

Microprocessor 2

Series Editor
Jean-Charles Pomerol

Microprocessor 2

Core Concepts ─
 Communication in a Digital System

Philippe Darche

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2020
The rights of Philippe Darche to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020941278

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-564-0

Contents

Quotation. ix

Preface . xi

Introduction . xv

Chapter 1. Basic Definitions . 1

1.1. General points regarding communication . 1
1.2. Main characteristics . 3
1.3. Synchronism and asynchrony . 11
1.4. Coding data . 21
1.5. Communication protocol . 22
1.6. Access arbitration . 31
1.7. Conclusion . 45

Chapter 2. Transactions and Special Cycles . 47

2.1. Transaction . 47
2.1.1. Transaction pipeline . 47
2.1.2. Splitting the transaction . 50

2.2. Special cycles . 51
2.2.1. Managing interruption . 52
2.2.2. Managing direct memory access . 54
2.2.3. Bus Mastering . 55
2.2.4. Detection and correction of errors . 55
2.2.5. Multiprocessor aspect . 55

2.3. Conclusion . 56

vi Microprocessor 2

Chapter 3. Bus Interfaces . 57

3.1. Functional modules . 57
3.2. Associated signals . 59
3.3. Interfacing logic . 62

3.3.1. Transmission lines . 63
3.3.2. Integrity of the signal . 64
3.3.3. Terminating a line . 65
3.3.4. Driver and receiver . 67
3.3.5. Differential and single-ended links . 70
3.3.6. Topologies . 72
3.3.7. Electronic technologies . 75

3.4. Insertion-withdrawal under tension . 76
3.5. Test and debugging . 77
3.6. Bus limits . 77
3.7. Conclusion . 81

Chapter 4. Bus Classifications . 83

4.1. Multibus architecture . 83
4.1.1. Segmented buses . 85
4.1.2. Hierarchical buses . 86
4.1.3. Multiple buses . 87
4.1.4. Bridge . 88

4.2. Classification of digital system buses . 91
4.2.1. Local bus . 91
4.2.2. Memory buses . 93
4.2.3. Link buses . 94
4.2.4. Expansion slot bus . 96
4.2.5. Expansion buses . 101
4.2.6. I/O buses . 101
4.2.7. Backplane and centerplane buses . 102
4.2.8. Fieldbus . 107
4.2.9. SoC: from bus to network . 107
4.2.10. Power bus . 113

4.3. Summary: bus classifications . 119

Contents vii

Conclusion of Volume 2 . 121

Exercises . 123

Acronyms . 127

References . 145

Index . 155

Quotation

Every advantage has its disadvantages and vice versa.

Shadokian philosophy1

1 The Shadoks are the main characters from an experimental cartoon produced by the
Research Office of the Office de Radiodiffusion-Télévision Française (ORTF). The two-
minute-long episodes of this daily cult series were broadcast on ORTF’s first channel (the
only one at the time!) beginning in 1968. The birds were drawn simply and quickly using an
experimental device called an animograph.

The Shadoks are ridiculous, stupid and mean. Their intellectual capacities are completely
unusual. For example, they are known for bouncing up and down, but it is not clear why!
Their vocabulary consists of four words: GA, BU, ZO and MEU, which are also the four
digits in their number system (base 4) and the musical notes in their four-tone scale. Their
philosophy is comprised of famous mottos such as the one cited in this book.

Preface

Computer systems (hardware and software) are becoming increasingly complex,
embedded and transparent. It therefore is becoming difficult to delve into basic
concepts in order to fully understand how they work. In order to accomplish this,
one approach is to take an interest in the history of the domain. A second way is to
soak up technology by reading datasheets for electronic components and patents.
Last but not least is reading research articles. I have tried to follow all three paths
throughout the writing of this series of books, with the aim of explaining the
hardware and software operations of the microprocessor, the modern and integrated
form of the central unit.

About the book

This five-volume series deals with the general operating principles of the
microprocessor. It focuses in particular on the first two generations of this
programmable component, that is, those that handle integers in 4- and 8-bit formats.
In adopting a historical angle of study, this deliberate decision allows us to return to
its basic operation without the conceptual overload of current models. The more
advanced concepts, such as the mechanisms of virtual memories and cache memory
or the different forms of parallelism, will be detailed in a future book with the
presentation of subsequent generations, that is, 16-, 32- and 64-bit systems.

