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Quotation 

Every advantage has its disadvantages and vice versa. 

Shadokian philosophy1

                                 
1 The Shadoks are the main characters from an experimental cartoon produced by the 
Research Office of the Office de Radiodiffusion-Télévision Française (ORTF). The two-
minute-long episodes of this daily cult series were broadcast on ORTF’s first channel (the 
only one at the time!) beginning in 1968. The birds were drawn simply and quickly using an 
experimental device called an animograph. 
 
The Shadoks are ridiculous, stupid and mean. Their intellectual capacities are completely 
unusual. For example, they are known for bouncing up and down, but it is not clear why! 
Their vocabulary consists of four words: GA, BU, ZO and MEU, which are also the four 
digits in their number system (base 4) and the musical notes in their four-tone scale. Their 
philosophy is comprised of famous mottos such as the one cited in this book. 



 

Preface 

Computer systems (hardware and software) are becoming increasingly complex, 
embedded and transparent. It therefore is becoming difficult to delve into basic 
concepts in order to fully understand how they work. In order to accomplish this, 
one approach is to take an interest in the history of the domain. A second way is to 
soak up technology by reading datasheets for electronic components and patents. 
Last but not least is reading research articles. I have tried to follow all three paths 
throughout the writing of this series of books, with the aim of explaining the 
hardware and software operations of the microprocessor, the modern and integrated 
form of the central unit.  

About the book 

This five-volume series deals with the general operating principles of the 
microprocessor. It focuses in particular on the first two generations of this 
programmable component, that is, those that handle integers in 4- and 8-bit formats. 
In adopting a historical angle of study, this deliberate decision allows us to return to 
its basic operation without the conceptual overload of current models. The more 
advanced concepts, such as the mechanisms of virtual memories and cache memory 
or the different forms of parallelism, will be detailed in a future book with the 
presentation of subsequent generations, that is, 16-, 32- and 64-bit systems. 

The first volume addresses the field’s introductory concepts. As in music theory, 
we cannot understand the advent of the microprocessor without talking about the 
history of computers and technologies, which is presented in the first chapter. The 
second chapter deals with storage, the second function of the computer present in the 
microprocessor. The concepts of computational models and computer architecture 
will be the subject of the final chapter. 
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The second volume is devoted to aspects of communication in digital systems 
from the point of view of buses. Their main characteristics are presented, as well as 
their communication, access arbitration, and transaction protocols, their interfaces 
and their electrical characteristics. A classification is proposed and the main buses 
are described. 

The third volume deals with the hardware aspects of the microprocessor. It first 
details the component’s external interface and then its internal organization. It then 
presents the various commercial generations and certain specific families such as the 
Digital Signal Processor (DSP) and the microcontroller. The volume ends with a 
presentation of the datasheet. 

The fourth volume deals with the software aspects of this component. The main 
characteristics of the Instruction Set Architecture (ISA) of a generic component are 
detailed. We then study the two ways to alter the execution flow with both classic 
and interrupt function call mechanisms. 

The final volume presents the hardware and software aspects of the development 
chain for a digital system as well as the architectures of the first microcomputers in 
the historical perspective. 

Multi-level organization 

This book gradually transitions from conceptual to physical implementation. 
Pedagogy was my main concern, without neglecting formal aspects. Reading can 
take place on several levels. Each reader will be presented with introductory 
information before being asked to understand more difficult topics. Knowledge, with 
a few exceptions, has been presented linearly and as comprehensively as possible. 
Concrete examples drawn from former and current technologies illustrate the 
theoretical concepts. 

When necessary, exercises complete the learning process by examining certain 
mechanisms in more depth. Each volume ends with bibliographic references 
including research articles, works and patents at the origin of the concepts and more 
recent ones reflecting the state of the art. These references allow the reader to find 
additional and more theoretical information. There is also a list of acronyms used 
and an index covering the entire work. 

This series of books on computer architecture is the fruit of over 30 years of 
travels in the electronic, microelectronic and computer worlds. I hope that it will 
provide you with sufficient knowledge, both practical and theoretical, to then 
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specialize in one of these fields. I wish you a pleasant stroll through these different 
worlds. 

IMPORTANT NOTES. ─ As this book presents an introduction to the field of 
microprocessors, references to components from all periods are cited, as well as 
references to computers from generations before this component appeared. 

Original company names have been used, although some have merged. This will 
allow readers to find specification sheets and original documentation for the 
mentioned integrated circuits on the Internet and to study them in relation to this 
work. 

The concepts presented are based on the concepts studied in selected earlier 
works (Darche 2000, 2002, 2003, 2004, 2012), which I recommend reading 
beforehand. 

Philippe DARCHE 
July 2020



 

Introduction 

This volume consists of four chapters and looks at the microprocessor and its 
communication system, linking its different components, or functional subunits, 
both internally and externally. Communication revolves around the notion of the 
“bus”. The bus is the backbone of all communication, and forms a “digital 
information highway”. It has been, and remains, the preferred form of 
interconnection in computer systems. However, just like on a highway, this shared 
communication medium is also one of (von Neumann) bottlenecks, which arise 
when all of the connected entities want to use it at the same time. Astute design and 
sizing are therefore vital for maximizing computer performance. Here, we present 
their main characteristics, the protocols for communication, access arbitration and 
transaction, their interfacing, and the electric aspects. Some of these points have 
already been covered, notably with regard to the memory channel (Darche 2012), 
but here, they are completed and generalized. A system of classification is then 
suggested. The topic is closed with On-Chip Communication (OCC) and 
multiprocessor aspects. 



1 

Basic Definitions 

In order to describe communication between components and electronic 
subunits, first we must cover general notions such as the direction of communication 
and connection topology, as well as the concepts of exchange synchronization and 
information coding, finishing off with the concept of a protocol, which defines the 
rules that have to be followed. A protocol also defines access arbitration and cycles. 

1.1. General points regarding communication 

The direction of communication between two systems (Figure 1.1) can either be 
one-way (simplex) or bidirectional, and this can be either a full-duplex or alternating 
(half-duplex). Note here that the communication protocol (i.e. the link layer) cannot 
provide more than what the physical layer permits. 

 

Figure 1.1. Direction of transmission 

The entity from which the communication originates and which is generating the 
address and control signals is called the Master (M) or Initiator (I), and is 
represented by a square in Figure 1.2. The entity that replies and follows the 
commands is traditionally called the Slave (S), or Target (T), and this is represented 
by a square in the figure. If the bus can only take a single master, it is referred to as a  
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single master system. If it can take several it is called a multi-master system  
(cf. § 2.2.5). If the medium is shared during emission, there can be a conflict of 
access to the resource (i.e. the bus or slave unit); this is called a collision. The 
collision can be either logical or physical. A physical collision can result in material 
damage if the electronic output stage is not designed for it. For this reason, access 
arbitration is needed (cf. § 1.6). 

 

Figure 1.2. Model of a multi-master bus 

To access the bus, each entity requires an interface called I/F (Figure 1.3). 

 

Figure 1.3. Shared bus 

In a one-way bus (simplex transmission), an emitter Tx can emit towards one or 
several receivers Rx. This is a divergent bus, which can broadcast information 
(Figure 3.16, for example, and cf. § 2.2). Another case that must be considered is 
where several emitters can only communicate towards a single receiver. This is a 
convergent bus that allows for the broadcall of information (cf. § 2.2). The existence 
of several masters can result in an issue of contention when multiple access requests 
are made to the communication carrier. The bus can be bidirectional (Figure 3.14, 
for example), with simultaneous transmission (full-duplex), or alternating 
transmission (half-duplex). 

There are several topological variations, including the MUX-based bus 
(multiplex) and the AND–OR structure. Both are preferred to the SoC (System on 
(a) Chip). They are shown in Figure 4.28(a) and (b) respectively.  

Since there are three main types of information (address, data and control) to be 
passed around the nodes of a bus in a microprocessor system, there are several ways 
for them to be transported: there are three combinations with one element, three 
combinations with two and one with three possibilities. These combinations 
specialize the bus, resulting in address buses, data buses, control buses, address–
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control buses, address–data buses, control–data buses and address–control–data 
buses (only one bus!). During an exchange of several types of information between 
two entities, for example, between an address and a piece of data, the transfer can 
make use of separate media (non-multiplexed bus), or they can use the same 
medium (multiplexed bus). The choice to multiplex is often one of cost: a bus takes 
up physical space on the Printed Circuit Board (PCB), which is expensive. The 
number of output connection points for each electronic component and even for the 
connectors must be taken into account, as the cost of an Integrated Circuit (IC) or a 
connector is directly linked to this amount. The first approach is better in terms of 
bitrate, as the buses are separate, with one for each information type. Time-division 
multiplexing1 is a solution that allows several different types of information to travel 
through the same bus, but at different times. The initial philosophy at Intel was that 
of multiplexing the address and data buses. An example is the 8088 microprocessor 
made by Intel for the IBM PC (Personal Computer, cf. § V5-3.2.1). This was in 
contrast to Motorola, which did not multiplex its address and data buses. Another 
example is the PCI (Peripheral Component Interconnect, cf. § 4.2.4). It should be 
noted that the information required for the transaction does not need to be presented 
all at the same time. For example, the information to be written can be presented 
after the address (“late write”, cf. § 4.4.1 in Darche (2012)). The flipside of 
multiplexing is that the information transfer time is usually longer as the information 
has to be (de)multiplexed before it can be accessed, resulting in delays in 
propagation. This can be done either through a process that is external to the 
communicating elements, or internally, and thus transparently. In the former option, 
the peripheral circuits communicate specifically with a microprocessor, usually 
belonging to the same commercial family, for example, the MPU (MicroProcessor 
Unit, µP for short) 8085 from Intel and its parallel interface circuit 8155, where the 
former’s (de)multiplexers were integrated into the latter. In the case of a bus with 
different pieces of information spread over different moments in time, multiplexing 
does not slow down the exchanges and therefore cannot reduce the bitrate. 

1.2. Main characteristics 

A shared bus is a common interconnection pathway between all of the connected 
nodes. It is made of a set of lines or communication channels along which the 
information flows. Usually, only signals are counted, as the power and grounding 
lines are contained in a separate power bus (cf. § 4.2.10). This number does not take 
into account electrical characteristics, for example, whether the signal is differential 
or not (cf. § 3.6.3 in Darche (2012)). At least three2 elements or nodes can connect to 

                                 
1 Frequency-Division Multiplexing (FDM) is not suitable here. 

2 Some authors, Borrill (1981), for example, consider a bus to be formed of the connection of 
two or more elements. 



4     Microprocessor 2 

it; otherwise, it would be a point-to-point connection, also known as a link. These 
elements can be electronic components, electronic boards, peripherals or computer 
systems, depending on the level of observation. These buses can also be inside 
computer systems, particularly in a microprocessor (cf. § 4.2.9). Information is 
considered in a broad sense in this work, so it can refer to data, an address3, a 
command, a control, a state or even an interrupt request or its vector (cf. § V4-5.7). 
These lines are usually permanently grouped by information type or by function. 
The result is referred to as a dedicated bus. Two examples are the address bus and 
the memory channel (cf. § 7.2 in Darche (2012)). Thurber et al. (1972) define these 
buses as functionally dedicated4. A dedicated bus is more expensive in terms of 
connectors and electronics, but its interface is simpler in terms of design  
(no (de)multiplexing, for example). Otherwise it is undedicated. As the technology 
used is electric or electronic, the bus takes the form of electric conductors (electric 
ribbon cables, metallic traces in a printed or integrated circuit) through which the 
electric signals travel, most of the time in two states. Optics is a possible future 
development, but it remains currently under research (cf., for example, Feldman  
et al. (1999)). Fiber optics are used extensively throughout networks, however. 

A bus can be of a unique design, produced by computer or microprocessor 
makers, or a regulated solution that follows established standards, coming from 
private solutions, or not. A standardized solution, which by definition provides 
generic characteristics, is usually less effective than an ad hoc solution, but it is 
usually cheaper due to the standardization of its components and systems 
(Commercial Off-The-Shelf (COTS) solution). In particular, defining a standard for 
the interface helps with design as it allows for interoperability and reuse of the 
modules. 

A bus is characterized mainly by its width w (w bit-wide), its bitrate (incorrectly 
referred to as its transfer speed) and by its communication protocol that defines its 
signals. The typical values of w are 1, 4, 8 and multiples thereof, usually of eight. 
This is particularly true for data buses, as the data that passes through them are 
themselves multiples of eight5. The address bus, however, can also be expressed in 
other multiples, for example, the 8086 microprocessor from Intel whose address bus  
 
 

                                 
3 An address is a digital label that takes the form of an integer, and is linked to a location or 
memory cell. 

4 He adds to the definition that a bus can only be physically dedicated if a pair of elements 
belong to the bus and use it exclusively. We shall not keep this addition as this would be a 
link according to our own definition. 

5 A counter-example is the 12-bit data format in the PDP-8/E mini-computer from Digital 
Equipment Corporation (DEC). 
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has a width of 20 bits. The width of the address bus gives the addressing capacity  
C = 2w memory words of the component that generated the address, which is usually 
the microprocessor. It therefore defines its Address Space (AS, cf. § V3-2.1.1.1). It 
represents the amount of physical memory accessible without any additional 
mechanisms, such as Virtual Memory (VM, cf. V2 on semiconductor memory). The 
width of address buses and data buses do not have to correlate with each other. 
Some examples are: (m/n) 16/8 (8-bit generation microprocessor), 16/16 and 21/16 
(first-generation 16-bit microprocessor), 24/32 and 32/32 (32-bit generation 
microprocessor), etc. The width of the data bus is linked to the flow of information 
(cf. below). 

A serial bus has a single communication channel (w = 1). A parallel bus has w 
channels (w > 1). In the first case, this means that only a single bit is sent at a time. 
In order to send a piece of data in the format n > 1, serialization must first take 
place, with the inverse operation, deserialization, taking place upon reception of the 
data (Figure 1.4). The number of signals is therefore low, which reduces the 
connection cost (cables, surface area and therefore number of PCB traces, 
connectors6 and number of IC package pins). There is no time delay between signals 
from different lines. Moreover, scalability, that is, increasing the bitrate, is made 
easier as all that is required is to increase the number of links. Serial communication 
is used in linked connections, mainly in Input/Output (I/O) interfaces. It can also be 
used in a bus, for example, in the coaxial cable Ethernet network IEEE 802.3™-
2008 10Base2 and 10Base5 (IEEE 2008). There is a disadvantage in terms of 
bandwidth as service bits must be used in order to synchronize the exchange (start 
and stop bits of the interface RS-232 (RS for Recommended Standard), for example, 
cf. § 8.2.2 in Darche (2003)) and to detect and possibly correct transmission errors. 
Moreover, (de)serialization takes time. Each communicating element has a 
(de)serializer that either includes or rebuilds the clock signal, depending on the case. 
This is the SerDes (Serializer/Deserializer) technology. The SPMT™ (Serial Port 
Memory Technology) uses this technology (cf. § 3.6.8 in Darche (2012)). SerDes 
type transfers usually utilize an 8b/10b encoding (Widmer and Franaszek 1983), 
which is 8 bits of information encoded into 10 bits in order to eliminate the Direct 
Current (DC) of the signal (DC-balanced) so that the clock signal can be rebuilt. The 
useful bitrate is then equal to 80% of the raw bitrate. 

                                 
6 This statement is true, but it is important to remember the counter-example of the RS-232 
link (EIA 1991 1997), which uses a 25-pin D-Sub connector with only eight effective signals 
and the ground (cf. § 8.2.2 in Darche (2003)). 
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Figure 1.4. (De)serialization operations in the serial link 

In parallel transmission, n (n > 1) bits are sent to an exchange when the format of 
the data n is equal to that of the interface (Figure 1.5). The word to be transmitted 
can have a higher format, for example k × n bits, ݇ ∈ ℕ∗. Parallel transmission will 
then take place in subwords of n bits. In this case, it is called subword-parallel 
transmission. 

 

Figure 1.5. Format n parallel link 
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In that last case and in the case of serial transmission, there is the issue of the 
order in which bits and bytes are sent. This is the problem of Little Endian (LE) and 
Big Endian (BE), identified by Cohen (1981) (cf. § 2.6.2 in Darche (2012) and  
§ V1-2.2.1). James (1990) explored this problem looking at the bus specifically. 
Note that the byte swapping function, as present either as a microprocessor 
instructions (bswap, for example, cf. § V4-2.6.1), or implemented in bus interface 
circuits (a bridge, for example) or in communication circuits or controllers (cf. Sriti 
(1999), for example) allows for this order to be reversed. Moreover, for the last mode, 
there can be an issue with the alignment (cf. § 2.6.1 in Darche (2012)), meaning that a 
word in the format n is not transmitted in a single bus cycle, but rather over two cycles, 
as shown in the examples of Figure 1.6 for a transmission in the 32-bit format. 

 

Figure 1.6. Possible misalignments during the transmission  
of a 32-bit word (Borrill and Theus 1984) 

The disadvantages of serial transmission tend to be the advantages of parallel 
transmission, and vice versa. In absolute terms, parallel communication is n times 
faster than its counterpart (for k = 1) for a set clock rate. The bitrate can be increased 
simply by widening the bus. There is no (de)serialization time. The synchronization 
signals are additional signals, increasing its width correspondingly. There is 
therefore no overhead in terms of bitrate. However, the connection cost (cable, PCB 
and connector) is greater than for its counterpart as it takes up more space. Dealing 
with errors is also more complicated. The problem of clock skew between signals 
(line-to-line skew) has to be considered for high bitrates (cf. § 3.5.3 in Darche 
(2004) and § 3.6.6 and 7.1.2 in Darche (2012)). Progress in fast electronics means 
that nowadays the serial link is adequate for most bitrate requirements. Moreover, it 
is becoming widespread in computers, replacing buses with simpler point-to-point 
connections. The link is made up of a pair of one-directional channels of opposing 
directions. This is referred to as a link or lane, for example the PCI Express bus 
(PCI-E or PCIe), described in Jackson and Budruk (2012). 

The flow of information is measured in number of bits, or multiples thereof 
(usually bytes), transmitted per unit of time. It is a function of the information 
format n. The base unit is the bit per second (bit/s, b/s or bps), and its multiples are 
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powers of 10 (× 103 × k, ݇ ∈ ℕ∗). In increasing order, there is the kilobit/s  
(kbit/s = 103 bit/s or kbps), the megabit/s (Mbit/s = 106 bit/s or Mbps), the gigabit/s 
(Gbit/s = 109 bit/s or Gbps) and the terabit/s (Tbit/s or 1012 bit/s or Tbps). These 
units7 are mostly used for networks. The bit per second is the equivalent to a baud 
for a valency of 2. For the bus and the interfaces, we can also use the byte per 
second (B/s) and multiples thereof, such as the kilobyte/s (kB/s = 103 bytes/s), the 
megabyte/s (MB/s = 106 bytes/s), the gigabyte/s (GB/s = 109 bytes/s) and the 
terabyte/s (TB/s = 1012 bytes/s). A dedicated bus provides a higher bitrate than its 
generic alternative, and handling the electronics is simpler, especially for the 
controller and interface electronics. It is more costly in terms of connections, 
however. 

A distinction must be made between two types of rate: the raw bitrate or data 
rate, and the useful rate or throughput. The data rate is the maximum rate that the 
bus is able to physically handle. It is tied to the bandwidth and to the Signal-to-
Noise Ratio (SNR, which is equal to 10 log10(Ps/Pn) in dB) (Shannon 1948). The 
throughput is the mean rate that the user, usually a processor or a memory controller, 
will be able to make use of. It is calculated as a function of the channel’s bandwidth, 
the format n of the information and the encoding used. From this, the rate relating to 
handling the data rate communication is subtracted. We can thus define the 
efficiency of a bus η as the ratio of the number of useful bits to the total bits in the 
message. There is also the burst transfer rate (cf. § 2.2). Moreover, there can also be 
transfer modes like the Double Data Rate (DDR) or Quad Data Rate (QDR), as there 
is for Random Access Memory (RAM, cf. § 4.6.2 and 6.5 in Darche (2012)), where 
each edge of the transmission clock transmits one piece of information, thus 
theoretically doubling, or respectively quadrupling, the data rate. 

A bus is said to be passive if it contains no active electronic components (i.e. 
transistors or diodes). It simply ensures the connection between elements of the bus. 
Figure 1.7 gives two examples of this. From left to right, it shows an I/O bus unit 
with Hard Disk Drives (HDD), by Integrated Drive Electronics (Schmidt 1995) in the 
form of a flat cable and of a backplane bus (cf. § 4.2.7). An example of this last item  
 
 

                                 
7 The prefixes of these units must not be confused with those used for measuring the size  
of a memory, which we recall are: kilo (= 210), mega (= 220), giga (= 230) and tera (= 240),  
cf. § I-2.6.1 in Darche (2000)). There was some ambiguity surrounding the corresponding 
symbols. Only kilo could be represented with capital K, and all the others had to be 
determined based on the context. Fortunately, these prefixes have since be standardized by the 
IEEE ((IEEE 2002a b), cf. § V1-2.1 and § 1.1 in Darche (2012)). 



Basic Definitions     9 

was bus S-1008, standardized under reference ANSI/IEEE Std 696-1983 
(ANSI/IEEE 1982b). Otherwise, it is said to be active. The driver is tasked with 
amplifying the signals and controlling the bus. Other technologies that can be 
utilized are radiofrequencies, infrared or even lighting technologies (laser). These 
are limited to wireless connections. Optics is a possible next step for buses, but this 
is still in the research phase, although they are starting to be used in the extension 
bus and the I/O bus. Savage (2002) develops this approach further. A major obstacle 
is cost and the need to convert optical/electrical signals.  

A bus is said to be external when it is located outside the computer. This is 
nearly always an I/O bus (cf. § 4.2.6). Otherwise, it is internal. The SCSI (Small 
Computer System Interface) I/O bus could be both internal and external. Internally, 
it linked the mass storage units. Externally, it could exist as part of peripherals such 
as a printer or a scanner (cf. respectively § 6.3 and 5.3.1 in Darche (2003)). 

 

a)                                                 b) 

Figure 1.7. Ribbon-cable I/O bus (IDE) and a backplane bus. For a color  
version of this figure, see www.iste.co.uk/darche/microprocessor2.zip 

Bus mechanics relate to all aspects of the assembly of components and printed 
circuits, as well as all aspects of connection. Bus mechanics specify, among other 
things, the maximum length of the bus, specifications of the connector/s and, 
potentially, the size and fixation type of the electronic card (motherboard, 
daughterboard or expansion card) and of the housing, cabinet or rack that houses 
them. The connector specifications state their maximum number, size, position, 
distance between two connectors, and their interconnection gap, etc. The connectors 
of an expansion bus, if installed onto a printed circuit like in the motherboard of a 
micro-computer, take up a significant amount of space (1/4th to 1/3rd of the surface 

                                 
8 Bus S-100 takes its name from the number of lines it contains. It was first used in the kit 
micro-computer Altair 8800 (8-bit Intel 8080 microprocessor, main memory with 256 bytes 
of RAM, with possible expansion to 64 KiB) from the company MITS (Micro 
Instrumentation Telemetry Systems), which first appeared on the market in 1975.  
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area of a personal computer (PC)-type motherboard) and therefore contribute 
significantly to the overall cost of the system. A bus’s connections should not be 
underestimated as they are without a doubt its weakest link and make it less reliable. 

Electrical characteristics relate to the voltages and currents of input, output and 
I/O, and the minimum, maximum and nominal voltages and currents of the signals 
(cf. § 1.2 and 2.2.1 in Darche (2004)) and of the bus lines. They are primarily those 
of the logic used (cf. Chapter 2 in Darche (2004)). The electrical load, as seen by the 
emitter, is an important parameter as it directly affects the rise and fall times of the 
signals. They rely on the bus itself, as well as on the connector, the daughterboard 
and possibly any stub relaying the bus towards the connector. This load is variable 
and depends upon, among other things, the number of nodes and whether all the 
slots are occupied by an inserted electronic card, thus forming a load. Moreover, 
each connector makes the bus longer by creating a stub that derives the main bus, or 
“backbone” (Figure 1.8), thus modifying the electrical and temporal characteristics 
of the bus. This load is complex (mathematically speaking) as it contains resistive, 
capacitive and inductive components respectively. This derivation can also introduce 
impedance mismatch, which is a potential source of electrical disturbance due to the 
reflection of signals at the end of the line. This characteristic should be considered 
when determining the maximum number of connectable elements. 

 

Figure 1.8. Bus lines and derivation stubs 

The bus also possesses temporal characteristics that are tied to the protocol or to 
the technology used, such as the rise, fall and propagation times of the signals, and 
the temporal relations that exist between them. The bus-settling time is the time 
required for the signal to become stable. Another important time is the flight time 
tflight (cf. § 3.3.4 in Darche (2012), with an example in Intel 97). It is the time taken 
by a signal to cover the full length of the bus. It takes into consideration all of the 
propagation times of the interface electronics, any skews and the time window of 
capture by the receiver. It also includes the bus propagation time tL (cf. § 3.3.1). One 
empirical rule is that 6 × tflight should be less than 30% of the Unit Interval (UI, or in 



Basic Definitions     11 

other words a period of 1 bit) of the eye diagram (or eye pattern, cf. § 3.5.3 in 
Darche (2004) and § 7.1.2 in Darche (2012)) for a stable state at the sampling point 
at 50%. The protocol also includes delays such as those linked to arbitration. 

A bus is poorly scalable, in that the addition of nodes has a negative impact on 
its electrical and temporal characteristics, limiting it practically. The access time and 
rate are worsened by distortion and the arbitration time, and the designer must plan 
for the worst case, which is not very efficient. 

SUMMARY.– The advantages of a bus are its versatility and adaptability. New 
electronic cards can be added to it easily. Cards can be transferred from one 
computer to another as long as they have the same bus standard and maintenance 
can be ensured. The computer system itself can be designed to be partitioned. It is 
relatively inexpensive as it constitutes a primary approach rather than a collection of 
shared cables or traces. The main disadvantage is that it forms a bottleneck (or 
tailback) in terms of communication. The bandwidth of a bus limits the I/O data-
rate. Other characteristics also limit this rate, such as the length of the bus, as well as 
the number of nodes. Furthermore, if the nodes are heterogeneous, characteristics 
such as latency or data transfer speed will be heterogeneous too. Scaling up is just as 
hard, and can even prove to be impossible. 

1.3. Synchronism and asynchrony 

Those involved in an exchange must communicate at speeds that are compatible 
with this exchange. An exchange can be synchronous or asynchronous, depending 
on whether a clock signal pacing the transfer is explicitly sent or not9. In a 
synchronous bus (with an interconnection), a master clock10 provides a clock signal 
that paces and synchronizes the exchanges between elements of the bus. This signal 
is distributed between all of the nodes of the bus, and is either amplified (radial 
clock distribution, Figure 1.9(a)) or not (bussed clock distribution, Figure 1.9(b)), 
with each node able to generate a local clock. The problems associated with the 
clock are temporal in nature (e.g. skew, jitter, noise, etc.), but can also be electrical, 
such as metastability, for example, the criticality of which is directly proportional to 
the frequency. Moreover, the user module (cf. § 3.1) can either use this signal or 
have its own clocks. 

                                 
9 Synchronization through software can be a convention of characters, such as the Xon–Xoff 
protocol, for example, or a known or given frame length. It cannot be used for buses due to 
low efficiency. 

10 Continuous time can be considered, as shown in Del Corso et al. (1986), but in practice, 
event discretization is preferred. 
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Figure 1.9. Distribution of the (a) radial or (b) bussed clock signal 

Each operation has to be carried out within a constant time interval that is tied to 
its period. Otherwise, a transfer error takes place. In nearly all cases, the signal in a 
bus is handled by the edge of an active clock (this is an edge-triggered logic model), 
marking the start of an exchange. However, a level-sensitive logic model can also be 
considered. Figure 1.10 shows the causal link between signals, with an example of 
an exchange request with a read receipt provided. In the purely synchronous model, 
no cycle start signal is needed as it is the active clock edge that marks this start. The 
time characteristics are fixed. The period of the clock signal must therefore be 
greater than the propagation time of the bus plus any times relating to the logic, such 
as the setup time tsetup. 

