (n − rank(A)) free
parameters.

86 Find the rank of the coefficient matrix and of the
augmented matrix in the matrix equation

For each value of α, find, where possible, the
solution of the equation.

87 Find the rank of the matrices
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0

b

  

( )          e A =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0

0 1

1 0

1

0

0

b

  
( )          d A =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0 1

0 1 0

2

1
b

  

( )          c A =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

0 1 1

0 1 1

1

0

0

b

  
( )          b A =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 0

0 0

0

1
b

  
( )          a A =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

2 1

0

1
b

88 Reduce the matrices in the following equations to
echelon form, determine their ranks and solve the
equations, if a solution exists:

(a)

(b)

89 By obtaining the order of the largest square
submatrix with non-zero determinant, determine
the rank of the matrix

Reduce the matrix to echelon form and confirm your
result. Check the rank of the augmented 
matrix (A : b), where bT = [−1 0 −1 0]. 
Does the equation AX = b have a solution?

90 Solve, where possible, the following matrix
equations:

(a)

(b)

(c)

1 4 7 3

2 3 6 1

0 11 8 5

1

3

5

−

− −

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

z

t

  

2 1

4 6

3 5

1

4

2

    

    

    

  

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

          

        
  

1 3 4

1 3 4

1

3−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x

y

z

A  =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 1 0 1

1 0 0 1

0 1 0 0

1 1 1 1

1 2 1 1

1 1 0 0

0 1 1 1

1 0 1 1

0

1

1

1

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x

y

z

t

  

1 2 3

3 2 1

1 1 1

8

4

3

        

        

        

  

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

y

z
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(d)

91 In a fluid flow problem there are five natural
parameters. These have dimensions in terms of
length L, mass M and time T as follows:

velocity = V = LT −1, density = ρ = ML−3

distance = D = L, gravity = g = LT−2

and

viscosity = µ = ML−1T −1

To determine how many non-dimensional
parameters can be constructed, seek values of p, q,
r, s and t so that

Vpρ qDrgsµ t

is dimensionless. Write the equations for p, q, r, s
and t in matrix form and show that the resulting 
3 × 5 matrix has rank 3. Thus there are two
parameters that can be chosen independently. 
By choosing these appropriately, show that they
correspond to the Reynolds number Re = VρD/µ
and the Froude number Fr = Dg/V 2.

92 Four points in a three-dimensional space have
coordinates (xi, yi, zi) for i = 1, … , 4. From the
rank of the matrix

2 1 4

3 2 9

4 1 3

3 3 3

1

4

2

3

        

        

        

        

  

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x

y

z

determine whether the points lie on a plane or a line
or whether there are other possibilities.

93 A popular method of numerical integration – see 
the work in Chapter 8 – involves Gaussian
integration; it is used in finite-element calculations
which are well used in most of engineering. As a
simple example, the numerical integral over the
interval −1 � x � 1 is written

�
1

−1

f (x)dx = C1 f (x1) + C2 f (x2)

and the formula is made exact for the four functions
f = 1, f = x, f = x2 and f = x3, so it must be accurate
for all cubics. This leads to the four equations

C1 + C2 = 2

C1x1 + C2x2 = 0

C1x
2
1 + C2x

2
2 =

C1x
3
1+ C2x

3
2 = 0

Use Gaussian elimination to reduce the equations
and hence deduce that the equations are only
consistent if x1 and x2 are chosen at the ‘Gauss’
points ± .1

3√

2
3

x y z

x y z

x y z

x y z

1 1 1

2 2 2

3 3 3

4 4 4

1

1

1

1

        

        

        

        

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

5.7 The eigenvalue problem
A problem that leads to a concept of crucial importance in many branches of math-
ematics and its applications is that of seeking non-trivial solutions X ≠ 0 to the matrix 
equation

AX = λX

This is referred to as the eigenvalue problem; values of the scalar λ for which non-
trivial solutions exist are called eigenvalues and the corresponding solutions X ≠ 0 are
called the eigenvectors. We saw an example of eigenvalues in Example 5.28. Such
problems arise naturally in many branches of engineering. For example, in vibrations
the eigenvalues and eigenvectors describe the frequency and mode of vibration respect-
ively, while in mechanics they represent principal stresses and the principal axes of
stress in bodies subjected to external forces. Eigenvalues also play an important role in
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the stability analysis of dynamical systems and are central to the evaluation of energy
levels in quantum mechanics. 

5.7.1 The characteristic equation
The set of simultaneous equations

AX = λX (5.33)

where A is an n × n matrix and X = [x1 x2 . . . xn]
T is an n × 1 column vector can

be written in the form

(λ I − A)X = 0 (5.34)

where I is the identity matrix. The matrix equation (5.34) represents simply a set of
homogeneous equations, and we know that a non-trivial solution exists if

c(λ) = | λ I − A | = 0 (5.35)

Here c(λ) is the expansion of the determinant and is a polynomial of degree n in λ,
called the characteristic polynomial of A. Thus

c(λ) = λn + cn−1λn−1 + cn−2λn−2 + … + c1λ + c0

and the equation c(λ) = 0 is called the characteristic equation of A. We note that this
equation can be obtained just as well by evaluating | A − λI | = 0; however, the form
(5.35) is preferred for the definition of the characteristic equation since the coefficient
of λn is then always +1.

In many areas of engineering, particularly in those involving vibration or the control
of processes, the determination of those values of λ for which (5.34) has a non-trivial
solution (that is, a solution for which X ≠ 0) is of vital importance. These values of 
λ are precisely the values that satisfy the characteristic equation and are called the
eigenvalues of A.

Example 5.40 Find the characteristic equation and the eigenvalues of the matrix

Solution Equation (5.35) gives

so the characteristic equation is

λ2 + 4λ + 3 = 0

The roots of this equation, namely λ = −1 and −3, give the eigenvalues.

Example 5.41 Find the characteristic equation for the matrix

0
2 1

1 2
2 12      

  

     
  (   )   = − =

+ −

− +
= + −| |λ

λ

λ
λI A

A  
      

      
=

−

−

⎡

⎣
⎢

⎤

⎦
⎥

2 1

1 2
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Solution By (5.35), the characteristic equation for A is the cubic equation

Expanding the determinant along the first column gives

= (λ − 1)[(λ − 2)(λ + 1) − 1] − [2 − (λ + 1)]

Thus

c (λ) = λ3 − 2λ2 − λ + 2 = 0

is the required characteristic equation.

For matrices of large order, determining the characteristic polynomial by direct expan-
sion of | λI − A | is unsatisfactory in view of the large number of terms involved in the
determinant expansion, but alternative procedures are available.

5.7.2 Eigenvalues and eigenvectors

The roots of the characteristic equation (5.35) are called the eigenvalues of the matrix
A (the terms latent roots, proper roots and characteristic roots are also sometimes used).
By the Fundamental Theorem of Algebra, a polynomial equation of degree n has
exactly n roots, so that the matrix A has exactly n eigenvalues λi, i = 1, 2, … , n. These
eigenvalues may be real or complex, and not necessarily distinct. Corresponding to
each eigenvalue λi, there is a non-zero solution X = ei of (5.34); ei is called the eigen-
vector of A corresponding to the eigenvalue λi. (Again the terms latent vector, proper
vector and characteristic vector are sometimes seen, but are generally obsolete.) We
note that if X = ei satisfies (5.34) then any scalar multiple βiei of ei also satisfies (5.34),
so that the eigenvector ei may only be determined to within a scalar multiple.

Example 5.42 Verify that and are eigenvectors of the matrix

A  
      

      
=

−

−

⎡

⎣
⎢

⎤

⎦
⎥

2 1

1 2

1

1−

⎡

⎣
⎢

⎤

⎦
⎥

1

1

⎡

⎣
⎢

⎤

⎦
⎥

c( )  (   )
  

  
  

        

      
λ λ

λ

λ λ
= −

− −

− +
−

−

− +
1

2 1

1 1

1 2

1 1

c( )  

  

  

  

  λ

λ

λ

λ

=

− −

− −

− +

=

1 1 2

1 2 1

0 1 1

0

A  

          

          

          

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2

1 2 1

0 1 1
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Solution The matrix is the same as the one given in Example 5.40, so we would expect that these
eigenvectors correspond to the eigenvalues −1 and −3. To verify the fact we must check
that equation (5.33) is satisfied. Now for the first column vector

so is an eigenvector corresponding to the eigenvector −1.

For the second column vector

so is an eigenvector corresponding to the eigenvector −3.

Example 5.43 Find the eigenvalues and eigenvectors of the matrix

Solution To find the eigenvalues use equation (5.35)

This characteristic equation has two roots λ = +j and −j, which are the eigenvalues, in
this case complex. Note that in general eigenvalues are complex, although in most of
the remaining examples in this section they have been constructed to be real.

To obtain the eigenvectors use equation (5.34).
For the eigenvalue λ = j then (5.34) gives

or in expanded form

ja + b = 0
with solution a = j and b = 1

−a + jb = 0

and hence the eigenvector corresponding to

For the eigenvalue λ = −j then (5.34) gives

λ     .=
⎡

⎣
⎢

⎤

⎦
⎥j is

j

1

(   )   
      

   
  λ l A−

⎡

⎣
⎢

⎤

⎦
⎥ =

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

a

b

a

b

j

j

1

1
0

0
1

1
12      

      

    
    = − =

−
= +| |λ

λ

λ
λI A

A  
    

      
.=

−⎡

⎣
⎢

⎤

⎦
⎥

0 1

1 0

1

1−

⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣
⎢

⎤

⎦
⎥

−

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥ = −

−

⎡

⎣
⎢

⎤

⎦
⎥

2 1

1 2

1

1

3

3
3

1

1

      

      
    

1

1

⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥

2 1

1 2

1

1

1

1
1

1

1
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or in expanded form

−jc + d = 0
with solution c = 1 and d = j

−c − jd = 0

and hence the eigenvector corresponding to

Example 5.44 Determine the eigenvalues and eigenvectors for the matrix A of Example 5.41.

Solution

The eigenvalues λi of A satisfy the characteristic equation c(λ) = 0, and this has been
obtained in Example 5.41 as the cubic

λ3 − 2λ2 − λ + 2 = 0

which can be solved to obtain the eigenvalues λ1, λ2 and λ3.
Alternatively, it may be possible, using the determinant form | A − λ I |, to carry out

suitable row and/or column operations to factorize the determinant. 
In this case

and adding column 1 to column 3 gives

Subtracting row 3 from row 1 gives

= −(1 + λ)(1 − λ)(2 − λ)− +

−

− −(   )

  

  

 

1

1 0 0

1 2 0

0 1 1

λ

λ

λ

1 1 1

1 2 0

0 1 1

1

1 1 1

1 2 0

0 1 1

    

     

      

  (   )

  

  

  

− − −

− −

− −

= − +

−

− −

λ λ

λ

λ

λ

λ

λ

 

| |A I    

   

     

    

− =

− −

− −

− −

λ

λ

λ

λ

1 1 2

1 2 1

0 1 1

A  

          

          

          

=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 2

1 2 1

0 1 1

λ     .= −
⎡

⎣
⎢

⎤

⎦
⎥j is

j

1

 
(   )     λI A−

⎡

⎣
⎢

⎤

⎦
⎥ =

−

− −

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

c

d

c

d

j

j

1

1
0

..
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Setting | A − λ I | = 0 gives the eigenvalues as λ1 = 2, λ2 = 1 and λ3 = −1. The order in
which they are written is arbitrary, but for consistency we shall adopt the convention of
taking λ1, λ2, … , λn in decreasing order.

Having obtained the eigenvalues λi (i = 1, 2, 3), the corresponding eigenvectors ei

are obtained by solving the appropriate homogeneous equations

(A − λi I )ei = 0 (5.36)

When i = 1, λ1 = 2 and (5.36) is

that is,

−e11 + e12 − 2e13 = 0

−e11 + 0e12 + e13 = 0

0e11 + e12 − 3e13 = 0

leading to the solution

where β1 is an arbitrary non-zero scalar. Thus the eigenvector e1 corresponding to the
eigenvalue λ1 = 2 is

e1 = β1[1 3 1]T

As a check, we can compute

and thus conclude that our calculation was correct.
When i = 2, λ2 = 1 and we have to solve

that is,

          

          

          

  

0 1 2

1 1 1

0 1 2

0

21

22

23

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

e

e

e

Ae e1 1 1 1 1 1

1 1 2

1 2 1

0 1 1

1

3

1

2

6

2

2

1

3

1

  

      

    

      

      =

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=β β β λ

e e e11 12 13
1

1 3 1−
=

−
=

−
=      β

− −

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

≡

1 1 2

1 0 1

0 1 3

0

11

12

13

e

e

e
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0e21 + e22 − 2e23 = 0

−e21 + e22 + e23 = 0

0e21 + e22 − 2e23 = 0

leading to the solution

where β2 is an arbitrary scalar. Thus the eigenvector e2 corresponding to the eigenvalue
λ2 = 1 is

e2 = β2[3 2 1]T

Again a check could be made by computing Ae2.
Finally, when i = 3, λ3 = −1 and we obtain from (5.36)

that is,

2e31 + e32 − 2e33 = 0

−e31 + 3e32 + e33 = 0

0e31 + e32 + 0e33 = 0

and hence

Here again β3 is an arbitrary scalar, and the eigenvector e3 corresponding to the 
eigenvalue λ3 is

e3 = β3[1 0 1]T

The calculation can be checked as before. Thus we have found that the eigenvalues of
the matrix A are 2, 1 and −1, with corresponding eigenvectors

β1[1 3 1]T, β2[3 2 1]T and β3[1 0 1]T

respectively.

Since in Example 5.44 the βi, i = 1, 2, 3, are arbitrary, it follows that there are an 
infinite number of eigenvectors, scalar multiples of each other, corresponding to each
eigenvalue. Sometimes it is convenient to scale the eigenvectors according to some
convention. A convention frequently adopted is to normalize the eigenvectors so that

e e e31 32 33
3

1 0 1−
= =

−
=      β

          

          

            

  

2 1 2

1 3 1

0 1 0

0

31

32

33

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

e

e

e

e e e21 22 23
2

3 2 1−
=

−
=

−
=      β
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they are uniquely determined up to a scale factor of ±1. The normalized form of an
eigenvector e = [e1 e2 … en]

T is denoted by ê and is given by

where

| e | = ÷(e2
1 + e2

2 + … + e2
n)

For example, for the matrix A of Example 5.44, the normalized forms of the eigen-
vectors are

ê1 = [1/÷11 3/÷11 1/÷11]T, ê2 = [3/÷14 2/÷14 1/÷14]T

and

ê3 = [1/÷2 0 1/÷2]T

However, throughout the text, unless otherwise stated, the eigenvectors will always 
be presented in their ‘simplest’ form, so that for the matrix of Example 5.44 we take 
β1 = β2 = β3 = 1 and write

e1 = [1 3 1]T, e2 = [3 2 1]T and e3 = [1 0 1]T

It may be noted that the three eigenvalues in Example 5.44 are linearly independent
since putting the eigenvalues into matrix form gives

det = −6 ≠ 0.

From Section 5.6, Figure 5.19, this is enough to establish linearly independence. There
is a general result, which can be proved by contradiction arguments

that if an n × n matrix has n distinct eigenvalues then the corresponding eigen-
vectors are linearly independent.

The result has considerable theoretical and practical interest, but the main develop-
ment of the idea is left to the companion volume Advanced Modern Engineering
Mathematics. An example will illustrate one aspect of the ideas which is widely used
in the theory of iterative methods similar to those in Section 5.5.4.

Example 5.45 Write the Fibonacci series 1, 1, 2, 3, 5, 8, . . . where the next term is the sum of the pre-
vious two, in matrix form and compute the general term.

Solution Let Fk be the kth Fibonacci number, then it can be checked that

with F1 = F2 = 1
F

F

F

F

k

k

k

k
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⎥
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⎢
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is the matrix relation that generates these numbers. The eigenvalues and eigenvectors
of the matrix, A, are calculated as

with eigenvector X = and

with eigenvector Y =

The matrix formulation can be applied repeatedly:

Since the eigenvalues are distinct, the eigenvectors are linearly independent, so any
vector can be written as aX + bY for some constants a, b and in particular

Since and 

We can then deduce from the second row that

and this formula generates the Fibonacci numbers.

Example 5.46 Find the eigenvalues and eigenvectors of

Solution Now 

= λ2 − 2λ cos θ + cos2θ + sin2θ = λ2 − 2λ cos θ + 1

So the eigenvalues are the roots of

λ2 −2λ cos θ + 1 = 0
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that is,

λ = cos θ ± j sin θ

Solving for the eigenvectors as in Example 5.43, we obtain

e1 = [1 − j]T and e2 = [1 j]T

In Examples 5.43 and 5.46 we see that eigenvalues can be complex numbers, and that
the eigenvectors may have complex components. This situation arises when the char-
acteristic equation has complex (conjugate) roots.

For an n × n matrix A the MATLAB command p=poly(A) generates an n + 1 ele-
ment row vector whose elements are the coefficients of the characteristic polynomial
of A, the coefficients being ordered in descending powers. The eigenvalues of A are
the roots of the polynomial and are generated using the command roots(p). The
command

[M,S]=eig(A)

generates the normalized eigenvectors of A as the columns of the matrix M and its
corresponding eigenvalues as the diagonal elements of the diagonal matrix S (M and
S are called respectively the modal and spectral matrices of A). In the absence of the
left-hand arguments, the command eig(A) by itself simply generates the eigen-
values of A.

For the matrix A of Example 5.44 the commands

A=[1 1 –2; –1 2 1; 0 1 –1];

[M,S]=eig(A)

generate the output

0.3015 –0.8018 0.7071 2.0000 0 0

M=0.9045 –0.5345 0.0000 S=0 1.0000 0

0.3015 –0.2673 0.7071 0 0 –1.0000

These concur with our calculated answers, with β1 = 0.3015, β2 = −0.2673 and 
β3 = 0.7071.

Using the Symbolic Math Toolbox in MATLAB the matrix A may be converted
from numeric into symbolic form using the command A=sym(A). Then its symbolic
eigenvalues and eigenvectors are generated using the sequence of commands

A=[1 1 –2; –1 2 1; 0 1 –1];

A=sym(A);

[M, S]=eig(A)

as

M=[3, 1, 1] S=[1, 0, 0]

[2, 3, 0] [0, 2, 0]

[1, 1, 1] [0, 0, –1]

In MAPLE eigenvectors(A); produces the corresponding results using the linalg
package.
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5.7.4 Repeated eigenvalues

In the examples considered so far the eigenvalues λi (i = 1, 2, … ) of the matrix A
have been distinct, and in such cases the corresponding eigenvectors are linearly inde-
pendent. The matrix A is then said to have a full set of independent eigenvectors. It is
clear that the roots of the characteristic equation c(λ) may not all be distinct; and when
c(λ) has p � n distinct roots, c(λ) may be factorized as

c(λ) = (λ − λ1)
m1(λ − λ2)

m2 … (λ − λp)
mp

indicating that the root λ = λi, i = 1, 2, … , p, is a root of order mi, where the integer mi is
called the algebraic multiplicity of the eigenvalue λi. Clearly m1 + m2 + … + mp = n.
When a matrix A has repeated eigenvalues, the question arises as to whether it is 
possible to obtain a full set of independent eigenvectors for A. We first consider some
examples to illustrate the situation.

Example 5.47 Determine the eigenvalues and corresponding eigenvectors of the matrices

(a) (b) B  
    

    
=

⎡

⎣
⎢

⎤

⎦
⎥

1 1

0 1
A  

    

    
=

⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 1

..
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5.7.3 Exercises

Check your answers using MATLAB or MAPLE.

94 Obtain the characteristic polynomials of the
matrices

(a) (b)

(c) (d)

(e) (f)

and hence evaluate the eigenvalues of the matrices. 
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95 Find the eigenvalues and corresponding
eigenvectors of the matrices

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Solution (a) The eigenvalues of A are obtained from

giving the value 1 repeated twice.
The eigenvectors we calculate from

which is clearly satisfied by any values of a and b. Thus taking

it can be seen that there are two independent eigenvectors and Any linear

combination of the two vectors is also an eigenvector. Geometrically this corresponds
to the fact that the unit matrix maps every vector onto itself.

(b) The eigenvalues of B are obtained from

giving the value 1 repeated twice.
The eigenvectors we calculate from

Thus d = 0 and there is only one eigenvector and, of course, any multiple of this
vector.

We note from Example 5.47 that the evaluation of eigenvectors leads to a much more
complicated situation when there are multiple eigenvalues. In contrast to the case of
distinct eigenvalues, where it is known that the corresponding eigenvectors are linearly
independent, for repeated eigenvalues it is not even clear how many linearly inde-
pendent eigenvectors are associated with a multiple eigenvalue λ. The idea of rank
(introduced in Section 5.6) of the matrix (λI − A) is the key to the clarification.

A second problem occurs when there are several linearly independent eigenvectors
associated with a multiple eigenvalue, as in Example 5.47(a). For instance, suppose the
eigenvalue λ has two such eigenvectors X and Y so that

AX = λX and AY = λY
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then adding with multiples α, β

A(αX + βY) = λ(αX + βY)

We see that (αX + βY) is also an eigenvector for any α, β. This can cause confusion
since a method or computer package can throw up two eigenvectors which are differ-
ent from the ones expected but that are equally valid and belong to the set (αX + βY) 

for some α, β. In Example 5.47(a) the calculated eigenvectors are and but 

equally well eigenvectors and could have been chosen. The vectors belong to 

the same set, with α = β = 1 in the first case and α = −β = 1 in the second case. This 
situation should be noted carefully when undertaking exercises involving a multiple
eigenvalue.

The following two 3 × 3 examples illustrate similar points.

Example 5.48 Determine the eigenvalues and corresponding eigenvectors of the matrix

Solution We find the eigenvalues from

as λ1 = 4, λ 2 = λ 3 = 2.
The eigenvectors are obtained from

(A − λ I)ei = 0 (5.37)

and when λ = λ1 = 4, we obtain from (5.37)

e1 = [1 −1 −1]T

When λ = λ2 = λ3 = 2, (5.37) becomes

The matrix has rank = 1, so [q − rank(A − 2I)] = 3 − 1 = 2 and we expect two free
parameters so two linearly independent eigenvectors. They are obtained explicitly from
the single equation
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e21 − 3e22 + 2e23 = 0 (5.38)

Clearly we are free to choose any two of the components e21, e22 or e23 at will, with the
remaining one determined by (5.38). Suppose we set e22 = α and e23 = β; then (5.38)
means that e21 = 3α − 2β, and thus

e2 = [3α − 2β α β]T

(5.39)

Now λ = 2 is an eigenvalue of multiplicity 2, and we seek, if possible, two independent
eigenvectors defined by (5.39). Setting α = 1 and β = 0 yields

e2 = [3 1 0]T

and setting α = 0 and β = 1 gives a second vector

e3 = [−2 0 1]T

These two vectors are independent and of the form defined by (5.39), but many other
choices are possible. However, any other choices of the form (5.39) will be linear com-
binations of e2 and e3 as chosen above. For example, e = [1 1 1]T satisfies (5.38), but
e = e2 + e3.

In this example, although there was a repeated eigenvalue of algebraic multiplicity 2,
it was possible to construct two independent eigenvectors corresponding to this eigen-
value. Thus the matrix A has three and only three independent eigenvectors.

The MATLAB commands for Example 5.48

A=[3 –3 2; –1 5 –2; –1 3 0];

[M, S]=eig(A)

generate

0.5774 –0.5774 –0.7513 4.0000 0 0

M=–0.5774 –0.5774 0.1735 S=0 2.0000 0

–0.5774 –0.5774 0.6361 0 0 2.0000

Clearly the first column of M (corresponding to the eighenvalue λ1 = 4) is a scalar
multiple of e1. The second and third columns of M (corresponding to the repeated
eigenvalue λ2 = λ3 = 2) are not scalar multiples of e2 and e3. However, both satisfy
(5.37) and are equally acceptable as a pair of linearly independent eigenvectors 
corresponding to the repeated eigenvalue. It is left as an exercise to show that both
are linear combinations of e2 and e3.

Check that in symbolic form the commands

A=sym(A);

[M, S]=eig(A)

=
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generate

M=[–1, 3, –2] S=[4, 0, 0]

[1, 1, 0] [0, 2, 0]

[1, 0, 1] [0, 0, 2]

In the linalg package of MAPLE, eigenvectors(A); produces the corresponding
results.

Example 5.49 Determine the eigenvalues and corresponding eigenvectors of the matrix

Solution Solving | A − λI | = 0 gives the eigenvalues as λ1 = λ2 = 2, λ3 = 1. The eigenvector
corresponding to the non-repeated or simple eigenvalue λ3 = 1 is easily found as 

e3 = [1 1 −1]T

When λ = λ1 = λ2 = 2, the corresponding eigenvector is given by

(A − 2 I)e1 = 0

The matrix (A − 2I) = has rank = 2, so [q − rank(A)] = 1 and we expect to 

have one free parameter and hence only one independent eigenvector. Writing out in
full we look for solutions of

−e11 + 2e12 + 2e13 = 0 (i)

e13 = 0 (ii)

−e11 + 2e12 = 0 (iii)

From (ii) we have e13 = 0, and from both (i) and (iii) it follows that e11 = 2e12. We deduce 
that there is only one independent eigenvector corresponding to the repeated eigenvalue
λ = 2, namely

e1 = [2 1 0]T

and in this case the matrix A does not possess a full set of independent eigenvectors.

We see from Examples 5.47–5.49 that if an n × n matrix A has repeated eigenvalues
then a full set of n independent eigenvectors may or may not exist.

The complications introduced are seen to be resolved by determining the rank of the
matrix (A − λiI) for each of the repeated eigenvalues. This is not a simple resolution;
further details and a systematic development of the ideas can be found in the compan-
ion volume Advanced Modern Engineering Mathematics.
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5.7.6 Some useful properties of eigenvalues

The following basic properties of the eigenvalues λ1, λ2, … , λn of an n × n matrix A
are sometimes useful. The results are readily proved from either the definition of
eigenvalues as the values of λ satisfying (5.33), or by comparison of corresponding
characteristic polynomials (5.35). Consequently, the proofs are left to Exercise 102.

404 MATRIX ALGEBRA

..

5.7.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

96 Find the eigenvalues and eigenvectors of the
matrices

97 Show that the matrix

has eigenvalues 5, −3, −3. Find the corresponding
eigenvectors. For the repeated eigenvalue, show
that it has two linearly independent eigenvectors
and that any vector of the general form

is also an eigenvector.

98 Obtain the eigenvalues and corresponding
eigenvectors of the matrices
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99 Given that λ = 1 is a three-times repeated
eigenvalue of the matrix

determine how many independent eigenvectors
correspond to this value of λ. Determine a
corresponding set of independent eigenvectors.

100 Given that λ = 1 is a twice-repeated eigenvalue of
the matrix

determine a set of independent eigenvectors.

101 Find all the eigenvalues and eigenvectors of 
the matrix
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0 2 0 0

0 0 2 0

2 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

A  

    

=

−

−

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 1 1

1 0 1

1 1 2

 

A    

  

=

− − −⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3 7 5

2 4 3

1 2 2
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Property 1

The sum of the eigenvalues of A is

Property 2

The product of the eigenvalues of A is

where det A denotes the determinant of the matrix A.

Property 3

The eigenvalues of the inverse matrix A−1, provided it exists, are

Property 4

The eigenvalues of the transposed matrix AT are

λ1, λ2, … , λn

as for the matrix A.

Property 5

If k is a scalar then the eigenvalues of kA are

kλ1, kλ2, … , kλn

Property 6

If k is a scalar and l the n × n identity (unit) matrix then the eigenvalues of A ± kl
are respectively

λ1 ± k, λ2 ± k, … , λn ± k

1 1 1

1 2λ λ λ
,    ,     ,    …

n

λi
i

n

=
∏ =

1

 det

λi
i

n

ii

n

a
=
∑ ∑= =

1 i=1

   trace
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Property 7

If k is a positive integer then the eigenvalues of Ak are

λk
1, λk

2, … , λk
n

Property 8

As a consequence of Properties 5 and 7, any polynomial in A

Am + αm−1A
m−1 + … + α1A + α 0 I

has eigenvalues

λm
i + αm−1λ i

m−1 + … + α1λi + α 0 for i = 1, 2, … , n

5.7.7 Symmetric matrices

A square matrix A is said to be symmetric if AT = A. Such matrices form an important
class and arise in a variety of practical situations. Such symmetry imposes a powerful
structure to the eigenvalues and eigenvectors which is summarized in the statements:

(i) The eigenvalues of a real symmetric matrix are real.
(ii) For an n × n real symmetric matrix it is always possible to find n independent

eigenvectors e1, e2, … , en that are mutually orthogonal so that eT
iej = 0 for 

i ≠ j.

If the orthogonal eigenvectors of a symmetric matrix are normalized as

ê1, ê2, … , ên

then the inner (scalar) product is

êT
iêj = δij (i, j = 1, 2, … , n)

where δij is the Kronecker delta defined in Section 5.2.1.
The set of normalized eigenvectors of a symmetric matrix therefore form an ortho-

normal set (that is, they form a mutually orthogonal normalized set of vectors).
In general, eigenvalues and eigenvectors are complex, so (i) gives a considerable

simplification and it can be proved as follows:

Proof of statement (i)

Let AX = λX
Take the complex conjugate A*X* = λ*X*; since A is real then AX* = λ*X*
Take the transpose XTAT = λXT; since A is symmetric then XTA = λXT

Pre-multiply the complex conjugate eigenvalue equation by XT to give

XTAX* = λ*XTX* → λXTX* = λ*XTX* since XTA = λXT

Because XTX* ≠ 0 we deduce that λ = λ* and the eigenvalue is therefore real.
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Proof of statement (ii) when all the eigenvalues are distinct

We first show that the eigenvectors are orthogonal and then that they are linearly inde-
pendent. Two distinct eigenvalues satisfy

AXi = λiXi and AXj = λjXj with λi ≠ λj

Multiply the first equation by XT
j to give

XT
jAXi = λiXT

jXi (5.40)

Multiply the second equation by XT
i to give

XT
iAXj = λjXT

iXj with transpose (XT
iAXj)

T = λj(XT
iXj)

T

and hence using the symmetry of A

XT
jAXi = λjXT

jXi (5.41)

Now subtract (5.41) from (5.40), then

(λi − λj) XT
jXi = 0

Since the eigenvalues are distinct we have XT
jXi = 0 and the corresponding vectors are

orthogonal.
To test linear independence, consider solutions of

α1X1 + α2X2 + . . . + αnXn = 0

Multiply by XT
i . From the othogonality of the eigenvectors, when all the eigenvlaues are

distinct, the only term to survive is

αiXT
iXi = 0

and since the eigenvectors are not zero the conclusion is αi = 0 for all i. Hence the
eigenvectors are linearly independent.

The second statement (ii) is much more difficult to prove for repeated eigenvalues
and is left to the companion volume Advanced Modern Engineering Mathematics.

The results (i) and (ii) are well used in both theory and in computational practice
since they make it clear that only real values need to be sought and any vector can be
written as the combination of the linearly independent eigenvalues. Considerable effort
goes into transforming a problem to symmetric matrix form. Review Exercise 22 gives
an illustration of spectral decomposition. Singular Value Decomposition, Jacobi and
Householder methods all rely on (i) and (ii).

Example 5.50 Obtain the eigenvalues and corresponding orthogonal eigenvectors of the symmetric
matrix

and show that the normalized eigenvectors form an orthonormal set.

A  

        

        

        

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 2 0

2 5 0

0 0 3
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Solution The eigenvalues of A are λ1 = 6, λ2 = 3 and λ3 = 1, with corresponding eigenvectors

e1 = [1 2 0]T, e2 = [0 0 1]T, e3 = [−2 1 0]T

which in normalized form are

ê1 = [1 2 0]T/÷5, ê2 = [0 0 1]T, ê3 = [−2 1 0]T/÷5

Evaluating the inner products, we see that, for example, 

êT
1ê1 = = 1, êT

1ê3 = = 0

and that

êT
i êj = δij (i, j = 1, 2, 3)

confirming that the eigenvectors form an orthonormal set.
Example 5.51 considers the case of a repeated eigenvalue and gives a hint of the

Gram–Schmidt process for making a set of linearly independent vectors into an ortho-
gonal set.

Example 5.51 Show that the matrix

has eigenvalues 3, 0, 0 and construct three mutually orthogonal eigenvectors.

Solution The characteristic equation is

so has roots 3, 0, 0. For the eigenvalue 3, check that [1 1 1]T is a solution of

For the eigenvalue 0, look for solutions of

The matrix has rank = 1, so we have [q − rank(A − 0I)] = 2 and expect two linearly
independent eigenvectors. It may be checked that [−1 0 1]T and [−1 1 0]T are
two linearly independent eigenvectors corresponding to the zero eigenvalue.

Thus three real eigenvalues have been found, as required by the general result (i), 
and three linearly independent eigenvectors have been constructed, as required by 
the general result (ii). The eigenvectors, however, are not mutually orthogonal. The

1 1 1

1 1 1

1 1 1

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

x

y

z

 

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

2 1 1

1 2 1

1 1 2

0

x

y

z

 

0  

  

  

  

  (   )=

−

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= − −

1 1 1

1 1 1

1 1 1

32

λ

λ

λ

λ λ

A  =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

1 1 1

1 1 1

− + +2
5

2
5 0    1

5
4
5 0    + +
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eigenvector [1 1 1]T is orthogonal to [−1 0 1]T and [−1 1 0]T, but the last two
eigenvectors are not orthogonal to each other. However, we know that any vector

is also an eigenvector. Choosing a = 1 and b = −2 gives [1 −2 1]T which is ortho-
gonal to both [1 1 1]T and [−1 0 1]T. Thus three normalized mutually orthogonal
eigenvectors are

5.7.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

1

3

1

1

1

1

2

1

0

1

1

6

1

2

1
÷ ÷ ÷

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , 

a b

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

0

1

1

1

0

  

....

102 Verify Properties 1–8 of Section 5.7.6.

103 Given that the eigenvalues of the matrix

are 5, 3 and 1:

(a) confirm Properties 1–4 of Section 5.7.6;

(b) taking k = 2, confirm Properties 5–8 of
Section 5.7.6.

104 Determine the eigenvalues and corresponding
eigenvectors of the symmetric matrix

and verify that the eigenvectors are mutually
orthogonal.

 

A  =

− − −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

3 3 3

3 1 1

3 1 1

 

A  

  

  =

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4 1 1

2 5 4

1 1 0

105 The 3 × 3 symmetric matrix A has eigenvalues 
6, 3 and 2. The eigenvectors corresponding to
the eigenvalues 6 and 3 are [1 1 2]T and 
[1 1 −1]T respectively. Find an eigenvector
corresponding to the eigenvalue 2.

106 Verify that the matrix

has eigenvalues and corresponding 

eigenvectors and What are the 

eigenvalues of An? Show that any vector

can be written as Z = αX + βY and hence deduce
that AnZ → 0 as n → ∞.

Z  =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a

b

Y   .=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2
X   =

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1

± 1
4

 

A  
    

      
=

−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3
20

1
5

1
5

3
20

5.8 Engineering application:  spring systems

The vibration of many mechanical systems can be modelled very satisfactorily by
spring and damper systems. The shock absorbers and springs of a motor car give one
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Since the forces are in equilibrium,

k1(x1 − l1) = k2(x2 − x1 − l2)

k2(x2 − x1 − l2) = k3(L − x2 − l3)

We have two simultaneous equations in the two unknowns, which can be written in
matrix form as

It is easy to invert 2 × 2 matrices, so we can compute the solution as

If we take the simplest situation when k1 = k2 = k3 and l1 = l2 = l3 then we obtain the
obvious solution x1 = L, x2 = L.2

3
1
3

x

x k k k k k

k k k

k k k

k l k l

k l k l k L

1

2 1 2 2 3 2
2

2 3 2

2 1 2

1 1 2 2

2 2 3 3 3

1⎡

⎣
⎢

⎤

⎦
⎥ =

+ + −

+

+

⎡

⎣
⎢

⎤

⎦
⎥

−

− +

⎡

⎣
⎢

⎤

⎦
⎥  

(   )(   )  

  

  

  

    

k k k

k k k

x

x

k l k l

k l k l k L

1 2 2

2 2 3

1

2

1 1 2 2

2 2 3 3 3

        

    
  

  

    

+ −

− +

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

− +

⎡

⎣
⎢

⎤

⎦
⎥
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of the simplest practical examples. On a more fundamental level, the vibration of
the atoms or molecules of a solid can be modelled by a lattice containing atoms or
molecules that interact with each other through spring forces. The model gives a
detailed understanding of the structure of the solid and the strength of interactions and
has practical applications in such areas as the study of impurities or ‘doped’ materials
in semiconductor physics.

The motion of these systems demands the use of Newton’s equations, which in turn
require the calculus. We shall look at methods of solution in Chapters 10 and 11. In 
this case study we shall not consider vibrations but shall restrict our attention to the
static situation. This is the first step in the solution of vibrational systems. Even here, we
shall see that matrices and vectors allow a systematic approach to the more complicated
situation.

5.8.1 A two-particle system

We start with the very simple situation illustrated in Figure 5.20. Two masses are
connected by springs of stiffnesses k1, k2 and k3 and of natural lengths l1, l2 and l3 that
are fixed to the walls at A and B, with distance AB = L. It is required to calculate the
equilibrium values of x1 and x2. We use Hooke’s law – that force is proportional to
extension – to calculate the tension:

T1 = k1(x1 − l1)

T2 = k2(x2 − x1 − l2)

T3 = k3(L − x2 − l3)

Figure 5.20
Two-particle system.
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Figure 5.21
n-particle system.
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5.8.2 An n-particle system
In the simplest situation, described in Section 5.8.1, matrix notation is convenient but
not really necessary. If we try to extend the problem to many particles and many springs
then such notation simplifies the statement of the problem considerably. Consider the
problem illustrated in Figure 5.21. From Hooke’s law

T1 = k1(x1 − l1)

T2 = k2(x2 − x1 − l2)

T3 = k3(x3 − x2 − l3)

\

Tr = kr(xr − xr−1 − lr)

\

Tn = kn(L − xn−1 − ln)

The equilibrium equations for each ‘unit’ are

k1(x1 − l1) = k2(x2 − x1 − l2)

k2(x2 − x1 − l2) = k3(x3 − x2 − l3)

\

kr(xr − xr−1 − lr) = kr+1(xr+1 − xr − lr+1)

\

kn−1(xn−1 − xn−2 − ln−1) = kn(L − xn−1 − ln)

In matrix form, these become

=

−

−

−

− +

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥

− − − −

− −
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1 1 2 2
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2 2 1 1

1 1
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k k k

k k k k

k k k k

k k k k

k k k

x

x

x

n n n n

n n n n

1 2 2

2 2 3 3

3 3 4 4

2 2 1 1

1 1
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⎥
⎥
⎥
⎥
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We recognize the form of these equations immediately, since they constitute a tridiag-
onal system studied in Section 5.5.2, and we can use the Thomas algorithm (Figure 5.9)
to solve them. Thus, by writing the equations in matrix form, we are immediately able
to identify an efficient method of solution.

In some special cases the solution can be obtained by a mixture of insight and phys-
ical intuition. If we take k1 = k2 = … = kn and l1 = l2 = … = ln and the couplings are all
the same then the equations become

We should expect all the spacings to be uniform, so we seek a solution x1 = α, x2 = 2α,
x3 = 3α, … . The first n − 2 equations are satisfied identically, as expected, and the final
equation in matrix formulation gives [−(n − 2) + 2(n − 1)]α = L. Thus α = L /n, and our
intuitive solution is justified.

In a second special case where a simple solution is possible, we assume one of 
the couplings to be a ‘rogue’. We take k1 = k2 = … = kr−1 = kr+1 = … = kn = k, kr = k′ and
l1 = l2 = … = ln = l. If we divide all the equations in the matrix by k and write 
λ = k′/k then the matrix takes the form

A reasonable assumption is that the spacings between ‘good’ links are all the same.
Thus we try a solution of the form

x1 = a, x2 = 2a, … , xr−1 = (r − 1)a, xr = b

xr+1 = b + a, xr+2 = b + 2a, … , xn−1 = b + (n − 1 − r)a
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It can be checked that the matrix equation is satisfied except for the (r − 1)th, rth and
(n − 1)th rows. These give respectively

−λb + a(−λ + 1 + λr) = l(1 − λ)

λb + a(λ − 1 − λr) = l(λ − 1)

and 

b + a(n − r) = L

The first two of these are identical, so we have two equations in the two unknowns, a
and b, to solve. We obtain

We note that if λ = 1 then the solution reduces to the previous one, as expected.
The solution just obtained gives the deformation due to a single rogue coupling.

Although this problem is of limited interest, its two- and three-dimensional extensions
are of great interest in the theory of crystal lattices. It is possible to determine the 
deformation due to a single impurity, to compute the effect of two or more impurities
and how close they have to be to interact with each other. These are problems with 
considerable application in materials science.

5.9 Engineering application: steady heat transfer through
composite materials

5.9.1 Introduction

In many practical situations heat is transferred through several layers of different
materials. Perhaps the simplest example is a double glazing unit, which comprises a
layer of glass, a layer of air and another layer of glass. The thermal properties and 
the thicknesses of the individual layers are known but what is required is the overall
thermal properties of the composite unit. How do the overall properties depend on the
components? Which parameters are the most important? How sensitive is the overall
heat transfer to changes in each of the components?

A second example looks at the thickness of a furnace wall. A furnace wall will 
comprise three layers: refractory bricks for heat resistance, insulating bricks for heat
insulation and steel casing for mechanical protection. Such a furnace is enormously
expensive to construct, so it is important that the thickness of the wall is minimized sub-
ject to acceptable heat losses, working within the serviceable temperatures and known
thickness constraints. The basic problem is again to construct a model that will give
some idea how heat is transferred through such a composite material.

The basic properties of heat conduction will be discussed, and it will then be seen
that matrices give a natural method of solving the theoretical equations of composite
layers.

a
L l
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b

rL L n r l
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5.9.2 Heat conduction

In its full generality heat conduction forms a part of partial differential equations (see
Chapter 9 of Advanced Modern Engineering Mathematics 3rd edition). However, for
current purposes a simplified one-dimensional version is sufficient. The theory is based
on the well-established Fourier law:

Heat transferred per unit area is proportional to the temperature gradient.

Provided a layer is not too thick and the thermal properties do not vary, then the tem-
perature varies linearly across the solid. If Q is the amount of heat transferred per unit
area from left, at temperature T, to right, at temperature T ′, as shown in Figure 5.22,
then this law can be written mathematically as

where k is the proportionality constant, called the thermal conductivity, a is the thick-
ness of the layer and the minus sign is to ensure that heat is transferred from hot to cold.

For the conduction through an interface between two solids with good contact, as in
the situation of the furnace wall, it is assumed that

(i) the temperatures at each side of the interface are equal;
(ii) the heat transferred out of the left side is equal to the heat transferred into the

right side.

With the Fourier law and these interface conditions the multilayer situation can be
analysed satisfactorily, provided, of course, the heat flow remains one-dimensional and
steady.

5.9.3 The three-layer situation
Let the three layers have thicknesses a1, a2 and a3 and thermal conductivities k1, k2 and
k3, as illustrated in Figure 5.23. At the interfaces the temperatures are taken to be T1, T2,
T3 and T4. The simplest problem to study is to fix the temperatures T1 and T4 at the edges
and determine how the temperatures T2 and T3 depend on the known parameters.

From the specification of the problem the temperatures at the interfaces are specified,
so it only remains to satisfy the heat transfer condition across the interface.

At the first interface

and at the second interface

It turns out to be convenient to let and so on. The equations then become

u2(T2 − T1) = u1(T3 − T2)

u3(T3 − T2) = u2(T4 − T3)

u
a

k
u

a

k
1

1

1
2

2

2

= = ,  

k

a
T T

k

a
T T2

2
3 2

3

3
4 3(   )  (   )− = −
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a
T T

k

a
T T1

1
2 1

2

2
3 2(   )  (   )− = −

Q k
T T

a
  

  
= − ′ −
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Figure 5.22
Heat transfer 
through layers.

Figure 5.23
Temperature
distribution across
three layers.
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or in matrix form

The determinant of the matrix is easily calculated as u2(u1 + u2 + u3), which is non-zero,
so a solution can be computed as

Thus the temperatures T2 and T3 are now known, and any required properties can be
deduced.

For the furnace problem described in Section 5.9.1 the following data is known:

T1 = 1650 K and T4 = 300 K

and

Maximum working Thermal conductiVity Thermal conductiVity
temperature (K) at 100 K (W m−−1K −−1) at 2000 K (W m−−1K −−1)

Refractory brick 1700 3.1 6.2
Insulating brick 1400 1.6 3.1
Steel – 45.2 45.2

It may be noted that the thermal conductivity depends on the temperature but in these
calculations it is assumed constant (a more sophisticated analysis is required to take
these variations into account). Average values k1 = 5, k2 = 2.5 and k3 = 45.2 are chosen.
The required temperatures are evaluated as

A typical question that would be asked is how to minimize the thickness (or perhaps the
cost) subject to appropriate constraints. For instance find

min(a1 + a2 + a3)

subject to

(300 − T3) � 50 000 (allowable heat loss at the right-hand boundary)

T2 � 1400 (below the maximum working temperature)

a1 � 0.1 (must have a minimum refractory thickness)

The problem is beyond the scope of the present book, but it illustrates the type of 
question that can be answered.

k
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A more straightforward question is to evaluate the effective conductivity of the 
composite. It may be noted that in the general case, the heat flow is

so the effective conductivity over the whole region is

5.9.4 Many-layer situation
Although matrix theory was used to solve the three-layer problem, it was unnecessary
since the mathematics reduced to the solution of a pair of simultaneous equations.
However, for the many-layer system it is important to approach the problem in a 
logical and systematic manner, and matrix theory proves to be the ideal mathematical
method to use.

Consider the successive interfaces in turn and construct the heat flow equation for
each of them (Figure 5.24).

\

As in the three-layer case, it is convenient to define and so on. The
equations then become

u2(T2 − T1) = u1(T3 − T2)

u3(T3 − T2) = u2(T4 − T3)

u4(T4 − T3) = u3(T5 − T4)

\

un(Tn − Tn−1) = un−1(Tn+1 − Tn)
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which on substitution gives 
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Figure 5.24
n-layered problem.
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or in matrix form

The matrix equation is of tridiagonal form, hence we know that there is an efficient
algorithm for solution. An explicit solution, as in the three-layer case, is not so easy and
requires a lot of effort. However, it is a comparatively easy exercise to prove that the
effective conductivity (k) of the whole composite is obtained from the equivalent formula

5.10 Review exercises (1–26)

Check your answers using MATLAB or MAPLE whenever possible.
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(a) calculate RQ and QTRT;

(b) calculate Q + R, PQ and PR, and hence verify
that in this particular case

P(Q + R ) = PQ + PR

2 Let

where λ ≠ µ. Find all pairs of values λ, µ such that
B−1AB is a diagonal matrix.
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3 At a point in an elastic continuum the matrix
representation of the infinitesimal strain tensor
referred to axes Ox1x2x3 is

If i, j and k are unit vectors in the direction of the
Ox1x2x3 coordinate axes, determine the normal
strain in the direction of

n = (i − j + ÷2k)

and the shear strain between the directions n and

m = (−i + j + ÷2k)

Note: Using matrix notation, the normal strain is
En, and the shear strain between two directions is
mTEn.

4 Express the determinant

as a product of linear factors.

5 Determine the values of θ for which the system 
of equations

x + y + z = 1

x + 2y + 4z = θ

x + 4y + 10z = θ 2

possesses a solution, and for each such value find
all solutions.

6 Given

evaluate A2 and A3. Verify that

A3 − A2 − 3A + I = 0
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where I is the unit matrix of order 3. Using this
result, or otherwise, find the inverse A−1 of A, 
and hence solve the equations

x + y + z = 3

2x + y + 2z = 7

−2x + y − z = 6

7 (a) If write down the  

transpose matrix PT. Calculate PPT and hence 
show that PT = P −1. What does this mean about 
the solution of the matrix equation Px = b?

(b) The matrix occurs in the 

structural analysis of an arch. If

find E = BFBT and show that it is a symmetric
matrix.

8 (a) If the matrix show that A2 = I

and derive the elements of a square matrix B
which satisfies

(b) Find suitable values for k in order that the
following system of linear simultaneous equations
are consistent:

6x + (k − 6)y = 3

2x + y = 5

(2k + 1)x + 6y = 1
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9 Express the system of linear equations

3x − y + 4z = 13

5x + y − 3z = 5

x − y + z = 3

in the form AX = b, where A is a 3 × 3 matrix and
X, b are appropriate column matrices.

(a) Find adj A, |A| and A−1 and hence solve the
system of equations.

(b) Find a matrix Y which satisfies the equation

AYA−1 = 22A−1 + 2A

(c) Find a matrix Z which satisfies the equation

AZ = 44I3 − A + AAT

where I3 is the 3 × 3 identity matrix.

10 (a) Using the method of Gaussian elimination,
find the solution of the equation

Hence evaluate the determinant of the matrix in
the equation.

(b) Solve by the method of Gaussian elimination

with partial pivoting.

11 Rearrange the equations

x1 − x2 + 3x3 = 8

4x1 + x2 − x3 = 3

x1 + 2x2 + x3 = 8

so that they are diagonally dominant to ensure
convergence of the Gauss–Seidel method. Write a
MATLAB program to obtain the solution of these
equations using this method, starting from
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(0, 0, 0). Compare your solution with that from a
program when the equations are not rearranged. 
Use SOR, with ω = 1.3, to solve the equations. Is
there any improvement?

12 Find the rank of the matrix

where b ≠ 0 and a2 + c2 = b2.

13 For a given set of discrete data points (xi, fi) 
(i = 0, 1, 2, … , n), show that the coefficients ak

(k = 0, 1, … , n) fitted to the polynomial

are given by the solution of the equations written 
in the matrix form as

Aa = f

where

a = [a0 a1 … an]
T

f = [ f0 f1 … fn]
T

(See Question 103 in Exercises 2.9.2 for the
Lagrange interpolation solution of these equations
for the case n = 3.)

The following data is taken from the tables of 
the Airy function f(x) = Ai(−x):

x 1 1.5 2.3 3.0 3.9
f (x) 0.535 56 0.464 26 0.026 70 −0.378 81 −0.147 42

Estimate from the polynomial approximation the
values of f (2.0) and f (3.5).
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14 Data is fitted to a cubic

f = ax3 + bx2 + cx + d

with the slope of the curve given by

f ′ = 3ax2 + 2bx + c

If f1 = f (x1), f2 = f (x2), f ′1 = f ′(x1) and f ′2 = f ′(x2),
show that fitting the data gives the matrix equation
for a, b, c and d as

Use Gaussian elimination to evaluate a, b, c and d. 
For the case

x f f ′′

0.4 0.327 54 0.511 73
0.8 0.404 90 −0.054 14

evaluate a, b, c and d. Plot the cubic and estimate
the maximum value of f in the region 0 � x � 1.
Note that this exercise forms the basis of one of
the standard methods for finding the maximum of
a function f(x) numerically.

15 The transformation y = AX where

takes a point with coordinates (x1, x2, x3) into 
a point with coordinates ( y1, y2, y3). Show that 
the coordinates of the points that transform into
themselves satisfy the matrix equation BX = 0,
where B = A − I, with I the identity matrix. Find
the rank of B and hence deduce that for points
which transform into themselves

[x1 x2 x3] = α[−3 −1 1]

where α is a parameter.
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Find AAT. What is the inverse of A?
If y1 = 3, y2 = −1 and y3 = 2, determine the 

values of x1, x2 and x3 under this transformation.

16 (a) If

verify that

(b) Use the inverse matrix given in (a) to solve the
system of linear equations AX = b in which

bT = [5 −5 −4 4]

17 When a body is deformed in a certain manner, the
particle at point X moves to AX, where

(a) Where would the point move to?

(b) Find the point from which the particle would

move to the point .

18 Find the eigenvalues and the normalized
eigenvectors of the matrices
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In (c) write the normalized eigenvectors as the
columns of the matrix U and show that UTCU
is a diagonal matrix with the eigenvalues in the
diagonal.

19 The vector [1 0 1]T is an eigenvector of the
symmetric matrix

Find the values of α and β and find the
corresponding eigenvalue.

20 Show that the matrix has eigenvalues

1, 1 and −3. Find the corresponding eigenvectors.
Is there a full set of three independent
eigenvectors?

21 A colony of insects is observed at regular intervals
and comprises four age groups containing n1, n2,
n3, n4 insects in the groups. At the end of an
interval, of the n1 in group 1 some have died 
and (1 − β1)n1 become the new group 2. Similarly 
(1 − β2)n2 of group 2 become the new group 3 and
(1 − β3)n3 of group 3 become the new group 4. All
group 4 die out at the end of the interval. Groups
2, 3 and 4 produce α2n2, α3n3 and α4n4 infant
insects that enter group 1. Show that the changes
from one interval to the next can be written

Take α3 = 0.5, α4 = 0.25, β1 = 0.2, β2 = 0.25 and 
β3 = 0.5. Try the values α2 = 0.77, 0.78, 0.79 and
check whether the population grows or dies out 

n

n

n

n

n

n

n

n

1

2

3

4

2 3 4

1

2

3

1

2

3

4

0

1 0 0 0

0 1 0 0

0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥new old

  
  

  

  

α α α

β

β

β

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 2

0 1 0

2 0 1

    

      

      

6 1 3

1 7

3

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α

α β

( )  

 

 

  c

5 2 0

2 6 2

0 2 7

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

over many intervals starting from an initial 

population .

Find the eigenvalues in the three cases and check
the magnitudes of the eigenvalues. Is there any
connection between survival and eigenvalues?

Realistic populations can be modelled using this
approach; the matrices are called Leslie matrices.

22 (a) Find the eigenvalues λ1, λ2 and the normalized

eigenvectors X1, X2 of the matrix .
Check that

A = λ1X1X
T
1 + λ2X2X

T
2

(b) Use MATLAB or MAPLE to repeat a 
similar calculation for the three eigenvalues and 
normalized eigenvectors of

Note: The process described in this question
calculates the spectral decomposition of a 
symmetric matrix.

23 In Section 5.7.7 it was stated that a symmetric
matrix A has real eigenvalues λ1, λ2, … , λn

(written in descending order) and corresponding 
orthonormal eigenvectors e1, e2, … , en, that is 
eT

i ej = δij. In consequence any vector can be written as

X = c1e1 + c2e2 + … + cnen

Deduce that

(5.40)

so that a lower bound of the largest eigenvalue has
been found. The left-hand side of (5.40) is called 
the Rayleigh quotient.

It is known that the matrix has a   
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largest eigenvalue of (1 + ÷5). Check that the
result (5.40) holds for any vector of your choice.

24 A rotation of a set of rectangular cartesian axes
Φ(Ox1x2x3) to a set Φ′(Ox′1x′2x′3) is described by the
matrix L = (lij) (i, j = 1, 2, 3), where lij is the cosine
of the angle between Ox′i and Oxj. Show that L is
such that

LLT = I

and that the coordinates of a point in space
referred to the two sets of axes are related by

X′ = LX

where X′ = [x′1 x′2 x′3]T and X = [x1 x2 x3]
T.

Prove that

x1′2 + x2′2 + x3′2 = x2
1 + x2

2 + x2
3

Describe the relationship between the axes Φ
and Φ′, given that

The axes Φ′ are now rotated through 45° about
Ox′3 in the sense from Ox′1 to Ox′2 to form a new set
Φ″. Show that the angle θ between the line OP and
the axis Ox″1, where P is the point with coordinates
(1, 2, −1) referred to the original system Φ, is

25 A car is at rest on horizontal ground, as shown in
Figure 5.25. The weight W acts through the centre
of gravity, and the springs have stiffness constants
k1 and k2 and natural lengths a1 and a2. Show that
the height z and the angle θ (assumed too small)
satisfy the matrix equation

θ   cos
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Obtain reasonable values for the various 
parameters to ensure that θ = 0.

26 In the circuit in Figure 5.26(a) show that the
equations can be written

and that in Figure 5.26(b) they take the form

Dividing the circuit in Figure 5.26(c) into blocks,
with the output from one block inputting to the 
next block, analyse the relation between I1, E1

and I2, E2.
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Figure 5.26Figure 5.25 Car at rest on horizontal ground.
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6.1 Introduction
The term ‘discrete mathematics’ is often seen as describing a new and exciting area of
mathematics with applications to digital electronics. Virtually everyone these days
knows that personal computers operate using digital electronics, and previously ana-
logue systems such as radio and television transmissions are also securely digital. Digital
systems are less prone to signal loss through dissipation, attenuation and interference
through noise than traditional analogue systems. The ability of digital systems to handle
the vast quantity of information required to reproduce high-resolution graphics in a
very efficient and cost-effective way is a consequence of this. Another consequence of
digitization is greater security due to less penetrable encryption algorithms based on 
the discrete mathematics of number systems. The present and the future are therefore
most definitely digital, and digital systems make use of discrete mathematics. The ironic
fact is that discrete mathematics itself is remarkably old. In fact it pre-dates calculus,
which might be called ‘continuous mathematics’. All counting is discrete mathematics.
However, it was only in the nineteenth and twentieth centuries that mathematicians like
George Boole (1816–1864) gave a rigorous basis to set theory. The work of Bertrand
Russell (1872–1970) and Alfred North Whitehead (1861–1947), and later Kurt Gödel
(1906–1978), on logic and the foundation of mathematics, which was to have a great
effect on the development of mathematics in the twentieth century, was intimately 
connected with questions of set theory. This material is now seen to be of great 
relevance to engineering. Electronic engineers have for a long time required knowledge
of Boolean algebra in order to understand the principles of switching circuits. The 
computer is now very much part of engineering: processes are computer controlled,
manufacturing by robots is now commonplace and design is computer aided. Engineers
now have a duty to understand how to check the correctness of the algorithms that
design, build and repair. In order to do this, branches of discrete mathematics such as
propositional logic have to be part of the core curriculum for engineers and not optional
extras. This chapter develops the mathematics required in a logical and systematic way,
beginning with sets and applications to manufacturing, moving on to switching circuits
and applications to electronics, and then to propositional calculus and applications to
computing.

6.2 Set theory
The concept of a set is a relatively recent one, in that it was born in the past hundred
and fifty years. In the past few decades it has gained in popularity, and now forms part
of school mathematics – this is natural, since the concepts involved, although they may
seem unfamiliar initially, are not difficult.

Set theory is concerned with identifying one or more common characteristics among
objects. We introduce basic concepts and set operations first, and then examine some
applications. The largest areas of application deserve sections to themselves; however, in
this section we apply set theory fundamentals to the manufacture and efficient assembly
of components.

424 AN INTRODUCTION TO DISCRETE MATHEMATICS
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6.2 SET THEORY 425

6.2.1 Definitions and notation
A set is a collection of objects, which are called the elements or members of the set.
We shall denote sets by capital letters such as A, S and X, and elements of a set by
lower-case letters such as a, s and x. The notation � is used as follows: if an element a
is contained in a set S then we write

a � S

which is read ‘a belongs to S’. If b does not belong to S then the symbol � is used:

b � S

read as ‘b does not belong to S’.
A finite set is one that contains only a finite number of elements, while an infinite

set is one consisting of an infinite number of elements. For example,

(i) the months of the year form a finite set, while
(ii) the set consisting of all integers is an infinite set.

If we wish to indicate the composition of S then there are two ways of doing this.
The first method is suitable only for finite sets, and involves listing the elements of the
set between open and closed braces as, for example, in

S = {a, b, c, d, e, f }

which denotes the set S consisting only of the six elements a, b, c, d, e and f.
The second method involves giving a rule by which all elements of the set can be

determined. The notation

S = {x : x has property P}

will be used to denote the set of all elements x that have the property P. For example,

(i) S = {N : N � Z, N � 500}

is the set of integers that are less than or equal to 500, and

(ii) S = {x : x2 − x − 6 = 0, x � �}

is the set containing only the two elements 3 and −2.
An example of an infinite set would be

S = {x : 0 � x � 1, x � �}

which denotes all real numbers that lie in the range 0 to 1, including 0 and 1 themselves.
Very seldom are we satisfied with the type of statement ‘S is the set of all fruit’

beloved of early school mathematics.

Two sets A and B are said to be equal if every element of each is also an
element of the other. For such sets we write A = B; otherwise we write A ≠ B.

For example,

A = {3, 4} and B = {x : x2 − 7x + 12 = 0}

are two equal sets.

....
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If every element of a set A is also an element of the set B then A is said to be a
subset of B or, alternatively, B is a superset of A. The statement ‘A is a subset of B’ is
written A � B, while the statement ‘B is a superset of A’ is written B � A. The nega-
tions of these two statements are written as A � B and B � A respectively. Note that if
A � B and B � A then A = B, since every element of A is an element of B and vice
versa. Thus the definition of a subset does not exclude the possibility of the two sets
being equal. If A � B and A ≠ B then A is said to be a proper subset of B. In order to
distinguish between a subset and a proper subset, we shall use the notation A � B to
denote ‘A is a subset of B’ and A � B to denote ‘A is a proper subset of B’. For
example,

A = {a, b, c} is a proper subset of B = {a, b, c, d, e, f }

A set containing no elements is called the empty or null set, and is denoted by ∅. For
example,

A = {x : x2 = 25, x even}

is an example of a null set, so A = ∅. It is noted that the empty set may be considered
to be a subset of any set.

In most applications it is possible to define sensibly a universal set U that contains
all the elements of interest. For example, when dealing with sets of integers, the uni-
versal set is the set of all integers, while in two-dimensional geometry the universal set
contains all the points in the plane. In such cases we can define the complement of a set
A: if all the elements of a set A are removed from the universal set U then the elements
that remain in U form the complement of A, which is denoted by A. Thus the sets A
and A have no elements in common, and we may write

A = {x : x � U, x � A}

Relations between sets can be illustrated by schematic drawings called Venn dia-
grams, in which each set is represented as the interior of a closed region (normally
drawn as a circle) of the plane. It is usual to represent the universal set by a surround-
ing rectangle. For example, A � B and A are illustrated by the Venn diagrams of
Figures 6.1(a) and (b) respectively.

426 AN INTRODUCTION TO DISCRETE MATHEMATICS

..

Figure 6.1

6.2.2 Union and intersection

If A and B are two sets, related to the same universal set U, then we can combine A and
B to form new sets in the following two different ways.
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Union
The union of two sets A and B is a third set containing all the elements of A and all the
elements of B. It is denoted by A � B, read as ‘A union B’. Thus

A � B = {x : x � A or x � B}

where ‘or’ in this context is used in the inclusive sense: x is an element of A, or B, or both.

Intersection
The intersection of two sets A and B is a third set containing all the elements that belong
to both A and B. It is denoted by A 	 B, read as ‘A intersection B’. Thus

A 	 B = {x : x � A and x � B}

These two definitions are illustrated by the Venn diagrams of Figures 6.2(a) and (b). It
is clear from the illustration that union and intersection are commutative, so that

A � B = B � A

and

A 	 B = B 	 A

If the two sets A and B have no elements in common then A 	 B = ∅: the sets A and B
are said to be disjoint.

Since union (�) and intersection (	) combine two sets from within the same uni-
versal set U to form a third set in U, they are called binary operations on U. On the
other hand, operations on a single set A, such as forming the complement A, are called
unary operations on U. It is worthwhile noting at this stage the importance of the words
‘or’, ‘and’ and ‘not’ in the definitions of union, intersection and complementation, and
we shall return to this when considering applications in later sections. It is also worth
noting that the numerical solutions to the examples and exercises that follow can be
checked using MAPLE.

Example 6.1 If A = {3, 4, 5, 6} and B = {1, 5, 7, 9}, determine

(a) A � B (b) A 	 B

Solution (a) A � B = {1, 3, 4, 5, 6, 7, 9}

(b) A 	 B = {5}

....

Figure 6.2
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6.2.3 Exercises

428 AN INTRODUCTION TO DISCRETE MATHEMATICS
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1 Express the following sets in listed form:

A = {x : x � 10, x a natural number}

B = {x : x2 = 16, x � �}

C = {x : 4 � x � 11, x an integer}

D = {x : 0 � x � 28, x an integer divisible 
by 4}

2 For the sets A, B, C and D of Question 1 list the
sets A � B, A 	 B, A � C, A 	 C, B � D, B 	 D
and B 	 C.

3 If A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8, 10} and
C = {1, 4, 5, 8, 9}, list the sets A � B, A 	 C,
A 	 B, B � C and B 	 C.

4 Illustrate the following sets using Venn diagrams:

A 	 B, A � B, A!&!B, A!^!B, A 	 B

5 Given

A = {N : N an integer 1 � N � 10}

B = {N : N an even integer, N � 20}

and

C = {N : N = 2n, n an integer, 1 � n � 5}

determine the following:

(a) A � B (b) A 	 B

(c) A � C (d) A 	 C

6 For the sets defined in Question 5, check whether
the following statements are true or false:

(a) A 	 B 
 A 	 C

(b) A � B 
 C

(c) A � B � C

7 If the universal set is the set of all integers less
than or equal to 32, and A and B are as in 
Question 5, interpret

(a) A (b) A!^!B (c) A 	 B

(d) A!&!B (e) A � B

8 (a) If A � B and A � B, show that A = ∅.

(b) If A � B and C � D, show that (A � C ) �
(B � D) and illustrate the result using a Venn
diagram.

6.2.4 Algebra of sets

In Section 6.2.2 we saw that, given two sets A and B, the operations � and 	 could be
used to generate two further sets A � B and A 	 B. These two new sets can then be
combined with a third set C, associated with the same universal set U as the sets A and
B, to form four further sets

C � (A � B), C 	 (A � B), C � (A 	 B), C 	 (A 	 B)

and the compositions of these sets are clearly indicated by the shaded regions in the
Venn diagrams of Figure 6.3.

Clearly, by using various combinations of the binary operations � and 	 and the
unary operation of complementation (

–
), many further sets can be generated. In prac-

tice, it is useful to have rules that enable us to simplify expressions involving �, 	 and
(
–
). In this section we develop such rules, which form the basis of the algebra of sets.

In the next section we then proceed to show the analogy between this algebra and the
algebra of switching circuits, which is widely used by practising engineers.

Given the three sets A, B and C, belonging to the same universal set U, we have
already seen that the operations � and 	 are commutative, so that we have the 
following:
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CommutatiVe laws

A � B = B � A (union is commutative)
(6.1)

A 	 B = B 	 A (intersection is commutative)

It follows directly from the definitions that we have the

Idempotent laws

A � A = A (union is idempotent)
(6.2)

A 	 A = A (intersection is idempotent)

Identity laws

A � ∅ = A (∅ is an identity relative to union)
(6.3)

A 	 U = A (U is an identity relative to intersection)

Complementary laws

A � A = U
(6.4)

A 	 A = ∅

In addition, it can be shown that the following associative and distributive laws hold:

....

Figure 6.3
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AssociatiVe laws

A � (B � C) = (A � B) � C (union is associative)
(6.5)

A 	 (B 	 C) = (A 	 B) 	 C (intersection is associative)

DistributiVe laws

A � (B 	 C) = (A � B) 	 (A � C) (union is distributive over
intersection)

(6.6)
A 	 (B � C) = (A 	 B) � (A 	 C) (intersection is distributive

over union)

Readers should convince themselves of the validity of the results (6.5) and (6.6) by 
considering the Venn diagrams of Figure 6.3.

The laws expressed in (6.1)–(6.6) constitute the basic laws of the algebra of sets.
This itself is a particular example of a more general logical structure called Boolean
algebra, which is briefly defined by the statement

A class of members (equivalent to sets here) together with two binary 
operations (equivalent to union and intersection) and a unary operation
(equivalent to complementation) is a Boolean algebra provided the opera-
tions satisfy the equivalent of the commutative laws (6.1), the identity laws
(6.3), the complementary laws (6.4) and the distributive laws (6.6).

We note that it is therefore not essential to include the idempotent laws (6.2) and
associative laws (6.5) in the basic rules of the algebra of sets, since these are readily
deducible from the others. The reader should, at this stage, reflect on and compare the
basic rules of the algebra of sets with those associated with conventional numerical
algebra in which the binary operations are addition (+) and multiplication (×), and 
the identity elements are zero (0) and unity (1). It should be noted that in numerical
algebra there is no unary operation equivalent to complementation, the idempotency
laws do not hold, and that addition is not distributive over multiplication.

While the rules (6.1)–(6.6) are sufficient to enable us to simplify expressions involving
�, 	 and (

–
) the following, known as the De Morgan laws, are also useful in practice.

De Morgan laws

A!^!B = A 	 B
(6.7)

A!&!B = A � B

The first of these laws states ‘the complement of the union of two sets is the inter-
section of the two complements’, while the second states that ‘the complement of the
intersection of two sets is the union of the two complements’. The validity of the results
is illustrated by the Venn diagrams of Figure 6.4, and they are such that they enable us
to negate or invert expressions.

If we look at the pairs of laws in each of (6.1)–(6.6) and replace � by 	 and inter-
change ∅ and U in the first law in each pair then we get the second law in each pair.

430 AN INTRODUCTION TO DISCRETE MATHEMATICS
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Conversely, if we replace 	 and � and interchange ∅ and U in the second law of each
pair, we get the first law. This important observation is embedded in the principle of
duality, which states that if any statement involving �, 	 and (

–
) is true for all sets

then the dual statement (obtained by replacing � by 	, ∅ by U and U by ∅) is also
true for all sets. This holds for inclusion, with duality existing between � and �.

Example 6.2 Using the laws (6.1)–(6.6), verify the statement

(A!&!B) � ( ) � A = U

stating clearly the law used in each step.

Solution Starting with the left-hand side, we have

LHS = (A!&!B) � ( ) � A

= (B � A) � (I � $ � C) � A (De Morgan laws)

= (B � A) � (A � B � C) � A (I = A)

= A � (A � A) � (B � B) � C (associative and commutative)

= (A � A) � (B � B) � C (idempotent)

= (U � U) � C (complementary)

= U � C (idempotent)

= U (definition of union)

= RHS

Example 6.3 When carrying out a survey on the popularity of three different brands X, Y and Z of
washing powder, 100 users were interviewed, and the results were as follows: 30 used
brand X only, 22 used brand Y only, 18 used brand Z only, 8 used brands X and Y, 9
used brands X and Z, 7 used brands Z and Y and 14 used none of the brands.

(a) How many users used brands X, Y and Z?

(b) How many users used brands X and Z but not brand Y?

A B    	 	 C

A B    	 	 C

....

Figure 6.4
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Solution We can regard the users using brands X, Y and Z as being elements of the sets X, Y and
Z respectively. If we denote the number of users using brands X, Y and Z by m then we
can illustrate all the given information by the Venn diagram of Figure 6.5. We are then
in a position to answer the two given questions.

(a) Since 14 users used none of the three brands, we have that 100 − 14 = 86 users used
one or more of the brands, so

number of elements of X � Y � Z = 86

Thus, from the Venn diagram,

30 + (8 − m) + m + (9 − m) + 22 + (7 − m) + 18 = 86

94 − 2m = 86

giving m = 4 

indicating that 4 users use all three brands X, Y and Z.

(b) The number of users using brands X and Z and not Y is the number of elements 
in (X 	 Z) 	 Y, which is the region indicated as having 9 − m elements in the Venn
diagram. Thus the required answer is 9 − m = 9 − 4 = 5 users.

Example 6.4 A company manufactures cranes. There are three basic types of crane, labelled A, B and
C. Each crane is assembled from a subassembly set {a, b, c, d, e, f} as follows:

A is assembled from {a, b, c, d}
B is assembled from {a, c, f}
C is assembled from {b, d, e}

In turn, the subassemblies are manufactured from basic components {p, q, r, s, t, u, v,
w, x, y} as follows:

a is manufactured from {p, q, r, s}
b is manufactured from {q, r, t, v}
c is manufactured from {p, r, s, t}
d is manufactured from {p, w, y}
e is manufactured from {u, x}
f is manufactured from {p, r, u, v, x, y}

(a) Give the make-up of the following subassemblies:

(i) a � b, (ii) a � c � f, (iii) d � e

(b) Given that A is made in Newcastle, and B and C are made in Birmingham, what
components need to be available on both sites?
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Figure 6.5
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Solution The solution of this problem is a reasonably straightforward application of set theory.
From the definitions of a, b, c, d, e and f given, and the fact that the union of two sets
contains those items that are either in one or the other or both, the following can be 
written down:

(i) a � b = {p, q, r, s, t, v}

(ii) a � c � f = {p, q, r, s, t, u, v, x, y}

(iii) d � e = {p, u, w, x, y}

This solves (a).
Now, A is made from subassemblies {a, b, c, d}, whereas B and C require {a, b, c,

d, e, f } in all of them. Inspection of those components required to make all six sub-
assemblies reveals that subassemblies a, b, c and d do not require components u and x.
Therefore only components u and x need not be made available in both sites. Using the
notation of set theory, the solution to (b) is that the components that constitute

a � b � c � d

have to be available on both sites, or equivalently

need only be available at the Birmingham site.

Comment Of course, Example 6.4, which took much longer to state than to solve, is far too 
simple to represent a real situation. In a real crane manufacturing company there will
be perhaps 20 basic types, and in a car production plant only a few basic types but far
more than three hierarchies. However, what this example does is show how set theory
can be used for sort purposes. It should also be clear that set theory, being precise, is
ideally suited as a framework upon which to build a user-friendly computer program
(an expert system) that can answer questions equivalent to part (b) of Example 6.4,
when questioned by, for example, a managing director.

6.2.5 Exercises

 a b c d      � � �

....

9 If A, B and C are the sets {2, 5, 6, 7, 10}, {1, 3, 4,
7, 9} and {2, 3, 5, 8, 9} respectively, verify that

(a) A 	 (B 	 C ) = (A 	 B) 	 C

(b) A 	 (B � C ) = (A 	 B) � (A 	 C )

10 Using the rules of set algebra, verify the
absorption rules

(a) X � (X 	 Y ) = X (b) X 	 (X � Y ) = X

11 Using the laws of set algebra, simplify the
following:

(a) A 	 (A � B) (b) (A � B) 	 (A 	 B)

(c) (A � B) 	 (A � B) (d) (A 	 B) � (A � B)

(e) (A � B � C ) 	 (A � B � C) 	 (A � B)

(f) (A � B � C ) 	 (A � (B 	 C ))

(g) (A 	 B 	 C ) 	 (A � B � C) � (A � B)

12 Defining the difference A − B between two sets A and
B belonging to the same universal set U to be the
set of elements of A that are not elements of B, that
is A − B = A 	 B, verify the following properties:

(a) U − A = A (b) (A − B) � B = A � B

(c) C 	 (A − B) = (C 	 A) − (C 	 B)

(d) (A � B) � (B − A) = A � B

Illustrate the identities using Venn diagrams.
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13 If n(X ) denotes the number of elements of a set X,
verify the following results, which are used for
checking the results of opinion polls:

(a) n(A � B � C ) = n(A) + n(B) + n(C ) 

− n(A 	 B) − n((A � B ) 	 C )

(b) n((A � B) 	 C ) = n(A 	 C ) + n(B 	 C )

− n(A 	 B 	 C )

(c) n(A � B � C ) = n(A) + n(B) + n(C )

− n(A 	 B) − n(B 	 C )

− n(C 	 A) + n(A 	 B 	 C )

Here the sets A, B and C belong to the same
universal set U.

14 In carrying out a survey of the efficiency of 
lights, brakes and steering of motor vehicles, 
100 vehicles were found to be defective, and 
the reports on them were as follows:

no. of vehicles with defective lights = 35
no. of vehicles with defective brakes = 40
no. of vehicles with defective steering = 41
no. of vehicles with defective lights 

and brakes = 8
no. of vehicles with defective lights 

and steering = 7
no. of vehicles with defective brakes 

and steering = 6

Use a Venn diagram to determine

(a) how many vehicles had defective lights,
brakes and steering;

(b) how many vehicles had defective lights 
only.

15 On carrying out a later survey on the efficiency of
the lights, brakes and steering on the 100 vehicles
of Question 14, the report was as follows:

no. of vehicles with defective lights = 42
no. of vehicles with defective brakes = 30
no. of vehicles with defective steering = 28
no. of vehicles with defective lights  

and brakes = 8
no. of vehicles with defective lights 

and steering = 10
no. of vehicles with defective brakes

and steering = 5
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no. of vehciles with defective lights,
brakes and steering = 3

Use a Venn diagram to determine

(a) how many vehicles were non-defective;

(b) how many vehicles had defective lights 
only.

16 An analysis of 100 personal injury claims made
upon a motor insurance company revealed that
loss or injury in respect of an eye, an arm or a 
leg occurred in 30, 50 and 70 cases respectively.
Claims involving the loss or injury to two of 
these members numbered 42. How many claims
involved loss or injury to all three members? 
(You may assume that one or other of the three
members was mentioned in each of the 
100 claims.)

17 Bright Homes plc has warehouses in three
different locations, L1, L2 and L3, for making
replacement windows. There are three different
styles, called ‘standard’, ‘executive’ and
‘superior’:

standard units require parts B, C and D;
executive units require parts B, C, D and E;
superior units require parts A, B, C and F.

The parts A, B, C, D, E and F are made from
components a, b, c, d, e, f, g, h and i as follows:

A is made from {a, b, c}
B is made from {c, d, e, f }
C is made from {c, e, f, g, h}
D is made from {b, e, h}
E is made from {c, h, i}
F is made from {b, c, f, i}

(a) If the universal set is the set of all components
{a, b, c, d, e, f, g, h, i}, write down the 
following:

C, B!^!C, B 	 C, A 	 B 	 D,

A � F, D � (E 	 F), (D � E) 	 F

(b) New parts B � C, C � E and D � E � F are
to be made; what are their components?

(c) Standard units are made at L1, L2 and L3.
Executive units are made at L1 and L2 only.
Superior units are made at L3 only. What 
basic components are needed at each 
location?
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6.3 Switching and logic circuits
Throughout engineering, extensive use is made of switches. This is now truer than ever,
since personal computers and miniaturized electronic devices have found their way into
practically every branch of engineering. A switch is either on or off: denoted by the 
digits 1 or 0. We shall see that the analysis of circuits containing switches provides a
natural vehicle for the use of algebra of sets introduced in the last section.

6.3.1 Switching circuits
Consider a simple ‘on–off’ switch, which we shall denote by a lower-case letter such
as p and illustrate as in Figure 6.6. Such a switch is a two-state device, in that it is either
closed (or ‘on’) or open (or ‘off’). We denote a closed contact by 1 and an open con-
tact by 0, so that the variable p can only take one of the two values 1 or 0, with

p = 1 denoting a closed contact (or ‘on’ switch), so that a current is able to flow
through it

and

p = 0 denoting an open contact (or ‘off’ switch), so that a current cannot flow
through it

A switching circuit will consist of an energy source or input, for example a battery,
and an output, for example a light bulb, together with a number of switches p, q, r and
so on. Two switches may be combined together in two basic ways, namely by a series
connection or by a parallel connection, as illustrated in Figures 6.7 and 6.8 respectively.

Associated with such a circuit is a switching function or Boolean function f of the
variables contained in the circuit. This is a binary function with

f = 1 denoting that the entire circuit is closed

and

f = 0 denoting that the entire circuit is open

Clearly the states of f depend upon the states of the individual switches comprising 
the circuit, so we need to know how to write down an expression for f. For the series
circuit of Figure 6.7 there are four possible states:

(a) p open, q open (b) p open, q closed

(c) p closed, q open (d) p closed, q closed

....

Figure 6.6
An ‘on–off’ switch.

Figure 6.7 Two switches in series. Figure 6.8 Two switches in parallel.
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and it is obvious that current will flow through the circuit from input to output only if
both switches p and q are closed. In tabular form the state of the circuit may be repre-
sented by the truth table of Figure 6.9.

Drawing an analogy with use of the word ‘and’ in the algebra of sets we write

f = p · q

with p · q being read as ‘p and q’ (sometimes the dot is omitted and p · q is written simply
as pq). Here the ‘multiplication’ or dot symbol is used in an analogous manner to 	 in
the algebra of sets.

When we connect two switches p and q in parallel, as in Figure 6.8, the state of the
circuit may be represented by the truth table of Figure 6.10, and it is clear that current
will flow through the circuit if either p or q is closed or if they are both closed.

Again, drawing an analogy with the use of the word ‘or’ in the algebra of sets, we write

f = p + q

read as ‘p or q’, with the + symbol used in an analogous manner to � in the algebra of sets.
So far we have assumed that the two switches p and q act independently of one

another. However, two switches may be connected to one another so that

they open and close simultaneously

or

the closing (opening) of one switch will open (close) the other

This is illustrated in Figures 6.11(a) and (b) respectively. We can easily accommodate
the situation of Figure 6.11(a) by denoting both switches by the same letter. To accom-
modate the situation of Figure 6.11(b), we define the complement switch p (or p′) of 
a switch p to be a switch always in the state opposite to that of p. The action of the
complement switch is summarized in the truth table of Figure 6.12.

6.3.2 Algebra of switching circuits

We can use the operations ·, + and (
–
) to write down the Boolean function f for complex

switching circuits. The states of such circuits may then be determined by constructing
truth tables.

Example 6.5 Draw up the truth table that determines the state of the switching circuit given by the
Boolean function

f = ( p · q) + (p · q)

436 AN INTRODUCTION TO DISCRETE MATHEMATICS
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p q f

Case (a) 0 0 0

Case (b) 0 1 0

Case (c) 1 0 0

Case (d) 1 1 1

Figure 6.9
Truth table for series
connection f = p · q.

p q f

0 0 0

0 1 1

1 0 1

1 1 1

Figure 6.10
Truth table for parallel
connection f = p + q.

Figure 6.11 Two switches not acting
independently.

p p

0 1

1 0

Figure 6.12 Truth table for
complementary switch.
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Solution The required truth table is shown in Figure 6.13. This circuit is interesting in that it 
is closed (that is, there is a current flow at the output) only if the two switches p and q
are in different states. We will see later that it corresponds to the EXCLUSIVE OR
function in logic circuits.

By constructing the appropriate truth table, it is readily shown that the operations ·, +
and (

–
) satisfy the following laws, analogous to results (6.1)–(6.6) for the algebra of sets:

CommutatiVe laws

p + q = q + p, p · q = q · p

Idempotent laws

p + p = p, p · p = p

Identity laws

p + 0 = p (0 is the identity relative to +), p + 1 = 1

p · 1 = p (1 is the identity relative to ·), p · 0 = 0

Complementary laws

p + p = 1, p · p = 0

AssociatiVe laws

p + (q + r) = (p + q) + r, p · (q · r) = (p · q) · r

DistributiVe laws

p + (q · r) = (p + q) · (p + r), p · (q + r) = p · q + p · r

....

p q p q p · q p · q (p · q) ++ (p · q)

0 0 1 1 0 0 0

0 1 1 0 0 1 1

1 0 0 1 1 0 1

1 1 0 0 0 0 0

Figure 6.13
Truth table for 
f = ( p · q) + ( p · q).
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These rules form the basis of the algebra of switching circuits, and it is clear that it is
another example of a Boolean algebra, with + and · being the two binary operations, 
(
–
) being the unary operation, and 0 and 1 the identity elements. It follows that the

results developed for the algebra of sets carry through to the algebra of switching cir-
cuits, with equivalence between �, 	, (

–
), ∅, U and +, ·, (

–
), 0, 1 respectively. Using

these results, complicated switching circuits may be reduced to simpler equivalent 
circuits.

Example 6.6 Construct truth tables to verify the De Morgan laws for the algebra of switching circuits
analogous to (6.7) for the algebra of sets.

Solution The analogous De Morgan laws for the switching circuits are

p121q = p · q and p141q = p + q

the validity of which is verified by the truth tables of Figures 6.14(a) and (b).

p q p q p ++ q p121q p · q

0 0 1 1 0 1 1

0 1 1 0 1 0 0

1 0 0 1 1 0 0

1 1 0 0 1 0 0

(a) p10210q = p · q

p q p q p · q p141q p ++ q

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

(b) p141q = p + q

Example 6.7 Simplify the Boolean function

f = p + p · q · r + p · q

stating the law used in each step of the simplication.
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Figure 6.14
Truth tables for 
De Morgan laws.
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Solution f = p + p · q · r + p · q

= p · 1 + p · (q · r) + p · q (identity, p · 1 = p, and associative)

= p · (1 + (q · r)) + p · q (distributive, p · (1 + (q · r)) = p · 1 + p · (q · r))

= p · 1 + p · q (identity, 1 + (q · r) = 1)

= p + p · q (identity, p · 1 = p)

= ( p + p) · ( p + q) (distributive, p + ( p · q) = ( p + p) · ( p + q))

= 1 · ( p + q) (complementary, p + p = 1)

that is,

f = p + q (identity, 1 · ( p + q) = p + q)

Example 6.8 A machine contains three fuses p, q and r. It is desired to arrange them so that if p blows
then the machine stops, but if p does not blow then the machine only stops when both
q and r have blown. Derive the required fuse circuit.

Solution In this case we can regard the fuses as being switches, with ‘1’ representing fuse intact
(current flows) and ‘0’ representing the fuse blown (current does not flow). We are then
faced with the problem of designing a circuit given a statement of its requirements. To
do this, we first convert the specified requirements into logical specification in the form
of a truth table. From this, the Boolean function representing the machine is written
down. This may then be simplified using the algebraic rules of switching circuits to
determine the simplest appropriate circuit.

Denoting the state of the machine by f (that is, f = 1 denotes that the machine is operat-
ing, and f = 0 denotes that it has stopped), the truth table of Figure 6.15 summarizes the
state f in relation to the states of the individual fuses. We see from the last two columns
that the machine is operating when it is in either of the three states

p · q · r or p · q · r or p · q · r

Thus it may be represented by the Boolean function

f = p · q · r + p · q · r + p · q · r

Simplifying this expression gives

f = ( p · r) · (q + q) + p · q · r (distributive)

= p · r + p · q · r (complementary)

= p · (r + q · r) (distributive)

= p · ((r + q) · (r + r)) (distributive)

= p · (r + q) · 1 (complementary)

= p · (r + q) (identity)

Thus a suitable layout of the three fuses is as given in Figure 6.16.
In the case of this simple example we could have readily drawn the required layout

from the problem specification. However, it serves to illustrate the procedure that could
be adopted for a more complicated problem.

....
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Example 6.9 In a large hall there are three electrical switches next to the three doors to operate the
central lights. The three switches operate alternatively; that is, each can switch on or
switch off the lights. Design a suitable switching circuit.

Solution The light state f is either ‘1’ (light on) or ‘0’ (light off). Denoting the three switches by
p, q and r, the state of f as it relates to the states of the three switches is given in the
truth table of Figure 6.17, remembering that operating any switch turns the light off if

440 AN INTRODUCTION TO DISCRETE MATHEMATICS
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p q r f State of circuit

1 1 1 1 p · q · r

1 1 0 1 p · q · r

1 0 1 1 p · q · r

1 0 0 0 p · q · r

0 1 1 0 p · q · r

0 1 0 0 p · q · r

0 0 1 0 p · q · r

0 0 0 0 p · q · r

Figure 6.15 Figure 6.16

p q r f State of circuit

1 1 1 1 p · q · r

1 1 0 0 p · q · r

1 0 1 0 p · q · r

1 0 0 1 p · q · r

0 1 1 0 p · q · r

0 1 0 1 p · q · r

0 0 1 1 p · q · r

0 0 0 0 p · q · r

Figure 6.17
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it was on and turns the light on if it was off. We arbitrarily set p = q = r = 1 and f = 1
initially. We see from the last two columns that the light is on ( f = 1) when the circuit
is in one of the four states

p · q · r or p · q · r or p · q · r or p · q · r

Thus the required circuit is specified by the Boolean function

f = p · q · r + p · q · r + p · q · r + p · q · r

In this case it is not possible to simplify f any further, and in order to design the cor-
responding switching circuit we need to use two 1-pole, 2-way switches and one 
2-pole, 2-way switch (or intermediate switch), as illustrated in Figure 6.18(a). The four 
possible combinations leading to ‘light on’ are shown in Figures 6.18(b), (c), (d) and (e)
respectively.

....

Figure 6.18
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6.3.3 Exercises

18 By setting up truth tables, find the possible values
of the following Boolean functions:

(a) p · (q · p) (b) p + (q + p)

(c) ( p + q) · ( p · q)

(d) [( p + q)(r + p)] + (r + p)

19 Figure 6.19 shows six circuits. Write down a
Boolean function that represents each by using
truth tables.

20 Use the De Morgan laws to negate the function

f = ( p + q) · (r · s) · (q + t )

21 Give a truth table for the expression

f = p · q · r + p · q · r + p · q · r + p · q · r

22 Simplify the following Boolean functions, stating
the law used in each step of the simplification:

(a) p · ( p + p · q) (b) r · ( )

(c) ( ) (d) p + q + r + p · q

(e) (p141q) + ( ) + p

(f) q + p · r + p · q + r

23 Write down the Boolean functions for the
switching circuits of Figure 6.20.

p ⋅ ⋅q r

 p q⋅ + ⋅q p  

p  + ⋅q r

Figure 6.19 Figure 6.20
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24 Draw the switching circuit corresponding to the
following Boolean functions:

(a) f = (p + q) · r + s · t (b) (p + q) · (r + p)

(c) p · q + p · q (d) p · (q + p) + (q + r) · p

25 Four engineers J, F, H and D are checking a
rocket. Each engineer has a switch that he or she
presses in the event of discovering a fault. Show
how these must be wired to a warning lamp, in 
the countdown control room, if the lamp is to 
light only under the following circumstances:

(a) D discovers a fault;

(b) any two of J, F and H discover a fault.

26 In a public discussion a chairman asks questions
of a panel of three. If to a particular question a
majority of the panel answer ‘yes’ then a light 
will come on, while if to a particular question a
majority of the panel answer ‘no’ then a buzzer
will sound. The members of the panel record their
answers by means of a two-position switch having 

....

position ‘1’ for ‘yes’ and position ‘0’ for ‘no’.
Design a suitable circuit for the discussion.

27 Design a switching circuit that can turn a
lamp ‘on’ or ‘off’ at three different locations
independently.

28 Design a switching circuit containing three
independent contacts for a machine so that the
machine is turned on when any two, but not three,
of the contacts are closed.

29 The operation of a machine is monitored on a set
of three lamps A, B and C, each of which at any
given instant is either ‘on’ or ‘off’. Faulty operation
is indicated by each of the following conditions:

(a) when both A and B are off;

(b) when all lamps are on;

(c) when B is on and either A is off or C is on.

Simplify these conditions by describing as
concisely as possible the state of the lamps that
indicates faulty operation.

6.3.4 Logic circuits

As indicated in Section 6.3.1, a switch is a two-state device, and the algebra of switch-
ing circuits developed in Section 6.3.2 is equally applicable to systems involving other
such devices. In this section we consider how the algebra may be applied to logic 
circuit design.

In logic circuit design the two states denoted by ‘1’ and ‘0’ usually denote HIGH
and LOW voltage respectively (positive logic), although the opposite convention can
be used (negative logic). The basic building blocks of logic circuits are called logic
gates. These represent various standard Boolean functions. First let us consider the logic
gates corresponding to the binary operation of ‘and’ and ‘or’ and the unary operation of
complementation. We shall illustrate this using two inputs, although in practice more
can be used.

AND gate

The AND gate is commonly represented diagrammatically in Figure 6.21, and corre-
sponds to the Boolean function

f = p · q (read ‘p and q’)

f = 1 (output HIGH) if and only if the inputs p and q are simultaneously in state 1 
(both inputs HIGH). For all other input combinations f will be zero. The correspond-
ing truth table is as in Figure 6.9, with 1 denoting HIGH voltage and 0 denoting LOW
voltage.

Figure 6.21
AND gate.
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OR gate

The OR gate is represented diagrammatically in Figure 6.22, and corresponds to the
Boolean function

f = p + q (read ‘p or q’)

In this case f = 1 (HIGH output) if either p or q or both are in state 1 (at least one input
HIGH). f = 0 (LOW output) if and only if inputs are simultaneously 0. The correspond-
ing truth table is as in Figure 6.10.

NOT gate

The NOT gate is represented diagrammatically in Figure 6.23, and corresponds to the
Boolean function

f = p (read ‘not p’)

When the input is in state 1 (HIGH), the output is in state 0 (LOW) and vice versa. The
corresponding truth table is as in Figure 6.12.

With these interpretations of ·, +, (
–
), 0 and 1, the rules developed in Section 6.3.2

for the algebra of switching circuits are applicable to the analysis and design of logic
circuits.

Example 6.10 Build a logic circuit to represent the Boolean function

f = p · q + p

Solution We first use a NOT gate to obtain p then an AND gate to generate p · q, and finally an
OR gate to represent f. The resulting logic circuit is shown in Figure 6.24.

Example 6.11 Build a logic circuit to represent the Boolean function

f = ( p + q) · (r + s · q)

Solution Adopting a similar procedure to the previous example leads to the logic circuit of
Figure 6.25.
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Figure 6.22
OR gate.

Figure 6.23
NOT gate.

Figure 6.24
Logic circuit 
f = p · q + p.

M06_JAME0734_05_SE_C06.qxd  11/03/2015  09:53  Page 444



6.3 SWITCHING AND LOGIC CIRCUITS 445
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Figure 6.25
Logic circuit 
f = ( p + q) · (r + s · q).

So far we have considered the three logic gates AND, OR and NOT and indicated how
these can be used to build a logic circuit representative of a given Boolean function. We
now introduce two further gates, which are invaluable in practice and are frequently
used.

NAND gate

The NAND (or ‘NOT AND’) gate is represented diagrammatically in Figure 6.26, and
corresponds to the function

f = p141q

The small circle on the output line of the gate symbol indicates negation or NOT. Thus
the gate negates the AND gate and is equivalent to the logic circuit of Figure 6.27.

The corresponding truth table is given in Figure 6.28.

Note that, using De Morgan laws, the Boolean function for the NAND gate may also
be written as

f = p141q = p + q

NOR gate

The NOR (or ‘NOT OR’) gate is represented diagrammatically in Figure 6.29, and 
corresponds to the Boolean function

f = p121q

Again we have equivalence with the logic circuit of Figure 6.30 and (using the De
Morgan laws) with the Boolean function

Figure 6.26
NAND gate f = p141q.

p q p · q f

1 1 1 0

1 0 0 1

0 1 0 1

0 0 0 1

Figure 6.28 Truth table for NAND gate.Figure 6.27 Equivalent circuit to NAND gate.

Figure 6.29
NOR gate f = p121q.
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f = p121q = p · q

The corresponding truth table is given in Figure 6.31.

It is of interest to recognize that, using either one of the NAND or NOR gates, it is
possible to build a logic circuit to represent any given Boolean function. To prove 
this, we have to show that, using either gate, we can implement the three basic Boolean
functions p + q, p · q and p. This is illustrated in Figure 6.32 for the NAND gate; the
illustration for the NOR gate is left as an exercise for the reader.

Example 6.12 Using only NOR gates, build a logic circuit to represent the Boolean function

f = p · q + p · q

Solution The required logic circuit is illustrated in Figure 6.33.
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p q p ++ q f

1 1 1 0

1 0 1 0

0 1 1 0

0 0 0 1

Figure 6.31 Truth table for NOR gate.Figure 6.30 Equivalent circuit to NOR gate.

Figure 6.32 Basic Boolean functions using NAND gates.

Figure 6.33
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We note that the Boolean function considered in Example 6.12 is the same as that 
considered in Example 6.5, where its truth table was constructed, indicating that the
output is in state 1 only if the two inputs are in different states. This leads us to defining
a further logic gate used in practice.

EXCLUSIVE OR gate

The EXCLUSIVE OR gate is represented diagrammatically in Figure 6.34 and corres-
ponds to the Boolean function

f = p · q + p · q

As indicated above, f = 1 (output HIGH) only if the inputs p and q are in different states;
that is, either p or q is in state 1 but not both. It therefore corresponds to the everyday
exclusive usage of the word ‘OR’ where it is taken to mean ‘one or the other but not
both’. On the other hand, the OR gate introduced earlier is used in the sense ‘one or the
other or both’, and could more precisely be called the INCLUSIVE OR gate.

Although present technology is such that a logic circuit consisting of thousands of
logic gates may be incorporated in a single silicon chip, the design of smaller equiv-
alent logic circuits is still an important problem. As for switching circuits, simplifica-
tion of a Boolean function representation of a logic circuit may be carried out using 
the algebraic rules given in Section 6.3.2. More systematic methods are available for
carrying out such simplification. For Boolean expressions containing not more than 
six variables the pictorial approach of constructing Karnaugh maps is widely used by
engineers. An alternative algebraic approach, which is well suited for computer imple-
mentation, is to use the Quine–McCluskey algorithm. For details of such methods the
reader is referred to specialist texts on the subject.

6.3.5 Exercises

....

Figure 6.34
EXCLUSIVE OR
gate.

Figure 6.35

30 Write down the Boolean function for the logic
blocks of Figure 6.35. Simplify the functions as far
as possible and draw the equivalent logic block.
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31 Simplify the following Boolean functions and
sketch the logic block corresponding to both the
given and simplified functions:

(a) ( p · q + p · q) · ( p + q) · ( p + q)

(b) r · p · q + r · p · q + r · p · q

(c) p · q + r · p · s + p · q · s

(d) ( p + q) · ( p + r) + r · ( p + q · r)

(e) ( p + q) · ( p + q) · ( p + q)

448 AN INTRODUCTION TO DISCRETE MATHEMATICS
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Figure 6.35 continued

6.4 Propositional logic and methods of proof

In the last section we dealt with switches that are either off or on. These lend them-
selves naturally to the application of set algebra. On the other hand, everyday use of
English contains many statements that are neither obviously true nor false: for example
‘Chilly for the time of year, isn’t it?’ There are, however, some statements that are imme-
diately either true or false: for example, ‘In 2004 the Summer Olympics were held in
Athens, Greece’ (true) or ‘All children watch too much television’ (false). Proposi-
tional logic can be used to analyse, simplify and establish the equivalence of statements.
Applications of propositional logic include the efficient operation of computer-based
expert systems, where the user may phrase questions differently or answer in different
ways, and yet the answers are logically equivalent. Propositional logic leads naturally to
the precise formulation of the proof of statements that, though important in themselves,
are also the basis by which computer programs can be made more efficient. Thus we
shall develop tools with a vast potential for use throughout engineering.

6.4.1 Propositions

A proposition is a statement (or sentence) for which it is immediately decidable
whether it is true (T) or false (F), but not both. For example

p1: The year 1973 was a leap year

is a proposition readily decidable as false. Note the use of the label ‘p1: …’, so that the
overall statement is read ‘p1 is the statement: “The year 1973 was a leap year” ’.
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Since when considering propositions we are concerned with statements that are
decidable as true or false, we obviously exclude all questions and commands. Also
excluded are assertions that involve subjective value judgements or opinions such as

r: The Director of the company is overpaid

Statements such as

m: He was Prime Minister of England

n: The number x + 3 is divisible by 3

that involve pronouns (he, she, and so on) or a mathematical variable, are not readily
decidable as true or false, and are therefore not propositions. However, as soon as the
pronoun or variable is specified (or quantified in some way) then the statements are
decidable as true or false and become propositions. Statements such as m and n are
examples of predicates.

Given any statement p, there is always an associated statement called the negation
of p. We denote this by F, read as ‘not p’. (The notations µp and ~p are also sometimes
used.) For example, the negation of the proposition p1 above is the proposition

F1: The year 1973 was not a leap year

which is decidable as true, the opposite truth value to p1. In general the negation F of a
statement p always has precisely the opposite truth value to that of p itself. The truth
values of both p and F are given in the truth table shown in Figure 6.36.

Example 6.13 List A is a list of propositions, while list B is a list of sentences that are not propositions.

(a) Determine the truth values of the propositions in list A and state their negation
statements.

(b) Explain why the sentences in list B are not propositions.

List A:

(a) Everyone can say where they were when President J. F. Kennedy was assassinated

(b) 2n = n2 for some n � �, where � is the set of natural numbers

(c) The number 5 is negative

(d) 289 301 + 1 is a prime number

(e) Air temperatures were never above 0°C in February 1935 in Bristol, UK

List B:

(a) Maths is fun

(b) Your place or mine?

(c) y − x = x − y

(d) Why am I reading this?

(e) Flowers are more interesting than calculus

(f ) n is a prime number

(g) He won an Olympic medal

....

p p

T F

F T

Figure 6.36
Truth table for F.
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Solution First of all, let us examine list A.

(a) This is obviously false. Besides those with poor memories or those from remote
parts of the world, not everyone had been born in 1963.

(b) This is true (for n = 2).

(c) This is obviously false.

(d) There is no doubt that this is either true or false, but only specialists would know
which (it is true).

(e) This is true, but again specialist knowledge is required before this can be verified.

All statements in list A are propositions because they are either true or false, never both.
The negation predicates for list A are as follows.

(a) Not everyone can say where they were when President J. F. Kennedy was 
assassinated.

(b) 2n ≠ n2 for all n � �.

(c) The number 5 is not negative.

(d) 289 301 + 1 is not a prime number.

(e) Air temperature was above 0°C at some time in February 1935 in Bristol, UK.

The sentences in list B are not propositions, for the following reasons.

(a) This is a subjective judgement. I think maths is fun (most of the time) – you 
probably do not!

(b) This is a question, and thus cannot be a proposition.

(c) This can easily be made into a proposition by the addition of the phrase ‘for some
real numbers x and y’. It is then true (whenever x = y).

(d) This is the same category as (b), a question.

(e) This is a subjective statement in the same category as (a).

(f ) This is a predicate, since it will become a proposition once n is specified.

(g) Again, this is a predicate, since once we know who ‘he’ is, the statement will be
certainly either true or false and hence be a proposition.

6.4.2 Compound propositions

When we combine simple statements together by such words as ‘and’, ‘or’ and so on
we obtain compound statements. For example,

m: Today is Sunday and John has gone to church

n: Mary is 35 years old or Mary is 36 years old

constitute compound statements, with the constituent simple statements being 
respectively

450 AN INTRODUCTION TO DISCRETE MATHEMATICS
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m1: Today is Sunday, m2: John has gone to church

n1: Mary is 35 years old, n2: Mary is 36 years old

As for switching circuits, we can again draw an analogy between the use of the words
‘or’ and ‘and’ in English and their use in the algebra of sets to form the union A � B
and intersection A 	 B of two sets A and B. Drawing on the analogy the word ‘or’ is
used to mean ‘at least one statement’ and the word ‘and’ to mean ‘both statements’. The
symbolism commonly used in propositional logic is to adopt the symbol � (analogous
to �) for ‘or’ and the symbol � (analogous to 	) for ‘and’. Thus in symbolic form the
statements m and n may be written in terms of their constituent simple statements as

m = m1 � m2 (m1 and m2)

n = n1 � n2 (n1 or n2)

In general for two statements p and q the truth values of the compound statements

p � q (meaning ‘p or q’ and called the disjunction of p, q)

p � q (meaning ‘p and q’ and called the conjunction of p, q)

are as given in the truth table of Figure 6.37.
Here are two examples that use compound statements and also make use of F

meaning ‘not p’ and

p → q

meaning p implies q. There will be more about this kind of compound statement p → q
( p implies q) when we deal with proof in Section 6.4.5.

Example 6.14 Let A, B and C be the following propositions:

A: It is frosty
B: It is after 11.00 a.m.
C: Jim drives safely

(a) Translate the following statements into logical statements using the notation of this
section.

(i) It is not frosty.
(ii) It is frosty and after 11.00 a.m.

(iii) It is not frosty, it is before 11.00 a.m. and Jim drives safely.

(b) Translate the following into English sentences:

(i) A � B, (ii) J → C, (iii) A � K → L, (iv) J � B → C

Solution (a) (i) is the negation of A, so is written J.
(ii) is A AND B, written A � B.

(iii) is slightly more involved, but is a combination of NOT A, NOT B AND C, and
so is written J � K � C.

(b) (i) A � B is A AND B; that is, ‘It is frosty and it is after 11.00 a.m.’
(ii) J → C is NOT A implies C; that is, ‘It is not frosty, therefore Jim drives

safely’.

....

p q p ] q p [ q

T T T T

T F T F

F T T F

F F F F

Figure 6.37
Truth table for p � q
and p � q.
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(iii) A � K → L is A AND NOT B implies NOT C; that is, ‘It is frosty and before
11.00 a.m.; therefore Jim does not drive safely.’
(iv) J � B → C is NOT A or B implies C; that is, ‘It is not frosty or it is after 
11.00 a.m.; therefore Jim drives safely.’

Example 6.15 (Adapted from Exercise 5.15 in K.A. Ross and C.R.B. Wright, Discrete Mathematics,
Prentice Hall, Englewood Cliffs, NJ, 1988.) In a piece of software, we have the
following three propositions:

P: The flag is set
Q: I = 0
R: Subroutine S is completed

Translate the following into symbols:

(a) If the flag is set then I = 0.

(b) Subroutine S is completed if the flag is set.

(c) The flag is set if subroutine S is not completed.

(d) Whenever I = 0, the flag is set.

(e) Subroutine S is completed only if I = 0.

(f) Subroutine S is completed only if I = 0 or the flag is set.

Solution Most of the answers can be given with minimal explanation. The reader should check
each and make sure each is understood before going further.

(a) P → Q (that is, P implies Q)

(b) P → R (that is, P implies R)

(c) M → P (that is, NOT R implies P)

Note that the logical expression is sometimes, as in (b) and (c), the ‘other way round’
from the English sentence. This reflects the adaptability of the English language, but
can be a pitfall for the unalert student.

(d) Q → P (that is, Q implies P)

(e) R → Q (that is, R implies Q)

(f ) This is really two statements owing to the presence of the (English, not logical)
‘or’. ‘S is completed only if I = 0’ is written in logical symbols as (e) R → Q. So 
including ‘the flag is set’ as a logical alternative gives

(R → Q) � P

as the logical interpretation of (f ). Alternatively, we can interpret the phrase ‘I = 0 
or the flag is set’ logically first as Q � P, then combine this with ‘subroutine S is 
completed’ to give

R → (Q � P)

452 AN INTRODUCTION TO DISCRETE MATHEMATICS
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Now these two logical expressions are not the same. The sentence (f) may seem harm-
less; however, some extra punctuation or rephrasing is required before it is rendered
unambiguous. One version could read:

(f ) Subroutine S is completed only if either I = 0 or the flag is set (or both).

This is R → (Q � P).

Another could read:

(f ) Subroutine S is completed only if I = 0 or the flag is set (or both).

This is (R → Q) � P.

Part (f ) highlights the fact that there is no room for sloppy thinking in this branch of
engineering mathematics.

6.4.3 Algebra of statements

In the same way as we used �, 	 and (
–
) to generate complex expressions for sets 

we can use �, � and ~ to form complex compound statements by constructing truth
tables.

Example 6.16 Construct the truth table determining the truth values of the compound proposition

p � (p � q)

Solution The truth table is shown in Figure 6.38. Note that this verifies the analogous absorption
law for set algebra of Question 10 (Exercises 6.2.5).

The statements are said to be equivalent (or more precisely logically equivalent) if
they have the same truth values. Again, to show that two statements are equivalent we
simply need to construct the truth table for each statement and compare truth values.
For example, from Example 6.16 we see that the two statements

p � ( p � q) and p

....

p q p [ q p ] ( p [ q)

T T T T

T F F T

F T F F

F F F F

Figure 6.38
Truth table for 
p � (p � q).
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are equivalent. The symbolism ≡ is used to denote equivalent statements, so we can
write

p � (p � q) ≡ p

By constructing the appropriate truth tables, the following laws, analogous to the results
(6.1), (6.2), (6.5) and (6.6) for set algebra, are readily verified:

CommutatiVe laws

p � q ≡ q � p, p � q ≡ q � p

Idempotent laws

p � p ≡ p, p � p ≡ p

AssociatiVe laws

p � (q � r) ≡ (p � q) � r, p � (q � r) ≡ (p � q) � r

DistributiVe laws

p � (q � r) ≡ (p � q) � (p � r), p � (q � r) ≡ (p � q) � (p � r)

To develop a complete parallel with the algebra of sets, we need to identify two unit
elements analogous to ∅ and U, relative to � and � respectively.

Relative to �, we need to identify a statement s such that

p � s ≡ p

for any statement p. Clearly s must have a false value in all circumstances, and an
example of such a statement is

s ≡ q � G

where q is any statement, as evidenced by the truth table of Figure 6.39(a). Such a state-
ment that is false in all circumstances is called a contradiction, and its role in the 
algebra of statements is analogous to the role of the empty set ∅ in the algebra of sets.

Relative to �, we need to identify a statement t such that

p � t ≡ p

for any statement p. Clearly, t must have a true truth value in all circumstances, and an
example of such a statement is

t ≡ q � G

for any statement q, as evidenced by the truth table of Figure 6.39(b). Such a statement
that is true in all circumstances is called a tautology, and its role in the algebra of state-
ments is analogous to that of the universal set U in the algebra of sets.

454 AN INTRODUCTION TO DISCRETE MATHEMATICS
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q 7 q [ 7

T F F

F T F

(a) Contradiction

q 7 q [ 7

T F T

F T T

(b) Tautology

Figure 6.39
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Introducing the tautology and contradiction statements t and s respectively leads to
the identity and complementary laws

Identity laws

p � s ≡ p (s is the identity relative to �)

p � t ≡ p (t is the identity relative to �)

Complementary laws

p � F ≡ t, p � F ≡ s

analogous to (6.3) and (6.4) for set algebra.
It then follows that the algebra of statements is another example of a Boolean 

algebra, with � and � being the two binary operations, ~ being the unary operation and
s and t the identity elements. Consequently all the results developed for the algebra of
sets carry through to the algebra of statements with equivalence between �, 	, (

–
),

∅, � and �, �, ~, s, t respectively. These rules may then be used to reduce complex
statements to simpler compound statements. These rules of the algebra of statements
form the basis of propositional logic.

Example 6.17 Construct a truth table to verify the De Morgan laws for the algebra of statements 
analogous to (6.1) for the algebra of sets.

Solution The analogous De Morgan laws for statements are the negations

(p � q) ≡ F � G, (p � q) ≡ F � G

whose validity is verified by the tables displayed in Figures 6.40 and 6.41.

....

p q 6 7 p ] q p ] q 6 [ 7

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

Figure 6.40 Truth table for p � q ≡ F � G.

p q 6 7 p [ q p [ q 6 ] 7

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

Figure 6.41 Truth table for p � q ≡ F � G.
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6.4.4 Exercises
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32 Negate the following propositions:

(a) Fred is my brother.

(b) 12 is an even number.

(c) There will be gales next winter.

(d) Bridges collapse when design loads are
exceeded.

33 Determine the truth values of the following
propositions:

(a) The world is flat.

(b) 2n + n is a prime number for some integer n.

(c) a2 = 0 implies a = 0 for all a � �.

(d) a + bc = (a + b)(a + c) for real numbers a, b
and c.

34 Determine which of the following are propositions
and which are not. For those that are, determine
their truth values.

(a) x + y = y + x for all x, y � �.

(b) AB = BA, where A and B are square matrices.

(c) Academics are absent-minded.

(d) I think that the world is flat.

(e) Go fetch a policeman.

(f) Every even integer greater than 4 is the sum of
two prime numbers. (This is Goldbach’s conjecture.)

35 Let A, B and C be the following propositions:

A: It is raining
B: The sun is shining
C: There are clouds in the sky

Translate the following into logical notation:

(a) It is raining and the sun is shining.

(b) If it is raining then there are clouds in the sky.

(c) If it is not raining then the sun is not shining
and there are clouds in the sky.

(d) If there are no clouds in the sky then the sun is
shining.

36 Let A, B and C be as in Question 35. Translate the
following logical expressions into English
sentences:

(a) A � B → C (b) (A → C) → B

(c) J → (B � C) (d) (A � B) � C

37 Consider the ambiguous sentence

x2 = y2 implies x = y for all x and y

(a) Make the sentence into a proposition that is
true.

(b) Make the sentence into a proposition that is
false.

6.4.5 Implications and proofs

A third type of compound statement of importance in propositional logic is that of
implication, which lies at the heart of a mathematical argument. We have already met
it briefly in Example 6.14, but here we give its formal definition. If p and q are two
statements then we write the implication compound statement as

If p then q

which asserts that the truth of p guarantees the truth of q. Alternatively, we say

p implies q

and adopt the symbolism p → q (the notation p ⇒ q is also commonly in use).
The truth table corresponding to p → q is given in Figure 6.42. From the truth table

we see that p → q is false only when p is true and q is false. At first the observation 
that p → q is true whenever p is false may appear strange, but a simple example should 

p q p →→ q

T T T

T F F

F T T

F F T

Figure 6.42
Truth table for p → q.
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convince you. Suppose that prior to interviews for a senior management post within a
company the candidate states

If I am appointed then company profits will rise

This is clearly an implication statement p → q, with the statements p and q being

p: I am appointed

q: Company profits will rise

If the candidate is not appointed (that is, p is ‘false’) then the statement made by the
candidate is not false – independently of whether or not the company profits will rise.
Hence p → q must be ‘true’.

Example 6.18 Use truth tables to show that the following are tautologies:

(a) A → A, (b) A � (A → B) → B

Solution (a) The truth table in Figure 6.43 is easily constructed and shows that, no matter
whether A is true or false, A → A is true. It is thus a tautology.

(b) The truth table shown in Figure 6.44 can be drawn, and we see that all the entries
in the last column are true and the outcome of A � (A → B) → B is always true; it is
thus a tautology.

The implication statement

q → p

is called the converse of the statement p → q, and it is perfectly possible for one to be
true and the other to be false. For example, if p and q are defined by the statements

p: I go for a walk in the rain

q: I get wet

then the implication statements p → q and q → p are

If I go for a walk in the rain then I get wet

....

A B A →→ B A [ (A →→ B) [A [ (A →→ B)] →→ B

F F T F T

F T T F T

T F F F T

T T T T T

Figure 6.44 Truth table for [A � (A → B)] → B.

A A →→ A

F T

T T

Figure 6.43 Truth table for A → A.
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and

If I am getting wet then I am going for a walk in the rain

respectively. The first, p → q, is true but the second, q → p, is false (I could be taking
a shower).

An implication statement that asserts both p → q and q → p is called double 
implication, and is denoted by

p ↔ q

which may be expressed verbally as

p if and only if q

or ‘p is a necessary and sufficient condition for q’. Again the notation p ⇔ q is also 
frequently used to represent double implication.

It thus follows that p ↔ q is defined to be

( p → q) � (q → p)

and its truth table is given in Figure 6.45.

From Figure 6.45 we see that p ↔ q is true if p and q have the same truth values,
and is false if p and q have different truth values. It therefore follows that

( p ↔ q) ↔ ( p ≡ q)

meaning that each of the statements p ↔ q and p ≡ q implies the other. We must be
careful when interpreting implication when negation statements are involved. A com-
monly made mistake is to assume that if the implication

p → q

is valid then the implication

F → G

is also valid. A little thought should convince you that this is not necessarily the case.
This can be confirmed by reconsidering the previous example, when the negations F
and G would be

F: I do not go for a walk in the rain

G: I do not get wet

and F → G is

If I do not go for a walk in the rain then I do not get wet

458 AN INTRODUCTION TO DISCRETE MATHEMATICS
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p q p →→ q q →→ p p ↔↔ q

T T T T T

T F F T F

F T T F F

F F T T T

Figure 6.45
Truth table for p ↔ q.
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(This is obviously false, since someone could throw a bucket of water over me.) p → q
and F → G so have different truth values. The construction of the two truth tables will
establish this rigorously. On the other hand, the implication statements p → q and 
G → F are equivalent, as can be seen from the truth table in Figure 6.46. The implica-
tion G → F is called the contrapositive form of the implication p → q.

In mathematics we need to establish beyond any doubt the truth of statements. If we
denote by p a type of statement called a hypothesis and by q a second type of statement
called a conclusion then the implication p → q is called a theorem.

In general, p can be formed from several statements; there is, however, usually only
one conclusion in a theorem. A sequence of propositions that end with a conclusion, each
proposition being regarded as valid, is called a proof. In practice, there are three ways
of proving a theorem. These are direct proof, indirect proof and proof by induction.
Direct proof is, as its name suggests, directly establishing the conclusion by a sequence
of valid implementations. Here is an example of direct proof.

Example 6.19 If a, b, c, d � �, prove that the inverse of the 2 × 2 matrix

(ad ≠ bc) is

Solution This has already been done in Section 5.4. In the context of propositional logic, we con-
veniently split the proof as follows.

H1: If there exists a 2 × 2 matrix B such that

AB = BA = I2

where I2 is the 2 × 2 identity matrix, then B is the inverse of A

H2:

H3:     
  

  

a

c

b

d

d

c

b

a

d

c

b

a

a

c

b

d

ad bc

ad bc

⎡

⎣
⎢

⎤

⎦
⎥

−

−⎡

⎣
⎢

⎤

⎦
⎥ =

−

−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =

−

−

⎡

⎣
⎢

⎤

⎦
⎥

0

0

    
α

α
α α

0

0 1

0

0

1
2

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ = I

  

1

ad bc

d

c

b

a− −

−⎡

⎣
⎢

⎤

⎦
⎥

 
A  =

⎡

⎣
⎢

⎤

⎦
⎥

a

c

b

d

....

p q 6 7 p →→ q 7 →→ 6

T T F F T T

T F F T F F

F T T F T T

F F T T T T

Figure 6.46
The equivalence of 
p → q and G → F.
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Using H2, we deduce that

= (ad − bc)I2

Dividing by ad − bc then gives the result.
In this proof, H1 is a definition and hence true, H2 and H3 are properties of matrices

established in Chapter 5. (It is possible to split H3 into arithmetical hypotheses detailing
the process of matrix multiplication.) Hence

H1 � H2 � H3 implies A−1 =

hence establishing that the right-hand side is the inverse of A.

We have seen that p → q and G → F are logically equivalent. The use of this in a proof
sometimes makes the arguments easier to follow, and we call this an indirect proof.
Here is an example of this.

Example 6.20 Prove that if a + b � 15 then either a � 8 or b � 8, where a and b are integers.

Solution Let p, q and r be the statements

p: a + b � 15 q: a � 8 r: b � 8

Then the negations of these statements are

F: a + b � 14 G: a � 7 H: b � 7

The statement to be proved can be put into logical notation

p → (q � r)

This is equivalent to

(q � r) → F

or, using the De Morgan laws,

(G � H) → F

If we prove the truth of this implication statement then we have also proved that

p → (q � r)

We have

G � H: a � 7 and b � 7

F: a + b � 14

  

1

ad bc

d

c

b

a− −

−⎡

⎣
⎢

⎤

⎦
⎥

ad bc

ad bc
ad bc

  

  
  (   )

−

−

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥

0

0 1

0

0

1
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Hence F � H → F is

a � 7 and b � 7 implies a + b � 14 for integers a and b

which is certainly true.
We have thus proved that p → (q � r), as required.

Another indirect form of proof is proof by contradiction. Instead of proving ‘p is true’
we prove ‘F is false’. An example of this kind of indirect proof follows.

Example 6.21 Prove that ÷2 is irrational.

Solution Let p be the statement

p: ÷2 is irrational

then F is the statement

F: ÷2 is rational

Here are the arguments establishing that F is ‘false’. If ÷2 is rational then there are
integers m and n, with no common factor, such that

Squaring this gives

or m2 = 2n2

This implies that m2 is an even number, and therefore so is m. Hence

m = 2k with k an integer

So

m2 = 4k2

However, since n2 = m2, this implies

n2 = 2k2

and therefore n2 is also even, which means that n is even. But if both m and n are even,
they have the factor 2 (at least) in common. We thus have a contradiction, since we
have assumed that m and n have no common factors. Thus F must be false. If F is false
then p is true, and hence we have proved that ÷2 is irrational.

The final method of proof we shall examine is proof by induction. If p1, p2, … , 
pn, … is a sequence of propositions, n is a natural number and

(a) p1 is true (the basis for induction)
(b) if pn is true then pn+1 is true (the induction hypothesis)

1
2

2
2

2
  =

m

n

÷2  =
m

n

....
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then pn is true for all n by induction. Proof by induction is used extensively by math-
ematicians to establish formulae. Here is such an example.

Example 6.22 Use mathematical induction to show that

1 + 2 + … + N = N(N + 1) (6.8)

for any natural number N.

Solution Let us follow the routine for proof by induction.
First of all, we set N = 1 in the proposition (6.8):

1 = 1(1 + 1)

which is certainly true. Now we set N = n in (6.8) and assume the statement is true:

1 + 2 + … + n = n(n + 1) (6.9)

We now have to show that

1 + 2 + … + n + (n + 1) = (n + 1)(n + 2) (6.10)

which is the proposition (6.8) with N replaced by n + 1. If we add n + 1 to both sides
of (6.9) then the right-hand side becomes

n(n + 1) + (n + 1)

which can be rewritten as

( n + 1)(n + 1) = (n + 1)(n + 2)

thus establishing the proof of the induction hypothesis. The truth of (6.8) then follows
by induction.

6.4.6 Exercises

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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38 The counterexample is a good way of disproving
assertions. (Examples can never be used as proof.)
Find counterexamples for the following assertions:

(a) 2n − 1 is a prime for every n � 2

(b) 2n + 3n is a prime for all n � �

(c) 2n + n is prime for every positive odd integer n

39 Give the converse and contrapositive for each of
the following propositions:

(a) A → (B � C )

(b) If x + y = 1 then x2 + y2 � 1

(c) If 2 + 2 = 4 then 3 + 3 = 9

40 Construct the truth tables for the following:

(a) A � J (b) J � K

(c) (A � B) → C (d) ((A � B) → C)

41 Prove or disprove the following:

(a) (B → A) ↔ (A � B)

(b) (A � B) → (A → B)

(c) (A � B) → (A � B)

Note that to disprove a tautology, only one line of
a truth table is required.

42 Use contradiction to show that ÷3 is irrational.
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6.5 Engineering application: decision support
In the early 1960s many people believed that machines could be made to think and that
computers that could, for instance, automatically translate text from one language to
another or make accurate medical diagnoses would soon be available. The problems
associated with creating machines that could undertake these tasks are well illustrated
by the story (possibly apocryphal but none the less salutary) of the early language-
translating machine that was asked to translate the English sentence ‘The spirit is
willing but the flesh is weak’, into Russian. The machine’s attempt was found to read,
in Russian, ‘The vodka is very strong but the meat has gone off’. Problems such as these
and the growing appreciation of the sheer magnitude of the computing power needed
to undertake these intelligent tasks (an effect often referred to as the ‘combinatorial
explosion’) finally resulted in the realization that thinking machines were further away
than some scientists had thought. Interest waned for 20 years until, in the early 1980s,
advances both in our understanding of theoretical issues in computer software and in
the design of computer hardware again brought the achievement of intelligent tasks by
computers nearer reality. In the 21st century such issues are still live.

The modern approach to producing intelligent machines (or at least machines
that seem intelligent) is through ‘decision support systems’. The basis of such a system is
a database of facts and rules together with an ‘inference engine’, that is, a computer 
program that matches some query with the known facts and rules and determines the
answer to the query. The phrase ‘data mining’ has been coined to describe the finding
of hidden and unexpected patterns in large databases. Decision trees and predicate logic
are usually behind modern data mining techniques. The essence of the ‘intelligence’ of
the system is the way in which the inference engine is able to combine the known facts,

6.5 ENGINEERING APPLICATION:  DECISION SUPPORT 463

....

43 Prove or disprove the following:

(a) The sum of two even integers is an even
integer.

(b) The sum of two odd integers is an odd integer.

(c) The sum of two primes is never a prime.

(d) The sum of three consecutive integers is
divisible by 3.

Indicate the methods of proof where appropriate.

44 Prove that the number of primes is infinite by
contradiction.

45 Use induction to establish the following results:

(a) n(n + 1)(2n + 1) (n a natural 
number)

(b) 4 + 10 + 16 + … 

+ (6n − 2) = n(3n + 1) (n � �)

k
k

n
2

1

1
6

=
∑ =  

(c) (2n + 1) + (2n + 3) + (2n + 5) + … 

+ (4n − 1) = 3n2 (n a natural number)

(d) 13 + 23 + … 

+ n3 = (1 + 2 + … + n)2 (n a natural
number)

(Hint: Use 1 + 2 + … + n = n(n + 1), established
in the text.)

46 Prove that 11n − 4n is divisible by 7 for all natural
numbers n.

47 Consider the following short procedure:

Step 1: Let S = 1
Step 2: Print S
Step 3: Replace S by S + 2÷S + 1 and go

back to step 2

List the first four printed values of S, and prove by
induction that S = n2 the nth time the procedure
reaches step 2.

1
2
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using the given rules together with the general methods of proof that we discussed in
Section 6.4, to answer queries that could not be answered by direct interrogation of the
database of facts. The theoretical basis of these systems lies in propositional logic and
predicate calculus. The facts and rules of the expert system’s database loosely corre-
spond to the concepts of proposition and predicate that we discussed in Section 6.4.

Decision support systems that are able to answer routine queries in certain restricted
areas of knowledge are now in everyday use in industry, commerce and public service.
Such systems can, for instance, help tax lawyers advise clients, help geologists assess
the results of seismographic tests, or advise disabled people on the benefits to which
they are entitled. Nearer home, the same techniques are used in computer programs that
can help with the routine drudgery of mathematics, differentiating, integrating and
manipulating expressions with a speed and accuracy that humans cannot match. It is
easy to envisage that these systems will eventually undertake some of the work of the
design engineer or design building structures and carry out the routine tasks of archi-
tecture (routeing cables and pipework within a building, for instance). Here we shall
give more of the flavour of decision support systems by an example in the domain of
family relationships. Imagine that a decision support system has a set of facts about the
relationships in a certain family, such as those shown in Figure 6.47. It is easy for a human
to deduce that the family tree is that shown in Figure 6.48 (assuming, of course, that no
one in the family has been married more than once and that all the children were born
within wedlock). From the family tree a human could ascertain the truth of some further
statements about the family. For instance, it is obvious that the statement ‘Peter is the
grandfather of David’ is true and that the statement ‘Alan is the brother of Robert’ is false.

A decision support system can equally well be designed to evaluate the truth of such
statements. In order to do so it needs, as well as the facts, some rules about how rela-
tionships combine. A typical set of rules is shown in Figure 6.49. If we were to ask 
if the statement ‘Peter is a grandparent of David’ is true the system might reason as 
follows:

From fact (1) Peter is the father of Robert;
therefore, from rule (1), Peter is a parent of Robert.

From fact (8) Lilian is the wife of Robert;
therefore, from rule (4), Lilian is the spouse of Robert;
therefore, from rule (7), Robert is the spouse of Lilian.

From fact (5) Lilian is the mother of David;
therefore, from rule (2), Lilian is a parent of David.

464 AN INTRODUCTION TO DISCRETE MATHEMATICS

..

(1) Peter is the father of Robert
(2) James is the father of Alan
(3) Anne is the mother of Robert
(4) Anne is the mother of Melanie
(5) Lilian is the mother of David
(6) Robert is the father of Jennifer
(7) James is the brother of Peter
(8) Lilian is the wife of Robert
(9) Alan is the son of Martha

Figure 6.47 A short database of facts
about family relationships.

Figure 6.48 The family tree deduced
from the facts in the database.
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Now it has been proved that Robert is the spouse of Lilian
and that Lilian is a parent of David;
therefore, from rule (6), Robert is a parent of David.

Finally, it has been proved that Peter is a parent of Robert
and Robert is a parent of David;
therefore, from rule (3), Peter is a grandparent of David.

A little more is needed to deduce that Peter is the grandfather of David and this is left
as an exercise for the reader.

Of course, the system needs a way of determining which rule to try to apply next in
seeking to prove the truth of the query. That is the role of the part of the program called
the inference engine – the inference engine attempts to prove the truth of the query by
using rules in the most effective order and in such a way as to leave no possible path to
a proof unexplored. In many decision support systems this is achieved by using a search
algorithm.

It is interesting to ask how such a system can prove that some assertion (‘Alan is the
brother of Robert’ for instance) is false. Most systems tackle this by exhaustively try-
ing every possible way of proving that the assertion is true. Then, if this fails, to most
systems, it actually means merely that, given the facts and rules at the disposal of the
systems, the assertion cannot be proved to be true. There are obviously dangers in this
approach, since an incomplete database may lead a decision support system to classify
as false an assertion that, given more complete data, can be shown to be true. If, for
instance, we were to ask the family decision support system if the statement ‘Alan is
the cousin of Robert’ is true, the system would allege it was not. On the other hand, if
we gave the system some further, more sophisticated, rules about relationships then it
would be able to deduce that the statement is actually true.

6.6 Engineering application:  control
We consider a simplified model of a container for chemical reactions and design a cir-
cuit that involves four variables: upper and lower contacts for each of the temperature
and pressure gauges. The control of the reaction within the container is managed using

....

(1) If X is the father of Y
then X is a parent of Y

(2) If X is the mother of Y
then X is a parent of Y

(3) If X is a parent of Y
and Y is a parent of Z

then X is a grandparent of Z
(4) If X is the wife of Y

then X is the spouse of Y
(5) If X is the husband of Y

then X is the spouse of Y
(6) If X is the spouse of Y

and Y is a parent of Z
then X is a parent of Z

(7) If X is the spouse of Y
then Y is the spouse of X

Figure 6.49
A short database of
rules about family
relationships.
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a mixing motor, a cooling-water valve, a heating device and a safety valve. We will
analyse the control of the reaction given the following data and notation:

TL = lower temperature, Tu = upper temperature

pL = lower pressure, pu = upper pressure

m = mixing motor, c = cooling-water valve

h = heating device, s = safety valve

TL = 0, Tu = 0 temperature is too low

TL = 1, Tu = 0 temperature is correct

TL = 1, Tu = 1 temperature is too high

pL = 0, pu = 0 pressure is too low

pL = 1, pu = 0 pressure is correct

pL = 1, pu = 1 pressure is too high

m = 0, 1 mixing motor is off, on

c = 0, 1 cooling-water valve is off, on

h = 0, 1 heating is off, on

s = 0, 1 safety valve is closed, open

Figure 6.50 shows the container. The table in Figure 6.51 gives nine states – three 
initial states, three normal states and three danger states – exemplified by the pressure
in the vessel. From this table we can write down that

s = TL · Tu · pL · pu

466 AN INTRODUCTION TO DISCRETE MATHEMATICS
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Figure 6.50
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that is, the safety valve is only open when the temperature and pressure are too high.
The Boolean expressions for h, c and m are obtained by taking the union of the rows of
Tu, TL, pu and pL that have 1 under the columns headed h, c and m respectively. Hence

h = (TL · Tu · pL · pu) + (TL · Tu · pL · pu) + (TL · Tu · pL · pu)

= (TL + TL) · (Tu · pL · pu) + (TL · Tu · pL · pu)

using the distributive law, Tu · pL · pu being a common factor

= 1 · (Tu · pu) · (pL + (TL · pL))

= (Tu · pu) · ( pL + TL)

which is a considerable simplification. Similarly, c is given by

c = (TL · Tu · pL · pu) + (TL · Tu · pL · pu) + (TL · Tu · pL · pu)

Combining the first and last, and using pu + pu = 1, gives

c = (TL · Tu · pL) + (TL · Tu · pL · pu)

= (TL · pL) · (Tu + (Tu · pu))

= (TL · pL) · (Tu + pu)

Finally, for m, which has six entries as 1, we get the more complicated expression

m = (TL · Tu · pL · pu) + (TL · Tu · pL · pu) + (TL · Tu · pL · pu)

+ (TL · Tu · pL · pu) + (TL · Tu · pL · pu) + (TL · Tu · pL · pu)

Labelling these brackets 1, … , 6, and leaving 1 and 6 alone, we note that 2 and 3 
combine since TL · Tu · pu is common, and 4 and 5 combine since Tu · pL · pu is common;
hence

....

TL Tu pL pu h c m s Comments

Initial state 0 0 0 0 1 0 1 0 Gauges off; switch on motor and heater
(low pressure)

1 0 0 0 1 0 0 0 Correct temperature; switch off motor

1 1 0 0 0 0 1 0 Temperature too high; heater off,
motor on

Normal state 0 0 1 0 1 0 0 0 Cold; heater on
(pressure
acceptable) 1 0 1 0 0 0 0 0 Normal; heater off

1 1 1 0 0 1 1 0 Hot; motor on, cooling water in

Danger state 0 0 1 1 0 0 1 0 Low temperature; motor on
(pressure high)

1 0 1 1 0 1 1 0 Normal temperature; motor on,
cooling water in

1 1 1 1 0 1 1 1 High temperature; c = m = s = 1 to try to
prevent an explosion!

Figure 6.51
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m = (TL · Tu · pL · pu) + (TL · Tu · pL · pu) + (TL · Tu · pu) + (Tu · pL · pu)

Hence we can draw the control of the vessel in terms of the switching circuit in 
Figure 6.52.

6.7 Review exercises (1–23)

468 AN INTRODUCTION TO DISCRETE MATHEMATICS
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Figure 6.52

1 If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6}, 
B = {1, 3, 5, 7} and C = {2, 3, 4, 7, 8} find the sets

(a) A!^!B (b) C − A (c) C 	 B

2 Let A = {n � �, n � 11}

B = {n � �, n is even and n � 20}

C = {10, 11, 12, 13, 14, 15, 17, 20}

Write down the sets

(a) A 	 B (b) A 	 B 	 C

(c) A � (B 	 C )

and verify that (A � B) 	 (A � C ) = A � (B 	 C ).

3 If A, B and C are defined as in Question 2, and the
universal set is the set of all integers less than or
equal to 20, find the following sets:

(a) A (b) A � B

(c) A!^!B (d) A 	 (B!^!C)

Verify the De Morgan laws for A and B.

4 The sets A and B are defined by

A = {x : x2 + 6 = 5x or x2 + 2x = 8}

B = {2, 3, 4}

Which of the following statements is true?

(a) A ≠ B

(b) A = B

Give reasons for your answers.

5 (a) Simplify the Boolean functions

f = (A 	 B 	 C ) � (A 	 (B � C ))

g = ( )

(b) Draw Venn diagrams to verify that

(A 	 B) � (A 	 B) = A � B

if and only if A 	 B = ∅.

6 In an election there are three candidates and 800
voters. The voters may exercise one, two or three
votes each. The following results were obtained:

	 �C A(   )  )  ((   )  � 	 	 B
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Votes cast 240 400 500
Candidate A B C

Voters 110 90 200 50
Candidates B and C A and C A and B A and B

and C

Show that these results are inconsistent if all the
voters use at least one vote.

7 Draw switching circuits to establish the truth of
the following laws:

(a) p + p · q = p

(b) p + p · q = p + q

(c) p · q + p · r = p · (q + r)

(d) (p + q) · (p + r) = p + q · r

Use these to simplify the expression

s = p · p + p · q + p · r + q · r

so that s only contains two pairs of products
added.

8 Write down, in set-theoretical notation,
expressions corresponding to the outputs in (a)
Figure 6.53 and (b) Figure 6.54.

....

9 Draw a switching circuit with inputs x, y, z and u
to correspond to the following expressions:

(a) (x · y · z · u) + (x · y · z · u) + (x · u )

(b) (x · y) + (z · u) + (x · y · z)

(c) (x · y · z · u) + (x · y · z · u) + (x · y · z · u)

+ (x · y · z · u) + (x · y · z · u)

+ (x · y · z · u)

+ (x · y · z · u)

For (c) establish the output for the input states

(i) x = y = 1, z = u = 0

(ii) x = 1, y = z = u = 0

10 Write down truth tables for the following
expressions:

(a) p � q (b) p � q (c) p → q

The contrapositive of the conditional statement 
p → q is defined as G → F.

(d) Use truth tables to show that

G → F ≡ p → q

(e) Use truth tables to evaluate the status of the
expression

(p � q) � ( ) → p

(f) By taking the contrapositive of this conditional
statement and using (d) together with the De
Morgan laws (see Example 6.6) show that

F → (F � G) � (F � q)

is a tautology

  � q

Figure 6.53

Figure 6.54
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11 Reduce the following Boolean expressions by
taking complements:

(a)

(b)

(c)

12 (a) Simplify the Boolean expressions

( i) p · r + p · q · r + q · r · s + q · r · s + p · q · r · s

(ii) 

(b) Show the Boolean function p · q + p141r on a
Venn diagram.

13 A lift (elevator) services three floors. On each floor
there is a call button to call the lift. It is assumed
that at the moment of call the cabin is stationary 
at one of the three floors. Using these six input
variables, determine a control that moves the
motor in the right direction for the current
situation. (Hint: There are 24 combinations to
consider.)

14 There are four people on a TV game show. Each
has a ‘Yes/No’ button for recording opinions. The
display must register ‘Yes’ or ‘No’ according to a
majority vote.

(a) Derive a truth table for the above.

(b) Write down the Boolean expression for the
output.

(c) Simplify this expression and suggest a suitable
circuit.

(d) If there is a tie, the host has a ‘casting vote’.
Modify the above circuit to indicate this.

15 Consider the following logical statements:

(a) Mike never smokes dope.

(b) Rick smokes if, and only if, Mike and Vivian
are present.

(c) Neil smokes under all conditions – even by
himself.

(d) Vivian smokes if, and only if, Mike is not
present.

+ ⋅q s[(   ) (   )] (   )  + ⋅ + +p r

(   )  (   )p q r q s q r⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ + ⋅ ⋅  

(     ) (  )  p q+ + ⋅ + +

⋅ ⋅p q[( ) ][( ) ]

The police raid: determine the state of there 
being no dope smoking in terms of M, R, N and
V’s presence (Mike, Rick, Neil and Vivian
respectively).

16 Find the explicit Boolean function for the logic
circuit of Figure 6.55. Show that the function
simplifies to f = q · r and draw two different
simplified circuits which may be used to 
represent the circuit.

Figure 6.55

17 Which of the following statements are
propositions? For those that are not, say why 
and suggest ways of changing them so that they
become propositions. For those that are, comment
on their truth value.

(a) Julius Caesar was prime minister of Great
Britain.

(b) Stop hitting me.

(c) Turn right at the next roundabout.

(d) The Moon is made of green cheese.

(e) If the world is flat then 3 + 3 = 6.

(f) If you get a degree then you will be rich.

(g) x + y + z = 0.

(h) The 140th decimal digit in the representation
of π is 8.

(i) There are five Platonic solids.

18 (a) Draw up truth tables to represent the
statements

(i) p is equivalent to q

(ii) p implies q

(b) Using the algebra of statements, represent 
the truth of the statements below in tabular form 
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and hence determine whether they are true
or false:

(i) If p implies q, and r implies q, then either r
implies p or p implies r.

(ii) If p is equivalent to q, and q is equivalent to r,
then p implies r.

19 A panel light in the control room of a satellite
launching site is to go on if the pressure in both
the oxidizer and fuel tanks is equal to or above a
required minimum value and there are 15 minutes
or less to ‘lift-off’, or if the pressure in the
oxidizer tank is equal to or above the required
minimum value and the pressure in the fuel tank 
is below the required minimum value but there 
are more than 15 minutes to ‘lift-off’, or if the
pressure in the oxidizer tank is below the 
required minimum value but there are more than
15 minutes to ‘lift-off’. By using a truth table, write
down a Boolean expression to represent the state
of the panel light. Minimize the Boolean function.

20 In the control problem of Section 6.6 show that h
may also be expressed as

h =

Compare the resulting control switching circuit
with that of Figure 6.52.

T p p Tu u L L+ + ⋅  

....

21 Write down all subsets of the set A = {p, q, r, s}
that contain the product of four of p, q, r, s or 
their complement. Represent these on a Venn
diagram. [The ideas are pursued through 
Karnaugh maps which are outside the scope 
of this text.]

22 State the converse and contrapositive of each of
the following statements:

(a) If the train is late, I will not go.

(b) If you have enough money, you will retire.

(c) I cannot do it unless you are there too.

(d) If you go, so will I.

23 An island is inhabited by two tribes of vicious
cannibals and, sadly, you are a prisoner of one 
of them. One tribe always tell the truth, the other
tribe always lie. Unfortunately both tribes look
identical. They will answer ‘yes’ or ‘no’ to a
single question they will allow you. The God of
one tribe is female, the God of the other tribe is
male, and if you correctly state the sex of their
God they will set you free. Use truth tables to 
help you formulate a question that will enable 
you to survive.
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7.1 Introduction

In the analysis of practical problems, certain mathematical ideas and techniques appear
in many different contexts. One such idea is the concept of a sequence. Sequences occur
in management activities such as the determination of programmes for the maintenance
of hardware or production schedules for bulk products. They also arise in investment
plans and financial control. They are intrinsic to computing activities, since the most
important feature of computers is their ability to perform sequences of instructions
quickly and accurately. Sequences are of great importance in the numerical methods
that are essential for modern design and the development of new products. As well as
illustrating these basic applications, we shall show how these simple ideas lead to the
idea of a limit, which is a prerequisite for a proper understanding of the calculus and
numerical methods. Without that understanding, it is not possible to form mathemat-
ical models of real problems, to solve them or to interpret their solutions adequately. 
At the same time, we shall illustrate some of the elementary properties of the standard
functions described in Chapter 2 and how they link together, and we shall look forward
to further applications in more advanced engineering applications, in particular to the
work on Z transforms contained in the companion text Advanced Modern Engineering
Mathematics.

7.2 Sequences and series

7.2.1 Notation

Consider a function f whose domain is the set of whole numbers {0, 1, 2, 3, …}. The
set of values of the function { f(0), f(1), f(2), f(3), …} is called a sequence. Usually we
denote the values using a subscript, so that f(0) = f0, f(1) = f1, f(2) = f2, and so on. Often
we list the elements of a sequence in order, on the assumption that the first in the list is
f0, the second is f1 and so on. For example, we may write

‘Consider the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, …’

implying f0 = 1, f5 = 8, f8 = 34 and so on. In this example the continuation dots … are
used to imply that the sequence does not end. Such a sequence is called an infinite
sequence to distinguish it from finite or terminating sequences. The finite sequence
{ f0, f1, … , fn} is often denoted by { fk}

n
k=0 and the infinite sequence by { fk}

∞
k=0. When the

context makes the meaning clear, the notation is further abbreviated to { fk}. Here the
letter k is used as the ‘counting’ variable. It is a dummy variable in the sense that we
could replace it by any other letter and not change the result. Often n and r are used as
dummy variables.

Example 7.1 A bank pays interest at a fixed rate of 8.5% per year, compounded annually. A customer
deposits the fixed sum of £1000 into an account at the beginning of each year. How
much is in the account at the beginning of each of the first four years?
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Solution Let £xn denote the amount in the account at the beginning of the (n + 1)th year. Then

Amount at beginning of first year x0 = 1000

Amount at beginning of 2nd year x1 = 1000(1 + ) + 1000 = 2085

Amount at beginning of 3rd year x2 = 2085(1 + 0.085) + 1000 = 3262.22

Amount at beginning of 4th year x3 = 3262.22(1.085) + 1000 = 4539.51

We can see that in general

xn = 1.085xn−1 + 1000

This is a recurrence relation, which gives the value of each element of the sequence
in terms of the value of the previous element.

Example 7.2 Consider, again, the ducting of a number of cables of the same diameter d (Example
2.2). The diameter Dn of the smallest duct with circular cross-section depends on the
number n of cables to be enclosed, as shown in Figure 7.1:

D0 = 0, D1 = d, D2 = 2d, D3 = (1 + 2/÷3)d, D4 = (1 + ÷2)d

D5 = ÷[2(5 − ÷5)]d, D6 = 3d, D7 = 3d, …

Thus the duct diameters form a sequence of values {D1, D2, D3, …} = {Dn}
∞
n=1.

Example 7.3 A computer simulation of the crank and connecting rod mechanism considered in
Example 2.44 evaluates the position of the end Q of the connecting rod at equal intervals
of the angle x°. Given that the displacement y of Q satisfies

y = r cos x° + ÷(l2 − r 2 sin2x°)

find the sequence of values of y where r = 5, l = 10 and the interval between successive
values of x° is 1°.

1
4

8 5
100

.
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Figure 7.1
Enclosing a 
number of cables 
in a circular duct.
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Solution In this example the independent variable x is restricted to the sequence of values 
{0, 1, 2, … , 360}. The corresponding sequence of values of y can be calculated from
the formula

yk = 5 cos k° + ÷(100 − 25 sin2k°)

= 5[cos k° + ÷(4 − sin2k°)] 

= 5[cos k° + ÷(3 + cos2k°)]

Thus

{yk}
360
k=0 = {15, 14.999, 14.995, 14.990, … , 14.999, 15}

This example is considered again in Section 12.5.

Notice how in Example 7.3 we did not list every element of the sequence. Instead, 
we relied on the formula for yk to supply the value of a particular element in the
sequence. In Example 7.1 we could use the recurrence relation to determine the
elements of the sequence. In Example 7.2, however, there is no formula or recurrence
relation that enables us to work out the elements of the sequence. These three examples
are representative of the general situation.

A series is an extended sum of terms. For example, a very simple series is the sum

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11

When we look for a general formula for summing such series, we effectively turn it into
a sequence, writing, for example, the sum to eleven terms as S11 and the sum to n terms
as Sn, where

Sn = 1 + 2 + 3 + … + n =

Series often occur in the mathematical analysis of practical problems and we give some
important examples later in this chapter.

7.2.2 Graphical representation of sequences

Sequences, as remarked earlier, are functions whose domains are the whole numbers.
We can display their properties using a conventional graph with the independent 
variable (now an integer n) represented as points along the positive x axis. This will
show the behaviour of the sequence for low values of n but will not display the whole
behaviour adequately. An alternative approach displays the terms of the sequence against
the values of l /n. This enables us to see the whole sequence but in a rather ‘telescoped’
manner. When the terms of a sequence are generated by a recurrence relation a third
method, known as a cobweb diagram, is available to us. We will illustrate these three
methods in the examples below.

Example 7.4 Calculate the sequence and illustrate the answer graphically.1
1

1

10

  
( )

+
−⎧

⎨
⎩

⎫
⎬
⎭ =

n

nn

k
k

n

=
∑

1

....
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Solution By means of a calculator we can obtain the terms of the sequence explicitly (to 2dp) as

{0, 1.50, 0.67, 1.25, 0.80, 1.17, 0.86, 1.12, 0.89, 1.10}

The graph of this function is strictly speaking the set of points

{(1, 0), (2, 1.5), (3, 0.67), … , (10, 1.1)}

These can be displayed on a graph as isolated points but it is more helpful to the 
reader to join the points by straight line segments, as shown in Figure 7.2. The figure
tells us that the values of the sequence oscillate about the value 1, getting closer to it 
as n increases.

Example 7.5 Calculate the sequence {n1/n}10
n=4 and show the points {(1/n, n1/n)}10

n=4 on a graph.

Solution Using a calculator we obtain (to 2dp)

{n1/n}10
n=4 = {1.41, 1.38, 1.35, 1.32, 1.30, 1.28, 1.26}

and the set of points is

{(1/n, n1/n)}10
n=4 = {(0.25, 1.41), (0.2, 1.38), … , (0.1, 1.26)}

In Figure 7.3 these points are displayed with a smooth curve drawn through them. The
graph suggests that as n increases (i.e. 1/n decreases), n1/n approaches the value 1.

476 SEQUENCES,  SERIES AND LIMITS

....

Figure 7.2 Graph of the sequence defined by 
xn = 1 + (−1)n/n.

Figure 7.3 Graph of the points {( , n1/n)}10
n=4.

1
n

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 476



Figure 7.4
(a) Graphs of 
y = (x + 10)/
(5x + 1) and y = x. 
(b) Construction of 
the sequence defined
by xn+1 = (xn + 10)/
(5xn + 1), x0 = 1.

7.2 SEQUENCES AND SERIES 477

Example 7.6 Calculate the sequence {xn}
6
n=0 where x0 = 1 and

Solution Using a calculator we obtain (to 2dp) the values of the sequence

{xn}
6
n=0 = {1, 1.83, 1.16, 1.64, 1.27, 1.54, 1.33}

We can display this sequence very effectively using a cobweb diagram. To construct
this we first draw the graphs of y = (x + 10)/(5x + 1) and y = x, as shown in Figure 7.4(a).
Then we construct the points of the sequence by starting at x = x0 = 1. Drawing a
vertical line through x = 1, we cut y = x at x0 and y = (x + 10)/(5x + 1) at y = x1. Now
drawing the horizontal line through (x0, x1) we find it cuts y = x at x1. Next we draw the
vertical line through (x1, x1) to locate x2 and so on, as shown in Figure 7.4(b). We can
see from this diagram that as n increases, xn approaches the point of intersection of the
two graphs, that is, the value α where

(α � 0)

This gives α = ÷2. The value α is termed the fixed point of the iteration. Setting xn = α
returns the value xn+1 = α.

As we have seen, three different methods can be used for representing sequences graph-
ically. The choice of method will depend on the problem context.

α α
α

  
  

  
=

+
+
10

5 1

x
x

x
n

n

n
+ =

+
+1
10

5 1
 

 

 
.

....
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1 Write down x1, x2 and x3 for the sequences 
defined by

(a)

(b) xn+1 = xn + 4, x0 = 2

(c) x
x

xn
n

+ =
−

=1 04
256 ,  

x
n

nn =
+

 
  

2

2

2 On the basis of the evidence of the first four terms
give a recurrence relation for the sequence

{5, 15/8, 45/64, 135/512, …}

3 A sequence is defined by xn = pn + q where p and q
are constants. If x2 = 7 and x8 = −11, find p and q
and write down

(a) the first four terms of the sequence;

(b) the defining recurrence relation for the sequence.

In MATLAB a sequence { fn}n=a
n=b may be calculated by setting up an array of values

for both n and y = fn. Considering the sequence of Example 7.4, the commands

n = 1:1:10;

y = 1 + ((–1).^n)./n

produce an array for the calculated values of the sequence. The additional command

plot(n,y ‘*’)

plots a graph of the points shown in Figure 7.2.
In MAPLE the sequence is calculated using the command

evalf(seq(1 + (–1)^n/n, n = 1..10));

Using the maple command in MATLAB’s Symbolic Math Toolbox the sequence
may be calculated using the commands

syms n

maple(‘evalf(seq(1 + (–1)^n/n,n = 1..10))’)

If the sequence is given as a recurrence relationship xn+1 = f(xn), as in Example 7.6,
then it may be calculated in MATLAB by first expressing f as an inline object 
and then using a simple for-end loop. Thus for the sequence of Example 7.6 the
commands

f = inline(‘(x + 10)/(5*x + 1)’)

x = 1; y(1) = x;

for n = 1:6

y(n + 1) = f(x); x = y(n + 1);

end

double(y)

return the answer:

1.0000 1.8333 1.1639 1.2669 1.5361 1.3290

and the additional command

plot(y ‘–’)

plots a graph of the sequence.

7.2.3 Exercises
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4 Triangular numbers (Tn) are defined by the number
of dots that occur when arranged in equilateral
triangles, as shown in Figure 7.5. Show that
Tn = n(n + 1) for every positive integer n.

5 A detergent manufacturer wishes to forecast 
their future sales. Their market research
department assesses that their ‘Number One’ 
brand has 20% of the potential market at 
present. They also estimate that 15% of those 
who bought ‘Number One’ in a given month 
will buy a different detergent in the following
month and that 35% of those who bought a 
rival brand will buy ‘Number One’ in the 
next month. Show that their share Pn% of the
market in the nth month satisfies the recurrence 
relation

Pn+1 = 35 + 0.5Pn, with P0 = 20

Find the values of Pn for n = 1, 2, 3 and 4 and
illustrate them on an appropriate diagram.

6 (a) If xr = r(r − 1)(2r − 5), calculate

(b) If xr = rr+1 + 3(−1)r, calculate

(c) If xr = r2 − 3r + 1, calculate

7 A precipitate at the bottom of a beaker of 
capacity V always retains about it a volume v of
liquid. What percentage of the original solution
remains about it after it has been washed n times
by filling the beaker with distilled water and
emptying it?

8 A certain process in statistics involves the
following steps Si (i = 1, 2, … , 6):

S1: Selecting a number from the set 
T = {x1, x2, … , xn}

S2: Subtracting 10 from it

xr
r =
∑

2

6

xr
r =
∑

1

5

xr
r =
∑

0

4

1
2

..

S3: Squaring the result

S4: Repeating steps S1−S3 with the
remaining numbers in T

S5: Adding the results obtained at stage S3

of each run through

S6: Dividing the result of S5 by n

Express the final outcome algebraically using 
Σ notation.

9 Newton’s recurrence formula for determining the
root of a certain equation is

Taking x0 = 3 as your initial approximation, obtain
the root correct to 4sf.

By setting xn+1 = xn = α show that the fixed
points of the iteration are given by the equation 
α 2 − 3α + 1 = 0.

10 Calculate the terms of the sequence

and show them on graphs similar to Figures 7.2
and 7.3.

11 Calculate the sequence {xn}
6
n=0 where

Show the sequence using a cobweb diagram
similar to Figure 7.4.

12 A steel ball-bearing drops onto a smooth hard
surface from a height h. The time to the first
impact is T = ÷(2h /g) where g is the acceleration
due to gravity. The times between successive
bounces are 2eT, 2e2T, 2e3T, … , where e is the
coefficient of restitution between the ball and the
surface (0 � e � 1). Find the total time taken up
to the fifth bounce. If T = 1 and e = 0.1, show in 
a diagram the times taken up to the first, second,
third, fourth and fifth bounces and estimate how
long the total motion lasts.

13 Consider the following puzzle: how many single,
loose, smooth 30 cm bricks are necessary to form 
a single leaning pile with no part of the bottom
brick under the top brick? Begin by considering 

x
x

x
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n

n
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+
+

=1 0
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Figure 7.5 Triangular numbers.
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a pile of 2 bricks. The top brick cannot project
further than 15 cm without collapse. Then 
consider a pile of 3 bricks. Show that the top 
one cannot project further than 15 cm beyond 
the second one and that the second one cannot 
project further than 7.5 cm beyond the bottom
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7.3 Finite sequences and series
In this section we consider some finite sequences and series that are frequently used in
engineering.

7.3.1 Arithmetical sequences and series

An arithmetical sequence is one in which the difference between successive terms 
is a constant number. Thus, for example, {2, 5, 8, 11, 14} and {2, 0, −2, −4, −6, −8, 
−10} define arithmetical sequences. In general an arithmetical sequence has the form
{a + kd}n−1

k=0 where a is the first term, d is the common difference and n is the number 
of terms in the sequence. Thus, in the first example above, a = 2, d = 3 and n = 5, and
in the second example, a = 2, d = −2 and n = 7. (The old name for such sequences was
arithmetical progressions.) The sum of the terms of an arithmetical sequence is an
arithmetical series. The general arithmetical series is

Sn = a + (a + d ) + (a + 2d ) + … + [a + (n − 1)d ] (7.1)

To obtain an expression for the sum of the n terms in this series, write the series in the
reverse order,

Sn = a + (a + d ) + (a + 2d ) + … + [a + (n − 1)d ]

Sn = [a + (n − 1)d ] + [a + (n − 2)d ] + [a + (n − 3)d ] + … + a

Summing the two series then gives

2Sn = [2a + (n − 1)d ] + [2a + (n − 1)d ] + [2a + (n − 1)d ] + … + [2a + (n − 1)d ]

giving the sum Sn of the first n terms of an arithmetical series as

Sn = n[2a + (n − 1)d ] = n(first term + last term) (7.2)

The result is illustrated geometrically for n = 6 in Figure 7.6, where the breadth of each
rectangle is unity and the area under each shaded step is equal to a term of the series.

In particular, when a = 1 and d = 1,

Sn = 1 + 2 + … + n = (7.3)k n n
k

n

=
∑ = +

1

1
2 1  (   )

1
2

1
2

= +
=

−

∑ (   )a kd
k

n

0

1

brick (so that the maximum total lean is
30 cm). Show that the maximum total 

lean for a pile of 4 bricks is 30 cm 
and deduce that for a pile of n bricks it is 

30 cm. Hence solve 
the puzzle.
(       )  

1
2

1
4

1
6

1
2 2+ + + + +… n
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1
6+ +

(   )1
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Example 7.7 How many terms of the arithmetical series 11, 15, 19, etc. will give a sum of 341?

Solution In this particular case the first term a = 11 and the common difference d = 4. We need
to find the number of terms n such that the sum Sn is 341. Using the result in (7.2)

Sn = 341 = n[2(11) + (n −1)(4)]

leading to

4n2 + 18n − 682 = 0

or

(4n + 62)(n − 11) = 0

giving

n = 11 or n =

Since n = is not a whole number, the number of terms required is n = 11.