The first volume addresses the field’s introductory concepts. As in music theory,
we cannot understand the advent of the microprocessor without talking about the
history of computers and technologies, which is presented in the first chapter. The
second chapter deals with storage, the second function of the computer present in the
microprocessor. The concepts of computational models and computer architecture
will be the subject of the final chapter.

xii Microprocessor 2

The second volume is devoted to aspects of communication in digital systems
from the point of view of buses. Their main characteristics are presented, as well as
their communication, access arbitration, and transaction protocols, their interfaces
and their electrical characteristics. A classification is proposed and the main buses
are described.

The third volume deals with the hardware aspects of the microprocessor. It first
details the component’s external interface and then its internal organization. It then
presents the various commercial generations and certain specific families such as the
Digital Signal Processor (DSP) and the microcontroller. The volume ends with a
presentation of the datasheet.

The fourth volume deals with the software aspects of this component. The main
characteristics of the Instruction Set Architecture (ISA) of a generic component are
detailed. We then study the two ways to alter the execution flow with both classic
and interrupt function call mechanisms.

The final volume presents the hardware and software aspects of the development
chain for a digital system as well as the architectures of the first microcomputers in
the historical perspective.

Multi-level organization

This book gradually transitions from conceptual to physical implementation.
Pedagogy was my main concern, without neglecting formal aspects. Reading can
take place on several levels. Each reader will be presented with introductory
information before being asked to understand more difficult topics. Knowledge, with
a few exceptions, has been presented linearly and as comprehensively as possible.
Concrete examples drawn from former and current technologies illustrate the
theoretical concepts.

When necessary, exercises complete the learning process by examining certain
mechanisms in more depth. Each volume ends with bibliographic references
including research articles, works and patents at the origin of the concepts and more
recent ones reflecting the state of the art. These references allow the reader to find
additional and more theoretical information. There is also a list of acronyms used
and an index covering the entire work.

This series of books on computer architecture is the fruit of over 30 years of
travels in the electronic, microelectronic and computer worlds. I hope that it will
provide you with sufficient knowledge, both practical and theoretical, to then

Preface xiii

specialize in one of these fields. I wish you a pleasant stroll through these different
worlds.

IMPORTANT NOTES. ─ As this book presents an introduction to the field of
microprocessors, references to components from all periods are cited, as well as
references to computers from generations before this component appeared.

Original company names have been used, although some have merged. This will
allow readers to find specification sheets and original documentation for the
mentioned integrated circuits on the Internet and to study them in relation to this
work.

The concepts presented are based on the concepts studied in selected earlier
works (Darche 2000, 2002, 2003, 2004, 2012), which I recommend reading
beforehand.

Philippe DARCHE
July 2020

Introduction

This volume consists of four chapters and looks at the microprocessor and its
communication system, linking its different components, or functional subunits,
both internally and externally. Communication revolves around the notion of the
“bus”. The bus is the backbone of all communication, and forms a “digital
information highway”. It has been, and remains, the preferred form of
interconnection in computer systems. However, just like on a highway, this shared
communication medium is also one of (von Neumann) bottlenecks, which arise
when all of the connected entities want to use it at the same time. Astute design and
sizing are therefore vital for maximizing computer performance. Here, we present
their main characteristics, the protocols for communication, access arbitration and
transaction, their interfacing, and the electric aspects. Some of these points have
already been covered, notably with regard to the memory channel (Darche 2012),
but here, they are completed and generalized. A system of classification is then
suggested. The topic is closed with On-Chip Communication (OCC) and
multiprocessor aspects.

1

Basic Definitions

In order to describe communication between components and electronic
subunits, first we must cover general notions such as the direction of communication
and connection topology, as well as the concepts of exchange synchronization and
information coding, finishing off with the concept of a protocol, which defines the
rules that have to be followed. A protocol also defines access arbitration and cycles.

1.1. General points regarding communication

The direction of communication between two systems (Figure 1.1) can either be
one-way (simplex) or bidirectional, and this can be either a full-duplex or alternating
(half-duplex). Note here that the communication protocol (i.e. the link layer) cannot
provide more than what the physical layer permits.