 

Figure 1.10. Causal link between signals 

The cadencing diagrams are asynchronous or synchronous, classical or derived, 
mesochronous11 or plesiochronous. In a mesochronous system, local clocks are 
derived from a global clock. Delays in the transfer of clock signals are not even, 
resulting in phase shifts. A mesochronous system is said to be “static” when the 
phase difference between clock signals of the same frequency does not vary during 
system operation. A “dynamic mesochronous system” exists when this phase 
difference varies for each component, for example, because of temperature or supply 

                                 
11 From the Greek root “meso”, meaning “in the middle of”. 
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voltage variations. An example of such a system is the basic Rambus channel  
(cf. § 7.2.1 in Darche (2012)). If the clocks are independent and not synchronized 
but the average frequency is the same, so with a slight drift, the communication is 
said to be “plesiochronous12”. An example is the RS-232 series interface (cf. § 8.2.2 
in Darche (2003)). When the frequencies are different, the communication is said to 
be “heterochronous13”. More details on synchronization can be found in 
Messerschmitt (1990). 

Designing a synchronous system is harder than designing an asynchronous one. 
The clock domains and of their interactions must be taken into account (Clock 
Domain Crossing, CDC). The problem has been covered in sections § 3.6.6 and 
7.1.2 of Darche (2012). A purely synchronous system carries out one transaction per 
clock period. This is called a bus cycle. This is not the case in a semi-synchronous 
system (also called pseudo-synchronous or clocked), which is instead characterized 
by a longer time interval, the bus cycle of which is a multiple of the system clock 
period. This number of periods can be fixed, limited or free. During a transaction, 
transmission can become asynchronous through the help of a wait request signal (the 
Wait signal, for example), adding clock cycles in order to lengthen the transaction. 
An example of a semi-synchronous bus is the NuBus (TI 1983). A variation of this 
is source-synchronous clocking (cf. § 7.1.2 in Darche (2012)). An example of a 
synchronous bus is the Multibus II backplane bus from the company Intel, 
standardized through the reference ANSI/IEEE Std 1296 (IEEE 1988). 

The asynchronous bus represents a different approach, the advantage of which is 
that a global clock signal is not used, which can be limiting in terms of design time. 
The dedicated time slot can be made longer as needed. Thus, exchange times can be 
adapted to the speed of the nodes. However, there is a risk of blocking the exchange 
if there is no limit to the response time, as a new cycle cannot begin if the previous 
one has not finished. This means that the bus can remain indefinitely allocated to the 
master that holds it. Two examples of asynchronous buses are the Unibus™ 
backplane bus from the company Digital Equipment Corporation (DEC) and the 
Multibus I from Intel, standardized through reference ANSI/IEEE Std 796 
(ANSI/IEEE 1982a). 

In terms of asynchronous protocols, the first group is those with one-way 
control, that is, controlled by a single component of the exchange. This is referred to 
as a “One-Way Command”, or OWC. It is simple, with a single Req(uest) (the 
forward signal). Figure 1.11 highlights this through the reading of a piece of 
information. The request signal is activated (timestamp 1). Next is the positioning of 
the information by the source S after a certain amount of access time ta  

                                 
12 From the Greek root “plesio” meaning “neighbor”. 

13 From the Greek root “hetero” meaning “different”. 



14     Microprocessor 2 

(timestamp 2). When the request is deactivated (timestamp 3), the information is 
removed by the slave source S (timestamp 4). The temporal characteristics of the 
bus, in particular the propagation delay tpd, must be considered in order to quantify 
the access time ta. In this version, the transfer time is adapted to the requester as it is 
the latter that (de)activates the request signal (“destination-controlled transfer”). The 
main disadvantage is that there is no check for the validity of the exchange by the 
destination D. If the source fails, it cannot carry it out. Note that time tdis (dis for 
disable) qualifies the deactivation time of the three-state electronic buffers  
(cf. § 3.3.4) 

 

Figure 1.11. One-way control protocol 

Another term used to refer to one-way control is “strobe protocol”, as shown in 
Figure 1.12, which highlights the transmission of a piece of data (source-controlled 
transfer). After a certain data setup time tsetup (timestamp 1), the emitter signals its 
presence (timestamp 2) and its retreat (timestamp 3), which becomes effective 
during step 4. The limits of this protocol are seen again in the transmission of a data 
item when there is a transfer error if the receiver is not listening or does not account 
for it sufficiently quickly. 

 

Figure 1.12. Strobe protocol 
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The handshake protocol was created as a solution to the downsides of the strobe 
protocol. It is the most common protocol among unclocked systems (also known as 
clockless, or self-timed systems), and is source-controlled. In a master/slave setup, a 
master M sends a request to the slave S, which must answer. It uses two signals, 
which are a Req(uest) and an Ack(nowledgment). The former is used as part of the 
signaling, while the latter is a backward signal. As there are two signals, the protocol 
is said to be one of double-track handshake signaling. These signals can be asserted 
or non-asserted. A Comp(letion) signal marks the end of processing. Depending on 
the presence and direction(s) of the transmission of information (Figure 1.13), the 
signal can exist in one of two versions, with either two or four phases, and with four 
different channels, which are nonput, push, pull and biput The nonput channel  
(a) does not exchange data, but rather allows for synchronization between the 
communicating elements. The push channel (b) sends data, while the pull channel 
(c) receives it. The biput channel (d) is bidirectional. The black dot in the figure 
means that the entity is active in terms of communication, while a hollow dot means 
that it is passive. A functioning module can be integrated into the channel as an 
element of combinational logic – the whole forms a stage of the pipeline (cf. § 4.5.1 
and 6.1 in Darche (2012) and V2 on future microprocessors). 

 

Figure 1.13. The four possible channels of the handshake protocol 

There are three different versions of this protocol depending on the position of 
the synchronization signals: non-interlocked, half-interlocked and complete. 
Complete interlocking means that no more exchanges can take place as long as the 
previous one is not yet finished and signaled. In the two-phase handshaking version, 
shown in Figure 1.1.4, there are two types of exchange, which are the “up” 
handshake, which uses the Req↑ and Ack↑ signals, and the “down” handshake, 
which uses signals Req↓ and Ack↓. For each of them, there are two transitions, or 
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phases, embodied by the edges of the request signal Req and the receipt 
acknowledgment signal Ack. The level of the signals is therefore irrelevant, as 
opposed to the rising or falling edges (this is “edge-sensitive” control, or transition 
signaling), which are significant (it is an “event-based” protocol), hence the term 
“two-stroke” signaling (or two-cycle signaling, transition, Non-Return-(to-)Zero 
(NRZ)). At the end of the exchange, these two signals are in the same state, whereas 
during the exchange, they were in opposite states. There is an initialization state, 
which is the transition of the reception signal, here Ack↓, which sets off the 
exchange (dashed line). Note that the acknowledgment signal can be complemented. 

 

Figure 1.14. Rising and falling versions of the two-phase handshake protocol 

In the case of a push channel (Figure 1.15), once the information has been 
positioned, a request is sent out in the form of a transition of request signal Req. 
When the receiver has processed the information, it signals for it through a transition 
of the acknowledgment signal Ack. 

 

Figure 1.15. Two-phase handshake in a push channel 
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In the case of a pull channel (Figure 1.16), the request leads to the information 
being positioned by the source, which then signals for it through an 
acknowledgment. 

 

Figure 1.16. Two-phase handshake in a pull channel 

Note that there is an overlapping of data validity between the two previous 
channel types during a transaction, as shown in the two gray vertical areas in  
Figure 1.17. 

 

Figure 1.17. Validity overlapping between the two channels 
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In order to eliminate the toggle circuit during hardware implementation, a four-
phase handshake protocol is required, also known as double-handshaking. Here, the 
level of the signals is significant (level-sensitive control). In the complete 
interlocking version shown in Figure 1.18, there are two types of exchange, which 
are the up handshake and the descendent handshake. For each of these, there are two 
transitions, or phases, which are embodied by the edges of the request signal Req 
and the acknowledgment signal Ack, hence the term four-stroke (or four-cycle) 
signaling. At the end of the exchange, these two signals return to their initial state 0, 
while during the two phases, they were in opposite states. For this reason, the double 
handshake is called “Return-(To-)Zero (R(T)Z)” signaling. An initial state is an 
equilibrium of the states of the protocol signals. The dashed line in Figure 1.18 
represents an example of this. 

 

Figure 1.18. Four-phase handshake protocol 

For a push channel, the Req and Ack signals respectively mean valid data 
(Strobe) and a completion signal. As shown in Figure 1.19, the emitter signals the 
availability of the information through the rising edge of the strobe signal Req14 
(Req↑). As previously, receipt of the positive edge of the acknowledgment signal 
Acq (Ack↑) results in the removal of the information and deactivation of the request 
signal (Req↓), in turn leading to the deactivation of the acknowledgment signal 
(Ack↓).  

                                 
14 Colmenar et al. (2009) starts the transaction one phase earlier, that is, at Ack↓. 
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Figure 1.19. Four-phase handshake protocols for a push channel (Darche 2012) 

There are actually four versions of this channel: (Figure 1.20) early (Furber and 
Day 1996; Furber and Liu 1996), broadish (or extended early), broad and late. For 
the first three, there is valid data on the rising edge of the Req request – it is 
therefore the invalidation of this data that differentiates them according to the three 
edge possibilities. The data is no longer valid on the rising edge of the 
acknowledgement signal for the early mode, on the falling edge of the request signal 
for the broadish mode, and on the falling edge of the acknowledgement signal for 
the broad and late modes. For the late mode, the data is valid on the falling edge of 
the request signal. 

 

Figure 1.20. Four versions of the four-phase handshake protocol for a push channel 
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Figure 1.21 shows the “data request” version (pull channel), again with the four 
variations. 

 

Figure 1.21. Four versions of the four-phase handshake protocol for a pull channel 

Figure 1.22 shows the other two possible versions of the handshake protocol, 
which are “half-interblocked” and “non-interblocked”. The causality of the 
exchanged is indicated with arrows. The second version is pulse-based signaling, 
active on the edge or levels, a technique that is similar to transition-based signaling. 
The operating mode was studied by McCluskey (1962) and his asynchronous 
version is presented in Nyström and Martin (2002). 

 

Figure 1.22. Half-interblocked (a) and non-interblocked (b)  
handshakes (Thurber et al. 1972) 
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Figure 1.23 shows how this can be applied through two examples, a read (a) and 
a write (b), both asynchronous, carried out by the CPU (Central Processing Unit). 
The R/#W (Read/#Write) signal is not shown so as to not overload the illustration. 

 

Figure 1.23. Exchanges between CPU and the memory through a handshake 

To summarize, the OWC and handshake protocols are used by the asynchronous 
and semi-synchronous buses. The two-phase handshake is quicker than the four-
phase, and requires less current in CMOS logic (Complementary Metal Oxide 
Semiconductor, cf. § 2.4 in Darche (2004)). It is particularly well suited for slow 
communicating systems (Renaudin 2000). The two Req and Ack signals can 
alternatively be carried through a single cable. This approach was named single-
track handshake signaling by Van Berkel and Bink (1996), and its study goes 
beyond the scope of this work. 

1.4. Coding data 

The validity of the transmitted data is inherent to the synchronous protocol, as 
data and validity are correlated. There are several solutions for carrying out 
validation in an asynchronous protocol. The first is called bundled data. The term 
comes from Sutherland (1989, 2007), and leads on to the notion of bundling 
constraint, which forces the data to accurately consider this constraint before 
proceeding to signaling. A done signal accompanies the transfer of information and 
validates the information. A superior solution to this is the use of protocol signals 
Req and Ack as well as the handshake. A single cable is used to transfer a bit of 
data, hence the notion of single-rail data encoding. For the coding to not be affected 
by the propagation delay, unlike in the first solution, the coding can be carried out in 
three or four states. This coding uses two cables (two rails) to encode the value of 
the validity of the data. This constitutes a robust end solution that is dependent on 
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the data but requires an associated detection logic (cf. exercise E1.1). Three-state 
encoding is governed by the truth table shown in Table 1.1. It is called Dual-Rail 
(DR) data encoding. This type of approach can be generalized to n number of rails 
(Multi-Rail or MRn) while working in base n. For example, DR is MR2 encoding. 
Four-state encoding is governed by the same truth table shown in Table 1.1. The 
first bit gives the binary value and the second bit gives the logical parity (cf. § III.6.6 
in Darche (2000)). We can also see that any change along the second rail marks a 
new bit. Note that the dual-rail code is also called 1-of-2 code, and is part of the  
1-of-n codes, that is, the one-hot codes with a size of n, who themselves belong to 
the m-of-n code family. 

Code words  
(format n = 2) 

States in a three-
state dual-rail code 

States in a four-
state dual-rail code 

0 0 Invalid or reset 0 even 

0 1 0 0 uneven 

1 0 1 1 uneven 

1 1 Not used 1 even 

Table 1.1. Interpretation of code words in three- and four-state dual-rail codes 

Another aspect of coding relates to the current consumption. Yand et al. (2004) 
suggests encoding the most frequent bit patterns that circulate around the data bus in 
order to reduce the current consumption of the electronic buffers. This approach was 
already suggested for solid-state memories with the bus invert by Stan and Burleson 
(1995), and is further explored in the second volume on future memory devices. 

In the microprocessor, the instructions can also be encoded (cf. § V4-1.1.1). 

1.5. Communication protocol 

In order to exchange information, first a communication protocol must be 
defined that can manage this exchange. A protocol is a set of conditions and 
operations, whose order must be strictly respected for the transaction to take place. 
The rules to follow for the signals are physical specifications (electrical values) and 
time and causality constraints of the operations. The operations are the activation or 
non-activation (by level or by edge) of signals of state, control, and address and data 
positioning. When a master accesses a slave, it states the type of access, read or 
write of a word, read or write of a block (in a block transfer), Read–Modify–Write 
(RMW mode) or a word, writing after reading (write-after-read mode) or access in 
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interruption mode (address-only and interrupt acknowledge cycles. RMW mode 
allows for synchronization and locking mechanisms to be implemented, such as the 
semaphore, or lower down, the test-and-set instruction (cf. § V4-2.6.1). The 
two main corresponding control signals (cf. § 3.2) are read enable or signalization 
signals (#R, #RE (E for Enable), #Rd or #RS (S for Signal)) and the same for write 
(#W, #WE, #Wr or #WS). There are also spatial characteristics that specify the 
information to be exchanged, and in the case of communication through bundles, the 
structure of the messages (especially the size). If communication is carried out 
through a datagram (i.e. a message), the protocol specifies its size (unit: bit or byte) 
and its structure, that is, the different fields (spatial characteristics), as well as the 
length and sequencing (temporal characteristics). 

 

Figure 1.24. Sequencing diagram of a synchronous read 

Figure 1.24 shows a synchronous operation, with a master, in this case, a 
processor, carrying out a read operation in a memory device. The arrow points to an 
action or cause that implies a new signal condition. The transfer is said to be 
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addressed, as the correspondent is unique and chosen by the address. It sends the 
address along the address bus, which is subsequently taken into account by all of the 
address decoders (cf. § 2.2.2 in Darche (2003)) of the slave entities. The entity 
involved is accessed through activation of its selection signal (CS signal for Chip 
Select or CE for Chip Enable)) and send the desired data back. Remember that 
everything is synchronized to a clock and that the cycle has a duration of  
k × T, k , with T the period of the clock. The synchronous protocol is 
deterministic. 

It is possible to functionally split a cycle, referred to as a “transaction”. This term 
refers to a coherent unit during processing, which can be decomposed into an 
ordered sequence of unitary tasks. It is the logical activity unit of the bus or bus 
cycle that takes the form of a sequence of signals. This sequence follows rule flows 
that are gathered together in a communication protocol. If a clock synchronizes the 
operation of a bus, then the transaction takes places during one (in the case of a 
synchronous bus), or several bus cycles (in the case of a semi- or pseudo-
synchronous bus). Only in the case of a multi-master environment does the clock 
start with an access request, followed by an arbitration phase (also called selection 
phase) between those requesting access to the bus. Once this arbitration phase is 
over, the chosen one then engages in the exchange, which is divided into an 
addressing phase, an information transfer phase (Figure 1.25) or even, in more 
complex protocols, an error detection and signaling operation phase.  

 

Figure 1.25. A bus transaction 

There are four fundamental pieces of information that must pass through the bus: 
the addresses of the source and of the destination, the information being transported 
and the operation that is to be executed. Usually, the source address is implicit. The 
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information to be transferred is typically a machine instruction, data or an address, 
but it can also be a command, control, state or an interruption request or associated 
vector, etc. Note also that the addressing phase can be prolonged during the transfer 
phase, thus blocking the address bus, most likely unnecessarily. The issue can be 
addressed by transforming the read operation into a write operation for the case of a 
transfer between I/O controllers, or between the bus bridge, as proposed by 
Okazawa et al. (1998). The operation to be executed is a read, a write or a read–
modify–write, but there are also special cycles (cf. § 2.2). In terms of the slave, the 
phases of access request, address decoding and transfer will take place in succession. 
A bus initialization phase is potentially required in order to power on the calculator 
or on demand. This involves ordering the powering on or off of the modules, in a set 
order if required, and to place them in a known state. 

We can now establish the chronogram presented in Figure 1.26, which relates to 
the exchange as seen by the microprocessor. The access time tACC is the minimum 
time needed before the data can be processed. tDSR is the data setup time that takes 
place before the microprocessor can begin processing. Note that there is a data hold 
time at the end of each cycle, tDHR or tDHW depending on the operation, and tAH for 
the address. A synchronous transfer is faster. It makes design easier (simple logic) 
and guarantees exchange times. However, for this to happen, all elements of the bus 
have to work at the same frequency. The main principle of synchronous 
communication is strict adherence to the times, without which there is a risk of 
transfer errors. The cycle length tcyc, in particular, is fixed. 

 

Figure 1.26. Simplified chronograms of synchronous read and  
write operations in the MC6802 microprocessor 
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Figure 1.27 gives an example of read access for a microprocessor using a 
multiplexed address/data bus. The ALE signal (Address Latch Enable) signals the 
presence of a valid address on the bus. The exchange type is “relaxed synchronous” 
as the cycle is prolonged by several reference clock periods, depending on the state 
of the Ready signal. In this synchronous version, the length a memory access time is 
measured in bus cycles, with one bus cycle being made of a number of clock cycles. 
More generally, the number of cycles depends on the length m of the data bus,  
the format n of the information and whether the access or information is aligned or 
not. 

 

Figure 1.27. Read cycle with address/data multiplexing  
(iAPX88 microprocessor from Intel) 

The alternative is an asynchronous operation. This has the advantages of reduced 
current consumption, which is vital in mobile systems, and greater flexibility in  
terms of design. However, there is no time guarantee, and specific transfer protocols,  
based on handshaking (cf. § 1.3), for example, must be established. Figure 1.28 
shows a four-phase handshake. 
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Figure 1.28. Read or write cycle with a four-phase handshake 

The first one uses two signals, a strobe signal (Ready, in this case) and an 
acknowledgment signal, which enables a feedback signal. The transaction requires 
the bus to be crossed twice, thus slowing the exchange, as this is one more than in 
the synchronous version. During an asynchronous operation, the beginning of the 
protocol is the same as previously described, except that the reading of the data is 
tied to an acknowledgment signal from the slave (e.g. the -DTAck signal from the 
MPU MC68000 by Motorola). It is possible for the signal to not arrive, thus 
blocking the exchange, and consequently the bus (Figure 1.29). Mechanisms like the 
watchdog (cf. § V3-5.3 and § 3.3.1 in Darche (2003)) can unblock this situation, 
generating a bus error in the form of a Negative Acknowledgment (NK), through a 
third-party component, for example. A lack of addressable components can easily be 
detected, as it is given away by the lack of response. 

The advantage of asynchronous communication is the ability to mix slow 
elements with faster ones on the same bus without any specific adaptations. The fast 
elements adapt to the speed of the others (“leveling down”).  
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Figure 1.29. Diagram of an asynchronous read sequence 

Figure 1.30 presents a completely asynchronous read by the MC68000 
microprocessor. Once the address has been positioned, the #AS (Address Strobe) 
signal marks the start of the bus cycle. The read/write (R/W) signal is activated for 
one read. The slave activates the #DTAck signal in order to tell the MPU that the 
data to be read has been positioned on the bus. The #UDS/#LDS (Upper/Lower Data 
Strobe) signals let us choose the format of the operation. In these chronograms, we 
can recognize a handshake with interblocking (cf. 1.3), where the Req/Ack signals 
are represented by #AS/#DTAck, which are active in the low state. A more complete 
version can be found in Figure V3-2.20. 



Basic Definitions     29 

 

Figure 1.30. Asynchronous read cycle in the MC68000 microprocessor 

 

Figure 1.31. Asynchronous write cycle in the MC68000 microprocessor 

An asynchronous write cycle (Figure 1.31) starts, as previously, with the 
activation of the #AS and write signals. The data is positioned by the CPU, which 
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signals by activating the #UDS/#LDS signals, which mark its validity. A more 
complete version of this is the one shown in Figure V3-2.20. 

An example of a semi-synchronous transfer is the one presented in Figure 1.32, 
which shows a memory access through a “transputer”, a microprocessor from the 
company Inmos Ltd (taken over by STMicroelectronics). One read cycle normally 
takes place over six half-periods; here, it is made longer by adding a half-period of 
waiting W, as sampling of the state of the delay signal is done on the falling clock 
edge, before the end of cycle T4. The events are discretized here. The number of 
half-periods added is limited physically. 

 

Figure 1.32. Simplified chronograms of an asynchronous read by transputer 

Other variations of cycle lengthening can be considered. One example is shown 
in Figure 1.33 where the wait request signal must remain active for the amount of 
time needed for propagation. The time is here said to be continuous, as there is no 
clock signal interfering. The Wait signal allows the exchange to be lengthened. 

 

Figure 1.33. Lengthening a cycle with the handshake (from Nicoud (1987)) 

Another variation, still of the “handshake” type, is presented in Figure 1.34. It is 
run in 32-bit microprocessors, where a positive acknowledgment ends the exchange. 
In the case where the slave cannot satisfy the request, a negative acknowledgment 
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NAck is sent. In this way, the handshake is able to carry out flow control. It is said 
to be bounded. 

 

Figure 1.34. Lengthening a cycle with positive and negative  
acknowledgments (from Nicoud (1987)) 

An addressed selection involves providing an address or a range of addresses to a 
slave. An addressed transfer involves providing an address which will then be 
decoded in order to select (i.e. activate) a slave. Typically, the slave has defined 
addresses. One variation is geographical addressing, which tells us which card is 
currently occupying a given slot. For this, each slot is attributed a number, called a 
slot space, and each connector is given an equal addressing zone. The most 
significant bits (MSbs) of the address are used to identify the location. Both the 
NuBus and VME (Versa Module European) buses, to only name a couple, use this 
type of addressing. Such an approach simplifies design by splitting the addressing 
space by number of connectors. 

Borrill (1988) provides another approach to classing protocols than the standard 
synchronous–asynchronous dichotomy. He suggests three criteria, which are 
localization of the information validation (the locus), periodicity and flow control. 
The locus determines who has responsibility for the validation, whether it is the 
source (source-controlled), the destination (destination-controlled) or whether it is 
centralized. The periodicity states whether the exchange is periodic (fixed 
frequency) or aperiodic (variable frequency or synchronization). The control flow 
can be bounded (handshake) or not. On top of this, we can add the arbitration 
characteristics (cf. the following section). 

1.6. Access arbitration 

When there are simultaneously different access requests made to a bus, 
interruption requests (cf. Chapter V4-5), or Direct Memory Access (DMA, cf. § 2.2.2) 
requests made by a master or a slave (only for the first two), access arbitration to the 
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bus is necessary. This involves choosing a master among n and allowing it to take 
the bus (grant). Access to the resource is exclusive. The electronics of the bus must 
be adapted in terms of output stages in order to (dis)connect to the arbiter request in 
a three-state logic, either open-collector or open-drain logic, or open-emitter or open 
source logic, depending on the technology used (cf. § 2.2.1 and 2.3 in Darche 
(2004)). In the case of a bidirectional bus, the direction of the flow of information 
must be invertible on command. Once the exchange has terminated, or under the 
constraint, the entity may release the bus. The arbiter is usually defined by a 
property of fairness of access. This means that it provides an identical service for all 
requesters, thus avoiding situations where the requester with the highest priority 
always gets access to the bus in the case of multiple requests. It also allows a 
requester with low priority to obtain access to the bus even when there are a large 
number of requests. This fairness can be weak, strong weighted or strong not 
weighted, or FIFO (First-In First-Out resource handling). An example of strong 
fairness is the matrix arbiter, which operates along a last recently served policy. An 
SP (Static Priority) arbitration is a predetermined allocation of the bus. This means 
that the bus can be allocated to nodes that have not requested access. Allocation can 
be determined by the bus cabling, that is, by the position of the node in the bus, or 
by software through programming. This simple solution is only suitable for a small 
number of nodes. Otherwise, arbitration has to be carried out as a function of the 
requesters, and is therefore dynamic (Dynamic Priority, DP). 

The arbitration criteria are the location of the arbitration, the type of access 
request, allocation rules and bus release rules, the type of grant and the temporal 
relations between the arbitration and the transfer of data. The grant is valid for one 
or a given number of cycles, until the requester releases the bus, or on demand 
(preemption). With regard to localization, this can be centralized or distributed (the 
arbiter is decentralized), depending on the decision site. Thus, depending on the 
technique chosen, the arbitration electronics will be partially or completely located 
in the interface of the bus (cf. § 3.1), with the distributed version usually requiring 
more electronics. It is important to note that signaling can be synchronous or 
asynchronous15 depending on the bus. Regarding the second point, allocation can be 
carried out either classically according to a fixed priority (it is prioritized), or it can 
be variable, a Round Robin (RR), for example. It can be sequential, that is, First-Come, 
First-Served (FCFS), also called FIFO, or democratic (no rules) (Bell 1978).  
Depending on the material solution chosen, not all of these can be implemented.  
 
 
 
 
                                 
15 Plummer (1972) explores asynchronous arbiters, and Cowan and Whitehead (1976) 
presents a version with polling. 



Basic Definitions     33 

Priority can be set with cabling or through a program. An RR policy is easy to 
implemented. One disadvantage, however, is that a priority transfer (i.e. a quick one) 
cannot be granted as all those waiting must first be resolved. A TDMA (Time-
Division Multiple-Access) policy allocates time slots (or time frames) that are either 
fixed or variable, and which guarantees the bandwidth and ensures that each is 
served. Dynamic reconfiguration allows the bandwidth requirements to be adapted 
to the bus. These are both single-level schemes. In order to improve the response 
time and bandwidth of the bus, a multi-level scheme can be used. One example is a 
TDMA/RR policy, which frees up an unused time slot that can then be allocated 
following an RR policy. Sonics SMART Interconnect is a bus that applies this 
scheme. 

The three phases are demand, arbitration (also called resolution) and grant. 
Another way to describe the bus protocol is to use a Finite-State Machine (FSM, cf. § 
3.7.3 in Darche (2002)). Its behavior can be described graphically using a state 
diagram like the one shown in Figure 1.35. Each circle represents a state, and the 
transition from one state to another takes place under the conditions specified by the 
arrows. If there is at least one request, the bus goes from the state of resolution to  
the state of addressing.  

 

Figure 1.35. Simplified state diagram of a bus protocol 

These three phases result in implementation through the following signals: Bus 
Request (BReq), Bus Grant (BG) and potentially a Bus Busy (BBusy) signal, or 
even a preemption request (Bus preempt) to remove the bus from the current holder. 
These are active at the low or high state depending on the implementation and  
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technology of the logic used. These signals can circulate serially or in parallel 
between the nodes. A distinction can be made between several connection  
topologies. These are the daisy chain, the star, the bus or a mixed solution drawing 
on the best aspects of the different approaches. The three most common 
communication diagrams for receiving requests or sending out arbitration responses 
are the daisy chain, independent requests and polling. 