Example 7.8 A contractor agrees to sink a well 40 metres deep at a cost of £30 for the first metre,
£35 for the second metre and increasing by £5 for each subsequent metre.

(a) What is the total cost of sinking the well?

(b) What is the cost of drilling the last metre?

Solution (a) The total cost constitutes an arithmetical series whose terms are the cost per metre.
Thus, taking a = 30, d = 5 and n = 40 in (7.2) gives the total cost

Sn = £ [2(30) + (40 − 1)5] = £5100

(b) The cost of drilling the last metre is given by the 40th term of the series. Since the
nth term is a + (n − 1)d, the cost of drilling the last metre = 30 + (40 − 1)5 = £225.

7.3.2 Geometric sequences and series

A geometric sequence is one in which the ratio of successive terms is a constant 
number. Thus, for example, {2, 4, 8, 16, 32} and {2, −1, , − , , − , } define 
geometric sequences. In general a geometric sequence has the form {ark}n−1

k=0 where a is
the first term, r is the common ratio and n is the number of terms in the sequence. Thus,
in the first example above, a = 2, r = 2, n = 5 and, in the second example, a = 2, r = −
and n = 7. (The old name for such sequences was geometric progressions.) The sum of
the terms of a geometric sequence is called a geometric series. The general geometric
series has the form

Sn = a + ar + ar2 + ar3 + … + arn−1

1
2

1
32

1
16

1
8

1
4

1
2

40
2

− 31
2

− 31
2

1
2

....
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To obtain the sum Sn of the first n terms of the series we multiply Sn by the common
ratio r, to obtain

rSn = ar + ar2 + … + arn−1 + arn

Subtracting this from Sn then gives

Sn − rSn = a − arn

so that

(1 − r)Sn = a(1 − rn)

Thus for r ≠ 1, the sum of the first n terms is

(7.4)

Clearly, for the particular case of r = 1 the sum is Sn = an.
The geometric series is very important. It has many applications in practical problems

as well as within mathematics.

Example 7.9 In its publicity material an insurance company guarantees that, for a fixed annual pre-
mium payable at the beginning of each year for a period of 25 years, the return will be at
least equivalent to the premiums paid, together with 3% per annum compound interest.
For an annual premium of £250 what is the guaranteed sum at the end of 25 years?

Solution The first-year premium earns interest for 25 years and thus guarantees

£250(1 + 0.03)25

The second-year premium earns interest for 24 years and thus guarantees

£250(1 + 0.03)24

\

The final-year premium earns interest for 1 year and thus guarantees

£250(1 + 0.03)

Thus, the total sum guaranteed is

£250[(1.03) + (1.03)2 + … + (1.03)25]

The term inside the square brackets is a geometric series. Thus, taking a = 1.03, r = 1.03
and n = 25 in (7.4) gives

Guaranteed sum =
−

−
⎡
⎣⎢

⎤
⎦⎥

 £ .
( .  )

( .   )
  £ .250 1 03

1 03 1

1 03 1
9388

25

�

S ar
a r

r
n

k

k

n n

= =
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7.3.3 Other finite series

In addition to the arithmetical and geometric series, there are other finite series that occur
in engineering applications for which an expression can be obtained for the sum of the
first n terms. We shall illustrate this in Examples 7.10 and 7.11.

Example 7.10 Consider the sum-of-squares series

Sn = 12 + 22 + 32 + … + n2 =

Obtain an expression for the sum of this series.

Solution There are various methods for finding the sum. A method that can be generalized makes
use of the identity

(k + 1)3 − k3 = 3k2 + 3k + 1

Thus

[(k + 1)3 − k3] = (3k2 + 3k + 1)

The left-hand side equals

23 − 13 + 33 − 23 + 43 − 33 + … + (n + 1)3 − n3 = (n + 1)3 − 1

The right-hand side equals

Now

from (7.3) and

so that

whence

(7.5)

This method can be generalized to obtain the sum of other similar series. For example, 
to find the sum of cubes series ∑n

k=1k
3, we would consider (k + 1)4 − k4 and so on.

k n n n
k

n
2

1

1
6 1 2 1

=
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n n
k

n

+ − = + + +
=

∑1 1 3
3

2
13 2

1

1
1k

n

n
=

∑ =  k n n
k

n

=
∑ = +

1

1
2 1  (   )

3 3 12

1 1 1

k k
k

n

k

n

k

n

= = =
∑ ∑ ∑+ +   

k

n

1=
∑

k

n

1=
∑

k
k

n
2

1=
∑

....

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 483



Example 7.11 Obtain the sum of the series

Solution The technique for summing this series is to express the general term in its partial 
fractions:

Then

giving

There are many other similar series that can be summed by expressing the general term
in its partial fractions. Some examples are given in Exercises 7.3.4.

Example 7.12 Obtain the sum of the series

Sn = 1 + 2r + 3r2 + 4r3 + … + nrn−1 = r ≠ 1

Solution The technique for summing this arithmetico-geometric series is similar to that for 
summing geometric series. We multiply Sn by r and then subtract the result from Sn. Thus

rSn = r + 2r2 + 3r3 + … + nrn

and

(1 − r)Sn = 1 + r + r 2 + r3 + … rn−1 − nrn

The first n terms on the right-hand side of this equation form a geometric series, and
using result (7.4) we can write
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7.3 FINITE SEQUENCES AND SERIES 485

Hence

(7.6)

Where r = 1, Sn = n(n + 1) of course. This method can be generalized to obtain the sum
of other similar series, for example

Example 7.13 Sum the series

Sn = 1 + cos θ + cos 2θ + … + cos(n − 1)θ

Solution The easiest way of summing this series is to recall Euler’s formula (Section 3.2.7)

e jθ = cos θ + j sin θ

Then we can write

Sn = Re{1 + e jθ + e j2θ + e j3θ + … + e j(n−1)θ}

The series inside the brackets is a geometric series with common ratio e jθ and using
result (7.4) we obtain

Rearranging the expression inside the brackets we have

The same method can be used to show that  = sin(n + 1)θ sin(nθ)/sin .

Symbolic summation may be achieved in MATLAB using the symsum command.
The MAPLE command is similar with minor syntax differences. For example, to
sum of the series in Example 7.10 we have

MATLAB MAPLE
syms x k n

s = symsum(k^2,1,n); sum(‘k^2’,’k’ = 1..n):

s = factor(s); factor(%);

pretty(ans)

1
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returns

s = 1–6 n(n + 1)(2n + 1)

Similarly, considering Example 7.11

syms x k n

s = symsum(1/(k*(k + 1)),1,n); sum(‘1/(k*(k + 1))’, 

s = simplify(s) ‘k’ = 1..n);

returns

s = n/(n + 1) - + 1

Note: When using MAPLE it is recommended and often necessary (see MAPLE
help) that both f and k be enclosed in single quotes to prevent premature evaluation
(for example, k may have a previous value). Thus the common format is sum(‘f’,
‘k’ = m..n).

7.3.4 Exercises

1

n + 1

14 (a) Find the fifth and tenth terms of the arithmetical 
sequence whose first and second terms are 4 and 7.
(b) The first and sixth terms of a geometric
sequence are 5 and 160 respectively. Find the
intermediate terms.

15 An individual starts a business and loses £150k
in the first year, £120k in the second year and
£90k in the third year. If the improvement
continues at the same rate, find the individual’s
total profit or loss at the end of 20 years. 
After how many years would the losses be just
balanced by the gains?

16 Show that

are in arithmetical progression and find the nth
term of the sequence of which these are the first
three terms.

17 The area of a circle of radius 1 is a transcendental
number (that is, a number that cannot be obtained
by the process of solving algebraic equations)
denoted by the Greek letter π. To calculate its
value, we may use a limiting process in which 
π is the limit of a sequence of known numbers.
The method used by Archimedes was to inscribe
in the circle a sequence of regular polygons. 

1

1

1

1

1

1  
,    

  
,    

  + − −÷ ÷x x x

As the number of sides increased, so the 
polygon ‘filled’ the circle. Show, by use of the
trigonometric identity cos 2θ = 1 − 2 sin2θ, 
that the area an of an inscribed regular polygon 
of n sides satisfies the equation

Show that a4 = 2 and use the recurrence
relation to find a64.

18 A harmonic sequence is a sequence with the
property that every three consecutive terms 
(a, b and c, say) of the sequence satisfy

Prove that the reciprocals of the terms of a harmonic
sequence form an arithmetical progression. Hence
find the intermediate terms of a harmonic sequence
of 8 terms whose first and last terms are and
respectively.

19 The price of houses increases at 10% per year.
Show that the price Pn in the nth year satisfies 
the recurrence relation

Pn+1 = 1.1Pn

A house is currently priced at £80 000. What was
its price two years ago? What will be its price in

2
17

2
3
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a b
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five years’ time? After how many years will its
price be double what it is now?

20 Evaluate each of the following sums:

(a) 1 + 2 + 3 + … + 152 + 153

(b) 12 + 22 + 32 + … + 1522 + 1532

(c)

(d) 2 + 6 + 18 + … + 2(3)152 + 2(3)153

(e) 1 · 2 + 2 · 3 + 3 · 4 + … + 152 · 153 + 153 · 154

(f)

21 A certain bacterium propagates itself by
subdividing, creating four additional bacteria, each
identical to the parent bacterium. If the bacteria
subdivide in this manner n times, then, assuming
that none of the bacteria die, the number of
bacteria present after each subdivision is given 
by the sequence {Bk}

n
k=0, where

Three such bacteria subdivide n times and none of 
the bacteria die. The total number of bacteria is then
1 048 575. How many times did the bacteria divide?

22 By considering the sum

show that

23 The repayment instalment of a fixed rate, fixed
period loan may be calculated by summing the
present values of each instalment. This sum must  

k n n
k

n
3

1

1
2

21
=

∑ = + [ (   )]

[(   )  ]k k
k
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+ −
=

∑ 1 4 4

1
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k

=
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+
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+

⋅
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⋅
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1
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1
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1
8
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2

153      ( )  ( )+ + + + +…

..

equal the amount borrowed. The present value of an
instalment £x paid after k years where r% is the rate
of interest is

Thus £1000 borrowed over n years at r% satisfies
the equation

Find x in terms of r and n and compute its value
when r = 10 and n = 20.

24 Consider the series

Show that

and hence that

Hence sum the series.

25 Consider the general arithmetico-geometric series

Sn = a + (a + d )r + (a + 2d )r2 + …

+ [a + (n − 1)d ]rn−1

Show that

(1 − r)Sn = a + dr + dr2 + …

+ drn−1 − [a + (n − 1)d ]rn

and find a simple expression for Sn.
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7.4 Recurrence relations

We saw in Example 7.1 that sometimes the elements of a sequence satisfy a recurrence
relation such that the value of an element xn of a sequence {xk} can be expressed in terms
of the values of earlier elements of the sequence. In general we may have a formula of
the form
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xn = f(xn−1, xn−2, … , x1, x0)

In this section we are going to consider two commonly occurring types of recurrence
relation. These will provide sufficient background to make possible the solution of
more difficult problems.

7.4.1 First-order linear recurrence relations with 
constant coefficients

These relations have the general form

xn+1 = axn + bn, n = 0, 1, 2, …

where a is constant and bn is a known sequence. The simplest case that occurs is when
bn = 0, when the relation reduces to

xn+1 = axn (7.7)

This is called a homogeneous relation and every solution is a geometric sequence of
the form

xn = Aan (7.8)

This is called the general solution of (7.7) since A is a constant which may be given
any value. To determine the value of A we require more information about the
sequence. For example, if we know the value of x0 (say C ) then C = Aa0, which gives
the value of A.

A slightly more difficult example is

xn+1 = axn + b (7.9)

where b is a constant as well as a.
If the first term of the sequence is x0 = C, as before, then

x1 = aC + b

x2 = ax1 + b = a(aC + b) + b = Ca2 + b(1 + a)

x3 = ax2 + b = a[Ca2 + b(1 + a)] + b = Ca3 + b(1 + a + a2)

and so on.
In general, we obtain

Rearranging, we can express this as

(7.10)

where A = C − b/(1 − a). After the next example we will see that this solution (and that
of more general problems) can be obtained more quickly by an alternative method.

x Aa
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−
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7.4 RECURRENCE RELATIONS 489

Notice that Aan is the general solution of the homogeneous relation (7.7) and that 
xn = b/(1 − a), for all n, satisfies the full recurrence relation xn+1 = axn + b, so that it is
a particular solution of the relation.

Example 7.14 Calculate the fixed annual payments £B required to amortize a debt of £D over N years,
when the rate of interest is fixed at 100i%.

Solution Let £dn denote the debt after n years. Then, following the same argument as in 
Example 7.1, d0 = D and

dn+1 = (1 + i)dn − B

This is similar to the recurrence relation (7.9) but with a = (1 + i) an b = −B. Hence,
using (7.10) we can write the general solution as

In addition, we know that d0 = D so that D = A + B/i and thus the particular solution is
given by

dn = (D − B/i)(1 + i)n + B/i

We require the value of B so that the debt is zero after N years, that is dN = 0. Thus

0 = (D − B/i)(1 + i)N + B/i

Solving this equation for B gives

as the required payment.

In summary, we have that the general solution to the first-order recurrence relation

xn+1 = axn + b

can be expressed as the sum of the general solution of the reduced relation

xn+1 = axn

and a particular solution of the full relation (7.9).

This is true for linear recurrence relations in general, that is, recurrence relations of
the form

xn+1 = anxn + an−1xn−1 + … + a1x1 + a0

where the coefficients ak are independent of the xk but may depend on n. The property
is easy to show in full generality but the same proof holds for the simplest case (7.9)
above.
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Suppose we can identify one particular solution pn of (7.9) so that

pn+1 = apn + b

Now we seek a function qn which complements pn in such a way that

xn = pn + qn

is the general solution of (7.9). Substituting xn into this relation gives

pn+1 + qn+1 = apn + aqn + b

Since pn+1 = apn + b, this implies that

qn+1 = aqn

From (7.8), the general solution of this relation is

qn = Aan

where A is a constant. Thus the general solution of (7.9) is

xn = pn + Aan

Because qn complements pn to form the general solution, it is usually called the 
complementary solution. As we have seen, with first-order recurrence relations, we
can always find the complementary solution. Thus we are left with the task of find-
ing the particular solution pn. The method for finding pn depends on the term b, as we
illustrate in Example 7.15.

Indeed, the property of the general solution being the sum of a particular solution and
a complementary solution applies to all linear systems, both continuous and discrete.
We will meet it again in Chapter 10 when considering the general solution of linear
ordinary differential equations.

Example 7.15 Find the general solutions of the recurrence relations

(a) xn+1 = 3xn + 4 (b) xn+1 = xn + 4

(c) xn+1 = αxn + Cβ n (d) xn+1 = αxn + Cα n (α, β, C given constants)

Solution (a) First we try to find any function of n which will satisfy the relation. Since it con-
tains the constant term 4, it is common sense to see if a constant K can be found which
satisfies the relation. (Then all terms will be constants.) Setting xn = K implies xn+1 = K
and we have

K = 3K + 4

which gives K = −2. Thus, in this case, we can choose pn = −2. Next we find the 
complementary solution qn, which is the general solution of

xn+1 = 3xn

From (7.8) we can see that qn = A3n where A is a constant. Thus the general solution of
(a) is

xn = −2 + A3n

490 SEQUENCES,  SERIES AND LIMITS

....

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 490
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(b) The basic steps are the same for this relation. We first find a particular solution pn

of the relation. Then we find the complementary solution qn, so that xn = pn + qn is the
general solution. In this case trying xn = K leads nowhere, since we obtain the incon-
sistent equation K = K + 4. Trying something a little more complicated than just a
constant, we set xn = Kn and xn+1 = K(n + 1) and we have

K(n + 1) = Kn + 4

which yields K = 4 and pn = 4n. The general solution of xn+1 = xn is qn = A1n, so that the
general solution of (b) is

xn = 4n + A

(c)(c) Since the recurrence relation has the term Cβ n, it is natural to expect a solution of
the form Kβ n, where K is a constant, to satisfy the relation. Setting xn = Kβ n gives

Kβ n+1 = αKβ n + Cβ n

Dividing through by β n gives Kβ = αK + C, from which we deduce K = C/(β − α)
provided that β ≠ α. Thus we deduce the particular solution

pn = Cβ n/(β − α)

The complementary solution qn is the general solution of

xn+1 = αxn

which, using (7.7), is qn = Aα n. Hence the general solution of (c) is

xn = Cβ n/(β − α) + Aα n

(d) This is the special case of (c) where β = α. If we set pn = Kα n, we obtain the 
equation Kα n+1 = Kα n+1 + Cα n, which can only be true if C = 0. (We see then that pn is
the solution of xn+1 = αxn, that is, it is the complementary solution.) As in case (b), we
instead seek a solution of the form pn = Knα n, so that pn+1 = K(n + 1)α n+1 and

K(n + 1)α n+1 = αKnα n + Cα n

This last equation gives K = C/α. Hence the general solution of (d) is

xn = Cnα n−1 + Aα n

where A is an arbitrary constant.

7.4.2 Exercises

Return to check your answers to Questions 26 and 28 using MATLAB or MAPLE on completion of Section 7.4.3.

....

26 Find the general solutions of the recurrence
relations

(a) xn+1 = 2xn − 3 (b) xn+1 = 3xn + 10n

(c) xn+1 = −xn + ( )n (d) xn+1 = 2xn + 3 × 2n

27 If a debt is amortized by equal annual payments of
amount B, and if interest is charged at rate i per 

1
2

annum, then the debt after n years, dn, satisfies 
dn+1 = (1 + i )dn − B, where d0 = D, the initial debt.

Show that 

and deduce that to clear the debt on the Nth 

payment we must take 

If £10 000 is borrowed at an interest rate of 

B
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0.12 (= 12%) per annum, calculate (to the 
nearest £) the appropriate annual payment which
will amortize the debt at the end of 10 years.

For this annual payment calculate the amount
of the debt dn for n = 1, 2, … , 10 (use the
recurrence rather than its solution, and record your
answers to the nearest £) and calculate the first
differences for this sequence. Comment briefly 
on the behaviour of the first differences.

492 SEQUENCES,  SERIES AND LIMITS
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28 Find the general solution of the linear recurrence
relation

(n + 1)2xn+1 − n2xn = 1, for n � 1

(Hint: The coefficients are not constants. Use the
substitution zn = n2xn to find a constant coefficient
equation for zn. Find the general solution for zn and
hence for xn.)

7.4.3 Second-order linear recurrence relations with 
constant coefficients

Example 7.16 Evaluate the expression E(n) = 3xn+2 + 5xn+1 − 2xn where xn is defined for n � 0 by

(a) xn = 3n (b) xn = 3−n (c) xn = 3(2−n) (d) xn = (−2)n.

Solution (a) E(n) = 3 × 3n+2 + 5 × 3n+1 − 2 × 3n

= (27 + 15 − 2)3n

= 40 × 3n

(b) E(n) = 3 × 3−n−2 + 5 × 3−n−1 − 2 × 3−n

= (3 × 3−2 + 5 × 3−1 − 2)3−n

= 3−n = 0

(c) E(n) = 3 × 3 × 2−n−2 + 5 × 3 × 2−n−1 − 2 × 3 × 2−n

= 3 2−n

= × 2−n = 15 × 2−n−2

(d) E(n) = 3(−2)n+2 + 5(−2)n+1 − 2(−2)n

= (3 × 4 − 5 × 2 − 2)(−2)n

= 0

Hence xn = (−2)n and xn = ( )n both satisfy the recurrence relation

3xn+2 + 5xn+1 − 2xn = 0

Example 7.17 (a) Show by direct sustitution into the recurrence relation

xn+2 − xn+1 − 6xn = 0

that xn = 3n and xn = (−2)n are two solutions.
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(b) Further verify that xn = A(−2)n + B3n, where A and B are constants, is also a solution.

Solution (a) Where xn = 3n

xn+2 − xn+1 − 6xn = 3n+2 − 3n+1 − 6x3n

= (32 − 3 − 6)3n = 0

Where xn = (−2)n

xn+2 − xn+1 − 6xn = (−2)n+2 − (−2)n+1 − 6(−2)n = (4 + 2 − 6)(−2)n = 0

Hence xn = 3n and xn = (−2)n are solutions of the recurrence relation.

(b) Setting xn = A(−2)n + B(3n) gives

A(−2)n+2 + B3n+2 − A(−2)n+1 − B3n+1 − 6A(−2)n − 6B(3)n

= A[(−2)n+2 − (−2)n+1 − 6(−2)n] + B[3n+2 − 3n+1 − 6(3n)]

= A.0 + B.0 = 0

So xn = A(−2)n + B3n is a solution of the recurrence relation also.

A second-order linear recurrence with constant coefficients has the form

xn+2 = axn+1 + bxn + cn (7.11)

If cn = 0 for all n, then the relation is said to be homogeneous. As before, the solution
of (7.11) can be expressed in the form

xn = pn + qn

where pn is any solution which satisfies (7.11), while qn is the general solution of the
associated homogeneous recurrence relation

xn+2 = axn+1 + bxn (7.12)

Let α and β be the two roots of the algebraic equation

λ2 = aλ + b

so that α n+2 = aα n+1 + bα n and β n+2 = aβ n+1 + bβ n, which imply that yn = α n and yn = β n

are particular solutions of (7.12). Since (λ − α)(λ − β) = 0 implies λ2 = (α + β)λ − αβ
we may rewrite (7.12) as

xn+2 = (α + β)xn+1 − αβxn

Rearranging the relation, we have

xn+2 − αxn+1 = β(xn+1 − αxn)

Substituting tn = xn+1 − αxn, this becomes

tn+1 = β tn

with general solution, from (7.8), tn = Cβ n where C is any constant.

....
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Thus

xn+1 − αxn = Cβ n

which, using the results of Example 7.15(c) and (d), has the general solution

Since C is any constant, we can rewrite this in the neater form

(7.13)

where A and B are arbitrary constants. Thus (7.13) gives the general solution of (7.12)
where α and β are the roots of the equation

λ2 = aλ + b

This is called the characteristic equation of the recurrence relation; the Greek letter
lambda λ is used as the unknown instead of x to avoid confusion.

Example 7.18 Find the solution of the Fibonacci recurrence relation

xn+2 = xn+1 + xn

given x0 = 1, x1 = 1.

Solution The characteristic equation of the recurrence relation is

λ2 = λ + 1

which has roots λ1 = (1 + ÷5)/2 and λ2 = (1 − ÷5)/2.
Hence its general solution is

Since x0 = 1, we deduce 1 = A + B

Since x1 = 1, we deduce

Solving these simultaneous equations gives

A = (1 + ÷5)/(2÷5) and B = −(1 − ÷5)/(2÷5)

and hence

defining the Fibonacci sequence explicitly.
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We have seen that we can always find the complementary solution qn of the recurrence
relation (7.11)

xn+2 = axn+1 + bxn + cn

The general solution of this relation is the sum of a particular solution pn of the relation
and its complementary solution qn. The problem, then, is how to find one solution pn.
Here we will use methods based on experience and trial and error.

Example 7.19 Find all the solutions of

(a) xn+2 = xn+1 − xn + 12, where x0 = x1 = 1 (b) xn+2 = xn+1 − xn + 12n

(c) xn+2 = xn+1 − xn + 3(2n)

Solution (a) First we find the general solution of the associated homogeneous relation 
xn+2 = xn+1 − xn which has characteristic equation λ2 = λ − with roots λ = 3 and 
λ = . Thus, the complementary solution is

xn = A3n + B( )n

Next we find a particular solution of

xn+2 = xn+1 − xn + 12

We try the simplest possible function xn = K (for all n). Then, if this is a solution, we have

K = K − K + 12

giving K = −12.
Thus pn = −12 and the general solution is

xn = −12 + A3n + B( )n

Applying the initial data x0 = 1, x1 = 1 gives two equations for the arbitrary constants A
and B

A + B − 12 = 1

3A + B − 12 = 1

from which we deduce A = 13/5 and B = 52/5. Thus the particular solution which fits
the initial data is

(b) This has the same complementary solution as (a), so we have only to find a particu-
lar solution. We try the function xn = Kn + L, where K and L are constants. Substituting
into the recurrence relation gives

K(n + 2) + L ≡ [K(n + 1) + L] − [Kn + L] + 12n

Thus

Kn + 2K + L ≡ 2Kn + K + 2L + 12n7
2
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2
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Comparing coefficients of n gives

K = 2K + 12

so that K = −12.
Comparing the terms independent of n gives

2K + L ≡ K + 2L

so that L = − K = 18, and the general solution required is

xn = −12n + 18 + A3n + B( )n

(c) This has the same complementary function as (a) so we only need to find a particular
solution. To find this we try xn = K2n, giving

K(2n+2) = K(2n+1) − K(2n) + 3(2n)

so that

(4 − 7 + )K(2n) = 3(2n)

Hence K = −2 and the general solution required is

xn = −2(2n) + A3n + B/2n

Difference equations can be solved directly in MAPLE using the rsolve command.
For example, considering Example 7.19(a) the general solution is given by the 
command

rsolve({x(n + 2) – 7/2*x(n + 1) + 3/2*x(n) = 12},x(n));

as

–(1–5x(0) –
2–5x(1))3

n – 1–2(–
12––5x(0)+

4–5x(1))(
1–2)

n + 12––5(3)
n

+ (48––5)(
1–2)

n – 12

which is equivalent to the given solution, with A = (−1/5x(0) − 2/5x(1) + 12/5) and
B = (6/5x(0) + 2/5x(1) − 48/5). Given initial conditions x(0) = 1 and x(1) = 1, then
these are incorporated directly in the command

rsolve({x(n + 2) – 7/2*x(n + 1) + 3/2*x(n)

= 12,x(0) = 1,x(1) = 1},x(n));

to give the particular solution

13––53
n + 52––5(–

1–2)
n – 12

In MATLAB’s Symbolic Math Toolbox there is no equivalent command, so 
we make use of the maple command to access the MAPLE kernel. Check that the
command

maple(‘rsolve({x(n + 2) – 7/2*x(n + 1) + 3/2*x(n)

= 12,x(0) = 1,x(1) = 1},x(n))’)

returns the same answer as above.
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As further examples we consider Examples 7.15(a) and 7.18. For 7.15(a) the
commands

syms x n

maple(‘rsolve({x(n + 1) – 3*x(n) = 4, x(n))’)

return

ans = x(0)*3^n – 2 + 2*3^n

This corresponds to the answer given in the solution with A = (x(0) + 2).
For 7.18 the commands

syms x n

maple(‘rsolve({x(n + 2) – x(n + 1) – x(n)

= 0,x(0) = 1,x(1) = 1, x(n))’)

return

ans = (1/10*5^(1/2) + 1/2)*(1/2 + 1/2*5^(1/2))^n

+ (1/2 – 1/10*5^(1/2))*(1/2 – 1/2*5^(1/2))^n

Simple rearrangement gives

which reduces to the answer given in the solution.

When the roots of the characteristic equation are complex numbers, the general solu-
tion of the homogeneous recurrence relation has a different form, as illustrated in
Example 7.20.

Example 7.20 Show that the general solution of the recurrence relation

xn+2 = 6xn+1 − 25xn

may be expressed in the form

xn = 5n(A cos nθ + B sin nθ)

where θ is such that sinθ = and cosθ = .

Solution The characteristic equation

λ2 = 6λ − 25

has the (complex) roots λ = 3 + j4 and λ = 3 − j4, so that we can write the general solution
in the form

xn = A(3 + j4)n + B(3 − j4)n

Now writing the complex numbers in polar form we have

xn = A(re jθ )n + B(re−jθ )n
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where r2 = 32 + 42 and tanθ = with 0 � θ � π /2 (or cosθ = , sinθ = ). This can
be simplified to give

xn = A(5ne jnθ ) + B(5ne−jnθ ) = A5n(cos nθ + j sin nθ) + B5n(cos nθ − j sin nθ)

= (A + B)5n cos nθ + j(A − B)5n sin nθ

Here A and B are arbitrary complex constants, so their sum and difference are also 
arbitrary constants and we can write

xn = P5n cos nθ + Q5n sin nθ

giving the form required. (Since P and Q are constants we can replace them by A and
B if we wish.)

Example 7.21 Find the solution of the recurrence relation

xn+2 + 2xn = 0

which satisfies x0 = 1, x1 = 2.

Solution Here the characteristic equation is

λ2 + 2 = 0

and has roots ±j÷2, so that we can write the general solution in the form

xn = A( j÷2)n + B(−j÷2)n

Since , we can rewrite the solution as

xn = A(÷2)n e jnπ/2 + B(÷2)n e−jnπ/2

We can find the values of P and Q by applying the initial data x0 = 1, x1 = 2, giving

P = 1 and 21/2Q = 2

Hence the required solution is

x
n n

n
n n= + + cos   sin/ ( )/2

2
2

2
2 1 2π π

= + cos   sin/ /P
n

Q
nn n2

2
2

2
2 2π π
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2 2

4
5

3
5

4
3

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 498



7.4 RECURRENCE RELATIONS 499

....

If complex roots are involved then using the command evalc alongside rsolve
attempts to express complex exponentials in terms of trigonometric functions, lead-
ing in most cases to simplified answers. Considering Example 7.21 the MATLAB
commands

syms x n

maple(‘evalc(rsolve({x(n + 2) + 2*x(n) = 0,x(0)

= 1,x(1) = 2}, x(n)))’)

return the answer

2^(1/2*n)*cos(1/2*n*pi) + 2^(1/2*n)*sin(1/2*n*pi)*2^(1/2)

which reduces to

2n/2cos(nπ/2) + 2(n+1)/2sin(nπ/2)

Check that for the equation of Example 7.20 the MATLAB commands

syms x n

maple(‘evalc(rsolve({x(n + 2) – 6*x(n + 1) + 25*x(n)

= 0}, x(n)))’)

subject to noting that exp(n*log5) = 5n, atan(4/3) = θ and the collection of terms,
produce the answer

x(0)5ncos(nθ) + (1/4x(1) – 3/4x(0))5nsin(nθ))

which is of the required form.

The general result corresponding to that obtained in Example 7.18 is that if the roots
of the characteristic equation can be written in the form

λ = u ± jv

where u, v are real numbers, then the general solution of the homogeneous recur-
rence relation is

xn = rn(A cos nθ + B sin nθ)

where r = ÷(u2 + v2), cosθ = u /r, sinθ = v/r and A and B are arbitrary constants.

Recurrence relations are sometimes called difference equations. This name is used since
we can rearrange the relations in terms of the differences of unknown sequence xn. Thus

xn+1 = axn + b

can be rearranged as

∆xn = (a − 1)xn + b

where ∆xn = xn+1 − xn.
Similarly, after some algebraic manipulation, we may write

xn+2 = axn+1 + bxn + c
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as

∆2xn = (a − 2)∆xn + (a + b − 1)xn + c

where

∆2xn = ∆xn+1 − ∆xn = xn+2 − 2xn+1 + xn

The method for solving second-order linear recurrence relations with constant
coefficients is summarized in Figure 7.7.

Homogeneous case:

xn+2 = axn+1 + bxn (1)

(i) Solve the characteristic equation.
(ii) Write down the general solution for xn from the table:

Roots of characteristic equation General solution (A and B are arbitrary constants)

Real α, β and α ≠ β Aα n + Bβ n

Real α, β and α = β (A + Bn)α n

Non-real α, β = u ± jv (u2 + v2)n/2(A cos nθ + B sin nθ)
where cosθ = u/(u2 + v2)1/2, sinθ = v/(u2 + v2)1/2

Nonhomogeneous case:

xn+2 = axn+1 + bxn + cn where cn is a known sequence. (2)

(i) Find the general solution of the associated homogeneous problem (1).
( ii) Find a particular solution of (2).

( iii) The general solution of (2) is the sum of (i) and (ii).

To find a particular solution to (2) substitute a likely form of particular solution into (2). If 
the correct form has been chosen then comparing coefficients will be enough to determine 
the values of the constants in the trial solution. Here are some suitable forms of particular
solutions:

cn 7 3n + 5 2n2 + 3n + 8 3 cos(7n) + 5 sin(7n) 6n n5n

pn C Cn + D Cn2 + Dn + E C cos(7n) + D sin(7n) C6n 5n(C + Dn)

In solving problems, note that the top line of the table involves any known constants (these will
be different from problem to problem), while the bottom line involves unknown constants, 
C, D, E, which must be determined by substituting the trial form into the nonhomogeneous
relation.

An exceptional case arises when the suggested form for pn already is present in the general
solution of the associated homogeneous problem. If this happens, just multiply the suggested
form by n (and if that does not work, by n repeatedly until it does).

Figure 7.7
Summary: 
second-order linear
recurrence relation
with constant
coefficients.
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7.4.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

29 Evaluate the expression 2xn+2 − 7xn+1 + 3xn when xn

is defined for all n � 0 by

(a) xn = 3n (b) xn = 2n

(c) xn = 2−n (d) xn = 3(−2)n

Which of (a) to (d) are solutions of the following
recurrence relation?

2xn+2 − 7xn+1 + 3xn = 0

30 Show, by substituting them into the recurrence
relation, that xn = 2n and xn = (−1)n are two 
solutions of xn+2 − xn+1 − 2xn = 0. Verify similarly
that xn = A(2n) + B(−1)n is also a solution of the
recurrence relation for all constants A and B.

31 Obtain the general solutions of

(a) Yn+2 − 7Yn+1 + 10Yn = 0

(b) un+2 − un+1 − 6un = 0

(c) 25Tn+2 = −Tn

(d) pn+2 − 5pn+1 = 5(pn+1 − 5pn)

(e) 2En+2 = En+1 + En

32 Solve the nonhomogeneous problems (use parts of
Question 31)

(a) Yn+2 − 7Yn+1 + 10Yn = 1, Y0 = 5/4, Y1 = 2

(b) 2En+2 − En+1 − En = 1, E0 = 2, E1 = 0

(c) un+2 − un+1 − 6un = n (general solution only)

33 Show that the characteristic equation for the
recurrence relation xn+2 − 2axn+1 + a2xn = 0, where
a is a non-zero constant, has two equal roots λ = a.

(a) Verify (by substituting into the relation) that 
xn = (A + Bn)an is a solution for all constants A and B.

(b) Find the particular solution which satisfies x0 = 1,
x1 = 0. (Your answer will involve a, of course.)

(c) Find the particular solution for which x0 = 3,
x10 = 20.

34 Let x be a constant such that | x | � 1. Find the
solution of

Tn+2 − 2xTn+1 + Tn = 0, T0 = 1, T1 = x

Find T2, T3 and T4 also directly by recursion and
deduce that cos(2 cos−1x) = 2x2 − 1 and express 
cos(3 cos−1x) and cos(4 cos−1x) as polynomials in x.

35 A topic from information theory: imagine an
information transmission system that uses an
alphabet consisting of just two symbols ‘dot’ 
and ‘dash’, say. Messages are transmitted by first
encoding them into a string of these symbols, and
no other symbols (e.g. blank spaces) are allowed.
Each symbol requires some length of time for its
transmission. Therefore, for a fixed total time
duration only a finite number of different message
strings is possible. Let Nt denote the number of
different message strings possible in t time units.

(a) Suppose that dot and dash each require one
time unit for transmission. What is the value of
N1? Why is Nt+1 = 2Nt for all t � 1? Write down 
a simple formula for Nt for t � 1.

(b) Suppose instead that dot requires one unit of
time for transmission while dash requires two units.
What are the values of N1 and N2? Justify the relation
Nt+2 = Nt+1 + Nt for t � 1. Hence write down a
formula for Nt in terms of t.

(Hint: The general solution of Fibonacci recurrence
is given in Example 7.18.)

7.5 Limit of a sequence

In Section 7.2.1 the idea of a sequence and the associated notation were described. We
shall now develop the concept of a limit of a sequence and then discuss the properties of
sequences that have limits (termed convergent sequences) and methods for evaluating
those limits algebraically and numerically.
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7.5.1 Convergent sequences

In Example 7.6, we obtained the following sequence of approximations (working to
2dp) for ÷2:

x0 = 1, x1 = 1.83, x2 = 1.16, x3 = 1.64

Continuing with the process, we obtain

x22 = 1.41, x23 = 1.41

and

xn = 1.41 for n � 22

The terms x22 and x23 of the sequence are indistinguishable to two decimal places;
in other words, their difference is less than a rounding error. This situation is shown
clearly in Figure 7.4(b). This phenomenon occurs with many sequences, and we say that
the sequence tends to a limit or has a limiting value or converges or is convergent.
While it is clear in the above example what we mean by saying that the sequence con-
verges to ÷2, we need a precise definition for all the cases that may occur.

In general, a sequence {ak}
∞
k=0 has the limiting value a as n becomes large if, given

a small positive number ε (no matter how small), an differs from a by less than ε for all
sufficiently large n. More concisely,

an → a as n → ∞ if, given any ε � 0, there is a number N such that 
| an − a | � ε for all n � N

Here the → stands for ‘tends to the value’ or ‘converges to the limit’. An alternative
notation for an → a as n → ∞ is

Diagrammatically, this means that the terms of the sequence lie between y = a − ε and
y = a + ε for n � N, as shown in Figure 7.8.

Note that the limit of a sequence need not actually be an element of the sequence.
For example {n−1}∞

n=1 has limit 0, but 0 does not occur in the sequence.
Returning to the square-root example discussed above, we have

xn → ÷2 as n → ∞

lim  
n

na a
→∞

=

Figure 7.8
Convergence 
of {an} to limit a.
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It is clear from the terms of the sequence that for an error bound of 0.05 we need 
n � 8 (see Figure 7.9). Thus ÷2 = 1.4 (to 1dp). However, to prove convergence in the
formal sense, we have to be able to say how many terms we need to take in order to
obtain a specified level of precision. Suppose we need an answer correct to 10dp, or
100dp, or whatever; we must be able to give the corresponding value of N in the
definition of convergence. Finding an expression for N is not often easy.

We shall illustrate the type of methods used by finding an expression for N for a
classical method for calculating ÷2. This uses the iteration

with x0 = 1

This produces the rational approximations

The last given approximation has an error of less than 0.0001. Suppose we require an
approximation which is correct to p decimal places, then we need to find an N such that

| xn − ÷2 | � 0.5 × 10−p

for n � N. Writing εn = xn − ÷2 so that x0 = ÷2 + ε0, x1 = ÷2 + ε1, … , xn+1 = ÷2 + εn+1

(and so on) we have

Multiplying across, we have

(÷2 + εn+1)(1 + ÷2 + εn) = 2 + ÷2 + εn

which gives

÷2 + 2 + ÷2εn + (1 + ÷2)εn+1 + εn+1εn = 2 + ÷2 + εn

Simplifying further we have

(1 + ÷2 + εn)εn+1 = −εn(÷2 − 1)

Thus, since xn = ÷2 + εn
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Convergence 
of {xn} to ÷2.
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Since xn � 1 and ÷2 � 1.5, this implies

| εn+1 | � | εn | � 0.25 | εn |

Since x0 = 1 we have | ε0 | � , so that | ε1 | � 0.25( ), | ε2 | � 0.252( ), … and
| εn | � 0.25n( ).

Hence if we require | εn | � 0.5 × 10−p, for n � N, then we may find m such that

0.25m( ) � 0.5 × 10−p

or

which implies 4m � 10 p.
Taking logarithms to base 10, this gives

m � p/ log 4

Then choose N to be the greatest integer not greater than m, that is, N = 8p/ log 49. Thus,
to guarantee 10dp, we need to evaluate at most 810/log 49 = 16 iterations, which you may
verify on your calculator.

7.5.2 Properties of convergent sequences
As we have seen in the ÷2 example, it is usually difficult and tedious to prove the 
convergence of a sequence from first principles. Normally we are able to compute the
limit of a sequence from simpler sequences by means of very simple rules based on 
the properties of convergent sequences. These are:

(a) Every convergent sequence is bounded; that is, if {an}
∞
n=0 is convergent then

there is a positive number M such that | an | � M for all n.

(b) If {an} has limit a, and {bn} has limit b, then
(i) {an + bn} has limit a + b
(ii) {an − bn} has limit a − b
(iii) {anbn} has limit ab
(iv) {an /bn} has limit a /b, for bn ≠ 0, b ≠ 0.

We illustrate the technique in Example 7.22.

Example 7.22 Find the limits of the sequence {xn}
∞
n=0 defined by

(a) (b) 

Solution (a) With xn = n/(n + 1), we generate the sequence . From these 
values it seems clear that xn → 1 as n → ∞. This can be proved by rewriting xn as

and we make 1/(n + 1) as small as we please by taking n sufficiently large.
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Alternatively, we write

Now 1/n → 0 as n → ∞. Hence, by the property (b)(i), 1 + 1/n → 1 and so, by the 
property (b)(iv),

as n → ∞

as illustrated in Figure 7.10.

(b) For

the easiest approach is to divide both numerator and denominator by the highest power
of n occurring and use the fact that 1/n → 0 as n → ∞. Thus

The limits of numerator and denominator are 2 and 5 (using the property (b)(i) 
repeatedly), and so xn → as n → ∞ (using (b)(iv)). This is shown clearly in 
Figure 7.11.

Example 7.23 Show that the ratio xn of successive terms of the Fibonacci sequence satisfies the 
recurrence relation

xn+1 = 1 + 1/xn, x0 = 1

Calculate the first few terms of this sequence and find the value of its limit.

Solution The Fibonacci sequence was defined in Example 7.18 as 

fn+2 = fn+1 + fn with f0 = f1 = 1
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plotted against 1/n.
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Defining xn = fn+1 /fn gives fn+2 = xn+1 × fn+1 and fn = fn+1 /xn, so that the recurrence relation
becomes

xn+1 fn+1 = fn+1 + fn+1/xn

and dividing through by fn+1 we have

xn+1 = 1 + 1/xn

Also, x0 = f1/f0 = 1/1 = 1.
Using the recurrence relation, we obtain the sequence

{1, 2, 1.5, 1.6667, 1.6, 1.625, 1.6154, 1.6190, …}

The numerical results suggest a limiting value near 1.62. Indeed, the oscillatory nature
of the sequence suggests 1.6154 � xn � 1.6190 for n � 8, which implies a limit value
x = 1.62 correct to 2dp.

In this case we can check this conclusion, for if xn → x as n → ∞ then xn+1 → x also,
and so the recurrence relation yields

, with x � 0

Thus x2 − x − 1 = 0, which implies x = (1 + ÷5) or x = (1 − ÷5). Since the sequence has
positive values only, it is clear that the appropriate root is x = (1 + ÷5) = 1.62 (to 2dp).

This limiting value is called the golden number and is often denoted by the Greek
letter tau τ. A rectangle the ratio of whose sides is the golden number is said to be the most
pleasing aesthetically, and this has often been adopted by architects as a basis of design.

7.5.3 Computation of limits

The examples considered so far tend to create the impression that all sequences converge,
but this is not so. An important sequence that illustrates this is the geometric sequence

an = rn, r constant

For this sequence we have

If r � 1, the sequence increases without bound as n → ∞, and we say it diverges. If 
r = –1, the sequence takes the values −1 and 1 alternately, and there is no limiting value.
If r � −1, the sequence is unbounded and the terms alternate in sign.

Often in computational applications of sequences the limit of the sequence is not
known, so that it is not possible to apply the formal definition to determine the number
of terms N we need to take in order to obtain a specified level of precision. If we do not
know the limit a, to which a sequence {an} converges, then we cannot measure | an − a |.
In the computational context, when we apply a recurrence relation to find a solution to
a problem, we say that the sequence {an} has converged to its limit when all subsequent
terms yield the same value of the approximation required. In other words, we say that
the sequence of finite terms is convergent if, for any n and m � N,

| an − am | � ε
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where the bound ε is specified. Thus a sequence tends to a limit if all the terms of the
sequence for n � N are restricted to an interval that can be made arbitrarily small by
choosing N sufficiently large. This is called Cauchy’s test for convergence.

In many practical problems we need to find a numerical estimate for the limit of 
a sequence. A graphical method for this is to sketch the graph defined by the points
{(1/n, an) : n = 1, 2, 3, …} and then extrapolate from it, since 1/n → 0 as n → ∞. If
greater precision is required than can be obtained in this way, an effective numerical
procedure is a form of repeated linear extrapolation due to Aitken. We illustrate the 
procedure in Example 7.24.

Example 7.24 Examine the convergence of the sequence {an}
∞
n=1, an = (1 + 1/n)n.

Solution It can be shown that , but convergence is rather slow. In fact,

a1 = 2, a2 = 2.2500, a3 = 2.3704, a4 = 2.4414, …

a8 = 2.5658, … , a16 = 2.6379, … , a32 = 2.6770, …

a64 = 2.6973, … , and e = 2.7183 to 4dp

Now consider the two terms corresponding to n = 16 and n = 32 and set xn = 1/n. Then 

n = 16 gives x16 = 0.0625 and a16 = 2.6379

n = 32 gives x32 = 0.031 25 and a32 = 2.6770

We wish to find the value corresponding to x = 0. To estimate this, we may use linear
extrapolation, as shown in Figure 7.12. This gives

Note that b16,32 is a better estimate for e than either a16 or a32.

In MATLAB’s Symbolic Math Toolbox the limit as n → ∞ of the sequence defined
by xn = f (n) is determined by the commands

syms n

limit(fn, n, inf)

the corresponding command in MAPLE being

limit(fn, n = infinity);

b
x a x a

x x
16 32

16 32 32 16

16 32

2 7161,  
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lim  
n

na
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= e

Figure 7.12
Linear extrapolation
for the limit of a
sequence.
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As illustrative examples, consider Examples 7.22(a) and 7.24:

MATLAB MAPLE
syms n

limit(n/(n + 1), n,inf) limit(n/(n + 1), 

n = infinity);

returns ans 1

limit((1 + 1/n)^n, n, inf) limit((1 + 1/n)^n, 

n = infinity);

returns
exp(1) e

7.5.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

36 Calculate the first six terms of each of the following
sequences {an} and draw a graph of an versus 1/n.
(Some care is needed in choosing the scale of the 
y axis.) What is the behaviour of an as n → ∞?

(a)

(b) 

(c) an = (2n)1/n (n � 1)

(d)

(e) an = ÷(1 + an–1), a1 = 1 (n � 2)

(f)

Note: Part (f) is the area of a regular polygon of n
sides inscribed in a circle of unit radius.

37 Calculate the first six terms of each of the
following sequences {an} and draw a graph of an

against n. What is the behaviour of an as n → ∞?

(a) 

(b) an = (sin nπ)n (n � 1)

(c) an = 3/an–1, a0 = 1 (n � 1)

38 Find the least value of N such that when n � N,

(a) n2 + 2n � 100 (b)
 

n
n

2

2

1

1000
  �

1
2

a
n

n
nn =

+
+

 
 

  
    (   )

2 1

1
0�

a
n

n
nn = sin     (   )

2

2
1

π
�

a
n

nn

n

= +⎛
⎝⎜

⎞
⎠⎟       (   )1

1

2
1�

a
n n

n n
nn =

+ +
+ +

 
   

   
    (   )

3 2 1

6 5 2
1

2

2
�

a
n

n
nn =

+
 

 
    (   )

2 1
1�

(c) 

(d) ÷(n + 1) − ÷n �

(e) 

39 What is the long-term share of the detergent
market achieved by the brand ‘Number One’,
described in Question 5 (Exercises 7.2.3)?

40 A linearly convergent sequence has the property
that

an − a = λ(an−1 − a) for all n 

where λ is a constant and a = . Show that

an+1 − a = λ(an − a)

Deduce that

and show that

This is known as Aitken’s estimate for the limit
of a sequence.

Compute the first four terms of the sequence

a0 = 2, an+1 = (3 + 4a2
n − a3

n) (n � 0)

and estimate the limit of the sequence.
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7.6 Infinite series

Infinite series occur in a large variety of practical problems, from estimating the long-
term effects of pollution to the stability analysis of the motions of machinery parts. They
also occur in the development of computer algorithms for the numerical solution of
practical problems. In this section we will consider the underlying ideas. Care has to be
exercised when dealing with infinite series, since it is easy to generate fallacious results.
For example, consider the infinite series

S = 1 − 2 + 4 − 8 + 16 − 32 + …

Then we can write

2S = 2 − 4 + 8 − 16 + 32 − 64 + …

and adding these two results, we obtain

3S = 1 or S =

which is clearly wrong. Such blunders, however, are not always so glaringly obvious,
so we have to develop simple methods for determining whether an infinite series sums
to a finite value and for obtaining or estimating that value.

7.6.1 Convergence of infinite series

As we discussed in Section 7.2.1, series and sequences are closely connected. When the
sum Sn of a series of n terms tends to a limit as n → ∞, the series is convergent. When
we can express Sn in a simple form, it is usually easy to establish whether or not the
series converges. To find the sum of an infinite series, the sequence of partial sums {Sn}
is taken to the limit.

Example 7.25 Examine the following series for convergence:

(a) 1 + 3 + 5 + 7 + 9 + … + (2k + 1) + …

(b) 12 + 22 + 32 + 42 + 52 + … + k2 + …

(c)

(d)

Solution (a) This is an arithmetic series, so we can write its finite sum as a simple formula

It is clear from this that Sn → ∞ as n → ∞ and the series does not converge to a limit.
It is a divergent series.
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(b) As we saw in Example 7.10

Sn = 12 + 22 + 32 + … + n2 = n(n + 1)(2n + 1) (n terms)

As n becomes large, so does Sn, and Sn → ∞ as n → ∞. Hence the series is divergent.

(c)

This is a geometric series with common ratio . Using the formula (7.4) with a = 1 and
r = gives

As n → ∞, → 0, so that Sn → 2. Hence the series converges to the sum 2.

(d) We showed in Example 7.11 that

As n → ∞, 1/(n + 1) → 0, so that Sn → 1. Hence the series converges to the sum 1.

Among the elementary series, the geometric series is the most important.

Sn = a + ar + ar2 + … + arn−1 (n terms)

Since rn → 0 as n → ∞ when | r | � 1, we conclude that Sn → a/(1 − r) where | r | � 1
and the series is convergent. Where | r | � 1, the series is divergent. These results are
used in many applications and the sum of the infinite series is

(7.14)

Similarly

Sn = a + 2ar + 3ar2 + … + narn−1

→
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Summation may be carried out in MATLAB using the symsum command. For
Example 7.25(a) the sum of the first n terms is determined by the commands

syms k n

sn = symsum(2*k + 1,0,n)

as

sn = n^2

which tends to infinity as n → ∞, so it is a divergent series.
For Example 7.25(d) the sum to infinity is determined by the commands

syms k

sinf = symsum(1/((k + 1)*(k + 2)),0,inf)

as sn = 1, so it is a convergent series.

7.6.2 Tests for convergence of positive series

The convergence or divergence of the series discussed in Example 7.25 was established
by considering the behaviour of the partial sum Sn as n → ∞. In many cases, however,
it is not possible to express Sn in a closed form. When this occurs, the convergence or
divergence of the series is established by means of a test. Two tests are commonly used.

(a) Comparison test

Suppose we have a series, ∑∞
k=0ck, of positive terms (ck � 0, all k) which is known 

to be convergent. If we have another series, ∑∞
k=0uk, of positive terms such that

uk � ck for all k then ∑∞
k=0uk is convergent also.

Also, if ∑∞
k=0ck diverges and uk � ck � 0 for all k, then ∑∞

k=0uk also diverges.

Example 7.26 Examine for convergence the series

(a) (the factorial series)

(b) (the harmonic series)

Solution (a) We can establish the convergence of the series (a) by considering its partial sum

Each term of this series is less than or equal to the corresponding term of the series

Cn n
= + + + + + + −             1 1

1

2

1

2

1

2

1

22 3 1
…

A
n

n = + + + + + +   
!
  

!
  

!
  

!
    

!
1

1

1

1

2

1

3

1

4

1
…

1
1

2

1

3

1

4

1
            + + + + + +… …

n

1
1

1

1

2

1

3

1

4

1
  

!
  

!
  

!
  

!
    

!
  + + + + + + +… …

n

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 511



..

512 SEQUENCES,  SERIES AND LIMITS

..

This geometric series may be summed to give

Thus

which implies that, since all the terms of the series are positive numbers, An tends to a
limit less than 3 as n → ∞. Thus the series is convergent.

(b) The divergence of the series (b) is similarly established.

Collecting together successive groups of two, four, eight, … terms, we have

which may be compared with the series

(c)

Each term of the rearranged (b) is greater than or at least equal to the corresponding
term of the series (c), and so the ‘sum’ of the series (b) is greater than the ‘sum’ of the
series (c), which is

on summing the terms in brackets and which is clearly divergent.
Note that the harmonic series is divergent despite the fact that its nth term tends to

zero as n → ∞.
The harmonic series is the borderline case for divergence/convergence of the series

For r � 1, this series converges; for r � 1, it diverges as shown in the table below,
where the values have been calculated using the symsum command (followed by the
double command) in MATLAB’s Symbolic Math Toolbox

r 1 1.01 1.05 1.10 1.20 1.50 2

S(r) ∞ 100.58 20.58 10.58 5.59 2.61 1.64

(b) d’Alembert’s ratio test

Suppose we have a series of positive terms, ∑∞
k=0uk, and also exists.

Then the series is convergent if l � 1 and divergent if l � 1. If l = 1, we are not able
to decide, using this test, whether the series converges or diverges.
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The proof of this result is straightforward. Assume that and choose 

r to be any number between l and 1. Then since the values of un+1/un, when n is
sufficiently large, differ from l by as little as we please, we have

for n � N. Thus

uN+1 � ruN, uN+2 � r2uN, …

Thus, from and after the term uN of the series, the terms do not exceed those of the 
convergent geometric series

uN(1 + r + r2 + r3 + … )

Hence ∑∞
k=0uk converges.

It is left as an exercise for the reader to show that the series diverges when l � 1.

Example 7.27 Use d’Alembert’s test to determine whether the following series are convergent.

(a) (b)

Solution (a) Let then

which tends to zero as n → ∞. Thus l = 0 and the series is convergent.

(b) Here

so that the series diverges.

A necessary condition for convergence of all series is that the terms of the series
must tend to zero as n → ∞. Thus a simple test for divergence is

if un → u ≠ 0 as n → ∞, then ∑∞
k=0uk is divergent

Notice, however, that un → 0 as n → ∞ does not guarantee that ∑∞
k=0uk is convergent.

To prove that, we need more information. (Recall, for example, the harmonic series
of Example 7.26, which is divergent.)1 1
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Example 7.28 Show that the series is divergent.

Solution Here so that d’Alembert’s ratio test does not give a conclusion (since 

l = 1). However, we note that so that un → 1 as n → ∞, from which

we conclude that ∑∞
k=1uk diverges.

7.6.3 The absolute convergence of general series

In practical problems, we are concerned with series which may have both positive 
and negative terms. Absolutely convergent series are a special case of such series.
Consider the general series

which may have both positive and negative terms uk. If the associated series

is convergent then S is convergent and is said to be absolutely convergent. If it is
impossible to obtain a value for the limit of the partial sum Tn, we must use some other
test to determine the convergence (or divergence) of T. A simple test for absolute 
convergence of a series ∑∞

k =1uk is a natural extension of d’Alembert’s ratio test.

Absolutely convergent series have the following useful properties:

(a) the insertion of brackets into the series does not alter its sum;

(b) the rearrangment of the series does not alter its sum;

(c) the product of two absolutely convergent series A = ∑an and B = ∑bn is an abso-
lutely convergent series C, where

C = a1b1 + (a2b1 + a1b2) + (a3b1 + a2b2 + a1b3) + (a4b1 + a3b2 + a2b3 + a1b4) + …

There are convergent series that are not absolutely convergent; that is ∑ ∞
k =1uk

converges but ∑ ∞
k =0 | uk | diverges. The most common series of this type are alternating

If then is absolutely convergent

If then is divergent

If then no conclusion is possible
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series. Here the uk alternate in sign. If, in addition, the terms decrease in size and tend
to zero,

| un | � | un−1 | for all n, with un → 0 as n → ∞

then the series converges. Thus

which we write as

converges. Its sum is ln 2, as we shall show in Section 7.7. The associated series of
positive terms, ∑∞

k =1(1/k), diverges of course (see Example 7.26b).

7.6.4 Exercises

( )     ( )  ( )  ( )  ( )  ( )  − = + − + + − + + − ++

=

∞

∑ 1
1

11

1

1
2

1
3

1
4

1
5

1
6

k

k k
…

( )               − = − + − + − ++

=

∞

∑ 1
1

11

1

1
2

1
3

1
4

1
5

1
6

k

k k
…

41 Decide which of the following geometric series are
convergent.

(a) 

(b) 

(c) 

(d) 

42 Show that if

Tn = a + 2ar + 3ar2 + 4ar3 + … + narn−1

then (1 − r)Tn = a + ar + ar2 + … + arn−1 − narn

Deduce that

Show that if | r | � 1, then Tn → a /(1 − r)2 as
n → ∞. Hence sum the infinite series

43 For each of the following series find the sum of
the first N terms, and, by letting N → ∞, show that
the infinite series converges and state its sum.

(a) 

(b) 

(c) 1
1 2 3

1
2 3 4

1
3 4 5⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ + +      …

1
1

2
2

3
2

4
2

5
22 3 4          + + + + + …

2
1 3

2
3 5

2
5 7⋅ ⋅ ⋅+ + +      …

1
2

3

1

3

4

27

5

81 3 1
              + + + + + + +−… …

k
k

T
a r

r

nar

rn

n n

=
−

−
−

−
 

(   )

(   )
  

  

1

1 12

1 5
4

25
16

125
64

5
4          ( )  − + − + + +−… …k

10 11 10121
10

1331
100

11
10          ( )  + + + + + +… …k

4 2 1
1

2

1 4

2
          

( )
  − + − + +

−
+… …

k

k

2
2

3

2

9

2

27

2

3
            + + + + + +… …

k

44 Which of the following series are convergent?

(a) (b) 

(c) 

45 By comparison with the series ∑ ∞
k=2[1/k(k − 1)] 

and ∑ ∞
k=2[1/k(k + 1)], show that S = ∑∞

k=2(1/k2) is
convergent and � S � 1.

(In fact, ∑∞
k=1(1/k2) = S + 1 = .)

46 Show that 0.fi‡ (that is, 0.575 757 … ) may be
expressed as 57 × 10−2 + 57 × 10−4 + … , and so
0.fi‡ = 57∑∞

r =1100−r. Hence express 0.fi‡ as a
rational number. Use a similar method to express
as rational numbers

(a) 0.›⁄‹ (b) 0.101 010 …

(c) 0.999 999 … (d) 17.231 723 172 3 …

47 Consider the series ∑ ∞
r=1k

−p. By means of the
inequalities ( p � 0)
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and so on, deduce that the series is convergent for
p � 1. Show that it is divergent for p � 1.

48 Two attempts to evaluate the sum ∑∞
k=1k

−4 are
made on a computer working to 8 digits. The first
evaluates the sum

from the left; the second evaluates it from 
the right. The first method yields the result
1.082 320 2, the second 1.082 322 1. Which is 
the better approximation and why?

1
1

2

1

3

1

4

1

724 4 4 4
          + + + + +…

49 Show that

and deduce that

Deduce that the modulus of error in the estimate 
for the sum ∑ ∞

k=1k
−4 obtained by computing 

∑N
k=1(−1)kk−4 is less than (N + 1)−4.8
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k k k

7.7 Power series
Power series frequently occur in the solution of practical problems, as we shall see
in Sections 9.4.2, 9.8 and elsewhere. Often they are used to determine the sensitivity of
systems to small changes in design parameters, to examine whether such systems are
stable when small variations occur (as they always will in real life). The basic mathe-
matics involved in power series is a natural extension of the series considered earlier.

A series of the type

a0 + a1x + a2x
2 + a3x

3 + … + anxn + …

where the a0, a1, a2, … are independent of x is called a power series.

7.7.1 Convergence of power series

Power series will, in general, converge for certain values of x and diverge elsewhere.
Applying d’Alembert’s ratio test to the above series, we see that it is absolutely 
convergent when

Thus the series converges if

that is, if

| |x
a

an

n

n

  lim �
→∞ +1

 
| |x

a

an

n

n

 lim   
→∞

+1 1�

 
lim   
n

n
n

n
n

a x

a x→∞

+
+

1
1

1�
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Denoting | an/an+1 | by r, we see that the series is absolutely convergent for 

−r � x � r and divergent for x � −r and x � r. The limit r is called the radius of
convergence of the series. The behaviour at x = ±r has to be determined by other
methods.

The various cases that occur are shown in Example 7.29.

Example 7.29 Find the radius of convergences of the series

(a) (b) 

Solution (a) Here an = 1/n, so that | an /an+1 | = (n + 1)/n and r = 1. Thus the domain of absolute
convergence of the series is −1 � x � 1. The series diverges for | x | � 1 and for x = 1.
At x = −1 the series is

which is convergent to ln (see Section 7.6.3 and formula (7.18) below). Thus the
series

is convergent for −1 � x � 1.

(b) Here an = nn and

Now

and

so that an/an+1 → 0 as n → ∞. Thus the series converges only at x = 0, and diverges
elsewhere.
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1e as (see Example 7.24)
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7.7.2 Special power series

Power series may be added, multiplied and divided within their common domains of 
convergence (provided the denominator is non-zero within this common domain) to
give power series that are convergent, and these properties are often exploited to
express a given power series in terms of standard series and to obtain power series
expansions of complicated functions.

Four elementary power series that are of widespread use are

(a) The geometric series

= 1 − x + x2 − x3 + … + (−1)nxn + … (−1 � x � 1) (7.15)

(b) The binomial series

(7.16)

where

is the binomial coefficient.
In series (7.16) r is any real number. When r is a positive integer, N say, the series

terminates at the term xN and we have the binomial expansion discussed in Chapter 1.
When r is not a positive integer, the series does not terminate.

We can see that setting r = −1 gives

which simplifies to the geometric series

So the geometric series may be thought of as a special case of the binomial series.

Comment (The series is often written as (1 + x)−1 = 1 − x + x2 − x3 + O(x4), where O(x4) means
terms involving powers of x greater than or equal to 4.)

Similarly,

which simplifies to the arithmetical-geometric series

(Compare Exercises 7.6.4, Question 42.)
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(c) The exponential series

(7.17)

We saw in Example 7.22 that the number e is defined by

Similarly, the function ex is defined by

(or, equivalently, by

Using the binomial expansion, we have

So we see the connection between the binomial and exponential series.

(d) The logarithmic series

(7.18)

The logarithmic function is the inverse function of the exponential function, so that

y = ln(1 + x)

Unscrambling the limit to solve for y gives

Using the binomial expansion again gives
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Thus we see the connection between the binomial and logarithmic series. Note that 
taking x = 1 in series (7.18) we have the result

used in Section 7.6.3.
A summary of the standard series introduced together with some other useful 

series deduced from them is given in Figure 7.13. Note that, using the series expansions
for ex, sin x and cos x given in the figure, we can demonstrate the validity of Euler’s 
formula

e jx = cos x + j sin x

introduced in equation (3.9). The radius of convergence of all these series may be 
determined using d’Alembert’s test.
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Figure 7.13
Table of some 
useful series.

(Note: In the last two series x is an angle measured in radians.)
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Example 7.30 Obtain the power series expansions of

(a) (b) (c) 

Solution (a) Using the binomial series (7.16) with n = − gives

Now replacing x with −x2 gives the required result

(b) Expressed in partial fractions

From the table of Figure 7.13

= 1 + x + x2 + x3 + … + xn + … (−1 � x � 1)

and replacing x by 3x in (7.15) gives

= 1 − (3x) + (3x)2 − (3x)3 + … + (−1)n(3x)n + …

Thus

= [1 + x + x2 + x3 + … ] + [1 − 3x + 9x2 − 27x3 + … ]

= 1 − 2x + 7x2 − 20x3 + … + (1 + (−1)n3n+1)xn + …

(c) Using the series for ln(1 + x) and (1 + x)−1 from (7.18) and (7.15),
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There is no separate command for power series expansion in either MATLAB 
or MAPLE. However, in MAPLE the command series is more general and can
cope with many situations; it does not tell us how the series is constructed but may
be used for checking answers. As illustrations, for Example 7.30(a) the command

series(1/sqrt(1 – x^2), x = 0);

returns the answer

1 + 1–2x
2 + 3–8x

4 + 5––16x
6 + O(x8)

and for Example 7.30(c) the command

series(ln(1 + x)/(1 + x), x = 0);

returns the answer

x – 3–2x
2 + 11––6 x

3 – 25––12x
4 + 137–––60 x

5 + O(x6)

Making use of the maple command the series command may be used in
MATLAB’s Symbolic Math Toolbox. Check that the commands

syms x

maple(‘series((1/sqrt(1 – x^2), x = 0))’)

return the same answer for Example 7.30(a).
Power series are examples of Maclaurin series dealt with later in Section 9.4.2.

They can be obtained using the taylor command taylor(f,n). For example, the
first five terms of the series expansion for Example 7.30(b) are determined by the
commands

syms x

f = 1/((1 – x)*(1 + 3*x));

taylor(f,5);

pretty(ans)

as

1 – 2x + 7x2 – 20x3 + 61x4

In MAPLE the commands

series(1/((1 – x)*(1 + 3*x)), x = 0); and

taylor(1/((1 – x)*(1 + 3*x)), x = 0);

produce the answer

1 – 2x + 7x2 – 20x3 + 61x4 – 182x5 + O(x6)

The inverse process of expressing the sum of a power series in terms of the elementary
functions is often difficult or impossible, but when it can be achieved it usually results
in dramatic simplification of a practical problem.
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Example 7.31 Sum the series

(a) 12 + 22x + 32x2 + 42x3 + 52x4 + … (b) 

Solution (a) Set

S = 12 + 22x + 32x2 + 42x3 + 52x4 + … + (n + 1)2xn + …

Then

xS = 12x + 22x2 + 32x3 + 42x4 + … + n2xn + …

and subtracting this from S gives

(1 − x)S = 12 + (22 − 12)x + (32 − 22)x2 + (42 − 32)x3 + … + [(n + 1)2 − n2]xn + …

= 1 + 3x + 5x2 + 7x3 + … + (2n + 1)xn + …

= (1 + x + x2 + x3 + … + xn …) + 2(x + 2x2 + 3x3 + … + nxn + …)

= (1 + x + x2 + x3 + … + xn + …) + 2x(1 + 2x + 3x2 + 4x3 + …

+ nxn−1 + …)

The first bracket is a geometric series of ratio x and sums to | x | � 1.

The second bracket is an arithmetico-geometric series of ratio x and sums to

| x | � 1 (see Exercises 7.6.4, question 42). Thus

and

(b) Summing this series relies on recognizing its similarity to the series for the hyper-
bolic cosine:

Replacing x by ÷x gives

and thus the series is summed.

  
cosh     

!
  

!
  

!
      (     )÷x

x x x
x= + + + + −∞ ∞1

2 4 6

2 3

… � �

 
cosh     

!
  

!
  

!
      (     )x

x x x
x= + + + + −∞ ∞1

2 4 6

2 4 6

… � �

 
S

x

x
x  

  

(   )
    (     )=

+
−

−
1

1
1 1

2
� �

(   )   
  

  
(   )

  
  

(   )
 1

1

1

2

1

1

12 2
− =

−
+

−
=
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x S
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x

x

x

x

1

1 2(   )
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Example 7.32 Sum the series

(a) S(λ) = (b) T(λ) =

and show that

T(λ) − [S(λ)]2 = λ

Solution (a) By re-writing S(λ) in the form

S(λ) =

and setting n = r − 1 we have

S(λ) =

= λe−λeλ, using the result 7.7.2 (c)

= λ

(b) Similarly T(λ) =

=

=

= λ2eλe−λ + λe−λeλ

= λ2 + λ

Hence

T(λ) − S(λ)2 = λ

These results show that mean and variance of Poisson probability distribution both
equal λ (see Section 13.5.2).

Series may be summed in MATLAB using the symsum command. For Example
(7.31) the series sums are

syms x k

Sa = symsum(k*x^(k – 1),k,1,inf)

giving

Sa = 1/(x – 1)^2

Sb = symsum(x^(k – 1)/’factorial(2*(k – 1))’,k,1,inf)

λ λ λ λλ λ2
2

2

1

12 1

r

r

r

rr r

−

=

∞
−

−

=

∞
−

−
+

−∑ ∑(   )!
  

(   )!
e e

1

2

1

10 (   )!
  

(   )!r rr

r

−
+

−
⎡
⎣⎢

⎤
⎦⎥=

∞
−∑ λ λe

r r r

rr

r(   )  

!

− +

=

∞
−∑ 1

0

λ λe

λ λ λ λλ λ
n

n

n

nn n!
  

!=

∞
− −

=

∞

∑ ∑=
0 0

e e

λ λ λ
r

r r

−

=

∞
−

−∑
1

1 1(   )!
e

r
r

r
2

0

λ λe−∞

∑ !
r

r

r

r

λ λe−

=

∞

∑ !0
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giving

Sb = cosh(x^(1/2))

Commands in MAPLE are the same except for minor syntax differences; use can be
made of (2*(k – 1))! So the command

sum(‘x^(k – 1)/(2*(k – 1))!’, ‘k’ = 1..infinity);

returns the answer cosh(÷x).

7.7.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

50 For what values of x are the following series
convergent?

(a) 

(b)

(c) 

(d) 

51 From known series deduce the following:

(a) 

(b) 

(c) 

(d) 

(e)

(f) 

In each case give the general term and the radius
of convergence.

1

1 1
1

2
4 5

(   )(   )
        

− +
= + + + +

x x
x x x …

1

1 2 2
1
2

3
4

13
8

2 51
16

3

(   )(   )
        

− +
= + + + +

x x
x x x …

÷(   )         1 1 1
2

1
8

2 1
16

3 5
128

4− = − − + − −x x x x x …

1

1
1 2 3 4 5

2
2 3 4

(   )
         

+
= − + − + −

x
x x x x …

1
2

1
3

3 1
5

5 1
7

71

1
ln

  

  
       

+
−

= + + + +
x

x
x x x x …

1

1
1

2
2 4 6

  
       

+
= − + − +

x
x x x …

n

n
x n

n

2

2
1 1  +=

∞

∑

x

n n

n

n (   )+=

∞

∑ 11

( )
(   )!

−
+=

∞

∑ 1
2 1

2

0

n
n

n

x

n

(   )2 1
1

n x n

n

−
=

∞

∑

52 Calculate the binomial coefficients

(a) (b)

(c) (d)

53 From known series deduce the following (the
general term is not required):

(a)

(b)

(c)

(d)

54 Show that

Hence derive a polynomial approximation to 
(1 − x)−1 with an error that, in modulus, is less 
than 0.5 × 10−4 for 0 � x � 0.25.

Using nested multiplication, calculate from
your approximation the reciprocal of 0.84 to 4dp,
and compare your answer with the value given 
by your calculator. How many multiplications are
needed in this case?

1

1
1

1
12 1

  
          

  
    (   )

−
= + + + + +

−
≠−

x
x x x

x

x
xn

n

…

ln(   sin )       1 1
2

2 1
6

3 1
12

4+ = − + + +x x x x x …

ex x x
x x x
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4

2

5

3 2 4 2 5

…

cos     
!
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  2
2 3 4 5 6

1
2

2

2

4

2

6
x
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3 2
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1 2
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⎠⎟
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55 Find the sums of the following power series:

(a) 

(b) 

(c) 

(d) 

56 A regular polygon of n sides is inscribed in a
circle of unit diameter. Show that its perimeter pn

is given by

1
2

2 2
3

3 3
4

4 4
5

5x x x x+ + + +    …

 
(   )

x

k k

k

k +=

∞

∑ 11

1 1
2

1 3
2 4

2 1 3 5
2 4 6

3 1 3 5 7
2 4 6 8

4         

  

    

    

      

      
+ + + + +⋅

⋅
⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅
⋅ ⋅ ⋅x x x x …

( )−
=

∞

∑ 1 2 2

0

k k k

k

x
Using the series expansion for sine, prove that

and deduce that

Given p12 = 3.1058 and p24 = 3.1326, use this
result to obtain a better estimate of π.

π π
  (  )  

!
  = − + +

1

3
4

1

4 5

1
2

5

4
p p

nn n …

π π π
   

!
  

!
  = + − +p

n nn

3

2

5

43

1

5

1
…

p n
nn = sin
π

7.8 Functions of a real variable

So far in this chapter we have concentrated on sequences and series. The terms of a
sequence may be seen as defining a function whose domain is a subset of integers, such
as N. We now turn to the fundamental properties that are essential to mathematical
modelling and problem-solving, but we shall also be developing some basic mathe-
matics that is necessary for later chapters.

7.8.1 Limit of a function of a real variable

The notion of limit can be extended in a natural way to include functions of a real
variable:

A function f (x) is said to approach a limit l as x approaches the value a if, 
given any small positive quantity ε, it is possible to find a positive number
δ such that | f (x) − l | � ε for all x satisfying 0 � | x − a | � δ.

Less formally, this means that we can make the value of f(x) as close as we please
to l by taking x sufficiently close to a. Note that, using the formal definition, there is 
no need to evaluate f (a); indeed, f (a) may or may not equal l. The limiting value of f as
x → a depends only on nearby values!

Example 7.33 Using a calculator, examine the values of f (x) near x = 0 where

What is the value of ?lim ( )
x

f x
→0

f x
x

x
x( )  

  (   )
,      =

− +
≠

1 1
0

÷

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 526



....

7.8 FUNCTIONS OF A REAL VARIABLE 527

Solution Note that f(x) is not defined where x = 0. At nearby values of x we can calculate f(x),
and some values are shown in Figure 7.14.

x −0.1 −0.01 −0.001 0.001 0.01 0.1

f (x) −1.948 683 −1.994 987 −1.999 500 −2.000 500 −2.004 988 −2.048 809

It seems that as x gets close to the value of 0, f (x) gets close to the value of −2. Indeed,
it can be proved that for 0 � | x | � 2ε − ε 2, | f(x) + 2 | � ε, so that

Comment Notice that this is a rather artificial example to illustrate the idea and theory. In this case
we can rewrite the formula for f(x) to give

which gives

It is clear from this that f(x) → −2 as x → 0.

The elementary rules for limits (listed in Section 7.5.2) carry over from those of
sequences, and these enable us to evaluate many limits by reduction to standard cases.
Some common standard limits are

(i) where r is a real number

(ii) where x is in radians

(iii)

These results can be deduced from the results of Section 7.7.2. For instance, consider
x r − ar. Since x → a, set x = a + h. Then as x → a, h → 0. We have

x a a
h

a
a ar r r

r
r           (   )− = +⎛

⎝
⎞
⎠ − ≠1 0

lim (   )   /
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h xxh
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0

11 e
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=
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  ,
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r r
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−
= 1

 
f x

x x
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(     ))
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1 1
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f x

x x

x x
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x
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→
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0

2

Figure 7.14
Values of f (x) to 6dp.
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Expanding (1 + h/a)r by the binomial series (7.16), we have

But x − a = h, so

and letting h → 0 yields the result (i)

(When a = 0, the result is obtained trivially.)
The result (ii) is obtained even more simply. The series expansion

gives

A geometric interpretation of (ii) is given in Figure 7.15. OAB is a sector of a circle of
unit radius with angle x (measured in radians). Then

the area of ∆OBD � area of sector OBA � area of ∆OCA

Algebraically, we have

Considering x � 0, we may write this as

As x → 0, cos x → 1, so that also.

The result (iii) is obtained from a binomial series:

and, as h → 0,
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Figure 7.15
Geometric
interpretation of

.lim
sin
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=

0
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Example 7.34 Evaluate the following limits:

(a) (b)

Solution (a) Method 1: Expand ÷(1 + x2) by the binomial series (7.16), giving

÷(1 + x2) = (1 + x2)1/2 =

so that

Thus

Method 2: Multiply numerator and denominator by ÷(1 + x2) + 1, giving

Now let x → 0, to obtain

(b) Method 1: Replace cos x by its power series expansion (see Figure 7.13),

giving

Thus

Method 2: Using the half-angle formula for cos x (see 2.7d), we have

1 − cos x = 2 sin2 x

so
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On letting x → 0, we have ϕ → 0 and (sin ϕ)/ϕ → 1, so that

Example 7.35 The volume of a sphere of radius a is 4πa3/3. Show that the volume of material used in
constructing a hollow sphere of interior radius a and exterior radius a + t is

V = 4π(3a2t + 3at2 + t3)/3

Deduce that the surface area of the sphere of radius a is S = 4πa2 and show that it is
equal to the area of the curved surface of the enclosing cylinder.

Solution

The volume V is approximately the surface area S of the interior sphere times the thick-
ness t. That is

V = St + O(t2)

Hence

Now proceeding to the limit as t → 0, gives

S = 4πa2

The radius of the enclosing cylinder is a and its height is 2a so that its curved surface
area is

(2πa) × (2a) = 4πa2

as shown in Figure 7.16.

7.8.2 One-sided limits

In some applications we have to use one-sided limits, for example

(as x tends to zero ‘from above’)

In this example, (as x tends to zero ‘from below’) does not exist, since no

negative numbers are in the domain of ÷x. When we write

lim
x

x
→ −0

÷

lim   
x

x
→ +

=
0

0÷

S V t O t a at t O t  /   ( )  (   )  ( )= + = + + +
4

3
3 32 2π
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4

3
3 32 2 3π
a t at t

V a t a a a t at t a  [(   )  ]  [      ]= + − = + + + −
4

3

4

3
3 33 3 3 2 2 3 3π π

1
2

1
2

  cos
  

−
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x

x

Figure 7.16
Enclosing cylinder in
Example 7.35.
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we mean that

Example 7.36 Sketch the graph of the function f (x) where

and show that does not exist.

Solution Notice that the function is not defined for x = 0. A sketch of the function is given for 
−1 � x � 1, x ≠ 0 in Figure 7.17. From that diagram we see that f (x) → −1 as x → 0
from below and f(x) → +1 as x → 0 from above. Since the existence of a limit requires
the same value whether we approach from above or below we deduce that f (x) does
not exist.

Symbolically in MATLAB, limits are determined using the following commands:

f (x) by limit(f,x,a) or limit(f,a)

f (a) by limit(f,x,a, ‘left’)

and

f (a) by limit(f,x,a, ‘right’)

MAPLE deals with the problem in the same way but with minor differences in syntax.

lim
x a→ +

lim
x a→ −

lim
x a→

lim
x→0

lim ( )
x

f x
→0

  
f x

x x

x
x x( )  

(   )
,          =

−
≠

÷ 2 3

0 1and �

lim ( ) lim ( )  
x a x a

f x f x l
→ − → +

= =

lim ( )  
x a

f x l
→

=

Figure 7.17
Graph of

.y
x x

x
  

(   )
=

−√ 2 3

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 531



..

532 SEQUENCES,  SERIES AND LIMITS

..

The limits of Example 7.34 may be evaluated as follows:

MATLAB MAPLE
syms x

limit((sqrt(1 + x^2) – limit((sqrt(1 + x^2) –

1)/x^2,x,0) 1)/x^2,x = 0);

giving ans = 1/2

limit((1 – cos(x))/ limit((1 - cos(x))/

x^2,x,0) x^2,x = 0);

giving ans = 1/2

For Example 7.36 the left and right limits are determined as follows:

MATLAB MAPLE
syms x

limit((x^2 – x^3)^(1/2)/ limit((x^2 - x^3)^(1/2)/

x,x,0, ‘left’) x,x = 0, left);

giving ans = –1

limit((x^2 – x^3)^(1/2)/ limit((x^2 – x^3)^(1/2)/

x,x,0,’right’) x,x = 0, right)

giving ans = 1

Note: The command sqrt could also be used to represent the square root term.

7.8.3 Exercises

Check your answers using MATLAB or MAPLE.

57 Evaluate the following limits:

(a) 

(b) 

(c) 

(d) 

58 Show that

Hence find

(a)

(b) lim ( (   )  )
x

x x x
→ ∞

+ −√ 1 2

lim
   

 x

x x

x→ ∞

− −
−

3 2

1

2

2

lim ( )  lim
x y

f x f
y→ ∞ → +

=
⎛
⎝⎜

⎞
⎠⎟0

1

lim (sec   tan )
/x

x x
→

−
π 2

lim
sin

x

x

x→

−

0

12

lim
cos sin   

x

x x x

x→

−
0 3

lim
(   )  (   )

x

x x

x→

+ − −
0

1 1

3
√ √

59 Evaluate the following limits:

(a) (b) 

(c) 

(d) 

60 Draw (carefully) graphs of

(a) xe−x (b) x2e−x (c) x3e−x

for 0 � x � 5. Use the series expansion of ex to
prove that xne−x → 0 as x → ∞ for all n � �.

61 Use a calculator to evaluate the function f (x) = xx

for x = 1, 0.1, 0.01, … , 0.000 000 001. What
do these calculations suggest about f (x)?

Since xx = ex ln x, the value of this limit is related 
to (x ln x). By setting x = e−y and using the 

results of Question 60, prove that x x → 1 as x → 0+.

lim
x → +0

lim
x → +0

lim     (   )
x n

x n
→ +

8 9 � �

lim     (   )
x n

x n
→ −

8 9 � �

lim tanh
x x→ +0

1
lim tanh

x x→ −0

1

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 532



....

7.9 CONTINUITY OF FUNCTIONS OF A REAL VARIABLE 533

7.9 Continuity of functions of a real variable
In Chapter 2 we examined the properties of elementary functions. Often these were
described by means of graphs. A property that is clear from the graphical representa-
tion of a function is that of continuity. Consider the two functions whose graphs are
shown in Figure 7.18. For the function f(x) we can draw the whole curve without lift-
ing the pencil from the paper, but this is not possible for the function g(x). The function
f (x) is said to be continuous everywhere, while g(x) has a discontinuity at x = 0. In
Section 2.8.3, we described several functions that are used to model practical problems
and that have points of discontinuity similar to the function g(x). The most important of
these is Heaviside’s unit function

which has a discontinuity at x = 0.

The formal mathematical definition of continuity for a function f(x) defined in the
neighbourhood of a point x = x0 and at the point itself is that

f (x) → f (x0) as x → x0

A function with this property is said to be continuous at x = x0.
Continuous functions have some very special properties, which we shall now list.

7.9.1 Properties of continuous functions

If f (x) is continuous in the interval [a, b] then it has the following properties.

(a) f (x) is a bounded function: there are numbers m and M such that

m � f (x) � M for all x � [a, b]

Any numbers satisfying this relation are called a lower bound and an upper bound
respectively.

(b) f (x) has a largest and a least value on [a, b]. The least value of f(x) on [a, b] 
is called the minimum of f (x) on [a, b], the largest value is the maximum of f (x) on
[a, b] and the difference between the two is called the oscillation of f(x) on [a, b]. This
is illustrated in Figure 7.19.

(c) f (x) takes every value between its least and its largest value somewhere between 
x = a and x = b. This property is known as the intermediate value theorem.

 

H x
x

x
( )  

(   )

(   )
=

⎧
⎨
⎩

0 0

1 0

�

�

Figure 7.18
Graphs of 
the functions 
(a) f (x) = x(x2 − 1) 
and (b) g(x) =
tan−1(1/x), x ≠ 0.
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(d) If a � x1 � x2 � x3 � … � xn � b, there is an X � [a, b] such that

This property is known as the average value theorem.

(e) Given ε � 0, the interval [a, b] can be divided into a number of intervals in each of
which the oscillation of the function is less than ε.

(f ) Given ε � 0, there is a subdivision of [a, b], a = x0 � x1 � x2 � … � xn = b, such
that in each subinterval (xi, xi+1)

That is, by making a subtabulation that is sufficiently fine, we can represent f (x) locally
by linear interpolation to within any prescribed error bound.

(g) Given ε � 0, f (x) can be approximated on the interval [a, b] by a polynomial of
suitable degree such that

| f (x) − pn(x) | � ε for x � [a, b]

This is known as the Weierstrass theorem. Note, however, that the theorem does not
tell us how to obtain pn(x).

The properties of limits listed in Section 7.5.2 enable us to determine the continuity
of functions formed by combining continuous functions. Thus if f (x) and g(x) are 
continuous functions then so are the functions

(a) af (x), where a is a constant
(b) f (x) + g(x)
(c) f (x)g(x)
(d) f (x)/g(x), except where g(x) = 0

Also the composite function f(g(x)) is continuous at x0 if g(x) is continuous at x0 and
f (x) is continuous at x = g(x0).

Some of the properties of continuous functions are illustrated in Example 7.37 and
in Exercises 7.9.4.

Example 7.37 Show that f (x) = 2x/(1 + x2) for x � � is continuous on its whole domain. Find its
maximum and minimum values and show that it attains every value between these
extrema.

f x f x x
f f

x x
f f xi i

i i

i i
i i( )    (   )

  

  
  ,   ( )− + −

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=+

+

1

1

� ε

f X
f x f x f x

n
n( )  

( )  ( )    ( )
=

+ + +1 2 …

Figure 7.19
The oscillation 
of a function.
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Solution The graph of the function is shown in Figure 7.20, from which we can see that the part
shown is a continuous curve. That is to say, we can put a pencil at point A at the left-hand
end of the graph and trace along the whole length of the curve to reach the point B at the
right-hand end without lifting the pencil from the page. We can prove this more formally
as follows. Select any point x0 of the domain of the function. Then we have to show that
| f (x) − f (x0) | can be made as small as we please by taking x sufficiently close to x0. Now

→ 0 as x → x0

This implies that f(x) is continuous at x0, and since x0 is any point of the domain, it 
follows that f (x) is continuous for all x.

Then to show that the function takes a given value y we have to solve the equation
y = f (x) for x in terms of y. So that in this example

gives yx2 − 2x + y = 0

where we are now solving the equation for x in terms of y. Hence we obtain

y ≠ 0 and −1 � y � 1

This gives two values of x for each y � (−1, 1), y ≠ 0. Clearly y = 0 is also attained
for x = 0. The maximum and minimum values for y are 1 and −1 respectively, and the
corresponding values of x are 1 and −1. Thus f(x) is a continuous function on its
domain, and it attains its maximum and minimum values and every value in between.

7.9.2 Continuous and discontinuous functions
The technique used to show that f (x) is a continuous function in Example 7.37 can 
be used to show that polynomials, rational functions (except where the denominator is
zero) and many transcendental functions are continuous on their domains. We frequently
make use of the properties of continuous functions unconsciously in problem-solving!
For example, in solving equations we trap the root between two points x1 and x2 where
f (x1) � 0 and f(x2) � 0 and conclude that the root we seek lies between x1 and x2. The
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Figure 7.20
Graph of 2x/(1 + x2).
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need for continuity here is shown by the graph of y = tan−1(1/x) (Figure 7.21). There is
no value of x corresponding to y = 0, despite the facts that tan−1(1/0.01) is positive and
tan−1[1/(−0.01)] is negative.

Similarly, when locating the maximum or minimum value of a function y = f (x), in
many practical situations we would be content with a solution that yields a value close
to the true optimum value, and property (e) above tells us we can make that value as
close as we please. Sometimes we use the continuity idea to fill in ‘gaps’ in function
definitions. A simple example of this is f (x) = (sin x)/x for x ≠ 0. This function is defined
everywhere except at x = 0. We can extend it to include x = 0 by insisting that it be 
continuous at x = 0. Since (sin x)/x → 1 as x → 0, defining f(x) as

(7.19)

yields a function with no ‘gaps’ in its domain. The function f (x) in (7.19) is known as
the sinc function; that is,

and its graph is drawn in Figure 7.22. This function has important applications in 
engineering, particularly in digital signal analysis. See the chapter on Fourier trans-
forms in the companion text Advanced Modern Engineering Mathematics.

Of course it is not always possible to fill in ‘gaps’ in function definitions. The function

(x ≠ nπ, n = 0, ±1, ±2, … )

can have its domain extended to include the points x = nπ, but it will always have a 
discontinuity at those points (except perhaps x = 0). Thus

yields a function that is defined everywhere but is discontinuous at an infinite set of points.
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Figure 7.21 Graph of tan−1(1/x), x ≠ 0. Figure 7.22 Graph of sinc x = (sin x)/x.
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In the analysis of practical problems we frequently use functions that have different
formulae on different parts of their domain. For example, consider a beam of length l
that is freely hinged at both ends and carries a concentrated load W at x = a, as shown
in Figure 7.23. Then the shear force F is given by

and is sketched in Figure 7.24(a).
The bending moment M is

and is sketched in Figure 7.24(b). (The terms ‘shear force’ and ‘bending moment’ are
discussed in the next chapter in Example 8.7.)

Notice here that F has a finite discontinuity at x = a while M is continuous there.

7.9.3 Numerical location of zeros
Many practical engineering problems may involve the determination of the points at
which a function takes a specific value (often zero) or the points at which it takes its
maximum or minimum values. There are many different numerical procedures for solving
such problems and we shall illustrate the technique by considering its application to the
analysis of structural vibration.

This is a very common problem in engineering. To avoid resonance effects, it is 
necessary to calculate the natural frequencies of vibration of a structure. For a beam
built in at one end and simply supported at the other, as shown in Figure 7.25, the 
natural frequencies are given by

M x
W l a x l x a

W l x a l a x l
( )  

(   ) / (     )

(   ) / (     )
=

−

−

⎧
⎨
⎩⎪

0 � �

� �

F x
W Wa l x a

Wa l a x l
( )  

  / (     )

/ (     )
=

−

−

⎧
⎨
⎩⎪

0 � �

� �

Figure 7.23 A beam, hinged at both ends, 
carrying a point load.

Figure 7.24 (a) The shear force and (b) the
bending moment for a freely hinged beam.

Figure 7.25
A beam built in at 
one end and simply
supported at the other.
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where l is the length of the beam, E is Young’s modulus, I is the moment of inertia of
the beam about its neutral axis, ρ is its density and θ satisfies the equation

tan θ = tanh θ

We can find approximate values for θ that satisfy the above equation by means of a
graph, as shown in Figure 7.26. From the diagram it is clear that the roots occur just
before the points θ = 0, π, π, π, … . Using a calculator, we can compare the values
of tanθ and tanhθ, to produce the table of Figure 7.27, which gives us the estimate for
the root near θ = π as 3.925 ± 0.005.

If we require a more precise answer than this provides, we can resort to a finer 
subtabulation. In some problems this can be very tedious and time-consuming. A better
strategy is to use an interval-halving or bisection method. We know that the root lies
between θ1 = 3.92 and θ2 = 3.93. We work out the value of the functions at the midpoint
of this interval, θ3 = 3.925, and determine whether the root lies between θ1 and θ3 or
between θ3 and θ2. The process is then repeated on the subinterval that contains the root,
and so on until sufficient precision is obtained.

The process is set out in tabular form in Figure 7.28. Note the renaming of the end
points of the root-bracketing interval at each step, so that the interval under scrutiny is
always denoted by [θ1, θ2]. After five applications we have θ = 3.926 72 ± (0.005/25).

A refinement of the bisection method is the method of false position (also known
as regula falsa). To solve the equation f (x) = 0, given x1 and x2 such that f (x1) � 0
and f (x2) � 0 and f (x) is continuous in (x1, x2), the bisection method takes the point 

5
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θθ tanθθ tanhθθ

3.90 0.9474 0.9992
3.91 0.9666 0.9992
3.92 0.9861 0.9992
3.93 1.0060 0.9992

Figure 7.27 Table of values.Figure 7.26 The roots of the equation 
tanθ = tanhθ.

θθ1 f (θθ1) θθ2 f (θθ2) θθm f (θθm)

3.92 −0.013 098 3.93 0.006 808 3.925 −0.003 195
3.925 −0.003 195 3.93 0.006 808 3.927 5 0.001 794
3.925 −0.003 195 3.927 5 0.001 794 3.926 25 −0.000 703
3.926 25 −0.000 703 3.927 5 0.001 794 3.926 875 0.000 545
3.926 25 −0.000 703 3.926 875 0.000 545 3.926 562 5 −0.000 079

Figure 7.28
Solution of 
tanθ − tanhθ = 0 
by the bisection
method.
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(x1 + x2) as the next estimate of the root. The method of false position uses linear 
interpolation to derive the next estimate of the root. The straight line joining the points
(x1, f (x1)) and (x2, f (x2)) is given by

This line cuts the x axis where

so this is the new estimate of the root. This method usually converges more rapidly than
the bisection method. The computation of the root of tan θ − tanh θ = 0 in the interval
(3.92, 3.93) is shown in Figure 7.29. Notice how, as a result of the first step, the
estimate of the root is θ = 3.926 580 and f (3.926 580) = 0.000 045. The root is now
bracketed in the interval (3.926 580, 3.93), and the method is repeated. In two steps we
have an estimate of the root giving a value of f (θ) � 10−6. This obviously converges
much faster than the bisection method.

Both the bisection method and the method of false position are bracketing methods
– the root is known to lie in an interval of steadily decreasing size. As such, they are
guaranteed to converge to a solution. An alternative method of solution for an equation
f (x) = 0 is to devise a scheme producing a convergent sequence whose limit is the root
of the equation. Such fixed point iteration methods are based on a relation of the form
xn+1 = g(xn). If xn = α, say, then evidently α = g(α). The simplest way to devise an 

iterative scheme for the solution of an equation f (x) = 0 is to find some rearrangement
of the equation in the form x = g(x). Then, if the scheme xn+1 = g(xn) converges, the limit
will be a root of f(x) = 0.

We can arrange the equation tan θ = tanh θ in the form

θ = tan−1(tanh θ) + kπ (k = 0, ±1, ±2, … )

If we take k = 1 and θ0 = we obtain, using the iteration scheme,

θn = tan−1(tanh θn−1) + π

the sequence

θ0 = 3.926 991, θ1 = 3.926 603, θ2 = 3.926 602, θ3 = 3.926 602

and the root is θ = 3.926 602 to 6dp. (Taking other values of k will, of course, give
schemes that converge to other roots of tan θ = tanh θ.)

The disadvantage of such iterative schemes is that not all of them converge. We shall
return to this topic in Section 9.3.2.

5
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Figure 7.29
Solution of 
tanθ − tanhθ = 0 
by regula falsa.
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7.9.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

62 Draw sketches and discuss the continuity of

(a) (b)

(c) (d) 81 − x29

63 Find upper and lower bounds obtained by

(a) 2x2 − 4x + 7 (0 � x � 2)

(b) −x2 + 4x − 1 (0 � x � 3)

in the appropriate domains. Draw sketches to
illustrate your answers.

64 Use the intermediate value theorem to show that
the equation

x3 + 10x2 + 8x − 50 = 0

has roots between 1 and 2, between −4 and −3 and
between −9 and −8. Find the root between 1 and 2
to 2dp using the bisection method.

65 Show that the equation 3x = 3x has a root in the
interval (0.7, 0.9). Use the intermediate value
theorem and the method of regula falsa to find 
this root to 3dp.

66 Show that the equation

x3 − 3x + 1 = 0

has three roots α, β and γ, where α � −1, 0 � β � 1
and γ � 1. For which of these is the iterative
scheme

convergent? Calculate the roots to 3dp.

67 The cubic equation x3 + 2x − 2 = 0 can be 
written as

x xn n+ = +1
1
3

3 1 (  )

tanh
1

x

x

x

  

  

−
−

1

2

| |x

x

(a) (b) 

(c) x = (2 − 2x)1/3

Determine which of the corresponding iteration
processes converges most rapidly to find the real
root of the equation. Hence calculate the root to 3dp.

68 Show that the iteration

converges to the limit a1/3. Use the formula with
a = 157 and x0 = 5 to compare x1 and x2.

Show that the error εn in the nth iterate is 
given by εn+1 � ε 2

n /xn−1, where xn = a1/3 + εn. 
Hence estimate the error in x1 obtained above.

69 The periods of natural vibrations of a cantilever
are given by

where l, E, I and ρ are physical constants
dependent on the shape and material of the
cantilever and θ is a root of the equation

cosh θ cos θ = −1

Examine this equation graphically. Estimate its
lowest root α0 and obtain an approximation for 
the kth root αk. Compare the two iterations:

θn+1 = cosh−1(−sec θn)

and

θn+1 = cos−1(−sech θn)

Which should be used to find an improved
approximation to x0?
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7.10 Engineering application: insulator chain
The voltage Vk at the kth pin of the insulator chain shown in Figure 7.30 satisfies the
recurrence relation

V
C

C
V Vk k k+ − +
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12 0        +
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with V0 = 0 and Vn = v, the amplitude of the voltage applied at the head of the chain.
The characteristic equation for this recurrence relation is

which has real roots

Thus, the general solution is

Vk = Aλ k
1 + Bλ k

2

Applying the condition V0 = 0 gives

A + B = 0

Applying the condition Vn = v gives

Aλ n
1 + Bλ n

2 = v

Hence B = −A and A = v/(λ n
1 − λ n

2) and

In a typical insulator chain C2/C1 = 0.1 and n = 10. It is left to the reader to calculate
Vk /v for k = 1, 2, … , 9.

7.11 Engineering application: approximating functions and
Padé approximants

In Section 2.9.1 we introduced linear and quadratic interpolation as a means of obtaining
estimates of the values of functions in between known values. Often in engineering
applications it is of considerable importance to obtain good approximations to functions.
In this section we shall show how what we have learned about power series representa-
tion can be used to produce a type of approximate representation of a function widely
used by engineers, for example, when approximating exponentials by rational functions
in modelling time delays in control systems. The approach is attributed to Padé and is
based on the matching of series expansion.

Example 7.38 Obtain an approximation to the function e−x in the form

and find an estimate for the error.
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Figure 7.30
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Solution Assuming an exact match at x = 0, we deduce at once that a = A. Also, we know that
1/ex = e−x, and assuming a similar relation for the approximation

This holds if we choose A = a (as above), B = −b and C = c, giving

We can see from this that it would be possible to express both sides of the equation as
power series in x (at least in a restricted domain). We can rewrite the approximation to
make it exact:

(A + Bx + Cx2)e−x = (A − Bx + Cx2) + px3 + qx4 + rx5 + …

where p, q, … are to be found.
Replacing e−x by its power series representation, we have

= A − Bx + Cx2 + px3 + qx4 + rx5 + . . .

Multiplying out the left-hand side and collecting terms, we obtain

= A − Bx + Cx2 + px3 + qx4 + rx5 + …

Comparing the coefficients of like powers of x on either side of this equation gives

A = A

B − A = −B

A − B + C = C

− A + B − C = p

A − B + C = q

− A + B − C = r

and so on.
We see from this that there is not a unique solution for A, B and C, but that we may

choose them (or some of them) arbitrarily. Taking A = 1 gives B = and − C = p.
Setting p = 0 will make the error term smaller near x = 0, so we adopt that choice, 
giving C = . This gives q = 0 and r = − . Thus
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The principal term of the error, − x5, enables us to decide the domain of usefulness
of the approximation. For example, if we require an approximation correct to 4dp, we
need x5 to be less then × 10−4. Thus the approximation

yields answers correct to 4dp for | x | � 0.51.
This particular approximation is used by control engineers to enable them to apply

linear systems techniques to the analysis and design of systems characterizing a time
delay in their dynamics. Since the degree of both the numerator and denominator is 2,
this is referred to as the (2, 2) Padé approximant.

As an extended exercise, the reader should obtain the following (1, 1) and (3, 3) Padé
approximants:

7.12 Review exercises (1–25)

Check your answers using MATLAB or MAPLE whenever possible.
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1 There are two methods of assessing the value of a
wasting asset. The first assumes that it decreases
each year by a fixed amount; the second assumes
that it depreciates by a fixed percentage.

A piece of equipment costs £1000 and has a
‘lifespan’ of six years after which its scrap value is
£100. Estimate the value of the equipment by both
methods for the intervening years.

2 A machine that costs £1000 has a working life 
of three years, after which it is valueless and has 
to be replaced. It saves the owner £500 per year
while it is in use. Show that the true total saving
£S to the owner over the three years is

− 1000

where r% is the current rate of interest. Estimate S
for r = 5, 10, 15 and 20. When does the machine
truly save the owner money?

3 An economic model for the supply S(P) and demand
D(P) of a product at a market price of P is given by

D(P) = 2 − P

S P P( )    = +1
2

1
2

S
r r r

  
/ ( / ) ( / )  

  
  

  
  

=
+

+
+

+
+

⎡

⎣
⎢

⎤

⎦
⎥500

1

1 100

1

1 100

1

1 1002 3

and

D(Pt+1) = S(Pt)

(so that supply lags behind demand by one time
unit). Show that

Pt+1 − 1 = − (Pt − 1)

and deduce that

Pt = 1 + (− )t(P0 − 1)

Find the particular solution of the recurrence
relation corresponding to P0 = 0.8 and sketch it in
a cobweb diagram. What is the steady-state price
of the product?

4 Show that

where Tk is the kth triangular number. (See
Question 4 in Exercises 7.2.3.)

5 Find the general solutions of the following linear
recurrence relations:

(a) fn+2 − 5fn+1 + 6 fn = 0 (b) fn+2 − 4 fn+1 + 4 fn = 0

(c) fn+2 − 5fn+1 + 6 fn = 4n (d) fn+2 − 5fn+1 + 6 fn = 3n

1 1

1 T

T T

Tk

n n

nk

n

  
 

=
+−

=
∑

1
2

1
2
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6 Suppose that consumer spending in period t, Ct, 
is related to personal income two periods earlier,
It−2, by

Ct = 0.875It−2 − 0.2Ct−1 (t � 2)

Deduce that if personal income increases by a
factor 1.05 each period, that is

It+1 = 1.05It

then It = 1.05tI0 and hence

Ct = (C1 − 0.7I0)(−0.2) t−1 + 0.7I0(1.05) t−1

Describe the behaviour of Ct in the long run.

7 An economist believes that the price Pt of a
seasonal commodity in period t satisfies the
recurrence relation

Pt+2 = 2(Pt+1 − Pt) + C (t � 0)

where C is a positive constant.
Show that

Pt = A(1 + j) t + B(1 − j) t + C

where A and B are complex conjugate constants.
Noting that 1 ± j = ÷2(cos ± j sin ), explain why
the economist is mistaken.

8 The cobweb model applied to agricultural
commodities assumes that current supply depends
on prices in the previous season. If Pt denotes
market price in any period and QSt, QDt supply
and demand in that period, then

QDt = 180 − 0.75Pt

QSt = −30 + 0.3Pt−1 where P0 = 220

Find the market price and comment on its form.

9 Solve for National Income, Yt, the set of
recurrence relations

Yt = 1 + Ct + It

Ct = Yt−1

It = 2(Ct − Ct−1)

Comment on your solution.

10 A sequence is defined by

Given a10 = 0.626 383, a16 = 0.608 140 and
a20 = 0.602 009 estimate γ = an, using

repeated linear extrapolation. (γ is known as
Euler’s constant.)

lim
n→∞

a
k

k kk             ln     (   , , )= + + + + − =1
1

2

1

3

1
1 2… …

1
2

π
4

π
4

11 Discuss the convergence of

(a) 

(b) (all p)

(c) 

(d) 

12 Express the following recurring decimal numbers
in the form p/q where p and q are integers:

(a) 1.231 231 23 … (b) 0.429 429 429 …

(c) 0.101 101 101 … (d) 0.517 251 72 …

13 Determine which of the following series are
convergent:

(a) (b)

(c) (d)

14 A rational function f (x) has the following power
series representation for −1 � x � 1:

f (x) = 12x + 22x2 + 32x3 + 42x4 + …

Find a closed-form expression for f (x).

15 Find the values of a and b such that

giving the value of c. (The series for tan x is given
in Question 53(a) in Exercises 7.7.3.)

For what values of x will the approximation

be valid to 4dp? Use the approximation to
calculate tan 0.29 and tan 0.295, and compare your
answers with the values given by your calculator.
Comment on your results.

[Here O(x7) mean terms involving powers of x
greater than or equal to 7.]

16 The function f (x) = sinh−1x has the power series
expansion

sinh           − = − +
⋅
⋅

−
⋅ ⋅
⋅ ⋅
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3 5 71

2 3

1 3

2 4 5

1 3 5

2 4 6 7
x x

x x x
…

tan   
  

x
ax

bx
=

+1 2

tan   
  

   ( )x
ax

bx
cx O x=

+
+ +

1 2
5 7

n

n nn

  

   

−
+ −=

∞

∑ 1

32
1

n

nn

  

 

−
−=

∞

∑ 1

2 15
1

n

nn

  +

=

∞

∑ 2
2

1

1

12
0 nn +=

∞

∑  

1 1
3

1
5

1
7        − + − + …

1
11

2
13

3
15

4
17        − + − + …

k

k

p

k !=

∞

∑
1

2

1

3

2

4

3

5

42 2 2 2
        + + + + …

M07_JAME0734_05_SE_C07.qxd  11/03/2015  09:55  Page 544



....

7.12 REVIEW EXERCISES (1–25) 545

Obtain polynomial approximations for sinh−1x for
−0.5 � x � 0.5 such that the truncation error is
less than (a) 0.005 and (b) 0.000 05.

17 A chord of a circle is half a mile long and supports
an arc whose length is 1 foot longer (1 mile =
5280 feet). Show that the angle θ subtended by the
arc at the centre of the circle satisfies

Use the series expansion for sine to obtain an
approximate solution of this equation, and estimate
the maximum height of the arc above its chord.

18 A machine is purchased for £3600. The annual
running cost of the machine is initially £1800, 
but rises annually by 10%. After x years its
secondhand value is £3600e−0.35x. Show that the
average annual cost £C (including depreciation)
after x years is given by

Show graphically that the machine should be
replaced after about 4 years, and use an iterative
method to refine this estimate.

19 Consider the sequence φn defined by

Show that φn → e as n → ∞. Using the power
series expansions of ln(1 + x) and ex, show that

and deduce that

Evaluate φ64 and φ128 (without using the yx key of
your calculator), and use extrapolation to
estimate the value of e.

20 A beam of weight W per unit length is simply
supported at the same level at (N + 1) equidistant
points, the extreme supports being at the ends of 

φn n
= + +⎛
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θ θ=

the beam. The bending moment Mk at the kth
support satisfies the recurrence relation

Mk+2 + 4Mk+1 + Mk = Wa2

where a is the distance between the supports and
M0 = 0 and MN = 0. (This is a consequence of
Clapeyron’s theorem of three moments.) Show
that if the sequences {Ak}

N
k=0 and {Bk}

N
k=0 are

calculated by the recurrences

A0 = A1 = 0

Ak+2 + 4Ak+1 + Ak = 1 (k = 0, 1, … , N − 2)

and

B0 = 0, B1 = 1

Bk+2 + 4Bk+1 + Bk = 0 (k = 0, 1, … , N − 2)

then the solution of the bending-moment problem
is given by

Mk = Wa2Ak + M1Bk (k = 0, … , N )

with Wa2AN + M1BN = 0 determining the value 
of M1.

Perform the calculation for the case where 
N = 8, a = 1 and W = 25.

21 A complex voltage E is applied to the ladder
network of Figure 7.31. Show that the (complex)
mesh currents Ik satisfy the equations

(k = 1, … , N − 1) (7.20)

(See Section 3.6 for the application of complex
numbers to alternating circuits.)

Show that Ik = A(eθ )k = Aekθ satisfies (7.20)
provided that coshθ = 1 − LCω 2. Note that this
equation yields two values for θ, so that in general 
Ik may be written as

Ik = Aekθ + Be−kθ

where A and B are independent of k. Using the
special equations for I0 and In, obtain the values of
A and B and prove that
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Figure 7.31

(b) Use the binomial expansion to show that

÷(1 − sin2θ) = 1 − sin2θ − sin4θ

− sin6θ + A sin8θ + … …

giving the value of A.

(c) Show that sin 4θ can be expressed in the form

sin 4θ = 4 sinθ − 10 sin3θ + sin5θ
+ sin7θ + . . .

24 The series

sums to the value π2/8. Lagrange’s formula for
linear interpolation is

By setting x = 1/n and f (x) = Sn where

show that

where p and q are integers. Choosing p = 5 and 
q = 10, estimate the value of π 2/8.

25 The expression is to be used as an 

approximation to ln[(1 + x)/(1 − x)] on 
−1 � x � 1, by choosing a suitable value for 
the constant a. Show that

for | x | � R giving the value of R. The error in 
this approximation is dominated by the first term
in this expansion. Obtain the value of a which
makes this term equal zero and compute the
corresponding value of the coefficient of x5.
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22 A lightweight beam of length l is clamped
horizontally at both ends. It carries a concentrated
load W at a distance a from one end (x = 0). The
shear force F and bending moment M at the point
x on the beam are given by

and

Draw the graphs of these functions. Use Heaviside
functions to obtain single formulae for M and F.

23 (a) Show that

sin 4θ = 4 sin θ (1 − 2 sin2θ)÷(1 − sin2θ), 

−π/2 � θ � π/2

and explain why there is a restriction on the
domain of θ.
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8.1 Introduction

Many of the practical situations that engineers have to analyse involve quantities that
are varying. Whether it is the temperature of a coolant, the voltage on a transmission
line or the torque on a turbine blade, the mathematical tools for performing such ana-
lyses are the same. One of the most successful of these is calculus, which involves two
fundamental operations: differentiation and integration. Historically, integration was
discovered first, and indeed some of the ideas and results date back over 2000 years to
when the Greeks developed the method of exhaustion to evaluate the area of a region
bounded on one side by a curve – a method used by Archimedes (287–212 BC) to obtain
the exact formula for the area of a circle. Differentiation was discovered very much
later, during the seventeenth century, in relation to the problem of determining the tan-
gent at an arbitrary point on a curve. Its characteristic features were probably first used
by Fermat in 1638 to find the maximum and minimum points of some special functions.
He noticed that tangents must be horizontal at some points, and developed a method 
for finding them by slightly changing the variable in a single algebraic equation and
then letting the change ‘disappear’. The connection between the two processes of deter-
mining the area under a curve and obtaining a tangent at a point on a curve was first
realized in 1663 by Barrow, who was Newton’s professor at the University of Cambridge.
However, it was Newton (1642–1727) and Leibniz (1646–1716), working independently,
who fully recognized the implications of this relationship. This led them to develop 
the calculus as a way of dealing with change and motion. Exploitation of their work
resulted in an era of tremendous mathematical activity, much of which was motivated
by the desire to solve applied problems, particularly by Newton, whose accomplish-
ments were immense and included the formulation of the laws of gravitation. The 
calculus was put on a firmer mathematical basis in the nineteenth century by Cauchy
and Riemann. It remains today one of the most powerful mathematical tools used by
engineers. In this chapter and the next we shall review its basic ideas and techniques,
refreshing some prior knowledge of the reader and extending it, and show their appli-
cation both in the formulation of mathematical models of practical problems and in
their solution.

In recent years we have seen significant developments in symbolic algebra pack-
ages, such as MAPLE and the Symbolic Math Toolbox in MATLAB, which are 
capable of performing algebraic manipulation, including the calculation of derivatives
and integrals. To the inexperienced, this development may appear to eliminate the 
need for engineers to be able to carry out even basic operations in calculus by hand.
This, however, is far from the truth. If engineers are to apply the powerful techniques
associated with the calculus to the design and analysis of industrial problems then 
it is essential that they have a sound grounding of differentiation and integration. 
First, this allows effective formulation, comprehension and analysis of mathematical
models. Secondly, it provides the basis for understanding symbolic algebra packages,
particularly when specific forms of results are desired. In order to acquire this under-
standing it is necessary to have a certain degree of fluency in the manipulation of 
associated basic techniques. It is the objective of this chapter and the next to provide
the minimum requirements for this. At the same time, students should be given the
opportunity to develop their skills in the use of a symbolic algebra package and, when-
ever appropriate, be encouraged to check their answers to the exercises using such a
package.

548 DIFFERENTIATION AND INTEGRATION

..
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8.2 DIFFERENTIATION 549

8.2 Differentiation
Here we shall introduce the concept of differentiation and illustrate its role in some
problem-solving and modelling situations.

8.2.1 Rates of change

Consider an object moving along a straight line with constant velocity u (in m s−1).
The distance s (in metres) travelled by the object in time t (in seconds) is given by the
formula s = ut. The distance–time graph of this motion is the straight line shown in
Figure 8.1. Note that the velocity u is the rate of change of distance with respect to time,
and that on the distance–time graph it is the gradient (slope) of the straight line repres-
enting the relationship between the distance travelled and the time elapsed. This, of
course, is a special case where the velocity is constant and the distance travelled is a
linear function of time. Even when the velocity varies with time, however, it is still
given by the gradient of the distance–time graph, although it then varies from point to
point along the curve.

....

Figure 8.1
Distance–time graph
for constant velocity u.

Consider the distance–time graph shown in Figure 8.2(a). Suppose we wish to find
the velocity at the time t = t1. The velocity at t = t1 is given by the gradient of the graph
at t = t1. To find that we can enlarge that piece of the graph near t = t1, as shown in
Figure 8.2(b) and (c). We recall that continuous functions have the property that locally
they may be approximated by linear functions (see Section 7.9.1, property f ). We see
that as we increase the magnification, that is, zooming closer, the graph takes on the

Figure 8.2
(a) Distance–time
graph, (b) enlargement
of outer rectangle
surrounding (t1, s1) 
and (c) enlargement 
of inner rectangle
surrounding (t1, s1).
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appearance of a straight line through the point P(t1, s1). The gradient of that straight line
(in the limit) gives us the gradient of the graph at P. Consider that section of the graph
contained in the rectangle whose sides parallel to the s axis are t = t1 + h and t = t1 − h
where h is a positive (small) number, as shown in Figure 8.3. If we denote the function
relating distance and time by f (t), then s1 = f (t1) and we can approximate the gradient
of the function f (t) at the point P by the gradients of either of the chords AP or BP. Thus

gradient

As h becomes smaller and smaller (corresponding to greater and greater magnifications)
these approximations become better and better, so that in the limit (h → 0) they cease
being approximations and become exact. Thus we may write

(gradient of f(t) at t = t1) =

Here we specified h � 0, which means that the former limit is the limit from above and
the latter is the limit from below of the expression

where ∆t → 0. (Here we have used the composite symbol ∆t to indicate a small change
in the value of t. It may be positive or negative.) So provided that the limits from above
and below have the same value, the gradient of the function f (t) is defined at t = t1 by

8.2.2 Definition of a derivative

Formally we define the derivative of the function f (x) at the point x to be

where ∆ f = f (x + ∆x) − f (x) is the change in f (x) corresponding to the change ∆x in x.
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Figure 8.3
Section of the
distance–time graph.
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8.2 DIFFERENTIATION 551

Two notations are used for the derivative. One uses a composite symbol, , and the
other uses a prime, f ′(x), so that

(8.1)

In terms of the function y = f (x), we write ∆y = ∆ f and y + ∆y = y(x + ∆x) and

(8.2)

Example 8.1 Using the definition of a derivative given in (8.1), find f ′(x) when f(x) is

(a) x2 (b) (c) mx + c (m, c constants)

Solution (a) With f (x) = x2, f (x + ∆x) = (x + ∆x)2 = x2 + 2x ∆x + (∆x)2

so that 

Thus, from (8.1), the derivative of f (x) is

so that 

(b) With f (x) = ,

so that 

Thus, from (8.1), the derivative of f (x) is

so that 
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(c) With f (x) = mx + c, f (x + ∆x) = m(x + ∆x) + c

so that 

Thus, from (8.1), the derivative of f (x) is

so the gradient of the function f (x) = mx + c is the same as that of the straight line 
y = mx + c, as we would expect.

8.2.3 Interpretation as the slope of a tangent
The definition is illustrated graphically in Figure 8.4, where ∆x denotes a small incre-
mental change in the independent variable x and ∆ f is the corresponding incremental
change in f (x). P and Q are the points on the graph with coordinates (x, f (x)), (x + ∆x,
f (x + ∆x) ) respectively. The slope of the line segment PQ is

In the limit as ∆x tends to zero the point Q approaches P, and the line segment becomes
the tangent to the curve at P, whose slope is given by the derivative
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Figure 8.4
Illustration of
derivative as slope
of a tangent.

Summary

If y = f (x) then the derivative of f(x) is defined by

The derivative may be interpreted as

(a) the rate of change of the function y = f (x) with respect to x, or

(b) the slope of the tangent at the point (x, y) on the graph of y = f (x).
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Example 8.2 Consider the function f (x) = 25x − 5x2. Find

(a) the derivative of f (x) from first principles;

(b) the rate of change of f(x) at x = 1;

(c) the equation of the tangent to the graph of f (x) at the point (1, 20);

(d) the equation of the normal to the graph of f (x) at the point (1, 20).

Solution (a) f (x) = 25x − 5x2

f (x + ∆x) = 25(x + ∆x) − 5(x + ∆x)2 = 25x + 25∆x − 5x2 − 10x ∆x − 5(∆x)2

so that

Thus the derivative of f (x) is

(b) The rate of change of f (x) at x = 1 is f ′(1) = 15.

(c) The slope of the tangent to the graph of f (x) at (1, 20) is f ′(1) = 15. Remembering
from equation (1.14) that the equation of a line passing through a point (x1, y1) and hav-
ing slope m is

y − y1 = m(x − x1)

we have the equation of the tangent to the graph of y = f (x) at (1, 20) is

y − 20 = 15(x − 1)

or

y = 15x + 5

(d) The slope n of the normal to the graph is given by the relation mn = −1, where m is
the slope of the tangent. This is illustrated in Figure 8.5. Thus in this example the slope
of the normal at (1, 20) is −1/15 and hence the equation of the normal at (1, 20) is

y − 20 =

or
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Figure 8.5
Relationship between
slopes of the tangent
and normal to a plane
curve.
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8.2.4 Differentiable functions

The formal definition of the derivative of f (x) implies that the limits from below 
and above are equal. In some cases this does not happen. For example, the function 
f (x) = ÷(1 + sin x) is such that its two limits are

Clearly the derivative of the function is not defined at x = 3π /2 (the two limits above
are sometimes referred to as ‘left-hand’ and ‘right-hand’ derivatives, respectively).

The graph of y = ÷(1 + sin x) is shown in Figure 8.6, and it is clear that at x = 3π /2
a unique tangent cannot be drawn to the graph of the function. This is not surprising
since from the interpretation of the derivative as the slope of the tangent, it follows that
for a function f(x) to be differentiable at x = a, the graph of f (x) must have a unique,
non-vertical well-defined tangent at x = a. Otherwise the limit

does not exist. We say that a function f (x) is differentiable if it is differentiable at all
points in its domain. For practical purposes it is sufficient to interpret a differentiable
function as one having a smooth continuous graph with no sharp corners. Engineers 
frequently refer to such functions as being ‘well behaved’. Clearly the function having
the graph shown in Figure 8.7(a) is differentiable at all points except x = x1 and x = x2,
since a unique tangent cannot be drawn at these points. Similarly, the function having
the graph shown in Figure 8.7(b) is differentiable at all points except at x = 0.
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Figure 8.6
The graph of 
y = ÷(1 + sin x).

Figure 8.7
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8.2.5 Speed, velocity and acceleration

Considering the motion of the object in Section 8.2.1 enables us to distinguish between
the terms speed and velocity. In everyday usage we talk of speed rather than velocity,
and always regard it as being positive or zero. As we saw in Chapter 4, velocity is a
vector quantity and has a direction associated with it, while speed is a scalar quantity,
being the magnitude or modulus of the velocity. When s and v are measured horizont-
ally, the object will have a positive velocity when travelling to the right and a negative
velocity when travelling to the left. Throughout its motion, the speed of the particle will
be positive or zero. Likewise, acceleration a, being the rate of change of velocity with
respect to time, is a vector quantity and is determined by

Example 8.3 A particle is thrown vertically upwards into the air. Its height s (in m) above the ground
after time t (in seconds) is given by

s = 25t − 5t2

(a) What height does the particle reach?

(b) What is its velocity when it returns to hit the ground?

(c) What is its acceleration?

Solution Since velocity v is rate of change of distance s with time t we have

In this particular example

s(t) = 25t − 5t2 (8.3)

so, from Example 8.2,

(8.4)

(a) When the particle reaches its maximum height, it will be momentarily at rest, so
that its velocity will be momentarily zero. From (8.4) this will occur when t = 25/10 = 2.5.
Then, from (8.3), the height reached at this instant is

That is, the maximum height reached by the particle is 31.25 m.

(b) First we need to find the time at which the particle will return to hit the ground. This
will occur when the height s is again zero, which from (8.3) is when t = 5. Then, from
(8.4), the velocity of the particle when it hits the ground is

v(5) = −25

s( . )        ( )   2 5 25 55
2

5
2

2 125
4= × − × =

v( )      t
s

t
t= = −

d

d
25 10

v  =
d

d
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t

a t
t
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d

d

v
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1 Using the definition of a derivative given in (8.1),
find f ′(x) when f(x) is

(a) a constant K (b) x (c) x2 − 2

(d) x3 (e) ÷x (f) 1/(1 + x)

2 Consider the function f (x) = 2x2 − 5x − 12. Find

(a) the derivative of f (x) from first principles;

(b) the rate of change of f (x) at x = 1;

(c) the points at which the line through (1, −15)
with slope m cuts the graph of f (x);

(d) the value of m such that the points of
intersection found in (c) are coincident;

(e) the equation of the tangent to the graph of f (x)
at the point (1, −15).

3 Consider the function f (x) = 2x3 − 3x2 + x + 3. Find

(a) the derivative of f (x) from first principles;

(b) the rate of change of f (x) at x = 1;

(c) the points at which the line through (1, 3) with
slope m cuts the graph of f (x);

That is, when it returns to hit the ground, the particle will be travelling at 25 m s−1, with
the negative sign indicating that it is travelling downwards, since s and v are measured
upwards.

(c) The acceleration, a, is the rate of change of velocity with respect to time. Thus,
from (8.4)

that is, a � −g = −9.806 65 (m s−2), the acceleration due to gravity.

The MATLAB Symbolic Math Toolbox and MAPLE provide commands to do the
basic operations of calculus and many of these will be introduced in this chapter. 
If y = f (x) then we denote dy/dx by dy or df (we could use any name such as, for
example, dydx or dybydx). Denoting ∆x by h the derivative of f (x), as given in (8.1),
is determined by the commands

MATLAB MAPLE
syms h x f:= x –> f(x);

df = limit((f(x + h) – df:= limit((f(x + h) –

f(x))/h,h,0) f(x))/h,h = 0);

For example, if f(x) = 25x − 5x 2 then its derivative df is determined by the MATLAB
commands

syms h x

df = limit(((25*(x + h) – 5*(x + h)^2) –

(25*x – 5*x^2))/h,h,0)

as

df = 25 - 10*x

which checks with the answer obtained in the solution to Example 8.2(a).

8.2.6 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

a t
t

( )    = = −
d

d

v
10
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8.2 DIFFERENTIATION 557

(d) the values of m such that two of the points of
intersection found in (c) are coincident;

(e) the equations of the tangents to the graph of 
f (x) at x = 1 and .

4 Show from first principles that the derivative of

f (x) = ax2 + bx + c

is

f ′(x) = 2ax + b

Hence confirm the result of Section 2.3.4 (page 96)
and using the calculus method verify the results of
Example 2.21 (page 97).

5 Show that if f(x) = ax3 + bx2 + cx + d, then

f (x + ∆x) = ax3 + bx2 + cx + d + (3ax2 + 2bx + c)∆x

+ (3ax + b)(∆x)2 + a(∆x)3

x  = 1
4

....

Deduce that

f ′(x) = 3ax2 + 2bx + c.

6 The displacement–time graph for a vehicle is 
given by

Obtain the formula for the velocity–time graph.

7 Consider the function f (x) = ÷(1 + sin x). Show 
that f (3π /2 ± h) = ÷2 sin h (h � 0) and deduce
that f ′(x) does not exist at x = 3π /2.
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8.2.7 Mathematical modelling using derivatives

We have seen that the gradient of a tangent to the graph y = f (x) can be expressed as a
derivative, but derivatives have much wider application than just this. Any quantity that
can be expressed as a limit of the form (8.1) can be represented by a derivative, and such
quantities arise in many practical situations. Because gradients of tangents to graphs
can be expressed as derivatives, it follows that we can always interpret a derivative 
geometrically as the slope of a tangent to a graph. In Example 8.3 we saw that the 
particle reached its maximum height 31.25 m when t = 2.5 s. This maximum height
occurred when v = ds/dt = 0. This implies that the tangent to the graph of distance
against time was horizontal. In general at a maximum or minimum of a function, its
derivative is zero and its tangent horizontal (as discussed in Section 2.2.1). This is dis-
cussed fully later, in Section 8.5.

Example 8.4 Suppose that a tank initially contains 80 litres of pure water. At a given instant (taken
to be t = 0) a salt solution containing 0.25 kg of salt per litre flows into the tank at a rate
of 8 litres min−1. The liquid in the tank is kept homogeneous by constant stirring. Also,
at time t = 0 liquid is allowed to flow out from the tank at a rate of 12 litres min−1. Show
that the amount of salt x(t) (in kg) in the tank at time t (min) � 0 is determined by the
mathematical model

(t � 20)

Solution The situation is illustrated in Figure 8.8. Since x(t) denotes the amount of salt in the 
tank at time t � 0, the rate of increase of the amount of salt in the tank is dx/dt, and is
given by

d

d

x t

t

x t

t

( )
  

( )
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−
=

3

20
2

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 557



..

= rate of inflow of salt – rate of outflow of salt (8.5)

The rate of inflow of salt is (0.25 kg litre−1) (8 litres min−1) = 2 kg min−1.

The rate of outflow of salt is c × (rate of outflow of liquid) = c × 12 litres min−1

= 12c (in kg min−1)

where c(t) is the concentration of salt in the tank (in kg litre−1). The concentration at
time t is given by

After time t (in min) 8t litres have entered the tank and 12t litres have left. Also, at 
t = 0 there were 80 litres in the tank. Therefore the volume V of liquid in the tank at
time t is given by

V(t) = 80 − (12t − 8t) = (80 − 4t)

(Note that V(t) � 0 only if t � 20 min; after this time the liquid will flow out as quickly
as it flows in and none will accumulate in the tank.) Thus the concentration c(t) is given by

so that

rate of outflow of salt =

Substituting back into (8.5) gives the rate of increase as

or

This equation involving the derivative of x(t) is called a differential equation, and in
Question 9 of Review Exercises 10.13 we shall show how it can be solved to give the
quantity x(t) of salt in the tank at time t.

Example 8.5 In a suspension bridge a roadway, of length 2l, is suspended by vertical hangers from
cables carried by towers at the ends of the span, as illustrated in Figure 8.9(a). The 
lowest points of the cables are a distance h below the top of the supporting towers. Find
an equation which represents the line shape of the cables.

Solution To solve this problem we have to make some simplifying assumptions. We assume 
that the roadway is massive compared to the cables, so that the weight W of the roadway
is the dominant factor in determining the shape of the cables. Secondly, we assume
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Figure 8.8
Water tank of
Example 8.4.
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that the weight of the roadway is uniformly distributed along its length, and if the 
hangers are equally spaced they can be adjusted in length so that they carry equal 
vertical loads.

We solve this problem using elementary statics because at each point P(x, y) on the 
cable the forces are in equilibrium. Figure 8.9(b) shows the forces acting on the part of
the cable between A and P. These are the weight W1 of the roadway between C and Q
(W1 = Wx /2l, where x = CQ), the tension T in the cable acting at the angle α at A and
the tension S in the cable acting at the angle θ at P.

Resolving forces horizontally, we have T cos α = S cos θ

Resolving forces vertically, we have T sin α + S sin θ =

Eliminating S between these equations gives T sin α + T cos α tan θ =

Also, we know that the total weight W of the roadway is supported by the tensions
at A and B, so that 2T sin α = W. Hence, substituting, we obtain

giving

Now tan θ is the slope of the curve at P (the tensions act along the direction of the 
tangent at each point of the curve), so that

(8.6)

using the coordinate system shown in Figure 8.9(b). This is another example of a dif-
ferential equation. To solve this equation we have to find the function whose derivative

d

d
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x
x

l
  

tan
  tan= −

α α
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  tanθ α α= −x
l

W W Wx

l2 2 2sin
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cos tan   

α
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α
α θ+ =

Wx

l2
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....

Figure 8.9
(a) Schematic diagram
for a suspension
bridge. (b) Forces
acting on the cable
between A and B.
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is the right-hand side of (8.6). In this case we can make use of the results of Example
8.1, since we know that

(which implies = x)

and

(mx + c) = m

Applying these results to (8.6), we see that

(8.7)

where c is a constant. We can find the value of c because we know that y = h at x = 0.
Substituting x = 0 into (8.7), we see that c = h, and the solution becomes

(8.8)

But we also know that y = 0 where x = l. This enables us to find the value of tan α.
Substituting x = l into (8.8), we have

0 = l tan α − l tan α + h

which implies tan α = 2h/l. Thus the shape of the supporting cable is given by

= h(x − l)2/l2

indicating that the points of attachment of the hangers to the cable lie on a parabolic curve.

Example 8.6 A radio telescope has the shape of a paraboloid of revolution (see Figure 1.23). Show
that all the radio waves arriving in a direction parallel to its axis of symmetry are
reflected to pass through the same point on that axis of symmetry.

Solution The diagram in Figure 8.10 shows a section of the paraboloid through its axis of
symmetry. We choose the coordinate system such that the equation of the parabola
shown is y = x2. Let AP represent the path of a radio signal travelling parallel to the
y axis. At P it is reflected to pass through the point B on the y axis. The laws of
reflection state that ∠APN = ∠ BPN, where PN is the normal to the curve at P. Now
given the coordinates (a, a2) of the point P we have to find the coordinates (0, b) of the
point B. From the diagram we can see that if ∠ PTQ = θ, then ∠ PQT = π /2 − θ, which
implies that ∠ ONP = θ. Since AP is parallel to NB, we see that ∠ APN = θ and hence
∠ BPN = θ. This implies that ∠ PBN = π − 2θ. With all of these angles known we can
calculate the coordinates of B. From the diagram
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tan ∠ NBP =

Since ∠ NBP = π − 2θ, this implies . Also

and since , identity (2.27e), we obtain

This gives b = . Notice that the value of b is independent of a. Thus all the reflected 

rays pass through (0, ). As was indicated in Section 1.4.5, this property is important
in many engineering design projects.

Example 8.7 Show that the shear force F acting in a beam is related to the bending moment M by

Solution This was briefly discussed in Section 7.9.2. We now explore the ideas more thoroughly.
A beam is a horizontal structural member which carries loads. These induce forces 
and stresses inside the beam in transmitting the loads to the supports. For design safety
two internal quantities are used, the shear force F and the bending moment M. At each
point along the beam the forces are in equilibrium. These forces can be thought of as
acting along the beam and (vertically) perpendicular to it. When a beam bends, its upper
surface is compressed and its lower surface is stretched, so that forces on the upper and
lower surfaces at any point along the beam are acting in opposite directions. There will,
of course, be a line within the beam, which is neither stretched nor compressed. This is
the neutral axis. The situation is illustrated in Figure 8.11(a). To analyse the situation
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Figure 8.10
Section of 
paraboloid through
axis of symmetry.
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we imagine cutting the beam at a point P along its length and examine the forces which
are necessary there to keep it in equilibrium. The opposing horizontal forces at P, give
a moment M about the neutral axis, as shown in Figure 8.11(b). This is called the bend-
ing moment. As the beam is in equilibrium there will be an equal and opposite bend-
ing moment on the other side of our imaginary cut. In the same way the vertical forces
F balance at the cut. This vertical force is called the shear force. The shear force and
bending moment are important in considering design safety.

We find the shear force F at a point distance x from the left-hand end of the beam
by considering the vertical equilibrium of forces for the left-hand portion of the beam,
and we find the bending moment M by looking at the balance of moments of force for
that left-hand portion (see Figure 8.12(a)). The force F is the sum of the forces acting
vertically on AP, and M is the sum of moments.

Consider the small element of the beam of length ∆x between P and Q shown in
Figure 8.12(b). Then examining the balance of moments about Q we see that

M(x + ∆x) = M(x) + ∆xF(x)

so that

M(x + ∆x) − M(x) = ∆xF(x)

giving

Now letting ∆x → 0, we obtain

as required.

F x
M

x
( )  =

d

d

F x
M x x M x

x
( )  

(   )  ( )
=

+ −∆
∆
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Figure 8.11 (a) The bending of a beam (exaggerated); (b) beam with imaginary cut at P.

Figure 8.12
(a) Horizontal beam.
(b) Element of the
beam.
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Figure 8.13
(a) The open box. 
(b) The net of an 
open box used
commercially.

8.2 DIFFERENTIATION 563

We saw in Section 7.9.2 that for a freely hinged beam with a point load W at x = a

It is left to the reader to verify that these satisfy the equation relating M(x) and F(x).

Example 8.8 An open box, illustrated in Figure 8.13(a), is made from an A4 sheet of card using the
folds shown in Figure 8.13(b). Find the dimensions of the tray which maximize its
capacity.

F x
W Wa l x a

Wa l a x l
( )  

  /          

/         
=

−

−

⎧
⎨
⎩⎪

0 � �

� �

M x
W l a x l x a

W l x a l a x l
( )  

(   ) /     

(   ) /     
=

−

−

⎧
⎨
⎩⎪

0 � �

� �

....

Solution Boxes like these are used commercially for food sales. Packaging is expensive, so that
manufacturers often try to design a container that has the biggest capacity for a standard
size of cardboard. An A4 sheet has size 210 × 297 mm.

Allowing 10 mm flaps as stiffeners, shaded in the diagram, and denoting the length,
breadth and height by l, b and h (in mm) respectively, we have

l + 4h + 20 = 297

b + 4h + 20 = 210

and the capacity C is l × b × h mm3. Thus

C(h) = (277 − 4h)(190 − 4h)h = 52 630h − 1868h2 + 16h3

The maximum capacity C* occurs where C ′(h) = 0.
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It can be shown from first principles, see Question 5 of Exercises 8.2.6, that the
general cubic function

f (x) = ax3 + bx2 + cx + d

has derivative

f ′(x) = 3ax2 + 2bx + c

In this example a = 16, b = −1868, c = 52 630, d = 0 and x = h. Thus

C ′(h) = 52 630 − 3736h + 48h2

so that the value h* of h which yields the maximum capacity is h* = 18.47 where
C ′(h*) = 0. We can verify that it is a maximum by showing that

C ′(18.4) � 0 and C ′(18.5) � 0

8.2.8 Exercises

564 DIFFERENTIATION AND INTEGRATION

..

8 Gas escapes from a spherical balloon at 2 m3 min−1.
How fast is the surface area shrinking when the
radius equals 12 m? (The surface area of a sphere
of radius r is 4πr2.)

9 A tank is initially filled with 1000 litres of brine,
containing 0.15 kg of salt per litre. Fresh brine
containing 0.25 kg of salt per litre runs into the
tank at a rate of 4 litres s−1, and the mixture (kept
uniform by vigorous stirring) runs out at the same
rate. Show that if Q (in kg) is the amount of salt in
the tank at time t (in s) then

10 The bending moment M(x) for a beam of length l is
given by M(x) = W(2x − l)3/8l2, 0 � x � l. Find the
formula for the shear force F. (See Example 8.7.)

11 A small weight is dragged across a horizontal
plane by a string PQ of length a, the end P being
attached to the weight while the end Q is made to
move steadily along a fixed line perpendicular 
to the original position of PQ. Choosing the
coordinate axes so that Oy is that fixed line and Ox
passes through the initial position of P, as shown
in Figure 8.14, show that the curve y = y(x)
described by P is such that

The resulting curve is called a tractrix. 
This is investigated further in Exercises 8.8.14,
Question 125.

d

d

y

x

a x

x
  

(  )
= −

−÷ 2 2

d

d

Q

t

Q
    = −1

250

Figure 8.14

Figure 8.15

12 The limiting tension in a rope wound round a
capstan (that is, the tension when the rope is about
to slip) depends on the angle of wrap θ, as shown in
Figure 8.15. Show that an increase ∆θ in the angle
of wrap produces a corresponding increase ∆T in
the value of the limiting tension such that

∆T � µT∆θ

where µ is the coefficient of friction. Deduce dT/dθ.
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13 A chemical dissolves in water at a rate jointly
proportional to the amount undissolved and to
the difference between the concentration in the
solution and that in the saturated solution. Initially
none of the chemical is dissolved in the water.
Show that the amount x(t) of undissolved chemical
satisfies the differential equation

where k is a constant, M is the amount of the
chemical in the saturated solution and x0 = x (0).

14 The rate at which a solute diffuses through a
membrane is proportional to the area and to the
concentration difference across the membrane.
A solution of concentration C flows down a tube
with constant velocity v. The solute diffuses
through the wall of the tube into an ambient
solution of the same solute of a lower fixed
concentration C0. If the tube has constant circular
cross-section of radius r, show that at distance x
along the tube the concentration C(x) satisfies the
differential equation

where k is a constant.

15 A lecture theatre having volume 1000 m3 is 
designed to seat 200 people. The air is conditioned
continuously by an inflow of fresh air at a constant
rate V (in m3 min−1). An average person generates
980 cm3 of CO2 per minute, while fresh air
contains 0.04% of CO2 by volume. Show that the
percentage concentration x of CO2 by volume in
the lecture theatre at time t (in min) after the
audience enters satisfies the differential equation

= 19.6 + 0.04V − Vx (t)1000
d

d

x

t

d

d

C

x

k

r
C C  (   )= − −

2
0v

d

d

x

t
kx M x x  (    )= − +0

....

If initially x(0) = 0.04, show that x (t) is an
increasing function of t for t � 0. Deduce that the
maximum x* of x (t) is given by

x* = (19.6 + 0.04V )/V

If the specification is that x does not exceed 0.06
(that is, 50% increase above fresh air), deduce
that V must be chosen so that V � 980. Comment
on this result.

16 Consider the chemical reaction

A + B → X

Let x be the amount of product X, and a and b the
initial amounts of A and B (with x, a and b in mol).
The rate of reaction is proportional to the product of
the uncombined amounts of A and B remaining. 

Express this relationship in terms of , x, a and b.

17 A wire of length l metres is bent so as to form the
boundary of a sector of a circle of radius r metres
and angle θ radians. Show that

and prove that the area of the sector is greatest when
the radius is l /4.

18 A manufacturer found that the sales figure for 
a certain item depended on the selling price. 
The market research department found that the
maximum number of items that could be sold 
was 20 000 and that the number actually sold
decreased by 100 for every 1p increase in price. The
total cost of production of the items consisted of a
set-up cost of £200 plus 50p per item manufactured.
Show that the profit y pence as a function of the
selling price x pence is

y = 25 000x − 100x2 − 1 020 000

What price should be adopted to maximize profits,
and how many items are produced?

θ   
  

=
−l r

r

2

d

d

x

t
 

8.3 Techniques of differentiation

In this section we shall obtain the derivatives of some basic functions from ‘first prin-
ciples’, that is, using the definition of a derivative given in (8.1), and will show how we
obtain the derivatives of other functions using the basic results and some elementary
rules. The rules themselves may be derived from the basic definition of the differentiation
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process. In practice, we make use of a very few basic facts, which, together with the
rules, enable us to differentiate a wide variety of functions.

8.3.1 Basic rules of differentiation

To enable us to exploit the basic derivatives as we obtain them, we will first obtain the
rules which make that exploitation possible. These rules you should know ‘by heart’.

Rule 1 (constant multiplication rule)

If y = f (x) and k is a constant then

Rule 2 (sum rule)

If u = f (x) and v = g(x) then

Rule 3 (product rule)

If u = f (x) and v = g(x) then

Rule 4 (quotient rule)

If u = f (x) and v = g(x) then

Rule 5 (composite-function or chain rule)

If z = g(x) and y = f(z), then

Rule 6 (inVerse-function rule)

If y = f −1(x), then x = f(y) and

d

d d /d

y

x x y f y
    

( )
= =

′
1 1

d

d

d

d

d

d

y

x

y

z

z

x
f z g x    ( ) ( )= = ′ ′

d

d

d d d d

x

u u x u x g x f x f x g x

g x
⎛
⎝

⎞
⎠ =

−
= ′ − ′

  
( / )  ( / )

  
( ) ( )  ( ) ( )

[ ( )]2 2

  = +
d

d

d

d

d

dx
u u

x

u

x
f x g x g x f x( )    ( ) ( )  ( ) ( )= +′ ′

d

d

d

d

d

dx
u

u

x x
f x g x(   )      ( )  ( )+ = + = ′ + ′

d

d

d

dx
ky k

y

x
kf x( )    ( )= = ′
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Rule 7 (parametric differentiation rule)

If y = f(x) where x = g(t) and y = h(t) and t is a parameter, then

Verification of rules

Rule 1 follows directly from the definition given in (8.1), for if

g(x) = kf(x), k constant

g(x + ∆x) = kf(x + ∆x)

and

∆g = g(x + ∆x) − g(x) = k[ f (x + ∆x) − f (x)]

so that

using the properties of limits given in Section 7.5.2.
Likewise, for Rule 2, if

h(x) = f (x) + g(x)

h(x + ∆x) = f (x + ∆x) + g(x + ∆x)

and

∆h = h(x + ∆x) − h(x) = [ f (x + ∆x) − f (x)] + [g(x + ∆x) − g(x)]

so that

using the properties of limits given in Section 7.5.2.
Thus

It also readily follows that if

y = f (x) − g(x)

then

d

d

y

x
f x g x  ( )  ( )= ′ − ′

d

d

h

x
f x g x  ( )  ( )= ′ + ′

d

d
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f x x f x
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  lim   lim
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To verify Rule 3 consider Figure 8.16. For any value of x, the area y of the rectangle
ABCD is

y = u(x)v(x)

Increasing x by the increment ∆x changes u and v by amounts ∆u and ∆v respectively,
giving

u(x + ∆x) = u(x) + ∆u and v(x + ∆x) = v(x) + ∆v

From the diagram we see that the corresponding increment in y is given by

∆y = area EFCB + area CHJD + area CFGH

= u ∆v + v ∆u + ∆u ∆v

so that

leading to the result

= u(x)v′(x) + u′(x)v(x)

since ∆u and ∆v → 0 as ∆x → 0.
Rule 4 may then be deduced from Rule 3, for if

where u = f (x) and v = g(x), then u = yv and Rule 3 gives

on substituting for y

Rearranging then gives the required result

Rule 5 will be verified in Section 8.3.6, Rule 6 in Section 8.3.7 and Rule 7 in Section
8.3.14.

8.3.2 Derivative of xr

Using the definition of a derivative given in (8.1) and following the procedure of
Example 8.1, we can proceed to obtain the derivative of the power function f (x) = xr

when r is a real number.
Since f (x) = xr we have

f (x + ∆x) = (x + ∆x)r

d
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Figure 8.16
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Using the binomial series (7.16) from Section 7.7.2 we have

= xr + rx r−1 ∆x + r(r − 1)xr−2(∆x)2 + …

so that

= rx r−1 + r(r − 1)xr−2(∆x) + …

Now letting ∆x → 0 we have that

leading to the general result

(8.9)

Note that the solutions of Example 8.1 satisfy this general result.

Note also that (8.9) implies that if k is a constant then = 0, which is as expected 

since the derivative measures the rate of change of the function.

Check that result (8.9), is determined by the following MATLAB commands:

syms h r x

df = limit(((x + h)^r – x^r)/h,h,0);

pretty(df)

Example 8.9 Using result (8.9), find f ′(x) when f(x) is

(a) ÷x (b) (c)

Solution (a) Taking r = in (8.9) gives
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(b) Taking r = −5 in (8.9) gives

(c) Taking r = − in (8.9) gives

Example 8.10 Using the result (8.9) and the rules of Section 8.3.1, find f ′(x) where f(x) is

(a) 8x4 − 4x2 (b) (2x2 + 5)(x2 + 3x + 1) (c) 4x7(x2 − 3x)

(d) (x + 1)÷x (e) (f)

Solution (a) Using Rule 1 and result (8.9) with r = 4, we have

(8x4) = 32x3

Similarly

(4x2) = 8x

Using Rule 2, we have

(8x4 − 4x2) = 32x3 − 8x

(b) Using the result (8.9) with Rules 1 and 2, we obtain

(2x2 + 5) = 4x and (x2 + 3x + 1) = 2x + 3

Taking u = 2x2 + 5 and v = x2 + 3x + 1 in Rule 3, we obtain

[(2x2 + 5)(x2 + 3x + 1) ] = 4x(x2 + 3x + 1) + (2x2 + 5)(2x + 3)

Multiplying out these terms we obtain

f ′(x) = 8x3 + 18x2 + 14x + 15

(c) Using Rule 3 with u(x) = 4x7 and v(x) = (x2 − 3x) we obtain

f ′(x) = (28x6)(x2 − 3x) + (4x7)(2x − 3)

= 36x8 − 96x7

= 12x7(3x − 8)

d
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Alternatively, we could write f (x) = 4x9 − 12x8 giving f ′(x) = 36x8 − 96x7 directly. It is
important to look at expressions carefully before applying the rules. Sometimes there
are quicker routes to the solution.

(d) Multiplying out we have

f (x) = x÷x + ÷x = x 3/2 + x1/2

so that

f ′(x) =

(e) Using Rule 4 with u = ÷x and v = x + 1 so that u ′(x) and v′(x) = 1, we
obtain

f ′(x) =

(f) Using Rule 4 with u = x3 + 2x + 1 and v = x2 + 1, we obtain

f ′(x) =

=

Symbolically in MATLAB, if y = f (x) then its derivative, with respect to x, is 
determined using the diff(y) or diff(y,x) commands (either can be used as 
y is a function of only one variable). Thus the derivative is determined by the 
commands

syms x y

y = f(x); dy = diff(y)

The corresponding commands in MAPLE are

y:= f(x); dy:= diff(y,x);

In both cases the simplify command may be used to simplify the answer returned
by the diff command. To illustrate, we consider Example 8.10(b), for which the
commands

MATLAB MAPLE
syms x y

y = (2*x^2 + 5)*(x^2 + 3*x + 1); y:= (2*x^2 + 5)*

(x^2 + 3*x + 1);

dy = diff(y) dy:= diff(y,x);

return

dy = 4*x*(x^2 + 3*x + 1) + dy:= 4x(x2 + 3x + 1) +

(2*x^2 + 5)*(2*x + 3) (2x2 + 5)(2x + 3)

x x x
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Using the simplify command, coupled with the pretty command for MATLAB,
we have that the commands

dy = simplify(dy); dy:= simplify(dy);

pretty(dy)

return the derivative as

dy = 8x3 + 18x2 + 14x + 15

In practice we often anticipate the need to simplify and use the single command
simplify(diff(y)) in MATLAB and simplify(diff(y,x)); in MAPLE.
Considering Example 8.10(e), the MATLAB commands

syms x y

y = sqrt(x)/(x + 1); dy = simplify(diff(y));

pretty(dy)

return the derivative as

dy = -1/2 

For practice check the answers to sections (a), (c), (d) and (f ) of Example 8.10 using
MATLAB or MAPLE.

8.3.3 Differentiation of polynomial functions

Using the result

given in equation (8.9), together with the rules developed in Section 8.3.1, we proceed
in this and following sections to find the derivatives of a range of algebraic functions.
It is a simple matter to find the derivative of the polynomial function

f (x) = a0 + a1x + a2x2 + a3x3 + … + an−1x
n−1 + anxn = (8.10)

where n is a non-negative integer and the coefficients ar, r = 0, 1, … , n, are real
numbers.

Using the constant multiplication rule together with the sum rule we may differentiate
term by term to give

f ′(x) = a1 + 2a2x + 3a3x2 + … + (n − 1)an−1xn−2 + nanxn−1 = ra xr
r

r

n
−

=
∑ 1

1

a xr
r

r

n

=
∑

0

d

dx
x rxr r( )  = −1

x - 1

x1/2(x + 1)2
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Example 8.11 If y = 2x4 − 2x3 − x2 + 3x − 2, find .

Solution Differentiating term by term, using the sum rule, gives

which on using the constant multiplication rule gives

= 2(4x3) − 2(3x2) − (2x) + 3(1) − 0

so that

= 8x3 − 6x2 − 2x + 3

Example 8.12 The distance s metres moved by a body in t seconds is given by

s = 2t3 − 1.5t2 − 6t + 12

Determine the velocity and acceleration after 2 seconds.

Solution s = 2t3 − 1.5t2 − 6t + 12

The velocity v (m s−1) is given by , so that

= 2(3t2) − 1.5(2t) − 6(1) = 6t2 − 3t − 6

When t = 2 seconds

v = 6(4) − 3(2) − 6 = 12

so that the velocity after 2 seconds is 12 m s−1.

The acceleration a (m s−2) is given by , so that

(6t2 − 3t − 6) = 12t − 3

When t = 2 seconds

a = 12(2) − 3 = 21

so that the acceleration after 2 seconds is 21 m s−2.
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Sometimes polynomial functions are not expressed in the standard form of (8.10),
f (x) = (2x + 5)3 and f (x) = (3x − 1)2(x + 2)3 being such examples. Such cases will 
be considered in Section 8.3.6 where the differentiation of composite functions will be
discussed.

The derivatives of polynomial functions can be evaluated numerically by a simple
extension of the method of synthetic division (or nested multiplication) which is used
for evaluating the function itself. We saw in Section 2.4.3 that

f (x) = anxn + an−1x
n−1+ … + a1x + a0

could be written as f (x) = g(x)(x − c) + f (c) where

g(x) = bn−1xn−1 + bn−2 xn−2 + … + b1x + b0

and where the coefficients bn−1, … , b0 were generated in the process of nested multi-
plication. Differentiating f(x) with respect to x using the product rule gives

f ′(x) = g′(x)(x − c) + g(x)(1)

so that

f ′(c) = g′(c)(0) + g(c)(1) = g(c)

Thus we can evaluate f ′(c) by applying the nested multiplication method again but this
time to g(x).

Example 8.13 Evaluate f (2) and f ′(2) for the polynomial function

f (x) = 2x4 − 2x3 − x2 + 3x − 2

Solution 2 −2 −1 3 −2

× 2 0 4 4 6 18 

2 2 3 9 16 = f (2)

× 2 0 4 12 30 

2 6 15 39 = f ′(2)

This method of evaluating the function and its derivative is very efficient and is often
used in computer packages which require finding the roots of polynomial equations.

8.3.4 Differentiation of rational functions

As we saw in Section 2.5, rational functions have the general form

where p(x) and q(x) are polynomials. To obtain the derivatives of such functions we
make use of the constant multiplication, sum and quotient rules, as illustrated in
Example 8.14.

f x
p x

q x
( )  

( )

( )
=

574 DIFFERENTIATION AND INTEGRATION
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Example 8.14 Find the derivative of the following functions of x:

(a) (b)

(c) x3 + 2x2 − + + 3, x ≠ 0

Solution (a) Taking u = 3x + 2 and v = 2x2 + 1 gives

so, from the quotient rule,

(b) Taking u = 2x + 3 and v = x2 + x + 1

so, from the quotient rule,

(c) In this case we can express the function as

y = x3 + 2x 2 − x −1 + x −2 + 3, x ≠ 0

and differentiate term by term to give

= 3x2 + 2(2x) − (−x −2) + (−2x −3) + 0 = 3x 2 + 4x + x −2 − 2x −3

= 3x2 + 4x + , x ≠ 0
1 2

2 3x x
  −

d

d
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+ +
+ +
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d
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8.3.5 Exercises
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19 Differentiate the function f where f (x) is

(a) x9 (b) ÷(x3) (c) −4x2

(d) 4x4 + 2x5 (e) 4x3 + x − 8 (f) 1/(2x2)

(g) x + ÷x (h) 2x7/2 (i) 1/(3x3)

20 Using the product rule, differentiate the function f
where f(x) is

(a) (3x4 − 1)(x2 + 5x) (b) (5x + 1)(x3 + 3x − 6)

(c) (7x + 3)(÷x + 1/÷x) (d) (3 − 2x)(2x − 9/x)

(e) (÷x − 1/÷x)(x − 1/x)

(f) (x2 + x + 1) (2x2 + x − 1)

21 Using the quotient rule, differentiate the function f
where f (x) is

(a) (3x2 + x + 1)/(x3 + 1) (b) ÷(2x)/(x2 + 4)

(c) (x + 1)/(x2 + 1) (d) x2/3/(x1/3 + 1)

(e) (x2 + 1)/(x + 1)

(f) (2x2 − x + 1)/(x2 − 2x + 2)

22 Differentiate the function f where f (x) is

(a) (ax + b)(cx + d ) (b) (ax + b)/(cx + d)

(c) 3ax2 + 5bx + c (d) ax2/(bx + c)

23 A fruit juice manufacturer wishes to design
a carton that has a square face, as shown in 
Figure 8.17(a). The carton is to contain 1 litre 
of juice and is made from a rectangular sheet of
waxed cardboard by folding it into a rectangular
tube and sealing down the edge and then folding
and sealing the top and bottom. To make the
carton airtight and robust for handling, an overlap
of at least 0.5 cm is needed. The net for the carton
is shown in Figure 8.17(b).

Show that the amount A(h) cm2 of card used is
given by

Verify that

A h h
h

( )       = + +⎡
⎣⎢

⎤
⎦⎥

−2
1000 5

8

9

322

2

A h h
h

h
h

( )          .= + +⎡
⎣⎢

⎤
⎦⎥

+ +⎡
⎣⎢

⎤
⎦⎥

1000
1 2

2000
0 5

2 2

By finding the value x* of x which minimizes 

y = x + , find the value h* of h which  

minimizes A(h).

24 Using the method of Example 8.13, evaluate f(3),
f ′(3), f(−1) and f ′(−1) for the polynomal function

f(x) = 5x4 − 3x3 + x2 − 2

25 Differentiate the function f where f(x) is

(a) 5x2 − 2x + 1

(b) 4x3 + x − 8

(c) x24 + 3

(d) (x2 + x − 2)(3x2 − 5x + 1)

(e) (x4 − 3x + 1)(6x2 + 5)

(f) (x − 3)/(x − 2)

(g) x/(x + 1)

(h) 1/(x2 − 4x + 1)

(i) x/(x2 + 5x + 6)

1000
2x

Figure 8.17 Carton of Question 23.
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8.3.6 Differentiation of composite functions

As mentioned earlier, to differentiate many functions we need a further rule to deal with
composite functions.

Rule 5 (composite-function or chain rule)

If z = g(x) and y = f (z) then

Verifying Rule 5 is a little more difficult than Rules 1–4. For an increment ∆x in x,
let ∆z and ∆y be the corresponding increments in z and y respectively. It then follows
from definition (8.1) that

∆z = g′(x)∆x + ε1 ∆x (8.11)

where ε1 → 0 as ∆x → 0. Likewise

∆y = f ′(z)∆z + ε2 ∆z (8.12)

where ε2 → 0 as ∆z → 0. Combining (8.11) and (8.12) then gives

∆y = [ f ′(z) + ε2][g′(x) + ε1]∆x

so that

= f ′(z)g′(x) + ε2g′(x) + ε1 f ′(z) + ε1ε2

As ∆x → 0 so does ∆z → 0, ε1 → 0 and ε2 → 0 and

as required.
Adapting Figure 2.12 (Section 2.2.4), the chain rule

may be represented as in Figure 8.18.

d

d

d

d

d

d

y

x

y

z

z

x
    = ⋅

d

d

y

x

y

x
f z g x

x
  lim   ( ) ( )= = ′ ′

→∆

∆
∆0

∆
∆

y

x

d

d

d

d

d

d

y

x

y

z

z

x
f z g x    ( ) ( )= = ′ ′

....