The daisy chain is a type of link between communicating nodes, each with an 
input signal and an output signal, thus creating a chain between them. This signal 
can be the access grant to a bus, as is the case in Figure 1.36. This daisy chain 
allows for a serial distributed arbitration solution to be reached. It is distributed as 
each node is in possession of its own arbiter. The requests are made in parallel 
thanks to a wired OR. A node that wants the bus activates the request line if its BPRI 
(Bus PRiority In) input is not active. The other nodes propagate the request up to the 
requesting node, which then becomes the bus owner, while maintaining its request. 
Resolution is therefore conducted serially. The bus state can be read in the BPRI 
input. In principle, allocation is fixed by the geographical position of the nodes in 
the loop, and is therefore not fair. This is a simple and cheap solution, as it does not 
involve a lot of logic (Figure 1.40). However, it is slow because the response has to 
go from node to node. Another disadvantage is the complex cabling, as, for 
example, in the case of a backplane bus with slottable daughter cards, the continuity 
of the chain must be maintained. This can be done using a strap, or with a dummy 
board, a bit like what is done in the CRIMM16 module (Continuity Rambus In-line 
Memory Module, cf. § 7.2.1 in Darche (2012)). Moreover, if one of the nodes fails, 
some of the nodes are then isolated and therefore become blocked. A daisy chain 
model is studied in exercise E1.4. 

 

Figure 1.36. Another version of daisy chain distributed  
arbitration (from Thurber et al. (1972)) 

Figure 1.37 presents a variation on the previous version, this time with a 
permanent state of grant for taking the bus for the first arbiter (no. 0). If it wants the  
 
 

                                 
16 This type of link was already covered for I/O (cf. § 1.2.3 in Darche (2003)) and for 
memory (cf. § 5.3 in Darche (2012)). 
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bus, and if the bus is free, it takes the bus and activates the corresponding state line. 
If the bus is busy, it waits for it to become free. If it does not want it, it activates its 
BPRO (Bus PRiority Out) output, passing its right of access to the next one along 
the chain. 

 

Figure 1.37. Daisy chain arbitration (variation) 

Figure 1.38 shows a simpler version of this, but the state of the bus cannot be 
determined on a grant signal level, but rather on an edge.  

 

Figure 1.38. A simple solution for daisy chain distributed  
arbitration (from Thurber et al. (1972)) 

Figure 1.39 shows a centralized version. Requests are made in parallel. An 
access grant is given by the controller, but priority is fixed by the physical cabling of 
the nodes with the same weaknesses as before, which concern priority and tolerance 
to material faults. The entity that takes the bus and keeps the bus signals to it 
through the occupation line. It should be noted that if this line is removed, we revert 
to the daisy chain solution from Figure 1.36. Several loops or request-grant chain 
levels can exist in order to create a priority hierarchy (multi-level arbiter). Exercise 
E1.3 is an example of a study in parallel arbiters. 

 

Figure 1.39. Centralized version of the daisy chain 
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Figure 1.40 describes the control logic at the level of each node, which blocks 
agreement according to priorities linked to the geographical position of the element 
within the bus. Spatial priority can be changed thanks to specific cabling using 
cavaliers or straps, as described in Borrill (1981), although this is a very onerous 
solution to put in place, and can result in mechanical faults. Inverters have an output 
that is compatible with them being placed in parallel, that is, a collector or open 
drain, for example. The simplicity of the flowchart should not disguise the 
complexity of the timescales, which need to account for all the bus delays and the 
processing electronics. 

 

Figure 1.40. Daisy chain agreement bus access control logic (simplified)  

The preceding example was inspired by the Unibus™ bus from the PDP-11 
made by the company DEC. Figure 1.41 presents the corresponding process 
chronograms (positive logic). A node requests access (timestamp no. 1). Access is 
granted to the first node concerned (timestamp no. 2). This node acknowledges 
receipt (timestamp no. 3) and removes its request (timestamp no. 4), which results in 
the grant also being removed (timestamp no. 5). The bus becomes free (time interval 
no. 6) and then blocked for the transfer (time interval no. 7), and the arbiter signals 
this (time interval no. 8). 
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Figure 1.41. Unibus™ bus arbitration sequence 

 

Figure 1.42. Topology of a centralized arbitration 

In order to get around the major inconvenience of a chain break, an independent 
request approach can be used. Figure 1.43 presents a centralized version inspired by 
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bus PCI (PCI-SIG 1998). Each request and each grant are independent of each other. 
They are carried out in an asynchronous manner. For this, the arbiter, or manager, 
must be highlighted within the bus controller as the one that receives requests and, 
depending on the access policies, determines which entities can get access to the 
bus. Examples among the commercial arbiters are the 74xxx148, 74F786 and 82C89 
(by Intel). In the example shown in Figure 1.42, a couple of signals (requesti, granti) 
handle access to the bus. A requesting node i (i ∈ [0, 3]) generates its access request 
to the bus Reqi (Bus Request) and receives its grant Grti (Bus PRiority iN, sometimes 
called BPRN). 

A priority encoder (Figure 1.43) establishes the number of the line to be served 
according to a given policy. The request and resolution are in parallel here. 
Arbitration of the VME bus is carried out in this way for n = 2, that is, for four lines 
of authorization request. Centralized arbitration is simple to execute, but the number 
of nodes is limited. The bus manager always needs to know whether there is a 
request currently underway, and whether the bus is busy or released, which depends 
on the shared signal of bus busy CBusy (for Common Busy), which is not shown. In 
order to avoid a shortage in the case where a node does not release the bus and 
another with higher priority asks for it, the bus manager can order the immediate 
release of the bus by deactivating its grant. 

 

Figure 1.43. Centralized arbiter with independent request and resolution 

The sequence diagram in Figure 1.44 provides an example of centralized 
arbitration with fixed priorities. Node no. 0 has the highest priority. The bus is free. 
Node no. 1 requests the bus, and is then granted permission to take it. It takes the 
bus, then frees it. Node no. 0 does the same. While this last node is master of the 
bus, node no. 1 makes a request that will always be denied while a higher-priority 
node (in this case, node no. 0) is in possession of the bus. When the bus has been 
freed, it can then take it. We can see here that fixed priority is not fair. 
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Figure 1.44. Example of a centralized arbitration  
protocol with a daisy chain response 

Figure 1.45 shows the distributed version of a solution with independent 
requests. The requesters place their priorities along one of the lines of the request 
bus. This is an expensive option in terms of the width of the bus, but it is easy to set 
up in terms of electronics. The node in current possession of the bus deactivates the 
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“bus assigned” signal; the node with the highest priority can then acquire possession 
of the bus by activating the assignment signal. 

 

Figure 1.45. Arbitration by independent requests in a decentralized version 

Polling is another option that involves cyclically questioning nodes in order to 
establish which is the requester (Figure 1.46). The node with the number 
corresponding to the current value of the counter activates the occupation line, 
which causes the counting to stop. Once the bus has been freed, if an access request 
has been made, the counter can start a poll again, either by restarting the counter or 
by starting again from the last node that has been granted access. The second option 
has the advantage of providing rotating priority, while the former provides the same 
as there would be in a daisy chain. 

 

Figure 1.46. Centralized arbitration by polling (from Thurber et al. (1972)) 

In order to remove the request line, the counting is decentralized and a global 
clock signal Clk paces the counting (Figure 1.47). If a node wants the bus and the 
value of its counter is equal to its number, then it activates the occupation line, 
which results in the counting stopping. As before, after the bus is released, the 
counting can either return to its current value or be restarted depending on the 
priority policy desired. This type of mechanism is sensitive to noise.  
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Figure 1.47. Centralized arbitration by polling 

When a node frees the bus in a distributed version (Figure 1.48), it positions the 
“bus free” signal and a number on the polling bus. This can represent an address or a 
priority. If this value corresponds to a node, the node in question activates the 
acceptance signal, which results in the “bus free” signal being deactivated. If this is 
not the case, however, counting takes place indefinitely according to the chosen 
priority policy until a positive response is received from one of the nodes. 

 

Figure 1.48. Distributed arbitration by polling 

In a distributed self-selection approach, each entity is an agent in the negotiation. 
There is a linear version (with a linear self-selection arbiter), which has as many 
lines as nodes, but the number of which can be reduced with coded version (this is a 
coded self-selection arbiter). Here, we have an example of distributed arbitration, 
inspired by buses MCA (Micro Channel Architecture), S-100 (IEEE Std 696 
(ANSI/IEEE 1982b)), FASTBUS (IEEE 1989) or Futurebus (IEEE Std 896 (IEEE 
1994)). Access to the buses is provided synchronously (by cycle). The arbitration 
phases are the following: at the start of a cycle, the interested units emit the value of 
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their priority over the bus (excluding values of zero). The address thus formed is the 
“logical OR” of the addresses thanks to outputs like the collector or the open drain 
(cf. § 2.2.1 and 2.3 in Darche (2004)). The absorbing element is therefore the value 
“1” when the outputs are not active. During the arbitration cycle, the units listen to 
the bus and change their emission to 0 (i.e. they deactivate its lines) for bits with a 
weight that is less than the position of the first difference (the order is MSb → LSb 
for Least Significant bit). The winner is the unit that recognizes the value of its 
priority on the bus. Figure 1.49 shows a real example of this. A major disadvantage 
is that the priority is fixed and therefore not fair. Kipnis (1989) formalized the 
protocol, and Taub (1984) describes the arbitration diagram of the Futurebus. 

 

Figure 1.49. Example of arbitration distributed by self-selection 
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Figure 1.50. Local arbiter from the MCA bus 

Figure 1.50 provides an example of the local arbiter logic, in this case from the 
MCA bus. A central arbiter is tasked with managing the arbitration phase by 
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authorizing the local arbitration phase and detecting when it has ended. The 
arbitration serially propagates from the MSb towards the LSb. As soon as a stage i  
(i ∈ [0, 3]) detects that its bit with a priority of Pribi is greater than the one present 
on the bus (+Arbi), it causes the local election to be lost by blocking the lower AND 
gates. 

Overlapping arbitration (anticipated arbitration) involves carrying out the 
arbitration for the next transaction before the current one has finished. Both 
Unibus™ and PCI operate with this characteristic. The property of bus parking 
allows possession to be retained as long as another master has not yet requested it. 

Bus arbitration logic is one of the function modules of the bus interface  
(cf. § 3.1). A commercial example of a discrete Arbitration Bus Controller (ABC) is 
the TFB2010 circuit from the company Texas Instruments (TI), made for the 
Futurebus+ (FB+) bus, which has been standardized under IEEE Std 896 (IEEE 
1994). An integrated version of the controller is the MPU NS32132 from the 
company National Semiconductor (NS). 

In summary, the centralized option has the advantage of being simpler, but the 
number of nodes to be managed is limited. Distributed policies are more tolerant 
with regard to material faults. This obviously does not apply to the daisy chain, 
which is an exception. It tends to be slow, and priority usually depends on the 
physical position of the card on the bus. Other arbitration techniques do exist, such 
as collision detection and ID tokens. Collision detection is used in the field of 
networks through the CSMA/CD protocol (Carrier Sense Multiple Access with 
Collision Detection method) by Ethernet (IEEE 1985). The use of ID tokens is 
another technique, based on a token that goes from node to node (sequential token 
passing). The node that is in possession of the token can access the bus. The 
protocol must ensure that the token is unique. Finally, for informative purposes, the 
main arbitration protocols are covered in Guibaly (1989). Dandamudi (2003) created 
a classification of arbitration criteria, which is shown in Figures 1.51 and 1.52, 
which are perfect summary of the points we have made heretofore. The first one 
covers organization, allocation policies and bus release. 

 

Figure 1.51. Design tree of a bus arbitration 
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The second figure classes the access requests and grants. 

 

Figure 1.52. Design tree of a bus arbitration (continued and end) 

1.7. Conclusion 

After some general points regarding communication, the main mechanical, 
electrical and temporal characteristics of buses were presented. These can potentially 
be specified within a reference standard, which would allow for further 
standardization of electronic and mechanical components, thus reducing costs. Next, 
we looked at the notions of protocol and arbitration. Exchange by the synchronous 
approach was examined in great detail. 



2 

Transactions and Special Cycles 

This chapter focuses on transactions. These are important as they provide a 
solution to the bottleneck problem. In this context, we shall cover the following 
modes of transfer: pipelined, split and Out-of-Order (OoO, an extension of the split 
mode). Moreover, in addition to the classical cycles of read and write, this chapter 
also covers cycles that are termed “special”, such as broadcasting and block 
transfers. 

2.1. Transaction 

A transaction is made up of a sequence of messages. A message is the base unit 
of any information. It comprises an address, data and an access type. The three 
phases of a bus cycle are access request (usually in a multi-master environment), 
addressing and data transfer. There is also sometimes a termination phase. The 
request itself is split into a request, an arbitration and a grant of possession of the 
bus. 

2.1.1. Transaction pipeline 

All of the (sub)phases of a transaction that are normally carried out sequentially 
can also be executed in parallel if they are placed into the different functional stages 
of a pipeline. This is called a pipelined bus, with a pipelined transaction. This 
approach involves functionally splitting the transaction into sub-steps in order to 
execute them in parallel in the same number of stages. This is used in Synchronous 
Static and Dynamic Random Access Memory (SSRAM and SDRAM, cf. § 4.5.1 and 
6.1 in Darche (2012)). Figure 2.1 shows how a write operation can be split into 
phases. The request involves sending the address and type of transfer requested. The 
transfer, address and data phases are overlaid onto each other. 

Microprocessor 2: Core Concepts Communication in a Digital System 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Figure 2.1. Pipelined write operation split into phases 

For a read to be carried out in phases, a wait cycle has to take place in order for 
the read to be effective. This is shown in gray in Figure 2.2. 

 

Figure 2.2. Pipelined read operation split into phases 
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The point of this functional splitting is that it opens up the possibility of 
introducing partial parallel operating, as shown in Figure 2.3. This notably frees up 
time for decoding the addresses. 

 

Figure 2.3. Transactions with partially parallel phases 

Maximization of this parallelism results in transfer pipelining, as illustrated in 
Figure 2.4. The address of the next transaction is sent in advance to the dedicated 
bus before the current transaction has ended. After a certain structure loading time 
has passed, the pipeline is fully effective, and the data bus is 100% occupied. In the 
example, this occurs from the third request onward. The transfer of data requested 
during previous phases takes place in parallel to any new requests. 

 

Figure 2.4. Pipelined transactions 
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Sometimes, it becomes necessary to temporarily stop the progress of the request 
along the pipeline for the duration of one clock cycle because of a conflict of access 
in the bus. This forced wait time is called a “stall cycle” and is shown in Figure 2.5. 
One of the operating rules is there can only ever be one slave in possession of the 
bus at any time. Another rule is that a grant can be made when the bus is being used, 
but not until it has been freed by the current owner. 

 

Figure 2.5. Stall cycles in a pipeline 

2.1.2. Splitting the transaction 

In the previous subsection, we have just seen that, in a pipeline, an increase in 
the number of functional stages results in an increase in bit-rate, but strict 
sequencing causes stalls, which lower the bit-rates of the buses (cf. above). 
Competition in terms of access can be introduced by splitting the transaction into 
two separate sub-transactions, which are the request transaction and the reply 
transaction. This is illustrated in Figure 2.6. In this way, while awaiting the 
response, the bus can be released for another access request and then given away 
again in order to finish off the first transaction. This is what is known as a split 
transaction. The associated bus is called a split-phase or packet-switched bus. The 
address and data phases are completely separate from each other, as is their 
arbitration. For this reason, they share a tag, which is generated during the first 
phase, which must subsequently correspond to the tag from the second phase. 

 

Figure 2.6. Split transaction  
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The order in which the address bus, followed by the data bus, are taken is 
maintained (classical pipeline). However, extension of the splitting allows for an 
out-of-order processing, as takes place in microprocessors. This means that the order 
of the transfers does not have to follow the order of the requests, as shown in  
Figure 2.6, where transfer 1 takes place after transfers 2 and 3. This allows for 
further optimization of how the bus space is occupied. A commercial example is the 
PowerPath-2™ bus from the Challenge family (Galles and Williams 1994) made by 
SGI (Silicon Graphics, Inc.). To order transactions, this bus has to connect the 
request and the transfer. To do this, it uses a tag with a format of n = 3 bits, which 
enables it to link them together rather than to the address. Another commercial 
example is the Gigaplane™ bus from the company Sun. The exchange can be 
synchronous or not. 

In order to respect real-time constraints, preemption can be added to this 
approach, which allows the bus controller to take the bus away from an entity with 
lower priority, and allocate it to one with higher priority (this is transaction 
preemption). The interrupted transaction can be resumed later on (transaction 
resumption). Lastly, overlapping arbitration (cf. § 1.6) enables overlapping address 
and data phases to be carried out. 

2.2. Special cycles 

Beyond the classic transfers of read and write, there are also other types of 
access, such as read–modify–write, diffusion and broadcall. The first of these was 
explained in the context of dynamic random access memory (DRAM, cf. § 5.2.1 in 
Darche (2012)). In a single cycle, it can read and then write a single piece of data in 
the same location. This function can be used in the case of a critical section for 
changing an access lock. Broadcast allows a master to write an element of data in 
various different slaves in the same cycle. One use of this is to maintain coherence 
in several caches. Broadcall is a read operation where several slaves position 
information on the bus. This can be used in the detection of several interrupt 
requests coming from various sources, by carrying out wired AND or OR functions 
(cf. § 4.1.1 in Darche (2003)). These two types of transfer can be contrasted with an 
addressed transfer. 

There are two fundamental types of transfer, either unique by word and multiple 
by block of varying or fixed lengths (these are block-oriented transactions), or 
block-word combinations of fixed or varying lengths. During a simple cycle, for 
example, for a read operation, after any possible arbitration has been conducted, a 
command and an address are sent to transfer one word after each cycle. In order to 
increase the rate of memories sent, and to adapt to the transfer mode of the cache 
memory, a block transfer mode can be used. It resembles the burst mode of RAM 
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(cf. § 5.5.2 and 4.4.5 in Darche (2012), and also the chapters on SDRAM (no. 6) and 
on memories using packet-based communication (no. 7) in the same work). This 
allows for the consecutive block transfer of n words from the memory (cf. § 4.4.5 
and 6.3 in Darche (2012)). Only the address at the start of the block being 
transferred circulates along the bus, and potentially the number of words to transfer, 
if this is not clear, as well as the data (Figure 2.7). A burst mode is greater than the 
value of the unit flow multiplied by the size of the block. It is equally adapted to 
Input/Output (I/O) transactions. This approach is better when used with a 
multiplexed address/data bus. However, requests coming from other nodes must also 
be considered, especially those with real-time constraints. One solution to this is to 
limit the length of the bursts, or to add preemption, which interrupts the transaction 
and allows it to be continued later. 

 

Figure 2.7. Read by block 

Lastly, there are also other transfer modes. An example is the address-only 
modes, without any data, which can be used for a dialogue with the cache, for 
example. Others are the TLB (Translation Lookaside Buffer, cf. V2 on future 
memory devices), compelled-data, or packet-data. In a compelled-data mode, the 
slave has to provide a response before the master can move on to another transfer 
(IEEE 1991). 

2.2.1. Managing interruption 

The mechanics behind interruption is of importance not only to the management 
of I/O, but also in the handling of errors and, especially, for Operating System (OS) 
calls. There are two types of interruption, which depend on the origin of the request, 
which can be either software or hardware (cf. the classification in § 4.1.1 in Darche 
(2003) and § V4-5.1). The latter is the one of interest here, and in this case, these are 
the specific input signals of the microprocessor. Each input is sensitive to a single 
level or transition of the signal. The request lines can be unique to each slave S, or 
the request can be shared. In this case, outputs of the L(ow) type must be used, 
which correspond to the collector of an NPN transistor, or the open drain of a PMOS 
(Positive (channel) Metal Oxide Semiconductor, cf. § 2.1.3 in Darche (2004)), 
depending on the logic technology used (Figure 2.8). 
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Figure 2.8. Interruption bus 

Figure 2.9 shows an electric circuit corresponding to the outputs of the open 
drain or open collector types. These parallel electronic interrupts connect the request 
line to the ground, forming a wired negative logic OR function and a wired positive 
logic AND function (cf. § 3.4.5 in Darche (2004)). The sharing of interrupt requests 
is a possibility here, as long as the request is level-sensitive at the level of the 
master, as opposed to being carried out by transition, which would result in any 
requests coming after the first one not being detected. For this reason, the extension 
bus ISA1 (Industry Standard Architecture, cf. § 4.2.4) could not share an interrupt 
request line. This problem can be overcome using a software solution, and by setting 
up a polling technique. However, this solution has its own intrinsic limitations (i.e. 
risk of loss of request and high computing power requirements.  

 

Figure 2.9. Interrupt bus 

Each request line or interrupt number is associated with an interrupt handler. In 
order to start it, first its start address must be known. This is called the interrupt 
vector. This vector is typically stored in a table called the interrupt vector table  
(cf. § V4-5.7), which is itself saved in the main memory. During a bus cycle, the 
interrupt phase corresponds to the transfer of the interrupt vector toward the 
processor processing the request. For this to happen, the origin of the requests – 
whether of bus access, interrupt, DMA transfer (cf. next §), by slave or by master – 
must first be determined physically. This can be achieved using a daisy chain, which 

                              
1 Not to be confused with the ISA (Instruction Set Architecture, cf. § V1-3.5). 
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passes the dialogue grant with the master from slave to slave. This technique is 
called “proximity addressing”. For the closest authorized entity, this dialogue 
involves making an identifying word (called vector) available on the bus. This 
vector corresponds to the address, whether direct or indirect, of the start of the 
corresponding interrupt handler. Another solution is to activate the bus lines 
associated with the slave being questioned (broad-collect cycle) (Nicoud 1987). The 
mechanism behind interrupts is explained in detail in Chapter V4-5 and for I/O in  
§ 4.1.1 of Darche (2003). 

2.2.2. Managing direct memory access 

We saw in Chapter 1 of Darche (2003) that any information coming from the 
memory from the I/O should in principle pass through the registers of the MPU 
(MicroProcessor Unit). Direct memory access (DMA) is a mechanism that allows 
the processor to be relieved of this transfer, which is a role taken on by a specialized 
controller (Figure 2.10). The processor programs (i.e. initiates) the DMA Controller 
(DMAC) by telling it what the source and destination addresses are, as well as the 
number of memory words to transfer. It then starts the transaction. The buses are 
shared between two masters: processor P, which is free to take on another activity, 
and the DMAC, which carries out the transaction. The microprocessor is warned of 
the end of the transaction through a general interrupt (cf. § 2.2.1 and Chapter V4-5). 
This mechanism has been studied in detail in § 1.2 and 4.1.3 of Darche (2003). 

 

Figure 2.10. Exchanges between the main memory and  
classical I/O units and by direct memory access 
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2.2.3. Bus Mastering 

Bus Mastering (BM) allows a bus expansion card to take control of the bus 
through the arbiter (Integrated System Peripheral (ISP) chip). Reference circuit 
82367 by Intel is representative of this concept. The expansion buses (cf. § 4.5) 
EISA (Extended ISA) and PCI contain this function. It is different from classical 
DMA (“third2 party” DMA), in that it is not the MPU that initiates the transfer of the 
descriptor (source and destination addresses, and length), but rather one of the cards. 
One of the card’s local DMA controllers is usually needed (“first party” or BM 
DMA). In order to avoid one card penalizing all the others, an order of priority is 
required. This normally has four levels, which are system memory refresh, the DMA 
transaction, the MPU transaction and the BM. One of the first interfaces to use this 
was the SCSI (Small Computer System Interface, cf. § 9.3.1 in Darche (2003) and 
Schmidt (1995)). The Ultra DMA transfer (UDMA, cf. § 4.1.3 in Darche (2003)) is 
another example for hard drive mass storage memory devices or HDD (Hard Disk 
Drive). 

2.2.4. Detection and correction of errors 

Packet communication helps to reduce errors, in both the absolute and 
metaphorical sense. Detection takes place at the level of the packet, which allows for 
easy and rapid rectification of the error. Classical examples of error detection and 
correction protocols that can be applied to packets are the Alternating-Bit (AB, also 
called the Stop-and-Wait) protocol and the Automatic Repeat reQuest (ARQ) 
protocols (Fairhurst and Wood 2002), which is a form of the sliding window 
protocol. These include the go-back-N technique (also called REJect technique or 
REJ) and the selective-repeat (also called Selective Reject, SREJ) technique. These 
are not covered in this work. 

2.2.5. Multiprocessor aspect 

In the 1980s, a multi-master bus would allow communication between a mono-
processor system and co-processors or transaction facilitators, such as a DMA 
controller (DMAC). Nowadays, multi-master systems contain several processors 
that each have their own cache memory and main memory, and furthermore 
physically share a cache memory and a main memory. They therefore have a private 
address space (AS, cf. § V3-2.1.1.1) and, possibly, a shared AS as well. The 
interrupt request and DMA signals are hard to process in such an environment. The 

                              
2 The first two elements are the source and destination, respectively. The controller (the third 
party) handles the transfer.  
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bus has to be able to provide a range of options for the designer in terms of 
arbitration (centralized or distributed, different selection policies, maximum number 
of requests processed, etc.). Moreover, the current trend is to use an electrical signal 
to replace these interrupt requests and DMA transfer mechanisms with the 
mechanism used in the message passing, as shared memory communication is not 
suitable for this. The requests are then encapsulated within a classic data transfer so 
as to not specialize the bus signals for a given type of microprocessor, and so that it 
can easily adapt to the microprocessor environment. 

2.3. Conclusion 

The notion of transaction has allowed an access to be split into several sub-steps, 
which can then be put in parallelized thanks to a pipeline. Special cycles are 
solutions that help deal with mechanisms such as interruption and direct memory 
transfer. Bus mastering is a way of avoiding, always having to go through the MPU 
for any exchange. In order to make communication more reliable, mechanisms for 
detecting and correcting errors have been proposed, both in terms of software and in 
terms of hardware. The current trend is a shift toward serial buses and packet-based 
communication, thus moving away from the cycle. 



3 

Bus Interfaces 

In order for connections to be made with a bus, each of its nodes must have an 
interface. This chapter covers the notions relating to these interfaces. 

3.1. Functional modules 

The nodes of a bus, which usually take on the physical form of an electronic 
board, can be modeled as two sub-sets (Figure 3.1): the user module and the bus 
interface (I/F). The user module can be a master M or a slave S. Examples of this are 
the MPU (MicroProcessor Unit), memory devices or Input–Output (I/O) controllers. 
The bus interface enables dialogue between the user module – whether master or 
slave – and the bus. It can be modeled functionally by two sub-sets which are the 
interfacing logic and management elements or functional modules. 

For buses operating synchronously, a distinction must be made between the bus 
interface and the user module. If the state machine of the interface is paced by a 
clock, then it is called a “clocked interface”. If the host is paced by another clock, or 
operates asynchronously, this can result in clock issues, such as metastability  
(cf. § 3.5.2 in Darche (2004)) due to the presence of two clock domains (CDC for 
“Clock Domain Crossing”, cf. § 3.6.6 in Darche (2012)) and violation of the golden 
rule of access (i.e. bus-setup and hold times, cf. § 3.3.4 in Darche (2012)) that 
applies to the flip-flops. If both entities are paced by the same clock signal, this is 
called a “clocked protocol” (Corso et al. 1986). 

Functional modules, or management elements, have historically controlled 
access to the bus (request, arbitration, grant, preemption), interruptions (request, ID 
vector, state) and DMA type transfers (Direct Memory Access, cf. § 2.2.2). Another 
function is the creation of bus timing signals. Lastly, address decoding helps select a 
slave that has to respond. The slave is activated by the address, potentially with a 
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geographical form of addressing, such as the slot number (cf. § 1.5). There are 
several types of selection: decoded, coded or mixed; this depends on the position of 
the decoder in relation to the inside or the outside of the slave. Moreover, 
incomplete decoding can be chosen in order to cut costs, which results in ghost 
addresses (cf. § 2.2.2 in Darche (2003)). Nowadays, the current can be finely 
managed in order to control the power-on and power-off processes of the user and to 
regulate system current use or the hot swapping of electronic boards. Examples 
include the conversion of bus protocols and the temporary storage of information 
through FIFO (First-In, First-Out) resource handling, thus adapting the bitrate 
between the bus and the nodes (cf. V2 on semi-conductor memory devices). Lastly, 
the board can possess a ROM (Read-Only Memory) containing a piece of firmware 
(FW) for setup, startup and handling of the I/O (extra BIOS (Basic Input/Output 
System, cf. § V5-3.5.3)), or even pre-saved management parameters if the memory 
device is programmable. Setup can involve defining an address or a whole range of 
addresses. A network interface can also have a start-up program or a primary boot, 
resulting in the function of “boot by LAN” (Local Area Network), that is, starting 
the computer via the local network. 