Figure 8.18
The chain rule of
differentiation.
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Example 8.15 Find when y is

(a) (5x2 + 11)9 (b) ÷(3x2 + 1)

Solution (a) In this case we could expand out (5x2 + 11)9 and treat it as a polynomial of degree 18.
However, it is advantageous to view it as a composite function, as represented in 
Figure 8.19(a). Thus, taking

y = z9 and z = 5x2 + 11

= 9z8 and = 10x

so, by the chain rule,

= 9(5x2 + 11)8(10x) = 90x(5x2 + 11)8

(b) The composite function y = ÷(3x2 + 1) may be represented as in Figure 8.19(b).
Thus, taking

y = ÷z = z1/2 and z = 3x2 + 1

and = 6x

so, by the chain rule,

It is usual to refer to z as the intermediate (or auxiliary) variable, and once the 
process has been understood the schematic representation, by a block diagram, stage is

dispensed with. Note that when z = g(z) is a linear function z = ax + b, then = a and 

= af ′(ax + b).
d
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+
=

+
1

2 3 1
6

3

3 12 2÷ ÷

d

d

z

x

d

d

y

z
z

z
    /= =−1

2
1 2 1

2÷
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578 DIFFERENTIATION AND INTEGRATION
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Figure 8.19
(a) Representation 
of y = (5x 2 + 11)9. 
(b) Representation 
of y = ÷(3x 2 + 1).
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Example 8.16 Find when y is

(a) (3x3 − 2x 2 + 1)5 (b)

(c) (x 2 + 1)3÷(x − 1) (d)

Solution (a) Introducing the intermediate variable z = 3x 3 − 2x 2 + 1 we have

y = z5 and z = 3x3 − 2x2 + 1

= 5z4 and = 9x2 − 4x

so, by the chain rule,

= 5(3x 3 − 2x 2 + 1)4(9x 2 − 4x)

= 5x(9x − 4)(3x 3 − 2x 2 + 1)4

(b) Introducing the intermediate variable z = 5x2 − 2 we have

y = = z−7 and z = 5x 2 − 2

and

so, by the chain rule,

(c) In this case we are dealing with the product y = uv where u = (x 2 + 1)3 and 
v = ÷(x − 1). Then by the product rule

To find we introduce the intermediate variable z = x2 + 1 giving u = z3 and so, by the

chain rule,

= 3(x2 + 1)22x = 6x(x 2 + 1)2

Likewise, to find we introduce the intermediate variable w = x − 1 giving v = ÷w

= w1/2 and w = x − 1, so by the chain rule
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It then follows from the product rule that

(d) In this case we are dealing with the quotient

where u = ÷(2x + 1) and v = (x2 + 1)3. Then by the quotient rule

To find we introduce the intermediate variable z = 2x + 1, giving u = z1/2 and 

z = 2x + 1, so by the chain rule

To find we introduce the intermediate variable w = x2 + 1, giving v = w3 and 

w = x2 + 1, so by the chain rule

= 3(x2 + 1)22x = 6x(x2 + 1)2

Then, by the quotient rule,
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Both MATLAB and MAPLE can handle the functions covered in previous sections.
To illustrate, consider Examples 8.14(a), 8.15(b) and 8.16(c). For 8.14(a) the 
commands

MATLAB MAPLE
syms x y

y = (3*x + 2)/(2*x^2 + 1); y:= (3*x + 2)/(2*x^2 + 1);

dy = simplify(diff(y)) dy:= simplify(diff(y,x));

pretty(dy)

return the derivative as

dy = -

For Example 8.15(b) the commands

syms x y

y = sqrt(3*x^2 + 1); y:= sqrt(3*x^2 + 1);

dy = diff(y); dy:= diff(y,x);

pretty(dy)

return the derivative as

dy = 3 dy = 

For Example 8.16(c) the commands

syms x y

y = (x^2 + 1)^3*sqrt(x – 1); y:= (x^2 + 1)^3*sqrt(x – 1);

dy = simplify(diff(y)); dy:= simplify(diff(y,x));

pretty(dy)

return the derivative as

dy = dy =

For practice, check the answers to the remaining sections of Examples 8.14–8.16.

8.3.7 Differentiation of inverse functions

The algebraic and graphical properties of inverse functions were described in
Section 2.2.3 earlier. It is often useful to be able to express the derivative of an inverse
function in terms of the derivatives of the original function from which it came. To do
this we use the following rule

(x2 + 1)2(13x2 - 12x + 1)

2÷(x - 1)

(x2 + 1)2(13x2 - 12x + 1)

(x - 1)1/2
1

2

3x

÷(3x2 + 1)

x

(3x2 + 1)1/2

6x2 - 3 + 8x

(2x2 + 1)2

....
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Figure 8.20
Derivative of 
inverse function.

Rule 6 (inVerse-function rule)

If y = f −1(x) then x = f (y) and

Rule 6 may be readily deduced from graphical considerations. Since the graph of
y = f −1(x) is the mirror image of the graph of y = f (x) in the line y = x (see Figure 8.20)
it follows that since tan θ = cot( π − θ), the gradient with respect to the x direction is

We will be making use of this rule in following sections, but a simple example is to 

consider the function defined by y = x1/ 3. Then x = y3 and = 3y2. Using the inverse-

function rule we obtain

Since y = x1/3 we deduce that = −2/3, x ≠ 0 (agreeing with the general result

(xr ) = rx r−1)
d

dx

1
3 x
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8.3.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

26 Differentiate the function f where f (x) is

(a) (5x + 3)9 (b) (4x − 2)7

(c) (1 − 3x)6 (d) (3x2 − x + 1)3

(e) (4x3 − 2x + 1)6 (f) (1 + x − x4)5

27 Differentiate the function f where f (x) is

(a) (2x + 4)7(3x − 2)5 (b) (5x + 1)3(3 − 2x)4

(c) ( x + 2)2(x + 3)4

(d) (x2 + x + 1)2(x3 + 2x 2 + 1)4

(e) (x5 + 2x + 1)3(2x2 + 3x − 1)4

(f) (2x + 1)3(7 − x)5 (g) (x2 + 4x + 1)(3x + 1)5

28 The algebraic function

, x � −1

is a root of the equation

xy2 − 2(2 + x)y + x = 0

Show that x = 4y/(y − 1)2 and hence that

, | y | � 1

29 An open water conduit is to be cut in the shape 
of an isosceles trapezium and lined with material
which is available in a standard width of 1 metre,
as shown in Figure 8.21.

d

d

y
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y

y
  

(   )
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4 1

3

 
y

x

x
  

    

    
=

+ −
+ +

÷
÷

( )
( )
1 1

1 1

1
2

To achieve maximum potential capacity, the
designer has to maximize the area of cross-section
A(b). Show that

A(b) = [(1 + b)3(1 − b)]1/2

and that this is maximized when b = 0.5.

30 A carton is made from a sheet of A4 card (210 mm
× 297 mm) using the net shown in Figure 8.22. Find
the dimensions that yield the largest capacity.

Figure 8.21 Water conduit of Question 29.

Figure 8.22 Net used in Question 30.

31 Differentiate

(a) ÷(1 + 2x) (b) x÷ (x + 2) (c) ÷ (x2 + 2x)

32 Differentiate

(a) x÷(4 + x2) (b) x÷(9 − x2)

(c) (x + 1)÷(x2 + 2x + 3) (d) x2/3 − x1/4

(e) 3÷(x2 + 1) (f) x(2x − 1)1/3

33 Differentiate

(a) 1/(x + 3)2 (b)

(c) x /÷ (x2 − 1) (d) (2x + 1)2/(3x2 + 1)3

÷
÷

x
x

  +⎛
⎝⎜

⎞
⎠⎟

1
2

..
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8.3.9 Differentiation of circular functions

Taking f (x) = sin x and using the sum identity (2.26b) gives from the formal definition (8.1)

Since, from Section 7.8.1, remembering that x is measured in radians here,

we have

(8.13)

Likewise, using the sum identity (2.25d), we have

from which we deduce using (8.1) that

(8.14)

As an exercise check results (8.13) and (8.14) using MATLAB or MAPLE.

Since tan x = sin x/cos x, we take u = sin x and v = cos x, giving

Then, from the quotient rule,

That is,

(8.15)

Since sec x = 1/cos x, we take u = 1 and v = cos x in the quotient rule to give
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That is,

(8.16)

Since cosec x = 1/sin x, following the same procedure as above we obtain

(8.17)

Since cot x = cos x/sin x, taking u = cos x and v = sin x and using the quotient rule gives

(8.18)

Taking y = sin−1x, we have x = sin y, so that

Then, from the inverse-function rule,

Using the identity cos2y = 1 − sin2y, this simplifies to

(8.19)

(Note that we have taken the positive square root, since from Figure 2.70(b) the deriv-
ative must be positive.)

Taking y = cos−1x, we have x = cos y, so that

which, using the identity sin2y = 1 − cos2y, reduces to

(8.20)

(Note from Figure 2.71 that the derivative is negative.)
Taking y = tan−1x, we have x = tan y, so that

Using the identity 1 + tan2y = sec2y, this reduces to

(8.21)
d

dx
x

x
(tan )  
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1

2

1

1

d

d d d

y

x x y y
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1 1
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1 1
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(   )
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1| | �

d

d

y

x y
  

cos
=

1

d

d

x

y
y  cos=

d

d
ec2

x
x x(cot )  cos= −

d

d
ec ec

x
x x x(cos )  cos cot= −

d

dx
x x x(sec )  sec tan=

....
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Summary

Example 8.17 Find when y is given by

(a) sin(2x + 3) (b) x2 cos x (c)

(d) sec 6x (e) x tan 2x (f ) sin−16x

(g) x2 cos−1x (h)

Solution (a) Introducing the intermediate variable z = 2x + 3, we have y = sin z and z = 2x + 3,
so by the chain rule

= cos(2x + 3)2 = 2 cos(2x + 3)

Note that this result could have been written using the particular linear case of the 
composite-function rule given in Section 8.3.6 after Example 8.15.

(b) Taking u = x 2 and v = cos x gives

so by the product rule

= −x 2 sin x + 2x cos x
d

d

y

x

d

d
and

d

d

u

x
x

x
x            sin= = −2
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−

+
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2

2
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2

22
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x x
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x x x(tan )  sec ,    (sec )  sec tan= =2

d
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x x
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(c) Taking u = sin 2x and v = x2 + 2 gives

so by the quotient rule

(d) Introducing the intermediate variable z = 6x we have

y = sec z and z = 6x, so by the chain rule

= 6 sec 6x tan 6x

(e) Taking u = x and v = tan 2x gives

where the chain rule, with intermediate variable z = 2x, has been used to find . Then
by the product rule

= 2x sec22x + tan 2x

(f ) Introducing the intermediate variable z = 6x we have y = sin−1z and z = 6x

so by the chain rule

(g) Taking u = x2 and v = cos−1x gives

so by the product rule

(h) Introducing the intermediate variable we have

y = tan−1z and

and
d

d

z

x

x x x
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so from the chain rule

8.3.10 Extended form of the chain rule

Sometimes there are more than two component functions involved in a composite
function. For example, consider the composite function

y = f (w), w = g(z), z = h(x)

which may be represented schematically by the block diagram of Figure 8.23. To obtain 

the derivative we first consider y as a composite function of h and the ‘dotted box’,

giving, on applying the chain rule,

Reapplying the chain rule, this time with z as the domain variable, gives

which on back substitution gives

as the extended form of the chain rule.

Example 8.18 Find when y is given by

(a) sin2(x2 + 1) (b) cos−1÷(1 − x2)

d

d
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d

d

d
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Figure 8.23
Composite function
containing three
component functions.
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Solution (a) Introducing the intermediate variables z = x2 + 1 and w = sin z, then

y = w2, w = sin z, z = x2 + 1

so by the extended chain rule

Since z = x2 + 1 and w = sin z = sin(x2 + 1),

= 4x sin(x2 + 1) cos(x2 + 1)

(b) Introducing the intermediate variables z = 1 − x2 and w = ÷z, then

y = cos−1w, w = z1/2, z = 1 − x2

Since z = 1 − x 2 and w = ÷(1 − x 2) we have, by the extended chain rule,

Here we have assumed 0 � x � 1. If −1 � x � 0 the derivative is −1/÷(1 − x2). The
function has no derivative at x = 0. This is illustrated in Figure 8.24.

For practice, use MATLAB or MAPLE to check the answers to Examples 8.17 
and 8.18. As illustrative examples we consider Examples 8.17(c and h) and 
Example 8.18(a). For Example 8.17(c) the MATLAB commands

syms x y

y = sin(2*x)/(x^2 + 2); dy = simplify(diff(y)); pretty(dy)

return the derivative as

dy = 2
2 cos(2x) + cos(2x)x2 - sin(2x)x

(2 + x2)2

 

d

d

d

d

d

d

d
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⎛
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⎠⎟
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1

1 1

1

2 1
2

1

12 2 2÷ ÷ ÷
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d
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x
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d

d
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z
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2
1 2d

d
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w w
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d
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d

d
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d
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d

d
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d
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Figure 8.24 Graph of
y = cos−1(1 − x2).
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34 Differentiate with respect to x:

(a) sin(3x − 2) (b) cos4x

(c) cos23x (d) sin 2x cos 3x

(e) x sin x (f) ÷(2 + cos 2x)

(g) a cos(x + θ) (h) tan 4x

35 Differentiate with respect to x:

(a) sin−1(x/2) (b) cos−1(5x)

(c) ÷(1 + x2)tan−1x (d) sin−1((x − 1)/2)

(e) tan−13x

(f) ÷(1 − x2)sin−1x

36 A cone of semi-vertical angle θ is inscribed in a
sphere of radius a. Show that the volume of the 
cone is

Hence prove that the cone of maximum volume that
can be inscribed in a sphere of given radius is th
of the volume of the sphere.

37 Differentiate with respect to x:

(a) cos3(x3) (b) tan−1( tan x)

(c) ÷(1 + sin3x) (d) cos÷(x)

1
2

1
2

8
27

V a  sin cos= 8
3

3 2 4π θ θ

For Example 8.17(h) the commands

MATLAB MAPLE

syms x y

y = atan(2*x/(1 + x^2)); y:= arctan(2*x/(1 + x^2)):

dy = simplify(diff(y)); dy:= simplify(diff(y,x));

pretty(dy)

return the derivative as

dy = -2

For Example 8.18(a) the MATLAB commands

syms x y

y = (sin(x^2 + 1))^2; dy = diff(y); pretty(dy)

return the answer

4 sin(x2 + 1)cos(x2 + 1)x

8.3.11 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

x2 - 1

x4 + 6x2 + 1

8.3.12 Differentiation of exponential and related functions

The formal definition (8.1) gives the derivative of ex as

=
+ + + + −

→
 lim

    ( ) / !  ( ) / !    
ex

x

x x x

x∆

∆ ∆ ∆
∆0

2 31 2 3 1…

d

d
e

e e e e

x x x
x

x

x x x

x

x x

( )  lim
 

  lim
(  )

=
−

=
−

→

+

→∆

∆

∆

∆

∆ ∆0 0

1
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....

(using (7.16))

so that

(8.22)

Thus the exponential function (to base e) has the special property that it is its own
derivative. This was described in Section 2.7.1 earlier.

Taking y = ln x, we have x = e y so that

Then, from the inverse-function rule,

That is

(8.23)

Example 8.19 Find when y is given by

(a) x2ex (b) 3e−2x (c)

(d) ln(x 2 + 1) (e) e−x(sin x + cos x)

Solution (a) Taking u = x 2 and v = ex

and

Then by the product rule

= x 2ex + 2xex = x(x + 2)ex

(b) Introducing the intermediate variable z = −2x then

y = 3ez and z = −2x

and

so by the chain rule

d

d

d

d

d

d
e e

y

x

y

z

z

x
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21 …
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(c) Taking u = ln x and v = x 2 gives

so by the quotient rule

(d) Introducing the intermediate variable z = x2 + 1 then

y = ln z and z = x2 + 1

so by the chain rule

(e) Taking u = e−x and v = sin x + cos x

and

Then by the product rule

= e−x(cos x − sin x) + (sin x + cos x)(−e−x)

= −2e−x sin x

The hyperbolic functions, introduced in Section 2.7.4, are closely related to the exponen-
tial function and their derivatives are readily deduced. From their definitions

(8.24a)

(8.24b)

(8.24c)= = 
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....

(8.24d)

(8.24e)

(8.24f)

Following the same procedure as for the inverse circular functions in Section 8.3.9 the
following derivatives of the inverse hyperbolic functions are readily obtained.

(8.25a)

(8.25b)

(8.25c)

Example 8.20 Find when y is given by

(a) tanh 2x (b) cosh2x (c) e−3x sinh 3x (d) sinh−1

Solution (a) Introducing the intermediate variable z = 2x gives

y = tanh z and z = 2x

and

so by the chain rule

= 2 sech2(2x)

(b) Introducing the intermediate variable z = cosh x gives

y = z2 and z = cosh x

and

so by the chain rule

= 2 cosh x sinh x = sinh 2x
d
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(c) Taking u = e−3x and v = sinh 3x

gives using the chain rule

so by the product rule

= (e−3x)(3 cosh 3x) + (sinh 3x)(−3e−3x) = 3e−3x(cosh 3x − sinh 3x)

= 3e−3x(e−3x) = 3e−6x

(d) Introducing the intermediate variable z = x gives

y = sinh−1z and z = x

and

so by the chain rule

For practice, use MATLAB or MAPLE to check the answers to Examples 8.19 and
8.20. As illustrative examples we consider Examples 8.19(a) and 8.20(c). For
Example 8.19(a) the MATLAB commands

syms x y

y = (x^2)*exp(x); dy = simplify(diff(y)); pretty(dy)

return the derivative as

dy = xexp(x)(2 + x)

For Example 8.20(c) the commands

MATLAB MAPLE
syms x y

y = exp(–3*x)*sinh(3*x); y:= exp(–3*x)*sinh(3*x):

dy = simplify(diff(y)); dy:= simplify(diff(y,x));

pretty(df)

return the derivative as

dy = –3exp(–3x)sinh3x + dy:= –3e(–3x)(sinh(3x) –

3 exp(3x)cosh3x cosh(3x))

In MAPLE the answer may be converted to exponential form and then simplified
using the command simplify(convert(%,exp)); to give the answer 3e(–6x).
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8.3.13 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

38 Differentiate with respect to x:

(a) e2x (b) e−x/2

(c) exp(x2 + x) (d) x2e5x

(e) (3x + 2)e−x (f) ex/(1 + ex)

(g) ÷(1 + ex) (h) eax+b

39 Differentiate with respect to x:

(a) ln(2x + 3) (b) ln(x2 + 2x + 3)

(c) ln[(x − 2)/(x − 3)] (d)

(e) ln[(2x + 1)/(1 − 3x)] (f) ln[(x + 1)x]

40 Differentiate with respect to x:

(a) sinh 3x (b) tanh 4x (c) x3 cosh 2x

(d) ln(cosh ) (e) cos x cosh x (f) 1/cosh x

41 Differentiate with respect to x:

(a) sinh−12x (b) cosh−1(2x2 − 1)

(c) tanh−1(1/x) (d) ÷(1 + x2) sinh−1x

(e) ÷(4 − x2) − 2 cosh−1(2/x)

(f) tanh−1x /(1 + x2)

1
2 x

1

x
xln

42 Draw a careful sketch of y = e−ax sin ωx where 
a and ω are positive constants. What is the ratio 
of the heights of successive maxima of the 
function?

43 The line AB joins the points A(a, 0), B(0, b) on 
the x and y axes respectively and passes through the
point (8, 27). Find the positions of A and B which
minimize the length of AB.

44 Sketch the curve y = . Find the rectangle
inscribed under the curve having one edge on
the x axis, which has maximum area.

45 Show that y = 9e−9t/(10 − e−9t) satisfies the
differential equation

46 A sky diver’s downward velocity v(t) is given by

v(t) = u(1 − e−αt)/(1 + e−αt)

Where u and α are constants. What is the terminal
velocity achieved? When does the sky diver achieve
half that velocity and what is the acceleration 
then?

d

d

y

t
y y  (   )= − +9

e−x2

8.3.14 Parametric and implicit differentiation

The chain rule is used with the inverse-function rule to evaluate derivatives when a
function is specified parametrically.

Rule 7 (parametric differentiation)

In general, if a function is defined by y = f (x), where x = g(t) and y = h(t)
and t is a parameter, then

(8.26)

Example 8.21 The function y = f (x) is defined by x = t3, y = t2 (t � �). Find dy/dx.

d

d

d

d

d

d
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d

d
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d
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d
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Solution The graph of f(x) is shown in Figure 8.25. There are many ways in which dy/dx may
be evaluated. The simplest uses the result (8.26). In this case

so that

This gives the result in terms of t. In terms of x, it may be written as

In terms of x and y, we have

Note from Figure 8.25 that the graph does not have a well-defined tangent at x = 0, so the
derivative does not exist at this point; that is, the function is not differentiable at x = 0.

We can also obtain these results directly. Eliminating t between the defining equa-
tions for x and y, we have

y = x2/3

Differentiating with respect to x gives

The chain rule may also be used to differentiate functions expressed in an implicit
form (see Section 2.8.2). For example, the function of Example 8.21 may be expressed
implicitly, by eliminating t, as

y3 = x2

To obtain the derivative dy/dx, we use the method known as implicit differentiation.
In this method we treat y as an unknown function of x and differentiate both sides term
by term with respect to x. This gives

d

d

d

dx
y

x
x( )  ( )3 2=

d

d

y

x
x  /= −2

3
1 3

d

d

y

x

y

x
x      (   )= ≠

2

3
0

d

d

y

x
x x      (   )/= ≠−2

3
1 3 0

d

d

d

d

d

d

y

x

y

t

x

t t
t        (   )= = ≠

2

3
0

d

d
and

d

d

y

t
t

x

t
t            = =2 3 2

Figure 8.25
The graph of
{(x, y): y = t 2, x = t 3, 
−∞ � t � ∞}.
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Now y3 is a composite function of x, with y being the intermediate variable, so the chain
rule gives

Then, substituting back, we have

giving

(on substituting for y3)

Parametric differentiation is achieved using the MATLAB commands (or com-
parable MAPLE commands)

syms x y t

x = x(t); y = y(t); dx = diff(x,t); dy = diff(y,t); 

dydx = dy/dx

Example 8.22 Find when x2 + y2 + xy = 1.

Solution Differentiating both sides, term by term, gives

Recognizing that y is a function of x and taking care over the product term xy, the chain
rule gives

leading to

Implicit differentiation is useful in calculating the slopes of tangents and normals to
curves specified implicitly, such as in Example 8.22. Having obtained the slope of the 

tangent at the point (x, y) as , the slope of the normal to the curve at the correspond-

ing point is −1/(slope of tangent) as inferred from Figure 8.5.
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Example 8.23 Find the equations of the tangent and normal to the curve having equation 
x 2 + y2 − 3xy + 4 = 0 at the point (2, 4).

Solution Differentiating the equation implicitly with respect to x

gives

This represents the slope of the tangent at the point (x, y) on the curve. Thus the slope
of the tangent at the point (2, 4) is

Remembering from equation (1.14) that the equation of a line passing through a point
(x, y) and having slope m is y − y1 = m(x − x1) we have that the equation of the tangent
to the graph at (2, 4) is

(y − 4) = 4(x − 2) or y = 4x − 4

The slope of the normal at (2, 4) is , so it has equation

y − 4 = (x − 2) or 4y = 18 − x

Example 8.24 Find the slope of the tangents to the circle

x2 + y2 − 2x + 4y − 20 = 0

at the points A(1, 3), B(4, 2) and C(−2, −6).

Solution The circle defined by the equation is shown in Figure 8.26, together with the three
points A, B and C. Clearly this equation does not define a function in general, but near
specific points we can restrict it so that it behaves locally like a function. To compute
the slopes of the tangents, we differentiate the equation defining the curve with respect

− 1
4

− 1
4

d

d

y

x

⎡

⎣
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⎥ =

−
−

=
( , )

  
  

  
  

2 4

12 4

8 6
4

d
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y

x

y x

y x
  

  

  
=

−
−

3 2

2 3

2 2 3 3 0x y
y

x
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y

x
y        + − − =

d

d

d

d

Figure 8.26
Graph of the 
circle x2 + y2 −
2x + 4y − 20 = 0.
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to x implicitly, and then we insert the x and y coordinates of the points. Thus in this
example we have

giving

Then at A the slope is zero, at B the slope is , and at C the slope is . Note
that dy/dx is not defined at y = −2. There are two corresponding points: (−4, −2) and 
(6, −2). At these points the curve has a vertical tangent.

The implicit differentiation rule can be used in a double way to obtain derivatives of
functions of the form f (x)g(x), as illustrated in Example 8.25.

Example 8.25 Find the derivative of the function

f (x) = (sin x)x (x � (0, π))

Solution The simplest way of dealing with this is first to take logarithms. Thus y = (sin x)x gives

ln y = x ln sin x

Then differentiating implicitly with respect to x, remembering that y is a function of x,
gives

and so

= (ln sin x + x cot x)(sin x)x

Sometimes the technique used in Example 8.25 is described as logarithmic differenti-
ation. It is useful for differentiating complicated functions.

Example 8.26 Differentiate with respect to x

Solution To simplify the process, we first take logarithms

ln y = 3 ln(x − 2) + 9 ln(x + 3) − ln(x2 + 1)1
2
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Then differentiating with respect to x gives

Hence

= (11x3 − 10x2 + 18x − 9)(x − 2)2(x + 3)8/(x2 + 1)3/2

8.3.15 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

d
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47 The equations x = t sin t, y = t cos t are the 

parametric equations for a spiral. Find in

terms of t.

48 A curve is defined parametrically by the 
equations

x = 2 cos θ + cos 2θ

y = 2 sin θ − sin 2θ

Draw a sketch of the curve for 0 � θ � 2π. Find
the equation of the tangent to the curve at the point
where θ = π /4.

49 Find when

(a) x2 + y2 + 4x − 2y = 20

(b) xy = 2ex+y−3

50 Find the equations of the tangent and normal to the
curve having equation

y2 − 2y − 4x + 1 = 0

at the point (1, 3).

51 Find the equation of the tangent, at the point (0, 4),
to the curve defined by

y3x + y + 7x4 = 4

d

d

y

x

d

d

y

x

52 Find the value of at the point (1, −1) on the 

curve given by the equation

x3 − y3 − xy − x = 0

53 Differentiate with respect to x:

(a) 10x (b) 2−x (c)

54 Use logarithmic differentiation to prove that

(y1y2 … yn) 

= (y1y2 … yk−1yk+1 … yn)y′k

Hence differentiate x3e−2x sin πx.

55 The equation of a curve is

xy3 − 2x2y2 + x4 − 1 = 0

Show that the tangent to the curve at the point
(1, 2) has a slope of unity. Hence write down the
equation of the tangent to the curve at this point.
What are the coordinates of the points at which 
this tangent crosses the coordinate axes?

56 A cycloid is a curve traced out by a point p on the
rim of a wheel as it rolls along the ground. Using 

k

n

=
∑

1

d

dx

(   ) (   )

  

/ /x x

x

− +
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1 1

2

7 2 1 2

2

d

d

y

x

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 600



8.4 HIGHER DERIVATIVES 601

....

the coordinate system shown in Figure 8.27, show
that the curve has the parametric representation

x = a(θ − sin θ), y = a(1 − cos θ)

where θ is the angle through which the wheel has
turned.

Draw a sketch of the curve.
Find the gradient of the curve at a general 

point (x, y).

Figure 8.27

If the wheel rotates at a constant speed, with
θ = ω t, where ω is constant and t is the time, show
that the speed V of the point on the rim is given by

V(t) = 2aω | sin ωt |

57 Find the slope of the tangent to the lemniscate

(x2 + y2)2 = a2(x2 − y2)

at the point (x, y). (See Review Exercises 2.11,
Question 19.)

58 Use logarithmic differentiation to differentiate

(a) (ln x)x (b) xln x

(c) (1 − x2)1/2(2x2 + 3)− 4/3

59 Using logarithmic differentiation, find the
derivatives of

(a) x3e−2x ln x (b)
1

2
x

xxe sin

1
2

8.4 Higher derivatives
The derivative d f /dx of function f (x) is itself a function and may be differentiable. The
derivative of a derivative is called the second derivative, and is written as

or f ″(x) or f (2)(x)

This may in turn be differentiated, yielding third derivatives and so on. In general, the
nth derivative is written as

or f (n)(x)

8.4.1 The second derivative
In mechanics the second derivative of the displacement of an object with respect to time
is its acceleration and this is used in the mathematical modelling of problems in
mechanics using the law:

mass × acceleration = applied force

Example 8.27 Find the second derivative of the functions given by

(a) y = 3x4 − 2x2 + x − 1 (b) y = x /(x2 + 1)

(c) y = e−x sin 2x (d) y
x

x
  

ln
=

d

d

n

n

f

x

d

d

2

2

f

x
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Solution (a) Differentiating once gives

= 12x3 − 4x + 1

and differentiating a second time gives

= 36x2 − 4

(b) This simply requires two differentiations, as above,

Then 

(c) This simply requires two differentiations. Applying the product rule, we have

= (e−x)(2 cos 2x) + (sin 2x)(−e−x) = e−x(2 cos 2x − sin 2x)

Applying the rule again we have

= (e−x)(−4 sin 2x − 2 cos 2x) + (2 cos 2x − sin 2x)(−e−x)

= −e−x(3 sin 2x + 4 cos 2x)

(d) Again this simply requires two differentiations. Applying the quotient rule, we have

Applying the rule again, we obtain

The second derivative is obtained using the commands

MATLAB MAPLE
d2y = diff(y,2) d2y:= diff(y,x,x);

and the third derivative by the commands

d3y = diff(y,3) d3y:= diff(y,x,x,x); or 

d3y:= diff(y,x$3);

and so on for higher derivatives.
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Considering Example 8.27(c) the commands

MATLAB MAPLE
syms x y

y = exp(–x)*sin(2*x); y:= exp(–x)*sin(2*x):

d2y = simplify(diff(y,2)); d2y:= diff(y,x,x);

pretty(d2y)

return the second derivative as

d2y = –exp(–x)(3sin(2x) + d2y:= –3e(–x)sin(2x) –

4cos(2x)) 4 e(–x)cos(2x)

Example 8.28 Show that

y = e−t(A cos t + B sin t) + 2 sin 2t − cos 2t

satisfies the equation

+ 2y = 10 cos 2t

Solution Differentiating y twice with respect to t gives

= e−t[(A − B) cos t + (A + B) sin t] + 4 cos 2t + 2 sin 2t

= e−t[−2B cos t + 2A sin t] − 8 sin 2t + 4 cos 2t

Thus

+ 2y = 10 cos 2t

When determining the second derivative using parametric or implicit differentiation
care must be taken to ensure correct use of the chain rule. The approach is illustrated in
Example 8.29.

Example 8.29 Find when y is given by

(a) y = t2, x = t3 (b) x2 + y2 − 2x + 4y − 20 = 0

Solution (a) Here y = t2 and x = t3 gives, as in Example 8.21,
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Differentiating again, using the chain rule, gives

(this is an important step)

(b) Here x and y are related by the equation

x 2 + y2 − 2x + 4y − 20 = 0

so that as in Example 8.24

and

Differentiating a second time gives

using the product rule and remembering that

After rearrangement, we have

and substituting

into the right-hand side gives eventually

This may be further simplified, using the original equation, to give
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Further results for higher derivatives are developed in Exercises 8.4.2. These are on the
whole straightforward extensions of previous work. One result that sometimes causes
blunders is the extension of the inverse-function rule to higher derivatives.

We know that

To find the second derivative of x with respect to y needs a little care:

(using the chain rule)

Thus

8.4.2 Exercises

Check your answers using MATLAB or MAPLE.
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60 Find when y is given by

(a) x3÷(1 + x2)

(b) ln(x2 + x + 1)

(c) y3x + y + 7x4 = 4

(d) x3 − y3 − xy − x = 0

61 Find when x and y are given by

(a) x = t sin t and y = t cos t

(b) x = 2 cos t + cos 2t and y = 2 sin t − sin 2t

62 If y = 3e2x cos(2x − 3), verify that
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63 If y = (sin−1x)2, prove that

and deduce that

64 (a) If y = x2 + 1/x2, find dy/dx and d2y/dx2. Hence
show that

(b) If x = tan t and y = cot t, show that

65 If x = a(θ − sin θ) and y = a(1 − cos θ), find dy/dx
and d2y/dx2.
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66 Find dy/dx in terms of t for the curve with
parametric representation

Show that

and find a similar expression for d2x/dy2.

67 Confirm that the point (1, 1) lies on the curve with
equation x3 − y2 + xy − x2 = 0 and find the values
of dy/dx and d2y/dx2 at that point.

68 Find f (4)(x) and f (n)(x) for the following functions
f (x):

(a) e3x (b) ln(x + 2)

(c)

69 Find the fourth derivative of f (x) = sin(ax + b) and
verify that f (n)(x) = an sin(ax + b + nπ).1
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70 Prove that

(eax sin bx) = (a2 + b2)n/2 eax sin(bx + nθ)

where cos θ = a /÷(a2 + b2), sin θ = b /÷(a2 + b2).

71 If y = u(x)v(x), prove that

(a) y(2)(x) = u(2)(x)v(x) + 2u(1)(x)v(1)(x) + u(x)v(2)(x)

(b) y(3)(x) = u(3)(x)v(x) + 3u(2)(x)v(1)(x)

+ 3u(1)(x)v(2)(x) + u(x)v(3)(x)

Hence prove Leibniz’s theorem for the nth
derivative of a product:

y(n)(x) = u(n)(x)v(x) + (n−1)(x)v(1)(x) 

+ (n−2)(x)v(2)(x) + … + u(x)v(n)(x)

72 Use Leibniz’s theorem (Question 71) to find the
following:

(a) (put u = sin x, v = x2)

(b) (c)
d
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8.4.3 Curvature of plane curves

The second derivative d2f /dx 2 represents the rate of change of d f /dx as x increases; geo-
metrically, this gives us information as to how the slope of the tangent to the graph of
y = f (x) is changing with increasing x.

l If d2f/dx2 � 0 then d f/dx is increasing as x increases, and the tangent rotates in
an anticlockwise direction as we move along the horizontal axis, as illustrated 
in Figure 8.28(a).

l If d2f/dx2 � 0 then d f/dx is decreasing as x increases, and the tangent rotates 
in a clockwise direction as we move along the horizontal axis, as illustrated in
Figure 8.28(b).

Also note that when d2f/dx 2 � 0, the graph of y = f (x) is ‘concave up’, and when 
d2f/dx2 � 0 the graph is ‘concave down’. Thus the sign of d2f/dx2 relates to the concavity
of the graph; we shall use this information in Section 8.5.1 to define a point of inflection.

The curvature κ of a plane curve, having equation y = f (x), at any point is the rate
at which the curve is bending or curving away from the tangent at that point. In other
words, the curvature measures the rate at which the tangent to the curve changes as it
moves along the curve. This implies that it will depend on d2f/dx2 in some way.

Take two points P and Q on the curve y = f (x) and a distance ∆s apart measured
along the curve. Then, with the notation of Figure 8.29(a), the average curvature of the

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 606



8.4 HIGHER DERIVATIVES 607

....

curve PQ is ∆θ/∆s. We then define the curvature κ of the curve at the point P to be the
absolute value of the average curvature as Q approaches P. That is,

(8.27)

If we now construct a circle, as shown in Figure 8.29(b), so that it

l has the same tangent at P as y = f (x),
l lies on the same side of the tangent as y = f (x) and
l has the same curvature κ as y = f (x) at P

then this is called the circle of curvature at P. Its radius ρ is called the radius of
curvature at P and is given by

ρ = radius of curvature =

The centre of the circle is called the centre of curvature at P. Clearly the curvature is
zero when the radius of curvature is infinite.

In order to obtain the curvature of a curve given by an equation of the form y = f (x),
we must obtain a more usable formula than (8.27). Since

tan θ = slope of the tangent at P
d

d
  =

y

x

1

κ

κ θ θ
  lim   = =

→∆

∆
∆s s s0

d

d

Figure 8.28
Rates of change of 

as x increases.
d

d

y

x

Figure 8.29
Curvature and 
radius of curvature.
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differentiating with respect to s, using the chain rule, gives

so that

(8.28)

using the trigonometric identity 1 + tan2θ = sec2θ.
We shall see in Section 8.9.6 that

so, from the inverse-function rule,

which on substituting into (8.28) gives the formula

(8.29)

If we denote the coordinates of the centre of curvature by (X, Y ) then it follows from
Figure 8.29(b) that

X = x − ρ sin θ, Y = y + ρ cos θ

Since tan θ = dy/dx, it follows that

Using these results together with ρ = 1/κ, with κ from (8.29), gives the coordinates of
the centre of curvature as

(8.30)

Although these results have been deduced for the curve of Figure 8.29(b), which at the
point P(x, y) has positive slope (dy/dx � 0) and is concave upwards (d2y/dx2 � 0), it
can be shown that these are valid in all cases.

It is left as an exercise for the reader to show that if the curve y = f (x) is given in
parametric form

x = g(t), y = h(t)

then the curvature κ is given by

(8.31)κ      
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8.4.4 Exercises 

73 Find the radius of curvature at the point (2, 8) on
the curve y = x3.

74 Show that the radius of curvature at the origin to
the curve

x3 + y3 + 2x2 − 4y + 3x = 0

is .

75 Find the radius of curvature and the coordinates of
the centre of curvature of the curve

y = (11 − 4x)/(3 − x)

at the point (2, 3).

125
64

76 Find the radius of curvature at the point 
where θ = π on the curve defined 
parametrically by

x = 2 cos θ, y = sin θ

77 Find the radius of curvature at (x, y) of the curve

y = tanh−1 x (| x | < 1)

78 Find the radius of curvature at (1, 1) of the curve
defined by

x = t3, y = t2 (t � R)

1
3

8.5 Applications to optimization problems
In many industrial situations the role of management is to make decisions that will lead
to the most effective use of the resources available. These decisions seldom affect the
whole operation in one sweeping decision, but are usually a chain of small decisions:
organizing stock control, designing a product, pricing it, servicing equipment and so on.
Effective management seeks to optimize the constituent parts of the whole operation. 
A wide variety of mathematical techniques are used to solve such optimization prob-
lems. Here, and later in Section 9.4.9, we consider methods based on the methods and
concepts of calculus.

8.5.1 Optimal values
The basic idea is that the optimal value of a differentiable function f (x) (that is, its
maximum or minimum value) generally occurs where its derivative is zero; that is,
where

f ′(x) = 0

As can be seen from Figure 8.30, this is a necessary condition, since at a maximum 
or minimum value of the function its graph has a horizontal tangent. Figure 8.30 
does, however, show that these extremal values are generally only local maximum or

Figure 8.30
Maximum and
minimum values.
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minimum values, corresponding to turning points on the graph, so some care must be 
exercised in using the horizontal tangent as a test for an optimal value. In seeking the
extremal values of a function it is also necessary to check the end points (if any) of the
domain of the function.

Figure 8.31 gives another illustration of why care must be exercised: at some points
of inflection – that is, points where the graph crosses its own tangent – the tangent may
be horizontal.

A third reason for caution is that a function may have an optimal value at a point
where its derivative does not exist. A simple example of this is given by f (x) = x2 /3,
whose graph is shown in Figure 8.32.

Having determined the critical or stationary points where f ′(x) = 0, we need to be
able to determine their character or nature; that is, whether they correspond to a local
maximum, a local minimum or a point of inflection of the function f (x). We can do this
by examining values of f ′(x) close to and on either side of the critical point. From
Figure 8.33 we see that

l if the value of f ′(x), the slope of the tangent, changes from positive to 
negative as we pass from left to right through a stationary point then the 
latter corresponds to a local maximum;

l if the value of f ′(x) changes from negative to positive as we pass from left 
to right through a stationary point then the latter corresponds to a local 
minimum;

l if f ′(x) does not change sign as we pass through a stationary point then the
latter corresponds to a point of inflection.

Figure 8.31
Graph with horizontal
tangents.

Figure 8.32
Graph of f(x) = x2/3,
with minimum at 
x = 0.

Example 8.30 Determine the stationary points of the function

f (x) = 4x3 − 21x2 + 18x + 6

and examine their nature.
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Solution The derivative is

f ′(x) = 12x2 − 42x + 18 = 6(2x − 1)(x − 3)

Stationary points occur when f ′(x) = 0; that is,

6(2x − 1)(x − 3) = 0

the solutions of which are x = and x = 3. The corresponding values of the function are

and

f (3) = 4(27) − 21(9) + 18(3) + 6 = −21

so that the stationary points of f (x) are

and (3, −21)

In order to investigate their nature, we use the procedure outlined above.

(a) Considering the point : if x is a little less than then 2x − 1 � 0 and
x − 3 � 0, so that

f ′(x) = 6(2x − 1)(x − 3) = (negative)(negative) = (positive)

while if x is a little greater than then 2x − 1 � 0 and x − 3 � 0, so that

f ′(x) = (positive)(negative) = (negative)

Thus f ′(x) changes from (positive) to (negative) as we pass through the point so that
is a local maximum.

(b) Considering the point (3, −21): if x is a little less than 3 then 2x − 1 � 0 and 
x − 3 � 0, so that

f ′(x) = (positive)(negative) = (negative)

while if x is a little greater than 3 then 2x − 1 � 0 and x − 3 � 0, so that

f ′(x) = (positive)(positive) = (positive)

Thus f ′(x) changes from (negative) to (positive) as we pass through the point so that
(3, −21) is a local minimum.

This information may now be used to sketch a graph of f (x), as illustrated in
Figure 8.34.
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f ( )  ( )  ( )  ( )    1
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41
44 21 18 6= − + + =

1
2

Figure 8.34
Graph of f(x) =
4x3 − 21x2 + 18x + 6.
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An alternative approach to determining the nature of a stationary point is to calcu-
late the value of the second derivative f ″(x) at the point. Recall from Section 8.4.1 that
f ″(x) determines the rate of change of f ′(x). Suppose that f(x) has a stationary point at
x = a, so that f ′(a) = 0. Then, provided f ″(a) is defined, either f ″(a) � 0, f ″(a) = 0 or
f ″(a) � 0.

If f ″(a) � 0 then f ′(x) is decreasing at x = a; and since f ′(a) = 0, it follows that
f ′(x) � 0 for values of x just less than a and f ′(x) � 0 for values of x just greater than
a. We therefore conclude that x = a corresponds to a local maximum. Note that this
concurs with our observation in Section 8.4.1 that the sign of f ″(x) determines the 
concavity of the graph of f (x). Since the graph is concave down at a local maximum,
f ″(a) � 0. The equality case is discussed further in Section 9.4.9.

Similarly, we can argue that if f ″(a) � 0 then the stationary point x = a corresponds
to a local minimum. Again this concurs with our observation that the graph is concave
up at a local minimum.

Summarizing, we have

l the function f(x) has a local maximum at x = a provided f ′(a) = 0 and f ″(a) � 0;
l the function f(x) has a local minimum at x = a provided f ′(a) = 0 and 

f ″(a) � 0.

If f ″(a) = 0, we cannot assume that x = a corresponds to a point of inflection, and we
must revert to considering the sign of f ′(x) on either side of the stationary point. As
mentioned earlier, at a point of inflection the graph crosses its own tangent, or, in other
words, the concavity of the graph changes. Since the concavity is determined by the
sign of f ″(x), it follows that f ″(x) = 0 at a point of inflection and that f ″(x) changes sign as
we pass through the point. Note, as illustrated by the graph of Figure 8.35, that it is not
necessary for f ′(x) = 0 at a point of inflection. If, as illustrated in Figure 8.31, f ′(x) = 0
at a point of inflection then it is a stationary point of inflection. It does not follow,
however, that if f ′(a) = 0 and f ″(a) = 0 then x = a is a point of inflection. An example
of when this is not the case is y = x4, which, as illustrated in Figure 8.36, has a local
minimum at x = 0 even though both dy/dx and d2y/dx2 are zero at x = 0. It is for this
reason that we must take care and revert to considering the sign of f ′(x) on either side.
We shall return to reconsider these conditions in Section 9.4.9 following consideration
of Taylor series.

Figure 8.35 A point of inflection at (a, f (a)). Figure 8.36 Graph of f(x) = x4,
illustrating the local minimum at x = 0.
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Example 8.31 Using the second derivative, confirm the nature of the stationary points of the function

f (x) = 4x3 − 21x2 + 18x + 6

determined in Example 8.30.

Solution We have

f ′(x) = 12x2 − 42x + 18

so that

f ″(x) = 24x − 42

At the stationary point 

f ″( ) = 12 − 42 = −30 � 0

confirming that it corresponds to a local maximum.
At the stationary point (3, −21)

f ″(3) = 72 − 42 = 30 � 0

confirming that it corresponds to a local minimum.
Note also that f ″(x) = 0 at x = and that f ″(x) � 0 for x � and f ″(x) � 0 for

x � . Thus is a point of inflection (but not a stationary point of inflection),
which is clearly identifiable in the graph of Figure 8.34.

Considering the cubic of Examples 8.30 and 8.31 the stationary points may be investi-
gated using the following MATLAB commands

syms x y

y = 4*x^3 – 21*x^2 + 18*x + 6; dy = diff(y); solve(dy)

The last command solves dy = 0 to obtain the x coordinates 3 and 1/2 of the station-
ary points, and the commands

y1 = subs(y,x,3)

y2 = subs(y,x,1/2)

determine the corresponding y coordinates –21 and 10.25; so that the stationary
points are (3,–21) and (1/2,10.25). The commands

d2y = diff(y,2);

subs(d2y,x,3)

subs(d2y,x,1/2)

return the value of the second derivative at each stationary point as 30 and –30
respectively; thus confirming that (3,–21) is a local minimum and that
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41
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(1/2,10.25) is a local maximum. Finally, to illustrate the results the plot of the
cubic is given by the command

ezplot(y,[–1,5]).

The corresponding commands in MAPLE are

y:= 4*x^3 – 21*x^2 + 18*x + 6; dy:= diff(y,x); 

solve(dy = 0,x);

y1:= subs(x = 3,y); y2:= subs(x = 1/2,y);

d2y:= diff(y,x,x); subs(x = 3,d2y); subs(x = 1/2,d2y);

plot(y,x = –1..5);

Example 8.32 Determine the stationary values of the function

f (x) = x2 − , x ≠ 0

Solution The derivative is

f ′(x) =

and f ′(x) = 0 when

2x4 − 6x3 − 82x − 90 = 0

Factorizing we have

2(x2 − 4x − 5)(x2 + x + 9) = 0

or

2(x + 1)(x − 5)(x2 + x + 9) = 0

So the real roots are x = 5 and x = −1.
At x = 5, f(5) = 66/5. To decide whether this is a maximum or minimum we examine

the value of f ″(x) at x = 5.

f ″(x) = and f ″(5) � 0

Thus f (5) = 66/5 is a minimum value of the function.
At x = −1, f (−1) = −30 and f ″(−1) � 0, so that f (−1) = −30 is also a minimum of the

function.
Note that f(x) has an asymptote x = 0 and behaves like (x − 3)2 where | x | is very large.

In many applications, we know for practical reasons that a particular problem has
a minimum (or maximum) solution. If the equation f ′(x) = 0 is satisfied by only one
sensible value of x then that value must determine the unique minimum (or maximum)
we are seeking. We will illustrate using three simple examples.

2
164 270

3 4
    + +

x x

2 6
82 90

2 3
x

x x
      − − −

6
82 45

2
x

x x
    + +
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Example 8.33 A manufacturer has to supply N items per month at a uniform daily rate. Each time a
production run is started it costs £c1, the ‘set-up’ cost. In addition, each item costs 
£c2 to manufacture. To avoid unnecessarily high production costs, the manufacturer
decides to produce a large quantity q in one run and store it until the contract calls for
delivery. The cost of storing each item is £c3 per month. What is the optimal size of a
production run?

Solution As the contract calls for a monthly supply of N items, we need to look for a production
run size that will minimize the total monthly cost to the manufacturer.

The costs the manufacturer incurs are the production costs and the storage costs. The
production cost for a production run of q items is

£(c1 + c2q)

This production run will satisfy the contract for q/N months, so the monthly production
cost will be

To this must be added the monthly storage cost, which will be £ qc3, since the stock is 
depleted at a uniform rate and the average stock size is q. Thus the total monthly cost
£C is given by

which has a graph similar to that shown in Figure 8.37.
To find the value q* of q that minimizes C, we differentiate the expression for C with

respect to q and set the derivative equal to zero:

and

and hence

This quantity is called the economic lot size.

Optimization plays an important role in design, and in Example 8.34 we illustrate this
by applying it to the relatively easy problem of designing a milk carton.
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Figure 8.37
Monthly cost versus
run size.
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Example 8.34 A milk retailer wishes to design a milk carton that has a square cross-section, as illus-
trated in Figure 8.38(a), and is to contain two pints of milk (2 pints ≡ 1.136 litres). The
carton is to be made from a rectangular sheet of waxed cardboard, by folding into 
a square tube and sealing down the edge, and then folding and sealing the top and 
bottom. To make the resulting carton airtight and robust for handling, an overlap of at
least 5 mm is needed. The procedure is illustrated in Figure 8.38(b). As the milk retailer
will be using a large number of such cartons, there is a requirement to use the design
that is least expensive to produce. In particular the retailer desires the design that 
minimizes the amount of waxed cardboard used.

Solution If, as illustrated in Figure 8.38(a), the final dimensions of the container are h × b × b
(all in mm) then the area of waxed cardboard required is

A = (4b + 5)(h + b + 10) (8.32)

Since the capacity of the carton is fixed at two pints (1.136 litres), the values of h and
b must be such that

volume = hb2 = 1136 000 mm3 (8.33)

Substituting (8.33) back into (8.32) gives

To find the value of b that minimizes A, we differentiate A with respect to b to obtain
A′(b) and then set A′(b) = 0. Differentiating gives

so the required value of b is given by the root of the equation

8b4 + 45b3 − 4 544 000b − 11360 000 = 0

A straightforward tabulation of this polynomial, or use of a suitable software package,
yields a root at b = 81.8. From (8.33) the corresponding value of h is h = 169.8. Thus
the optimal design of the milk carton will have dimensions 81.8 mm × 81.8 mm ×
169.8 mm.

′ = + − −A b b
b b

( )        8 45
4 544 000 11360 000

2 3

A b
b

b  (   )     = + + +⎛
⎝

⎞
⎠4 5

1136 000
10

2

Figure 8.38
The construction of a
milk carton.
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Optimization problems also occur in programmes for replacing equipment and machin-
ery in industry. We will illustrate this by a more commonplace decision: the best 
policy for replacing a car.

Example 8.35 For a particular model of car, bought for £14 750, the second-hand value after 
t years is given fairly accurately by the formula

price = £e9.55−0.11t

The running costs of the car increase as the car gets older, so after t years the annual
running cost is £(917 + 163t). When should it be replaced?

Solution The accumulated running cost for the car over t years is

= £(835.5 + 81.5t)t

The total cost of the car clearly includes depreciation as well as running costs, so the
average annual cost £C of the car is given by

To find the optimal time for replacing the car, we find the value of t that minimizes C.
Differentiating C with respect to t gives

Setting C ′(t) = 0 gives

Solving this numerically gives t = 5.3.
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8.5.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

79 Find the stationary values of the following
functions and determine their nature. In each case
also find the point of inflection and sketch a graph
of the function.

(a) f (x) = 2x3 − 5x2 + 4x − 1

(b) f (x) = x3 + 6x2 − 15x + 51

(c) f (x) = x4 − 6x2 + 8x + 2

80 Find the stationary values of the following
functions, distinguishing carefully between them.
In each case sketch a graph of the function.

(a) 

(b) f (x) = 2e−x(x − 1)3

(c) f (x) = x2e−x

(d) 

81 Consider the can shown in Figure 8.39, which
has capacity 500 ml. The cost of manufacture 
is proportional to the amount of metal used, 
which in turn is proportional to the surface area 
of the can. Ignoring the overlaps necessary for 
the manufacture of the can, find the diameter and
height of the can which minimizes its cost.
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Show that the value of d* which minimizes
the area of the can satisfies the equation

πd2(d + 1.8) = 2000

Calculate d* and the corresponding value of the
height of the can.

83 In an underwater telephone cable the ratio of the
radius of the core to the thickness of the protective
sheath is denoted by x. The speed v at which a
signal is transmitted is proportional to x2 ln(1/x).
Show that

where K is some constant, and hence deduce the
stationary values of v. Distinguish between these
stationary values and show that the speed is 
greatest when x = 1/÷e.

84 A closed hollow vessel is in the form of a right-
circular cone, together with its base, and is made 
of sheet metal of negligible thickness. Express the
total surface area S in terms of the volume V and
the semi-vertical angle θ of the cone. Show that 
for a given volume the total area of the surface 
is a minimum if sin θ = . Find the value of S if
V = πa3.

85 A numerical method which is more efficient than
repeated subtabulation for obtaining the optimal
solution is the following bracketing method. 
The initial tabulation locates an interval in which
the solution occurs. The optimal solution is then
estimated by optimizing a suitable quadratic
approximation.

Consider again the milk carton problem,
Example 8.34. Calculate A(70), A(80) and A(90) 
and deduce that a minimum occurs in [70, 90]. 
Next find numbers p, q and r such that

C(b) = p(b − 80)2 + q(b − 80) + r

satisfies C(70) = A(70), C(80) = A(80) and 
C(90) = A(90). The minimum of C occurs at 
80 − q/(2p). Show that this yields the estimate 
b = 82.2. Evaluate A(82.2) and deduce that the
solution lies in the interval [80, 90]. Next repeat 
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Figure 8.39 Can of Questions 81 and 82.

82 Consider again the can shown in Figure 8.39.
Allowing for an overlap of 6 mm top and bottom
surfaces to give a rim of 3 mm on the can, show
that the area A mm2 of metal used is given by

A(d ) = π(d2 + 3.6d + 1.44)/2 + 2000/d

where d cm is the diameter of the can.
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the process using the values A(80), A(82.2) and
A(90) and show that the solution lies in the
interval [80, 83.1]. Apply the method once more 
to obtain an improved estimate of the solution.

86 A pipeline is to be laid from a point A on one
bank of a river of width 1 unit to a point B 2 units
downstream on the opposite bank, as shown in
Figure 8.40. Because it costs more to lay the pipe
under water than on dry land, it is proposed to take
it in a straight line across the river to a point C and
then along the river bank to B. If it costs α% more
to lay a given length of pipe under the river than
along the bank, write down a formula for the cost
of the pipeline, specifying the domain of the
function carefully. What recommendation would
you make about the position of C when (a) α = 25,
(b) α = 10?

87 Cross-current extraction methods are used in many
chemical processes. Solute is extracted from a
stream of solvent by repeated washings with water.
The solvent stream is passed consecutively through
a sequence of extractors, in each of which a cross-
current of wash water, flowing at a determined
rate, carries out some of the solute. The aim is to
choose the individual wash flowrates in such a
way as to extract as much solute as possible by 
the end, the total flow of wash water being fixed.

Consider the three-state extractor process
shown in Figure 8.41, where c, x, y and z are the
solute concentrations in the main stream, and αx,
αy and αz are the solute concentrations in the
effluent wash-water streams, with α a constant.
The solute balance equations for the extractors are

Q(c − x) = uαx

Q(x − y) = vαy

Q(y − z) = wαz

The total wash-water flowrate is W, so that

u + v + w = W

We wish to find u, v and w such that the outflow
concentration z is minimized.

This is an example of dynamic programming.
The key to its solution is the Principle of
Optimality, which states that an optimal
programme has the property that, whatever the
initial state and decisions, the remaining decisions
must constitute an optimal policy with respect to
the state resulting from the initial decision. This
means we solve the problem first for a one-
extractor process, then for a two-extractor process,
then for a three-extractor process, and so on.

For a one-stage process, x is minimized when
u = W, giving x* = Qc/(Q + αW ).

For a two-stage process, y = Qx/(Q + αv), where
x = W with v = W, giving y* = Q2c/(Q + αW )2.

For a three-stage process, z = Q2x/[Q +
α(W − u)]2, where x = Qc/(Q + αu). Show that z

is minimized when u = W, with v = w = W,
giving z* = Q3c/(Q + αW )3.

Generalize your answers to the case where n
extractors are used.

88 The management of resources often requires a
chain of decisions similar to that described in
Question 87. Consider the harvesting policy for a
large forest. The profit produced from the sale of
felled timber is proportional to the square root of
the volume sold, while the volume of standing
timber increases in proportion to itself year on
year. Use the technique outlined in Question 87 
to produce a 10-year harvesting programme for a
forest.
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Figure 8.40

Figure 8.41
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8.6 Numerical differentiation
Although the formula

provides the definition of the derivative of f (x), it does not provide a good basis for
evaluating f ′(x) numerically. This is because it provides a one-sided approximation of
the gradient at x, as shown in Figure 8.42. When we set ∆x = h (� 0), we obtain the
slope of the chord PR. When we set ∆x = −h (� 0), we obtain the slope of the chord
QP. Clearly the chord QR offers a better approximation to the tangent at P. A second
reason why the formal definition of a derivative yields a poor approximation is that the
evaluation of derivatives involves the division of a small quantity ∆ f by a second small
quantity ∆x. This process magnifies the rounding errors involved in calculating ∆ f from
the values of f(x), a process that worsens as ∆x → 0. This phenomenon is called ill-
conditioning. Generally speaking, numerical differentiation is a process in which
accuracy is lost and the ‘noise’ caused by experimental error is magnified.

8.6.1 The chord approximation

This method uses the slope of a chord QR symmetrically disposed about x to approxi-
mate the slope of the tangent at x, as shown in Figure 8.43. Thus

Thus when the function is specified graphically, a value of h is chosen, and at a series
of points along the curve the quotient φ(h) is calculated. When the function is given as
a table of values, we do not have control of the value of h, but the same approximation
is used using the tabular interval as h. Consequently, to estimate the value of the deriv-
ative f ′(a) at x = a we use the approximation
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Figure 8.42 Approximations to the
tangent at P.

Figure 8.43 Chord approximation.
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as the basis for an extrapolation. For almost all functions commonly occurring in engin-
eering applications

f ′(a) = φ (h) + terms involving powers of h greater than or equal to h2

For example, considering f (x) = x3

Similarly, for f(x) = x 4

φ(h) = 4a3 + 4ah2

In general, we may write

f ′(a) = φ(h) + Ah2 + terms involving higher powers of h

where A is independent of h. Interval-halving gives

f ′(a) = φ( h) + A′h2 + terms involving higher powers of h

where A′ � A. Hence we obtain a better estimate for f ′(a) by extrapolation, eliminating
the terms involving h2:

f ′(a) � [4φ( h) − φ(h)] (8.34)

We illustrate this technique in Example 8.36.

Example 8.36 Estimate f ′(0.5), where f (x) is given by the table

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f (x) 0.0998 0.1987 0.2955 0.3894 0.4794 0.5646 0.6442 0.7174 0.7833

Solution Using the data provided, taking h = 0.4 and 0.2, we obtain

and

Hence, by extrapolation, we have, using (8.34),

f ′(0.5) � (4 × 0.8718 − 0.8544)/3 = 0.8776

The tabulated function is actually sin x, so that in this illustrative example we can com-
pare the estimate with the true value cos 0.5, and we find that the answer is correct 
to 4dp.
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In general, any numerical procedure is subject to two types of error. One is due to
the accumulation of rounding errors within a calculation, while the other is due to the
nature of the approximation formula (the truncation error). In this example the trunca-
tion error is of order h2 for φ(h), but we do not have an estimate for the truncation error
for the extrapolated estimate for f ′(a). This will be discussed in the next chapter
following the introduction of the Taylor series (see Exercises 9.4.6, Question 23). The
effect of the rounding errors on the answer can be assessed, however, and, using the
methods of Chapter 1, we see that the maximum effect of the rounding errors on
the answer in Example 8.36 is ±2.5 × 10−4.

8.6.2 Exercises

89 Use the chord approximation to obtain two
estimates for f ′(1.2) using h = 0.2 and h = 0.1
where f (x) is given in the table below.

x 1.0 1.1 1.2 1.3 1.4
f (x) 1.000 1.008 1.061 1.192 1.414

Use extrapolation to obtain an improved
approximation.

90 Use your calculator (in radian mode) to calculate
the quotient { f (x + h) − f (x − h)}/(2h) for f(x) =
sin x, where x = 0(0.1)1.0 and h = 0.001. Compare
your answers with cos x.

91 Consider the function f (x) = x ex, tabulated below:

x 0.96 0.97 0.98 0.99 1.00
f (x) 2.5072 2.5588 2.6112 2.6643 2.7183

x 1.01 1.02 1.03 1.04
f (x) 2.7731 2.8287 2.8851 2.9424

(a) Find, exactly, f ′(1) and f ″(1).

(b) Use the tabulated values and the formula

f ′(a) � ( f (a + h) − f (a − h)) /2h

to estimate f ′(1), for various h. Compute the errors
involved and comment on the results.

(c) Repeat (b) for f ″(1) using

f ″(a) � ( f (a + h) − 2 f (a) + f (a − h))/h2

92 Use the following table of f (x) = (ex − e−x)/2 to
estimate f ′(1.0) by means of an extrapolation method.

x 0.2 0.6 0.8 1.2 1.4 1.8
f (x) 0.2013 0.6367 0.8881 1.5095 1.9043 2.9422

Compare your answer with (e + e−1)/2 = 1.5431
correct to 4dp.

93 Investigate the effect of using a smaller value for h
in Example 8.36. Show that φ(0.1) gives a poorer
estimate for f ′(0.5) and the error bound for the
consequent extrapolation [4φ(0.1) − φ(0.2)]/3 is 
7 × 10−4.

8.7 Integration
In this section we shall introduce the concept of integration and illustrate its role in
problem-solving and modelling situations.

8.7.1 Basic ideas and definitions
Consider an object moving along a line with constant velocity u (in m s−1). The distance
s (in m) travelled by the object between times t1 and t2 (in s) is given by

s = u(t2 − t1)
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This is the area ‘under’ the graph of the velocity function between t = t1 and t = t2, as
shown in Figure 8.44. This, of course, deals with the special case where the velocity is
a constant function. However, even when the velocity varies with time, the area under
the velocity graph still gives the distance travelled. Consider the velocity graph shown
in Figure 8.45(a). We can approximate the velocity–time graph by a series of small
horizontal lines that lie either entirely below the curve (as in Figure 8.45(b)) or entirely
above it (Figure 8.45(c)). An object moving such that its velocity–time graph is (b)
would always be slower at a particular time than an object with velocity–time graph (a),
so that the distance it covers is less than that of the object with graph (a). Similarly, an
object with velocity–time graph (c) will cover a greater distance than an object with
graph (a). Thus 

distance with graph (b) � distance with graph (a) � distance with graph (c) 

In cases (b) and (c), because the velocities are piecewise-constant, the distances covered
are represented by the areas under the graphs between t = t1 and t = t2. So we have

area under graph (b) � area under graph (a) � area under graph (c)

If the horizontal steps of graphs (b) and (c) are made very small, the difference between
the areas for the approximating graphs (b) and (c) becomes very small. In other words,
the distance for graph (a) is just the area under the graph between t = t1 and t = t2.

This is one of many practical problems that involve this process of area evaluation
at some stage in their solution. This process is called integration: the summing together
of all the parts that make up a given area. The area under the graph is called the
integral of the function. For some functions it is possible to obtain formulae for their
integrals; for others we have to be content with numerical approximations.

Figure 8.44
Velocity–time graph
for an object moving
with constant velocity
u. The shaded area
shows the distance
travelled by the object 
between times t1 and t2.

Figure 8.45
A velocity–time 
graph and two
piecewise-constant
approximations to it.
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Formally, we define the integral of the function f (x) between x = a and x = b to be

where a = x0 � x1 � x2 � … � xn−1 � xn = b are the points of subdivision of the 
interval [a, b],

∆xr−1 = xr − xr−1, ∆x = max(∆x0, ∆x1, … , ∆xn−1) and xr−1 � x*r � xr

Here we have used the special notation

to emphasize that n → ∞ and ∆x → 0 simultaneously. The value of the integral is
independent of both the method of subdivision of [a, b] and the choices of x*r .

The usual notation for the integral is

�
b

a

f (x)dx

where the integration symbol � is an elongated S, standing for ‘summation’. The dx
is called the differential of x, and a and b are called the limits of integration. The 
function f (x) being integrated is the integrand.

The process is illustrated in Figure 8.46, where the area under the graph of f (x) for
x � [a, b] has been subdivided into n vertical strips (by which we strictly mean that
the area has been approximated by the n vertical strips). The area of a typical strip is
given by

f (x*r )(xr − xr−1) = f (x*r )∆xr−1

where xr−1 � x*r � xr and ∆xr−1 = xr − xr−1. Thus the area under the graph can be
approximated by

This approximation becomes closer to the exact area as the number of strips is increased
and their widths decreased. In the limiting case as n → ∞ and ∆x → 0 this leads to the
exact area being given by

A = �
b

a

f (x)dx

f x xr r
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Figure 8.46
Strip about typical
value x = x*r.
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so that

(8.35)

In line with the definition of an integral, we note that if the graph of f (x) is below the 
x axis then the summation involves products of negative ordinates with positive widths,
so that areas below the x axis must be interpreted as being negative.

Example 8.37 By considering the area under the graph of y = x + 3, evaluate the integral �5
−5 (x + 3)dx.

Solution The area under the graph is shown hatched in Figure 8.47, with the area A1 being
negative, as explained immediately above, and the area A2 positive. So we determine
each area independently. In each case the areas are triangular, so that

A1 = × 2 × 2 = −2

and

A2 = × 8 × 8 = 32

Thus

�
5

−5

(x + 3)dx = A1 + A2 = −2 + 32 = 30

Example 8.38 Using the definition of an integral (8.35), show that

�
b

a

(x2 − 1)dx = (b3 − a3) − (b − a)

Solution From the definition we have:

�
b

a

(x2 − 1)dx =

=

The second term here is easy to evaluate since ∆xr−1 = xr − xr−1 and (xr − xr−1) = (x1 − x0)

+ (x2 − x1) + . . . + (xn − xn−1), which simplifies to (xr − xr−1) = b − a since x0 = a and
xn = b.

There are several different methods for evaluating the first term. Here we shall illus-
trate one method; another method is set out in Question 98 of Exercises 8.7.3. We shall
use three different choices for xr*:

x*r = xr−1, xr, ÷(xr−1xr)
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Figure 8.47
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(Notice xr−1 < ÷(xr−1xr) < xr.) Then we have

S1 = x2
r−1∆xr−1 = x2

r−1(xr − xr−1) = (x2
r−1xr − x3

r−1)

Similarly

S2 = x2
r∆xr−1 = (x3

r − x2
rxr−1)

and

S3 = xr−1xr∆xr−1 = (xr−1x
2
r − x2

r−1xr)

Hence S1 + S2 + S3 = (x3
r − x3

r−1)

= (x3
1 − x3

0) + (x3
2 − x3

1) + . . . + (x3
n − x3

n−1)

= x3
n − x3

0

In the limit n → ∞, S1, S2 and S3 tend to the same limit, so

x*r∆xr−1 → (S1 + S2 + S3) = (b3 − a3)

Hence �
b

a

(x2 − 1)dx = (b3 − a3) − (b − a)

8.7.2 Mathematical modelling using integration
We have seen that the area under the graph y = f (x) can be expressed as an integral, but
integrals have a much wider application. Any quantity that can be expressed in the form
of the limit of a sum as in (8.35) can be represented by an integral, and this occurs in
many practical situations. Because areas can be expressed as integrals, it follows that
we can always interpret an integral geometrically as an area under a graph.

Example 8.39 What is the volume of a pyramid with square base, of side 4 metres and height 6 metres?

Solution Imagine the pyramid of Figure 8.48(a) is cut into horizontal slices of thickness ∆h, as
shown in Figure 8.48(b), and then sum their volumes to give the volume of the pyramid.

From Figure 8.48(b) the volume of the slice is

∆Vk = area of square flat face × thickness = 4d 2
k ∆h

where 2dk is the length of one side of the square slice. The length of the side is related
to the height hk of the slice above the base, and using similar triangle relation (see 
Figure 8.48(c)) we have
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Figure 8.48
Pyramid of 
Example 8.38.

Figure 8.49
Schematic
representation of dam
showing strip of width
∆yk at height yk.

Thus the slice has volume

The volume of all slices is

Proceeding to the limit (n → ∞, ∆h → 0) as in (8.35) gives the volume of the pyramid
as the integral

V = �
6

0

(6 − h)2dh

We will see later, in Example 8.42, that V = 32 and the volume is 32 m3.

Example 8.40 A reservoir is created by constructing a dam across a glacial valley. Its wet face is 
vertical and has approximately the shape of a parabola, as shown in Figure 8.49. The
water pressure p (Pascals) varies with depth according to

p = p0 − gy + 10g

where p0 is the pressure at the surface, g is the acceleration due to gravity and y metres
is the height from the bottom of the parabola, as shown in the figure. Calculate the total
force acting on the wet face of the dam.

4
9

k

n

k
k

n
kV

h
h

= =
∑ ∑=

−

1 1

24 6

9
∆ ∆ 

(   )

∆ ∆V
h

hk
k=

−
 

(   )4 6

9

2

d hk k

2

6

6
  

  
=

−
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Solution From the dimensions given in Figure 8.49 the equation of the parabola is , 

where x m is the half width. Dividing the surface of the parabola into horizontal strips
we can calculate the force acting on each strip and then sum these forces to obtain the
total force acting. The force ∆Fk acting on the strip at height yk is

∆Fk = (p0 − g8k + 10g)(26k∆yk)

where 6k and 8k are the average values of x and y on [yk, yk+1]. Thus, using (8.35), the
total force F newtons is given by

= (p0 − g8k + 10g)(26k∆yk)

= �
10

0

2x(p0 − gy + 10g)dy

Now , so that 2x = (90y)1/ 2 and we may rewrite the expression for F as

F = �
10

0

3÷10( p0 + 10g − gy)÷(y)dy

Later in Example 8.45 we will show that F = 200p0 + 800g.

Example 8.41 A beam of length l is freely hinged at both ends and carries a distributed load w(x) where

Show that the total load is W and find the shear force at a point on the beam.

Solution To find the total load on the beam we divide the interval (0, l ) into n subintervals of
length ∆x, so that xk = k∆x and ∆x = l/n. Then the load on the subinterval (xk, xk+1) is
w(x*k )∆x, where w(x*k ) is the average value of w(x) in that subinterval. The total load on
the beam is the sum of all such elementary loads, and we have

This formula, while it is exact, is not very useful since we do not know the values of
the x*k ’s. By proceeding to the limit, however, x*k → xk and we obtain the formula

total load = �
l

0

w(x)dx

total load = w x xk
k

n

( *)∆
=

−

∑
0

1

w x
Wx l x l

W l x l l x l
( )  

/     /

(   )/ /     
=

−

⎧
⎨
⎪

⎩⎪

4 0 2

4 2

2

2

� �

� �

y
x

  =
2

45

2

lim
n
y k

n

→∞
→ =

∑
∆ 0 1

F F
n
y k

n

k  lim  =
→∞
→ =

∑
∆

∆
0 1

y
x

  =
2

45

2

628 DIFFERENTIATION AND INTEGRATION

..

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 628



..

8.7 INTEGRATION 629

Now the integral � l
0w(x)dx is the area under the curve y = w(x) between x = 0 and

x = l, and by considering the graph of w(x) shown in Figure 8.50 we see that this is W.
From the symmetry of the loading and the end conditions we see that the reactions

at the supports at both ends are equal (to R, say). Then the vertical forces must balance
for equilibrium, giving

2R = W

for equilibrium. To find the shear force F we have to consider the vertical equilibrium
of the portion of the beam to the left of P. Thus

R + F = load between A and P which is represented by the area under the graph
between A and P

Consideration of the areas under the graph of y = w(x) for x shows that

This simplifies as

Thus

F
Wx l W x l

W W l x l l x l
  

/   /     /

/   (   ) / /     
=

−

− −

⎧
⎨
⎪

⎩⎪

2 2 0 2

2 2 2

2 2

2 2

� �

� �

R F
Wx l x l

W W l x l l x l
    

/     /

  (   ) / /     
+ =

− −

⎧
⎨
⎪

⎩⎪

2 0 2

2 2

2 2

2 2

� �

� �

R F
x Wx l x l

W l x W l x l l x l
    

( / )     /

  (   )[ (   )/ ] /      
+ =

− − −

⎧
⎨
⎪

⎩⎪

1
2

2

1
2

2

4 0 2

4 2

� �

� �

Figure 8.50
Non-uniform 
load on a beam.
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8.7.3 Exercises

94 Two hot-rodders, Alan and Brian, compete in a
drag race. Each accelerates at a constant rate from
a standing start. Alan covers the last quarter of the
course in 3 s, while Brian covers the last third in
4 s. Who wins and by what time margin?

95 Show that the area under the graph of the constant
function f (x) = 1 between x = a and x = b (a � b)
is given by b − a.

96 Show that the area under the graph of the linear
function f (x) = x between x = a and x = b (a � b)
is given by (b2 − a2).

97 Draw the graph of the function f (x) = 2x − 1 for
−3 � x � 3. By considering the area under the
graph, evaluate the integral �3

−3 (2x − 1)dx.

98 Using n strips of equal width, show that the area
under the graph y = x2 between x = 0 and x = c
satisfies the inequality

and deduce

(a) �
c

0

x2 dx = c3 (b) �
b

a

x2 dx = (b3 − a3)

(c) �
b

a

x1/2 dx = (b3/2 − a3/2)

(Recall that ∑n
r=1r2 = n(n + 1)(2n + 1) (see

Example 7.10).)

1
6

2
3

1
3

1
3

h r h r
r

n

r

n
3 2

1

1
3 2

1=

−

=
∑ ∑� �   area

1
2

99 Using the method of Question 98 and the fact that

show that

�
b

a

x3 dx = (b4 − a4)

100 A cylinder of length l and diameter D is constructed
such that the density of the material comprising it
varies as the distance from the base. Show that the
mass of the cylinder is given by

�
l

0

KD2πx dx

where K is a proportionality constant.

101 A beam of length l is freely hinged at both ends and
carries a distributed load w(x) where

Find the shear force at a point on the beam.

102 A hemi-spherical vessel has internal radius 0.5 m.
It is initially empty. Water flows in at a constant
rate of 1 litre per second. Find an expression for
the depth of the water after t seconds.

 

w
W l x l

l x l
  

/     /

/     
=

⎧
⎨
⎪

⎩⎪

4 0 4

0 4

� �

� �

1
4

1
4

r n n
r

n
3

1

1
4

2 21
=

∑ = + (   )

8.7.4 Definite and indefinite integrals

We have seen that the area under the graph y = f (x) between x = a and x = b is given by
the integral

�
b

a

f (x)dx

Clearly, this area depends on the values of a and b as well as on the function f (x). Thus
the integral of a function f (x) may be regarded as a function of a and b. If we replace
the number b by the variable x, we obtain a function, F say, that is the area under the
graph between a and x, as shown in Figure 8.51. This type of integral is called an
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indefinite integral to distinguish it from integrals with fixed a and b, which are called
definite integrals. We have defined F by the relation

F(x) = �
x

a

f (t)dt

Notice here that the dummy variable t, used as the integrator, is chosen to be different
from the variable x on which the function F depends.

If a different lower limit is chosen, a different function is obtained, say G:

G(x) = �
x

c

f (t)dt

By interpreting an integral as the area under a curve, we see from Figure 8.52 that this
new function differs from F only by a constant. This follows since

F(x) − G(x) = �
x

a

f (t)dt − �
x

c

f (t)dt = �
c

a

f (t)dt

which is a definite integral having a constant value representing the area under the
graph between a and c, shown shaded in Figure 8.52.

For example, using the definition of an integral, we know (see Example 8.38) that

�
b

a

(t2 − 1)dt = (b3 − a3) − (b − a)

so that

�
x

a

(t2 − 1)dt = (x3 − a3) − (x − a) = x3 − x + (a − a3)

Giving a the values 1 and 2 leads to the two functions

F(x) = �
x

1

(t2 − 1)dt = x3 − x +

and

G(x) = �
x

2

(t2 − 1)dt = x3 − x −

In fact, all indefinite integrals of f(x) = x2 − 1 are of the general form

2
3

1
3

2
3

1
3

1
3

1
3

1
3

1
3

Figure 8.51 (a) Graph of y = f (x). (b) Graph of �x
a f (t)dt. Figure 8.52
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x3 − x + constant

When the lower limit is not specified, we denote the indefinite integral by

� f (x)dx or �
x

f (t)dt

and include the constant as an arbitrary constant of integration. Thus

� (x2 − 1)dx = x3 − x + c

where c is the arbitrary constant of integration.
It is important to recognize that an indefinite integral is itself a function, while a

definite integral is a number.

We noted in Section 8.2.4 that a function could only be differentiated at points where
its graph had a unique tangent, and that, for example, the function represented by the
graph of Figure 8.7(a), reproduced as Figure 8.53(a), is not differentiable at domain
values x = x1 and x = x2. However, such functions are integrable, with the corresponding
indefinite integrals being functions having ‘smooth’ graphs. For example, the graph of
the indefinite integral F(x) of the function f(x) shown in Figure 8.53(a) has the form
shown in Figure 8.53(b). For this reason, engineers often refer to integration as being a
‘smoothing’ process, and an integrator is frequently incorporated within a system design
in order to ensure ‘smoother’ operation.

We can express definite integrals in terms of indefinite integrals. Thus

�
b

a

f (x)dx = g(b) − g(a) where g(x) = � f (x)dx

This is often denoted by

�
b

a

f (x)dx = [g(x)]b
a

a notation introduced by Fourier. Thus, for example,

�
5

1

(x2 − 1)dx = [ x3 − x + c] 5
1 = [ − 5 + c] − [ − 1 + c] = 37

When evaluating definite integrals, the constant of integration can be omitted, since
it cancels out in the arithmetic.

1
3

1
3

125
3

1
3

1
3

1
3

Figure 8.53
(a) Graph of f (x). 
(b) Graph of 

F(x) = �
x

0

f (t)d(t).
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8.7.5 The Fundamental Theorem of Calculus
From Questions 95, 96 and 98 (Exercises 8.7.3) we have

�
b

a

1 dx = b − a, giving �1 dx = x + constant

�
b

a

x dx = (b2 − a2), giving �x dx = x2 + constant

�
b

a

x2 dx = (b3 − a3), giving �x2 dx = x3 + constant

The comparable results for differentiation are

k constant

Using the sum and constant multiplication rules for differentiation from Section 8.3.1,

the above results may be combined to give

These results suggest a more general result:

The process of differentiation is the inverse of that of integration.

This conjecture is also supported by elementary applications of the processes. We
obtained the distance travelled by an object by integrating its velocity function. We
obtained the velocity of an object by differentiating its distance function. The general
result is called the Fundamental Theorem of Integral and Differential Calculus, and
may be stated in the form of the following theorem.

d
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Theorem 8.1 The indefinite integral F(x) of a continuous function f (x) always possesses a derivative
F ′(x), and, moreover, F ′(x) = f (x).

Proof The formula for F(x) may be written as

F(x) = �
x

a

f (t)dt, where a is a constant

The quotient

may be written in terms of f(x) as

Consider the case when h is positive. The function f (x) is continuous, and so it is
bounded on [x, x + h]. Suppose it attains its upper bound at x1, as shown in Figure 8.54,
and its lower bound at x2. Then by considering the area under the graph, we see that

hf (x2) � �
x

x+h

f (t)dt � hf (x1)

which implies that

f (x2) � �
x

x+h

f (t)dt � f (x1)

or equivalently

As h → 0, x2 → x and x1 → x, and we obtain the result

F ′(x) = f (x)

(The proof when h is negative is similar.)

end of theorem

This theorem is of fundamental importance, and is used repeatedly in practical problem-
solving using calculus.
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Figure 8.54
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8.7.6 Exercise

103 Using the Fundamental Theorem of Integral and
Differential Calculus, evaluate the following
integrals:

(a) �x6 dx, noting that

(b) �e3x dx, noting that

(c) � sin 5x dx, noting that

= −5 sin 5x

(d) � (2x + 1)3 dx, noting that

= 8(2x + 1)3

(e) � sec23x dx, noting that

= 3 sec23x

d

dx
x(tan ) 3

d

dx
x(   )2 1 4+

d

dx
xcos  5

d

d
e e

x
x x3 33= 

d

dx
x x7 67= 

(f ) � dx, noting that

(g) � dx, noting that

(h) �cos 2x dx, noting that

= 2 cos 2x

(i) � sec 4x tan 4x dx, noting that sec 4x

= 4 sec 4x tan 4x

( j) �÷(4x − 1)dx, noting that (4x − 1)3/2

= 6(4x − 1)1/2

d

dx

d

dx

d

dx
xsin 2

d

dx x x

1 1
2

⎛
⎝⎜

⎞
⎠⎟ = −  

3
2x

d

dx
x

x
ln   =

12

x

8.8 Techniques of integration

In this section we consider some of the methods available for determining the integrals
of functions. Again we shall concentrate on developing techniques, leaving problem-
solving applications for later in both this chapter and the rest of the book. The techni-
cal process of obtaining integrals is much more complicated than that of obtaining
derivatives. In the following sections the techniques for finding integrals are discussed,
but these techniques are often interconnected. It is strongly recommended that the 
student works through the examples, line by line, to gain experience in using these tech-
niques. The integrals of many functions cannot be expressed in terms of elementary
functions and sometimes these integrals themselves define new functions. An example
of this is the error function erf(x) defined by

This occurs in the analysis of heat transfer. A related function also occurs in applied
statistics (see Section 13.5.3).

  
erf e d( )  x t

x

t= −2

0

2

÷π�
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8.8.1 Integration as antiderivative
Applying the Fundamental Theorem of Calculus to some of the standard derivatives
deduced in Section 8.3, we deduce the integrals given in Figure 8.55. A more extensive
list is given in the Appendices A1.3 and A1.4. Note that we have used the notation

To help extend the number of functions that can be integrated analytically, using the
results of Figure 8.55, the following rules may be used.

Rule 1 (scalar-multiplication rule)
If k is a constant then

�kf(x)dx = k� f (x)dx

Rule 2 (sum rule)

� [ f (x) ± g(x)]dx = � f (x)dx ± �g(x)dx

Rule 3 (linear composite rule)
If a and b are constants and F′(x) = f (x) then

� f (ax + b)dx = F(ax + b) + constant, a ≠ 0
1

a

ln   
ln ,   

ln( ),   
| |x

x x

x x
=

−

⎧
⎨
⎩

�

�

0

0

f (x) sf (x)dx 
Here c is a constant of integration

xn (n ≠ −1)

= ln | x | + c

sin x −cos x + c

cos x sin x + c

e x ex + c

sec2x tan x + c

sin−1 x + c

tan−1 x + c
1

1 2  + x

1

1
1

2÷(   )
,   

− x
x| | �

 

ln    (   )

ln( )    (   )

x c x

x c x

+
− +

⎫
⎬
⎭

�

�

0

0

1

x

x

n
c

n+

+
+

1

1  
  

Figure 8.55
Some standard
integrals.
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Rule 4 (inVerse-function rule)
If y = f −1(x), so that x = f (y), then

� f −1(x)dx = xy − � f (y)dy

Rule 5 (integration by parts)

� f(x)g′(x)dx = f(x)g(x) − � f ′(x)g(x)dx

Rule 6 (composite function rule)

� f ′(g(x))g′(x)dx = f(g(x)) + constant

Rules 1–3 follow directly from the definition of an integral, while Rule 4 may be
demonstrated graphically, as illustrated in Figure 8.56. Rules 5 and 6 are discussed in
Sections 8.8.3 and 8.8.5.

Example 8.42 Find the indefinite integrals of

(a) 6x4 + 4x − (b) (2 − x)÷x (c) ÷(5x + 2) (d)

Solution (a) Using the scalar-multiplication and sum rules,

= x5 + 2x2 − 3 ln | x | + constant

using the standard integrals of Figure 8.53.

6
5

 � � � �6 4
3

6 4 3
14 4x x

x
x x x x x

x
x+ −⎛

⎝
⎞
⎠ = + −            d d d d

x

x

  + 13

x

Figure 8.56
Illustration of 
�f −1(x)dx =
xy − �f (y)dy.
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(b) Looking at the function, we see that because it involves a square root, its domain
is restricted to values of x � 0. Multiplying through the brackets and using the scalar-
multiplication and sum rules, we have

� (2 − x)÷x dx = 2�x 1/2 dx − � x 3/2 dx

= x3/2 − x 5/2 + constant (x � 0)

(c) Examining the function, we see in this case that its domain is restricted to values of
x greater than or equal to . We note that the formula is the square root of a linear
function, and so we use the linear composite rule to obtain its integral. Thus, since

�÷x dx = x3/2 + constant

we obtain

�÷(5x + 2)dx = [ (5x + 2)3/2] + constant

= (5x + 2)3/2 + constant (x � )

(d) In this case we see that the function is defined except at x = 0. Expressing (x + 1)/x
as 1 + 1/x and using the sum rule, we obtain

= x + ln | x | + constant

Example 8.43 Evaluate the definite integrals

(a) �
1

2

(x4 + 6x2 − 4)dx (b) �
1

2

dx

(c) �
4

−2

4exdx (d) �
0

π/6

(cos 3x + 2 sin 3x)dx

Solution (a) Integrating each term in the intgrand separately and then summing we have:

�
1

2

(x4 + 6x2 − 4)dx = [ x5 + 2x3 − 4x]1
2

= [ + 2.8 − 4.2] − [ + 2 − 4]

= 16 1
5

1
5

32
5

1
5

(   )x

x

2 2

2

1−

=
+ +

+ − +

⎧
⎨
⎩

 
  ln   (   )

  ln( )  (   )

x x x

x x x

constant

constant

�

�

0

0

 � � � �x

x
x

x
x x

x
x

  
        

+
= +⎛

⎝
⎞
⎠ = +

1
1

1 1
d d 1d d

− 2
5

2
15

2
3

1
5

2
3

− 2
5

2
5

4
3
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(b) Expanding the integrand and then integrating term by term we obtain:

= [ − 4 − ] − [ − 2 − 1] =

(c) �
4

−2

4exdx = [4ex]4
−2 since (ex) = ex

= 4(e4 − e−2)

(d) �
0

π/6

(cos 3x + 2 sin 3x)dx = [ sin 3x − cos 3x]0
π/6

= + = 1

Example 8.44 Using the inverse-function rule, obtain the integrals of

(a) sin−1x (b) ln x

Solution (a) If y = sin−1x then x = sin y and

� sin−1x dx = xy − � sin y dy

= xy + cos y + constant

which, on using the identity sin2y + cos2y = 1, gives

� sin−1x dx = x sin−1x + ÷(1 − x2) + constant

since cos y � 0 on the domain of sin−1x.

(b) If y = ln x then x = ey, and

� ln x dx = xy − �ey dy = xy − ey + constant

= x ln x − x + constant

since eln x = x.

2
3

1
3

= − − − [ sin   cos ]  [ sin   cos ]1
3 2

1
3 2

1
3

2
30 0π π

2
3

1
3

d
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3
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2
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1
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MATLAB’s Symbolic Math Toolbox and MAPLE can evaluate both indefinite and
definite integrals. If y = f (x) then the MATLAB command int(y) returns the
indefinite integral of f(x), provided it exists in closed form. (Symbolic integration is
more difficult than symbolic differentiation and difficulties can arise in computing
the integral.) Thus in MATLAB the indefinite integral of y = f (x) is returned using
the commands

syms x y

y = f(x); int(y)

To determine the definite integral of y = f (x) from x = a to x = b the last command is
replaced by

int(y,a,b)

The corresponding commands in MAPLE are

y:= f(x); int(y,x); int(y,x = a..b);

Note that MATLAB and MAPLE do not supply a constant of integration when evalu-
ating indefinite integrals. To illustrate, we consider Examples 8.42(a) and (c). For
Example 8.42(a) the commands

MATLAB MAPLE
syms x y

y = 6*x^4 + 4*x – 3/x; y:= 6*x^4 + 4*x – 3/x;

int(y); int(y,x);

pretty(ans)

return the integral as

6/5x5 + 2x2 – 3log(x)

For Example 8.42(c) the commands

syms x y

y = sqrt(5*x + 2); y:= sqrt(5*x + 2);

int(y); int(y,x);

pretty(ans)

return the integral as

2/15(5x + 2)3/2 (5x + 2)(3/2)

For practice, check the answers to Examples 8.42(b) and (d) using MATLAB or
MAPLE.

Example 8.45 Evaluate the following integrals encountered earlier in Section 8.7.2:

(a) �
6

0

(6 − h)2dh (b) �
10

0

3÷10(p0 + 10g − gy)÷(y)dy4
9  

2

15
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Solution (a) Notice first of all that the label used for the integrating variable in a definite
integral does not affect the value of the integral. It is a dummy variable. Thus

�
6

0

(6 − h)2dh = �
6

0

(6 − x)2dx

Expanding the integrand, we have

�
6

0

(6 − x)2dx = �
6

0

(36 − 12x + x2)dx = [36x − 6x2 + x3]6
0

= [36 × 6 − 6 × 36 + × 216] − [0]

= [72] = 32

as predicted in Example 8.39.

(b) �
10

0

3÷10(p0 + 10g − gy)÷(y)dy = 3÷10�
10

0

[(p0 + 10g)y1/2 − gy3/2]dy

= 3÷10[ (p0 + 10g)y3/2 − gy5/2]10
0

= 3÷10[ (p0 + 10g)103/2 − g105/2] − 0

= 200p0 + 800g

as predicted in Example 8.40.

Example 8.46 (a) An object moves along a straight line. Its displacement from its initial position is
s(t). Show that its velocity v(t) is given by s′(t). The acceleration of the object is a(t).
Show that

v(t) = v(0) + �
t

0 

a(t)dt

and deduce that a(t) = s″(t).

(b) A ball bearing travels along a track with velocity v(t) ms−1 given by the function

v(t) = 8 − 0.5t2

where t is the time in seconds. Calculate the exact distance travelled by the ball bear-
ing over the time periods (0, 4) and (4, 5). Obtain also the formula for the acceleration
of the ball bearing at time t.

Solution (a) Velocity is defined as the rate of change of displacement, so that in the time interval 

(t, t + ∆t), the rate of change is . This is the average rate of change over 

the time interval. The instantaneous rate of change at time t, the velocity, is given by
the limit ∆t → 0. That is:

s t t s t

t

(   )  ( )+ −∆
∆

2
5

2
3

2
5

2
3

4
9  

4
9  1

3
4
9  

1
3

4
9  4

9  4
9  

4
9  4

9  
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from the definition of a derivative.
In the same way, the acceleration a(t) at time t is given by the instantaneous rate of

change of velocity v(t)

By the Fundamental Theorem of Calculus, we have

v(t) = v(0) + �
t

0

a(t)dt

(b) The distance s(t) m travelled by the ball bearing after t seconds satisfies the differ-
ential equation

Thus the distance travelled over the time period (0, 4) is

s(4) − s(0) = �
4

0

(8 − t2)dt = [8t − t3]4
0

= 32 − (64) = 21

so the distance travelled is 21 m.
The distance travelled over the time interval (4, 5) is given by

s(5) − s(4) = �
5

4

(8 − t2)dt = [8t − t3]5
4 = −

so the distance travelled is 2 m in the opposite direction.

Example 8.47 Find the definite integrals

(a) (b)

(c) (d)

Solution (a) Here we use the standard integral = sin−1 x + c.

Rewriting the integrand we have .
1

3
1

3

2÷

÷

�
�

dx

x
  − ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  �
dx

x÷(   )1 2−

 
�

− + +5

5

2 10 50

dx

x x     
�

0

2

24

dx

x  +

  
�

0

2

23 2

dx

x x÷(     )+ −  
�

0

1

23

dx

x÷(   )−

1
6

13
6

1
6

1
2

1
3

1
3

1
6

1
6

1
2

 

d

d

s

t
t  ( )= v

 
a t

t t t

t
t

t
( )  lim

(   )  ( )
  ( )=

+ −
= ′

→∆

∆
∆0

v v
v

 
v( )  lim

(   )  ( )
  ( )t

s t t s t

t
s t

t
=

+ −
= ′

→∆

∆
∆0
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Then using the linear composite rule with a = we deduce that

(b) Rewriting the integrand and using the linear composite rule again:

(c) Here we recall = tan−1x + c.

Rewriting the integrand we have

using the linear composite-function rule. Thus

(d) Rewriting the integrand we have

= [5 tan−1( + 1)]5
−5

= [tan−1 2 − tan−1 0] = tan−1 2

Comment From these examples we can deduce two more standard integrals:

 �
dx

a x a

x

a
c

2 2
11

  
  tan   

+
= +−

  �
dx

a x

x

a
c

÷(   )
  sin   

2 2
1

−
= +−

1
5

1
5

x
5

1
25

 
=

+ +−

 
  (   )

1
25

5

5

5
21 1� 1

d
x

x

 
� �

− −+ +
=

+ +5

5

2
5

5

2 210 50 5 5

1
d

1
d

x x
x

x
x

    
  

(   )   

 
�

0

2

2
1
2

1

4
1

8

dx

x  
  tan   

+
= =− π

 

� �
0

2

2
1
4

0

2

2
1
4

1

0

2

4
1

2

2
2

d dx

x

x

x

x

  
  

  

  tan
+

=
+ ⎛

⎝
⎞
⎠

= ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

−

 �
1

1 2  + x
xd

= − − =− − sin ( )  sin ( )  1 1
2

1 1
2 3

π

= ×
−⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

−   sin
  1

2
2

1

2
1

0

2
x

=

−
−⎛

⎝
⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  
  

1
2

0

2

2

1

1
1

2

�
� x

xd

  
� �

0

2

2
0

2

2

1

3 2

1

4 1÷ ÷(     )
  

[   (   ) ]+ −
=

− −x x
x

x
xd d

�
0

1

2
1
3

3
1

1

0

1

1

3 3

1

3 3

dx

x

x

÷ ÷ ÷÷
÷

(   )
  sin   sin   

−
= ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = ⎛

⎝⎜
⎞
⎠⎟

=− − π
 

1
3÷
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8.8.2 Integration of piecewise continuous functions

In addition to the rules given earlier, two further results follow immediately from the
basic definition of an integral. These are

�
b

a

f(x)dx = −�
a

b

f(x)dx

and

�
b

a

f(x)dx = �
c

a

f(x)dx + �
b

c

f(x)dx

(Thus we may break the interval [a, b] into convenient subintervals if the function is
defined piecewise, as illustrated in Example 8.48.)

Example 8.48 Evaluate

(a) �
2

−1

| x |dx (b) �
0

10

H(x − 5)dx

where H is the Heaviside step function given by (2.45).

Solution The areas involved are illustrated in Figure 8.57.

(a) Since

we split the integral at x = 0 and write

(b) Since H(x − 5) has a discontinuity at x = 5, we write

�
0

10

H(x − 5)dx = �
0

5

H(x − 5)dx + �
5

10

H(x − 5)dx = �
0

5

0 dx + �
5

10

1 dx = 5

These results can be readily confirmed by inspection of the relevant areas.

 
� � �

− −
−= − + = − + =

1

2

1

0

0

2
1
2

2
1

0 1
2

2
0
2 5

2| |x x x x x x x xd d d      [ ]  [ ]  

| |x
x x

x x
  

(   )

(   )
=

−⎧
⎨
⎩

�

�

0

0
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We see from this last example that it is sometimes possible to integrate functions 
even if they have discontinuities. This is possible provided that there are only a finite
number of finite discontinuities within the domain of integration and that elsewhere 
the function is continuous and bounded. To illustrate this, consider the function f (x)
illustrated in Figure 8.58 where

Such a function is called a piecewise-continuous function. Interpreting the integral as
the area under the curve, we have

�
b

a

f (x)dx = A1 + A2 + A3

but in this case we interpret the individual areas as

�
b

a

f (x)dx =

where, as before, b1
− signifies approaching b1 from the left and b1

+ signifies approaching
b1 from the right (see Section 7.8.1). It is in this sense that we evaluated �0

10H(x − 5)dx
in Example 8.48, and – strictly speaking – we should have written

�
0

10

H(x − 5)dx = �
0

5−

H(x − 5)dx + �
5

10

+

H(x − 5)dx 

and, since

�
0

10

H(x − 5)dx = 0 dx + �
5

10

+

1 dx = 5�
0

5−

H x
x

x
(   )  

(   )

(   )
− =

⎧
⎨
⎩⎪

5
0 5

1 5

�

�

 
� � �

a

b

b

b

b

b

f x x f x x f x x
1

1

2

2

1 2 3

−

+

−

+

+ +( )   ( )   ( )d d d

y f x

f x a x b

f x b x b

f x b x b

  ( )  

( ) (     )

( ) (    )

( ) (    )

= =

⎧

⎨
⎪

⎩
⎪

1 1

2 1 2

3 2

� �

� �

� �

Figure 8.58
Piecewise-continuous
function.
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Considering Example 8.48(a) the commands

MATLAB MAPLE
syms x y

y = abs(x); y:= abs(x);

int(y,–1,2) int(y,x = –1..2);

return the answer 5/2
and, for Example 8.48(b), the commands

syms x y

y = sym(‘Heaviside(x – 5)’)

int(y,0,10) int(Heaviside(x – 5), x = 0..10);

return the answer 5

Example 8.49 As shown in Example 8.7, the bending moment M and shear force F acting in a beam
satisfy the differential equation

In Example 8.41, we showed that for a continuously non-uniformly loaded beam which
is freely hinged at both ends the shear force F is given by

Given that M = 0 at x = 0, find an expression for M(x) at a general point.

Solution Since with M(0) = 0 we deduce by the Fundamental Theorem

M(x) = �
0

x

F(t)dt

In evaluating this integral we have to remember that F(x) is defined separately on 
(0, l/2) and (l/2, l ).

For x � l/2, we have

M(x) = �
0

x

(2Wt2/l2 − W/2)dt

For x � l/2, we have

M(x) = �
0

l/2

(2Wt2/l2 − W/2)dt + �
x

l/2

(W/2 − 2W(l − t)2/l2)dt

d

d

M

x
F x  ( )=

F x
Wx l W x l

W W l x l l x l
( )  

/   /     /

/   (   ) / /     
      =

−

− −

⎧
⎨
⎪

⎩⎪

2 2 0 2

2 2 2

2 2

2 2

� �

� �

F
M

x
  =

d

d

646 DIFFERENTIATION AND INTEGRATION

..

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 646



8.8 TECHNIQUES OF INTEGRATION 647

..

Thus

8.8.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

M x

Wx

l
x l x l

W l x

l
l x l l x l

( )  

(  )     /

(   )
( (   )  ) /     

=

−

−
− −

⎧

⎨
⎪
⎪

⎩
⎪
⎪

6
4 3 0 2

6
4 3 2

2
2 2

2
2 2

� �

� �

104 Find the indefinite integrals of

(a) 3x 2/ 3 (b) ÷(2x)

(c) (d) 2ex + 3 cos 2x

(e) (f) (2x + 1)3

(g) (1 − 2x)1/3 (h) (2x2 + 1)3

( i) cos(2x + 1) ( j) 2x (Hint: 2 = eln 2)

105 Evaluate the definite integrals

(a) (b) �
1

0

x(x − 1)11dx

(c) (d) �
0

π/2

sin x dx

(e)

(Hint: Replace the x in (a) by (x + 1) − 1 and in (b)
by (x −1) + 1.)

106 Find the indefinite integrals of

(a) x−2 (b) (x + 1)−1/3

(c) (d) sin x + cos x

(e) ( f)

(g) (h)
1

4 2÷(   )− x

1

1 9 2÷(   )− x

1

2 2÷(   )x x−
1

9 16 2  
 

− x

4 7 13 2

2

x x

x

− +  

  
�

0

2

23 2

dx

x x÷(     )+ −

 
�

1

2

3 2
2

1
x

x
x/  −⎛

⎝⎜
⎞
⎠⎟ d

�
2

3

1

x x

x

d

÷(   )+

x
x

x2
2

3
1

+ −  e

2 2
1

23 2x x
x

− + −    

(i) ( j)

(k) (l)

107 Evaluate

(a) �
3

0

| x − 2 | dx (b) �
5

0

(x − 2)H(x − 2)dx

(c) �
3

0

8x9 dx (d) �
3

0

FRACPT(x)dx

(e) �
3

0

x 8x 9 dx

108 The function f (x) is periodic with period 1 and is
defined on [0, 1] by

f (x) = 1 0 � x �

f (x) = −1 � x � 1

Sketch its graph and obtain the graph of

g(x) = �
x

0

f (t)dt

for −4 � x � 4. Show that g(x) is a periodic
function of period 1.

109 Draw the graph of the function f (x) defined by

f (x) = �
x

0

sin−1(sin t)dt

for −2π � x � 2π (see Example 2.51).

1
2

1
2

1

6 132x x+ +   

1

5 4 3÷(     )+ −x x

1

1÷[ (   )]x x−
1

1 2÷(     )− −x x

..
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8.8.4 Integration by parts

The product rule for differentiation

may also be used for integration after a little rearrangement. From the above we have

and on integrating we have

We may use this result to determine an integral when the integrand is the product of the
two functions. The method is called integration by parts. The procedure is to choose
one term of the product to be u and the other to be dv/dx. We then calculate du/dx and
v, and the hope is that the resulting integral on the right-hand side is easier than the one
we started with. We shall illustrate the method with a few examples.

Example 8.50 Find the indefinite integrals of

(a) x ln x (b) x2 cos x (c) ex sin 2x

Solution (a) With this integral, we set

u = ln x and = x

giving

Note: There is no need to introduce a constant of integration when determining v.
Substituting in the formula for integration by parts gives

dv/dx u v u v du/dx

↓ ↓ ↓ ↓ ↓ ↓

= − + ln    1
2

2 1
4

2x x x constant

 � � �x x x x x x
x

x x x x xln   ( ) ln   ( )   ln   d d d= − ⎛
⎝

⎞
⎠ = −1

2
2 1

2
2 1

2
2 1

2

1

 

d

d
and

u

x x
x            = =

1 1
2

2v

d

d

v
x

� �u
x

x u
u

x
x

d

d
d

d

d
d    = −

u
x x

u
u

x

d

d

d

d

d

d

v
v v  ( )  = −

d

d

d

d

d

dx
u

u

x
u

x
( )    v v

v
= +
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(b) Since differentiation reduces the squared term to a linear one, leading to some
simplification, we choose

u = x2 and = cos x

so that

= 2x and v = sin x

Integration by parts then gives

u dv/dx u v v du/dx

↓ ↓ ↓ ↓ ↓ ↓

�x2 cos x dx = x2(sin x) − � (sin x)(2x)dx = x2 sin x − 2�x sin x dx

We now apply the same technique to the last integral, taking

u = x and = sin x

to give

�x sin x dx = (x)(−cos x) − � (−cos x)(1)dx = −x cos x + sin x + constant

Substituting back gives

�x2 cos x dx = x2 sin x − 2(−x cos x + sin x) + constant

= x2 sin x − 2 sin x + 2x cos x + constant

(c) In this case it is not obvious that any choice of u and v will result in a simpler 
integral. Setting

u = sin 2x and = ex

(only because integrating sin 2x will mean dividing by 2 and getting clumsy fractions!)
gives

= 2 cos 2x and v = ex

Integration by parts then gives

d

d

u

x

d

d

v
x

d

d

v
x

d

d

u

x

d

d

v
x
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�ex sin 2x dx = ex sin 2x − �ex(2 cos 2x)dx

= ex sin 2x − 2�ex cos 2x dx

which has produced no simplification at all. We repeat the process, however, on the last
integral, taking care to integrate the part we integrated the first time and to differentiate
the part we differentiated the first time. Thus we take

u = cos 2x and = ex

giving

�ex cos 2x dx = ex cos 2x − �ex(−2 sin 2x)dx

= ex cos 2x + 2�ex sin 2x dx

Substituting in the previous expression, we obtain

�ex sin 2x dx

Hence

5�ex sin 2x dx = ex(sin 2x − 2 cos 2x)

so

�ex sin 2x dx = ex(sin 2x − 2 cos 2x) + constant

For Example 8.50(b) the MATLAB commands

syms x y

y = (x^2)*cos(x); int(y); pretty(ans)

return the integral as x2sin(x) – 2sin(x) + 2xcos(x), which checks with the
given solution.

For practice, check the answers to Examples 8.48(a) and (c) using MATLAB or
MAPLE.

1
5

= − +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 sin   cos   sine e e dx x xx x x x2 2 2 2 2�

d

d

v
x
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8.8.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible

110 Use integration by parts to find the indefinite
integrals of

(a) x sin x (b) xe3x (c) x3 ln x

(d) e−2x sin 3x (e) x tan−1x (f ) x cos 2x

111 Using integration by parts, evaluate the definite
integrals

(a) �
0

π/2

x 2 sin x dx

(b) �
3

1

x 2 ln x dx

(c) �
1

0

xe3x dx

8.8.6 Integration using the general composite rule

The composite-function rule for differentiation

[ f (g(x))] = f ′(g(x))g′(x)

can be used to evaluate some integrals. Reversing the differentiation process, we 
may write

� f ′(g(x))g′(x)dx = f (g(x)) + constant

The key step here is identifying the function g(x). This will not be unique: different
choices of g(x) may differ by a constant. To make the process of manipulation easier to
follow, it is usual to set t = g(x), so that the integral becomes

� f ′(g(x))g′(x)dx = � f ′(t) dx = � f ′(t)dt = f (t) + constant

= f (g(x)) + constant (on back substitution)

which is the composite function rule for integration.
This technique for evaluating integrals is called the substitution method; we shall

illustrate its use with a number of examples.

Example 8.51 Find the indefinite integrals

(a) �2x÷(x2 + 3)dx (b)
 �

x

x x
x

  

   

+
+ +

1

2 22
d

dt

dx

d

dx
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Solution (a) Comparison with the general form above suggests that we take

g(x) = x2 + 3, with g′(x) = 2x

Setting t = x2 + 3 so that = 2x, the integral becomes

= t3/2 + constant = (x2 + 3)3/2 + constant

(b) Comparison with the general form suggests that we choose

g(x) = x2 + 2x + 2, with g′(x) = 2x + 2

This necessitates a slight modification of the integral giving

where t = x2 + 2x + 2 and dt = (2x + 2)dx. Thus

Comment This example is a special case of a commonly occurring form when the integrand 
can be written as

so that the integral is the logarithm of the denominator.

8.8.7 Exercises

derivative of denominator

denominator

 
� x

x x
x t x x

  

   
  ln     ln(    )  

+
+ +

= + = + + +
1

2 2
2 2

2
1
2
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2

2d constant constant

 
� � �x

x x
x

x

x x
x

t
t

  

   
   

  

   
   

+
+ +

=
+

+ +
=

1

2 2

2 2

2 2

1
2

1
2 2

1
2d d d

2
3

2
3

  
� � �2 32 1 2x x x

t

x
t x t t÷ ÷(  )     /+ = =d

d

d
d d

d

d

t

x

112 Use the composite function rule to integrate the
following functions:

(a) x÷(1 + x 2) (b) cos x sin3x (c)

(d) (e) (f) sin3x cos5x

(g) (h)
x

x÷(   )4 2−
x

x(   )1 2 2+

2 3

3 22

x

x x

  

   

+
+ +

x

x÷(  )2 1−

x

x(   )1 2 2+

113 Find the values of the constants a and b such that

and hence find its integral. (Note that
(d/dx)(x 2 + 2x + 5) = 2x + 2.)

114 Use the technique of Question 113 to integrate

(a)
x

x x

  

   
 

+
+ +

1

4 52

3 2

2 5

2 2

2 5 2 52 2 2

x

x x

a x

x x

b

x x

  

   
  

(   )

   
  

   

+
+ +

=
+

+ +
+

+ +
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8.8.8 Integration using partial fractions

In this section, we consider the use of partial fractions in evaluating integrals of ratio-
nal functions. Partial fractions, discussed earlier in Section 2.5.1, are so frequently used
to evaluate such integrals that one talks of the partial fraction method of integration.

Example 8.52 Using partial fractions, evaluate the integrals

(a) (b) (c)

Solution (a) Factorizing the denominator as x 2 − 2x − 8 = (x + 2)(x − 4), we can express the 
integrand in terms of its partial fractions:

Thus

= −ln | x + 2 | + ln | x − 4 | + constant

(b) In partial fractions we have

9

1 2

1

1

1

2

3

22 2(   )(   )
  

  
  

  
  

(   )x x x x x− +
=

−
+

−
+

+
−
+

=
−
+

+ ln
  

  
  

x

x

4

2
constant

 � � �6
d d d

2x x
x

x
x

x
x

− −
=

−
+

+
−   

  
  

  
  2 8

1

2

1

4

6
2x x x x x x− −

=
+ −

=
−
+

+
−   

  
(   )(   )

  
  

  
  2 8

6

2 4

1

2

1

4

 
�

0

6

2

1

5 6x x
x

    + +
d

 �
9

1 2 2(   )(   )x x
x

− +
d

 �
6

d
2x x

x
− −   2 8

....

(b)

(c)

115 Evaluate the following definite integral with the
given substitution:

(a) , with u = 5 + 6x

(b) , with u = tan−1x
  
�

0

3 1

21

÷
tan

  

−

+
x

x
xd

�
1 6

1

35 6
/

(   )

/2
dx

x+

sin

sin   cos

x

x x+

2 3

5 4 2

x

x x

  

(     )

+
+ −÷

(c) , with u = ÷x − 1

(d) , with u = ÷x

116 Show that

� f (x)dx = xf(x) − �xf ′(x)dx

Use this result to integrate

(a) sin−1x (b) ln x (c) cosh−1x (d) tan−1x

  
�

1

4
e

d
÷

÷

x

x
x

  
�

4

9

1

dx

x x(   )÷ ÷−
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Then

= ln | x − 1 | − ln | x + 2 | + 3(x + 2)−1 + constant

(c) In partial fractions we have

so that

= [ln(x + 2) − ln(x + 3)]6
0

= ln( ) − ln( ) = ln 4 − ln 3 = ln( )

When the rational function has an irreducible quadratic factor we make use of the integral

as illustrated in Example 8.53.

Example 8.53 Find the indefinite integrals of

(a) (b) (c)

Solution (a) The denominator here is an irreducible quadratic:

Using the standard form above, we have

(b) Expressing the integrand as partial fractions we have

1

1 2 2 1 2 22 2(   )(     )
  

  
  

  

    x x x
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x
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x x+ + +
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10 50
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52
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5 52 2 2x x
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5 6
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or 1 ≡ A(x2 + 2x + 2) + (x + 1)(Bx + C)

Setting x = −1 gives 1 = A

Setting x = 0 gives 1 = 2A + C giving C = −1

Setting x = 1 gives 1 = 5A + 2B + 2C giving B = −1

Thus

= ln(x + 1) − ln(x2 + 2x + 2) + c

(c) Using the result of Example 2.35, we have

Thus

Example 8.54 Evaluate .

Solution Expressing the integrand as partial fractions, we have

Thus 2 ≡ (Ax + B)(1 + x2) + (Cx + D)(1 + 2x + x2)

Comparing coefficients of each power of x gives

x0 : B + D = 2

x1 : A + C + 2D = 0

x2 : B + D + 2C = 0

x3 : A + C = 0

from which we deduce A = 1, B = 2, C = −1 and D = 0. Thus

= + ln 21
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1
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117 Using partial fractions, integrate

(a) (b)

(c) (d)

(e) (f)

(g) (h)
1

1 2 2    + −x x

1

1 2x x x(   )(   )
 

− −

1

12x x(   )−
1

12x − 

x

x x2 2 1+ +   
 

1

1x x(   )
 

+

x

x(   )− 2 2

x

x x2 3 4− −   

(i) ( j)

(k) ( l)

118 Express 12/(x − 3)(x + 1) in partial fractions and
hence show that
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3 1
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x x
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x x
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1 1
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1 1
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− +
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2

1

3

3

x

x − 
 

8.8.10 Integration involving the circular and hyperbolic functions

We have seen in many examples earlier in the chapter how a carefully chosen rearrange-
ment of the integrand makes it possible to evaluate non-standard integrals. This re-
arrangement method is widely used to find integrals of products of sines and cosines.
This makes use of the trigonometric sum identities (Section 2.6.4) as well as the rules
of integration. The same techniques are used with the hyperbolic sines and cosines.

Example 8.55 Find the indefinite integrals of

(a) cos2x (b) sin(5x + 1)cos(x + 2)

Solution (a) First we express cos2x in terms of cos 2x using the identity

cos 2x = 2 cos2x − 1

So �cos2x dx = � (cos 2x + 1)dx

= sin 2x + x + constant

(b) First we express the product as the sum of two sine terms

sin(5x + 1)cos(x + 2) = [sin(6x + 3) + sin(4x − 1)]

Then we evaluate the integral using the rules of integration

� sin(5x + 1)cos(x + 2)dx = − cos(6x + 3) − cos(4x − 1) + constant

In other examples we make use of the general composite function rule and of integra-
tion by parts.

1
8

1
12

1
2

1
2

1
4

1
2
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Example 8.56 Find the indefinite integrals of

(a) sin3x cos2x (b) tan x

Solution (a) Here we can rewrite the product as

sin x(1 − cos2x)cos2x

So we have the integral

� sin3x cos2x dx = � (cos2x sin x − cos4x sin x)dx

Now (cos x) = −sin x, so using the general composite rule we have

� sin3x cos2x dx = − cos3 x + cos5x + constant

(b) Here, again, we notice that (cos x) = −sin x, to obtain

and since = sec x, we may write this as

� tan x dx = ln sec x + constant

Sometimes using different methods to find an integral may give results that appear dif-
ferent but only differ by a constant.

Example 8.57 Find the indefinite integrals of

(a) sinh 5x cosh 2x (b) sech x

Solution (a) Here we rewrite the integrand as (sinh 7x + sinh 3x) to obtain

� sinh 5x cosh 2x dx = cosh 7x + cosh 3x + constant1
6

1
14

1
2

1

cos x

 � �tan   
sin

cos
  ln cos   x x

x

x
x xd d constant= = − +

d

dx

1
5

1
3

d

dx

....
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Alternatively we can express the integrand in terms of exponential functions

� sinh 5x cosh 2x dx = � (e5x − e−5x)(e2x + e−2x)dx

= � (e7x − e−7x + e3x − e−3x)dx

= (e7x + e−7x) + (e3x + e−3x) + constant

= cosh 7x + cosh 3x + constant

(b)

= 2 tan−1(ex) + constant

Alternatively we can write

= tan−1(sinh x) + constant

since (sinh x) = cosh x.

It is left as an exercise for the reader to show (using the result of Question 68 of
Exercises 2.6.9) that

2 tan−1(ex) = tan−1(sinh x) −

8.8.11 Exercises

π
2

d

dx

 � � �1

12 2cosh
  

cosh
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cosh

  sinhx
x

x

x
x

x

x
xd d d= =

+
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(   )
  

  
h d

e e
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e

e
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x x
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+
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1 2

11
2

2

1
6

1
14

1
3

1
4

1
4
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119 Find the indefinite integrals

(a) sin 3x cos 5x (b) cos 7x cos 5x

(c) sin2x (d) cos2x

(e) cosh2x (f) sinh(5x + 1)

120 Evaluate the definite integrals

(a) �
π

0

sin 5x sin 6x dx (b) �
π

0

sin25x dx

8.8.12 Integration by substitution

Sometimes it is possible to simplify an integral by means of a change of integrating
variable. This uses the composite-function rule (Section 8.8.6) in a slightly different
way. This is illustrated in Example 8.58.
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Example 8.58 Find the indefinite integral

Solution The source of the difficulty with this integral is the square-root term in the denominator.
We try to simplify the integral by the substitution t = ÷(1 − x). Thus x = 1 − t2 and 
dx/dt = −2t, giving

= 4 ln(2 + t) − 2t + constant

= 4 ln[2 + ÷(1 − x)] − 2÷(1 − x) + constant

The choice of such substitutions is not always immediately obvious. We shall consider
a further example and then give a list of substitutions commonly used to simplify 
integrals.

Example 8.59 Find the indefinite integral �÷(1 − x2)dx, 0 � x � 1.

Solution Based on our experience with Example 8.51, we are tempted to try to remove the
square-root term using the substitution

u = ÷(1 − x2)

Then u2 = 1 − x2 and 2u = −2x dx /du, so that

giving

which leaves us with an integral more complicated than the one with which we started.
Thus in this case the simple substitution does not work, and we need to look for a

more sophisticated substitution, bearing in mind that what we wish to do is to remove
the awkward square-root term ÷(1 − x2). Noting that cos2θ = 1 − sin2θ we try the 

substitution x = sin θ, so that = cos θ, giving
d

d

x

θ
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(   )
1

1
2

2

2
− = −

−
x x

u u

u
d

d

d

d

x

u

u

x

u

u
    

(   )
= − = −

−÷ 1 2

 
=

−
+

=
+

−⎛
⎝

⎞
⎠ 

  
   

  
  � �2

2
2

2

2
1

t

t
t

t
td d

  
� � �1

2 1

1

2

1

2
2

  (   )
  

  
  

  
( )

+ −
=

+
=

+
−

÷ x
x

t

x

t
t

t
t td

d

d
d d

  
� 1

2 1  (   )+ −÷ x
xd

....
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= �cosθ cosθ dθ

= �cos2θ dθ

which looks simpler than the original integral but is not immediately integrable.
Using the double-angle trigonometric identity (see 2.27c)

cos 2θ = 2 cos2θ − 1

we obtain

This gives the answer in terms of θ rather than the original variable x. Since θ = sin−1x,
back substitution gives

or, since sin 2θ = 2 sin θ cos θ = 2 sin θ÷ (1 − sin2θ), we may write this in the alternative
form

Figure 8.59 shows a number of substitutions that are often used in the evaluation of
�f (x)dx. This list is not exhaustive. There are many special cases, some of which are
given in Exercises 8.8.14.

When using substitution methods with definite integrals, it is usually best to change
the limits of the integral when the integrating variable is changed. This saves returning
to the original variable, which can sometimes be very tedious. In general, setting 
x = g(t) gives

�
b

a

f (x)dx =

where a = g(ta), b = g(tb) and h(t) = f(g(t))g′(t)= ( ) ,�
t

t

a

b

h t td

 
�

g a

g b

f g t g t t
−

−

′
1

1

( )

( )

( ( )) ( )d

  
�÷ ÷(   )   sin   (   )  1 12 1

2
1 1

2
2− = + − +−x x x x xd constant

  
�÷(   )   sin   sin( sin )  1 22 1

2
1 1

4
1− = + +− −x x x xd constant

= + +   sin   1
2

1
4 2θ θ constant

  
� �÷(   )   (   cos )1 1 22 1

2− = +x xd dθ θ

  
� �÷ ÷(   )   (   sin )1 12 2− = −x x

x
d

d

d
dθ

θ
θ
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....

If f(x) contains try

÷(a2 − x2) x = a sin θ,

or x = a tanh u,

÷(a2 + x2) x = a sinh u,

or x = a tan θ,

÷(x2 − a2) x = a cosh u

or x = a sec θ

Circular functions s = sin x,

or c = cos x,

or t = tan ,

Hyperbolic functions u = ex,

or s = sinh x,

or c = cosh x,

or t = tanh ,
d

d
sech

t

x
x  = 1

2
2 1

2
1
2 x

d

d
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d
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=
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d

d
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θ θ  tan=

d

d
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d

d
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θ
θ  = 2

d

d
cosh

x

u
a u  =

d

d
sech2x

u
a u  =

d

d

x
a

θ
θ  cos=

Figure 8.59
Substitutions for
evaluation of �f (x)dx.

Example 8.60 Using the substitution u = ÷(x + 2), evaluate the definite integral

Solution Setting u = ÷(x + 2), or u2 = x + 2, gives 2u du = dx. Regarding limits, when x = −2,
u = 0 and when x = 2, u = ÷4 = 2.

�
−

+
+

2

2
2

6

÷(   )

  

x

x
xd
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Making the substitution gives

= 4 − π

For Example 8.58 the MATLAB commands

syms x y

y = 1/(2 + sqrt(1 – x)); int(y); pretty(ans)

return the integral as

2log(–x – 3) – 2(1 – x)1/2 – 2log(–2 + (1 – x)1/2)

+ 2log(2 + (1 – x)1/2)

Some algebraic manipulation is necessary to obtain the answer in the form given in
the solution. Collecting the log terms gives

−2(1 − x)1/2 + 2 log

Multiplying ‘top and bottom’ of the log term by (2 + (1 − x)1/2) and subsequent
cancelling of the (−x − 3) term gives the answer in the form given in the solution.

The corresponding MAPLE commands

y:= 1/(2 + sqrt(1 – x)); int(y,x);

return the integral as

2ln(–x – 3) – 2÷(1 – x) + 4arctanh( ÷(1 – x))

Using the command

convert(%, ln);

the answer is expressed in the logarithmic form

2ln(–x – 3) – 2÷(1 – x) + 2ln(2 + ÷(1 – x))

– 2ln(2 – ÷(1 – x))

This example clearly emphasizes the fact that integrals can be the same even if they
look totally different.

8.8.13 Integration involving –(ax2 + bx + c)

We have seen in many examples that the use of the linear composite rule combined with
standard integrals enables us to evaluate many integrals, including ones involving terms
like ÷(ax2 + bx + c). In this section we will deal with several integrals of that type.
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Example 8.61 Find the indefinite integrals of the following functions

(a) ÷(x2 + 6x − 7) (b) (c)

(d) (e) x÷(x2 + 4x − 3) (f) ÷(3 + 2x − 2x2)

Solution (a) First we complete the square of the term inside the square root

�÷(x2 + 6x − 7) dx = �÷[(x + 3)2 − 16] dx

Using the table (Figure 8.59), we select the substitution

(x + 3) = 4 cosh u, so that = 4 sinh u and

÷(x2 + 6x − 7) dx = �÷[(16 cosh2 u − 16)] 4 sinh u du

Now cosh2u − 1 = sinh2u, and the integral becomes

16� sinh2u du = 16� (cosh 2u − 1)du = 4 sinh 2u − 8u + constant

Since cosh u = (x + 3)/4 we deduce that sinh u = ÷(cosh2 − 1); that is, sinh u =

and

sinh 2u = 2sinh u cosh u =

Also u = cosh−1( ) and hence

�÷(x2 + 6x − 7) dx = (x + 3)÷(x2 + 6x − 7) − 8 cosh−1 + constant

(b) Using the same approach, we have

Setting x − = cosh u, so that = sinh u, the integral becomes 

since cosh2u − 1 = sinh2u. Thus

= �1du = u + c, where cosh u = (x − )

Hence

= cosh−1 + constant
2 5

3
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⎠  �

dx

x x÷(     )2 5 4− +
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(c) Rewriting the integrand gives

Setting x − 1 = sinh u, so that = cosh u, the integral becomes 

since sinh2u + 1 = cosh2u. Thus

, where sinh u =

Hence

(d) Here we notice that

so we first rewrite the integrand as and the integral as

The first term may be evaluated at once as 2÷(x2 + 4x + 9).

The second term is rewritten as .

Using the substitution x + 2 = ÷5 sinh u, the reader should show that the value of this
integral is sinh−1( ). Hence

(e) Here x2 + 4x − 3 = (x + 2)2 − 7, so we choose the substitution x + 2 = ÷7 cosh u.
Hence

�x÷(x2 + 4x − 3) dx = � (÷7 cosh u − 2) 7 sinh2u du

= 7÷7�cosh u sinh2 u du − 14� sinh2u du

= sinh3u − 14 � du

= sinh3u − sinh 2u + 7u + constant
7

2

7 7

3

÷

cosh   2 1

2

u −7 7

3

÷

  
� 2 3

4 9
2 4 9

2

52
2 1x

x x
x x x

x  

(     )
  (     )  sinh

  
  

+
+ +

= + + −
+⎛

⎝⎜
⎞
⎠⎟

+−

÷
÷

÷
d constant

x+2
5÷

  �
dx

x÷[(   )   ]+ +2 52

  
2

2 4

4 9 4 9

1
2
2 2� �(   )

(     )
  

(     )

x

x x
x

x

x x

+
+ +

−
+ +÷ ÷

d
d

 

2 4 1

4 92

x

x x

    

(     )

+ −
+ +÷

 

d

dx
x x

x

x x
[ (     )]  

(   )

(     )
÷

÷
2

1
2
2

4 9
2 4

4 9
+ + =

+
+ +

  
� d

constant
x

x x

x

÷ ÷
÷

(     )
  sinh

[ (   )]
  

3 6 7

1

3

3 1

22
1

− +
=

−⎡
⎣⎢

⎤
⎦⎥

+−

 

÷[ (   )]3 1

2

x −

  � �d
1d

x

x x
u u c

÷ ÷ ÷(     )
      

3 6 7

1

3

1

32 − +
= = +

  

1

3
3
4
3

2÷ ÷
÷�
2

d
cosh

( cosh )

u

u
u2

3÷
d

d

x

u
2
3÷

  
� �d dx

x x

x

x÷ ÷ ÷(     )
  

[(   )   ]3 6 7 3 12 2 4
3− +

=
− +

664 DIFFERENTIATION AND INTEGRATION

..

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 664



8.8 TECHNIQUES OF INTEGRATION 665

Since cosh u = , sinh u = and we obtain

�x÷(x2 + 4x − 3)dx = [(x + 2)2 − 7]3/2 − (x + 2)[(x + 2)2 − 7]1/2

+ 7 cosh−1( ) + constant

= (x2 + 4x − 3)3/2 − (x + 2)(x2 + 4x − 3)1/2 + 7 cosh−1( ) + constant

(f) Here 3 + 2x − 2x2 = − 2(x − )2 = 2[ − (x − )2], so we choose x − = sin u 

and the integral becomes �÷(3 + 2x − 2x2)dx = ÷2� cos2u du since 1 − sin2u = cos2u.

Now � cos2 du = � (cos 2u + 1)du = sin 2u + u + constant

= sin u cos u + u + constant

Substituting back we obtain

�÷(3 + 2x − 2x2)dx 

Comment These examples illustrate the complexity of such integrals that provided the motivation
for the development of computer packages like MAPLE.

8.8.14 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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121 Use the given substitutions to integrate the
following functions:

(a) x 3÷(1 + x 2), with t = ÷(1 + x 2)

(b) with 

(c) with t = ÷x

122 Use an appropriate substitution to integrate the
following functions:

(a) (b) sin2x cos3x (c) sin ÷x
1

1 1  (   )+ +÷ x

1

3  
,

+ ÷x

t
x

  =
13

92x x÷(  )
,

+

123 Show that t = tan implies

and

Hence integrate

(a) cosec x (b) sec x

(c) (d)
1

5 12sin   cosx x+
1

3 4  sin+ x

d dx
t

t  
  

=
+
2

1 2

cos   
  

  
x

t

t
=

−
+

1

1

2

2
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,x
t

t
=

+
2

1 2

1
2 x
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124 Evaluate the following definite integral with the
given substitution:

with u = ÷(x + 2)

125 In Question 11 (Exercises 8.2.8) the equation of
the path of P was found to be such that

with y = 0 at x = a

Use the substitution x = a sech u to integrate this
differential equation and show that

This curve is called a tractrix.
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126 Find the indefinite integrals

(a) �÷(3 + 2x − x2)dx

(b)

(c)

(d)

(e) �x÷(3 + 2x − x2)dx

  �
x

x x
x

  

(     )

+
+ +

3

4 132÷
d

  �
d

d
x

x x
x

÷(     )2 4 8− +

  �
d

d
x

x x
x

÷(     )2 6 5− +

8.9 Applications of integration
Integration is widely used in engineering applications. In this section we consider some
situations in which integration is used.

8.9.1 Volume of a solid of revolution

Imagine rotating the plane area A under the graph of the function f (x), x � [a, b],
of Figure 8.60 through a complete revolution about the x axis. The result would be to
generate a solid having the x axis as axis of symmetry, as shown in Figure 8.61(a): this
is called a solid of revolution. If we wish to determine the volume of this solid, we 
proceed as in Section 8.7.1 and subdivide the rotating area into n vertical strips. When
a typical strip within the subinterval [xr−1, xr] is rotated through a revolution about the 
x axis, it will generate a thin disc of radius f (x*r ) (with xr−1 � x*r � xr) and thickness 
∆xr−1, as shown in Figure 8.61(b). The volume of the disc is given by

∆Vr = π[ f (x*r )]
2 ∆xr−1

Figure 8.60
Plane area rotated.
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Thus the volume of the solid can be approximated by

Again this approximation is closer to the exact volume as the number of strips is
increased. Thus in the limiting case as n → ∞ and ∆x → 0, ∆x = ∆xr; it leads to
the volume being given by

(8.36)

8.9.2 Centroid of a plane area

Consider the plane region of Figure 8.62(a) bounded between the graphs of the two
continuous functions f (x) and g(x) on the interval x � [a, b], with g(x) � f (x) on the
interval. The area A of this region is clearly given by

A = area under the graph of f (x) – area under the graph of g(x)

= �
b

a

f (x)dx − �
b

a

g(x)dx

That is

A = �
b

a

[ f (x) − g(x)]dx (8.37)

V f x x f x x
n
x

r r

a

b

r

n

  lim [ ( *)]   [ ( )]= =
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−
=

∑
∆

∆
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2
1

1

2π π � d

max
r

V V f x xr
r

n

r r
r
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   [ ( *)]� ∆ ∆
=

−
=

∑ ∑=
1

2
1

1

π

....

Figure 8.61
Solid of revolution.

Figure 8.62
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We now wish to find the coordinates (x, y) of the centroid of this area. To do this, 
we take moments of area about the x and y axes in turn. As before, we subdivide the
region into n strips, with a typical strip in the subinterval [xr−1, xr] being shown in 
Figure 8.62(b). The area of the strip is

∆Ar = [ f (x*r ) − g(x*r )]∆xr−1

and the moment of this area about the y axis is

∆Myr
= x*r ∆Ar = x*r [ f (x*r ) − g(x*r )]∆xr−1

Thus the sum of the moments of the n strips about the y axis is

Proceeding to the limit n → ∞, ∆x → 0, ∆x = ∆xr, we have the moment of the
plane area about the y axis being given by

Because the ‘x’ in the integrand is raised to the power ‘1’, this is termed the first
moment of the area about the y axis. Since the x coordinate of the centroid of the plane
area is x, it follows that the moment of the area about the y axis is also given by

My = Ax

Equating, we have

x = �
b

a

x[ f (x) − g(x)]dx (8.38)

where the area A is given by (8.37).
Likewise, taking moments about the x axis,

= �
b

a

{[ f (x)]2 − [g(x)]2}dx

giving

y = �
b

a

{[ f (x)]2 − [g(x)]2}dx (8.39)

where A again is given by (8.37).
In the particular case when g(x) is the x axis, we find that the centroid of the plane

area bounded by f (x) (x � [a, b]) and the x axis has coordinates
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8.9.3 Centre of gravity of a solid of revolution
Proceeding as in Section 8.9.2, we can obtain the coordinates (X, Y ) of the centre 
of gravity of the solid of revolution generated by f (x) (x � [a, b]) and shown in 
Figure 8.58. By symmetry, it lies on the x axis, so that

Y = 0

Taking moments about the y axis gives

(8.41)

giving

X = �
b

a

x[ f (x)]2 dx (8.42)

where the volume V is given by (8.36).

8.9.4 Mean values

In many engineering applications we need to know the mean value of a continuously
varying quantity. When dealing with a sequence of values we can compute the mean
value simply by adding the values together and then dividing by the number of values
taken. When dealing with a continuously varying quantity, we cannot do that directly.
Using integration, however, we are able to calculate the mean value.

Consider the function f (x) on the interval [a, b] and divide the interval into n equal
strips of width h so that nh = b − a. Now evaluate the function at the midpoint of
each strip. Formally, let xk = a + kh be the points of subdivision, so that the points of
evaluation are f(x*k ) where x*k = xk + h/2. Then the mean value (m.v.) of f (x) on [a, b] is
approximately

Now allowing n → ∞ (with h → 0), the summation becomes an integral and the
approximation becomes exactly true. Thus

m.v.( f (x)) = �
b

a

f (x)dx (8.43)

The graphical representation of this makes the situation quite clear. In Figure 8.63, the
sum of the shaded areas above the line y = (mean value) is equal to the sum of the
shaded areas below it, so that the area of the rectangle ABCD is the same as the area
between the curve and the x axis.

8.9.5 Root mean square values

In some contexts the computation of the mean value of a function is not useful, for
example the mean of an alternating current is zero but that does not imply it is not 

1
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dangerous! To deal with such situations we use the root mean square (r.m.s.) of the
function f (x). Literally this is the square root of the mean value of [ f (x)]2. Thus we can
write

[r.m.s.( f (x))]2 = �
b

a

[ f (x)]2 dx (8.44)

Although the obvious applications of root mean square values are in electrical engineer-
ing, they also occur in the application of statistics to engineering contexts (as standard
deviations of continuously distributed random variables). They also occur in the design
of gyroscopes and in mechanics, where the ‘radius of gyration’ is in effect the root mean
of moments about an axis.

8.9.6 Arclength and surface area

In many practical problems we are required to work out the length of a curve or the
surface area generated by rotating a curve. The formula for the length s of a curve with
formula y = f (x) between two points corresponding to x = a and x = b is obtained using
the basic idea of integration. Let ∆sk be the element of arclength between x = xk and
x = xk+1. Then for a curve that is concave upwards, as in Figure 8.64, we deduce that

∆xk sec θk � ∆sk � ∆xk sec θk+1

where θk and θk+1 are the angles of slope made by the tangents to the curve at Pk and Pk+1.
Thus the length s of the curve between x = a and x = b satisfies the inequality

Letting n → ∞ and max ∆xk → 0 yields the inequality

�
b

a

sec θ dx � s � �
b

a

sec θ dx

∆ ∆ ∆x s s xk
k

n

k k
k

n

k
k

n

k
=

−

=

−

=

−

+∑ ∑ ∑=
0

1

0

1

0

1

1sec     secθ θ� �

1

b a  −
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Figure 8.63
Mean value 
of a function 
y = f (x), x � [a, b].
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from which we deduce that

s = �
b

a

sec θ dx

A similar analysis for curves that are concave downwards yields the same result.
We can express sec θ in terms of dy/dx by means of the identity

sec2θ = 1 + tan2θ

Here tan θ = dy/dx, so, using the convention that s increases with x, we obtain

so that the length of the curve is

(8.45)

The surface area S generated by s when it is rotated through 2π radians about the x axis
is calculated in a similar way. The element of arc ∆sk generates an element of surface
area ∆Sk, where

∆Sk = 2πyk ∆sk

where yk is the average value of y between yk = f (xk) and yk+1 = f (xk+1). Thus the total 
surface area is given by

(8.46)

Example 8.62 The area enclosed between the curve y = ÷(x − 2) and the ordinates x = 2 and x = 5 is
rotated through 2π radians about the x axis. Calculate

(a) the rotating area and the coordinates of its centroid;

(b) the volume of the solid of revolution generated and the coordinates of its centre of
gravity.

S y
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Figure 8.64
(a) Curve y = f (x). 
(b) Element of
arclength.
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Solution The rotating area is the shaded region shown in Figure 8.65.

(a) The rotating area is given by

A = �
5

2

y dx = �
5

2

(x − 2)1/2 dx

If we denote the coordinates of the centroid of the area by (x, y) then, from (8.37),

Inserting the value A = 2÷3 obtained earlier gives x =
Likewise, from (8.40),

Inserting A = 2÷3 then gives y = ÷3 so that the coordinates of the centroid are 
( ÷3).

(b) From (8.36) the volume V of the solid of revolution formed is

V = π �
5

2

y2 dx = π �
5

2

(x − 2)dx

If we denote the coordinates of the centre of gravity of the solid of revolution by (X, Y )
then, from (8.41) and (8.42),

Y = 0

and

Inserting the value V = obtained earlier gives X = 4 so that the coordinates of the
centre of gravity are (4, 0).
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Figure 8.65
Rotating area.
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Example 8.63 Show that the volume of a cap of height h of a sphere of radius r is π(3r − h)h2/3.

Solution As shown in Figure 8.66 the volume of the elementary disc of thickness ∆x is

πy2∆x = π(r2 − x2)∆x

and hence the volume of the spherical cap is

�
r

r−h

π(r2 − x2)dx = π[r2x − x3]r
r−h

= π[r3 − r3 − r2(r − h) + (r − h)3]

= π(r2h − r2h + rh2 − h3)

= π(3r − h)h2/3

1
3

1
3

1
3

1
3

....

Example 8.64 An electric current i is given by the expression

i = I sin θ

where I is a constant. Find the root mean square value of the current over the interval
0 � θ � 2π.

Solution Using (8.44) the r.m.s. value of the given current is given by

so that

r.m.s. current = ÷( I 2) = I /÷21
2

= − = = [   sin ]     
I I

I
2

1
2 0

2
2

1
2

2

4
2

4
2

π
θ θ

π
ππ

 
= −  (   cos )

I2

0

2
1
22

1 2
π

θ θ
π

� d

 
( . . )  

  
 sinr.m s di I2

0

2
2 21

2 0
=

−π
θ θ

π

�

Figure 8.66
Spherical cap
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Example 8.65 A parabolic reflector is formed by rotating the part of the curve y = ÷x between x = 0
and x = 1 about the x axis. What is the surface area of the reflector?

Solution The parabolic reflector is shown in Figure 8.67. Since y = x1/2,

so that, using (8.46), the surface area S of the reflector is given by

Example 8.66 The curve described by the cable of the suspension bridge shown in Figure 8.68 is given by

where x is the distance measured from one end of the bridge. What is the length of 
the cable? (see Example 8.5)

Solution Here the equation of the curve is
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Figure 8.67
Parabolic reflector.

Figure 8.68
Suspension bridge.
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Using (8.45), the length s of the cable is

This integral can be simplified by putting

Thus

(from symmetry)

This can be further simplified by putting t = sinh u, giving

That is,

Example 8.67 Find the equation of the curve described by a heavy cable hanging, without load, under
gravity, from two equally high points.

Solution Consider the cable illustrated in Figure 8.69. Let T be the tension acting at a point P that
is a horizontal distance x from the axis of symmetry, as shown, and let the tangent to
the curve at P make an angle θ to the horizontal. If s is the length of the curve between
A and P, and T0 is the tension at A, then resolving the forces acting on the length of
cable between A and P horizontally and vertically gives

T0 = T cos θ and sρg = T sin θ

where ρ is the line density of the cable and g is the acceleration due to gravity. Dividing
these equations, we obtain

tan   θ =
s

c
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This is known as the intrinsic equation of the curve, where c = T0 /ρg. In terms of x and
y, this equation, using (8.45), implies that the co-ordinates of P satisfy

To solve this equation to obtain the equation of the curve, we first differentiate it with
respect to x, giving

with dy/dx = 0 at x = 0. This may be rewritten as

and integrating with respect to x, using the substitution dy/dx = sinh u, and remembering
that (d/dx)(dy/dx) = d2y/dx2, gives

Since dy/dx = 0 at x = 0, we deduce that A = 0 and

This is easy to integrate, giving

The value of B is fixed by the value of y at x = 0. This may be chosen quite arbitrarily with-
out changing the shape of the curve. Choosing y(0) = c gives a neat answer (with B = 0):

Note that this curve, called the catenary, is different from the shape of the cable of a
suspension bridge, which is a parabola. The catenary has many applications, including
the design of roofs and arches.
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Figure 8.69
Heavy hanging cable.
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8.9.7 Moments of inertia
We have seen in Section 7.9.2 that moments of inertia occur in the design of structures
involving beams. They also occur in the mechanics of rotating parts of machinery and
in the design of ships. The formal definition of a moment of inertia of an object about
an axis is its second moment of mass about that axis. The simplest case to consider is
that of a plane rectangular area of sides a and b, with mass per unit area ρ, as shown in
Figure 8.70(a).

The elementary strip PQ has mass ρb∆x and its second moment of mass about OY
is x2ρb∆x. The moment of inertia IOY of the rectangle about OY is the sum of all such
second moments. Thus

IOY = �
a

0

x2ρb dx = [ x2bρ]a
0

= ρa3b = ma2

where m = ρab is the mass of the rectangle.

1
3

1
3

1
3

....

Figure 8.70 (a) Plane rectangular area. (b) Circular disc about diameter. (c) Circular disc about perpendicular axis.

(a) (b) (c)

Example 8.68 Find the moments of inertia of a circular disc of radius a about

(a) a diameter;
(b) an axis through its centre and perpendicular to it.

Assume uniform mass per unit area is ρ.

Solution (a) The second moment of the elementary strip at P about OY (see Figure 8.70(b)) is
2x2ρy∆x. Thus the moment of inertia of the disc is

IOY = �
+a

2x2ρ÷(a2 − x2)dx

= 4ρ�
a

0

x2÷(a2 − x2)dx

using symmetry properties of the integrand.

−a
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Putting x = a sin θ gives

IOY = 4ρ�
0

π/2

a4 sin2θ cos2θ dθ

= ρa4 �
0

π/2

sin22θ dθ

= ρa4�
0

π/2

(1 − cos 4θ)dθ

= ρa4[θ − sin 4θ]0
π/2

= (ρπa2)a2 = ma2

where m is the mass of the disc.

(b) The second moment of the elementary ring at P (see Figure 8.70(c)) is r2(ρ2πr)∆r.
So the moment of inertia of the disc about an axis through its centre, perpendicular to
it is given by

IOZ = �
a

0

r2ρ2πr dr = ρπ [r4]0
a

= (ρπa2)a2 = ma2

This example illustrates two ways in which moments of inertia are calculated.

8.9.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

1
2

1
2

1
2

1
4

1
4

1
4

1
2

1
2

127 Find the volume generated when the plane
figure bounded by the curve xy = x 3 + 3, the 
x axis and the ordinates at x = 1 and x = 2 is
rotated about the x axis through one complete
revolution.

128 Express the length of the arc of the curve y = sin x
from x = 0 to x = π as an integral. Also find the
volume of the solid generated by revolving the
region bounded by the x axis and this arc about 
the x axis through 2π radians.

129 (a) Sketch the curve whose equation is

y = (x − 2)(x − 1)

Show that the volume generated when the finite
area between the curve and the x axis is rotated
through 2π radians about the x axis is π /30.

(b) Show that the curved surface generated by the
revolution about the x axis of the portion of the
curve y2 = 4ax included between the origin and 
the ordinate x = 3a is .

130 A curve is represented parametrically by

x(t) = 3t − t 3, y(t) = 3t 2 (0 � t � 1)

Find the volume and surface area of the solid of
revolution generated when the curve is rotated about
the x axis through 2π radians.

131 The electrical resistance R (in Ω) of a 
rheostat at a temperature θ (in °C) is given by 
R = 38(1 + 0.004θ). Find the average resistance 
of the rheostat as the temperature varies uniformly
from 10°C to 40°C.

56
3

2πa
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134 The speed V of a rocket at a time t after launch is
given by

V = at 2 + b

where a and b are constants. The average speed over
the first second was 10 m s−1, and that over the next
second was 50 m s−1. Determine the values of a and
b. What was the average speed over the third second?

135 Find the centroid of the area bounded by y2 = 4x and
y = 2x and also the centroid of the volume obtained
by revolving this area about the x axis.

136 Show that the moment of inertia of an equilateral
triangular lamina of side 2a about an altitude is
ma2/6, where m is the mass of the lamina.

....

132 The area enclosed between the x axis, the curve
y = x(2 − x) and the ordinates x = 1 and x = 2 is
rotated through 2π radians about the x axis. 
Calculate

(a) the rotating area and the coordinates of its
centroid;

(b) the volume of the solid of revolution formed
and the coordinates of its centre of gravity.

133 Show that the area enclosed between the x axis, the
curve 4y = x2 − 2 ln x and the coordinates x = 1 and 
x = 3 is (19 − 9 ln 3).1

6

8.10 Numerical evaluation of integrals
In many practical problems the functions that have to be integrated are often specified
by a graph or by a table of values. Even when the function is given analytically, it
often cannot be integrated to give an answer in terms of simple functions. Also, in many
engineering and scientific problems it is often known in advance that the value of an
integral is only required to a certain precision and the use of an approximate method 
can avoid considerable unwanted labour. In all these cases we have to evaluate the 
integrals numerically. There are many ways of doing this, varying from the simplest
square-counting for working out the area under a graph to sophisticated computer 
procedures. In this section we shall develop a simple numerical method known as the
trapezium rule, which is the basis of many computer algorithms, and a hand computa-
tion method known as Simpson’s rule.

8.10.1 The trapezium rule

The simplest methods return to the initial ideas about integration introduced in
Section 8.7.1. As indicated in Figure 8.71, they involve slicing up the area to be found
into a number of strips of equal width, approximating the area of each strip in some
way; the sum of these approximations then gives the final numerical result.

The points of subdivision of the domain of integration [a, b] are labelled x0, x1, … ,
xn, where x0 = a, xn = b, xr = x0 + rh (r = 0, 1, 2, … , n), and the width of each strip
is h = (b − a)/n. The value of the integrand f (x) at these points is, as usual, denoted by
fr = f (xr). A basic method for numerical integration approximates the area of each strip
by the area of the trapezium formed when the upper end is replaced by the chord of the
graph, as shown in Figure 8.72.

By the sum rule of integration
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From Figure 8.72 we can see that the approximate area of the r th strip is

( fr + fr+1)h

so that

= [( f0 + f1) + ( f1 + f2) + … + ( fn−1 + fn)]

That is,

(8.47)

This approximation method is called the trapezium rule. As we shall see below, the
best method for using it is given in formula (8.48).

Example 8.69 Evaluate the integral �1
2 (1/x)dx to 5dp, using the trapezium rule.

Solution This integral is one of the standard integrals given in Figure 8.55, and so can be evalu-
ated analytically. Its value is ln 2 = 0.693147 to 6dp. This enables us, in this illustrative
example, to check our methods. Usually, of course, the value of the integral is not
known beforehand, and assessing the accuracy of the estimate obtained using the
trapezium rule is an important aspect of the evaluation.

The first decision to be made in the numerical procedure is that of how many strips
should be used; that is, what value n should have. A large number of strips may yield
a good approximation to each strip, but will involve a lot of calculation, with the 
possibility of consequent rounding error accumulation. A small number of strips will
obviously involve a large error in the approximation to the area of each strip. We shall
investigate the situation.
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Figure 8.71 Slicing up an area into vertical strips of 
equal width.

Figure 8.72 Trapezium 
approximation to area of strip.
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First of all, we shall introduce the notation T(h) to denote the approximation to the
value of the integral given by the trapezium rule using strips of width h. Obviously,
ignoring the possible effects of rounding errors, we expect

Taking n = 1 gives h = (2 − 1)/n = 1, x0 = 1 and x1 = 2. This gives the estimate 

Here f0 = 1 and f1 = 0.5, so that T(1) = 0.75. This estimate for the value of the integral
has an error of 0.75 − 0.693 = +0.057.

Taking n = 2 gives h = 0.5, x0 = 1, x2 = 2 and x1 = 1.5. Note that x0 and x2 are the two
points used before, but now relabelled. This gives the estimate

T(0.5) = (0.5)[ f1 + ( f0 + f2)]

where f0 = 1, f1 = 0.666 667 and f2 = 0.5, so that T(0.5) = 0.708 333. This estimate has
an error of +0.015, so by doubling the number of strips, we have reduced the error by
a factor of nearly four.

Taking n = 4 gives h = 0.25, x0 = 1, x4 = 2, x1 = 1.25, x2 = 1.5 and x3 = 1.75. Note
that three of these points were used in the previous calculation. This value of n gives
the estimate

T(0.25) = (0.25)[ f1 + f2 + f3 + ( f0 + f4)]

where f0 = 1, f1 = 0.8, f2 = 0.666 667, f3 = 0.571429 and f4 = 0.5, so that T(0.25) =
0.697 024. This estimate has an error of +0.004, so by doubling the number of strips,
we have again reduced the error by a factor of four.

Continuing this process, with n = 8, we obtain the estimate T(0.125) = 0.694 122,
with an error of +0.001.

Based on these four calculations, we can estimate the values of n and h that will give
an answer correct to 5dp; that is, with an absolute error less than 0.000 005. If we 
continue the process of doubling the number of strips, reducing the error by a factor of
four each time, we shall obtain an answer with the required accuracy when n = 128.
With this large number of strips, we clearly need to organize the calculation to do it as
economically as possible. Looking back at the previous calculations, we see that at each
new value of n we almost double the number of points at which the integrand has to 
be evaluated, but as can be seen from Figure 8.73, at half of these points it has been
evaluated in previous calculations.

Taking into account the effect of interval-halving on h, we can reduce the amount of
calculation to evaluate T(h) by making use of the result obtained for T(2h):

T(h) = h[ f1 + f2 + f3 + … + fn−1 + ( f0 + fn)],

T(2h) = (2h)[ f2 + f4 + … + fn−2 + ( f0 + fn)]
1
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Here f0, f2, f4, … , fn were all calculated previously, in the evaluation of T(2h).
Rearranging, we have

T(h) = h( f1 + f3 + f5 + … + fn−1) + (2h)[ f2 + f4 + … + fn−2 + ( f0 + fn)]

Thus

T(h) = h( f1 + f3 + f5 + … + fn−1) + T(2h) (8.48)

(remembering that if h is the strip width for n intervals then 2h is the strip width for
n intervals).

This formula enables us to perform the calculations economically, but we can
exploit it in a more subtle way.

We have seen that halving the strip width reduces the error by a factor of approxi-
mately four. This means that the error is proportional to h2. In fact, this behaviour is 
typical of the application of the trapezium rule to the evaluation of many kinds of 
integrals, and we can use it to obtain a more accurate estimate of the value of the integral.
Since the error is proportional to h2, we can write

where h = 1/n and A is some number that, in general, will depend upon n but will remain
bounded as n becomes large. A similar formula holds for T(2h):

where h has the same value as before and A′ � A. These two formulae enable us to
estimate the error in the approximation for the integral. Subtracting them gives

3Ah2 � T(2h) − T(h)

so that the approximation T(h) to the integral has an error estimate of [T(2h) − T(h)].
Thus in the calculation above the estimated error for T(0.125) is

(0.697 024 − 0.694 122) = +0.000 967

as we found before. This means that we can estimate the error in the usual situation of
not knowing (unlike in this example) the true value of the integral. It also enables us 
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Figure 8.73
Points at which
integrand is evaluated.
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....

to obtain a better approximation. Subtracting the estimated error from T(h) gives the
improved approximation (Richardson’s extrapolation)

Alternatively we may write

Using the values for T(0.25) and T(0.125) obtained above, we have

which is correct to 5dp. In general, of course, we could not know how good an approx-
imation this extrapolated value is, and the usual practice is to continue interval-halving
until two successive extrapolated values agree to the accuracy required. Not all integrals
will converge as quickly as in this example. For example, �1

0÷x dx requires a large 
number of evaluations to achieve reasonable accuracy. The reason for the slow con-
vergence of the approximation to �1

0 ÷x dx compared with that of �2
1(1/x)dx is readily

seen from Figure 8.74.

� �
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The trapezium rule as given in (8.47) is implemented in MATLAB using the 
commands

a = lower limit; b = upper limit; n = number of strips;

h = (b – a)/n; x = (a:h:b)’

(which outputs the xi values as a column array)

y = f(x)

(which outputs the corresponding values of y as a column array)

h*trapz(y)

Figure 8.74
(a) Graph of y = ÷x.
(b) Graph of y = 1/x.
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Considering the integral in Example 8.69 and taking 8 strips then the commands

a = 1; b = 2; n = 8; h = (b – a)/n; x = (a:h:b)’; 

y = 1./x;

(Note use of ./ as we are dealing with arrays.)

h*trapz(y)

return the answer 0.6941 to 4dp, which checks with the value of T (0.125) in the
given solution.

The corresponding commands in MAPLE are:

with(student):

y:= f(x): trapezoid(y, x = a..b, n): evalf (%);

Example 8.70 Evaluate the integral �1
0÷(1 + x2)dx to 5dp, using the trapezium rule and extrapolation.

Solution As before, we begin with just one strip, so that h = 1 and T(1) = ( f0 + f1), where 
f0 = f (x0) = f (0) = 1.000 000 and f1 = f (x1) = f (1) = 1.414 214. Thus T(1) = 1.207 107.
Next we set h = , and we calculate one new value of the integrand at x = , giving a
new f1 = ÷5 = 1.118 034 and

T(0.5) = hf1 + T(1)

= 0.5 × 1.118 034 + 0.603 554

= 1.162 570

An estimate for the error in T(0.5) is

[T(1) − T(0.5)] = 0.014 846

and a better approximation for the value of the integral is given by

1.162 570 − 0.014 846 = 1.147 724

Next we interval-halve again, giving h = 0.25, and calculate new values of the integrand
(at x = 0.25 and x = 0.75):

f1 = f (0.25) = 1.030 776 and f3 = f (0.75) = 1.25

Thus

T(0.25) = h( f1 + f3) + T(0.5) = 1.151 479

with an error estimate of [T(0.5) − T(0.25)] = 0.003 697 and an extrapolated value

1.151 479 − 0.003 697 = 1.147 782

At this stage we can see that the value of the integral is 1.148 to 3dp. We continue 
interval-halving, giving: for h = 0.125, T(0.125) = 1.148 714, with an error estimate 
of 0.000 922 and an extrapolated value 1.147 793; and for h = 0.0625, T(0.0625) =
1.148 714, with an error estimate of 0.000 230 and an extrapolated value 1.147 793.
Thus the extrapolated values agree to 6dp, so that we can write

1
3

1
2

1
3

1
2

1
2

1
2

1
2

1
2

M08_JAME0734_05_SE_C08.qxd  11/03/2015  14:18  Page 684



8.10 NUMERICAL EVALUATION OF INTEGRALS 685

....

�
1

0

÷(1 + x 2) dx = 1.147 79

with confidence that the value is correct to the number of decimal places given.

8.10.2 Simpson’s rule

The interval-halving algorithm developed in Section 8.10.1 is the appropriate algorithm
to use for automatic computation. It is easy to program and is computationally efficient
when used with extrapolation. It is, however, cumbersome for hand computation. For
pencil and paper calculations a method that has been commonly used is equivalent to
the extrapolated result obtained in Section 8.10.1 but does not give any estimate of error
or permit easy interval-halving to check the accuracy of the result.

The trapezium rule approximation to �a
b f (x)dx using one strip is

T1 = (b − a)[ f (a) + f (b)]

and that using two strips is

The extrapolation based on these two estimates is

S = [4T2 − T1]/3

The formula provides the basic approximation for the area under the curve between
x = a and x = b. It can be shown to be the area under the parabola which passes through
the three points (a, f (a)), ((a + b)/2, f ((a + b)/2)) and (b, f (b)).

Now consider the interval [a, b] divided into n equal strips of width h where n is an
even number. Then we may write

where xk = a + kh.
Applying the basic formula to each of the integrals on the right-hand side yields the

approximation

(8.49)� �
a

b

n n nf x x
h
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or in words

The integral is approximately one-third the step size times the sum of four 
times the odd ordinates plus twice the even ordinates plus first and last 
ordinates.

This is referred to as Simpson’s rule and a pencil and paper calculation would be set
out as shown in Example 8.71.

There is no command in MATLAB for implementing Simpson’s rule (8.49), in
which the number of strips is specified. Instead the package incorporates the com-
mand quad(f,a,b), which tries to approximate the integral of the scalar-valued
function f = f(x) from a to b to within an error of 1.e−6 using recursive adaptive
Simpson quadrature. There is no need to specify the number of strips and the method
is somewhat hidden from the user. It is an efficient approach to evaluate an integral
numerically but is of limited value as a learning tool. When using the quad
command the function f (x) must be expressed as an inline function with the array
operations .*,./ and .^ used in its specification, so that it can be evaluated with a
vector argument. As an illustration we consider the integral of Example 8.69, for
which the commands

f = inline(‘(1 + x.^2).^(1/2)’); quad(f, 0,1)

return the answer 1.1478.
In MAPLE, Simpson’s rule (8.49) is evaluated by the commands

with(student):

f:= x–>f(x); simpson(f(x),x = a..b,n); evalf(%);

For the integral of Example (8.69) the commands

with(student):

f:= 1/x; simpson(f,x = 1..2,8); evalf(%);

return the answer .6931545307.
MAPLE also has the facility to produce a sequence of answers corresponding to

an array of values for the number of strips; for example the commands

nn = [4,8,12];

seq(evalf(simpson(1/x,x = 1..2,n)),n = nn);

return the sequence of answers

.6932539681, .6931545307, .6931486622

This facility provides a valuable learning tool; it is also available for the trapezium
rule using the command

seq(evalf(trapezoidal(1/x,x = 1..2,n)), n = nn);

686 DIFFERENTIATION AND INTEGRATION

..
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Example 8.71 Figure 8.75 shows a longitudinal section PQ of rough ground through which a straight
horizontal road is to be cut. The width of the road is to be 10 m, and the sides of the
cutting and embankment slope at 2 horizontal to 1 vertical. Estimate the net volume of
earth removed in making the road.

Figure 8.75
Cross-section with
distances above or
below datum at 200 m
intervals (not to scale).

Solution In this case we are not dealing with a solid of revolution, and so cannot use (8.36) to
find the volume. Instead, we slice the volume up, estimate the volume of each slice and
then add all the individual volumes together, as illustrated in Section 8.7.1. The volume
above the datum PQ is counted as positive and that below the datum as negative, so that
infill on site is accounted for automatically.

Consider the ‘slice’ between the points at distances x and x + ∆x from P, as shown
in Figure 8.76. The volume of this slice is A∆x where A is the average cross-sectional
area between x and x + ∆x. The cross-sectional area A depends on the height h of the
soil above the datum line PQ. This relationship is given by

A = (2h + 10)h

as shown in Figure 8.77.
The height h depends on the distance x along the road, so that we can construct a

table of values for A as a function of x, as shown in Figure 8.78.

x 0 200 400 600 800 1000 1200 1400 1600 1800 2000
h 0.0 3.0 7.0 6.3 1.3 −2.6 −1.3 1.7 2.8 −0.5 0.0
A 0.0 48.0 168.0 142.4 16.4 −39.5 −16.4 22.8 43.7 −5.5 0.0

The total volume V of soil removed from the site is the sum of the volumes of the
individual slices:

V = ∑A(x)∆x

Figure 8.76 Volume of soil to be removed in road
construction.