 

Figure 3.1. Functional modeling of a bus node 
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3.2. Associated signals 

A signal is different from the power supply lines (V+, V-, if needed, and Gnd) as 
it carries information in the shape of a physical parameter: electricity. A signal is 
said to be unipolar – as opposed to bipolar – when all of its values have the same 
polarity. Logical signals can be active for a given level (they are “level-sensitive”) in 
the high or low state (positive or negative logic respectively, cf. § 2.1.4 in Darche 
(2004)). They can also be active on one or both edges (“edge-sensitive”). Being 
active in the low state is marked by the name of a signal (or its acronym), prefixed 
or suffixed by the symbols n, -, #, * or /, or if it has an upper bar. An absence of 
symbols, or the + symbol mark activity in the high state. In terms of components, a 
distinction is made between the Input signal (I), the Output (O) and the input–output. 

The signals were initially an amplification of those coming from the 
microprocessor. In order to make them generic, meaning that they are able to receive 
electronics that are separate from the electrical interface and the communication 
protocol of the microprocessor, bus signals are no longer dependent on these 
elements. An old example was the PCI (Peripheral Component Interconnect,  
cf. § 4.2.4) extension bus, which used to allow the same graphics card to be used by 
both a Power Mac G4 computer, made by Apple, with a PowerPC G4 
microprocessor from Motorola and IBM, and by a PC (Personal Computer) 
equipped with a microprocessor made by Intel. The only element that changed was 
the associated device driver (i.e. a system software) because of the different 
microprocessors and operating systems. 

Bus signals are typically separated into different families based on their function. 
For non-multiplexed buses, a distinction is made between the buses used for 
transfer, that is, address, data control and transfer state/status/error buses, and the 
other buses. These “others” are access arbitration, interruption, DMA transfer, 
synchronization and service buses. 

The Address Transfer Bus (ATB) carries the address generated by a master to the 
slaves in order for them to be chosen. This is the first piece of information sent by 
the MPU during an access cycle. A position code can assign a unique value to each 
of the boards that are inserted into the bus (geographical addressing, cf. § 1.5). 

The Data Transfer Bus (DTB) usually takes on the n signals from the 
microprocessor D[n-1:0] (also: Dn-1-D0). A data transfer bus can transfer binary 
words in a smaller format than the format of the bus. This is referred to as a sub-
word transfer, for example, 1 byte in a bus with a width of m = 32 bits. In this 
context, the bus is said to be unjustified – or straight – when the sub-words (the byte 
in this example) take up the amount of space that they would have taken if they were 
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to belong to a larger word (Figure 3.2(a)). The placements are called lanes or 
corridors (here “byte lane”). 

 

Figure 3.2. Unjustified bus (a) and justified bus (b) (from Borrill and Theus (1984)) 

An example is the synchronous NuBus, created in the 1970s at MIT 
(Massachusetts Institute of Technology). The concept is illustrated in Figure 3.3. 

In a justified bus, the sub-word occupies the extreme bits (which most of the 
time are those whose weighting is lowest) during transfer; in the end, they are put 
back in their original position within the module. This is illustrated in Figure 3.2(b). 
One example is the Multibus-II1. A disadvantage is that the associated management 
electronics, based on multiplexers, is integrated into all of the bus interfaces, even if 
the nodes respect the native format of the bus. These electronics are complex, 
expensive and cause delays. In both cases, one or several additional specific signals 
mark the format of the transfer. Mixed solutions exist for the VME bus (Versa 
Module European, cf. § 4.2.7), with justification for a 16-bit transfer, and a direct 
version for an 8-bit transfer. 

The control bus is made of access control signals (memory and I/O read and 
write), an additional signal that marks the address type (memory or I/O). It also 
contains the byte number. The control can mark the valid byte within a word or 
within the width of the transfer. 

The status bus reports on the bus errors. Error signals can involve other masters 
as well as the memory system. An error can involve address assignment, the 
information transmitted or stored, the I/O, the power supply management or even the 
bus itself. The detection and correction of errors is based on the same techniques as 
those used in the memory, that is, control though Cyclic Redundancy Checks (CRC) 
(cf. § III.6.7 in Darche (2000)), with its own particularity that is logical parity  
(cf. § III.6.6 in Darche (2000) and § 2.6.4 in Darche (2012)). Control can be global, 
or carried on each word, for example in a subword-parallel transfer. 

                                 
1 This is a partially justified bus as the 24-bit format transfer is not justified. 
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Figure 3.3. Unjustified bus: Nubus 



62     Microprocessor 2 

The access arbitration bus manages access to the transfer buses. It comprises 
signals of request, grant and state (locked or relaxed bus). Arbitration can also 
involve interruption and DMA transfer requests. The signals associated with these 
belong to the interruption and DMA transfer buses. Interruption management signals 
are involved in request and acknowledgment. The reset signal (#Reset) is one of 
these. The DMA transfer bus comprises the direct memory transfer management 
signals (request and acknowledgment). 

The synchronization, or “timing line”, bus carries the clock signals (e.g. the 
“constant clock” and the “bus clock”), the synchronization signals (“strobe” and 
“transfer acknowledge”) and, although only for the pseudo-synchronous bus, the 
Wait or Ready cycle extension signals. The clock can be asymmetrical, with one 
edge marking the moment of change, and the other the validity of the information 
(in order to take it). An example of this type of clock signal is the NuBus. 

Lastly, the utility bus generates the start and stop sequences. A specialized slow 
serial bus can coexist alongside the main bus. It allows management information to 
be gathered, such as the case in the serial bus of SPB (Serial Presence Detect) 
memory in SDRAM (Synchronous Dynamic Random Access Memory, cf. § 5.3 in 
Darche (2012)). It allows access to the ROM of modules containing its temporal 
characteristics, among other things. It can also assume a diagnostic function for bus 
nodes. 

3.3. Interfacing logic 

The main purpose of the interfacing logic is to isolate and amplify all of the 
signals. It can carry out a voltage level shifting between the different types of 
technology and logical families (i.e. unipolar or bipolar, cf. Chapter 2 in Darche 
(2004)). The logic is made of drivers (line amplifiers) and receivers, which can be 
coupled together (transceiver, cf. § 3.3.4). Due to increases in operating frequency, 
and in order to provide higher bitrates, “more electronic” functions have been added, 
such as impedance matching, input filtering – for example, in the case of a wired-
OR function – and control of the slew rate at the outputs. When going beyond a few 
dozen MHz, physical phenomena that could have previously been considered 
negligible, such as coupling, have to be taken into account. This is of relevance first 
of all for clock signals and then also for other signal families. This section deals with 
the specific problems of bus lines. 
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3.3.1. Transmission lines 

The path of communication in a bus is embodied materially by an electrical wire, 
for example, a ribbon cable, or a metallic trace of a Printed Circuit Board (PCB) with 
return current through the ground, called a transmission line. Four parameters 
electrically characterize this transmission line. These are: R, a resistance per unit 
length (unit: Ω/m); L, an inductance per unit length (unit: H/m); C, a capacitance per 
unit length (unit: C/m); and G, a conductance per unit length (unit: S/m). Figure 3.4 
represents this RLCG lumped-parameter model for a short length of cable dx. The 
value of the resistance is proportional to the length and inversely proportional to the 
section. 

 

Figure 3.4. Equivalent circuit of a transmission line (Darche 2004) 

A line has a characteristic impedance Z0 or Zc, given in ohms (Ω), which should 
not be confused with its resistance R, as they both share the same unit. For a line 
with no losses, it is defined by the following expression: 

ܼ଴ = ට௅బ஼బ [3.1] 

where L0 and C0 are the linear line constants, which are respectively the inductance 
and the capacitance, per unit of length. 

A low frequency line can be considered to be perfect. It is only resistive, as it has 
no parasitic capacitance or inductance (these values are negligible). At high 
frequencies, meaning for values of more than one MHz, these secondary 
characteristics become significant. The propagation velocity ߥ along a line depends 
on the relative permittivity of the insulation ߝr and it is defined by the following 
formula, where c is the value of the speed of light: ߥ = 	 ௖√ఌೝ [3.2] 
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A real computer bus contains several lines with stubs (i.e. derivations). At high 
frequencies, each connecting pin behaves like an antenna. All kinds of couplings, 
whether capacitive, inductive or magnetic, can exist. The electric charge for the 
emitter is not uniform along the bus, and the speed of propagation of the signals is 
not uniform either. In theory, the propagation time per unit of length tpo is given by 
the following formula: ݐ௣௢ = ඥܮ଴ ×  ଴ [3.3]ܥ

And the bus delay time tL with a length of l is equal to: ݐ௅ = ݈ × ௣௢ݐ  [3.4] 

The propagation time tpo of a line on an FR4 (Flame Retardant 4) type PCB is in 
the order of 140–180 ps/inch, which is a little more than twice that of light in a 
vacuum. The bus can be considered to be a transmission line if the transition time of 
the signal tr is less than 2 × tL, as the line effects are no longer negligible, especially 
those of signal reflection. A quick bus has a fixed value for its length, which is 
limited. An example of this is the Rambus memory channel (cf. § 7.2.1 in Darche 
(2012)). It should be treated as a collection of transmission lines. The mechanical 
and electrical characteristics of these lines should be specified. The management 
electronics should be considered to be more analog than digital. The electronics of 
the transceivers should be adapted accordingly (cf. § 3.3.7). 

3.3.2. Integrity of the signal 

The frequential and temporal features of the communication channel are tied to 
the electrical parameters of the transmission, which are the value of the resistance, 
the capacitance and the inductance. Distributed capacitance increases the rise and 
fall times, which limits bitrate. In order to decrease this time, a driver can be used, 
but this increases current consumption, as well as noise. The maximum frequency 
for a coppered pair sits in the order of several dozen GHz. The longer the line and 
the higher the value of the frequency of the signal, the more there are problems 
relating to propagation. With every advancing generation of microprocessor, the 
exchanges of information are carried out at higher and higher frequencies. The first 
models are used to run at frequencies of less than 1 MHz. Nowadays, these 
exchanges take place at several hundred megahertz, sometimes even above a GHz 
for the most powerful models. 
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This constant race for higher speeds has generated its own electrical problems. 
Under certain conditions, there can be overshooting and undershooting of the 
amplitude, as well as ringing signal oscillations. These phenomena take place during 
changes of the logical state, or when the signal is reflected at the end of line and is 
overlaid over the incident signal. Issues of crosstalk, that is, interference of one line 
(the aggressor) on another (the victim), can also arise. Noise interferes with the 
useful signal and introduces transmission errors. The sources of noise can be RFI 
(Radio-Frequency Interference) and EMI (ElectroMagnetic Interference, both 
contained in the field of EMC (ElectroMagnetic Compatibility)), and current loops. 
One form of protection against electromagnetic interference is shielding. Typically, 
this is a ground line that is placed between the two signal lines or between the 
ground planes and the internal power planes. The propagation times acquire the 
same order of magnitude as the period of the signals, and as a result, management of 
the clock signals becomes vital. This issue has been examined in § 3.6.5, 3.6.6 and 
7.1 in Darche (2012). The interface electronics must take into account the line 
characteristics in order to specify their own characteristics. 

3.3.3. Terminating a line 

Once it arrives at the end of the line, the signal is reflected. An explanation of 
this phenomenon can be found in DeFalco (1970). The reflection coefficient ߔ can 
be defined through relation [3.5]. In a short-circuit, 1- = ߔ, for an open line, 1 = ߔ 
and when impedance is adapted, 0 = ߔ, so there is no reflection ߔ = ௓ಽି௓బ௓ಽା௓బ [3.5] 

where ZL is the charge at the end of the line. 

In order to avoid reflection, the transmission line should end with a termination 
load RT. This is either an active or a passive load, whose role is to absorb the energy 
of the incident signal. In the case of a resistive line, its value must be that of the 
characteristic impedance of the line Z0. The first one, which has its resistance in the 
ground mass (Figure 3.5(a)), is the simplest. The second one (Figure 3.5(b)),  
whose resistance is connected to a reference potential (the value of which is the 
median value compared to the electrical current), helps limit any voltage excursions 
of the signals during commutation, and therefore improves commutation 
 times. 
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Figure 3.5. Passive methods of line termination 

The passive approach described above consumes a considerable amount of 
current. The method in Figure 3.6, based on a voltage divider bridge, is most likely 
the one that uses the least amount of current. 

 

Figure 3.6. Passive method for terminating a line  
with a resistive voltage divider bridge (continued) 

Figure 3.7(a) and (b) shows an applied example of SSTL (Stub Series 
Terminated Logic, cf. § 3.4 in Darche (2012)). 

 

Figure 3.7. Diagrams of passive terminations in SSTL_2 classes I (a) and II (b) 
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A reference tension Vref of 0.7 V helps limit the sub-voltages to roughly 0 V 
(pinch-off voltage). This is what happens in the Eurobus bus, which relies on the 
direct voltage Vd of the clamping diode when it is conducting (Figure 3.8). 

 

Figure 3.8. Undervoltage diode limiter (active approach) 

Active approaches, which use voltage or current regulators, are preferred. These 
are shown in Figure 3.9. 

 

Figure 3.9. Active line termination based on a voltage regulator 

In order to remove static consumption, an AC termination (Alternating Current) 
based on an RC (Resistor–Capacitor) serial network can be considered. 

3.3.4. Driver and receiver 

In order to transmit a signal along the bus, an emitter tasked with amplifying the 
signal (a line or bus driver) and a receiver are required. The emitter sees the line and 
the receiver as electrical loads. When there is only one wire, this is called a single-
wire system. In order to emit and receive when in full-duplex, two lines are needed. 
This is called a two-wire system. The receiver interprets the signal voltage by  
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comparing it to one or several reference voltages in order to determine what the 
corresponding logical state is. 

With regard to the electrics, short-circuits can occur along the lines of a bus 
when two entities deliver complementary states at their outputs. This issue can be 
fixed through the notion of logical gate output with an open collector, emitter, drain 
or source, depending on the technology used, as well as with the inaccurately named 
“three-state” logic (or TRI-STATE® logic, cf. § 2.2.1 in Darche (2004)). The first 
type of output is usually well-adapted for arbitration and buses, as it is less sensitive 
to design errors. Unlike in a three-state output, a short-circuit resulting from two 
outputs being active in complementary states (one in the state “1” and the other in 
the state “0”) is not possible here. It enables a bus connection to be created. These 
outputs also establish a wired-AND in active-high logic and a wired-OR in active-
low logic (cf. § 3.4.5 in Darche (2004)). However, they require the presence of a 
voltage-pulling system that can either be passive (resistance) or active (Pull-Up or 
Pull-Down Network (PUN or PDN) cf. § 2.1.1 in Darche (2004)). One major 
disadvantage is the presence of glitches, which can even result in the generation of 
unwanted logical states (wire(d)-OR glitch) when the output transistor of the driver 
switches to its ON-state in a large enough bus (Gustavson and Theus 1983). A filter 
must be put in place in order to eliminate, or at least attenuate, these glitches. The 
output of a three-state logical operator allows for a bus element to be electrically 
disconnected. Its output stage is of the “push–pull” type, with an adequate command 
that allows the two output transistors to be blocked. There are therefore three 
possible states, two low-impedance states high (H) and low (L), and one high-
impedance state (Z or Hi-Z). 

This specialized management logic of access and exchanges between the entity 
(MPU, memory or I/O exchange unit) and the bus is integrated into the bus 
interface. Connection and disconnection of the entity to the bus is carried out using a 
buffer (Figure 3.10), which also belongs to this subset that allows the bus to be 
shared. When flow is permitted in both directions, it is called a transceiver (a 
contraction of the terms transmitter and receiver). The command signals of the bus 
interfaces are generated from the control and status signals coming from the master 
(i.e. the microprocessor), or even from the bus controller. In the case of a three-state 
logic, the connection of the outputs of the transmitting buffers to the bus is 
controlled by their #OE (Output Enable) signal, which allows movement from the 
high impedance state to the low impedance state. Note that the direction in which 
the information travels is exclusively determined by this same signal when it is 
active, either for the output buffer, or for the input buffer of the bus interface. 
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Figure 3.10. Connecting to the buses with a buffer 

 

Figure 3.11. Difference between a buffer and a transceiver 

Strictly speaking, what distinguishes the transceiver (Figure 3.11(c)) from the 
bidirectional buffer (Figure 3.11(b)) are the driver D/receiver R couples, which are 
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connected head to tail, and an antagonist command of their three-state outputs. This 
has been covered in Darche (2004). The bidirectional buffer separately groups the 
commands of the driver outputs (#DE (Driver Enable)) and the receiver outputs 
(#RE (Receiver Enable)). The buffer also exists as a one-way version (Figure 
3.11(a)). The logical operators can be inverters or not inverters. The driver is 
characterized by special functions, such as a shift in the voltage level (i.e. a change 
of potential, the relevant operator is called a “level shifter”, cf. § 3.8.2 in Darche 
(2004)), whose fanout is high in order to “attack” the line. To limit the production of 
parasitic signals along the adjacent lines (crosstalk) due to state changes along the 
capacitive line, one solution that does not affect the data rate is to limit the slew rate 
of the output voltage of the line drivers, and to add a low-pass filter at the input of 
the receivers, which acts as a noise rejecter, limiting noise. The components 
involved in implementing this solution are called “trapezoidal” drivers, because of 
the limited slope of the signals. 

3.3.5. Differential and single-ended links 

Electrically speaking, a link between two points can be ‘Single-Ended’ (SE) (also 
called an “unbalanced transmission”). This means that it has only one conductor, 
which carries a signal whose voltage is referenced to a shared reference rail, which 
usually tends to be the ground. One advantage of single-ended links is their 
simplicity, which reduces costs. Only one wire is needed per signal, on top of which 
a shared reference rail must be added, which is the ground (Figure 3.12). The use of 
the ground as a reference means that there can be jumps in voltage (ground 
bounced), caused by current consumption peaks. This reference must have as low an 
impedance as possible; otherwise, current returns run the risk of generating a 
differential voltage that is too high, thus reducing the noise margin (cf. § 2.2.1 in 
Darche (2004)). All of this means that the link is not very resilient to noise. For high 
frequencies, the capacitive and inductive electrical couplings, and the magnetic 
coupling between links that was previously negligible, start to be significant. 
Transients appear, introducing crosstalk. The characteristic impedance of the line Z0 
must also be taken into account, as a mismatch would lead to signal reflection at the 
end of the line. Moreover, the additional presence of the sharp rising (also called 
positive) and falling (also called negative) edges of the rapid digital signals results in 
the creation of over- and undervoltages. These phenomena are critical for short lines. 
In a noisy environment where the frequency is high, a twisted-pair cable must be 
used, the cable must be shielded electromagnetically and additional ground lines 
must be used, which will act as an electromagnetic shield, and the impedance must 
be lowered. All of this obviously contributes to the overall cost. 
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Figure 3.12. Single-ended link (unbalanced) and its electrical model 

In order to improve these issues, the differential link (also called “balanced” link, 
or “symmetrical transmission”) uses two wires (Figure 3.13). Both solutions can be 
grouped together with an asymmetrical driver and a differential receiver, under the 
standard TIA/EIA 423 (TIA 2001). The receiver can have a fully differential input, 
or, less commonly, a pseudo-differential input2, as can be found in Analog-to-Digital 
Converters (ADC) (cf. § 3.5.1 in Darche (2003). When the number of signals to be 
carried is equal to n, then n + 1 wires are required for the single-ended link if using a 
shared ground (which is most of the time). However, for a high bitrate, a signal 
return is still necessary. In a differential link, the number of wires needed is equal to 
(2 × n) + 1. 

 

Figure 3.13. Differential link (no link) 

One version of the differential transceiver (Figure 3.14(a)) transforms the 
differential signal of the link or of the bus into a unipolar signal. In version (b), the 

                                 
2 Fully differential and pseudo-differential inputs differ in the presence of grounds that are 
differentiated from the signal and from the converter. 
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input of the driver is no longer linked to the output of the receptor, and their output 
commands are no longer shared (a less strict definition of a transceiver, cf. § 3.3.4), 
which opens up the possibility for the designer to return to version (a) through the 
corresponding wirings. 

 

Figure 3.14. Differential transceivers 

The layout of the differential link (lower part of Figure 3.15) makes it less 
sensitive to common-mode noise than an asymmetrical link (higher part of the same 
figure). Any electromagnetic interference (EMI) appears as having the same polarity 
(common-mode voltage) along both lines (Figure 3.15(b), lower illustration) and is 
cancelled by the receiver, which subtracts one signal from the other. Moreover, it 
radiates less as a result of the cancelling out of the electromagnetic fields. However, 
it has the same requirements with regard to adapting the characteristic impedance in 
order to avoid any signal reflection. 

 

Figure 3.15. Noise in the asymmetrical transmission lines  
(upper half) and differential transmission lines (lower half) 

3.3.6. Topologies 

Let us consider for the moment that a communication point is either a driver or a 
receiver. When there are only two points communicating, therefore necessarily one 
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driver and one receiver, this is called a point-to-point link3 (or “simplex”). When 
there are more than two, this is called multipoint-to-multipoint topology (or 
“multiplex”). The classic topologies are the bus (Figure 3.16 for the asymmetrical 
version) and the daisy chain. In the case of the bus, the communication medium is 
shared. 

 

Figure 3.16. Bidirectional link or asymmetrical type multipoint bus 

Figure 3.17 presents the differential version of the multipoint bus. 

 

Figure 3.17. Bidirectional link, or differential type multipoint bus 

One variant is the “multidrop” topology (“point-to-multipoint” or “distributed 
simplex”), where a single driver sends the signal to several receivers (at least two).  
 
                                 
3 This can also be called “single-drop bus”, that is, a bus with a master and only one slave. 
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The driver can be placed at the end of the line (Figure 3.18(a)), or in the middle 
(Figure 3.18(b)), in order to minimize the propagation time tL and, consequently, the 
flight time tflight (cf. § 1.2) of the signal. 

 

Figure 3.18. One-directional links (multidrop)  
with single end (a) and double end (b) 

Figure 3.19 shows the differential version of a bus with a “multidrop” topology. 

 

Figure 3.19. One-directional links (multidrop)  
with single end (a) and double end (b) 

The advantage of this approach is diffusion. The connections seen in Figure 3.20 
help establish a multidrop connection. 

 

Figure 3.20. Connection in a multidrop bus (from Strassberg (1999)) 
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A final version is the switched point-to-point bus. The gate, or communication 
matrix, in Figure 3.21 can only connect an input Ij to a single output Ok with i, k ∈ 
[0,	3] and j ≠ k (so no backlooping possible). The advantage is that the 
communication is full-duplex, and, electrically speaking, there are no stubs, as they 
are point-to-point links. The disadvantage is the presence of a switch in the middle 
of the bus, which is a sensitive node for communication. 

 

Figure 3.21. Switching matrix enabling communication  
between the electronic boards of a bus 

Instead of sharing a channel, point-to-point connections can be considered using 
an approach based on circuit-switching networks and packet-switching networks. In 
the latter, there is no established circuit, so no time is lost establishing it. Of the two, 
it is the more tolerant to faults, and reordering of the packets is possible. 

3.3.7. Electronic technologies 

From a logic technology point of view (cf. (Darche 2004)), transceivers belong 
first and foremost to the group of discrete connected logical components. An 
example of bipolar technology is the ECL (Emitter Coupled Logic), which is a rapid 
open-emitter logic. Otherwise, these are logics that derive from TTL (Transistor–
Transistor Logic), such as the FAST (Fairchild Advanced Schottky TTL). MOS-
bipolar mixed technologies such as the BCT (BiCMOS Technology) have helped 
lower electrical consumption and increase switch speed. Nowadays, they are 
becoming specialized. Examples are the CMOS GTL (Gunning Transceiver Logic) 
family (Gunning 1991; JEDEC 2007) and the GTLP (GTL Plus4) family made by 
the company Fairchild, and presented in § 1.5.4 and 2.5.4 in Darche (2004). 
Technologies that were specially developed for backplane buses include the BTL 
(Backplane Transceiver Logic) by the company National Semiconductor (NS), 

                                 
4 Intel has developed its own improved GTL, called GTL+ (Intel 1997), for its Pentium 
microprocessor range. 
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introduced in 1984, as well as its version of CMOS, called CBTL (CMOS BTL). 
Others were developed for memory interfaces on the channel. Examples include 
RSL (Rambus Signaling Level) logic for Rambus memories, and SSTL for SDRAM 
(cf. § 3.4 in Darche (2012)). As the supply voltage is decreased in order to reduce 
power consumption as well as electromagnetic interference, following a differential 
approach, bus technologies have been derived from LVDS (Low-Voltage 
Differential (LVD) Signaling, standard TIA/EIA-644) technology through the 
BLVDS (Bus LVDS) by the company NS, as well as the LVDM (LVD Multipoint) 
by Texas Instruments (TI). M-LVDS (Multipoint-LVDS) is the normalized version 
of this (ANSI/TIA/EIA 2002). 

3.4. Insertion-withdrawal under tension 

Some advanced functions have made their appearance, such as live insertion-
withdrawals, or hot plugs/hot swap capabilities. These allow for the insertion of 
electronic subunits without having to power down first. This is particularly useful in 
a server that has to have high rates of availability. The function itself can be applied 
to an I/O interface (cf. § 2.2 in Darche (2003). The USB (Universal Serial Bus) is an 
example of this. In this way, a device can be (dis)connected without cutting off the 
power supply and without disturbing the Operating System (OS). The insertion of an 
electronic board into a powered system can result in electrical interference at the 
level of the signals (glitches) and of the supply, which can even lead to the 
destruction of electrical components, particularly the I/O stages of the interface logic 
of the transceivers, as an example (cf. § 3.5.1 in Darche (2003)). One of the 
causative phenomena is called “latch-up” (cf. § 3.5.1 in Darche (2004)), which is the 
parasitic powering-on of thyristors formed of parasitic transistors. This can be 
avoided by having a power-on sequence (cf. § V3-6.1.3 on power supply profiles). 
Live withdrawal or insertion characterizes the ability to insert or disconnect a 
component or electronic subset – here a bus – without having to first turn off the 
power supply of the system and without disturbing its operation. The integrity of the 
data is also preserved. This hardware functionality makes maintenance easier and 
quicker. Subsequently, recognition and initialization of the board has to be handled 
at a software level, for example, through the operating system. The OS must also 
detect any disconnection of a node in order to take suitable measures, such as 
ejecting a device. 

There are several levels of electrical protections. Soltero and Cox (2002) list four 
levels of isolation. Level 0 shows that there is no way of inserting an electronic 
board with the power on without risking destruction of the component parts. In level 
1 (“partial power down”), a board can be inserted with the power on, but the receiver 
must first put all of its output signals under high impedance. The board contains 
eddy-current limiters. Level 2 (“hot plugging”, “insertion” or “swapping”) goes 
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further than the previous level, with a high impedance guarantee, varying from 0 V 
up to a threshold voltage. The validity of the exchanges is not always ensured, 
however. The final level (“live insertion”) overcomes this limitation. The data is not 
corrupted. 

3.5. Test and debugging 

Debugging a bus can be done by analyzing transaction traces, either in real-time 
or post-hoc, using generalized measuring devices such as an oscilloscope, or with 
specialized devices like the logic analyzer, which integrates the protocol. 

Moreover, there are dedicated buses available for the hardware and software 
debugging of computer systems or single components, such as a processor or a SoC 
(System on (a) Chip). Examples include the JTAG bus (Joint Test Action Group, 
IEEE reference 1149.1 (IEEE 2013)). This aspect is covered in detail in § V5-2.2.5. 

3.6. Bus limits 

The limit of a classical bus (i.e. a data/address/control bus with cycle-based 
communication) is the dispersion of electrical and temporal characteristics. Figure 
3.22 shows this grid distribution of the signal of a classic memory subset that uses 
memory sticks. There are three distinct signal types: address, control and data (DQ). 

 

Figure 3.22. Distribution of signals in a memory subset with communication  
by cycle (from Crisp et al. (1997) and Ware et al. (2001)) 
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Looking more closely at the SDRAM version (Figure 3.23), these three buses are 
the DQ/DQM data bus, the control bus represented by the #RAS (Row Address 
Strobe), #CAS (Column Address Strobe) and #CE (Chip Enable), and the address 
bus A. The clock signal, like the address, must reach each component. By measuring 
each bus and each line of these buses, it becomes apparent that the signal path 
lengths are not identical for all of the signals, and that the number of connected pins 
is not the same. This will have consequences for the electrical and temporal 
characteristics of these buses, which will end up being different. 

 

Figure 3.23. Distribution of the signals in an SDRAM subset with  
communication by cycle (from Crisp et al. (1997) and Ware et al. (2001)) 

Figure 3.24 shows how, for an (a)synchronous memory device with 
communication by cycle, the electrical and temporal characteristics of a bus line 
change as a function of the number of connected components, that is, as a function 
of the storage capacity of the subset. Electrically speaking, these characteristics are 
the resistance, the inductance and the capacitance. The characteristic impedance, and 
thus the reflection coefficient, can vary. This results in an impedance mismatch. For 
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the time being, this affects mostly the rise and fall times and the propagation time. 
Progression is linear for all signals apart from the control signal as they are 
distributed between all of the components. The control is unique for each row. 
Moreover, the memories can have different storage capacities. Also, the output 
drivers usually have different fan-outs (cf. § 2.2.1 in Darche (2004)) and 
input/output impedances. A solution to this issue of disparity of the bus 
characteristics is provided by the company Rambus and involves encapsulating all 
of these signals into an information packet that is to be carried by a bus whose 
electrical and temporal characteristics are uniform. 

 

Figure 3.24. Evolution of the electrical and temporal characteristics of a bus line  
as a function of the number of components (adapted from Crisp (1997)) 

An example of an optimized storage bus is the Rambus channel. The name of 
this interface is that of the company that created it. As a result, it is owned, patented 
and non-standardized, which has led to commercial disputes and resulted in lawsuits 
with other memory device producers (Stern 2001a, 2001b, 2001c, 2002, 2003, 2007, 
2009). It was described for the first time by Kushiyama et al. (1992) and Slater 
(1992). The physical communication medium is made of a data bus, two command 
signals, BusCtrl and BusEnable, as well as two clock signals, ClkFromMaster and 
ClkToMaster. All of these signals taken together form a Rambus channel. This 
channel has more than 32 slave nodes, which are managed by a channel master 
(Figure 3.25), and is terminated by a “terminating load”. A channel slave can only 
be a memory device. The channel master is the only entity that can send requests. 
The master is usually a memory controller, but it can also be a processor or an I/O 
controller. 
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Figure 3.25. The original version of the Rambus channel 

The channel lines, which are separated by a ground line in order to form an 
electromagnetic shield to avoid coupling, are routed in parallel on the printed circuit. 
Each trace that carries a signal can electrically be considered as a transmission line. 
As a result, each bus line has the same electrical characteristics (characteristic 
impedance, capacitance, inductance, etc.) and temporal characteristics (propagation 
time, etc.). Moreover, the line drivers have the same fanout and the same output 
impedance, and they can see the same length of line. This means the characteristics 
change in the same way at the same time (Figure 3.26), which was not the case when 
using the approaches above, where they changed by group or by category (i.e. the 
bus type) as memory devices were inserted onto the bus (Figure 3.24). In order to 
avoid any reflection of the incident signal at the end of the line, an active resistive 
load (made of transistors, for example) or a passive one (resistor, inductor or 
capacitor) is placed at each extremity of the channel. 

 

Figure 3.26. Evolution of the electrical and temporal characteristics of a channel line 
as a function of the number of chips in the channel (adapted from Crisp (1997)) 

The current trend is for serial point-to-point connections. By increasing the 
number of links or channels, the format n of the information also goes up. Link 
buses are an example of this (cf. § 4.2.3). 
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3.7. Conclusion 

This chapter has covered the aspects of interfacing of a one-bus logical module. 
After examining the signals of different buses, we looked at electronic notions such 
as the transmission line, signal integrity, line termination and drivers. To finish off, 
specific themes such as powered insertion/withdrawal, or the test, were covered. 



4 

Bus Classifications 

The primary purpose of this chapter is to present the different topologies of bus-
based architectures. It also covers buses currently used in the computer industry. 

4.1. Multibus architecture 

Initially, all the entities shared the same bus, called a “shared bus”, or “linear bus” 
(DEC PDP-11 vocabulary), when there was only one bus connecting all of the  
subunits inside a computer (CPU for Central Processing Unit), memory, devices and 
the display terminal). All sorts of information and signals would pass through this bus, 
at variable bitrates. Table 4.1 gives a summary of the exchanges between masters and 
slaves. 

Transfer from/to CPU Memory I/O 

CPU 
Interrupt request 

message 
Medium bitrate 

information (data) 
I/O control/command  

Low bitrate information  

Memory 

Medium bitrate 
information 

(instruction and 
data) 

High bitrate 
information  

(DMA transfer/burst) 

High bitrate 
information  

(DMA transfer/burst) 

Input/Output (I/O) 

Status of the I/O 
Low bitrate 
information 

interrupt request 

High bitrate 
information  

(DMA transfer/burst) 

High bitrate 
information  

(DMA transfer/burst) 

Table 4.1. Exchange types between the master and the slave  

Microprocessor 2: Core Concepts Communication in a Digital System 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 

–
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Despite mechanisms such as the interrupt request or Direct Memory Access (DMA, 
cf. § 2.2.2), and with the ever-rising speeds of the central units, isolation of the slower 
entities – that is, the I/O and the memories – has become a necessity. The natural 
consequence of this process has been the splitting of buses into several levels, 
depending on the number of nodes. This is known as a multi-tiered bus architecture, 
and relates to the processor bus, with its low latency and a high bitrate, the memory 
bus with a high bitrate, and the I/O controller bus. A bus that is local to the 
microprocessor allows it to communicate with a single coprocessor or cache 
controller. The size of each of the buses is tied to the bitrates or to the type of entities 
connected. Separation of the buses helps decrease the latency and increases the 
bandwidth. This approach is called functional partitioning. There is also an electronic 
justification for this partitioning. The number of logical inputs and outputs that are 
connected is limited by the fan-in and fan-out of logic gates (cf. § 2.2.1 in Darche 
(2004)). Figure 4.1 demonstrates this concept through a presentation of the 
organization of buses in a microcomputer such as the PC XT (“Personal Computer 
eXtended Technology”, cf. § V5-3.2.1), made by the company IBM. The term “local 
bus” refers to the bus at the level of the microprocessor, hence the alternative name of 
“processor bus”. A bridge connects the processor bus to the “extension bus”, which 
allows the entities of the two buses to communicate. 

 

Figure 4.1. Layout of communication in a PC XT microcomputer 
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A commercial example of this is the Multibus II, made by Intel, which has five 
buses (Figure 4.2). The iPSB™ (Parallel System Bus) and the iSSB™ (Serial System 
Bus) establish communication between the cards of a system. Together, they form the 
communications “backbone” of the system. The multichannel iLBX™, iSBX™ and 
DMA buses help expand the available functions of a card. The iLBX™ II bus (Local 
Bus Extension), or the memory-only execution bus, is reserved for memory 
expansions. The iSBX™ (Single Board Bus) allows a mezzanine card to be connected 
to the expansion card. The Multichannel™ I/O bus allows direct transfers to be made 
between the memory and the I/O. 

 

Figure 4.2. Architecture of the Multibus II 

4.1.1. Segmented buses 

Many researchers and engineers have come up with a number of different types of 
interconnections in order to determine their properties. Figure 4.3 illustrates the 
example of a split – or “segmented” – bus. Each segment is a portion of a bus. This is 
the logical unit of bus splitting, allowing communication between the masters M and 
the slaves S. It comprises the classical line terminations. The segments communicate 
via the signal repeaters R. Given that both the length of each segment and the number 
of nodes are reduced, the loads – whether parasitic in nature, or not – are also reduced, 
resulting in a reduction in switching noise and in power consumption. Propagation 
times also go down. This approach is best used in asynchronous buses.  
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Figure 4.3. Serially segmented buses 

4.1.2. Hierarchical buses 

A variation here is the hierarchy of segmented buses (Figure 4.4). A cluster of 
elements communicates through a locally segmented bus. The local buses are linked 
together by the global bus. The bus shown in bold is the inter-cluster bus. All of these 
buses taken together form what is known as a bus hierarchy. This is a partial solution 
to the issue of overly long buses, which have negative effects, both temporally and 
electrically. This approach also increases the total bitrate, capability and reliability. 

 

Figure 4.4. Segmented bus hierarchy (Borrill 1988) 

This structure can be generalized to more than two levels, forming a generalized 
bus hierarchy, illustrated in Figure 4.5. This is also referred to as a clustered bus 
arrangement. The locality of the communication and the bitrate are the typical criteria 
for defining this hierarchy. Other criteria such as the type of elements linked together 
can also be taken into account (cf. § 4.2). Care must be taken with regard to bus 
multiplexing on several levels – if buses are not multiplexed, this can result in time-
consuming (de)multiplexing operations. 
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Figure 4.5. Generalized bus hierarchy 

Figure 4.6 presents a topology for shared memories, adapted to a parallel 
architecture. 

 

Figure 4.6. Classical (a) and hierarchical (b) shared memory and bus topologies 

4.1.3. Multiple buses 

In the 1980s, research focused on parallel architecture for calculators using 
multiple processors, multiple storage systems and multiple buses. The term “parallel 
buses” has been used before, but in order to avoid confusion, we have favored the 
term “multiple buses”, in reference to the number of communication channels  
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(cf. § 1.2), as shown in Figure 4.7. Multiple buses allow for concurrent communication 
to take place. The notion of hierarchy can also be applied here. 

 

Figure 4.7. Topology with multiple buses for a multiprocessor architecture 

There are other forms of interconnection topologies, such as the grid, or multistage 
interconnection networks. These are especially used in SoCs (System on (a) Chip),  
cf. § 4.2.9). 

4.1.4. Bridge 

A bridge links two buses together. It must respect their electrical and temporal 
specifications. A bridge can be as simple as a driver (signal amplifier), which isolates 
and amplifies the signals (buffering). This corresponds to the function of a repeater. 
Most of the time, it has its own RAM (Random Access Memory), which can be FIFO 
(First-In First-Out), or a Double Port DRAM (DP(DRA)M (Figure 4.8(b), cf. § 2.5.2 
in Darche (2012)) so that the two buses can be kept functionally separate. This allows 
two elements belonging to different buses to be able to communicate, thus enabling 
retrocompatibility. An example of this is the ISA (Industry Standard Architecture) bus 
used in the original PC. In the 1990s, this bus coexisted alongside the PCI bus, which 
enabled a smooth transition for the computer industry in terms of input–output 
interface cards (Figure 4.10). 
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Figure 4.8. Inter-bus communication through  
FIFO (a) and double port (b) memory devices 

 

Figure 4.9. A bus controller 

The greater the number of bus functionalities, the more complex the electronics. 
Bridges manage complex data paths. Simple electronic buffers are no longer adequate 
in this case, and a controller is required for each bus, as shown in Figure 4.9. In this 
example, the ability to initiate exchanges is only in the hands of a master of the first 
bus, which in this case is called the primary, or upstream, bus. The second bus is called 
the secondary, or downstream, bus. A bus controller can carry out simple operations 
on the data, such as address translation (cf. Childers and Baden (1997), for example), 
byte swapping, temporary storage (buffer or cache) of data or addresses (not shown), 
or complex processes such as the packing/unpacking of packets, or protocol 
translations. The management of interrupts and of DMAs must be taken into account. 
An Error-Detecting Circuit (EDC) or even Error Checking and Correcting (ECC) can 
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be considered, based on logical parity, for example (cf. § III.6.6 in Darche (2000)). A 
codeword can thus be generated for the detection of errors on the fly, during a write 
phase. In some cases, such as with a multiprocessor system, an address translation 
must be carried out. A study of the bridge between a PCI bus and the bus of a 
MC68000 multiprocessor was done by Rodriguez Corral et al. (2002). 

Examination of the elements of a modern microcomputer, but belonging to an 
older generation, reveals different types of interconnected buses (Figure 4.10). The 
local bus, which is implied to be local to the microprocessor, communicates with the 
north bridge. The memory bus is dedicated to the main – or primary – memory.  
The PCI and ISA expansion buses allow for the connection of I/O interface cards. The 
AGP (Accelerated Graphics Port) expansion card, which is one of the second-
generation PC buses (cf. § 4.2.4), is dedicated to the display interface (cf. § 9.1 in 
Darche (2003)). The I/O bus is reserved for communication with devices. 

 

Figure 4.10. Block diagram of a PC type  
microcomputer of the n-2 generation (1997) 
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Based on this diagram, the bus can be categorized into six main families  
(Figure 4.11): local bus, link bus, memory bus, expansion bus (called “system bus” at 
Intel), I/O bus and backplane bus. The first five buses are used in (micro-)computers. 
The sixth is targeted more specifically at industrial real-time systems. On top of this, 
there is also the field bus, which is used in process control, as well as the power bus. 
The next section looks at these in more detail. 

 

Figure 4.11. Classification of buses by category 

4.2. Classification of digital system buses 

This section aims to introduce buses that are presented in the industry depending 
on their location in a digital system. 

4.2.1. Local bus 

This is the lowest level, as it can be found at the component level. It is located on 
the Printed Circuit Board (PCB) itself. The local bus is the bus of the microprocessor, 
which is the sole initiator of exchanges, unless a DMA controller is present. The 
signals are those emanating from this initiator. In terms of PCs in particular, the 
examples include the VLB, BSB and FSB buses (Figure 4.12). 

 

Figure 4.12. The local bus 
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Commercially speaking, the VESA (Video Electronics Standards Association) 
Local Bus (VLB), birthed from a consortium of companies, allowed the connection of 
one to three rapid controllers to the local bus, depending on the version (A or B). It 
preferentially addressed the display interface. This bus was an expansion of the bus of 
microprocessor 80486 made by the company Intel. Figure 4.13 shows its block 
diagram. 

 

Figure 4.13. Block diagram of the VL-Bus 

The architecture of the Dual Independent Buses (DIB) made by the company Intel  
in the middle of the 1990s for its Pentium Pro and II/III microprocessors allowed for 
separation of the cache traffic from the traffic of the main memory and of the I/O. The 
Back-Side Bus (BSB) made the CPU communicate with its external cache, while the 
Front-Side Bus (FSB) would communicate with the northbridge chipset, or the 
Graphics and Memory Controller Hub (GMCH), which comprised a graphics 
controller (Figure 4.14). Nowadays, the BSBs and the FSBs are integrated with the 
cache and the northbridge chipset into the MPU (MicroProcessor Unit). The I/O 
controllers are integrated into the southbridge chipset or the I/O Controller Hub (ICH). 
The role of the chipsets is explained in § V5-3.3. 
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Figure 4.14. Double independent bus (DIB) architecture 

Two older examples are the Z-bus (Zilog 1985) made by the company Zilog, 
which connected components of the Z800, Z8000 and Z80,000 families, and the 
Microbus, made by the company National Semiconductor (NS). 

4.2.2. Memory buses 

In the case of a system of memories, a controller serves several ranks or memory 
devices connected to each other via several channels or memory buses (Figure 4.15). 
By increasing the number of channels, an interleaving access can be established  
(cf. § 2.4.4 in Darche (2012)). 

 

Figure 4.15. The memory in its environment 
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The channel is specific to a given family of memory devices. There is a return to 
the alternative forms of communication by cycle or by packet (Figure 4.16). A circuit 
like the IDT73720 from the company Integrated Device Technology, Inc. (IDT) 
enables two memory banks to be managed at the same time, with the possibility of 
having interleaved addressing, and thus doubling the bandwidth through burst access. 

 

Figure 4.16. Memory buses 

The bus present in cycle-based communication dynamic memory devices, as well 
as the memory channel of the Rambus memory using packet-based communication, 
has been examined in detail in § 5.2.3, 6.9 and 7.2.1 in Darche (2012). 

4.2.3. Link buses 

Link buses link microprocessors to each other or to a bridge. There are three 
principal link buses (Figure 4.17). They are characterized by a point-to-point link that 
carries rapid signals using technology based on differential low-voltage logic, such as 
the LVDS (Low-Voltage Differential (LVD) Signaling). Communication takes place 
through packets, the advantage here being the lack of cycles. A packet is the base 
element of communication, and a transaction is a sequence of packets. A transaction 
results in a transfer of information. One advantage of packet communication is that 
error detection – and even correction – can be added, as can flow control like in a 
network. 
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Figure 4.17. A PC link bus (2013) 

The HyperTransport bus (HT), whose codename is “Lightning Data Transport” 
(LDT), was initiated by the company AMD, and enables a CPU to be connected to 
other CPUs or co-processors, to the memory and to other I/O controllers, southbridge 
chipset of the PC or interface cards. The base connection is a two-directional link, 
whose format of n varies from 2 to 32 bits, with a growth factor of 2. It has three signal 
families, which are CAD (Command, Address, Data), CTL (ConTroL) and CLK 
(CLocK), which are differential in nature (Figure 4.18). The format m of the CTL 
varies from 4 to 16 depending on the value of the format n. 

 

Figure 4.18. HyperTransport type link 

The transfer is of the DDR type (Double Data Rate, cf. § 3.4 and 6.5 in Darche 
(2012)), with a clockspeed of 800 MHz in full-duplex, which results in a maximum 
bitrate of 1.6 Gb/s per link. Table 4.2 shows the values of the maximum bitrates 
depending on the version used. More information can be found in Trodden and 
Anderson (2003) and Holden et al. (2008). 
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 Versions 

Features HT 1.x HT 2.0 HT 3.0 HT 3.1 

Year 2001 
February 

2004 
April 2006 

August 
2008 

Maximum frequency (GHz) 0.8 1.4 2.6 3.2 

Max bitrate per 32-bit link (Gb/s) 12.8 256 41.6 51.2 

Hot plugging No No Yes Yes 

Table 4.2. Binary outputs of the different versions of the HyperTransport bus 

Originally made by Intel (2004), the DMI bus (Direct Media Interface) links the 
northbridge chipset (MCH) to the southbridge one (ICH). As a reminder, the 
southbridge chipset is the loaded chip of the I/O. The bitrate is equal to 10 Gbit/s × 2 
per link (type x4). Version 2.0, which came out in 2011, doubled the bitrate. 

The QPI bus (Quick Path Interconnect, internally known as CSI for “Common 
System Interface”) was released by Intel in 2008, following the HyperTransport, from 
which it drew a lot of inspiration. It enables CPUs to communicate with each other or 
with the ICH. The bus has a width of 20 bits. 

4.2.4. Expansion slot bus 

In an expansion slot bus, connectors allow for the insertion of I/O interface cards, 
also called expansion cards, hence the name. The expansion bus is the equivalent of 
the backplane bus but for microcomputers, especially IBM’s PC. It was initially 
regarded from a signal point of view as an extension of the microprocessor bus. Its 
protocol is therefore heavily influenced by the latter’s. In order to separate the 
microprocessor and memory from the I/O, an expansion bus was introduced that some 
manufacturers call the “system bus”. The idea originally came from the company 
Apple, and was first seen in the Apple II (cf. § V5-3.1). The idea was next used by 
IBM in its personal computer (PC). This approach allows the I/O to be configured, 
and to later modify this configuration, while easily trouble-shooting the computer.  
It also frees up a significant amount of space as the third dimension can be used. 
Disadvantages include a limit on the number of connectors for electrical reasons and 
because of the space taken up on the printed circuit, issues to do with air flow 
stemming from the vertical arrangement of daughterboards, which can disturb the 
flow of cooling air, and the low reliability of slottable connectors. An electrical  
link can form between two adjacent daughterboards; an example of this is the  
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SLI (Scalable Link Interface), produced by the company Nvidia to link two graphics 
cards (Figure 4.19). 

 

Figure 4.19. The SLI by Nvidia. For a color version of this  
figure, see www.iste.co.uk/darche/microprocessor2.zip 

Figure 4.20 shows a classification. Initially, the bus was dedicated to a given 
microprocessor, or to a family of MPUs. This meant that the bus signals were actually 
the microprocessor signals amplified by electronic buffers. With the exception of the 
AGP bus, these constituted the first generation of PC buses. Nowadays, the expansion 
bus is independent from the MPU, thus enabling a vast array of choice of expansion 
cards. The PCI/PCI-X and the PCI Express make up the second and third generations 
respectively. 

 

Figure 4.20. Expansion bus of the PC and PS/2 microcomputers 
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Figure 4.21. Block diagram of an EISA system 

The PC bus could be found in the first ever PCs in 1981 (cf. § V5-3.2). It was made 
up of two rows of 31 signals mainly coming from the Intel 8088 microprocessor. The 
exchanges were clocked by the clock signal (Clk) at a frequency of 4.77 MHz. There 
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was the address signals A[19:0], the data signals D[7:0], read and write memory 
signals (-MEMR and -MEMW), read and write I/O signals (-IOR and -IOW), as well 
as the management, interrupt (IRQ0 to IRQ7, Reset) and DMA signals. The electrical 
power was also present (±5 V and ±12 V). The width of the bus was then increased to 
16 bits, with a frequency of 8 MHz. The XT and AT buses (Advanced Technology,  
cf. § V5-3.2.2) by IBM were next specified by the company Intel under the name 
“Industry Standard Architecture”, or “ISA” (cf. Intel (1989) for version 2). Several 
works have covered the ISA, such as Solari (1994) and Shanley and Anderson 
(1995a). The 32-bit ISA compatible version was named EISA for “Extended ISA” 
(Figure 4.21). This specification was published in 1988, one year after the release of 
the first PC of the PS/2 range (Personal System/2). It was made available by the “Gang 
of Nine” (Compaq Computer Corp., AST Research Inc., Epson America Inc., Hewlett-
Packard (HP), NEC Corp., Ing C. Olivetti & Co., Tandy Corp., Wyse Technology and 
Zenith Data Systems), a group made up of the nine leading companies in the market of 
PC clones (1/3 of the microcomputer market in 1987, compared to 26.8% for IBM) in 
response to the attempt by IBM to lock down the market of microcomputers by 
patenting its MCA bus (Micro Channel™ Architecture). More information on this bus 
can be found in Shanley and Anderson (1995b), among others. Chapter 8 provides 
examples of practical applications of this bus. 

Table 4.3 presents the main characteristics of the buses found in these first PC type 
architectures. 

The PCI bus is a project initiated by Intel in 1992, and whose reference document 
(PCI-SIG 1993a, 1993b) was published by a consortium of companies called the PCI-
SIG (for PCI Special Interest Group), which grouped together all of the main actors of 
microcomputing, including Dell, IBM, Fujitsu, HP-Compaq, NEC, Microsoft and 
Western Digital. The PCI bus was designed to fulfill the need for a high-speed 
expansion bus and, most importantly, one that was independent from the processor. 
The interface electronics of the bus thus only rely on the bus signals, and no longer on 
those of the entities connected to the bus. As a result, a manufacturer can sell the same 
I/O interface for different computers – a PC or a MacIntosh, for example. The 
difference is then only made by the driver (cf. § 4.2.2 in Darche (2003)) of the 
operating system. This bus is derived from the µP i486 bus, which is a multiplexed 
address/data bus with a width of 32 bits, and later 64 bits. Several PCI buses can be 
connected in a tree layout. An even logical parity control is established on the address 
and on the data. It presents a clock frequency that varies from continuous to 133.3 
MHz. The advantage of a frequency of zero is the ability to halt the operation of a 
synchronous component, in order to reduce energy consumption, for example. At 
maximum frequency, the theoretical maximum transfer rate is 533 Mb/s for a bus 
width of 64 bits. The expansion connector in the 5 V version has four rows of 31 pins. 
The latest version is version 3.0 (PCI-SIG 2002). It was described in detail in Shanley 
and Anderson (1995c) and Weiss and Finkelstein (1999). 
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Type PC ISA EISA MCA 

Generation 1st 

Width of the data 
bus (bits) 

8 16 32 16/32 

Width of the address 
bus (bits) 

20 24 32 24/32 

Address/data 
multiplexing 

No No No No 

Clock (MHz) 4.77 8.33 8.33 10 

Minimum number 
of cycles 

2 2 1 1 

Unit transfer bitrate 
(Mo/s) 

24 8.33 16.66 13.11 

Burst transfer bitrate 
(Mo/s) 

- - 33.33 21.05 

Multi-master No 
Yes 

(limited) 
Yes Yes 

Notes 
Original PC 

bus 
16-bit AT 

PC bus 
Retrocompatibility with 

the ISA bus 
PS/2 bus 

Table 4.3. Main features of the PC family buses (1/2) 

Released by Intel in 2004, the PCI Express (acronym: PCI-E) belongs to the third 
generation of expansion buses for PC. It succeeds the PCI bus and the local AGP bus. 
With the impending arrival of version 5.0 (2019), it ensures ascending logical 
compatibility (cf. § V4-3.3.3) with the PCI bus at the level of the software drivers  
(cf. § 4.2.2 in Darche (2003)). The communication type is a bidirectional differential 
serial link in point-to-point full-duplex (i.e. between two cards), called “lane”. The 
bitrate is currently doubling every 3 years. It can be modulated by increasing the 
number of links (x1, x2, x4, x8, x16 and x32) in order to reach the maximum of  
32 GTransfers/s (version 5.0). A full description can be found in Budruk et al. (2003) 
and Jackson and Budruk (2012). 

Table 4.4 summarizes the key features of these buses, which were the successors of 
the first PC buses. For a detailed comparison of these buses, see Finkelstein and Weiss 
(1999). 
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Type PCI PCI-E 

Generation 2nd 3rd 

Width of the data bus (bits) 32/64 Bidirectional serial link 

1 (x1), 2 (×2), 4 (×4),  

8 (×8), 16 (×16) and 32 
(×32) 

Width of the address bus (bits) 32/64 

Address/data multiplexing Yes - 

Clock (MHz) 0 to 33, 66 or 133 2.5/5/8 GHz 

Minimum number of cycles 1 - 

Unit transfer bitrate (Mb/s) 33.33 ≈ 4 Gb/s 

Burst transfer bitrate (Mb/s) 132/264/533 32 GTransfers/s 

Multi-master Yes Yes 

Notes Father of the PCI-E 

Current PC bus 

8b/10b and 128b/130b 
codings 

Table 4.4. Main features of the PC family buses (2/2) 

4.2.5. Expansion buses 

These buses enable a microprocessor board (a “baseboard”) to have its own small 
I/O expansion board. It is therefore a board-level bus. A commercial example of this is 
the iSBX™ bus, part of the Multibus made by Intel, which gave rise to IEEE standard 
P959 (IEEE 1984). This document defines two formats for the cards: single or double 
wide. It supports interrupt and transfer requests such as the DMA. 

4.2.6. I/O buses 

An I/O bus links one or more devices to one or several I/O controllers. An I/O bus 
can depend on a group of devices (e.g. for the interfaces of mass storage units ATA 
(AT Attachment, cf. § 9.2.3 in Darche (2003)), in the parallel version (PATA  
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for Parallel ATA), or in series (SATA for Serial ATA), or it can be generic (e.g. the 
SCSI (Small Computer System Interface, cf. § 9.3.1 in Darche (2003)). Figure 4.22 
presents those most commonly found in a PC. It should be noted that for the USB 
(Universal Serial Bus), this a logical bus, as opposed to a physical bus, in the sense 
that the host controller directly communicates with the devices, and that the bandwidth 
is shared. The connection between devices is a point-to-point connection, and it has a 
tiered star topology. This looks like a tree where the leaves are the devices. 