Figure 8.77 Cross-section of cutting
with sides sloping at 1 in 2.

Figure 8.78
Cross-sectional area
versus distance.

..
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where A(x) is given by

A(x) = A (x � x � x + ∆x)

Letting the number of slices tend to infinity while making their thicknesses all tend to
zero gives V in the form of an integral:

V = �
0

2000

A(x)dx

This provides us with a mathematical model for the amount of soil to be removed: the
next step is to evaluate the integral. In this example the integrand is known only from
a table of values, so we have no alternative but to evaluate it numerically.

Using Simpson’s rule with 10 strips of width 200 m, the calculation is shown in
Figure 8.79 and we obtain the estimate 7.3 × 104 m3. If a better estimate is required,
more data will have to be collected.

8.10.3 Exercises

Check your answers using MATLAB or MAPLE.

Figure 8.79
Simpson’s rule 
‘paper and pencil’
calculation.

137 Use the trapezium rule to evaluate �0
0.8e−x2dx. Take the

step size h equal to 0.8, 0.4, 0.2, 0.1 in turn and use
extrapolation to improve the accuracy of your answer.

138 Use the trapezium rule, with interval-halving and
extrapolation, to evaluate

�
1

0

log(cosh x)dx to 4dp

139 An ellipse has parametric equations x = cos t, 
y = ÷3 sin t. Show that the length of its
circumference is given by

2�
0

π/2

÷(3 + sin2t)dt

This integral cannot be evaluated in terms of
elementary functions. Use the trapezium rule 
with interval-halving to evaluate it to 6dp.

140 The capacity of a battery is measured by �i dt,
where i is the current. Estimate, using Simpson’s

1
2

rule, the capacity of a battery whose current was
measured over an 8 h period with the results shown
below:

Time/h 0 1 2 3 4 5 6 7 8
Current/A 25.2 29.0 31.8 36.5 33.7 31.2 29.6 27.3 28.6

141 The speed V(t) m s−1 of a vehicle at time t s is given
by the table below. Use Simpson’s rule to estimate
the distance travelled over the eight seconds.

t 0 1 2 3 4 5 6 7 8
V(t) 0 0.63 2.52 5.41 9.02 13.11 16.72 18.75 20.15

142 Use Simpson’s rule with h = 0.1 to estimate

�
1

0

÷(1 + x3)dx

(Notice that by this method you have no way of
knowing how accurate your estimate is.)
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8.11 Engineering application: design of prismatic channels
The mean velocity V of flow in straight prismatic channels is proportional to (A/p)r, where
A is the cross-sectional area of the flow, p is the wetted perimeter and r is approximately
a constant ( ). Given the channel section for minimum flows (that is, A0 and p0), the
objective is to design a channel such that V has the same value for all larger discharges.

Assume a symmetric channel cross-section as shown in Figure 8.80, where A0 and
p0 are the minimum flow values of A and p. Let the shape of the channel be given by
x = f (y). (Note that in this application y, the height of the surface above the datum line,
is the independent variable.) Then we want to find the function f (y) such that the mean
flow velocity is independent of y. This implies because it is proportional to (A/p)r that

7
12

Figure 8.80
Channel cross-section.

The area A is given by the integral of f (y). Thus

A = A0 + 2�
h

0

x dy

where x = f (y) and h � 0.
Using (8.45), the wetted perimeter p is given by

(h � 0)

Since A/A0 = p/p0, we deduce that

Rearranging the integrals under a common integral sign gives
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Since this is true for all h � 0, it implies that the integrand must be identically zero.
Thus x = f (y) satisfies the differential equation

which, assuming � 0, implies

(8.50)

Integrating with respect to y then gives

Using the substitution cosh u = (p0 x /A0) on the left-hand side gives

If the channel has width 2b where y = 0, we can obtain the value of the constant of
integration c as

and deduce the formula for a suitable channel shape as

This solution, however, is not unique and we note that the differential equation
(8.50) is also satisfied by

As an exercise, use this information to show that the general solution may take the form
of either of the cross-sections shown in Figures 8.81(a) and (b). Notice that the line 

shape in Figure 8.81(b) does not have
d
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8.12 Engineering application: harmonic analysis of 
periodic functions
Periodic functions occur frequently in practical problems and in natural phenomena like
tidal systems. Rotating parts of machinery produce vibrations, which may become dan-
gerous when resonance occurs. Indeed such a resonance led to the failure of the Tacoma
Road bridge (see Section 10.10.3). Periodic motions usually involve several frequen-
cies of vibrations at the same time and the method of finding the amplitude of each fre-
quency is called harmonic analysis (see also Chapter 12).

Consider, for example, the crank and connecting rod mechanism discussed in
Example 2.44. The displacement function of the slider is

y = r cos x + ÷(l 2 − r 2 sin2x)

where r is the radius of the crank, l the length of the connecting rod and x (radians) is
the angle turned through. The motion is periodic but is not a simple sinusoid. It involves
many harmonics and we may write

y = a0 + a1 cos x + a2 cos 2x + a3 cos 3x + …

where the a’s are constants and we choose a cosine series since y is an even function
y(−x) = y(x). To simplify the problem, we take a special case with r = 1 and l = 3. Then

y = cos x + ÷(8 + cos2x)

A graph of y is shown in Figure 8.82.
The displacement y has period 2π and its mean value 8 is given by

The contribution of cos x to the value of the integral over a complete period is zero, so
this simplifies to

  
8 ÷   (   cos )= +

1

2
8

0

2

2

π

π

� x xd

  
8 ÷   [cos   (   cos ) ]= + +

1

2
8

0

2

2

π

π

� x x xd

Figure 8.82 Graph of 
y = cos x + ÷(8 + cos2x)
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This integral cannot be evaluated analytically. Using the trapezium rule with step sizes
π /2, π /4 and π /8, together with Richardson’s extrapolation, we obtain

8 = 2.9148

We now seek an approximation to y(x) having the form

y(x) � 8 + cos x + a cos 2x

such that the integral of the squared error over a complete period is as small as poss-
ible. That is, a is chosen so that

Expanding the integrand this gives

This tidies up to

The first integral inside the curly brackets is independent of a, and so differentiates to
zero. The second integral is zero in value and the last integral has value π. Thus differ-
entiating with respect to a gives

Hence

a =

Evaluating this integral numerically gives a = 0.0858. Investigating the difference
between the approximation and y over a complete period shows that the size of the 
maximum error is less than 0.0007.
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8.13 Review exercises (1–39)

Check your answers using MATLAB or MAPLE whenever possible.

1 Differentiate the following expressions, giving
your answers as simply as possible:

(a) ex2+x (b)

(c) sin(5x − 1) (d) (tan x)x

(e) cos−1÷(1 − x2) (f )

(g) (h)

(i) sin(3x + 1) ( j) x3 ln x

(k) (l) tan−1(e−2x)

(m) ÷(1 + cosh x) (n) (x2 + 1) sin 2x

(o) (p) e÷x

(q) ln tan x (r)

(s) x sin x (t) ex2

(u) 2x (v)

(w) (x) x3 cos 2x

(y) ÷(x3 + x + 3) (z)

2 Evaluate

(a) � x1/2 ln x dx (b)

(c) (d)

(set x = sin t)

(e) (f) � tan4x dx

(g) �
1

0

÷ (4 − 3x2)dx (h)

(i) ( j) � (  )
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x
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+
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3
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1
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1

1 x

1
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3

23(   )
 

−

(k) ( l) � ÷x sin ÷x dx

(m) �
2

0

FRACPT(x)dx (n) �
1

0

sinh2x dx

(o) � (1 − 3x)9dx (p) � sin 3x sin 2x dx

(q) � ln 2x dx (r) � xe−x2/2 dx

(s) (t)

(u) (v) � (4 − 3x)4 dx

(w) � cos 2x cos 3x dx (x) � sin−1x dx

( y) � x 2e−x dx (z)

3 Find the equation of the tangent and normal at the
point (1, 4) to the curve whose equation is

y = 2x4 − 3x3 + 5x2 + 3x − 3

4 Find the equation of the tangent to the curve
x2 − 3xy + 2y2 = 3 at the point (1, 2) and the
equation of the normal to the curve y = x3 − x2

at the point (1, 0). Find the distance of the point of
intersection of these lines from the point (−1, 2).

5 With reference to Example 2.10, confirm that the
function

E(x) = x2(1 − x), 0 � x � 1

has maximum value when x = 2/3.

6 Find the turning points on the curve

y = 2x3 − 5x2 + 4x − 1

and determine their nature. Find the point of
inflection and sketch the graph of the curve.
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7 The turning moment T on the crankshaft of an
engine is given by

T = 6 + 2.5 sin 2θ − 3.8 cos 2θ

Find the maximum and minimum values of T for 
0 � θ � 2π.

8 The deflection of a beam of length L is given by

(0 � x � L)

where w, E and I are constants. Determine

(a) the maximum deflection;

(b) the points along the beam at which points of
inflection lie.

9 A running track is set out in the form of a
rectangle, of length L and width W, with two
semicircular areas, of radius W, adjoined at 
each end of the rectangle. If the perimeter of 
the whole track is fixed at 400 m, determine the
values of L and W that maximize the area of 
the rectangle.

10 Find the maximum and minimum values of y where

justifying your answers. Sketch the curve,
indicating the stationary points and any
asymptotes.

11 Light sources are placed at two fixed points Q and
R which are 1 metre apart. The source at R is
twice as intense as that at Q. The total illumination
at a point P on the line QR x metres distant from Q
is cf (x) where c is a positive constant and

Evaluate f (0.3), f (0.4) and f (0.5) and find the
quadratic function

g(x) = A(x − 0.4)2 + B(x − 0.4) + C

which passes through (0.3, f (0.3)), (0.4, f (0.4)) 
and (0.5, f(0.5)). Use this function to estimate
the value of x at which the minimum of f (x)
occurs. Compare your result with that obtained
by calculus methods.

f x
x x

x( )    
(   )

        = +
−

1 2

1
0 1

2 2
� �

y
x

x x
  

(   )(   )
=

− −

2

2 6

1
2

y wx
L x

EI
  

(   )
=

−2
2

12 Using partial fractions, show that

(a)

(b)

13 Working to 5dp, evaluate �1
0(1 + x2)−1dx using

the trapezium rule with five ordinates. Evaluate 
the integral by direct integration and comment 
on the accuracy of the numerical method.

14 The parametric equations of a curve are

x = at2, y = 2at

If ρ is the radius of curvature and (h, k) is its centre
of curvature, prove that

(a) (b) ρ = 2a(1 + t2)3/2

(c) h = a(2 + 3t2), k = −2at3

15 (a) Using the substitution u = x + 1, evaluate

�
8

3

x÷(x + 1)dx

(b) Using the substitution u = ÷x + 6, evaluate

(c) The region R is bounded by the x axis, the line
and the curve with parametric equations

x = a cos t, y = b sin t (0 � t � )

where a and b are positive coordinates. Let A, 
x and Iy denote respectively the area of R, the x
coordinate of the centroid of R and the second
moment of area of R about the y axis. Prove that

Iy = a2A + axA

16 A curve has parametric equations

x = 2t + sin 2t, y = cos 2t

Show that

d

d

y

x
t  tan= −

3
8

1
4

1
3π

x  = 9
2

�
0

1

2 6

dx

x x(   )+ √

d
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x at
  = −
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Find d2y/dx2 and d2x/dy2 in terms of t, and
demonstrate that

17 Verify that the point (−1, 1) lies on the curve

y(y − 3x) = y3 − 3x3

and find the values of dy/dx and d2y/dx2 there.
What is the radius of curvature at that point?

18 Sketch the curve whose equation is

y2 = x(x − 1)2

and find the area enclosed by the loop.

19 Sketch the curve whose parametric representation is

x = a sin3t, y = b cos3t (0 � t � 2π)

Find the area enclosed.

20 Sketch the curve whose polar equation is

r = 1 + cos θ

Show that the tangent to the curve at the point 
r = , θ = is parallel to the line θ = 0. Find 
the total area enclosed by the curve.

21 A curve is specified in polar coordinates (r, θ ) in 
the form r = f (θ ). Show that the sectorial area
bounded by the line θ = α , θ = β and the curve
r = f (θ ) (α � θ � β) is given by

Also show that the angle φ between the tangent to
the curve at any point P and the polar line OP is
given by

22 Find the length of the arc of the parabola y = x2

that lies between (−1, 1) and (1, 1).

23 The parametric equations

x = t2 − 1, y = t 3 − t

describe a closed curve as t increases from −1 to 1.
Sketch the curve and find the area enclosed.

cot   φ
θ

=
1

r

rd

d

1

2
2�

α

β

θ θ[ ( )]f d

1
3π3

2

d

d

d

d

2

2

2

2
1

y

x

x

y
   ≠

24 (a) Find the area of the region bounded by the x
axis and one arch of the cycloid

x = a(θ − sin θ ),
y = a(1 − cos θ ) (0 � θ � 2π)

where a is a positive constant.

(b) Show that the radius of curvature of the 
cycloid defined in (a) at the point O is given by

What is the maximum value of ρ?

(c) Discuss the nature of the radius of curvature
when θ = 0 or θ = 2π.

(d) Determine the length of one arch of the cycloid.

25 Consider the integral

In = �
0

π/4

tannx dx

where n is an integer. Using the trigonometric
identity 1 + tan2x = sec2x, show that

In + In−2 = �
0

π/4

tann−2x sec2x dx

and hence obtain the recurrence relation

Use this to find

(a) �
0

π/4

tan6x dx (b) �
0

π/4

tan7x dx

(Recurrence relations of this type are often
called reduction formulae, since they provide
a systematic way of reducing the value of the
parameter n so that a difficult integral may be
reduced to an easier one.)

26 Use integration by parts (writing the integrand as
sin θ sinn−1θ) to show that

In = �
0

π/2

sinnθ dθ

satisfies the reduction formula

nIn = (n − 1)In−2

I
n

In n=
−

− − 
  

  
1

1 2

ρ θ  (   cos ) /= −2 2 1 1 2√ a
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Hence prove that

and

These results are known as Wallis’s formulae.
Use them to show that

(a) �
0

π/2

sin5x dx = (b) �
0

π/2

cos6xdx =

27 Consider the integral

Im,n = �
0

π/2

cosmx sinnx dx

Show that Im,n satisfies the reduction formula

28 Reduction formulae of the type discussed in
Questions 24–26 are iteration formulae – and, 
like other iteration formulae, when they are used,
attention must be paid to their numerical properties.
This is illustrated by considering the integral

In = �
1

0

xn e x−1 dx

Prove that

In = 1 − nIn−1 (n � 0)

with I0 = 1 − e−1.
Evaluate I0 on your calculator and use the

reduction formula to calculate In, n = 1, 2, … , 10.
Since

0 � xn+1ex−1 � xnex−1 � xn (0 � x � 1)

we know that

0 � In+1 � In � (n = 0, 1, 2, 3, …)

Compare this with your results, and explain the
discrepancy.

Since the iteration diverges when used for n
increasing (that is, on setting n = 1, 2, 3, … in 

1

1n  
 

+

I
n

m n
Im n m n, , 

  

  
=

−
+ −

1
2

5
32 π8

15

I
k

k

k

kk2

2 1

2

2 3

2 2

1

2 2
=

− −
−

 
    

  
  …

π

I
k

k

k

kk2 1

2

2 1

2 2

2 1

2

3+ =
+

−
−

  
  

  

  
  …

turn), it will converge when used for n decreasing
(say n = 50, 49, 48, … ). Since 0 � I19 � , 
try using the iteration with n = 19, 18, 17, … to 
obtain I10. Continue the iteration backwards to find, 
eventually, I0.

29 The function F(r) is defined by

F(r) = �
0

π/2

sinrx dx r � −1

By considering d(cos x sinr−1x)/dx, or otherwise,
show that

(r + 1)�sinrx dx = cos x sinr+1x + (r + 2)�sinr+2x dx

and deduce that (r + 1)F(r) = (r + 2)F(r + 2).
Show that F(− ) = F( ). Tabulate 

f (x) = sin7/2x for x = 0( π) π to 3dp and use 
the values to obtain three approximations to 
F(3.5) using the trapezium rule with strips of 
width π, π and π respectively. Hence 
obtain an approximation to F(−0.5).

30 A solid of revolution is generated by rotating the
area between the y axis, the line y = 1 and the
parabola y = x2 about the y axis. Find its volume 
and its surface area.

31 The numerical procedures developed in this 
chapter for evaluating integrals have all used 
strips of equal width. An alternative procedure is 
to specify the number of tabular points to be used
but not their position. It is possible to find tabular
points within the domain of integration for the 
most accurate evaluation of the integral for the
given number of points. Consider the two-point
formula

�
h

−h

f (x)dx � h[af (αh) + bf (βh)]

where a, b, α and β are constants to be found.
Symmetry about x = 0 implies β = −α. If the
formula evaluates all quadratic functions 
exactly, prove that

2h = h(a + b)

0 = h(aαh − bαh)

= h(aα2h2 + bα2h2)

Deduce that a = b = 1 and α = 1/÷3.

2
3

2h

1
8

1
4

1
2

1
2

1
8

7
2

21
5

1
2

1
20
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32 The symbols Tn and Sn are defined as the estimates
of the integral

I = �
1

0

(1 + 2x)−1 dx

using n intervals with the trapezium and Simpson’s
rules respectively. Calculate T1, T2, T4, S2 and S4,
working to 3dp only. Verify that your numerical
results satisfy

S2n = (4T2n − Tn)

for n = 1 and 2. Prove this result.

33 (a) A curve is represented parametrically by

x(t) = 3t − t3, y(t) = 3t2 (0 � t � 1)

Find the volume and the surface area of the solid
of revolution generated when the curve is rotated
about the x axis through 2π radians.

(b) Find the position of the centroid of the plane
figure bounded by the curve y = 5 sin 2x, y = 0 
and x = .

34 When a homogeneous bar of constant cross-
sectional area A (see Figure 8.83) is under
uniformly distributed tensile stress, the elongation
in the direction of the stress for a material obeying
Hooke’s law is given by

stress = E × strain

where E is Young’s modulus, the stress is the
applied force per unit area and the strain is the
ratio of the elongation to the unstretched length
of the bar. That is,

E
e

L

P

A
  =

1
6π

1
3π

Consider a bar of circular cross-section whose
diameter varies along its length as shown in 
Figure 8.84, so that

A = A0 + kx2,

By considering the elongation of an element 
of thickness ∆x of the bar, show that the total
elongation of the bar under the tensile force P is

Show that

where d0 and d1 are the end diameters of the bar,
d0 � d1 and d 2

2 = d 1
2 − d 0

2.

35 Figure 8.85 shows an old cylindrical borehole that
has been filled in part with silt and in part with
water. Before the hole can be redrilled, the water
has to be pumped to the surface. We wish to
estimate the work required for this purpose.

(a) As a first approximation, assume that the silting
has been uniform – as indicated in Figure 8.85 – 
and that the water thus forms a right-circular cone 

l
PL

d d E

d

d
  cos=

⎛
⎝⎜

⎞
⎠⎟

−4

0 2

1 0

1π

l
P x

E A kx

L

  
(  )

=
+�

0 0
2

d

k
A A

L
  

 
=

−1 0
2

Figure 8.83

Figure 8.84

Figure 8.85
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of base radius 5 m and height 50 m. Hence, by
considering the small element of water shown,
show that an estimate of the work (in J) required
to raise the water to ground level is

Evaluate W1 in the form k1πg, giving k1 correct 
to 3sf.

(b) Surveying suggests that, while the water–silt
boundary may still be regarded as having
cylindrical symmetry about the axis of the original
borehole, a more accurate profile can be obtained
from the data below.

Depth below ground leVel Radius of water/m
(50 −− y)/m

0 5
5 4.7

10 4.3
15 4.1
20 3.9
25 3.3
30 2.8
35 2.0
40 1.2
45 0.3
50 0

Use this data, with Simpson’s rule, to obtain a
second approximation W2 to the work required. 
Give your answer in the form k2πg, with k2 given 
to 3sf.

36 Draw the graph of the function f (x) defined by

f (x) = �
x

0

{8x9 − − 8x − 9}dx

for the interval −5 � x � 5.

37 An even function f (x) of period 2π is given on 
the interval [0, π] by the formula

y = x/π

(a) Using the even-ness property of the 
function, draw the graph of the function for 
−π � x � π.

1
2

1
2

W g
y

y y1
3

0

50 2

10
10

50= × ⎛
⎝⎜

⎞
⎠⎟ −   (   )π � d

(b) Using the periodicity property of the 
function, draw the graph of the function for 
−4π � x � 4π.

(c) Draw also the graph of the function
g(x) = − cos x, for −4π � x � 4π.

The function h(x) = + a cos x is used as an
approximation to f(x) by choosing the value for 
the constant a which makes the total squared 
error, [h(x) − f (x)]2, over [0, π] a minimum, that 
is the value of a which minimizes

E(a) = �
π

0

[h(x) − f (x)]2 dx

Show that

and that E(a) is a minimum when a = −4/π 2. Draw 
a graph of the difference, h(x) − f (x), between 
the approximation and the original function, for
0 � x � π. What is its period?

38 A frame tent has a square of side 2 m and two semi-
circular cross members, FBE and GBD, as shown in
Figure 8.86.

(a) Show that the cross-section ABC has equation

2x2 + z 2 = 2

(b) Show that the capacity of the tent is 8÷2/3 m3.

E( )     a a
a

= + +⎡
⎣⎢

⎤
⎦⎥

π
π2

82
2

1
6

1
2

1
2

1
2

Figure 8.86 Frame tent of Question 38.
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(c) Show that the surface area S m2 of the tent is
given by

Use the substitution t = x2 to show that

and deduce that S = 2π + 4.

(d) Show that the length s* m of the arc length AB
is given

Use the substitution x = sinθ to show that

and evaluate (to 3dp) this integral using the
trapezium rule.

(e) We wish to compute the shape of one of the
panels, BDE, of the tent. Show that the semi-
width y, at a distance s from B and illustrated in 
Figure 8.87, satisfies the differential equation

(8.51)

with y = 0 at s = 0.

d

d

y
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y

y
  

  

  
=
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⎠⎟� 1
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  )
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+
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8
1

1
0

1 2

2� � d

quadrants, as shown in Figure 8.88. Assuming that
the solution curve OP has been drawn correctly as
far as the point P(s, y), draw the line through P
parallel to the s axis until it cuts the quarter circle
at Q. Then draw the line through Q parallel to the 
y axis until it cuts the quarter circle at R. The line
RT is drawn to pass through the origin O. The
graphical solution is continued at P by drawing a
small straight segment PP ′ perpendicular to RT. 
The process is then repeated at P ′ and so on,
generating the line shape required.

(g) Show that the slope of the line OR is

and explain why the construction described 
in (f ) generates an approximate solution to the
differential equation.

(h) Use the method to obtain a graphical solution 
to the differential equation. (Use A4 graph paper
with a step size PP ′ of 2 cm.)

(i) To use Euler’s method (see ahead, Section
10.6.1) to compute the solution, it is easiest to
rescale the independent variable s by setting
s = s*t where 0 � t � 1. Show that the initial
value problem becomes

, y(0) = 0

for 0 � t � 1. Using s* = 1.91 and step size of 
0.1 for t, compute yk � y(tk) where tk = k /10 and 
k = 1, … , 10.

d

d

y

t
s

y

y
  *

  

  
=

−
+

⎛
⎝⎜

⎞
⎠⎟� 1

1

2

2
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⎛
⎝⎜

⎞
⎠⎟� 1

1

2

2

  

  

y

y

Figure 8.87 Semi-width y.

Figure 8.88 Quarter circles for Question 38.

(f) A method, which constructs the solution of
(8.51) graphically, is the following. Draw quarter
circles of radius 1 and ÷2 in the first and fourth
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39 (a) A curve (an oval) is defined by the formulae

x(θ ) = cos4θ , y(θ ) = cos3θ sin θ

Complete the table below for values of x and y to
2 decimal places.

θ 0 0.23 0.57
x 1.0 0.9 0.8 0.7 0.6 0.5
y 0.00 0.32

θ π/2
x 0.4 0.3 0.2 0.1 0.0
y 0.00

Use these data to draw the oval on graph paper.

(b) Show that the volume of the body whose
surface is generated by rotating the curve in 
part (a) about the x axis (an ovaloid) is π /15.

(c) Assuming that the ovaloid generated in 
part (b) has uniform density, show that its centre
of mass is at the point (15/28, 0).

(d) Show that the tangent to the curve in part (a)
at the point (cos4θ , cos3θ sinθ ) has the equation

y − cos3θ sin θ

= (4 sin2θ − 1)(x − cos4θ )/(4 sin θ cos θ )

Deduce the turning points of the curve and
show that the breadth (that is, distance between
maximum and minimum values of y) of the oval
is 3÷3/4.

(e) Show that the normal to the curve in part (a) at
the point (cos4θ , cos3θ sin θ ) has the equation

y − cos3θ sin θ

= 4 sin θ cos θ (x − cos4θ )/(4 cos2θ − 3)

(f) For what values of θ does the normal to the
curve found in (e) pass through the centre of mass?

(g) Show that the distance from a point on the
surface of the ovaloid to its centre of mass has
stationary values where θ = 0, cos−1(÷(5/7)), π /2,
cos−1(−÷(5/7)), and π, and classify their nature.

(h) If the ovaloid is to rest in stable equilibrium on
a horizontal plane, which points on the generating
oval correspond to possible points of contact with
the plane?
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9.1 Introduction

In Chapter 8 we discussed the fundamental ideas and concepts of integral and differ-
ential calculus and applied them to various practical problems. We also developed 
techniques for solving problems using calculus. In this chapter we shall extend the tech-
niques developed in Chapter 8 to deal with a wide range of problems and develop the
theory to enable us to understand the numerical techniques widely used in practical
problem-solving. We shall introduce multivariable calculus and use it to solve problems
in optimization.

9.2 Improper integrals

When we considered the definite integral �a
b f(x)dx in Chapter 8 and showed its equival-

ence with an area under a curve, it was assumed that the integrand f (x) was continuous,
or at least piecewise-continuous, over the closed domain of integration [a, b]. To illus-
trate a possible consequence of this not being the case, consider the apparent definite
integral �1

−1(1/x2)dx. If we proceed in a mechanistic way and follow the usual procedure,
we should write

However, if we plot the graph of f (x) = 1/x2, as in Figure 9.1, it is clear that this is not
correct, since it implies that the area under a curve that lies entirely above the x axis is
negative. So where have we gone wrong? The answer lies in the fact that f (x) = 1/x2 has
an infinite discontinuity or singularity (that is, it is unbounded) at x = 0. As a con-
sequence, the region under the curve over the domain of integration [−1, 1] is unbounded,
and our integration process was invalid.

In this section we consider the conditions under which the integral �a
b f(x)dx exists

when either

(a) the integrand f(x) becomes unbounded (that is, f (x) has an infinite discontinuity) at
some point within the domain of integration, or

(b) the domain of integration is infinite (that is, either a or b or both are infinite).

Such integrals are called improper integrals, and are encountered in many contexts in
engineering. For example, the period of a simple pendulum of length l released from
rest with angle α is given by

where g is the acceleration due to gravity. The integrand is infinite at θ = α ; yet we
know that the answer is meaningful from elementary physics. Further examples are met
when Laplace transforms are introduced in Chapter 11.

  
2� �l

g

⎛
⎝⎜

⎞
⎠⎟ −

0
2

2
2

2

1
α

α θ θ
÷(sin   sin )

d

 
�

−1

1 1 1
2

2
1

1

x
x

x
d     =

−⎡
⎣⎢

⎤
⎦⎥

= −
−

702 FURTHER CALCULUS

..

Figure 9.1
Graph of f(x) = 1/x2.
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9.2 IMPROPER INTEGRALS 703

9.2.1 Integrand with an infinite discontinuity

Suppose that the lower limit x = a is the only point of infinite discontinuity of f (x) in
[a, b]. Then we define

(9.1)

provided that the one-sided limit exists (see Section 7.8.2). Otherwise �a
b f(x)dx has no

meaning.
Similarly, if the upper limit x = b is the only point of infinite discontinuity in [a, b],

we define

(9.2)

provided that the limit exists. Otherwise �a
b f(x)dx has no meaning.

Example 9.1 Evaluate the following, if they are defined:

(a) �
1

0

x−2/3 dx (b) (c) �
1

0

ln x dx (d)

Solution (a) Here the integral has an infinite discontinuity at the lower limit x = 0, and we 
consider

Since the limit exists, it follows from (9.1) that

�
1

0

x−2/3 dx = 3

(b) Here the discontinuity in the integrand occurs at the upper limit x = 1, and so we
consider

Since the limit exists, it follows from (9.2) that
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(c) Again the integrand has an infinite discontinuity at the lower limit x = 0, and so we
consider

(integrating by parts)

= −1 (since X ln X → 0 as X → 0+, Question 61, Section 7.8.3)

Since the limit exists, it follows from (9.1) that

�
1

0

ln x dx = −1

(d) In this case the integrand has an infinite discontinuity at the lower limit x = 0, and
we consider the limit

This becomes infinite as X → 0 and so the integral has no meaning.

If the integrand f(x) has an infinite discontinuity at x = c, where a � c � b, then we
define

(9.3)

provided that both limits on the right-hand side exist. Otherwise �a
b f(x)dx is not

defined.

Example 9.2 Confirm that �1
−1(1/x2 )dx is not defined.

Solution This is the apparent integral considered in the introductory discussion, where we saw
that following the usual integration techniques in a mechanistic sense led to a ridiculous
answer. In this case the integrand has an infinite discontinuity at x = 0, so, following
(9.3), we consider the two limits

From the solution to Example 9.1(d) it is clear that both these tend to infinity, so that
neither limit exists and the integral �1

−1(1/x2)dx is not defined.
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Both MATLAB and MAPLE can evaluate such integrals. Considering Example 9.1

(a) The MATLAB commands

syms x y

y = x^(–2/3); int(y,0,1)

return the answer 3.
(b) The MAPLE commands

y:= 1/sqrt(1 – x^2); int(y,x = 0..1);

return the answer 1–2π.
(c) The MATLAB commands

syms x

int(log(x),0,1)

return the answer –1.
(d) The MAPLE command

int(1/x^2,x = 0..1);

returns infinity.
As an exercise consider how MATLAB or MAPLE deals with Example 9.2.

The numerical evaluation of integrals whose integrands have infinite discontinuities will
clearly cause numerical problems. Often such integrals can be evaluated by first chang-
ing the integrand by means of a substitution, as illustrated in the following example.

Example 9.3 Obtain the value of the integral

where α = π /3. This is the period of oscillation of a simple pendulum released from rest
from the angle α.

Solution This integral has an integrand which is unbounded at θ = α. In this case we can ‘remove’

the difficulty by the substitution . Then

with θ = 0 corresponding to φ = 0 and θ = α corresponding to φ = π /2 and
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When α = π /3, we have

This integral cannot be evaluated analytically. Applying the trapezium rule, Section 8.10.1, 

(with 4 intervals) gives = 13.4864 .

9.2.2 Infinite integrals
The second case, where the domain of integration is infinite, is dealt with in a similar
manner. We define

(9.4)

if that limit exists. Otherwise �∞
a f (x)dx has no meaning.

Example 9.4 Evaluate the following:

(a) �
∞

1

x−3/2 dx (b) (c) �
∞

0

e−x sin x dx (d) �
∞

−∞

e3x exp(−ex )dx

Solution (a)

(b)

(c)

=

The indefinite integral is obtained using integration by parts, as in Example 8.50(c). 
It can be verified by direct differentiation.

(d) Here we simplify the integral by the substitution t = ex, so that x → −∞ gives t = 0,
x → ∞ gives t → ∞ and dt = exdx. The integral becomes
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1 Evaluate the following improper integrals:

(a) �
1

0

(−x ln x)dx

(b) �
∞

0

x exp(−x2)dx

(c) �
∞

0

x2e−2x dx

(d) �
∞

−∞

ex exp(−ex)dx

(e) �
1

0

x2(1 − x3)−1/2 dx

(f) �
1

0

(x − 1)/÷x dx

(g) 

(h)

(i) �
0

41

∞

+
x

x
x

  
d

�
0

2 1 3

π

cos sin /x x x− d

�
0

2
π

sin

cos

x

x
x

÷
d

using integration by parts twice.
Hence

Again such integrals may be evaluated directly by MATLAB and MAPLE. To illustrate
we consider Examples 9.4(b) and (d). For 9.4(b) the commands

MATLAB MAPLE
syms x y

y = 1/(1 + x^2); y:= 1/(1 + x^2);

int(y,0,inf) int(y,x = 0..infinity);

return the answer

1/2*pi 1–2π

and for 9.4(d) the commands

syms x

int(exp(3*x)* int(exp(3*x)*

exp(-exp(x)),-inf,inf) exp(-exp(x)),-infinity..infinity);

return the answer 2

For practice, check the answers to Examples 9.4(a) and (c).

9.2.3 Exercise

Check your answer using MATLAB or MAPLE whenever possible.

 
�

−∞

∞

− =e e d3 2x x xexp( )   
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9.3 Some theorems with applications to numerical methods
There are a number of theorems involving integration and differentiation that are 
useful in understanding why certain numerical methods are better than others and in
devising new methods. They are also useful in the more mundane tasks of assessing 
the effect of data error when evaluating functions and probing the accuracy of ana-
lytical approximations to functions. We shall now briefly consider such theorems and
indicate their potential uses. Deriving the results is not easy and the reader may prefer
to omit the proofs. The results, however, have many practical implications and should
be studied carefully.

9.3.1 Rolle’s theorem and the first mean value theorems

The simplest result is the following

Theorem 9.1 Rolle’s theorem

If the function f(x) is continuous on the domain [a, b] and differentiable on (a, b) with
f (a) = f (b) then there is at least one point x = c in (a, b) such that f ′(c) = 0.

end of theorem

The validity of this theorem can be easily illustrated geometrically, as shown in 
Figure 9.2, since what the theorem tells us is that it is possible to find at least one point
on the curve y = f(x) between the values x = a and x = b where the tangent is parallel to the
x axis; that is, there must exist at least one maximum or minimum between x = a and x = b.

In Section 7.9.1 we discussed the properties of continuous functions. All continuous
functions are integrable, and this fact enables us to calculate the mean value of a con-
tinuous function over a given domain, say [a, b]. The mean value is given by

1

b a
f x x

a

b

  
 ( )

− � d
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Figure 9.2
Four examples of
Rolle’s theorem.
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Clearly the mean value of f (x) lies between its maximum and minimum values on the
domain [a, b] and, from the intermediate value theorem (Property (c), Section 7.9.1),
we deduce that there is a point x = c in the interval [a, b] such that (see 8.43)

f (c) = mean value of f (x) =

This result is referred to as the first mean value theorem of integral calculus and may
be stated as follows.

Theorem 9.2 The first mean value theorem of integral calculus

If the function f(x) is continuous over the domain [a, b] then there exists at least one
point x = c, with a � c � b, such that

end of theorem

This theorem is illustrated geometrically in Figure 9.3(a).
If f (x) is a differentiable function then

�
b

a

f ′(x)dx = f (b) − f (a)

Applying Theorem 9.2 to f ′(x) gives

�
b

a

f ′(x)dx = (b − a) f ′(c), with a � c � b

and hence, by equating the two values of �b
a f ′(x)dx,

This result is referred to as the first mean value theorem of differential calculus, and
may be stated as follows.

f b f a

b a
f c

( )  ( )

  
  ( )

−
−

= ′

 
f c

b a
f x x

a

b

( )  
  

 ( )=
−
1 � d

1

b a
f x x

a

b

  
 ( )

− � d

....

Figure 9.3
The first mean value
theorems: (a) f(ci) is
the mean value of 
f (x) (a � x � b); 
(b) the chord PQ is
parallel to the tangents
at x = ci.
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Theorem 9.3 First mean value theorem of differential calculus

If the function f (x) is continuous on the domain [a, b] and differentiable on (a, b) then
there exists at least one point x = c, with a � c � b, such that

end of theorem

It is this theorem that is normally referred to as the first mean value theorem. Geo-
metrically, it implies that at some point on the interval [a, b] the slope of the tangent to
the graph of f (x) is parallel to the chord between the end points x = a and x = b of the
graph, as shown in Figure 9.2(b).

An immediate application of Theorem 9.3 is in the estimation of the effect of
rounding errors in the independent variable x on the calculated value of the dependent
variable y = f (x). If εx is the error bound for x then the error bound for y is εy, where

Applying the first mean value theorem with a = x, b = x* gives

| f (x*) − f (x) | = | x* − x | | f ′(c) |

with c lying between x and x*. Since x − εx < x* < c, f ′(c) � f ′(x), we have

(9.5)

We illustrate this by Example 9.5.

Example 9.5 Show that

∆(sin x) � cos x ∆x

and hence estimate an error bound for sin a, where a = 1.935 (3dp). Compare the error
interval obtained with [sin 1.9355, sin 1.9345]. Express sin a as a correctly rounded
number with the maximum number of decimal places.

Solution The difference ∆(sin x) is given by

∆(sin x) = sin(x + ∆x) − sin x

Since (d/dx) sin x = cos x, application of Theorem 9.3 gives

with x � X � x + ∆x

which reduces to

∆(sin x) = cos X ∆x, with x � X � x + ∆x

If ∆x is small then x � X and cos X � cos x, so that

∆(sin x) � cos x ∆x

as required.

sin(   )  sin

(   )  
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x x x
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Setting x = a gives ∆(sin a) � cos a ∆a, and hence, using (9.5), an error bound 
estimate for sin a is

εsin a = | cos a | εa

In this example a = 1.935 and εa = 0.0005, so that

εsin a = | cos 1.935 | (0.0005) = | −0.3562 | (0.0005) = 0.000 18

Thus

sin a = sin 1.935 ± 0.000 18 = 0.934 41 ± 0.000 18

which spans the interval [0.934 23, 0.934 59].
Now sin 1.9355 = 0.934 23 and sin 1.9345 = 0.934 59, so that in this example the

estimate of the error interval and the error interval are the same to 5dp.
Thus

sin a = 0.9344 ± 0.0002

or

sin a = 0.93

9.3.2 Convergence of iterative schemes

In Section 7.9.3 the solution of equations by iteration was discussed. We now consider
the convergence of such iterative schemes. As before, suppose that an iteration for the
root x = α of the equation f (x) = 0 is given by

xn+1 = g(xn) (n = 0, 1, 2, … )

where α = g(α). When we use such an iteration we need a rule which tells us when
to stop the process. The usual practice is to stop the iteration when the difference
| xn+1 − xn | between two successive iterates is sufficiently small, that is, when it is less
than half-a-unit of the least significant figure required in the answer.

There are two separate issues here: one concerns the convergence of the iteration
formula to the root, and the other concerns the ‘stopping’ mechanism. In practical
computation, the rule of stopping an iteration is important because it vitally affects the
accuracy of the estimate of the root of the equation.

Convergence process

To examine the convergence of the iteration to the root α, we estimate | xn+1 − α | as
n → ∞. Now

xn+1 = g(xn) and α = g(α)

so that

xn+1 − α = g(xn) − g(α)

Using the mean value Theorem 9.3, this may be written as

xn+1 − α = (xn − α)g′(Xn)

....
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where Xn lies in the interval (xn, α), assuming xn � α. Writing εn = xn − α, we obtain

| εn+1 | � r | εn |

where r = | g′(x) |max in the neighbourhood of x = α. By comparison with the geometric
sequence, we deduce that εn → 0, as n → ∞, if 0 � r � 1 and that, provided we start
near x = α, the iteration converges if | g′(x) | � 1 near x = α. Note that the more 
horizontal the graph of g(x) near the root, the smaller r is and hence the more rapid is
the convergence. We will discuss this further in Section 9.4.7.

Stopping process

The ‘stopping’ rule can be investigated similarly. The rule says that the iteration is
stopped when | xn+1 − xn | � ε, where ε is the maximum acceptable error. We therefore
seek a relationship between | xn+1 − α | and | xn+1 − xn |.

Now we can rewrite xn+1 − α as

xn+1 − α = (xn+1 − xn+2) + (xn+2 − xn+3) + (xn+3 − xn+4) + … + (xn+k − α)

Since xn → α as n → ∞, it follows that xn+k → α as k → ∞, since all the previous terms
on the right-hand side tend to zero. The terms on the right-hand side can be thought of
as the corrections made to successive iterates in the process. We may therefore write

(9.6)

Using the first mean value Theorem 9.3, we have

xn+1 − xn+2 = g(xn) − g(xn+1)

= (xn − xn+1)g′(Xn)

where Xn lies in the interval (xn, xn+1), assuming xn � xn+1. By repeated application of
this result, we have

xn+2 − xn+3 = (xn+1 − xn+2)g′(Xn+1) = (xn − xn+1)g′(Xn)g′(Xn+1)

�

leading to

xn+k − xn+k+1 = (xn − xn+1)g′(Xn)g′(Xn+1) … g′(Xn+k−1) (9.7)

If, as before, | g′(x) | � r � 1 in the neighbourhood of x = α then we obtain from (9.6)

(using (9.7) with | g′(x) | � r)
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using the expression for the sum of a geometric progression given in (7.14). Hence

Thus | xn+1 − α | � ε provided that r � , and the ‘stopping’ rule is valid provided that 
| g′(x) | � near the root x = α. In many practical problems it is necessary to estimate
r by

| xn+1 − xn |/| xn − xn−1 | = | g(xn) − g(xn−1) |/| xn − xn−1 |

Clearly, the smaller the value of r, the more rapid is the convergence. Note, however,
that this discussion has ignored the effects of rounding errors on the computation, so
that the result above has been shown only for exact arithmetic.

Example 9.6 Show that the iteration

θn+1 = tan−1(tanh θn), with θ0 = π � 3.9

considered in Section 7.9.3 is convergent to the root near θ = 3.9 of the equation 
tan θ = tanh θ (see Figure 9.4).

Solution Here the iteration function has formula

g(θ) = tan−1(tanh θ)

with derivative

Near θ = 3.9, cosh 2θ � 1220, so | g′(θ) | is small (in fact r � 0.004) and the method
converges.

=
+

= 
cosh   sinh

  
cosh

1 1

22 2θ θ θ

′ =
+

g ( )  
  tanh

θ
θ

θ1

1 2
2sech

5
4

1
2

1
2

 
| |x
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r
n+ −

−1
1

   
  

α ε
�

....

Figure 9.4
Roots of the equation
tan θ = tanh θ.
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Example 9.7 A spherical wooden ball floats in water, as illustrated in Figure 9.5. Its diameter is 
10 cm and its density is 0.8 g cm−3. Find the depth h cm to which it sinks.

Solution Archimedes shouted ‘ευρηκα!’ when he realized that the weight of a floating body
must balance the weight of water it displaces. In this case we have the weight of the 
ball is

π(5)3 × 0.8 g

The volume of a zone depth h of a sphere of radius r is

πh2(3r − h) (see Example 8.63)

so the weight of water displaced is

πh2(15 − h) g

Hence by Archimedes’ principle we have

π × 125 × = πh2(15 − h)

that is

400 = h2(15 − h)

Graphing y = (x − 15)x2 + 400 shows that there is a root near x = 7. To find the root
more accurately we can construct an iteration. For example

hn+1 = [(h3
n + 400)/15]1/2

Starting with h0 = 7.00, we obtain the iterates given in the table below.

n 0 1 2 3 4 5 6 7 8 9 10
hn 7.00 7.04 7.06 7.08 7.10 7.11 7.11 7.12 7.12 7.12 7.12

With this set of iterates we would be tempted to conclude that the root is 7.11 or 7.12.
In fact the correct answer is 7.13. This example shows the importance of the size of 
the derivative of the iteration function. In this case it is 0.7 near the root and there is
danger of premature termination of the process. Clearly it is not of vital importance 
here but the example illustrates the danger of using an iteration without due care.

1
3

4
5

4
3

1
3

1
3

4
3
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Figure 9.5
Floating ball of
Example 9.7.
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9.3.3 Exercises

2 By means of sketches of the graphs y = 1/x and
y = tan x, show that the equation x tan x = 1 has a
root between x = 0 and x = π and an infinity of
roots near x = kπ, where k = 1, 2, 3, … . Deduce
which of the two iterations

(a) xn+1 = cot xn (b) xn+1 = tan−1(1/xn) + kπ

is convergent to the roots, and use it to locate the
smallest positive root to 6dp.

3 If α = f (α) but the iteration xn+1 = f (xn) fails to
converge to the root α, under what condition on
f (x) will the iteration xn+1 = f −1(xn) converge?

4 Show the cubic equation x3 − 2x − 1 = 0 has a root
near x = 2. Prove that the iteration

xn+1 = (x3
n − 1)

fails to converge to that root. Devise a simple
iteration formula for the root of the equation, 
and use it to find the root to 6dp.

5 The equation f (x) = 0 has a root at x = α. Show
that rewriting the equation as x = x + λ f (x), where
λ is a constant, yields a convergent iteration for α
if λ = −1/f ′(x0) and x0 is sufficiently close to α.

1
2

1
2

Use this method to devise an iteration for the
root near x = 2 of the equation x3 − 2x − 1 = 0.

6 Consider the iteration defined by

xn+1 = (x3
n + 2)

Show that

(a) if 0 � x0 � 1 then the iteration tends to a limit
as n → ∞;

(b) if x0 � 1 then the iteration is divergent.
Explain this behaviour.

7 Consider the iteration

Working to 2dp, obtain the first three iterates.
Then continue to obtain the following six iterates.
From the numerical evidence what do you estimate
as the limit of the sequence?

Assuming that the sequence has a limit near
1.5, obtain its value algebraically and then explain
the phenomena observed above.

x
x x

xn
n n

+ =
+ −

=1

2

0

2 30

30
1 5  

    
,      .

1
3

9.4 Taylor’s theorem and related results

A question that frequently arises in both engineering and mathematical problem-
solving is the behaviour of a solution when one (or more) of the parameters in the 
problem statement is changed. This occurs in sensitivity analysis when we examine
solutions for their dependence on errors in the original data. It is also relevant to
analysing the equilibrium of structures. One of the mathematical tools for such analyses
is Taylor’s theorem. In this section we shall develop the theorem and then use it to solve
problems in design and numerical methods.

9.4.1 Taylor polynomials and Taylor’s theorem

In Section 2.9.1 we discussed the use of interpolating functions to approximate func-
tions specified by a table of values. The simplest case was linear interpolation. With
this, we require a different formula between successive tabular points. Another approach
to the problem of function approximation is to construct a polynomial that, together
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with its derivatives, takes the same values as those of the function and its derivatives at
a particular point in the domain. That is, we seek a polynomial p(x) such that

p(a) = f (a), p′(a) = f ′(a), p″(a) = f ″(a), … 

The idea is illustrated by Example 9.8.

Example 9.8 Find a polynomial approximation to the function f (x) such that

f (0) = 3, f ′(0) = 4, f ″(0) = −10 and f ′″(0) = 12

Solution In this example we have information about the value of the function and its first three
derivatives at x = 0. This means that we can form an approximating polynomial of
degree 3

p(x) = a + bx + cx2 + dx3

and determine the values of a, b, c and d from the information given.
Setting p(0) = f (0) gives a = 3.
Differentiating gives

p′(x) = b + 2cx + 3dx2

and on setting p′(0) = f ′(0) = 4, we have b = 4.
Differentiating again gives

p″(x) = 2c + 6dx

and on setting p″(0) = f ″(0) = −10, we have c = −5.
Differentiating again gives

p″′(x) = 6d

and on setting p″′(0) = f ′″(0) = 12, we have d = 2.
Thus the approximating polynomial is

p(x) = 3 + 4x − 5x2 + 2x3

The technique used in Example 9.8 can be applied at points other than x = 0, as shown
in Example 9.9.

Example 9.9 Find a polynomial approximation to f (x) such that

f (1) = 4, f ′(1) = 0, f ″(1) = 2 and f ″′(1) = 12

Solution Because the information concerns the value of the function and its derivatives at the
point x = 1, we look for a polynomial in powers of x − 1. So in this case we are seeking
an approximation in the form

p(x) = a + b(x − 1) + c(x − 1)2 + d(x − 1)3

716 FURTHER CALCULUS

..
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Setting x = 1 in p(x) and its derivatives gives, in turn,

p(1) = a = 4 p′(1) = b = 0

p″(1) = 2c = 2 p″′(1) = 6d = 12

Thus the required approximation is

p(x) = 4 + 0(x − 1) + 1(x − 1)2 + 2(x − 1)3 = 4 + (x − 1)2 + 2(x − 1)3

Such polynomial approximations to functions are called Taylor polynomials. In gen-
eral, we can write the nth-degree Taylor polynomial approximation to the function f (x),
given the value of the function and its derivatives at x = a, in the form

f (x) � pn(x)

where

(9.8)

Clearly, pn(a) = f (a), and also the first n derivatives of pn(x) match the first n derivatives
of f (x) at x = a.

The approximation of f (x) given in (9.8) can be made exact by writing

f (x) = pn(x) + Rn(x) (9.9)

where Rn(x) is the remainder. The remainder term can be expressed in many different
forms, with the simplest, known as Lagrange’s form, being

where h = x − a and 0 � θ � 1.
The result (9.9) constitutes Taylor’s theorem, which may be stated as follows.

Theorem 9.4 Taylor’s theorem

If f (x), f ′(x), … , f (n)(x) exist and are continuous on the closed domain [a, x] and f (n+1)(x)
exists on the open domain (a, x) then there exists a number θ, with 0 � θ � 1, such 
that

(9.10)

where h = x − a.

end of theorem
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Taylor’s theorem is in fact a natural extension of the first mean value theorem
(Theorem 9.3), and it is sometimes referred to as the nth mean value theorem. It may
be proved by repeated use of Rolle’s theorem (Theorem 9.1), but, since the proof does
not add to our understanding of how to apply the result to the solution of engineering
problems, it is not developed here.

9.4.2 Taylor and Maclaurin series

An alternative form of the Taylor polynomial (9.10) is obtained when we replace x in
the expansion by a + x. Then we obtain a polynomial in x, rather than x − a, namely

(9.11)

where

with 0 � θ � 1

Equation (9.11) is called the Taylor polynomial expansion of f (x) about x = a.
The remainder Rn(x) represents the error involved in approximating f (x) by the

polynomial

If Rn(x) → 0 as n → ∞ then we may represent f (x) by the power series

(9.12)

The power series (9.12) is called the Taylor series expansion of f (x) about x = a. We
saw in Section 7.7.1 that a power series may have a restricted domain of convergence.
Similarly, Rn(x) may tend to zero as n → ∞ only for a restricted interval of values of x
or not at all. In that case the power series given by (9.12) will only represent the
function f (x) in that interval of convergence.

Setting a = 0 in (9.13) leads to the special case

(9.13)

which is known as the Maclaurin series expansion of f (x).
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Example 9.10 Find the Maclaurin series expansion of ex sin x.

Solution Since f (x) = ex sin x,

f ′(x) = ex(sin x + cos x)

This may be rewritten (see Section 2.6.5) as

f ′(x) = ÷2ex sin(x + π)

so the process of differentiation is equivalent to multiplying by ÷2 and adding π to the
argument of the sine function. Thus we can write the second derivative directly as

f ″(x) = (÷2)2ex sin(x + 2 × π) = 2ex cos x

and so on for higher derivatives, giving in general

f (k)(x) = (÷2)kex sin(x + kπ)

Putting x = 0 gives f (0) = 0, f (1)(0) = 1, f (2)(0) = 2, f (3)(0) = 2, f (4)(0) = 0, f (5)(0) = −4,
f (6)(0) = −8, … , which, on substituting into (9.13), gives

It remains to show that Rn(x) → 0 as n → ∞. Since

with 0 � θ � 1

we have in this particular example

with 0 � θ � 1

We recall that the series for ex is convergent for all x, so that xn/n! → 0 as n → ∞. Hence
(x÷2)n+1/(n + 1)! → 0 as n → ∞, and | sin[θx + (n + 1)π] | � 1, and so

Rn(x) → 0 as n → ∞ for all x

Thus the Maclaurin expansion of ex sin x is

In practice it is rarely the case that we obtain the Maclaurin series expansion of a 
function by direct calculation of the derivatives as in Example 9.10. More commonly,
we obtain such series by the manipulation of known standard Maclaurin series as 
we did in Section 7.7.2. Most of the standard series were given in Figure 7.13. For 
convenience, we reproduce some of them in Figure 9.6.
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(a)  

(b)

(c)

(d)

(e) 

(f )

(g)

(h)

Figure 9.6 Some standard Maclaurin series expansions.
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In MATLAB the command taylor(f,n,x,a) returns (n − 1)th order Taylor series
expansion of f (x) about x = a, while the command taylor(f,n,x) returns the
Maclaurin series expansion of f (x). The corresponding command in MAPLE is 
taylor(f,x = a,n); (Note that in this case we need to specify x = 0 or x = a or
similar and if n is not specified then 6 is the default value). Considering Example
9.10 the commands

MATLAB MAPLE
syms x

f = taylor(exp(x)*sin(x), taylor(exp(x)*sin(x),

6,x); x = 0);

pretty(ans)

return the answers

x + x2 + 1/3x3 - 1/30x5 x + x2 + 1–3x
3 - 1—30x

5 + O(x6)

which check with the answer given in the solution.
To obtain the first three terms of the corresponding series about x = a the 

commands

syms x a

f = taylor(exp(x)*sin(x), taylor(exp(x)*sin(x),

3,x,a); x = a,3);

return the answer

ea sin(a) + (ea cos(a) + ea sin(a))(x - a)

+ ea cos(a)(x - a)2 + O((x - a)3)

with ea expressed as exp(a) in the MATLAB response.
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Example 9.11 Using the Maclaurin series expansions of ex and sin x, confirm the Maclaurin series
expansion of ex sin x obtained in Example 9.10.

Solution From entries (b) and (c) of Figure 9.6

As indicated in Section 7.7.2, we can multiply two power series within their common
domain of convergence, giving in this case

which is the series obtained in Example 9.10.

Example 9.12 Obtain the binomial expansion of (1 − x2)−1/2 and deduce a power series expansion for
sin−1x.

Solution From entry (a) of Figure 9.5.

To obtain the expansion of (1 − x2)−1/2, we need to set r = − and replace x by −x2. We
shall do this in two steps. First setting r = − gives

Then, replacing x by −x2, we have

giving the required binomial expansion

(9.14)
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Now

and so, integrating the series (9.14) term by term, we obtain

Notice that in Example 9.12 we have integrated a power series to obtain the expansion
of another function. In general, we may integrate and differentiate power series within
their domains of absolute convergence.

For Example 9.12 check that the commands

MATLAB MAPLE
syms x

taylor((1 – x^2)^(–1/2), taylor((1 – x^2)^(–1/2),

9,x); x = 0,9);

pretty(ans)

both return the answer given in (9.12) and that the additional commands

int(ans); int(%,x);

pretty(ans)

return the integrated series for sin−1x.

Note: In both cases the square root term could be entered as 1/sqrt(1 – x^2) and
this is often preferred.

Example 9.13 The continuous belt of Example 1.48 has length L given by

Show that when R − r � l, a good approximation to L is given by

L � 2l + π(R + r) + (R − r)2/l

Solution Taking the first and last term of the formula for L separately we obtain
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and

Hence

Thus when l � R − r, we have

L � 2l + π(R + r) + (R − r)2/l

See Question 18 in Exercises 9.4.4 for an examination of the error.

9.4.3 L’Hôpital’s rule

Sometimes we need to find limits of the form

where f (a) = g(a) = 0. Even though such a limit may be defined, it cannot be found 
by substituting x = a, since this produces the indeterminate form 0/0. Using Taylor’s
theorem (Theorem 9.4), we can formulate a rule for obtaining such limits if they exist.

Using Taylor’s series, we may write

since f (a) = g(a) = 0, x ≠ a

Hence

provided g′(a) ≠ 0. This is known as L’Hôpital’s rule.
It may be that f ′(a)/g′(a) is also indeterminate. Consequently, when applying

L’Hôpital’s rule to obtain the limit

we must repeat the process of differentiating f (x) and g(x) each time we have the
indeterminate form 0/0 at x = c. If, however, at any stage in the process, one or other of
the derivatives is non-zero at x = a then we must stop the process, since the rule will
no longer apply. In such cases the limit is either zero or infinite or does not exist; for

example, does not exist.lim
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Example 9.14 Using L’Hôpital’s rule, obtain the limits

(a) (b)

Solution (a) Since (sin x − x)/x3 takes the indeterminate form 0/0 at x = 0, we apply L’Hôpital’s
rule to give

(again 0/0 at x = 0)

(again 0/0 at x = 0)

so that

(b) Since (1 − cos x)/(x + x2) takes the form 0/0 at x = 0, we apply L’Hôpital’s rule to give

Note that in this case the limit is zero since (sin x)/(1 + 2x) takes the form 0/1 at x = 0.
If we mistakenly proceeded to apply the rule once again, we should obtain

an incorrect answer, since the rule was not applicable. The reader may have noticed that
both of these limits can be readily evaluated using Maclaurin series.

9.4.4 Exercises
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8 Show that if f (x) = ecos x then

f ′(x) = −f (x)sin x

and find f (0) and f ′(0). Differentiating the
expression for f ′(x), obtain f ″(x) in terms of f(x)
and f ′(x), and find f ″(0). Repeating the process,
obtain f (n)(0) for n = 3, 4, 5 and 6, and hence
obtain the Maclaurin polynomial of degree six 
for f (x). Confirm your answer by obtaining 
the series using the Maclaurin expansions of
ex and cos x.

9 A function y = y(x) satisfies the equation

with y = 1 when x = 0. By repeated differentiation,
show that y (n)(0) = 1 (n � 2), and find the Maclaurin
series for y.

10 An alternative approach to Question 9 uses the
method of successive approximation, rewriting 
the equation as

d

d

y

x
y x      = − + 1
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yn+1(x) = 1 + �
x

0

[yn(t) − t + 1] dt,

with y0(x) = y(0) = 1

Putting y0(x) = 1 into the integral, show that

y1(x) = 1 + 2x − x2

y2(x) = 1 + 2x + x2 − x3

and find y3 and y4.

11 Show that the binomial expansion of (1 + x)−1 is

(1 + x)−1 = 1 − x + x 2 − x 3 + … (−1 � x � 1)

Hence find the Maclaurin series expansion of tan−1x.

12 Use the series for sin x and cos x to obtain the
Maclaurin series for tan x as far as the term in x7.
Deduce the series for ln cos x.

13 Show that

14 The field strength H of a magnet at a point on the
axis at a distance x from its centre is given by

where 2l is the length of the magnet and M is its
moment. Show that if l is very small compared
with x then

15 Using the Maclaurin series expansions of ex and
cos x, show that

16 Show that

if powers of x greater than x 5 are neglected.
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1 1
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45
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1
6

1
2

1
2

....

17 By expanding e−x2

as a Maclaurin series, show that

�
0

1/2

e−x2

dx � 0.461

18 Considering the problem of Example 9.13, for
what values of l does the approximation

have a percentage error of less than 0.05% when
R = 5 and r = 4?

19 Using L’Hôpital’s rule, find the following limits:

(a) (b)

(c) (d)

(e) (f )

20 Consider again the design of the milk carton
discussed in Example 8.34. Show that if the 
overlap used in its construction is x mm instead 
of 5 mm, the objective function that must be
minimized is

Show that when x = 0, the optimal value for b is
b*0 = 10(568)1/3. The optimal value b* depends on
x. Obtain the Maclaurin series expansion for b* 
as far as the term in x2 and discuss the effect of
the overlap size on the design of the carton. 
(Hint: Let b* � b0 + b1x + b2x2.)

f b b x
b
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9.4.5 Interpolation revisited

In Section 2.9.1 we developed the idea of linear interpolation and showed that the
approximation

f x f
x x

x x
f fi

i

i i
i i( )    

  

  
(   )≈ +

−
−

−
+

+
1

1
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gave a value for f (x) which was as accurate as the original data when | ∆2 fi | is less than
4 units of the least significant figure. In many applications, it is easier to express this
condition in terms of the second derivative rather than the second difference.

Now

∆2 fi = f (xi + h) − 2f (xi) + f (xi − h)

Replacing f (xi + h) and f (xi − h) by their Taylor expansions about x = xi, we have (after
some cancelling of terms)

∆2 fi = h2 f ″(xi) + f ″″(xi) + …

The leading term provides a good estimate for ∆2fi so that the condition for accurate 
linear interpolation becomes

h2 | f ″(x) | � 4 units of the least significant figure

This enables us to choose an appropriate tabular interval, as is shown in Example 9.15.

Example 9.15 The function f (x) = e−x is to be tabulated to 4dp on the interval [0, 0.5]. Find the
maximum tabular interval such that the resulting table is suitable for linear interpolation
to 4dp, that is, to yield an interpolated value which is as accurate as the tabulated value.

Solution Here we require that

h2 | f ″(x) | � 4 × 0.0001

Since f (x) = e−x we deduce that f ″(x) = e−x. On the interval [0, 0.5], the maximum value
of e−x occurs at x = 0, where e0 = 1. Thus we need the largest value of h such that

h2 � 4 × 0.0001

Hence h � 0.02, so that the largest tabular interval is 0.02.

9.4.6 Exercises

h4

12

726 FURTHER CALCULUS

..

21 A table for ex is required for use with linear
interpolation to 6dp. It is tabulated for values of x
from x = 0 to x = X at intervals of 0.001. What is
the largest possible value of X?

22 A table for tan x is required for use with linear
interpolation to 6dp. It is tabulated for values of
x from x = 0 to x = 1 at intervals of h rad. What is
the largest possible value of h?

23 In Section 8.6 we discussed the process of
numerical differentiation using the approximation

φ( )  
(   )  (   )

h
f a h f a h

h
=

+ − −
2

Using the Taylor series for f(a + h) and f(a − h)
about x = a, show that

and deduce that

Writing ψ(h) = [4φ ( h) − φ (h)], show that
[16ψ( h) − ψ(h)] yields an approximation 

to f ′(a) with truncation error O(h6). Apply this
extrapolation procedure to find f ′(1) when f(x) =
cosh x, taking h = 0.4, 0.2 and 0.1, working to as
many decimal places as your calculator will permit.

1
2

1
15

1
2

1
3

′ = − + +f a h h
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!

( )  ( )1
3

1
2

1
4

4
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5
φ φ …

′ = − − −f a h
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f a
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!
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3 5
…
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9.4.7 The convergence of iterations revisited

In Section 9.4.2 we analysed the convergence of an iteration xn+1 = g(xn) for the root α
of an equation f (x) = 0. We can use the Taylor expansion to analyse the rate of con-
vergence of such schemes. Setting xn = α + εn, so that εn is the error after n iterations,
we have

α + εn+1 = g(α + εn)

Expanding g(α + εn) about x = α, using the Taylor series (9.12), gives

(9.15)

Since α is a root of the equation f (x) = 0, we have α = g(α) and (9.15) simplifies to

(9.16)

If g′(α) ≠ 0 then εn+1 is proportional to εn, and we have a first-order process. If g′(α) = 0
and g″(α) ≠ 0 then εn+1 is proportional to εn

2 , and we have a second-order process, and
so on.

Example 9.16 The equation x tan x = 4 has an infinite number of roots. To find the root near x = 1, we
may use the iteration

Show that this is a first-order process. Starting with x0 = 1, find x3 and assess its 
accuracy.

Solution Here g(x) = tan−1(4/x), so that

which is non-zero for all x, i.e. g′(α) ≠ 0. Thus the iteration is a first-order process.
Starting with x0 = 1, we obtain, working to 4dp, the following table.

n xn 4/xn tan−−1(4/xn)

0 1.0000 4.0000 1.3258
1 1.3258 3.0170 1.2507
2 1.2507 3.1982 1.2678
3 1.2678

From (9.16) we can assess the accuracy of xn using

εn+1 = εng′(α) + … 

′ =
−
+

g x
x

( )  
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and approximating εn by xn − xn+1 and α by x3. Thus in this case we have

so that the root is 1.26 to 3sf.

9.4.8 Newton–Raphson procedure

One of the most popular techniques used by engineers for solving non-linear equations
is the Newton–Raphson procedure. The basic idea is that if x0 is an approximation
to the root x = α of the equation f (x) = 0 then a closer approximation will be given by
the point x = x1 where the tangent to the graph at x = x0 cuts the x axis, as shown in
Figure 9.7.

From the definition of the derivative

which can be rearranged to give

Taking x1 as the new approximation to the root x = α and repeating the procedure, as
illustrated in Figure 9.7, we obtain the closer aproximation

and so on. In general, we may write

(9.17)

Equation (9.7) is known as the Newton–Raphson iteration procedure for obtaining an
approximation to the root of f (x) = 0. Note that if f ′(xn) = 0 then (9.7) cannot be used
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Figure 9.7
The Newton–Raphson
root-finding method.
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to obtain xn+1. This is because the tangent to the graph of y = f (x) at x = xn will be
parallel to the horizontal x axis.

Comparing with the general iteration xn+1 = g(xn), we see that in the case of the
Newton–Raphson procedure (9.19) the iteration function is

which, using the quotient rule, has derivative

Since α is a root of f (x) = 0, we have f (α) = 0, giving

g′(α) = 0

so the procedure is not a first-order process. Differentiating again and substituting x = α,
we obtain

and we have a second-order process provided that f ′(α) ≠ 0. If f ″(α) = 0, f ′(α) ≠ 0 then
we have a third- or higher-order process. When f (x) = 0 has a repeated root at x = α,
g′(α) has the indeterminate form 0/0, and the analysis fails. Repeated roots cause
numerical as well as theoretical problems.

Example 9.17 The equation x tan x = 4 was considered earlier in Example 9.16. Apply the Newton–
Raphson method to find the root near x = 1.

Solution First, we rewrite the equation in the more convenient (for differentiation) form

x sin x − 4 cos x = 0

Then taking f(x) = x sin x − 4 cos x we have f ′(x) = x cos x + 5 sin x. Using the iteration

xn+1 = xn − f (xn)/f ′(xn), x0 = 1

gives the values (to 9dp)

1.000 000 000
1.277 976 731
1.264 600 951
1.264 591 571
1.264 591 571

so that after four iterations we obtain an answer correct to 9dp.

Example 9.18 Find the root of

8.0000x4 + 0.4500x3 − 4.5440x − 0.1136 = 0

near x = 0.8 to 4sf.
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n xn f (xn) f ′′(xn) −−fn /f ′′n

0 0.8000 −0.241 600 12.7040 0.019 018
1 0.8190 0.011 436 13.9408 −0.000 820
2 0.8182 0.000 340 13.8876 −0.000 022
3 0.8182

Figure 9.8
Iteration for the root 
of the equation
8.0000x4 + 0.4500x3 −
4.5440x − 0.1136 = 0.

Solution In this particular example

f (x) = 8.0000x4 + 0.4500x3 − 4.5440x − 0.1136

giving

f ′(x) = 32.0000x3 + 1.3500x2 − 4.5440

When iterating for the root using the Newton–Raphson procedure (9.17), it is usual 
to present the calculations in tabular form, as shown in Figure 9.8 for this particular
example. To 4sf the root is given by x = 0.8182. When using the Newton–Raphson
method, it is recommended that the iteration formula is not tidied up into a single
expression but is left in the ‘approximation minus error’ format. Tidying up may lead to
ill-conditioning of the numerical procedure.

There are no built-in programs for Newton–Raphson in either MATLAB or MAPLE.
The method is basically a numerical procedure, so MATLAB seems to be the 
obvious package to use. You will need to develop a little program, as illustrated
below for Example 9.18.

% Set up initial data and put initial results into R

e = 0.0001; acc = 1; x = .8; f = 8*x^4 + .45*x^3 -

4.544*x - 0.1136; fd = 32*x^3 + 1.35*x^2 - 4.544;

R = [x;f;fd];

% Now iterate until acc is less than e and add results

to R

while acc>e xold = x;

x = x - f/fd; f = 8*x^4 + .45*x^3 - 4.544*x - 0.1136; 

fd = 32*x^3 + 1.35*x^2 - 4.5440;

R = [R [x;f;fd]];

acc = abs(x - xold);

end

R

which returns

R = 

0.8000 0.8190 0.8182 0.8182

-0.2416 0.0117 0.0000 0.0000

12.7040 13.9420 13.8863 13.8861

Note: Small discrepancies with answers given in Figure 9.8 are due to the number of
decimal places being retained during working.
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9.4.9 Optimization revisited
In Section 8.5 we indicated that we would return to reconsider the conditions for deter-
mining the nature of stationary points following the introduction of the Taylor series.

If a minimum value of a differentiable function f(x) occurs at x = a then the difference
f (a + h) − f (a) will be positive for all small h. However, from the Taylor series (9.12)

and the sign of the expression on the right-hand side depends on the sign of h. It will
change sign as h changes sign unless f ′(a) = 0, in which case the sign depends on 
the sign of f ″(a). Thus a necessary condition for the minimum to occur at x = a is that
f ′(a) = 0, and a necessary and sufficient condition for a minimum of f (x) at x = a
is f ′(a) = 0 and f ″(a) � 0. Similarly, the maxima of differentiable functions occur when
f ′(a) = 0 and f ″(a) � 0. If f ′(a) = 0 and f ″(a) = 0, we may have a maximum or minimum
value or a point of inflection. If f ′(a) = f ″(a) = 0, a necessary condition for a minimum
or maximum at x = a is f ″′(a) = 0, and so on. However, it is important to remember that
a function may have an optimal value at a point where its derivative does not exist, as
illustrated in Figure 9.9. A numerical scheme for locating the optimal point of a func-
tion using the Newton–Raphson procedure can be established. The resulting iteration

is, however, rarely used in practice. Generally, bracketing methods are used similar to
that described in Question 85 (Exercises 8.5.2).

9.4.10 Exercises

x x
f x

f x
n n
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3
2 3 …

....

Figure 9.9
y = (x − 1)2/3 has a
minimum at x = 1 but
it is not differentiable
here.

24 Given below are three methods for calculating
÷2 by iteration. Find the order of each process 
and discuss their numerical properties.

(a) xn+1 = 1 + 1/(1 + xn) (b) xn+1 = (xn + 2/xn)

(c) xn+1 = (3x4
n + 12xn

2 − 4)/(8x3
n)

25 Use the Newton–Raphson iteration procedure 
to find the real root of x3 − 6x2 + 9x + 1 = 0 
to 4dp.

1
2

26 Use the Newton–Raphson method to find the two
positive roots of x4 − 4x3 − 12x2 + 32x + 28 = 0.

27 The iteration xn+1 = xn(3 − 3axn + a2xn
2) may be used

to calculate the reciprocal of a, that is, to solve
ax = 1. Show that this is a third-order process with
εn+1 = a2εn

3. Apply the iteration with a = 1.735,
starting with x0 = 0.5, and prove that x2 is correct
to 8dp.

9.4.11 Numerical integration
A remarkable mathematical result that follows from the Taylor series is known as the
Euler–Maclaurin formula:
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Subdividing the interval [a, b] into n equal strips of width h, we have

Applying the Euler–Maclaurin formula to each term in the summation, we obtain the
trapezium rule together with a power series expansion of the truncation error in terms
of h:

= T(h) + α1h
2 + α2h

4 + α3h
6 + … (9.18)

where T(h) is the trapezium approximation to the integral using n strips of width h with
nh = b − a, and the α’s are independent of h. From this we see that the principal term
of the global truncation error for the approximation is h2[ f ′(b) − f ′(a)] which, using
the first mean value Theorem 9.3, may be written h2(b − a) f ″(c) where a � c � b.

This analysis makes no allowance for the effect of rounding errors in the values of
fi (i = 0, 1, … , n). A simple estimate of these is

= nh( unit of the least significant figure)

= (b − a)( unit of the least significant figure)

This result assumes a fixed number of decimal places in the values of the integrand, and
is suitable for calculator work. For computers, when h is small and n large, there is the pro-
blem of loss of significant digits when adding a large number of almost-equal numbers.

Example 9.19 In Example 8.68 the integral �2
1(1/x)dx was estimated using the trapezium rule with h =

and tabulating the integrand to 6dp. Estimate an error bound for the answer obtained.

Solution Here f (x) = 1/x, a = 1 and b = 2. The global error is given by

(b − a)h2f ″(X), with a � X � b

so that in this example it is

The largest possible value this can take is when X = 1, so we obtain an estimate for 
the truncation error of 0.010. The rounding-error effect, 0.000 000 5, is negligible 
compared with this. The error bound we have now calculated safely overestimates the
actual error 0.004 obtained in the calculation.
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Returning to the full Euler–Maclaurin expansion (9.18), using 2n strips of width h, 
we obtain

(9.19)

Eliminating the α1 terms from (9.18) and (9.19) (by subtracting the former from 4 × the
latter, and dividing the result by 3) gives

Thus the estimate [4T( h) − T(h)] is more accurate than either T( h) or T(h) taken
separately. This implies that the truncation error for Simpson’s rule is proportional
to h4, which explains why it is a good method for hand computation (as opposed to
automatic computation).

9.4.12 Exercises
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28 Simpson’s rule, Section 8.10.2, for the numerical
evaluation of an integral is

where n is an even number. The global truncation
error is

If f (x) = ln cosh x and a = 0, b = 0.5, show that
| f (4)(x) | � 2 for 0 � x � 0.5 and deduce that the
global truncation error will be less than 1/(2880n4).

If f (x) is tabulated to 4dp, show that the
accumulated rounding error using the formula is
less than 1/40 000, and find n such that, using the
formula, the integral �0

0.5 ln cosh x dx would be
evaluated correctly to 4dp.

29 (a) Use the trapezium rule, Section 8.10.1, with 
h = 0.25 to evaluate �1

0÷x dx. Compare your answer
with the exact value, .

(b) Put x = t 2 in the integral and again evaluate it
using the trapezium rule with four strips. Compare
your answer with the exact value and with the
answer found in (a).

2
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(c) Examine the global truncation errors in both
cases and draw some general conclusions.

30 The trapezium rule estimate for �1
0 ex2

dx with 
h = 0.25 is 1.490 68 to 5dp. Estimate the size of
the global truncation error in this approximation
and show that

What value of h will give an answer correct to 4dp?

31 Show that the composite trapezium rule with step
length h yields the approximation

Using the series expansion for coth x

obtain the approximation

Compare this answer with the Euler–Maclaurin
theorem.
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30 240
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9.5 Calculus of vectors
In mechanics the vectors describing a dynamic system are time-dependent. Such vectors
may be integrated and differentiated in a natural extension of the same processes for
scalar quantities. In this section we briefly introduce the relevant definitions.

9.5.1 Differentiation and integration of vectors

The formal definition gives the derivative of a vector νν(t) as

so if νν = (v1(t), v2(t), v3(t)) then

For example, the position vector r(t) = (x(t), y(t), z(t)) of a particle may be differentiated
with respect to time t to give its velocity νν(t) as

Differentiating again gives the acceleration of the particle as

When differentiating a vector with respect to time, it is conventional to use a ‘dot’ 
notation and write

The usual rules of differentiation may be deduced from this definition.

(a)

(b) where λ(t) is a scalar function

(c)

(d) note importance of order

Example 9.20 Sketch the curve

r = sin t i + cos t j

× +ν νd
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dt
t t
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t t

t
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Calculate

(a) (b) (c) (d) ( | r | )

Solution A sketch of the curve is shown in Figure 9.10. It is a circle with centre at the origin and
of unit radius.

(a)

(b)

(c) = (cos2t + sin2t)1/2 = 1

(d) | r | = (sin2t + cos2t)1/2 = 1

so that

Note that

In the same way, the integration of a vector νν(t) with respect to the variable t is usually
performed in terms of its components:

�νν(t)dt = �(v1(t), v2(t), v3(t)) dt

Of course, the arbitrary constant of integration is now a vector constant c = (c1, c2, c3).

Example 9.21 Given

with r(0) = 0 and U(0) = V

find r(t). Obtain the locus of the point P, such that o1p2 = r, in terms of x and z when 
V = (u, 0, v).
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Figure 9.10
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Solution This is the equation of motion of a projectile under gravity. Integrating the equation
once gives

Since U(0) = V, we have

c = V and

Integrating a second time gives

r(t) = Vt − gt2k + a

Since r(0) = 0, we have a = 0, giving

r = Vt − gt2k

Now r = (x, y, z), so that when V = (u, 0, v), we have

(x, y, z) = (u, 0, v)t + (0, 0, − gt2)

= (ut, 0, vt) + (0, 0, − gt2)

= (ut, 0, vt − gt2)

Thus

x = ut, y = 0 and z = vt − gt2

Substituting t = x /u into the equation for z gives, after some rearrangement,

This is a parabola with vertex at (uv/g, 0, v2/2g).

9.5.2 Exercises

z
g

g

u
x

u

g
      = − −

⎛
⎝⎜

⎞
⎠⎟

1
2

2

2

2

2

v v

1
2

1
2

1
2

1
2

1
2

1
2

d

d

r
k V

t
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d

d

r
k c

t
gt    = − +
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32 If r = (t, t2, t 3), find U(t) and W(t).

33 Given the vector

r = (1 + t) i + t2j + t 3k

evaluate dr/dt and write it in the form

where r is the unit tangent direction. Calculate
dr/dt in its simplest form and show that it is
perpendicular to r.

34 In polar coordinates (r, θ ), the unit vectors X and q
are defined as in Figure 9.11. Show that

d

d

r
t

f t t  ( ) ( )= r

2
3

X = cosθ i + sinθ j

q = −sinθ i + cosθ j

Hence from the definition r = rX show that

Deduce that

and

d

d

d

d

d

d

d

d

2

2

2

2
2 2

r
t

r

t
r

r

t
r

t
        = −⎛
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⎞
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⎠⎟ω ω ω

X q

d

d
and

d

d

X
q

q
X

t t
            = = −ω ω

d

d

d

d
where

d

d

r
t

r

t
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t
              = + =X qω ω θ
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35 Show that if the vector a(t) = f (t)i + g(t)j has

constant magnitude, then a and are 

perpendicular.

36 A curve is given parametrically by r(t) = f (t)i +
g(t)j. Show that, if s is the length of an arc

d

d

a
t

....

measured from a fixed point P0 on the curve so that
s increases as t increases, then

Deduce that is a unit tangent vector to the curve

at r(t) and that (using the result  of Question 38 in 

Exercises 9.6.4), and are perpendicular. 

Show that

where κ is the curvature of the curve at that 
point.

d

d 2

2r
s

  = | |κ

d

d 2

2r
s

d

d

r
s

d

d

r
s

d

d

d

d

r
t

s

t
  =

9.6 Functions of several variables

In many applications we use functions of several independent variables, for example,
the velocity of a fluid at a point depends on its space coordinates, the temperature in a
heat furnace depends upon its position and so on. The basic ideas of calculus apply to
functions of several variables as well as to functions of one variable. Of course, because
more variables are involved, the notation and technical detail are more complicated but
the essential ideas are the same. In the remainder of this chapter we will explore the
extension of the process and ideas of differentiation to functions of several independent
variables. As we shall see below, the rate of change of the function with respect to its
variables can be expressed in terms of the rates of change of the function with respect
to each of the independent variables separately.

9.6.1 Representation of functions of two variables

For functions of two independent variables, we are able to extend the ideas of a func-
tion of one variable. We use three coordinate axes, conventionally setting x and y as the
independent variables and z = f (x, y) as the dependent variable. Instead of a function
being represented by a curve in two dimensions, now a function is represented by a 
surface in three dimensions, as illustrated in Figure 9.12(a) for the function f (x, y) =
3x − x3 − y2. Often it is easier to understand the behaviour of a function by sketching 
its contours (or level curves), that is, the curves defined by f (x, y) = c for various 
values of the constant c, as shown in Figure 9.12(b) for the same function. Such plots
are readily produced using MATLAB or MAPLE.

Figure 9.11
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Using the Symbolic Math Toolbox in MATLAB the commands

syms x y

ezsurf(f(x,y))

where f (x, y) is a symbolic expression expressed in terms of x and y, plot the surface
z = f (x, y) over the default domain −2π � x � 2π, −2π � y � 2π, with the computa-
tional grid being chosen according to the amount of variation that occurs. If we wish
to specify the domain then we use the command

ezsurf (f(x,y),domain)

where the domain is specified as either the 4-array [a, b, c, d ], with a � x � b, c �
y � b, or the 2-array [a, b] with a � x � b, a � y � b.

738 FURTHER CALCULUS

..

Figure 9.12
(a) Surface 
f (x, y) = 3x − x3 − y2. 
(b) Contours 
3x − x3 − y2 = c.
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In MAPLE the surface f (x, y), a � x � b, c � y � b is obtained using the 
command

plot3d(f(x,y), x = a..b, y = c..d);

where f (x, y) is expressed in terms of x and y.
Likewise, in MATLAB the commands

syms x y

ezcontour(f(x,y))

plot the contour of f (x, y) over the default domain −2π � x � 2π, −2π � y � 2π. 
The domain may be specified using the command

ezcontour(f(x,y), domain)

where the domain may be the 4-array or 2-array specified above for ezsurf. The
corresponding commands in MAPLE are

with(plots):

contourplot(f(x,y), x = a..b, y = c..d);

9.6.2 Partial derivatives

Given a function of one variable, f (x), we recall from Section 8.2.2 that the derivative
was defined by

and that this was a measure of the rate of change of the value of the function f (x) with
respect to its variable (or argument) x. For a function of several variables it is also 
useful to know how the function changes when one, some or all of the variables change.
To achieve this we define the partial derivatives of a function.

First, we consider a function f(x, y) of the two variables x and y. The partial derivative

, of f (x, y) with respect to x is its derivative with respect to x treating the value of y

as being constant. Thus

Likewise, the partial derivative, , of f (x, y) with respect to y is its derivative with

respect to y treating the value of x as being constant, so that

The process of obtaining the partial derivatives is called partial differentiation.
Note the use of ‘curly dees’, which is to distinguish between partial differentiation and 

∂
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ordinary differentiation. In writing, care must be taken to distinguish between 

and , all of which have different meanings.

A concise notation is sometimes used for partial derivatives; as an alternative to the
‘curly dee’, we write

It should be noted, however, that subscripts often have other connotations, so care
should be taken in using them in this way.

If we write z = f (x, y) then the partial derivatives may also be written as

Summary

The partial derivatives of the function z = f (x, y) with respect to the variables x and
y respectively are given by

(9.20)

(9.21)

Finding partial derivatives is no more difficult than finding derivatives of functions of
one variable, with the constant multiplication, sum, product and quotient rules having
counterparts for partial derivatives. Note, however, that, despite the notation, partial 

derivatives do not behave like fractions. For example, .

Example 9.22 Find from first principles at the point (1, 2) where f(x, y) = x3 + 3xy + y2.

Solution The partial derivative of f (x, y) with respect to x at (1, 2) is given by
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Similarly at (1, 2) is given by

= 7

Example 9.23 Find from first principles the first partial derivatives of f(x, y) = y sin x at the general
point (x, y).

Solution Since y is independent of x

(see Section 7.8.1). Thus

Similarly 

Example 9.24 Find where f (x, y) is given by

(a) 3x2 + 2xy + y3 (b) (y2 + x)e−xy

Solution (a) f (x, y) = 3x2 + 2xy + y3

To find , we differentiate f (x, y) with respect to x regarding y as a constant. Thus we

obtain

(Note: term in brackets involves x only)
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Similarly,

= 2x + 3y2

(b) f (x, y) = (y2 + x) e−xy

Using the product rule, differentiating with respect to x, regarding y as a constant, gives

= (e−xy)(1) + (y2 + x)(−ye−xy)

= (1 − y3 − xy) e−xy

Similarly,

= (e−xy)(2y) + (y2 + x)(−xe−xy)

= (2y − xy2 − x2) e−xy

Example 9.25 Find ∂f /∂x and ∂f /∂y when f (x, y) is

(a) xy2 + 3xy − x + 2 (b) sin(x2 − 3y)

Solution (a) Taking f (x, y) = xy2 + 3xy − x + 2 and differentiating with respect to x, keeping y
fixed, gives

Differentiating with respect to y, keeping x fixed, gives

(b) Taking f (x, y) = sin(x2 − 3y) and applying the composite-function rule, we obtain

= 2x cos(x2 − 3y)

and
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Although we have introduced partial derivatives in the context of functions of two
variables, the concept may be readily extended to obtain the partial derivatives of a
function of as many variables as we please. Thus for a function f (x1, x2, … , xn) of 
n variables the partial derivative with respect to xi is given by

and is obtained by differentiating the function with respect to xi with all the other
n − 1 variables kept constant.

Example 9.26 Find the partial derivatives of

f (x, y, z) = xyz2 + 3xy − z

with respect to x, y and z.

Solution Differentiating f (x, y, z) with respect to x, keeping y and z fixed, gives

Differentiating f (x, y, z) with respect to y, keeping x and z fixed, gives

Differentiating f (x, y, z) with respect to z, keeping x and y fixed, gives

= xy(2z) + 0 − 1 = 2xyz − 1

The partial derivatives fx and fy of the function f (x, y), with respect to x and y
respectively, are given by the commands

MATLAB MAPLE
syms x y

f = f(x,y) f:= f(x,y);

fx = diff(f,x) fx:= diff(f,x);

fy = diff(f,y) fy:= diff(f,y);

Considering Example 9.24(b). The commands

MATLAB MAPLE
syms x y

f = (y^2 + x)*exp(-x*y); f:= (y^2 + x)*exp(-x*y);

fx = diff(f,x);  fx:= diff(f,x);

fx = simplify(fx);

pretty (fx)

f
f

z
z = 

∂
∂

f
f

y
xz xy = = +    

∂
∂

2 3

f
f

x
yz yx = = +    

∂
∂

2 3

f
f

x

f x x x x x x x f x x x x

x
x

i x

i i i i n

i
i

i

= =
+ −

→

− +   lim
( , ,  , ,  , ,  , )  ( , ,  , )∂

∂
… … …

∆

∆
∆0

1 2 1 1 1 2n i

..

M09_JAME0734_05_SE_C09.qxd  11/03/2015  09:57  Page 743



..

744 FURTHER CALCULUS

..

return the answer
-exp(-xy)(-1 + y3 + xy) -e(–xy) (-1 + y3 + xy)

with the additional commands

fy = diff(f,y); fy:= diff(f,y);

fy = simplify(fy);

pretty(fy)

returning the answer

-exp(-xy)(-2y + xy2 + x2) -e(–xy) (-2y + xy2 + x2)

The commands for partial derivatives can readily be extended to functions of more
than two variables. For example, considering Example 9.26 the MATLAB 
commands

syms x y z

f = x*y*z^2 + 3*x*y - z;

fx = diff(f,x); pretty(fx) return the answer yz2 + 3y

fy = diff(f,y); pretty(fy) return the answer xz2 + 3x, and
fz = diff(fz); pretty(fz) return the answer 2xyz - 1

For practice, check the answers to Examples 9.24(a) and 9.25(a) and (b).

9.6.3 Directional derivatives

Consider a function of two variables z = f (x, y). This may be represented as a surface
in three dimensions, as shown in Figure 9.13.

We recall from Chapter 8 that the derivative of a function f(x) of one variable meas-
ures the slope of the tangent to the graph of the function, as illustrated in Figure 9.14.
In the case of a function of two variables, because z = f (x, y) defines a surface in three
dimensions, there is no unique meaning of ‘slope’ unless we specify the direction in
which it is to be measured. In general, the slope will be different for different directions.
Now consider two points P and Q on the surface z = f (x, y), as shown in Figure 9.15
and let P ′ and Q ′ be their projections on the x–y plane. To simplify, set P ′Q ′ = l; then
the coordinates of P ′ and Q ′ are given by

(x, y, 0) and (x + l cos α, y + l sin α, 0)

Figure 9.13 Surface z = f (x, y). Figure 9.14 Tangent to the graph of y = f (x).
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respectively, where α is the angle that P ′Q ′ makes with the positive x direction. The
slope of the line PQ is then

and the slope of the surface at P in the direction of p1q2 is the limit of this quotient as 
l → 0. Denoting this slope by mα(x, y), we have

Here the subscript α indicates the direction with respect to which the slope is measured,
and the (x, y) shows the point at which it is evaluated. Essentially, we have reduced
the problem of a function of two variables to a function of one variable by fixing
the direction along which we allow x and y to vary. It would be very clumsy to have to
perform the calculation this way every time we wish to work out the rate of change
or slope of the function. To simplify the process, we shall show how to represent the
slope mα in terms of two standard slopes: one in the x direction and the other in the
y direction.

To do this, we rearrange the numerator of the quotient as a sum of terms, one show-
ing the change in f (x, y) due to the change l cos α in x, the other showing the change in
f (x, y) due to the change l sin α in y. Thus

f (x + l cos α, y + l sin α) − f (x, y) = [ f (x + l cos α, y + l sin α) − f (x, y + l sin α)]

+ [ f (x, y + l sin α) − f (x,y)]

and

= p(x, y) cos α + q(x, y) sin α

where p(x, y) and q(x, y) are the values of the respective limits

q x y
f x y l f x y

ll
( , )  lim

( ,   sin )  ( , )

sin
=

+ −
→0

α
α

p x y
f x l y l f x y l

ll
( , )  lim

(   cos ,   sin )  ( ,   sin )

cos
=

+ + − +
→0

α α α
α

+
+ −

→
 lim

( ,   sin )  ( , )

sin
sin

l

f x y l f x y

l0

α
α

α

m x y
f x l y l f x y l

ll
α

α α α
α

α( , )  lim
(   cos ,   sin )  ( ,   sin )

cos
cos=

+ + − +
→0

m x y
f x l y l f x y

ll
α

α α
( , )  lim

(   cos ,   sin )  ( , )
=

+ + −
→0

f x l y l f x y

l

(   cos ,   sin )  ( , )+ + −α α

Figure 9.15
Directional derivative.
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Examining the numerator of p(x, y), we see that the ‘y value’ in both terms is the
same, y + l sin α, and also that l sin α → 0 as l → 0. In contrast, the ‘x value’ in the terms
differs by l cos α. Denoting this by ∆x we may write

which simpifies to

(9.22)

In the same way,

(9.23)

and we may then write the slope in the direction at an angle α to the x axis as

(9.24)

Example 9.27 Find the partial derivatives of f (x, y) = x2y3 + 3y + x with respect to x and y, and the
slope of the function in the direction at an angle α to the x axis.

Solution To find the partial derivative of f (x, y) with respect to x, we differentiate f(x, y) with
respect to x, keeping y constant. Thus

Similarly, we obtain the partial derivative with respect to y by differentiating f (x, y)
with respect to y, keeping x constant. Thus

The general expression for the slope of the surface z = f (x, y) in the direction at an
angle α to the x axis is

So for this function we have

mα (x, y) = (2xy3 + 1)cos α + (3x2y2 + 3)sin α

Since in evaluating ∂f/∂x we consider only the variation of f (x, y) in the x direction,
∂f/∂x gives the slope of the surface z = f (x, y) at the point (x, y) in the x direction
(α = 0 in (9.24)). Similarly, ∂f/∂y gives the slope in the y direction (α = π in (9.24)).
This is illustrated in Figure 9.16.
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∂
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∂

∂
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∂
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∂
∂
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∂
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Thus if we know ∂f /∂x and ∂f /∂y, we can calculate the slope mα (x, y) of the func-
tion in any given direction using (9.24). This is called the directional derivative of 
f(x, y), and may be regarded as the projection of the vector (∂f/∂x, ∂f/∂y) onto the direction
represented by the unit vector (cos α, sin α), so that (cos α, sin α) is a unit vector in the
direction of the required derivative. Thus we may express mα(x, y) as the scalar product

9.6.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

m x y
f

x

f

y
α α α( , )  , (cos , sin )=

⎛
⎝⎜

⎞
⎠⎟

⋅
∂
∂

∂
∂

Figure 9.16 Geometrical illustration of partial derivatives (a) = tan α and (b) = tan β.
∂
∂

f

y

∂
∂

f

x

37 Obtain from first principles the partial derivatives
∂f /∂x and ∂f /∂y of the function f (x, y) at the 
point (1, 2), where

f (x, y) = 2x2 − xy + y2

38 Obtain from first principles the partial derivatives
∂ f /∂x and ∂ f /∂y of the function f (x, y) at the
general point (x, y) where

f (x, y) = x cos y

39 Find ∂f /∂x and ∂f /∂y when f (x, y) is

(a) x3y + 2x2 + 9y2 + xy + 10

(b) (x + y2)3 (c) (3x2 + y2 + 2xy)1/2

40 Find ∂ f /∂x and ∂ f/∂y when f (x, y) is

(a) exycos x (b) (c) 
x y

x y

  

  

+
+ +2 22 6

x

x y2 2+ 

41 Find ∂z /∂x and ∂z/∂y when z(x, y) satisfies

(a) x2 + y2 + z2 = 10

(b) xyz = x − y + z

42 Show that z = x2y2/(x2 + y2) satisfies the
differential equation

43 Find fx, fy and fz when f (x, y, z) is

(a) x2y + 3yxz − 2z3x2y

(b) e2zcos xy

44 Show that

f (x, y, z) = (x2 + y2 + z2)−1/2

satisfies

xfx + yfy + zfz = −f (x, y, z)

x
z

x
y

z

y
z

∂
∂

∂
∂

    + = 2

..
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45 Show that

satisfies

fx + fy + fz = 1

46 Find the gradient of f (x, y) = x2 + 2y2 − 3x + 2y at
the point (x, y) in the direction making an angle α

f x y z x
x y

y z
( , , )    

  

  
= +

−
−

with the positive x direction. What is the value of
the gradient at (2, −1) when α = π? What values
of α give the largest gradient at (2, −1)?

The level curve of f(x, y) through (2, −1) is given
by f (x, y) = f (2, −1). This defines the relationship
between x and y on the curve. Show that the tangent
to the level curve at (2, −1) is perpendicular to the
direction of maximum gradient at that point and
parallel to the direction of zero gradient.

1
6

9.6.5 The chain rule
As can be seen from Examples 9.24–9.26, the rules and results of ordinary differenti-
ation carry over to partial differentiation. In particular, the composite-function rule still
holds, but in a modified form. Consider the two-variable case where z = f (x, y) and x
and y are themselves functions of two independent variables, s and t. Then z itself is
also a function of s and t, say F(s, t), and we can find its derivatives using a composite-
function rule that gives the rates of change of z with respect to s and t in terms of the
rates of change of z with respect to x and y and the rates of change of x and y with
respect to s and t. Thus

(9.25)

or, in vector–matrix form,

This result is often called the chain rule. The proof is straightforward. Consider ∂z /∂s,
given by

The point (s + ∆s, t) in the s–t plane will correspond to the point (x + ∆x, y + ∆y) in 
the x–y plane, while (s, t) corresponds to (x, y). Thus

We can similarly prove the result for ∂z /∂t.
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It may happen, of course, that x and y are functions of one variable only or of three
variables or more. In all these cases the chain rule still applies when the functions
involved are differentiable.

Example 9.28 Find ∂T/∂r and ∂T/∂θ when

T(x, y) = x3 − xy + y3

and

x = r cosθ and y = r sinθ

Solution By the chain rule (9.25),

In this example

and

so that

= (3x2 − y) cosθ + (−x + 3y2) sin θ

Substituting for x and y in terms of r and θ gives

= 3r2(cos3θ + sin3θ ) − 2r cosθ sin θ

Similarly,

= (3x2 − y)(−r sin θ ) + (−x + 3y2)r cosθ

= 3r3(sin θ − cosθ ) cos θ sin θ + r2(sin2θ − cos2θ )

Example 9.29 Find dH/dt when

H(t) = sin(3x − y)

and

x = 2 t2 − 3 and y = t2 − 5t + 11
2

∂
∂

T

θ

∂
∂
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r

∂
∂
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r

∂
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∂
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∂
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Solution We note that x and y are functions of t only, so that the chain rule (9.5) becomes

Note the mixture of partial and ordinary derivatives. H is a function of the one variable
t, but its dependence is expressed through the two variables x and y.

Substituting for the derivatives involved, we have

= 3[cos(3x − y)]4t − [cos(3x − y)](t − 5)

= (11t + 5)cos(3x − y)

= (11t + 5)cos( t2 + 5t − 10)

Example 9.30 The base radius r cm of a right-circular cone increases at 2 cm s−1 and its height h cm at
3 cm s−1. Find the rate of increase in its volume when r = 5 and h = 15.

Solution The volume V of a cone having base radius r and height h is

V = πr2h

We wish to determine dV/dt given dr/dt and dh/dt. Applying the chain rule (9.25) 
gives

Now

so that

When r = 5 cm and h = 15 cm, the rate of increase in volume is

= 125π cm3 s−1

d

d
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t
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Example 9.31 Find when

(a) z = e−x cos y, where x = 2t + t2 and y = 4t 

(b) z = x3 + t2 and x2 + 2t2 + 3xt = 0.

Solution (a)

= −e−x cos y(2 + 2t) − e−x sin y(4)

= −2e−x[(1 + t) cos y + 2 sin y]

= −2e−2t−t2

[(1 + t) cos 4t + 2 sin 4t]

The final step in the above may or may not be appropiate to the application in which
the derivative is evaluated.

(b)

and differentiating implicitly we have

so that 

Hence 

The chain rule can be readily handled in both MATLAB and MAPLE. Considering
Example 9.28, in MATLAB the solution may be developed as follows:

The commands

syms x y r theta

T = x^3 - x*y + y^3; Tx = diff(T,x); Ty = diff(T,y);

x = r*cos(theta); y = r*sin(theta);

xr = diff(x,r), xtheta = diff(x,theta); yr = diff(y,r);

ytheta = diff(y,theta);

Tr = Tx*xr + Ty*yr

return

Tr = (3*x^2 - y)*cos(theta) + (-x + 3*y^2)*sin(theta)

= −
+ − −

+
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To substitute for x and y in terms of r and theta we make use of the eval command,
with

eval(Tr); pretty(ans)

returning the answer

(3r2cos(theta)2 - rsin(theta))cos(theta) + (-rcos(theta)

+ 3r2sin(theta)2)sin(theta)

which readily reduces to the answer given in the solution.
Similarly the commands

Ttheta = Tx*xtheta + Ty*ytheta;

eval(Ttheta); pretty(ans)

return the answer

(-3r2cos(theta)2 + rsin(theta))rsin(theta) + (-rcos(theta)

+ 3r2sin(theta)2)rcos(theta)

which also readily reduces to the answer given in the solution.
MAPLE solves this problem much more efficiently using the commands

T:= (x,y) -> x^3 - x*y + y^3;

diff(T(r*cos(theta), r*sin(theta)), r);

diff(T(r*cos(theta), r*sin(theta)), theta);

collect(%,r);

returning the final answer

(-3cos(θ)2sin(θ) + 3sin(θ)2cos(θ))r3 + (sin(θ)2 - cos(θ)2)r2

9.6.6 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

47 Find where A = r tan−1 (r tan θ ) and 

r = 2t + 1, θ = πt.

48 Find ∂f /∂s and ∂f /∂t when f (x, y) = excos y,
x = s2 − t2 and y = 2st.

49 Find dz/dt when

(a) z2 = x2 + y2, x = t2 + 1 and 
y = t − 1

(b) z = x2t2 and x2 + 3xt + 2t2 = 1

d

d

A

t
50 Show that if u = x + y, v = xy and z = f (u, v) then

(a)

(b)

51 Show that if z = xnf (u), where u = y/x, then

Verify this result for z = x4 + 2y4 + 3xy3.

x
z

x
y

z

y
nz

∂
∂

∂
∂

    + =

 

∂
∂

∂
∂

∂
∂

z

x

z

y
y x

z
    (   )− = −

v

x
z

x
y

z

y
x y

z

u

∂
∂

∂
∂

∂
∂

    (   )− = −

M09_JAME0734_05_SE_C09.qxd  11/03/2015  09:57  Page 752



9.6 FUNCTIONS OF SEVERAL VARIABLES 753

..

9.6.7 Successive differentiation

Consider the function f(x, y) with partial derivatives ∂f /∂x and ∂f /∂y. In general, these
partial derivatives will themselves be functions of x and y, and thus may themselves be
differentiated to yield second derivatives. We write

and

There are some functions for which the mixed second derivatives are not equal, that is

and the order of differentiation is therefore important, but for most of the functions that
occur in engineering problems, when the second derivatives are usually continuous
functions, these mixed derivatives are the same in value. In a similar manner we can
define higher-order partial derivatives
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54 Show that the total surface area S of a closed cone
of base radius r cm and perpendicular height h cm
is given by

S = πr2 + πr÷ (r2 + h2)

If r and h are each increasing at the rate of 
0.25 cm s−1, find the rate at which S is increasing at
the instant when r = 3 and h = 4.

55 (Continuing Question 32). A particle moves such
that its position at time t is given by r = (t, t2, t3).
Find the rate of change of the distance |r | of the
particle from the origin.

56 Find ∂f /∂s and ∂f /∂t where

f (x, y) = x2 + 2y2

and x = e−s + e−t and y = e−s − e−t.

52 Show that, if f is a function of the independent
variables x and y, and the latter are changed to
independent variables u and v where u = ey/x

and v = x2 + y2, then

(a)

(b)

53 In a right-angled triangle a cm and b cm are the
sides containing the right-angle. a is increasing 
at 2 cm s−1 and b is increasing at 3 cm s−1. 
Calculate the rate of change of (a) the area 
and (b) the hypotenuse when a = 5 and 
b = 3.
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Example 9.32 Find the second partial derivatives of f (x, y) = x2y3 + 3y + x.

Solution We found in Example 9.27 that

Differentiating again, we obtain

Note that in this example

In MATLAB and MAPLE, second-order partial derivatives can be obtained by 
suitably differentiating the first-order partial derivatives already found. Thus in
MATLAB the second-order partial derivatives of f(x, y) are given by

fxx = diff(fx,x), fxy = diff(fx,y), fyy = diff(fy,y), 

fyx = diff(fy,x)

Alternatively, the non-mixed derivatives can be obtained directly using the
commands

fxx = diff(f,x,2), fyy = diff(f,y,2)

which can be extended to higher-order partial derivatives.
The corresponding commands in MAPLE are

fxx:= diff(f,x,x); fxy:= diff(f,x,y);

fyy:= diff(f,y,y);

Considering Example 9.32 the MATLAB commands

syms x y

f = x^2*y^3 + 3*y + x;

fx = diff(f,x); fy = diff(f,y); fxx = diff(fx,x) return
fxx = 2*y^3

fxy = diff(fx,y) returns fxy = 6*x*y^2

fyy = diff(fy,y) returns fyy = 6*x^2*y

fyx = diff(fy,x) returns fyx = 6*x*y^2

∂
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Example 9.33 Find the second partial derivatives of

f (x, y, z) = xyz2 + 3xy − z

Solution In Example 9.26 we obtained the first partial derivatives as

Differentiating again, we obtain

Note that, as expected,

fxy = fyx, fxz = fzx and fyz = fzy

Example 9.34 f (x, y) is a function of two variables x and y that we wish to change to variables s and
t, where

s = x2 − y2, t = xy

Determine fxx and fyy in terms of s, t, fs, ft, fss, ftt and fst. Show that

fxx + fyy = ÷(s2 + 4 t2)(4 fss + ftt)

Solution Using the chain rule,
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9.6.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

57 Find all the second partial derivatives of
f (x, y) = xexy.

58 Find all the second partial derivatives of 
f (x, y, z) = (x + 2y)cos3z.

..

Differentiating fx with respect to x gives

(using the product rule)

Repeated use of the chain rule as indicated above leads to

= 2fs + 2x(2xfss + yfst) + y(2xfts + yftt)

which, on assuming fst = fts, gives

fxx = 2fs + 4x2fss + y2ftt + 4xyfst (9.26)

Following a similar procedure, we can determine fyy. Differentiating fy with respect to 
y gives

= −2fs − 2y(−2yfss + xfst) + x(−2yfts + xftt)

giving

fyy = −2fs + 4y2fss + x2ftt − 4xyfst (9.27)

Adding (9.26) and (9.27), we obtain

fxx + fyy = 4(x2 + y2) fss + (x2 + y2) ftt

= (x2 + y2)(4fss + ftt)

= ÷[(x2 − y2)2 + 4x2y2](4fss + ftt)

which leads to the required result

fxx + fyy = ÷(s2 + 4t2)(4fss + ftt)
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9.6.9 The total differential and small errors

Consider a function u = f (x, y) of two variables x and y. Let ∆x and ∆y be increments
in the values of x and y. Then the corresponding increment in u is given by

∆u = f (x + ∆x, y + ∆y) − f (x, y)

We rewrite this as two terms: one showing the change in u due to the change in x, and
the other showing the change in u due to the change in y. Thus

∆u = [ f (x + ∆x, y + ∆y) − f (x, y + ∆y)] + [ f (x, y + ∆y) − f (x, y)]

Dividing the first bracketed term by ∆x and the second by ∆y gives

∆
∆ ∆ ∆

∆
∆

∆
∆

∆u
f x x y y f x y x

x
x

f x y y f x y

y
y  

(   ,   )  ( ,   )
  

( ,   )  ( , )
=

+ + − +
+

+ −

59 Verify that

satisfies the equation

60 Find the value of the constant a if 
V(x, y) = x3 + axy2 satisfies

61 Verify that

in the cases
(a) f (x, y) = x2 cos y (b) f (x, y) = sinh x cos y

62 Show that

satisfies the differential equation

63 Prove that z = xf (x + y) + yF (x + y), where f and
F are arbitrary functions, satisfies the equation

zxx + zyy = 2zxy

64 Show that, if z = xeKxy, where K is a constant, then

xzx − yzy = z and xzxx − yzxy = 0
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65 If u = ax + by and v = bx − ay, where a and b are
constants, obtain ∂u/∂x and ∂v /∂y. By expressing
x and y in terms of u and v, obtain ∂x/∂u and ∂y/∂v
and deduce that

Show also that

66 Find the values of the constants a and b such that
u = x + ay, v = x + by transforms

into

67 Regarding u and v as functions of x and y and
defined by the equations

x = eu cos v, y = eu sin v

show that

(a)

(b)

where z is a twice-differentiable function of u and v.
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From the definition of the partial derivative, we may approximate this expression by

We define the differential du by the equation

(9.28)

By setting f (x, y) = f1(x, y) = x and f (x, y) = f2(x, y) = y in turn in (9.28), we see that

so that for the independent variables, increments and differentials are equal. For the
dependent variable we have

(9.29)

We see that the differential du is an approximation to the change ∆u in u = f (x, y) 
resulting from small changes ∆x and ∆y in the independent variables x and y; that is,

(9.30)

a result illustrated in Figure 9.17.
This extends to functions of as many variables as we please, provided that the

partial derivatives exist. For example, for a function of three variables (x, y, z) defined
by u = f (x, y, z) we have

= + +     
∂
∂

∂
∂

∂
∂

f

x
x

f

y
y

f

z
z∆ ∆ ∆

 
∆u u

f

x
x

f

y
y

f

z
z        � d d d d= + +

∂
∂

∂
∂

∂
∂

∆u u
f

x
x

f

y
y

f

x
x

f

y
y        � d d d= + = +

∂
∂

∂
∂

∂
∂

∂
∂

∆ ∆

d d du
f

x
x

f

y
y    = +

∂
∂

∂
∂

d and dx
f

x
x

f

y
y x y y                = + = =

∂
∂

∂
∂

1 1∆ ∆ ∆ ∆

du
f

x
x

f

y
y    = +

∂
∂

∂
∂

∆ ∆

 
∆ ∆ ∆u

f

x
x

f

y
y    �

∂
∂

∂
∂

+

758 FURTHER CALCULUS

..

Figure 9.17
Total differential.
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The differential of a function of several variables is often called a total differential,
emphasizing that it shows the variation of the function with respect to small changes in
all the independent variables.

Example 9.35 Find the total differential of u(x, y) = x2y3.

Solution Taking partial derivatives we have

Hence, using (9.29)

du = 2xy3 dx + 3x2y2dy

All physical measurements are subject to error, and a calculated quantity usually
depends on several measurements. It is very important to know the degree of accuracy
that can be relied upon in a quantity that has been calculated. The total differential can
be used to estimate error bounds for quantities calculated from experimental results or
from data that is subject to errors. This is illustrated in Example 9.36.

Example 9.36 The volume V cm3 of a circular cylinder of radius r cm and height h cm is given by 
V = πr2h. If r = 3 ± 0.01 and h = 5 ± 0.005 find the greatest possible error in the 
calculation of V and compare it with the estimate obtained using the total differential.

Solution The total differential is

Then from (9.30)

∆V � dV = 2πrh dr + πr2 dh = πr(2h ∆r + r ∆h)

When r = 3 and h = 5, we are given that ∆r = ±0.01 and ∆h = ±0.005, so that

∆V � ±3π(10 × 0.01 + 3 × 0.005)

giving

∆V � ±0.345π

(It should be noted that ∆r, ∆h, ∆V represent maximum errors.) The calculated volume
V is subject to a maximum positive error of

{(3.01)2(5.005) − 45}π = 0.3458π

and a maximum negative error of

{(2.99)2(4.995) − 45}π = −0.3442π

Thus the approximation gives a good guide to the accuracy of the result.

d d d d dV
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68 The function z is defined by

z(x, y) = x2y − 3y

Find ∆z and dz when x = 4, y = 3, ∆x = −0.01 and
∆y = 0.02.

68 An open box has internal dimensions 2 m × 1.25 m
× 0.75 m. It is made of sheet metal 4 mm thick. 

Find the actual volume of metal used and compare
it with the approximate volume found using the
differential of the capacity of the box.

70 The angle of elevation of the top of a tower is
found to be 30° ± 0.5° from a point 300 ± 0.1 m 
on a horizontal line through the base of the tower.
Estimate the height of the tower.

Example 9.37 Two variables, x and y, are related by y = ae−bx, where a and b are constants. The
values of a and b are determined from experimental data and have relative error bounds
p and q respectively. What is the relative error bound for a value of y calculated using
the formula with these values of a and b?

Solution Note that in this example it is assumed that the value of x is known exactly. We are
given y = ae−bx, where a and b are approximations with errors ∆a and ∆b, which are
unknown but are such that

The formula for the total differential gives

For the independent variables a and b the increments and the differentials are the same
quantity, so that da = ∆a and db = ∆b. Also, from the given formula for y, we have

Thus, from (9.28),

dy = e−bx ∆a − xae−bx ∆b

and division by y gives

Hence

Since ∆y � dy, we obtain an estimate for the relative error bound for y as p + | bx |q.

9.6.10 Exercises
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71 The equations

x + 2y + 3z + 4u = −3

x2 + y2 + z2 + u2 = 10

x3 + y3 + z3 + u3 = 0

define u as a function of y if x and z are eliminated.
Find du/dy when x = 1, y = −1, z = 2, u = −2.

72 The acceleration f of a piston is given by

When θ = π radians and when r/L = , calculate
the approximate percentage error in the calculated
value of f if the values of both r and ω are 1% too
small.

73 The area of a triangle ABC is calculated using the
formula

S = bc sin A

and it is known that b, c and A are measured
correctly to within 1%. If the angle A is measured

1
2

1
2

1
6

f r
r

L
  cos   cos= +⎛

⎝⎜
⎞
⎠⎟ω θ θ2 2

....

as 45°, prove that the percentage error in the
calculated value of S is not more than about 2.8%.

74 The angular deflection θ of a beam of electrons in a
cathode-ray tube due to a magnetic field is given by

where H is the intensity of the magnetic field,
L is the length of the electron path, V is the
accelerating voltage and K is a constant. If 
errors of up to ±0.2% are present in each of 
the measured H, L and V, what is the greatest
possible percentage error in the calculated value 
of θ (assume that K is known accurately)?

75 In a coal processing plant the flow V of slurry
along a pipe is given by

If r and l both increase by 5%, and p and η
decrease by 10% and 30% respectively, find
the approximate percentage change in V.

V
pr

l
  =

π
η

4

8

θ   
/

= K
HL

V1 2

9.6.11 Exact differentials
Differentials sometimes arise naturally when modelling practical problems. An example
in fluid dynamics is given in Section 9.9. When this occurs, it is often possible to analyse
the problem further by testing to see if the expression in which the differentials occur
is a total differential. Consider the equation

P(x, y)dx + Q(x, y)dy = 0

connecting x, y and their differentials. The left-hand side of this equation is said to be
an exact differential if there is a function f (x, y) such that

d f = P(x, y)dx + Q(x, y)dy

Now we know that

so if f(x, y) exists then

For functions with continuous second derivatives we have

∂
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Thus if f(x, y) exists then

(9.31)

This gives us a test for the existence of f (x, y), but does not tell us how to find it! The
technique for finding f (x, y) is shown in Example 9.38.

Example 9.38 Show that

(6x + 9y + 11)dx + (9x − 4y + 3)dy

is an exact differential and find the relationship between y and x given

and the condition y = 1 when x = 0.

Solution In this example

P(x, y) = 6x + 9y + 11 and Q(x, y) = 9x − 4y + 3

First we test whether the expression is an exact differential. In this example

so from (9.31) we have an exact differential. Thus we know that there is a function
f (x, y) such that

(9.32), (9.33)

Integrating (9.32) with respect to x, keeping y constant (that is, reversing the partial 
differentiation process), we have

f (x, y) = 3x 2 + 9xy + 11x + g(y) (9.34)

Note that the ‘constant’ of integration is a function of y. You can check that this expres-
sion for f (x, y) is correct by differentiating it partially with respect to x. But we also
know from (9.33) the partial derivative of f (x, y) with respect to y, and this enables us
to find g′(y). Differentiating (9.34) partially with respect to y and equating it to (9.33),
we have

(Note that since g is a function of y only we use dg/dy rather than ∂g/∂y.) Thus
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so, on integrating,

g(y) = −2y2 + 3y + C

Substituting back into (9.34) gives

f (x, y) = 3x2 + 9xy + 11x − 2y2 + 3y + C

Now we are given that

which implies that

(6x + 9y + 11)dx + (9x − 4y + 3)dy = 0

which in turn implies that

3x 2 + 9xy + 11x − 2y2 + 3y + A = 0

The arbitrary constant A is fixed by applying the given condition y = 1 when x = 0, 
giving A = −1. Thus x and y satisfy the equation

3x 2 + 9xy + 11x − 2y2 + 3y = 1

9.6.12 Exercises

d

d

y

x

x y

x y
  

    

    
= −

+ +
− +

6 9 11

9 4 3

....

76 Determine which of the following are exact
differentials of a function, and find, where
appropriate, the corresponding function.

(a) (y2 + 2xy + 1)dx + (2xy + x 2)dy

(b) (2xy2 + 3y cos 3x)dx + (2x2y + sin 3x)dy

(c) (6xy − y2)dx + (2xey − x 2)dy

(d) (z3 − 3y)dx + (12y2 − 3x)dy + 3xz2dz

77 Find the value of the constant λ such that

(y cosx + λ cos y)dx + (x sin y + sin x + y)dy

is the exact differential of a function f (x, y).
Find the corresponding function f (x, y) that
also satisfies the condition f (0, 1) = 0.

78 Show that the differential

g(x, y) = (10x2 + 6xy + 6y2)dx

+ (9x2 + 4xy + 15y2)dy

is not exact, but that a constant m can be chosen so
that

(2x + 3y)mg(x, y)

is equal to dz, the exact differential of a function
z = f (x, y). Find f(x, y).

9.7 Taylor’s theorem for functions of two variables

In this section we extend Taylor’s theorem for one variable (Theorem 9.4) to a function
of two variables and apply it to unconstrained and constrained optimization problems.
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9.7.1 Taylor’s theorem

First we consider a function of two variables. Suppose f (x, y) is a function all of whose
nth-order partial derivatives exist and are continuous on some circular domain D with
centre (a, b). Then, if (a + h, b + k) lies in D, we have

(9.35)

where 0 � θ � 1. Here we have introduced the notation

to represent the value of the expression

at the point (a, b).
This result is obtained by repeated use of the chain rule. Setting x = a + ht and

y = b + kt, where 0 � t � 1, we obtain

g(t) = f (a + ht, b + kt)

which is a function of one variable, so that, from Theorem 9.4, it has a Taylor 
expansion

where 0 � θ � 1. The derivatives of g are found using the chain rule:
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and, in general,

(r = 0, 1, 2, … , n)

Putting t = 1 into the Taylor expansion of g gives the required result.
The same method can be used to extend the result to as many variables as we please.

For the function f(x), where x = (x1, x2, … , xn), we have

(9.36)

where 0 � θ � 1, provided that all the partial derivatives exist and are continuous.
By setting h = x − a and k = y − b in (9.35), we have the following alternative form

of the Taylor expansion:

+ …

(9.37)

which is referred to as the Taylor expansion of f (x, y) about the point (a, b).

Example 9.39 Obtain the Taylor series of the function f(x, y) = sin xy about the point (1, π), neglecting
terms of degree three and higher.

Solution From (9.37) the required series is

Since f (x, y) = sin xy, Also,
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= y cos xy giving

= x cos xy giving

= −y2 sin xy giving

= cos xy − xy sin xy giving

= −x2 sin xy giving   

Hence, neglecting terms of degree three and higher,

There appears to be no command in MATLAB for determining directly the Taylor
series expansion of f(x, y) about a point (a, b). In MAPLE the first n terms in such
an expansion may be obtained using the multivariable Taylor command

readlib(mtaylor):

mtaylor(f(x,y), [x = a,y = b], n);

For example, considering Example 9.39, the MAPLE commands

readlib(mtaylor):

mtaylor(sin(x*y), [x = 1, y = Pi/3],3);

return the first three terms of the series as

1–2÷3 + 1–2y - 1–6π + 1–6(x - 1)π - 1––36÷(3)π2(x - 1)2 +

(1–2 - 1–6÷3π)(y – 1–3π)(x - 1) - 1–4÷3(y – 1–3π)2

which checks with the answer given in the solution.
Using the maple command, such an expansion may be obtained in MATLAB

using the command

maple(‘mtaylor(f(x,y),[x = a,y = b],n)’)

Considering Example 9.39, check that the MATLAB commands

syms x y

f = sin(x*y);

s = maple(‘mtaylor(sin(x*y),[x = 1,y = pi/3],3)’)

return the same answer as above.
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9.7.2 Optimization of unconstrained functions

In Section 8.5 we considered the problem of determining the maximum and minimum
values of a function f (x) of one variable. We now turn our attention to obtaining the
maximum and minimum values of a function f (x, y) of two variables. Geometrically
z = f (x, y) represents a surface in three-dimensional space, with z being the height of
the surface above the x–y plane. Suppose that f (x, y) has a local maximum value at
the point (a, b), as illustrated in Figure 9.18(a). Then for all possible (small) values of
h and k

f (a, b) � f (a + h, b + k)

so that the difference (increment)

∆ f = f (a + h, b + k) − f (a, b)

is negative. Then, provided that the partial derivatives exist and are continuous, using
Taylor’s theorem we can express ∆ f in terms of the partial derivatives of f(x, y) 
evaluated at (a, b):

where h and k may be negative or positive numbers. Since h and k are small, the sign
of ∆ f depends on the sign of

That is, the sign of ∆ f depends on the values of h and k. But for a maximum value of
f (x, y) at (a, b) the sign of ∆ f must be negative whatever the values of h and k. This
implies that for a maximum to occur at (a, b), ∂f /∂x and ∂f /∂y must be zero there.

If f (x, y) has a local minimum at (a, b), as illustrated in Figure 9.18(b), then

f (a, b) � f (a + h, b + k)

and, using the above argument, we find that for a local minimum to occur at (a, b), ∂f/∂x
and ∂f /∂y must again be zero.
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Thus a first necessary condition for a maximum or a minimum is

In terms of differentials, this means that

df = 0 at (a, b)

Points at which this occurs are called stationary points of the function and the values
of the function at those points are called its stationary values. When this condition is
satisfied, we have

Putting

we deduce that the sign of ∆ f depends on the sign of the second differential

d2f = Rh2 + 2Shk + Tk2

Rearranging, we have, provided that R ≠ 0,

d2f = (R2h2 + 2RShk + RTk2) = [(Rh + Sk)2 + (RT − S2)k2]

If RT − S2 � 0, the sign of d2f is independent of the values of h and k; while if
RT − S2 � 0, its sign depends on those values. Thus a second necessary condition for a
maximum or minimum value to occur at (a, b) is that

Note that . If strict inequality is satisfied, the sign of ∆ f depends 

on R = ∂2f/∂x2. If ∂2f/∂x2 � 0, there is a minimum at (a, b). If ∂2f/∂x2 � 0, there is a
maximum at (a, b).

By expressing d2f as

d2f = [(TK + Sh)2 + (RT − S2)h2], T ≠ 0

we could equally well have deduced that there is a minimum at (a, b) if ∂2f/∂y2 � 0 and
a maximum at (a, b) if ∂2f/∂y2 � 0, assuming the above strict inequality.

If

then the sign of ∆ f depends on the values of h and k, and along some paths through
(a, b) the function has a maximum value while along other paths it has a minimum
value. Such a point is called a saddle point, as illustrated in Figure 9.18(c).
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The contours of a function often show clearly where maximum or minimum or saddle
points occur, as illustrated in Figure 9.19.

Summary

(1) A necessary condition for the function f (x, y) to have a stationary value at (a, b)
is that

(2) 

then the stationary point is a local maximum.

(3) 

then the stationary point is a local minimum.

(4) 

then the stationary point is a saddle point.

(5) 

we cannot draw a conclusion, and the point may be a maximum, minimum or saddle
point. Further investigation is required, and it may be necessary to consider the third-
order terms in the Taylor series.

Example 9.40 Find the stationary points of the function

f (x, y) = 2x3 + 6xy2 − 3y3 − 150x

and determine their nature.
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Figure 9.19
Nature of stationary
points: (a) saddle and
(b) maximum or
minimum.
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Solution = 6x2 + 6y2 − 150 and = 12xy − 9y2

For a stationary point both of these partial derivatives are zero, which gives

x2 + y2 = 25

and

y(4x − 3y) = 0

From the second equation we see that either y = 0 or 4x = 3y. Putting y = 0 in the first
equation gives x = ±5, so that the points (5, 0) and (−5, 0) are solutions of the equa-
tions. Putting x = y into the first equation gives y = ±4, so that the points (3, 4) and
(−3, −4) are also solutions of the equation. Thus the function has stationary points at
(5, 0), (−5, 0), (3, 4) and (−3, −4).

Next we have to classify these points as maxima or minima or saddle points.
Working out the second derivatives, we have

and we can complete the following table.

Point Nature Value

(5, 0) 60 60 0 positive minimum −500
(−5, 0) −60 −60 0 positive maximum 500

(3, 4) 36 −36 48 negative saddle point −300
(−3, −4) −36 36 −48 negative saddle point 300

The situation is shown quite clearly on the contour plot (level curves) of the function
shown in Figure 9.20. Looking at the figure, we see that the contours distinguish clearly
between saddle points and other stationary points, as indicated in Figure 9.19.
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Figure 9.20
Contour plot of 
f (x, y) = 2x3 + 6xy2

− 3y3 − 150x.
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To illustrate the use of MATLAB for determining and classifying the stationary
points of a function of two variables we consider the function of Example 9.40. The
MATLAB commands

syms x y

f = 2*x^3 + 6*x*y^2 - 3*y^3 - 150*x;

fx = diff(f,x); fy = diff(f,y); [X,Y] = solve(fx,fy)

return the two column vectors X and Y giving the stationary points as (5,0), 
(−5,0), (3,4) and (−3,−4). Next we determine the second partial derivatives and 
evaluate

at each of the stationary points, using the commands

fxx = diff(f,x); fxy = diff(fx,y); fyy = diff(fy,y);

delta = fxx*fyy - fxy^2;

and substituting the coordinates of the four points

subs(delta,{x,y},{X(1),Y(1)}) giving ans = 3600

subs(delta,{x,y},{X(2),Y(2)}) giving ans = 3600

subs(delta,{x,y},{X(3),Y(3)}) giving ans = -3600

subs(delta,{x,y},{X(4),Y(4)}) giving ans = -3600

For the first two points delta > 0 so we look at the sign of fxx or fyy

subs(fxx,{x,y},{X(1),Y(1)}) giving ans = 60 so (5,0) is a 
minimum point
subs(fxx,{x,y},{X(2),Y(2)}) giving ans = −60 so (−5,0) is a 
maximum point

For the last two points delta < 0 so (3,4) and (−3,4) are both saddle points. The
contour plot can be investigated using the command

ezcontour(f,[10,10])

The corresponding commands in MAPLE are:

f:= f(x,y); fx: = diff(f,x); fy:= diff(f,y); 

stat:= solve({fx = 0,fy = 0},{x,y});

giving the four stationary points in form {a, b}

fxx:= diff(f,x,x); fxy:= diff(f,x,y); fyy:= diff(f,y,y);

delta:= fxx*fyy - fxy^2;

subs(stat[1],delta); subs(stat[2],delta);

subs(stat[3],delta); subs(stat[4],delta);

subs(stat[1],fxx); subs(stat[2],fxx);

The process indicated above can be extended to functions of as many variables as we
please. At a stationary point the first differential d f, is zero, so that all the first partial
derivatives are zero there. If, at that stationary point, the second differential d2f is negative

∆    = −
⎛
⎝⎜

⎞
⎠⎟
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∂
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∂
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2
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for all small changes in the independent variables then we have a maximum. If it is posi-
tive, we have a minimum. If it is zero, further analysis is required. However, the general
conditions for this to occur are extremely complicated both to write down and to apply.

9.7.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

772 FURTHER CALCULUS
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79 Find the stationary values (and their classification) of

(a) x3 − 15x2 − 20y2 + 5

(b) 2 − x2 − xy − y2

(c) 2x2 + y2 + 3xy − 3y − 5x + 2

(d) x3 + y2 − 3(x + y) + 1

(e) xy2 − 2xy − 2x2 − 3x

(f) x3y2(1 − x − y)

(g) x2 + y2 +

80 Prove that (x + y)/(x2 + 2y2 + 6) has a maximum
at (2, 1) and a minimum at (−2, −1).

81 Show that

f (x, y) = x3 + y3 − 2(x2 + y2) + 3xy

has stationary values at (0, 0) and ( , ) and
investigate their nature.

82 A manufacturer produces an article in batches of N
items. Each production run has a set-up cost of £100
and each item costs an additional £0.05 to produce.
The weekly storage costs are a basic rental of £50
plus an additional £0.10 per item stored. Assuming
that there is a steady sale of n items per week, 
so that the average number of items stored is

N, and that, when the store is exhausted, it is
immediately replenished by a new production run,
show that the weekly cost £K is given by

The weekly demand n is a function of the selling
price £p, and

n = 5000 − 10 000p

Show that the weekly profit £P is

− 0.05N − 50

P p p
N

  (   )   .   = − − −⎛
⎝⎜

⎞
⎠⎟5000 10 000 0 05

100

K N n
n

N
    .   .   = + + +50 0 05 0 05

100

1
2

1
3

1
3

2 2

x y
  +

If the manufacturer is able to decide both the batch
size N and the price £p, show that a maximum
weekly profit is realized where p = 0.3, and find the
corresponding values of N, n and P.

83 The gravitational attraction at the point (x, y) in the
x–y plane due to point masses in the plane is

Show that G(x, y) has a stationary value of 9.

84 Find constants a and b such that

�
π

0

[sin x − (ax2 + bx)]2 dx

is a minimum.

85 A tank has the shape of a cuboid and is open at 
the top and has a volume of 4 m3. If the base
measurements (in m) are x by y, show that the
surface area (in m2) is given by

and find the dimensions of the tank for A to be a
minimum.

86 A flat circular metal plate has a shape defined by the
region x2 + y2 � 1. The plate is heated so that the
temperature T at any point (x, y) on it is given by

T = x2 + 2y2 − x

Find the temperatures at the hottest and coldest
points on the plate and the points where they occur.
(Hint: Consider the level curves of T.)

87 A metal channel is formed by turning up the sides
of width x of a rectangular sheet of metal through
an angle θ. If the sheet is 200 mm wide, determine
the values of x and θ for which the cross-section of
the channel will be a maximum.

A xy
y x

      = + +
8 8

G x y
x y x y

( , )      
   – 

= + +
−

1 4 9

4
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9.7.4 Optimization of constrained functions

As we have seen in Exercises 9.7.3, Questions 82 and 85–87, there are frequent situ-
ations in engineering applications when we wish to obtain the stationary values of 
functions of more than one variable and for which the variables themselves are subject
to one or more constraint conditions. The general theory for these applications is 
discussed in the companion text Advanced Modern Engineering Mathematics. Here
we will show the technique for solving such problems.

Example 9.41 Obtain the extremum value of the function

f (x, y) = 2x2 + 3y2

subject to the constraint 2x + y = 1.

Solution In this particular example it is easy to eliminate one of the two variables x and y.
Eliminating y, we can write f(x, y) as

f (x, y) = f (x) = 2x2 + 3(1 − 2x)2 = 14x2 − 12x + 3

We can now apply the techniques used for functions of one variable to obtain the
extremum value. Differentiating gives

f ′(x) = 28x − 12 and f ″(x) = 28

An extremal value occurs when f ′(x) = 0; that is, x = , and, since f ″ � 0, this

corresponds to a minimum value. Thus the extremum is a minimum fmin = at x = ,
y = .

In Example 9.41 we were fortunate in being able to use the constraint equation to 
eliminate one of the variables. In practice, however, it is often difficult, or even impos-
sible, to do this, and we have to retain all the original variables. Let us consider the
general problem of obtaining the stationary points of f (x, y, z) subject to the constraint
g(x, y, z) = 0. We shall refer to such points as conditional stationary points.

At stationary points of f (x, y, z) we have

(9.38)

This implies that the vector (∂f /∂x, ∂f /∂y, ∂f/∂z) is perpendicular to the vector 
(dx, dy, dz). Since g(x, y, z) = 0

(9.39)

Thus, the vector (∂g/∂x, ∂g/∂y, ∂g/∂z) is also perpendicular to the vector (dx, dy, dz).
This implies that the vector (∂f /∂x, ∂f /∂y, ∂f /∂z) is parallel to the vector 
(∂g/∂x, ∂g/∂y, ∂g/∂z) and that we can find a number λ such that

(9.40)
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Geometrically this means that the level surface of the objective function f (x, y, z)
touches the constraint surface g(x, y, z) = 0 at the stationary point.

This can be neatly summarized by writing φ(x, y, z) = f(x, y, z) − λg(x, y, z).
Then f (x, y, z) will have a stationary point subject to the constraint 
g(x, y, z) = 0 when

and g(x, y, z) = 0 (9.41)

This gives four equations to determine (x, y, z; λ) for the stationary point. The scalar
multiplier λ is called a Lagrange multiplier and the function φ(x, y, z) is called the
auxiliary function.

Example 9.42 Rework Example 9.41 using the method of Lagrange multipliers.

Solution Here we need to obtain the extremum of the function

f (x, y) = 2x 2 + 3y2

subject to the constraint

g(x, y) = 2x + y − 1 = 0

The auxiliary function is

φ(x, y, z) = f (x, y) − λg(x, y)

= 2x2 + 3y2 − λ(2x + y − 1)

and we find that the conditional extrema of f (x, y) are given by

g(x, y) = 0

that is

= 4x − 2λ = 0 (9.42)

= 6y − λ = 0 (9.43)

g(x, y) = 2x + y − 1 = 0 (9.44)

Solving (9.42)–(9.44) gives

so that the conditional extremal value of f (x, y) is and occurs at x = , y = .
It is clear from the level curves of f (x, y), shown in Figure 9.21, that the function 

has a minimum at ( , ). In general, however, to determine the nature of the con-
ditional stationary point, we have to resort to Taylor’s theorem and consider the sign of
the difference f (x + h, y + k) − f (x, y). Taking a point near ( , ), say ( + h, + k),1

7
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that still satisfies the constraint 2x + y − 1 = 0, we have 2h + k = 0, so that k = −2h.
Hence a near point satisfying the constraint is ( + h, − 2h), and thus

= 14h2 � 0

Since this is positive, it follows that the point is a minimum, confirming the result of
Example 9.41.

In general, classifying conditional stationary points into maxima, minima or saddle
points can be very difficult, but in the majority of engineering applications this can be
done using physical reasoning.

Example 9.43 Find the dimensions of the cuboidal box, without a top, of maximum capacity whose
surface area is 12 m2.

Solution If the dimensions of the box are x × y × z then we are required to maximize

f (x, y, z) = xyz

subject to the constraint

xy + 2xz + 2yz = 12 (9.45)

The auxiliary function is

φ (x, y, z) = xyz + λ(xy + 2xz + 2yz − 12)

and the equations we have to solve are

= yz + λ(y + 2z) = 0 (9.46)

= xz + λ(x + 2z) = 0 (9.47)

= xy + λ(2x + 2y) = 0 (9.48)

together with (9.45).
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∂
φ
z

∂
∂
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Figure 9.21
Level curves of 
f (x, y) = 2x2 + 3y2.
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Taking x × (9.46) + y × (9.47) + z × (9.48) gives

3xyz + λ(2xy + 4xz + 4yz) = 0

or

λ(xy + 2xz + 2yz) + xyz = 0 (9.49)

Then, from (9.49) and (9.45),

12λ + xyz = 0

so that

λ =

Substituting into (9.46)–(9.48) in succession and dividing throughout by common
factors gives

(9.50)

(9.51)

(9.52)

Subtracting (9.51) from (9.50) gives

hence y = x (since clearly z ≠ 0)

Putting this into (9.52), we have

or yz = 2

Substituting this and x = y into (9.50) gives

that is

y2 = 4, or y = 2 (since y � 0)

It then follows that x = 2, z = 1. Thus the required dimensions are 2 m × 2 m × 1 m, and
it follows from physical considerations that this corresponds to the maximum volume,
since the minimum volume is zero (Figure 9.22).
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Figure 9.22
Level surface of
objective function
touches constraint
surface at (2, 2, 1).
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Denoting φ by F this example may be solved in MATLAB as follows:

syms x y z lam

F = x*y*z + lam*(x*y + 2*x*z + 2*y*z - 12);

Fx = diff(F,x) returning Fx = y*z + lam*(y + 2*z)

Fy = diff(F,y) returning Fy = x*z + lam*(x + 2*z)

Fz = diff(F,z) returning Fz = x*y + lam*(2*x + 2*y)

[lam,x,y,z] = solve(‘x*y + 2*x*z + 2*y*z = 12’,

’y*z + lam*(y + 2*z) = 0’,’x*z + lam*(x + 2*z) = 0’,

’x*y + lam*(2*x + 2*y) = 0’)

returning

lam = -1/2 x = 2 y = 2 z = 1

1/2 -2 -2 -1

Since x, y and z represent dimensions they must be positive, so the required dimen-
sions are 2m × 2m × 1m. (Note that the variables in the solution array when using
the solve command are given in alphabetical order.)

Example 9.44 Apply the method of Lagrange multipliers to solve the design problem of Section 2.10.

Solution Here the objective function A(l, b, h, t) is subject to the constraint function C(l, b, h)
where

A(l, b, h, t) = (lb + 6bh + 2hl)t + (2l + 6b + 12h)t2 + 12t3

and C(l, b, h) = lhb = K

and t and K are constants.
The auxiliary function is

φ (l, b, h, λ) = A(l, b, h, t) + λ[C(l, b, h) − K ]

and we find the conditional extrema of A are given by

and C(l, b, h) = K

Thus

(b + 2h)t + 2t2 + λhb = 0 (9.53)

(l + 6h)t + 6t2 + λ lh = 0 (9.54)

(6b + 2l)t + 12t2 + λ lb = 0 (9.55)

Equation (9.54) − 3 × (9.53) gives

(l − 3b)t + λ(l − 3b)h = 0

∂
∂
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φ φ φ
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88 Find the extremum of x2 − 2y2 + 2xy + 4x subject
to the constraint 2x = y and verify that it is a
maximum value.

89 Find the extremum of 3x2 + 2y2 + 6z2 subject to
the constraint x + y + z = 1 and verify that it is a
minimum value.

90 The equation 5x2 + 6xy + 5y2 − 8 = 0 represents 
an ellipse whose centre is at the origin. By
considering the extrema of x2 + y2, obtain the
lengths of the semi-axes.

91 Which point on the sphere x2 + y2 + z2 = 1 is at the
greatest distance from the point having coordinates
(1, 2, 2)?

92 Find the maximum and minimum values of

f (x, y) = 4x + y + y2

where (x, y) lies on the circle x2 + y2 + 2x + y = 1.

93 Obtain the stationary value of 2x + y + 2z + x2 − 3z2

subject to the two constraints x + y + z = 1 and 
2x − y + z = 2.

which implies l = 3b. Equation (9.55) − 6 × (9.53) gives

(2l − 12h)t + λ(l − 6h)b = 0

which implies l = 6h.
So b = 2h, l = 6h with lbh = K. Thus 12h3 = K and h = (K/12)1/3 as before.

The Lagrange multiplier method outlined above may be extended to a function of any
number of variables. It also extends naturally to situations where there is more than 
one constraint equation by introducing the equivalent number of Lagrange multipliers.
In general, if f (x1, x2, … , xn) is a function of n variables subject to m (� n) constraints

gi(x1, … , xn) = 0 (i = 1, 2, … , m)

then, to determine the constrained stationary values of f (x1, x2, … , xn), the procedure is
to set up the auxiliary function

φ (x1, x2, … , xn) = f (x1, x2, … , xn) + λ1g1 + … + λmgm

and solve the resulting m + n equations

( j = 1, 2, … , n)

(i = 1, 2, … , m)

Often the algebraic equations involved in this method of solution are not amenable
to algebraic solution and numerical methods are used. These are described in detail in
the companion volume Advanced Modern Engineering Mathematics.

9.7.5 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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9.8 Engineering application: deflection of a built-in column

In this section we consider an example in which the techniques developed in Section 9.4
may be used to solve an engineering problem.

The deflection y(x) of a column buckling under its own weight satisfies the differ-
ential equation

(9.56)

where E is Young’s modulus, I the second moment of area of the cross-section and w
is the weight per unit run of the column. The deflection of the built-in column shown
in Figure 9.23 also satisfies the conditions

at x = 0

and

y = 0 and at x = l

where l is the length of the column. We need to find the greatest height attainable for
the column without collapse.

To make the algebraic manipulations easier, we first simplify the differential equation.
Putting x = ct gives

and

which on substituting into (9.56) transforms it to

so that choosing c3 = EI/w and setting f (t) = dy/dt simplifies the equation further to

(9.57)
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Figure 9.23
Deflection of a
column.
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with the conditions

at t = 0 and f (t) = 0 at t = l(EI/w)−1/3 = T

Assuming that f (t) has a Maclaurin series expansion, we may write it as

f (t) = a0 + a1t + a2t
2 + a3t

3 + … + ant
n + …

Differentiating this, we have

f ′(t) = a1 + 2a2t + 3a3t
2 + … + nant

n−1 + (n + 1)an+1t
n + …

and

f ″(t) = 2a2 + 6a3t + 12a4t
2 + … + n(n − 1)ant

n−2 + …

Since f ′(0) = 0, we deduce at once that a1 = 0. Since f (t) satisfies the differential equa-
tion (9.57), we deduce on substitution that

2a2 + 6a3t + 12a4t
2 + … + n(n − 1)ant

n−2 + …

= −a0t − a1t
2 − a2t

3 − … − ant
n+1 − …

This expression is true for all values of t, with 0 � t � T, so we deduce from Property
(i) of polynomials given in Section 2.4.1 that the coefficients of each power of t on each
side of the equation are equal. That is,

2a2 = 0 (coefficient of t 0)

6a3 = −a0 (coefficient of t1)

12a4 = −a1 (coefficient of t 2)

and so on. In general, the coefficient of t r (obtained by setting n − 2 = r on the left-hand
side and n + 1 = r on the right-hand side) yields

(r + 2)(r + 1)ar+2 = −ar−1

This recurrence relation enables us to calculate ar+3 in terms of ar as

(9.58)

Thus

and so on.
Since we deduced earlier, using the condition f ′(0) = 0, that a1 = 0, some terms can

be eliminated immediately, and we have

a4 = 0, a7 = 0, a10 = 0, a13 = 0, …
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Since a2 = 0 (from the coefficient of t0), we have

a5 = 0, a8 = 0, …

We are therefore left with

f (t) = a0 + a3t
3 + a6t

6 + a9t
9 + …

Substituting for a3, a6, a9, … in terms of a0, using (9.58) gives

So far we have only applied the condition at t = 0. Now we apply the condition at
t = T, namely f (T ) = 0. This gives

so that either

This means that there is no deflection (a0 = 0) unless

The smallest value of T that satisfies this equation gives the critical height of the 
column. At that height the value of a0 becomes arbitrary (and non-zero), and the column
buckles. A first approximation to the critical value of T can be found by solving the
quadratic equation (in T 3)

giving T3 = 8.292. This may be refined using the Newton–Raphson procedure (9.19),
eventually giving the critical length L in terms of E, I and w:

L = 1.99(EI/w)1/3

The detailed calculation is left as an exercise for the reader.

9.9 Engineering application: streamlines in fluid dynamics

As we mentioned in Section 9.6.10, differentials often occur in mathematical model-
ling of practical problems. An example occurs in fluid dynamics. Consider the case of
steady-state incompressible fluid flow in two dimensions. Using rectangular cartesian
coordinates (x, y) to describe a point in the fluid, let u and v be the velocities of the fluid
in the x and y directions respectively. Then by considering the flow in and flow out 
of a small rectangle, as shown in Figure 9.24, per unit time, we obtain a differential
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relationship between u(x, y) and v(x, y) that models the fact that no fluid is lost or gained
in the rectangle; that is, the fluid is conserved.

The velocity of the fluid q is a vector point function. The values of its components
u and v depend on the spatial coordinates x and y. The flow into the small rectangle in
unit time is

u(x, y )∆y + v(x, y)∆x

where x lies between x and x + ∆x, and y lies between y and y + ∆y. Similarly, the flow
out of the rectangle is

u(x + ∆x, z)∆y + v(x, y + ∆y)∆x

where x lies between x and x + ∆x and z lies between y and y + ∆y. Because no fluid 
is created or destroyed within the rectangle, we may equate these two expressions, 
giving

u(x, y )∆y + v(x, y)∆x = u(x + ∆x, z)∆y + v(x, y + ∆y)∆x

Rearranging, we have

Letting ∆x → 0 and ∆y → 0 gives the continuity equation

The fluid actually flows along paths called streamlines, so that there is no flow across
a streamline. Thus from Figure 9.25 we deduce that

v ∆x = u ∆y

and hence

v dx − u dy = 0

The condition for this expression to be an exact differential is

or

This is satisfied for incompressible flow since it is just the continuity equation, so that
we deduce that there is a function ψ(x, y), called the stream function, such that

It follows that if we are given u and v, as functions of x and y, that satisfy the continuity
equation then we can find the equations of the streamlines given by ψ(x, y) = constant.
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Figure 9.24
Flow through
rectangular element.

Figure 9.25
Streamline.
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Example 9.45 Find the stream function ψ(x, y) for the incompressible flow that is such that the
velocity q at the point (x, y) is

(−y/(x2 + y2), x/(x2 + y2))

Solution From the definition of the stream function, we have

provided that

Here we have

so that

confirming that

Integrating

with respect to y, keeping x constant, gives

ψ(x, y) = ln(x2 + y2) + g(x)

Differentiating partially with respect to x gives

Since it is known that

we have

which on integrating gives

g(x) = C
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where C is a constant. Substituting back into the expression obtained for ψ(x, y),
we have

ψ(x, y) = ln(x2 + y2) + C

A streamline of the flow is given by the equation ψ(x, y) = k, where k is a constant.
After a little manipulation this gives

x2 + y2 = a2 and ln a = k − C

and the corresponding streamlines are shown in Figure 9.26. This is an example of a
vortex.

9.10 Review exercises (1–35)

Check your answers using MATLAB or MAPLE whenever possible.

1
2

Figure 9.26
A vortex.

1 Use the Newton–Raphson method to find the root of

ex − x2 + 3x − 2 = 0

in the interval 0 � x � 1. Start with x = 0.5 and
give the root correct to 4dp.

2 The deflection at the midpoint of a uniform beam of
length l, flexural rigidity EI and weight per unit
length w, subject to an axial force P, is

where m2 = P/EI. On making the substitution 
θ = ml, show that

As the force P is relaxed, the deflection should
reduce to that of a beam sagging under its own

d
wl

EI
  

sec     
=

− −
432

2 2θ θ
θ

4 2

1
2

d
w

m P
ml

wl

P
  (sec   )  = − −

2
1
2

2

1
8

weight. By first representing secθ by its Maclaurin
series expansion, show that

3 Using the Maclaurin series expansion of ex,
determine the Maclaurin series expansion of 
x/(ex − 1) as far as the term in x4, and hence
obtain the approximation

4 Use L’Hôpital’s rule to find

lim
ln

 x

x

x→ −1 2 1

� �
0

1

1

311

400

x
x

xe
d

− 
  

lim   
θ →

=
0

45

384
d

wl

EI
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5 Determine

where k is a constant.

6 Show that the equation

x3 − 2x − 5 = 0

has a root in the neighbourhood of x = 2 and 
find it to three significant figures using the
Newton–Raphson method.

7 (a) Obtain the Maclaurin series expansions of 
sinh x and cosh x.

(b) A telegraph wire is stretched between two
poles at the same height and a distance 2l apart.
The sag at the midpoint is h. If the axes are taken
as shown in Figure 9.27, it can be shown that the
equation of the curve followed by the wire is

where c is an undetermined constant (see 
Example 8.66).

(i) Show that the length 2s of the wire is given by

(ii) If the wire is taut, so that h /c is small, it can
be shown that l /c is also small. Ignoring powers of
l /c higher than the second, show that

h

l

l

c

2

2

21

4
  � ⎛

⎝⎜
⎞
⎠⎟

2 2s c
l

c
  sinh=

y c
x

c
  cosh=

lim
sin   sin

(   )x

kx x k

x→

−
−2 2

2 2

2 4

Hence show that the length of the wire is
approximately

8 Prove that

�
∞

0

sech x dx = π

and deduce �1
0 sech−1x dx.

9 Evaluate

(a) (b)

(c) �
∞

0

xe−4x dx (d)

(e) �
∞

0

e−2x cos x dx (f) �
∞

0

e−2x cosh x dx

10 Evaluate

(a) �
8

0

x−1/3 dx (b) 

(c) �
1

0

ln x dx

stating in each case the value of x for which the
integrand becomes unbounded.

11 Use the Taylor series to show that the principal
term of the truncation error of the approximation

f ″(a) � [ f (a + h) − 2f (a) + f (a − h)]/h2

is h2f (4)(a).
Consider the function f (x) = xex. Estimate f ″(1)

using the approximation above with h = 0.01, 
and h = 0.02. Compare your answer with the 
true value.

12 A particle moves in three-dimensional space such
that its position at time t (seconds) is given by 
the vector (4 cos t, 4 sin t, 3) where distance is
measured in metres. Find the magnitude of its
velocity and acceleration.
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Figure 9.27 Telegraph wire of Question 7.
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13 The acceleration a (m s−2) of a particle at time t (s)
is given by a = (1 + t)i + t2j + 2k. At t = 0 its
displacement r is zero and its velocity V (m s−1) is 
i − j. Find its displacement at time t.

14 The temperature gradient u at a point in a solid is

u(x, t) = t−1/2e−x2/4kt

where k is a constant. Verify that

15 Show that the surfaces defined by

z2 = (x 2 + y2) − 1

and

z = 1/xy

intersect, and that they do so orthogonally.

16 The height h of the top of a pylon is calculated 
by measuring its angle of elevation α at a point a
distance s horizontally from the base of the pylon.
Find the error in h due to small errors in s and α.
If s and α are taken as 20 m and 30° respectively
when the correct values are 19.8 m and 30.2°, 
find the error and the relative error in the
calculated height.

17 The resistance of a length of wire is given by

where k is a constant. L is increasing at a rate of
0.4% min−1, ρ is increasing at a rate of 0.01% min−1

and D is decreasing at a rate of 0.1% min−1. At
what percentage rate is the resistance R increasing?

18 The deflection H of a metal structure can be
calculated using the formula

where I, ρ, D and L are the moment of inertia,
density, diameter and length respectively, and g is
the acceleration due to gravity. If the value of H
is to remain unaltered when I increases by 0.1%, 
ρ by 0.2% and D decreases by 0.3%, what
percentage change in L is required?

H
I D L

g
  

/
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⎠⎟� ρ4 2 3 2

20

R
k L

D
  =

ρ
2

1
2

∂
∂

∂
∂

2

2

1u

x k

u

t
  =

19 In the calculation of the power in an a.c. circuit
using the formula W = EI cos φ, errors of +1% 
in I, −0.7% in E and +2% in φ occur. Find the
percentage error in the calculated value of W
when φ = π rad.

20 (a) Prove that u = x3 − 3xy2 satisfies

(b) Given

evaluate

in terms of u.

21 Verify that z = ln ÷(x2 − y2) satisfies the equation

22 (a) Find the value of the positive constant c for
which the function

satisfies the equation

(b) V is a function of the independent variables x
and y. Given that x = r cos θ and y = r sin θ, find
∂V/∂θ and ∂V/∂r in terms of ∂V/∂x and ∂V/∂y, and
hence show that

and

23 A curve C in three dimensions is given
parametrically by (x(t), y(t), z(t)), where t is a real
parameter, with a � t � b. Show that the equation
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of the tangent line at a point P on this curve where
t = t0 is given by

where x0 = x(t0), x′0 = x′(t0), and so on.
Hence find the equation of the tangent line to

the circular helix

x = a cos t, y = a sin t, z = at

at t = π and show that the length of the helix
between t = 0 and t = π is πa /÷2.

24 Show that u = f (x + y) + g(x − y) satisfies the
differential equation

25 Show that if

then

and find a similar expression for ∂2φ /∂x2.
Deduce that if

then

kf ″(z) + 2zf ′(z) + 2f (z) = 0

26 Water waves move in the direction of the x axis
with speed c. Their height h at time t is given by

h(t) = a sin(x − ct)

where a is a constant. A small cork floats on the
water and is blown by the wind in the direction of
the x axis with constant velocity U. Show that the
vertical acceleration of the cork at time t is given by

27 The components of velocity of an inviscid
incompressible fluid in the x and y directions 
are u and v respectively, where

u
x y

x y

xy

x y
  

 

(  )
          

(  )
=

−
+

=
+

2 2

2 2 2 2

2
and

2 2

d

d

2

2
2h

t
U c h  (   )= − −

∂
∂

∂
∂

2

2

1φ φ
x k t

  =

∂
∂
φ
t

zf z f z

t t
  

( )  ( )
= − ′ +

2

φ( , )  
( )

         x t
f z

t
z

x

t
= = and

2

∂
∂

∂
∂

2

2

2

2
0

u

x

u

y
    − =

1
2

1
4

x x

x

y y

y

z z

z

  
  

  
  

  −
′

=
−

′
=

−
′

0

0

0

0

0

0

Find the stream function ψ(x, y) such that

dψ = v dx − u dy

and verify that it satisfies Laplace’s equation

28 Show that the function

f (x, y) = x2y2 − 5x2 − 8xy − 5y2

has one maximum and four saddle points. Sketch
the part of the surface z = f (x, y) that lies in the
first quadrant.

29 Determine the position and nature of the stationary
points on the surface

z = e−(x+y)(3x2 + y2)

30 A trough of capacity 1 m3 is to be made from sheet
metal in the shape shown in Figure 9.28. Calculate
the dimensions that use the least amount of metal.
(Hint: Set y = xY and z = xZ and show that the area
of sheet metal needed is

31 Find the critical points of the function

z = 12xy − 3xy2 − x3

and identify the character of each point.

32 Find the local maxima and minima of the function

f (x, y) = y2 − 8x + 17

subject to the constraint

x2 + y2 = 9

33 A non-linear spring has a restoring force which is
proportional to the cube of the displacement x. 
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Figure 9.28 Trough of Question 30.
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The period T of oscillation from an initial
displacement a is given by

Use the substitution x2 = a2 sin θ to transform
this integral to give

Use the recurrence relation

(r + 1)F(r) = (r + 2)F(r + 2)

where

to show that

and use the trapezium rule to evaluate this
integral.

34 The period T of oscillation of a simple pendulum
of length l is given by

by expanding the integrand as a power series in
sin2 show that

35 (a) An oil tanker runs aground on a reef and its
tanks rupture. Assuming that the oil forms a layer
of uniform thickness on the sea and that the rate 
of spill is constant, show that the rate at which 
the radius r of the outer boundary of the oil spill
increases in still water is proportional to 1/r.
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(b) The spillage takes place in a current flowing
north with constant speed V. Assuming that the
velocity of the oil with the current is the vector
sum of the velocity of the oil in still water and the
velocity of the current, show that the velocity (u,
v) of the oil at the point (x, y) relative to the
stricken tanker is given by

where k is a constant of proportionality and the x
and y axes are drawn in the easterly and northerly
directions (see Figure 9.29).

(c) Deduce that the most southerly point (0, −c)
reached by the oil slick is given by c = k /V.

(d) Show that, after a large interval of time, the oil
slick occupies a region whose boundary y = f (x) is
the solution of the differential equation

that also satisfies the condition y = −c at x = 0.

(e) Use the substitution y = xz to transform the
differential equation and initial conditions of
part (d) to the differential equation

(9.59)

where z → −∞ as x → 0+.

(f ) Show that the solution of (9.59) together with 

the boundary condition is . Hence find 

y and sketch its graph.
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Figure 9.29
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10.1 Introduction
The essential role played by mathematical models in both engineering analysis and
engineering design has been noted earlier in this book. It often happens that, in creating
a mathematical model of a physical system, we need to express such relationships 
as ‘the acceleration of A is directly proportional to B’ or ‘changes in D produce pro-
portionate changes in E with constant of proportionality F’. Such statements naturally
give rise to equations involving derivatives and integrals of the variables in the model
as well as the variables themselves. Equations which introduce derivatives are called
differential equations, those which introduce integrals are called integral equations
and those which introduce both are called integro-differential equations. Generally
speaking, integral and integro-differential equations are rather more difficult to solve
than purely differential ones. This chapter starts with a discussion of the general char-
acteristics of differential equations and then deals with ways of solving first-order
differential equations. It is concluded by an examination of the solution of differential
equations of second and higher orders.

Before we go any further in our study of differential equations we need to note that
there are two main categories of differential equation. We met, in Chapter 8, the idea
of differentiation of a function of a single variable, and then, in Chapter 9, the idea of
partial differentiation of functions of more than one variable. Differential equations may
involve either ordinary or partial derivatives; those which involve only ordinary differ-
entials are called ordinary differential equations and those involving partial differentials
are partial differential equations, commonly abbreviated to ODEs and PDEs.

For the remainder of this chapter we shall concentrate on learning the most common
techniques for solving ordinary differential equations. This is not because partial differ-
ential equations are not important in engineering. On the contrary, partial differential
equations have many applications, but the methods used to solve them are significantly
different from the methods used for ordinary differential equations. The solution of partial
differential equations is covered in the companion text Advanced Modern Engineering
Mathematics.

10.2 Engineering examples
Firstly we shall give some examples of engineering problems which naturally give rise
to differential equations. In due course we shall meet techniques which allow us to find
solutions to these equations and hence to make predictions about the engineering 
systems modelled.

10.2.1 The take-off run of an aircraft
Aeronautical engineers need to be able to predict the length of runway that an aircraft
will require to take off safely. To do this, a mathematical model of the forces acting on
the aircraft during the take-off run is constructed, and the relationships holding between
the forces are identified. Figure 10.1 shows an aircraft and the forces acting on it. If the
mass of the aircraft is m, gravity causes a downward force mg. There is a ground
reaction force through the wheels, denoted by G, and an aerodynamic lift force L. The
engines provide a thrust T, which is opposed by an aerodynamic drag D and a rolling
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resistance from contact with the ground R. Since the aircraft is rolling along the 
runway, it is not accelerating vertically, so the vertical forces are in balance and the 
vertical equation of motion yields

L + G = mg (10.1)

On the other hand, the aircraft is accelerating along the runway, so the horizontal 
equation of motion is

T − D − R = (10.2)

where s is the distance the aircraft has travelled along the runway.
We know from experimental evidence that both aerodynamic lift and aerodynamic

drag forces on a body vary roughly as the square of the velocity of the airflow relative
to the body. We shall therefore choose to model the lift and drag forces as proportional
to velocity squared. The rolling resistance is also known to be roughly proportional to the
reaction force between ground and aircraft. Thus we make the modelling assumptions

L = αv2, D = βv2 and R = µG

Substituting for L, D and R in (10.1) and (10.2) and eliminating G results in the 
equation

− (µα − β)v2 + µmg = T

or, replacing v by ds/dt,

(10.3)

Thus our model of the aircraft travelling along the runway provides an equation
relating the first and second time derivatives of the distance travelled by the aircraft, 
the thrust provided by the engines and various constants – the model is expressed as a
differential equation for the distance s travelled along the runway. The model is not yet
really complete, since we have not specified how the thrust varies. The thrust could, of
course, vary with time (the pilot could open or close the throttles during the take-off
run), and may also vary with the forward speed of the aircraft. On the other hand, we
could just assume that thrust is constant. Also, the constants m, µ, α and β need to be
determined. This information might be provided by measurements on the aircraft or on
scale models of it, by other calculations or by engineers’ estimates.