 

Figure 4.22. The I/O buses 

4.2.7. Backplane and centerplane buses 

A backplane bus enables communication between connected electronic cards 
(backplane interface). It is the printed circuit board (motherboard1) version of the 
ribbon cable. Parallel copper traces (for parallel transmission) or serial traces link  
the slot connectors (or card-edge connectors) so that the daughterboards can be slotted 
in. Guiding rails are placed at each extremity of the connectors in order to center the 
electronic board. A locking system can be set up so as to avoid the possibility of  
pull-out occurring (Figure 4.23); screws can also be fixed onto the front face for the 
same purpose. Good reliability at high bitrates is an advantage of this type of bus. 

                              
1 This term should not be confused with the equipped printed circuit used in a microcomputer. 
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Figure 4.23. A VME64x chassis with its backplane and a VPX 6U board. For a  
color version of this figure, see www.iste.co.uk/darche/microprocessor2.zip 

The PCB of the daughterboard can also serve as a male connector: it is split in such 
a way that the traces of the PCB (direct-edge connector) come into contact with the 
contacts of the female card-edge connector by insertion. This approach is sensitive to 
attacks from the environment (abrasions, dust, changes in temperature, etc.). Corrosion 
can be avoided by using a gold coating on the surface, but this can be worn down 
through repeated abrasion during the slotting/removal of the electronic card. An 
alternative to this solution is an indirect, or “two-part”, connection. In such a case, the 
daughterboard can have a male connector in lieu of the traces. The advantage of 
having a male connector instead of the contact points of the daughterboard’s printed 
circuit is the possibility of having more than two rows of contacts, and higher levels of 
reliability thanks to greater protection of these contact points. An example of an 
indirect connector for a standardized bus is the EURODIN DIN41612 (IEC 60603-2) 
connector, which is shown in Figure 4.24. 

 

Figure 4.24. Female and male connectors, standard DIN41612. For a color  
version of this figure, see www.iste.co.uk/darche/microprocessor2.zip 

The bus locations are usually unimportant, meaning that a daughterboard can be 
slotted into any connector. This bus removes the need for cabling with electrical wires, 
and therefore the presence of cabling errors and inherent failures. It provides 
mechanical support in the case of these occurring. The density of the daughterboard is 
maximal. It facilitates reuse and interoperability, all the more so if the bus is 
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standardized. Connection costs (electronic, electrical and mechanical costs) are also 
reduced. This principal has been reused for the expansion buses of the motherboard 
(cf. § 4.2.4). The electrical power supply is also provided through a power bus with 
wide, thick copper traces along which the current can pass (order of magnitude: 
usually several dozen Amperes (A)). An example of a backplane bus was the 
OMNIBUS® made by the company DEC; a description can be found in DEC (1970). 
In the field of microcomputers, we can cite the example of the ALTAIR 8800 (Roberts 
and Yates 1975a b) made by the American company MITS (cf. § V1-1.2). 

If the bus is active, line drivers condition the signals. If required by the exchange 
type, a clock does the clocking. Line terminations, whether active or passive, can also 
be installed. An electrical link can exist between a daughterboard and another 
backplane bus. 

 

Figure 4.25. Classical backplane topologies 

The backplane connection can be either point-to-point or multipoint. Furthermore, 
it can be either a serial link (bit-to-bit) or a parallel one. Figure 4.25(a) presents the 
classical bus communication. The serial version has two types of architecture, the star 
type (Figure 4.25(b)) and the mesh type (Figure 4.25(c)). Case b uses a crossbar 
switch. This is an effective solution, which tends to be used in network equipment. An 
associated piece of technology is the “switch fabric”. 

In order to minimize the distances between connectors, and therefore to decrease 
the total length of the bus, the “centerplane” bus version was developed. It involves 
placing the connectors throughout the printed circuit board, as shown in Figure 4.26. 
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Connections tend to become point-to-point in order to provide ever-increasing 
bitrates. Techniques taken from wired and optical networks have been used, such as in 
the 8/10-bit and 64/66-bit SONET (Synchronous Optical NETwork) encoding 
schemes, which is what the consortium of companies HSBI (High-Speed Backplane 
Initiative, created in 2002) uses. SONET provides a point-to-point communication link 
via a backplane bus, with a minimum bitrate of 4.976 Gb/s, and a peak bitrate of  
6.375 Gb/s, over a distance of 75 cm. In 2003, it merged with the OIF (Optical 
Internetworking Forum). 

Type NuBus Multibus I Multibus II FutureBus+ VME 

Width of data 
bus (bits) 

32 16 32 32/256 16/64 

Width of 
address bus 
(bits) 

32 24 (16 I/O) 32 32/64 24/64 

Address/data 
multiplexing 

Yes No Yes Yes Yes/no 

Clock (MHz) 10 5 10 - - 

Minimum 
number of 
cycles 

2 - 1 - - 

Unit transfer 
bitrate (Mo/s) 

20 10 40 200 40 

Burst transfer 
bitrate (Mo/s) 

37.5 - 40 4000 80 

Multi-master Yes Yes Yes Yes Yes 

Split 
transaction 

No No No Yes No 

Standard 
ANSI/IEEE 
1196-1987 

ANSI/IEEE 
796 

IEEE 1296-
1987 

IEEE 896. 
1-1987 

IEEE 1014-
1987 

Table 4.5. Main features of the representative backplane buses 

Two commercial examples are the VME bus (Versa Module European) and the 
VPX bus (VITA 46). The former is an open parallel commercial bus standard. It 
dominated real-time industrial systems and was described by DeBock (1982). VMEbus 
is the standardized version, under ANSI/IEEE standard 1014-1987 (IEEE 1987). The  
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second example, also called VITA (VMEbus International Trade Association) 46, is its 
successor, going from a parallel version to a modern serial version. Introduced in 
2007, it was designed to support different buses like the Serial RapidIO®, PCIe, 
SATA, gigabit Ethernet, etc. Table 4.5 shows a reminder of their main features, 
comparing them to other common buses. In the early 2010s, backplane connectors 
provided a maximum bitrate of 5, 10 and 25 Gb/s, marginally2 40 Gb/s for a 
characteristic impedance of 85, 100 or, more rarely, 50 Ω. The commercial backplane 
buses are described in Di Giacomo (1990). VME64 is a 64-bit version, standardized 
under reference ANSI/VITA 1-1994. 

4.2.8. Fieldbus 

The fieldbus goes a bit beyond the scope of this chapter. In reality, it is closer to a 
network of a defined area, which could be an automobile or a production unit. The 
element that is most often associated with the fieldbus is the “Programmable Logic 
Controller” (PLC). It interacts with the bus through measurement instruments, sensors 
and actuators. The term “fieldbus” is used in opposition to the term “computer bus”. 
The fieldbus does indeed tend to be a lot simpler, due to the small amount of digital 
resources included inside industrial sensors and actuators. It is also more resilient 
when faced with external disturbances, as it must be able to operate even in very noisy 
environments (industrial environments). Another key element regarding fieldbuses is 
their deterministic and real-time aspects. Examples of industrial products are the serial 
CAN (Controller Area Network) bus, produced in 1983 by the company Bosch for the 
automobile industry, and standardized by ISO (International Organization for 
Standardization) in 1986 under the standard ISO 11898, Profibus/Profinet, and the 
Interbus made by Phoenix Contact. There is also the VAN (Vehicle Area Network), 
first heralded by the automobile companies PSA (Peugeot Société Anonyme) and 
Renault. 

4.2.9. SoC: from bus to network 

A SoC (System on (a) Chip, cf. § V1-1.2) is the result of an integration of 
components from the system level (i.e. microprocessors, memories and I/O controllers) 
down to the level of a single chip. Originally, the architecture of communication 
between internal function blocks was specific (called “custom” or “ad hoc”), and  
point-to-point in nature. Starting in 1995, the external buses of the microprocessor,  
as well as their protocols, became integrated (called “on-chip bus”, as opposed to the 

                              
2 The company FCI announced in January 2015 that it had achieved a transfer along a 
backplane bus of 56 Gb/s without any errors, using duobinary encoding (EDN January  
30, 2015). 
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“off-chip bus”). In this way, a SoC bus carries out the same functions as the external 
buses, but at the level of a chip. There have been buses within this component since the 
advent of the very first microprocessor in 1971, but these were all ad hoc solutions. The 
shared bus structure has been adapted to systems with low numbers of components, as it 
does not survive the change in scale. A SoC can integrate several dozen components to 
be interconnected. The bus has therefore been adapted as an external element in the 
Single Shared Bus (SSB, Figure 4.27(a)) version, in the split-bus structure (Figure 
4.27(b)), in the hierarchical bus structure (Figure 4.27(c)) and in the multiple bus 
structure (Figure 4.27(d)). Each node is a Processing Element – or Unit (PE or PU), 
made up of a processor P and of its local memory M, and which is connected to the bus 
through a functional subset called a “wrapper” (W). Depending on the direction of the 
communication, access to the bus is ensured through classical buffers, or through three-
state output transceivers, if required. The communication element between two buses is 
either simply a transceiver (Figure 4.27(b)) or, in more advanced cases, a bridge  
(Figure 4.27(c)), hence the acronym HBB, for Hierarchical Bus Bridge (architecture). 
An example of this is the ASB bus with the AMBA (Arm® Microcontroller Bus 
Architecture) specification, from the company Arm® Ltd (originally Acorn RISC 
Machine, and later Advanced RISC Machines). Remember that this hierarchization  
(cf. § 4.1.2) increases the bitrate (compared to the single version) by isolating the nodes 
by their bitrate class. The electrical load of the bus is therefore decreased. The 
transactions can take place in parallel along each bus. Moreover, in order to save on 
energy, a local bus can be put on standby (Zhang et al. 1998; Chen et al. 1999). 

 

Figure 4.27. Variations on the concept of a shared bus 

An alternative to the shared version of the bus is the AND-OR bus, as shown in 
Figure 4.38(a). Another approach is the multiplexer-based bus. Figure 4.28(b) 
illustrates an example. 
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Figure 4.28. AND–OR bus and multiplexer-based bus 

We can cite other representative industrial examples, such as the CoreConnect Bus 
Architecture from IBM, whose bus topology and standard are free, the open-source 
bus WISHBONE (WISHBONE SoC Interconnection Architecture) (OpenCores 
2010), as well as the Split Transaction Bus (STBus®), made by the company 
STMicroelectronics. For the latter, one of its instantiations is the bus matrix with  
the crossbar (i.e. a switch matrix), which can be either partial  
(Figure 4.29(a)) or whole (Figure 4.29(b)); the latter is also called the point-to-point 
bus architecture. 

 

Figure 4.29. Bus matrices: partial (a) and complete (b) 

From the 2000s onwards, SoCs have acquired multiple masters, and, most of the 
time, they have multiple, heteregeneous (i.e. different) processors (MPSoC, or 
“MultiProcessor SoC”). While bus-based topologies tend to be widespread in the area 
of SoC for historical reasons, they present some major disadvantages, such as high 
levels of energy consumption, and poor scalability, if any at all. Other topologies, 
notably from the field of networks and from parallel computer architectures, have been 
suggested with their protocols. Among these static, direct connection (i.e. point-to-
point) topologies, there is the linear array (Figure 4.30(a)), the ring (Figure 4.30(b)), 
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with a possible variation being the counter-rotating ring, also called the double ring, 
and the slightly more complex cordal ring (Figure 4.30(c)). The cordal ring is a fully 
connected network. Each PE is connected to a communication element of the network 
that carries out the functions of connection or of routing (Router Element, or Router 
Unit (RE or RU)).  

 

Figure 4.30. Static interconnection network 

Even more complex, there is the crossbar switch (not shown here), the near-
neighbor mesh (Figure 4.31(a)) or the unfolded torus (Figure 4.31(b)). The near-
neighbor mesh is also called a 2D array. Note the feedback of the frontal nodes of the 
torus. A variation of the torus is the folded torus (Figure 4.31(c)), which is 
characterized by a constant distance between each of the nodes. The advantage of 
these topologies is their simple wiring, as well as their predictable features (bitrate, 
etc.). 

 

Figure 4.31. Examples of different topologies: near-neighbor  
mesh (a), unfolded torus (b) and folded torus (c) 



Bus Classifications     111 

Others are more complex, like the classical binary tree, shown in its balanced 
version in Figure 4.32(a), and in the fat-tree version (Leiserson 1985), where the 
bandwidth is greater toward the root, the cube (Figure 4.32(b)), or the 4D hypercube 
(four dimensions, i.e. a cube in a cube, not shown here). For the tree, each node is a 
switch. The leaves are PEs. This is therefore an indirect network. 

 

Figure 4.32. Interconnection networks: indirect (a) and direct (b and c) 

Another form of indirect network with a dynamic connection is the butterfly 
network. It allows any node to be connected via several levels of switches, shown in 
grey in Figure 4.33. 

 

Figure 4.33. Connections by a butterfly network 
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In order to achieve high-performance communication, the internal buses of these 
SoCs are in possession of the most advanced technical features, such as bus 
reservation, overlapped arbitration, the overlapping of data and address phases with 
out-of-order processing (cf. § 2.1.2). CoreConnect, for example, have all of these. 
They also tend to provide diffusion. Moreover, several provide packet-based 
communication, which is a technique that has its origins in computer networks, but 
which has been adapted to SoCs. These networks are called NoC3 (Network-on-Chip). 
The move to networks is a normal evolution for the bus, providing a flexible solution 
in terms of scalability. There are two categories, which are circuit-switching networks 
and packet-switching networks. In a packet-switching network, there is no dedicated 
circuit and therefore no added costs associated with establishing a new circuit. The 
packet is the atomic unit of communication. It has a heading, which contains the 
routing information (source address and destination address, among others). The 
advantage of packet-based communication is that the packets can follow different 
paths in a multipath network. The order of reception can be different from the order of 
emission, and therefore a re-ordering mechanism must be put in place. AMBA-AHB 
uses split transactions. Using a network with packets means that the electrical 
characteristics can be predicted. The interface is standardized, which facilitates 
interconnection and allows components to be reused, which reduces costs. This type of 
network tends to be more extendible and more flexible. A disadvantage, however, is 
that the interface provided can have characteristics that are overly powerful for their 
intended use. Dally and Towles (2001) have covered these issues. Figure 4.34 shows a 
summary of the internal topologies (On-Chip Connection (OCC)) of all of the 
architectures presented. Their study goes beyond the scope of this work; they are dealt 
with exhaustively in Pasricha and Dutt (2008). 

4.2.10. Power bus 

Supplying power to a computer system is a complex process. It requires several 
different voltages (e.g. +3.3 V, +5 V and +12 V) that need to be precise (±5%, for 
example). These classical values for the voltage are tied to the technology of the logics 
used, or to particular components (e.g. the motors of the Hard Disk Drive or HDD). 
Nowadays, with the drive for integration, some ULSI components (Ultra Large Scale 
Integration, cf. § V1-1.2) like an MPU, a chipset or an FPGA (Field-Programmable 
Gate Array) require several different supply voltages for the core and the interface 
logic, as well as for other entities. Some sit at approximately 1 volt, with current 
surges of several dozen Amperes (30–50 A). The subset tasked with the power supply 
often has to respond to criteria that are contradictory in nature. For example, a high 
current delivered with a small drop in serial voltage, a short response time at high 

                              
3 More information in Gebali et al. (2009). 
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current surges, a precise regulation of the load variation and, or, lastly, a long line with 
a small value of the impedance. 

In order to distribute these voltages, the power bus is made up of electrical supply 
lines and ground lines. As such, it is not a communication bus. The conductors (copper 
traces or wires) are very large and thick, in order to best carry strong currents and to 
limit any overly large drops in voltage. Decoupling capacitors can be distributed 
uniformly throughout in order to reduce the impedance of the supply lines, and thus to 
smooth out the voltage during current surges. 

A power supply fulfills three many functions, which are electrical isolation, 
transformation (lowering, as well as raising the voltage) and controlling the voltage 
and the current. It has to isolate the input and the output for electrical (e.g. AC 
(Alternating Current) input and DC (Direct Current) output, different values of the 
voltage, etc.) as well as safety reasons. It transforms the input voltage into another 
voltage that is higher or lower. Lastly, the output voltage has to be precise (typical 
order of magnitude is 1–5%) for the powered electronics. 

The power subset has changed over time with the technological advancement of 
electronic components and architectures (i.e. linear regulator followed by switching 
regulator). There are three classical architectures, which are the centralized power 
system, the distributed power system and the factorized power system, with the latter 
being the current approach. 

Historically, the power supply architecture has been the centralized version, called 
CPA for Centralized Power (supply) Architecture. This is shown in Figure 4.35. A 
single converter delivers n regulated voltages under high currents over long distances, 
sometimes in the order of the meter. The power source has to be close to the AC entry 
point, for reasons of safety and of ElectroMagnetic Interference (EMI), meaning far 
away from the cards of the bus. Drops in voltage that go beyond a volt can then be 
seen at the end of the backplane bus as a result of the impedance of the lines, which 
implies high levels of power dissipation (I2 × R). Given that the source of the power is 
located in a single spot, cooling can be challenging, and the response time to load 
variations is high. Another major inconvenience is its lack of flexibility, as the number 
of distributed voltages cannot be extended, nor can the maximum current be changed. 
To add a voltage, a regulator would have to be added to the card itself. Because of 
these limitations, this type of power supply can still be found in low and medium 
power systems. 
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Figure 4.35. Architecture of a centralized power supply 

In the 1970s, the PDE (Power Distribution Element) was invented, providing a 
great help to PCB designers. This was an insulated copper bar that was positioned 
vertically like a classical electronic component. The objective was to improve the 
component density and the electrical properties of the power bus. Carey and Grossman 
(1977) describe the principle and its use. 

As a result of the high levels and variability of the currents causing voltage drops 
not tolerated by the electronics, and to reduce and distribute the overall thermal 
dissipation, at the end of the 1980s, the proposal was made to separate the central 
power supply into several modules for processing energy called “Power Processing 
Units” (PPUs). This type of system is called a “Distributed Power System” (DPS), or 
“Distributed Power Architecture” (DPA). The two main topologies are a series (or 
cascade) circuit (Figure 4.36(a)), and, for stronger currents, a parallel circuit (Figure 
4.36(b)). Organization as a cascade helps optimize the various abovementioned 
functions of a power supply, with each module taking control of one of these. Parallel 
organization is beneficial in terms of the reliability of the global power supply system, 
as it provides redundancy and ease of maintenance, as well as allows for hot swapping. 
The advantages of this modularity are the standardization of the modules (electronic 
characteristics and encapsulation), which speeds up and simplifies design, ease of 
maintenance, and optimizes conversion yield and reliability by decreasing electrical 
and heat stresses. 

 

Figure 4.36. Layout topologies of the PPUs in a cascade  
circuit (a) and a parallel circuit (b) (from Tabisz et al. (1992)) 
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In order to obtain different voltages, the modules can be stacked, either as additive 
stacking (Figure 4.37(a)) or as subtractive stacking (Figure 4.37(b)). 

 

Figure 4.37. Layout topologies of the PPUs in  
additive stacks (a) or subtractive stacks (b)  

Using this approach, it is possible to have several power sources (“source 
splitting”, Figure 4.38(a)), or to provide several load points (“load splitting”, Figure 
4.38(b)). By allowing for several sources, an uninterrupted power supply system by 
battery can be created. The second option allows the supply to power electronic 
subsets located in different areas (distributed loads). In this way, regulation can be 
optimized, and the noise can be reduced. Adding an extra output voltage really means 
adding a simple output regulator, which affords a great amount of flexibility to the 
design. In this case, it is referred to as a modular power system.  

 

Figure 4.38. Structure with source splitting and  
load splitting (from Tabisz et al. (1992)) 

One such architecture is the one shown in Figure 4.39. A single weakly regulated 
voltage coming from the front-end converter is distributed by the backplane bus at a 
value of typically 48 V, which is a classic voltage used in the field of 
telecommunications. Non-isolated local voltage regulators, which are usually DC/DC 
converters, then provide the terminal power supply, which is usually  
+5 V, +3.3 V, and voltages close to one volt for the ULSI integrated circuits. The last 
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level, which delivers the power as close as possible (load point), is a Non-Isolated (NI) 
voltage-lowering converter, called Point-Of-Source regulator (POS), which as a whole 
is referred to as a POL (Point-Of-Load) or a POU (Point-Of-Use) converter. 

 

Figure 4.39. Classical architecture of the power  
supply by medium voltage for the backplane bus 

 

Figure 4.40. Architecture with intermediate power bus 

Working on the layout of the aforementioned architecture, the modern approach is 
to insert an intermediate power bus onto the electronic card in order to reduce the 
amount of energy dissipated during regulation (Figure 4.40). The associated regulator 
is called an IBC (Isolated Buck Converter)4. It isolates the intermediate bus from the 
backplane bus. The architecture is known as an “Intermediate Bus Architecture” 

                              
4 This is called BCM® (Bus Converter Module) in the proprietary version by the company 
Vicor. Some of these modules accept the sector in the input. 
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(IBA). The low intermediate voltage is usually of +12 V. The aforementioned non-
isolated terminal regulators (POL converters) are connected to this power bus. These 
regulators have a high yield thanks to their – and the bus’s – limited voltage swing, 
and through optimization of the components for a given value of the output voltage 
and current. 

There is a more advanced power supply architecture, called FPA for “Factorized 
Power Architecture”. The approach involves separating the three classical functions of 
a power supply by localizing them preferentially in a specific area of the system, so as 
to gain some form of technical advantage. The low value intermediate voltage (7–15 
V) is increased (36–55 V) in order to limit the bus current. In this way, it can reduce 
the surface of the copper by 2/3 compared to the IBA. FPA provides the same 
functions as IBA, but does so in a different order. The example from Figure 4.41 
shows the dual power supply of a microprocessor. A voltage pre-regulator module 
(PRM) supplies a regulated factorized bus voltage VF, which is brought to the value of 
the output voltage by a final regulator called the VTM (Voltage Transformation 
Module). A VTM is a fixed-ratio current multiplier that transforms the voltage and 
isolates the input from the output. Its energy yield is in the order of 96%. It should be 
noted that PRMs like the VTM can be set up in parallel in order to provide more 
power. 

 

Figure 4.41. Factorized power supply architecture 

All of these converters can be autonomous, or more or less programmable and 
monitored. If they are monitored, the information (command/status) passes through a 
management bus, which is usually a serial bus, as the required bitrate is low. Lastly, 
depending on the domain in which it is used (portable systems, for example), the 
energy constraints must be accounted for. 
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4.3. Summary: bus classifications 

Based on the previous categories, another form of classification is possible, one 
that is different from the classification based on hierarchy from § 4.2, which was 
categorical. This is shown in Figure 4.42, minus the power bus. It is based on the 
localization and type of the entity involved. A distinction must be made between the 
buses that are internal to the component and those that are external to it. For the latter, 
another distinction must be made, this time between the different levels, which are 
component or local, board or backplane, system, device or interface, and network. A 
rule emerges from this classification: the higher the level, the greater the maximal 
length (Borrill 1981). 

 

Figure 4.42. Classification of communication buses 

Bus Level Reach Dependency Examples of 
industrial buses 

Local Component PCB Processor 
Microbus (NS)  
Z-bus (Zilog) 

Backplane Electronic card Several cards None 

S-100 
Multibus 

VME 
STD-bus 

System Rack 
Several 
systems 

None 
Unibus™ (DEC) 

Eurobus (Ferranti) 
BXPbus (Intel) 

Device 
Electronic card 

and higher 
levels 

Cards, 
systems and 

networks 
None 

SCSI, USB, 
IEEE1394 

Network 
Electronic card 

and higher 
levels 

Cards, 
systems and 

networks 
None 

CAN, Modbus, 
Profibus 

Table 4.6. Features of the different bus families 

Table 4.6 contains the main features of each of the external categories. 



 

Conclusion of Volume 2 

The bus is a simple and effective shared communication medium that is used for 
systems with a small number (i.e. a dozen) of nodes. The way it operates is usually 
fairly simple to understand, and applying it practically tends to be easy for typical 
operating frequencies. However, it represents a bottleneck in the von Neumann 
machine model. The memory and the I/O also become bottlenecks if several masters 
share the same bus. The buses therefore have a key role in computer performances. 
They have mechanical, electrical, temporal and spatial characteristics, which can be 
specified in a reference standard, enabling standardization of the electronic and 
mechanical components, and thus lowering costs. Tests are a topic that has not been 
covered here, but these are limited due to the heterogeneity of the nodes. The three 
main topologies are the multipoint and the one-directional (multidrop) bus, as well 
as the point-to-point link. One way around the heterogeneity of the communicating 
elements and their data rates, as well as the locality of transfers, is bus hierarchy. 
The current trend is a shift toward serial buses, using packet-based communication, 
thus moving away from cycle-based communication. With the advance of 
integration, buses are disappearing from the motherboard of micro-computers, and 
instead are to be found on chips, such as the SoC (System-on-Chip). Three works 
(Del Corso et al. 1986; Di Giacomo 1990; Buchanan 2000) further complete the 
notions covered in this chapter on external buses. 

Volume 3 will look at logical sequences, which correspond to the material side 
of the microprocessor. 
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Exercises 

Below are some exercises that follow on from the notions covered in this work. 
The number scheme reflects the chapter with which they are associated. 

Chapter 1. Exercises 

E1.1. Create a logic diagram of a validation system of binary data (format n = 2 
bits) using three-state data encoding (cf. § 1.4). 

Answer. The system has to send an acknowledgment signal when the data is 
valid, with input values (0, 0) and (1, 1) respectively marking an invalid piece of 
data, and a non-utilized state. This data can be the result of an operation, in which 
case the acknowledgment signal is a computation termination signal. Figure E1.53 
shows a logic diagram based on a Muller C-element (Muller and Bartky 1959; 
Muller 1963), the function of which was explained in § 3.4.2 in Darche (2002). 

 

Figure E1.53. Dual-rail code validation system (n = 2 bits) 
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E1.2. What is bus arbitration? 

Answer. Arbitration is the mechanism that determines who will be in possession 
of the bus when there are several simultaneous access requests. 

E1.3. Provide two arbiter logic diagrams. 

Answer. The two base models are the ripple arbiter and the look-ahead arbiter, 
whose logic diagrams are shown in Figure E1.54(a) and E1.54(b) respectively. The 
terms used are similar to those for the natural binary adders (NB(C) for Natural 
Binary (Code), cf. § 2.6.1 in Darche (2002)) in relation to the propagation of internal 
carries. 

 

Figure E1.54. Arbiters with the propagation of serial and look-ahead decisions 

E1.4. With a limit of n = 3 requests, redraw the look-ahead arbitration in order to 
obtain a daisy chain solution. 

Answer. Figure E1.55 shows the logic diagram of the solution. 

E1.5. Technological question: what are the criteria for choosing a bus? 

Answer. The key criteria are the bitrate and the connection cost. Obviously, there 
are other parameters too, like the width of the bus, the communication type 
(synchronous or asynchronous), the protocol, arbitration, etc. 
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Figure E1.55. Daisy chain arbiter 

E1.6. How can the performance of a bus be improved? 

Answer. Depending on the case, the performance of a bus can be improved by 
either widening the bus, increasing the serial links or increasing the nominal 
frequency if it is synchronous (principle of overclocking, which carries its own 
intrinsic limitations. Particular care has to be made to respecting the maximal heat 
dissipation of the components). Increasing the valency (i.e. the number of possible 
significant states of the signal) should not be considered (solution for a network). 
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Chapter 4. Exercises 

E4.1. What is the purpose of expansion connectors in a micro-computer 
motherboard (advantages/disadvantages)? Is this technically viable in the long-term? 

Answer. Expansion connectors provide choice in terms of the material settings, 
and they make maintenance and changing the hardware easier. However, this has a 
cost, and reliability can be an issue, as the daughterboard undergoes environmental 
stresses (of all types). These can be chemical, ElectroStatic Discharge (ESD), dust, 
changes in temperature, voltage changes, etc. (PVTL for “Process–Voltage–
Temperature–Loading”), and can result in failures (bad contacts due to rust or dust). 
Moreover, the connection cost is not negligible. These expansion connectors are 
destined to disappear, and are being replaced by high bitrate serial buses, for 
example the bus from the SATA (Serial ATA) interface. 