Once the model is complete it could be used, for instance, to predict the length
of runway needed by the aircraft to attain flying speed. Flying speed is, of course, the
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Figure 10.1
Forces on an 
aircraft during 
the take-off run.
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speed at which the lift (αv2) is equal to the weight (mg) of the aircraft. For a real
aircraft our model would probably need to be made more elaborate, including, for
instance, the angle of attack of the wing, which would change during the take-off run
as the balance between aerodynamic and ground forces changed and as the pilot (or
autopilot) changed the control surface settings.

10.2.2 Domestic hot-water supply

The second example involves modelling the heating of water in a hot-water storage
tank. Figure 10.2 shows schematically an ‘indirect’ domestic hot-water tank. In this
design of a hot-water system the central heating boiler, or other primary source of heat,
supplies hot water to a calorifier (which takes the form of a coiled pipe) inside the
hot-water storage tank. The main mass of water in the tank is then heated by the hot
water passing through the calorifier coil. We wish to calculate how quickly the hot
water in the tank will heat up.

We shall assume that, to a good approximation, during heating, convection ensures
that the main mass of water in the tank is well mixed and at a uniform temperature Tw.
The heating water flows into the calorifier at a speed U at a temperature Tin. The outflow
from the calorifier is at temperature Tout. The cross-sectional area of the calorifier tube
is A. The mass flowrate of heating water through the calorifier is therefore ρAU, 
where ρ is the density of water, and the rate of heat loss from the heating water is 
ρAU(Tin − Tout )c, where c is the specific heat of water. The heat capacity of the main
mass of water in the tank is ρVc, where V is the volume of the tank, and so the rate of
gain of heat in the main mass of water is given by

The tank is well insulated, so, to a first approximation, we shall assume that the heat
loss from the external shell of the tank is negligible. The rate of heat gain of the main
mass of water is therefore equal to the rate of heat loss from the heating water; that is,

AU(Tin − Tout) = (10.4)

where it is assumed that no hot water is being drawn off.
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Figure 10.2
An ‘indirect’ 
hot-water tank.
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We should also expect that the difference in temperature of the heating water
flowing in and that flowing out of the calorifier will be greater the cooler the mass of
water in the tank. If we assume direct proportionality of these two quantities, we may
express this modelling assumption as

Tin − Tout = α(Tin − Tw) (10.5)

where α is a constant of proportionality. Eliminating Tout between (10.4) and (10.5)
leads to the equation

+ AUαTw = AUαTin (10.6)

Thus we have a differential equation relating the temperature of the water in the tank
and its derivative with respect to time to the temperature of the heating water supplied
by the boiler. The equation also involves various constants determined by the charac-
teristics of the system. We will see later, in Question 35, Exercises 10.5.11, how this
equation can be solved to find Tw as a function of time.

10.2.3 Hydro-electric power generation

Our third example is drawn from the sphere of hydraulic engineering. Figure 10.3
shows a cross-section through a hydro-power generation plant. Water, retained behind
a dam, is drawn off through a conduit and drives a generator. In order to control the
power generated, there is also a control valve in series with the generator. The conduit
from the dam to the generator is typically quite long and of considerable cross-section,
so that it contains many tonnes of water. Hence, when the control valve is opened or
closed, the power generated does not increase or decrease instantaneously. Because of
the large mass of water in the conduit that must be accelerated or decelerated, the 
system may take several minutes or even tens of minutes to attain its new equilibrium
flowrate and power generation level. We wish to predict the behaviour of the system
when the control valve setting is changed.

The pressure at the entry to the conduit will be atmospheric plus ρgh, where ρ is the
density of the water in the dam and h is the depth of the entry below the water surface.
It is known that for flow in pipes, to a good approximation, the volume flowrate is 
proportional to the pressure differential between the ends of the pipe. We shall express
this as

Q = α∆p1

where Q is the volume flowrate through the conduit, α is a constant and ∆p1 is the pres-
sure difference between the two ends of the conduit. It is also known that the pressure
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Figure 10.3
A hydro-electric
generation plant.
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loss across a turbine such as the generator in this case is proportional to the discharge
(volume flow through the turbine), so we can write

∆p2 = βQ

where ∆p2 is the pressure loss across the generator and β is a characteristic of the
generator. The discharge of the turbine must, of course, be equal to the flowrate through
the conduit feeding the turbine. In a similar way, the pressure differential across a
control valve is also proportional to its discharge, so we have

∆p3 = γ Q

where ∆p3 is the pressure loss across the valve and γ is a constant whose value will vary
with the setting of the control valve. The total pressure differential between the entry to
the conduit and the exit from the control valve is ρgh. Hence the pressure differential
between the ends of the conduit is ρgh − ∆p2 − ∆p3. If this exceeds ∆p1, the pressure
differential needed to maintain the flow through the conduit at its current level, then
the mass of water in the conduit will accelerate and the volume flowrate through the
system will increase; if it is less than ∆p1 then the mass of water will decelerate and
the volume flow will decrease. The net force on the mass of water in the conduit is the
excess pressure differential multiplied by the cross-sectional area of the conduit, A, say.
The mass of water is ρAd, where d is the length of the conduit, and Q, the volume
flowrate, is vA, where v is the velocity of the water in the conduit. Thus we can write

(ρgh − ∆p1 − ∆p2 − ∆p3)A =

Assuming that the cross-sectional area of the conduit is constant and substituting for
∆p1, ∆p2 and ∆p3, we can rewrite this as

that is,

(10.7)

We find that this simple model of the hydro-power generation system results in an
equation involving the volume flowrate through the system and its time derivative and,
of course, various constants expressing physical characteristics of the system. One of
these constants, γ, is determined by the setting of the valve controlling the whole system.
Again we will see later (Question 36, Exercises 10.5.11) how (10.7) can be solved to find
the flowrate Q as a function of time.

10.2.4 Simple electrical circuits

The fourth example comes from electrical engineering. A resistor, an inductor and a
capacitor are connected in a series circuit with a switch and battery, as shown in Fig-
ure 10.4. The switch is a spring-biased one that, when released, moves immediately on
to contact B. While the switch is held against contact A, a current flows in the circuit.
When it is released, the circuit must eventually become quiescent, with no current
flowing. What is the manner of the decay to the quiescent state?
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We know from experiment that the relation V = iR holds between the potential dif-
ference across the resistor and the current flowing through a pure resistor of resistance
R. In the same way, we know that for a pure capacitor of capacitance C we have
V = q/C, where V is the potential difference across the capacitor and q is the charge on
it, and that for a pure inductor of inductance L we have V = L di/dt. If we assume that
the circuit components are a pure resistor, inductor and capacitor respectively, and that
the switch and the wires joining the components have negligible resistance, capacitance
and inductance, then, when the switch is in contact with B, the total potential difference
around the circuit must be zero and we have

This differential equation appears to relate two different quantities: the current i flowing
in the circuit and the charge q on the capacitor. Of course, these two quantities are not
independent. If the current is flowing then the charge on the capacitor must be increasing
or decreasing (depending on the direction in which the current is flowing). The principle
of conservation of charge tells us that the current is equal to the rate of change of
charge; that is, we must have

(10.8)

We can use this in one of two ways: either to eliminate q, in which case we obtain the
integro-differential equation

or to eliminate i, in which case we obtain the differential equation

Alternatively, differentiating either of these equations with respect to time, we obtain

(10.9)

The equations are, of course, equivalent, but the final form is probably the most usual
and most tractable of the three.

Thus we have found that a simple analysis of an LCR electrical circuit results in a
differential equation for one of the variables: either the charge on the capacitor in the
circuit or the current in the circuit. Once the equation has been solved to yield one of
these, the other can be obtained from (10.8). Equation (10.9) is an example of a type 
of differential equation which occurs widely in engineering applications. A general
method for solving such equations will be developed in Section 10.8.

10.3 The classification of ordinary differential equations
In Section 10.2 we created mathematical models of problems chosen from different
areas of engineering science. Each gave rise to an ordinary differential equation. There
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electrical circuit.
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are many techniques for solving differential equations – different methods being appli-
cable to different kinds of equation – so, before we go on to study these methods, it is
necessary to understand the various categories and classifications of ordinary differen-
tial equations. We shall then be in a position to recognize the overall characteristics of
an equation and identify which techniques will be useful in its solution.

10.3.1 Independent and dependent variables
The first type of classification we must understand is that of the variables occurring in a
differential equation. The variables with respect to which differentiation occurs are called
independent variables while those that are differentiated are dependent variables.
This terminology reflects the fact that what a differential equation actually expresses is the
way in which the dependent variable (or variables) depends on the independent variable.
A single ordinary differential equation has one independent variable and one dependent
variable. In much the same way as algebraic equations may occur in sets that must be
solved simultaneously, we can also have sets of coupled ordinary differential equations. In
this case there will be a single independent variable but more than one dependent variable.

Example 10.1 In the ordinary differential equation

the independent variable is x and the dependent variable is f. In the pair of coupled 
ordinary differential equations

the independent variable is t and the dependent variables are x and y.

10.3.2 The order of a differential equation
Another classification of differential equations is in terms of their order. The order of a
differential equation is the degree of the highest derivative that occurs in the equation.
The order of an equation is not affected by any power to which the derivatives may be
raised.

Example 10.2

is a second-order ordinary differential equation. The coupled ordinary differential equations
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are both first-order equations as is the equation

despite the term in (dx/dt)2.

10.3.3 Linear and nonlinear differential equations

Differential equations are also classified as linear or nonlinear. We may informally
define linear equations as those in which the dependent variable or variables and their
derivatives do not occur as products, raised to powers or in nonlinear functions. We
shall meet a more formal definition of a linear differential equation in Section 10.8.
Nonlinear equations are those that are not linear. Linear equations are an important
category, since they have useful simplifying properties. Many of the nonlinear equa-
tions that occur in engineering science cannot be solved easily as they stand, but can 
be solved, for practical engineering purposes, by the process of replacing them with 
linear equations that are a close approximation – at least in some region of interest –
and then studying the solution of the linear approximation. We shall see more of this
later.

Example 10.3

and the coupled differential equations

are linear ordinary differential equations.

are all nonlinear differential equations, the first because the derivative dx/dt is squared,
the second because of the product between the dependent variable x and its derivative,
and the third because of the nonlinear function, sin x, of the dependent variable.
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10.3.4 Homogeneous and nonhomogeneous equations

There is a further classification that can be applied to linear equations: the distinction
between homogeneous and nonhomogeneous equations. In all the examples we have
presented so far the differential equations have been arranged so that all terms contain-
ing the dependent variable occur on the left-hand side of the equality sign, and those
terms that involve only the independent variable and constant terms occur on the right-
hand side. This is a standard way of arranging terms, and aids in the identification of
equations. Specifically, when linear equations are arranged in this way, those in which
the right-hand side is zero are called homogeneous equations and those in which it 
is non-zero are nonhomogeneous equations. Expressed another way, each term in a
homogeneous equation involves the dependent variable or one of its derivatives. In a
nonhomogeneous equation there is at least one term that does not contain the independ-
ent variable or any of its derivatives.

Example 10.4 The equations

and

are both homogeneous ordinary differential equations, while

and

are both nonhomogeneous ordinary differential equations.

Example 10.5 Classify the equations (10.3), (10.6), (10.7) and (10.9) derived in the engineering 
examples of Section 10.2.

Solution (a) Equation (10.3) is a second-order nonlinear ordinary differential equation whose
dependent variable is s and whose independent variable is t.

(b) Equation (10.6) is a first-order linear nonhomogeneous ordinary differential equation
whose dependent variable is Tw and whose independent variable is t.

(c) Equation (10.7) is a first-order linear nonhomogeneous ordinary differential equation
whose dependent variable is Q and whose independent variable is t.

(d) Equation (10.9) is a second-order linear homogeneous ordinary differential equation
whose dependent variable is i and whose independent variable is t.
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10.3.5 Exercises
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10.4 Solving differential equations
So far we have said that differential equations are equations which express relationships
between a dependent variable and the derivatives of that variable with respect to the
independent variable. We are now going to study some methods of solving differential
equations. First, though, we should give some thought to exactly what form we expect
that solution to take.

When we solve an algebraic equation we expect the solution to be a number (e.g. the 
solution of the equation 4x + 9 = 7 is x = − ) or, perhaps, a set of numbers (e.g. the 
solution of a cubic polynomial equation like x 3 − 5x 2 + 8x − 12 = 0 is that x is one of a
set of three real or complex numbers). Again, equations involving vectors and matrices
have solutions that are constant vectors or one of a set of constant vectors. Differential
equations, on the other hand, are equations involving not a simple scalar or vector
variable but a function and its derivatives. The solution of a differential equation is,
therefore, not a single value (or one from a set of values) but a function (or a family of
functions). With this in mind let us proceed.

1
2
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10.4.1 Solution by inspection
The solution to some differential equations can be obtained by recalling some results
about differentiation.

Example 10.6 Faced with the differential equation

(10.10)

we might recall that if x(t) = e−4t then

In other words, the function x(t) = e−4t is a solution of the differential equation.

Example 10.7 The differential equation

(10.11)

may be solved by recollecting that

Therefore, the function x(t) = sin λt satisfies the differential equation.

Many differential equations can be solved by inspection in a similar manner to
Examples 10.6 and 10.7. Solution by inspection requires the recognition of the equa-
tion and its connection to a familiar result in differentiation. It is therefore dependent
upon experience and inspiration, and for this reason is only practical for solving the
simplest differential equations.

MATLAB and MAPLE can both readily solve differential equations like these. 
In MATLAB, using the Symbolic Math Toolbox, analytic solutions of differential
equations are computed using the dsolve command. The letter D denotes differen-
tiation. The dependent variable is that preceded by D, whilst the default independent
variable is t. Thus the general solution of the first-order differential equation

is given by the commands

syms x

dsolve(‘equation’)

In MAPLE the routine used is also called dsolve thus:

dsolve(equation)
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So, to solve Example 10.6, we would use

dsolve(‘Dx = –4*x’)

in MATLAB and

dsolve(diff(x(t),t) = –4*x(t));

in MAPLE. The answer returned by MATLAB is C1*exp(–4*t) and by MAPLE is
_C1*exp(–4*t). In each case C1 (or _C1) indicates an arbitrary constant. The reason
for this will become apparent in the next section. To solve Example 10.7 we could use

dsolve(‘D2x + lambda^2*x’,’t’)

in MATLAB and

dsolve(diff(x(t),t,t) + lambda^2*x(t));

in MAPLE. Notice here that MATLAB requires a second argument to specify what
is the independent variable (otherwise how does the package know that lambda is
not the independent variable?) whereas MAPLE does not require this because it has 

effectively been specified in the expression diff(x(t),t,t) for .

10.4.2 General and particular solutions
Examples 10.6 and 10.7 also illustrate a pitfall of solving equations in this way. The func-
tion x(t) = e−4t is certainly a solution of the equation in Example 10.6, but so is the function
x(t) = Ae−4t, where A is an arbitrary constant. The function x(t) = sin λt is certainly a
solution of the equation in Example 10.7, but so is the function x(t) = A sin λt + B cos λt,
where A and B are arbitrary constants. Differential equations in general have this 
property – the most general function that will satisfy the differential equation contains
one or more arbitrary constants. Such a function is known as the general solution of the
differential equation. Giving particular numerical values to the constants in the general
solution results in a particular solution of the equation. The general solution normally
contains a number of arbitrary constants equal to the order of the differential equation.

Example 10.8 Find the general solution of the differential equation

Solution This differential equation can be solved by twice integrating both sides, remembering
that each time we integrate the right-hand side an unknown constant of integration is
introduced. Thus integrating

twice we have
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and

x(t) = t3 − e3t + At + B

This solution contains two arbitrary constants, A and B. The equation is a

second-order differential equation so, as a general rule, we would expect two constants.

When solving differential equations, we should, as a rule, seek the most general solu-
tion that is compatible with the constraints imposed by the problem. If we do not do
this, we run the risk of neglecting some feature of the problem which may have 
serious implications for the performance, efficiency or even safety of the engineering
equipment or system being analysed.

10.4.3 Boundary and initial conditions

The arbitrary constants in the general solution of a differential equation can often be
determined by the application of other conditions.

Example 10.9 Find the function x(t) that satisfies the differential equation

and that has the value 2.5 when t = 0.

Solution We noted in Section 10.4.2 that x(t) = Ae− 4t is a solution of the differential equation

(This can be checked by differentiating x(t) to find and substituting into the differ-

ential equation.) But the solution x(t) = Ae−4t does not have the value 2.5 at t = 0 as
required by the example. We can impose the boundary condition by x(0) = 2.5 to give

Ae−4×0 = Ae− 0 = A = 2.5

so the solution that satisfies the boundary condition is x(t) = 2.5e−4t.

Additional conditions on the solution of a differential equation such as that in 
Example 10.9 are called boundary conditions. In the special case in which all the
boundary conditions are given at the same value of the independent variable the bound-
ary conditions are called initial conditions. In many circumstances it is convenient to
consider a differential equation as incomplete until the boundary conditions have been
specified. A differential equation together with its boundary conditions is referred to as
a boundary-value problem, unless the boundary conditions satisfy the requirements
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for being initial conditions, in which case the differential equation together with its
boundary conditions is referred to as an initial-value problem.

Example 10.10 Find the function x(t) that satisfies the initial-value problem

x(0) = 4, λ ≠ 0

Solution We know from Section 10.4.2 that the general solution of this differential equation is

x(t) = A sin λt + B cos λt

We can confirm this by differentiating x(t) twice and substituting into the differential
equation to demonstrate that this x(t) does satisfy the differential equation. With this
x(t) we have

= λA cos λt − λB sin λt

Applying the initial conditions gives rise to the equations

0A + 1B = 4

λA + 0B = 3

and hence to the solution

x(t) = sin λt + 4 cos λt

which is the particular solution of the initial value problem.

Example 10.11 Find the function x(t) that satisfies the boundary-value problem

x(0) = 4, λ ≠ 0

Solution As in the previous example, the general solution of the differential equation is

x(t) = A sin λt + B cos λt

and so

= λA cos λt − λB sin λt

Applying the boundary conditions gives rise to the equations

0A + 1B = 4

−λA + 0B = 3

and hence to the particular solution

x(t) = − sin λt + 4 cos λt
3
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Obviously, since a first-order differential equation has only one arbitrary constant in 
its solution, only one boundary condition is needed to determine the constant, and 
so the boundary condition of a first-order equation can always be treated as an initial
condition. For higher-order equations (and for sets of coupled first-order equations) the
distinction between initial-value and boundary-value problems is an important one, 
not least because, generally speaking, initial-value problems are easier to solve than
boundary-value problems.

MATLAB and MAPLE can both solve initial and boundary-value problems. In
MAPLE the differential equation and its boundary conditions must be presented as
a set (indicated by placing curly brackets round the list of equation and boundary
conditions), thus for Example 10.11 the solution is given by the commands

ode:= diff(x(t),t,t) + lambda^2*x(t)

dsolve({ode,x(0) = 4,D(x)(Pi/lambda) = 3});

Notice that the derivative boundary condition uses D(x) to denote . In MATLAB 

the boundary conditions are defined by a separate list of boundary conditions, thus
for Example 10.10 we have

dsolve(‘D2x + lambda^2*x’,’x(0) = 4,Dx(Pi/lambda) = 3’,‘t’)

In MATLAB we define the derivative boundary condition using Dx to denote .

In both MAPLE and MATLAB an initial-value problem would be solved in exactly
the same way; the difference would be that both boundary conditions would be
defined at the same value of the independent variable.

10.4.4 Analytical and numerical solution

We have seen that some differential equations are so simple that they can be solved by
inspection, given a reasonable knowledge of differentiation. There are many differential
equations that are not amenable to solution in this way. For some of these we may be
able, by the use of more complex mathematical techniques, to find a solution that
expresses a functional relationship between the dependent and independent variables.
We say that such equations have an analytical solution. In the case of other equations
we may not be able to find a solution in such a form – either because no suitable 
mathematical technique for finding the solution exists or because there is no analytical
solution. In these cases the only way of solving the equation is by the use of numerical
techniques, leading to a numerical solution.

An analytical solution is almost always preferable to a numerical one. This is chiefly
because an analytical solution is a mathematical function, and so the numerical value
of the dependent variable can be computed for any value of the independent variable.
In contrast with this, a numerical solution takes the form of a table giving the values of
the dependent variable at a discrete set of values of the independent variable. The value
of the dependent variable corresponding to any value of the independent variable not
included in that discrete set can only be computed by interpolation from the table (or
by repeating the whole numerical solution process, making sure the desired value of the
independent variable is included in the solution set).
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If the differential equation being solved contains parameters (such as the constant λ
in Example 10.7) then an analytical solution of the equation will contain that parameter.
The behaviour of the solution of the equation as the parameter value changes can be
readily understood. For a numerical solution the parameter must be given a specific
numerical value before the solution is computed. The numerical solution will then be
valid only for that value of the parameter. If the behaviour of the solution as the para-
meter value is changed is of interest then the equation must be solved repeatedly using
different parameter values.

When we obtain an analytical solution of a differential equation without its asso-
ciated boundary conditions, the arbitrary constants in the solution are effectively par-
ameters of the solution. A numerical solution to a differential equation cannot be obtained
unless the boundary conditions are specified. This is one reason why it is sometimes
convenient to refer to the whole problem (differential equation and boundary conditions)
as a unit rather than consider the differential equation separately from its boundary 
conditions.

Another reason for preferring an analytical solution to a numerical one when such 
a solution is available is that the work required to obtain a numerical solution is gen-
erally much greater than that required to obtain an analytical one. On the other hand,
most of this greater quantity of work can be delegated to a computer (and this may
sometimes be considered to be an argument for numerical solutions being preferable to
analytical ones).

Finally, it should be pointed out that this somewhat simplified overview of the 
contrast between analytical and numerical solutions of differential equations is becoming
increasingly blurred by the availability of computerized symbolic manipulation systems
(often known as computer algebra systems). We shall, in the remainder of this chapter,
be studying methods for both the numerical and analytical solution of ordinary differ-
ential equations.

10.4.5 Exercises

solution satisfying the problem. Find the 
solution and check whether your expectation
is confirmed.

(a) , x(0) = 2

(b) x( π) = 2, x( π) = 2

(c)

(d) x(1) = 1

(e) x(0) = a
d
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e
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3 Give the general solution of the following
differential equations. In each case state how 
many arbitrary constants you expect to find in the
general solution. Are your expectations confirmed
in practice?

(a) (b)

(c) (d)

(e) (f)

4 For each of the following differential equation
problems, state how many arbitrary constants
you would expect to find in the most general
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(f )

(g) x(0) = 1

(h) x(0) = 0, x(1) = 1

5 State which of the following problems are 
under-determined (that is, have insufficient
boundary conditions to determine all the arbitrary
constants in the general solution) and which are
fully determined. In the case of fully determined
problems state which are boundary-value problems
and which are initial-value problems. (Do not
attempt to solve the differential equations.)

(a) x(0) = 4

(b)

x(0) = 0, x(2) = 0

(c) x(0) = a

(d)

x(0) = 1, x(2) = 0

(e) x(0) = 1, x(2) = 0

(f)

x(1) = 0,
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(h)

x(0) = 0,

( i)

x(1) = 1,

( j) x(4) = 2

(k) x(1) = 0, x(3) = 0

(l)

x(0) = 0,

6 A uniform horizontal beam OA, of length a and
weight w per unit length, is clamped horizontally
at O and freely supported at A. The transverse
displacement y of the beam is governed by the
differential equation

where x is the distance along the beam measured
from O, R is the reaction at A, and E and I are
physical constants. At O the boundary conditions 

are y(0) = 0 and . Solve the

differential equation. What is the boundary
condition at A? Use this boundary condition to
determine the reaction R. Hence find the maximum
transverse displacement of the beam.
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All of the differential equations in Questions 3, 4 and 6 of Exercises 10.4.5 could be
solved using MATLAB or MAPLE. For example, using MAPLE, Questions 3(c)
would be solved by

dsolve(diff(x(t),t,t) = exp(4*t));

Question 4(g) could be solved in MATLAB as

dsolve(‘Dx = 2*x’,’x(0) = 1’,’t’)

and the first part of Question 6 would be solved by

ode:= E*I*diff(y(x),x,x) = 1/2*w*(a – x)^2 – R*(a – x);

dsolve({ode,y(0) = 0,D(y)(0) = 0});

or by

ode = ’E*I*D2y = 1/2*w*(a – x)^2 – R*(a – x)’

dsolve(ode,’y(0) = 0,Dy(0) = 0’,’x’)

in MAPLE and MATLAB respectively. Now, for practice, use MAPLE or MATLAB
to check your solutions to Questions 3, 4 and 6.

10.5 First-order ordinary differential equations
For the next three sections of this chapter we are going to concentrate our attention on
the solution of first-order differential equations. This is not as restrictive as it might at
first sight seem, since higher-order differential equations can, using a technique that we
shall meet in Section 10.11.2, be expressed as sets of coupled first-order differential
equations. Some of the methods used for the solution of first-order equations, particu-
larly the numerical techniques, are also applicable to such sets of coupled first-order
equations, and thus may be used to solve higher-order differential equations.

10.5.1 A geometrical perspective
Most first-order differential equations can be expressed in the form

(10.12)

Expressing the equation in this form means that, for any point in the t–x plane for which
f (t, x) is defined, we can compute the value of dx /dt at that point. If we then do this for
a grid of points in the t–x plane, we can draw a picture such as Figure 10.5. At each
point a short line segment with gradient dx /dt is drawn. Such a diagram is called the
direction field of the differential equation. Obviously, there is a gradient direction at
every point of the t–x plane, but it is equally obviously only practical to draw in a finite
number of them, as we have done in Figure 10.5. The equation whose direction field is
drawn in Figure 10.5 is in fact

but the same process could be carried out for any equation expressible in the form (10.12).
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Figure 10.5
The direction field 
for the equation 
dx/dt = x(1 − x)t.

Figure 10.6
Solutions of 
dx/dt = x(1 − x)t
superimposed on 
its direction field.

A solution of the differential equation is a function relating x and t (that is, a curve
in the t–x plane) which satisfies the differential equation. Since the solution function
satisfies the differential equation, the solution curve has the property that its gradient is
the same as the direction of the direction field of the equation at every point on the
curve; in other words, the direction field consists of line segments that are tangential to
the solution curves. With this insight, it is then fairly easy to infer what the solution
curves of the equation whose direction field is shown in Figure 10.5 must look like.
Some typical solution curves are shown in Figure 10.6.

By continuing this process, we could cover the whole t–x plane with an infinite 
number of different solution curves. Each solution curve is a particular solution of the
differential equation. Since we are considering first-order equations, we expect the gen-
eral solution to contain one unknown constant. Giving a specific value to that constant
derives, from the general solution, one or other of the particular solution curves. In other
words, the general solution, with its unknown constant, represents a family of solution
curves. The curves drawn in Figure 10.6 are particular members of that family.
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Example 10.12 Sketch the direction field of the differential equation

Verify that x(t) = Ce−t/2 is the general solution of the differential equation. Find the
particular solution that satisfies x(0) = 2 and sketch it on the direction field. Do the same
with the solution for which x(3) = −1.

Solution The direction field is shown in Figure 10.7. Substituting the function x(t) = Ce−t/2 into
the equation immediately verifies that it is a solution. The initial condition x(0) = 2
implies C = 2. The condition x(3) = −1 implies C = −e3/2. Both of these curves are
shown on Figure 10.7, and are readily seen to be in the direction of the direction field
at every point.

d

d

x

t
x  = − 1

2

Sketching the direction field of an equation is not normally used as a way of solving
a differential equation (although, as we shall see later, one of the simplest techniques
for the numerical solution of ordinary differential equations may be interpreted as
following lines through a direction field). It is, however, a very valuable aid to under-
standing the nature of the equation and its solutions. The sketching of direction fields
is made very much simpler by the use of computers and particularly computer graphics.
In cases of difficulty or uncertainty about the solution of a differential equation, sketching
the direction field often greatly illuminates the problem.

Figure 10.7
The direction field and
some solution curves
of dx/dt = −x/2.
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10.5.2 Exercises

7 Sketch the direction field of the differential
equation

Find the solution of the equation. Sketch the
particular solutions for which x(0) = 2, and 
for which x(2) = −3, and check that these are
consistent with your direction field.

8 Sketch the direction field of the differential
equation

Verify that x = t − 1 + Ce−t is the solution of the
equation. Sketch the solution curve for which
x(0) = 2, and that for which x(4) = 0, and check
that these are consistent with your direction 
field.

d

d

x

t
t x    = −

d

d

x

t
t  = −2

9 Draw the direction field of the equation

Sketch some of the solution curves suggested by
the direction field. Verify that the general solution
of the equation is x = C/(t − 3)2 and check that 
the members of this family resemble the solution
curves you have sketched on the direction field.

10 Draw the direction field of the equation

Sketch some of the solution curves suggested by
the direction field. Verify that the general solution
of the equation is x = Cte−t and check that the
members of this family resemble the solution
curves you have sketched on the direction 
field.
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MAPLE has tools for examining direction field plots of differential equations. For
instance, Questions 9 and 10 of Exercises 10.5.2 can be completed with the follow-
ing commands

with(DETools):

ode:= diff(x(t),t) = –2*x(t)/(t – 3);

dfieldplot(ode, x(t),t = –2..2,x = –3..3);

ode:= diff(x(t),t) = (1–t)*x(t)/t

dfieldplot(ode, x(t),t = –2..4,x = –3..3)

Notice that we must give MAPLE a range of both the independent variable and the
dependent variable over which to construct the direction field.

10.5.3 Solution of separable differential equations

So far we have only solved differential equations such as (10.10) and (10.11) whose
solution is immediately obvious. We are now going to introduce some techniques that
allow us to solve somewhat more difficult equations. These techniques are basically
ways of manipulating differential equations into forms in which their solutions become
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obvious. The first method applies to equations that take what is known as a separable
form. If the function f (t, x) in the first-order differential equation

is such that the equation can be manipulated (by algebraic operations) into the form

(10.13)

then the equation is called a separable equation. We may find an expression for the
solution of such equations by the following argument.

Integrating both sides of (10.13) with respect to t we have

(10.14)

Now let

Then

and

Integrating both sides of this equation with respect to t we have

Hence we have

Finally, substituting in (10.14) we have

(10.15)

so we have demonstrated that if a differential equation can be manipulated into the form
of (10.13) then (10.15) holds. If the functions g(x) and h(t) are integrable then (10.15)
leads to a solution of the differential equation.
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Example 10.13 Solve the equation

, x � 0

Solution This equation can be written as

and so is a separable equation. The solution is given by

That is,

ln x = 2t 2 + C

or

x =

= C′ , where C ′ = eC

Note: The cases x � 0 and x = 0 can be solved by allowing C ′ to be negative and zero
respectively.

Note that a constant of integration has been introduced. We might expect such constants
as a result of the integration of both left- and right-hand sides. However, if two constants
had been introduced, they could then have been combined into one constant either on
the left- or the right-hand side of the equation, so only one constant is actually necessary.

10.5.4 Exercises

MATLAB or MAPLE may be used to check your answers to the following questions.
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11 Find the general solutions of the following
differential equations:

(a) (b)

(c) (d)

12 Find the solutions of the following initial-value
problems:

(a) x(0) = 4

(b) x(4) = 9t
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13 Find the general solutions of the following
differential equations:

(a) (b)

(c) (d)

(e) (f)

14 Find the solutions of the following initial-value
problems:

(a) x(0) = −2
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(b) x(2) = 2

(c) x(0) = 2

(d) x(0) = a

(e) x(1) = 0

15 A chemical reaction is governed by the differential
equation

where x(t) is the concentration of the chemical 
at time t. The initial concentration is zero and 
the concentration at time 5 s is found to be 2.
Determine the reaction rate constant K and find 
the concentration at time 10 s and 50 s. What is 
the ultimate value of the concentration?
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d

x

t
x t  (  ) cos ,= −2 1

t t
x

t
x x(   )   (   ),− = +1 1

d

d
16 A skydiver’s vertical velocity is governed by the

differential equation

where K is the skydiver’s coefficient of drag. If the
skydiver leaves her aeroplane at time t = 0 with
zero vertical velocity, find at what time she
reaches half her final velocity.

17 A chemical A is formed by an irreversible reaction
from chemicals B and C. Assuming that the
amounts of B and C are adequate to sustain the
reaction, the amount of A formed at time t is
governed by the differential equation

If no A is present at time t = 0, find an expression
for the amount of A present at time t.

d

d

A

t
K A  (   )= −1 7α

m
t

mg K
d

d

v
v    = − 2

Either MAPLE or MATLAB can be used to solve any of the equations above.
Sometimes the answers given may differ in exact form from those given in the
‘Answers to Exercises’ section at the end of this book. For instance, both MAPLE
and MATLAB give three answers to Question 14(e). This is because the differential
equation can be solved to show x(t)3 = 12[t(ln(t) − 1) + 1]. There are then, of course,
three cube roots of a real quantity, one real and two complex conjugates. Sometimes,
the physical origins of a problem will indicate that the real root is the one of inter-
est. In the answers in this chapter, where multiple roots exist, only the principal root
is usually given.

10.5.5 Solution of differential equations of = f form

Some differential equations, while not being in separable form, can be transformed, by
means of a substitution, into separable equations. The best-known example of this is a
differential equation of the form

(10.16)

Note: Equations of the form (10.16) are sometimes called ‘homogeneous equations’,
but this use of the term homogeneous is different from the definition of homogeneous
equations which we gave in Section 10.3.4.

If the substitution y = x/t is made then, since x = yt and therefore, by the rule for
differentiation of a product,

d

d

d

d

x

t
t

y

t
y    = +

d

d

x

t
f

x

t
  = ⎛

⎝
⎞
⎠

D
F

x
t

A
C

dx
dt
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we obtain

That is,

which is an equation of separable form.

Example 10.14 Solve the equation

t � 0, x ≠ 0

Solution Dividing both sides of the equation by t 2 results in

which is of the form (10.16). Making the substitution y = x/t results in

that is,

which is of separable form. The solution of this equation is given by

that is,

so

Note: The requirement that t � 0 and x ≠ 0 means that it is valid to divide throughout
by t, and later by y, in the solution process. Solutions can be obtained without these
restrictions and this is left as an exercise for the reader.

x
t

t C
  

ln   
=

−
+

− = + =
−
+

=
1 1

y
t C y

t C

x

t
  ln             

ln   
  or

 � �d dy

y

t

t2
  =

1 1
2y

y

t t

d

d
  =

t
y

t
y y y

d

d
     + = +2

d

d

x

t

x

t

x

t
    = +

2

2

t
x

t
x xt2 2d

d
   ,= +

1 1

f y y

y

t t( )  
  

−
=

d

d

t
y

t
y f y

d

d
    ( )+ =
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10.5.6 Exercises

Again either MATLAB or MAPLE may be used to check your answers to all the following questions.

18 Find the general solutions of the following
differential equations:

(a) (b)

(c)

19 Find the solution of the following initial-value
problem:

x(1) = 4

20 Find the general solutions of the following
differential equations:

(a) (b)

(c) (d)

(e) (f)

21 Find the solutions of the following initial-value
problems:

(a) , x(1) = 2
d

d

x

t

x xt

t
  

 
=

−3 2

3

t
x

t
x t x td

d
e    /= +

d

d

x

t

x t

x t
  

  

  
=

+
−

t
x

t
x t

x

t

d

d
    tan= + ⎛

⎝⎜
⎞
⎠⎟t

x

t

t x

t x

d

d
  

 

  
=

−
−

3

2

2 2

t
x

t
x t

x

t

d

d
    sin= + ⎛

⎝⎜
⎞
⎠⎟

22 2 2xt
x

t
x t

d

d
   = − −

x t
x

t
t x3 4 4d

d
   ,= +

t
x

t

x xt

t

d

d
  

 
=

+2

x
x

t

t x

t
2

3 3d

d
  

 
=

+
xt

x

t
x t

d

d
   = +2 2

(b) x(2) = −1

(c) x(2) = 4

(d) x(1) = 2

(e) x(1) = 4

22 Show that, by making the substitution 
y = at + bx + c, equations of the form

can be reduced to separable form. Hence find the
general solutions of the following differential
equations:

(a) (b)

(c) (d)

(e) (f)

(g)
d

d

x

t
t xt x       = + + −4 4 22 2

2 2 5
d

d

x

t
x t      = − +

d

d

x

t
t x      = + +2 2

d

d

x

t

x t

x t
  

    

    
=

− +
− +

2

1

d

d

x

t

x t

x t
  

    

  
=

− −
+

1 2

4 2

2
2

2 1

d

d

x

t

t x

t x
  

(   )

    
= −

+
+ +

d

d

x

t

t x

t x
  

    

    
=

− +
− +

2

3

d

d

x

t
f at bx c  (     )= + +

t
x

t
x xt2 2 2

d

d
   ,= +

xt
x

t
t xx td

d
e   ,/= +−2 22 2

t
x

t
t xx td

d
e   ,/= +−

xt
x

t
x t

d

d
  (  ),= +2 2 2

10.5.7 Solution of exact differential equations

Some first-order differential equations are of a form (or can be manipulated into a form)
that is called exact. Since such equations can be solved readily, it would be useful to
be able to recognize them or, better still, to have a test for them. In this section we shall
see how exact equations are solved, and develop a test that allows us to recognize them.

The solution of exact equations depends on the following observation: if h(t, x) is a
function of the variables x and t, and the variable x is itself a function of t, then, by the
chain rule of differentiation,

Now if a first-order differential equation is of the form

p(t, x) + q(t, x) = 0 (10.17)
d

d

x

t

d

d

d

d

h

t

h

x

x

t

h

t
    = +

∂
∂

∂
∂
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and a function h(t, x) can be found such that

(10.18)

then (10.17) is equivalent to the equation

and the solution must be

h(t, x) = C

Example 10.15 Solve the differential equation

2xt + x 2 − 2t = 0

Solution If h(t, x) = x 2t − t 2 then

so the differential equation takes the form

(x 2t − t 2) = 0

and the solution is

x 2t − t 2 = C

Assuming t � 0 and C � 0 the solution can be written as

Thus we can solve equations of the form (10.17) provided that we can guess a func-
tion h(t, x) that satisfies the conditions (10.18). If such a function is not immediately
obvious, there are two possibilities: first there is no such function, and, secondly, there
is such a function but we don’t see what it is. We shall now develop a test that enables us
to answer the question of whether an appropriate function h(t, x) exists and a procedure
that enables us to find such a function if it does exist. If

then

∂
∂

∂
∂ ∂

∂
∂

p

t

h

x t

q

x
    = =

2

∂
∂

∂
∂

h

x
p t x

h

t
q t x  ( , )          ( , )= =and

 
x t

C

t
    = ± +⎛

⎝
⎞
⎠�

d

dt

∂
∂

∂
∂

h

x
xt

h

t
x t             = = −2 22and

d

d

x

t

d

d

h

t
  = 0

∂
∂

∂
∂

h

x
p t x

h

t
q t x  ( , )          ( , )= =and
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so, for a function h(t, x) satisfying (10.18) to exist, the functions p(t, x) and q(t, x) must
satisfy

(10.19)

If p(t, x) and q(t, x) do not satisfy this condition then there is no point in seeking a
function h(t, x) satisfying (10.18).

If p(t, x) and q(t, x) do satisfy (10.19), how do we find the function h(t, x) that
satisfies (10.18) and thus solve the equation (10.17)? It may be that, as in Example 10.14,
the function is obvious. If not, it can be obtained by solving the two equations (10.18)
independently and then comparing the answers, as in Example 10.15.

Example 10.16 Solve the differential equation

(ln sin t − 3x 2) + x cot t + 4t = 0

Solution First, since

(ln sin t − 3x 2) = cot t = (x cot t + 4t)

an appropriate function h(t, x) may exist. Now

= ln sin t − 3x 2 gives h = x ln sin t − x 3 + C1(t)

and

= x cot t + 4t gives h = x ln sin t + 2t 2 + C2(x)

where C1(t) and C2(x) are arbitrary functions of t and x respectively. Comparing the two
results, we see that

h(t, x) = x ln sin t − x 3 + 2 t 2

satisfies (10.18) and so the solution of the differential equation is

x ln sin t − x 3 + 2 t 2 = C

Notice that the solution, in this case, is not an explicit expression for x(t) in terms of t,
but an implicit equation relating x(t) and t, to be precise, a cubic polynomial in x with
coefficients which are functions of t.

If an initial condition had been given, say x( ) = 3, we would impose that initial
condition on the implicit equation resulting in a value for the constant of integration C, thus

x( π) = 3

giving

3 ln sin π − 33 + 2 × 02 = C or 0 − 27 + 0 = C

so x3 − x ln sin t − 2t2 − 27 = 0

1
2

1
2

1
2π

∂
∂
h

t

∂
∂
h

x

∂
∂x

∂
∂t

d

d

x

t

∂
∂

∂
∂

p

t

q

x
  =
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23 For each of the following differential equations
determine whether they are exact equations and,
if so, find the general solutions:

(a)

(b)

(c) (x + t) + x − t = 0

(d) (x − t 2) − 2xt = 0

(e) (x − t) − x + t − 1 = 0

(f) (2x + t) + x + 2t = 0
d

d

x

t

d

d

x

t

d

d

x

t

d

d

x

t

x
x

t
t

d

d
    − = 0

x
x

t
t

d

d
    + = 0

24 Find the solution of the following initial-value
problems:

(a) (x − 1) + t + 1 = 0, x(0) = 2

(b) (2x + t) + x − t = 0, x(0) = −1

(c) (2 − xt 2) − x 2t = 0, x(1) = 2

(d) cos t − x sin t + 1 = 0, x(0) = 2

25 For each of the following differential equations
determine whether they are exact, and, if so, find 
the general solution:

(a) (x + t) − x + t = 0
d

d

x

t

d

d

x

t

d

d

x

t

d

d

x

t

d

d

x

t

Both MAPLE and MATLAB can solve differential equations of the exact differen-
tial type. One drawback of systems such as MAPLE and MATLAB is that they 
may seek an explicit solution and, in doing so, give an answer which is of a more
complex form and correspondingly less easily comprehended than the solution which
might be obtained by a human. For instance, we can use MAPLE or MATLAB to
solve Example 10.16. In MAPLE we would use

ode:= (ln(sin(t)) – 3*x(t)^2)*diff(x(t),t) +

x(t)*cot(t) + 4*t;

dsolve(ode);

and an equivalent form in MATLAB. The solution given in Example 10.16 is an
implicit one which takes the form of a cubic function of x(t), x(t)3 − ln[sin(t)]x(t) −
2t 2 + C = 0. There is a general method for solving cubic algebraic equations which
the computer algebra packages use to derive an explicit form for x(t). There are, of
course, three roots of the cubic equation, all of which are much less immediately
understandable than the implicit solution given above.

All of the questions in Exercises 10.5.8 may be tackled with MAPLE or 
MATLAB. Some of the solutions derived in that way will appear different from
those given in the Answers section but, with some persistence, all can be shown
equivalent. Use of the simplify command can often be helpful.

10.5.8 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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(b) − xt = 0

(c) [sin(x + t) + x cos(x + t)] + x cos(x + t) = 0

(d) sin(xt) + cos xt = 0

(e) (1 + text) + xe xt = 0

(f) 2(x + ÷t) + + 1 = 0

(g) te−xt − xext = 0

(h)

26 Find the solutions of the following initial-value
problems:

(a) + 1 = 0, x(0) = π

(b) 3(x + 2t)1/2 + 6(x + 2t)1/2 + 1 = 0,

x(−1) = 6

d

d

x

t

1
2cos(   )   x t

x

t
+ +

⎛
⎝⎜

⎞
⎠⎟

d

d
1

t

x t

x

t

t

x t
x t

  
  

  
  ln(   )  

+
+

+
+ + =

d

d
0

d

d

x

t

x

t√
d

d

x

t

d

d

x

t

d

d

x

t

d

d

x

t

÷t
x

t

d

d
(c) x(x 2 − t 2) − t(x 2 − t 2) + 1 = 0, x(0) = −1

(d) x(2) = 2

27 What conditions on the constants a, b, e and f must
be satisfied for the differential equation

(ax + bt) + ex + ft = 0

to be exact, and what is the solution of the equation
when they are satisfied?

28 What conditions on the functions g(t) and h(t)
must be satisfied for the differential equation

g(t) + h(t)x = 0

to be exact, and what is the solution of the equation
when they are satisfied?

29 For what value of k is the function (x + t)k an
integrating factor for the differential equation

[(x + t)ln(x + t) + x] + x = 0?

30 For what value of k is the function t k an integrating
factor for the differential equation

(t 2 cos xt) + 3 sin xt + xt cos xt = 0?
d

d

x

t

d

d

x

t

d

d

x

t

d

d

x

t

1 1 1
0

2x t

x

t x t t  
  

  
    ,

+
+

+
− =

d

d

d

d

x

t

10.5.9 Solution of linear differential equations

In Section 10.3.3 we defined linear differential equations. The most general first-order
linear differential equation must have the form

(10.20)

where p(t) and r(t) are arbitrary functions of the independent variable t. We shall first
see how to solve the slightly simpler equation

(10.21)

If we multiply this equation throughout by a function g(t), the resulting equation

g(t) + g(t)p(t)x = 0
d

d

x

t

d

d

x

t
p t x  ( )   + = 0

d

d

x

t
p t x r t  ( )   ( )+ =
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will be exact if

Since g and p are functions of t only, this reduces to

which is a separable equation with solution

That is,

ln g = �p(t)dt

or

g(t) = ek(t), where k(t) = �p(t)dt

Hence, multiplying (10.21) throughout by g(t), we obtain

ek(t) + p(t)ek(t)x = 0

or

Hence, integrating with respect to t, we have

ek(t)x = C

so the solution can be written as

x = Ce−k(t)

The function g(t) is called the integrating factor for the differential equation. This
name expresses the property that, whilst

is not an exact integral, the expression

g t
x

t
g t p t x( )   ( ) ( )

d

d
+

d

d

x

t
p t x  ( )+

d

d
e ce

d

d
e e

d

d
e

t
x

t t
k t p tk t k t k t k t( )  ,    sin     ( )  ( ( ))  ( )( ) ( ) ( ) ( )= = =0

d

d

x

t

 � �d
d

g

g
p t t  ( )=

d

d

g

t
gp  =

∂
∂

∂
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g

t x
gpx  ( )=
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is an exact integral. In other words g(t) is a factor which makes the expression 
integrable.

This technique can, in fact, be used on the full equation (10.20). In that case, mul-
tiplying by the integrating factor g(t), we obtain

ek(t) + p(t)ek(t)x = ek(t)r(t)

or

(ek(t)x) = ek(t)r(t)

Then, integrating with respect to t, we have

ek(t)x = �ek(t)r(t)dt + C

and the solution

(10.22)

Thus (10.22) is an analytical solution of (10.20). The form of the solution can be simplified
considerably if �p(t)dt has a simple analytical form, as in Examples 10.17 and 10.18.

Example 10.17 Solve the first-order linear differential equation

+ tx = t

Solution We have shown that the integrating factor for a linear differential equation is

g(t) = ek(t) where

In this case

p(t) = t so and

Multiplying both sides of the differential equation by this integrating factor we have

e
d

d
e e

1
2

2 1
2

2 1
2

2t t tx

t
t x t    + =

g t t( )  = e
1
2

2

 
k t t t t( )    = =� d 1

2
2

 
k t p t t( )  ( )=� d

d

d

x

t
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⎡

⎣

⎢
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⎤

⎦

⎥
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−e e d�

d
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d
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t
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Now the left-hand side is a perfect differential (the form of the integrating factor is 
chosen to make this so), so the differential equation can be written

and integrating both sides of the equation with respect to t we have

Finally, dividing both sides by we find

Note: In evaluating �t dt for the integrating factor we have taken the constant of 
integration to be zero. Any other value of the constant of integration would also 
produce a valid (but more complicated!) integrating factor.

Example 10.18 Solve the first-order linear initial-value problem

Solution We have shown that the integrating factor for a linear differential equation is

g(t) = ek (t) where

In this case

Multiplying both sides of the differential equation by this integrating factor we have

Now the left-hand side is a perfect differential, so the differential equation can be 
written

and integrating both sides of the equation with respect to t we have
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Now, dividing both sides by t, we find

The initial value x(2) = so we must have

or C = −2

So, finally,

Again both MAPLE and MATLAB can be used to solve first-order linear differen-
tial equations. The preceding examples and the exercises in the next section can all
be tackled in this way. It is worth observing that this is not at all unexpected.
Computer algebra packages derive their results by following standard mathematical
methods, which have been programmed by the package designers. All of the ana-
lytical methods for solving differential equations described in this chapter are well
known and certainly included in the spectrum of methods incorporated into the
dsolve and related routines used by MAPLE and by MATLAB. MAPLE provides
a facility to see ‘inside’ the workings of the dsolve routine. The commands

infolevel[dsolve]:= 3:

ode:= t*diff(x(t),t) + x(t) = t^2;

dsolve({ode,x(2) = 1/3});

cause MAPLE to give a commentary on the different methods it is trying out in order
to solve the differential equation. In this case it almost immediately identifies the
equation as ‘1st order linear’ and solves it by that method.

10.5.10 Solution of the Bernoulli differential equations

Differential equations of the form

are called Bernoulli differential equations. If the index α is 0 or 1 then the equation
reduces to

Both these forms are linear, first-order, differential equations which we can solve by 
the method of Section 10.5.9. But if α does not take either of these values then the 

α     [ ( )  ( )]   = + − =1 0,    
d

d

x

t
p t q t x

α     ( )   ( )= + =0,    
d

d

x

t
p t x q t

d

d

x

t
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x t t
t
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3

2 2

1
3

1
3 4

2
    = +

C

1
3

x t t
C

t
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3
2
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equation is nonlinear. However, these equations can be reduced to a linear form by a
substitution. Let

y(t) = x(t)1−α

then

giving

Substituting for in the original differential equation + p(t)x = q(t)xα we have

Now dividing throughout by xα we have

But y(t) = x(t)1−α, so substituting for x(t)1−α and multiplying throughout by (1 − α) 
we obtain

which is a linear differential equation for y(t). Hence we can solve the equation for y(t)
using the method of Section 10.5.9.

Example 10.19 Solve the differential equation

Solution Firstly we rearrange the equation into canonical form

We recognize this as a Bernoulli differential equation with index α = 4, so we make the
substitution

y(t) = x(t)1−4 = x(t)−3

giving
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Substituting into the equation we have

and substituting y for x−3 we have

This is now seen to be a linear equation, so the integrating factor g(t) is obtained by the
standard method

Multiplying both sides of the differential equation by this integrating factor we have

Now the left-hand side is a perfect differential, so the differential equation can be written

and integrating both sides of the equation with respect to t we have

Finally, substituting for y(t) to obtain a solution for x(t) we have

so that

10.5.11 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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31 Find the solution of the following differential
equations:

(a) (b)

(c) (d)
d
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32 Find the solution of the following initial-value
problems:

(a) x(0) = 2

(b) x(0) = 1
d

d

x

t
x t    ,+ =3

d

d

x

t
x    ,− =2 3
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10.6 Numerical solution of first-order ordinary 
differential equations
Having met, in the last few sections, some techniques that may yield analytical solutions
for first-order ordinary differential equations, we are now going to see how first-order
ordinary differential equations can be solved numerically. In this chapter we shall only
study the simplest such method, Euler’s method. Many more sophisticated (but also
more complex) methods exist which yield solutions more efficiently, but space precludes
their inclusion in this introductory treatment.

(c) x(1) = −1

33 Find the solutions of the following differential
equations:

(a) − x = t + 2t 2 (b) − 4tx = t 3

(c) (d) + 4x = et

(e) − (2 cot 2t)x = cos t

(f) + 6t 2x = t 2 + 2t 5 (g) 

34 Find the solutions of the following initial-value
problems:

(a) − 2t (2x − 1) = 0, x(0) = 0

(b) = −x ln t, x(1) = 2

(c) + 5x − t = e−2t, x(−1) = 0

(d) − 1 + x = 0, x(2) = 2

(e) x(1) = 0

(f) + (x − U ) sin t = 0, x(π) = 2U

35 Solve (10.6), which arose from the model of 
the heating of the water in a domestic hot-water
storage tank developed in Section 10.2.2. If the
water in the tank is initially at 10°C and Tin
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t     ,− = −2 3 is 80°C, what is the ratio of the times taken for the

water in the tank to reach 60°C, 70°C and 75°C?

36 Solve (10.7), which arose from the model of a hydro-
electric power station developed in Section 10.2.3.
The setting of the control valve is represented in 
the model by the value of the parameter γ . Derive
an expression for the discharge Q(t) following 
a sudden increase in the valve opening such that 
the parameter γ changes from γ 0 to γ 0.

37 Find the solutions of the following differential
equations:

(a)

(b)

(c)

(d)

38 Find the solutions of the following initial-value
problems:
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10.6.1 A simple solution method: Euler’s method

In Section 10.5.1 we met the concept of the direction field of a differential equation

We noted that solutions of the differential equation are curves in the t–x plane to which
the direction field lines are tangential at every point. This immediately suggests that 
a curve representing a solution can be obtained by sketching on the direction field a
curve that is always tangential to the lines of the direction field. In Figure 10.8 a way
of systematically constructing an approximation to such a curve is shown.

Starting at some point (t0, x0), a straight line with gradient equal to the value of the
direction field at that point, f (t0, x0), is drawn. This line is followed to a point with
abscissa t0 + h. The ordinate at this point is x0 + hf (t0, x0), which we shall call X1. The
value of the direction field at this new point is calculated, and another straight line from
this point with the new gradient is drawn. This line is followed as far as the point with
abscissa t0 + 2h. The process can be repeated any number of times, and a curve in the
t–x plane consisting of a number of short straight line segments is constructed. The
curve is completely defined by the points at which the line segments join, and these can
obviously be described by the equations

t1 = t0 + h, X1 = x0 + hf (t0, x0)

t2 = t1 + h, X2 = X1 + hf (t1, X1)

t3 = t2 + h, X3 = X2 + hf (t2, X2)

\ \

tn+1 = tn + h, Xn+1 = Xn + hf (tn, Xn)

These define, mathematically, the simplest method for integrating first-order differential
equations. It is called Euler’s method. Solutions are constructed step by step, starting
from some given starting point (t0, x0). For a given t0 each different x0 will give rise to

d

d

x

t
f t x  ( , )=

Figure 10.8
The construction of 
a numerical solution 
of the equation 
dx/dt = f (t, x).
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a different solution curve. These curves are all solutions of the differential equation, but
each corresponds to a different initial condition.

The solution curves constructed using this method are obviously not exact solutions
but only approximations to solutions, because they are only tangential to the direc-
tion field at certain points. Between these points, the curves are only approximately 
tangential to the direction field. Intuitively, we expect that, as the distance for which 
we follow each straight line segment is reduced, the curve we are constructing will
become a better and better approximation to the exact solution. The increment h in the
independent variable t along each straight-line segment is called the step size used in
the solution. In Figure 10.9 three approximate solutions of the initial-value problem

x(0) = 0.91 (10.23)

for step sizes h = 0.05, 0.025 and 0.0125 are shown. These steps are sufficiently small
that the curves, despite being composed of a series of short straight lines, give the illu-
sion of being smooth curves. The equation (10.23) actually has an analytical solution,
which can be obtained by separation:

The analytical solution to the initial-value problem is also shown in Figure 10.9 for
comparison. It can be seen that, as we expect intuitively, the smaller the step size the
more closely the numerical solution approximates the analytical solution.

Example 10.20 The function x(t) satisfies the differential equation

and the initial condition x(1) = 2. Use Euler’s method to obtain an approximation to the
value of x(2) using a step size of h = 0.1.
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Figure 10.9
The Euler-method
solutions of 
dx /dt = x2te−t for 
h = 0.05, 0.025 
and 0.0125.
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Solution The solution is obtained step by step as set out in Figure 10.10. The approximation 
X(2) = 3.1162 results.

10.6.2 Analysing Euler’s method
We have introduced Euler’s method via an intuitive argument from a geometrical under-
standing of the problem. Euler’s method can be seen in another light – as an application
of Taylor series. The Taylor series given in Section 9.4.2 applied to a function x(t) gives

(10.24)

Using this formula, we could, in theory, given the value of x(t) and all the derivatives
of x at t, compute the value of x(t + h) for any given h. If we choose a small value for h
then the Taylor series truncated after a finite number of terms will provide a good approxi-
mation to the value of x(t + h). Euler’s method can be interpreted as using the Taylor
series truncated after the second term as an approximation to the value of x(t + h).

In order to distinguish between the exact solution of a differential equation and a
numerical approximation to the exact solution (and it should be appreciated that all
numerical solutions, however accurate, are only approximations to the exact solution),
we shall now make explicit the convention that we used in the last section. The exact
solution of a differential equation will be denoted by a lower-case letter and a 
numerical approximation to the exact solution by the corresponding capital letter. Thus,
truncating the Taylor series, we write

X(t + h) = x(t) +  = x(t) + hf (t, x) (10.25)

Applying this truncated Taylor series, starting at the point (t0, x0) and denoting t0 + nh
by tn, we obtain

X(t1) = X(t0 + h) = x(t0) + hf (t0, x0)

X(t2) = X(t1 + h) = X(t1) + hf (t1, X1)

X(t3) = X(t2 + h) = X(t2) + hf (t2, X2)

and so on
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2 32
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32 3
…

t X X ++ t Xt

1.0000 2.0000 3.0000 2.0000 0.1500
1.1000 2.1500 3.2500 2.3650 0.1374
1.2000 2.2874 3.4874 2.7449 0.1271
1.3000 2.4145 3.7145 3.1388 0.1183
1.4000 2.5328 3.9328 3.5459 0.1109
1.5000 2.6437 4.1437 3.9656 0.1045
1.6000 2.7482 4.3482 4.3971 0.0989
1.7000 2.8471 4.5471 4.8400 0.0939
1.8000 2.9410 4.7410 5.2939 0.0896
1.9000 3.0306 4.9306 5.7581 0.0856
2.0000 3.1162

h
X t

Xt

  ++
Figure 10.10
Computational results
for Example 10.21.

M10_JAME0734_05_SE_C10.qxd  11/03/2015  09:58  Page 829



..

which is just the Euler-method formula obtained in Section 10.6.1. As an additional
abbreviated notation, we shall adopt the convention that x(t0 + nh) is denoted by xn, 
X(t0 + nh) by Xn, f (tn, xn) by fn, and f(tn, Xn) by Fn. Hence we may express Euler’s
method, in general terms, as the recursive rule

X0 = x0

Xn+1 = Xn + hFn (n � 0)

The advantage of viewing Euler’s method as an application of Taylor series in this way
is that it gives us a clue to obtaining more accurate methods for the numerical solution
of differential equations. It also enables us to analyse in more detail how accurate
Euler’s method may be expected to be. We can abbreviate (10.24) to 

x(t + h) = x(t) + hf (t, x) + O(h2)

where O(h2) covers all the terms involving powers of h greater than or equal to h2.
Combining this with (10.25), we see that

X(t + h) = x(t + h) + O(h2) (10.26)

(Note that in obtaining this result we have used the fact that signs are irrelevant in deter-
mining the order of terms; that is, −O(h p) = O(h p).) Equation (10.26) expresses the fact
that at each step of the Euler process the value of X(t + h) obtained has an error of order
h2, or, to put it another way, the formula used is accurate as far as terms of order h. 
For this reason Euler’s method is known as a first-order method. The exact size of 
the error is, as we intuitively expected, dependent on the size of h, and decreases as 
h decreases. Since the error is of order h2, we expect that halving h, for instance, will
reduce the error at each step by a factor of four.

This does not, unfortunately, mean that the error in the solution of the initial-value
problem is reduced by a factor of four. To understand why this is so, we argue as
follows. Starting from the point (t0, x0) and using Euler’s method with a step size h to
obtain a value of X(t0 + 4), say, requires 4/h steps. At each step an error of order h2 is
incurred. The total error in the value of X(t0 + 4) will be the sum of the errors incurred
at each step, and so will be 4/h times the value of a typical step error. Hence the total
error is of the order of (4/h)O(h2); that is, the total error is O(h). From this argument we
should expect that if we compare solutions of a differential equation obtained using
Euler’s method with different step sizes, halving the step size will halve the error in the
solution. Examination of Figure 10.9 confirms that this expectation is roughly correct
in the case of the solutions presented there.

Example 10.21 Let Xa denote the approximation to the solution of the initial-value problem

x(0) = 1

obtained using Euler’s method with a step size h = 0.1, and Xb that obtained using a step
size of h = 0.05. Compute the values of Xa(t) and Xb(t) for t = 0.1, 0.2, … , 1.0. Com-
pare these values with the values of x(t), the exact solution of the problem. Compute the
ratio of the errors in Xa and Xb.
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Solution The exact solution, which may be obtained by separation, is

The numerical solutions Xa and Xb and their errors are shown in Figure 10.11. Of
course, in this figure the values of Xa are recorded at every step whereas those of Xb are
only recorded at alternate steps.

Again, the final column of Figure 10.11 shows that our expectations about the effects
of halving the step size when using Euler’s method to solve a differential equation are
confirmed. The ratio of the errors is not, of course, exactly one-half, because there are
some higher-order terms in the errors, which we have ignored.

Both MAPLE and MATLAB can be used to obtain numerical solutions of differ-
ential equations. Both encapsulate highly sophisticated numerical methods, which
enable the production of very accurate numerical solutions. The Euler method
described above is the simplest numerical method available and it might be con-
sidered somewhat perverse to use MAPLE or MATLAB to obtain an Euler method
solution when much more accurate methods are available within the packages.
Nonetheless, the numerical results in column Xa of Figure 10.11 could be obtained
in MAPLE as follows.

odeprob:= {diff(x(t),t) = x(t)^2/(t + 1),x(0) = 1};

oseq:= array([seq(0.1*i,i = 0..10)]):

oput:= dsolve(odeprob,numeric,

method = classical[foreuler],

output = oseq,stepsize = 0.1);

evalm(oput[2,1]);

The results in column Xb of Figure 10.11 could be obtained by changing the step-
size argument in the dsolve routine to stepsize=0.05. A more extensive 
programming effort would be required to obtain the same numerical results through
MATLAB.
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t Xa Xb x(t) || x −− Xa || || x −− Xb ||

0.000 00 1.000 00 1.000 00 1.000 00
0.100 00 1.100 00 1.102 50 1.105 35 0.005 35 0.002 85 0.53
0.200 00 1.210 00 1.216 03 1.222 97 0.012 97 0.006 95 0.54
0.300 00 1.332 01 1.342 94 1.355 68 0.023 67 0.012 75 0.54
0.400 00 1.468 49 1.486 17 1.507 10 0.038 61 0.020 92 0.54
0.500 00 1.622 52 1.649 52 1.681 99 0.059 47 0.032 47 0.55
0.600 00 1.798 03 1.837 91 1.886 81 0.088 78 0.048 90 0.55
0.700 00 2.000 08 2.057 92 2.130 51 0.130 42 0.072 59 0.56
0.800 00 2.235 40 2.318 57 2.425 93 0.190 53 0.107 36 0.56
0.900 00 2.513 01 2.632 51 2.792 16 0.279 15 0.159 65 0.57
1.000 00 2.845 39 3.018 05 3.258 89 0.413 50 0.240 84 0.58

|| −− ||
|| −− ||
x X

x X

  

  
b

a

Figure 10.11
Computational results
for Example 10.21.
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10.6.3 Using numerical methods to solve engineering problems

In Example 10.21 the errors in the values of Xa and Xb are quite large (up to about 14%
in the worst case). While carrying out computations with large errors such as these is
quite useful for illustrating the mathematical properties of computational methods, in
engineering computations we usually need to keep errors very much smaller. Exactly
how small they must be is largely a matter of engineering judgement. The engineer
must decide how accurately a result is needed for a given engineering purpose. It is then
up to that engineer to use the mathematical techniques and knowledge available to 
carry out the computations to the desired accuracy. The engineering decision about the
required accuracy will usually be based on the use that is to be made of the result. If,
for instance, a preliminary design study is being carried out then a relatively approxi-
mate answer will often suffice, whereas for final design work much more accurate
answers will normally be required. It must be appreciated that demanding greater accur-
acy than is actually needed for the engineering purpose in hand will usually carry a
penalty in time, effort or cost.

Let us imagine that, for the problem posed in Example 10.21, we had decided we
needed the value of x(1) accurate to 1%. In the cases in which we should normally
resort to numerical solution we should not have the analytical solution available, so we
must ignore that solution. We shall suppose then that we had obtained the values of
Xa(1) and Xb(1) and wanted to predict the step size we should need to use to obtain a
better approximation to x(1) accurate to 1%. Knowing that the error in Xb(1) should be
approximately one-half the error in Xa(1) suggests that the error in Xb(1) will be roughly
the same as the difference between the errors in Xa(1) and Xb(1), which is the same as
the difference between Xa(1) and Xb(1); that is, 0.172 66. One per cent of Xb(1) is roughly
0.03, that is, roughly one-sixth of the error in Xb(1). Hence we expect that a step size
roughly one-sixth of that used to obtain Xb will suffice; that is, a step size h = 0.008 33.
In practice, of course, we shall round to a more convenient non-recurring decimal 
quantity such as h = 0.008. This procedure is closely related to the Aitken extrapolation
procedure introduced in Section 7.5.3 for estimating limits of convergent sequences 
and series.

Example 10.22 Compute an approximation X(1) to the value of x(1) satisfying the initial-value problem

x(0) = 1

by using Euler’s method with a step size h = 0.008.

Solution It is worth commenting here that the calculations performed in Example 10.21 could
reasonably be carried out on any hand-held calculator, but this new calculation requires
125 steps. To do this is on the boundaries of what might reasonably be done on a hand-
held calculator, and is more suited to a computer. Repeating the calculation with a step
size h = 0.008 produces the result X(1) = 3.213 91.

We had estimated from the evidence available (that is, values of X(1) obtained using
step sizes h = 0.1 and 0.05) that the step size h = 0.008 should provide a value of X(1)
accurate to approximately 1%. Comparison of the value we have just computed with
the exact solution shows that it is actually in error by approximately 1.4%. This does
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not quite meet the target of 1% that we set ourselves. This example therefore serves,
first, to illustrate how, given two approximations to x(1) derived using Euler’s method
with different step sizes, we can estimate the step size needed to compute an approxi-
mation within a desired accuracy, and, secondly, to emphasize that the estimate of 
the appropriate step size is only an estimate, and will not guarantee an approximate
solution to the problem meeting the desired accuracy criterion. If we had been more
conservative and rounded the estimated step size down to, say, 0.005, we should have
obtained X(1) = 3.230 43, which is in error by only 0.9% and would have met the
required accuracy criterion.

Since we have mentioned in Example 10.22 the use of computers to undertake the 
repetitious calculations involved in the numerical solution of differential equations, it
is also worth commenting briefly on the writing of computer programs to implement
those numerical solution methods. While it is perfectly possible to write informal,
unstructured programs to implement algorithms such as Euler’s method, a little atten-
tion to planning and structuring a program well will usually be amply rewarded – 
particularly in terms of the reduced probability of introducing ‘bugs’. Another reason
for careful structuring is that, in this way, parts of programs can often be written in
fairly general terms and can be re-used later for other problems. The two pseudocode
algorithms in Figures 10.12 and 10.13 will both produce the table of results in 
Example 10.21. The pseudocode program of Figure 10.12 is very specific to the 
problem posed, whereas that of Figure 10.13 is more general, better structured, and
more expressive of the structure of mathematical problems. It is generally better to aim
at the style of Figure 10.13.

Both the MAPLE and MATLAB packages include a procedural programming lan-
guage with all the basic structures of such languages. The pseudocode algorithms 
in Figures 10.12 and 10.13 can be implemented as programs in both MAPLE 
and MATLAB. But, again, it would be perverse to do so when very much more
sophisticated numerical algorithms are packaged within the standard procedures 
of both languages. Nevertheless, either package could be used as a programming
environment for implementing simple programs to complete Questions 43–45 in
Exercises 10.6.4.

x1←1
x2←1
write(printer,0,1,1,1)
for i is 1 to 10 do

x1←x1 + 0.1*x1*x1/((i − 1)*0.1 + 1)
x2←x2 + 0.05*x2*x2/((i − 1)*0.1 + 1)
x2←x2 + 0.05*x2*x2/((i − 1)*0.1 + 1.05)
x←1/(1 − ln(i*0.1 + 1))
write(printer,0.1*i,x1,x2,x,x − x1,x − x2,(x − x2)/(x − x1))

endfor

Figure 10.12
A poorly structured
algorithm for Example
10.21.
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initial_time←0
final_time←1
initial_x←1
step←0.1
t←initial_time
x1←initial_x
x2←initial_x
h1←step
h2←step/2
write(printer,initial_time,x1,x2,initial_x)
repeat

euler(t,x1,h1,1→x1)
euler(t,x2,h2,2→x2)
t←t + h
x←exact_solution(t,initial_time,initial_x)
write(printer,t,x1,x2,x,abs(x − x1),abs(x − x2),abs((x − x2)/(x− x1)))

until t � final_time

procedure euler(t_old,x_old,step,number→x_new)
temp_x←x_old
for i is 0 to number − 1 do

temp_x←temp_x + step*derivative(t_old + step*i,temp_x)
endfor
x_new←temp_x

endprocedure

procedure derivative(t,x → derivative)
derivative←x*x/(t+1)

endprocedure

procedure exact_solution(t,t0,x0→exact_solution)
c←ln(t0 + 1) + 1/x0
exact_solution←1/(c − ln(t + 1))

endprocedure

Figure 10.13
A better structured
algorithm for Example
10.21.

10.6.4 Exercises

39 Find the value of X(0.3) for the initial-value
problem

= x − 2t, x(0) = 1

using Euler’s method with steps of h = 0.1.

40 Find the value of X(0.25) for the initial-value
problem

= xt, x(0) = 2

using Euler’s method with steps of h = 0.05.

d

d

x

t

d

d

x

t

41 Find the value of X(1) for the initial-value problem

x(0.5) = 1

using Euler’s method with step size h = 0.1.

42 Find the value of X(0.5) for the initial-value 
problem

x(0) = 1

using Euler’s method with step size h = 0.05.

d

d
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t
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t x
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4

d

d

x

t

x

t x
  

(   )
,=

+2√

M10_JAME0734_05_SE_C10.qxd  11/03/2015  09:58  Page 834



....

10.7 ENGINEERING APPLICATION:  ANALYSIS OF DAMPER PERFORMANCE 835

43 Denote the Euler-method solution of the initial-
value problem

x(1) = 2

using step size h = 0.1 by Xa(t), and that using
h = 0.05 by Xb(t). Find the values of Xa(2) and
Xb(2). Estimate the error in the value of Xb(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.1%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in Xa(2), Xb(2) and your
final value of X(2).

44 Denote the Euler-method solution of the initial-
value problem

x(1) = 1

using step size h = 0.1 by Xa(t), and that using
h = 0.05 by Xb(t). Find the values of Xa(2) and

d

d

x

t xt
  ,=

1

d

d

x

t

xt

t
  

 
,=

+2 2

Xb(2). Estimate the error in the value of Xb(2), and
suggest a value of step size that would provide a
value of X(2) accurate to 0.2%. Find the value of
X(2) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in Xa(2), Xb(2) and your 
final value of X(2).

45 Denote the Euler-method solution of the initial-
value problem

x(1) = 1.2

using step size h = 0.05 by Xa(t), and that using
h = 0.025 by Xb(t). Find the values of Xa(1.5) and
Xb(1.5). Estimate the error in the value of Xb(1.5),
and suggest a value of step size that would provide a
value of X(1.5) accurate to 0.25%. Find the value of
X(1.5) using this step size. Find the exact solution of
the initial-value problem, and determine the actual
magnitude of the errors in Xa(1.5), Xb(1.5) and your
final value of X(1.5).

d

d

x

t x
  

ln
,=

1

10.7 Engineering application: analysis of damper
performance
In this section we shall carry out a modest engineering design exercise that will illustrate
the modelling of an engineering problem using first-order differential equations and the
solution of that problem using the techniques we have met so far in this chapter.

A small engineering company produces, among other artefacts, hydraulic dampers
for specialized applications. One of the test rigs used by the company to check the 
quality and consistency of the operational characteristics of its output is illustrated in
Figure 10.14. A carriage carrying a mass, which can be altered to suit the damper 
under test, is projected along a track of very low friction at a carefully controlled speed.
At the end of the track the carriage impacts into a buffer which is connected to the
damper under test. Immediately prior to impact the carriage passes through a pair of
photocells whose output is used to measure the carriage speed accurately. The mass of

Figure 10.14
The damper test
apparatus.
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the buffer is very small compared with the mass of the carriage and test weight. The
time/displacement history of the damper as it is compressed by the impact of the 
carriage is recorded digitally. The apparatus can produce time/displacement graphs 
and time/compression speed graphs for dampers on test.

In order to interpret the test results, the company needs to know how a damper
should, in theory, behave under such a test. The simplest classical model of a damper
assumes that the resistance of the damper is proportional to the velocity of compression.
Since the mass of the buffer and damper components is small compared with the mass
of the test apparatus carriage, it is reasonable to assume that, on impact, the moving
components of the buffer and damper accelerate instantaneously to the velocity of the
carriage, with negligible loss of speed on the part of the carriage. Since the track is of
very low friction, it will be assumed that the only force decelerating the carriage is
that provided by the damper (this also means assuming the carriage is not moving
sufficiently fast for air resistance to have a significant effect). With these assumptions,
the equation of motion of the carriage is

, v(0) = U (10.27)

where m is the mass of the carriage, v(t) is its speed and k is the damper constant. Time
is measured from the moment of impact and U is the impact speed of the carriage. The
damper constant describes the force produced by the damper per unit speed of com-
pression (and, for double-acting dampers, extension). The design engineer can adjust
this constant by altering the internal design and dimensions of the damper. Equation
(10.27) can be solved on sight, or by separation. The solution is

v = Ce−λt, with λ = k/m

which, upon substituting in the initial conditions, becomes

v = Ue−λt (10.28)

Writing v = dx/dt, where x is the compression of the damper and is taken as zero 
initially, this equation can be expressed as

x(0) = 0

This can be integrated directly, giving the solution, after substitution of the initial 
condition,

(10.29)

The velocity and displacement curves predicted by this model, (10.28) and (10.29),
show that as t → ∞, v → 0 and x → U/λ. Neither v nor x actually ever achieve these
limits! This does not seem very realistic, since it is observed in tests that, after a finite
and fairly short time (short at least when compared with infinity), the carriage comes to
rest and the compression reaches a definite final value. The behaviour predicted by the
simple model and the behaviour observed in tests do not quite agree. One possible
explanation of this mismatch is the presence in the damper of friction between the 
components. Such friction would produce an additional resistance in the damper that

x
U t  (   )= − −

λ
λ1 e

d

d
e

x

t
U t  ,= −λ

m
t

k
d

d
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does not vary with the speed of compression. The force resisting compression might
therefore be better modelled as kv + b, where b is some constant force, rather than just
kv. The compression of such a damper would be described by the equation

v(0) = U (10.30)

Equation (10.30) is a linear first-order equation whose solution is

or, substituting in the initial conditions,

(10.31)

This can be integrated again to provide displacement as a function of time:

(10.32)

Equation (10.31) predicts that the compression velocity of the damper will be zero when

(10.33)

at which time the compression of the damper will be

(10.34)

This model therefore seems more realistic.
Figures 10.15 and 10.16 show the velocity and displacement curves represented by

(10.28) and (10.29) and (10.31) and (10.32) for a test in which the carriage carries 
a mass of 2 kg and travels at 1.5 m s−1 at impact, the damper has a damping constant 
25 N s m−1 and the constant frictional force in the damper amounts to 1.5 N.
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Figure 10.15 The predicted velocity–time curves for 
the damper test, both with and without the constant 
friction term.

Figure 10.16 The predicted displacement–time curves 
for the damper test, both with and without the constant
friction term.
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The company perceives that one of the disadvantages of the classical hydraulic
damper is, as may be inferred from Figure 10.15, that the largest force, and hence the
largest deceleration of the damped object, is produced early in the history of the impact,
when the velocity is largest. This means that the object, whatever it is, must be able to
withstand this high deceleration. If a damper could be designed that produced a more
even force over the deceleration process, the maximum deceleration experienced by 
an object being stopped from a given speed in a given distance would be reduced. 
The company’s designers think they may have a solution to this problem – they have
devised a new pattern of damper with a patent internal mechanism such that the damp-
ing constant increases as the damper operates. The effect of this mechanism is that, 
during any given operating cycle, the damping constant may be expressed as k(1 + at),
where t is the time elapsed in the operating cycle. The internal mechanism is such that
in a short time after an operating cycle the effective damper constant returns to its 
initial state and the damper is ready for another operating cycle.

A model of this new design of damper is provided by the equation

= −k(1 + at)v − b, v(0) = U (10.35)

This is a linear first-order differential equation. Applying the appropriate solution method
gives the solution as

where g(t) = t + at2

The integral in this solution does not result in a simple expression for v(t), although it
can be expressed in terms of a standard tabulated function called the error function.
However, (10.35) can be solved numerically to produce v(t) in tabulated form.
Although we will not obtain x(t) immediately using this method, we could readily
derive x(t) from the tabulated values of v(t). Since

we can integrate both sides of this equation to obtain

and the integral can be evaluated numerically (see Section 8.10) using the tabulated 
values of v(t). However, in evaluating the performance of the damper it is the velocity
curve which is more important, and we shall content ourselves with demonstrating the
numerical solution of (10.35).

The company’s engineers would wish to devise a numerical method for integrating
the equation that will allow them to predict the performance of the damper for differ-
ent combinations of the operational parameters U, m, k, a and b. Hence the task is to
write a program that can be validated against some test cases and then be used with con-
siderable confidence in other circumstances. If the value of a is taken to be 0 then the
program to solve (10.35) should produce the same results as the analytical solution
(10.31) of (10.30). This provides an appropriate test for the adequacy of the method and
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step size chosen. A program written to integrate equation (10.35) by Euler’s method
produced the results in the table in Figure 10.17. Several test runs of the program 
were undertaken using different step sizes, and results using h = 0.000 01 (Va ) and 
h = 0.000 005 (Vb) together with analytical solution (10.31) are shown in the figure.

It can be seen that the results using a step size of h = 0.000 005 are in agreement with
the analytical solution to at least 4 decimal places, and the agreement between the two
numerical solutions Va and Vb is good to 4dp. This agreement suggests that the accuracy
of the numerical solution is adequate.

It therefore seems that a step size of h = 0.000 005 will produce results that are accur-
ate to at least 4dp and probably more. Using this step size, the (v, t) traces shown in
Figure 10.18 were produced. First, for comparison, the predicted result of a test on a
standard damper described by (10.30) is shown. Secondly, the predicted result of a 
test with a new model of damper with a parameter a = 4 is shown. It can be seen that
the modified damper stops the carriage in a shorter time than the original model. The

t Va Vb Va −− Vb (10.31)

0.000 1.500 00 1.500 00 1.500 00
0.020 1.154 76 1.154 77 0.000 01 1.154 78
0.040 0.885 92 0.885 94 0.000 01 0.885 95
0.060 0.676 58 0.676 60 0.000 02 0.676 62
0.080 0.513 57 0.513 59 0.000 02 0.513 61
0.100 0.386 63 0.386 65 0.000 02 0.386 67
0.120 0.287 79 0.287 81 0.000 02 0.287 82
0.140 0.210 82 0.210 84 0.000 01 0.210 85
0.160 0.150 89 0.150 90 0.000 01 0.150 91
0.180 0.104 21 0.104 23 0.000 01 0.104 24
0.200 0.067 87 0.067 88 0.000 01 0.067 89
0.220 0.039 57 0.039 58 0.000 01 0.039 59
0.240 0.017 54 0.017 54 0.000 01 0.017 55
0.260 0.000 38 0.000 38 0.000 01 0.000 39
0.280 −0.012 98 −0.012 98 0.000 01 −0.012 97

Figure 10.17
Computational results
for the damper design
problem.

Figure 10.18
Comparison of
velocity–time curves
for the damper test.
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velocity–time trace is also slightly straighter, indicating that the design objective of
making the deceleration more nearly uniform has been, at least in part, achieved. The
third trace shown is for a new model damper with the basic damper constant k reduced
to 17.5 and the parameter a kept at 4. This damper is able to halt the carriage in the
same time as the original unmodified damper, but, in so doing, the maximum deceler-
ation is somewhat smaller. This is the advantage of the new design that the company
hope to exploit in the market.

In this section we have seen how differential equations and numerical solution 
methods can be used to provide an analytical tool that the company can now use as a
routine design tool for predicting the performance of a new model damper with any
given combination of parameters. Such a tool is an invaluable aid to the designer,
whose task will usually be to specify appropriate parameters to meet an operational
requirement specified by a client, for instance something like ‘to be capable of halting
a mass M travelling at velocity U within a time T while subjecting it to a deceleration
of no more than D’.

It should also be commented here that we have completed the numerical work in 
this example using Euler’s method. In practice it would be far better to use a more
sophisticated method, which would yield a solution of equivalent accuracy while 
using a much larger time step and therefore much less computing effort. Although the
difference for a single computation would be very small (and, therefore, considerably 
outweighed by the additional programming effort of implementing a more complex
method), if we were undertaking a large number of comparative runs or creating a
design tool which would be used by many engineers over a long period of time then
such issues would be important.

10.8 Linear differential equations

Having dealt, in the last three sections, with first-order differential equations we shall
now turn our attention to differential equations of higher orders. To begin with we 
shall restrict our attention to linear differential equations.

In Section 10.3.3 we defined the concept of linearity and mentioned that the 
solutions of linear equations have important simplifying properties. In this section 
we are going to study these simplifying properties in more detail. Before we do so,
however, it is helpful to define some new notation.

10.8.1 Differential operators

We are familiar from Section 2.2 with the idea that a function is a mapping from a set
known as the domain of the function to another set, the codomain of the function. The
functions we have met so far have been ones whose domain and codomain have been
familiar sets, such as the set of all real numbers (or perhaps some subset of that set), the
set of integers or the set of complex numbers. There is, though, no reason why a func-
tion should not be defined to have a domain and codomain consisting of functions. Such
functions are called operators. This name captures the idea that operators are functions
that transform one function into another function. If f is a function and φ is an operator
then φ[ f ] is another function.
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Example 10.23 Let the set A be the set of functions on the real numbers, that is, functions whose
domain and codomain are both the real numbers. The operator φ has domain A and is
defined by

φ[ f (t)] = f (t)2

In other words, the effect of an operator φ on a function f is defined by specifying the
function φ[ f (t)]. Thus for the φ defined here

φ[3t2 − 2t + 4] = 9t4 − 12t3 + 28t2 − 16t + 16

and

φ[sin t − t] = sin2t − 2t sin t + t2

Example 10.24 The operator φ is defined by

φ[ f (t)] = tf (t)2 − 4 f (t) + t2

Then tg(t)4 − 4g(t)2 + t2 may be expressed as φ[g(t)2] and te2t − 4et + t2 may be expressed
as φ[et].

Where no ambiguity is likely to result, it is permissible and conventionally acceptable to
write φ[ f (t)] as φ f (t), that is, to omit the square brackets.

We may view the operation of differentiation as transforming a differentiable 
function to another function, its derivative. When we are going to take this view, we
often write the differentiation symbol separately from the function on which it will
operate; for instance, we write

This notation is already familiar in those contexts in which we habitually write such
expressions as

In such contexts we refer to the symbol d/dt as a differential operator.

Example 10.25 Let the operator φ be defined by

φ[ f (t)] =

Then we have

φ[t2] = 2t, φ[sin t] = cos t, φ[4t3 − tan t] = 12t2 − sec2t, and so on

Using this notation, a differential equation may be expressed as an operator equation.

d
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Example 10.26 Let the operator L be defined by

The differential equation

may, using the operator notation, be written as

L[ f (t)] = t4

In Section 10.3.4 we introduced the concept of homogeneous and nonhomogeneous 
linear differential equations and mentioned the convention whereby differential equa-
tions are usually written with the terms involving the dependent variable on the left-
hand side and those not involving it on the right-hand side. When written in this way,
a homogeneous equation can be characterized as an equation of the form

L[x(t)] = 0

and a nonhomogeneous one as an equation of the form

L[x(t)] = f (t)

where L is the differential operator of the equation.

10.8.2 Linear differential equations

Returning now to linear and nonlinear equations, we see that linear ones can be more
precisely and compactly defined as those for which the operator satisfies

L[ax1 + bx2] = aL[x1] + bL[x2] (10.36)

for all functions x1 and x2 and all constants a and b.

Example 10.27 The equation

is a linear differential equation. Identify the operator of the equation and show that
(10.36) holds for this operator.

Solution The operator is

L
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Hence we have

= aL[x1] + bL[x2]

Equation (10.36) is the strict mathematical definition of linearity for any type of 
operator, and the definition we gave earlier in Section 10.3.3 is considerably less 
satisfactory mathematically. The formal definition of a linear differential equation is
therefore any differential equation whose differential operator is linear in the sense 
of (10.36).

We said before that linear differential equations are an important subcategory of 
differential equations because they have particularly useful simplifying properties. 
The most important simplifying property can be summed up in the following principle:

Linearity principle: if x1 and x2 are both solutions of the homogeneous 
linear differential equation L[x] = 0 then so is ax1 + bx2, where a and b are
arbitrary constants.

This result follows directly from the definition of a linear operator. Since x1 and x2 are
solutions of the differential equation, we have

L[x1] = 0 and L[x2] = 0

Since the equation is linear, we have

L[ax1 + bx2] = aL[x1] + bL[x2] = 0

Therefore ax1 + bx2 is a solution of the equation L[x] = 0.

Example 10.28 We noted in Section 10.4.2 that the general solution of the equation

is

x = A sin λ t + B cos λ t

This solution can be interpreted in the light of the linearity principle. Let x1 = sin λt and
x2 = cos λt. Then x1 and x2 are solutions of the differential equation. The equation is 
linear, so we know that Ax1 + Bx2 is also a solution.

d

d

2

2
2 0

x

t
x     + =λ

= + −
⎡

⎣
⎢

⎤

⎦
⎥ + + −

⎡

⎣
⎢

⎤

⎦
⎥     (sin )       (sin )a

x

t
t

x

t
t x b

x

t
t

x

t
t x

d

d

d

d

d

d

d

d

2
1

2
1

1

2
2

2
2

24 4

= + + +
⎛
⎝⎜

⎞
⎠⎟

− −         ( sin )   ( sin )a
x

t
b

x

t
t a

x

t
b

x

t
a t x b t x

d

d

d

d

d

d

d

d

2
1

2

2
2

2
1 2

1 24

L
d

d

d

d

2

[   ]  [   ]  [   ]  (sin )(   )ax bx
t

ax bx t
t

ax bx t ax bx1 2 2 1 2 1 2 1 24+ = + + + − +

....

10.8 LINEAR DIFFERENTIAL EQUATIONS 843

M10_JAME0734_05_SE_C10.qxd  11/03/2015  09:59  Page 843



..

844 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

..

Example 10.29 Find the general solution of the equation

Solution We can check, by substitution into the equation, that sin λt, cos λt, sinh λt and cosh λt
are all solutions of the equation. Therefore, since the equation is linear, the general
solution is

x = A sin λt + B cos λt + C sinh λ t + D cosh λt

MAPLE and MATLAB are able to solve higher-order differential equations much as
they solve first-order differential equations. Thus, to find the solution of the differ-
ential equation in Example 10.29 the MAPLE commands are

ode:= diff(x(t),t$4) – lambda^4*x(t);

dsolve(ode);

and, for MATLAB, the commands are

ode = ’D4x – lambda^4*x’

dsolve(ode,’t’)

In each case the general solution with 4 arbitrary constants is returned.

In Example 10.29 we have implicitly used our expectation, introduced in Section
10.4.2, that the general solution of a pth-order differential equation contains p arbitrary
constants. Since the equation is a fourth-order one, once we have found four solutions,
we assemble them with four arbitrary constants and we have the general solution. Is this
always the case? Not quite – we need an additional constraint on the solutions, as is
shown by Example 10.30.

Example 10.30 Find the general solution of the differential equation

Solution We can show, by substituting into the equation, that et, e−t and cosh(t) are all solutions
of the differential equation. Because the equation is linear, the function

x = Aet + Be−t + C cosh(t)

is also a solution. Is it the general solution? The function cosh(t) can be written as

cosh(t) = (et + e−t)

so the solution proposed can be rewritten as

x = Aet + Be−t + C(et + e−t) = (A + C)et + (B + C)e−t1
2
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and replacing the constants (A + C) with D and (B + C) with E we see that

x = Det + Ee−t

The proposed solution only really has two arbitrary constants, not the three we would
expect for the general solution. Of course if we notice that e2t is also a solution of the
differential equation we can apply the linearity principle to demonstrate that

x = Aet + Be−t + Ce2 t

is a solution and, since it has the expected number of arbitrary constants and cannot be
rewritten in a form with fewer constants, it is the general solution of the differential
equation.

In order to resolve this problem, we need the idea of linear independence.

The functions f1(t), f2(t), … , fp(t) are said to be linearly dependent if a set
of numbers k1, k2, … , kp, which are not all zero, can be found such that

k1 f1(t) + k2 f2(t) + … + kp fp(t) = 0

that is,

The functions are linearly independent if no such set of numbers exists.

Example 10.31 Which of the following sets of functions are linearly dependent and which are linearly
independent?

(a) {1 + t, t, 1}
(b) {1 + t, 1 + t + t2, 1 + t2}
(c) {sin(t), cos(t)}
(d) {et, e2t, e3t}

Solution (a) Writing f1 = 1 + t, f2 = t, f3 = 1, we seek a relationship of the form

a1 f1 + a2 f2 + a2 f2 + a3 f3 + . . . + an fn = 0

where the coefficients a1, a2, . . . , an are not all zero. It is easily seen that

(1 + t) − t − 1 = 0

so we have the required relationship with a1 = 1, a2 = −1, a3 = −1. Hence {1 + t, t, 1} is
a linearly dependent set of functions.

(b) Writing f1 = 1 + t, f2 = 1 + t + t2, f3 = 1 + t2, we seek a relationship of the form

a1 f1 + a2 f2 + a2 f2 + a3 f3 + . . . + an fn = 0

 ( )  k f tj j
j

p

=
=

∑ 0
1

1
2

1
2
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where the coefficients a1, a2, . . . , an are not all zero. That is, we seek {a1, a2, a3} such that

a1(1 + t) + a2(1 + t + t2) + a3(1 + t2) = 0

Taking coefficients of 1, t and t2 on both sides of the equation, we require

a1 + a2 + a3 = 0

a1 + a2 = 0

a2 + a3 = 0

that is

This is a homogeneous linear equation and we know that such equations only have a
non-zero solution if the determinant of the matrix is zero. In this case

so the only solution is , that is a1 = a2 = a3 = 0. Hence the functions {1 + t,  

1 + t + t2, 1 + t2} are linearly independent.

(c) We shall demonstrate that {sin(t), cos(t)} are linearly independent. We shall do this
by seeking a relationship of the form

a1 f1 + a2 f2 + a2 f2 + a3 f3 + . . . + an fn = 0

We shall demonstrate that the coefficients a1, a2, . . . , an must be all zero and therefore
conclude that the functions are not linearly dependent (and so are linearly independent).

In this case the relationship reduces to

a1 cos(t) + a2 sin(t) = 0

This must hold for all t in the domain of the functions. So we can choose particular 
values of t and say the relation must hold for those. Hence we have

t = 0 ⇒ a11 + a20 = 0 ⇒ a1 = 0

t = π/2 ⇒ a10 + a21 = 0 ⇒ a2 = 0

Hence the coefficients must be all zero and the functions are linearly independent.

(d) This set of functions can be investigated in an analogous manner to part (c). So we
seek a relationship of the form

a1 f1 + a2 f2 + a2 f2 + a3 f3 + . . . + an fn = 0

and will demonstrate that the coefficients a1, a2, . . . , an must be all zero and therefore
conclude that the functions are not linearly dependent (and so are linearly independent).

In this case the relationship reduces to

a1e
t + a2e

2t + a3e
3t = 0

a

a

a

1

2

3

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=  

1 1 1

1 1 0

0 1 1

1  =

1 1 1

1 1 0

0 1 1

0

1

2

3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=   

a

a

a
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This must hold for all t in the domain of the functions, so we can choose particular 
values of t and say the relation must hold for those. Hence we have

t = 0 ⇒ a1e
0 + a2e

0 + a3e
0 = 0 ⇒ a1 + a2 + a3 = 0

t = 1 ⇒ a1e + a2e
2 + a3e

3 = 0

t = 2 ⇒ a1e
2 + a2e

4 + a3e
6 = 0

that is

This is a homogeneous linear equation and we know that such equations only have a
non-zero solution if the determinant of the matrix is zero. In this case

= e8 − e7 − e7 + e5 + e5 − e4 = (e4 − 2e3 + 2e − 1)e4 ≈ 1029.9

so the only solution is , that is a1 = a2 = a3 = 0. The coefficients are all zero, 

hence the functions {et, e2t, e3t} are linearly independent.

The essential difference between a set of linearly dependent functions and a set of 
linearly independent ones is that for a linearly dependent set there are functions in the
set that can be written as linear combinations of some or all of the remaining functions.
For a linearly independent set this is not possible. We can see that the three solutions
that we first used in Example 10.30 are linearly dependent solutions. In effect this
means that one of them is just a disguised form of the other two, and so we don’t 
really have three solutions at all, only two. The additional constraint that we mentioned 
immediately after Example 10.29 is just that the solutions must be linearly independent.
This gives us the following principle:

General solution of a linear homogeneous equation: Let L be a pth order
linear differential operator, that is

Then if x1, x2, … , xp are all solutions of the pth-order homogeneous linear
differential equation

L[x] = 0

and x1, x2, … , xp are also linearly independent then the general solution of
the differential equation is

x = A1x1 + A2x2 + … + Apxp

L x a
x

t
a

x

t
a

x

t
a

x

t
a xp

p

p p

p

p
[ ]            = + + + + +−

−

−

d

d

d

d

d

d

d

d
1

1

1 2

2

2 1 0· · ·

a

a

a

1

2

3

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=  

1 1 1

e e e

e e e

2 3

2 4 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

0
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2 3

2 4 6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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A formal proof of this result is not straightforward, and is not given here. We may,
however, argue for its plausibility in the following way. Since the equation is linear,
repeated application of the linearity principle shows that A1x1 + A2x2 + … + Apxp is a
solution of L[x] = 0. The expression A1x1 + A2x2 + … + Apxp has p arbitrary constants
and, since x1, x2, … , xp are linearly independent, there is no way of rewriting the expres-
sion to reduce the number of arbitrary constants. Hence A1x1 + A2x2 + … + Apxp has the
characteristics of the general solution of the differential equation.

The relatively simple structure of the general solution of a homogeneous linear 
differential equation has now been exposed. The general solution of a nonhomogeneous
equation is only slightly more complex. It is given by the following result:

General solution of a linear nonhomogeneous equation: let

L[x] = f (t)

be a nonhomogeneous linear differential equation. If x* is any solution of
this equation and xc is a solution of the equivalent homogeneous equation

L[x] = 0

then x* + xc is also a solution of the nonhomogeneous equation.

This result is relatively straightforward to prove. By definition of x* and xc, we have

L[x*] = f (t) and L[xc ] = 0

Since L is a linear operator, we have

L[x* + xc] = L[x*] + L[xc] = f (t) + 0 = f (t)

Hence x* + xc is a solution of L[x] = f (t).
It follows from this that finding the general solution of a nonhomogeneous linear 

differential equation can be reduced to the problem of finding any solution of the 
nonhomogeneous equation and adding to it the general solution of the equivalent 
homogeneous equation. The resulting expression is a solution of the nonhomogeneous
equation containing the appropriate number of arbitrary constants, and so is the general
solution. The first part of the solution (the ‘any solution’ of the nonhomogeneous equa-
tion, x*) is known as a particular integral and the second part of the solution (the gen-
eral solution of the equivalent homogeneous equation, xc) is called the complementary
function. The reader should note the similarity in structure with the general solution of
linear recurrence relations developed in Section 7.4.

Example 10.32 Find the general solution of the differential equation

λ � 0

Solution A particular integral of the equation is

which you can check by direct substitution.

x t t   = −
4 24
2

3
4λ λ

d

d

2

2
2 34

x

t
x t    ,+ =λ
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The complementary function is the general solution of the equation

that is,

x = A sin λ t + B cos λ t

Hence the general solution of

is

+ A sin λ t + B cos λ t

Example 10.33 Find the general solution of the boundary-value problem

Solution A particular integral of the equation is

which again can be checked by direct substitution. The complementary function is the
general solution of the equation

that is

x = Aekt + Be−kt

Hence the general solution of

is

Now, imposing the boundary conditions gives two equations from which we obtain 
values for the two arbitrary constants in the general solution.

x(0) = 0

x
k

A Bk kπ π π π

4
0 0

1
2

2
4 4⎛

⎝
⎞
⎠ = − + + =−          

sin ( )
     / /implies

4 + 
e e

implies
4 + 

e e    
sin

     − + + =
0

0
2

0 0

k
A B

x
t

k
A Bkt kt  

sin
    = − + + −2

24 + 
e e

d

d

2 x

t
k x t

2
2 2    sin− =

d

d

2 x

t
k x

2
2 0    − =

x
t

k
  

sin
= −

2
24 + 

d

d

2 x

t
k x t k x x

2
2 2 0 0 0

4
0    sin ,      ,    ( )  ,   − = > = ⎛

⎝
⎞
⎠ =

π

x t t   = −
4 24
2

3
4λ λ

d

d

2

2
2 34

x

t
x t    + =λ

d

d

2

2
2 0

x

t
x    + =λ
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which gives

A + B = 0

Solving these equations for A and B yields

so finally

Linear nonhomogeneous differential equations present no problem to MAPLE and
MATLAB. To find the solution of the differential equation in Example 10.33 the
MAPLE and MATLAB commands are

ode:= diff(x(t),t$2) – k^2*x(t) = sin(2*t);

dsolve(ode);

and

ode = ’D2x – k^2*x = sin(2*t)’

dsolve(ode,’t’)

respectively. It is quite instructive to precede the MAPLE commands with

infolevel[dsolve]:= 3:

to obtain a commentary from MAPLE on the sequence of methods explored to solve
this equation.

10.8.3 Exercises

x t
k

kt

k
t( )  

sinh

sinh ( )
  sin  = −

⎛
⎝⎜

⎞
⎠⎟

1
2

2 1
44 + π

A
k k

B
k k

  
)sinh ( )

,      
)sinh ( )

= = −
1 1

2 1
4

2 1
42(4 + 2(4 +π π

A B
k

k ke e
4 + 

π π/ /   4 4
2

1
+ =−

46 For each of the following differential equations
write down the differential operator L that would
enable the equation to be expressed to L[x(t)] = 0:

(a) (b) 

(c)

47 Which of the following two sets are linearly
dependent and which are linearly independent?

(a) {1, t, t 2, t 3, t 4, t 5, t 6}

(b) {1 + t, t 2, t 2 − t, 1 − t 2}

d

d

x

t
kx    − = 0

d

d

x

t
xt  = 6 2d

d

x

t
t x    + =2 0

48 For each of the following sets of linearly
dependent functions find k1, k2, … such that
k1 f1 + k2 f2 + … = 0.

(a) {t + 1, t, 2} (b) {t 2 − 1, t 2 + 1, t − 1, t + 1}

49 For each of the following differential equations
write down the differential operator L that would
enable the equation to be expressed as L[x(t)] = 0:

(a)

(b)
d

d

d

d

3

3

2

2
24 0

x

t
t

x

t
t x  (sin )     + + =

d

d

x

t
f t x  ( )  =
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(c)

(d) 

(e) (f ) 

(g) 

(h)

50 Which of the following sets of functions are linearly
dependent and which are linearly independent?

(a) {sin t + 2 cos t, sin t − 2 cos t, 2 sin t + cos t, 
2 sin t − cos t}

(b) {sin t, cos t, sin 2t, cos 2t, sin 3t, cos 3t}

(c) {1 + 2t, 2t − 3t 2, 3t 2 + 4t 3, 4t 3 − 5t 4}

(d) {1 + 2t, 2t − 3t 2, 3t 2 + 4t 3, 4t 3}

(e) {1, 1 + 2t, 2t − 3t 2, 3t 2 + 4t 3, 4t 3}

(f) {ln a, ln b, ln ab}

(g) {es, et, es+t}

(h) {et, e2t − et, e3t − e2t, e2t}

(i) { f (t), f (t) − g(t), f (t) + g(t)}

( j) {1 − 2t 2, t − 3t 3, 2t 2 − 4t 4, 3t 3 − 5t 5}

(k) {1, 1 + t, 1 + t + t 2, 1 + t + t 2 + t 3}

51 For each of the following sets of linearly
dependent functions find k1, k2, … such that
k1 f1 + k2 f2 + … = 0:

(a) {sin t, cos t + sin t, cos 2t − sin t, cos t − cos 2t}

(b) {t + t 3, t − t 2, t 2 + 2t 3, t 2 − t 3}

(c) {ln t, ln 2t, ln 4t 2}

(d) { f (t) + g(t), f (t)(1 + f (t)), g(t) − f (t), 
f (t)2 − g(t)}

(e) {1 + t + 2t 2, t − 2t 2 + 3t 3, 1 + t − 2t 2, 
t − 2t 2 − 3t 3, t 3}

52 Determine which members of the given sets are
solutions of the following differential equations.
Hence, in each case, write down the general
solution of the differential equation.

d

d

d

dt t t
t x xt

1 2( )   
⎡

⎣
⎢

⎤

⎦
⎥ =

d

d

d

d
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dt
t

x

t
t

t
xt2⎛

⎝⎜
⎞
⎠⎟

=  ( )

d

d
e

x

t
xt t  = 2d

d

x

t

bx

t
  =

(sin )   
cos

t
x

t

t

t
x

d

d
=

d

d

d

d

2

2

x

t
t

x

t
t t x  (sin )   (   cos )+ = + (a) {1, t, t 2, t 3, t 4, t 5, t 6}

(b) {e pt, e−pt, cos pt, sin pt}

(c)

{ept, e−pt, cos pt, sin pt, cosh pt, sinh pt}

(d)

{cos 2t, sin 2t, e−2t, e2t, t 2, t, 1}

(e)

{cos 2t, sin 2t, e−2t, e2t, t 2, t, 1}

(f)

{et, e−t, e2t, e−2t, tet, te−t, te2t, te−2t}

(g)

{et, e−t, e2t, e−2t, tet, te−t, te2t, te−2t}

53 The operators L and M are defined by

and

Find L[M[x(t)]]. Hence write down the operator
LM. Find M[L[x(t)]]. Is LM = ML?

54 The operators L and M are defined by

and

Find expressions for the operators LM and ML.
Under what conditions on f1, g1, f2 and g2 is
LM = ML? What conditions do you think linear
differential operators must satisfy in order to be
commutative?

M
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10.9 Linear constant-coefficient differential equations

10.9.1 Linear homogeneous constant-coefficient equations

One class of linear equation that arises relatively frequently in engineering practice is
the linear constant-coefficient equation. These are linear equations in which the co-
efficients of the dependent variable and its derivatives do not depend on the independ-
ent variable but are constants. In view of the frequency with which such equations arise,
and the fundamental importance of the problems that give rise to such equations, it is
perhaps fortunate that they are relatively easy to solve.

We shall demonstrate the method of solution of such equations by considering, first
of all, the second-order linear homogeneous constant-coefficient equation. The most
general form this can take is

a ≠ 0 (10.37)

Now the solution of the first-order linear homogeneous constant-coefficient equation

a ≠ 0

is

x = Aemt, where am + b = 0

Let us, by analogy, try the function x(t) = emt as a solution of the second-order equation
(10.37). Then direct substitution gives

am2emt + bmemt + cemt = 0

That is,

(am2 + bm + c)emt = 0

Thus emt is a solution of the equation provided that

am2 + bm + c = 0 (10.38)

Suppose the roots of this quadratic equation are m1 and m2. Then em1t and em2t are solu-
tions of the differential equation. Since it is a linear homogeneous equation, the general
solution must be

x(t) = Aem1t + Bem2t (10.39)

provided that m1 ≠ m2.
The form of the solution to (10.37) is deceptively simple. We know that the roots of

a quadratic equation will take one of three forms:

(a) two different real numbers;
(b) a pair of complex-conjugate numbers;
(c) a repeated root (which must be real).

a
x

t
bx

d

d
    ,+ = 0

a
x

t
b

x

t
cx

d

d

d

d

2

2
0      ,+ + =
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In the first case the solution is expressed as in (10.39). In the second case the roots may
be written as

m1 = φ + jψ and m2 = φ − jψ

where φ and ψ are real, so that the solution is

x(t) = Ae(φ +jψ )t + Be(φ −jψ )t

= eφt(Aejψ t + Be−jψ t)

= eφt[A(cos ψt + j sin ψt) + B(cos ψt − j sin ψt)]

= eφt[(A + B)cos ψt + j(A − B)sin ψt]

using Euler’s formula (3.9). Writing A + B = C and j(A − B) = D, we have

x(t) = eφt(C cos ψt + D sin ψt)

In the third case the two roots m1 and m2 are equal, say, to k; therefore the solution
(10.39) reduces to

x(t) = Aekt + Bekt = Cekt

In this case the two solutions are not linearly independent, so we do not yet have the
complete solution of (10.37). The complete solution, in this case, can be obtained by
using the trial solution x(t) = t pemt. In order for (10.38) to have a repeated root m = k,
the constants in (10.37) must be such that (10.37) is of the form

Substituting the trial solution into this equation gives

a[p(p − 1)t p−2emt + 2mptp−1emt + m2t pemt ] − 2ak(ptp−1emt + mtpemt) + ak2t pemt = 0

That is,

p(p − 1) + 2mpt + m2t 2 − 2k(pt + mt 2) + k 2t 2 = 0

or

p(p − 1) + 2(m − k)pt + (m − k)2t 2 = 0

This equation is satisfied, for all values of t, if m = k and p = 1 or p = 0. Hence tekt

and ekt are two solutions of the differential equation. These are linearly independent
functions, so the general solution in the case of two equal roots is

x(t) = Atekt + Bekt = (At + B)ekt

Evidently the solutions of (10.38) that arise from substituting the trial solution into
the differential (10.37) determine the form of the solution to the latter. Equation (10.38)
is an important adjunct to the original equation, and is known as the characteristic
equation of the differential (10.37). It is sometimes referred to as the auxiliary 
equation.

a
x

t
ak

x

t
ak x

d

d

d

d

2

2
22 0      − + =

....
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Summary

To solve the second-order, linear, homogeneous, constant-coefficient differential
equation

first form the characteristic equation

am2 + bm + c = 0

and find its roots, m1 and m2. Then if the two roots are 

l real and distinct then the corresponding solution is

x(t) = Aem1t + Bem2t

l both equal to k then the corresponding solution is

x(t) = (At + B)ekt

l complex conjugates φ ± jψ then the corresponding solution is

x(t) = eφt(C cos ψt + D sin ψt)

Example 10.34 Find the general solution of the equation

Solution The characteristic equation is

m2 − 9m + 6 = 0

The roots of this equation are m = 4.5 ± ÷57, or, to 2dp, m1 = 8.27 and m2 = 0.73. Thus
the solution is

x(t) = Ae8.27t + Be0.73t

Example 10.35 Find the general solution of the equation

Solution The characteristic equation is

2m2 − 3m + 5 = 0

The roots of this equation are m = (3 ± j÷31), or, to 2dp, m1 = 0.75 + j1.39 and
m2 = 0.75 − j1.39. Thus the solution is

x(t) = e0.75t(A cos 1.39t + B sin 1.39t)

1
4

2 3 5 0
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d
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Example 10.36 Find the solution of the initial-value problem

Solution The characteristic equation is

m2 + 6m + 9 = (m + 3)2 = 0

This equation has a repeated root m = −3. Thus the solution is

x(t) = (At + B)e−3t

Now substituting in the initial conditions gives

B = 1, −3B + A = 2

Hence x(t) = (5t + 1)e−3t.

Notice, in Example 10.36, that the two initial conditions allow us to determine the 
values of the two arbitrary constants in the general solution of the second-order differ-
ential equation.

We have thus far demonstrated a technique that will solve any second-order linear
homogeneous constant-coefficient equation. The technique extends quite satisfactorily
to higher-order homogeneous constant-coefficient equations. When the same trial solu-
tion emt is substituted into a pth-order equation, 

it gives rise to a characteristic equation that is a polynomial equation of degree p in m,

apm
p + ap−1m

p−1 + ap−2m
p−2 + … + a1m + a0 = 0

We know from the theory of polynomial equations (see Section 3.1) that such an
equation has p roots. These may be real or complex, with the complex ones occurring
in conjugate pairs. The roots may also be simple or repeated. These various possibil-
ities are dealt with just as for a second-order equation. The only additional complexity
over and above the solution of the second-order equation lies in the possibility of roots
being repeated more than twice. In the case of a root m = k of multiplicity n, the 
technique employed above can be used to show that the corresponding solutions are 
ekt, tekt, t2ekt, … , tn−1ekt.

Example 10.37 Find the general solution of the equation

Solution The characteristic equation is

m3 − 2m2 − 5m + 6 = (m − 1)(m + 2)(m − 3) = 0

This equation has roots m = 1, −2, 3. Thus the solution is

x(t) = Aet + Be−2t + Ce3t
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Example 10.38 Find the general solution of the equation

Solution The characteristic equation is

2m4 + 3m3 − 22m2 − 73m − 60 = 0

that is,

(m − 4)(2m + 3)(m2 + 4m + 5) = 0

The roots are therefore m = 4, −3/2, −2 ± j. Thus the solution is

x(t) = Ae4t + Be−3t/2 + e−2t(C cos t + D sin t)

Example 10.39 Find the general solution of the equation

Solution The characteristic equation is

m4 + m3 − 3m2 − 5m − 2 = 0

that is,

(m − 2)(m3 + 3m2 + 3m + 1) = (m − 2)(m + 1)3 = 0

The roots are therefore m = 2 and m = −1 repeated three times. Thus the solution is

x(t) = Ae2t + (Bt2 + Ct + D)e−t

MAPLE implements the general method which we have just developed for linear,
constant coefficient, differential equations of arbitrary order (and so, by extension,
this method is also available via MATLAB). Any of the Examples 10.34–10.39 can
be solved using either package. For instance, Example 10.37 would be solved in
MAPLE and MATLAB respectively by the commands

ode:= diff(x(t),t$3) – 2*diff(x(t),t$2) 

–5*diff(x(t),t) + 6*x(t);

dsolve(ode);

and

ode = ’D3x – 2*D2x – 5*Dx + 6*x’

dsolve(ode,’t’)

The solutions of all the questions in Exercises 10.9.2 can be readily checked using
either package. For instance, Question 59(f ) would be solved by
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ode:= diff(x(t),t$3) + 6*diff(x(t),t$2)

+ 12*diff(x(t),t) + 8*x(t);

dsolve({ode,(D@@2)(x)(1) = 0,D(x)(1) = 1,x(1) = 1});

in MAPLE and, in MATLAB, by

ode = ’D3x + 6*D2x + 12*Dx + 8*x’

dsolve(ode,’x(1) = 1,Dx(1) = 1,D2x(1) = 0’,’t’);

Notice the notation used in MAPLE to denote a higher-order initial condition. 

The condition is expressed either as (D@@2)(x)(1) = 0 or as 

D(D(x))(1) = 0.

10.9.2 Exercises

Check your answers using MATLAB or MAPLE whenever possible.
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55 Find the general solution of the following
differential equations:

(a) 

(b)

(c) 

(d) 

56 Solve the following initial-value problems:
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57 Find the general solutions of the following
differential equations:

(a)

(b)

(c)

(d)
d

d

d

d

2

2
8 16 0

x

t

x

t
x      − + =

3 3 3 0
2

2

d

d

d

d

x

t

x

t
x      + + =

d

d

d

d

2

2
6 4 0

x

t

x

t
x      + − =

4 2 7 0
2

2

d

d

d

d

x

t

x

t
x      − + =

d

d

d

d

d

d

2

2
4 3 0 0 0 0 1

x

t

x

t
x x

x

t
      ,  ( )  ,  ( )  − + = = =

d

d

d

d

d

d

2

2
6 10 0 0 2 0 0

x

t

x

t
x x

x

t
      ,  ( )  ,  ( )  − + = = =

5 3 2 0 0 1 0 1
2

2

d

d

d

d

d

d

x

t

x

t
x x

x

t
      ,  ( )  ,  ( )  − − = = − =

d

d

d

d

2

2
4 13 0

x

t

x

t
x      − + =

d

d

d

d

2

2
3 4 0

x

t

x

t
x      + − =

d

d

d

d

2

2
2 5 0

x

t

x

t
x      + + =

2 5 3 0
2

2

d

d

d

d

x

t

x

t
x      − + =

(e)

(f) 

(g) 

58 Show that the characteristic equation of the
differential equation

is

(m2 − 2m + 2)(m2 − 2m + 5) = 0

and hence find the general solution of the equation.

59 Solve the following initial-value problems:

(a)

(b)

(c)

(d)

(e)
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61 Show that the characteristic equation of the
differential equation

is

(m3 + 3m2 + 3m + 1)(m − 4) = 0

and hence find the general solution of the equation.
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10.9.3 Linear nonhomogeneous constant-coefficient equations
Having dealt with linear homogeneous constant-coefficient differential equations, much
of the groundwork for linear nonhomogeneous constant-coefficient differential equations
is already covered. The general form of such an equation of pth order is

where L is a pth-order linear differential operator. We have seen in Section 10.8.2 that
the general solution of this equation takes the form of the sum of a particular integral
and the complemetary function. The complementary function is the general solution of
the equation

L[x] = 0

Hence the complementary function may be found by the methods of the last section,
and, in order to complete the treatment of the nonhomogeneous equation, we need only
to discuss the finding of the particular integral.

There is no general mathematical theory that will guarantee to produce a particular
integral by routine manipulation – rather, finding a particular integral relies on recall of
empirical rules or on intellectual inspiration. We shall proceed by first giving some
examples.

Example 10.40 Find the general solution of the equation

Solution First we shall seek a particular integral. Try the polynomial

x(t) = Pt2 + Qt + R

Then direct substitution gives

2P + 5(2Pt + Q) − 9(Pt2 + Qt + R) = t2
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60 Show that the characteristic equation of the
differential equation

is

(m2 − m + 1)2 = 0

and hence find the general solution of the equation.
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that is,

−9Pt2 + (10P − 9Q)t + 2P + 5Q − 9R = t2

Equating coefficients of the various powers of t on the left- and right-hand sides of this
equation leads to a set of three linear equations for the unknown parameters P, Q and R:

−9P = 1

10P − 9Q = 0

2P + 5Q − 9R = 0

This set of equations has solution

so the particular integral is

The method of Section 10.9.1 provides the complementary function, which is

Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

so the general solution of the equation is

Example 10.41 Find the general solution of the equation

Solution As in Example 10.40, we first seek a particular integral. In this case the right-hand-side
function is cos 2t. If we considered as a trial function x(t) = P cos 2t, we should find that
the left-hand side produced cos 2t and sin 2t terms. This suggests that the trial function
should be

x(t) = P cos 2t + Q sin 2t

Then direct substitution gives

−4P cos 2 t − 4Q sin 2 t + 5(−2P sin 2t + 2Q cos 2t) − 9(P cos 2t + Q sin 2t)

= cos 2t

that is,

(−13P + 10Q) cos 2t − (10P + 13Q) sin 2t = cos 2t

Equating coefficients of cos 2t and sin 2t on the left- and right-hand sides of this equation
leads to two linear equations for the unknown parameters P and Q:

−13P + 10Q = 1

10P + 13Q = 0
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so

and the particular integral is

x(t) = (10 sin 2 t − 13 cos 2t)

The complementary function is the same as for Example 10.40,

Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

so the general solution of the equation is

x(t) = (10 sin 2t − 13 cos 2t) + Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

Example 10.42 Find the general solution of the equation

Solution Again we first seek a particular integral. In this case the right-hand-side function is e4t.
Since all derivatives of e4t are multiples of e4t, the trial function Pe4t seems suitable.
Then direct substitution gives

16Pe4t + 20Pe4t − 9Pe4t = e4t

Equating coefficients of e4t on the left- and right-hand sides of this equation yields

27P = 1

so the particular integral is

x(t) = e4t

The complementary function is the same as for Example 10.40,

Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

so the general solution of the equation is

x(t) = e4t + Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

Examples 10.40–10.42 show how to deal with the most common right-hand-side func-
tions. In each case a trial solution function is chosen to match the right-hand-side 
function. The trial solution function contains unknown parameters, which are deter-
mined by substituting the trial solution into the differential equation and matching the
left- and right-hand sides of the equation. Figure 10.19 summarizes the standard trial
functions which are used.

Although the examples that we have shown above all involve the solution of
second-order equations, the trial solutions used to find particular integrals that are given 
in Figure 10.19 apply to linear nonhomogeneous constant-coefficient differential 
equations of any order.

If the right-hand side is a linear sum of more than one of these functions then the
appropriate trial function is the sum of the trial functions for the terms making up the
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right-hand side. This can be seen from the properties of linear equations expressed in
the following principle:

If L is a linear differential operator and x1 is a solution of the equation

L[x(t)] = f1(t)

and x2 is a solution of the equation

L[x(t)] = f2(t)

then x1 + x2 is a solution of the equation

L[x(t)] = f1(t) + f2(t)

This result can readily be proved as follows. Since L is a linear operator

L[x1 + x2] = L[x1] + L[x2]

= f1(t) + f2(t)

Hence x1 + x2 is a solution of L[x] = f1(t) + f2(t).

Example 10.43 Find the general solution of the equation

Solution First we find the particular integral. Since the right-hand side is the sum of an exponen-
tial and a polynomial of degree one, the trial function for this equation is

Pe−2t + Q + Rt

So, by direct substitution

4Pe−2t + 5(−2Pe−2t + R) − 9(Pe−2t + Q + Rt) = e−2t + 2 − t
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6t 3 + 4t 2 − 2t + 5 Pt 3 + Qt 2 + Rt + S P, Q, R and S

Exponential function of t, Exponential function of t with Coefficient of the exponential
for example the same exponent, for example function, for example

e−3t Pe−3t P

Sine or cosine of a multiple Linear combination of sine and Coefficients of sine and 
of t, for example cosine of the same multiple of t, cosine terms, for example

sin 5t
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P sin 5t + Q cos 5t

Figure 10.19
Trial functions for
particular integrals.
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Equating coefficients of e−2t, 1 and t on the left- and right-hand sides of this equation yields

−15P = 1

−9Q + 5R = 2

− 9R = −1

so the particular integral is

The complementary function is the same as for Example 10.40,

Ae−(5− ÷61)t/2 + Be−(5+ ÷61)t/2

so the general solution of the equation is

The solution of linear nonhomogeneous constant-coefficient differential equations of
order higher than two follows directly from the method for second-order equations.
Finding a particular integral is the same whatever the degree of the equation. The
principle that the solution is constructed from a particular integral added to the comple-
mentary function requires that the differential operator be linear, but is valid for an
operator of any degree. Hence completing the solution of the higher-order nonhomo-
geneous equation only requires that the derived homogeneous equation can be solved –
and we learnt how to do that in Section 10.9.1.

There is one complication that we have not yet mentioned. This is illustrated in
Example 10.44.

Example 10.44 Find the general solution of the equation

Solution Substituting in the appropriate trial solution Pe−2t produces the result 

4Pe−2t − 2Pe−2t − 2Pe−2t = e−2t

This equation has no solution for P.

The problem in Example 10.44 lies in the fact that the right-hand side of the equation
consists of a function that is also a solution of the equivalent homogeneous equation. 
In such cases we must multiply the appropriate trial function for the particular integral
by t. 

So, to find the particular integral for Example 10.44, the appropriate trial solution is
Pte−2t. Substituting this into the equation we have

(−2Pe−2t + 4Pte−2t − 2Pe−2t) + (−2Pte−2t + Pe−2t) − 2Pte−2t = e−2t

so, gathering terms, we have

−3Pe−2t = e−2t giving P  = − 1
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and the general solution to Example 10.43 is

x(t) = − te−2t + Ae−2t + Bet

If the right-hand-side function corresponds to a function that is a repeated root of the
characteristic equation then the trial function must be multiplied by t n, where n is the
multiplicity of the root of the characteristic equation.

Example 10.45 Find the general solution of the equation

Solution Substituting in the appropriate trial solution Pet produces the result

Pet − 2Pet + 5Pet − 8Pet + 4Pet = et

for which, as in Example 10.44, there is no solution for P. The characteristic equation
for the homogeneous equation is

m4 − 2m3 + 5m2 − 8m + 4 = 0

that is,

(m − 1)2(m2 + 4) = 0

so the general solution of the homogeneous equation is

x(t) = (At + B)et + C cos 2t + D sin 2t

The right-hand side of the equation, et, is the function corresponding to the double root
m = 1, so the standard trial function for this right-hand side, Pet, must be multiplied by
t2. Substituting this trial function, we obtain

P(t2et + 8tet + 12et) − 2P(t2et + 6tet + 6et)

+ 5P(t2et + 4tet + 2et) − 8P(t2et + 2tet) + 4Pt2et = et

that is,

10Pet = et

Hence the solution of the differential equation is

x(t) = t2et + (At + B)et + C cos 2t + D sin 2t

Examples 10.40–10.45 have all found general solutions to problems with no boundary
conditions given. Obviously values could be determined for the constants to fit the 
general solution to given boundary or initial conditions. Each boundary condition
allows the value of one constant to be fixed. Hence, in general, the number of bound-
ary conditions needed to completely determine the solution is equal to the order of the
differential equation.
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Again MAPLE implements the method which we have just developed for non-
homogeneous, linear, constant coefficient, differential equations of arbitrary order
(and, of course, this method is therefore also available in the MATLAB Symbolic
Math Toolbox). Any of the Examples 10.40–10.45 can be solved using either pack-
age. For instance, Example 10.45 would be solved by

ode:= diff(x(t),t$4) – 2*diff(x(t),t$3) +

5*diff(x(t),t$2) – 8*diff(x(t),t) + 4*x(t) = exp(t);

sol:= dsolve(ode);

or, using MATLAB, by

ode = ’D4x – 2*D3x + 5*D2x – 8*Dx + 4*x = exp(t)’

dsolve(ode,’t’)

Solutions of any of the questions in Exercises 10.9.4 may readily be checked using
either package.

10.9.4 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

62 Find the general solution of the following
differential equations:

(a) 

(b) 

(c) 

63 Find the general solutions of the following
differential equations:
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64 Show that the characteristic equation of the
differential equation

is 

(m2 + m − 2)(m2 − 4m + 1) = 0

and hence find the general solutions of the
equations
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65 Show that the characteristic equation of the
differential equation

is
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and hence find the general solutions of the equations
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10.10 Engineering application: second-order linear
constant-coefficient differential equations
In this section we are going to show how simple mathematical models of a variety of
engineering systems give rise to second-order linear constant-coefficient differential
equations. We shall also investigate the major features of the solutions of such models.

10.10.1 Free oscillations of elastic systems

If a wooden plank or a metal beam is attached firmly to a rigid foundation at one end with
its other end projecting and unsupported, as shown in Figure 10.20 then the imposition
of a force on the free end, or equivalently the placing of a heavy object on it, will cause
the plank or beam to bend under the load. The greater the force or load, the greater will
be the deflection. If the load is moderate then the plank or beam will spring back to its
original position when the load is removed. If the load is great enough, the plank will
eventually break. The metal beam, on the other hand, may either deform permanently
(so that it does not return to its original position when the load is removed) or fracture,
depending on the type of metal. Experiments on planks or beams such as described here
have revealed that for beams made of a wide variety of materials there is commonly a

Figure 10.20
The deflection of a
cantilever by a load.
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range of loads for which the deflection of the beam is roughly proportional to the load
applied (Figures 10.20(a), (b)). When the load becomes large enough, however, there
is usually a region in which the deflection increases either less rapidly or more rapidly
than the load (Figure 10.20(c)), and finally a load beyond which the beam either breaks
or is permanently deformed (Figure 10.20(d)).

A beam that is fixed rigidly at one end and designed to support a load of some sort
on the other end is called a cantilever. There are many common everyday and engin-
eering applications of cantilevers. One with which most readers will be familiar is a 
diving springboard. Engineering applications include such things as warehouse hoists,
the wings of aircraft and some types of bridges. For most of these applications the
cantilever is designed to operate with small deflections; that is, the size and material of
construction of the cantilever will be chosen by the designer so that, under the greatest
anticipated load, the deflection of the cantilever will be small. Within this regime, the
deflection of the tip of the cantilever will be proportional to the load applied. In the
notation of Figure 10.20, we can write

(10.40)

where d is the deflection of the cantilever, F is the load applied and k is a constant.
Equation (10.40) essentially expresses a mathematical model of the cantilever, albeit a
very simple one. The model is valid for applied loads such that the deflection of the
cantilever remains within the linear range (where the deflection is proportional to load),
and would not be valid for larger loads leading to nonlinear deflections, permanent
distortions and breakages.

Equation (10.40) can also be used to investigate the dynamic behaviour of can-
tilevers. So far, we have assumed that the cantilever is in equilibrium under the applied
load. Such situations, in which the cantilever is not moving, are called static. The term
dynamic is conventionally used to describe situations and analyses in which the
deflection of the cantilever is not constant in time. When the deflection of a cantilever
is either greater than or less than the static deflection under the same load, the cantilever
exerts a net force accelerating the mass back towards its equilibrium position. As a
result, the deflection of the cantilever oscillates about the static equilibrium position.
The situation is illustrated in Figure 10.21.

d
k

F  =
1

Figure 10.21
The dynamic
behaviour of a 
loaded cantilever.
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Such oscillations can be analysed fairly readily. If the mass supported on the end of
the cantilever is large compared with the mass of the cantilever itself, the effect of the
cantilever is merely to apply a force to the mass. The vertical equation of motion of the
mass is then

where x is the instantaneous deflection of the tip of the cantilever below the horizontal,
m is the mass and F is the upward force exerted on the mass by the cantilever due to its
bending. But the restoring force, provided the deflection of the cantilever remains small
enough at all times during the motion, is given by (10.40). Thus the motion is governed
by the equation

This equation, rearranged in the form

(10.41)

is recognizable as a second-order linear nonhomogeneous constant-coefficient equa-
tion. In the static case, when the load is not moving, the solution of this equation is 
x = mg/k. This is, of course, also a particular integral for (10.41). The complementary
function for (10.41) is

x = A cos ω t + B sin ω t, where ω 2 = k/m

The complete solution of (10.41) is therefore

+ A cos ω t + B sin ω t (10.42)

The constants A and B could of course be determined if suitable initial conditions were
provided. What is at least as important − if not more so for the engineer − is to under-
stand the physical meaning of the solution (10.42). This is more easily done if (10.42)
is slightly rearranged. Taking C = (A2 + B2)1/2 and tan δ = B/A, so that 

A = C cos δ and B = C sin δ

(10.42) becomes

+ C cos(ω t − δ ) (10.43)

In physical terms this equation implies that the deflection of the cantilever takes the
form of periodic oscillations of angular frequency ω and constant amplitude C about
the position of static equilibrium of the cantilever (the position at which kx = mg).

The interested reader can check the accuracy of this description by constructing a
cantilever from a flexible wooden or plastic ruler (the flexible plastic type is the most
effective). The ruler should be held firmly by one end so that it projects over the edge
of a desk or table, and the free end loaded with a sufficient mass of plasticine or other
suitable material. The static equilibrium position is easily found. If the end of the ruler
is displaced from this position and released, the plasticine-loaded end will be found to
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vibrate up and down around the equilibrium position. If the mass of plasticine is
increased, the frequency of the vibration will be found to decrease as predicted by the
relation ω 2 = k/m.

A cantilever is not the only engineering system that gives rise to linear constant-
coefficient equations. The pendulum shown in Figure 10.22 can be analysed thus. It is
of length l and carries a mass m at its free end. If the mass of the pendulum arm is very
small compared with m then, resolving forces at right-angles to the pendulum arm, the
equation of motion of the mass is

This is a second-order nonlinear differential equation, but if the displacement from the
equilibrium position (in which the pendulum hangs stationary and vertically below the
pivot) is small then sin θ � θ and the equation becomes

(10.44)

The solution of this equation is

θ = A cos ω t + B sin ω t, with ω 2 = g/l (10.45)

In other words, the pendulum’s displacement from its equilibrium position oscillates
sinusoidally with a frequency that decreases as the pendulum increases in length but is
independent of the mass of the pendulum bob.

The buoy (or floating oil drum or similar) shown in Figure 10.23 also gives rise to a
second-order linear constant-coefficient equation. Suppose the immersed depth of the
buoy is z. Its mass (which is concentrated near the bottom of the buoy in order that it
should float upright and not tip over) is m. We know, by Archimedes’ principle, that the
water in which the buoy floats exerts an upthrust on the buoy equal to the weight of the
water displaced by the latter. If the cross-sectional area of the buoy is A and the density
of the water is ρ, the upthrust will be ρAzg. Hence the equation of motion is

that is,

(10.46)

Equation (10.46) has particular integral z = m/ρA and complementary function

z = A cos ω t + B sin ω t, with ω 2 = ρAg/m
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Figure 10.22
A pendulum.

Figure 10.23
A floating buoy.
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so the complete solution is

(10.47)

As in the case of the cantilever, the particular integral of the equation corresponds to
the static equilibrium solution (when the buoy is floating just sufficiently immersed that
the upthrust exerted by the water equals the weight of the buoy), and the complement-
ary function describes oscillations of the buoy about this position. In this case the buoy
oscillates with constant amplitude and a frequency that decreases as the mass of the
buoy increases and increases as the density of the water and/or the cross-sectional area
of the buoy increases.

10.10.2 Free oscillations of damped elastic systems

Equations (10.42), (10.45) and (10.47) all describe oscillations of constant amplitude.
In reality, in all the situations described, a vibrating cantilever, an oscillating pendulum
and a bobbing buoy, experience leads us to expect that the oscillations or vibrations are of
decreasing amplitude, so that the motion eventually decays away and the system finally
comes to rest in its static equilibrium position. This suggests that the mathematical
models of the situation that we constructed in Section 10.10.1, and which are repres-
ented by (10.41), (10.44) and (10.46), are inadequate in some way.

What has been ignored in each case is the effect of dissipation of energy. Suppose, in
the case of the pendulum, the motion of the pendulum were opposed by air resistance.
The work which the pendulum does against the air resistance represents a continuous
loss of energy, as a result of which the amplitude of oscillation of the pendulum
decreases until it finally comes to rest. The situation is illustrated in Figure 10.24. 
The forces acting on the pendulum mass are gravity, air resistance (which opposes
motion) and the tension in the pendulum arm. Resolving these forces perpendicular to
the pendulum arm results in the equation of motion.

If the air resistance is assumed to be proportional to the speed of the pendulum mass
then, since the speed of the mass is l(dθ/dt), we have

Hence

or, assuming θ is small so that sin θ � θ and rearranging the terms,

(10.48)

This is a second-order linear constant-coefficient differential equation. It should be
noted that the assumption that air resistance is proportional to speed is not the only 
possible assumption. For very slow-moving objects air resistance may well be more
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Figure 10.24
A pendulum with 
air resistance.
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nearly constant, while for very fast-moving objects air resistance is usually taken to 
be proportional to the square of speed, which is a much better description of reality 
for fast-moving objects. For objects moving at modest speeds, however, the assump-
tion that air resistance is proportional to speed is commonly adopted.

In the case of the cantilever and the buoy, also, we might assume that there is a 
resistance to motion that is proportional to the speed of motion. Again these are not the
only possible assumptions, but they are ones that, under appropriate circumstances, are
reasonable. The guiding principle when modelling physical systems such as these is 
to identify the physical source of the resistance and try to describe its behaviour. 
This is not a problem of mathematics but rather one of mathematical modelling, in
which engineers must use their knowledge of physics and engineering as well as of
mathematics in order to arrive at an appropriate mathematical description of reality.

Constructing models of a whole host of other engineering situations also leads to
equations similar to (10.48). Basically, any situation in which the motion of some mass
is caused by the sum of a force opposing displacement that is proportional to the dis-
placement from some fixed position and a force that resists motion and is proportional
to the speed of motion gives rise to an equation of the form

that is,

(10.49)

where

We must have p � 0 and q � 0, because the two forces oppose displacement and
motion respectively. We know from Section 10.10.1 that the solution of (10.49) is 

x(t) = Aem1t + Bem2t

where m1 and m2 are the roots of the characteristic equation

m2 + pm + q = 0

For reasons that will become apparent, it is convenient to put (10.49) into the standard
form

(10.50)

where, because p, q � 0, so are ζ and ω. The characteristic equation is then m2 + 2ζωm
+ ω 2 = 0, whose roots are
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and the solution of (10.50) is therefore

x = A exp{−[ζ − (ζ 2 − 1)1/2]ωt} + B exp{−[ζ + (ζ 2 − 1)1/2]ωt} (ζ � 1) (10.51a)

x = e−ωt(At + B) (ζ = 1) (10.51b)

x = e−ζωt{A cos[(1 − ζ 2)1/2ωt] + B sin[(1 − ζ 2)1/2ωt]} (0 � ζ � 1) (10.51c)

The first point to note about these solutions is that, since ζ � 0 and ω � 0, we have
x → 0 as t → ∞ in all cases. Figure 10.25 shows the typical form of the solution (10.51)
for various values of ζ. Variation of ω will only change the scale along the horizontal
axis. For 0 � ζ � 1 the solution takes an oscillatory form with decaying amplitude. For
ζ � 1 the solution has the form of an exponential decay. The larger ζ, the slower is the
final decay, since the exponential coefficient ζ − (ζ 2 − 1)1/2 → 0 as ζ → ∞. In Fig-
ure 10.25 the envelopes of the oscillatory solutions are shown as broken lines. If the
envelope of the oscillatory decay is compared with the solutions for ζ � 1 it is quickly
apparent that the most rapid decay is when ζ = 1. It is now apparent why we chose to
take (10.50) as the standard form for the description of second-order damped systems.
The parameter ω is the natural frequency of the system, that is, the frequency with
which it would oscillate in the absence of damping, and the parameter ζ is the damping
parameter of the system. When ζ = 1, the decay of the motion of the system to its 
equilibrium state is as fast as is possible. For this reason, ζ = 1 is referred to as critical
damping. When ζ � 1, the motion described by the equation decays to its equilibrium

Figure 10.25
The motion of damped
second-order systems.
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state in an oscillatory manner, passing through the equilibrium position on a number of
occasions before coming to rest. For this reason, the motion is described as under-
damped. When ζ � 1, the motion described by the equation decays to the equilibrium
position in a direct manner, but less rapidly than for a critically damped system. In this
case the motion is described as over-damped.

For the under-damped case an engineering rule of thumb that is commonly used is
that when ζ = 0.3 the system shows three discernible overshoots before settling down.
That is not to say that there are only three overshoots – on the contrary, there are an
infinite number – but by the fourth and subsequent overshoots the amplitude of the
oscillations has decayed to less than 2% of the initial amplitude. When ζ = 0.5, there
are two discernible overshoots (the third and subsequent ones have amplitude less than

% of initial); and when ζ = 0.7, there is only one significant overshoot.
Another rule of thumb relates to the envelope containing the response. The response

is contained within an envelope defined by the function e−ζωt. Now e−3 = 0.0498 and
e−4.5 = 0.0111; so when ζω t = 3, the amplitude of the response will have fallen to
approximately 5% of its original amplitude; and when ζω t = 4.5, it will have fallen to
roughly 1% of its original amplitude. For this reason, t = 1/ζω is called the decay time
of the system, and engineers use the rule of thumb that response falls to 5% in three
decay times and 1% in four and a half decay times.

Example 10.46 A pendulum of mass 4 kg, length 2 m and an air resistance coefficient of 5 N s m−1 is
released from an initial position in which it makes an angle of 20° with the vertical.
Assuming that this angle is small enough for the small-angle approximation to be made
in the equation of motion, how many oscillations will be obviously observable before
the pendulum comes to rest, and how long will it take for the amplitude of the motion
to have fallen to less than 1°?

Solution The motion of the pendulum is described by (10.48). Comparing this with (10.50), 
we see that ω = (g/l)1/2 = 2.215 rad s−1 and 2ζω = k/m = 1.25; that is, ζ = 0.282. Hence,
since ζ � 0.3, we expect to see three obvious discernible overshoots (one and a half
complete cycles of oscillation). The decay time for the pendulum is 1/ζω = 2m/k = 1.6 s,
so we expect the amplitude of oscillation of the pendulum to fall to 5% of its initial
amplitude in 4.8 s.

It is evident from the preceding paragraphs and from Example 10.46 that the natural
frequency ω and the damping parameter ζ of a system are a very convenient way of
summarizing the properties of any physical system whose oscillations are described by
a damped second-order equation.

10.10.3 Forced oscillations of elastic systems

In Sections 10.10.1 and 10.10.2 we have examined the behaviour of elastic systems
undergoing oscillations in which the system is free to choose its own frequency of 
oscillation. In many situations elastic systems are driven by some external force at 
a frequency imposed by the latter.

1
2
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A familiar example of such a situation is the vibration of lamp posts in strong 
winds. The lightweight tubular metal lamp posts that have frequently been installed by
highway authorities since the 1960s are a form of cantilever. The vertical post is rigidly
mounted in the ground, and carries at its top a lamp apparatus. The lamp is effectively
a concentrated mass, though it would probably not be sufficiently massive to allow the
assumption, which we made for the cantilevers treated in Sections 10.10.1 and 10.10.2,
that the mass of the post is small compared with the mass of the lamp. Nonetheless, if
the top of the lamp post were to be pulled to one side and released, the post would
certainly vibrate. The frequency of that vibration would be a function of the stiffness
(restoring force per unit lateral tip displacement) of the lamp post and the mass of 
both the post and the lamp apparatus carried at the top. The stiffer the lamp post, the
higher would be the frequency of vibration. The more massive the post and the lamp
apparatus, the lower the frequency.

When the wind blows past the lamp post, aerodynamic effects (known as vortex
shedding) result in an oscillating side-force on the lamp post. The frequency of this
side-force is a function of the wind speed and the diameter of the lamp post. There is
no reason why the frequency of oscillation of the wind-induced side-force should 
coincide with the frequency of the oscillations that result if the top of the lamp post 
is displaced sideways and released to vibrate freely. Under the influence of the oscil-
lating side-force, such lamp posts commonly vibrate from side to side in time with the
oscillating side-force. As the wind speed changes, so the frequency of the side-force
and therefore of the lamp post’s vibrations changes. Other types of lamp post, notably
the reinforced concrete type and the older cast-iron lamp posts, do not seem to exhibit
this behaviour. This can be explained in terms of their greater stiffness, as we shall 
see later.

Oscillations of elastic systems in which the system is free to adopt its own natural
frequency of vibration are called free vibrations, while those caused by oscillating
external forces (and in which the system must vibrate at the frequency of the external
forcing) are called forced vibrations.

Other large structures can also be forced to oscillate by the wind blowing past them,
just like lamp posts. Large modern factory chimneys made of steel or aluminium
sections bolted together and stayed by wires exhibit this type of vibration, as do the sus-
pension cables and hangers of suspension bridges and the overhead power transmission
lines of electricity grid systems. The legs of offshore oil rigs can be forced to vibrate
by ocean currents and waves. The wings of an aircraft (which, being mounted rigidly
in the fuselage of the aircraft, are also a form of cantilever) may vibrate under aero-
dynamic loads, particularly from atmospheric turbulence. Large pieces of static industrial
machinery are usually bolted down to the ground. If such fastening is subjected to a
large load, it will usually give a little, so the attachment of the machinery to the floor
must be considered as elastic. If the machinery, when in operation, produces an inter-
nal side-load (such as an out-of-balance rotor would produce) then the machinery is
seen to rock from side to side on its mountings at the frequency of the internally gen-
erated side-loading. This effect can often be observed in the rocking vibrations of a car
engine when it is idling in a stationary car. It is well known that bodies of men or
women marching are ordered to break step when passing over bridges. If they did not,
the regular footfalls of the whole group would create a periodic force on the bridge. The
dangers of such regular forces will become apparent in our analysis. All these situations
are similar in nature to the forced vibrations of the lamp post under the influence of 
the wind. In most of them the oscillations induced by the side-force are potentially 

....
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disastrous, and must be understood by the engineer so that engineering artefacts may be
designed to avoid the destructive effects of forced vibrations.

A simple model of the vibrations of a lamp post can be constructed as shown in
Figure 10.26. The lamp apparatus, of mass m, is displaced from its equilibrium position
by a distance x. The structure of the cantilever results in a restoring force S and air
resistance in a restoring force R. The wind load (which, remember, is not a force in the
direction of the wind but rather an oscillatory side-force) is W. If the displacement x is
small and the displacement velocity is not too great then we may reasonably assume

S = kx and

Making the somewhat unrealistic assumption that the mass of the lamp post itself is
small compared with the mass of the lamp apparatus, the equation of motion of the
lamp is seen to be

The wind-induced force W is oscillatory, so we shall assume that it is of the form

W = W0 cos Ωt

Hence the equation of motion becomes

(10.52)

which is a second-order linear nonhomogeneous constant-coefficient differential equation.
In order to facilitate the interpretation of the result, we shall replace (10.52) with the
equivalent equation

(10.53)

The particular integral for (10.53) is obtained by assuming the form A cos Ωt + B sin Ωt,
and is found to be

(10.54a)

or equivalently

(10.54b)

where

The complementary function is of course the solution of the homogeneous equival-
ent of (10.52), which is just (10.50). The complementary function is therefore given by
(10.51). The motion of a damped second-order system in response to forcing by a force
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Figure 10.26
The forces acting on a
vibrating lamp post.
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F cos Ω t is therefore the sum of (10.51) and (10.54a) or (10.54b). In Section 10.10.2 we
saw that (10.51) is, for positive ζ, always a decaying function of time. The comple-
mentary function for (10.53) therefore represents a motion that decays to nothing with
time, and is therefore called a transient solution. The particular integral, on the other
hand, does not decay, but continues at a steady amplitude for as long as the forcing
remains. The long-term response of a damped second-order system to forcing by a force
F cos Ω t is therefore to oscillate at the forcing frequency Ω with amplitude

(10.55)

times the amplitude of the forcing term. This is called the steady-state response
of the system. Evidently, the amplitude of the steady-state response changes as the
frequency Ω of the forcing changes. In Figure 10.27 the form of the response amplitude
A(Ω) as a function of Ω is shown for a range of values of ζ. Obviously, the character-
istics of the response of a damped second-order system to forcing depend crucially on
the damping. For lightly damped systems (ζ near to 0) the response has a definite maxi-
mum near to ω, the natural frequency of the system. For more heavily damped systems
the peak response is smaller, and for large enough ζ the peak disappears altogether.

The significance of this is that systems subjected to an oscillatory external force at a
frequency near to the natural frequency of the system will, unless they are sufficiently
heavily damped, respond with large-amplitude motion. This phenomenon is known as
resonance. Resonance can cause catastrophic failure of the structure of a system. The
history of engineering endeavour contains many examples of structures that have failed
because they have been subjected to some external exciting force with a frequency near
to one of the natural frequencies of vibration of the structure. Perhaps the most famous
example of such a failure is the collapse in 1941 of the suspension bridge at Tacoma
Narrows in the USA. This failure, due to wind-induced oscillations, was recorded on
film and provides a salutary lesson for all engineers. Similar forces have destroyed 
factory chimneys, power transmission lines and aircraft.

A( )  
[(  )  ] /

Ω
Ω Ω

=
− +

1

42 2 2 2 2 2 1 2ω ζ ω

Figure 10.27
The response of
damped second-order
systems to sinusoidal
forcing.
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It should now be obvious why the amplitude of oscillation of the tubular metal lamp
post varies with wind speed. The natural frequency of the lamp post is determined by
its structure, and is therefore fixed. The frequency of the vortex shedding, and so of 
the oscillatory side-force, is directly proportional to the wind speed. Hence, as the 
wind speed increases, so does the frequency of external forcing of the lamp post. As the
forcing frequency approaches the natural frequency of the lamp post, the amplitude 
of the lamp post’s vibrations increases. When the wind speed increases sufficiently, the
forcing frequency exceeds the natural frequency, and the amplitude of the oscillations
decreases again. The same explanation applies to the Tacoma Narrows bridge. The
bridge, once constructed, stood for some months without serious difficulty. The failure
was the result of the first storm in which wind speeds rose sufficiently to excite the
bridge structure at one of its natural frequencies. (Since the structure of a suspension
bridge is much more complex than that of a simple cantilever, such a bridge has many
natural frequencies, corresponding to different modes of vibration.)

10.10.4 Oscillations in electrical circuits

In Section 10.2.4 we analysed a simple electrical circuit composed of a resistor, a
capacitor and an inductor. In that case we considered what happened when a switch 
was thrown in a circuit containing a d.c. voltage source. If an alternating voltage signal
is applied to a similar circuit the equation governing the resulting oscillations also turns
out to be a second-order linear differential equation.

Consider the circuit shown in Figure 10.28. Suppose a voltage Vi is applied across
the input terminals i1 and i2. The voltage drop across the inductor is L(di/dt), that across
the capacitor is �(i/C )dt and that across the resistor is Ri. Kirchhoff’s laws (or the prin-
ciple of conservation of charge) tell us that the current in each component must be the
same. The voltage across the output terminals o1 and o2 is �(i/C )dt = Vo. Hence we have

with

That is,

or

(10.56)

This is a second-order linear nonhomogeneous constant-coefficient differential equa-
tion. If the signal Vi is of the form V cos Ω t then we essentially have forced oscillations
of a second-order system again. If we write
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Figure 10.28
An LCR electrical
circuit.
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then (10.56) takes the standard form of (10.53), and we can infer that the voltage Vo will
be sinusoidal with amplitude

where

Thus when a sinusoidal voltage waveform is applied to the input terminals of the
circuit, the voltage appearing at the output terminals is also a sinusoidal waveform,
but one whose amplitude, relative to the input waveform amplitude, depends on the
frequency of the input. A circuit that has this property is of course called a filter.

The form of A(Ω) will depend on ω and ζ, which in turn are determined by the 
values of L, R and C. The latter could be chosen so that ζ is small. In that case the 
circuit provides a large output when the input frequency Ω is near some frequency ω
(which is determined by the choice of L and C) and a smaller output otherwise. This is
a tuned circuit or a bandpass filter. If L, R and C are chosen so that ζ is larger (say
near unity) then the circuit provides a larger output for small Ω and a smaller output for
larger Ω. Such a circuit is a low-pass filter.

In this section, we have seen how problems in two very different areas of engineering
– one mechanical and the other electrical – both give rise to very similar equations. Our
knowledge of the form of the solutions of the equation is applicable to either area. 
This is a good example of the unifying properties of mathematics in engineering science.
There are many other applications of the theory of the solution of second-order linear
constant-coefficient differential equations in engineering.

It is also worth commenting here that filters of the type that we have described 
in this section are called passive filters since they use only inductors, resistors and
capacitors – components that are referred to as passive components. Modern practice
in electrical engineering involves the use of active components such as operational
amplifiers in filter design, such filters being known as active filters. The analysis of the
operation of active filters is more complex than that of passive filters. While, for many
applications, active filters have displaced passive filters in modern practice, there are
also many applications in which passive filters remain the norm.

10.10.5 Exercises
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66 Find the damping parameters and natural
frequencies of the systems governed by the
following second-order linear constant-coefficient
differential equations:
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67 Determine the values of the appropriate parameters
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68 Find the damping parameters and natural
frequencies of the systems governed by the
following second-order linear constant-coefficient
differential equations:

(a)

(b)

(c)

(d)

(e)

69 Determine the values of the appropriate parameters
needed to give the systems governed by the
following second-order linear constant-coefficient
differential equations the damping parameters and
natural frequencies stated:

(a)

(b)

(c)

(d)

70 The function A(Ω) is as given by (10.55) and
shown in Figure 10.27. Show that A(Ω) has a
simple maximum point when ζ � ÷ . Let the
value of Ω for which this maximum occurs be
Ωmax. Find Ωmax as a function of ζ and ω, and 
also find A(Ωmax).

For ζ � ÷ , A(Ω) has no maximum, but does
have a single point of inflection. Show, by
consideration of Figure 10.27, that | dA/dΩ | is a
maximum at the point of inflection. Let Ωc be the
value of Ω for which the point of inflection
occurs. Show that Ωc satisfies the equation

3Ω 6 + 5βω 2Ω 4 + (4β 2 − 3)ω 4Ω 2 − βω6 = 0

where β = 2ζ 2 − 1. Hence show that for ζ = ÷
the greatest value of | dA/dΩ | occurs when Ω = ω
and is 1/(÷2ω 3). Also find the greatest values of
| dA/dΩ | when ζ = ÷( ) and when ζ = 1.1
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Show that | d2A(0)/dΩ 2 | is minimized when
ζ = ÷ . The two values of ζ that minimize the
maxima of | dA/dΩ | and | d2A(0) /dΩ 2 | respectively
are important, particularly in control theory, since,
in different senses, they maximize the flatness of 
the response function A(Ω).

71 An underwater sensor is mounted below the keel 
of the fast patrol boat shown in Figure 10.29. The
supporting bracket is of cylindrical cross-section
(diameter 0.04 m), and so is subject to an oscillating
side-force due to vortex shedding. The bracket is 
of negligible mass compared with the sensor itself,
which has a mass of 4 kg. The bracket has a tip
displacement stiffness of 25 000 N m−1. The
frequency of the oscillating side-force is SU/d,
where U is the speed of the vessel through the
water, d is the diameter of the supporting bracket
and S is the Strouhal number for vortex shedding
from a circular cylinder. S has the value 0.20
approximately. At what speed will the frequency of
the side-force coincide with the natural frequency 
of the sensor and mounting?

1
2

Figure 10.29 An underwater sensor mounting.

72 The piece of machinery shown in Figure 10.30 is
mounted on a solid foundation in such a way that
the mounting may be characterized as a rigid pivot
and two stiff springs as shown. A damper is
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connected between the machine and an adjacent
strong point. The mass of the machine is 500 kg,
the length a = 1 m, the length b = 1.2 m and the
spring stiffness is 8000 N m−1. The moment of
inertia of the machine about the pivot point is 2ma2.
The machine generates internally a side-force F
that may be approximated as F0 cos 2πft. As the
machine runs up to speed, the frequency f increases
from 0 to 6 Hz. What is the minimum damper
coefficient that will prevent the machine from
vibrating with any amplitude greater than twice its
zero-frequency amplitude A(0) during a run-up?

Figure 10.30 A compliantly mounted piece 
of machinery.

73 Figure 10.31 shows a radio tuner circuit. Show
that the natural frequency and damping parameters
of the circuit are 1/÷(LC) and

respectively. If R1 = 300 Ω and R2 = 50 Ω what
value should L have, and over what range should
C be adjustable in order that the circuit have a
damping factor of ζ = 0.1 and can be tuned to 
the medium waveband (505−1605 kHz)?

1
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C R R
⎛
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Figure 10.31 A radio tuner circuit.

10.11 Numerical solution of second- and higher-order
differential equations

Obviously, the classes of second- and higher-order differential equations that can be
solved analytically, while representing an important subset of the totality of such
equations, are relatively restricted. Just as for first-order equations, those for which 
no analytical solution exists can still be solved by numerical means. The numerical
solution of second- and higher-order equations does not, in fact, need any significant
new mathematical theory or technique.

10.11.1 Numerical solution of coupled first-order equations

In Section 10.6 we met Euler’s method for the numerical solution of equations of the
form

that is, first-order differential equations involving a single dependent variable and a
single independent variable. In Section 10.3 we noted that it was possible to have sets
of coupled first-order equations, each involving the same independent variable but with
more than one dependent variable. An example of this type of equation set is

d

d

x

t
f t x  ( , )=
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(10.57a)

(10.57b)

This is a pair of differential equations in the dependent variables x and y with the inde-
pendent variable t. The derivative of each of the dependent variables depends not only
on itself and on the independent variable t, but also on the other dependent variable.
Neither of the equations can be solved in isolation or independently of the other – both
must be solved simultaneously, or side by side. A pair of coupled differential equations
such as (10.57) may be characterized as

(10.58a)

(10.58b)

For a set of p such equations it is convenient to denote the dependent variables not 
by x, y, z, … but by x1, x2, x3, … , xp and to denote the set of equations by

= fi (t, x1, x2, … , xp) (i = 1, 2, … , p)

or equivalently, using vector notation,

where x(t) is a vector function of t given by

x(t) = [x1(t) x2(t) … xp(t)]
T

f(t, x) is a vector-valued function of the scalar variable t and the vector variable x. 
Euler’s method for the solution of a single differential equation takes the form

Xn+1 = Xn + hf (tn, Xn)

If we were to try to apply this method to (10.58a), we should obtain

Xn+1 = Xn + hf1(tn, Xn, Yn)

In other words, the value of Xn+1 depends not only on tn and Xn but also on Yn. In the
same way, we would obtain

Yn+1 = Yn + hf2(tn, Xn, Yn)

for Yn+1. In practice, this means that to solve two coupled differential equations, we
must advance the solution of both equations simultaneously in the manner shown in
Example 10.47.
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Example 10.47 Find the value of X(1.4) satisfying the following initial-value problem:

= x − y2 + xt, x(1) = 0.5

= 2x2 + xy − t, y(1) = 1.2

using Euler’s method with time step h = 0.1.

Solution The right-hand sides of the two equations will be denoted by f1(t, x, y) and f2(t, x, y)
respectively, so

f1(t, x, y) = x − y2 + xt and f2(t, x, y) = 2x2 + xy − t

The initial condition is imposed at t = 1, so tn will denote 1 + nh, Xn will denote
X(1 + nh), and Yn will denote Y(1 + nh). Then we have

X1 = x0 + hf1(t0, x0, y0) Y1 = y0 + hf2(t0, x0, y0)

= 0.5 + 0.1f1(1, 0.5, 1.2) = 1.2 + 0.1f2(1, 0.5, 1.2)

= 0.4560 = 1.2100

for the first step. The next step is therefore

X2 = X1 + hf1(t1, X1, Y1) Y2 = Y1 + hf2(t1, X1, Y1)

= 0.4560 = 1.2100

+ 0.1f1(1.1, 0.4560, 1.2100) + 0.1f2(1.1, 0.4560, 1.2100)

= 0.4054 = 1.1968

and the third step is

X3 = 0.4054 Y3 = 1.1968

+ 0.1f1(1.2, 0.4054, 1.1968) + 0.1f2(1.2, 0.4054, 1.1968)

= 0.3513 = 1.1581

Finally, we obtain

X4 = 0.3513 + 0.1f1(1.3, 0.3513, 1.1581) 

= 0.2980

Hence we have X(1.4) = 0.2980.

It should be obvious from Example 10.47 that the main drawback of extending Euler’s
method to sets of differential equations is the additional labour and tedium of the 
computations. Intrinsically, the computations are no more difficult, merely much more
laborious – a prime example of a problem ripe for computerization. 
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10.11.2 State-space representation of higher-order systems

The solution of differential equation initial-value problems of order greater than one
can be reduced to the solution of a set of first-order differential equations. This is
achieved by a simple transformation, illustrated by Example 10.48.

Example 10.48 The initial-value problem

can be transformed into two coupled first-order differential equations by introducing an
additional variable

With this definition, we have

and so the differential equation becomes

+ x 2ty − xt 2 = t 2

Thus the original differential equation can be replaced by a pair of coupled first-order
differential equations, together with initial conditions:

= y, x(0) = 1.2

= −x2ty + xt 2 + t 2, y(0) = 0.8

This process can be extended to transform a pth-order initial-value problem into a set
of p first-order equations, each with an initial condition. Once the original equation has
been transformed in this way, its solution by numerical methods is just the same as if it
had been a set of coupled equations in the first place.

Example 10.49 Find the value of X(0.2) satisfying the initial-value problem

using Euler’s method with step size h = 0.05.
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Solution Since this is a third-order equation, we need to introduce two new variables:

Then the equation is transformed into a set of three first-order differential equations

= y x(0) = 1

= z y(0) = 0.5

= −xtz − ty + t 2x z(0) = −0.2

Applied to the set of differential equations

= f1(t, x, y, z)

= f2(t, x, y, z)

= f3(t, x, y, z)

the Euler scheme is of the form

Xn+1 = Xn + hf1(tn, Xn, Yn, Zn)

Yn+1 = Yn + hf2(tn, Xn, Yn, Zn)

Zn+1 = Zn + hf3(tn, Xn, Yn, Zn)

In this case, therefore, we have

X0 = x0 = 1

Y0 = y0 = 0.5

Z0 = z0 = −0.2

f1(t0, X0, Y0, Z0) = Y0 = 0.5000

f2(t0, X0, Y0, Z0) = Z0 = −0.2000

f3(t0, X0, Y0, Z0) = −X0t0Z0 − t0Y0 + t 2
0 X0

= −1.0000 × 0 × (−0.2000) − 0 × 0.5000 + 02 × 1.0000

= 0.0000

X1 = 1.0000 + 0.05 × 0.5000 = 1.0250

Y1 = 0.5000 + 0.05 × (−0.2000) = 0.4900

Z1 = −0.2000 + 0.05 × 0.0000 = −0.2000

f1(t1, X1, Y1, Z1) = Y1 = 0.4900
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f2(t1, X1, Y1, Z1) = Z1 = −0.2000

f3(t1, X1, Y1, Z1) = −X1t1Z1 − t1Y1 + t 2
1 X1

= −1.0250 × 0.05 × (−0.2000) − 0.05 × 0.4900

+ 0.052 × 1.0250 = −0.0117

X2 = 1.0250 + 0.05 × 0.4900 = 1.0495

Y2 = 0.4900 + 0.05 × (−0.2000) = 0.4800

Z2 = −0.2000 + 0.05 × (−0.0117) = −0.2005

Proceeding similarly we have

X3 = 1.0495 + 0.05 × 0.4800 = 1.0735

Y3 = 0.4800 + 0.05 × (−0.2005) = 0.4700

Z3 = −0.2005 + 0.05 × (−0.0165) = −0.2013

X4 = 1.0735 + 0.05 × 0.4700 = 1.0970

Y4 = 0.4700 + 0.05 × (−0.2013) = 0.4599

Z4 = −0.2013 + 0.05 × (−0.0139) = −0.2018

Hence X(0.2) = X4 = 1.0970. It should be obvious by now that computations like these
are sufficiently tedious to justify the effort of writing a computer program to carry out
the actual arithmetic. The essential point for the reader to grasp is not the mechanics 
but the principle whereby methods for the solution of first-order differential equations
(and this includes the more sophisticated methods as well as Euler’s method) can be
extended to the solution of sets of equations and hence to higher-order equations.

We noted earlier that both MAPLE and MATLAB can be used to obtain numerical
solutions of differential equations and commented that they both implement very
accurate methods of solution which are much more sophisticated than the Euler
method illustrated here. But MAPLE could be used to obtain an Euler method 
solution of the third-order differential equation in Example 10.49, as follows:

ode:= diff(x(t),t$3) + x(t)*t*diff(x(t),t$2) +

t*diff(x(t),t) – x(t)*t^2 = 0:

odeprob:= {ode,x(0) = 1,D(x)(0) = 0.5,D(D(x))(0) =

–0.2};

oseq:= array([seq(0.05*i,i = 0..4)]);

oput:= dsolve(odeprob,numeric, 

method = classical[foreuler], 

output = oseq,stepsize = 0.05):

evalm(oput[2,1]);

884 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS
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MAPLE is equally able to solve the same equation presented in state space form,
thus

ode1:= diff(x(t),t) = y(t):

ode2:= diff(y(t),t) = z(t):

ode3:= diff(z(t),t) = –x(t)*t*z(t) – t*y(t) + x(t)*t^2:

odeprob:= {ode1,ode2,ode3,x(0) = 1,y(0) = 0.5,z(0) =

–0.2};

oseq:= array([seq(0.05*i,i = 0..4)]);

oput:= dsolve(odeprob,numeric,

method = classical[foreuler], 

output = oseq,stepsize = 0.05):

evalm(oput[2,1]);

In fact, if we set the infolevel system variable thus

infolevel[dsolve]:= 3:

before calling dsolve to integrate the differential equation in the third-order form
above, we discover that MAPLE first translates it into state space form just as we
have done in Example 10.49!

10.11.3 Exercises

74 Transform the following initial-value problems
into sets of first-order differential equations with
appropriate initial conditions:

(a)

(b)

75 Find the value of X(0.3) for the initial-value
problem

using Euler’s method with step size h = 0.1.
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76 Transform the following initial-value problems 
into sets of first-order differential equations with
appropriate initial conditions:

(a)

(b)

(c)

(d)
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(e)

(f)

= t2 + 4t − 5,

x(0) = a, 

77 Use Euler’s method to compute an approximation
X(0.65) to the solution x(0.65) of the initial-value
problem

using a step size of h = 0.05.

78 Write a computer program to solve the initial-
value problem

x(0) = 0,

using Euler’s method. Use your program to find
the value of X(0.4) using steps of h = 0.01 and
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x t x     ln ,    ( )  ,+ + = = h = 0.005. Hence estimate the accuracy of your

value of X(0.4) and estimate the step size that
would be necessary to obtain a value of X(0.4)
accurate to 4dp.

79 A water treatment plant deals with a constant influx
Q of polluted water with pollutant concentration
s0. The treatment tank contains bacteria which
consume the pollutant and protozoa which feed
on the bacteria, thus keeping the bacteria from
increasing too rapidly and overwhelming the
system. If the concentration of the bacteria and 
the protozoa are denoted by b and p the system 
is governed by the differential equations

Write a program to solve these equations
numerically. 

Measurements have determined that the
(biological) parameters α, m, β and n have the
values 0.5, 1.0, 0.8 and 0.1 respectively. The
parameter r is a measure of the inflow rate of
polluted water and s0 is the level of pollutant. 
Using the initial conditions s(0) = 0, b(0) = 0.2 
and p(0) = 0.05 determine the final steady level 
of pollutant if r = 0.05 and s0 = 0.4. What effect
does doubling the inflow rate (r) have?
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The solution of Questions 77, 78 and 79 could be accomplished using MAPLE.
Taking Question 78 as an example

ode:= diff(x(t),t$2) + x(t)^2*diff(x(t),t) +

x(t) = sin(t):

odeprob:= {ode,x(0) = 0,D(x)(0) = 1};

oseq:= array([seq(0.1*i,i = 0..4)]);

oput1:= dsolve(odeprob,numeric, 

method = classical[foreuler], 

output = oseq,stepsize = 0.01);

oput2:= dsolve(odeprob,numeric, 

method = classical[foreuler], 

output = oseq,stepsize = 0.005);

The values of X(0.4) using step sizes of 0.01 and 0.005 are found to be 0.398022
and 0.397919 to 6sf respectively. This enables us to predict, using Richardson
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extrapolation, that a step size of approximately h = 0.0024 or smaller would be
required to obtain the specified accuracy. In fact, as we have already noted, the
MAPLE dsolve/numeric procedure can integrate differential equations numeric-
ally using much more sophisticated methods and providing answers to a specified
accuracy. The dsolve/numeric procedure uses methods similar to the Richardson
extrapolation method to achieve this.

10.12 Qualitative analysis of second-order 
differential equations
Sometimes it is easier or more convenient to discover the qualitative properties of the
solutions of a differential equation than to solve it completely. In some cases this quali-
tative knowledge is just as useful as a complete solution. In other cases the qualitative
knowledge is more illuminating than a quantitative solution, particularly if the only
quantitative solutions that can be derived are numerical ones. One technique that is very
useful in this context is the phase-plane plot.

10.12.1 Phase-plane plots

The second-order nonlinear differential equation

is known as the Van der Pol oscillator. It has properties that are typical of many non-
linear oscillators. The equation has no simple analytical solution, so, if we wish to
investigate its properties, we must resort to a numerical computation. The equation 
can readily be recast in state-space form as described in Section 10.11.2 and solved 
by Euler’s method described in Section 10.6.

Figure 10.32 shows displacement and velocity plots for a Van der Pol oscillator with
λ = 40 and µ = 3. The initial conditions used were x(0) = 0.05 and (dx/dt)(0) = 0. 
It can be seen that initially the amplitude of the displacement oscillations grows quite
rapidly, but after about three cycles this rapid growth stops and the displacement 
curve appears to settle into a periodically repeating pattern. Similar comments could be
made about the velocity curve. Is the Van der Pol oscillator tending towards some fixed
cyclical pattern?

This question can be answered much more easily if the displacement and velocity
curves are plotted in a different way. Instead of plotting each individually against time,
we plot velocity against displacement, as in Figure 10.33. Such a plot is called a phase-
plane plot. Figure 10.33(a) shows the same data as plotted in Figure 10.32. Time
increases in the direction shown by the arrows, the plot starting at the point (0.05, 0)
and spiralling outwards. From this plot it is easy to see that the fourth and fifth cycles
of the oscillations are nearly indistinguishable. Continuing the computations for a larger
number of cycles would confirm that, after an initial period, the oscillations settle down
into a cyclical pattern. The pattern is called a limit cycle. The Van der Pol oscillator has
the property that the limit cycle is independent of the initial conditions chosen (but
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depends on the parameters µ and λ). Figure 10.33(b) shows a phase-plane plot of the
oscillations of the Van der Pol oscillator, starting from the initial condition (4.5, 0). The
interested reader may wish to explore the Van der Pol oscillator further – perhaps 
by writing a computer program to solve the equation and plotting solution paths in
the phase plane for a number of other initial conditions. Exploration of this type will
confirm that the limit cycle is independent of initial conditions, and exploration of other
values of µ and λ will show how the limit cycle varies as these parameters change.

Other equations will of course produce different solution paths in the phase plane.
The second-order linear constant-coefficient equation

yields a phase-plane plot like that shown in Figure 10.34(a). In that particular case the
parameters have the values µ = 1.5 and λ = 40. Other values of µ and λ that result 

d

d

d

d
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2
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t
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t
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Figure 10.32
Displacement and
velocity traces for a
Van der Pol oscillator.

Figure 10.33 Phase-plane plots for Van der Pol oscillators – two different initial conditions.
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in decaying oscillatory solutions of the equation yield similar spiral phase-plane plots
tending towards the origin as t → ∞. Such a plot is typical of any system whose
behaviour is oscillatory and decaying. For instance, Figure 10.34(b) shows the phase-
plane plot of the nonlinear second-order equation

(10.59)

with µ = 3 and λ = 40 (recall that the function sgn(x) takes the value 1 if x � 0 and 
−1 if x � 0). The general characters of Figures 10.34(a), (b) are similar. The difference
between the two equations is manifest in the difference between the pattern of changing
spacing of successive turns of the spirals.

The utility of phase-plane plotting is not restricted to enhancing the understanding
of numerical solutions of differential equations. Second-order differential equations
which can be expressed in the form

arise in mathematical models of many engineering systems. An equation of this form
can be expressed as

The derivative dv/dx is of course just the gradient of the solution path in the phase
plane. Hence we can sketch the path in the phase plane of the solutions of a second-
order differential equation of this type without actually obtaining the solution. This
provides a useful qualitative insight into the form of solution that might be expected.

As an example, consider (10.59). This may be expressed as
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Figure 10.34 Phase-plane plots for some second-order oscillators.
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Figure 10.35
The phase-plane
direction field 
for (10.59).

Thus the gradient of the solution path in the phase plane is equal to k for all points on
the curve

These curves are of course a family of straight lines. Hence we can construct a diagram
similar to the direction-field diagrams described in Section 10.5.1. The phase-plane
direction-field diagram is shown, with the solution path from Figure 10.34(b) super-
imposed upon it, in Figure 10.35.

This technique can also be used for equations for which the lines of constant gradient
in the phase plane are not straight. Example 10.50 illustrates this.

MAPLE provides tools to assist in the construction of phase-plane plots. One such
tool is the phaseportrait procedure. The following MAPLE commands produce
a diagram similar to Figure 10.33(a) but with a direction field shown in addition to
the solution curve.

with(DEtools):

vdp2:= {diff(x(t),t) = v(t),

diff(v(t),t) = –3*(x(t)^2 – 1)*v(t) – 40*x(t)};

phaseportrait(vdp2,{x(t),v(t)},t = 0..10,

[[x(0) = 0.05,v(0) = 0]],x = –2..2,stepsize = 0.01);

Notice that it is necessary to load the DEtools package in order to access the
phaseportrait procedure. Also the second-order differential equation is con-
verted into a state space form for use in phaseportrait.

The phaseportrait procedure can be used to produce a diagram similar to
Figure 10.36 for Example 10.50, and also to check your solutions to all parts of
Question 78.
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Example 10.50 Draw a phase-plane direction field for the equation

(10.60)

Hence sketch the solution path of the equation that starts from the initial conditions
x = 1, dx/dt = 0.

Solution Equation (10.60) can be expressed as

so the curve on which the solution-path gradient is equal to k is given by

x = − (kv + 1.5v3)

Thus, as shown in Figure 10.36, the curves of constant solution-path gradient are in this
case cubic functions of v. The solution path of the equation starting from the point 
(1, 0) is sketched.
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Figure 10.36
The phase-plane
direction field 
for (10.60).

10.12.2 Exercises

80 Draw phase-plane direction fields for the following
equations and sketch the form you would expect
the solution paths to take, starting from the points 
(x, v) = (1, 0), (0, 1), (−1, 0) and (0, −1) in each case:

(a)

(b)
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(c)

(d)

81 For each of the problems in Question 78 solve the
differential equation numerically and check that the
solutions you obtain are similar to your sketch
solutions.
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10.13 Review exercises (1–35)

Whenever possible check your answers using MATLAB or MAPLE.

1 Classify each of the following as ordinary and as
linear homogeneous, linear nonhomogeneous or
nonlinear differential equations, state the order of
the equations and name the dependent and
independent variables:

(a)

(b)

(c)

2 Classify the following differential equation
problems as under-determined, fully determined 
or over-determined, and solve them where
possible:

(a)

(b) x(0) = 0, x(1) = 0, x(2) = 0

(c)

(d)

3 Sketch the direction field of the differential
equation

and sketch the form of solution suggested by the
direction field. Solve the equation and confirm 
that the solution supports the inferences you 
made from the direction field.

4 Solve the following differential equation 
problems:

(a)

(b) t
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(c)

(d)

(e)

(f)

(g)

(h)

5 For each of the following problems, determine
which are exact differentials, and hence solve 
the differential equations where possible:

(a) = a − 2x2t, x(1) = 2

(b) (2xt + 2t + t 2) + x 2 + 2tx = 0, x(2) = 2

(c) (t cos xt) + x cos xt + 1 = 0, x(π) = 0

(d) (t cos xt) − x cos xt = 0, x(π) = 0

(e) text + 1 + xext = 0, x(2) = 4

6 Solve the following differential equation problems:

(a) − 2x = t, x(0) = 2

(b) + 2tx = (t − )e−t, x(0) = 1

(c) + 3x = e2t, x(0) = 2

(d) + x sin t = sin t, x(π) = e

7 Solve the differential equation
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to find the value of X(0.4) using Euler’s method
with step size 0.1 and 0.05. By comparing these
two estimates of x(0.4), estimate the accuracy of
the better of the two values that you have obtained
and also the step size you would need to use in
order to calculate an estimate of x(0.4) accurate
to 2dp.

8 Solve the differential equation

to find the value of X(0.25) using Euler’s method
with steps of size 0.05 and 0.025. By comparing
these two estimates of x(0.25), estimate the
accuracy of the better of the two values that you
have obtained and also the step size you would
need to use in order to calculate an estimate of
x(0.25) accurate to 3dp.

9 Solve the differential equation

obtained in Example 8.4 to determine the amount
x(t) of salt in the tank at time t minutes. Initially
the tank contains pure water.

10 An open vessel is in the shape of a right circular
cone of semi-vertical angle 45° with axis vertical
and apex downwards. At time t = 0 the vessel 
is empty. Water is pumped in at a constant rate
p m3 s−1 and escapes through a small hole at the
vertex at a rate ky m3 s−1, where k is a positive
constant and y is the depth of water in the cone.

Given that the volume of a circular cone is
πr2h/3, where r is the radius of the base and h
its vertical height, show that

Deduce that the water level reaches the value
y = p/(2k) at time

11 Stefan’s law states that the rate of change of
temperature of a body due to radiation of heat is 
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where T is the temperature of the body, T0 is the
temperature of the surrounding medium (both
measured in K) and k is a constant. Show that
the solution of this differential equation is

Show that, when the temperature difference 
between the body and its surroundings is small,
Stefan’s law can be approximated by Newton’s 
law of cooling

and find α in terms of k and T0.

12 A motor under load generates heat internally at 
a constant rate H and radiates heat, in accordance
with Newton’s law of cooling, at a rate kθ, where 
k is a constant and θ is the temperature difference 
of the motor over its surroundings. With suitable
non-dimensionalization of time the temperature 
of the motor is given by the differential equation

Given that θ = 0 and dθ/dt = 10 when t = 0 and
θ = 60 when t = 10 show that

(a) the ultimate rise in temperature is θ = 10/k;

(b) k is a solution of the equation e−10k = 1 − 6k;

(c) .

13 A linear cam is to be made whose rate of rise 
(as it moves in the negative x direction) at the
point (x, y) on the profile is equal to one half of 
the gradient of the line joining (x, y) to a fixed
point on the cam (x0, y0). Show that the cam
profile is a solution of the differential equation

and hence find its equation. Sketch the cam 
profile.

14 Radioactive elements decay at a constant rate per
unit mass of the element. Show that such decays
obey equations of the form
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where k is the decay rate of the element and m is
the mass of the element present. The half life of 
an element is the time taken for one half of any
given mass of the element to decay. Find the
relationship between the decay constant k and 
the half life of an element.

15 In Section 10.2.4 we showed that the equation
governing the current flowing in a series LRC
electrical circuit is (equation 10.9)

Show, by a similar method, that the equation
governing the current flowing in a series LR
circuit containing a voltage source E is

At time t = 0 a switch is closed applying a d.c.
potential of V to an initially quiescent series LR
circuit consisting of an inductor L and a resistor
R. Show that the current flowing in the circuit is

and hence find the time needed for the current to
reach 95% of its final value.

16 The tread of a car tyre wears more rapidly as it
becomes thinner. The tread-wear rate, measured 
in mm per 10 000 miles, may be modelled as

a + b(d − t)2

where d is the initial tread depth, t is the current
tread depth and a and b are constants. A tyre
company takes measurements on a new design of
tyre whose initial tread depth is 8 mm. When the
tyre is new its wear rate is found to be 1.03 mm
per 10 000 miles run and when the tread depth 
is reduced to 4 mm the wear rate is 3.43 mm per
10 000 miles. Assuming that a tyre is discarded
when the tread depth has been reduced to 2 mm
what is its estimated life?

17 Express each of the following differential
equations in the form

L[x(t)] = f (t)

(a)
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(b)

(c)

(d)

(e)

18 For each of the following pairs of operators
calculate the operator LM – ML; hence state 
which of the pairs are commutative (that is, 
satisfy LMx(t) = MLx(t)):

(a)

(b)

(c)

(d)

19 What conditions must the functions f (t) and g(t)
satisfy in order for the following operator pairs to
be commutative?

(a)

(b)

20 Find the general solution of the following
differential equations:
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(f)

(g)

(h)

(i)

( j)

21 Solve the following initial-value problems:

(a)

(b)

(c)

(d)

(e)

(f)

22 Find the damping parameters and natural
frequencies of the systems governed by the
following second-order linear constant-coefficient
differential equations:

(a)

(b)
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23 Determine the values of the appropriate parameters
needed to give the systems governed by the
following second-order linear constant-coefficient
differential equations the damping parameters and
natural frequencies stated:

(a) ζ = 0.25, ω = 2

(b) ζ = 2, ω = π

(c) ζ = 0.5, ω = 2

(d) ζ = 1.2, ω = 0.2

24 Show that by making the substitution

the equation

may be expressed as

Show that the solution of this equation is
v = 1 + Ce−t and hence find x(t).

This technique is a standard method for 
solving second-order differential equations in
which the dependent variable itself does not
appear explicitly. Apply the same method to
obtain the solutions of the differential equations
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25 Using the method introduced in Question 24, find
the solutions of the following initial-value problems:

(a)

(b)

(c)

(d)

26 Show that by making the substitution

and noting that

the equation

may be expressed as

Show that the solution of this equation is
v = x2 + C and hence find x(t).

This technique is a standard method for solving
second-order differential equations in which the
independent variable does not appear explicitly.
Apply the same method to obtain the solutions
of the differential equations

(a)

(b)

(c)

27 Using the method introduced in Question 26, find
the solutions of the following initial-value problems:
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28 Equation (10.3), arising from the model of the 
take-off run of an aircraft developed in Section
10.2.1, can be solved by the techniques introduced
in Exercises 24 and 26. Assuming that the thrust 
is constant find the speed of the aircraft both 
as a function of time and of distance run along 
the ground. The take-off speed of the aircraft is 
denoted by V2. Find expressions for the length of
runway required and the time taken by the aircraft 
to become airborne in terms of take-off speed.

29 Find the values of X(t) for t up to 2, where X(t) is
the solution of the differential equation problem

using Euler’s method with step size h = 0.025.
Repeat the computation with h = 0.0125. Hence 
estimate the accuracy of the value of X(2) given 
by your solution.

30 The end of a chain, coiled near the edge of a
horizontal surface, falls over the edge. If the
friction between the chain and the horizontal
surface is negligible and the chain is inextensible
then, when a length x of chain has fallen, the
equation of motion is 

where m is the mass per unit length of the chain, 
g is gravitational acceleration and v is the velocity
of the falling length of the chain. If the mass per
unit length of the chain is constant show that this
equation can be expressed as

and, by putting y = v2, show that v = ÷(2gx /3). 
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31 A simple mass spring system, subject to light
damping, is vibrating under the action of a
periodic force F cos pt. The equation of motion is

where F and p are constants.
Solve the differential equation for the

displacement x(t). Show that one part of the
solution tends to zero as t → ∞ and show that
the amplitude of the steady-state solution is

F[(4 − p2)2 + 4p2]−1/2.

Hence show that resonance occurs when p = ÷2.

32 An alternating emf of E sin ωt volt is supplied 
to a circuit containing an inductor of L henry, a
resistor of R ohm and a capacitor of C farad in
series. The differential equation satisfied by the
current i amp and the charge q coulomb on the
capacitor is

Using i = dq/dt obtain a second-order differential
equation satisfied by i. Find the resistance if it is
just large enough to prevent natural oscillations.
For this value of R and ω = (LC )−1/2 prove that

where K 2 = L /C, when the current and charge on
the capacitor are both zero at time t = 0.

The following three questions are intended to be open-
ended – there is no single ‘correct’ answer. They should
be approached in an enquiring frame of mind, with the
objective of discovering, by use of mathematical
knowledge and technique, something more about how 
the physical world functions. The questions are designed
to use primarily mathematical knowledge introduced in
this chapter.

33 A truck of mass m moves along a horizontal test
track subject only to a force resisting motion 
that is proportional to its speed. At time t = 0 the
truck passes a reference point moving with speed
U. Find the velocity of the truck both as a function
of time and as a function of displacement from the
reference point. Find the displacement of the truck
from the reference point as a function of time.

i
E

K
t t t  (sin   )= − −

2
ω ω ωe

L
i

t
Ri

q

C
E t

d

d
      sin+ + = ω

d

d

d

d

2

2
2 4

x

t

x

t
x F pt     cos+ + =

Repeat these calculations for similar trucks subject
to resistance forces proportional to

(a) square root of speed;

(b) square of speed;

(c) cube of speed.

How long does the truck take to come to rest in 
each case? Draw plots of velocity against
displacement in each case. Explain, in qualitative
terms, the behaviour of the truck under each type 
of resistance. 

How would you model mathematically a truck
that is subject to a small constant resistance plus 
a resistance proportional to its speed? How far
would such a truck travel before coming to rest, 
and how long would it take to do so? Can you
repeat these calculations for trucks subject to a 
small constant resistance plus a resistance
proportional to speed squared or speed cubed?

What general conclusions can you draw about
the type of terms that it is sensible to use in
mathematical models of engineering systems to
describe resistance to motion?

34 Figure 10.37 shows a system that serves as a
simplified model of the phenomenon of ‘tool
chatter’. The mass A rests on a moving belt and 
is connected to a rigid support by a spring. The
coefficient of sliding friction between the belt 
and the mass is less than the coefficient of static
friction. When the spring is uncompressed, the 
mass moves to the right with the belt. As it does
so, the spring is compressed until the force 
exerted by the spring exceeds the maximum static
frictional force available. The mass then starts to
slide. The spring force slows the mass, brings it 

Figure 10.37 Diagram of a model of the 
‘tool chatter’ phenomenon.
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to rest, and then accelerates it back along the 
belt so that it moves leftwards. As it does so, the
compression in the spring is reduced, the force of
sliding friction slows the mass to rest, and then
accelerates it so that its velocity is directed to 
the right. When its velocity matches that of the
belt, sliding ceases and static friction takes 
over again. 

Thus the mass undergoes a cyclic process of
being pushed forwards by static friction until the
spring is sufficiently compressed and then being
flung backwards by the stored energy in the spring
until the energy is dissipated. Analyse the model,
determining such quantities as how the amplitude
and frequency of motion of the mass depend on
the coefficients and static friction and the other
physical parameters.

35 The second-order linear nonhomogeneous
constant-coefficient differential equation

(often referred to as a forced harmonic oscillator)
has a response A(Ω)F cos(Ωt − δ ), where A(Ω) is
often called the frequency response (strictly it is
the amplitude response or gain spectrum) and is
given by (10.55) and shown in Figure 10.27. How
does the frequency response of the second-order
nonlinear nonhomogeneous constant-coefficient
differential equation

differ from that of the linear one?

d
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11.1 Introduction

Laplace transform methods have a key role to play in the modern approach to the 
analysis and design of engineering systems. The stimulus for developing these methods
was the pioneering work of the English electrical engineer Oliver Heaviside (1850–1925)
in developing a method for the systematic solution of ordinary differential equations
with constant coefficients. Heaviside was concerned with solving practical problems,
and his method was based mainly on intuition, lacking mathematical rigour: con-
sequently it was frowned upon by theoreticians at the time. However, Heaviside 
himself was not concerned with rigorous proofs, and was satisfied that his method gave
the correct results. Using his ideas, he was able to solve important practical problems
that could not be dealt with using classical methods. This led to many new results in
fields such as the propagation of currents and voltages along transmission lines.

Because it worked in practice, Heaviside’s method was widely accepted by engin-
eers. As its power for problem-solving became more and more apparent, the method
attracted the attention of mathematicians, who set out to justify it. This provided the
stimulus for rapid developments in many branches of mathematics, including improper
integrals, asymptotic series and transform theory. Research on the problem continued
for many years before it was eventually recognized that an integral transform developed
by the French mathematician Pierre Simon de Laplace (1749–1827) almost a century
before provided a theoretical foundation for Heaviside’s work. It was also recognized
that the use of this integral transform provided a more systematic alternative for 
investigating differential equations than the method proposed by Heaviside. It is this
alternative approach that is the basis of the Laplace transform method.

We have already come across instances where a mathematical transformation has
been used to simplify the solution of a problem. For example, the logarithm is used 
to simplify multiplication and division problems. To multiply or divide two numbers,
we transform them into their logarithms, add or subtract these, and then perform the
inverse transformation (that is, the antilogarithm) to obtain the product or quotient of
the original numbers. The purpose of using a transformation is to create a new domain
in which it is easier to handle the problem being investigated. Once results have been
obtained in the new domain, they can be inverse-transformed to give the desired results
in the original domain.

The Laplace transform is an example of a class called integral transforms, and it
takes a function f (t) of one variable t (which we shall refer to as time) into a function
F(s) of another variable s (the complex frequency). Another integral transform widely
used by engineers is the Fourier transform, which is dealt with in the companion text
Advanced Modern Engineering Mathematics. The attraction of the Laplace transform
is that it transforms differential equations in the t (time) domain into algebraic equa-
tions in the s (frequency) domain. Solving differential equations in the t domain there-
fore reduces to solving algebraic equations in the s domain. Having done the latter for
the desired unknowns, their values as functions of time may be found by taking inverse
transforms. Another advantage of using the Laplace transform for solving differential
equations is that initial conditions play an essential role in the transformation process, so
they are automatically incorporated into the solution. This constrasts with the classical
approach considered in Chapter 10, where the initial conditions are only introduced
when the unknown constants of integration are determined. The Laplace transform is
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11.1 INTRODUCTION 901

therefore an ideal tool for solving initial-value problems such as those occurring in the
investigation of electrical circuits and mechanical vibrations.

The Laplace transform finds particular application in the field of signals and linear
systems analysis. A distinguishing feature of a system is that when it is subjected to an
excitation (input), it produces a response (output). When the input u(t) and output x(t)
are functions of a single variable t, representing time, it is normal to refer to them as
signals. Schematically, a system may be represented as in Figure 11.1. The problem
facing the engineer is that of determining the system output x(t) when it is subjected to
an input u(t) applied at some instant of time, which we can take to be t = 0. The rela-
tionship between output and input is determined by the laws governing the behaviour
of the system. If the system is linear and time-invariant then the output is related to the
input by a linear differential equation with constant coefficients, and we have a standard
initial-value problem, which is amenable to solution using the Laplace transform.

While many of the problems considered in this chapter can be solved by the clas-
sical approach of Chapter 10, the Laplace transform leads to a more unified approach
and provides the engineer with greater insight into system behaviour. In practice, the
input signal u(t) may be a discontinuous or periodic function, or even a pulse, and in
such cases the use of the Laplace transform has distinct advantages over the classical
approach. Also, more often than not, an engineer is interested not only in system ana-
lysis but also in system synthesis or design. Consequently, an engineer’s objective in
studying a system’s response to specific inputs is frequently to learn more about the sys-
tem with a view to improving or controlling it so that it satisfies certain specifications.
It is in this area that the use of the Laplace transform is attractive, since by considering
the system response to particular inputs, such as a sinusoid, it provides the engineer
with powerful graphical methods for system design that are relatively easy to apply and
widely used in practice.

In modelling the system by a differential equation, it has been assumed that both the
input and output signals can vary at any instant of time; that is, they are functions of a
continuous time variable (note that this does not mean that the signals themselves have
to be continuous functions of time). Such systems are called continuous-time systems,
and it is for investigating these that the Laplace transform is best suited. With the intro-
duction of computer control into system design, signals associated with a system may
only change at discrete instants of time. In such cases the system is said to be a discrete-
time system, and is modelled by a difference equation rather than a differential equa-
tion. Such systems are dealt with using the z transform considered in the companion
text Advanced Modern Engineering Mathematics.

In this chapter we restrict our consideration to simply introducing the Laplace trans-
form and to illustrating its use in solving differential equations. Its more extensive role
in engineering applications is dealt with in the companion text.

There is some overlap in the material covered in this chapter and in Chapter 10,
particularly in relation to the modelling aspects of applications to electrical circuits and
mechanical vibrations. This overlap has been included so that the two approaches to
solving differential equations can be studied independently of each other.

....

Figure 11.1
Schematic
representation of a
system.
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11.2 The Laplace transform

11.2.1 Definition and notation

We define the Laplace transform of a function f (t) by the expression

�{ f (t)} = �
0

∞

e−stf (t)dt (11.1)

where s is a complex variable and e−st is called the kernel of the transformation.
It is usual to represent the Laplace transform of a function by the corresponding

capital letter, so that we write

�{ f (t)} = F(s) = �
0

∞

e−stf (t)dt (11.2)

An alternative notation in common use is to denote �{ f (t)} by f(s) or simply f.
Before proceeding, there are a few observations relating to the definition (11.2) 

worthy of comment.

(a) The symbol � denotes the Laplace transform operator; when it operates on a
function f (t), it transforms it into a function F(s) of the complex variable s. We say the
operator transforms the function f(t) in the t domain (usually called the time domain)
into the function F(s) in the s domain (usually called the complex frequency domain,
or simply the frequency domain). This relationship is depicted graphically in Fig-
ure 11.2, and it is usual to refer to f (t) and F(s) as a Laplace transform pair, written
as { f (t), F(s)}.

(b) Because the upper limit in the integral is infinite, the domain of integration is
infinite. Thus the integral is an example of an improper integral, as introduced in
Section 9.2; that is,

�
0

∞

e−stf (t)d t = �
0

T

e−stf (t)dt

This immediately raises the question of whether or not the integral converges, an issue
we shall consider in Section 11.2.3.

lim
T →∞
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Figure 11.2
The Laplace transform
operator.
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(c) Because the lower limit in the integral is zero, it follows that when taking the
Laplace transform, the behaviour of f (t) for negative values of t is ignored or sup-
pressed. This means that F(s) contains information on the behaviour of f (t) only for 
t � 0, so that the Laplace transform is not a suitable tool for investigating problems 
in which values of f (t) for t � 0 are relevant. In most engineering applications this 
does not cause any problems, since we are then concerned with physical systems for
which the functions we are dealing with vary with time t. An attribute of physical 
realizable systems is that they are non-anticipatory, in the sense that there is no out-
put (or response) until an input (or excitation) is applied. Because of this causal rela-
tionship between the input and output, we define a function f (t) to be causal if f (t) = 0 
(t � 0). In general, however, unless the domain is clearly specified, a function f (t) is
normally intepreted as being defined for all real values, both positive and negative, of
t. Making use of the Heaviside unit step function H(t) (see also Section 2.8.3), where

we have

Thus the effect of multiplying f(t) by H(t) is to convert it into a causal function.
Graphically, the relationship between f(t) and f(t)H(t) is as shown in Figure 11.3.

It follows that the corresponding Laplace transform F(s) contains full information on
the behaviour of f(t)H(t). Consequently, strictly speaking one, should refer to { f (t)H(t),
F(s)} rather than { f (t), F(s)} as being a Laplace transform pair. However, it is common
practice to drop the H(t) and assume that we are dealing with causal functions.

(d) If the behaviour of f(t) for t � 0 is of interest then we need to use the alternative
two-sided or bilateral Laplace transform of the function f (t), defined by

�B{ f (t)} = �
∞

−∞

e−stf (t)dt (11.3)

The Laplace transform defined by (11.2), with lower limit zero, is sometimes referred to
as the one-sided or unilateral Laplace transform of the function f(t). In this chapter
we shall concern ourselves only with the latter transform, and refer to it simply as the
Laplace transform of the function f(t). Note that when f (t) is a causal function,

�B{ f (t)} = �{ f (t)}
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Figure 11.3
Graph of f(t) and its
causal equivalent
function.

M11_JAME0734_05_SE_C11.qxd  11/03/2015  10:01  Page 903



..

11.2.2 Transforms of simple functions

In this section we obtain the Laplace transformations of some simple functions.

Example 11.1 Determine the Laplace transform of the function

f (t) = c

where c is a constant.

Solution Using the definition (11.2),

�(c) = �
0

∞

e−stc dt = �
0

T

e−stc dt

Taking s = σ + jω, where σ and ω are real,

A finite limit exists provided that σ = Re(s) � 0, when the limit is zero. Thus, provided
that Re(s) � 0, the Laplace transform is

so that

(11.4)

constitute an example of a Laplace transform pair.

Example 11.2 Determine the Laplace transform of the ramp function

f (t) = t

Solution From the definition (11.2),

�{t} = �
0

∞

e−stt d t = �
0

T

e−stt dt

= − −⎡
⎣⎢

⎤
⎦⎥

= − −
→∞

−
−

→∞

−

→∞

−
 lim       lim   lim
T

st
st T

T

sT

T

sTt

s s s

T

s s
e

e e e
2

0
2 2

1

lim
T →∞

f t c

F s
c

s

s

( )  

( )  
    Re( )  

=

=

⎫
⎬
⎪

⎭⎪
� 0

  
�( )  ,    Re( )  c

c

s
s= � 0

lim   lim ( )  lim (cos   sin )( )

T

sT

T

T

T

T T T
→∞

−
→∞

− +
→∞

−= = −e e e jjσ ω σ ω ω

= −⎡
⎣⎢

⎤
⎦⎥

= −⎛
⎝

⎞
⎠→∞

−
→∞

− lim    lim
T

st
T

T

sTc

s

c

s
e e

0

1

lim
T →∞
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Following the same procedure as in Example 11.1, limits exist provided that
Re(s) � 0, when

Thus, provided that Re(s) � 0,

giving us the Laplace transform pair

(11.5)

Example 11.3 Determine the Laplace transform of the one-sided exponential function

f (t) = ekt

Solution The definition (11.2) gives

�(ekt} = �
0

∞

e−stekt d t = �
0

T

e−(s−k)t dt

Writing s = σ + jω, where σ and ω are real, we have

If k is real, then, provided that σ = Re(s) � k, the limit exists, and is zero. If k is 
complex, say k = a + jb, then the limit will also exist, and be zero, provided that σ � a
(that is, Re(s) � Re(k)). Under these conditions, we then have

giving us the Laplace transform pair

(11.6)

Example 11.4 Determine the Laplace transforms of the sine and cosine functions

f (t) = sin at, g(t) = cos at

where a is a real constant.

f t

F s
s k

s k

kt( )  

( )  
  

    Re( )  Re( )
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=
−

⎫
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⎭
⎪

e

1 �
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ekt

s k
=

−
1
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T

s k T

T

k T T

→∞
− −

→∞
− − −=e e e jσ ω

=
−
−

=
−

−⎛
⎝

⎞
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− −
→∞

− − lim
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T
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Solution Since

e jat = cos at + j sin at

we may write

f (t) = sin at = Im(e jat), g(t) = cos at = Re(e jat)

Using this formulation, the required transforms may be obtained from the result

, Re(s) � Re(k)

of Example 11.3.
Taking k = ja in this result gives

Re(s) � 0

or

Re(s) � 0

Thus, equating real and imaginary parts and assuming s is real,

These results also hold when s is complex, giving us the Laplace transform pairs

Re(s) � 0 (11.7)

Re(s) � 0 (11.8)

Use of MATLAB and MAPLE to solve ordinary linear differential equations with
constant coefficients was introduced in Section 10.8. Since the two chapters may be
studied independently, MATLAB and MAPLE commands are again introduced here.
In MATLAB, using the Symbolic Math Toolbox, the Laplace transform of a func-
tion f (t) is obtained by entering the commands

syms s t

laplace(f(t))

with the purpose of the first command, as previously, being that of setting up s
and t as symbolic variables. To search for a simpler form of the symbolic answer
enter the command simple(ans). Sometimes repeated use of this command may

�{cos }  
 

,at
s

s a
=

+2 2

�{sin }  
 

,at
a

s a
=

+2 2

� �{cos }  Re { }  
 

at
s

s a
at= =

+
e j

2 2

� �{sin }  Im { }  
 

at
a

s a
at= =

+
e j

2 2

�{ }  
  

 
,e

jjat s a

s a
=

+
+2 2

�{ }  
  

, e
j

jat

s a
=

−
1
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ekt

s k
=

−
1
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....

be necessary. If the function f (t) includes a parameter then this must be declared as
a symbolic term at the outset. For example, the commands

syms s t

laplace(sin(a*t))

return

ans = a/(s^2 + a^2)

as the Laplace transform of sin(at). To express this in a format that resembles 
typeset mathematics, enter the command pretty(ans).

Use of MAPLE is almost identical to the MATLAB Symbolic Math Toolbox
except for minor semantic differences. However, when using MAPLE the integral
transform package must be invoked using inttrans and the variables t and s must
be specified explicitly. For instance the commands

with(inttrans):

laplace(sin(a*t),t,s);

return the transform as

11.2.3 Existence of the Laplace transform

Clearly, from the definition (11.2), the Laplace transform of a function f (t) exists if and
only if the improper integral in the definition converges for at least some values of s.
The examples of Section 11.2.2 suggest that this relates to the boundedness of the func-
tion, with the factor e−st in the transform integral acting like a convergence factor in that
the allowed values of Re(s) are those for which the integral converges. In order to be
able to state sufficient conditions on f (t) for the existence of �{ f (t)}, we first introduce
the definition of a function of exponential order.

Definition 11.1

A function f (t) is said to be of exponential order as t → ∞ if there exists a real
number σ and positive constants M and T such that

| f (t) | � Meσ t

for all t � T.

What this definition tells us is that a function f(t) is of exponential order if it
does not grow faster than some exponential function of the form Meσ t. Fortunately,
most functions of practical significance satisfy this requirement, and are therefore of
exponential order. There are, however, functions that are not of exponential order,
an example being et2

, since this grows more rapidly than Meσ t as t → ∞, whatever the 
values of M and σ.

a

s a2 2+
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Example 11.5 The function f (t) = e3t is of exponential order, with σ � 3.

Example 11.6 Show that the function f (t) = t3 (t � 0) is of exponential order.

Solution Since

eα t = 1 + αt + α2t2 + α3t3 + …

(see Figure 9.6) it follows that for any α � 0

so that t3 is of exponential order, with σ � 0.

It follows from Examples 11.5 and 11.6 that the choice of σ in Definition 11.1 is not
unique for a particular function. For this reason, we define the greatest lower bound σc

of the set of possible values of σ to be the abscissa of convergence of f (t). Thus, in the
case of the function f (t) = e3t, σc = 3, while in the case of the function f (t) = t3, σc = 0.

Returning to the definition of the Laplace transform given by (11.2), it follows
that if f (t) is a continuous function and is also of exponential order with abscissa of
convergence σc, so that

| f (t) | � Meσ t, σ � σc

then, taking T = 0 in Definition 11.1 and noting that the absolute value of an integral is
always equal to or less than the integral of the absolute value

| F(s) | = � �
0

∞

| e−st | | f (t) | dt

Writing s = σ + jω, where σ and ω are real, since | e−jω t | = 1, we have

| e−st | = | e−σ t | | e−jω t | = | e−σ t | = e−σ t

so that

| F(s) | � �
0

∞

e−σt | f (t) | dt � M�
0

∞

e−σteσdt dt, σd � σc

= M�
0

∞

e−(σ−σd)t dt

This last integral is finite whenever σ = Re(s) � σd. Since σd can be chosen arbitrarily
such that σd � σc we conclude that F(s) exists for σ � σc. Thus a continuous function
f (t) of exponential order, with abscissa of convergence σc, has a Laplace transform

�{ f (t)} = F(s), Re(s) � σc

where the region of convergence is as shown in Figure 11.4.

�
0

∞

−e dst f t t( )

t t3
3

6
  �

α
eα

1
6

1
2  
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In fact, the requirement that f (t) be continuous is not essential, and may be relaxed
to f (t) being piecewise-continuous, as defined in Section 8.8.2; that is, f (t) must have
only a finite number of finite discontinuities, being elsewhere continuous and bounded.

We conclude this section by stating a theorem that ensures the existence of a Laplace
transform.

Theorem 11.1 Existence of Laplace transform

If the causal function f(t) is piecewise-continuous on [0, ∞] and is of exponential order,
with abscissa of convergence σc, then its Laplace transform exists, with region of
convergence Re(s) � σc in the s domain; that is,

�{ f (t)} = F(s) = �
0

∞

e−stf (t)dt, Re(s) � σc

end of theorem

The conditions of this theorem are sufficient for ensuring the existence of the Laplace
transform of a function. They do not, however, constitute necessary conditions for the
existence of such a transform, and it does not follow that if the conditions are violated
then a transform does not exist. In fact, the conditions are more restrictive than neces-
sary, since there exist functions with infinite discontinuities that possess Laplace
transforms.

11.2.4 Properties of the Laplace transform

In this section we consider some of the properties of the Laplace transform that will
enable us to find further transform pairs { f (t), F(s)} without having to compute them
directly using the definition. Further properties will be developed in later sections when
the need arises.

Property 11.1: The linearity property

A fundamental property of the Laplace transform is its linearity, which may be stated
as follows:

....

Figure 11.4
Region of convergence
for �{ f (t)}; σc is the
abscissa of
convergence for f(t).
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If f (t) and g(t) are functions having Laplace transforms and if α and β are 
any constants then

�{α f (t) + βg(t)} = α�{ f (t)} + β�{g(t)}

As a consequence of this property, we say that the Laplace transform operator � is a
linear operator. A proof of the property follows readily from the definition (11.2),
since

�{α f (t) + βg(t)} = �
0

∞

[α f (t) + βg(t)]e−stdt

= �
0

∞

α f (t)e−stdt + �
0

∞

βg(t)e−stdt

= α�
0

∞

f (t)e−stdt + β�
0

∞

g(t)e−stdt

= α�{ f (t)} + β�{g(t)}

Regarding the region of convergence, if f (t) and g(t) have abscissae of convergence σf

and σg respectively, and σ1 � σf, σ2 � σg, then

| f (t) | � M1e
σ1t, | g(t) | � M2e

σ2t

It follows that

|α f (t) + βg(t) | � |α | | f (t) | + | β | | g(t) |

� |α | M1e
σ1t + | β | M2e

σ2t

� (|α | M1 + | β | M2)e
σ t

where σ = max(σ1, σ2), so that the abscissa of convergence of the linear sum α f(t) + βg(t)
is less than or equal to the maximum of those for f (t) and g(t).

This linearity property may clearly be extended to a linear combination of any finite
number of functions.

Example 11.7 Determine �{3t + 2e3t}.

Solution Using the results given in (11.5) and (11.6),

so, by the linearity property,

�{ }  
  

,    Re( )  e3 1

3
3t

s
s=

−
�

�{}  ,    Re( )  t
s

s=
1

0
2

�
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�{3t + 2e3t} = 3�{t} + 2�{e3t}

The answer can be checked using the commands

MATLAB MAPLE
syms s t with(inttrans):

laplace(3*t + 2*exp(3*t)); laplace(3*t + 2*exp(3*t),t,s);

pretty(ans)

which return

+ 3 + 2

Example 11.8 Determine �{5 − 3t + 4 sin 2t − 6e4t}.

Solution Using the results given in (11.4)–(11.7),

so, by the linearity property,

�{5 − 3t + 4 sin 2t − 6e4t} = �{5} − 3�{t} + 4�{sin 2t} − 6�{e4t}

Again this answer can be checked using the commands

syms s t

laplace(5 – 3*t + 4*sin(2*t) – 6*exp(4*t))

in MATLAB, or the commands

with(inttrans):

laplace(5 – 3*t + 4*sin(2*t) – 6*exp(4*t),t,s);

in MAPLE.
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The first shift property is another property that enables us to add more combinations to
our repertoire of Laplace transform pairs. As with the linearity property, it will prove
to be of considerable importance in our later discussions, particularly when considering
the inversion of Laplace transforms.

Property 11.2: The first shift property

The property is contained in the following theorem, commonly referred to as the first
shift theorem or sometimes as the exponential modulation theorem.

Theorem 11.2 The first shift theorem

If f(t) is a function having Laplace transform F(s), with Re(s) � σc, then the function
eatf (t) also has a Laplace transform, given by

�{eat f (t)} = F(s − a), Re(s) � σc + Re(a)

Proof A proof of the theorem follows directly from the definition of the Laplace transform,
since

�{eatf (t)} = �
0

∞

eatf (t)e−stdt = �
0

∞

f (t)e−(s−a)tdt

Then, since

�{ f (t)} = F(s) = �
0

∞

f (t)e−stdt, Re(s) � σc

we see that the last integral above is in structure exactly the Laplace transform of f(t)
itself, except that s − a takes the place of s, so that

�{eatf (t)} = F(s − a), Re(s − a) � σc

or

�{eatf (t)} = F(s − a), Re(s) � σc + Re(a)

end of theorem

An alternative way of expressing the result of Theorem 11.2, which may be found
more convenient in application, is

�{eatf (t)} = [�{ f (t)}]s→s−a = [F(s)]s→s−a

In other words, the theorem says that the Laplace transform of eat times a function f(t)
is equal to the Laplace transform of f(t) itself, with s replaced by s − a.

912 INTRODUCTION TO LAPLACE TRANSFORMS
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Example 11.9 Determine �{te−2t}.

Solution From the result given in (11.5),

so, by the first shift theorem,

�{te−2t} = F(s + 2) = [F(s)]s→s+2 , Re(s) � 0 − 2

that is,

This is readily dealt with using MATLAB or MAPLE. The commands

MATLAB MAPLE
syms s t with(inttrans):

laplace(t*exp(–2*t)); laplace(t*exp(–2*t),t,s);

pretty(ans)

return the transform as

Example 11.10 Determine �{e−3t sin 2t}.

Solution From the result (11.7),

�{sin 2t} = F(s) Re(s) � 0

so, by the first shift theorem,

�{e−3t sin 2t} = F(s + 3) = [F(s)]s→s+3 , Re(s) � 0 − 3

that is,

In MATLAB the commands

syms s t

laplace(exp(–3*t)*sin(2*t))

return

ans = 2/((s + 3)^2 + 4)

�{ sin }  
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s �
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+
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Entering the further commands

simple(ans);

pretty(ans)

returns

2/(s2 + 6s + 13)

as an alternative form of the answer. Note that the last two commands could be
replaced by the single command pretty(simple(ans)).

In MAPLE the commands

with(inttrans):

laplace(exp(–3*t)*sin(2*t),t,s);

return the answer

2

There is no ‘simple’ command in MAPLE.

The function e−3t sin 2t in Example 11.10 is a member of a general class of functions
called damped sinusoids. These play an important role in the study of engineering 
systems, particularly in the analysis of vibrations. For this reason, we add the following
two general members of the class to our standard library of Laplace transform pairs:

�{e−kt sin at} Re(s) � −k (11.9)

�{e−kt cos at} Re(s) � −k (11.10)

where in both cases k and a are real constants.

Property 11.3: Derivative-of-transform property

This property relates operations in the time domain to those in the transformed s domain,
but initially we shall simply look upon it as a method of increasing our repertoire of
Laplace transform pairs. The property is also sometimes referred to as the multiplication-
by-t property. A statement of the property is contained in the following theorem.

Theorem 11.3 Derivative of transform

If f (t) is a function having Laplace transform

F(s) = �{ f (t)}, Re(s) � σc

then the functions t nf (t) (n = 1, 2, … ) also have Laplace transforms, given by

�{t nf (t)} = (−1)n Re(s) � σc
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Proof By definition,

�{ f (t)} = F(s) = �
0

∞

e−stf (t)dt

so that

�
0

∞

e−stf (t)dt

Owing to the convergence properties of the improper integral involved, we can inter-
change the operations of differentiation and integration and differentiate with respect to
s under the integral sign. Thus

[e−stf (t)]dt

which, on carrying out the repeated differentiation, gives

= (−1)n�
0

∞

e−stt nf (t)dt = (−1)n�{t nf (t)}, Re(s) � σc

the region of convergence remaining unchanged.

end of theorem

In other words, Theorem 11.3 says that differentiating the transform of a function
with respect to s is equivalent to multiplying the function itself by −t. As with the pre-
vious properties, we can now use this result to add to our list of Laplace transform pairs.

Example 11.11 Determine �{t sin 3t}.

Solution Using the result (11.7),

�{sin 3t} = F(s) Re(s) � 0

so, by the derivative theorem,

�{t sin 3t} Re(s) � 0

In MATLAB the commands

syms s t

laplace(t*sin(3*t))

return

ans = 1/(s^2 + 9)*sin(2*atan(3/5))
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Applying the further command

simple(ans)

returns

ans = 6/(s^2 + 9)/s/(1 + 9/s^2)

Repeating the simple command

simple(ans)

returns the answer in the more desirable form

ans = 6*s/(s^2 + 9)^2

In MAPLE the commands

with(intrans):

laplace(t*sin(3*t),t,s);

return the transform as

sin 2arctan 3

and there appears to be no command to simplify this.

Example 11.12 Determine �{t2et}.

Solution From the result (11.6),

�{et} = F(s) Re(s) � 1

so, by the derivative theorem,

Note that the result is easier to deduce using the first shift theorem. 

Using MATLAB or MAPLE confirm that the answer may be checked using the fol-
lowing commands:

MATLAB MAPLE
syms s t with(inttrans):

laplace(t^2*exp(t)) laplace(t^2*exp(t),t,s);
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Example 11.13 Determine �{t n}, where n is a positive integer.

Solution Using the result (11.4),

Re(s) � 0

so, by the derivative theorem,

Re(s) � 0

11.2.5 Table of Laplace transforms
It is appropriate at this stage to draw together the results proved to date for easy access.
This is done in the form of two short tables. Figure 11.5(a) lists some Laplace trans-
form pairs and Figure 11.5(b) lists the properties already considered.

(a) f (t) }{ f (t)} == F(s) Region of conVergence

c, c a constant Re(s) � 0

t Re(s) � 0

t n, n a positive integer Re(s) � 0

ekt, k a constant Re(s) � Re(k)

sin at, a a real constant Re(s) � 0

cos at, a a real constant Re(s) � 0

e−kt sin at, k and a real constants Re(s) � −k

e−kt cos at, k and a real constants Re(s) � −k

(b) �{ f (t)} = F(s), Re(s) � σ1 and �{g(t)} = G(s), Re(s) � σ2

Linearity: �{α f (t) + βg(t)} = αF(s) + βG(s), Re(s) � max(σ1, σ2)

First shift theorem: �{eatf (t)} = F(s − a), Re(s) � σ1 + Re(a)

Derivative of transform:

�{t nf (t)} = (−1)n (n = 1, 2, … ), Re(s) � σ1
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Figure 11.5
(a) Table of Laplace
transform pairs. 
(b) Some properties of
the Laplace transform.
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11.2.6 Exercises

1 Use the definition of the Laplace transform to
obtain the transforms of f(t) when f(t) is given by

(a) cosh 2t (b) t2 (c) 3 + t (d) te−t

stating the region of convergence in each case.

2 What are the abscissae of convergence for the
following functions?

(a) e5t (b) e−3t

(c) sin 2t (d) sinh 3t

(e) cosh 2t (f) t 4

(g) e−5t + t2 (h) 3 cos 2t − t3

(i) 3e2t − 2e−2t + sin 2t ( j) sinh 3t + sin 3t

3 Using the results shown in Figure 11.5, obtain the
Laplace transforms of the following functions,
stating the region of convergence:

(a) 5 − 3t (b) 7t3 − 2 sin 3t

(c) 3 − 2t + 4 cos 2t (d) cosh 3t

(e) sinh 2t (f) 5e−2t + 3 − 2 cos 2t

(g) 4te−2t (h) 2e−3t sin 2t

(i) t2e−4t ( j) 6t3 − 3t2 + 4t − 2

(k) 2 cos 3t + 5 sin 3t (l) t cos 2t

(m) t2 sin 3t (n) t2 − 3 cos 4t

(o) t2e−2t + e−t cos 2t + 3

11.2.7 The inverse transform

The symbol �−1{F(s)} denotes a causal function f (t) whose Laplace transform is F(s);
that is,

if �{ f (t)} = F(s) then f (t) = �−1{F(s)}

This correspondence between the functions F(s) and f(t) is called the inverse Laplace
transformation, f (t) being the inverse transform of F(s), and �−1 being referred to
as the inverse Laplace transform operator. These relationships are depicted in
Figure 11.6.

As was pointed out in observation (c) of Section 11.2.1, the Laplace transform F(s)
only determines the behaviour of f (t) for t � 0. Thus �−1{F(s)} = f (t) only for t � 0.
When writing �−1{F(s)} = f (t), it is assumed that t � 0, so, strictly speaking, we should
write

�−1{F(s)} = f (t)H(t) (11.11)

Figure 11.6
The Laplace transform
and its inverse.
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Example 11.14 Since

it follows that

Example 11.15 Since

it follows that

The linearity property for the Laplace transform (Property 11.1) states that if α and β
are any constants then

�{α f (t) + βg(t)} = α�{ f (t)} + β�{g(t)} = αF(s) + βG(s)

It then follows from the above definition that

�−1{αF(s) + βG(s)} = α f (t) + βg(t) = α�−1{F(s)} + β�−1{G(s)}

so that the inverse Laplace transform operator �−1 is also a linear operator.

11.2.8 Evaluation of inverse transforms

The most obvious way of finding the inverse transform of the function F(s) is to make
use of a table of transforms, such as that given in Figure 11.5. Sometimes it is possible
to write down the inverse transform directly from the table, but more often than not it
is first necessary to carry out some algebraic manipulation on F(s). In particular, we
frequently need to determine the inverse transform of a rational function of the form
p(s)/q(s), where p(s) and q(s) are polynomials in s. In such cases the procedure is first
to resolve the function into partial fractions and then to use the table of transforms.

Using the MATLAB Symbolic Math Toolbox the commands

syms s t

ilaplace(F(s))

return the inverse transform of F(s). The corresponding MAPLE commands are

with(inttrans):

invlaplace(F(s),s,t);
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Example 11.16 Find

Solution First 1/(s + 3)(s − 2) is resolved into partial fractions, giving

Then, using the result �−1{1/(s + a)} = e−at together with the linearity property, we have

Using MATLAB or MAPLE the commands

MATLAB MAPLE
syms s t with(inttrans):

ilaplace(1/((s + 3)* ilaplace(1/((s + 3)*

(s – 2))); (s – 2)),s,t);

pretty(ans)

return the anwers

–1/5exp(–3t) + 1/5exp(2t) -1–5e
(-3t) + 1–5e

(2t)

Example 11.17 Find

Solution Resolving (s + 1)/s2(s2 + 9) into partial fractions gives

Using the results in Figure 11.5, together with the linearity property, we have
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Using MATLAB or MAPLE, check that the answer can be verified using the
following commands:

MATLAB MAPLE
syms s t with(inttrans):

ilaplace((s + 1)/ invlaplace((s + 1)/

(s^2*(s^2 + 9))); (s^2*(s^2 + 9)),s,t);

pretty(ans)

11.2.9 Inversion using the first shift theorem

In Theorem 11.2 we saw that if F(s) is the Laplace transform of f(t) then, for a scalar a,
F(s − a) is the Laplace transform of eatf (t). This theorem normally causes little difficulty
when used to obtain the Laplace transforms of functions, but it does frequently lead to
problems when used to obtain inverse transforms. Expressed in the inverse form, the
theorem becomes

�−1{F(s − a)} = eatf (t)

The notation

�−1{[F(s)]s→s−a} = eat[ f (t)]

where F(s) = �{ f (t)} and [F(s)]s→s−a denotes that s in F(s) is replaced by s − a, may
make the relation clearer.

Example 11.18 Find

Solution

and, since 1/s2 = �{t}, the shift theorem gives

Check the answer using MATLAB or MAPLE.

Example 11.19 Find
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Solution

and, since 2/(s2 + 22) = �{sin 2t}, the shift theorem gives

The MATLAB commands

syms s t

ilaplace(2/(s^2 + 6*s + 13);

pretty(simple(ans))

return

ans = –1/2i(exp((–3 + 2i)t) – exp((–3 – 2i)t))

The MAPLE commands

with(inttrans):

invlaplace(2/(s^2 + 6*s + 13),s,t);

simplify(%);

return the same answer.
To obtain the same format as provided in the solution, further manipulation is

required as follows:

1/2i[−e−3te2it + e−3te−2it ] = e−3t((e2it − e−2it)/(2i)) = e−3t sin 2t

Example 11.20 Find

Solution

Since s/(s2 + 22) = �{cos 2t} and 2/(s2 + 22) = �{sin 2t}, the shift theorem gives

Example 11.21 Find
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Solution Resolving 1/(s + 1)2(s2 + 4) into partial fractions gives

Since 1/s2 = �{t}, the shift theorem, together with the results in Figure 11.5, gives

Check your answers to Examples 11.20 and 11.21 using MATLAB or MAPLE.

11.2.10 Exercise

Check your answers using MATLAB or MAPLE.
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4 Find �−1{F(s)} when F(s) is given by
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11.3 Solution of differential equations
We first consider the Laplace transforms of derivatives and integrals, and then apply
these to the solution of differential equations.

11.3.1 Transforms of derivatives
If we are to use Laplace transform methods to solve differential equations, we need to
find convenient expressions for the Laplace transforms of derivatives such as df/dt,
d2f/dt2 or, in general, dnf/dt n. By definition,
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Integrating by parts, we have

= [e−stf (t)]0
∞ + s�

0

∞

e−stf (t)dt

= −f (0) + sF(s)

that is,

(11.12)

In taking the Laplace transform of a derivative we have assumed that f (t) is continuous
at t = 0, so that f (0−) = f (0) = f (0+). In the companion text Advanced Modern Engineer-
ing Mathematics there are occasions when f (0−) ≠ f (0+) and we have to revert to a
more generalized calculus to resolve the problem.

The advantage of using the Laplace transform when dealing with differential equa-
tions can readily be seen, since it enables us to replace the operation of differentiation
in the time domain by a simple algebraic operation in the s domain.

Note that to deduce the result (11.12), we have assumed that f (t) is continuous, with
a piecewise-continuous derivative df /dt, for t � 0 and that it is also of exponential order
as t → ∞.

Likewise, if both f (t) and df/dt are continuous on t � 0 and are of exponential order
as t → ∞, and d2f/dt2 is piecewise-continuous for t � 0, then

which, on using (11.11), gives

leading to the result

(11.13)

Clearly, provided that f (t) and its derivatives satisfy the required conditions, this 
procedure may be extended to obtain the Laplace transform of f (n)(t) = dnf/dt n in the
form
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�{ f (n)(t)} = snF(s) − sn−1f (0) − sn−2f (1)(0) − … − f (n−1)(0)

= snF(s) − (11.14)

a result that may be readily proved by induction.
Again it is noted that in determining the Laplace transform of f (n)(t) we have

assumed that f (n−1)(t) is continuous.

11.3.2 Transforms of integrals

In some applications the behaviour of a system may be represented by an integro-
differential equation, which is an equation containing both derivatives and integrals of
the unknown variable. For example, the current i in a series electrical circuit consisting
of a resistance R, an inductance L and capacitance C, and subject to an applied voltage
E, is given by

To solve such equations directly, it is convenient to be able to obtain the Laplace 
transform of integrals such as �0

t f (τ)dτ.
Writing

g(t) = �
0

t

f (τ )dτ

we have

Taking Laplace transforms,

which, on using (11.12), gives

sG(s) = F(s)

or

leading to the result
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Example 11.22 Obtain

Solution In this case f (t) = t3 + sin 2t, giving

F(s) = �{ f (t)} = �{t3} + �{sin 2t}

so, by (11.15),

11.3.3 Ordinary differential equations
Having obtained expressions for the Laplace transforms of derivatives, we are now in
a position to use Laplace transform methods to solve ordinary linear differential equa-
tions with constant coefficients, which were introduced in Chapter 10. To illustrate this,
consider the general second-order linear differential equation

(11.16)

subject to the initial conditions x(0) = x0, :(0) = v0 where as usual a dot denotes differ-
entiation with respect to time, t. Such a differential equation may model the dynamics
of some system for which the variable x(t) determines the response of the system to the
forcing or excitation term u(t). The terms system input and system output are also
frequently used for u(t) and x(t) respectively. Since the differential equation is linear
and has constant coefficients, a system characterized by such a model is said to be a
linear time-invariant system.

Taking Laplace transforms of each term in (11.16) gives

which on using (11.12) and (11.13) leads to

a[s2X(s) − sx(0) − :(0)] + b[sX(s) − x(0)] + cX(s) = U(s)

Rearranging, and incorporating the given initial conditions, gives

(as2 + bs + c)X(s) = U(s) + (as + b)x0 + av0

so that

(11.17)X s
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11.3 SOLUTION OF DIFFERENTIAL EQUATIONS 927

Equation (11.17) determines the Laplace transform X(s) of the response, from which,
by taking the inverse transform, the desired time response x(t) may be obtained.

Before considering specific examples, there are a few observations worth noting at
this stage.

(a) As we have already noted in Section 11.3.1, a distinct advantage of using the Laplace
transform is that it enables us to replace the operation of differentiation by an algebraic
operation. Consequently, by taking the Laplace transform of each term in a differential
equation, it is converted into an algebraic equation in the variable s. This may then be
rearranged using algebraic rules to obtain an expression for the Laplace transform of
the response; the desired time response is then obtained by taking the inverse transform.

(b) The Laplace transform method yields the complete solution to the linear differen-
tial equation, with the initial conditions automatically included. This contrasts with the
classical approach adopted in Chapter 10, in which the general solution consists of two
components, the complementary function and the particular integral, with the initial
conditions determining the undetermined constants associated with the complementary
function. When the solution is expressed in the general form (11.17), upon inversion
the term involving U(s) leads to a particular integral while that involving x0 and v0 gives
a complementary function. A useful side issue is that an explicit solution for the 
transient is obtained that reflects the initial conditions.

(c) The Laplace transform method is ideally suited for solving initial-value problems;
that is, linear differential equations in which all the initial conditions x(0), :(0), and so on,
at time t = 0 are specified. The method is less attractive for boundary-value problems,
when the conditions on x(t) and its derivatives are not all specified at t = 0, but some
are specified at other values of the independent variable. It is still possible, however, 
to use the Laplace transform method by assigning arbitrary constants to one or more 
of the initial conditions and then determining their values using the given boundary
conditions.

(d) It should be noted that the denominator of the right-hand side of (11.17) is the left-
hand side of (11.16) with the operator d/dt replaced by s. The denominator equated to
zero also corresponds to the auxiliary equation or characteristic equation used in the
classical approach. Given a specific initial-value problem, the process of obtaining a
solution using Laplace transform methods is fairly straightforward, and is illustrated by
Example 11.23.

Example 11.23 Solve the differential equation

subject to the initial conditions x = 1 and dx/dt = 0 at t = 0.

Solution Taking Laplace transforms
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leads to the transformed equation

[s2X(s) − sx(0) − :(0)] + 5[sX(s) − x(0)] + 6X(s) =

which on rearrangement gives

(s2 + 5s + 6)X(s) = + (s + 5)x(0) + :(0)

Incorporating the given initial conditions x(0) = 1 and :(0) = 0 leads to

(s2 + 5s + 6)X(s) = + s + 5

That is,

Resolving the rational terms into partial fractions gives

Taking inverse transforms gives the desired solution

x(t) = e−t + e−2t − e−3t (t � 0)

In principle the procedure adopted in Example 11.23 for solving a second-order 
linear differential equation with constant coefficients is readily carried over to higher-
order differential equations. A general nth-order linear differential equation may be
written as

(11.18)

where an, an−1, … , a0 are constants, with an ≠ 0. This may be written in the more 
concise form

q(D)x(t) = u(t) (11.19)

where D denotes the operator d/dt and q(D) is the polynomial

The objective is then to determine the response x(t) for a given forcing function u(t)
subject to the given set of initial conditions
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Drx(0) = = cr (r = 0, 1, … , n − 1)

Taking Laplace transforms in (11.19) and proceeding as before leads to

where

Then, in principle, by taking the inverse transform, the desired response x(t) may be
obtained as

For high-order differential equations the process of performing this inversion may prove
to be rather tedious, and matrix methods may be used, as indicated in Chapter 5 of the
companion text Advanced Modern Engineering Mathematics.

To conclude this section, further worked examples are developed in order to help
consolidate understanding of this method for solving linear differential equations.

Example 11.24 Solve the differential equation

subject to the initial conditions x = 0 and dx/dt = 0 at t = 0.

Solution Taking the Laplace transforms

leads to the equation

[s2X(s) − sx(0) − :(0)] + 6[sX(s) − x(0)] + 9X(s) =

which on rearrangement gives

(s2 + 6s + 9)X(s) = + (s + 6)x(0) + :(0)

Incorporating the given initial conditions x(0) = :(0) = 0 leads to
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Resolving into partial fractions gives

that is,

Taking inverse transforms, using the shift theorem, leads to the desired solution

In MATLAB, using the Symbolic Math Toolbox, the command dsolve computes
symbolic solutions to differential equations. The letter D denotes differentiation
whilst the symbols D2, D3, … , DN denote the 2nd, 3rd, … , Nth derivatives respect-
ively. The dependent variable is that preceded by D whilst the default independent
variable is t. The independent variable can be changed from t to another symbolic
variable by including that variable as the last input variable. The initial conditions
are specified by additional equations, such as Dx(0) = 6. If the initial conditions
are not specified the solution will contain constants of integration such as C1 and C2.

For the differential equation of Example 11.24 the MATLAB commands

syms x t

x = dsolve(D2x + 6*Dx + 9*x = sin(t)’, ‘x(0) = 0,Dx(0) = 0’);

pretty(simple(x))

return the solution

x = –3/50cos(t) + 2/25sin(t) + 3/50(1/exp(t)3) +

1/10(t/exp(t)3)

It is left as an exercise to express 1/exp(t)3 as e–3t.
In MAPLE the command dsolve is also used and the commands

ode2:= diff(x(t),t,t) + 6*diff(x(t),t) + 9*x(t) = sin(t);

dsolve({ode2, x(0) = 0, D(x)(0) = 0}, x(t));

return the solution

x(t) = 3––50e
(–3t) + 1––10e

(–3t)t – 3––50cos(t) + 2––25sin(t)

If the initial conditions were not specified then the command

dsolve({ode2}, x(t));

returns the solution

x(t) = e(–3t)C1 + e(–3t)tC2 – 3––50cos(t) + 2––25sin(t)

In MAPLE it is also possible to specify a solution by the Laplace method and the 
command

dsolve({ode2, x(0) = 0, D(x)(0) = 0}, x(t), method =

laplace);
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....

also returns the solution

x(t) = - 3––50cos(t) + 2––25sin(t) + 1––50e
(–3t)(5t + 3)

and, when initial conditions are not specified, the command

dsolve({ode2},x(t), method = laplace);

returns the solution

x(t) = - 3––50cos(t) + 2––25sin(t) + 1––50e
(–3t)(50 tD(x)(0) +

150 t x(0) + 5t + 50x(0) + 3)

Example 11.25 Solve the differential equation

subject to the initial conditions x = dx/dt = 1 and d2x/dt2 = 0 at t = 0.

Solution Taking Laplace transforms

leads to the equation

s3X(s) − s2x(0) − s:(0) − ;(0) + 5[s2X(s) − sx(0) − :(0)]

+ 17[sX(s) − x(0)] + 13X(s)

which on rearrangement gives

(s3 + 5s2 + 17s + 13)X(s) + (s2 + 5s + 17)x(0) + (s + 5):(0) + ;(0)

Incorporating the given initial conditions x(0) = :(0) = 1 and ;(0) = 0 leads to

Clearly s + 1 is a factor of s3 + 5s2 + 17s + 13, and by algebraic division we have

Resolving into partial fractions,

Taking inverse transforms, using the shift theorem, leads to the solution

(44 cos 3t − 27 sin 3t) (t � 0)x t t t( )      = + −− −1
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Confirm that the answer may be checked using the commands

syms x t

x = dsolve(‘D3x + 5*D2x + 17*Dx + 13*x = 1’,’x(0) =

1,D2x(0) = 0’);

pretty(simple(x))

in MATLAB, or the commands

ode3:= diff(x(t), t$3) + 5*diff(x(t), t$2) +

17*diff(x(t),t) + 13*x(t) = 1;

dsolve({ode3,x(0) = 1,D(x)(0) = 1,(D@@2)(x)(0) =

0},x(t),method = laplace);

in MAPLE.

11.3.4 Exercise

Check your answers using MATLAB or MAPLE.

5 Using Laplace transform methods, solve for t � 0
the following differential equations, subject to
the specified initial conditions.

(a) subject to x = 2 at t = 0

(b) subject to x = at t = 0

(c)

subject to x = 0 and = 0 at t = 0

(d)

subject to y = 0 and = 2 at t = 0

(e)

subject to x = 0 and = 1 at t = 0

(f)

subject to x = 4 and = −7 at t = 0
d
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(g)

subject to x = 1 and = 0 at t = 0

(h)

subject to y = 0 and = 1 at t = 0

(i)

subject to x = and = 0 at t = 0

( j)

subject to x = 0 and = 0 at t = 0

(k)

subject to x = − and = 1 at t = 0

(l)

subject to y = 1 and = 1 at t = 0
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(m)

subject to x = 0, = 1 and = 0 at t = 0
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subject to x = 0, = 1 and = 1 at t = 0
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11.3.5 Simultaneous differential equations
In engineering we frequently encounter systems whose characteristics are modelled
by a set of simultaneous linear differential equations with constant coefficients. The
method of solution is essentially the same as that adopted in Section 11.3.3 for solving
a single differential equation in one unknown. Taking Laplace transforms throughout,
the system of simultaneous differential equations is transformed into a system of simul-
taneous algebraic equations, which are then solved for the transformed variables;
inverse transforms then give the desired solutions.

Example 11.26 Solve for t � 0 the simultaneous first-order differential equations

(11.20)

(11.21)

subject to the initial conditions x = 2 and y = 1 at t = 0.

Solution Taking Laplace transforms in (11.20) and (11.21) gives

sX(s) − x(0) + sY(s) − y(0) + 5X(s) + 3Y(s) =

2[sX(s) − x(0)] + sY(s) − y(0) + X(s) + Y(s) =

Rearranging and incorporating the given initial conditions x(0) = 2 and y(0) = 1 leads to

(s + 5)X(s) + (s + 3)Y(s) = (11.22)

(2s + 1)X(s) + (s + 1)Y(s) =  (11.23)

Hence, by taking Laplace transforms, the pair of simultaneous differential equations
(11.20) and (11.21) in x(t) and y(t) has been transformed into a pair of simultaneous
algebraic equations (11.22) and (11.23) in the transformed variables X(s) and Y(s).
These algebraic equations may now be solved simultaneously for X(s) and Y(s) using
standard algebraic techniques.

Solving first for X(s) gives
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Resolving into partial fractions,

which on inversion gives

(11.24)

Likewise, solving for Y(s) gives

Resolving into partial fractions,

which on inversion gives

Thus the solution to the given pair of simultaneous differential equations is

Note: When solving a pair of first-order simultaneous differential equations such as (11.20)
and (11.21), an alternative approach to obtaining the value of y(t) having obtained x(t)
is to use (11.20) and (11.21) directly.

Eliminating dy/dt from (11.20) and (11.21) gives

Substituting the solution obtained in (11.24) for x(t) gives

leading as before to the solution

A further alternative is to express (11.22) and (11.23) in matrix form and solve for X(s)
and Y(s) using Gaussian elimination.

In MATLAB the solution to the pair of simultaneous differential equations of
Example 11.26 may be obtained using the commands

syms x y t

[x,y] = dsolve(‘Dx + Dy + 5*x + 3*y = exp(–t)’, 

‘2*Dx + Dy + x + y = 3’,

‘x(0) = 2,y(0) = 1’)

y t t t      = + + −− −15
2
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....

which return

x = –11/6*exp(–2*t) + 25/3*exp(t)–9/2

y = –25/2*exp(t) + 11/2*exp(–2*t) + 15/2 + 1/2*exp(–t)

These can then be expressed in typeset form using the commands pretty(x) and
pretty(y). In MAPLE the commands

ode1:= D(x)(t) + D(y)(t) + 5*x(t) + 3*y(t) = exp(–t);

ode2:= 2*D(x)(t) + D(y)(t) + x(t) + y(t) = 3;

dsolve({ode1,ode2, x(0) = 2, y(0) = 1},{x(t),y(t)});

return

{x(t) = -11––6 e
(–2t) + 25––3e

t - 9–2, y(t) = -25––2 e
t + 11––2e

(–2t) +

15––2 + 1–2e
(–t)}

In principle, the same procedure as used in Example 11.26 can be employed to solve
a pair of higher-order simultaneous differential equations or a larger system of differ-
ential equations involving more unknowns. However, the algebra involved can become
quite complicated, and matrix methods are usually preferred.

11.3.6 Exercise

Check your answers using MATLAB or MAPLE.

6 Using Laplace transform methods, solve for 
t � 0 the following simultaneous differential
equations subject to the given initial conditions: 

(a)

subject to x = 0 and at t = 0

(b)

subject to x = 0 and y = 0 at t = 0

(c)

subject to x = −1 and y = 4 at t = 0

d

d
e

y

t
x y t      + + = −5 3 5 2

d

d

d

d
e
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t

y

t
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t
y t      − − = −

(d)

subject to x = 1 and y = 1 at t = 0

(e)

subject to x = 0 and y = −1 at t = 0

(f)

subject to x = 1 and y = 0 at t = 0

(g)

subject to x = y = 0 at t = 0

5 3 4 6 14 14
d

d

d

d
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t
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(h)

subject to x = 4, y = 2, dx/dt = 0 and dy/dt = 0 at
t = 0

(i)

5 16 6 0
2 2

d

d

d

d

2 2x

t

y

t
y      + + =

5 12 6 0
2 2

d

d

d

d

2 2x

t

y

t
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d

d

2y

t
x y

2
2    = −

d

d

2 x

t
y x

2
2    = −
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subject to , y = 1, dx/dt = 0 and
dy/dt = 0 at t = 0

( j)

subject to x = dx/dt = 1 and y = dy/dt = 0 at 
t = 0

2 5 7
2 2

d

d

d

d

d

d

d

d

2 2x

t

y

t
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t

y

t
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2 3 9
2 2
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d

d

d

d

d

d

2 2x

t

y

t

x

t

y

t
y x          − − − = −

x  = 7
4

11.4 Engineering applications: electrical circuits and 
mechanical vibrations
To illustrate the use of Laplace transforms, we consider here their application to the
analysis of electrical circuits and vibrating mechanical systems. Since initial conditions
are automatically taken into account in the transformation process, the Laplace trans-
form is particularly attractive for examining the transient behaviour of such systems.
Although electrical circuits and mechanical vibrations were considered in Chapter 10,
we shall review here the modelling aspects in each case. This is to enable the two 
chapters to be studied independently of each other.

Using the commands adapted in the previous sections, MATLAB or MAPLE can be
used throughout this section to confirm answers obtained.

11.4.1 Electrical circuits

Passive electrical circuits are constructed of three basic elements: resistors (having
resistance R, measured in ohms Ω), capacitors (having capacitance C, measured in farads
F) and inductors (having inductance L, measured in henries H), with the associated
variables being current i(t) (measured in amperes A) and voltage v(t) (measured in
volts V). The current flow in the circuit is related to the charge q(t) (measured in
coulombs C) by the relationship

Conventionally, the basic elements are represented symbolically as in Figure 11.7.

i
q

t
  =

d

d

Figure 11.7
Constituent elements
of an electrical circuit.
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The relationships between the flow of current i(t) and the voltage drops v(t) across
these elements at time t are

voltage drop across resistor = Ri (Ohm’s law)

voltage drop across capacitor =

The interaction between the individual elements making up an electrical circuit is 
determined by Kirchhoff’s laws:

Law 1
The algebraic sum of all the currents entering any junction (or node) of a circuit is zero.

Law 2
The algebraic sum of the voltage drops around any closed loop (or path) in a circuit is
zero.

Use of these laws leads to circuit equations, which may then be analysed using Laplace
transform techniques.

Example 11.27 The LCR circuit of Figure 11.8 consists of a resistor R, a capacitor C and an inductor L
connected in series together with a voltage source e(t). Prior to closing the switch at
time t = 0, both the charge on the capacitor and the resulting current in the circuit are
zero. Determine the charge q(t) on the capacitor and the resulting current i(t) in the
circuit at time t, given that R = 160 Ω, L = 1 H, C = 10−4 F and e(t) = 20 V.

Solution Applying Kirchhoff’s second law to the circuit of Figure 11.8 gives

(11.25)

or, using i = dq/dt,

Substituting the given values for L, R, C and e(t) gives

d

d

d

d

2q

t

q

t
q

2
4160 10 20      + + =

L
q

t
R

q

t C
q e t

d

d

d

d

2

2

1
      ( )+ + =

 
Ri L

i

t C
i t e t      ( )+ + =

d

d
d

1�

1

C
i t

q

C� d   =

....

Figure 11.8
LCR circuit of
Example 11.27.

M11_JAME0734_05_SE_C11.qxd  11/03/2015  10:01  Page 937



..

Taking Laplace transforms throughout leads to the equation

(s2 + 160s + 104)Q(s) = [sq(0) + {(0)] + 160q(0) +

where Q(s) is the transform of q(t). We are given that q(0) = 0 and {(0) = i(0) = 0, so
that this reduces to

(s2 + 160s + 104)Q(s) =

that is,

Resolving into partial fractions gives

Taking inverse transforms, making use of the shift theorem (Theorem 11.2), gives

The resulting current i(t) in the circuit is then given by

Note that we could have determined the current by taking Laplace transforms in (11.25).
Substituting the given values for L, R, C and e(t) and using (11.15) leads to the trans-
formed equation

160I(s) + sI(s) + I(s) =

that is,

(= sQ(s) since q(0) = 0)

which, on taking inverse transforms, gives as before

i(t) = e−80t sin 60t

Example 11.28 In the parallel network of Figure 11.9 there is no current flowing in either loop prior to
closing the switch at time t = 0. Deduce the currents i1(t) and i2(t) flowing in the loops
at time t.
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Solution Applying Kirchhoff’s first law to node X gives

i = i1 + i2

Applying Kirchhoff’s second law to each of the two loops in turn gives

R1(i1 + i2) + L1 (i1 + i2) + R2i1 = 200

+ R3i2 − R2i1 = 0

Substituting the given values for the resistances and inductances gives

(11.26)

Taking Laplace transforms and incorporating the initial conditions i1(0) = i2(0) = 0 leads
to the transformed equations

(s + 56)I1(s) + (s + 40)I2(s) = (11.27)

−8I1(s) + (s + 10)I2(s) = 0 (11.28)

Hence

Resolving into partial fractions gives

which, on taking inverse transforms, leads to

i2(t) = 3.64 + 1.22e−59.1t − 4.86e−14.9t

From (11.26),
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Figure 11.9
Parallel circuit of
Example 11.28.
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that is,

i1(t) = 4.55 − 7.49e−59.1t + 2.98e−14.9t

Note that as t → ∞, the currents i1(t) and i2(t) approach the constant values 4.55A and
3.64A respectively. (Note that i(0) = i1(0) + i2(0) ≠ 0 due to rounding errors in the 
calculation.)

Example 11.29 A voltage e(t) is applied to the primary circuit at time t = 0, and mutual induction M
drives the current i2(t) in the secondary circuit of Figure 11.10. If, prior to closing the
switch, the currents in both circuits are zero, determine the induced current i2(t) in the
secondary circuit at time t when R1 = 4 Ω, R2 = 10 Ω, L1 = 2 H, L2 = 8 H, M = 2 H and
e(t) = 28 sin 2t V.

Solution Applying Kirchhoff’s second law to the primary and secondary circuits respectively
gives

Substituting the given values for the resistances, inductances and applied voltage leads to

Taking Laplace transforms and noting that i1(0) = i2(0) = 0 leads to the equations

(s + 2)I1(s) + sI2(s) = (11.29)

sI1(s) + (4s + 5)I2(s) = 0 (11.30)

Solving for I2(s) yields
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Figure 11.10
Circuit of 
Example 11.29.
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Resolving into partial fractions gives

Taking inverse Laplace transforms gives the current in the secondary circuit as

As t → ∞, the current will approach the sinusoidal response

11.4.2 Mechanical vibrations

Mechanical translational systems may be used to model many situations, and involve
three basic elements: masses (having mass M, measured in kg), springs (having spring
stiffness K, measured in N m−1) and dampers (having damping coefficient B, measured
in N s m−1). The associated variables are displacement x(t) (measured in m) and force
F(t) (measured in N). Conventionally, the basic elements are represented symbolically,
as in Figure 11.11.

Assuming we are dealing with ideal springs and dampers (that is, assuming that they
behave linearly), the relationships between the forces and displacements at time t are

mass: (Newton’s law)

spring: F = K(x2 − x1) (Hooke’s law)

damper:

Using these relationships leads to the system equations, which may then be analysed
using Laplace transform techniques.

Example 11.30 The mass of the mass–spring–damper system of Figure 11.12(a) is subjected to an
externally applied periodic force F(t) = 4 sin ω t at time t = 0. Determine the resulting
displacement x(t) of the mass at time t, given that x(0) = :(0) = 0, for the two cases

(a) ω = 2 (b) ω = 5

In the case ω = 5, what would happen to the response if the damper were missing?
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Figure 11.11
Constituent elements
of a translational
mechanical system.
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Solution As indicated in Figure 11.12(b), the forces acting on the mass M are the applied force
F(t) and the restoring forces F1 and F2 due to the spring and damper respectively. Thus,
by Newton’s law,

M;(t) = F(t) − F1(t) − F2(t)

Since M = 1, F(t) = 4 sin ω t, F1(t) = Kx(t) = 25x(t) and F2(t) = B:(t) = 6:(t), this gives

;(t) + 6:(t) + 25x(t) = 4 sin ω t (11.31)

as the differential equation representing the motion of the system.
Taking Laplace transforms throughout in (11.31) gives

(s2 + 6s + 25)X(s) = [sx(0) + :(0)] + 6x(0) +

where X(s) is the transform of x(t). Incorporating the given initial conditions 
x(0) = :(0) = 0 leads to

(11.32)

In case (a), with ω = 2, (11.32) gives

which, on resolving into partial fractions, leads to

Taking inverse Laplace transforms gives the required response

x(t) = (7 sin 2t − 4 cos 2t) + e−3t(8 cos 4t − sin 4t) (11.33)

In case (b), with ω = 5, (11.32) gives
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Figure 11.12
Mass–spring–damper
system of 
Example 11.30.
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that is,

which, on taking inverse Laplace transforms, gives the required response

(11.35)

If the damping term were missing then (11.34) would become

(11.36)

By Theorem 11.3,

that is,

Thus, by the linearity property (11.10),

�{ sin 5t − t cos 5t} =

so that taking inverse Laplace transforms in (11.36) gives the response as

x(t) = (sin 5t − 5t cos 5t)

Because of the term t cos 5t, the response x(t) is unbounded as t → ∞. This arises because
in this case the applied force F(t) = 4 sin 5t is in resonance with the system (that is, the
vibrating mass), whose natural oscillating frequency is 5/2π Hz, equal to that of the
applied force. Even in the presence of damping, the amplitude of the system response
is maximized when the applied force is approaching resonance with the system. (This
is left as an exercise for the reader.) In the absence of damping we have the limiting
case of pure resonance, leading to an unbounded response. As noted in Section 10.10.3,
resonance is of practical importance, since, for example, it can lead to large and strong
structures collapsing under what appears to be a relatively small force.

Example 11.31 Consider the mechanical system of Figure 11.13(a), which consists of two masses
M1 = 1 and M2 = 2, each attached to a fixed base by a spring, having constants K1 = 1
and K3 = 2 respectively, and attached to each other by a third spring having constant
K2 = 2. The system is released from rest at time t = 0 in a position in which M1 is
displaced 1 unit to the left of its equilibrium position and M2 is displaced 2 units to
the right of its equilibrium position. Neglecting all frictional effects, determine the 
positions of the masses at time t.
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Solution Let x1(t) and x2(t) denote the displacements of the masses M1 and M2 respectively from
their equilibrium positions. Since frictional effects are neglected, the only forces acting
on the masses are the restoring forces due to the springs, as shown in Figure 11.13(b).
Applying Newton’s law to the motions of M1 and M2 respectively gives

M1;1 = F2 − F1 = K2(x2 − x1) − K1x1

M2;2 = −F3 − F2 = −K3x2 − K2(x2 − x1)

which, on substituting the given values for M1, M2, K1, K2 and K3, gives

;1 + 3x1 − 2x2 = 0 (11.37)

2;2 + 4x2 − 2x1 = 0 (11.38)

Taking Laplace transforms leads to the equations

(s2 + 3)X1(s) − 2X2(s) = sx1(0) + :1(0)

−X1(s) + (s2 + 2)X2(s) = sx2(0) + :2(0)

Since x1(t) and x2(t) denote displacements to the right of the equilibrium positions, we have
x1(0) = −1 and x2(0) = 2. Also, the system is released from rest, so that :1(0) = :2(0) = 0.
Incorporating these initial conditions, the transformed equations become

(s2 + 3)X1(s) − 2X2(s) = −s (11.39)

−X1(s) + (s2 + 2)X2(s) = 2s (11.40)

Hence

Resolving into partial fractions gives

which, on taking inverse Laplace transforms, leads to the response

x2(t) = cos t + cos 2t

Substituting for x2(t) in (11.38) gives

x1(t) = 2x2(t) + ;2(t)

= 2 cos t + 2 cos 2t − cos t − 4 cos 2t

X s
s

s

s

s
2 2 21 4
( )  

 
  

 
=

+
+

+

X s
s s

s s
2

3

2 2

2 5

4 1
( )  

 

(  )(  )
=

+
+ +
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Figure 11.13
Two-mass system of
Example 11.31.
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11.4 ENGINEERING APPLICATIONS:  ELECTRICAL CIRCUITS AND MECHANICAL VIBRATIONS 945

that is,

x1(t) = cos t − 2 cos 2t

Thus the positions of the masses at time t are

x1(t) = cos t − 2 cos 2t

x2(t) = cos t + cos 2t

11.4.3 Exercises

Check your answers using MATLAB or MAPLE whenever possible.

....

7 Use the Laplace transform technique to find the
transforms I1(s) and I2(s) of the respective currents
flowing in the circuit of Figure 11.14, where i1(t) 
is that through the capacitor and i2(t) that through
the resistance. Hence, determine i2(t). (Initially,
i1(0) = i2(0) = q1(0) = 0.) Sketch i2(t) for large
values of t.

and deduce that

9 In the circuit of Figure 11.16 there is no energy
stored (that is, there is no charge on the capacitors
and no current flowing in the inductances) prior to
the closure of the switch at time t = 0. Determine
i1(t) for t � 0 for a constant applied voltage 
E0 = 10 V.

i t t tt t
2

12
37

6 25
37

35
37( )    cos   sin= − + + +− −e e

Figure 11.14 Circuit of Question 7.

Figure 11.15 Circuit of Question 8.

8 At time t = 0, with no currents flowing, a voltage
v(t) = 10 sin t is applied to the primary circuit of
a transformer that has a mutual inductance of 1 H,
as shown in Figure 11.15. Denoting the current
flowing at time t in the secondary circuit by i2(t),
show that

 
�{ ( )}  

(    )(  )
i t

s

s s s2 2 2

10

7 6 1
=

+ + +

Figure 11.16 Circuit of Question 9.

10 Determine the displacements of the masses M1 and
M2 in Figure 11.13 at time t � 0 when

M1 = M2 = 1

K1 = 1, K2 = 3 and K3 = 9

What are the natural frequencies of the system?

11 When testing the landing-gear unit of a space
vehicle, drop tests are carried out. Figure 11.17 is 
a schematic model of the unit at the instant when 
it first touches the ground. At this instant the 
spring is fully extended and the velocity of the 
mass is ÷(2gh), where h is the height from which 
the unit has been dropped. Obtain the equation
representing the displacement of the mass at
time t � 0 when M = 50 kg, B = 180 N s m−1 and
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K = 474.5 N m−1, and investigate the effects of
different dropping heights h. (g is the acceleration
due to gravity, and may be taken as 9.8 m s−2.)

946 INTRODUCTION TO LAPLACE TRANSFORMS

..

Figure 11.17 Landing-gear of Question 11.

12 Consider the mass–spring–damper system of
Figure 11.18, which may be subject to two 
input forces u1(t) and u2(t). Show that the
displacements x1(t) and x2(t) of the two masses 
are given by

Figure 11.18 Mechanical system of Question 12.

where

∆ = (M1s
2 + B1s + K1)(M2s

2 + B1s + K2) − B2
1s

2

 
x t

B s
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11.5 Review exercises (1–18)

Check your answers using MATLAB or MAPLE whenever possible.

1 Solve, using Laplace transforms, the following
differential equations:

(a)

subject to x = = 0 at t = 0

(b)

subject to x = 1 and = 1 at t = 0

2 (a) Find the inverse Laplace transform of

(b) A voltage source Ve−t sin t is applied across a
series LCR circuit with L = 1, R = 3 and C = .1

2

1

1 2 2 22(   )(   )(    )s s s s+ + + +

d

d

x

t

5 3 2 6
2

d

d

d

d

2x

t

x

t
x      − − =

d

d

x

t

d

d

d

d

2x

t

x

t
x t

2
4 5 8      cos+ + =

Show that the current i(t) in the circuit satisfies the
differential equation

Find the current i(t) in the circuit at time t � 0
if i(t) satisfies the initial conditions i(0) = 1 and
(di/dt)(0) = 2.

3 Use Laplace transform methods to solve the
simultaneous differential equations

subject to x = y = = 0 at t = 0.=  
d

d

d

d

x

t

y

t

d

d

d

d

2y

t
y

x

t2
4 2 2      − − = −

d

d

d

d

2x

t
x

y

t
t

2
5      − + =

d

d

d

d
e

2i

t

i

t
i V tt

2
3 2      sin+ + = −
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4 Solve the differential equation

subject to the initial conditions x = x0 and
dx/dt = x1 at t = 0. Identify the steady-state 
and transient solutions. Find the amplitude 
and phase shift of the steady-state solution.

5 Resistors of 5 and 20 Ω are connected to the
primary and secondary coils of a transformer with
inductances, as shown in Figure 11.19. At time
t = 0, with no current flowing, a voltage E = 100 V
is applied to the primary circuit. Show that
subsequently the current in the secondary circuit is

6 (a) Find the Laplace transforms of

( i) cos(ωt + φ) (ii) e−ωt sin(ωt + φ)

(b) Using Laplace transform methods, solve the
differential equation

given that x = 2 and dx/dt = 1 when t = 0.

7 (a) Find the inverse Laplace transform of

(b) Solve using Laplace transforms the
differential equation

+ 2y = 2(2 + cos t + 2 sin t)

given that y = −3 when t = 0.

 
d

d

x

t

s

s s

  

    

−
+ +

4

4 132

d

d

d

d

2x

t

x

t
x t

2
4 8 2      cos+ + =

( )e e− +20

41
11 41 2 11 41 2(  )/ ( ) /− −−t t

d

d

d

d

2x

t

x

t
x t

2
2 2      cos+ + =

....

8 Using Laplace transforms, solve the simultaneous
differential equations

+ 5x + 3y = 5 sin t − 2 cos t

+ 3y + 5x = 6 sin t − 3 cos t

where x = 1 and y = 0 when t = 0.

9 The charge q on a capacitor in an inductive circuit
is given by the differential equation

+ 2 × 104q = 200 sin 100t

and it is also known that both q and dq/dt are zero
when t = 0. Use the Laplace transform method to
find q. What is the phase difference between the
steady-state component of the current dq/dt and the
applied emf 200 sin 100t to the nearest half-degree?

10 Use Laplace transforms to find the value of x
given that

and that x = 2 and dx/dt = −2 when t = 0.

11 (a) Use Laplace transforms to solve the
differential equation

given that θ = 0 and dθ/dt = 0 when t = 0.

(b) Using Laplace transforms, solve the
simultaneous differential equations

given that i1 = 1, i2 = 0 when t = 0.

12 The terminals of a generator producing a voltage V
are connected through a wire of resistance R and a
coil of inductance L (and negligible resistance). A
capacitor of capacitance C is connected in parallel 

i
i

t
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2
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d

d

d
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t
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1 22 6 0     + + =

d

d
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Figure 11.19 Circuit of Question 5.
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with the resistance R, as shown in Figure 11.20.
Show that the current i flowing through the
resistance R is given by

Suppose that

(i) V = 0 for t � 0 and V = E (constant) for t � 0

(ii) L = 2R2C

(iii) CR = 1/2n

and show that the equation reduces to

Hence, assuming that i = 0 and di/dt = 0 when
t = 0, use Laplace transforms to obtain an
expression for i in terms of t.

13 Show that the currents in the coupled circuits of
Figure 11.21 are determined by the simultaneous
differential equations

Find i1 in terms of t, L, E and R, given that i1 = 0
and di1 /dt = E/L at t = 0, and show that i1 �
E/R for large t. What does i2 tend to for large t?

2
3

L
i

t
Ri R i i

d

d
2

2 1 2 0   (  )  + − − =

L
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t
R i i Ri E

d

d
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2
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d

d
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2
      + + =
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14 A system consists of two unit masses lying in a
straight line on a smooth surface and connected
together to two fixed points by three springs. When
a sinusoidal force is applied to the system, the
displacements x1(t) and x2(t) of the respective
masses from their equilibrium positions satisfy
the equations

Given that the system is initially at rest in the
equilibrium position (x1 = x2 = 0), use the Laplace
transform method to solve the equations for x1(t)
and x2(t).

15 (a) Obtain the inverse Laplace transforms of

(i) (ii)

(b) Use Laplace transforms to solve the
differential equation

given that y = 4 and dy/dt = 2, when t = 0.

16 (a) Determine the inverse Laplace transform of

(b) The equation of motion of the moving coil of
a galvanometer when a current i is passed through
it is of the form

where θ is the angle of deflection from the
‘no-current’ position and n and K are positive
constants. Given that i is a constant and 
θ = 0 = dθ/dt when t = 0, obtain an expression 
for the Laplace transform of θ.

In constructing the galvanometer, it is desirable
to have it critically damped (that is, n = K ). 
Use the Laplace transform method to solve the
differential equation in this case, and sketch the
graph of θ against t for positive values of t.
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2 2 12 2     sin= − +Figure 11.20 Circuit of Question 12.

Figure 11.21 Circuit of Question 13.

M11_JAME0734_05_SE_C11.qxd  11/03/2015  10:01  Page 948



11.5 REVIEW EXERCISES (1–18) 949

17 Two cylindrical water tanks are connected as
shown in Figure 11.22. Initially there are 250 litres
in the top tank and 50 litres in the bottom tank. At
time t = 0 the valve between the two tanks and the
valve at the bottom of the lower tank are opened.
The flowrate through each of these valves is
proportional to the volume of water in the tank
immediately above the valve, the constant of
proportionality being 0.1 for both valves. Denoting
the volume in the top tank by v1 and the volume 
in the bottom tank by v2, show that the following
differential equations are satisfied.

(a) Use Laplace transforms to determine v1 and v2.

(b) Find the time taken for the volume of water in
the top tank to reach 10% of its starting value.

.  + =
d

d
2

2 10 1 0 1
t

  .

d

d
1

10 1
t

  .= −

....

masses of the crate and truck are M1 and M2

respectively and their displacements from
equilibrium are respectively x1(t) and x2(t). The
vertical displacement of the truck as it traverses a
bumpy road may be modelled by applying a force
u(t) to the truck.

Show that the motion of the crate and truck
may be modelled by the differential equations

M1;1 = K1(x2 − x1) + B1(:2 − :1)

M2;2 = u − (K1 + K2)x2 + K1x1

− (B1 + B2):2 + B1:1

For the particular case where M1 = 1, M2 = 3, 
K1 = 2, K2 = 1, B1 = 3, B2 = 2 and u(t) = sin t, and the
initial conditions at time t = 0 are x1 = x2 = :1 = 0,
:2 = 2, show that the Laplace transform of x1(t) is

Note: Using an appropriate software package, such
as MATLAB/SIMULINK, the model developed
may be used as the basis for simulation studies of
various scenarios.

X s
s s s

s s s s s1

3 2

4 3 2 2

18 12 21 14

3 14 15 7 2 1
( )  

    

(      )(  )
=

+ + +
+ + + + +

Figure 11.22 Cylindrical tanks of Question 17.

Figure 11.23 Transport crate of Question 18.

18 In order to transport sensitive equipment a crate
is installed inside a truck on damped springs, as
shown in Figure 11.23. The suspension system of
the truck, including the tyres, may be modelled as
a damped spring. The various spring and damper
constants are indicated in the figure. The 
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12.1 INTRODUCTION 951

12.1 Introduction
The representation of a function in the form of a series is fairly common practice in
mathematics. Probably the most familiar expansions are power series of the form

in which the resolved components or base set comprise the power functions

1, x, x 2, x 3, … , xn, …

For example, we recall that the exponential function may be represented by the infinite
series

There are frequently advantages in expanding a function in such a series, since the first
few terms of a good approximation are easy to deal with. For example, term-by-term
integration or differentiation may be applied or suitable function approximations can 
be made.

Power functions comprise only one example of a base set for the expansions of func-
tions: a number of other base sets may be used. In particular, a Fourier series is an
expansion of a periodic function f (t) of period T = 2π /ω in which that base set is the set
of sine functions, giving an expanded representation of the form

Although the idea of expanding a function in the form of such a series had been used
by Bernoulli, D’Alembert and Euler (c. 1750) to solve problems associated with the
vibration of strings, it was Joseph Fourier (1768–1830) who developed the approach to
a stage where it was generally useful. Fourier, a French physicist, was interested in
heat-flow problems: given an initial temperature at all points of a region, he was con-
cerned with determining the change in the temperature distribution over time. When
Fourier postulated in 1807 that an arbitrary function f (x) could be represented by a
trigonometric series of the form

the result was considered so startling that it met considerable opposition from the 
leading mathematicians of the time, notably Laplace, Poisson and, more significantly,
Lagrange, who is regarded as one of the greatest mathematicians of all time. They ques-
tioned his work because of its lack of rigour, and it was probably this opposition that
delayed the publication of Fourier’s work, his classic text Théorie Analytique de la
Chaleur (The Analytical Theory of Heat) not appearing until 1822. This text has since
become the source for the modern methods of solving practical problems associated
with partial differential equations subject to prescribed boundary conditions. In addition
to heat flow, this class of problems includes structural vibrations, wave propagation and
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diffusion, which are discussed in the companion text Advanced Modern Engineering
Mathematics. The task of giving Fourier’s work a more rigorous mathematical under-
pinning was undertaken later by Dirichlet (c. 1830) and subsequently Riemann, his 
successor at the University of Göttingen.

In addition to its use in solving boundary-value problems associated with partial
differential equations, Fourier series analysis is central to many other applications 
in engineering, such as the analysis and design of oscillating and nonlinear systems.
This chapter is intended to provide only an introduction to Fourier series, with a 
more detailed treatment, including consideration of frequency spectra, oscillating and
nonlinear systems, and generalized Fourier series, being given in Advanced Modern
Engineering Mathematics.

12.2 Fourier series expansion
In this section we develop the Fourier series expansion of periodic functions and dis-
cuss how closely they approximate the functions. We also indicate how symmetrical
properties of the function may be taken advantage of in order to reduce the amount 
of mathematical manipulation involved in determining the Fourier series. First, for
continuity, we review the properties of periodic functions considered in Section 2.2.6.

12.2.1 Periodic functions
A function f(t) is said to be periodic if its image values are repeated at regular intervals
in its domain. Thus the graph of a periodic function can be divided into ‘vertical strips’
that are replicas of each other, as illustrated in Figure 12.1. The interval between two
successive replicas is called the period of the function. We therefore say that a func-
tion f (t) is periodic with period T if, for all its domain values t,

f (t + mT ) = f (t)

for any integer m.
To provide a measure of the number of repetitions per unit of t, we define the

frequency of a periodic function to be the reciprocal of its period, so that

frequency
period

    = =
1 1

T
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Figure 12.1
A periodic function
with period T.
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12.2 FOURIER SERIES EXPANSION 953

The term circular frequency is also used in engineering, and is defined by

circular frequency = 2π × frequency 

and is measured in radians per second. It is common to drop the term ‘circular’ and refer
to this simply as the frequency when the context is clear.

12.2.2 Fourier’s theorem

This theorem states that a periodic function that satisfies certain conditions can be
expressed as the sum of a number of sine functions of different amplitudes, phases and
periods. That is, if f (t) is a periodic function with period T then

f (t) = A0 + A1 sin(ω t + φ1) + A2 sin(2ω t + φ2) + … 

+ An sin(nω t + φn) + … (12.1)

where the As and φs are constants and ω = 2π /T is the frequency of f(t). The term 
A1 sin(ω t + φ1) is called the first harmonic or the fundamental mode, and it has the
same frequency ω as the parent function f(t). The term An sin(nω t + φn) is called the 
nth harmonic, and it has frequency nω, which is n times that of the fundamental. An

denotes the amplitude of the nth harmonic and φn is its phase angle, measuring the lag
or lead of the nth harmonic with reference to a pure sine wave of the same frequency.

Since

An sin(nω t + φn) ≡ (An cos φn) sin nω t + (An sin φn) cos nω t

≡ bn sin nω t + an cos nω t

where

bn = An cos φn, an = An sin φn (12.2)

the expansion (12.1) may be written as

(12.3)

where a0 = 2A0 (we shall see later that taking the first term as rather than a0 is a 
convenience that enables us to make a0 fit a general result). The expansion (12.3) is
called the Fourier series expansion of the function f (t), and the as and bs are called 
the Fourier coefficients. In electrical engineering it is common practice to refer to
an and bn respectively as the in-phase and phase quadrature components of the nth
harmonic, this terminology arising from the use of the phasor notation ejnωt = cos nω t
+ j sin nω t. Clearly, (12.1) is an alternative representation of the Fourier series, with the
amplitude and phase of the nth harmonic being determined from (12.2) as

An = ÷(a2
n + b2

n), φn = tan−1

with care being taken over choice of quadrant.
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12.2.3 The Fourier coefficients
Before proceeding to evaluate the Fourier coefficients, we first state the following
integrals, in which T = 2π /ω:

�
d

d+T

cos nω t dt = (12.4)

�
d

d+T

sin nωt dt = 0 (all n) (12.5)

�
d

d+T

sin mωt sin nω t dt = (12.6)

�
d

d+T

cos mωt cos nω t dt = (12.7)

�
d

d+T

cos mωt sin nω t dt = 0 (all m and n) (12.8)

The results (12.4)–(12.8) constitute the orthogonality relations for sine and cosine
functions, and show that the set of functions

{1, cos ω t, cos 2ω t, … , cos nω t, sin ω t, sin 2ω t, … , sin nω t}

is an orthogonal set of functions on the interval d � t � d + T. The choice of d is arbi-
trary in these results, it only being necessary to integrate over a period of duration T.

Integrating the series (12.3) with respect to t over the period t = d to t = d + T, and
using (12.4) and (12.5), we find that each term on the right-hand side is zero except for
the term involving a0; that is, we have

�
d

d+T

f (t)dt =

Thus

�
d

d+T

f (t)dt

and we can see that the constant term in the Fourier series expansion represents the
mean value of the function f (t) over one period. For an electrical signal it represents the
bias level or DC (direct current) component. Hence

a0 = �
d

d+T

f (t)dt (12.9)
2

T

1
2 0a

1

2

1
0a

T
  =

=  1
2 0Ta

= + +
=

∞

∑ ( )  [ ( )  ( )]1
2 0

1

0 0a T a bn n
n

1
2 0

1

a t a n t t b n t t
d

d T

n

d

d T

n

d

d T

n
� � �

+ + +

=

∞

+ +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑d d d  cos    sin  ω ω

0

01
2

(   )

(     )

m n

T m n

≠

= ≠

⎧
⎨
⎪

⎩⎪

0

01
2

(   )

(     )

m n

T m n

≠

= ≠

⎧
⎨
⎪

⎩⎪

(   )

(   )

n

T n

≠

=

⎧
⎨
⎩

0 0

0

954 INTRODUCTION TO FOURIER SERIES

....

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 954



12.2 FOURIER SERIES EXPANSION 955

To obtain this result, we have assumed that term-by-term integration of the series (12.3)
is permissible. This is indeed so because of the convergence properties of the series –
its validity is discussed in detail in more advanced texts.

To obtain the Fourier coefficient an (n ≠ 0), we multiply (12.3) throughout by
cos mω t and integrate with respect to t over the period t = d to t = d + T, giving

�
d

d+T

f (t) cos mω t dt = �
d

d+T

cos mω t dt + �
d

d+T

cos nω t cos mω t dt

+ �
d

d+T

cos mω t sin nω t dt

Assuming term-by-term integration to be possible, and using (12.4), (12.7) and (12.8),
we find that, when m ≠ 0, the only non-zero integral on the right-hand side is the one
that occurs in the first summation when n = m. That is, we have

�
d

d+T

f(t) cos mω t dt = am�
d

d+T

cos mω t cos mω t dt = amT

giving

am = �
d

d+T

f (t) cos mω t dt

which, on replacing m by n, gives

an = �
d

d+T

f (t) cos nω t dt (12.10)

The value of a0 given in (12.9) may be obtained by taking n = 0 in (12.10), so that we
may write

an = �
d

d+T

f (t) cos mω t dt (n = 0, 1, 2, … ) (12.11)

This explains why the constant term in the Fourier series expansion was taken as 
and not a0, since this ensures compatibility of the results (12.9) and (12.10). Although
a0 and an satisfy the same formula, it is usually safer to work them out separately.

Finally, to obtain the Fourier coefficients bn, we multiply (12.3) throughout by 
sin mω t and integrate with respect to t over the period t = d to t = d + T, giving

�
d

d+T

f(t) sin mω t dt = �
d

d+T

sin mω t dt
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Assuming term-by-term integration to be possible, and using (12.5), (12.6) and (12.8),
we find that the only non-zero integral on the right-hand side is the one that occurs in
the second summation when m = n. That is, we have

�
d

d+T

f (t) sin mω t dt = bm�
d

d+T

sin mω t sin mω t dt = bmT

giving, on replacing m by n,

bn = �
d

d+T

f (t) sin nω t dt (n = 1, 2, 3, … ) (12.12)

The equations (12.11) and (12.12) giving the Fourier coefficients are known as Euler’s
formulae.

Summary

In summary, we have shown that if a periodic function f (t) of period T = 2π /ω can
be expanded as a Fourier series then that series is given by

(12.3)

where the coefficients are given by Euler’s formulae

an = �
d

d+T

f (t) cos nωt dt (n = 0, 1, 2, … ) (12.11)

bn = �
d

d+T

f (t) sin nωt dt (n = 1, 2, 3, … ) (12.12)

The limits of integration in Euler’s formulae may be specified over any period, so
that the choice of d is arbitrary, and may be made in such a way as to help in the
calculation of an and bn. In practice, it is common to specify f (t) over either the period
− � t � or the period 0 � t � T, leading respectively to the limits of integration
being − and (that is, d = − ) or 0 and T (that is, d = 0).

It is also worth noting that an alternative approach may simplify the calculation of
an and bn. Using the formula

e jnω t = cos nω t + j sin nω t

we have

an + jbn = �
d

d+T

f (t)e jnω t dt (12.13)

Evaluating this integral and equating real and imaginary parts on each side gives the
values of an and bn. This approach is particularly useful when only the amplitude
| an + jbn | of the nth harmonic is required.
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12.2 FOURIER SERIES EXPANSION 957

12.2.4 Functions of period 2p

If the period T of the periodic function f (t) is taken to be 2π then ω = 1, and the series
(12.3) becomes

(12.14)

with the coefficients given by

an = �
d

d+2π

f (t) cos nt dt (n = 0, 1, 2, … ) (12.15)

bn = �
d

d+2π

f (t) sin nt dt (n = 1, 2, … ) (12.16)

While a unit frequency may rarely be encountered in practice, consideration of this par-
ticular case reduces the amount of mathematical manipulation involved in determining
the coefficients an and bn. Also, there is no loss of generality in considering this case,
since if we have a function f (t) of period T, we may write t1 = 2π t/T, so that

where F(t1) is a function of period 2π. That is, by a simple change of variable, a 
periodic function f(t) of period T may be transformed into a periodic function F(t1) of
period 2π. Thus, in order to develop an initial understanding and to discuss some of the
properties of Fourier series, we shall first consider functions of period 2π, returning to
functions of period other than 2π in Section 12.2.10.

Example 12.1 Obtain the Fourier series expansion of the periodic function f (t) of period 2π defined by

f (t) = t (0 � t � 2π), f (t) = f (t + 2π)

Solution A sketch of the function f (t) over the interval −4π � t � 4π is shown in Figure 12.2. 

Since the function is periodic we only need to sketch it over one period, the pattern
being repeated for other periods. Using (12.15) to evaluate the Fourier coefficients a0

and an gives

a0 = �
0

2π

f (t)dt = �
0

2π

t dt = ⎡
⎣⎢

⎤
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n
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....

Figure 12.2
Sawtooth wave 
of Example 12.1.
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and

an = �
0

2π

f (t) cos nt dt (n = 1, 2, … )

= �
0

2π

t cos nt dt

which, on integration by parts, gives

since sin 2nπ = 0 and cos 2nπ = cos 0 = 1. Note the need to work out a0 separately from
an in this case. The formula (12.16) for bn gives

bn = �
0

2π

f (t) sin nt dt (n = 1, 2, … )

= �
0

2π

t sin nt dt

which, on integration by parts, gives

(since sin 2nπ = sin 0 = 0)

(since cos 2nπ = 1)

Hence from (12.14) the Fourier series expansion of f (t) is

or, in expanded form,

Example 12.2 A periodic function f (t) with period 2π is defined by

f (t) = t 2 + t (−π � t � π), f (t) = f (t + 2π)

Sketch a graph of the function f (t) for values of t from t = −3π to t = 3π and obtain a
Fourier series expansion of the function.
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12.2 FOURIER SERIES EXPANSION 959

Solution A graph of the function f (t) for −3π � t � 3π is shown in Figure 12.3. 

From (12.15) we have

a0 = �
π

−π

f (t)dt = �
π

−π

(t 2 + t)dt =

and

an = �
π

−π

f (t) cos nt dt (n = 1, 2, 3, … )

= �
π

−π

(t 2 + t) cos nt dt

which, on integration by parts, gives

(since cos nπ = (−1)n)

From (12.16)

bn = �
π

−π

f (t) sin nt dt (n = 1, 2, 3, … )

= �
π

−π

(t 2 + t) sin nt dt

which, on integration by parts, gives

(since cos nπ = (−1)n)= − = − − cos   ( )
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Figure 12.3
Graph of the function
f (t) of Example 12.2.
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Hence from (12.14) the Fourier series expansion of f (t) is

or, in expanded form,

To illustrate the alternative approach, using (12.13) gives

an + jbn = �
π

−π

f (t)e jntdt = �
π

−π

(t 2 + t)e jntdt

Since

e jnπ = cos nπ + j sin nπ = (−1)n

e−jnπ = cos nπ − j sin nπ = (−1)n

and

1/j = −j

Equating real and imaginary parts gives, as before,

A periodic function f (t) may be specified in a piecewise fashion over a period, or,
indeed, it may only be piecewise-continuous over a period, as illustrated in Figure 12.4.
In order to calculate the Fourier coefficients in such cases, it is necessary to break up
the range of integration in Euler’s formulae to correspond to the various components of
the function. For example, for the function shown in Figure 12.4, f (t) is defined in the
interval −π � t � π by
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12.2 FOURIER SERIES EXPANSION 961

and is periodic with period 2π. Euler’s formulae (12.15) and (12.16) for the Fourier
coefficients become

Example 12.3 A periodic function f (t) of period 2π is defined within the period 0 � t � 2π by

Sketch a graph of f (t) for −2π � t � 3π and find a Fourier series expansion of it.

Solution A graph of the function f (t) for −2π � t � 3π is shown in Figure 12.5.

From (12.15),
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Piecewise-continuous
function over a period.

Figure 12.5
Graph of the function
f (t) of Example 12.3.
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and

an = �
0

2π

f (t) cos nt dt (n = 1, 2, 3, … )

that is,

From (12.16),
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12.2 FOURIER SERIES EXPANSION 963

Hence from (12.14) the Fourier series expansion of f (t) is

A major use of the MATLAB Symbolic Math Toolbox and MAPLE, when dealing
with Fourier series, is to avoid the tedious and frequently error-prone integration
involved in determining the coefficients an and bn. It is therefore advisable to use them
to check the accuracy of integration. To illustrate we shall consider Examples 12.2
and 12.3.

In MAPLE n may be declared to be an integer using the command

assume(n,integer);

which helps with simplification of answers. There is no comparable command in
MATLAB so, when using the Symbolic Math Toolbox, we shall use the command

maple(‘assume (n,integer)’)

Considering Example 12.2 the MATLAB commands

syms t n

maple(‘assume (n,integer)’);

int((t^2 + t)*cos(n*t),–pi,pi)/pi

return the value of an as

4*(–1)^n/n^2

Entering the command pretty(ans) gives an in the form 4 , where n~
indicates that n is an integer. Likewise the commands

int((t^2 + t)*sin(n*t),–pi,pi)/pi;

pretty(ans)

returns bn as

-2

thus checking with the values given in the solution.
The corresponding commands in MAPLE are

assume(n,integer);

int((t^2 + t)*cos(n*t), t = –Pi..Pi)/Pi;

returning the value of an as

4
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964 INTRODUCTION TO FOURIER SERIES

with the further command

int((t^2 + t)*sin(n*t), t = –Pi..Pi)/Pi;

returning the value of bn as

-2

again checking with the values given in the solution.
In Example 12.3 we are dealing with a piecewise function, which can be specified

using the piecewise command. In MATLAB the commands

syms t n

maple(‘assume (n,integer)’);

f = (‘PIECEWISE([t,t<= 1/2*pi], [1/2*pi,1/2*pi–t<= 0 and

t–pi< = 0],[pi–1/2t*t,pi<=t])’);

int(f*cos(n*t),0,2*pi)/pi;

pretty(ans)

return the value of an as

1/2

with the further commands

int(f*sin(n*t),0,2*pi)/pi;

pretty(ans)

returning the value of bn as .

In MAPLE the commands

f:= simplify(piecewise(t<= Pi/2,t,(t>= Pi/2 and 

t<= Pi),Pi/2,t>= Pi,Pi–t/2));

ff:= unapply(f,t);

assume(n,integer);

an:= int(ff(t)*cos(n*t), t = 0..Pi)/Pi;

bn:= int(ff(t)*sin(n*t), t = 0..Pi)/Pi;

return the same values as MATLAB above for an and bn..
An alternative approach to using the piecewise command is to express the 

function in terms of Heaviside functions.

12.2.5 Even and odd functions

Noting that a particular function possesses certain symmetrical properties enables us
both to tell which terms are absent from a Fourier series expansion of the function and
to simplify the expressions determining the remaining coefficients. In this section we
consider even and odd function symmetries, while in Section 12.2.6 we shall consider
symmetry due to even and odd harmonics.

sin(1/2 pi n ~)

n~2 pi

-3 + 2 cos(1/2 pi n ~) + (-1)n~

n~2 pi

(-1)n~

n~
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First we review the properties of even and odd functions, considered in Section 2.2.6,
that are useful for determining the Fourier coefficients. If f(t) is an even function then
f (t) = f (−t) for all t, and the graph of the function is symmetrical about the vertical axis,
as illustrated in Figure 12.6(a). From the definition of integration, it follows that if f (t)
is an even function then

�
a

−a

f (t)dt = 2�
a

0

f (t)dt

If f (t) is an odd function then f (t) = −f (−t) for all t, and the graph of the function is
symmetrical about the origin; that is, there is opposite-quadrant symmetry, as illustrated
in Figure 12.6(b). It follows that if f (t) is an odd function then

�
a

−a

f (t)dt = 0

The following properties of even and odd functions are also useful for our purposes:

(a) the sum of two (or more) odd functions is an odd function;
(b) the product of two even functions is an even function;
(c) the product of two odd functions is an even function;
(d) the product of an odd and an even function is an odd function;
(e) the derivative of an even function is an odd function;
(f) the derivative of an odd function is an even function.

(Noting that t even is even and todd is odd helps one to remember (a)–(f).)
Using these properties, and taking d = in (12.11) and (12.12), we have the 

following:

(i) If f (t) is an even periodic function of period T then

an = �
T/2

−T/2

f (t) cos nω t dt = �
0

T/2

f (t) cos nω t dt

using property (b), and

bn = �
T/2

−T/2

f (t) sin nω t dt = 0

using property (d).

Thus the Fourier series expansion of an even periodic function f (t) with period T
consists of cosine terms only and, from (12.3), is given by

(12.17)

with

an = �
0

T/2

f (t) cos nω t (n = 0, 1, 2, … ) (12.18)
4

T

f t a a n tn
n

( )   cos= +
=

∞

∑1
2 0

1

ω

2

T

4

T

2

T

− 1
2T

..

Figure 12.6
Graphs of (a) an 
even function and 
(b) an odd function.
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(ii) If f (t) is an odd periodic function of period T then

an = �
T/2

−T/2

f (t) cos nω t dt = 0

using property (d), and

bn = �
T/2

−T/2

f (t) sin nω t dt = �
0

T/2

f (t) sin nω t dt

using property (c).

Thus the Fourier series expansion of an odd periodic function f (t) with period T
consists of sine terms only and, from (12.3), is given by

(12.19)

with

bn = �
0

T/2

f (t) sin nω t dt (n = 1, 2, 3, … ) (12.20)

Example 12.4 A periodic function f (t) with period 2π is defined within the period −π � t � π by

Find its Fourier series expansion.

Solution A sketch of the function f (t) over the interval −4π � t � 4π is shown in Figure 12.7. 

Clearly f (t) is an odd function of t, so that its Fourier series expansion consists of 
sine terms only. Taking T = 2π, that is ω = 1, in (12.19) and (12.20), the Fourier series
expansion is given by

f t b ntn
n

( )  sin=
=

∞

∑
1

 

f t
t

t
( )  

(     )

(     )
=

− −⎧
⎨
⎩

1 0

1 0

π

π

� �

� �

4

T

f t b n tn
n

( )  sin=
=

∞

∑ ω
1

4

T

2

T

2

T
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Figure 12.7
Square wave of
Example 12.4.

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 966



12.2 FOURIER SERIES EXPANSION 967

with

bn = �
π

0

f (t) sin nt dt (n = 1, 2, 3, … )

= �
π

0

1 sin nt dt =

= (1 − cos nπ) = [1 − (−1)n]

Thus the Fourier series expansion of f (t) is

(12.21)

Example 12.5 A periodic function f (t) with period 2π is defined as

f (t) = t 2 (−π � t � π), f (t) = f (t + 2π)

Obtain a Fourier series expansion for it.

Solution A sketch of the function f (t) over the interval −3π � t � 3π is shown is Figure 12.8.

f t t t t
n t

nn

( )  sin   sin   sin     
sin(   )

 – 
= + + +⎛

⎝
⎞
⎠ =

−

=

∞

∑4 1

3
3

1

5
5

4 2 1

2 11π π
…

=
⎧
⎨
⎩

 
/ (  )

(  )

4

0

n n

n

π odd

even

2

nπ
2

nπ

2 1

0π
−⎡

⎣⎢
⎤
⎦⎥n

ntcos
π2

π

2

π

....

Figure 12.8
The function f (t) 
of Example 12.5.

Clearly, f (t) is an even function of t, so that its Fourier series expansion consists of
cosine terms only. Taking T = 2π, that is ω = 1, in (12.17) and (12.18) the Fourier series
expansion is given by

f t a a ntn
n

( )   cos= +
=

∞

∑1
2 0

1
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with

a0 = �
π

0

f (t)dt = �
π

0

t 2 dt =

and

an = �
π

0

f (t) cos nt dt (n = 1, 2, 3, … )

= �
π

0

t 2 cos nt dt

since sin nπ = 0 and cos nπ = (−1)n. Thus the Fourier series expansion of f (t) = t 2 is

(12.22)

or, writing out the first few terms,

f (t) = − 4 cos t + cos 2t − cos 3t + …

12.2.6 Even and odd harmonics

In this section we consider types of symmetry that can be identified in order to elimin-
ate terms from the Fourier series expansion having even values of n (including n = 0)
or odd values of n.

(a) If a periodic function f(t) is such that

f (t + T ) = f (t)

then it has period T/2 and frequency ω = 2(2π /T ), so only even harmonics are present
in its Fourier series expansion. For even n we have

an = �
0

T/2

f (t) cos nω t dt (12.23)

bn = �
0

T/2

f (t) sin nω t dt (12.24)

An example of such a function is given in Figure 12.9(a).

4

T

4

T

1
2

4
9

1
3

2π

f t
n

nt
n

n

( )   
( )

cos= +
−

=

∞

∑1
3

2
2

1

4
1π

= ⎛
⎝

⎞
⎠ = − cos   ( )

2 2 4
1

2 2π
π π

n
n

n
n

= + −⎡
⎣⎢

⎤
⎦⎥

 sin   cos   sin
2 2 22

2 3
0π

t

n
nt

t

n
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π
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π
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12.2 FOURIER SERIES EXPANSION 969

(b) If a periodic function f(t) with period T is such that

f (t + T ) = −f (t)

then only odd harmonics are present in its Fourier series expansion. For odd n

an = �
0

T/2

f (t) cos nω t dt (12.25)

bn = �
0

T/2

f (t) sin nω t dt (12.26)

An example of such a function is shown in Figure 12.9(b).
The square wave of Example 12.4 is such that f (t + π) = − f (t), so that, from (b),

its Fourier series expansion consists of only odd harmonics. Since it is also an odd 
function, it follows that its Fourier series expansion consists only of odd-harmonic sine
terms, which is confirmed by the result (12.21).

Example 12.6 Obtain the Fourier series expansion of the rectified sine wave

f (t) = | sin t |

Solution A sketch of the wave over the interval −π � t � 2π is shown in Figure 12.10. Clearly,
f (t + π) = f (t), so that only even harmonics are present in the Fourier series expansion.
Since the function is also an even function of t, it follows that the Fourier series expan-
sion will consist only of even-harmonic cosine terms. Taking T = 2π, that is ω = 1, in
(12.23), the coefficients of the even harmonics are given by

4

T

4

T

1
2

....

Figure 12.9 Functions having Fourier series with (a) only even harmonics and (b) only odd harmonics.

Figure 12.10
Rectified wave 
f (t) = | sin t |.
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an = �
π

0

f (t) cos nt (even n) = �
π

0

sin t cos nt dt

= �
π

0

[sin(n + 1)t − sin(n − 1)t]dt

Since both n + 1 and n − 1 are odd when n is even,

cos(n + 1)π = cos(n − 1)π = −1

so that

Thus the Fourier series expansion of f (t) is

or, writing out the first few terms,

12.2.7 Linearity property

The linearity property as applied to Fourier series may be stated in the form of the 
following theorem.

Theorem 12.1 If f (t) = lg(t) + mh(t), where g(t) and h(t) are periodic functions of period T and l and m
are arbitrary constants, then f (t) has a Fourier series expansion in which the coefficients
are the sums of the coefficients in the Fourier series expansions of g(t) and h(t) multi-
plied by l and m respectively.

Proof Clearly f(t) is periodic with period T. If the Fourier series expansions of g(t) and h(t) are

h t n t n tn
n

n
n

( )   cos   sin= + +
=

∞

=

∞

∑ ∑1
2 0

1 1

α α ω β ω

g t a a n t b n tn
n

n
n

( )   cos   sin= + +
=

∞

=

∞

∑ ∑1
2 0

1 1

ω ω

f t t t t( )    ( cos   cos   cos   )= − + + +
2 4

2 4 61
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1
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1
35π π

…
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∞
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2π π n n

nt

f t a a nt
n

ntn
n

n
n

n

( )  cos     
 

cos

(  ) (  )

= + = −
−=

∞

=

∞

∑ ∑1
2 0

2
2

2

2 4 1

1
even even

π π

a
n n n n n

n =
+

−
−

⎛
⎝

⎞
⎠ − −

+
+

−
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

= −
−

 
  

  
  

  
  

  
  

  
 

1 1

1

1

1

1

1

1

1

4 1

12π π

= −
+

+
+

−
−

⎡
⎣⎢

⎤
⎦⎥

 
cos(   )

  
  

cos(   )

  

1 1

1

1

1 0π

πn t

n

n t

n

1

π

2

π
2

π

970 INTRODUCTION TO FOURIER SERIES

....

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 970



12.2 FOURIER SERIES EXPANSION 971

then, using (12.11) and (12.12), the Fourier coefficients in the expansion of f (t) are

An = �
d

d+T

f (t) cos nω t dt = �
d

d+T

[lg(t) + mh(t)] cos nω t dt

= �
d

d+T

g(t) cos nω t dt + �
d

d+T

h(t) cos nω t dt

= lan + mαn

and

Bn = �
d

d+T

f (t) sin nω t dt = �
d

d+T

g(t) sin nω t dt + �
d

d+T

h(t) sin nω t dt

= lbn + mβn

confirming that the Fourier series expansion of f (t) is

end of theorem

Example 12.7 Suppose that g(t) and h(t) are periodic functions of period 2π and are defined within the
period −π � t � π by

g(t) = t 2, h(t) = t

Determine the Fourier series expansions of both g(t) and h(t) and use the linearity prop-
erty to confirm the expansion obtained in Example 12.2 for the periodic function f (t)
defined within the period −π � t � π by f (t) = t 2 + t.

Solution The Fourier series of g(t) is given by (12.22) as

Recognizing that h(t) = t is an odd function of t, we find, taking T = 2π and ω = 1
in (12.19) and (12.20), that its Fourier series expansion is

where

bn = �
π

0

h(t) sin nt dt (n = 1, 2, 3, … )

= �
π

0

t sin nt dt =

= − − ( )
2

1
n

n

2
2

0π

π

− +⎡
⎣⎢

⎤
⎦⎥

t

n
nt

nt

n
cos   

sin2

π

2

π

h t b ntn
n

( )  sin=
=

∞

∑
1

g t
n

nt
n

n

( )   
( )

cos= +
−

=

∞

∑1
3

2
2

1

4
1π

f t la m la m n t lb m n t
n

n n
n

n n( )  (  )  (  ) cos   (  )sin= + + + + +
=

∞

=

∞

∑ ∑1
2 0 0

1 1

α α ω β ω
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2
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T
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T

2
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2
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recognizing again that cos nπ = (−1)n and sin nπ = 0. Thus the Fourier series expansion
of h(t) = t is

(12.27)

Using the linearity property, we find, by combining (12.12) and (12.27), that the Fourier
series expansion of f (t) = g(t) + h(t) = t 2 + t is

which conforms to the series obtained in Example 12.2.

12.2.8 Convergence of the Fourier series

So far we have concentrated our attention on determining the Fourier series expan-
sion corresponding to a given periodic function f (t). In reality, this is an exercise in 
integration, since we merely have to compute the coefficients an and bn using Euler’s
formulae (12.11) and (12.12) and then substitute these values into (12.3). We have not
yet considered the question of whether or not the Fourier series thus obtained is a valid
representation of the periodic function f (t). It should not be assumed that the existence
of the coefficients an and bn in itself implies that the associated series converges to the
function f (t).

A full discussion of the convergence of a Fourier series is beyond the scope of
this book and we shall confine ourselves to simply stating a set of conditions which
ensures that f (t) has a convergent Fourier series expansion. These conditions, known as
Dirichlet’s conditions, may be stated in the form of Theorem 12.2.

Theorem 12.2 Dirichlet’s conditions

If f (t) is a bounded periodic function that in any period has

(a) a finite number of isolated maxima and minima, and

(b) a finite number of points of finite discontinuity

then the Fourier series expansion of f (t) converges to f(t) at all points where f(t) is 
continuous and to the average of the right- and left-hand limits of f (t) at points where
f (t) is discontinuous (that is, to the mean of the discontinuity).

end of theorem

Example 12.8 Give reasons why the functions

(a) (b)

do not satisfy Dirichlet’s conditions in the interval 0 � t � 2π.
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12.2 FOURIER SERIES EXPANSION 973

Solution (a) The function f(t) = 1/(3 − t) has an infinite discontinuity at t = 3, which is within
the interval, and therefore does not satisfy the condition that f (t) must only have finite
discontinuities within a period (i.e. it is bounded).

(b) The function f (t) = sin[1/(t − 2)] has an infinite number of maxima and minima in
the neighbourbood of t = 2, which is within the interval, and therefore does not satisfy
the requirement that f(t) must have only a finite number of isolated maxima and minima
within one period.

The conditions of Theorem 12.2 are sufficient to ensure that a representative Fourier
series expansion of f (t) exists. However, they are not necessary conditions for conver-
gence, and it does not follow that a representative Fourier series does not exist if they
are not satisfied. Indeed, necessary conditions on f (t) for the existence of a convergent
Fourier series are not yet known. In practice, this does not cause any problems, since
for almost all conceivable practical applications the functions that are encountered 
satisfy the conditions of Theorem 12.2 and therefore have representative Fourier series.

Another issue of importance in practical applications is the rate of convergence of
a Fourier series, since this is an indication of how many terms must be taken in the
expansion in order to obtain a realistic approximation to the function f (t) it represents.
Obviously, this is determined by the coefficients an and bn of the Fourier series and the
manner in which these decrease as n increases.

In an example, such as Example 12.1, in which the function f (t) is only piecewise-
continuous, exhibiting jump discontinuities, the Fourier coefficients decrease as 1/n,
and it may be necessary to include a large number of terms to obtain an adequate
approximation to f(t). In an example, such as Example 12.3, in which the function is 
a continuous function but has discontinuous first derivatives (owing to the sharp 
corners), the Fourier coefficients decrease as 1/n2, and so one would expect the series
to converge more rapidly. Indeed, this argument applies in general, and we may sum-
marize as follows:

(a) if f (t) is only piecewise-continuous then the coefficients in its Fourier series
representation decrease as 1/n;

(b) if f (t) is continuous everywhere but has discontinuous first derivatives then
the coefficients in its Fourier series representation decrease as 1/n2;

(c) if f (t) and all its derivatives up to that of the rth order are continuous but
the (r + 1)th derivative is discontinuous then the coefficients in its Fourier
series representation decrease as 1/nr+2.

These observations are not surprising, since they simply tell us that the smoother the
function f (t), the more rapidly will its Fourier series representation converge.

To illustrate some of these issues related to convergence we return to Example 12.4,
in which the Fourier series (12.21) was obtained as a representation of the square wave
of Figure 12.7.

Since (12.21) is an infinite series, it is clearly not possible to plot a graph of the
result. However, by considering finite partial sums, it is possible to plot graphs of
approximations to the series. Denoting the sum of the first N terms in the infinite series
by fN(t), that is

....

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 973



(12.28)

the graphs of fN (t) for N = 1, 2, 3 and 20 are as shown in Figure 12.11. It can be seen
that at points where f (t) is continuous the approximation of f (t) by fN (t) improves as N
increases, confirming that the series converges to f(t) at all such points. It can also be
seen that at points of discontinuity of f (t), which occur at t = ±nπ (n = 0, 1, 2, … ), 
the series converges to the mean value of the discontinuity, which in this particular
example is (−1 + 1) = 0. As a consequence, the equality sign in (12.21) needs to 
be interpreted carefully. Although such use may be acceptable, in the sense that the
series converges to f(t) for values of t where f (t) is continuous, this is not so at points
of discontinuity. To overcome this problem, the symbol ~ (read as ‘behaves as’ or 
‘represented by’) rather than = is frequently used in the Fourier series representation of
a function f (t), so that (12.21) is often written as

In the companion text Advanced Modern Engineering Mathematics it is shown that
the Fourier series converges to f (t) in the sense that the integral of the square of the
difference between f (t) and fN (t) is minimized and tends to zero as N → ∞.

We note that convergence of the Fourier series is slowest near a point of discon-
tinuity, such as the one that occurs at t = 0. Although the series does converge to 
the mean value of the discontinuity (namely zero) at t = 0, there is, as indicated in
Figure 12.11(d), an undershoot at t = 0− (that is, just to the left of t = 0) and an overshoot
at t = 0+ (that is, just to the right of t = 0). This non-smooth convergence of the Fourier
series leading to the occurrence of an undershoot and an overshoot at points of dis-
continuity of f (t) is a characteristic of all Fourier series representing discontinuous
functions, not only that of the square wave of Example 12.4, and is known as the Gibbs
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Figure 12.11 Plots of fN(t) for a square wave; (a) N = 1; (b) 2; (c) 3; (d) 20.
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12.2 FOURIER SERIES EXPANSION 975

phenomenon after the American physicist J. Willard Gibbs (1839–1903). The magnitude
of the undershoot/overshoot does not diminish as N → ∞ in (12.28), but simply gets
‘sharper’ and ‘sharper’, tending to a spike. In general, the magnitude of the undershoot
and overshoot together amount to about 18% of the magnitude of the discontinuity (that
is, the difference in the values of the function f (t) to the left and right of the discon-
tinuity). It is important that the existence of this phenomenon be recognized, since in
certain practical applications these spikes at discontinuities have to be suppressed by
using appropriate smoothing factors.

To reproduce the plots of Figure 12.11 and see how the series converges as N
increases, use the following MATLAB commands:

t=pi/100*[300:300];

f=0;

T=[-3*pi -2*pi -2*pi -pi -pi 0 0 pi pi 2*pi 2*pi 3*pi];

y=[-1 -1 1 1 -1 -1 1 1 -1 -1 1 1];

for n=1:20

f=f+4/pi*sin((2*n-1)*t)/(2*n-1);

plot(T,y,t,f,[-3*pi 3*pi],[0,0],‘k-’,[0,0], 

[-1.3 1.3],‘k-’)

axis([-3*pi,3*pi,-inf,inf]),pause

end

The pause command has been included to give you an opportunity to view the plots
at the end of each step. Press any key to proceed.

Theoretically, we can use the series (12.21) to obtain an approximation to π. This is
achieved by taking t = π, when f (t) = 1; (12.21) then gives

leading to

For practical purposes, however, this is not a good way of obtaining an approximation
to π, because of the slow rate of convergence of the series.

12.2.9 Exercises

Check evaluation of the integrals using MATLAB or MAPLE whenever possible.
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1 In each of the following a periodic function f (t) 
of period 2π is specified over one period. In 
each case sketch a graph of the function for 
−4π � t � 4π and obtain a Fourier series
representation of the function.
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(c) f (t) = (0 � t � 2π)

(d)

(e) f (t) = cos (−π � t � π)

(f) f (t) = | t | (−π � t � π)

(g) 

(h)

2 Obtain the Fourier series expansion of the periodic
function f (t) of period 2π defined over the period
0 � t � 2π by 

f (t) = (π − t)2 (0 � t � 2π)

Use the Fourier series to show that

3 The charge q(t) on the plates of a capacitor at time
t is as shown in Figure 12.12. Express q(t) as a
Fourier series expansion.

4 The clipped response of a half-wave rectifier is the
periodic function f(t) of period 2π defined over the
period 0 � t � 2π by

Express f (t) as a Fourier series expansion.
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5 Show that the Fourier series representing the
periodic function f(t), where

f (t + 2π) = f (t)

is

Use this result to show that

(a) (b)

6 A periodic function f (t) of period 2π is defined
within the domain 0 � t � π by

Sketch a graph of f (t) for −2π � t � 4π for the two
cases where

(a) f (t) is an even function;

(b) f (t) is an odd function.

Find the Fourier series expansion that represents the
even function for all values of t, and use it to show
that

7 A periodic function f (t) of period 2π is defined
within the period 0 � t � 2π by

Draw a graph of the function for −4π � t � 4π and
obtain its Fourier series expansion.

By replacing t by t − in your answer, 
show that the periodic function f (t − ) − is
represented by a sine series of odd harmonics.
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Figure 12.12 Plot of the charge q(t) in Question 3.
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12.2 FOURIER SERIES EXPANSION 977

12.2.10 Functions of period T
Although all the results have been related to periodic functions having period T, all the
examples we have considered so far have involved periodic functions of period 2π. This
was done primarily for ease of manipulation in determining the Fourier coefficients
while becoming acquainted with Fourier series. As mentioned in Section 12.2.4, func-
tions having unit frequency (that is, of period 2π) are rarely encountered in practice, and
in this section we consider examples of periodic functions having periods other than 2π.

Example 12.9 A periodic function f (t) of period 4 (that is, f(t + 4) = f (t)) is defined in the range
−2 � t � 2 by

Sketch a graph of f(t) for −6 � t � 6 and obtain a Fourier series expansion for the
function.

Solution A graph of f (t) for −6 � t � 6 is shown is Figure 12.13.

Taking T = 4 in (12.11) and (12.12), we have
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Figure 12.13
The function f (t) 
of Example 12.9.
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Thus, from (12.10), the Fourier series expansion of f (t) is

Example 12.10 A periodic function f (t) of period 2 is defined by

f (t + 2) = f (t)

Sketch a graph of f (t) for −4 � t � 4 and determine a Fourier series expansion for the
function.

Solution A graph of f (t) for −4 � t � 4 is shown in Figure 12.14.

Taking T = 2 in (12.11) and (12.12), we have
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Figure 12.14
The function f (t) 
of Example 12.10.
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and

bn = �
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0

f (t) (n = 1, 2, 3, … ) 

= �
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3t sin nπ t dt + �
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3 sin nπ t dt

Thus, from (12.10), the Fourier series expansion of f (t) is

12.2.11 Exercises
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8 Find a Fourier series expansion of the periodic
function

f (t) = t (−l � t � l )

f (t + 2l ) = f (t)

9 A periodic function f (t) of period 2l is defined
over one period by

Determine its Fourier series expansion and
illustrate graphically for −3l � t � 3l.

10 A periodic function of period 10 is defined within
the period −5 � t � 5 by

Determine its Fourier series expansion and
illustrate graphically for −12 � t � 12.
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11 Passing a sinusoidal voltage Asinω t through a 
half-wave rectifier produces the clipped sine wave
shown in Figure 12.15. Determine a Fourier series
expansion of the rectified wave.

12 Obtain a Fourier series expansion of the periodic
function

f (t) = t 2 (−T � t � T )

f (t + 2T ) = f (t)

and illustrate graphically for −3T � t � 3T.

13 Determine a Fourier series representation of the
periodic voltage e(t) shown in Figure 12.16.

Figure 12.15 Rectified sine wave of Question 11.

Figure 12.16 Voltage e(t) of Question 13.
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12.3 Functions defined over a finite interval
One of the requirements of Fourier’s theorem is that the function to be expanded be
periodic. Therefore a function f(t) that is not periodic cannot have a Fourier series 
representation that converges to it for all values of t. However, we can obtain a Fourier
series expansion that represents a non-periodic function f (t) that is defined only over 
a finite time interval 0 � t � τ. This is a facility that is frequently used to solve prob-
lems in practice, particularly boundary-value problems involving partial differential
equations, such as the consideration of heat flow along a bar or the vibrations of a
string. Various forms of Fourier series representations of f(t), valid only in the interval
0 � t � τ, are possible, including series consisting of cosine terms only or series 
consisting of sine terms only. To obtain these, various periodic extensions of f (t) are
formulated.

12.3.1 Full-range series

Suppose the given function f (t) is defined only over the finite time interval 0 � t � τ.
Then, to obtain a full-range Fourier series representation of f (t) (that is, a series 
consisting of both cosine and sine terms), we define the periodic extension φ (t) of 
f (t) by

φ (t) = f (t) (0 � t � τ)

φ (t + τ) = φ (t)

The graphs of a possible f (t) and its periodic extension φ (t) are shown in Fig-
ures 12.17(a) and (b) respectively.

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, the new
function φ (t), of period τ, will have a convergent Fourier series expansion. Since,
within the particular period 0 � t � τ, φ (t) is identical to f(t), it follows that this Fourier
series expansion of φ (t) will be representative of f(t) within this interval.

Example 12.11 Find a full-range Fourier series expansion of f(t) = t valid in the finite interval 0 � t � 4.
Draw graphs of both f (t) and the periodic function represented by the Fourier series
obtained.

Solution Define the periodic function φ (t) by

φ (t) = f (t) = t (0 � t � 4)

φ (t + 4) = φ (t)

980 INTRODUCTION TO FOURIER SERIES

....

Figure 12.17
Graphs of a function
defined only over 
(a) a finite interval 
0 � t � τ and (b) its
periodic extension.
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12.3 FUNCTIONS DEFINED OVER A FINITE INTERVAL 981

Then the graphs of f (t) and its periodic extension φ (t) are as shown in Figures 12.18(a)
and (b) respectively. Since φ (t) is a periodic function with period 4, it has a convergent
Fourier series expansion. Taking T = 4 in (12.11) and (12.12), the Fourier coefficients
are determined as

a0 = �
4

0

f (t)dt = �
4

0

t dt = 4

an = �
4

0

f (t) cos nπ t dt (n = 1, 2, 3, … )

and

bn = �
4

0

f (t) sin nπ t dt (n = 1, 2, 3, … ) 

Thus, by (12.10), the Fourier series expansion of φ (t) is

Since φ (t) = f (t) for 0 � t � 4, it follows that this Fourier series is representative of f(t)
within this interval, so that

(12.29)

It is important to appreciate that this series converges to t only within the interval
0 � t � 4. For values of t outside this interval it converges to the periodic extended
function φ (t). Again convergence is to be interpreted in the sense of Theorem 12.2, so
that at the end points t = 0 and t = 4 the series does not converge to t but to the mean of
the discontinuity in φ (t), namely the value 2.

f t t
n

n t t
n

( )      sin     (     )= = −
=

∞

∑2
4 1

0 4
1

1
2π

π � �

= −
=

∞

∑   sin2
4 1

1

1
2π

π
n

n t
n

φ
π

π π π π( )    (sin   sin   sin   sin   sin   )t t t t t t= − + + + + +2
4

21
2

1
2

1
3

3
2

1
4

1
5

5
2 …

 
= = − +⎡

⎣⎢
⎤
⎦⎥

= − sin   cos   
( )

sin  1
2

0

4
1
2

1
2

1
2 2

1
2

0

4
2 4 4� t n t t
t

n
n t

n
n t

n
π

π
π

π
π

π
d

1
2

1
2

 
= = +⎡

⎣⎢
⎤
⎦⎥

= cos   sin   
( )

cos  1
2

0

4
1
2

1
2

1
2 2

1
2

0

4
2 4

0� t n t t
t

n
n t

n
n tπ

π
π

π
πd

1
2

1
2

1
2

1
2

....

Figure 12.18
The functions f (t) and
φ (t) of Example 12.11.
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12.3.2 Half-range cosine and sine series

Rather than develop the periodic extension φ (t) of f(t) as in Section 12.3.1, it is 
possible to formulate periodic extensions that are either even or odd functions, so that
the resulting Fourier series of the extended periodic functions consist either of cosine
terms only or sine terms only.

For a function f (t) defined only over the finite interval 0 � t � τ its even periodic
extension F(t) is the even periodic function defined by

F(t + 2τ ) = f (t)

As an illustration, the even periodic extension F(t) of the function f(t) shown in Fig-
ure 12.17(a) (redrawn in Figure 12.19(a)) is shown in Figure 12.19(b).

Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, since it 
is an even function of period 2τ, it follows from Section 12.2.5 that the even periodic
extension F(t) will have a convergent Fourier series representation consisting of cosine
terms only and given by

(12.30)

where

an = �
τ

0

f (t) (n = 0, 1, 2, … ) (12.31)

Since, within the particular interval 0 � t � τ, F(t) is identical to f(t), it follows that the
series (12.30) also converges to f (t) within this interval.

For a function f (t) defined only over the finite interval 0 � t � τ, its odd periodic
extension G(t) is the odd periodic function defined by

G(t + 2τ ) = G(t)

Again, as an illustration, the odd periodic extension G(t) of the function f(t) shown in
Figure 12.17(a) (redrawn in Figure 12.20(a)) is shown in Figure 12.20(b).
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Figure 12.19
(a) A function f(t). 
(b) Its even periodic
extension F(t).
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Provided that f (t) satisfies Dirichlet’s conditions in the interval 0 � t � τ, since it 
is an odd function of period 2τ, it follows from Section 12.2.5 that the odd periodic
extension G(t) will have a convergent Fourier series representation consisting of sine
terms only and given by

(12.32)

where

bn = �
τ

0

f (t) (n = 1, 2, 3, … ) (12.33)

Again, since, within the particular interval 0 � t � τ, G(t) is identical to f(t), it
follows that the series (12.32) also converges to f (t) within this interval.

We note that both the even and odd periodic extensions F(t) and G(t) are of period
2τ, which is twice the length of the interval over which f (t) is defined. However, the
resulting Fourier series (12.30) and (12.32) are based only on the function f (t), and for
this reason are called the half-range Fourier series expansions of f (t). In particular,
the even half-range expansion F(t), (12.30), is called the half-range cosine series
expansion of f (t), while the odd half-range expansion G(t), (12.32), is called the half-
range sine series expansion of f (t).

Example 12.12 For the function f (t) = t defined only in the interval 0 � t � 4, and considered in
Example 12.11, obtain

(a) a half-range cosine series expansion;

(b) a half-range sine series expansion.

Draw graphs of f (t) and of the periodic functions represented by the two series obtained
for −20 � t � 20.

Solution (a) Half-range cosine series. Define the periodic function F(t) by

F(t + 8) = F(t)
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Figure 12.20
(a) A function f(t). 
(b) Its odd periodic
extension G(t).
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Then, since F(t) is an even periodic function with period 8, it has a convergent Fourier
series expansion given by (12.30). Taking τ = 4 in (12.31), we have

a0 = �
4

0

f (t)dt = �
4

0

t dt = 4

an = �
4

0

f (t) cos nπt dt (n = 1, 2, 3, … )

Then, by (12.30), the Fourier series expansion of F(t) is

or

Since F(t) = f (t) for 0 � t � 4, it follows that this Fourier series is representative of f (t)
within this interval. Thus the half-range cosine series expansion of f (t) is 

(12.34)

(b) Half-range sine series. Define the periodic function G(t) by

G(t + 8) = G(t)

Then, since G(t) is an odd periodic function with period 8, it has a convergent Fourier
series expansion given by (12.32). Taking τ = 4 in (12.33), we have
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Thus, by (12.32), the Fourier series expansion of G(t) is

or

Since G(t) = f (t) for 0 � t � 4, it follows that this Fourier series is representative of f(t)
within this interval. Thus the half-range sine series expansion of f (t) is

(12.35)

Graphs of the given function f (t) and of the even and odd periodic expansions F(t)
and G(t) are given in Figures 12.21(a), (b) and (c) respectively.
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Figure 12.21
The functions f (t), 
F(t) and G(t) of
Example 12.12.

It is important to realize that the three different Fourier series representations
(12.29), (12.34) and (12.35) are representative of the function f (t) = t only within the
defined interval 0 � t � 4. Outside this interval the three Fourier series converge to the
three different functions φ (t), F(t) and G(t), illustrated in Figures 12.18(b), 12.21(b) and
12.21(c) respectively.
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12.3.3 Exercises

14 Show that the half-range Fourier sine series
expansion of the function f (t) = 1, valid for
0 � t � π, is 

Sketch the graphs of both f (t) and the periodic
function represented by the series expansion
for −3π � t � 3π.

15 Determine the half-range cosine series expansion
of the function f (t) = 2t − 1, valid for 0 � t � 1.
Sketch the graphs of both f (t) and the periodic
function represented by the series expansion for 
−2 � t � 2.

16 The function f (t) = 1 − t 2 is to be represented by 
a Fourier series expansion over the finite interval
0 � t � 1. Obtain a suitable

(a) full-range series expansion;

(b) half-range sine series expansion;

(c) half-range cosine series expansion.

Draw graphs of f (t) and of the periodic functions
represented by each of the three series for
−4 � t � 4.

17 A function f (t) is defined by

f (t) = π t − t 2 (0 � t � π)

and is to be represented by either a half-range
Fourier sine series or a half-range Fourier cosine
series. Find both of these series and sketch the
graphs of the functions represented by them for
−2π � t � 2π.

18 A tightly stretched, flexible, uniform string has 
its ends fixed at the points x = 0 and x = l. The
midpoint of the string is displaced a distance a, as
shown in Figure 12.22. If f(x) denotes the displaced
profile of the string, express f (x) as a Fourier series
expansion consisting only of sine terms.

f t
n t

n
t

n

( )  
sin(   )

  
    (     )=

−
−=

∞

∑4 2 1

2 1
0

1π
π� �

19 Repeat Question 18 for the case where the displaced
profile of the string is as shown in Figure 12.23.

\

20 A function f (t) is defined on 0 � t � π by

Find a half-range Fourier series expansion of f (t) 
on this interval. Sketch a graph of the function
represented by the series for −2π � t � 2π.

21 A function f (t) is defined on the interval 
−l � x � l by

Obtain a Fourier series expansion of f (x) and sketch
a graph of the function represented by the series for
−3l � x � 3l.

22 The temperature distribution T(x) at a distance x,
measured from one end, along a bar of length L is
given by

T(x) = Kx(L − x) (0 � x � L), K = constant 

Express T(x) as a Fourier series expansion
consisting of sine terms only.

23 Find the Fourier series expansion of the function f (t)
valid for −1 � t � 1, where

To what value does this series converge when t = 1?
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Figure 12.22 Displaced string of Question 18.

Figure 12.23 Displaced string of Question 19.
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12.4 Differentiation and integration of Fourier series

It is inevitable that the desire to obtain the derivative or the integral of a Fourier series
will arise in some applications. Since the smoothing effects of the integration process
tend to eliminate discontinuities, whereas the process of differentiation has the opposite
effect, it is not surprising that the integration of a Fourier series is more likely to be
possible than its differentiation. We shall not pursue the theory in depth here; rather we
shall state, without proof, two theorems concerned with the term-by-term integration
and differentiation of Fourier series, and make some observations on their use.

12.4.1 Integration of a Fourier series

Theorem 12.3 A Fourier series expansion of a periodic function f (t) that satisfies Dirichlet’s con-
ditions may be integrated term by term, and the integrated series converges to the
integral of the function f (t).

end of theorem

According to this theorem, if f (t) satisfies Dirichlet’s conditions in the interval
−π � t � π and has a Fourier series expansion

then for −π � t1 � t � π

Because of the presence of the term on the right-hand side, this is clearly not a
Fourier series expansion of the integral on the left-hand side. However, the result can
be rearranged to be a Fourier series expansion of the function

g(t) = f (t)dt −

Example 12.13 serves to illustrate this process. Note also that the Fourier coefficients
in the new Fourier series are −bn /n and an /n, so, from the observations made in Section
12.2.8, the integrated series converges faster than the original series for f (t). If the
given function f (t) is piecewise-continuous, rather than continuous, over the interval
−π � t � π then care must be taken to ensure that the integration process is carried out
properly over the various subintervals. Again, Example 12.14 serves to illustrate this
point.
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Example 12.13 From Example 12.5, the Fourier series expansion of the function

f (t) = t 2 (−π � t � π), f (t + 2π) = f (π)

is

Integrating this result between the limits −π and t gives

that is,

Because of the term on the right-hand side, this is clearly not a Fourier series
expansion. However, rearranging, we have

and now the right-hand side may be taken to be the Fourier series expansion of the 
function

g(t) = t 3 − π 2t (−π � t � π)

g(t + 2π) = g(t)

Example 12.14 Integrate term by term the Fourier series expansion obtained in Example 12.4 for the
square wave

f (t + 2π) = f (t)

illustrated in Figure 12.7.

Solution From (12.21), the Fourier series expansion for f (t) is

f t
n t

n
( )  

sin(   )

  
=

−
−

4 2 1

2 1π

f t
t

t
( )  

(     )

(     )
=

− −⎧
⎨
⎩

1 0

1 0

π

π

� �

� �

t t
nt

n

n

n

3 2
2

1

12
1

− =
−

=

∞

∑   
( ) sinπ

1
3

2π t

1
3

3 1
3

2
3

1

4
1

t t
nt

n
t

n

n

= +
−

−
=

∞

∑   
( ) sin

    (     )π π π� �

 
� � �

− − −=

∞

= +
−∑

π π π

π
t t t n

n

t t t
nt

n
t2 1

3
2

2
1

4
1

d d d    
( ) cos

t
nt

n
t

n

n

2 1
3

2
2

1

4
1

= +
−

−
=

∞

∑  
( ) cos

    (     )π π π� �

988 INTRODUCTION TO FOURIER SERIES

....

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 988



12.4 DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES 989

We now need to integrate between the limits −π and t and, owing to the discontinuity
in f (t) at t = 0, we must consider separately values of t in the intervals −π � t � 0 and
0 � t � π.

Case (i), interval −π � t � 0. Integrating (12.21) term by term, we have

that is,

It can be shown that

(see Exercises 12.2.9, Question 6), so that the above simplifies to

(12.36)

Case (ii), interval 0 � t � π. Integrating (12.21) term by term, we have

giving

(12.37)

Taking (12.36) and (12.37) together, we find that the function

g(t + 2π) = g(t)

has a Fourier series expansion

g t t
n t

nn

( )      
cos(   )

(   )
= = −

−
−=

∞

∑| | 1
2 2

1

4 2 1

2 1
π

π

g t t
t t

t t
( )    

(     )

(     )
= =

− −⎧
⎨
⎩

| |
π

π

� �

� �

0

0

t
n t

n
t

n

    
cos(   )

(   )
    (     )= −

−
−=

∞

∑1
2 2

1

4 2 1

2 1
0π

π
π� �

 
� � �

− −=

∞

− + =
−

−∑
π ππ

0

0 1

1 1
4 2 1

2 1
( )     

sin(   )

(   )
d d dt t

n t

n
t

t t

n

− = −
−

−
−

=

∞

∑t
n t

n
t

n

    
cos(   )

(   )
    (     )1

2 2
1

4 2 1

2 1
0π

π
π � �

1

2 1

1

82
1

2

(   )
  

nn −
=

=

∞

∑ π

= −
−

−
+

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∞

=

∞

∑ ∑ 
cos(   )

(   )
  

(   )

4 2 1

2 1

1

2 12
1

2
1π

n t

n nn n

− + = −
−

−
⎡
⎣⎢

⎤
⎦⎥=

∞

−
∑(   )  

cos(   )

(   )
t

n t

nn

t

π
π π

4 2 1

2 1 2
1

 
� �

− −=

∞

− =
−

−∑
π ππ

t t

n

t
n t

n
t( )  

sin(   )

(   )
1

4 2 1

2 11

d d

....