 

Acronyms 

This section includes all of the acronyms used in this volume. They will be 
introduced once per chapter. 

General 

A 

A   Address 

AB   Alternating-Bit 

ABC   Arbitration Bus Controller 

AC   Alternating Current 

Ack   Acknowledgment 

AD   Address/Data 

ADC   Analog-to-Digital Converter 

AGP   Accelerated Graphics Port 

AHB   Advanced High-performance Bus (AMBA) 

ALE   Address Latch Enable 

AMBA  Arm® Microcontroller Bus Architecture 

ARQ   Automatic Repeat request 

 

 

Microprocessor 2: Core Concepts Communication in a Digital System 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 

–



128     Microprocessor 2 

AS   Address Space 

AS   Address Strobe 

ASB   Advanced System Bus (AMBA) 

AT   Advanced Technology 

ATA   AT Attachment 

ATAPI  AT Attachment Packet Interface (cf. PATA) 

ATB   Address Transfer Bus 

B 

b   bit (cf. BIT) 

B   Byte 

BBusy  Bus Busy 

BCM®  Bus Converter Module (by Vicor) 

BCT   BiCMOS Technology 

BE   Big Endian 

BG   Bus Grant 

BIOS  Basic Input/Output System 

BIT   BInary digiT or Binary digIT 

BLVDS  Bus LVDS 

BM   Bus Mastering 

BPRI  Bus PRiority In 

BPRN  Bus PRiority iN 

BPRO  Bus PRiority Out 

BReq  Bus Request 

BSB   Back-Side Bus 

BTL   Backplane Transceiver Logic 
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C 

C   Output Clock (cf. Clk) 

C   Cycle 

CAD   Command, Address, Data 

CAN   Controller Area Network 

CAS   Column Address Strobe (cf. CE) 

CBTL  CMOS BTL 

CBusy  Common Busy 

CD   Clock Domain 

CD   Collision Detection 

CDC   CD Crossing 

CE   Chip Enable (cf. CS) 

CE   Column Enable (abbreviation from JEDEC–JESD88C) 

Clk   Clock (cf. E) 

CMOS  Complementary MOS  

Comp  Completion 

COTS  Commercial Off-The-Shelf 

CPA   Centralized Power (supply) Architecture 

CPU   Central Processing Unit 

CRC   Cyclic Redundancy Check 

CRIMM  Continuity RIMM 

CS   Chip Select (cf. CE) 

CSI   Common System Interface (Intel) 

CSMA/CD  Carrier Sense Multiple Access with Collision Detection 

CTL   ConTroL 
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D 

D   Data (input) 

D   Driver 

D-Sub  D-Subminiature (connector) 

DC   Direct Current 

DDR   Double Data Rate 

DE   Driver Enable 

DIB   Dual Independent Bus 

DMA  Direct Memory Access 

DMAC  DMA Controller 

DMI   Direct Media Interface (Intel) 

DP   Dynamic Priority 

DPA   Distributed Power Architecture 

DPDRAM  Double Port DRAM 

DPS   Distributed Power System 

DQ   Data input/output 

DQM  DQ Mask 

DR   Dual-Rail 

DRAM  Dynamic RAM 

DTAck  Data Transfer Acknowledge (MC68000) 

DTB   Data Transfer Bus 

E 

E   Clock signal (cf. Clk) 

E   (Chip) Enable 

ECC   Error Checking and Correcting/Error-Correcting Code 

ECL   Emitter Coupled Logic 

EDC   Error-Detecting Circuit/Code 
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EISA  Extended ISA 

EMC   ElectroMagnetic Compatibility 

EMI   ElectroMagnetic Interference 

ESD   ElectroStatic Discharge 

F 

FAST  Fairchild Advanced Schottky TTL 

FB+   Futurebus+ 

FCFS  First-Come First-Served 

FDM   Frequency-Division Multiplexing 

FIFO   First In, First Out (resource handling) 

FPA   Factorized Power (supply) Architecture 

FPGA  Field-Programmable Gate Array 

FR4   Flame Retardant 4 

FSB   Front-Side Bus 

FSM   Finite-State Machine 

FW   FirmWare 

G 

G   Ouput Enable (cf. OE) 

GMCH  Graphics and Memory Controller Hub 

Grt   Grant 

GTL   Gunning Transceiver Logic 

GTLP  GTL Plus 

H 

H or h  High 

HBB   Hierarchical Bus Bridge (architecture) 
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HD   Hard Disk 

HDD   HD Drive 

HDL   Hardware Description Language (cf. VHDL) 

HSBI  High-Speed Backplane Initiative 

HT   HyperTransport 

I 

I   Initiator 

iAPX  Intel Advanced Performance Architecture 

IBA   Intermediate Bus Architecture 

IBC   Isolated Buck Converter 

IC   Integrated Circuit 

ICH   I/O Controller Hub 

ID   IDentification 

IDE   Integrated Drive Electronics 

IEN   Internet Engineering Note 

I/F   InterFace 

iLBX™  Local Bus Extension (Intel) 

I/O   Input/Output 

IO   Input/Output (rarely used) 

IOR   I/O Read 

IOW   I/O Write 

iPSB™  Parallel System Bus (Intel) 

IRQ   Interrupt Request 

ISA   Instruction Set Architecture 

ISA   Industry Standard Architecture 

ISBN  International Standard Book Number 

iSBX™  Single Board Bus (Intel) 
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ISP   Integrated System Peripheral (Intel) 

iSSB™  Serial System Bus (Intel) 

J 

JTAG  Joint Test Action Group 

L 

L or l  Low 

LAN   Local Area Network 

LDS   Lower Data Strobe 

LDT   Lightning Data Transport (AMD) renamed  
   HyperTransport 

LE   Little Endian 

LSb   Least Significant bit 

LSI   Large-Scale Integration 

LVD   Low-Voltage Differential 

LVDM  LVD Multipoint (TI) 

LVDS  LVD Signaling 

M 

M   Master 

M   Memory 

MCA  Micro Channel™ Architecture 

MCH  Memory Controller Hub 

MEMR  MEMory Read 

MEMW  MEMory Write 

M-LVDS  Multipoint-LVDS 

MOS   Metal-Oxide Semiconductor 
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MPSoC  MultiProcessor SoC 

MPU   MicroProcessor Unit 

MR   Multi-Rail 

MSb   Most Significant bit 

MUX  MUltipleXer 

N 

NAck  Negative Acknowledge 

NB(C)  Natural Binary (Code) 

NI   Non-isolated 

NK   Negative acKnowledgment 

NoC   Network-on-Chip 

NRZ   Non-Return to Zero 

O 

OCC   On-Chip Communication 

OCC   On-Chip Connection 

OE   Output Enable (cf. G) 

OoO   Out-of-Order 

OS   Operating System 

OWC  One-Way Command 

P 

P   Processor 

PATA  Parallel ATA 

PC   Personal Computer 

PCB   Printed Circuit Board 

PCI   Peripheral Component Interconnect (standard) 
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PCI-E or PCIe® PCI Express 

PDE   Power Distribution Element 

PDN   Pull-Down Network 

PDP   Programmable Data Processor (DEC) 

PE   Processing Element, Processor Element 

PLC   Programmable Logic Controller 

PMOS  Positive (channel) MOS 

POL   Point-Of-Load (regulator) (cf. POU) 

POS   Point-Of-Source (regulator) 

POU   Point-Of-Use (converter) (cf. POL) 

POU   Point-Of-Use (regulator) (cf. POL) 

PPU   Power Processing Unit 

PRM   Pre-Regulator Module 

PS/2   Personal System/2 (IBM) 

PU   Processing Unit 

PUN   Pull-Up Network 

PVTL  Process–Voltage–Temperature–Loading 

Q 

QDR   Quad Data Rate 

QPI   Quick Path Interconnect 

R 

R   Read 

R   Repeater 

R   Receiver 

RAM  Random Access Memory 

RAS   Row Address Strobe (cf. RE) 
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Rd   Read 

RE   Read Enable 

RE   Receiver Enable 

RE   Router Element (cf. RU) 

RE   Row Enable (abbreviation from JEDEC – JESD88C) 

REJ   REJect (technique) 

Req   Request 

RFC   Request For Comments 

RFI   Radio-Frequency Interference 

RIMM™  Rambus In-line Memory Module 

RISC  Reduced Instruction Set Computer 

RMW  Read–Modify–Write 

ROM  Read-Only Memory 

RR   Round Robin 

RS   Read Signal 

RS   Recommended Standard 

RSL   Rambus Signaling Level 

RTC   Real-Time Clock 

R(T)Z  Return-(To)-Zero 

RU   Router Unit (cf. RE) 

RW or R/W  Read/Write 

Rx   Receiver 

S 

S   Schottky 

S   Signal 

S   Slave 

S   Source 
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SAck  Selection Acknowledge 

SATA  Serial ATA 

SCSI   Small Computer System Interface 

SDRAM  Synchronous DRAM 

SE   Single-Ended 

SerDes  Serializer/deserializer 

SLI   Scalable Link Interface (Nvidia) 

S/N   Signal/Noise (cf. SNR) 

SNR   Signal-to-Noise Ratio (S/N) 

SoC   System on (a) Chip 

SONET  Synchronous Optical NETwork 

SP   Static Priority 

SPD   Serial Presence Detect 

SPMT™  Serial Port Memory Technology 

SRAM  Static RAM 

SREJ  Selective REJect (technique) 

SSB   Single Shared Bus (architecture) 

SSRAM  Synchronous SRAM 

SSTL  Stub Series Terminated Logic 

STBus®  Split Transaction Bus 

T 

T   Target 

TDMA  Time-Division Multiple-Access 

TLB   Translation Lookaside Buffer 

transceiver  transmitter/receiver 

TTL   Transistor–Transistor Logic 

Tx   Transmitter 
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U 

UDMA  Ultra DMA 

UDS   Upper Data Strobe 

UI   Unit Interval 

ULSI  Ultra LSI 

USB   Universal Serial Bus 

V 

VAN   Vehicle Area Network 

VHDL  VHSIC Hardware Description Language 

VHSIC  Very High-Speed Integrated Circuit 

VL-Bus or VLB VESA Local Bus or Video Local Bus 

VLSI  Very LSI 

VM   Virtual Memory 

VME  Versa Module European 

VTM  Voltage Transformation Module 

W 

W   Wait 

W   Wrapper 

W   Write 

WE   Write Enable 

Wr   Write (signal) 

WS   Write Signal 

X 

XT   eXtended Technology (IBM) 
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Others 

µC   Microcomputer 

µP   Microprocessor 

2D or 2-D  Two-dimensional 

4D or 4-D  Four-dimensional 

Measurement units or unit prefixes 

b/s or bps   bit per second 

B/s or Bps   byte per second 

G   giga (= 109) 

Gb   gigabit 

Gb/s or Gbps  gigabit per second 

GB   gigabyte 

GB/s or GBps  gigabyte per second 

k   kilo (= 1000) 

kb   kilobit (= 1000 b) 

kb/s or kbps  kilobit per second 

kB   kilobyte (1000 bytes) 

kB/s or kBps  kilobyte per second 

Kibi   kilobinary (prefix Ki = 210) 

KiB   kibibyte (= 210 bytes) 

M   mega (= 106) 

Mb   megabit 

Mb/s or Mbps  megabit per second 

MB   megabyte 

MB/s or MBps megabyte per second 

T   tera (= 1012) 

Tb   terabit 
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Tb/s or Tbps  terabit per second 

TB   terabyte 

TB/s or TBps  terabyte per second 

Voltage features 

Gnd   Ground 

VCC   Collector DC supply voltage 

Vd   Direct voltage 

VDD   Drain DC supply voltage 

VDDQ   Output stage drain power voltage (JEDEC) 

Vref   Reference voltage 

VSS   Source–Source voltage 

VT   Threshold voltage 

VTT   TerminaTion rail voltage 

Temporal characteristics 

ta   access time 

tacc or tACC  access time 

tAH   Address Hold time 

tAV   Address Valid time to E (rise) 

tc or tcyc  cycle time 

tDDW   Write Data Delay time 

tDHR   Read Data Hold time 

tDHW   Write Data Hold time 

tdis   disable time (of a three-state output) 

tDSR   Read Data Setup time 

tflight   flight time 

th or thold  hold time 
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tpd or tpo  propagation delay time 

tsu or tsetup  setup time 

Company or body 

ACM  Association for Computing Machinery 

AFIPS  American Federation of Information Processing Societies 

AFISI  Association Française d’Ingénierie des Systèmes  
   d’Information 

AMD  Advanced Micro Devices, Inc. 

ANSI  American National Standards Institute 

ARM  Acorn RISC Machine, later Advanced RISC Machines 

DEC   Digital Equipment Corporation 

DIN   Deutsches Institut für Normung 

EIA   Electronic Industries Association, later Electronic  
   Industries Alliance 

HP   Hewlett-Packard 

IBM   International Business Machines Corporation 

IDT   Integrated Device Technology 

IEC   International Electrotechnical Commission 

IEEE   Institute of Electrical and Electronics Engineers 

ISO   International Organization for Standardization,  
   Organisation Internationale de Standardisation 

ISSCC  IEEE International Solid-State Circuits Conference 

JEDEC  Joint Electron Device Engineering Council (Solid-State  
   Technology Association) 

MIT   Massachussets Institute of Technology 

MITS  Micro Instrumentation Telemetry Systems 

MPR   Microprocessor Report 

NS   National Semiconductor 

OIF   Optical Internetworking Forum 
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OSI   Open Systems Interconnection 

PCI-SIG  PCI Special Interest Group 

PSA   Peugeot Société Anonyme 

SGI   Silicon Graphics, Inc. 

TI   Texas Instruments 

TIA   Telecommunications Industry Association 

VESA  Video Electronics Standards Association 

VITA  VMEbus International Trade Association 

Trademarks - ™ 

Gigaplane  Sun 

iLBX  Intel 

iPSB   Intel 

iSBX  Intel 

iSSB   Intel 

i486   Intel Corporation 

MCA  Micro Channel 

Micro Channel IBM (cf. MCA) 

Pentium  Intel Corporation 

PowerPath-2  SGI 

RIMM  Rambus (cf. CRIMM) 

SPMT  Consortium SPMT, LLC 

VMEbus  Motorola Incorporated 

Registered trademark – ® 

AMD  AMD 

Arm   Arm Limited 

BCM  Vicor 
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DEC   Digital Equipment Corporation 

DIGITAL  Digital Equipment Corporation 

Fairchild  Fairchild Semiconductor Corporation 

Intel   Intel 

Micro Channel IBM Corporation 

Multibus  Intel Corporation 

OMNIBUS  Digital Equipment Corporation 

PCIe   PCI-SIG 

PDP   Digital Equipment Corporation 

Pentium  Intel 

PS/2   International Business Machines Corporation 

Rambus  Rambus Inc. 

RapidIO  RapidIO.org 

STBus  STMicroelectronics 

TRI-STATE  NS 
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V5-3.3.1 
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incomplete, § V2-3.1 
instruction, cf. execution cycle 

decrement/increment, § V4-1.2.3.3,  
V4-1.2.3.5 and V4-1.2.4.5 
automatic, § V3-3.1.6 
pre- and post-, § V4-1.2.3.3 

debugging, § V5-2.2 
hardware, § V5-2.1 
mode, § V5-2.2.7 

ForeGround Debug Mode (F(G)DM, 
§ V5-2.2.7 

BackGround Debug Mode 
(B(G)DM, § V5-2.2.7 

remote, § V5-2.2.6 
software, § V5-2.2.4 

delay 
time, § V2-1.2, V2-1.3, V3-2.4.1 and 

V3-2.4.3 
descriptor table, § V1-3.5.6 

GDT, § V3-3.1.9 
IDT, § V4-5.10 
LDT, § V3-3.1.9 

development/design stage, § V5-1.1.2  
delayed/lazy linking, § V5-1.2.2 
loader, § V5-1.2.3 
(re-)assembly, § V4-3.1.4, V4-3.2.2, 

V5-1.1, V5-1.2.1 and V5-1.3.3 
(re-)compilation, § V4-3.2.2 
static and dynamic link library, §  

V4-3.2.2, V5-1.2.1, V5-1.2.2 and 
V5-1.3.3 

development/design chain/tools, cf. 
development tool 

Dhrystone. cf. performance/ 
benchmark/synthetic suite 

diagram in Y, § V1-3.1.4 
Direct Memory Access (DMA),  

§ V1-3.3 
disassembler, cf. development tool 
division, cf. arithmetic operation 
DSP, cf. processor 
DTL, cf. electronic technology 

E 

EDSAC, cf. computer model 
EDVAC, cf. computer model 
EFI, cf. firmware 
electrical overshooting, § V2-3.3.2 
electromechanical relay, § V1-1.2 
electronic board, § V1-1.2, V2-1.2 and 

V5-2.1.1 
dummy board (CRIMM), § V2-1.6 
start, evaluation, development board, § 

V5-2.1.1 
motherboard, § V1-1.2, V2-1.2 and 

V5-3.1 
electronic logic 

buffer, § V1-3.4, V2-3.3.4, V2-4.1.4, 
V3-2.4.1, V4-3.1, V4-3.2.1 and 
V4-3.3.1 

driver, § V2-3.3.4 
transceiver, § V2-3.3.4 
three-state, § V1-3.4, V2-1.3, V2-1.6, 

V2-3.3.4 and V3-2.1 
electronic technology, § V1-1.2 

BiCMOS, § V1-2.4, V2-3.3.7 
CMOS, § V1-1.5, V1-2.4, V2-1.3,  

V2-3.3.7, V3-1.1, V3-1.2, V3-2, 
V3-4 and V3-6 

DTL, § V1-1.2 
ECL, § V2-3.3.7 and V3-5.1 
(C)HMOS, § V3-4.3, V3-4.5, V3-4.6, 

V3-5.3 and V4-3.3.1 
GTL/GTLP, § V2-3.3.7 
LVDS, § V2-3.3.7, V2-4.2.3 and  

V4-3.3.1 
MOS, § V3-1.2, V3-4.6 and V4-3.4.1 
NMOS, § V3-1.2, V3-4.3 and V3-6.1.1 
PMOS, § V3-1.1, V3-1.2, V3-4.2,  

V3-4.3, V3-4.5, V3-5.3, V3-5.4 
and V3-6.1.1 

SLT, § V1-1.2 
TTL, § V2-3.3.7, V3-4.3, V3-5.1,  

V3-5.4, V5-3.1 and V5-3.2.1 
electronic tube, cf. grid 
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element 
communication, § V2-4.2.9 
processing (PE), § V2-4.2.9 
router (RE), § V2-4.2.9 
storage, § V1-3.3.1.2.1 

ELF, cf. format 
ELSI, cf. integration technology 
emulator, cf. development tool 
endian/endianness, cf. memory/order of 

storage 
energy savings, § V3-6.1.4 
ENIAC, cf. computer model 
error, § V1-2.1, V2-2.2.4, V2-3.2,  

V2-4.1.4, V2-4.2.3 and V3-5.2 
ASCII/BCD, § V4-2.3.1 and exercises 

V4-E2.1 and E2.2 
checking (ECC), § V2-4.1.4 
CRC, § V2-3.2 and V4-2.7.1 
detection (EDC), § V4-2.7.1 and  

V5-3.2.1 
evolution 

of concepts, § V1-1.4 
of integration, cf. law/Moore’s 
of roles, § V1-1.4 

exception, cf. interruption 
execution  

conditional, § V4-2.4.2 
context, § V3-3.1.12.2 and V4-4.2.2 
mode, § V1-3.5.5, V3-3.1.12.4,  

V4-3.2.2, V4-5.9 and V4-5.10 
real/protected, § V3-3.1.5.6,  

V3-3.1.12.4, V3-4.5, V3-4.6, 
V4-2.5.3, V4-3.2.2, V4-5.7,  
V4-5.10 and V4-5.11 

supervisor, § V1-3.5.5, V3-1.2,  
V3-3.1.8, V4-3.2.2, V5-2.2.2 
and V5-2.2.4.1 

user, § V1-3.5.5 
sequential, § V4-1.2.5 
stop, § V3-4.3, V3-6.1.4, V4-2.5.2,  

V4-2.5.2, V4-5.2.2, V4-5.6,  
V4-5.8, V4-5.11 and V5-2.2.7 

breakpoint, § V3-3.1.5.6, V4-5.4, 
V4-5.5, V4-5.7, V4-5.9,  
V4-5.11, V5-2.2.2, V5-2.2.3, 
V5-2.2.4 and V5-2.2.5 

time, § V4-3.2.1, V4-3.4.3, V4-5.11 
and V5-1.1.2 

F 

famine, cf. bus/concepts 
faults 

hardware/software, § V4-3.1.2,  
V4-3.2.4, V4-5.1, V4-5.4, V4-5.7 
to V4-5.9 and V4-5.11 

tolerance, § V1-1.2, V2-1.6 and  
V2-3.3.6 

FFT (Fast Fourier Transform), cf. Fourier 
transform/fast 
flow graph, § V4-1.2.4.5.2 

FGMT, cf. parallelism/ multithreading 
field, § V4-1.1, V5-1.2.1 and V5-1.3.3 

address, § V4-1.2.3.1 
comment, § V5-1.3.3 
condition, § V4-2.4.2 
function, § V4-1.1 
identification, § V4-1.1 
instruction, § V5-1.3.3 
label, § V5-1.3.3 
operand, § V4-1.1, V4-1.2.2.1 and  

V5-1.3.3 
sub-field, § V4-1.1 

file format 
BCS, § V5-1.1.4 
COFF, § V5-1.1.4 and V5-1.2.2 
ELF, § V5-1.1.4 and V5-1.2.2 
OMF, § V5-1.2.2 

filtering/filter, § V2-3.3.4 and V3-5.2 
Finite Impulse Response (FIR), §  

V3-5.2 
Infinite Impulse Response (IIR), §  

V2-V3-5.2 
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digital, § V4-1.2.4.5.1, V4-1.2.4.5.2, 
V4-2.8.4.2 and V4-3.4.2 

firmware, § V1-1.4, V2-3.1, V4-5.7 and 
V5-3.5 
BIOS, § V4-5.9 and V5-3.5.3 
EFI, § V5-3.5.3 
microcode, § V4-2.5.7 
monitor, § V4-V4-5.7, V5-2.1.1,  

V5-2.2.4, V5-2.2.5, V5-2.2.7,  
V5-3.1, V5-3.2.1 and V5-3.5.1 

open firmware, § V5-3.5.4 
POST, § V5-2.2.1, V5-3.2.1, V5-3.2.2, 

V5-3.5.3 and V5-3.5.4 
UEFI, § V5-3.5.3 

flag, cf. code/condition 
flip-flop, § V1-1.2, V1-2.3, V1-3.1.4, V1-

3.3.1.2.1, V1-3.3.1.2.2, V2-1.3, V2-3.1, 
V3-2.4.1, V3-3.1.1, V4-5.2.3, V4-5.3 
and V5-2.2.5 

flow, § V1-3.1.2 and V1-3.1.3, V2-1.5, 
V3-3.1.5.1 and V4-5.2 
control, § V1-3.1.2 

exceptional (ECF), § V1-3.1.2 
graph (CFG), § V1-3.1.2 

data flow, § V1-3.1.2 
form factor, § V1-1.2, V5-3.4.1 and  

V5-3.4.2 
AT, ATX, BTX, ITX, NLX, PC, WTX 

and XT, V5-3.4.1 
format 

binary, cf. binary format 
file, cf. file format 
instruction, cf. instruction format 

Fourier transform, § V3-5.2 
discrete, § V4-1.2.4.5.2 
fast, cf. § V3-5.2, V4-1.2.4.5.2 and  

V4-3.4.4 
FPGA, § V1-3.5.3, V2-4.2.10, V4-5.7 

and V5-2.2.3 
frame, cf. memory 
FSM, cf. state/state machine 
function, cf. subprogram 

G 

gate, cf. transistor/gate 
glue logic, § V3-2.1.1.1, V3-2.3, V5-3.1 

to V5-3.3 and V5-3.4.2 
grid 

crossbar matrix, § V2-3.3.6, V2-4.2.7 
and V2-4.2.9 

electronic tube, § V1-1.2 
GSI, cf. integration technology 

H 

HAL (Hardware Abstraction Layer), § 
V5-1.1.4 

hardware development tool  
development system, § V5-2.2.3 and 

V5-2.2.7 
emulator, § V5-2.2.3 

hardware, § V5-2.2.3, V5-2.2.4.3 
and V5-2.2.6 

ICE, § V5-2.2.3 and V5-2.2.7 
programmer, § V5-2.1.2 

hardware interface 
microprocessor, § V3-2.2 
RS-232, § V2-1.3, V3-5.3, V5-2.1.1, 

V5-2.1.2, V5-2.2.1 and V5-2.2.4.1 
SCSI, § V2-1.2, V2-2.2.3, V2-4.2.6, 

V2-4.3 and V5-3.3.1 
HMT (Hardware MultiThreading), §  

V1-3.4.3.2 and V3-4.7 
hot plugging, § V2-3.1 and V5-1.1.4 
HPC (High-Performance Computing), § 

V1-1.2 

I 

I/O 
isolated (IIO) or separated, §  

V3-2.1.1.1 
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memory-mapped interface (MMIO), § 
V3-4.3 and V3-5.4 

IAS Princeton, cf. computer model 
IBI, § V5-3.5.3 
iCOMP, cf. performance/benchmark 
Illiac IV, cf. computer model 
ILP, cf. parallelism/instructions 
incrementation, cf. decrement 
insertion-withdrawal under tension, §  

V2-3.4 
instruction format, cf. instruction 
Instruction Set Architecture (ISA),  

§ V1-3.5 
extension, § V4-2.4.2 
IA-32 (Intel), § V3-3.1.1 
instruction set, § V1-3.5.3 
properties 

execution modes, § V1-3.5.5  
memory model, § V1-3.5.4 

storage elements, § V1-3.5 
integrated circuit logic 

combinational, § V1-1.2, V1-3.1.4,  
V1-3.3.1.2.1, V3-3.3 and V4-4.1 

family, § V1-1.2 
sequential, § V1-3.3.1.2.1, V3-3.1 

and V3-3.3 
integrated circuit package 

DIP, § V1-1.2, V3-1.1, V3-4.1,  
V4-5.2.2, V5-3.1 and V5-3.2.2 

LGA, § V3-6.3 
PGA, § V3-4.5 and V3-6.3 

instruction 
advanced bit manipulation instructions, 

§ V4-2.3.2.4 and V4-2.3.2.5 
alignment, § V4-2.3.2.4 and V4-3.1.2 
arithmetic, § V3-3.1.5.1, V3-3.1.5.7, 

V4-2.3.1, V4-2.8.4, V4-2.4.1,  
V4-2.7.1 and V4-2.7.2 cf. also 
arithmetic operation 

atomic, § V4-2.1, V4-2.3.2, V4-2.6.1 
and V4-2.6.2 

branching, § V3-5.2 and V4-2.4.1 to 
V4-2.4.3 

break, § V4-2.5.2 
bundle - VLIW, § V3-2.1.2 
character manipulation (chains), §  

V4-2.8.1 
class, § V4-2.1 

control transfer, § V4-2.4 
data processing, § V4-2.3 
environmental, § V4-2.5 
parallelism, § V4-2.6 
transfer, § V4-2.2 

code (op-code), § V4-1.1 
coding, § V4-1.1 and appendix V4-1 
control transfer, § V4-2.4 
decoding, § V3-3.4.2 and appendix  

V4-1 
dyadic, § V1-3.4.1 and V4-1.1 
environmental, § V4-2.5 
extension to the set, § V4-2.7 

cryptography, § V4-2.7.3 
format, § V4-1.1 and V4-1.2 
multimedia, § V4-2.3.2.4 and  