M12_JAME0734_05_SE_C12.qxd  11/03/2015  10:04  Page 989



12.4.2 Differentiation of a Fourier series

Theorem 12.4 If f (t) is a periodic function that satisfies Dirichlet’s conditions then its derivative f ′(t),
wherever it exists, may be found by term-by-term differentiation of the Fourier series
of f (t) if and only if the function f (t) is continuous everywhere and the function f ′(t) has
a Fourier series expansion (that is, f ′(t) satisfies Dirichlet’s conditions).

end of theorem

It follows from Theorem 12.4 that if the Fourier series expansion of f (t) is differ-
entiable term by term then f (t) must be periodic at the end points of a period (owing to
the condition that f (t) must be continuous everywhere). Thus, for example, if we are
dealing with a function f (t) of period 2π and defined in the range −π � t � π then we
must have f(−π) = f (π). To illustrate this point, consider the Fourier series expansion
of the function

f (t) = t (−π � t � π)

f (t + 2π) = f (t)

which, from Example 12.7, is given by

f (t) = 2(sin t − 2t + 3t − 4t + … )

Differentiating term by term, we have

f ′(t) = 2(cos t − cos 2t + cos 3t − cos 4t + … )

If this differentiation process is valid then f ′(t) must be equal to unity for −π � t � π .
Clearly this is not the case, since the series on the right-hand side does not converge for
any value of t. This follows since the nth term of the series is 2(−1)n+1 cos nt and does
not tend to zero as n → ∞.

If f (t) is continuous everywhere and has a Fourier series expansion

then, from Theorem 12.4, provided that f ′(t) satisfies the required conditions, its
Fourier series expansion is

In this case the Fourier coefficients of the derived expansion are nbn and nan, so, in
contrast to the integrated series, the derived series will converge more slowly than the
original series expansion for f (t).

Example 12.15 Consider the process of differentiating term by term the Fourier series expansion of the
function

f (t) = t 2 (−π � t � π), f (t + 2π) = f (t)
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12.4 DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES 991

Solution From Example 12.5, the Fourier series expansion of f (t) is

Since f (t) is continuous within and at the end points of the interval −π � t � π, we may
apply Theorem 12.4 to obtain

which conforms to the Fourier series expansion obtained for the function

f (t) = t (−π � t � π), f (t + 2π) = f (t)

in Example 12.7.

12.4.3 Exercises
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24 Show that the periodic function

f (t) = t (−T � t � T )

f (t + 2T ) = f (t)

has a Fourier series expansion

By term-by-term integration of this series, show
that the periodic function

g(t) = t 2 (−T � t � T )

g(t + 2T ) = g(t)

has a Fourier series expansion

(Hint: A constant of integration must be
introduced; it may be evaluated as the mean
value over a period.)
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25 The periodic function

h(t) = π 2 − t 2 (−π � t � π)

h(t + 2π) = h(t)

has a Fourier series expansion

By term-by-term differentiation of this series,
confirm the series obtained for f (t) in Question 24
for the case when T = π.

26 (a) Suppose that the derivative f ′(t) of a periodic
function f (t) of period 2π has a Fourier series
expansion

Show that

A0 = [ f (π −) − f (−π +)]

An = (−1)nA0 + nbn

Bn = −nan

where a0, an and bn are the Fourier coefficients of
the function f (t).

(b) In Example 12.7 we saw that the periodic function

f (t) = t 2 + t (−π � t � π)

f (t + 2π) = f (t)

has a Fourier series expansion
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Differentiate this series term by term, and explain
why it is not a Fourier expansion of the periodic
function

n
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g(t) = 2t + 1 (−π � t � π)

g(t + 2π) = g(t)

(c) Use the results of (a) to obtain the Fourier series
expansion of g(t) and confirm your solution by
direct evaluation of the coefficients using Euler’s
formulae.

Figure 12.24 Slider–crank mechanism.

12.5 Engineering application: analysis of a slider–crank
mechanism
Figure 12.24(a) represents a slider–crank mechanism. The crank OP rotates about O,
and P is connected to Q, which is constrained so that it slides along OB. A special case
when OP = 1 m and PQ = 3 m is shown in Figure 12.24(b). The distance OQ is x when
the angle QOP is θ and is given by (see Example 2.44)

x(θ ) = cosθ + ÷(9 − sin2θ )

Here we recap the work of Section 8.12 and extend it to illustrate a general result con-
cerning Fourier series.

It is clear, both from the basic geometry of the mechanism and from the formula for
x, that x(θ ) is an even periodic function. This implies it can be represented by a Fourier
series of the form

x(θ ) = a0 + a1 cosθ + a2 cos 2θ + a3 cos 3θ + … 
Such mechanisms usually form parts of larger pieces of equipment, so it is important
to know the sizes of the coefficients ak during the design process to avoid dangerous
motions due to resonance.

The process of obtaining the values of the coefficients ak is called harmonic ana-
lysis. Truncating the Fourier series, we can obtain an approximation to x(θ) in the form

x(θ) � a0 + a1 cosθ + a2 cos 2θ + a3 cos 3θ + a4 cos 4θ
We wish to determine the values of a0, … , a4 so that we obtain the best approximation
possible. We achieve this by choosing a0, … , a4 in such a way that the total squared
error over a complete period is a minimum. Because x(θ) is an even function, this 
simplifies to finding the values of a0, … , a4 that minimize the integral
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I(a0, a1, a2, a3, a4) = �
π

0

[a0 + a1 cosθ + a2 cos 2θ + a3 cos 3θ + a4 cos 4θ − x(θ)]2 dθ

Thus we want a0, … , a4 such that

(k = 0, 1, … , 4)

Taking the case k = 0, this yields

�
π

0

2[a0 + a1 cosθ + a2 cos 2θ + a3 cos 3θ + a4 cos 4θ − x(θ)]dθ = 0

which reduces to 

�
π

0

[a0 − x (θ )]dθ = 0

on using the integration properties of cos kθ on (0, π) for k = 1, … , 4. Thus

�
π

0

a0 dθ = �
π

0

x (θ )dθ

giving

a0 = �
π

0

[cosθ + ÷(9 − sin2θ )]dθ = �
0

π/2

÷(9 − sin2θ )dθ

on using the symmetry properties of the integrand about . This integral has
to be evaluated numerically, and, using the trapezium rule, we obtain the value
a0 = 2.9148.

Similarly, ∂I/∂a1 = 0 gives

�
π

0

2[a0 + a1 cosθ + a2 cos 2θ + a3 cos 3θ + a4 cos 4θ − x(θ )]cosθ dθ = 0

which reduces to 

�
π

0

[a1 cos2θ − x (θ ) cosθ ]dθ = 0

Thus
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x (θ ) cosθ dθ

which gives
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π

0

[cos2θ + cosθ÷ (9 − sin2θ )]dθ =

on using the symmetry properties of the integrand. Thus a1 = 1.
Continuing in the same fashion, we obtain
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�
π

0

a2 cos22θ dθ = �
π

0

x (θ ) cos 2θ dθ

�
π

0

a3 cos23θ dθ = �
π

0

x (θ ) cos 3θ dθ

and

�
π

0

a4 cos24θ dθ = �
π

0

x (θ ) cos 4θ dθ

from which we deduce

a2 = �
π

0

cos 2θ÷ (9 − sin2θ )dθ

a3 = �
π

0

cos 3θ÷ (9 − sin2θ )dθ = 0

a4 = �
π

0

cos 4θ÷ (9 − sin2θ )dθ

Calculating the integrals for a2 and a4 numerically, we obtain the ‘least-squares ap-
proximation’ for x(θ ) in the form

x (θ ) � 2.9148 + cosθ + 0.0858 cos 2θ − 0.0006 cos 4θ
We could continue the process to find a5 and a6. Notice that the coefficients are just those
found by the standard formulae for the coefficients of a Fourier series so that we do not
have to go through the above minimizing process every time. Indeed the example can
be generalized to show that the truncated Fourier series provides the ‘best’ approxi-
mation to a periodic function.

Using the trapezium rule the MATLAB commands

a = 0; b = pi/2; n = 8;h = (b – a)/n; x = (a:h:b);

y = 2.*((9 – (sin(x)).^2).^(1/2))./pi;

h*trapz(y)

return the answer 2.9148.
Likewise the commands

a = 0; b = pi; n = 8; h = (b-a)/n; x = (a:h:b);

y = 2.*cos(2.*x).*((9 – (sin(x)).^2).^(1/2))./pi;

h*trapz(y)

return the answer 0.0858.
and the commands

a = 0;b = pi; n = 8; h = (b – a)/n; x = (a:h:b);

y = 2.*cos(4.*x).*((9 – (sin(x)).^2).^(1/2))./pi;

h*trapz(y)

return the answer –6.3119e – 004.
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π
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An interesting alternative approach is to attempt to evaluate the integrals in 
symbolic form. Using the Symbolic Math Toolbox the integrals can be evaluated
symbolically, with some of the answers expressed in terms of elliptic functions.
Using the double command, all answers can be expressed in numeric form. For
example, considering the integral for a0 the commands

syms x y

y = 2*cos(2*x)*sqrt(9 – (sin(x))^2)/pi;

int(y,0,pi);

double(ans)

return the answer 0.0858.

12.6 Review exercises (1–21)

Check your answers using MATLAB or MAPLE whenever possible.

..

1 A periodic function f (t) is defined by 

f (t + 2π) = f (t)

Obtain a Fourier series expansion of f (t) and
deduce that

2 Determine the full-range Fourier series expansion
of the even function f (t) of period 2π defined by

To what value does the series converge at ?

3 A function f (t) is defined for 0 � t � by

Sketch odd and even functions that have a period
T and are equal to f(t) for 0 � t � .

(a) Find the half-range Fourier sine series of f(t).

(b) To what value will the series converge for
?

(c) What is the sum of the following series?
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4 The magnetomotive force, y, in the air gap of an
alternator can be represented approximately by a
graph of the form shown in Figure 12.25. Find a
Fourier series for y, explaining beforehand, with
reasons, any special characteristics you would
expect to find.

5 Prove that if g(x) is an odd function and f (x) an 
even function of x, the product g(x)[c + f (x)] is
an odd function if c is a constant.

A periodic function with period 2π is defined by

F(θ ) = θ (π 2 − θ 2)

in the interval −π � θ � π. Show that the Fourier
series representation of the function is

6 A repeating waveform of period 2π is described by
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Figure 12.25 Data for f (t) in Question 4.
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10 A waveform is defined by V(t) = 10e−3t for
0 � t � 0.4 and V(t) = V(t − 0.4) for all t. 
Sketch the graphs of V, dV/dt and �t

0 V dt.
Express V as a Fourier series and show that

the amplitude of the nth harmonic is about 2.22/n.

11 A function f (x) is defined in the interval 
−1 � x � 1 by

Sketch a graph of f (x) and show that a Fourier 
series expansion of f (x) valid in the interval
−1 � x � 1 is given by

12 Show that the half-range Fourier sine series for the
function

is

13 Find a half-range Fourier sine and Fourier cosine
series for f (x) valid in the interval 0 � x � π
when f (x) is defined by

Sketch the graph of the Fourier series obtained for 
−2π � x � 2π.

14 A function f (x) is periodic of period 2π and is
defined by f(x) = ex (−π � x � π). Sketch the graph
of f (x) from x = −2π to x = 2π and prove that

15 A function f (t) is defined on 0 � t � π by

f (t) = π − t

Find
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Sketch the waveform over the range t = −2π to
t = 2π and find the Fourier series representation of
f (t), making use of any properties of the waveform
that you can identify before any integration is
performed.

7 A function f (x) is periodic of period 2π and is
defined by

Sketch a graph of f (x) from −2π to 3π and prove
that

Hence show that

8 A function f (x) of period 2π is defined in the
interval −π � x � π by

Sketch a graph of f (x) over the interval
−3π � x � 3π. Express f (x) as a Fourier
series and from this deduce a numerical
series for π.

9 A periodic function of period 2π is defined for
0 � x � 2π by

Sketch f (x) for −2π � x � 4π and show that its
Fourier series representation is

Express this series in a general form.
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12.6 REVIEW EXERCISES (1–21) 997

..

(a) a half-range Fourier sine series, and 

(b) a half-range Fourier cosine series

for f (t) valid for 0 � t � π.
Sketch the graphs of the functions represented

by each series for −2π � t � 2π.

16 A periodic function f (t) of period 2 is defined in
the interval −1 � t � 1 by

f (t) = 1 − t 2

Sketch a graph of f (t) for −3 � t � 3 and obtain a
Fourier series expansion for it.

17 (a) Without actually finding the series, state what
terms you would expect to find in the Fourier series
for the following periodic functions of period 2π:

( i) f (t) = sin2t, −π � t � π

(ii) f (t) = 3e−t, −π � t � π

−π � t � 0
(iii)

0 � t � π

(b) Find, up to and including the term in cos 4t,
the Fourier half-range cosine series for the
function defined by

18 (a) A periodic function f (t), of period 2π, is
defined in −π � t � π by

Obtain a Fourier series expansion for f (t).

(b) By formally differentiating the series obtained
in (a), obtain the Fourier series expansion of the
periodic square wave

g(t + 2π) = g(t)

Check the validity of your result by determining
directly the Fourier series expansion of g(t).
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19 The periodic waveform f (t) shown in 
Figure 12.26 may be written as

f (t) = 1 + g(t)

where g(t) represents an odd function.

(a) Sketch the graph of g(t).

(b) Obtain the Fourier series expansion for g(t), 
and hence write down the Fourier series 
expansion for f (t).

20 Show that the Fourier series

represents the function f (t), of period 2π, given by 

Deduce that, apart from a transient component 
(that is, a complementary function that dies away 
as t → ∞), the differential equation

has the solution

21 Show that if f (t) is a periodic function of period 
2π and

then
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Figure 12.26 Waveform f (t) of Question 19.
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satisfies the differential equation

subject to the initial conditions y = dy/dt = 0 at
t = 0.
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13.1 Introduction
Many events in our lives are subject to chance – by which we mean that they are not
entirely predictable. To some extent, we can choose where we live and what sort of
work we do, but even so we cannot be sure what sort of neighbours or workmates we
shall have: noisy, generous, friendly and so on. In a similar way, experiments in all
branches of science and engineering involve unpredictable outcomes that may be
expressed either as a quality such as ‘turned green’ or ‘exploded’, or numerically in
terms of mass, resistance or any standard unit. In contrast with everyday life, an ‘experi-
ment’ is repeated many times, so that the limited predictability of the various outcomes
can emerge as a pattern within the disorder. The subject of statistics is about extracting
that pattern and drawing useful conclusions from it, and the theoretical foundation for
this is contained in the theory of probability.

Engineers, in particular, are immersed in data throughout their working lives. The term
‘data’ is used rather loosely to refer to numerical information of all kinds, including for
example the specification of a machine or part. For our present purposes, however, we
shall use data to refer to the set of measured outcomes of an experiment. Engineering
is a discipline founded upon experiment, and engineers need to know how to process
their experimental data and how to assess the results of others’ experiments.

The aim of statistics is to extract useful information from the data. This information
can take many forms. If the aim of an experiment is to assist with the making of a 
decision then the people conducting the experiment will have in mind a question to
which they would like the answer, and ideally the question (and its possible answers)
will be expressed as simply and clearly as possible in ordinary language. On the other
hand, the aim of an experiment may be to calibrate an instrument or to measure some
unknown quantity, in which case the conclusions of the experiment will be numerical.

Sometimes all that is needed is to plot the data in a suitable way that makes the
message clear. The information is then conveyed in graphical form to the reader. 
Unfortunately, it very often turns out that the data are rather ambiguous, the conclusions
are not obvious and the data must be analysed in a more mathematical way. In this case
the conclusion (which relates directly to the purpose of the experiment) cannot be stated
with 100% confidence. This issue is taken up in the companion text Advanced Modern
Engineering Mathematics, where the mathematical methods of statistics are introduced.
In the present chapter we shall see how the data may be plotted to good effect, and then
go on to cover the essential probability theory without which the proper statistical prac-
tices (in engineering and elsewhere) would be impossible.

Whilst MATLAB and MAPLE have some statistical functionality there are special-
ist statistical packages, such as Minitab, that are more appropriate for use in the teaching
of statistical work. Consequently, MATLAB and MAPLE commands are not developed
in this chapter. Almost all the statistical calculations in this chapter could also be car-
ried out using spreadsheet software such as Microsoft Excel. In addition, the statistical
package R, which is available on the web (http://www.r-project.org), is increasingly
popular and runs on a variety of platforms.

1000 DATA HANDLING AND PROBABILITY THEORY
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13.2 THE RAW MATERIAL OF STATISTICS 1001

13.2 The raw material of statistics

13.2.1 Experiments and sampling

A statistician requires data to work on, and data are usually obtained by experiment – 
but not any old experiment will do. The most common type of statistical experiment
involves taking a sample from a population and drawing some conclusions about
the whole population from the results for the sample. In general, in statistical work the
population that is the object of study is assumed to be very large and rather uniform
with respect to certain characteristics of interest. The sample that is drawn for investi-
gation is much smaller. The size of the sample governs the confidence with which
statements about the characteristics of the population can be made.

Ideally, the entire population would be studied, but this may be impractical for 
reasons of expense, ethics or destructiveness of tests:

(a) Expense: the population may be too large or the cost per individual may be
high.

(b) Ethics: in medical experiments involving animals or people the aim is to use
the smallest sample size that is compatible with obtaining a dependable result.

(c) Destructiveness: destructive testing of components, for example, breaking stress
or lifetime, obviously precludes using the whole population.

The quality of the sample is also important. Imagine an opinion poll in which all
the people interviewed were professional engineers. The results would be of interest to
someone investigating the voting intentions of this particular group, but such a poll
might be a poor indicator of the result of the next general election. Now imagine 
an opinion poll conducted in a large hall, with a microphone passed from person to
person. The intimidating nature of this situation would prevent many respondents from
giving a truthful answer, particularly if the poll involved politically, socially or morally
sensitive issues. These two examples demonstrate the fundamental requirements of any
sampling experiment, including an opinion poll: the sample must be representative
and successive observations must be independent.

13.2.2 Histograms of data

After gathering the data together, the first step is often to display it graphically using 
a histogram or pie chart. Computer packages are often very useful for this. For example,
Figure 13.1 contains some data describing the performance of two prototype car
engines: a series of running times (in minutes at constant speed on 1 litre of standard
fuel) and ambient temperatures at the times of the tests, for each engine. Two questions
that are easy to state, and which might be answerable from this data, are

(a) Is the fuel consumption of one engine different from that of the other?
(b) Does fuel consumption depend upon ambient temperature?

These questions are actually related, as can be seen in Advanced Modern Engineering
Mathematics, where this example is discussed at some length. For the moment, we shall
see what can be learned just by plotting the data.

....
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The first thing to observe is that the measured running times are rather erratic, even
taking temperature into account. The six tests of engine A at 18°C produced results
ranging from 23.7 min to 26.9 min. This situation is typical, and is not necessarily the
result of sloppy experimental practice or inaccurate equipment (though such failings
should not be condoned where they are easily avoided). There are practical limitations
on the design and conduct of experiments that preclude making measurements to
ultimate precision, and mean that certain causal factors that might influence the results
are not measured at all. In this series of engine tests the actual quantity of fuel would
have varied a little around 1 litre, the condition of the engine oil would have been
different from one test to another, and so on.

Figures 13.2(a) and (b) are histograms of the running times for engines A and B
respectively. The data have been grouped into classes, and the height of each bar indic-
ates the number in the class. Values falling on a boundary are counted in the upper
class. The width of each bar is the same, and is chosen to reveal the overall shape of the
data. A histogram with too many small classes is very erratic, whereas one with too few
large classes has no structure. It is typical for a histogram to span the data with about
eight to ten classes.

Figure 13.2(c) shows the two histograms superimposed. It is fairly clear that there is
a difference here, and that the running times for engine B tend to be longer than those
for engine A. However, just from the histograms, it is difficult to be precise about the
amount of the difference, or to assess the confidence with which one could state that a
difference exists.

Figure 13.3 contains corresponding histograms for the temperatures. This time the
results are much more similar. It is easy to imagine that if a relatively small subset of
the sample had given different results from those obtained then there would have been
no difference at all between the histograms. This difference could therefore be attrib-
uted to chance.

1002 DATA HANDLING AND PROBABILITY THEORY

..

Engine A Engine B

Time Temp. Time Temp. Time Temp. Time Temp.

27.7 24 24.1 7 24.9 13 24.3 17
24.3 25 23.1 14 21.4 19 24.5 16
23.7 18 23.4 16 24.1 18 26.1 18
22.1 15 23.1 9 27.5 19 27.7 14
21.8 19 24.1 14 27.5 21 24.3 19
24.7 16 28.6 23 25.7 17 26.1 5
23.4 17 20.2 14 24.9 17 24.0 17
21.6 14 25.7 18 23.3 19 24.9 18
24.5 18 24.6 18 22.5 21 26.7 23
26.1 20 24.0 12 28.5 12 27.3 28
24.8 15 24.9 18 25.9 17 23.9 18
23.7 15 21.9 20 26.9 13 23.1 10
25.0 22 25.1 16 27.7 17 25.5 25
26.9 18 25.7 16 25.4 23 24.9 22
23.7 19 23.5 11 25.3 30 25.9 16

Figure 13.1
Car engine test data.
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13.2 THE RAW MATERIAL OF STATISTICS 1003

Somewhere in between these two situations is one for which a difference just exists
but is not obvious. It is in dealing with this type of situation (which is quite common)
that the powerful mathematical discipline of statistics is important. No analysis of the
data will definitely settle the question of whether or not the populations differ, but the
extent of the evidence for a difference can be assessed, and this may be invaluable if a
decision has to be made.

....

Figure 13.2
Histograms of running
times: (a) engine A;
(b) engine B; 
(c) superimposed.

Figure 13.3
Histograms of
temperatures: (a)
engine A; (b) engine
B; (c) superimposed.
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13.2.3 Alternative types of plot

Histograms are the most common types of data plot, but there are many others. For
example, when data are grouped into classes, there is inevitably some loss of informa-
tion. This can be avoided by using a stem-and-leaf plot, which is similar to a histogram
except that the individual values are retained. The idea is for the leading digits in the
sample values to form a stem (one per class), with the remaining digits entering the bar
as a leaf. The length of the bar is simply the number of sample values with that stem.
Figure 13.4 contains stem-and-leaf plots for the running time data for engines A and B
(Figure 13.1). The * in the stem shows where the leaf digit goes. The similarity of these
plots to the histograms in Figure 13.2 is clear.

The main disadvantages of stem-and-leaf plots are that they are less suitable for
large samples, they are more difficult to superimpose to detect differences, and there is
less flexibility in choosing the classes. The stem can be split or several stems conjoined,
but the main constraint is that ten is divisible only by two and five. (Try drawing a stem-
and-leaf plot for the temperature data in Figure 13.1.)

Another useful device is the cumulative percentage plot, which shows for any
value what proportion of observations were less than that value. This can be drawn up
from the original data, but is more easily inferred from a histogram of classes by suc-
cessively adding the class sizes and dividing by the total number of observations.
Figure 13.5 contains such a table for the temperature data for engine A in Figure 13.1.
The cumulative percentage is plotted in Figure 13.6(a). The S shape is typical for plots
like this. Sometimes a special kind of graph paper is used for which the probability

1004 DATA HANDLING AND PROBABILITY THEORY
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A: B:
20. * 2 1 20. * 0
21. * 8 6 9 3 21. * 4 1
22. * 1 1 22. * 5 1
23. * 7 4 7 7 1 4 1 5 8 23. * 3 9 1 3
24. * 3 7 5 8 1 1 6 0 9 9 24. * 9 1 9 3 5 3 0 9 9 9
25. * 0 7 1 7 4 25. * 7 9 4 3 5 9 6
26. * 1 9 2 26. * 9 1 1 7 4
27. * 7 1 27. * 5 5 7 7 3 5
28. * 6 1 28. * 5 1

Figure 13.4
Stem-and-leaf plots of
running times.

Class Number of CumulatiVe number CumulatiVe
range obserVations at upper boundary percentage

0–9.9 2 2 6.7
10.0–12.4 2 4 13.3
12.5–14.9 4 8 26.7
15.0–17.4 8 16 53.3
17.5–19.9 8 24 80.0
20.0–22.4 3 27 90.0
22.5–24.9 2 29 96.7
25.0–27.4 1 30 100.0

Figure 13.5
Cumulative
percentages for
temperature data.
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13.2 THE RAW MATERIAL OF STATISTICS 1005

scale is nonlinear, as shown in Figure 13.6(b). This is known as normal probability
paper, and is useful for testing whether the data have a particularly important kind of
profile called the normal distribution, which will be introduced in Section 13.5.3. If the
data are normal, the plot should fit a straight line.

The presentation of data (often using sophisticated graphics) is very important in
communicating results, and is often referred to as descriptive statistics. In Advanced
Modern Engineering Mathematics we introduce inferential statistics. This means
using mathematical methods to analyse the data with a view to answering certain
important questions. Inferential statistics is more powerful than descriptive statistics
because of the capacity to extract conclusions and quote the confidence with which 
they are asserted. In the rest of this chapter the necessary theory of probability will be
covered so that the statistical methods can be built upon it.

....

Figure 13.6
Cumulative percentage
plots: (a) linear scale;
(b) normal scale.
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13.2.4 Exercises

1006 DATA HANDLING AND PROBABILITY THEORY

..

1 A sample of 52 spoken sentences have the
following lengths in words:

7, 3, 8, 6, 10, 6, 2, 9, 5, 8, 2, 7, 1, 8, 5, 4,
12, 9, 3, 6, 2, 8, 2, 10, 7, 4, 11, 9, 8, 2, 6, 1,
3, 11, 7, 8, 1, 4, 2, 9, 7, 3, 8, 5, 1, 9, 2, 11,
6, 7, 3, 8

Draw a histogram of the lengths from 1 to 12
words. What do you notice about this histogram?

2 The following data consists of percentage marks
achieved by students sitting an examination:

47, 51, 75, 58, 70, 73, 63, 60, 60, 54, 60,
67, 50, 60, 74, 69, 51, 67, 49, 66, 61, 46,
66, 57, 55, 60, 62, 36, 52, 67, 62, 51, 62,
62, 59, 52, 75, 44, 75, 56, 52, 64, 63, 59,
54, 57, 68, 53, 43, 64, 39, 58, 68, 66, 72,
46, 58, 52, 50, 45

Draw histograms with (a) class boundaries at
intervals of five, and (b) your own choice of
class boundaries.

3 Construct stem-and-leaf plots for the data in
Question 2: (a) using * as a placeholder for the
second digit, and (b) using * as a placeholder 
for 0, 1, 2, 3 and 4 in the second digit and + as 
a placeholder for 5, 6, 7, 8 and 9.

4 Figures for a well’s daily production of oil in
barrels are as follows:

214, 203, 226, 198, 243, 225, 207, 203, 208,
200, 217, 202, 208, 212, 205, 220

Construct a stem-and-leaf plot with stem labels
19*, 20*, … , 24*.

5 Using the data in Figure 13.1,

(a) draw two histograms of temperatures for
engine A, first with class boundaries at even
numbers, then with boundaries at multiples of five;

(b) draw a cumulative percentage plot for the
running time data for engine A and compare it
with a similar plot for engine B.

13.3 Probabilities of random events

13.3.1 Interpretations of probability

The theory of probability underlies the methods of inference used in statistical situ-
ations, and the concept of probability can be related to the histogram of data. The height
of each bar determines the proportion of the sample that fell into the corresponding
class. One way to think of probability is to assume that as a larger and larger sample
is taken (ignoring the practical objections raised in Section 13.2.1), the histogram will
stabilize and the class proportions will converge to the ‘true’ probability figures. This
concept of probability is of an objective quantity that applies to each observation and
measures (in a relative way) how likely it is to fall into the corresponding class. Like
the speed of sound and the density of gold, it is known only imperfectly because of our
limited capacity to do experiments.

An alternative concept of probability that is important in decision-making and expert
systems involves degree of belief. This is highly subjective, because it will depend
upon the individual (or group) concerned and will vary with past experience. This
seems unscientific at first sight, and there is much resistance to this notion, but there are
many situations where experiments are unrepeatable in principle and no ‘large-sample
proportion’ approach is applicable. The outcome of an election is uncertain, and it
is not unreasonable to say that some outcomes are ‘more probable’ than others, but the
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actual election can take place only once. It seems that one is forced into a subjective
view of the uncertainties, but the probability figures that emerge must obey certain rules
in order to be consistent. Advocates of subjective probability have shown that these
rules are the same as those obeyed by the sample proportions.

The formal theory of probability admits a number of ‘interpretations’, of which these
objective and subjective interpretations are by far the most important. For engineering
students it is most appropriate to keep the first interpretation – that of probability as an
idealized proportion – in mind when studying the theory.

13.3.2 Sample space and events

The first step is to introduce some terminology that allows us to be clear in describing
what is observed in an experiment. The language used is that of set theory, introduced
in Chapter 6, because this provides a natural way of describing how observed events
combine and separate.

Let the set of all possible outcomes of an experiment be called the sample space
and denote it by S. An event is any subset of S. One (initially unspecified) outcome is
considered to be the actual outcome, and an event is said to occur if it contains the
actual outcome.

Example 13.1 If the experiment is to roll an ordinary six-faced die and observe the numerical value
of the outcome then the sample space will be the set {1, 2, 3, 4, 5, 6}. The event ‘the
outcome is an even number’ will be represented by the set {2, 4, 6}. If the actual
outcome is a 5 then the event ‘the outcome is an even number’ has not occurred,
because 5 � {2, 4, 6}.

Example 13.2 If the experiment is to toss a fair coin twice then the sample space may be represented as
the set {HH, HT, TH, TT}. The event ‘both tosses yield the same result’ is represented
by the set {HH, TT}. If the actual outcome is TT then the event ‘both tosses yield the
same result’ has occurred, because TT � {HH, TT}.

The sample space S therefore contains everything that can occur, and may be dis-
crete or continuous. It is discrete if the possible outcomes can be written as a list: for
instance, for somebody’s birthday S = {1 January, 2 January, … , 31 December}. The
list does not need to be finite. Continuous sample spaces arise when experiments
involve measurements of some continuous variable such as a person’s height or the
voltage in a circuit. Then parentheses (rather than curly brackets) are used to denote an
open interval such as S = (0, 10), and square brackets to denote a closed interval (see
Section 1.2.5). Of course we can only measure to limited precision in practice, so the
possible values could be listed, but this is a rather arbitrary technical limitation.

Events are what we observe, in general. It is not always necessary – and for a con-
tinuous observation it is impossible – to know the actual outcome. If you want to send
someone a birthday card then it is sufficient to know that her birthday occurs ‘about 
the end of June’. Events range from S itself (the certain event) to the empty set ∅
(the impossible event). Most interesting events are in-between: neither certain nor
impossible, but with a reasonable chance of containing the actual outcome.

....
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The usual operations of set theory (Section 6.2) apply to events. If A and B are events
then so are the following:

(a) union: A � B corresponding to ‘A or B occurs’;
(b) intersection: A � B corresponding to ‘A and B occur’;
(c) complement: S − A corresponding to ‘not-A occurs’.

The complement of A is also written A.
Using this language, it is possible to describe situations in which at least one of two

events occurs (union), or where both events occur (intersection), or where an event fails
to occur (complement). Since so much of our everyday experience is structured in this
way, this should be a fairly natural starting-point for the theory.

13.3.3 Axioms of probability

The next step is to associate a real number P(A) with each event A � S, called the
probability of that event. (Strictly speaking, assigning probabilities to arbitrary subsets
of a continuous sample space is not possible, but there are ways around this and we shall
ignore this technical limitation here.) These numbers must satisfy the rules prompted
by the interpretations discussed in Section 13.3.1. The following three rules are referred
to as the axioms of probability, and lay the foundation for the whole theory:

(1) The certain event S has probability one: P(S) = 1.
(2) All probabilities are non-negative: P(A) � 0.
(3) Addition rule: if A and B are disjoint events (so that A � B = ∅) then 

P(A � B) = P(A) + P(B)

If probability is regarded as an idealized proportion then clearly its maximum value
must be one, it must be non-negative, and the addition rule describes how proportions
behave in exclusive situations: for instance, if 5% of units of a brand of power supply
produce a voltage that is too low and 8% produce a voltage that is too high then the
proportion that produces a voltage that is either too low or too high must be 13%. The
three axioms are therefore exactly what we should intuitively expect. What is remark-
able is that they are also sufficient. Further rules of probability follow from the axioms:

(4) Complement rule: P(S − A) = 1 − P(A).
(5) P(∅) = 0.
(6) If A � B then P(A) � P(B).
(7) General addition rule:

P(A � B) = P(A) + P(B) − P(A � B)

The complement rule (4) follows immediately from axioms (1) and (3) using the fact
that a set does not intersect with its complement:

P(A � A) = P(S) = 1 = P(A) + P(A)

1008 DATA HANDLING AND PROBABILITY THEORY
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The general addition rule (7) can be illustrated using a Venn diagram, as in Figure 13.7.
Imagine the probability as a unit mass, spread out (unevenly) over S. Because of the
overlap between A and B, adding their probabilities makes the probability of the inter-
section contribute twice to the total, so this has to be subtracted to compensate.

Example 13.3 A fair six-sided die is tossed. Find the probability of the event ‘even number or number
less than four’.

Solution The sample space is S = {1, 2, 3, 4, 5, 6}, with all values equally likely. Since
P(1) + P(2) + P(3) + P(4) + P(5) + P(6) must sum to one, we must have

P(1) = P(2) = … = P(6) =

The various events are shown in Figure 13.8. Using the general addition rule,

P(even or less than four) = P(even) + P(less than four)

− P(even number less than four)

= P({2, 4, 6}) + P({1, 2, 3}) − P({2})

=

This result also follows from the complement rule:

P({1, 2, 3, 4, 6}) = P(not {5}) = 1 − P({5}) = 5
6

1
2

1
2

1
6

5
6      + − =

1
6

....

Figure 13.7
Venn diagram
illustrating general
addition rule.

Figure 13.8
Sample space for
Example 13.3.
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Example 13.4 During the assessment of a class of students, 80% passed the examination in mathe-
matics, 85% passed in laboratory work, and 75% passed both. For a student chosen at 
random from the class, find the probabilities that the student

(a) passed in either mathematics or laboratory work;

(b) passed in mathematics but failed laboratory work;

(c) failed in both.

Solution Let M and L denote passes in mathematics and laboratory work respectively.
(a) By the general addition rule,

P(M � L) = P(M) + P(L) − P(M � L) = 0.8 + 0.85 − 0.75 = 0.9

(b) The group of students who passed in mathematics consists of those who passed in
both together with those who passed in mathematics but failed in laboratory work, so that

P(M � L) = P(M) − P(M � L) = 0.8 − 0.75 = 0.05

(c) De Morgan’s law (Section 6.2.4, equations (6.7)), together with the result of (a),
gives

P(M � L) = 1 − P(M � L) = 1 − 0.9 = 0.1

13.3.4 Conditional probability

Information sometimes arrives in stages, and this happens whenever the outcome of one
experiment (or part of an experiment) is relevant to another outcome subsequent to it.
For example, the outcome of a seismic survey tells an oil company something about the
chances of finding oil if a well is drilled in a certain area, but has no direct causal
influence on that discovery. Sometimes a causal influence does exist, as in the case
(mentioned in Section 13.2.1) of an opinion poll or vote conducted in a large hall with
a microphone passed from person to person. In such circumstances there is strong
psychological pressure on individuals to go along with the majority. This is very
undesirable in statistical sampling because it can result in a serious bias, so one of the
essential features of a sample is independence. This requires that future outcomes
should not depend upon past or present outcomes, but first we need to express the
possibility of dependence in general probability terms.

From the start, all probabilities are probabilities of events (see Section 13.3.3), so
suppose in general that an event A is known to have occurred (representing the existing
information). The probabilities of possible future events are now measured relative to
the fact that A has occurred. This event must therefore encompass all possibilities com-
patible with the known information, and can effectively be regarded as a new, revised,
sample space in the light of that information. This is the key to understanding the
definition and examples that follow.

The conditional probability of B given A is defined as

where P(A) � 0P B A
P A B

P A
( )  

(   )

( )
,| =

�
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This represents the new probability of B given that A has occurred, and depends upon
the probability of the intersection as shown in Figure 13.9.

Example 13.5 Someone tosses a die, covers it up and tells you that the number shown is less than four.
How does this change the probability that the number is even?

Solution From the definition,

The information that the number is less than four causes the sample space to shrink to
{1, 2, 3}, and only one entry in this set is even. The outcomes are equally likely, so the
probability that the number is even drops from one-half to one-third.

Example 13.6 The probability that a regularly scheduled flight departs on time is P(D) = 0.83, the
probability that it arrives on time is P(A) = 0.92, and the probability that it both departs
and arrives on time is P(A � D) = 0.78. Find the probability that a plane

(a) arrives on time given that it departed on time;

(b) did not depart on time given that it fails to arrive on time.

Solution (a) This is straightforward from the definition:

P(arrives on time | departed on time) = P(A | D)

(b) First, using De Morgan’s law (Section 6.2.4, equations (6.7)), we have

P(A � D) = 1 − P(A � D)

= 1 − P(A) − P(D) + P(A � D)

= = 
(   )

( )
  .

P A D

P D

�
0 94

=  1
3

= = 
({ })

({ , , })
  

P

P

2

1 2 3

1
6
1
2

P
P

P
(   

(

(
even number less than four)  

even number less than four)

number less than four)
| =

....

Figure 13.9
Venn diagram for
conditional
probability.
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by the general addition rule (7). Hence

P(did not depart on time | does not arrive on time)

= P(D | A)

= 0.375

In a sense it is cheating to refer to a conditional ‘probability’ until it is clear that this
quantity actually satisfies the axioms of probability. It is a useful exercise to show that
this is the case. Consider the three axioms in turn:

(1) The event A can be considered as the new sample space, and

(2) P(B | A) � 0 because P(A � B) � 0 and P(A) � 0

(3) If B � C = ∅ then (B � A) � (C � A) = ∅, and so

P[(B � A) � (C � A)] = P(B � A) + P(C � A)

Since (B � A) � (C � A) = (B � C) � A we have that

= P(B | A) + P(C | A)

So conditional probability satisfies the axioms and therefore the various further rules
such as the complement rule (4) and the general addition rule (7). Also, because a
conditional probability is itself a probability, it is possible to conditionalize again. Thus
if the probabilities in the definition are all conditioned upon another event C, we have

Example 13.7 Suppose that on a small tropical island there are only two kinds of day: sunny days and
rainy days. The probability that a sunny day is followed by a rainy day is 0.6, and the
probability that a rainy day is followed by another rainy day is 0.8. The weather on any
day depends upon the previous day’s weather but not upon any earlier days. Find the
probability that if Thursday is rainy then it will be sunny on Saturday.

P B A C
P A B C

P A C
(    )  

(    )

(  )
|

|
|

�
�

=

 
P B C A

P B C A

P A

P B A P C A

P A
(    )  

[(   )  ] 

( )
  

(   )  (   )

( )
�

� � � �
| = =

+

P A A
P A

P A
( )  

( )

( )
  | = = 1

 
=

− − +
−

 
  ( )  ( )  (   )

  ( )

1

1

P A P D P A D
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�
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�
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Solution Let T, F and S denote the events that Thursday, Friday and Saturday are sunny respect-
ively (see Figure 13.10). All probabilities must be conditioned upon the assumption that
Thursday is rainy. The first step is

P(S | T ) = P(S � F | T ) + P(S � F | T )

because conditional probabilities obey the addition rule. Also,

P(S � F | T ) = P(S | F � T )P(F | T )

from the definition. Now

P(F | T ) = P(sunny | rainy)

= 1 − 0.8 = 0.2

because conditional probabilities obey the complement rule. The assumption that the
influence of the weather does not extend beyond the previous day implies that

P(S | F � T ) = P(S | F ) = P(sunny | sunny)

= 1 − 0.6 = 0.4

(This is known as independence, and is described in Section 13.3.5.) Similarly,

P(S � F | T ) = P(S | F � T )P(F | T )

= P(S | F )P(F | T )

= P(sunny | rainy)P(rainy | rainy)

= (1 − 0.8)(0.8)

Thus

P(S | T ) = (0.2)(0.4) + (0.2)(0.8) = 0.24

which is the answer required.

We shall not use conditional probabilities very much in this chapter, but the idea of a
probability that is conditional upon another event is pervasive. For the moment, how-
ever, we must use conditional probability (rather paradoxically) to express the absence
of interaction between the events.

....

Figure 13.10
Sequences of events
for Example 13.7.
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13.3.5 Independence

It is possible for the probability of an event B to be raised, lowered or left unchanged
by the information that another event A has occurred. For the events shown in 
Figure 13.11, B1 is a subset of A and B2 is disjoint from A, so that

because A � B1 = B1 and P(A) � 1

and

P(B2 | A) = 0 � P(B2) because A � B2 = ∅

 
P B A

P B

P A
P B( )  

( )

( )
  ( )1

1
1| = �

1014 DATA HANDLING AND PROBABILITY THEORY
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Figure 13.11
Venn diagram
illustrating conditional
probabilities.

The probability of B3 could go either way, or remain unchanged, depending on the 
probability of the intersection. The situation where the probability is unchanged assumes
a special importance.

Events A and B are called independent when

P(B | A) = P(B)

In this situation A conveys effectively no information about B. From the definition of
conditional probability in Section 13.3.4 it follows that

P(A � B) = P(A)P(B)

The joint probability is the product of the separate probabilities. This shows that
independence is symmetric between the two events, so we also have

P(A | B) = P(A)

Example 13.8 Items from a production line can have defects A or B. Some items have both, some
just one, but most have neither. Tables (a) and (b) show two alternative sets of joint
probabilities:

(a) B ≤ Total (b) B ≤ Total

A 0.02 0.08 0.10 A 0.06 0.04 0.10
A 0.18 0.72 0.90 A 0.14 0.76 0.90

Total 0.20 0.80 1.00 Total 0.20 0.80 1.00

Test for independence in each case.
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Solution The row and column totals shown in the tables are the respective probabilities for the
two defects individually, for example

P(A � B) + P(A � B) = P(A)

and these figures are the same for both tables. It is easy to see that independence holds
for (a) but not for (b); for example, the probability of both defects together is

P(A � B) = 0.02 = P(A)P(B) for (a)

but

P(A � B) = 0.06 � P(A)P(B) for (b)

The probability of the combination is greater in (b) than would be expected from the
product of the separate probabilities, which suggests that the two defects are causally
related in some way.

In general, for any number of independent events the probabilities multiply:

P(A1 � A2 � … � An) = P(A1)P(A2) … P(An)

This is called the product rule and must be distinguished from the addition rule, which
applies (in its basic form, axiom (3)) to exclusive events. Independent events cannot be
exclusive unless the probability of at least one of them is zero.

Example 13.9 A card is selected at random from an ordinary pack of 52 playing cards. Find the 
probabilities that the card drawn is

(a) an ace and a club, (b) an ace or a club,

(c) an ace and a king, (d) an ace or a king.

Solution Let the events that the card is an ace, king and club be denoted by A, K and C
respectively.
(a) The events that the card is an ace and that it is a club are independent because there
are the same numbers of cards for each suit. These events are not exclusive unless the
ace of clubs happens to be missing. Thus

P(A � C ) = P(A)P(C)

(b) The general addition rule for events (Section 13.3.3) gives

P(A � C ) = P(A) + P(C ) − P(A � C )

(c) The events that the card is an ace and that it is a king are mutually exclusive, so

P(A � K ) = 0

(d) By the third axiom of probability (Section 13.3.3),

 P A K(   )      � = + =1
13

1
13

2
13

= + − =       1
13

1
4

1
52

4
13

= = ( )( )  1
13

1
4

1
52

....
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Example 13.10 If two fair dice are tossed, find the probability of at least one six occurring.

Solution We shall assume that the throws are causally independent, in that the outcome for one
die does not relate in any way to the outcome for the other. They will then be statistic-
ally independent, and, by the complement and product rules,

P(at least one six) = 1 − P(no six)

= 1 − P(first die not six)P(second die not six)

Example 13.11 If n people are independently selected, how large does n have to be before there is a 
better than even chance that at least two of them have the same birthday (not neces-
sarily in the same year and ruling out February 29th)? Assume that all possibilities are
equally likely.

Solution The method of solution to this problem is similar to that for Example 13.10.

P(at least two with the same birthday)

= 1 − P(all different birthdays)

= 1 − P(2nd different from 1st)P(3rd different from 1st and 2nd)

… P(nth different from 1st, … , (n − 1)th)

= 0.507 when n = 23

Many people are surprised to find that the answer to Example 13.11 is so small, but this
shows that our subjective expectations sometimes have to give way when the rules of
probability are properly applied.

In connection with this example, a number of fallacies that ‘appear to be most 
prevalent and injurious to the susceptible gambler’ have been identified (R. A. Epstein, 
The Theory of Gambling and Statistical Logic, Academic Press, New York, 1977, 
p. 393), among which is

A tendency to interpret the probability of successive independent events as
additive rather than multiplicative. Thus the chance of throwing a given
number on a die is considered twice as large with two throws as it is with
a single throw.

The addition and product rules apply in different circumstances and must not be
confused.

= −
−

     
  

1
364

365

363

365

366

365
…

n

= − =   ( )  1 5
6

2 11
36
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13.3.6 Exercises

6 If S is the set {bolt, nut, washer, screw, bracket,
flange}, and A and B are sets {bracket, nut, flange}
and {bolt, bracket} respectively, then what
combinations of A and B produce the following
sets as outcomes?

(a) {bracket}

(b) {flange, bracket, bolt, nut}

(c) {washer, bolt, screw}

(d) {screw, flange, nut, bolt, washer}

7 Let the sample space S and three events be defined
as S = {car, bus, train, bicycle, motorcycle, boat,
aeroplane), A = {bus, train, aeroplane}, B = {train,
car, boat}, C = {bicycle}. List the elements of the
sets corresponding to the following events:

(a) A (b) A � B � C (c) (A � B) � (A � C )

8 If A and B are mutually exclusive events and
P(A) = 0.2 and P(B) = 0.5, find

(a) P(A � B) (b) P(A) (c) P(A � B)

9 From a pack of 52 cards a card is withdrawn at
random and not replaced. A second card is then
drawn. What is the probability that the first card
is an ace and the second card a king?

10 Two ordinary six-faced dice are tossed. 
Write down the sample space of all possible
combinations of values. What is the probability
that the two values are the same? What is the
probability that they differ by at most 1?

11 The personnel manager of a manufacturing plant
claims that among the 400 employees, 312 got
a pay rise last year, 248 got increased pension
benefits, 173 got both and 43 got neither.
Explain why this claim should be questioned.

12 If a card is drawn from a well-shuffled pack 
of 52 playing cards, what is the probability 
of drawing

(a) a red king

(b) a 3, 4, 5 or 6

(c) a black card

(d) a red ace or a black queen?

13 In a single throw of two dice, what is the probability
of getting

(a) a total of 5,

(b) a total of at most 5,

(c) a total of at least 5?

14 Suppose that you roll a pair of ordinary dice
repeatedly until you get either a total of seven or a
total of 10. What is the probability that the total then
is seven?

15 The ‘odds’ in favour of an event A are quoted as 
‘a to b’ if and only if P(A) = a /(a + b). The ‘odds
against’ are then ‘b to a’ (which is the usual way to
quote odds in betting situations).

(a) If an insurance company quotes odds of 3
to 1 in favour of an individual 70 years of age
surviving another 10 years, what is the
corresponding probability?

(b) If the probability of a successful transplant
operation is , what are the odds against success?

16 Two fair coins are tossed once. Find the conditional
probability that both coins show heads, given that

(a) the first coin shows a head;

(b) at least one coin shows a head.

17 During the repair of a large number of car engines 
it was found that part number 100 was changed in
36% and part number 101 in 42% of cases, and 
that both parts were changed in 30% of cases. Is 
the replacement of part 100 connected with that of
part 101? Find the probability that in repairing an
engine for which part 100 has been changed it will
also be necessary to replace part 101.

18 If P(A) = 0.3, P(B) = 0.4 and P(B | A) = 0.5, find

(a) P(A � B) (b) P(A � B) (c) P(B | A)

19 Three people work independently at deciphering a
message in code. The probabilities that they will
decipher it are and . What is the probability
that the message will be deciphered?

20 Part of an electric circuit consists of three elements
K, L and M in series. Probabilities of failure for 

1
3

1
5

1
4, 

1
8
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elements K and M during operating time t are 0.1
and 0.2 respectively. Element L itself consists of
three sub-elements L1, L2 and L3 in parallel, with
failure probabilities 0.4, 0.7 and 0.5 respectively,
during the same operating time t. Find the
probability of failure of the circuit during time t,
assuming that all failures of elements are
independent.

21 A system can fail (event C ) because of two
possible causes (events A and B). The probabilities
of A, B and A � B are known, together with the
probabilities of failure given A, given B and given
A � B. Express the following in terms of these
known quantities:

(a) P(A � B) (b) P(C | A � B)

(c) P(C | A � B)

1018 DATA HANDLING AND PROBABILITY THEORY

..

22 An advertising agency notes that approximately 
one in 50 potential buyers of a product sees a 
given magazine advertisement and one in five sees
the corresponding advertisement on television. 
One in 100 sees both. One in three of those who
have seen the advertisement purchase the product,
and one in 10 of those who haven’t seen it also
purchase the product. What is the probability that a
randomly selected potential customer will purchase
the product?

23 On an infinite chess-board with each side of a
square equal to d, a coin of diameter 2r � d is
thrown at random. Find the probabilities that

(a) the coin falls entirely in the interior of one of
the squares;

(b) the coin intersects no more than one side of 
a square.

13.4 Random variables

13.4.1 Introduction and definition

Now that the foundation of probability theory has been laid, we can begin to consider
the data that originates in typical experiments – in particular, numerical data from obser-
vations of random variables. It is quite possible for non-numerical outcomes to be of
interest, for instance in an experiment where a machine’s possible faults might consist
of the set {overheated, jammed, misaligned}. Even then, the experiment is likely to
be repeated a number of times, and the count for each outcome gives rise to numerical
data that can be treated statistically. For the moment, however, let us assume that the
outcomes themselves take numerical values.

A random variable consists of a sample space of possible numerical values together
with a probability over those values.

Random variables vary in their degree of advance predictability. As the following
four examples show, the probabilities of the possible values are very dispersed for some
random variables, but highly concentrated for others:

(a) The toss of a die. No die is perfect, but for this random variable the probabil-
ities of the six values are almost equal.

(b) Next month’s rainfall. Unless you live in a part of the world that has a very
constant climate, the amount of rain that falls in March, say, varies from year
to year quite considerably. The probabilities are not quite so dispersed as for
the die toss, but there is a high degree of uncertainty.

(c) A flight delay. Here there is a high probability of at most a short delay, but
a small probability of a very long delay. The probabilities are relatively 
concentrated.
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13.4 RANDOM VARIABLES 1019

(d) The time of tomorrow’s sunrise. Knowing your latitude, longitude, altitude, the
date, the direction of sunrise and the height above sea level of the horizon in
that direction, you could predict the time very precisely. There would be some
small uncertainty because of atmospheric refraction.

The behaviour of a random variable is determined by the profile of its probability
distribution. We shall now enlarge upon this for the two common types. The notation
convention is to denote a random variable by a capital letter, say X, and an observed
value by the corresponding lower-case letter, then x.

13.4.2 Discrete random variables
The distinction between discrete and continuous random variables is inherited from that
for sample spaces (Section 13.3.2). First we shall consider the discrete case.

The random variable X, say, has a list of possible values v1, v2, … , vm with prob-
abilities P(X = v1), … , P(X = vm) of equalling these values. In other words, each actual
value x of X is equal to vi for some i = 1, … , m, and we allow m to be infinite if required.
This can be regarded as an idealization of the histogram of data in Section 13.2.2, where
m is the number of classes. Typical examples are die tosses, birthdays, and the numbers
of defective components in a batch from a production line.

In general, the behaviour of a discrete random variable can be represented graphic-
ally by means of a probability function

PX(x) = P(X = x) (−∞ � x � +∞)

and illustrated in Figure 13.12(a) for Example 13.12. Also useful is the distribution
function Fx(x) defined as

FX(x) = P(X � x) (−∞ � x � +∞)

....

Figure 13.12
Example 13.12: (a)
probability function;
(b) distribution
function.
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and illustrated in Figure 13.12(b). This definition is based on the fact that the set of
points in the sample space for which X � x constitutes an event, and the probability 
of this event (as a function of x), forms the distribution function. Sometimes this is
referred to as the cumulative distribution function, because it measures the cumulative
probability up to (and including) the value of its argument.

Example 13.12 The number of ships arriving at a container terminal during any one day can be any
integer from zero to four, with respective probabilities 0.1, 0.3, 0.35, 0.2, 0.05. Plot the
probability and distribution functions.

Solution The probability function is shown in Figure 13.12(a). The function has zero value except
at the five integer points. The value of the distribution function at any point x is the 
sum of the probabilities to the left of and including x. This is shown in Figure 13.12(b).
The function is discontinuous, with steps occurring at the integer points, and the value
at each integer includes the probability of that integer. This is indicated by the blob at
each step.

The distribution function will be discussed further after the other class of random vari-
ables has been introduced.

13.4.3 Continuous random variables

A continuous random variable X can take any value within some interval (v1, v2 ). If this
interval is not already infinite, we define the random variable to have zero probabil-
ity for any value outside it, and hence extend the domain of definition to (−∞, +∞).
Typical examples are a person’s height and weight, component lifetimes, and all meas-
ured quantities expressed in units of mass, length, time, temperature, resistance and 
so on.

In general, the behaviour of a continuous random variable X is described by a
probability density function fX(x) for −∞ � x � +∞, as illustrated in Figure 13.13.
As will be explained below, fX(x) is not the probability that X = x: instead, the density
function has to be understood in terms of the distribution function FX(x), which
measures (as before) the probability that the value of the random variable is less than
or equal to the argument x:

FX(x) = P(X � x) (−∞ � x � +∞)

1020 DATA HANDLING AND PROBABILITY THEORY
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Figure 13.13
Typical probability
density function.
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13.4 RANDOM VARIABLES 1021

In this case, because there are no discrete steps in probability, FX(x) is continuous and
differentiable, and its derivative is called the probability density function fX(x):

The significance of the density function is that it indicates for a continuous random
variable the concentration of possible observed values along the real axis. This inter-
pretation will be clarified in Section 13.4.4.

Example 13.13 The lifetime of an electronic component (in thousands of hours) is a continuous random
variable with density function

(This is an example of an exponential distribution with parameter .) Plot the 
distribution and density functions.

Solution Integrating the density function gives the distribution function (Figure 13.14):

1
2

 

f x
x

x
X

x

( )  
(   )

(   )

/

=
⎧
⎨
⎪

⎩⎪

−1
2

2 0

0 0

e �

�

f x
x

F xX X( )  [ ( )]=
d

d

....

Figure 13.14
An exponential
distribution (Example
13.13).

FX(x) = �
x

0

e−z/2 dz = [−e−z/2 ]x
0 = 1 − e−x/2

for x � 0, and zero for x � 0. The variable z is a dummy variable used for integration.
The distribution and density functions show that most components have short lifetimes,
but a small proportion can survive for much longer.

13.4.4 Properties of density and distribution functions

In order to use the density and distribution functions, we need the following results,
which are immediate from the definitions:

(a) FX(x) = 0 and FX(x) = 1lim
x→+∞

lim
x→−∞

1
2

M13_JAME0734_05_SE_C13.qxd  11/03/2015  10:05  Page 1021



..

Clearly it is impossible for a random variable to have a value less than −∞, and it is
certain to have a value less than +∞.

(b) If x1 � x2 then FX(x1) � FX(x2)

Here the event that X � x1 is a subset of the event that X � x2, so the probability of the
latter must be at least as great as that of the former. From results (a) and (b) it follows
that at any point the distribution function is either constant or else increasing, ultimately
from its lower limit of zero (at −∞) to its upper limit of one (at +∞).

(c) P(x1 � X � x2) = FX(x2) − FX(x1)

For any random variable the difference between the values of the distribution function
at two points is the probability that a value of the random variable will lie between those
two points (or is equal to the upper one). For a continuous random variable this is also
the area under the density function between those points, by virtue of the relationship
between the functions:

P(x1 � X � x2) = fX(z)dz

as illustrated in Figure 13.15. This crucial result expresses the significance of the
density function and leads to another feature of continuous random variables that
should be clearly understood. Setting x1 = x2 = x, we see that the probability P(X = x)
that the random variable has a value exactly equal to x is zero for any x, because the
integral is over a domain of length zero. This is in sharp contrast to discrete random
variables, which can only take certain specific values.

(d) fX(x)dx = 1

The total area under the density function must be unity because the random variable
must have a value somewhere.

Example 13.14 For the distribution of component lifetimes in Example 13.13 find the proportion of
components that last longer than 6000 hours.

Solution Using the distribution function,

P(X � 6) = 1 − P(X � 6) = 1 − FX(6)

= 1 − [1 − e−6/2] = e−3 � 0.05

In other words, approximately one in 20 components lasts longer than 6000 hours.

 
�

−∞

+∞

�
x

x

1

2
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Figure 13.15
Probability of interval
from density function.
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Example 13.15 Two people have agreed to meet in a definite place between six and seven o’clock.
Their actual times of arrival are independent and entirely random (no arrival time more
likely than any other) within the hour. Find

(a) the density function of the time that the first person arriving has to wait;

(b) the probability that the meeting will occur if the first person to arrive does not wait
for longer than 15 minutes.

Solution (a) The sample space can be regarded as a unit square as depicted in Figure 13.16(a).

....

Figure 13.16
(a) Sample space 
for Example 13.15. 
(b) Density and
distribution functions
for waiting time.

Each point represents a pair of arrival times, each measured as part of one hour from
six o’clock. Because all arrival times are equally likely for each person and because
they arrive independently, all points in the unit square are equally likely. Because the
total probability must be one, this implies that the probability of any subset of points is
simply equal to the area of that subset. Points along the diagonal lines offset along
either axis by a distance w correspond to a waiting time for the first person arriving
(W, say) equal to w, because the difference between the arrival times is constant along
such lines. The shaded area therefore represents a waiting time greater than w. Putting
the two triangles together, we obtain a square of side 1 − w, so the probability that the
waiting time exceeds w is given by

P(W � w) = (1 − w)2

The complement of this gives the distribution function of waiting time:

FW(w) = P(W � w) = 1 − (1 − w)2 = 2w − w2

and, by differentiation, the density function is

fW(w) = 2(1 − w)

both functions being for w between zero and one and illustrated in Figure 13.16(b).

(b) The probability that the meeting will occur is the probability that the waiting time
does not exceed 15 minutes:

P W FW(   )  ( )  � 1
4

1
4

7
16= =
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13.4.5 Exercises

24 Find the distribution of the sum of the numbers
when a pair of dice is tossed.

25 At the 18th hole of a golf course the probability
that a golfer will score a par four is 0.55, the
probability of one under is 0.17, of two under is
0.03, of one over is 0.2 and of two over is 0.05.
Plot the (cumulative) distribution function.

26 A difficult assembly process must be undertaken,
and the probability of success at each attempt is
0.2. The distribution of the number of independent
attempts needed to achieve success is given by the
product rule as

P(X = k) = (0.2)(0.8)k−1 (k = 1, 2, 3, … )

Plot the distribution function and find the
probabilities that the number of attempts will be

(a) less than four;

(b) between three and five.

27 Suppose that a coin is tossed three times and that
the random variable W represents the number of
heads minus the number of tails.

(a) List the elements of the sample space S for the
three tosses of the coin, and to each sample point
assign a value w of W.

(b) Find the probability distribution of W,
assuming that the coin is fair.

(c) Find the probability distribution of W,
assuming that the coin is biased so that a head
is twice as likely to occur as a tail.

28 If the probability density function of a random
variable X is given by

f x
c x x

X( )  
/ (     )

( )
=

⎧
⎨
⎪

⎩⎪

÷ 0 4

0

� �

elsewhere

where c is a constant, find

(a) the value of c;

(b) the distribution function;

(c) P(X � 1).

29 The time interval (X ) between successive
earthquakes of a certain magnitude has an
exponential distribution with density function 
given by

where x is measured in days. Find the probability
that such an interval will not exceed 30 days.

30 The shelf life (in hours) of a certain perishable
packaged food is a random variable with density
function

Find the probabilities that one of these packages
will have a shelf life of

(a) at least 200 hours;

(b) at most 100 hours;

(c) between 80 and 120 hours.

31 The wave amplitude X on the sea surface often has
the following (Rayleigh) distribution:

where a is a positive constant. Find the
distribution function and hence the probability that
a wave amplitude will exceed 5.5 m when a = 6.
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13.4.6 Measures of location and dispersion

The observable properties of a random variable are determined by its distribution of
probabilities (if discrete) or density function (if continuous), but this amount of infor-
mation is difficult to extract from data. One common approach that is rather simpler is to
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assume that the random variable is one of a class whose distribution is specified by a
formula and which often arises in practice, such as the binomial, Poisson or normal.
These distributions will be covered in Section 13.5. Another common approach is
to characterize the random variable in terms of two numbers: a measure of location
(‘typical’ value) and a measure of dispersion (‘spread’ about that value). In practice,
both approaches are used together, with the measures of location and dispersion often
providing the parameters for the formula of the distribution.

Mean, median and mode

There are three common measures of location, the most important of which is the mean.
For a random variable X this is usually given the symbol µX and is defined as

This represents a weighted sum of the possible values of X, with weights reflecting 
their relative likelihood of occurrence, and is effectively the ‘centre of gravity’ of the
distribution.

Another measure of location that is often used is the median. For a continuous 
random variable X this is the point mX for which

P(X � mX) = FX(mX) =

In other words, there are equal chances of X being greater than the median or less than
the median. For a discrete random variable the median may not be unique, and is any
point for which

P(X � mX) � and P(X � mX) �

The median of a distribution does not coincide with the mean unless the distribution has
an axis of symmetry, in which case both measures lie on it.

The third measure of location is the mode, which is any point for which the prob-
ability function PX(mode) (if discrete) or the density function fX(mode) (if continuous)
is an overall maximum. The mode can therefore be regarded as the most likely value
of X to be observed. The mean, median and mode can all differ (see for example
Figure 13.17), and can occur in any order.

1
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1
2
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Figure 13.17
Mode, median and
mean for a particular
distribution.
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Example 13.16 Find the mean, median and mode for

(a) a simple die toss,

(b) the number of ship arrivals (Example 13.12),

(c) the lifetime distribution (Example 13.13).

Solution (a) For the toss of a fair die

The median is any point in the interval [3, 4], and each possible value is a mode.

(b) For the number of ship arrivals

µX = (0)(0.1) + (1)(0.3) + (2)(0.35) + (3)(0.2) + (4)(0.05) = 1.8

The median is two because P(X � 2) = 0.75 and P(X � 2) = 0.6, both of which exceed
one-half. The mode is also equal to two because this is the most likely value.

(c) For the lifetime distribution

µX = �
∞

0

xe−x/2 dx

which we integrate by parts to obtain

µX = [−xe−x/2]0
∞ + �

0

∞

e−x/2 dx = [−2e−x/2]0
∞ = 2

The median is given by

FX(mX) = 1 − e−mX/2 =

from which mX = 1.386. The mode, however, is zero because this is the peak of the
density function.

Variance, standard deviation and quartiles

There are two approaches to measuring the variation of random variables around
their central values (mean, median or mode). The most important such measure is the
variance, a weighted sum of squared differences between the possible values and the
mean, usually written as Var(X ) or σ 2

X:

Var
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This is analogous to ‘moment of inertia’: it measures how tightly concentrated the
possible values are about the mean (centre of gravity). One undesirable feature is that
the squaring operation changes the units, so that a random variable measured, say,
in volts will have a variance in volts-squared. The remedy is to use the standard
deviation σX, which is defined as the square root of the variance.

The alternative approach to measuring dispersion is to exploit the distribution func-
tion FX(x). Suppose for simplicity that X is a continuous random variable. We have
already defined the median by

FX(mX) =

The points q1 and q3 where

FX(q1) = and FX(q3) =

are called quartiles, and the median can also be described as a quartile q2. These
quartiles divide the range of possible values of X into four successive intervals, for each
of which the probability of X falling in the interval is one-quarter. In fact, a finer sub-
division into 100 equally likely intervals is also used, the dividing points being called
percentiles. The first quartile q1 is then the 25th percentile, and so on. The 10th and
90th percentiles are also known as the first and ninth deciles, d1 and d9.

The most common measure of dispersion apart from variance (or standard deviation)
is the interquartile range q3 − q1. Sometimes the semi-interquartile range or quar-
tile deviation (q3 − q1) is quoted instead. The interdecile range d9 − d1 is also used.

Example 13.17 Find the variance and standard deviation for each of the random variables in
Example 13.16, and the interquartile range for the lifetime distribution.

Solution (a) For the toss of a fair die, using µX = 3.5,

σ 2
X =

from which σX = 1.708.

(b) For the number of ship arrivals, using µX = 1.8,

σ 2
X = (0 − 1.8)2(0.1) + (1 − 1.8)2(0.3) + (2 − 1.8)2(0.35)

+ (3 − 1.8)2(0.2) + (4 − 1.8)2(0.05) = 1.060

from which σX = 1.030.

(c) For the lifetime distribution, using µX = 2,

σ 2
X = �

0

∞

(x − 2)2e−x/2 dx

which we integrate by parts to obtain
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σ 2
X = −[(x − 2)2e−x/2]0

∞ + �
0

∞

2(x − 2)e−x/2 dx

= 4 − [4(x − 2)e−x/2]0
∞ + �

0

∞

4e−x/2 dx = 4

from which σX = 2. The quartiles q1 and q3 are the solutions of

1 − e−x/2 = and 1 − e−x/2 =

respectively, from which q1 = 0.575 and q3 = 2.773, and the interquartile range is there-
fore 2.773 − 0.575 = 2.198.

13.4.7 Expected values

The mean and variance are special cases of expected values for a random variable. In
general, the expected value of a function h(X) of a random variable X is

As before, this is a weighted combination of the possible values. The mean and
variance are retrieved by taking h(X) = X and h(X ) = (X − µX)2 respectively.

Expected values have many applications. One immediate application is in a useful
alternative expression for the variance, obtained by expanding the square. If X is 
continuous then

σ 2
X = (x − µX)2 fX(x)dx

= x 2 fX(x)dx − 2µX xfX(x)dx + µ 2
X fX(x)dx

= E(X2) − µ2
X

In other words, the variance is the expected value (or mean) of the square minus the
square of the mean. The same is true when X is discrete, by a similar proof.

Example 13.18 Find the mean and standard deviation of the waiting time in Example 13.15.

Solution The mean waiting time is

µW = �
1

0

2(w − w2)dw = 1
3
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The mean square is

E(W 2) = �
1

0

2(w2 − w3)dw =

so the standard deviation is

These translate to 20 minutes for the mean and about 14 minutes for the standard 
deviation.

13.4.8 Independence of random variables

It is possible for two different random variables to be measured for the same object: 
for example, a person’s height and weight. Individually, these random variables have
distributions, mean values and variances, which apply to a particular population, but
this is not the whole story. It is clear that taller people tend to be heavier than shorter
people (although obviously there are exceptions). In this case we say that these variables
are dependent upon each other (to some degree). The notion of dependence is basically
the same as that applying to events, discussed in Section 13.3.4. Furthermore, just as
events can be independent (Section 13.3.5), so can random variables. For example, it is
plausible that a person’s birthday and telephone number are not related in any way, and
are therefore independent random variables. Nothing is likely to be learnt about the one
from an observation of the other.

For independent events we have the rule that the joint probability is the product of
the separate probabilities:

P(A � B) = P(A)P(B)

For independent discrete random variables a similar rule applies:

P(X = ui � Y = vj) = P(X = ui)P(Y = vj)

where u1, u2, … , uk are the possible values of X and v1, v2, … , vm are the possible 
values of Y. This effectively specifies a joint distribution for the two random variables.
If we sum over the possible values of Y then we find

= P(X = ui)

Thus the individual probability of one value ui of X can be obtained from the joint
distribution by summing over all values vj of Y, with X fixed at ui. In fact, this is true
even when the random variables are dependent.
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Example 13.19 A new plant at a manufacturing site has to be first installed and then commissioned. The
times required for these two stages depend upon different random factors, and can
therefore be regarded as independent. Based on past experience, the respective distribu-
tions for X (installation time) and Y (commissioning time), both in days, are as follows:

ui 3 4 5 6 vj 2 3 4
P(X = ui) 0.1 0.4 0.3 0.2 P(Y = vj) 0.50 0.35 0.15

Find the joint distribution for X and Y, and the probability that the total time will not
exceed seven days.

Solution Because the random variables are independent, the joint distribution is given by the
product of the separate distributions:

P(X = ui � Y = vj) = P(X = ui)P(Y = vj)

with the following result:

Note that the row and column totals give the individual distributions for X and Y. The
probability that the total time will not exceed seven days is given by the sum of those
joint probabilities above the stepped broken line:

P(X + Y � 7) = P(X = 3 � Y = 2) + P(X = 3 � Y = 3) + P(X = 3 � Y = 4)

+ P(X = 4 � Y = 2) + P(X = 4 � Y = 3) + P(X = 5 � Y = 2)

= 0.050 + 0.035 + 0.015 + 0.200 + 0.140 + 0.150 = 0.59

13.4.9 Scaling and adding random variables
Example 13.19 has introduced the idea of a sum of random variables, itself a random
quantity. The distribution of this quantity can be deduced from the joint distribution; thus
in Example 13.19 the probability that the total time (installation plus commissioning)
will take exactly seven days is

P(X + Y = 7) = P(X = 3 � Y = 4) + P(X = 4 � Y = 3) + P(X = 5 � Y = 2)

= 0.015 + 0.140 + 0.150 = 0.305

A similar calculation can be done for every possible value from the minimum (five
days) to the maximum (ten days), and the distribution is then complete.

1030 DATA HANDLING AND PROBABILITY THEORY
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13.4 RANDOM VARIABLES 1031

Example 13.20 Find the distribution of total time for the situation described in Example 13.19, and the
expected value of this time.

Solution Proceeding as described above, we obtain the following distribution:

wk 5 6 7 8 9 10
P(X + Y = wk) 0.050 0.235 0.305 0.265 0.115 0.030

The expected value is then

There is, however, an easier way to arrive at the mean of a sum of random variables.
The separate means (or expected values) of X and Y are easily found from the values
given in Example 13.19:

It has turned out that

E(X + Y ) = E(X) + E(Y)

The mean of the sum of random variables is the sum of the means. That this is a
general result is shown as follows:

= E(X) + E(Y)

The double summation is over all the possible values of X + Y (which are ui + vj) times
the probability of each combination, and the result in Section 13.4.8 that summing a
joint probability over the values of one variable gives the probability of the other vari-
able has been used. Furthermore, because this also holds for dependent variables (as can
be seen in Advanced Modern Engineering Mathematics), the mean of a sum of random
variables is always equal to the sum of the means, whether they are dependent or not.

= = + =
= =
∑ ∑ (   )  (   )
i

k

i i
j

m

j ju P X u P Y
1 1

v v

= = =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ = =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= = = =

∑ ∑ ∑ ∑ (      )   (      )
i

k

i
j

m

i j
j

m

j
i

k

i ju P X u Y P X u Y
1 1 1 1

� �v v v

E X Y u P X u Y
j

m

i j i j
i

k

(   )  (  ) (      )+ = + = =
==

∑∑
11

v v�

E Y P Yj j

j

( )  (   )   .= = =∑ v v
v

2 65

E X u P X ui i
ui

( )  (   )  .= = =∑ 4 60

E X Y w P X Y wk k
wk

(   )  (     )  .+ = + = =∑ 7 25

....

M13_JAME0734_05_SE_C13.qxd  11/03/2015  10:05  Page 1031



..

For the variance of a sum it is not quite so simple. If the mean of X is µX and the
mean of Y is µY then

Var(X + Y ) = E{[(X + Y ) − (µX + µY)]
2} = E{[(X − µX) + (Y − µY)]

2}

= E{(X − µX)2 + (Y − µY)
2 + 2(X − µX)(Y − µY)}

= E{(X − µX)2} + E{(Y − µY)
2} + E{2(X − µX)(Y − µY)}

The first two terms on the right-hand side are Var(X ) and Var(Y) respectively. The third
term (which is actually called the covariance) is a measure of dependence, and it
is shown in Advanced Modern Engineering Mathematics that this is always zero for
independent variables. Hence if X and Y are independent, the variance of a sum is equal
to the sum of the variances:

Var(X + Y ) = Var(X) + Var(Y)

These results for the mean and variance of sums of random variables extend naturally
to any number of variables, and apply whether the variables are discrete or continuous.

If we add a constant (c, say) to a random variable X, it follows immediately from the
definitions in Section 13.4.6 that the same constant is added to the mean, but the vari-
ance does not change. If X is a continuous random variable, with density function fX (x),
say, then

E(X + c) = (x + c) fX(x)dx = xfX(x)dx + c fX(x)dx

= µX + c

Var(X + c) = [(x + c) − (µX + c)]2 fX(x)dx

= (x − µX)2 fX(x)dx = σ 2
X

If we multiply a random variable X by a constant c, the mean is multiplied by c and
the variance by c2:

E(cX) = cxfX(x)dx = cµX

Var(cX) = (cx − cµX)2 fX(x)dx = c2 (x − µX)2 fX(x)dx = c2σ 2
X

All of these results hold whether X is continuous or discrete.
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13.4 RANDOM VARIABLES 1033

Example 13.21 If a mean temperature is 58°F, what is the mean temperature in degrees Celsius?

Solution If TF and TC denote temperatures in Fahrenheit and Celsius respectively then

TC = (TF − 32)

so

E(TC) = [E(TF) − 32] = (58 − 32) = 13.4°C

13.4.10 Measures from sample data

We can now return to the consideration of data, which is the object of the whole
exercise. Given that the exact distribution of a random quantity under investigation is
usually not known in an experimental context but that the mean and variance at least
would be useful characteristics of it, it is reasonable to try to estimate these from the
data. Experience shows that quite good estimates of mean and variance can be obtained
even from rather small samples, whereas a much larger sample is needed before the
histogram gives a good approximation to the whole shape of the true distribution.

Sample average and variance

For a sample {X1, … , Xn} of data, the sample average and sample variance are
defined as

respectively. The sample standard deviation is the square root of the sample variance.
The average of the sample, and the average squared deviation from the sample 

average, are easy to work out from the data, and characterize the data in location and
dispersion. It turns out that these approximate the true figures of mean and variance, and
the approximations improve as n → ∞ in a sense to be made precise below.

By expanding the square in the formula for the sample variance (as in Section 13.4.7
for the true variance) it is easy to show that an alternative expression (which is useful
for hand calculation) is

that is, the average of the square minus the square of the average. When small samples
are used in statistics (this is considered in Advanced Modern Engineering Mathe-
matics), a different definition of sample variance must be adopted:
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The difference between the two definitions is relatively small. Many scientific calcu-
lators provide functions to work out sample average and both forms of sample variance
or standard deviation.

Example 13.22 A die was tossed 24 times, producing the following results:

4, 6, 2, 4, 2, 1, 5, 1, 3, 1, 3, 4, 5, 4, 3, 1, 6, 5, 6, 3, 1, 2, 4, 6

Find the sample average and standard deviation.

Solution The average score over the 24 tosses is

X = 3.42

The average of the squares is 13.667, so the standard deviation is

SX = ÷[13.667 − (3.42)2] = 1.73

These figures are close to the theoretical values worked out in Examples 13.16 and 13.17.

An issue first raised in Section 1.5 is important here: to how many places of deci-
mals should these results be quoted? The actual average of the data in this example is
3.4166 … , but the results should be stated with no more significant digits than can be
justified statistically. The average might be quoted as 3, 3.4, 3.42, 3.417 and so on, but
the appropriate precision depends upon the sample size n.

The sample average itself is a random variable; it has a mean and variance, and it
follows from the results in Section 13.4.9 that

since the random variables, Xi, can be reasonably assumed independent here.
The larger the sample size, the smaller the variance of X and the greater the pre-

cision, but to quantify the precision we also need a value for σX. Usually all we have is
the estimate SX, but this is also a random variable and subject to error. It can be shown
that in many situations a (rather rough) indication of the accuracy of SX as an estimate
of σX is that its relative error (see Section 1.5.3) varies inversely with ÷(2n):

Returning to Example 13.22, with n = 24, the percentage error in SX is estimated at
14%, so the error in SX is likely to be of order 0.2, and the second decimal place has 
no meaning. The error in SX /÷n is correspondingly of order 0.05 in its value of 0.35.
The results of Example 13.22 can therefore be stated more properly as

X = 3.4 (with likely error of order 0.4)

SX = 1.7 (with likely error of order 0.2)
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13.4 RANDOM VARIABLES 1035

In practice, these high standards of honesty are not always maintained, and it is very
important not to be misled by the spurious precision with which results are often quoted.

Example 13.23 Measured values of resistance (in Ω) for 12 nominally 100 Ω resistors were as follows:

106, 98, 95, 109, 99, 102, 101, 108, 94, 99, 96, 102

Find the sample average and both forms of sample variance and standard deviation.

Solution The average of the 12 figures is

X = 100.75

which is slightly high but close to the nominal figure, and much closer to that figure
than a ‘typical’ value from the data. The two results for sample variance and standard
deviation are

S2
X = 22.9, SX = 4.8

and

S2
X,n−1 = 25, SX,n−1 = 5

Despite the small sample size, the difference between the two versions of sample stand-
ard deviation is not very large. Furthermore, following the above discussion, an error
of order 1.0 is likely in the standard deviation (÷ is about 20%), so there is no point
in distinguishing them, even to the first decimal place. The value of SX/÷n is 1.4, with
a likely error of order 0.3, so the average should properly be stated as

X = 101 (with likely error of order 1.5)

It is worth noting that in Example 13.23 the distribution of the random variable (resist-
ance) is not known, but the sample provides useful information about the mean value
and the variability about that value.

As mentioned above, many scientific calculators will work these results out auto-
matically. There are also many statistical packages that run on computers of all sizes,
and they will do the same. Alternatively, Figure 13.18 contains a pseudocode listing of
an efficient program to compute the sample average and standard deviation of a set of
data X1, … , Xn. The algorithm used works as follows.

Let Mk and Qk respectively represent the average of the first k observations and the
sum of squares of deviations of the first k observations about their average:

The program exploits the following recursion relations, which are proved in D. Cooke,
A. H. Craven and G. M. Clarke, Statistical Computing in Pascal (Edward Arnold,
London, 1985), pp. 54–5 (© 1985 Edward Arnold Ltd. Reproduced by permission of
Edward Arnold (Publishers) Ltd).
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and

Finally,

The use of this recurrence method avoids having to make two passes through the data
(as required for the original definition of the sample variance), and also avoids the loss
of precision involved in subtracting two quantities that often turn out in practice to be
large in magnitude and similar in value (as required by the alternative expression).

Sample median and range

The sample average and standard deviation are not the only measures of location and
dispersion derived from data. Suppose that the data {X1, … , Xn} are ordered so that

X(1) � X(2) � … � X(n)

Then a sample median that provides an estimate of the true median (Section 13.4.6)
can be defined as

sample median
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{Program to compute the sample average and standard deviation,
x(k) is the array of data,
n is the sample size,
xbar is the sample average,
sx and sxn_1 are the two versions of standard deviation,
Mk and Qk hold running totals,
notation as in Section 13.4.10.}

Mk ← 0
Qk ← 0
for k is 1 to n do

diff ← x(k) − Mk
Mk ← ((k − 1)*Mk + x(k))/k
Qk ← Qk + (1 − 1/k) *diff*diff

endfor
xbar ← Mk
sx ← square_root(Qk/n)
sxn_1 ← square_root(Qk/(n − 1))

Figure 13.18
Pseudocode listing for
sample average and
variance.
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A common measure of dispersion (especially for small samples) is the sample range
X(n) − X(1), the difference between the largest and smallest elements of the data set, often
used in quality control. The ideas of quartiles and percentiles (Section 13.4.6) can also
be applied to data, based on the cumulative percentages (Section 13.2.3).

Example 13.24 Find the sample median and range for the data in Examples 13.22 and 13.23.

Solution For the die toss the sorted data are

1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6

so the sample median is (3 + 4) = 3.5, and the sample range is 5.
For the resistors the sorted data are

94, 95, 96, 97, 98, 99, 101, 101, 102, 106, 108, 109

so the sample median is (99 + 101) = 100, and the sample range is 15.

13.4.11 Exercises

1
2

1
2

....

32 Suppose that the probability distribution for the
number of days required to ship a package from
London to New York is as follows:

Number of days 2 3 4 5 6 7
Probability 0.05 0.20 0.35 0.25 0.1 0.05

Find the mean of this distribution, and the
probability that a particular package arrives in 
less than five days.

33 The distribution of the daily number of
malfunctions of a certain computer is given by
the following table:

Number of
malfunctions 0 1 2 3 4 5 6
Probability 0.17 0.29 0.27 0.16 0.07 0.03 0.01

Find the mean, the median and the standard
deviation of this distribution.

34 Find the average sentence length for the 
sentences with lengths given in Question 1 in
Exercises 13.2.4.

35 The distribution of the number X of independent
attempts needed to achieve the first success when

the probability of success is 0.2 at each attempt is
given by

P(X = k) = (0.2)(0.8)k−1 (k = 1, 2, 3, … )

(see Question 26 in Exercises 13.4.5). Find the
mean, the median and the standard deviation for this
distribution.

36 You arrive at a railway station knowing only that
trains leave for your destination at intervals of one
hour. Find the mean and standard deviation of your
waiting time.

37 A random variable X has the linear distribution
given by

where a and b are constants. Show that

(a) a = ÷2b (b) the median of X is (÷2 − 1)/÷b

38 Suppose that the running distance (in thousands
of kilometres) that car owners get from a tyre is
a random variable with density function
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Find

(a) the probability that one of these tyres will
last at most 19 000 km;

(b) the mean and standard deviation of X;

(c) the median and interquartile range of X.

39 If the probability density of the random variable X is

find the probability that X will take a value
within two standard deviations of its mean.

40 The distribution of downtime T for breakdowns of
a computer system is given by

where a is a positive constant. The cost of
downtime derived from the disruption resulting
from breakdowns rises exponentially with T:

cost factor = h(T ) = ebT

Show that the expected cost factor for downtime
is [a/(a − b)]2, provided that a � b.

41 The mean times for completion of tasks A and B
are four and six hours respectively. A particular
project involves three tasks of type A and two of
type B, all to be performed in succession. What is
the expected time for completion of the project?
Also, if the standard deviations for A and B are
one and two hours respectively, and if all project
times are independent, what is the standard
deviation of the completion time?

42 An inspection of 12 specimens of material from
inside a reactor vessel revealed the following
percentages of impurities:

2.3, 1.9, 2.1, 2.8, 2.3, 3.6, 1.4, 1.8, 2.1, 3.2,
2.0, 1.9

Find (a) the sample average and both versions of
the sample standard deviation, (b) the sample
median and range.

43 Find the sample average, standard deviation,
median and range for the following sample of
component lifetimes (in thousands of hours):

5.6, 4.1, 6.0, 5.8, 5.2, 4.3, 6.4, 5.5, 6.0, 5.1,
4.9, 4.2, 4.8, 6.8, 5.6, 5.2, 7.3, 5.4, 4.7, 5.9,
5.0, 6.3, 4.4, 6.0
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44 Find the sample averages and standard 
deviations for the engine performance data in
Figure 13.1.

45 In a problem similar to that in Question 35 the
probability of success at the first attempt is 0.2
but the probability of failure at each subsequent
attempt (if needed) is half of that for the previous
attempt. Find the mean number of attempts needed
to achieve the first success.

46 Find the median and the mode for the Rayleigh
distribution

(see Question 31 in Exercises 13.4.5). Also show
that the mean is given by

which can be shown to be ÷( πa). Compare these
quantities when a = 6, and find the interquartile
range.

47 Two people are separately attempting to succeed at
a particular task, and each will continue attempting
until success is achieved. The probability of
success of each attempt for person A is p, and that
for person B is q, all attempts being independent.
What is the probability that person B will achieve
success with no more attempts than person A
does?

48 Sample values that are several standard deviations
away from the sample average are called outliers.
They are often just measurement or transcription
errors, but they can bias a statistical calculation.
Which of the following data are more than three
sample standard deviations away from the average?

19.4, 18.1, 25.6, 18.2, 20.6, 25.0, 21.8, 15.5,
26.3, 15.8, 18.7, 19.3, 22.3, 20.9, 24.2, 21.4,
23.2, 21.4, 47.1, 23.6, 46.3, 21.2, 27.5, 20.8,
24.7, 25.9, 25.8, 33.4, 30.9, 24.5
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13.5 IMPORTANT PRACTICAL DISTRIBUTIONS 1039

13.5 Important practical distributions

A lot of information is required to specify the exact distribution of a random variable,
and even more to specify the joint distribution of two or more variables. The mean,
variance and covariance are useful measures of the most important properties of 
random variables, namely, location, dispersion and dependence, which can realistically
be estimated from data. These measures are of great value in statistics, as can be seen in
the companion text Advanced Modern Engineering Mathematics. Another short cut is
provided by the various classes of distributions that are often used in statistical practice.
The user has to supply the values of certain essential parameters, perhaps using esti-
mates of mean and variance to do so, and then the probability distribution is determined
by a formula. Experience shows that these classes of distributions (which are idealized
in mathematical form) do approximate very well to the actual distributions in many
practical situations.

The most important of these classes of distributions are the binomial, Poisson and
normal. In this section we cover these, with a particular view towards the statistical
applications to follow.

13.5.1 The binomial distribution

Consider first a simple coin-tossing experiment, or any other random situation where only
two outcomes are possible. We shall refer to these outcomes as ‘success’ and ‘failure’,
but any other pair of terms (appropriate to the context) will do. Imagine tossing the coin
(or performing the general experiment) n times and counting the number of successes.
Clearly the sample space for this random variable Y, say, is S = {0, 1, … , n} with 
values near the middle of the range being more probable than values near the ends. It
is this distribution that is sought.

A Bernoulli trial is a single observation of a random variable X, say, that can
take the values zero or one:

P(X = 1) = p and P(X = 0) = 1 − p

for some success probability p.

The mean and variance of X are easily derived:

E(X) = 1( p) + 0(1 − p) = p

and

E(X 2) = 12( p) + 02(1 − p) = p

Hence

σ 2
X = p − p2 = p(1 − p)

Now let {X1, … , Xn} denote n independent Bernoulli trials, each with success probability
p. The number of successes is

Y = X1 + … + Xn

....
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Suppose in general that Y = k, where 0 � k � n. Then k of the Xi values are equal to
one and n − k are equal to zero. The probability of this occurring is

pk(1 − p)n−k

by the product rule (because the separate outcomes are independent).
There are many ways in which the k successes can be distributed among the n trials.

For instance, if n = 5 and k = 3, the result might be {1, 1, 0, 1, 0} or {0, 1, 1, 1, 0} or
{1, 0, 0, 1, 1}, and so on. As far as we are concerned, these are all equivalent, since we
are interested only in the total number of successes and not their particular arrangement
among the trials. The number of possible arrangements of the k successes among the n
trials is given by the binomial coefficient (see Section 7.7.2)

Each arrangement of successes is exclusive of every other, so the addition rule of 
probabilities gives us the distribution

(k = 0, … , n)

This is the general form of the binomial distribution, with parameters n and p. The
mean and variance of the binomial distribution are

E(Y) = np and Var(Y) = np(1 − p)

(this follows from the mean and variance of the Bernoulli random variable and the
results on the mean and variance of sums of random variables in Section 13.4.9). Two
typical binomial distributions can be seen in Figure 13.19.
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Figure 13.19
Binomial distributions:
(a) n = 12, p = 0.2; 
(b) n = 12, p = 0.5.
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Example 13.25 A component supplier claims that 95% of its catalogue items are in stock at any time.
A particular order for 20 different components is returned with three items missing as
being out of stock. Is this likely, given the supplier’s claim?

Solution Each item can be either in stock or out of stock at any time, and the probability of each
item being out of stock is 5%. The binomial distribution therefore applies and

P(k out of stock) = 0.05k0.9520−k

so

P(3 or more out of stock) = P(3) + P(4) + … + P(20)

= 1 − P(0) − P(1) − P(2)

= 1 − 0.3585 − 0.3774 − 0.1887

= 0.0755

This is unlikely, given the supplier’s claim.

There are several points to note about this simple example. The assumed figure of 5%
probability of being out of stock is prompted by the supplier’s claim, but in reality this
will be an average figure, both between components (some may be out of stock more
often than others because of supply difficulties) and over time (for the same reason).
The independence assumption may not be true – if for instance a consignment of several
similar types of components is awaited from a manufacturer and several of these are
included in the order.

Most importantly, the probability worked out in the solution is that of three or more
being out of stock, a result at least as extreme as that observed. Any result may have a
low probability. What matters here is how far into the ‘tail’ of the distribution the actual
result lies, and this is assessed by the total probability from there to the maximum value
of k, which is 20. Note the use of the complement rule to simplify the calculation.

13.5.2 The Poisson distribution

The binomial distribution becomes unwieldy for large values of its parameter n, as
illustrated in Examples 13.26 and 13.27. Another discrete distribution that often serves
as a useful approximation to the binomial is the following:

(k = 0, 1, 2, … )

This is the general form of the Poisson distribution, with parameter λ. It is shown in
Advanced Modern Engineering Mathematics that the mean and variance of the Poisson
distribution are both equal to λ. These can be derived directly from the definition, but
are more easily obtained by using the moment generating function, which will also be
considered there. Also using this technique, it can be shown that for large n and small

P X k
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p the Poisson distribution approximates the binomial with λ = np. As a guide, the
Poisson approximation can be used if n � 25 and p � 0.1. This is illustrated numeric-
ally in Figure 13.20, where binomial and Poisson distributions are compared for n = 25,
p = 0.1 and λ = 2.5.

Example 13.26 If 0.04% of cars break down while driving through a certain tunnel, find the prob-
ability that at most two break down out of 2000 cars entering the tunnel on a 
given day.

Solution The true distribution of breakdowns is binomial:

P(k breakdowns) = (0.0004)k(0.9996)2000−k

for which P(0) = 0.449 26, P(1) = 0.359 55 and P(2) = 0.143 81, and

P(at most two breakdowns) = P(0) + P(1) + P(2) = 0.952 61

Because n is large and p small, the Poisson aproximation can also be used, with
λ = np = 0.8, so that

P(at most two breakdowns) � e−λ(1 + λ + λ2) = 0.952 58

The Poisson calculation is easier, and the agreement is very good. It would not normally
be appropriate to quote such an answer to five significant digits but it is only with such
precision that the difference between the two distributions shows up.

Despite its ease of use compared with the binomial distribution, some calculations 
with the Poisson distribution are difficult, especially those involving long summations.
The following recurrence formulae are useful both for hand calculation and in computer
programs. If X has a Poisson distribution with parameter λ, the successive Poisson
probabilities are given by

(k = 1, 2, … )P X k
P X k

k
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Figure 13.20
Binomial and Poisson
distributions.
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with P(X = 0) = e−λ. Furthermore, a cumulative property such as

can be rewritten in the nested form (see Section 2.4)

This approach can be generalized as follows: let

(k = n, n − 1, … , 2)

then

P(X � n) = e−λG1

Example 13.27 A machine produces components that have defect A with probability 0.015 and defect
B with probability 0.020, the two defects being independent. If 54 components are
packed into a batch, what is the (approximate) probability that the batch contains at
least 50 components without defects?

Solution By the complement and product rules, the probability that a component will have
neither defect is

P(A � B) = [1 − P(A)][1 − P(B)] = 0.9653

so the probability that a component will have at least one defect is 0.0347. If a batch
contains at least 50 good components then it contains at most four defective ones, and,
from the binomial distribution,

P(at most four defective) = (0.0347)k(0.9653)54−k

This is rather unwieldy, so we use the Poisson approximation with λ = (54)(0.0347) = 1.874.
The successive values G4, … , G1 in the recurrence formula above are 1.469, 1.917,
2.797 and 6.241, and hence

P(at most four defective) � 6.241e−1.874 = 0.958

In other words, about one batch in 24 will contain fewer than 50 good components.

The binomial and Poisson are discrete distributions, which have the widest applica-
tion among all discrete random variables. The Poisson distribution is especially useful
to engineers because of its importance in statistical quality control. This will be intro-
duced in Section 13.6, but we now turn to the most important of the continuous 
distributions.
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13.5.3 The normal distribution
One class of distributions is awarded the name ‘normal’ because of the regularity 
with which random continuous data are found to obey it. This is no coincidence. The 
central limit theorem (Section 13.5.4) provides an explanation in terms of cumulative
independent random parts adding up to a normal whole, a situation that is of great value
in statistical inference (considered in Advanced Modern Engineering Mathematics).
The normal distribution also serves as an approximation to the binomial distribution
that complements the Poisson approximation.

The normal distribution has two parameters, which can be shown (see Question 60
in Exercises 13.5.7) to be the mean and standard deviation, so the appropriate symbols
µX and σX are used.

A continuous random variable X has a normal distribution with mean µX and
variance σ 2

X if

(−∞ � x � +∞, σX � 0)

The density function is symmetrical about µX and has the bell-shaped form shown in
Figure 13.21. This distribution is also sometimes referred to by its more traditional
name: the Gaussian distribution.

The need to declare that a random variable has a normal distribution (with a speci-
fied mean and variance) is so common that a special notation exists for the purpose:

X � N(µX, σ 2
X)

Calculations involving the normal distribution are complicated by the fact that there 
is no simple expression for the integral of the density function on an arbitrary interval;
in other words, the distribution function FX(x) does not have a simple explicit form.
Instead, tables of this function are used. In fact, only a single table is needed: that for
the special case of a normal distribution with a mean of zero and a variance of one.

The standard normal cumulative distribution function is
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Figure 13.21
The normal density
and distribution
functions (for µX = 0
and σX = 1).
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This function is usually tabulated only for z � 0; for z � 0 the symmetry implies that

Φ (−z) = 1 − Φ (z)

A typical table of the standard normal function Φ (z) is provided in Figure 13.22.

....

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

z 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417
Φ (z) .90 .95 .975 .99 .995 .999 .9995 .999 95 .999 995
2[1 − Φ (z)] .20 .10 .05 .02 .01 .002 .001 .0001 .000 01

Figure 13.22
Table of the standard
normal cumulative
distribution function
Φ(z).
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For any random variable X, whether normal or not, subtracting the mean gives a
random variable whose mean is zero:

E{X − µX} = 0

The variance is not changed by this subtraction, but then dividing by the standard
deviation gives a variable with a variance of one:

(this follows from the results in Section 13.4.9). It is a property of the normal distribu-
tion, not shared by most distributions, that the result of this operation is still normal. It
is usual to denote the new random variable by the letter Z:

This is then a standard normal random variable, to which the table applies. Con-
versely, any normal random variable can be considered to have been obtained from a
standard normal random variable by multiplying by the required standard deviation and
adding the mean:

X = σXZ + µX

It follows that we can use the one table for the standard normal for all calculations
involving normal variates.

Example 13.28 If X � N(4, 4), find

(a) P(X � 6.7)

(b) the constant c such that P(X � c) = 0.1.

Solution (a)

= P(Z � 1.35) = 0.9115 (from Figure 13.22)

(b) If P(X � c) = 0.1 then P(X � c) = 0.9, so that

from which (c − 4) = 1.282 (using Figure 13.22); hence c = 6.564.

Example 13.28 shows that the standard normal table can be used in either direction:
either to find the probability of an interval or to find the interval that gives a particular
probability.

1
2

 
P

X c
P Z

c  
  

  
    

  
  .

− −⎛
⎝

⎞
⎠ =

−⎛
⎝

⎞
⎠ =

4

2

4

2

4

2
0 9� �

P X P
X

(   . )  
  

  
.   

� �6 7
4

2

6 7 4

2
=

− −⎛
⎝

⎞
⎠

Z
X X

X

  
  

=
− µ
σ

Var
X X

X

  
  

−⎛
⎝⎜

⎞
⎠⎟

=
µ

σ
1

1046 DATA HANDLING AND PROBABILITY THEORY

..

M13_JAME0734_05_SE_C13.qxd  11/03/2015  10:05  Page 1046



13.5 IMPORTANT PRACTICAL DISTRIBUTIONS 1047

Example 13.29 The burning time X of an experimental rocket is a random variable having (approxi-
mately) a normal distribution with mean 600 s and standard deviation 25 s. Find the
probability that such a rocket will burn for

(a) less than 550 s (b) more than 640 s

Solution Using the normal table as appropriate,

(a)

= Φ (−2) = 1 − Φ (2) = 0.0228

(b)

= 1 − Φ (1.6) = 0.0548

13.5.4 The central limit theorem

The practical methods of statistical inference have foundations in probability theory,
and the fundamental assumption underlying many of these methods is that the data have
a distribution that is normal. Some statistical methods are robust in the sense that they
work reliably even under moderate violations of their assumptions, but it is unsatisfac-
tory to rely heavily upon this. If normality of the data were exceptional then this would
severely limit the scope of those methods that assume it. Fortunately (and as the name
implies), the normal distribution arises very frequently in practice; the reason for this
will be explained in this section.

Continuous measurements of random phenomena such as noise in electronic circuits
or wave elevation on the sea surface give rise to graphs of the form shown in Fig-
ure 13.23. If the signal is sampled at regular intervals and a histogram of values built
up, it is often found that the histogram closely approximates to a normal density curve.
Physically, there are many separate independent random components adding up to
produce the measured signal, and it is the total that is normal. There are many sources
of noise in an electronic circuit and there are many separate waves on the sea. That the
cumulative effect of these, which are often not individually normal, is to produce a total
that has that special character is the substance of the following result, which is proved
in Advanced Modern Engineering Mathematics.

P X P
X

P Z(   )  
  

  
  

  (   . )� � �640
600

25

640 600

25
1 6=

− −⎛
⎝

⎞
⎠ =

P X P
X

P Z(   )  
  

  
  

  (   )� � �550
600

25

550 600

25
2=

− −⎛
⎝

⎞
⎠ = −

....

Figure 13.23
Continuous signal with
normal distribution.
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Theorem 13.1 Central limit theorem

If {X1, … , Xn} are independent and identically distributed random variables (the distri-
bution being arbitrary), each with mean µX and variance σ 2

X, and if

then, as n → ∞, the distributions of Wn and Zn tend to Wn � N(µX, σ 2
X/n) and Zn � N(0, 1)

respectively.

end of theorem

Loosely speaking and with certain exceptions, the sum of independent identically
distributed random variables tends to a normal distribution. The following points
should be noted.

(a) The standard normal is obtained by subtracting the mean of the total and dividing
by the standard deviation.

(b) The distributions converge to the normal in the sense that the cumulative distribu-
tion functions converge. This ensures that all observational properties of Zn will be
standard normal for sufficiently large n.

(c) How large n has to be before the normal approximation is good depends upon the
underlying population. If the distribution of the variables Xi is symmetric about the
mean then convergence to the normal is rapid. Figure 13.24(a) shows the distributions
of the uniform random variable X with density function

fX(x) = ÷ (−÷3 � x � ÷3)

(which has mean zero and variance one), together with those for Z2 and Z4. The normal
distribution is also shown. Figure 13.24(b) shows similar results for the exponential
random variable X with density function

fX(x) = e−(x+1) (x � −1)

(which has mean zero and variance one), together with Z5 and Z25. Convergence is
clearly more rapid for the symmetric distribution.
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Figure 13.24 Central limit theorem: (a) uniform; (b) exponential.
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(d) The theorem can be generalized so that the random variables Xi do not need to be
identically distributed, which is usually not the case in physical situations.

(e) Even where the data of an experiment are not normally distributed, the central limit
theorem implies that the sample average has a normal distribution for large samples.
Much valuable statistics exploits this fact.

Example 13.30 In a quality control scheme at a factory, batches of components are accepted or rejected
depending on the number of defective items counted in a sample. Rejected batches are
inspected and all defective items are replaced with good ones. From the machine reli-
ability statistics it has been calculated that the probabilities of three, four, five, six and
seven defective items in a rejected batch are 0.3, 0.4, 0.2, 0.08 and 0.02 respectively.
Fifty rejected batches produced a total of 221 defective items. Does this suggest that the
machines are producing more defective items than they should?

Solution If X represents the number of defective items in a rejected batch, the mean and standard
deviation are given by

µX = 3(0.3) + 4(0.4) + 5(0.2) + 6(0.08) + 7(0.02) = 4.12

σX = ÷[9(0.3) + 16(0.4) + 25(0.2) + 36(0.08) + 49(0.02) − (4.12)2] = 0.9928

By the central limit theorem, the aggregate count of defectives Y in 50 rejected batches
will be approximately normal, and

This probability is rather small, so the performance of the machines must come under
suspicion. In fact, a rather more accurate answer to this problem is obtained by making
a continuity correction, as explained in Section 13.5.5, but the conclusion is the same.

Example 13.30 is typical of many applications of the central limit theorem. The 
underlying distribution is certainly not normal, but it is reasonable to assume that the
aggregate is approximately normal.

Example 13.31 In Section 1.5.5 it was noted that the maximum error that would occur in the sum of
100 numbers, each of which was rounded to three decimal places, is 0.05. Find the
probability of the error in the sum exceeding 0.005 in magnitude, and the expected
magnitude of the error.

Solution We assume that the error in a number rounded to 3dp may be anything between
−0.0005 and +0.0005, with all values in the range equally likely. In other words, the
error in each value is a uniform random variable X, say, with
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from which the mean and variance are given by

µX = 1000x dx = 0

E(X 2) = 1000x 2 dx = 8.333 × 10−8

σ 2
X = E(X 2) − µ2

X = 8.333 × 10−8

The error in the sum is a random variable Y = X1 + … + X100. By the central limit
theorem, approximately

Y � N(100µX, 100σ 2
X) = N(0, 8.333 × 10−6)

so

= P(Z � 1.732) = 1 − Φ (1.732)

The error in the sum will exceed 0.005 in magnitude if Y � 0.005 or Y � −0.005, so,
by symmetry,

P(| Y | � 0.005) � 2[1 − Φ (1.732)]

= 2(1 − 0.9584)

= 0.0832

Thus, because the errors tend to cancel each other out, there is only one chance in 12 of
the error reaching even of its maximum possible value. Furthermore, the expected
value of the error magnitude is

(by substitution of w = y2 )

With σ 2
Y = 8.333 × 10−6, this gives E(| Y |) � 0.0023, which is less than of the 

maximum possible value.

13.5.5 Normal approximation to the binomial

One immediate corollary of the central limit theorem is that the normal distribution 
can be used to approximate the binomial distribution when n is sufficiently large. This 
follows from the definition of a binomial random variable as a sum of Bernoulli random
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variables (see Section 13.5.1). All that has to be done is to choose the parameters of the
normal distribution to match the mean np and variance np(1 − p). As a rule, the normal
approximation can be used when n � 25 and 0.1 � p � 0.9. For values of p outside
this range the Poisson approximation can be used.

It may seem surprising that the normal distribution, which is continuous, can be used
to approximate a discrete distribution, given the very different character of these two
types of random variable. The approximation of a discrete distribution X, say, by a con-
tinuous one Y works in the manner indicated in Figure 13.25. The probability that X
takes the integer value k is approximated by the area under the density function fY(y)
between k − 0.5 and k + 0.5. Similarly, the following integral approximates to the
probability that X exceeds k:

P(X � k) � fY(y)dy

By the same token we would have

P(X � k) � fY(y)dy

This use of a half-integer shift in the limit of integration is called the continuity 
correction and gives a more accurate result.

Example 13.32 If 70% of airline passengers using a particular route are members of a frequent-flyer
club, find the probability that out of a sample of 50 chosen independently, more than 40
will be members of a frequent-flyer club.

Solution Let X represent the number who are members of a frequent-flyer club. The conditions
for a binomial distribution are met, and the mean and variance are 50(0.7) = 35 and
50(0.7)(0.3) = 10.5 respectively. With no continuity correction, we have

� P(Z � 1.543) (where Z is standard normal)

= 1 − Φ (1.543) = 0.061
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Figure 13.25
Continuous
approximation to a
discrete distribution.
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With the continuity correction,

= P(Z � 1.697) = 0.045

As a percentage, this difference is substantial, so the continuity correction is important.

We now have three special classes of distribution: the binomial, Poisson and normal.
The binomial is the most fundamental, and the others provide useful approximations to
it in different circumstances, but the Poisson and especially the normal also have very
important applications of their own. Increasingly in engineering and in all parts of
industry there are problems arising that involve these and other distributions but which
it is not practical to solve without the aid of a computer.

13.5.6 Random variables for simulation
Computer simulations are very widely used in research, design and training. Perhaps
the best known is the flight simulator, upon which pilots receive much of their training.
Simulations are used in research and design wherever a system is too complex for a
complete solution to a problem to be obtained theoretically, or where a solution can be
obtained but its completeness or accuracy is open to question.

Simulations are deterministic if what occurs at any time is completely determined
by the state of the system. In contrast, they are stochastic if what occurs at any time
can be influenced by a chance element that is inherently unpredictable. Stochastic 
simulations therefore require that random variables (or outcomes) be generated within
the program. This may seem a hopeless requirement, considering that computer pro-
grams are sequences of deterministic instructions running on deterministic hardware.
However, it is possible to generate sequences of numbers that are deterministic and
repeatable but that have the appearance of being random. These pseudo-random 
numbers are very useful for simulations, and for other purposes such as the so-called
Monte Carlo numerical methods.

Most modern computers contain a software facility for generating pseudo-random
numbers with a uniform distribution on the interval (0, 1):

The successive variables {U1, U2, …} appear to be uncorrelated, and, although there is
some structure in the sequence (and indeed the sequence will eventually repeat itself),
it is rare for these deficiencies to cause problems in practice.

Random variables with non-uniform distributions are obtained from the sequence
{U1, U2, …} by applying various transformations. Figure 13.26 contains pseudocode
listings for generating the most common random variables. In each case it is assumed
that the system function ‘rnd’ returns a uniform (0, 1) value, which is stored in the 
variable U. The variable X contains the required value of the random variable. The
binomial is based on the Bernoulli, the Poisson on the exponential, and the normal on
the central limit theorem. For a full explanation of how these work see S. J. Yakowitz,
Computational Probability and Simulation (Addison-Wesley, 1977). Computer pack-
ages such as Minitab also often contain facilities for generating random data.
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13.5 IMPORTANT PRACTICAL DISTRIBUTIONS 1053

13.5.7 Exercises

....

{Bernoulli random variable X, parameter p.}
U ← rnd
if U � p then X ← 1 else X ← 0 endif

{Binomial random variable X, parameters n,p.}
X ← 0
for i is 1 to n do

U ← rnd
if U � p then X ← X + 1 endif

endfor

{Exponential random variable X, parameter L, uses log function to base e.}
U ← rnd
X ← − (log(U))/L

{Poisson random variable X, parameter L.}
X ← −1
W ← 1
P0 ← exp(−L)
repeat

X ← X + 1
U ← rnd
W ← W*U

until W � P0

{Normal random variable X, parameters mean, sd.}
T ← 0
for i is 1 to 12 do

U ← rnd
T ← T + U

endfor
X ← sd*(T − 6) + mean

Figure 13.26
Pseudocode listings
for non-uniform
random variables.

49 Eight babies are born in a hospital on a particular
day. Find the probability that exactly half of them
are boys. (The probability that a baby is a boy is
actually slightly greater than one-half, but you can
take it as exactly one-half for this exercise.)

50 A town has five fire engines operating
independently, each of which spends 94% of 
the time in its station awaiting a call. Find the
probability that at least three fire engines are
available when needed.

51 The probability of issuing a drill of high brittleness
(a reject) is 0.02. Drills are packed in boxes of 100
each. What is the probability that the number of
defective drills is no greater than two?

52 If Z is a random variable having the standard normal
distribution, find the probabilities that Z will have a
value

(a) greater than 1.14,

(b) less than −0.36,

(c) between −0.46 and −0.09,

(d) between −0.58 and 1.12.

53 Assume that

(a) an aircraft can land safely if at least half of its
engines are working,

(b) the probability of an engine failing is 0.1, and

(c) engine failures are independent.
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Which is safer, a four-engine plane or a two-
engine plane?

54 If on average one in 20 of a certain type of 
column will fail under a given axial load, what 
are the probabilities that among 16 such columns,
(a) at most two, (b) at least four will fail?

55 A machine makes components, and the probability
that a component is defective is p. If components
are packed in cartons of 20, what value of p will
ensure that 90% of cartons contain at most one
defective component?

56 If on average 7% of airline passengers order
special meals, find the approximate probability
that on a particular flight carrying 85 passengers,
eight or more will order special meals.

57 A Geiger counter and a source of radioactive
particles are so situated that the probability that a
particle emanating from the radioactive source will
be registered by the counter is 1/10 000. Assume
that during the time of observation, 30 000
particles emanated from the source. What is the
probability that the number of particles registered
was (a) zero, (b) three, (c) more than five?

58 Assume that in the composition of a book there
exists a constant probability 0.0001 that an
arbitrary letter will be set incorrectly. After
composition, the proofs are read by a proofreader,
who discovers 90% of the errors. After the
proofreader, the author discovers half of the
remaining errors. Find the probability that in a
book with 500 000 printing symbols there remain
after this no more than six unnoticed errors.

59 Suppose that the actual amount of cement that a
filling machine puts into ‘six-kilogram’ bags is a
normal random variable with σ = 0.05 kg. If only
3% of bags are to contain less than 6 kg, what
must be the mean fill of the bags?

60 Prove by making the substitution u = (x − µX)/σX

in the integrals concerned that the mean and
variance of the normal distribution are µX and σ 2

X

respectively. (Hint: for the variance, integrate
u[u exp(−u2/2)] by parts.)

1054 DATA HANDLING AND PROBABILITY THEORY
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61 If 23% of all patients with high blood pressure
have bad side-effects from a certain kind of
medicine, use the normal approximation to the
binomial to find the probability that among 
120 patients with high blood pressure treated 
with this medicine, more than 32 will have bad
side-effects.

62 In firing at a target, a marksman scores at each
shot either 10, 9, 8, 7 or 6, with respective
probabilities 0.5, 0.3, 0.1, 0.05, 0.05. If he fires
100 shots, what is the approximate probability
that his aggregate score exceeds 940?

63 A fleet car operator has n cars, each of which
has probability 8% of being broken down on any
particular day. Find the smallest value of n that
gives probability 90% that at least 40 cars will be
available for use on any one day.

64 The diameter of ball bearings produced by a
machine is a random variable having a normal
distribution with mean 6.00 mm and standard
deviation 0.02 mm. If the diameter tolerance is
±1%, find the proportion of ball bearings produced
that are out of tolerance. After several years’ use,
machine wear has the effect of increasing the
standard deviation, although the mean diameter
remains constant. The manufacturer decides to
replace the machine when 2% of its output is out
of tolerance. What is the standard deviation when
this happens?

65 A major airline operates 350 flights a day
throughout the world. The probability that a flight
will be delayed for more than one hour, for any
reason, is 0.7%. If more than four flights suffer
such delays in any one day, the implications for
route organization and crewing become serious.
Call such a day a ‘flap-day’. Using approximations
as appropriate, find the probabilities that

(a) any particular day is a flap-day;

(b) two flap-days (not more) occur in one week;

(c) more than 50 flap-days occur in a year of 
365 days.
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13.6 Engineering application: quality control
This is a topic of particular relevance to engineers, because the statistical methods of
quality control are widely and increasingly used in industry in order to promote the
reliability of products. Orders have been won and lost because one manufacturer has
implemented quality control in the workplace more than another and the purchaser has
used this as a criterion when deciding where to place the order.

Quality control statistics is not particularly difficult, but (as usual) it rests on funda-
mental results such as the Poisson approximation to the binomial distribution (Section
13.5.2). The methods apply mainly to mass production systems where quality can be
measured numerically.

This section will introduce the use of control charts for continuous monitoring of
quality, rather than the more traditional batch inspection plans, and control charts are
further discussed in Advanced Modern Engineering Mathematics.

13.6.1 Attribute control charts
Manufactured items that are elaborate and therefore expensive can each be tested 
thoroughly before dispatch to consumers, but such item-by-item testing must be ruled
out for low-level components on grounds of cost. Some defective items are bound to
slip through, and the objective of quality control is to keep the proportion of these
within acceptable and agreed limits.

Variations occur in the quality of a product, caused either by variations in the raw
material or input or by variations in processing. Quality is monitored by regular testing
of samples of output. Assume for now that the test consists in counting the number
within the sample which pass or fail according to some performance criterion. A small
proportion of defective items in the output is permitted while the process is said to 
be in control. If the actual proportion of defectives rises to an unacceptable level, the
process is said to be out of control, and the counts of defectives in the samples would
be expected to rise. We should like to detect this as soon as possible when it occurs, but
without incurring the expense of a large number of false alarms while the process is
actually in control.

An essential aid to the quality controller is the Shewhart control chart, which is a
plot of the successive counts of defective items against sample number. Figure 13.27 is

....

Figure 13.27
Attribute control chart
for Example 13.33.
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an example of such a chart. Also shown on the chart are two limits on the counts of
defectives, corresponding to probabilities of one in 40 and one in 1000 of a sample
count falling outside the limit if the process is in control. These are called warning and
action limits respectively, and are denoted by cW and cA.

Any sample point falling outside the action limit would normally result in the pro-
cess being suspended and the problem corrected. Roughly one in 40 sample points will
fall outside the warning limit purely by chance, but if this occurs repeatedly or if there
is a clear trend upwards in the counts of defectives then action may well be taken before
the action limit itself is crossed.

To obtain the warning and action limits, we use the Poisson approximation to the
binomial. If the acceptable proportion of defective items is p, usually small, and the
sample size is n, then for a process in control the defective count C, say, will be a
binomial random variable with parameters n and p. Provided that n is not too small, the
Poisson approximation can be used (Section 13.5.2):

Equating this to and then to gives equations that can be solved for the warning
limit cW and the action limit cA respectively, in terms of the product np. This is the basis
of the table shown in Figure 13.28, which enables cW and cA to be read directly from the
value of np.

Example 13.33 Regular samples of 50 are taken from a process making electronic components, for
which an acceptable proportion of defectives is 5%. Successive counts of defectives in
each sample are as follows:

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Count 3 5 2 2 1 6 4 4 2 6 7 4 5 5 8 6 5 9 7 8

At what point would the decision be taken to stop and correct the process?

Solution The control chart is shown in Figure 13.27. From np = 2.5 and Figure 13.28 we have
the warning limit cW = 5.5 and the action limit cA = 8.5. The half-integer values are to
avoid ambiguity when the count lies on a limit. There are warnings at samples 6, 10,
11, 15 and 16 before the action limit is crossed at sample 18. Strictly, the decision
should be taken at that point, but the probability of two consecutive warnings is less
than one in 1600 by the product rule of probabilities, which would justify taking action
after sample 11.

Example 13.33 shows that the strict practice of waiting for the action limit to be crossed
in the Shewhart control chart would be rather conservative. The long sequence of
counts that exceed the expected number of defectives would lead to the decision being
taken sooner in practice.
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13.6.2 United States standard attribute charts

The control chart decribed above, with action and warning limits set by probability of
exceedance, is the standard practice in the United Kingdom. In the United States the
practice is rather different in that there is usually no warning limit and that action limit
(called the upper control limit, UCL) is set at three standard deviations above
the mean. Because the count of defectives is binomial with mean np and variance
np(1 − p), this means that

UCL = np + 3[np(1 − p)]1/2

....

cW or cA np for cW np for cA

1.5 �0.44 �0.13
2.5 0.44–0.87 0.13–0.32
3.5 0.87–1.38 0.32–0.60
4.5 1.38–1.94 0.60–0.94
5.5 1.94–2.53 0.94–1.33
6.5 2.53–3.16 1.33–1.77
7.5 3.16–3.81 1.77–2.23
8.5 3.81–4.48 2.23–2.73
9.5 4.48–5.17 2.73–3.25

10.5 5.17–5.87 3.25–3.79
11.5 5.87–6.59 3.79–4.35
12.5 6.59–7.31 4.35–4.93
13.5 7.31–8.05 4.93–5.52
14.5 8.05–8.80 5.52–6.12
15.5 8.80–9.55 6.12–6.74
16.5 9.55–10.31 6.74–7.37
17.5 10.31–11.08 7.37–8.01
18.5 11.08–11.85 8.01–8.66
19.5 11.85–12.63 8.66–9.31
20.5 12.63–13.42 9.31–9.98
21.5 13.42–14.21 9.98–10.65
22.5 14.21–15.00 10.65–11.33
23.5 15.00–15.80 11.33–12.02
24.5 15.80–16.61 12.02–12.71
25.5 16.61–17.41 12.71–13.41
26.5 17.41–18.23 13.41–14.11
27.5 18.23–19.04 14.11–14.82
28.5 19.04–19.86 14.82–15.53
29.5 19.86–20.68 15.53–16.25
30.5 16.25–16.98
31.5 16.98–17.70
32.5 17.70–18.44
33.5 18.44–19.17
34.5 19.17–19.91
35.5 19.91–20.66

Figure 13.28
Shewhart attribute
control limits: n is
sample size, p is
probability of defect,
cW is warning limit
and cA is action limit.
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Example 13.34 Find the UCL and apply it to the data in Example 13.33.

Solution From n = 50 and p = 0.05 we infer that UCL = 7.1, which is between the warning limit
cW and the action limit cA in Example 13.33. The decision to correct the process would
be taken after the 15th sample, the first to exceed the UCL.

Sometimes a lower limit control, LCL, is defined at three standard deviations below
the mean:

LCL = np − 3[np(1 − p)]1/2

If this is positive, it can be used to test whether the proportion defective in the output
is falling significantly below the expected value.

Control charts are also useful for monitoring the output of a manufacturing process
where quality depends upon a numerical measure such as dimension, weight or resist-
ance. Charts that are more powerful than the Shewhart charts at detecting variations in
the output are also used. These topics are covered in Advanced Modern Engineering
Mathematics.

13.6.3 Exercises

1058 DATA HANDLING AND PROBABILITY THEORY
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66 It is intended that 90% of electronic devices
emerging from a machine should pass a simple
on-the-spot quality test. The numbers of defectives
among samples of 50 taken by successive shifts
are as follows:

5, 8, 11, 5, 6, 4, 9, 7, 12, 9, 10, 14

Find the action and warning limits, and the sample
number at which an out-of-control decision is
taken. Also find the UCL (United States practice)
and the sample number for action.

67 Thirty-two successive samples of 100 castings
each, taken from a production line, contained
numbers of defectives as follows:

3, 3, 5, 3, 5, 0, 3, 1, 3, 5, 4, 2, 4, 3, 5, 4, 3,
4, 5, 6, 5, 6, 4, 4, 7, 5, 4, 8, 5, 6, 6, 7

If the proportion defective is to be maintained at
0.02, use the Shewhart method (both UK and US
standard) to indicate whether this proportion is
being maintained, and if not then after how many
samples action should be taken.

13.7 Engineering application: clustering of rare events

13.7.1 Introduction

To conclude this chapter, we shall apply some of the probability theory covered so far
to an investigation of a serious problem, or rather a family of problems. Failures of
engineering systems or structures are rare events, but they have serious consequences.
If a number of similar failures occur and a link between them can be found then it may
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be possible to anticipate and prevent future failures. One aspect of this is the detection
of regional variations in the number of failures, which may provide clues as to possible
causes.

Problems like this, and their associated difficulties, arise in many fields, and the 
lessons learned from analysing one can often be applied to others. Some typical examples
are as follows:

(a) near-misses between two aircraft in flight;
(b) collisions or capsizing of ships at sea;
(c) accidents involving road vehicles;
(d) occurrences of environmentally induced diseases such as leukaemia.

These problems can be looked at in various ways, but there is an approach that applies
to all of them because of the following common elements:

(a) a very large number of potential cases;
(b) a very small proportion of these become actual cases;
(c) a possible common cause;
(d) regional variations in the common cause if it exists.

Common causes for (a) and (b) that vary regionally could be dangerous weather con-
ditions or inadequate control over routes taken; for (c) they could be inadequate lighting
or hazard warnings, and for (d) they could be proximity to a nuclear installation. For
each problem it is important to identify the common cause if it exists – and one clue 
to its existence is the regional variation. Also, for each problem the main difficulty is
the rarity of the cases, and it is this that makes an analysis using probability theory 
useful.

This case study is expressed in terms of a survey of near-misses in aircraft oper-
ations, but the analysis could be applied to any of the above examples. The figures are
hypothetical, but the method of analysis is realistic.

13.7.2 Survey of near-misses between aircraft

Suppose that the major airlines cooperate in a survey of near-misses during a period of
one year. The region being studied is divided up into 1000 areas in such a way that there
are on average 200 flights per year through each area. Suppose that the total number of
flights is 200 000 and that the total number of near-misses logged by the pilots is 120.
Although a near-miss involves two aircraft, it is recorded as a single incident. At the
end of the year the data is examined and two areas in particular stand out. In one area
A four incidents occurred in a total of 400 flights, and in another area B two incidents
occurred in a total of 150 flights.

The question that it is natural to ask is whether there are any areas, in particular these
two, in which the number of near-misses is greater than can be accounted for by chance.
If any such area exists, it can be examined to see what makes it special, and this may
lead to the discovery of a common cause and appropriate action being taken. To
approach this, we shall first assume that the probability that a near-miss will occur is the
same for every flight and in every area. This probability is taken to be the total number
of near-misses divided by the total number of flights, which gives p = 6 × 10−4.

To assess how unlikely the figures for areas A and B are we need to calculate the
probability of the given number or more of incidents, as explained in the discussion

....
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following Example 13.25. If we assume that the probability p applies independently for
every flight, then for area A, using the binomial distribution, we have

P(4 or more incidents)

which gives 1.13 × 10−4. Alternatively, using the Poisson approximation (Section 13.5.2),

P(4 or more incidents) (with λ = 400p = 0.24)

= 1.14 × 10−4

which is close to the exact figure. Similarly, for area B

P(2 or more incidents) = 1 − (1 − p)150 − 150p(1 − p)149 = 3.79 × 10−3

� 1 − e−λ(1 + λ) (with λ = 150p = 0.09)

= 3.82 × 10−3

The effectiveness of the Poisson approximation to the binomial is clear from these
results.

The four incidents in area A are seen to be much less likely to be due to chance than
the two incidents in area B. This is interesting, because common sense would suggest
comparing the proportions in the respective areas, which are 1% for A and 1.33% for
B. Despite having the lower proportion of incidents, area A provides stronger evidence
for a regional anomaly, by more than an order of magnitude.

The extent of anomaly can be judged from the probability that at least one of the
1000 areas in the region will give a result at least as extreme as those observed. After
all, with 1000 opportunities for a rare event to occur, the probability that it will occur
in at least one of them is significantly enhanced. Using the complement and product
rules we have

P(at least one event with probability 1.13 × 10−4 in 1000 areas)

= 1 − P (no such events)

= 1 − (1 − 1.13 × 10−4)1000 = 0.107

Similarly,

P(at least one event with probability 3.79 × 10−3 in 1000 areas)

= 1 − (1 − 3.79 × 10−3)1000 = 0.978

The area B result has a high probability of occurring by chance, somewhere within the
1000 areas. However, there is only one chance in ten that a result as improbable as that
in area A would occur anywhere, assuming a constant value of p. It seems that the true
probability of a near-miss is higher in that area. Although the number of incidents is
small, quite a firm conclusion has been reached.
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The most interesting point about this analysis is that the comparison of proportions,
which is the most obvious way of judging the results, is so misleading. The reason why
it doesn’t work is that (as can be seen in Advanced Modern Engineering Mathematics)
the variance of a sample proportion depends upon the size of the sample, the denomin-
ator in that proportion. Dividing the number of incidents by the number of flights in an
attempt to normalize the data fails to eliminate the number of flights as a variable,
because of its lingering influence on the statistics.

This is as far as the mathematical analysis can proceed. It cannot point to any
particular cause without further data. Tracking down the reason for the anomaly can be
very difficult in situations like this, but at least the search can be focused on an area.
The local weather, the operating procedures and technical support of the flight con-
trollers, and natural sources of interference in the navigational equipment would all be
under suspicion.

13.7.3 Exercises

....

68 A third area in the near-miss survey recorded five
incidents in 800 flights. Should this area also be
regarded as unusually risky?

69 Two adjacent areas recorded two incidents in 250
flights and one incident in 85 flights respectively.
Test the combination of the two areas.

13.8 Review exercises (1–13)

1 A continuous random variable X has probability
density function given by

where c is constant. Find

(a) the value of the constant c;

(b) the cumulative distribution function of X;

(c) P(X � 2);

(d) the mean of X;

(e) the standard deviation of X.

2 If there are 720 personal computers in an office
building and they each break down independently
with probability 0.002 per working day, use the
Poisson approximation to the binomial distribution
to find the probability that more than four of 
these computers will break down in any one
working day.

f x

c

x
x

x
X( )  

   

   

=
⎧

⎨
⎪

⎩
⎪

4
1

0 1

for

for

�

�

3 The City Engineer’s department installs 10 000
fluorescent lamp bulbs in street lamp standards. 
The bulbs have an average life of 7000 operating
hours with a standard deviation of 400 hours.
Assuming that the life of the bulbs, L, is a normal
random variable, what number of bulbs might 
be expected to have failed after 6000 operating
hours? If the engineer wishes to adopt a routine
replacement policy which ensures that no more 
than 5% of the bulbs fail before their routine
replacement, after how long should the bulbs 
be replaced?

4 The binomial is a special case of the more general
multinomial distribution:

where p1 + … + pk = 1 and n1 + … + nk = n. Each
observation of a random variable has k possible
outcomes, with probabilities p1, … , pk, and the
observed total numbers of each possible outcome 
after n independent observations are made are

P n n
n

n n
p pk

k

n
k

nk( ,  , )  
!

!  !
( )  ( )1

1
1

1…
…

 …=
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respectively n1, … , nk. Suppose that 60% of
calls to a telephone banking enquiry service 
are for account balance requests, 20% are for
payment confirmations, 10% are for transfer
requests and 10% are to open new accounts. 
Find the probability that out of 20 calls to this
service there will be 10 balance requests, five
payment confirmations, three transfers and two
new accounts.

5 A manufacturer has agreed to dispatch small
servomechanisms in cartons of 100 to a distributor.
The distributor requires that 90% of cartons
contain at most one defective servomechanism.
Assuming the Poisson approximation to the
binomial distribution, write down an equation for
the Poisson parameter λ such that the distributor’s
requirements are just satisfied. Solve by trial 
and error (approximate solution 0.5), and hence
find the required proportion of manufactured
servomechanisms that must be satisfactory.

6 Ten thousand numbers are to be added, each
rounded to the sixth decimal place. Assuming that
the errors arising from rounding the numbers are
mutually independent and uniformly distributed on
(−0.5 × 10−6, +0.5 × 10−6), find the limits in which
the total error will lie with probability 95%.

7 Suppose that X is a continuous random variable
with mean µX and variance σ 2

X. By separating the
integral in the definition of σ 2

X into three parts and
substituting the respective bounds for (x − µX)2 as
follows

where k is a constant, prove Chebyshev’s
theorem

P( | x − µX | � kσX) � k−2

Deduce that for every continuous random variable X
the probability is at least that X will take a value
within three standard deviations of the mean.

8 The function

Γ(α) = �
0

∞

yα−1e−y dy (α � 0)

8
9

(   )  

( )  ( ,  )

 (  ,  )

( )  (  , )

x

k k

k k

k k

X

X X X

X X X X

X X X

−

−∞ −

− +

+ +∞

⎧

⎨
⎪⎪

⎩
⎪
⎪

µ

σ µ σ

µ σ µ σ

σ µ σ

2

2

2

0�
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is known as the gamma function, and the
probability density function

defines the gamma distribution. Prove that

(a) µX = α /λ

(b) σ 2
X = α /λ2

9 If X1, … , Xn are independent exponentially
distributed random variables, each with parameter 
λ, prove that the random variable whose value is
given by the minimum of {X1, … , Xn} also has 
an exponential distribution, with parameter nλ.
In particular, if a complex piece of machinery
consists of six parts, each of which has an
exponential distribution of time to failure with 
mean 2000 hours, and if the machine fails as soon 
as any of its parts fail, find the probability that the
time to failure exceeds 300 hours.

10 Find the expected value of the maximum of four
independent exponential random variables, each
with parameter λ. In particular, if the time taken 
for a routine test and service of a jet aircraft engine
has an exponential distribution with a mean of 
three hours, find the mean time to complete a four-
engine aircraft if the service times are independent.

11 In the game of craps, two dice are tossed. A total
of 7 or 11 wins immediately, a total of 2, 3 or 
12 loses. For remaining outcomes, both dice are
tossed repeatedly until either a total of 7 appears,
which loses, or the original number, which wins.
Show that the overall probability of winning is
approximately 0.493.

12 A large number N of people are subjected to a 
blood investigation to test for the presence of an
illegal drug. This investigation is carried out by
mixing the blood of k persons at a time and testing
the mixture. If the result of the analysis is negative
then this is sufficient for all k persons. If the result
is positive then the blood of each person must be
analysed separately, making k + 1 analyses in all.
Assume that the probability p of a positive result
is the same for each person and that the results of
the analyses are independent. Find the expected
number of analyses, and minimize with respect to 
k. In particular, find the optimum value of k when 

f x
x x

X

x

( )  
[ ( )] (   )

( )
=

⎧
⎨
⎪

⎩⎪

− − −Γ α λα α λ1 1 0

0

e

otherwise

�

M13_JAME0734_05_SE_C13.qxd  11/03/2015  10:05  Page 1062



13.8 REVIEW EXERCISES (1–13) 1063
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p = 0.01, and the expected saving compared with
a separate analysis for all N people.

13 Error-correcting codes are widely used for data
transmission. A message consisting of N binary
bits is partitioned into blocks of k bits, and each
block is transmitted with some additional parity
bits, giving a total of n bits per block. The parity
bits are used at the receiving end to correct any
errors that occur in transmission (bits that get
inverted, including the parity bits themselves).
Some error-correcting codes can correct only a
single error per block; others can correct up to 
two errors. The number n − k of parity bits is
chosen as small as possible to satisfy the
relationship:

2n−k � n + 1 (single-error-correcting code)

or

2n−k � n2 + 1 (double-error-correcting code)

(a) Suppose that transmission errors occur
independently at an average rate of 1% of bits
transmitted. For data blocks k of 4, 8, 16, 32 and
64 bits, find the value of n and the probability of
more errors occurring than the code can correct.
Do this for single- and double-error-correcting codes.

(b) Find for each type of code the largest block
size k that allows a total of N = 64 data bits to be
transmitted with at least 95% probability of correct
overall interpretation at the receiving end. Compare
the total numbers of bits transmitted in each case.
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Appendix I Tables

AI.1 Some useful results
Algebraic processes

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

a2 − b2 = (a + b)(a − b) ‘difference of two squares’

ax2 + bx + c = a ‘completing the square’

Quadratic equation

The general form of the quadratic equation is

ax 2 + bx + c = 0, a ≠ 0

and its solution is given by

l If b2 � 4ac the equation has two real roots.
l If b2 = 4ac the equation has a real root which is repeated.
l If b2 � 4ac the equation has two complex roots, which are complex conjugates.

Rules of indices

(1) aman = am+n (2) = am−n (3) (a n)m = anm (4) a0 = 1

(5) a1/ n = n÷a (6) a−n = (7) a m/n = n÷am

Logarithmic formulae

Definition
If y = ax then x = logay expressed verbally as ‘x is equal to log to base a of y’.

1

an

a

a

m

n

 
x

b b ac

a
  

  (   )
=

− ± −÷ 2 4

2

x
b

a
c

b

a
     +⎛

⎝
⎞
⎠ + −

2 4

2 2
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Rules

(1) loga(xy) = logax + logay ‘log of product equal to sum of logs’

(2) loga( ) = logax − logay ‘log of quotient equal to difference of logs’

(3) logaxn = n loga x

Useful results

(1) x = aloga x

(2) logax = ‘change of base’

When the logarithm of x is to base e then it is denoted by lnx and called the natural 
logarithm.

Hyperbolic functions

Definitions

cosh x = (ex + e−x) sinh x = (ex − e−x)

tanh x = sech x =

cosech x = , (x ≠ 0) coth x = , (x ≠ 0)

Logarithmic form of inverses

sinh−1x = ln[x + ÷(x 2 + 1)]

cosh−1x = ln[x + ÷(x 2 − 1)], (x � 1)

tanh−1x = ln , (−1 � x � 1)

Arithmetic sequence (progression)

l An arithmetic sequence is a sequence of terms of the form

a, a + d, a + 2d, a + 3d, …

where a is called the first term and d the common difference.
l The nth term of the sequence is given by a + (n − 1)d.
l The sum of the terms of an arithmetic sequence is called an arithmetic series and

the sum of the first n terms is

Sn = n[2a + (n − 1)d ]/2

1

1

  

  

+
−

⎛
⎝

⎞
⎠

x

x
1
2

1

tanh x

1

sinh x

1

cosh x

sinh

cosh

x

x

1
2

1
2

log

log
b

b

x

a

x
y

Z01_JAME0734_05_SE_APP.qxd  11/03/2015  10:05  Page 1065



Geometric sequence (progression)

l A geometric sequence is a sequence of terms of the form

a, ar, ar 2, ar 3, …

where a is called the first term and r the common ratio.
l The nth term of the sequence is given by arn−1.
l The sum of the terms of a geometric sequence is called a geometric series and

the sum of the first n terms is

Sn = a(1 − rn)/(1 − r) if r ≠ 1 and Sn = an if r = 1

The binomial series

l The binomial expansion of the function (1 + x)r, where r is any real number is
given by

(1 + x) r = 1 + rx + r (r − 1)x 2 + r (r − 1)(r − 2)x3 + …

l The (n + 1)th term of the series is r(r − 1)(r − 2) … (r − n + 1)xr.

l If r is a positive integer then the series terminates after r + 1 terms.
l If r is not a positive integer then the expansion is valid only if | x | � 1.

l To expand (a + x)r then first express it in the form ar and then expand
as above.

Taylor and Maclaurin series

The Taylor series expansion of f (x) about x = a is

f (x + a) = f (a) +

The expansion is only valid within the region of convergence of the infinite series. In
the special case when a = 0 we have the Maclaurin series expansion of f (x)

f (x) = f (0) + 

Some standard Maclaurin series expansions
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AI.2 Trigonometric identities
cos2x + sin2x = 1

1 + tan2x = sec2x

1 + cot2x = cosec2x

sin(x + y) = sin x cos y + cos x sin y

sin(x − y) = sin x cos y − cos x sin y

cos(x + y) = cos x cos y − sin x sin y

cos(x − y) = cos x cos y + sin x sin y

tan(x + y) =

tan(x − y) =

sin 2x = 2 sin x cos x

cos 2x = cos2x − sin2x

= 1 − 2 sin2x

= 2 cos2x − 1

sin x + sin y = 2 sin (x + y) cos (x − y)

sin x − sin y = 2 cos (x + y) sin (x − y)

cos x + cos y = 2 cos (x + y) cos (x − y)

cos x − cos y = −2 sin (x + y) sin (x − y)

sin x cos y = [sin(x + y) + sin(x − y)]

cos x sin y = [sin(x + y) − sin(x − y)]

cos x cos y = [cos(x + y) + cos(x − y)]

sin x sin y = [cos(x − y) − cos(x + y)]

sin 3x = 3 sin x − 4 sin3x

cos 3x = 4 cos3x − 3 cos x

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
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1
2
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2
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2
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2
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+
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!
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      (  )x
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AI.3 Derivatives and integrals

y dy/dx sy dx

xn xn+1/(n + 1) (n ≠ −1)
1/x ln | x |
sin x −cos x
cos x sin x
tan x −ln | cos x |
sec x ln | sec x + tan x |
cot x ln | sin x |
cosec x −ln | cosec x + cot x |

sin−1x x sin−1x + ÷(1 − x 2)

cos−1x x cos−1x − ÷(1 − x 2)

tan−1x x tan−1x − ln(1 + x 2)

sec−1x
x sec−1x − ln | x + ÷(x 2 − 1) |
(0 � sec−1x � π)

cosec−1x
(x cosec−1x + ln | x + ÷(x 2 − 1) |
(0 � cosec−1x � π)

cot−1x x cot−1x + ln(1 + x 2)

eax eax/a
a x ax/ ln a
sinh x cosh x
cosh x sinh x
tanh x ln cosh x
sech x tan−1(sinh x)
cosech x ln | tanh x |
coth x ln | sinh x |

sinh−1x x sinh−1x − ÷(1 + x 2)

cosh−1x x cosh−1x − ÷(x 2 − 1)

tanh−1x
x tanh−1x + ln(1 − x 2)
( | x | � 1)

sech−1x x sech−1x + sin−1x

cosech−1x x cosech−1x + sinh−1x

coth−1x
x coth−1x + ln(x 2 − 1)
( | x | � 1)

ln x x ln x − x

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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nxn−1

−1/x 2

cos x
−sin x
sec2x
sec x tan x
−cosec2x
−cosec x cot x

aeax

a x ln a
cosh x
sinh x
sech2x
−sech x tanh x
−cosech x coth x
−cosech2x

1/x

1

1 2  − x

 

−
+
1

1 2x x÷(   )

 

−
−
1

1 2x x÷(   )

1

1 2  − x

 

1

12÷(  )x −
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−
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1
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AI.4 Some useful standard integrals

f (x), (a � 0) sf (x)dx

or ln [x + ÷(x 2 + a 2)]

or ln [x + ÷(x 2 − a 2)]

for | x | � a

for | x | � a
1

2a

x a

x a
ln

  

  

−
+

⎛
⎝⎜

⎞
⎠⎟
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a x

a x
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1 x
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⎠⎟
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⎠⎟
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15 (a) x−1 (b) x7 (c) x−12 (d) x 2

(e) 1/(2x 4) (f ) 4x /9 (g) x 5/2 − 2x−1/2

(h) 25x 2/3 + 1/(4x 2/3) − 5 (i) 2 − 1/x
( j) a−1b9/2 (k) 1/(8b3a3/2)

16 (a) xy(x − y) (b) xyz(x − y + 2z)
(c) (a + b)(x − 2y) (d) (x + 5)(x − 2)
(e) (x + y)(x − y) (f ) (9x 2 + y 2)(3x − y)(3x + y)

17 (a) (x + 3)/(x + 4) (b) (5 − x)/[(x − 3)(x + 1)]
(c) 2/[(x − 2)(x + 12)] (d) 3x 2 − 4y2

20 (a) (b) (x − 1)2 + 2
(c) (d) 5 − (x −2)2

21 s = (m 2 + p 2 )t/(m 2 − p 2 ), m 2 ≠ p 2

22 t = (u − 1)x 2/(u + 1), u ≠ −1

23 −1 ± ÷2

24

25 7, −2

26 10 m

27 (a) ÷2 (b) (1 + ÷5)/2

28 (a) x � 0 and x � 5/2
(b) x � 1 and x � 2
(c) x � 0 and x � 1
(d) x � −4 and x �

29 −2 � x � 2

31 (a) A = − , B = (b) A = 8, B = −5

(c) A = , B = −

32 A = 2, B = −1, C = 9

33 (a) 5 (b) 0 (c) −9 (d) 11

34 (a) 120 (b) (c) 35 (d) 10 (e) 84 (f ) 70

35 (a) x 4 − 12x 3 + 54x 2 − 108x + 81
(b)
(c) 32x 5 + 240x 4 + 720x 3 + 1080x 2 + 810x + 243
(d) 81x 4 + 216x 3y + 216x 2 y2 + 96xy3 + 16y4

x x x3 3
2

2 3
4

1
8+ + +    

1
4

3
2

5
2

1
3

1
3

2
3

4
3

1
3

5
3

23  (   )− −x
(   )  x + −1

2
2 49

4

1
2

1
2

CHAPTER 1

Exercises

1 54.62510

2 111111110000012, 37 7018

13 4558

3 11110.100110011001…2

36.463 146 31…8

Yes

4 (a) 101 110.1002 (b) 10 101.110 101 012

5 (a) 1/2 (b) 27 (c) 1/212

(d) 32 (e) 1/6 (f) 23

6 (a) 21 + ((4 × 3) ÷ 2) (b) (17 − (6(2+3)))
(c) (4 × (23)) − ((7 ÷ 6) × 2)
(d) ((2 × 3) − (6 ÷ 4)) + 3(2−5)

7 (a) 1393 + 985÷2 (b) 68 + 48÷2
(c) 1 + ÷2 (d) −1 + ÷2

8 (a) −7 + 5÷2 (b)
(c) (d)

9

10 ÷3 + ÷19 � ÷5 + ÷13

11 (a) −2 � x � 10, [−2, 10]
(b) −5 � x � −1, (−5, −1)
(c) −3 � x � 4, [−3, 4]
(d) −24 � x � 0, (−24, 0)

12 (a) {x: | x − 4 | � 3} (b) {x: | x + 3 | � 1}
(c) {x: | 2x − 43 | � 9} (d) {x: | 8x − 1 | � 5}

13 (b) only
(b), (c) and (d) true

14 (a) va = (v1 + v2) (b) v
v v

v vb =
+

 
 

2 1 2

1 2

1
2

239
169

577
408

1393
985, , 

28
11

18
11 5  + ÷ 

5
11

1
11 3  − ÷

− −60
17

41
17 2  ÷

3
2

Answers to
Exercises
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ANSWERS TO EXERCISES 1071

36 (a) (b) y = −2x − 1
(c) (d) y = − x + 3
(e) (f ) y = −3x + 4

37 (x − 1)2 + ( y − 2)2 = 25

38 4, (−2, 3)

39 x 2 + y2 + 4x − 6y = 12

40 x 2 + y2 − 6x − 3y + 5 = 0

41 2y = x + 3

42 x2 + y2 = 252

43 x = , x = −

44 (0, 3), (0, −3), , y = , y = − , 10, 8

45 (−5, 0), (5, 0), (−4, 0), (4, 0), 

46 (a) 3dp, 6sf (b) 30dp, 3sf (c) 0dp, 5sf
(d) 0dp, 3sf (e) 0dp, 4sf (f ) 10dp, 3sf

47 The answer claims unjustified accuracy: hypotenuse =
2.236 ± 0.007 m. The angles are also subject to error.

48 (a) Absolute error bound is min, relative error
bound is 
(b) Absolute error bound is 1.4 min, relative error
bound is 0.04
(c) Absolute error bound is 0.005, relative error 
bound is 

49 0.0039, 12.9

50 (a) 3.613 ± 0.0015, relative error bound 0.0004, 3.61
(b) 2.5351 ± 0.0176, relative error bound 0.007, 2.5
(c) 22.47 ± 0.015, relative error bound 0.0007, 22.5

51 4.51

52 10.00 ± 0.01, 
−0.02 ± 0.01, 
24.9999 ± 0.05, 
0.996 008 ± 0.002, 

53
Absolute RelatiVe
error error

Label Value bound bound

a 3.251 0.0005
b 3.115 0.0005
a – b 0.136 0.001 0.0074
c 0.112 0.0005 0.0045
(a – b)/c 1.2143 0.0145 0.0119
d 9.21 0.005
d + (a – b) /c 10.4243 0.0195

Result: 10.4

1
500

1
500

1
2

1
1000

1
116

1
420

1
12

y
x

y
x

  ,   = = −
3

4

3

4

25
3

25
3

3
5

2
3

2
3

y x    = +1
3

2
3

3
5y x    = −5

2
1
2

y x    = −3
2 2 54 0.7634 ± 0.000 72, 0.76

55 (a) 0.2713 ± 0.0237 (b) 0.2715 ± 0.0072

56 101(0.2709), 101(0.2708)
The second result is more accurate since by adding the
small numbers together first their combination is given
its proper weight.

57 10−8(0.6538), 10−3(0.6752)

58 0.5

1.7 Review exercises

1 (a) A = ±QKD /÷(HD 2 − Q 2K 2)
(b) −(9 ± ÷145)/8

2 (a) (x − 1)(a − 2) (b) (a − b + c)(a + b − c)
(c) (2k + l − 3m)(2k + l + 3m)
(d) ( p − q)( p − 2q) (e) (l + n)(l + m)

3 (a) 1 cm (b) 3.812

4 (a)

(b) 0.1434; 0.0592; 0.4160
(L must be positive from practical considerations)

5 (a) 30 − 12÷6 (b) −53 + 11÷15
(c) (14 + 11÷2) (d) 3 + 2÷2 + 2÷3 + ÷6
(e)

6 5, 6

8 (a) (b) (−∞, −5) � (−2, 1)
(c) (−3, 1) (d) (− , 0)

11

12 (b) (i)
(ii) 729 − 2916x + 4860x 2 − 4320x 3 + 2160x 4

− 576x 5 + 64x 6

13 (a) 90.5
(b) P1 = 1, P2 = 3, P3 = 5, Pr = (2r − 1),

14 (a) y = 2x + 1 (b) y = (x − 7)/3 (c) y = 2x −

15 (y − 3)2 + (x − 5)2 = 25

16 (a) (−1, 2), 2 (b) (c) , ÷3

17 (i) (a) (1, 2) (b) (3, 2) (c) x = −1 (d) y = 2
(ii) (a) (−2, 1) (b) (−2, −2) (c) y = 4 (d) x = −2

( , )− 1
3

1
3( , ), 1

2
3
2

1
2−

7
3

P nr
r

n

=
∑ =

1

2 

1 5
2

5
2

2 5
4

3 5
16

4 1
32

5       − + − + −x x x x x

a

b

a c

b c
  

  

  
  � �

+
+

1

4
3

( , )− 1
2

3
2

 
1
2

1
4

1
42 6    + +÷ ÷

1
23

 
L

nC
Z R n    (  ) ( )= ± −⎛

⎝
⎞
⎠

1

2
22 2

π
π÷

..
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....

(c) Increasing on −1 � x � 0 and x � +1
Decreasing on x � −1 and 0 � x � +1
Maximum at (0, 0), minimum at (−1, −1) and 
(1, −1)

(d) Increasing on x � 1, decreasing on x � 1, 
maximum at (1, −1)

8 F(x) = (x − 1)2: f (x) shifted by 2 units in positive x
direction
G(x) = (x + 1)2 − 2: f (x) shifted by 2 units in negative
y direction

10 (a) (x + 3) (b)

(c) Restriction of domain to [0, ∞)
÷(x − 1), x � 1

14 (a) odd (b) even (c) neither
(d) neither (e) odd (f) even

16 (x3 + 3x) + (−3x2 − 1)

17 (a) 3 − 2x
(b)
(c) 0.255x + 2.478 (3dp)

18 (a) 3 (b) −3 (c)

19 £(50 + 0.455x), £960, £(1.20x − 960), 800

20 a = 0.311

21 m = 0.82, c = 60.9

24 (a)
(b)

25 (x − 2)2 − 4(x − 2) − 2

26 (a) irreducible (b) not irreducible
(c) not irreducible (d) irreducible

27 (a) minimum at x = −1 of 2
(b) minimum at x = of 0
(c) maximum at x = − of 
(d) maximum at x = of −

28 (a) x � 2 and x � 4
(b) − � x � 3

29 315 feet, 46 mph

30 (a) (x − 1)(x + 3)(x − 4)
(b) (x + 1)(x − 2)(x + 3)
(c) (x − 1)(x + 1)(x 2 + 2)
(d) x(x − 1)(2x + 3)(x + 2)
(e) (x − 1)2(2x − 1)(x − 2)
(f) (x 2 + 9)(x − 2)(x + 2)

5
2

11
20

3
10

22
3

2
3

3
2

2
5

2 2
5x x− −   

2
3

2 1
32x x+ +   

1
2

1
2

5
2x  +

4 3

2

x

x

  

  

+
−

1
2

18 (2, 8), (2, 5), (2, 11), (2, 3), (2, 13), y = − , y =

19 ∆.477 4∆ 774∆ … 12, where ∆12 = 1010

20

21 0.37 ± 0.07

22 1.714 (a) 0.0026, (b) 0.0075

23 6

CHAPTER 2

Exercises

1 (a) [−5, 5], �, [0, 5], 0, 3, ÷(25 − x 2)
(b) �, �, �, 2, −1, 3÷(3 − x)

2 A = 2x(5 + | x |)

x/m 0 1 2 3 4 5
Area/m2 0 12 28 48 72 100

A(−2) = −28, area of cutting

3
r/m 0.10 0.15 0.20 0.25 0.30 0.35 0.40
A/m2 3.05 2.12 1.71 1.53 1.47 1.50 1.59

r* = 0.32 according to worked answer: estimated
from a graph (not drawn).

5 5 years

6 (a) 0, 2; increasing for x � 1, decreasing for x � 1,
minimum at x = 1

(b) − , 2; increasing for x � −1 and x � 2,
decreasing for −1 � x � 2, maximum at x = −1,
minimum at x = 2

5
2

49
3

1
3

Absolute error Relative error
Value bound bound

a 7.01 0.005 → 0.000 7
÷a 2.647 6 0.000 9 ← 0.000 35
b 52.13 0.005 → 0.000 096
÷b 7.220 111 0.000 347 ← 0.000 048
c 0.010 11 0.000 005 → 0.000 495
÷c 0.100 548 0.000 025 ← 0.000 25
d 5.631 × 1011 0.5 × 108 → 0.000 088 8
÷d 7.504 × 105 0.33 × 102 ← 0.000 044 4

Correctly ÷a ÷b ÷c ÷d
rounded values 2.65 7.22 0.101 7.504 × 10 5
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31 2, 7, 139, 527, 524

32 y = (x − 5)4 + 15(x − 5)3 + 80(x − 5)2 + 165(x − 5) + 81.
Since coefficients are all positive, zeros of y must all
lie to the left of x = 5, i.e. x � 5. Hence the zeros of 
y lie between x = 0 and x = 5.

33 (a) x 2 − 14x + 1 = 0
(b) x 2 + 52x + 1 = 0

34 x 3 − 5x 2 + 1

35 3x 2 + 22x + 378

36 (b) r = 10/(4π)1/3, h = 20/(4π)1/3

37 0.096 m3, 0.1875 m3

38 x 0 = 10.94, width of alley = 4.92 m

39 (a) 1 + (x + 2)/[(x + 1)(x − 1)]
(b) x 3 − 2x 2 + x + 1 − 3x /(x 2 + x + 1)

40 (a) (−5x 2 + x − 2)/[x(x − 2)(x 2 + 1)]
(b) 2/[(x − 1)3(x + 1)]
(c) (4x 4 − 11x 3 + 10x 2 − 5x + 4)/[(x 2 + 1)(x − 1)2(x − 2)]

41 (a)

(b)

(c)

(d)

(e)

(f)

42 (a)

(b)

(c)

(d)

(e)

(f)

43 (a) (÷2, ÷2), (−÷2, −÷2)
(b) (÷2, ÷2), (−÷2, −÷2)
(c) (÷2, ÷2), (−÷2, −÷2)
(d) does not intersect on domain

( , ), ( , ),− −√ √ √ √2
5

2
5

2
5

2
5

x

x x x

  

 
  

  
  

  

+
+

+
−

−
+

1

4

2

1

3

52

1

1

2

12 2 2x

x

x+
+

−
+ 

  
  

(  )

1
3

2

8

3
  

  
  

  
−

−
+

−x x

5
9

4
3

2

5
9

2 1 1x x x  
  

(   )
  

  −
+

+
−

+

1
3

1
3

2
3

21 1x

x

x x  
  

  

   −
−

+
+ +

1
3

1
3

4 1x x  
  

  −
−

−

−
+

+
−

+
+

1
3

1
12

1
4

1 2 2x x x  
  

  
  

  

1

1

1

2 22x

x

x x  
  

  

   +
−

+
+ +

1
3

2

2
9

2
9

2 2 1(   )
  

  
  

  x x x−
+

−
−

+

1
2 1

2
3

1
3  

  
  

  
+

−
+

+x x

1

2

1

1x x  
  

  −
+

+

1
3

1
3

2 1x x  
  

  −
−

+

44 (a) asymptotes: y = x − 8, x = 0, 
maximum (÷15, − 8 + 2÷15),
minimum (−÷15, − 8 − 2÷15)

(b) asymptotes: y = 1, x = 1 (c) y = x, x = −5

45 y = −1 ± ÷(x + 4), ( y + 1)2 = x + 4

48 0.6, 0.8, 0.75, 36.87° = 36°52′12″; 
, , 2.4, 67.38° = 67°22′48″

49 AB = 29.44, BC = 33.04 m

50 30

51 60

52 AB = 30.6 mm, AC = 26.9 mn

53 45.5 mm

55 degrees 0° 30° 45° 60° 90° 120° 150° 180°
radians 0 π
degrees 210° 225° 240° 270° 300° 315° 330° 360°
radians 2π

57 (a) 0.3398, 2.8018, π
(b) 1.8235, 4.4597, π
(c) 2.6779, 5.8195, 
(d)

58
÷(2 − ÷3), ÷(2 + ÷3), 2 − ÷3

(a) ÷3 (b) 1/÷3
(c) ÷3 (d) ÷(2 + ÷3)
(e) − ÷(2 − ÷3) (f) −(2 − ÷3)

59 (a) −÷(1 − s 2) (b) −2s÷ (1 − s 2)
(c) s(3 − 4s 2) (d) ÷{ [1 + ÷(1 − s 2)]}

61 x = nπ (n = ±1, ±3, … ) 
and x = 0.9273 + 2nπ (n = 0, ±1, ±2, … )

62
a b c d e f

sin x ± ±÷ ±÷ − ±
cos x ± ÷3 − ÷3 ±÷ ÷ ± ÷3

tan x ±÷ ±÷ −1 ±1 ±÷ ÷

cosec x 2 ±2 ±÷2 ±÷2 −2 ±2

sec x ±2÷ −2÷ ±÷2 ÷2 ± ±2÷

cot x ±÷3 ±÷3 −1 ±1 ±÷3 ÷3

63 (a) 2 sin 2θ cosθ (b)
(c) (d) −2 3

2
1
2cos sinθ θ2 7

2
3
2cos cosθ θ

2 3
2

1
2sin sinθ θ

1
3

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1
2

± 2
3√

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

 
1
2

1
2

1
23 3 3÷ ÷ ÷, , , 

1
2

3
2

1
6

5
6π π π π, , , 

1
4

5
4π π, 

3
2

11
6 π7

4π5
3π3

2π4
3π5

4π7
6π

5
6π2

3π1
2π1

3π1
4 π1

6π

5
13

12
13

....
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64 (a) (cos 2θ − cos 4θ ) (b) (sin 4θ + sin 2θ )

(c) (sin 4θ − sin 2θ ) (d) (cos 4θ + cos 2θ )

65 (a) 2 cos(θ − π), 2 sin(θ − π)

(b) ÷2 cos(θ − π), ÷2 sin(θ − π)

(c) ÷2 cos(θ − π), ÷2 sin(θ − π)

(d) ÷13 cos(θ − 0.9828), ÷13 sin(θ − 5.6952)

66 x = 2nπ, 2nπ ± π (n = 0, ±1, ±2, … )

67 (a) π /6 (b) −π /6 (c) π /3
(d) 2π /3 (e) π /3 (f) −π /3

70

71

72 (a) (2e + 1)e5 (b) e4x (c) e6

(d) e9 (e) ex/2

74 (a) 3 (b) −2 (c) −
(d) 4 (e) (f) −

75 (a) 2 ln x + ln y (b) ln x + ln y
(c) 5 ln x − 2 ln y

76 (a) ln 4 (b) ln 3.2 (c) ln 0.75 (d) ln 0.5

77 (a) ÷[(1 − x)/(1 + x)] (b) x 2

79 ln(20 ± 6÷10) = 3.6629, 0.025 99

80 ln(x 2 + 1) − ln(x 4 + 1) − ln(x 4 + 4)1
5

1
3

3
2

1
2

1
2

1
2

1
2

1
2

2
3

7
4

1
4

1
4

3
4

1
6

2
3

1
2

1
2

1
2

1
2
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81
a b c d e f

sinh x ± ± −
cosh x

tanh x ± − ± −
cosech x ± ± ± −
sech x

coth x ± ± − ± −

82 (a)

(b) cosh(x + y) = cosh x cosh y + sinh x sinh y
(c) cos 2x = 1 − 2 sin2x
(d) sinh x − sinh y = 2 sinh (x − y) cosh (x + y)

84 (a) 0.7327 (b) 1.3170 (c) 0.5493

85 17.1383 (4dp)

86 1.0074 (4dp)

88 A = 250, B = −273.26

91 (a) Cusp at x = 0, maximum at x = 4, asymptote y = −x
(b) Minimum at x = 2, asymptotes y = ±÷x − 1, x = 1

94

95 x [1 − H(x)] − (x − 1)H(x − 1)

96 INTPT(x + )

99 0.9401, 0.005, 0.9425

100 0.04, 0.16, 0.01, 0.006 25

101 0.3081, 0.2829, 16.79

102 0.2954, 0.2688, 17.10

103

104
x 3045 3051 3058 3064 3070 3077 3083
y 14.50 14.51 14.52 14.53 14.54 14.55

2.11 Review exercises

1 h(x) = x − 4 x � [0, 200]
k(x) = (x 2 − 4)1/2 x � [−20, −2] � [2, 20]

2 (a) 25.6 cm (b) 2.35 m2

f x x x( )   = − +1
84

3 85
84

1
2

ax

l
H x

a

l
l x H x l

a

l
l x H x l( )  (   ) (   )  (   ) (   )+ − − − − −

2
2 2

1
2

1
2

tanh   
(   tanh )tanh

  tanh
3

3

1 3

2

2
x

x x

x
=

+
+

13
12

3
4

13
12

25
7

17
8

5
3

5
13

3
5

5
13

24
25

15
17

4
5

5
12

3
4

5
12

24
7

15
8

4
3

12
13

4
5

12
13

7
25

8
17

3
5

13
5

5
3

13
5

25
24

17
15

5
4

12
5

4
3

12
5

7
24

8
15

3
4
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3
Price/£ 1.00 1.05 1.10 1.15 1.20 1.25 1.30
Sales/000 8 7 6 5 4 3 2
Revenue/£000 8 7.35 6.60 5.75 4.80 3.75 2.60
Profit/£000 0 0.35 0.60 0.75 0.80 0.75 0.60

4

6 0.37 ± 0.005

8 (x − 1)4 + 7(x − 1)3 + 14(x − 1)2 + 13(x − 1) + 4

9 (a)

(b)

(c)

(d)

10 (a)
(b)

(c)

11 (a) 2÷5 sin(θ − α), α = tan−1

(b) ÷65 sin(θ − α), α = −tan−18
(c) 2 sin(θ + π)

13 2

15 0.0025, 0.300

16 ÷

17 (b) D÷3

18 1, 2, 0, 1, 3, 7, 5, 5, … 
0.833 89, 0.551 94

21 r = 3/(2 sinθ − cosθ )

CHAPTER 3

Exercises

2 4 + j, −2 + j3, 2 + j4, −9 + j3, −1 + j12, 5 + j3

3 (a) −3 ± j2 (b) ± j
(c) − ± j (d) 1, − ± j
(e) ±÷3, ±j÷2

÷11
2

1
2

1
2

÷7
2

1
2

1
2

1
3

1
6

1
2

−2
3

2

11

2
sin cos

θ θ
2 5

2
1
2cos cosθ θ

2 3
2

1
2cos sinθ θ

1
13

2

21
135 7

1 3

(   )

   
  

  

x

x x x

−
− +

+
+

2

9 1

7

9 2

11

3 2 2(   )
  

(   )
  

(   )x x x−
+

+
−

+

1
1 3

5
4

13
4  

  
  

  
−

+
+

−x x

2

4

1

1x x  
  

  −
−

−

g x

x x
x x
x x

x x
x x

( )  

    
    

      
      
 –   

=

+ −
− −

+ −
+

⎧

⎨
⎪
⎪

⎩
⎪
⎪

3 3 3
2 3 1
3 1 1 0

1 0 1
3 1 1

�
� �
� �

� �
�

4 (a) 24 + j18 (b) 17 − j19
(c) −1 − j5 (d) −26 − j13

5 (a) −1 − j5 (b) (9 + j19)/13
(c) (1 − j7)/25 (d) −1 − j2

6 (a) 10 (b) −3 − j4
(c) (47 − j4) (d) −j
(e) j (f ) 5 − j12
(g) j (h) − (5 + j8)

7 (a) 2 − j7 (b) −3 + j (c) j6 (d)

8 (a) −1 + j, −1 − j (b) −2, 1 + j÷3, 1 − j÷3

9 ±3 + j2

10 (a) 3 + j2 (b) 2 + j3
(c) (2 + j3) (d) 2 − j3

11 (a) ÷2, π (b) 2, − π
(c) 5, π − tan−1 (d) 2, − π
(e) 2, π (f) 2, − π

12 w = 5 − j4, z = 2 + j3

13

14 2 + j2, 

15 (7 + j4)

16 (451 + j878)

17

18

19 2÷2, 1/÷2, 5π /12, π /12

20 (a) 16[cos(11π /12) + j sin(11π /12)], 
[cos(7π /12) + j sin(7π /12)],

4[cos(−7π /12) + j sin(−7π /12)]
(b) 15[cos(−5π /6) + j sin(−5π /6)],

[cos(−π /2) + j sin(π /2)],
[cos(π /2) + j(sinπ /2)]

21 |z | = 0.0024, argz = −1.9728, z = −0.0009 − j0.0022

22 (a) e1.61+j0.927 (b) e0.693+j2π /3

23 (a) 14.2026 + j14.2026 (b) 0.1839 + j0.3186

24 (a) 1∠π /2
(b) 1∠0
(c) 1∠π
(d) ÷2∠−π /4
(e) ÷6∠−π /4
(f) ÷5∠(π − tan−1 )
(g) ÷13∠(tan−1 − π)
(h) ÷74∠(−tan−1 )
(i) 5∠0
(j) 53∠(tan−1 − π)28

45

5
7

2
3

1
2

5
3

3
5

1
4

11
4

13
4  − j

x y  ,   = = −1
4

3
4

1
130

1
5

1
2

x y  ,   = = −1
2

3
2

2
3

2
3

1
3

4
3

1
6

1
4

1
13

2
3

2
3  + j

1
178

3
17

1
25

....
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25

26 (a) (b)

27 (a) 128, − π (b) 1024, 0 (c)

29 (a)
(b) cosh

(c)

(d)

30 (a) (4n + 1)π + j cosh−12
(b) (2n + 1)π + j(−1)n+1 sinh−1

(c) (4n + 1)π + j cosh−13
(d) cosh−12 + j(2n + 1)π

32

= 0.9994 + j0.0366

33 0.1645 − j0.1214

34 (a) −2 + j2, −4 (b) −j8, −8 − j8÷3
(c) 117 + j44, −527 + j336 (d) −8, −8 + j8÷3
(e) 8, −8 + j8÷3 (f) 8, −8 − j8÷3

35 (a) cos 4θ + cos 2θ +
(b) sin θ − sin 3θ

37 k = 0, 1, 2

38 (a) k = 0, 1, 2, 3
(b) k = 0, 1, 2
(c) k = 0, 1, 2
(d) k = 0, 1, 2, 3
(e) k = 0, 1, 2
(f) k = 0, 1

39 1.455 − j0.344, 0.344 + j1.455, −1.455 + j0.344, 
−0.344 − j1.455

40 2.529 + j2.743, 0.471 + j2.257

41

(a) j2 cot kπ, k = 1, … , 4
(b) k = 1, … , 5

42 5, 13

3
2

1
61(   cot ),+ j kπ

1
5

cos   sin ,   , , , 
2 2

1 2
k

n

k

n
k n

π π
+ =j …

1 31
2

1
2,   − ± j √

34 1 4 1
2

1 3
5

− −∠ −/ ( tan   ),kπ
4 1

3
8
3∠ +(   ),π πk

1 1
4

1
2∠ +(   ),π πk

18 1 3 1
6

4
3

− ∠ −/ (   ),π πk
2 1

6
2
3∠ +(   ),π πk

21 4 1
24

1
2

/ (   ),∠ − +π πk

27 6
12

2
3

/ (   ),∠ +π πk

1
4

3
4

3
8

1
2

1
8

2 2

1 2

2

1 22

2

2

tanh

  tanh
  

sec

  tanh+
+

+
j

h

y
u

u
  

tan sec

  tanh tan
=

+
v

v
h2

2 21

x
u

u
  

tanh sec

  tanh tan
=

+

2

2 21

v
v

1
2

3
4

1
2

1
2

1

2÷

1
2 3

3

2 3
sinh   cosh

π π
+ j

÷

3
4

1
2

1
21 3 1cosh   sinh− j ÷

1
16

2
3, π1

3

1
2

3
23÷   + j− −5

12
11
12π π, 

4
5

7
5

1
5

1 7
465  , tan+ ∠ −j √
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43 (a) x = 5, a straight line
(b) circle centre (1, 0), radius 3
(c) circle centre (− , 0), radius 
(d) half-line, y = x − 2, x � 2

44 circle is | z + 2 | = 2
line is Re ((3 + j) + z) = −2

45 (a) Straight line, y = 1
(b) Circle, centre (0, 2), radius 1
(c) Circle, centre (0, ), radius 
(d) Circle, centre (÷ , 0), radius 2÷
(e) Rectangular hyperbola, xy = 1
(f) Ellipse, foci at (1, 0), (0, −1), through (0, 0)
(g) Hyperbola, foci at (1, 0), (0, −1)
(h) Half-line, y = x − 2, x � 2
(i) Half-line, 
( j) Circle, centre (0, 2), radius 1

46 (a) Re[(3 + j)z] = 2 (b) | z + 2 | = 2
(c) | z + 1 − j2 | = 3 (d) Re(z 2) = 1

47 (a) Circle, centre (1, 0), radius 2
(b) Circle, centre ( , 0), radius 
(c) Circle, centre (2, 3), radius 4
(d) Half-line, y = 0, x � 0
(e) Circle, centre (− , 0), radius 
(f ) Semicircle, centre ( , − ), radius ÷2, through (0, 0)

48 x 2 + y 2 − 4x − 2y + 1 = 0, | z − 2 − j | = 2,

49 Part of x2 + (y − 1)2 = 2

50 (x − 3)2 + y 2 = 4

51 (a) u = x + y, v = y − x
(b) u = (x − 1)2 − y2, v = 2(x − 1)y
(c) u = x(x2 + y2 + 1), v = y(x2 + y2 − 1)

52 a = ( j − 2)/5, b = 3(1 + 2j)/5

56 u2 + v2 = 1

57 100 + j100.12

58

3.6 Review exercises

1 (a) 12 + j9 (b) 2 + j (c) 11 + j2
(d) 7 + j24 (e) 5 (f) (1 − j2)/5
(g) (18 + j14)/5 (h) tan−1(3/4) = 0.6435
(i) 5÷5 [cos(0.9653 + 3kπ) + jsin(0.9653 + 3kπ)], 

k = 0, 1

2 x = ± , y = ±2

3 (7 + j9)1
10

3
2

8
3

8
3  + j

arg
  

    
  

z

z

−
− −

⎛
⎝⎜

⎞
⎠⎟

= ±
j

j4 2

π

1
2

1
2

1
2

15
8

13
8

3
2

1
2

y x x    ,   = −÷ ÷3 33
2

3
2�

1
3

1
3

3
4

5
4

3
4

5
4
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4 (a) Circle centre radius ÷2

(b)

6 Centre (R2, ωL), radius ωL

7 (a) 32 cos6θ − 48 cos4θ + 18 cos2θ − 1

13 419.8 − j238.8, 0.5928 × 10−3 + j1.0518 × 10−3

14 1 + j3, (3 + j11), (7 + j11)

15 Mod , arg = −154°17′ = −2.6927 rad

16 (a) 0.22 ± j0.49 (b) 1.44 + j1.57 (c) 10.48 + j19.74
(d) 0.80 + j0.46 (e) 1.09 + j0.83

19

20 4.46 − j2.06

21 (a) 0.7974 + j0.3685 (b) r = 0.8784
θ = 24°49′ = 0.4329 rad, 1.098

23 (a) −0.04 + j0.28 (b) ±(0.35 + j0.40)
(c) 0.92 + j0.27 (d) −1.26 + j1.71
(e) −0.04 + j0.28

24 1∠18°26′, 1∠108°26′, 1∠198°26′, 1∠288°26′

25 21/6e j(1/9+k /3)π, k = 0, … , 5

27 −(ωu + ω 2v), −(ω 2u + ωv); r 2 � − q3

28 1 − j2, 2÷5

31 Circle u2 + v2 − 12u + 16v = 0
Centre (6, −8), radius 10

32 v + 3u = 5

33 Circle u2 + v2 − u + 1 = 0; Centre ( , 0), radius ; Maps
to region outside circle

CHAPTER 4

Exercises

2 183.3 km, 270 km

4 60° or −60° to the positive z axis

5 a + b

7 o1c2 = 2a + b, o1d2 = 2a + 2b, o1e2 = a + 2b

8 20.62 m/s, 14.05°

9 8÷2 kilometres per hour from the NW

10 70.71 N

2
3

1
3

3
4

5
4

5
2

1
27

1
4

θ   tan
  

   
=

−
+ − −

⎡

⎣
⎢

⎤

⎦
⎥−1 0 0

2 2
0
2

0
2

2 2R X RX

R X R X

25
13

1
5

1
5

1
2

1
2

Re
  

  
1

2
1
2z −

⎛
⎝⎜

⎞
⎠⎟ = −

2
3( , ),− 1

3
4
3 11 (a) (3, 3, 1) (b) (2, 4, ) (c) (0, 0, 1)

(d) ÷2 (e) 3 (f) ÷3
(g) (h)

12 p1q2 = (4, −5, 11), | p1q2 | = 9÷2
direction cosines 4/(9÷2), −5/(9÷2), 11/(9÷2)

13 ÷134 N, (7, 2, 9)/÷134

14 α = 4 β = 1 γ = 2

15 ÷21 ÷17 ÷38

16 (1, 1, −1.414)

17 (a) a1b2 = (6, 0, −1), a1c2 = (1, 2, −1) (b) 7
(c) (d) ÷37, ÷6 (e) (7, 2, −2)

18 (1, 4), (4, 0)

19 p1q2 = q1r2 = (1, 5, −3) and PQ : QR = 1 : 1

20 distance = 13/5, t = 1/5

22 1 − j2 length = ÷20

23

25

26 F = (−940, 124, −31) N
(7.93 m, −1.04 m, 0 m), T = 1342 N

27 (a) 14 (b) 6 (c) (2, 1, 6)/÷41
(d) (12, 0, −6)/÷5 (e) −24 (f) (12, 4, 8)

28 (a) 98.0° = 1.711 rad (b) 64.8° = 1.130 rad
(c) (d) 3 or −4

29 1, −1, 2

30 ÷45, ÷55, 27.8°

31 4 units

32

33 ÷5/2

38 r 2 − (r · â)2 = R2

39 ÷3, 70.5° or 1.23 rad

40 | X | � 2.98 m

41 (a) (3, −2, −1) (b) (−1, 1, 0) (c) (5, −4, −2)
(d) −1 (e) 1 (f) (2, 2, 1)

42 (a) (−5, −3, 1), (−10, −6, 2)
(b) (5, 3, −1), (10, 6, −2)
(c) a and c are parallel

43 −8i − 6k, 2i − j

5
14

14
5

φ   sin
  

=
+ −⎛

⎝⎜
⎞
⎠⎟

−1 2
2

3
2

1
2

2 32

W W W

W W

θ   sin
  

=
+ −⎛

⎝⎜
⎞
⎠⎟

−1 1
2

2
2

3
2

1 22

W W W

W W

1
2

1
2  − j

1
2( , , )3

7
6

7
1
7

−

( , , )2
3

2
3

1
3( , , )√ √1

2
1
2 0

5
2

....
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44 ÷75, (−25, 5, 35)

45 (1, −13, −7), (−6, 21, −12)

48 (a) (8, 1, 6), (4, 1, 3) (b) (c)

51 (48, 72, 0)/÷14

52 (−8, −32, −4)/÷21

53 (a) (0, 1, −1) (−2, 1, −1) (−2, 1, 0)
(b) (0, 0, 0) (0, 0, −2) (−3, 3, −1)
(c) (−3, 3, −3)

54 ±(−3, 5, 11)/÷155 0.9968

55 Distance = 1.92

56 mω = eB

57 15

59 8

61 (a) (−5, 3, −7)/÷83 (b) (0, 1, −4)/÷17

62 (1, 1, 1) (2, −13, 11)

63

64 α = −1/F2

65 (a) (c · a)(b · d) − (c · b)(d · a) (c) −(a · b)(a × c)

66 (a) (3, 3, 3) (b) (1 + s, 2 + s, 3 + s)
(c) x − 1 = y − 2 = z − 3

67 yes, no, no, yes r = (2 + s, 1 − s, 1 − s)

69 (3, 4, 0), 43.5° = 0.759 rad

71 r = (2 − t, 2t, −1 + 4t)
2 − x = y = (1 + z), no intersection

72 ÷35

73 r · (0, −1, 1) = 1 −y + z = 1

74 r · (1, −1, 1) = 2

75 r · [b × (c − a)] = a · (b × c)

76 r = (0, −5, 10) + λ(1, 2, −3)

77 r = (1, 2, 4) + t (1, 1, 2)

78 79.0° = 1.38 rad

79 (a) r · (2, 3, 6) = −28 (b) 5

80 r = (1 + 2t, −1 + 4t, 3 − 4t), 41.8° = 0.729 rad

81 r · (1, −5, 3) = 28

82 r = (−1 + 14t, t, 1 − 8t)
÷29, r · (−18, 36, −27) = −92

3

( , , )− − −5
2

3
2 3

1
4

1
2

 

u u u

w w w

1 2 3

1 2 3

1 2 3

v v v

1
3

7
3

5
2( , , )− 3

5
4
50
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4.5 Review exercises

1 (a) ÷93 (b) (17, −3, −10)/÷398
(c) 85.8° = 1.50 rad, 47.0° = 0.820 rad
(d) (2, 13, −13)/6

2 (a) (3, 4, 5) (b) ÷35 (c) 34/3

3 (a) (1, 2, 0), (2, 1, 1) (b) ÷5
(c) 1 (d) 112.2° = 1.96 rad

4 (a) −4 (b) 1 or −4

5 (1, 5, 22)

8 (1, 1, 1), (−5, −11, 1)

9 E = e(0.550, 0.282, 0.282)

10 (a) 2x + 3y + 6z + 28 = 0 (b) 5

11 (a) 2x + 3y − z = 10; 10/÷14 (b) ÷3/2

12 P(2, 4, 4), Q(1, 2, 3)
(−2, −4, 0)

13 (a) 0 (b) 15(1, 1, −2)

15 (−90, −36, 12), 85.3° or 1.49 rad

16 (11, −12, 5); 76.8°; (−11, 12, −5)/÷290
(a) −11x + 12y − 5z = 8
(b) −11x + 12y − 5z = −4 (c) 12/÷290

17 r = (−3, 0, 1) + λ(8, −8, −8) + µ(5, 1, −3)
r · (−1, 2, −1) = −6

18 x + 2y − 2z = −1

19 (a) (0, 0, 1), (1, −1, 0), (0, 1, −1)
(b) 1 (c) 3, −3, 2 (d) 3, 2, 1

20 r = (2 − t, 3 − 3t, 2t)
(a) ÷(61/14) (b) (0, −3, 4) (c) (19, 15, 18)/14

21 α = r · a′ β = r · b′ γ = r · c′

22 Taking i along OA and j along OB then 
F = ω 2(1.4, 1.65) and OC = (−1.4, −1.65) m.

CHAPTER 5

Exercises

1 (a) not possible (b) (c) not possible

1

3

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( , , ), ( , , );2
3

1
3

2
3

3
5

4
50−
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(d) not possible (e)

2 (a) (b)

(c)

3

4 (b)

5 1, 1, 2, 2,

6 α = 1 β = −1 γ = 2

8 α = (p + q − r), β = (p − q + r), γ = (−p + q + r)

9 (a) λ = 1 µ = −1 ν = 3

10 Average = Weighted average =

11 Bricks – type C and sand

12

2 2

2 2

1 1− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 3

1 3

1 1

2 2 2

2 2 2

2 2 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ − − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 2 1

2 2 1

0 2

0 2

−
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

14 750

14 600

270

122

9

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

31000

9 000

16 900

340

18

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

32 57

26 43

19 14

11 43

10 43

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

30 5

27 5

19 5

11 5

11 0

.

.

.

.

.

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1
2

1
2

1
2

3 2 1

0 3 1

1 6 3

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 7 1

18 10 14

−⎡

⎣
⎢

⎤

⎦
⎥

1

1

0 1

1
2

1
2

1
2

1
2

1
2

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −
− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

0

0 2 0

4
3

2
3

4
3

4
3

0 1 1

3 2 1

0 0 3

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8 9 10

7 10 9

⎡

⎣
⎢

⎤

⎦
⎥

13 (a) No, yes, yes, yes, no, no

(b)

(c)

14 (a) (b)

15 AB = BA = , X =

18 x 2 + y 2 + z 2

x 2 + 4y 2 + 7z 2 + 5xy + 8xz + 11yz

19 AB = , BA = , BC =

CB not defined, CA = , AC not defined

20 (a) , (b) ,

both both 

First set does not commute, second set commutes

23

24 (a)

(b)

(c) A  B     =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 0

0 0

1 1

A B      = [ ] =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

1

1

1

A  B     =
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1

1 1 1

1

1

1

b d b
o d
+⎡

⎣⎢
⎤
⎦⎥

 

−⎡

⎣
⎢

⎤

⎦
⎥

3 12

30 3

9 0

0 9

⎡

⎣
⎢

⎤

⎦
⎥

0 2

0 0

⎡

⎣
⎢

⎤

⎦
⎥

−⎡

⎣
⎢

⎤

⎦
⎥

1 2

0 1

4 4

2 2

⎡

⎣
⎢

⎤

⎦
⎥

3 4

2 3

⎡

⎣
⎢

⎤

⎦
⎥

4 1 4

3 2 3

⎡

⎣
⎢

⎤

⎦
⎥

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2

2 1

1 2

2 1 2

1 0 1

2 1 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 2

1 4

⎡

⎣
⎢

⎤

⎦
⎥

x y z

x y z

x y z

      

      

      

+ + =
+ + =
+ + =

⎫

⎬
⎪

⎭
⎪

2 3 2

3 4 5 3

5 6 7 4

2
5
2−

⎡

⎣
⎢

⎤

⎦
⎥

2 0

0 2

⎡

⎣
⎢

⎤

⎦
⎥

1 2 0

1 1 1

10 4 5

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 2

2 1

−⎡

⎣
⎢

⎤

⎦
⎥

37 33

26 36

29 28

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

9 7

7 12

13 18

8 5

9 5

18 2

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

..
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25

26

27 £2273.88

28

30

31

32

33 n = 3

−1 0 1
34 Minors = −1 −2 −1

2 −2 −2

−1 0 1
Cofactors = 1 −2 1

2 2 −2
| A | = 2

35 (a) −19 (b) 130 (c) −65
(d) 1 (e) −3

36 −4, 16, 16, −32

37 3

38

39

2 1 0

4 3 1

1 1 1

−
− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

d b

c a

−
−

⎡

⎣
⎢

⎤

⎦
⎥

a

b

⎡

⎣
⎢

⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥ +

−
⎡

⎣
⎢

⎤

⎦
⎥ =        

16

10

16

10
A B Aand

A  =
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

√ √
√ √

1
2

1
2

1
2

1
2

h k l m  ,   ,   ,   = = = =1
3

2
3

1
3

1
6

799 8

800

800 2

800

800

800

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 3 2

0 5 2

2 2 1

3 6 5

6 7 8

4 1 3−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

41 15 7

9 63 40

13 38 41

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

A    = −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ − −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1 2

2 1

0

0 2

2 0

5
2

3
2

5
2

3
2

1
2

1
2

1
2

1
2
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40

44 (a) −1.6569, 9.6569
(b) 4.6667 ± j0.623 61
(c) 2, 3 ± j

45 (a) −0.1884 (b) 100

47 x 2(2x + 1)2(x − 1)2

51 Non-singular, singular, non-singular, singular

52

53

55

56

57

58
1

68

4 4 8

6 11 12

36 2 4

1

49

5 22 8

11 19 2

13 18 11

−
−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

    

1

5

3 2 2

2 3 2

2 2 3

0 68 0 32 0 32

0 32 0 68 0 32

0 32 0 32 0 68

−
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −
− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

,    

. . .

. . .

. . .

1 0 0

0 1 0

0 0 1

1 3 2

2 3 2

1 1 1

⎡

⎣
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59

60

61

62

63

x = 2, y = 1, z = 2

64 α = 1 x = λ y = 5λ z = 7λ
α = −6 x = µ y = −2µ z = 0

65 −6, −3, −2

66 (a) a = 0 (b) (c) (d)

67
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68 a = u1 b = (−u1 + u2) /p c = (−u1 + u3)/q
d = (u1 − u2 − u3 + u4)/pq

69 x = 0.5889u y = 0.4222u z = 0.2222u

70 a = −0.4011 b = 1 c = −0.5825
f (1) = 1.4345

71 y1 = 1.8936 y2 = 4.6809 y3 = 8.1489 y4 = 10.7660

72 (a) (b) (c)

73 x = 1 y = 2 z = 2 t = 3

74 x = −0.0833 y = 0.7083 z = 1.9167 t = 2.9583

75 (a) (b) (c)

76 , det = 0.002 725 , det = 0.001453

78 4.5, 8, 10.5, 12, 12.5

79 Solution: 1, 2, 2, 3
After 5 iterations: 0.989, 1.99, 1.98, 3.00

80 Solution: −0.083, 0.708, 1.917, 2.958
After 3 iterations: −0.189, 0.634, 1.868, 2.920

81 (a) 0.8 (b) 1.1 (c) no convergence

82

There is no convergence in 50 iterations, even from a

starting value of

83 I1 = 0.5172, I2 = 0.4914, I3 = 0.8017

84 0.1685, 0.3258, 0.5282, 0.7188, 0.9563, 1.0063,
0.8063, 0.6064, 0.4059, 0.2079

85 (a) 2, 2, [2/3, −1/3] (b) 1, 2, inconsistent
(c) 2, 2, [1, −t, t] (d) 2, 2, [2 − t, 1, t]
(e) 2, 3, inconsistent (f ) 4, 4, [0, 1/3, 0, 1]
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86 α = 2 gives 1, 2 and inconsistent equations; α = −1
gives 1, 1 solution [1 − 2t, t]; otherwise solution is

87 (a) 2 (b) 3

88 (a) Rank = 2, (−2 + t, 5 − 2t, t)
(b) Rank = 2, no solution

89 Rank = 3, rank = 3; (µ , −1, 1, −µ)

90 (a) x = −1, y = (2 − 4µ), z = µ
(b) No solution
(c) x = (−9 − 45λ + 13µ), y = (5 − 8λ + 5µ) 

z = λ, t = µ
(d) Unique solution x = −1, y = −1, z = 1

92 Rank = 4 implies points not coplanar; rank = 3
implies the points lie on a plane; rank = 2 implies the
points lie on a line; rank = 1 implies the four points
are identical

94 (a) λ2 − 4λ + 3, eigenvalues 3, 1
(b) λ2 − 3λ + 1, eigenvalues 2.618, 0.382
(c) λ3 − 6λ2 + 11λ − 6, eigenvalues 3, 2, 1
(d) λ3 − 6λ2 + 9λ − 4, eigenvalues 4, 1, 1
(e) λ3 − 12λ2 + 40λ − 35, eigenvalues 7, 3.618, 1.382
(f) λ2 − (2 + a)λ + 1 + 2a, eigenvalues 

1 + a ± ÷(a2 − 4a)

95 (a) 2, 0; (b) 4, −1;

(c) 9, 3, −3;

(d) 3, 2, 1;

(e) 14, 7, −7;

(f) 2, 1, −1;

(g) 5, 3, 1;
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(h) 4, 3, 1;

96 Eigenvalues 3, 3 eigenvectors [1, 0], [0, 1]
Eigenvalues 3, 3 eigenvector [0, 1]
Eigenvalues 5/2, 5/2 eigenvector [1, −2]
Eigenvalues 0, 0 eigenvector [1, −2]

97

98 (a) 5, 1, 1;

(b) 2, 2, −1;

(c) 2, 2, 1;

(d) 2, 1, 1;

99 One eigenvector 

100 2, 1, 1;

101 3, [1, 0, 0, 1]; 2, [0, 1, 0, 0] and [0, 0, 1, 0];
−1, [−1, 0, 0, 1]

104 3, 2, −6;
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5.9 Review exercises

1 (a)

(b)

2 λ = −1, µ = 2
λ = 2, µ = −1

3 Normal strain =

Shear strain = 0

4 (α − β)(β − γ)(γ − α)(α + β + γ)

5 θ = 1: (1 + 2α, −3α, α)
θ = 2: (2α, 1 − 3α, α)

6

7 (a) PT = , the solution x = P −1b

exists

(b)

8 (a)

(b) k = 8.2316, k = −1.9316
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     X
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9 (a)

z = 2, y = 1, x = 2

(b)

(c)

10 (a) 3, 0, 2, 1; det = 12
(b) 1, 2, 3, 4

11 1, 2, 3

12 If c ≠ 0 then rank = 2
if c = 0 then rank = 1

13 a = f (2) = 0.2200 f (3.5) = −0.4228

14 a = 0.4424, b = −1.5037, c = 1.5023, d = −0.0611 
max at x = 0.74, f = 0.4065

15 rank B = 2, AAT = I, A−1 = AT

x1 = 2.444, x2 = −2.556, x3 = −1.222

16 (b) x1 = 44, x2 = −48, x3 = −39, x4 = 33

17 (a) (b)

18 (a) 4, 3, 2;

(b) 5, 3, −1;

(c) 9, 6, 3;

19 λ = 9 α = 1 β = 6

1
3

1
3

1
3

1

2

2

2

1

2

2

2

1

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , 

0 2033

0 6505

0 7318

0 1374

0 8242

0 5494

0 4472

0 8944

0

.

.

.

, 

.

.

.

, 

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 5774

0 5774

0 5774

0 1961

0 5883

0 7845

0

0 7071

0 7071

.

.

.

, 

.

.

.

, .

.−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8

5
1
2

0

1

2

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0051

0 9712

0 3931

0 0760

0 0283

.

.

.

.

.

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Z   = −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

6 11 3

15 2 59

16 7 16

Y   = −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

8 1 9

18 3 35

8 4 6

− − −
− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 3 1

8 1 29

6 2 8

22
1

22

2 3 1

8 1 29

6 2 8

, , ,

....
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20

21 After 100 iterations rounded down to the nearest integer
70 98 136
56 78 109 and the largest eigenvalues are 
42 59 81 0.9963, 0.9996, 1.0029
21 29 40

22 (a) 3, 1;

(b) 0.8794, −1.3473, −2.5321;

26 E1 = 4E2 + 3I2; I1 = 3E2 + I2

CHAPTER 6

Exercises

1 A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {−4, 4}
C = {5, 6, 7, 8, 9, 10}
D = {4, 8, 12, 16, 20, 24}

2 A � B = {−4, 1, 2, 3, 4, 5, 6, 7, 8, 9}
A � B = {4}
A � C = {n � �: 1 � n � 10}
A � C = {n � �: 5 � n � 9}
B � D = {−4, 4, 8, 12, 16, 20, 24}
B � D = {4}
B � C = ∅

3 A � B = {n ��: 1 � n � 10}
A � C = {1, 5, 9}
A � B = ∅
B � C = {1, 2, 4, 5, 6, 8, 9, 10}
B � C = {4, 8}

4

5
2

0 4491

0 8440

0 2931

0 8440

0 2931

0 4491

0 2931

0 4491

0 8440

.

.

.

, 

.

.

.

, 

.

.

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 7071

0 7071

0 7071

0 7071

.

.
, 

.

.

⎡

⎣
⎢

⎤

⎦
⎥ −

⎡

⎣
⎢

⎤

⎦
⎥

1

0

1

0

1

0

1

0

1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , 

5 (a) A � B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 
18, 20}

(b) A � B = {2, 4, 6, 8, 10}
(c) A � C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 16, 32}
(d) A � C = {2, 4, 8}

6 (a) True
(b) False
(c) False

7 (a) {n � �: 11 � n � 32}
(b) {11, 13, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32}
(c) A = {n ��: 11 � n � 32}

B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32}

(d) A!&!B = {1, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32}

(e) A � B = A!&!B (see (d))

11 (a) A � B (b) ∅ (c) A
(d) U (e) A (f) A � (B � C )
(g) A � (B � C)

14 (a) 5 (b) 25

15 (a) 20 (b) 27

16 4

17 (a) C = {a, b, d, i}, B!^!C = {a, b, i}
B � C = {a, b, i}, A � B � D = ∅
A � F = {a, b, c, f, i}, D � (E � F) = {b, c, e, h, i},
(D � E) � F = {b, c, i}

(b) B � C = {c, d, e, f, g, h}, C � E = {c, e, f, g, h, i}
D � E � F = {b, c, e, f, h, i}

(c) L1: {b, c, d, e, f, g, h, i}
L2: {b, c, d, e, f, g, h, i}
L3: all elements

18 (a) 1 if p = 1, q = 1; 0 otherwise
(b) 0 if p = 0, q = 0; 1 otherwise
(c) 0 (d) 1

19 (a) p · q + p · q
(b) (p + p ) · (q + q )
(c) p + q + p + q
(d) p · q + r · s
(e) p · q · s + p · q · r · s + p · q · r · s + p · q · s + p · q · s
(f) p · q · r + p · q · t + p · q · u + p · s · u + p · v

20 p · q + r + s + q · t

1084 ANSWERS TO EXERCISES
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21

22 (a) p · q (b) p · r
(c) p · q + p · q (d) p + q + r
(e) 1 (f) q + r

23 (a) p · q + p · q + p · q
(b) (p + q) · (p + q ) + p · (r + q)
(c) p · (q + p) + (q + r) · p

24

25

26

p q r p q r p · q · r p · q · r p · q · r p · q · r f

0 0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 1
0 1 1 1 0 0 0 1 0 0 1
1 0 0 0 1 1 0 0 1 0 1
1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1

f = p · q · r + p · q · r + p · q · r + p · q · r

27

28

29

30 (a) p + q

(b) ( p + q) · r

(c) 0
(d) p · r + s · p

....
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....

32 (a) Fred is not my brother
(b) 12 is an odd number
(c) There will be no gales next winter
(d) Bridges do not collapse when design loads are

exceeded

33 (a) F (b) T (c) T (d) F

34 (a) T (b) F
(c)–(e) are not propositions
(f) Truth value is not known

35 (a) A � B (b) A → C
(c) J → (K � C ) (d) L → B

36 (a) It is raining and the sun is shining therefore there
are clouds in the sky

(b) It is raining therefore there are clouds in the sky
and hence the sun is shining

(c) If it is not raining then the sun is shining or there
are clouds in the sky

(d) It is not the case that it rains and the sun shines,
and there are clouds in the sky

37 (a) x 2 = y 2 → x = y for positive numbers x and y
(b) x 2 = y 2 → x = y for x = 1 and y = −1 (one of many

possible answers)

38 (a) n = 4 (b) n = 3 (c) n = 7

39 (a) B � C → A

B � C → J
(b) If x 2 + y 2 � 1 then x + y = 1; if x 2 + y 2 � 1 

then x + y ≠ 1
(c) If 3 + 3 = 9 then 2 + 2 = 4; if 3 + 3 ≠ 9 

then 2 + 2 ≠ 4
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40

47 1, 4, 9, 16

6.7 Review exercises

1 (a) A!^!B = {8, 9}
(b) C − A = {3, 7, 8} C � B = {6, 9}

2 (a) A � B = {2, 4, 6, 8, 10}
(b) A � B � C = {10}
(c) A � (B � C) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

14, 20}

3 (a) A = {n � �: 11 � n � 20}
(b) A � B = {1, 3, 5, 7, 9, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20}
(c) A!^!B = {13, 15, 17, 19}
(d) A � (B!^!C) = {1, 3, 5, 7, 9}

4 Statement (a) is true

5 (a) f = A g = U (the universal set)
(b)

Only equals A � B if region R does not exist, that is
A � B = ∅

7

8 (a)
(b) (B � C) � (C � B)

9 (a) x · y · z · u + x · y · z · u + x · u

(b) x · y + z · u + x · y · z

(c) (i) 0 (ii) 0

  (     )  (     )  (     )A B D D� � � � � � � �D A C A B

....
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..

(d) To modify the circuit we introduce the chairman’s
vote E. If N denotes No and Y denotes Yes, the new
circuit must have the output

Nnew = (Nold + T ) · E

Ynew = (Yold + T ) · E

where T = Tie. Hence the modified circuit will be

A tie is now impossible.

15 N · (V + R · M)
i.e. no dope smoking occurs if Neil is absent and either
Vivian is absent or Mike is present and Rick is absent.

16 p · q · p141r + q · r = q · r

17 (a) F (b) No (c) No
(d) F (e) F (f) F
(g) No (h) F (i) T

18 (a)

(b) (i) False (ii) False

19 PO · T + PO · PF · T + PO · PF · T
= PO · T + PF · T + PO · PF · T is minimal

10 (a) p q p � q (b) p q p � q (c) p q p → q
T T T T T T T T T
T F F T F T T F F
F T F F T T F T T
F F F F F F F F T

A B C

(e) p q p p � q p � q A � B C  → p

T T F F T T T T
T F F F T T T T
F T T T F T F T
F F T F T F F T

Hence (p � q) � ( ) → p is a tautology.

11 (a) q · p + p · q (b) p + q + r
(c) p · q · r + q · r · s

12 (a) (i) p · r + q · r · s + q · r · s
(ii) p · q · r + p · r · s

13 C1 · C2 · F1 · F2 · F3 + C1 · C3 · F1 · F2 · F3

+ C1 · C2 · C3 · F1 · F2 · F3

where Ci = call button on floor i
and Fi = 1 if lift is on floor, 0 otherwise

14 (a) Let the four people be labelled A, B, C, D. 
The truth table is then as given below:

A B C D Yes No Tie
0 0 0 0 0 1 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 0 1
0 1 1 0 0 0 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 0 1
1 0 1 0 0 0 1
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 1 0 0

Extracting from this table those inputs that cause a
Yes, No or Tie (Y, N or T ) we have
(b) Y = A · B · C · D + A · B · C · D + A · B · C · D

+ A · B · C · D + A · B · C · D
N = A · B · C · D + A · B · C · D

+ A · B · C · D + A · B · C · D + A · B · C · D
T = A · B · C · D + A · B · C · D + A · B · C · D

+ A · B · C · D + A · B · C · D + A · B · C · D
(c) Y = A · B · D + A · B · C + A · C · D + B · C · D

N = A · B · C + A · B · D + A · C · D + B · C · D
T does not simplify

p � q

p � q
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15 £2700k, 11

16

17 3.1365 (4dp)

18

19 £66 116, £128 841, after 7.3 years

20 (a) 11 781 (b) 1 205 589 (c) 1 − ( )153

(d) 3154 − 1 (e) 1 217 370 (f)

21 9

23 117.46

24

25

26 (a) A2n + 3 (b) A3n − 5(n + )
(c) A(−1)n + ( )n (d) A2n + n2n

27 £1770, {10 000, 9430, 8792, 8077, 7276, 6379, 5375,
4250, 2989, 1578, −3}

28 (A + n)/n2

29 (a) 0 (b) −3 × 2n (c) 0 (d) 75 × (−2)n

(a) and (c) satisfy recurrence relation

31 (a) A5n + B2n (b) A3n + B(−2)n

(c)

(d) A5n + Bn5n

(e) A(− )n + B

32 (a) (b)
(c)

33 (b) (1 − n)an (c) (3 + (2a−10 − 0.3)n)an

34 T2 = 2x2 − 1, T3 = 4x3 − 3x, T4 = 8x4 − 8x2 + 1

35 (a) Nt = 2t

(b)

36 (a) 0.5, 0.4, 0.3, 0.2353, 0.1923, 0.1632; →0
(b) 0.4615, 0.4722, 0.4789, 0.4831, 0.4859, 0.4879;

→0.5
(c) 2, 2, 1.817, 1.682, 1.585, 1.513; →1
(d) 1.5, 1.5625, 1.5880, 1.6018, 1.6105, 1.6165; 

→e1/2 = 1.6487

 
Nt

t t

  
  

  
  = +⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ +
1 5

2

1
1 1

÷ ÷
÷

5
2

5

− − + + −1
6

1
36 3 2n A Bn n     ( )

4
9

14
9

1
2

1
3  ( )  + − +n n1

4
13
12

1
125 2  ( )  ( )+ −n n

1
2

( ) cos   sin1
5 2 2

n A
n

B
nπ π

+⎛
⎝⎜

⎞
⎠⎟

3
2

1
2

2
3

1
2

a r

r

dr

r
nr n r

n
n n(   )

  
  

(   )
[    (   ) ]

1

1 1
1 1

2
1−

−
+

−
+ − −−

2
2

2
  

  
−

+ n
n

x
r

r n
  

  (   )
,=

− + −

10

1 1 1
100

153
154

1
2

2
5

2
7

2
9

2
11

2
13

2
15, , , , ,  

1 2

1

  (   )

  

+ −
−

n x

x

÷

PO = 1 when pressure in oxidizer tank � required
minimum

PF = 1 when pressure in fuel tank � required minimum
T = 1 when time � 15 min to lift-off
L = 1 when panel light is on

21 p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s,
p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s, 
p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s, p · q · r · s,
p · q · r · s

Converse Contrapositive
22 (a) If I do not go, the If the train is early, 

train is late I will go
(b) If you retire, you If you do not have

will have enough enough money, you
money will not retire

(c) You cannot do it I can do it if you are
unless I am there there

(d) If I go, so will you If you do not go nor
will I

23 ‘If you were a member of the other tribe, what would
you answer if I asked you if your God was male?’ 
The answer is then definitely false!

CHAPTER 7

Exercises

1 (a) , 1, (b) 6, 10, 14 (c) −64, 16, −4

2 xn+1 = xn, x0 = 5

3 p = −3, q = 13, x0 = 13, x1 = 10, x2 = 7, x3 = 4
xn+1 = xn − 3

5 45, 57.5, 63.75, 66.875

6 (a) 40 (b) 16 736 (c) 35

7

8

9 2.618

10

11 {1, 1.5, 1.4, 1.417, 1.414, 1.414, 1.414}

12 1.222

13 5

14 (a) 16, 31 (b) 10, 20, 40, 80

{ , , , , , }0 1
3

16
25

81
109

256
321

625
751

1
10 2

1n
xl

l

n

(  )−
=
∑

v
V

n
⎛
⎝⎜

⎞
⎠⎟ ×

+1

100 

3
8

9
5

1
3
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(e) 1.4142, 1.5538, 1.5981, 1.6119, 1.6161, 1.6174; 
→ (1 + ÷5)

(f) 0, 0, 1.2990, 2, 2.3776, 2.5981; →π

37 (a) 1, 1, , 2.5, 3.4, 4.3333; diverges to infinity 
(b) 1, 0, −1, 0, 1, 0; oscillates between 1, 0, −1
(c) 1, 3, 1, 3, 1, 3; oscillates between 1 and 3

38 (a) 10 (b) 19 (c) 1 000 002
(d) 25 (e) 18

39 70%

40 2.2, 2.324, 2.418 996, 2.450 262
Estimate = 2.465 5011
Limit = 2.465 571

41 (a) convergent (b) convergent
(c) divergent (d) divergent

42

43 (a) (b)

(c)

44 (a) divergent (b) divergent (c) convergent

46 ; (a) (b) (c) 1 (d)

48 1.082 322 1; summation from right allows full account
to be taken of the accumulative effect of small terms

50 (a) | x | � 1 (b) x � � (c) | x | � 1 (d) | x | � 1

51 (a) (−x 2)r (| x | � 1) (b)

(c) (−1)r(r + 1)xr (| x | � 1)

(d)

(e)

(f) (1 + x)x4r (| x | � 1)

52 (a) (b)

(c) (d)

54 n = 8, 1.1905, six multiplications

55 (a) (1 + 2x 2)−1 (b) (1 − x)−1/2

(c) (d)

56 3.1415

x

x
x

2

2
2

1
1

  
ln(   )

−
−1

1
1  

  
ln(   )+

−
−

x

x
x

( )( )( )( )− − − −
⋅ ⋅ ⋅

1
2

3
2

5
2

7
2

1 2 3 4

( )( )( )1
2

1
2

3
2

1 2 3

− −
⋅ ⋅

( )( )( )− − −
⋅ ⋅

2 3 4

1 2 3

5 4
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57 (a) (b) − (c) 2 (d) 0

58 (a) 3 (b)

59 (a) −1 (b) 1 (c) n − 1 (d) n

62 (a) Undefined at x = 0, continuous for x ≠ 0
(b) Infinite discontinuity at x = 2, continuous for x ≠ 2
(c) Finite discontinuity at x = 0, continuous for x ≠ 0
(d) Finite discontinuities at x = ±÷n, n = 0, 1, 2, … 

63 (a) Upper bound is 7, lower bound 5
(b) Upper bound is 3, lower bound −1

64 1.75

65 0.830

66 α = −1.879, β = 0.347, γ = 1.532

67 (a) is convergent, (b) convergent and (c) divergent
Root is 0.771

68 5.4267, 5.3949, ε1 � 0.05

69 α 0 � 1.9, αk � (2k + 1)π
θn+1 = cos−1(−sech θn), α 0 = 1.8751

7.12 Review exercises

1 1000, 850, 700, 550, 400, 250, 100
1000, 681, 464, 316, 215, 147, 100

2 £361, £243, £141, £53 for r � 23.375

3 1 − 0.2(− )t, 1

5 (a) A2n + B3n (b) (A + Bn)2n

(c) A2n + B3n + 4n (d) A2n + B3n + 3n−1n

8 200 + 20(− )t

9 2 + A cos nθ + B sin nθ, tan θ =

10 γ � 0.577 235; compare the true value 0.577 216

11 (a) divergent (b) convergent
(c) divergent (d) convergent

12 (a) (b) (c) (d)

13 (a) convergent (b) divergent
(c) convergent (d) divergent

14

15 a = 1, b = − , c =
| x | � 0.2954
tan 0.29 is given to 4dp; tan 0.295 has an error of unit 
in 1dp, but when rounded to 4dp gives an error of 1 unit.

16
x x x x x     − + − +1

6
3 3

40
5 5

112
7 35

1152
9

x x  − 1
6

3

1
2

1
45

1
3

x x

x

(   )

(   )

1

1 3

+
−

1724
3333

101
999

143
333

410
333

√7

3

2
5

1
2

1
2

1
2

1
2

2
3

1
3
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17 0.095, 31

19 2.718 586 07
2.718 357 88
2.718 281 81

20
r 0 1 2 3 4 5 6 7 8
Mr 0 2.64 1.93 2.13 2.06 2.13 1.93 2.64 0

22

+ W(x − a)H(x − a)

23 (a) positive values of ÷(1 − sin2θ)
(b) A = −5/128

24 1.233577

25 −4/45

CHAPTER 8

Exercises

1 (a) 0 (b) 1 (c) 2x

(d) 3x2 (e) (f)

2 (a) 4x − 5 (b) −1
(c) (1, −15), 
(d) −1 (e) y = −x − 14

3 (a) 6x 2 − 6x + 1 (b) 1
(c) (1, 3), ( [1 ± ÷(1 + 8m)], [12 − 3m ± m÷(1 + 8m)])
(d) m = 1, −1/8 (e) y = x + 2, y = −0.125x + 3.125

4 (a) minimum at x = −1/2 (b) minimum at x = 1/3
(c) maximum at x = 3/2 (d) maximum at x = 1/2

5 3ax2 + 2bx + c

6

8 m2 min−1

10 3W(2x − l )2/4l 2

12 µT

16
d

d

x

t
a x b x  (   )(   )∝ − −

1
3

  

v( )  

,     

  ,     

,     

,     

t

t

t t

t

t

=
−

−

⎧

⎨
⎪
⎪

⎩
⎪
⎪

1 0 1

2 1 1 2

3 2 3

1 3 9

� �

� �

� �

� �

1
4

1
4

(   ,    )1
2

3
2

1
2

2 1
2 15m m m+ + −

−
+

1

1 2(   )x

1

2÷x

a  ,= − 1
3

M
W l a a

l

W l a l a x

l
  

(   )
  

(   ) (   )
=

−
−

− +2

2

3

3

2

F
W l a l a

l
WH x a  

(   ) (   )
  (   )=

− +
− −

2

3

2

17 r = l/4

18 £1.25, 7500

19 (a) 9x 8, (b) ÷x, (c) −8x,
(d) 16x3 + 10x4, (e) 12x2 + 1, (f) −1/x3,
(g) 1 + 1/(2÷x), (h) 7x 5/2, (i) −1/x4

20 (a) 18x5 + 75x4 − 2x − 5,
(b) 20x3 + 3x2 + 30x − 27, 
(c) (21x2 + 10x − 3)/(x3/2), (d) 6 − 8x + 27/x2, 
(e) (3x3 − x2 + x − 3)/(2x5/2), (f ) 8x3 + 9x2 + 4x

21 (a) (−3x4 − 2x3 − 3x2 + 6x +1)/(x3 + 1)2, 
(b) (4 − 3x2)/[(x2 + 4)2÷(2x)],
(c) (1 − 2x − x2)/(x2 + 1)2, 
(d) (x1/3 + 2)/[3x1/3(1 + x1/3)2], 
(e) (x2 + 2x − 1)/(1 + x2)2, 
(f ) 3x(2 − x)/(x2 − 2x +2)2

22 2ac + ad + bc, (ad − bc)/(cx + d)2, 6ax + 5b, 
(bax2 + 2acx)/(bx + c)2

23 103÷2

24 331, 465, 7, −31

25 (a) 10x − 2 (b) 12x 2 + 1 (c) 24x 23

(d) 12x 3 − 6x 2 − 20x + 11
(e) 36x 5 + 20x 3 − 54x 2 + 12x − 15
(f) 1/(x + 1)2 (g) 1/(x − 2)2

(h) 2(2 − x)/(x 2 − 4x + 1)2

(i) (6 − x 2)/(x 2 + 5x + 6)2

26 (a) 45(5x + 3)8 (b) 28(4x − 2)6

(c) −18(1 − 3x)5 (d) 3(6x − 1)(3x2 − x + 1)2

(e) 6(12x 2 − 2)(4x 3 − 2x + 1)5

(f) −5(4x 3 − 1)(1 + x − x 4)4

27 (a) 512(x + 2)6(3x − 2)4(9x + 4)
(b) (5x + 1)2(3 − 2x)3(37 − 70x)
(c) ( x + 2)(x + 3)3(3x + 11)
(d) 2(x 2 + x + 1)(x 3 + 2x 2 + 1)3 ×

(8x 4 + 19x 3 + 16x 2 + 10x + 1)
(e) (x 5 + 2x + 1)2(2x 2 + 3x − 1)3 ×

(46x 6 + 57x 5 − 15x 4 + 44x 2 + 58x + 6)
(f) (2x + 1)2(7 − x)4(37 − 16x)
(g) (3x + 1)4(21x 2 + 74x + 19)

30 b = 56, h = 144, w = 90

31 (a) 1/÷(1 + 2x) (b) (3x + 4)/[2÷(x + 2)]
(c) (3x + 2)/(2÷x)

32 (a) (2x 2 + 4)/÷(4 + x 2)
(b) (9 − 2x 2)/÷(9 − x 2)
(c) (2x 2 + 4x + 4)/÷(x 2 + 2x + 3)
(d) (e)
(f) (8x − 3)/[3(2x − 1)2/3]

2
3

2 2 31x x(  ) /+ −2
3

1 3 1
4

3 4x x− −−/ / 

1
2

3
2

....
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33 (a) −2/(x + 3)3 (b) 1 − 1/x 2 (c) −1/(x 2 − 1)3/2

(d) 2(2x + 1)(2 − 9x − 12x 2)/(3x 2 + 1)4

34 (a) 3 cos(3x − 2) (b) −4 cos3x sin x
(c) −6 cos 3x sin 3x = −3 sin 6x
(d) cos 5x − cos x (e) sin x + x cos x
(f) −sin 2x/÷(2 + cos 2x) (g) −a sin(x + θ )
(h) 4 sec24x

35 (a) 1/÷(4 − x 2) (b) −5/÷(1 − 25x 2)
(c) (x tan−1x + 1)/÷(1 + x 2) (d) 1/÷(3 + 2x − x 2)

(e) 3/(1 + 9x 2) (f)

36 (volume of sphere) 

37 (a) −9x2cos2(x3)sin(x3)

(b) (c) (d)

38 (a) 2e2x (b) − e−x/2

(c) (2x + 1) exp(x 2 + x) (d) xe5x(5x + 2)
(e) e−x(1 − 3x) (f ) −ex/(1 + ex)2

(g) ex/÷(1 + ex) (h) aeax+b

39 (a) 2/(2x + 3) (b) 2(x + 1)/(x 2 + 2x + 3)
(c) 1/(x − 2) − 1/(x − 3) (d) (1 − ln x)/x 2

(e) 5/[(2x + 1)(1 − 3x)] (f) (2x + 1)/[x(x + 1)]

40 (a) 3 cosh 3x (b) 4 sech24x
(c) 3x2 cosh 2x + 2x3 sinh 2x (d) tanh x
(e) cos x sinh x − sin x cosh x (f) −sinh x/cosh2x

41 (a) 2/÷(4 + x 2) (b) 2/÷(x 2 − 1) (c) 1/(1 − x 2)

(d) (e) ÷(4 − x 2)/x

(f) [(1 + x 2) − 2x tanh−1x(1 − x 2)]/[(1 − x 2)(1 + x 2)2]

42 e−2πa/ω

43 a = 26, b = 39

44 horizontal side 1/÷2

46

47 (1 − t tan t)/(tan t + t)

48 y = 1 − (÷2 − 1)x

49 (a) , y ≠ 1

(b) , x ≠ 0, y ≠ 1

50 y = x + 2, y = 4 − x

51 y = 4 − 64x

52 3
4

(   )

(   )

x y

x y

−
−
1

1

2

1

  

  

+
−

x

y

u u, ln , /1 3 3 2α α

1
1

1

2
  

sinh

(   )
+

+

−x x

x÷

1
2

1
2

1
2

1
2

 
−

sin÷
÷

x

x2 

3
2

2

31

sin cos

(   sin )

x x

x÷ +
1

1 3 2 1
2  cos+ x

8
27

1
1

1

2
  

sin

(   )
−

−

−x x

x÷

1
2

5
2
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53 (a) 10x ln 10 (b) −2−x ln 2
(c) (2x3 + 3x 2 + 6x + 6)(x − 1)5/2[(x + 1)1/2/(x2 + 2)2]

54 x 2e−2x((3 − 2x) sin πx + πx cos πx)

55 y = x + 1; (0, 1), (−1, 0)

56 cot θ

57

58 (a) (ln x)x−1[1 + (ln x) ln ln x] (b) (2 ln x)x ln x−1

(c) − x(5 − 2x 2)(1 − x 2)−1/2(2x 2 + 3)−7/3

59 (a) [(3 − 2x) ln x + 1]x 2e−2x

(b) [(x − 1) sin 2x + 2x cos 2x]

60 (a) (6 + 19x 2 + 12x 4)x/(1 + x2)3/2

(b) (1 − 2x − 2x 2)/(1 + x + x 2)2

(c) −(84x 2 + 6y2y′ + 6xyy′ 2)/(1 + 3xy2) where
y′ = −(28x 3 + y3)/(1 + 3xy2)

(d) (6x − 2y′ − 6yy′2)/(3y2 + x) where
y′ = (1 + y − 3x 2)/(3y2 − x)

61 (a) −(2 + t 2)/(sin t + t cos t)3

(b)

64 (a)

65

66

67 2, 0

68 (a) 34e3x, 3ne3x

(b) (−1)n−1(n − 1)!/(2 + x)n

(c) ,

69 a4 sin(ax + b)

72 (a) (x 2 − 20) cos x + 10x sin x
(b) (x − 4)e−x

(c) 216(273x 2 + 39x + 1)(3x + 1)9

73 (145)3/2

75 ÷2, (1, 2)

1
12

1
2 1 1

1

1

1

1
n

x xn

n

n
!

(   )
  

( )

(   )−
+

−
+

⎡
⎣
⎢

⎤
⎦
⎥+ +

12

1

12

15 5(   )
  

(   )+
+

−x x

−
+
6

2 4(   )
,

x

1 2

1

2 1

3 1 2

2 3

3

  

  
, 

(   )

(   )

+
+

⎛
⎝⎜

⎞
⎠⎟

+
+

t

t

t

t

cot , 
θ
2 2

−
a

y

2
2

2
6

3 4
x

x x
  ,      − +

1
8

33

2 2
cos secec

t t

e x

x 2

5
3

−
+ −
+ +

x x y a

y x y a

(   )

(   )

2 2

2 2

2 2 2

2 2 2

1
2
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76 133/2/16

77 (2 − 2x2 + x4)3/2/[2x(1 − x2)], | x | < 1

78 (13)3/2

79 (a) Minimum (1, 0), maximum 
inflection

(b) Minimum (1, 43), maximum (−5, 151), 
inflection (−2, 97)

(c) Minimum at x = −2, inflexion at x = 1

80 (a) Minimum (−2, − ), maximum (2, −3), inflection 
(−(4 − 3÷4)/(3÷4 − 1), 3(3÷4 + 1)/(3÷4 − 1))

(b) Maximum (4, 54, e−4)
(c) Minimum (0, 0), maximum (2, 4e−2), 

inflections (2 ± ÷2, (4 ± 2÷2)e−2+−÷2)
(d) Minimum at x =

81 d = 103÷(2/π), h = 103÷(2/π)

82 d = 8.0 (1dp), h = 9.9

83 (0, 0) minimum, (1/÷e, K/(2e)) maximum.  

(Note: not defined at x = 0 but → 0 as x → 0+)

84 S = 8πa2

85 b � [80, 82.2]

86 (a) x = (b) x = 2

87 Distribute wash water equally

88 In year k a volume (1 − α)/(1 − α11−k ) of standing
timber should be felled, α growth factor

89 1.035, 0.92, 0.88

91 (a) 5.436 = 2e, 8.155 = 3e
(b) 5.440 (h = 0.01), error depends on h2

(c) 8.00 (h = 0.01)

92 1.5432

94 Brian by (6÷3 − 4÷6) s

97 −6

101

102 Depth h satisfies 1000πh2(3 − 2h) = 6t

103 (a) x7 + c (b) e3x + c
(c) − cos 5x + c (d) (2x + 1)4 + c

(e) tan 3x + c (f) 2 ln | x | + c

(g) (h) sin 2x + c

(i) sec 4x + c ( j) (4x − 1)3/2 + c1
6

1
4

1
2− +

3

x
c  

1
3

1
8

1
5

1
3

1
7

F
W Wx l x l

W l x l
  

/   /     /

/ /     
=

−
−

⎧
⎨
⎩

7 8 4 0 4

8 4

� �

� �

4
3

d

d

v
x

d

d

v
x

1
3

1
3

( , )5
6

1
54

( , ),2
3

1
27

1
6

104 (a) x 5/3 + c (b) ÷ 2x3/2 + c

(c) + ln | x | − 2x + c

(d) 2ex + sin 2x + c (e)

(f) (2x + 1)4 + c (g) − (1 − 2x)4/3 + c

(h) + 2x 3 + x + c

(i) sin(2x + 1) + c ( j)

105 (a) (b)

(c) 27/2/5 − (d) 1 (e) π

106 (a) (b) (x + 1)2/3 + c

(c) 2x2 − 7x − (d) sin x − cos x + c

(e) (f) sin−1(x − 1) + c

(g) sin−13x + c (h) sin−1 x + c

(i) ( j) sin−1(2x − 1) + c

(k) sin−1(x − 2)/3 + c ( l) tan−1 (x + 3) + c

107 (a) (b) (c) 3 (d) (e)

108

109

13
2

3
2

9
2

5
2

1
2

1
2

sin
(   )

  − +
+1 2 1

5

x
c

÷

1
2

1
3

1
24

3 4

3 4
ln

  

  
  

+
−

+
x

x
c

1

x
c  +

3
2− +

1

x
c  

1
3

9
10

− 1
156

4
3

2

2

x

c
ln

  +1
2

8
7

7 12
5

5x x+ 

3
8

1
8

1
3

3 3
1

x
x

cx+ + +    e3
2

1
2

4 2
3

3x x− 

2
3

9
5

....
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110 (a) −x cos x + sin x + c
(b) (3x − 1)e3x + c

(c) x4(4 ln | x | − 1) + c

(d) − e−2x(3 cos 3x + 2 sin 3x) + c

(e) [(x 2 + 1) tan−1x] − x + c

(f) [(2x sin 2x + cos 2x) + c

111 (a) π − 2 (b) 9 ln 3 − (c) (2e3 + 1)

112 (a) (1 + x 2)3/2 + c (b) sin4x + c

(c) (d) ÷(x2 − 1) + c

(e) ln | x 2 + 3x + 2 | + c
(f) (6 − 8 sin2x + 3 sin4x)sin4x + c

(g) (h) −÷(4 − x 2) + c

113 a = , b = −1

ln(x2 + 2x + 5) − tan−1 (x + 1) + c

114 (a) ln(x 2 + 4x + 5) − tan−1(x + 2) + c
(b) −2÷(5 + 4x − x 2) + 7 sin−1[(x − 2)/3] + c
(c) x − ln | sin x + cos x | + c

115 (a) (b) π 2 (c) ln 4 (d) 2e(e − 1)

116 (a) x sin−1x + ÷(1 − x 2) + c (b) x ln | x | − x + c
(c) x cosh−1x − ÷(x 2 − 1) + c
(d) x tan−1x − ln(x 2 + 1) + c

117 (a) [ln | x + 1 | + 4 ln | x − 4 | ] + c

(b)

(c) (d)

(e) (f)

(g) (h)

(i) 2x + ln | x − 1 | − ln | x 2 + 2 + 1 | +

( j) 2 ln | x | + ln(x − 1) − tan−1x + c

(k)

(l)

119 (a) (4 cos 2x − cos 8x) + c

(b) (sin 12x + 6 sin 2x) + c1
24

1
16

 − − − + + (   ) ln       3
2

1
2

1
2

1
25 5÷ ÷| |x c

 − − + + − −2 1 5 51
2

3
2

1
2

1
2ln     (   ) ln     | | | |x x÷ ÷

ln
  

  
  

  
  

x

x x
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+
+

+
1

2

3

2

10

3

2 11

÷ ÷3 3
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1 2

1
ln

  

  
  

+
−

+
x

x
c1

2 2

2

1
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x x
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−
−

+
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x

x x
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−
+ +

1 11
2

1

1
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x

x
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−
+

+

ln     
  

  | |x
x

c+ +
+

+1
1

1
ln

  
  

x

x
c

+
+

1

ln     
(   )

  | |x
x

c− −
−

+2
2

2

1
5

1
2

1
18

7
6912

1
2

1
2

1
2

1
2

1
2

3
2

3
2

1

2 1 2
1x

x
x c

  
  tan   

+
+⎛

⎝⎜
⎞
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1
24
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1
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1
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1
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1
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(c) x − sin 2x + c (d) x + sin 2x + c

(e) x + sinh 2x + c (f) cosh(5x + 1) + c

120 (a) 0 (b) π

121 (a) (3x 2 − 2)(1 + x 2)3/2 + c

(b)

(c) 2÷x − 6 ln(3 + ÷x) + c

122 (a) 2÷(1 + x) − 2 ln[1 + ÷(1 + x)] + c
(b) sin3x(5 − 3 sin2x) + c
(c) 2 sin÷x − 2÷x cos ÷ x + c

123 (a) ln | tan x |

(b)

(c)

(d)

126 (a) 2 sin−1 + (x − 1)÷(3 + 2x − x2) + c

(b) cosh−1 + c

(c) sinh−1 + c

(d) 2÷(x2 + 4x + 13) + sinh−1 + c

(e) (2x2 − x − 9)÷(3 + 2x − x2) − 2sin−1 + c

127

128 2�
0

π/2

÷(1 + cos2x)dx, π 2

130

131 41.8 Ω

132 (a) (b)

134 20, , 130

135

137 0.6109, 0.6463, 0.6549, 0.6569; 0.6577

138 0.1526

139 5.869 849

( , ), ( , )2
5

1
21 0

10
3

8
15

21
16 0π , ( , )2

3
11
8

2
5, ( , )

54
35

48
5π π, 

1
2

197
10 π

x  −⎛
⎝⎜

⎞
⎠⎟

1

2
1
6

x  +⎛
⎝⎜

⎞
⎠⎟

2

3

x  −⎛
⎝⎜

⎞
⎠⎟

2

2

x  −⎛
⎝⎜

⎞
⎠⎟

3

2

x  −⎛
⎝⎜

⎞
⎠⎟

1

2

1
13

1
2
1
2

2 3

3 2
ln

  tan

  tan
  

+
−

+
x

x
c

1

7

4 7 3

4 7 3

1
2
1
2÷

÷
÷

ln
    tan

    tan
  

− +
+ +

+
x

x
c

ln
  tan

  tan
  

1

1

1
2
1
2

+
−

+
x

x
c

1
2

1
15

− ⎛
⎝⎜

⎞
⎠⎟ +−sinh   1 3

x
c

1
15

1
2

1
5

1
4

1
2

1
2

1
4

1
2
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..

140 246 A h

141 76.09

142 1.1114 (4dp)

8.10 Review exercises

1 (a) (2x + 1)ex2+x (b)

(c) 5 cos(5x − 1)
(d) (ln tan x + 2x cosec 2x)(tan x)x

(e) (f) − (1 + x)−3/2

(g) (h)

(i) 3 cos(3x + 1) ( j) x 2(1 + 3 ln x)

(k) (l) −sech 2x

(m) ÷ sinh x (n) 2x sin 2x + 2(x 2 + 1)cos 2x

(o) (p)

(q) 2 cosec 2x (r)

(s) sin x + x cos x (t) 2xex2 (u) 2x ln 2

(v) (w)

(x) x 2(3 cos 2x − 2x sin 2x)

(y) (z)

2 (a) x 3/2(3 ln x − 2) + c
(b) ln(x 2 + 2x + 2) + tan−1(x + 1) + c
(c) ln (d)

(e) (f) tan3x − tan x + x + c

(g) (h) sin−1 x + c

(i) ÷ (x 3 − 1) + c

( j) x 2 − x + 2 ln | x + 1 | + c

(k) tan−1 (x + 3) + c

(l) 2(2 − x) cos÷x + 4÷x sin ÷ x + c
(m) 1 (n) (sinh 2 − 2)

(o) − (1 − 3x)10 + c

(p) sin x − sin 5x + c
(q) x(ln 2x − 1) + c (r) −e−x2/2 + c
(s)
(t) 7π/2
(u)

(v) − (4 − 3x)5 + c

(w) sin 5x + sin x + c

(x) x sin−1x + ÷(1 − x 2) + c

1
2

1
10

1
15

π
8

1
4 2− ln

1
2

1 2
3cosh   − +x c

1
10

1
2

1
30

1
4

1
2

1
2

1
2

2
3

3
2

1
3

1
2

2
3

1
3  + √ π

1
3ln

(   )

  
  

x

x
c

−
−

+
2

1

2

1
2

1
4

1
3  + √ π9

2

2
9

−
+

+

−e x x

x

(   )

(   )

2

1 2

3 1

2 3

2

3

x

x x

+
+ +

 

(    )÷

−
−

1

12x x÷(  )
−

+
1

1  sin x

(   )(   )

(   )

/8 7 2 1

1

1 2

6

− −
+

x x

x

e÷

÷

x

x2

4

2 3

  

(   )

−
+

x

x

1
2

1
2

x x

x

2 2

2 2

9

3

(   )

(   )

−
−

−
+

− +
(   )

(   ) (   )

2 1

1 22 2

x

x x
−

+
1

1 2  x

1
2

1

1 2÷(   )− x

x x

x

2

3

9

3

(   )

(   )

−
−
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(y) −e−x(x 2 + 2x + 2) + c
(z) 2÷ tan−1[÷ (2x + 1)] + c

3 y = 12x − 8, y = (49 − x)

4 y = (4x + 6), y = 1 − x, ÷2

6 Maximum , minimum (1, 0), inflection at x = 

7 Maximum 10.55 when θ = 4.42 and 1.28, minimum 1.45
when θ = 2.85 and 5.99

8 (a) (b)

9 L = 100 m, W = (200/π) m

10 Local minimum (0, 0), local maximum (3, −3) 
asymptotes x = 2, x = 6, y = 1

11 0.4446 cf 0.4425

13 0.782 80, π, error = −0.002 60

15 (a) (b)

16 − sec4t, − sec t cosec3t

17 −3, 18, 5÷10/9

18

19

20 π

22 (sinh−12 + 2÷5)

23

24 (a) 3πa2 (b) 4a
(c) cycloid has cusps at these values (d) 8a

25 (a) (b)

29 0.785, 0.626, 0.624; 2.62

30 π/2, π(53/2 − 1)

33 (a) (b)

35 (a) 5.21 × 106 (b) 7.76 × 106

38 (d) 1.910
(i) 0.000, 0.191, 0.375, 0.541, 0.682, 0.798, 0.888, 

0.953, 0.995, 1.008

39 (a) θ 0 0.23 0.33 0.42 0.49 0.57 0.65
x 1.0 0.9 0.8 0.7 0.6 0.5 0.4
y 0.00 0.21 0.27 0.31 0.32 0.32 0.30

θ 0.74 0.84 0.97 π
x 0.3 0.2 0.1 0.0
y 0.27 0.22 0.15 0.00

(f) 0, π, , cos−1(÷(5/7)), cos−1(−÷(5/7))
(h) ( , ±5÷10/49)25

49

1
2π

1
2

(   ,   )÷ ÷3
2 6

5
6

5
2 3− −π π54

35
48
5π π, 

1
6

5
12

1
2 2  ln−13

15
1
4  − π

8
15

1
2

3
2

3
4πab

8
15

1
4

1
4

ln 7
6

1076
15

1
4

L

2
1 1

3(   )± ÷
wL

EI

4

16

5
6( , )2

3
1
27

8
9

1
5

1
12

1
3

1
3

..
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CHAPTER 9

Exercises

1 (a) 1/4 (b) 1/2 (c) 1/4 (d) 1
(e) 2/3 (f) −4/3 (g) 2 (h) 3/2
(i) π/4

2 (b) is convergent, 0.860 334

3 | f ′(x) | � 1 near x = α

4 1.618 034

5 xn+1 = xn − (x3
n − 2x − 1)

6 (a) f ′(x) � 1 (x � 1) (b) f ′(x) � 1 (x � 1)

7 1.5, 1.49, 1.48, 1.48, 1.47, 1.47, 1.46, 1.46, 1.45, 1.45;
÷2 = 1.41 

8

9

10

11

12

18 l � 18

19 (a) (b) (c) − (d) −1 (e) − (f) −1

20 b0 = 82.82, b1 = − , b2 = −0.0018

21 X = ln 4 � 1.386

22 0.0006

23 1.175 201 21

24 (a) 1st order (b) 2nd order (c) 3rd order

25 −0.1038

26 2.732 051, 4.872 977

27 0.576 368 88

28 n = 2, 0.0203

29 (a) 0.643 283 (b) 0.6875

30 0.4627, h =

32 (1, 2t, 3t 2), (0, 2, 6t)

33 = (1 + 2t 2)r(t), where

r( )  
  

  
  

  
  

t
t

t

t

t

t
=

+
+

+
+

+
1

1 2

2

1 2

2

1 22 2

2

2
i j k

d

d

r
t

1
256

5
24

1
3

3
2

1
4

3
4

ln cos           . . .x x x x x= − + + + +{ }1
6

2 1
12

4 1
45

6 17
2520

8

x x x x     + + + +1
3

3 2
15

5 17
315

7 …

x x x x x         (     )− + − + −1
3

3 1
5

5 1
7

7 1 1… � �

y x x x x x4
1
2

2 1
6

3 1
24

4 1
120

51 2= + + + + −        

y x x x x3
1
2

2 1
6

3 1
24

41 2= + + + −       

1 2 1
2

2 1
6

3          + + + + = +x x x x x… e

e(      )1 1
2

2 1
6

4 31
720

6− + − +x x x …

1
10
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37 2, 3

38 cos y, −x sin y

39 (a) 3x 2y + 4x + y, x 3 + 18y + x
(b) 3(x + y 2)2, 6y(x + y 2)2

(c)

40 (a) exy(y cos x − sin x), exyx cos x

(b)

(c)

41 (a) −x/z, −y/z (b)

43 (a) 2xy + 3yz − 4z3xy, x 2 + 3xz − 2x 2z3,
3yx − 6z2x 2y

(b) −ye2z sin xy, −xe2z sin xy, 2e2z cos xy

46 −1 + ÷3, −tan−12

47 2 tan−1(r tan θ) + 

48 2sexcos y − 2texsin y
−2texcos y − 2sexsin y

49 (a)

(b) 4xt(x 2 − 2t 2)/(2x + 3t)

53 (a) 10.5 (b) 19÷

54 π cm s−1

55 ÷(1 + 4t 2 + 9t 4)

56 −6e−2s + 2e−s−t, −6e−2t + 2e−s−t

57 fxx = y(2 + xy)exy, fyy = x3exy, fxy = fyx = x(2 + xy)exy

58 fxx = fxy = fyy = fyx = 0, fxz = −3 sin 3z, fyz = −6 sin 3z 
fzz = −9(x + 2y) cos 3z, fzx= −3 sin 3z, fzy = −6 sin 3z

60 −3

66 a = 3, b =

68 0.018 702, 0.02

69 0.029 65 m3, 0.0295 m3

70 173 ± 4 m

71 −

72 3%

74 0.5%

75 35% increase

2
3

3
2

19
5

1
34

2 3 1

3 2 1

3

4 2

t t

t t t

+ −
+ − +

   

(     )÷

2

1

2 2

2 2

r r

r

tan   sec

  tan

θ π θ
θ

+
+

1
2

1

1

1

1

  

  
, 

  

  

−
−

+
−

yz

xy

xz

xy

− − + +
+ +

− − +
+ +

x xy y

x y

x xy y

x y

2 2

2 2 2

2 2

2 2 2

2 2 6

2 6

4 2 6

2 6

    

(   )
, 

    

(   )

y x

x y

xy

x y

2 2

2 2 2 2 2 2

2−
+

−
+

 

(  )
, 

(  )

3

3 2 3 22 2 1 2 2 2 1 2

x y

x y xy

y x

x y xy

  

(   )
, 

  

(   )/ /

+
+ +

+
+ +
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ANSWERS TO EXERCISES 1097

76 (a) xy 2 + x 2y + x + c
(b) x 2y 2 + y sin 3x + c
(c) Not exact
(d) z 3x − 3xy + 4y 3

77 −1, y sin x − x cos y + (y 2 − 1)

78 m = 2
8x 5 + 36x 4y + 62x 3y 2 + 63x 2y 3 + 54xy 4 + 27y 5 + c

79 (a) (0, 0), maximum; (10, 0), saddle
(b) (0, 0), maximum (c) (−1, 3), saddle
(d) (−1, ), saddle; (1, ) minimum
(e) (0, −1), saddle; (0, 3), saddle; (−1, 1), maximum
(f) Minimum at degenerate and stationary sets 

x = 0 and y = 0
(g) (1, 1), minimum

81 Maximum at (0, 0); saddle at 

82 N = 2000, n = 2000, P = 250

83 Minimum at 

84

85 x = 2, y = 2

86 Minimum 

maximum 

87

88

89

90 1, 2

91

92

93

9.11 Review exercises

1 0.2575

4

5 (sin 2k − 2k cos 2k)

6 2.09

7 (a) For these series see Section 6.3.5.

8 π /2

9 (a) (b) π/4 (c) (d) (e) (f)

10 (a) 6, x = 0 (b) 3, x = (c) −1, x = 0 3
2

2
3

2
5

1
4

1
16

1
2

1
8

1
2

285
92

−( )41
4

7
4, 

( , , )− − −1
3

2
3

2
3

( , , )1
3

1
2

1
6

( , )2
3

4
3

x  ,   = =200
3

1
3θ π

T     ( , )= − ±9
4

1
2

1
2 3at ÷

T     ( , )= − 1
4

1
2 0at

a b  
(  )

,   
(   )

=
−

=
−20 16 12 202

5

2

4

π
π

π
π

( , )2
3

4
3

( , )1
3

1
3

( , );1
2

1
3

3
2

3
2

1
2

11 8.155 299, 8.154 959, 8.154 845

12 4 m s−1, 4 m s−2

13

16 −0.21, 0.01

17 0.61%

18 −0.2%

19 −3.33%

20 (b) 2u

22 (a) 2

25 f ″(z)/(4t÷t)

27 −y/(x 2 + y 2) + const

28 Maximum at (0, 0), saddle points at (3, 3), (−3, −3),
(1, −1), (−1, 1)

29 Minimum at (0, 0), saddle at 

30 z = 22/3 · 3−1/6

31 Saddle at (0, 0) and (0, 4), maximum at (2, 2), 
minimum at (−2, 2)

32 x = 0, y = ±3 (max); y = 0, x = ±3 (min)

33 7.4163/a

35 y = −x

CHAPTER 10

Exercises

1 (a) First-order, dependent variable x, independent 
variable t, linear, homogeneous, ordinary 
differential equation

(b) Second-order, dependent variable x, independent
variable t, linear, homogeneous, ordinary 
differential equation

(c) First-order, dependent variable x, independent 
variable t, nonlinear, ordinary differential equation 

(d) First-order, dependent variable x, independent 
variable t, linear, nonhomogeneous, ordinary 
differential equation

(e) Second-order, dependent variable x, independent
variable t, linear, nonhomogeneous, ordinary 
differential equation

2 (a) Second-order nonlinear ordinary differential 
equation, dependent variable p, independent 
variable z

cot x
c

x y  ( ) ,   ( ) ,/ /= =2
3

2 3 2
3

2 3

( , )1
2

3
2

(   )   (  )   1
2

2 1
6

3 1
12

4 2t t t t t t+ + + − +i j k

....
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(b) Second-order linear nonhomogeneous ordinary
differential equation, dependent variable s, 
independent variable t

(c) Third-order nonlinear ordinary differential 
equation, dependent variable p, independent 
variable y

(d) First-order linear nonhomogeneous ordinary 
differential equation, dependent variable r, 
independent variable z

(e) First-order linear homogeneous ordinary 
differential equation, dependent variable x, 
independent variable t

(f) First-order linear nonhomogeneous ordinary 
differential equation, dependent variable x, 
independent variable t

(g) Third-order nonlinear ordinary differential equation,
dependent variable p, independent variable q

(h) Second-order nonlinear ordinary differential
equation, dependent variable x, independent 
variable y

(i) First-order linear homogeneous ordinary 
differential equation, dependent variable y, 
independent variable z

3 (a) (b)

(c) x(t) = e4t + Ct + D (d) x(t) = Ae−6t

(e) x(t) = ln t + cos 5t + Ct 2 + Dt + E

(f) x(t) = Ae2÷2t + Be−2÷2t

4 (a) x(t) = t 3 + Ct + 2 (b)

(c) x(t) = 4t + D (d) x(t) = 2 − t 2

(e) x(t) = e−2t + Ct + a − (f) x(t) = C − cos 2t

(g) x(t) = e2t (h) (et − e−t)

5 (a) Under-determined
(b) Fully determined, boundary-value problem
(c) Fully determined, initial-value problem
(d) Under-determined
(e) Fully determined, boundary-value problem
(f) Fully determined, initial-value problem
(g) Under-determined
(h) Under-determined
(i) Fully determined, boundary-value problem
( j) Fully determined, initial-value problem
(k) Fully determined, boundary-value problem
(l) Fully determined, initial-value problem

6 [w(a − x)4 − 4R(a − x)3

+ 4a2(aw − 3R)x − a3(aw − 4R)]
At A the boundary condition is y(a) = 0 so R = 3aw/8
Maximum displacement is y = 0.005 42 wa4/EI

y x
EI

( )  =
1

24

x t( )  
 

=
−
e

e2 1

1
2

1
2

x t t
t

( )  sin     = − − +1
4

5
22

π
2
3

1
125

1
16

x t t t Ct D( )      = − + +1
20

5 1
3

3x t t C( )   = +4
3

3
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11 (a) x(t) = Cekt (b) x(t) = Ce2t3

(c) x(t) = Ct b (d) x(t) = (2a ln t + C )1/2

12 (a) x(t) = (67 − 3 cos t)1/3 (b)

13 (a) x(t) = (t1/2 + C )2 (b) x(t) = cos−1(Cecos t−t)
(c) x(t) = Cexp( et2) (d) x(t) = (3et + C )1/3

(e) x(t) = (1 − Ceat)−1 (f ) x(t) = (C − 2 cos t)1/2

14 (a)

(b) (c)

(d) x(t) = −ln(1 + e−a − et)
(e) x(t) = [12(t ln t − t + 1)]1/3

15 K = 2/75, x(10) = 20/7, x(50) = 100/23, x → 5 as t → ∞

16 t = ÷(m/Kg)tanh−1

17

18 (a) x(t) = ± t÷ [2 ln(Ct)] (b) x(t) = t(ln Ct 3)1/3

(c)

19 x(t) = ± t (4 ln t + 256)1/4

20 (a) (b) x(t) = t cot−1(ln(1/Ct))

(c) (d) x(t) = t sin−1Ct

(e) x(t) = t ± (2t 2 + D)1/2 (f ) x(t) = −t ln(−ln Ct)

21 (a) (b) x(t) = ± (9t 2 − 32)1/2

(c) x(t) = t ln(ln t + e2) (d) x(t) = ± t [ln(ln t 2 + e4)]1/2

(e)

22 (a) x(t) = t + 3 ± (2t + C )1/2

(b) x(t) = [±(2t + C )1/2 − t − 1]

(c) x(t) = [±(2t + C )1/2 − t]
(d) x(t) = t − 1 ± (2t + C )1/2

(e) x(t) = Aet − 2t − 4

(f) x(t) = t − 2 + Aet (g)

23 (a) x(t) = ±÷(C − t 2) (b) x(t) = ±÷(C + t 2)
(c) x(t) = −t ± ÷(C + 2t 2) (d) x(t) = t 2 ± ÷(C + t 4)
(e) x 2 − xt + t 2 − t = C (f) x 2 + xt + t 2 = C

24 (a) x(t) = 1 ± ÷(1 − 2t − t 2)
(b) x(t) = [−t ± ÷(3t 2 + 4)]1

2

1
2

1
2

x t
t C

t( )  
  

  = −
+

−
1

21
2

1
2

1
2

x t
t

t
( )  

  
=

−
4

5 4

2

1
2

1
4x t

t

t
( )  

(   )
=

−
2

2 4÷

x t
t C

t
( )      

/

= ± −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

1 11
1 2

x t
t C

t
( )    

/

= −⎛
⎝⎜

⎞
⎠⎟÷3

1
3

1 2

x t
t

Ct
( )  

ln
=

−

A t Kt( )  [   (   ) ]/= − + −1
1 1 6 1 6

α
α

1
2

x t
t

t
( )  

  

  

sin

sin
=

+
−

3

3

2

2

e

e
x t

t

t
( )  

(   )

  
=

−
−

4 1

4

x t t t( )    (  ) /= − ± +2 22
3

3 1 2

1
2

x t
t

( )    
/

= −⎛
⎝⎜

⎞
⎠⎟

163

2

2 1 2
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(c) (d)

25 (a) Not exact (b) Not exact
(c) x sin(x + t) = C (d) Not exact
(e) x + ext = C (f) (x + ÷t)2 = C
(g) Not exact (h) t ln(x + t) = C

26 (a) x(t) = sin−1(1 − t) − t
(b) x(t) = [ (15 − t)]2/3 − 2t
(c) x(t) = ±[t 2 ± (1 − 4t)1/2]1/2

(d)

27 Must have b = e; then ax 2 + 2bxt + ft 2 + C = 0

28 Must have h(t) = dg/dt; then x = −C/g(t)

29 Must have k = −1; then x ln(x + t) + C = 0

30 Must have k = 2; then x = [sin−1(C/t 3)]/t

31 (a) x(t) = + Ce−3t

(b)

(c) x(t) = − e−4t + Ce−2t

(d) x(t) = Ce−t 2/2 − 2

32 (a)

(b)

(c)

33 (a) x(t) = Cet − 2t 2 − 5t − 5
(b)

(c)

(d)

(e) x(t) = sin 2t ln(tan t) + C sin 2t

(f) x(t) = t 2 + Ce−2t3 (g) x(t) = Ce−1/t − 4

34 (a) x(t) = (1 − e2t2) (b) x(t) = 2et−1t −t

(c)

(d) x(t) = 1 + e1/t−1/2

(e)

(f) x(t) = U(1 + e1+cos t )

35 T(t) = Tin + Ce−AUα t/V

36

where p
A

d
  

(     )
=

+ +2 2

2
0αβ αγ

αρ

Q t
gh ghpt pt

( )  
(   )

(     )
  

(     )
=

−
+ +

+
+ +

− −2 1

2 2 10 0

αρ
αβ αγ

αρ
αβ αγ

e e

x t t
t t t

t( )          (   )= + + − +⎛
⎝⎜

⎞
⎠⎟ − +1

2
2

2 2
3
21

2 2 1
e e

x t t t t( )       
  

= − + +
−− −1

5
1
25

1
3

2
2

5
518 25

75
e

e

e
e

1
2

1
3

1
2

1
2

x t
t t t t

C

t
t( )         = − + −⎛

⎝⎜
⎞
⎠⎟ +

1 3 6 6
2 3 4 4

e

x t
t

t
t

t
C

t
( )    sin   cos   = −⎛

⎝⎜
⎞
⎠⎟ + +1

2 2
2 2

x t t C t( )     = − − +1
4

2 1
8

2 2

e

x t t t t t( )   ln   = − −1
2

3 3
23

x t t t( )      = − + −1
3

1
9

10
9

3e

x t t( )    = − +3
2

7
2

2e

1
2

x t t C t( )      = − − +1
4

1
16

4e

2
3

x t
t

t( )  exp     = −⎛
⎝⎜

⎞
⎠⎟ −4

1

2

1

1
2

x t
t

t
( )  

  

cos
=

−2
x t

t
t( )  (   (   ) )/= ± −

2
1 1

2
2 1 2 37 (a) x(t) = 3÷(6t 4 + C )

(b) x(t) =

(c) x(t) = ±÷(Ce2t − 2et)

(d) x(t) =

38 (a) x(t) =

(b) x(t) =

(c) x(t) =

(d) x(t) = − ÷(5t 9 + 3t)

39 X(0.3) = 1.269 000

40 X(0.25) = 2.050 439

41 X(1) = 1.2029

42 X(0.5) = 2.1250

43 Xa(2) = 2.811 489, Xb(2) = 2.819 944

44 Xa(2) = 1.573 065, Xb(2) = 1.558 541

45 Xa(1.5) = 2.241 257, Xb(1.5) = 2.206 232

46 (a) (b)

(c)

47 (a) independent (b) dependent

48 (a) k1 = 2, k2 = −2, k3 = −1
(b) k1 = 1, k2 = −1, k3 = −1, k4 = 1

49 (a) (b)

(c)

(d) (e)

(f) (g)

(h)

50 (a) dependent (b) independent
(c) independent (d) independent
(e) dependent (f) dependent
(g) independent (h) dependent
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d
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t t
t
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d

d
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d
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t

b

t
L

d

d
  sin   

cos
= −t

t

t

t

L
d

d

d
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d
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2
24
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tL
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t
f t
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    = −

t
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L
d
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    = −

t
t6 2L

d
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    = +

t
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1
2

3
3

10

3 9 13� cos ( )  sin( )  t t e t+ −
⎛
⎝⎜

⎞
⎠⎟

 

6

12 1 6÷(   )− 1 e t

 

1

3 2t t÷(   )−

1

1t Ct(   )+

4

1 2 2    + +t C te

1

2t
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(i) dependent ( j) independent
(k) independent

51 (a) 2, −1, 1, 1 (b) −3, 3, 2, 1
(c) 0, 2, −1 (d) 1, −1, 0, 1
(e) 0, −1, 0, 1, 6

52 (a) x(t) = A + Bt + Ct 2 + Dt 3

(b) x(t) = Ae pt + Be−pt

(c) x(t) = A cos pt + B sin pt + C cosh pt + D sinh pt
(d) x(t) = A + Be−2t

(e) x(t) = A + B cos 2t + C sin 2t
(f) x(t) = Ae−t + Bte−t

(g) x(t) = Aet + Btet + Ce−t

53

+ (4t − 6t 2 − 1)et

− 6t 2et + 12

54

55 (a) x(t) = Aet + Be3t/2

(b) x(t) = e−t(A cos 2t + B sin 2t)
(c) x(t) = Aet + Be−4t

(d) x(t) = e2t(A cos 3t + B sin 3t)

56 (a) x(t) = (3et − 10e−2t/5)
(b) x(t) = e3t(2 cos t − 6 sin t)
(c) x(t) = (e3t − et)

57 (a) x(t) = et/4[A cos( ÷27t) + B sin( ÷27t)]
(b) x(t) = Ae(÷13−3)t + Be−(÷13+3)t

(c) x(t) = e−t/2[A cos( ÷3t) + B sin( ÷3t)]
(d) x(t) = Ae4t + Bte4t (e) Aet + Be2t/3 + Ce−2t/3

(f ) x(t) = Ae−t + et[B cos(2÷2t) + C sin(2÷2t)]
(g) x(t) = A + et[B cos(÷2t) + C sin(÷2t)]

58 x(t) = et(A cos t + B sin t + C cos 2t + D sin 2t)

59 (a) x(t) =
(b) x(t) = 2(t − 1)e2(t−1)

(c) x(t) =
(d) x(t) = (7t + 33)e−(t+3)/31

6

e− +5 2 1
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1
7

1
27 7t t t/ [cos( )  sin( )] ÷ ÷ ÷
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(e) x(t) =
(f) x(t) = (2 − 5t + 4t 2)e−2(t−1)

60 x(t) = et/2[A cos( ÷3t) + B sin( ÷3t) + Ct cos( ÷3t) 
+ Dt sin( ÷3t)]

61 x(t) = Ae4t + Be−t + Cte−t + Dt 2e−t

62 (a) + Ae−t + Be3t

(b) x(t) = + Ae(1+ ÷6)t + Be(1− ÷6)t

(c) x(t) = −5et + Ae(÷5+1)t/ 2 + Be−(÷5−1)t/ 2

63 (a) x(t) =

(b) x(t) = e−3t + Ae2t/3 + Bte2t/3

(c)

(d) x(t) =
(e) x(t) = t − 2 + Ae−t/4 + Bte−t/4

(f ) x(t) = + Ae4t + Bte4t

(g) x(t) = e−5t + e2t[A cos(÷3t) + B sin(÷3t)]

(h) x(t) = −t 2 − 6t − 24 + e−2t + Ae(÷7/÷3−1)t/ 2

+ Be−(÷7/÷3+1)t/ 2

(i) x(t) =
( j) x(t) = + A cos 4t + B sin 4t

(k) x(t) = + A + Be4t

64 (a) x(t) =
+ Ce(2+ ÷3)t + De(2− ÷3)t

(b) x(t) = + Aet + Be−2t + Ce(2+÷3)t

+ De(2−÷3)t

(c) x(t) = + Aet + Be−2t

+ Ce(2+÷3)t + De(2−÷3)t

65 (a) x(t) =
+ (A + Bt + Ct 2)e3t

(b) x(t) = − et + (A + Bt + Ct 2)e3t

(c) x(t) = (t + 1) + (A + Bt + Ct 2)e3t

66 (a) ω = 3, ζ = 1 (b) ω = ÷7, ζ = 2÷

67 (a) a = 1, b = 4 (b) p = 1.4, q = 0.25
(c) β = 2.2, γ = 1.21

68 (a) ω = 4p,  (b)

(c) ω = 1.78, ζ = 0.12 (d) ω = 5η, ζ = 4
(e) ω = 0.51, ζ = 2.48

69 (a) α = π, β = π 2; (b) a = 0.4π, b = 4π 2

(c) q = 8, r = 4 (d) a b  ,   = =
7

2

28
2π π
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α
ζ α  
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2
7 1
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7
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5

1
52

− −72
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21
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33
16

2 1
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70 Ωmax = ω÷ (1 − 2ζ 2), only exists if ζ 2 �

71 2.52 m s−1 (approximately 5 knots)

72 µ � 621 N m−1 s

73 73 pF � C � 7 pF

74 (a) x(0) = 1

= 4xt − 6(x 2 − t)v, v(0) = 2

(b) x(0) = 0

= sin v − 4x, v(0) = 0

75 X(0.3) = 0.299 90

76 (a) x(1) = 2

= −4÷(x 2 − t 2), v(1) = 0.5

(b) x(0) = 1

v(0) = 2

= e2t + x 2t − 6etv − tw, w(0) = 0

(c) x(1) = 1

v(1) = 0

= sin t − x 2 − tw, w(1) = −2

(d) x(2) = 0

v(2) = 0

= (x 2t 2 + tw)2, w(2) = 2

(e) x(0) = 0

v(0) = 0

w(0) = 4

= ln t − x 2 − xw, u(0) = −3

(f) x(0) = a
d

d

x

t
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d

d
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d

d

w
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d

d
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d

d
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t

d

d

v
t
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d

d
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t
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d

d

w

t
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d
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t
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d

d

x

t
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d

d

w

t

d

d
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t
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d

d

x

t
  ,= v

d

d

v
t

d

d

x

t
  ,= v

d

d

v
t

d

d

x

t
  ,= v

d

d

v
t

d

d

x

t
  ,= v

 
A( )  

(   )maxΩ =
−

1

2 12 2ζω ζ÷

1
2 v(0) = 0

w(0) = b

= t 2 + 4t − 5 + ÷(xt) − v − (v − 1)u, u(0) = 0

77 X(0.65) = −0.834 63

78 X0.01(0.4) = 0.398 022
X0.005(0.4) = 0.397 919
step size required is �0.0024
X0.002(0.4) = 0.397 856

79 s tends to around 6.3%. With double the inflow s tends
to about 11.1%.

10.13 Review exercises

1 (a) Second-order nonlinear ordinary differential 
equation, dependent variable x, independent 
variable t

(b) First-order nonlinear ordinary differential equation,
dependent variable z, independent variable x

(c) Third-order linear nonhomogeneous ordinary 
differential equation, dependent variable p, 
independent variable s

2 (a) Under-determined, 
(b) Fully determined, 
(c) Over-determined, no solution exists
(d) Fully determined, 

3 x(t) =

4 (a) x(t) = cos−1(sin t − 1) (b) x(t) = ln( ln t + e2)
(c) x(t) = e(t3−8)/3 (d) x(t) = t cos−1(cos 1 − ln t)
(e) x(t) = − [t ± ÷(17t 2 + 16)] (f) x(t) = t2t

(g) x(t) = t(3 − ln t) (h) x(t) = t ± ÷(4 − 6t 2)

5 (a) x(t) = (b) not exact

(c) x(t) = (d) not exact

(e) x(t) =

6 (a) x(t) = (b) x(t) = (e−t + e−t 2)

(c) x(t) = (e2t + 9e−3t) (d) x(t) = 1 + (e − 1)ecos t+1

7 X0.1(0.4) = 1.125 583, X0.05(0.4) = 1.142 763
Richardson extrapolation estimates the error as 
0.017 180, so, to obtain an error less than 5 × 10 −3, 
a step less than 0.0146 should be used

1
5

1
2

9
4

2 1
2

1
4e t t    − −

ln(    )2 8+ −e t

t

sin (   )− −1 π t

t

 

÷[   (   )]4 1+ −a t

t

1
2

C

C at÷(   )+ −e 2

x tt    = − −1
16

4 1
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4 1
16e e

x t t t t( )    = − +1
24

4 7
24

2 1
4

x t At     = + +1
6

3 1
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d

u

t

d

d
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t
u  ,=

d

d
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....
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8 X0.05(0.25) = 2.003749, X0.025(0.25) = 2.004 452
Richardson extrapolation estimates the error as
0.000 703, so, to obtain an error less than 5 × 10 −4, 
a step less than 0.0179 should be used

9

11 α = 4kT 3
0

13 y(t) = y0 + C÷(x − x0 )

14 Half life is ln 2/k

15 Time to 95% of final value is ln(20)L /R

16 Tyre life is approximately 29500 miles

17 (a)

(b)

(c)

(d)

(e) , f (t) = −ln(t 2 + 4)

18 (a) sin t − cos t (b) 0 (commutative)

(c) 0 (commutative) (d)

19 (a)

(b)

20 (a) x(t) = Aet + Be2t + sin t + cos t

(b) x(t) = Aet + Be2t + Ce−3t + t +
(c) x(t) = Aet + Be2t + Ce−3t + te2t

(d) x(t) = Ae4t + te4t

(e) x(t) = e−3t/2 (A sin t + B cos t) +
(f) x(t) = e−3t/2 (A sin t + B cos t) −

(g) x(t) = Ae2t + Be4t + Ce−t +
(h) x(t) = et(A cos 2t + B sin 2t) + e−t

(i) x(t) = Ae2t + Be4t + Ce−t −
( j) x(t) = et(A cos 2t + B sin 2t) +

21 (a) x(t) = (1 − e−t cos 2t − e−t sin 2t)

(b)
(c) x(t) = (12e−t + 30te−t − 12 cos 2t + 16 sin 2t)/25
(d) x(t) = 3et − 2 − e2t

x t t t t( )       /= − + + − −2 5 7
2

3
2

3e e

1
2

1
5

1
5

2
25

1
4 2t t tt    sin+ + e

1
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2 1
6t t te e  +

1
8

1
8

2 3
16

13
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16
75

4
25cos   sint t+

4
13

2 96
169

736
2197t t− +   
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5

7
36
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2
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(e)

(f)

22 (a)

(b) ω = p1/4, ζ = p3/4

(c)

(d)

23 (a) a = 2, b = 4 (b) a = 4π, b = π 2

(c) a = 2, c = 8 (d) p = 150, q = 6÷2

24 x(t) = t − Ce−t + D
(a) x(t) = e−2t + Ce4t + D
(b) x(t) = −ln(cos(t + C )) + D
(c) x(t) = Ct 3 + D

25 (a) x(t) =

(b) x(t) =

(c) x(t) =
(d) x(t) =

26 x(t) = C tan( Ct + D)
(a) x(t) = Ae pt + B
(b) x(t) = −ln(t + C ) + D
(c) x(t) = ±÷ (C − ln(D − t))

27 (a) x(t) =

(b) x(t) = 1
(c) x(t) =
(d) x(t) = t 2 + 1

28 Length of runway is 

Time to take off is 

29 X0.025(2) = 0.847 035, X0.0125(2) = 0.844 066
Richardson extrapolation estimates the error as 
0.002 969, so we have X(2) = 0.84
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CHAPTER 11

Exercises

1 (a) (b)

(c) (d)

2 (a) 5 (b) −3 (c) 0 (d) 3 (e) 2
(f) 0 (g) 0 (h) 0 (i) 2 ( j) 3

3 (a) Re(s) � 0

(b) Re(s) � 0

(c) Re(s) � 0

(d) Re(s) � 3

(e) Re(s) � 2

(f) Re(s) � 0

(g) Re(s) � −2

(h) Re(s) � −3

(i) Re(s) � −4

( j) Re(s) � 0

(k) Re(s) � 0

(l) Re(s) � 0

(m) Re(s) � 0

(n) Re(s) � 0

(o) Re(s) � 0

4 (a) (e−3t − e−7t) (b) −e−t + 2e3t

(c) (d) 2 cos 2t + 3 sin 2t

(e) (4t − sin 4t) (f) e−2t(cos t + 6 sin t)

(g) (1 − e−2tcos 2t + 3e−2tsin 2t) (h) et − e−t − 2te−t

(i) e−t(cos 2t + 3 sin 2t) ( j)

(k) −2e−3t + 2 cos(÷2t) − sin(÷2t)

(l) et − e−t(cos t − 3 sin t)1
5

1
5

√ 1
2

1
2

2 11
2

33e e et t t− +  

1
8

1
64

4
9

1
3

4
9

3    − − −t te

1
4

2

2

1

2 5

3
3 2(   )

  
  

   
  ,

s

s

s s s+
+

+
+ +

+

2 3

163 2s

s

s
  

 
,−

+

18 54

9

2

2 3

s

s

−
+

 

(  )
,

s

s

2

2 2

4

4

−
+

 

(  )
,

2 15

92

s

s

  

 
,

+
+

36 6 4 22 3

4

     
,

− + −s s s

s

2

4 3(   )
,

s +

4

6 132s s+ +   
,

4

2 2(   )
,

s +

5

2

3 2

42s s

s

s  
    

 
, 

+
+ −

+

2

42s − 
,

s

s2 9− 
,

3 2 4

42 2

s

s

s

s

  
  

 
,

−
+

+

42 6

94 2s s
  

 
,−

+

5 3
2

s

s

  
,

−

1

1
1

2(   )
, Re( )  

s
s

+
−�

3 1
0

2

s

s
s

  
, Re( )  

+
�

2
0

3s
s, Re( )  �

s

s
s

2 4
2

− 
, Re( )  �

(m) e−t(cos 2t − sin 2t) (n)

(o) (p)

(q) 9e−2t − e−3t/2[7 cos( ÷3t) − ÷3 sin( ÷3t)]

(r) (cos 3t + 3 sin 3t)

5 (a) x(t) = e−2t + e−3t

(b)

(c) x(t) = (1 − e−t cos 2t − e−t sin 2t)

(d) y(t) = (12e−t + 30te−t − 12 cos 2t + 16 sin 2t)

(e)

(f) x(t) = e−2t(cos t + sin t + 3)

(g) (cos 2t − 3 sin 2t)

(h) [cos(÷2t) + sin(÷2t)]

( i)

( j)

(k) x(t) = te−4t − cos 4t

(l) y(t) = e−t + 2te−2t/3

(m)

(n)

6 (a)

(b) x(t) = 5 sin t + 5 cos t − et − e2t − 3
y(t) = 2et − 5 sin t + e2t − 3

(c) x(t) = 3 sin t − 2 cos t + e−2t

(d)

(e) x(t) = 2et + sin t − 2 cos t
y(t) = cos t − 2 sin t − 2et

(f) x(t) = −3 + et + 3e−t/3

y(t) = t − 1 − et + e−t/3

(g) x(t) = 2t − et + e−2t, y(t) = t − + 3et + e−2t

(h) x(t) = 3 cos t + cos(÷3t)
y(t) = 3 cos t − cos(÷3t)

(i)

( j)

7

9 i t tt
1

1
7

2 1
220 7( )  sin( )/= −√ √e

i t E t tt t
2

1
200

100 1
2

100 1
200 100( )  (   cos )= − + +− −e e

I s
Es

s s2

2

2 4 210 100
( )  

(  )(   )
=

+ +

I s
E s s

s s1
1

2 4 2

50

10 100
( )  

(   )

(  )(   )
=

+
+ +

y t t tt( )   cos   sin= − −2
3

2
3

1
32 2e

x t t tt( )   cos   sin= + +1
3

2
3

1
32 2e

 y t t t( )  cos( )  cos( )= −5
4

3
10

1
4 6÷ ÷

x t t t( )  cos( )  cos( )= +÷ ÷3
10

3
4 6

1
2  7

2

3
2

1
2  

x t y tt t t t( )   , ( )     / /= − = − + +3
2

3 1
2

1
2

3
2

31e e e e

y t t t t( )  sin   cos   = − + − −7
2

9
2

1
2

3e

x t y tt t t t t( )  (   ), ( )  (  )= − − = −−1
4

15
4

3 11
4

2 1
8

33e e e e e

− sin3
80 3t

x t t t tt( )   cos   sin   cos= − + −−9
20

7
16

25
16

1
80 3e

x t t t t t( )        = + − + − −5
4

1
2

5
12

2 2
3e e e

1
2  

x t t tt( )    (cos   sin )/= − +−1
5

1
5

2 3 1
3

1
32e

x t t t t tt t( )  (   )       = + + + − +− −1
8

3
4

2 1
2

2 2 3
8

1
2

1
4

2e e
√ 1

2y t t t( )      = − + + −2
3

2
3 e

x t t t t( )    = − +− −13
12

1
3

2 1
4e e e

x t t t t( )    = − + + −7
5

4
3

2 1
15

4e e e

1
25

1
2

1
5

x t t tt( )   (cos   sin )/= − +35
78

4 3 3
26

2
32 2e

1
9

1
10

2 1
90e e e− − −− −t t t  

1
2

1
2

4 39
2

1
2  cos   cos− +t t− + − −e e et t t  3

2
2 1

2
2

1
2

2 3 3
2

42e e et t t− + −  

....
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11.5 Review exercises

1 (a) x(t) = cos t + sin t − e−2t(cos t + 3 sin t)

(b)

2 (a) (cos t + sin t)

(b) i(t) = 4e−t − 3e−2t

3 x(t) = −t + 5 sin t − 2 sin 2t,
y(t) = 1 − 2 cos t + cos 2t

4 (cos t + 2 sin t)

e−t[(x0 − )cos t + (x1 + x0 − )sin t]

÷ , 63.4° lag

6 (a) (i)

(ii)

(b) (cos 2t + 2 sin 2t) + e−2t(39 cos 2t + 47sin 2t)

7 (a) e−2t(cos 3t − 2 sin 3t)
(b) y(t) = 2 + 2 sin t − 5e−2t

8 x(t) = e−8t + sin t, y(t) = e−8t − cos t

9 q(t) = (5e−100t − 2e−200t) (3 cos 100t − sin 100t),
current leads by approximately 18.5°

10

(76 cos 2t − 48 sin 2t)

11 (a) θ (t) = (4e−4t + 10te−4t − 4 cos 2t + 3 sin 2t)

(b) i1(t) = (e4t + 6e−3t), i2 = (e−3t − e4t)

12 [1 − e−nt(cos nt − sin nt)]

13

14 x1(t) = [sin t − 2 sin 2t + ÷3 sin(÷3t)]

x2(t) = [sin t + sin 2t − ÷3 sin(÷3t)]

15 (a) (i) e−t(cos 3t + sin 3t) (ii) et − e2t + 2tet

(b) y(t) = e−t(8 + 12t + t 3)

16 (a) e7t sin 2t

(b)

17 (a) v1 = 250e−0.1t, v2 = (50 + 25t)e−0.1t

(b) t = 23.026

n i

Ks s Ks n
t

i

K
itKt Kt

2

2 22
1

(    )
, ( )  (   )  

+ +
= − −− −θ e e

5
2

1
2

1
3

1
3

i t
E

R
i t E R

Rt L Rt L

1

3

2

4 3

6
3( )  

(    )
, ( )  /

/ /

=
− −

→
− −e e

i t
E

R
( )  =

1
7

1
7

1
100

− 1
505

x t t t t( )    /= + +− − −29
20

445
1212

5 1
3

2e e e

− 1
500

1
500

1
20  1

20  

s

s s

sin   (cos   sin )

   

φ ω φ φ
ω ω

+ +
+ +2 22

s

s

cos   sin

 
 

φ ω φ
ω

−
+2 2

1
5

3
5

1
5

1
5

+ − − +− − − [   (cos   sin )]V t tt t te e e1
2

2 1
2

e e e− − −− −t t t  1
2

2 1
2

x t t t( )     /= − + + −3 13
7

15
7

2 5e e

x t t t2
1

10
21
103 13 3 13( )  cos( )  cos( ), , = − +÷ ÷ ÷ ÷

x t t t1
3

10
7

103 13( )  cos( )  cos( )= − −÷ ÷

1104 ANSWERS TO EXERCISES

CHAPTER 12

Exercises

1 (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

2

Taking t = π gives the required result.

3

4

5 Taking t = 0 and t = π gives the required answers.

6

Taking t = 0 gives the required series.

7

Replacing t by t − π gives the following sine series of
odd harmonics:

1
2
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nn
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4 2 1
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∞
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( )    sin   
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( )    
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sinh sin

2 1

12
1π

πn

n
nt

n

n

+
− −

+
−

+
⎡

⎣
⎢

⎤

⎦
⎥

=

∞

∑ 
( )  

  
( ) sinh

 
cos

2 1 1 1

12 2
1π

πn n

n n n
nt

f t( )    sinh= +⎛
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8

9

10

11

12

13

15

16 (a)

(b)

× sin(2n − 1)π t

(c)

17

18

19

20

21 f x A
A

n

n x

ln

( )    
(   )

cos
(   )

= − −
−

−

=

∞

∑1

2

4 1
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1π
π
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12.6 Review exercises

1

Taking T = π gives the required sum.

2

3 (a)

(b)

(c) Taking t = gives S =

4

6

8

Taking x = 0 gives
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10

× (3 cos 5nπ t + 5nπ sin 5nπ t)
Amplitude of the nth harmonic is

13

15 (a)

(b)

16

17 (a) (i) a constant term and cosine terms with 
even harmonics

(ii) constant, cosine and sine terms 
present

(iii) a constant term and sine terms with odd
harmonics

(b)

18 (a)

(b)

19

f (t) = 1 + g(t)

CHAPTER 13

Exercises

6 (a) A � B (b) A � B
(c) S − A (d) S − (A � B)

7 (a) {car, bicycle, motorcycle, boat}
(b) {train} (c) {car, motorcycle, boat}

8 (a) 0.7 (b) 0.8 (c) 0.5

9 16
2652
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....

10 P(same values) = , P(differ by at most 1) =

12 (a) (b) (c) (d)

13 (a) (b) (c)

14 P(total = 7 | 7 or 10) =

15 (a) (b) 7 to 1

16 (a) (b)

17

18 (a) 0.15 (b) 0.55 (c) 0.357

19 0.6

20 0.381

21 (a) P(A) + P(B) − P(A � B)

(b)

(c)

22 0.149

23 (a)

24 P(2) = P(3) = , … , P(7) =
P(8) = , … , P(12) =

26 (a) 0.488 (b) 0.3123

27 (b) P(−3) = , P(−1) = 
P(1) = , P(3) = 

(c) P(−3) = , P(−1) = 
P(1) = , P(3) = 

28 (a)

(b)

(c)

29 P(X � 30) = 0.28

30 (a) (b) (c) 0.102

31 1 − exp(−x 2/2a), 0.0804

32 mean = 4.5, P(less than 5 days) = 0.6

33 mean = 1.8, median = 2,
standard deviation = 1.34

34 Average length = 5.88

35 mean = 5, median = 3
standard deviation = 4.47

36 mean = 30 minutes, standard deviation = 17.3 min

3
4

1
9

1
2

  

F x

x

x x

x
X( )  

(   )

    (     )

(   )

=
⎧

⎨
⎪

⎩
⎪

0 0

0 4

1 4

1
2

�

� �

�

÷

1
4

8
27

12
27

6
27

1
27

1
8

3
8

3
8

1
8

1
36

5
36

6
36

2
36

1
36

1
2

1
22 2

          ( )    −⎛
⎝⎜

⎞
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⎞
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r

d

r

d
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1
3

1
2

3
4

2
3

5
6

5
18

1
9

1
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1
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4
13

1
26

4
9

1
6
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38 (a) 0.47 (b) µX = 30, σX = 30
(c) median = 20.8, q3 − q1 = 33.0

39 0.969

41 24 hours, 3.32 hours

42 (a) X = 2.28, SX = 0.60, SX,n−1 = 0.63
(b) sample median = 2.1, range = 2.2

43 X = 5.44, SX = 0.81, median = 5.45, range = 3.2

44 A = 24.2, SA = 1.76, T = 16.7, ST = 4.00
B = 25.4, SB = 1.66, U = 18.1, SU = 4.93
where A, T are time, temperature for A, and B, U are
time, temperature for B

45 2.19

46 median = ÷[2a ln 2], mode = ÷a
a = 6: mean = 3.07, median = 2.88, mode = 2.45,
q3 − q1 = 2.22

47 q/( p + q − pq)

48 47.1 and 46.3

49 P(4 boys) = 0.273

50 0.998

51 0.677

52 (a) 0.1271 (b) 0.3594
(c) 0.1413 (d) 0.5876

53 4 engines

54 (a) 0.957 (b) 0.0071

55 0.027

56 P(8 or more) = 0.249

57 (a) 0.050 (b) 0.224 (c) 0.084

58 0.986

59 6.09

61 0.144

62 0.011

63 46

64 0.3%, 0.0258

65 (a) 0.102 (b) 0.128 (c) 0.011

66 Warning 9.5, action 13.5, sample 12 
UCL = 11.4, sample 9

67 UK sample 28, US sample 25

68 P(at least one such area) = 0.133

69 P(at least one such area) = 0.688

13.8 Review exercises

1 (a) 3 (b)

(c) (d) (e) ÷3/2

2 0.0159

3 60, 6342 hours

4 P(10, 5, 3, 2) = 0.009

5 e−λ(1 + λ) � 0.9, proportion = 0.0053

6 ±5.66 × 10−5

9 0.407

10 E(minimum) 

12 E(number of analyses) = N [1 − (1 − p)k] +

= 0.196 N when k = 11

13 (a) single
k = 4: n = 7, P(error) = 0.0020
k = 8: n = 12, P(error) = 0.0062
k = 16: n = 21, P(error) = 0.0185
k = 32: n = 38, P(error) = 0.0555
k = 64: n = 71, P(error) = 0.1588

double
k = 4: n = 11, P(error) = 0.0002
k = 8: n = 17, P(error) = 0.0006
k = 16: n = 26, P(error) = 0.0022
k = 32: n = 43, P(error) = 0.0092
k = 64: n = 77, P(error) = 0.0424

(b) single: k = 8, so total 96 bits
double: k = 64, so total 77 bits

N

k

= =     
25

4

1

3
hours when λ

= 
25

12λ

3
2

1
8

F x
x

x x
X( )  

   

         
=

−

⎧
⎨
⎪

⎩⎪ −

0 1

1 13

for

for

�

�

....
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of propositional logic 453–5
in set theory 428–34
sigma notation 31–2
suffix notation 30–2
of switching circuits 436–43

algebraic functions 164–6
algebraic multiplicity of eigenvalues 399
amplitude

of circular functions 135, 142–3
periodic functions 953

analytical solutions, of differential equations 
804–5

AND gate 443
angular velocity 262–3
anti-commutative laws, of vector products 

263–4
antisymmetric matrices 305
Apollonius 41
arclength and surface area 670–1
arcs, of circles 132
Argand diagram 187–8, 198, 218–19, 221
arguments, of functions 65
arithmetic 2–14

of complex numbers 188–91
floating-point 55–6
rules of 5–9

arithmetical sequences and series 480–1
associative laws

of addition 5
of matrices 307
of vectors 239

of multiplication 5
of matrices 318

in propositional logic 454
of scalar products 255
in set theory 430
of switching circuits 437

asymptotes 123–6
attribute control charts 1055–7
augmented matrices 381–2

Index

A

a-logos 7
abscissa of convergence 908–9
absolute convergence, of infinite series 514–15
absolute error bounds 51–2
acceleration 555–6
accuracy

decimal places 47–9
floating-point notation 55–6
rounding 47–9
rounding errors 49–54
significant figures 48–9

action limits in control charts 1056–7
active filters 877
addition

associative law of 5
of matrices 307
of vectors 239

commutative law of 5
of matrices 307
of vectors 238

of complex numbers 189
of matrices 306, 307

of determinants 332
of vectors 237–43, 245–6

adjoint matrices 337–40
adjugate matrices 337–40
aircraft near-misses survey 1059–61
aircraft take-off 790–2
Aitken extrapolation 507, 508
algebra 14–35

binomial expansion 20–1, 34–5
equations 23–6
factorial notation 32–5
identities 28–9
inequalities 26–8
manipulation 15–22
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INDEX 1109

auxiliary functions 774, 777, 778
auxiliary variables 578
average, sample 1033–6
average value theorem 534
axes, change of 301–2

B

banded matrices 371
bandpass filters 877
Barrow, Isaac 548
bending moments 537, 561–3, 646–7
Bernoulli differential equations 823–5
Bernoulli trials 1039
bilateral Laplace transforms 903
binary numbers 3
binary operations 5

in set theory 427
of switching circuits 438

binomial coefficient 35
binomial distribution 1039–41, 1042

normal approximation to 1050–2
binomial expansion 20–1, 34–5
binomial power series 518
bisection method 538
Boole, George 424
Boolean algebra 430, 438
Boolean function 435–7, 438–9

and logic gates 443–7
boundary conditions, differential equations 802–4
boundary-value problems 802, 803, 804
bounded functions 533
bracketing methods 538–9
bridges

cable stayed 293–5
suspension 558–60

buoys 868–9, 870

C

cable stayed bridges 293–5
CAD/CAM systems 233
calculus 548

Fundamental Theorem of 633–5
see also differentiation

cantilevers 865–8, 869, 870, 873–4
capacitors 936–7

Cardano’s solution 186
Cartesian components of vectors 244–50, 253–4, 

259, 264–5
Cartesian coordinates 36, 233–5
catenary curves 676
Cauchy, Augustin 548
Cauchy’s test for convergence 507
Cauchy’s theorem 338
causal functions 903
ceiling function 170
central limit theorem 1047–50
centre of curvature 607, 608
centre of gravity, of solids of revolution 669
centroids of plane areas 667–8
chain rule of differentiation 566, 577–80

extended 588–9
for partial differentiation 748–52

characteristic equations
of eigenvalues 390–1
of linear constant-coefficient differential 

equations 853–5
of linear recurrence relations 494, 497–9, 

500
characteristic polynomials 390
charged particle, motion in magnetic field 

261–2
Chebyshev’s theorem 1062
chord approximation 620–1
chords 128–9
circle of curvature 607
circles 38–40, 42, 44

in complex plane 219–21
circuits

logic 443–8
switching 435–43

circular frequency 85, 953
circular functions 128–51

differentiation of 584–8
Euler’s formula 202–3, 204
integration of 656–8
inverse 146–8
Laplace transforms of 905–6
MATLAB package 138, 144, 151
orthogonality relations 954
polar coordinates 148–51
powers of 214–16
relationship with hyperbolic functions 204–7
trigonometric identities 138–42
trigonometric ratios 129–31

closed intervals 11
cobweb diagrams 475, 477
codomains, of functions 65
coefficients, equating 99

..
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1110 INDEX

composite-function rules
of differentiation 566, 577–80

extended 588–9
for partial differentiation 748–52

of integration 637, 651–3
composite functions 78–81

differentiation of 566, 577–80, 588–9
integration of 637, 651–3

compound propositions 450–3
computer arithmetic 55–6
conclusions, in propositional logic 459
conditional probability 1010–13
conditional stationary points 773–5
conics 41–7
conjunction, in propositional logic 451, 453–5
constant multiplication rule of differentiation 566, 

567
constant of integration 632
continuity correction 1051
continuity equation 782
continuous functions 533–7
continuous random variables 1020–1
continuous sample spaces 1007
continuous-time systems 901
contours 737–8
contradiction 454

proof by 461
contrapositive form of implication 459
control systems 465–8
convergence

abscissa of 908–9
Cauchy’s test for 507
of Fourier series 972–5
of infinite series 509–16
of iterations 711–14, 727–8
of power series 516–17
radius of 517
of sequences 502–8

converse statements 457–8
coordinates 36

Cartesian 36, 233–5
change of axes 301–2
polar 148–51

corrections 50
cosecant function 138

see also circular functions
cosecant, hyperbolic 158

see also hyperbolic functions
cosine function 129, 133

see also circular functions
cosine, hyperbolic 158

see also hyperbolic functions
cosine rule 130

..

cofactors of determinants 330, 336, 337–40
column vectors 303
comets 41, 43
commutative laws

of addition 5
of matrices 307
of vectors 238

of multiplication 5
of matrices 318

in propositional logic 454
of scalar products 254–5
in set theory 429
of switching circuits 437
see also anti-commutative laws

comparative test for convergence 511–12
comparators 10
complement switches 436
complementary functions 848, 927
complementary laws

in propositional logic 455
in set theory 429
of switching circuits 437

complements of sets 426, 428–34, 1008
completing the square 17, 94
complex conjugates 190, 191–2
complex frequency 900
complex frequency domains 902
complex impedance 226–7
complex numbers 185–230

addition of 189
Argand diagram 187–8, 198, 218–19, 221
argument of 192–4
arithmetic of 188–91
complex conjugate of 190, 191–2
division of 190–1

in polar form 200–1
equality of 188–9
exponential form of 202–3
functions of 223–5
imaginary part 187
loci in complex plane 218–22
logarithms of 208
MATLAB package 194–6, 203, 209, 216–17
modulus of 192–4
multiplication of 189–90

in polar form 198–9
polar form of 197–201
powers of 210–17
properties of 187–209
real part 187
subtraction of 189
as vectors 250–3

complex voltage 226
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cosines, direction 234–5
cotangent function 138

see also circular functions
cotangent, hyperbolic 158

see also hyperbolic functions
covariance 1032
cover up rule 117
Cramer’s rule 353
critical damping 871
critical points see stationary points
critical tables 177–8
cross products, of vectors 261–72
cumulative distribution functions 1020
cumulative percentage plots 1004–5
current 936–7
curvature of plane curves 606–9

D

d’Alembert’s ratio test 512–13, 516
damped elastic systems 869–72
damped sinusoids 914
dampers 835–40, 941–3
damping parameters 871
data 1000–6, 1033–7

see also probability
De Moivre’s theorem 210–14
De Morgan’s laws

in logic circuits 445–6
in propositional logic 455
in set theory 430–1
in switching circuits 438

dead errors 50
decay time 872
deciles 1027
decimal numbers 3
decimal places 47–9
decision support systems 463–5
decreasing functions 68
definite integrals 630–2
deflection of built-in columns 779–81
degree of belief 1006
dependent variables 65, 75

in differential equations 796
derivative-of-transform theorem 914–17
derivatives

definition 550–2
directional 744–7
higher 601–9
Laplace transforms of 923–5

mathematical modelling using 557–65
partial 739–44, 753–6
as slopes of tangents 552–3
standard 1068
of xr 568–71

descriptive statistics 1005
determinants of matrices 329–42

addition rule 332
cofactors 330, 336, 337–40
minor 330
product of 333
properties of 331–6

deterministic simulations 1052
diagonal matrices 304
diagonally dominant matrices 377
difference equations see recurrence relations
differential equations

simultaneous 933–6
see also linear differential equations; ordinary

differential equations
differential operators 840–2
differentials 624

exact 761–3
total 757–60

differentiation 548, 549–622
of circular functions 584–8
of composite functions 566, 577–80, 588–9
curvature of plane curves 606–9
differentiable functions 554
of exponential functions 590–2, 594
first mean value theorem 709–11
of Fourier series 990–1
Fundamental Theorem of Calculus 633–5
of hyperbolic functions 592–4
implicit 596–9

second derivatives 603–4
of inverse functions 566, 581–2

higher derivatives 605
logarithmic 599–600
numerical 620–2
optimization problems 609–19, 731
parametric 567, 595–6

second derivatives 603–4
partial 739–44

chain rule 748–52
of polynomial functions 572–4
rates of change 549–50
of rational functions 574–5
rules of 566–8
speed, velocity and acceleration 555–6
successive 753–7
of vectors 734–5
see also derivatives

..
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direct proofs 459–60
direction cosines 234–5
direction fields, of differential equations 807–10
directional derivatives 744–7
Dirichlet, Peter Gustav Lejeune 952
Dirichlet’s conditions 972–3, 987, 990
discontinuities 533

infinite 702, 703–6
discontinuous functions 535–7
discrete mathematics 424
discrete random variables 1019–20
discrete sample spaces 1007
discrete-time systems 901
disjoint sets 427
disjunction, in propositional logic 451, 453–5
dispersion measures 1026–8
distinct linear factors 116–18
distribution functions 1019–20, 1021–2
distributive laws

of division 5
for matrices

of addition of matrices 307
of multiplication 318

of multiplication 5
in propositional logic 454
in set theory 430
of switching circuits 437
for vectors

of addition of vectors 239, 245–6
of scalar products 255, 256
of vector products 264

divergent sequences 506
divergent series 509–10, 513–14
division

of complex numbers 190–1
in polar form 200–1

distributive law of 5
domains, of functions 65
domestic hot-water supply 792–3
dot products see scalar products of vectors
double implication 458
duality, principal of 431
dummy variables 473, 641
dynamic programming 619
dynamos 261–2

E

echelon form 379
economic lot size 615

1112 INDEX

eigenvalues 352, 389–409
algebraic multiplicity of 399
basic properties 404–6
characteristic equation 390–1
and eigenvectors 391–9
repeated 399–404
of symmetric matrices 406–9

eigenvectors 352, 389, 391–9
normalization of 395–6

elastic systems
damped 869–72
forced oscillations in 872–6
free oscillations in 865–72

electric motors 261–2
electrical circuits 225–7, 794–5, 936–41

oscillations in 876–7
elements

of matrices 303
of sets 425–6

elimination methods 357–71
Gaussian elimination 363–8, 378–9
ill-conditioning 368–70
tridiagonal system 361–3

ellipses 41–3, 44
empty sets 426
engineering applications

approximating functions 541–3
clustering of rare events 1058–61
complex numbers 225–7
control systems 465–8
damper performance 835–40
decision support systems 463–5
deflection of built-in columns 779–81
design of prismatic channels 689–90
differential equations 790–5

forced oscillations in elastic systems 872–6
free oscillations in elastic systems 865–72
oscillations in electric circuits 876–7
using numerical solutions 832–4

Fourier series, slider–crank mechanisms 992–5
functions 179–81
harmonic analysis of periodic functions 691–2
insulator chains 540–1
Laplace transforms

electrical circuits 936–41
mechanical vibrations 941–5

matrices 409–17
spring systems 409–13
steady heat transfer through composite materials

413–17
numbers, algebra and geometry 57–9
quality control 1055–8
streamlines in fluid dynamics 781–4

....
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vectors 291–5
cable stayed bridges 293–5
spin-dryer suspension 291–3

Epstein, R.A. 1016
equality

of complex numbers 188–9
of matrices 306
of sets 425
of vectors 236, 245

equating coefficients 99
equations 23–6

of circles 38–40, 44
of conic sections 44–7
linear 36–7
roots of polynomial 105–12
of straight lines 36–7
vector

of lines 279–86
of planes 287–90

equivalence, in propositional logic 453–4
error bounds 51–2, 759–60
error modulus 51
errors

in linear interpolation 177
rounding 49–54

ethics 1001
Euler–Maclaurin formula 731–2, 733
Euler’s formula 202–3, 204, 485, 520
Euler’s formulae for Fourier coefficients 955–6
Euler’s method 827–31, 879–81
even functions 82–4, 964–8
even harmonics 968–70
even periodic extensions 983
events 1007–8

clustering of rare 1058–61
exact differential equations 815–19
exact differentials 761–3
EXCLUSIVE OR gate 447
expected values, of random variables 1028–9
experiments 1001
expert systems 448, 463–5, 1006
exponential distributions 1021
exponential form

of complex numbers 202–3
of hyperbolic functions 159

exponential functions 152–5, 157
differentiation of 590–2, 594
Laplace transforms of 905

exponential modulation theorem 912–14
exponential order 907
exponential power series 519
exponents 6
extremal values 68, 96

F

factorial notation 32–5
factorization 19–20, 95

of polynomial functions 100–2
false position, method of 538–9
families of solution curves 808
Fermat, Pierre de 548
filters 877
finite sequences 473, 480–7
finite series 480–7
finite sets 425
first harmonics 953
first mean value theorems

of differential calculus 709–11, 718
of integral calculus 709

first-order methods 830
first shift theorem 912–14

inversion using 921–3
fixed point iteration methods 539
fixed points of iterations 477
floating-point arithmetic 55–6
floor function 170
fluid dynamics 781–4
forced vibrations 873
forces, moment of 262
Fourier coefficients 953, 954–6
Fourier, Joseph 64, 951
Fourier law 414
Fourier series 950–98

coefficients 953, 954–6
convergence of 972–5
differentiation of 990–1
Dirichlet’s conditions 972–3, 987, 990
of even and odd functions 964–8
even and odd harmonics 968–70
full-range 980–1
of functions of period 2π 957–64
of functions of period T 977–9
of functions over finite interval 980–6
Gibb’s phenomenon 974–5
half-range cosine and sine 982–5
integration of 987–9
linearity property 970–2
slider–crank mechanism 992–5

Fourier transform 900
fractional-part function 170–1
free variables see independent variables
free vibrations 873
frequency

circular 85

....
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frequency (continued)
of circular functions 135
of periodic functions 85, 952–3

frequency domains 902
functions

algebraic 164–6
approximating 541–3
arguments 65
causal 903
ceiling 170
circular see circular functions
complementary 848
of complex numbers 223–5
composite 78–81

differentiation of 566, 577–80, 588–9
integration of 637, 651–3

concept of 64–70
critical tables 177–8
decreasing 68
differentiable 554
domains and codomains 65
even 82–4, 964–8
exponential 152–5, 157

differentiation of 590–2, 594
exponential order 907
floor 170
fractional-part 170–1
Heaviside unit step 170, 903
hyperbolic see hyperbolic functions
images 65
implicit 166–9
increasing 68
inverse 74–8, 81

circular 146–8
differentiation of 581–2
hyperbolic 162–3

irrational see irrational functions
Laplace transforms of simple 904–7
least squares fit 89–93
linear see linear functions
linear interpolation 174–7
logarithmic 155–7
maxima 68
minima 68
numerical evaluation of 173–8
odd 82–4, 964–8
optimization of constrained 773–8
optimization of unconstrained 767–72
periodic see periodic functions
piecewise-continuous, integration of 644–7
piecewise defined 170–2
polynomial see polynomial functions
power series expansions of 718–23, 763–6

1114 INDEX

quadratic 94–7
ranges 65
rate of change of 89
rational see rational functions
of a real variable 526–41

continuity of 533–40
limits of 526–32

of several variables 737–63
chain rule 748–52
directional derivatives 744–7
exact differentials 761–3
partial derivatives 739–44
plotting functions of two variables 737–9
successive differentiation 753–7
total differentials 757–60

signum 170
sinc 536
stream 782
tabulated 174–7
zeros of 68
see also Fourier series

fundamental modes 953
Fundamental Rules of Arithmetic 5, 47, 56
Fundamental Theorem of Algebra 187
Fundamental Theorem of Calculus 633–5

G

gamma distribution 1062
Gauss–Seidel iteration 374, 375, 376
Gaussian distribution 1044
Gaussian elimination 363–8, 378–9
general solutions, of differential equations 801–2
geometric power series 518
geometric sequences 481–2
geometric series 481–2, 510
geometry 36–47

circles 38–40, 42
conics 41–7
coordinates 36
straight lines 36–7
vector equations of lines 279–86
vector equations of planes 287–90

Gibb’s phenomenon 974–5
global maxima 69
global minima 69
global truncation error 732
Gödel, Kurt 424
golden number 506
gravity, acceleration due to 556

....
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H

half-range Fourier cosine and sine series 982–5
Halley, Edmond 41
harmonic analysis, of periodic functions 691–2
harmonics, even and odd 968–70
heat transfer through composite materials 413–17
Heaviside, Oliver 25–6, 900
Heaviside unit step function 170, 903
hexadecimal numbers 3
Hipparchus 128–9
histograms 1001–3
homogeneous differential equations 798, 842, 847

constant-coefficient 852–8
homogeneous linear equations 348
homogeneous recurrence relations 488, 493, 499, 500
Hooke’s law 292, 410, 411, 941
hydro-electric power generation 793–4
hyperbolas 41–3, 44
hyperbolic curves 44
hyperbolic functions 157–64

differentiation of 592–4
exponential form of 159
integration of 656–8
inverse 162–3
relationship with circular functions 204–7

hypotheses 459

I

idempotent laws
in propositional logic 454
in set theory 429
of switching circuits 437

identities 28–9
identity laws

in propositional logic 455
in set theory 429
of switching circuits 437

identity matrices 304, 319, 342–3, 390, 405
ill-conditioning 368–70, 620
images, of functions 65
imaginary part, of complex numbers 187
impedance 226–7
implication 456–9
implicit differentiation 596–9

second derivatives 603–4
implicit functions 166–9

improper integrals 702–7, 902
improper rational functions 114
in-phase components 953
INCLUSIVE OR gate 444, 447
increasing functions 68
indefinite integrals 630–2
independence 1010, 1013, 1014–16, 1029–30
independent observations 1001
independent variables 64–5, 75

in differential equations 796
indices 6
indirect addressing 367
indirect proofs 460–1
induction, proof by 461–2
inductors 936
inequalities 10, 26–8
inertia, moments of 677–8
inferential statistics 1005
infinite discontinuities 702, 703–6
infinite integrals 706–7
infinite sequences 473
infinite series 509–16
infinite sets 425
inflection, points of 610, 612
initial conditions, differential equations 802–4
initial-value problems 803, 804
inner products see scalar products of vectors
insulator chains 540–1
integer-part function 170
integers 2
integral equations 790
integral transforms 900

see also Laplace transforms
integrals 623–4, 626

definite and indefinite 630–2
improper 702–7, 902
infinite 706–7
Laplace transforms of 925–6
numerical evaluation of 679–88

Simpson’s rule 685–8
trapezium rule 679–85

particular 848
standard 636, 1068, 1069

integrands 624
with infinite discontinuities 703–6

integrating factors 820–1
integration 548, 622–88

as antiderivative 636–43
applications of 666–79

arclength and surface area 670–1
centre of gravity of solids of revolution 669
centroids of plane areas 667–8
mean values 669

....
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integration (continued)
moments of inertia 677–8
root mean square values 669–70
volume of solids of revolution 666–7

of circular functions 656–8
of composite functions 637, 651–3
constant of 632
definitions 622–6
first mean value theorem 709
of Fourier series 987–9
Fundamental Theorem of Calculus 633–5
of hyperbolic functions 656–8
limits of 624
mathematical modelling using 626–30
numerical 679–88, 731–3

Simpson’s rule 685–8
trapezium rule 679–85

of ÷(ax2 + bx + c) 662–5
by parts 637, 648–51
of piecewise continuous functions 644–7
rules of 636–7
by substitution 651–3, 658–62
using partial fractions 653–6
of vectors 735–6
see also integrals

integro-differential equations 790
interdecile range 1027
intermediate value theorem 533, 709
intermediate variable 578
interpolation, linear 174–7, 725–6
interquartile range 1027–8
intersection of sets 426–7, 428–34, 1008
interval-halving method 538
intervals 11–13
inverse-function rules

of differentiation 566, 582
for higher derivatives 605

of integration 637
inverse functions 74–8, 81

circular 146–8
differentiation of 566, 581–2

higher derivatives 605
hyperbolic 162–3

inverse Laplace transform operator 918, 919
inverse Laplace transforms 918–23
inverse matrices 342–7

eigenvalues of 405
irrational functions 164–73

algebraic 164–6
implicit 166–9
piecewise defined 170–2

irrational numbers 3, 7, 8
irreducible quadratic factors 99, 101, 119–20

1116 INDEX

irreducible quadratic functions 95
iterations, convergence of 711–14, 727–8
iterative methods

fixed point 539
for solving linear equations 372–7

J

Jacobi iteration 373, 374, 375, 376
joint distributions 1029

K

Karnaugh maps 447
Kepler, Johannes 41
kernels of Laplace transforms 902
Kirchhoff’s laws 876, 937–40
Kronecker delta 304, 406

L

Lagrange multiplier 774–5, 777–8
Lagrange’s form 717
Lagrange’s formula 88, 94–5, 98, 175
Laplace, Pierre Simon 900
Laplace transform operator 902, 910
Laplace transform pairs 902, 903, 904, 905, 906, 914, 917
Laplace transforms 899–949

definitions 902–3
of derivatives 923–5
electrical circuits 936–41
existence of 907–9
of integrals 925–6
inverse 918–23
mechanical vibrations 941–5
properties of 909–17

derivative-of-transform 914–17
first shift 912–14, 917
linearity 909–11, 917, 919

of simple functions 904–7
solving differential equations

ordinary linear 926–33
simultaneous 933–6

LCL see lower control limits

....

Z03_JAME0734_05_SE_IDX.qxd  11/03/2015  10:11  Page 1116



INDEX 1117

leading diagonal, of matrices 304
least squares fit, of linear functions 89–93
Leibniz, Gottfried Wilhelm 548
L’Hôpital’s rule 723–4
limit cycles 887–8
limits

of functions of a real variable 526–32
of integration 624
L’Hôpital’s rule 723–4
of sequences 501–8

linear composite rule of integration 636
linear dependence/independence

functions 845–7
matrices 310

linear differential equations 797, 840–51
differential operators 840–2
first-order 819–23
general solutions 847–8
homogeneous 798, 842, 847

constant-coefficient 852–8
Laplace transform methods 926–33
nonhomogeneous 798, 842, 848

constant-coefficient 858–65
second-order constant coefficient

forced oscillations in elastic systems 872–6
free oscillations in elastic systems 865–72
oscillations in electric circuits 876–7

linear equations 36–7, 348–77
elimination methods 357–71

Gaussian elimination 363–8, 378–9
ill-conditioning 368–70
tridiagonal system 361–3

iterative methods 372–7
and rank of matrices 378–89
upper-triangular form 358–60, 362

linear factors, partial fractions 116–19
linear functions 87–93

least squares fit of 89–93
rate of change 89

linear interpolation 174–7, 725–6
linear recurrence relations

characteristic equations 494, 497–9, 500
first-order with constant coefficients 488–92
second-order with constant coefficients 492–501

linear regression 93
linear time-invariant systems 926
linearity

of Fourier series 970–2
of Laplace transforms 909–11

linearity principle 843
lines see straight lines
local maxima 68, 69

of differentiable functions 609–10, 612

local minima 68, 69
of differentiable functions 609–10, 612

location measures 1025–6
loci in complex plane 218–22
logarithmic differentiation 599–600
logarithmic functions 155–7

of complex numbers 208
logarithmic power series 519–20
logic circuits 443–8
logic gates 443–7
logic, propositional see propositional logic
logical equivalence, in propositional logic 453–4
low-pass filters 877
lower bounds of functions 533
lower control limits 1057–8
lower-triangular matrices 371

M

Maclaurin series 718–23, 1066–7
magnetic fields, motion of charged particles in 261–2
main diagonal, of matrices 304
mantissa 55
mathematical modelling

using derivatives 557–65
using integration 626–30

MATLAB/MAPLE commands
abs 196
adj 340
angle 196
assume 963
collect 111
conj 194, 196
conv 110
convert 122
cross 265
crossprod 265
deconv 110
det 334
diff 571–2, 581, 602–3, 743–4
dot 256
double 144, 195
dsolve 800–1, 804, 807, 886–7, 930–1
eig 398, 402–3
evalc 499
evalf 194, 478
expand 112, 144, 217
ezcontour 739
ezplot 72, 128
ezpolar 151

....
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MATLAB/MAPLE commands (continued)
ezsurf 738
factor 110
grid 71
hold off 195
hold on 195, 196
horner 110–11
ilaplace 919
imag 195
innerprod 256
int 640, 646
inv 344, 346
invlaplace 919
laplace 906–7, 915–16
limit 507–8, 531–2
linsolve 367, 386
maple 122
mtaylor 766
norm 246, 248
phaseportrait 890
piecewise 964
plot 71–2, 478
poly 398
polyfit 109
pretty 110, 963–4
quad 686
rank 382
real 195
roots 109
rsolve 496–7, 499
series 522
simple 111, 144
simplify 111, 144, 571–2, 581
simpson 686
solve 112, 144, 217
sum 485–6
sym 72
symsum 485–6, 511, 524
taylor 522
title 71
trapz 683–4, 994
xlabel 71
ylabel 71

MATLAB/MAPLE packages 71–2
complex numbers 194–6, 203, 209

powers of 216–17
differential equations 800–1, 807

boundary-value problems 804
direction fields 810
Euler’s method 831, 884–5
exact 818
first-order linear 823
higher-order 844, 884–5, 886–7

1118 INDEX

initial-value problems 804
Laplace transform methods 930–1
linear constant-coefficient 856–7, 864
linear nonhomogeneous 850
phase-plane plots 890

differentiation 556, 571–2, 581
chain rule 751–2
circular functions 589–90
exponential functions 594
higher derivatives 602–3
hyperbolic functions 594
parametric 597
partial 743–4
stationary points 613–14, 771
successive 754

Fourier series 963–4
convergence of 975

functions
circular 138, 144, 151
exponential 157
hyperbolic 163
implicit 169
logarithmic 157
piecewise defined 172

geometry 285
integration 640, 646, 650, 662

improper integrals 705, 707
Simpson’s rule 686
trapezium rule 683–4

Laplace transforms 906–7, 915–16
inverse 919

linear equations, elimination methods 360, 
362, 365, 367

Maclaurin series 720
matrices 310

adjoint 340
determinants of 334, 336
eigenvectors 398, 402–3
inverse 344, 346
multiplication 316, 320, 326–7
rank of 382

Newton–Raphson procedure 730
parametric representation 128
partial fractions 122
programming 833–4
roots of polynomial equations 109–12
sequences and series 478, 485–6

convergence of 511
limits of 507–8
power series 522, 524–5
recurrence relations 496–7, 499

Taylor series 720, 766
vectors 246, 248

....
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INDEX 1119

matrices 298–422
addition of 306, 307
adjoint 337–40
augmented 381–2
basic operations 306–12
definitions 303–5
determinants 329–42

addition rule 332
cofactors 330, 336, 337–40
minor 330
product of 333
properties of 331–6

echelon form 379
eigenvalues 352, 389–409

algebraic multiplicity of 399
basic properties 404–6
characteristic equation 390–1
and eigenvectors 391–9
repeated 399–404
of symmetric matrices 406–9

elementary row operations 358–9
equality of 306
identity 304, 319, 342–3, 390, 405
inverse 342–7

eigenvalues of 405
linear equations 348–77
multiplication 312–17

of determinants 332, 333
properties of 318–27
by scalars 306
by unit matrices 319

rank of 378–89
subtraction of 306
transposed 304–5

determinants 333
eigenvalues of 405
of product 319
properties of 306–7

maxima 68, 96, 533
of differentiable functions 609–14
of unconstrained functions 767–72

mean 1025–6
mean values 669
mechanical vibrations 941–5
median 1025–6

sample 1036–7
method of exhaustion 548
method of false position 538–9
minima 68, 96, 533

of differentiable functions 609–14
of unconstrained functions 767–72

mode 1025–6
modelling see mathematical modelling

modulus 10–13
of complex numbers 192–4
of vectors 236, 244

moment generating function 1041–2
moment of force 262
moments of inertia 677–8
multinomial distributions 1061–2
multiplication

associative law of 5
of matrices 318

commutative law of 5
of matrices 318

of complex numbers 189–90
in polar form 198–9

distributive law of 5
of matrices 312–17

of determinants 332, 333
properties of 318–27
by scalars 306
by unit matrices 319

non-associative of vector products 264
of vectors

scalar products 253–60, 272–5, 316
by scalars 236, 245
vector products 261–72, 275–7

multiplication-by-t property 914–17

N

n-particle spring systems 411–13
NAND gate 445, 446
Napier, John 64
natural frequency 871
natural logarithms 155
natural numbers 2
near-misses by aircraft survey 1059–61
negation of propositions 449
nested multiplication 102–5
Newton, Isaac 548
Newton–Raphson procedure 109, 728–30
Newton’s laws 232, 941
non-anticipatory systems 903
non-associative multiplication of vector product 264
non-singular matrices 338
nonhomogeneous differential equations 798, 842, 

848
constant-coefficient 858–65

nonhomogeneous linear equations 348
nonlinear differential equations 797
NOR gate 445–6

....
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normal distribution 1044–7
approximation to binomial 1050–2

normal form 55–6
normal probability paper 1005
normalization, of eigenvectors 395–6
NOT gate 444
nth derivatives 601
nth harmonics 953
nth mean value theorem see Taylor’s theorem
null matrices 304
null sets 426
number lines 2–3, 10
numbers 2–14

binary 3
decimal 3
decimal places 47–9
floating-point notation 55–6
hexadecimal 3
inequalities 10
integers 2
irrational 3, 7, 8
modulus and intervals 10–13
natural 2
rational 3
real 2–3
representation of 3–5
rounding 47–9
rounding errors 49–54
significant figures 48–9

numerical differentiation 620–2
numerical evaluation

of functions 173–8
of integrals 679–88

Simpson’s rule 685–8
trapezium rule 679–85

numerical location of zeros 537–9
numerical solutions

of differential equations 804–5
coupled first-order 879–81
first-order 826–35
second- and higher-order 879–87

O

odd functions 82–4, 964–8
odd harmonics 968–70
odd periodic extensions 983
ODEs see ordinary differential equations
Ohm’s law 26, 937
one-sided Laplace transforms 903
one-sided limits, of functions of a real variable 530–2

1120 INDEX

open intervals 11
optimal values 68, 609–14
optimality, principal of 619
optimization 609–19, 731

of constrained functions 773–8
of unconstrained functions 767–72

OR gate 444, 447
ordering 10
ordinary differential equations 789–898

analytical solutions 804–5
boundary and initial conditions 802–4
coupled first-order 879–81
engineering applications 790–5
first-order 807–35

Bernoulli 823–5
direction fields 807–10
Euler’s method 827–31
exact 815–19
of f(x/t) form 813–15
integrating factors 820–1
linear 819–23
numerical solutions 826–35
separable 810–13

general and particular solutions 801–2
higher-order

numerical solutions 879–87
state-space representations of 882–4

homogeneous 798, 842, 847
constant-coefficient 852–8

independent and dependent variables 796
Laplace transform methods 926–33
linear see linear differential equations
nonhomogeneous 798, 842, 848

constant-coefficient 858–65
nonlinear 797
numerical solutions 804–5

to coupled first-order 879–81
to first-order 826–35
to second- and higher-order 879–87

order of 796–7
second-order

numerical solutions 879–87
qualitative analysis of 887–91

solution by inspection 800
ore mixing problem 302
orthogonality relations 954
Osborn’s rule 160–1, 205
oscillations

in elastic systems
forced 872–6
free 865–72

in electric circuits 876–7
of functions 533

over-damping 872

....
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INDEX 1121

over-relaxation 376
overwriting 362, 365

P

Padé approximants 541–3
parabolas 42, 43, 44
parallel vectors 236, 264
parallelogram rule of vectors 238, 245, 250
parallelograms, area of 263
parametric differentiation 567, 595–6

second derivatives 603–4
parametric representation 126–8
partial derivatives 739–44, 753–6
partial differential equations 790
partial differentiation 739–44

chain rule 748–52
partial fractions 115–22

distinct linear factors 116–18
integration using 653–6
irreducible quadratic factors 119–20
MATLAB package 122
repeated linear factors 118–19
in sums of series 484

particular integrals 848, 927
particular solutions, of differential equations 801–2
Pascal’s triangle 21, 34
passive filters 877
Pauli matrices 322–3
pendulums 702, 705–6, 868, 869, 872
percent error bounds 51
percent errors 51
percentiles 1027
periodic extensions 980–2

even and odd 983
periodic functions 84–6, 952–3

frequency of 85
harmonic analysis of 691–2
see also Fourier series

periods, of circular functions 135
perpendicular vectors 255–6
phase angles, periodic functions 953
phase-plane plots 887–91
phase quadrature components 953
piecewise-continuous functions, integration of 644–7
piecewise defined functions 170–2
piecewise-linear approximation 175
planes

intersection of 300–1
vector equations of 287–90

point-particle model 291–3

points of inflection 610, 612
Poisson distribution 1041–3
polar coordinates 148–51
polar form, of complex numbers 197–201
polygon law of vectors 238
polynomial functions 98–114

degree of 98
differentiation of 572–4
factorization 100–2
nested multiplication and synthetic division 102–5
properties of 99–100
and rational functions 114–15
roots of polynomial equations 105–12

populations 1001
position notation 3
post-multiplication of matrices 318, 319
power series 516–26, 951

binomial 518
convergence of 516–17
expansions of functions 718–23, 763–6
exponential 519
geometric 518
logarithmic 519–20

powering 6–7
powers

of circular functions 214–16
of complex numbers 210–17
of scalar products 255

pre-multiplication of matrices 318, 319
precedence, rules of 8–9
predicates 449
principal diagonal, of matrices 304
principal of duality 431
principal of optimality 619
prismatic channels, design of 689–90
probability 1006–18

axioms of 1008–10
central limit theorem 1047–50
conditional 1010–13
independence 1010, 1013, 1014–16
interpretation of 1006–7
sample space and events 1007–8

probability density functions 1021–2
probability functions 1019
product rule

of differentiation 566, 567–8
of probabilities 1015

proofs 459–63
proper rational functions 114
proper subsets 426
propositional logic 448–63

algebra of 453–5
compound propositions 450–3
contradiction in 454

....
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propositional logic (continued) 
disjunction and conjunction 451, 453–5
implication 456–9
proofs 459–63
propositions 448–50
tautology in 454

pseudo-random numbers 1052
pure resonance 943
Pythagoras’ theorem 38

Q

quadratic expressions 18–20
quadratic functions 94–7
quality control 1055–8
quartile deviation 1027
quartiles 1027–8
Quine–McCluskey algorithm 447
quotient rule, of differentiation 566, 568

R

radians 131
radius of convergence 517
radius of curvature 607
random variables 1018–38

continuous 1020–1
definitions 1018–19
discrete 1019–20
expected values 1028–9
independence of 1029–30
location and dispersion measures 1025–8
properties of density and distribution functions 1021–2
sample data measures 1033–7
scaling and adding 1030–3
in simulations 1052–3

range, sample 1037
ranges, of functions 65
rank of matrices 378–89
rate of change, of functions 89
rates of change 549–50
rational functions 114–28

asymptotes 123–6
differentiation of 574–5
parametric representation 126–8
partial fractions 115–22

rational numbers 3

1122 INDEX

rationalization 8
real numbers 2–3
real variables

functions of 526–41
continuity of 533–40
limits of 526–32

recurrence relations 474, 487–501
characteristic equations 494, 497–9, 500
first-order linear with constant coefficients 488–92
second-order linear with constant coefficients 

492–501
reduction formulae 695–6
regula falsa 538–9
relative error bounds 51, 52
relative errors 51, 52
remainders 51
repeated linear factors 118–19
representative samples 1001
resistors 936–7
resonance 875, 943
Richardson extrapolation 886–7
Riemann, Bernhard 548, 952
right-hand rule 233
Rolle’s theorem 708–9
root mean square values 669–70
rounding 47–9

errors 49–54
row vectors 303
Russell, Bertrand 424

S

saddle points 768, 769, 770
sample average 1033–6
sample median 1036–7
sample range 1037
sample space 1007–8
sample standard deviation 1033–6
sample variance 1033–6
sampling 1001
scalar-multiplication rule of integration 636
scalar products of vectors 253–60

matrix form 316
triple 272–5

scalars 235
multiplication of matrices by 306
multiplication of vectors by 236, 245

scientific notation 49
secant function 138

see also circular functions

....
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secant, hyperbolic 158
see also hyperbolic functions

second derivatives 601–9
sectors, of circles 132
semi-interquartile range 1027
separable differential equations 810–13
sequences 473–5

arithmetical 480–1
convergence of 502–8
finite 473, 480–7
geometric 481–2
graphical representation of 475–8
limits of 501–8
recurrence relations 474, 487–501

characteristic equations 494, 497–9, 500
first-order linear with constant coefficients 

488–92
second-order linear with constant coefficients

492–501
series 475

arithmetical 480–1
finite 480–7
geometric 481–2, 510
infinite 509–16
power 516–26

binomial 518
convergence of 516–17
exponential 519
geometric 518
logarithmic 519–20

set theory 424–34
algebra of sets 428–34
complementation 426, 428–34
De Morgan’s laws in 430–1
equality of sets 425
and events 1008
notation 425–6
union and intersection 426–7, 428–34, 1008

shear forces 537, 561–3, 628–9, 646–7
Shewhart control charts 1055–7
sigma notation 31–2
signals 901
significant figures 48–9
signum function 170
Simpson’s rule 685–8
simulations 1052–3
simultaneous differential equations 933–6
sinc function 536
sine function 129, 132–3

see also circular functions
sine, hyperbolic 158

see also hyperbolic functions
sine rule 130

singular matrices 338
singularities 702, 703–6
skew-symmetric matrices 305
slave variables see dependent variables
slider–crank mechanism 992–5
solids of revolution

centre of gravity of 669
volume of 666–7

SOR see successive over-relaxation (SOR)
sparse matrices 372
speed 555–6
spin-dryer suspension application 291–3
spring systems 409–13, 941–5
square matrices 303, 304

singular or non-singular 338
standard attribute charts 1057–8
standard deviation 1027–8

sample 1033–6
standard normal distribution function 1044–5
standard normal random variables 1046
stationary points 610–14, 768–72

conditional 773–5
of inflection 612

stationary values 768
statistics 1000–6

see also probability
steady heat transfer through composite materials 

413–17
steady-state responses 875
stem-and-leaf plots 1004
stochastic simulations 1052
stopping rule, of iterations 712–13
straight lines 36–7

in complex plane 218–19
vector equations of 279–86

stream function 782
streamlines in fluid dynamics 781–4
stress 298
strictly proper rational functions 114, 115
subsets 426
substitution, integration by 651–3, 658–62
subtraction

of complex numbers 189
of matrices 306
of vectors 239–40, 246

successive differentiation 753–7
successive over-relaxation (SOR) 375–6
suffix notation 30–2
sum-of-squares series 483
sum rules

of differentiation 566, 567
of integration 636

supersets 426

....
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surds 7, 8
suspension bridges 558–60
switching circuits 435–43
switching function see Boolean function
Symbolic Math Toolbox 71–2

see also MATLAB/MAPLE commands
symmetric matrices 305, 406–9
synthetic division 103–5

T

tabulated functions 174–7
Tacoma bridge collapse 875, 876
tangent function 129, 134

see also circular functions
tangent, hyperbolic 158

see also hyperbolic functions
tangents 40

slopes of
derivatives as 552–3
implicit differentiation 597–9

tautology 454
Taylor expansion 95, 765
Taylor polynomial expansion 718
Taylor polynomials 715–17
Taylor series 718–23, 763–6, 1066

and Euler’s method 829–30
Taylor’s theorem 715–18, 723

for functions of two variables 763–78
optimization of constrained functions 773–8
optimization of unconstrained functions 

767–72
terminating sequences see finite sequences
theorems 459
thermal conductivity 413–17
third derivatives 601
Thomas algorithm 361–3
time domains 902
total differentials 757–60
traces, of square matrices 304
transcendental functions 164
transient solutions 875
transposed matrices 304–5

eigenvalues of 405
of product 319
properties of 306–7

trapezium rule 679–85
triangle law of vectors 238, 239, 244
triangles, area of 263
tridiagonal system 361–3

1124 INDEX

trigonometric functions see circular functions
trigonometric identities 138–42, 1067
trigonometric ratios 129–31
triple scalar products 272–5
triple vector products 275–7
truth tables 436–7, 453
tuned circuits 877
turning points 68
two-particle spring systems 410–11
two-sided Laplace transforms 903

U

UCL see upper control limits
unary operations 7

in set theory 427
of switching circuits 438

under-damping 872
under-relaxation 376
unilateral Laplace transforms 903
union of sets 426–7, 428–34, 1008
unit matrices 304, 319, 342–3, 390, 405
United States standard attribute charts 1057–8
upper bounds of functions 533
upper control limits 1057–8
upper-triangular form of linear equations 358–60, 

362
upper-triangular matrices 371

V

Van der Pol oscillator 887–8
variables

dependent 65, 75
dummy 473, 641
independent 64–5, 75
see also real variables

variance 1026–8
sample 1033–6

vector products 261–72
triple 275–7

vectors 231–97
addition of 237–43, 245–6
basic properties 235–7, 244–50
Cartesian components of 244–50, 253–4, 259, 

264–5
Cartesian coordinates 233–5

..
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....

column and row 303
complex numbers as 250–3
differentiation of 734–5
equality of 236, 245
equations of lines 279–86
equations of planes 287–90
integration of 735–6
modulus of 236, 244
multiplication by scalars 236, 245
perpendicular 255–6
scalar products of 253–60, 272–5, 316
subtraction of 239–40, 246
triple products of 272–8
vector products of 261–72, 275–7

velocity 555–6
angular 262–3

Venn diagrams 426
voltage 936–7
volumes, of solids of revolution 666–7
vortices 784

W

Wallis’ formulae 696
warning limits in control charts 1056–7
Weierstrass’ theorem 534
well behaved functions 554
Whitehead, Alfred North 424

Z

zero matrices 304
zero vector 236, 245
zeros

of functions 68
numerical location of 537–9
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