V4-2.7.1 
randomization management, §  

V4-2.7.4 
signal processing, § V4-2.7.2 
variable, § V3-3.4.3.2 

high-level, § V4-2.8.3 
illegal, § V4-3.1.1 
Input/Output (I/O), § V4-2.8.2 
invalid, § V4-3.1.1 
macro-instruction, § V4-2.4.3, V4-4.2, 

V4-4.2.2, V5-1.1.2, V5-1.2.1,  
V5-1.3.3 and V5-1.3.4 

micro-, § V1-3.1.4, V3-3.4.1,  
V3-3.4.3.2, V4-5.2.4 and V5-1.1.1 

mnemonic, § V4-2.1, V4-3.1.5, V4-3.5 
and V5-1.1 

monadic, § V4-1.1 
number per cycle/IPC, § V2-3.4.2 
parallelism, § V4-2.6 
per cycle (IPC), cf. performance/ unit 

of measurement 
prefix, § V4-1.1 
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pseudo-instruction, § V5-1.3.3 and  
V5-1.3.4 

set (IS), § V1-3.5.3 and V4-2.1 
properties, § V1-3.5.3.1 
orthogonality/symmetry, §  

V4-2.4.1 
SIMD, § V4-2.3.2.4 and V4-2.7.1 

micro, § V4-2.3.2.1 
specific to digital representation, §  

V4-2.8.4 
integration technology, § V1-1.2, V1-1.4, 

V1-1.5 and V1-3.1.4 
ELSI, § V1-1.2 
GSI, § V1-1.2 
LSI, § V3-1.1, V3-4.2, V5-3.1 and  

V5-3.3.1 
MSI, § V1-1.2 
SLSI, § V1-1.2 
SSI, § V1-1.2 
ULSI, § V2-4.2.10 
VLSI, § V3-1.2, V5-2.3, V5-3.2.1,  

V5-3.3 and V5-3.3.1 
interruption, § V4-5 

cause 
external, § V4-5.2 
internal, § V4-5.4 

controller, § V4-5.2.5 
debugging, § V4-5.5 
definition, § V4-5.1 
hardware, § V4-5.2 
instruction, § V4-3.2.2 and V4-5.4 
mask and maskable/non-maskable INT, 

§ V3-2.1.3, V3-3.1.5.4, V3-3.1.5.6, 
V3-3.1.5.7, V3-6.2, V4-5.2,  
V4-5.3, V4-5.6, V4-5.7, V4-5.9 
and V4-5.11 

nested, § V4-5.3 and V4-5.8 
orthogonal, § V4-5.7 
software, § V4-5.4 
vectorization, § V4-5.7 

IP (Intellectual Property), § V3-1.2 
register x86, cf. register 

ISA, cf. instruction set architecture or 
bus (products) 

ISC, § V5-2.1.2 
Ishango (incised bones of), § V1-1.1 
ISP 

bus, § V2-2.2.3 
processor, § V1-3.1.4 and V4-2.1 
programming, § V5-2.1.2 

ITRS, § V1-1.4 and V1-1.5 

J 

JTAG, cf. test/interface 

L 

language  
concepts, § V1-1.4 
high-level (HLL), § V1-3.1.5,  

V4-1.2.3.3, V4-2.4.3, V5-1.1.1, 
V5-1.1.4, V5-1.3 and V5-1.3.4 

layer of, § V5-1.1 
level, § V5-1.1.1 
machine, § V1-1.4, V1-3.3.4, V4-3.1.5, 

V5-1.1, V5-1.1.1 and V5-1.3 
programming, cf. programming 

language 
register transfer (RTL), cf. § V1-3.1.4, 

V1-3.3.1.2.1 and V3-3.1.3 
LAPACK, cf. performance/core 
latch, § V1-3.3.1.2.1 
launcher cf. development tool 
law 

iron, § V4-3.4.3 
Moore’s, § V1-1.2, V1-1.5 and V3-1.2 

library (development), § V4-3.1.5 and 
V5-1.2.2 
archiver, § V5-1.2.2 
dynamic link (DLL) § V4-3.1.5 
of macro-instructions, § V5-1.3.4 
runtime, § V4-3.4.4 
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standard, § V5-1.1.4 
static, § V5-1.1.2 

LINPACK, cf. performance/core 
loading, cf. development tool  
logic gate, § V1-1.2, V1-3.1.4, V2-3.3.4 

and V2-4.1 
logical operation, § V1-3.3.1.2.1,  

V4-2.3.2.2 and V4-2.7.1 
comparison, § V4-2.4.1 
complementation, § V4-2.4.1, V4-2.6.1 

and § V3-2.1.3 (footnote) 
NOT AND (NAND), § V1-1.2 
permutation, § V2-1.2 and V2-4.1.4 

look up memory, § V3-3.4.3.2 and  
V4-2.8.4.2 

loom, § V1-1.1 
loop 

current, § V2-3.3.2 
hardware, § V3-3.1.9 and V3-5.2 
phased-locked (PLL), § V3-2.4.1 
software, § V1-3.1.1, V1-3.3.2,  

V4-1.2.3.2 and V4-2.4.3 
LSI, cf. integration technology 
LVDS, cf. electronic technology 

M 

MAC, § V3-5.2 and V4-2.8.4.2 
MACS, § V4-3.4.2 
MBR 

register, § V3-3.1.1 and V3-3.5 
sector, § V5-1.2.3 and V5-3.5.3 

mask 
binary/logical, § V3-3.3, V4-2.3.2.2, 

V4-2.3.2.4 and exercise  
V4-E2-5 

interruption, cf. interruption 
window, § V3-3.1.11.3 

mass storage, § V1-1.2, V1-2.1, V1-2.3, 
V1-2.4 and V1-3.2.2.1 
interface, § V2-1.2 and V2-4.2.6 
library of cartridges, § V1-2.3 

mechanical computing machines, §  
V1-1.1 
analytical engine (Babbage), § V1-1.1 
difference engine (Babbage), § V1-1.1 
Pascaline, cf. exercise V1-E1.1 
statistics machine, § V1-1.1 

mechanism, § V1-3.1.2 
control, cf. control mechanism 
data, cf. data mechanism 

memory 
alignment, § V1-2.2.2, V1-3.5.4,  

V2-1.2; V3-2.1.1.4 and V3-3.4.3.2 
boundary, § V4-3.1.2 
buffer 

queue (FIFO), § V1-2.1, V2-1.6, 
V2-3.1, V2-4.1.4, V4-1.2.4.5.1 
and V5-2.3 

stack (LIFO), § V1-3.5.1 and V4-4.1 
byte access, § V2-3.2 and V3-2.1.1.4 
cache, § V1-2.3, V1-2.4, V2-2.2,  

V2-2.2.5, V2-4.2.1, V3-3.1.9,  
V4-2.5.4, V4-2.5.5, V4-3.4,  
V4-5.7, V5-2.3 and V5-3.3.4 

capacity/size, § V1-2.1 
characteristics, § V1-2.1 
classification, § V1-2.4 
cycle communication, § V1-2.4 
extension, § V3-2.1.1.3 
hierarchy, § V1-2.3 
interleaving, § V1-3.3.4 and  

V2-4.2.2 
internal, § V3-3.2 
look up, cf. look up memory 
memory map, § V5-1.1.4 
method or policy of access, § V1-2.1 
model, § V2-3.5.4 
modeling, § V1-2.3 
multiport, § V3-3.1.11.1 
order of storage (little/big endian,  

bi-endian), § V1-2.2.1, V2-1.1 and 
V2-1.2 

organization, § V1-2.1 and V1-3.1.5 
punched card, § V1-1.1 and V1-1.4 
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random access, cf. random access 
memory (RAM) 

read-only, cf. read-only memory 
(ROM) 

semiconductor-based, § V1-2 
technology, § V1-2.3 and V1-2.4 
UMB, § V5-3.2.3 
unified, § V1-3.3.1.2.2, V1-3.2.2.1, 

V1-3.3.4, V1-3.4.2, V3-5.4,  
V5-3.3.1 and exercise V1-E3.1 

MEMS, § V1-1.2 
microcontroller (MCU), § V3-1.1 and 

V3-5.3 
microcomputer, § V1-1.2 and V5-3 

Apple II, § V5-3.1 
IBM Personal Computer (PC) 

IBM 5150, § V1-1.2 and  
V5-3.2.1 

IBM 5160, § V5-3.2.2 
IBM 5170, § V5-3.2.3 

Micral N, § V1-1.2 and V3-1.2 
microprocessor (MPU) 

commercial, § V3-1.2 
definition, § V3-1.1 
digital signal processor (DSP), §  

V3-5.2 
family, § V3-4 
generations, § V3-1.1 and V3-4 
history, § V3-1.2 
initialization, § V3-6.2 and V4-5.2.2 
interfacing, § V3-2 
single-bit, § V3-4.1 

microprogramming, cf. logical 
unit/control unit 

MIPS, cf. performance/unit of 
measurement 

mixed language programming, § V5-1.1.3 
MMX, cf. instruction/extension to the set 
MOS, cf. electronic technology 
MPP, cf. parallelism/processor 
multiplication, cf. arithmetic operation 
MSI, cf. integration technology 

multicore, § V1-1.4, V1-3.3, V1-3.4.3.3, 
V3-1.1, V4-3.4.1 and V3-4.7 

multiprocessor, § V1-3.6, V2-2.2.5, V2-
4.2.9, V3-1.1, V4-3.2.2 and V4-3.6.2 

N 

NMOS, cf. electronic technology 
NoC (Network-on-Chip), § V2-4.2.9 
node 

processing, § V1-1.2 and V1-3.6 
technology, § V1-1.5 

norms, cf. standard 

O 

object module, § V5-1.1.2, V5-1.1.3, V5-
1.2.1, V5-1.2.2, V5-1.2.4 and V5-1.3.4 

Operating System (OS), § V1-1.2, V1-1.4 
and V3-1.2 
calls, § V2-2.2.1 
debugging, § V5-2.2.2 
flag, § V3-3.1.5.6 
MS-DOS, § V5-3.2.1 and V5-3.2.3 
protection, cf. execution/mode  

organization 
of a memory, cf. memory 
of computers, § V1-3.1.4 

overflow, § V3-5.2 
buffer, § V4-1.2.4.5.1 
capacity, § V4-2.3.1 and V4-2.3.2.2 

overflow (positive/negative), §  
V3-3.1.5.1, V3-3.1.5.3,  
V3-3.1.5.4, V3-5.3, V4-5.1,  
V4-5.4, V4-5.7, V4-5.11 and 
exercise V3-E3.4 

underflow, § V3-3.1.5.4 and  
V4-5.4 

format (unsigned), § V3-3.1.5.1,  
V4-2.3.1, V4-2.3.2.2 and exercise 
V3-E3.2 
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register window, § V3-3.1.11.3 
segment, § V4-5.4 
stack, § V4-4.1, V4-4.2.1 and V4-5.1 

P 

parallelism, § V1-1.4 and V1-3.4.3 
instruction-level (ILP), § V1-3.4.3.1 
multicores, § V1-3.4.3.3 
multithreading, § V1-3.4.3.2 
processor, § V3-5.5 
thread level, § V1-3.4.3 

parameters 
calling convention, § V4-4.2.3 
passage, § V3-3.1.12.3 and  

V4-4.2.3 
path 

control (CP), § V1-3.1.4 and  
V1-3.3.1.2.2 

data (DP), § V1-2.3, V1-3.1.4,  
V1-3.2.2.1, V1-3.3.1.2.1, V1-3.3.3 
and V5-3.3.1 

definition, § V1-3.2.2.1 
execution, § V1-3.1.2, V3-3.4.3,  

V4-2.4.1 and V4-2.4.2 
instruction (IP), § V1-3.2.2.1 
scan/exam/access, § V5-2.2.5 and  

V5-2.3 
PC, cf. register/program counter 
PCMark, cf. benchmark 
PCMC, § V5-3.3.1 
performance, § V4-3.4 

core 
LAPACK and LINPACK, §  

V4-3.4.4 
measurement, § V4-3.4 
program performance, § V4-3.4.4 
unit of measurement (metric), §  

V4-3.4.4 
Dhrystone, § V4-3.4.4 
IPC, § V4-3.4.3.1 

permutation, cf. logical operation/ 
permutation 

Personal Computer (PC), cf. 
microcomputer 

PIC, cf. interruption/controller 
pin, § V1-2.1, V2-1.2, V2-3.3.1, V2-3.6, 

V3-6.3, V4-5.2.2, V4-5.7 and V3-4.1 
pipeline, § V1-3.3.2, V1-3.4.3.2, V3-1.2, 

V4-3.4.5, V4-5.11 also cf. 
communication/transaction pipeline 
stall cycle, § V2-2.1.1 and V4-2.4.1 

PLL, cf. loop/phase locked 
PMOS, cf. electronic technology 
PMS, § V1-3.1.4 
poison bit, § V4-5.11 
portability, § V4-3.2.3 
POST, § V5-3.5.3 
post-fixed notation, Reverse Polish 

Notation (RPN), § V1-3.5.1 
power, § V3-6.1.2 

dissipation, § V2-4.2.10 
domain, § V3-6.1.3 
dynamic, § V3-6.1.2 
static, § V3-6.1.2 
supply 

consumption, § V3-6.1.2 
profile, § V3-6.1.3 
voltage, § V3-6.1.1 

pre-decoding, § V3-3.4.3.2 
predication, § V2-2.4.2 
processor 

bit slice, § V3-5.1 
graphics, § V3-5.4 
I/O, § V3-5.4 
signal processing (DSP), cf. 

microprocessor 
program, § V1-3.1.1 

definition, § V1-3.1.1 
stored, cf. computer (concepts) 

program counter (CO/PC/IP), cf. register 
programmer, § V5-2.1.2 and V5-3.5.3 
programming language, § V1-3.1.4 
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assembly, § V1-1.4, V1-3.5.3, V4-1.2, 
V4-2.1, V4-2.4.2, V4-2.4.3, V4-3.1.3 
to V4-3.1.5, V5-1.1 and V5-1.3 

BASIC, § V5-3.1, V5-3.2.1, V5-3.5.2 
and V5-3.5.2.2 

COBOL, § V1-1.4, V1-3.1.3,  
V4-2.8.4.1 and V5-1.3 

FORTRAN, § V1-1.4, V1-3.1.1,  
V1-3.1.3 and V4-3.4.4 

LISP, § V1-3.1.3 and V1-3.1.4 
punched card, cf. memory 

Q 

quipu, § V1-1.1 

R 

Random-Access Memory (RAM) 
DRAM, § V5-3.3.1 
Rambus (D)RDRAM, § V5-3.3.1 
SDRAM, § V2-3.6, V5-3.3.1 and  
V5-3.4.2 
SRAM, § V2-2.4 and V3-5.3 
SRAM BBSRAM/NVSRAM, §  
V5-3.3.1 (footnote) 

randomization management, § V4-2.7.4 
and V5-3.3.1 

Read-Only Memory (ROM), § V1-2.3, 
V1-2.4, V1-3.3.1.1 and V3-5.3 
EPROM, § V5-2.1.2 and V5-3.5.3 
EEPROM, § V5-3.5.3 
flash EEPROM (FEEPROM), §  

V5-2.2.4.3 and V5-3.5.3 
MROM, § V1-2.4 
PROM, § V1-2.4 

register, § V3-3.1 and V3-3.1.1 
accumulator § V1-3.2.2.1 to  

V1-3.2.2.3, V1-3.4.1, V1-3.5.1, 
V3-3.1.2, V4-1.2.2.2, V4-1.2.4.2 
and V4-2.2.1 

address (MAR), § V1-3.2.2.2 to  
V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4, 
V3-3.1.1 to V3-3.5 

bank, § V3-3.1.11.2 
category, § V3-3.1 
cause, cf. register/surprise 
data (MBR/MDR), § V1-3.2.2.2,  

V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4, 
V3-3.1.1 and V3-3.5 

definition, § V3-3.1.1 
encoding, § V3-3.1.12.6 
file, § V3-3.1.11.1 
floating point number, § V3-3.1.2 and 

V3-3.1.5.4 
format, § V3-3.1.1 
general-purpose (GPR), § V1-3.5.1, 

V3-3.1.3, V3-3.1.8, V4-2.4.1 and 
V4-4.1 

index, § V3-3.1.1, V3-3.1.6, V4-
1.2.2.2, V4-1.2.3.4 and V4-1.2.3.5 

indirection, § V2-.1.7, V4-1.2.3 and 
V4-4.1 

instruction, § V3-3.1.1 and V3-3.4.3.1 
Multiplier-Quotient (MQ), § V3-3.1.1 
number, § V3-3.1.12.6 and V4-1.1 
parallelism, § V3-3.1.12.5 
Program Counter (PC), § V1-3.2.2.1 to 

V1-3.2.2.3, V1-3.3.1.2, V1-3.3.2, 
V3-2.1.1.1, V3-3.1.3, V4-1.1,  
V4-1.2, V4-1.2.3.2, V4-1.2.3.5, 
V4-2.4, V4-2.4.1, V4-2.4.3,  
V4-4.2, V4-4.2.2, V4-5.2.1,  
V4-5.7, V5-2.2.1, V5-2.2.3 and 
V5-2.2.4.3 

projected in memory, § V3-5.4,  
V3-3.1.1, V4-1.2.4.4 and § V3-3.1 
(footnote) 

Shift Register (SR), cf. shift/register 
and shifter 

stack pointer (SP), § V3-3.1.1,  
V3-3.1.8, V3-4.3, V4-1.2.4.2,  
V4-4.1 and V4-4.2 
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status (CCR)/of flags, § V1-3.3.1.2, 
V1-3.3.1.2.2, V1-3.3.2, V1-3.5.1, 
V3-3.1.5, V3-3.1.5.1, V3-3.1.5.4, 
V3-3.1.5.7, V3-3.1.8, V3-3.3,  
V3-3.4, V3-3.4.1, V3-3.4.3.3,  
V4-2.2.1, V4-4.2.3, V4-5.2.1,  
V4-2.2.4.3 and V5-2.2.5 

surprise, § V4-5.7 
test, § V3-3.1.9 
windowing, § V3-3.1.11.3 

relocatable, cf. code 
representation of information 

adjustment, § V4-2.3.1 
ASCII, § V3-5.4 and V4-2.8.1 
decimal number:  

fixed-point, § V1-3.2.2.2,  
V1-3.6, V3-3.1.5.3 and  
V4-9.4 

floating-point, § V3-3.1.5.4 and  
V4-9.4 

integer 
2n’s complement (signed), §  

V1-3.6, V3-3.1.5.1, V3-3.3,  
V4-1.2.3.2, V4-2.3.1 and 
exercise V1-E1-1 

BCD, § V1-3.3, V1-3.5.2, V1-3.6, 
V4-2.3.1, V3-3.1.5.1, V3-3.1.5.2 
and V3-5.4 

Unicode, § V4-2.8.1 
reverse, § V4-1.2.4.5.2 
RISC, cf. architecture 
RNG, cf. random generator 
rotation, § V3-3.3, V4-2.3.2 and  

V4-2.3.2.4 
routine, cf. subprogram 
RTC, § V3-6.1.4 and V4-3.3.1 
RTL, § V1-3.1.4 

S 

SBC, § V1-1.2 
scalability, § V2-1.2 and V2-4.2.9 

SDR, cf. semiconductor-based 
(component) 

(de)serialization, § V2-1.1 
semantic gap, § V1-3.1.5  
server, § V1-1.2 

blade, § V1-1.2 
SFF, § V1-2 
shift, § V1-3.2.2.2, V1-3.3.1.2.1,  

V3-3.1.1, V3-3.3, V4-1.1, V4-1.2.4.5.1, 
V4-2.3.2 and V4-4.1 
arithmetic, § V4-2.3.2.3 
logical, § V4-2.3.2.3 and V4-2.3.2.4 
register (SR), § V1-2.1, V1-3.2.2.2, 

V3-3.4.2, V3-5.4, V4-4.1 and  
V5-2.2.5 

shifter 
barrel, cf. exercises V3-E3.5 and V3-

E3.6 
circular, § V3-3.3 
funnel, § V3-3.3 

side effect, § V3-3.1.12.1 and V4-2.4.1 
signal 

integrity of the, § V2-3.3.2 
noise, § V2-1.2, V2-1.3, V2-1.6,  

V2-3.3.4, V2-3.3.5, V2-4.1.1,  
V2-4.2.8, V2-4.2.10, V3-2.4.3,  
V3-5.2 and V3-6.3 

simulator, cf. software debugging 
SLSI, cf. integration technology 
SLT, cf. electronic technology 
(S)CMP, cf. multicore 
SMP, cf. multicore 
SMT 

component, § V5-3.1 and V5-3.4.2 
processor, § V1-3.4.3.2 and V3-4.7 

SoC, § V1-1.2 
software development tool, § V5-1.2 

assembler, § V4-1.2.4.6 
assembler-launcher, § V5-1.2.1 
cross-assembler, § V5-1.2.1 
high-level, § V5-1.2.1 
inline, § V5-1.2.1 
macro-assembler, § V5-1.3.4 
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(multi)pass, § V5-1.2.1 
patch, § V5-1.2.1 and V5-2.2.4.3 

compiler, § V1-3.1.1, V1-3.1.4,  
V1-3.4.3.1, V1-3.4.3.2, V1-3.5, 
V3-3.1.5.7, V3-3.1.12.1,  
V3-3.1.12.5, V3-4.6, V4-1.1,  
V4-2.1, V4-3.2.3, V4-2.4.1 to  
V4-2.4.3, V4-3.1, V4-4.2 and  
V5-1.1 

cross-compiler, § V5-2.1.1 
disassembler, § V5-1.2.4 
loader, § V3-5.3, V4-1.1.2, V4-1.3 and 

V5-1.2.3 
monitor, § V5-2.2.4.1 
static and dynamic link library, §  

V4-3.2.3 and V5-1.2.2 
profiler, § V5-2.2.4.3 
(program) launcher, § V5-1.2.3 
simulator, § V5-2.2.4.2 

software interface 
ABI (Application Binary Interface), § 

V4-4.1 and V5-1.1.4 
API (Application Programming 

Interface), § V5-1.1.4 and  
V5- 3.5.3 

POSIX, § V5-1.1.4 
software library, § V4-2.8.4.2 
SPEC cf. performance/ benchmark/ 

application suite 
SSE, cf. instruction/extension to the 

instruction set 
SSI, cf. integration technology 
standard 

BCS, cf. file format 
CAN, cf. bus/fieldbus 
component, § V1-1.2, V1-1.3, V2-1.2, 

V2-3.3.5 and V2-3.3.7 
IEEE Standard 

IEEE Std 694-1985, § V4-1.3.2,  
V4-1.3.3, V4-2.1 and V4-2.3.2.2 

IEEE Std 754, § V4-2.8.4 
IEEE Std 1003.1, § V4-1.1.4 

IEEE Std 1149.1, § V2-3.5,  
V4-2.1.2 and V4-2.2.5 

IEEE Std 1275, § V4-3.5.4 
IEEE Std 1532, § V4-2.1.2 
IEEE-ISTO Std 5001, § V4-2.2.2 

ISA, cf. bus/extension 
multibus, cf. bus/expansion 
SEAC, cf. computer/SEAC 
VESA, cf. bus/local 

state 
diagram, § V2-1.3, V3-3.4.1 and  

V5-2.1.2 
information, § V3-3.3.1.1, V3-3.4 and 

V4-5.11 
machine, § V1-3.3.1.2.2, V2-1.6,  

V2-3.1, V3-1.1, V3-2.4.1,  
V3-3.4.2, V3-3.4.3.2, V5-2.1.2 and 
V5-2.2.5 

Turing, § V1-3.1.2 and V1-3.1.3 
static and dynamic link library, cf. 

development tool 
subprogram § V1-3.3.1.2.1 and  

V4-4 
call/return, § V3-3.1.1, V3-3.1.5.7,  

V3-3.1.8 and V4-2.4.3 
definition, § V4-4.2 
instruction, § V4-2.4.3 
nested, § V4-4.2.1 
open, § V5-1.3.4 
passing parameters, § V3-3.1.12.3 
sheet, § V4-4.2 
standard passing parameters, §  

V4-4.2.3 
subtraction, cf. arithmetic operation 
switching 

circuit-, § V2-3.3.6 and V2-4.2.9 
packet-, § V2-1.5, V2-2.2, V2-2.2.4, 

V2-4.1.4 and V2-4.2.9 
synchronism, § V2-1.3 
system 

embedded, § V1-1.2 
logical, cf. unit 
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T 

technology 
electronic, cf. electronic technology 
integration, cf. integration technology 

test, § V5-2.3 
BIST, § V5-2.2.5 
bus, § V2-3.5 
instruction, cf. instruction/atomic, 

instruction/branching 
interface, cf. debugging hardware 

interface 
register, cf. register/test 
self-test, § V3-5.3 
test program, cf. performance/ program 

and firmware/POST 
time, § V1-1.4 

access, § V1-1.2, V1-1.4, V1-2.1,  
V2-1.2, V2-1.5, V3-2.4.2,  
V3-3.1.11.1 and V3-3.2 

bus settling, § V2-1.2, V2-1.3, V2-1.5 
and V2-3.1 

execution, cf. execution/time 
cycle, § V1-1.4, V1-2.1, V1-2.3, V1-2.4, 

V3-1.2, V3-2.4.1 and V3-3.4.3.2 
hold, § V2-1.5 and V2-3.1 
reaction, § V4-5.3 
starvation, § V4-5.3 
switching, § V4-3.4.5 
transfer, § V2-1.1 and V2-1.3 

time (linked to software development) 
assembly, § V5-1.1.2 
compilation, § V5-1.1.2 
loading, § V2-2.1.1 

TLP (Thread-Level Parallelism), §  
V1-3.4.3.2 and V3-4.7 

transistor, § V1-1.2, V1-1.4 to V1-1.6, 
V1-3.1.4, V2-2.2.1 and V2-3.3.4 
bipolar junction (BJT), § V1-1.2 
density, § V1-1.2 
field effect (FET), § V1-1.2 
gate, cf. § V1-1.5 and V4-3.4.5 

TTL, cf. electronic technology 

U  

UEFI, cf. firmware 
ULSI, cf. integration technology 
UMA, cf. memory (concepts)/unified 
UMB, cf. memory (concepts) 
unit 

central, cf. § V1-1.2 and V3-1.1 
logical 

AGU, § V3-3.4.4 and  
V4-1.2.4.5.2 

control unit, § V1-3.2.2.1,  
V1-3.3.1.2, V1-3.3.1.2.2 and 
V3-3.4 

hardwired, § V1-3.2.3 
microprogrammed, § V3-3.4,  

V3-3.4.3.2 and V4-1.1 
(footnote) 

DPU, § V5-3.3.1 
FMAC, § V3-5.2 
functional, § V3-1.2 
Integer Processing (IPU), §  

V1-1.2, V1-3.3.1.2,  
V1-3.3.1.2.1, V3-3.3, V3-5.1 
and V3-5.2 

MAC, § V4-2.8.4.2 and  
V3-5.2 

vector-based, § V1-1.2, V4-2.3.2 
and V4-2.7.1 

of measurement, § V1-1.2, V1-2.1 and 
V4-3.4 

processing, cf. element/processing unit 
UNIVAC, cf. computer model 

V 

verification 
cycle, § V3-5.3 
exchange, § V2-1.3 
machine, § V2-2.5.7 
memory, § V5-2.2.4.3 and V5-2.2.5 
result, § V2-2.4.1 
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virtualization 
debugging, § V5-2.2.6 
MPU, § V3-3.1.5.6 and V4-3.2.4 
server, § V1-1.2 
virtual machine, § V1-1.4 

VLIW, cf. architecture 
VLSI, cf. integration technology 
von Neumann machine, § V1-3.2  

and V1-3.3 
advantages and disadvantages,  

§ V1-3.3.4 

W 

wall, § V1-1.5 and V3-1.2 
fineness of etching, § V1-1.5 
power, § V1-1.5, V3-1.1 and V3-6.1.2 
red brick, § V1-1.5 
speed, § V1-1.5 

Whetstone, cf. performance/ 
benchmark/synthetic suite 

Whilwind, cf. computer model 
word (broken down) into packets,  

§ V4-2.3.2.1 
workstations, cf. cluster/workstations 
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