Figure 1.1. Direction of transmission

The entity from which the communication originates and which is generating the
address and control signals is called the Master (M) or Initiator (I), and is
represented by a square in Figure 1.2. The entity that replies and follows the
commands is traditionally called the Slave (S), or Target (T), and this is represented
by a square in the figure. If the bus can only take a single master, it is referred to as a

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

2 Microprocessor 2

single master system. If it can take several it is called a multi-master system
(cf. § 2.2.5). If the medium is shared during emission, there can be a conflict of
access to the resource (i.e. the bus or slave unit); this is called a collision. The
collision can be either logical or physical. A physical collision can result in material
damage if the electronic output stage is not designed for it. For this reason, access
arbitration is needed (cf. § 1.6).

Figure 1.2. Model of a multi-master bus

To access the bus, each entity requires an interface called I/F (Figure 1.3).

Figure 1.3. Shared bus

In a one-way bus (simplex transmission), an emitter Tx can emit towards one or
several receivers Rx. This is a divergent bus, which can broadcast information
(Figure 3.16, for example, and cf. § 2.2). Another case that must be considered is
where several emitters can only communicate towards a single receiver. This is a
convergent bus that allows for the broadcall of information (cf. § 2.2). The existence
of several masters can result in an issue of contention when multiple access requests
are made to the communication carrier. The bus can be bidirectional (Figure 3.14,
for example), with simultaneous transmission (full-duplex), or alternating
transmission (half-duplex).

There are several topological variations, including the MUX-based bus
(multiplex) and the AND–OR structure. Both are preferred to the SoC (System on
(a) Chip). They are shown in Figure 4.28(a) and (b) respectively.

Since there are three main types of information (address, data and control) to be
passed around the nodes of a bus in a microprocessor system, there are several ways
for them to be transported: there are three combinations with one element, three
combinations with two and one with three possibilities. These combinations
specialize the bus, resulting in address buses, data buses, control buses, address–

Basic Definitions 3

control buses, address–data buses, control–data buses and address–control–data
buses (only one bus!). During an exchange of several types of information between
two entities, for example, between an address and a piece of data, the transfer can
make use of separate media (non-multiplexed bus), or they can use the same
medium (multiplexed bus). The choice to multiplex is often one of cost: a bus takes
up physical space on the Printed Circuit Board (PCB), which is expensive. The
number of output connection points for each electronic component and even for the
connectors must be taken into account, as the cost of an Integrated Circuit (IC) or a
connector is directly linked to this amount. The first approach is better in terms of
bitrate, as the buses are separate, with one for each information type. Time-division
multiplexing1 is a solution that allows several different types of information to travel
through the same bus, but at different times. The initial philosophy at Intel was that
of multiplexing the address and data buses. An example is the 8088 microprocessor
made by Intel for the IBM PC (Personal Computer, cf. § V5-3.2.1). This was in
contrast to Motorola, which did not multiplex its address and data buses. Another
example is the PCI (Peripheral Component Interconnect, cf. § 4.2.4). It should be
noted that the information required for the transaction does not need to be presented
all at the same time. For example, the information to be written can be presented
after the address (“late write”, cf. § 4.4.1 in Darche (2012)). The flipside of
multiplexing is that the information transfer time is usually longer as the information
has to be (de)multiplexed before it can be accessed, resulting in delays in
propagation. This can be done either through a process that is external to the
communicating elements, or internally, and thus transparently. In the former option,
the peripheral circuits communicate specifically with a microprocessor, usually
belonging to the same commercial family, for example, the MPU (MicroProcessor
Unit, µP for short) 8085 from Intel and its parallel interface circuit 8155, where the
former’s (de)multiplexers were integrated into the latter. In the case of a bus with
different pieces of information spread over different moments in time, multiplexing
does not slow down the exchanges and therefore cannot reduce the bitrate.

1.2. Main characteristics

A shared bus is a common interconnection pathway between all of the connected
nodes. It is made of a set of lines or communication channels along which the
information flows. Usually, only signals are counted, as the power and grounding
lines are contained in a separate power bus (cf. § 4.2.10). This number does not take
into account electrical characteristics, for example, whether the signal is differential
or not (cf. § 3.6.3 in Darche (2012)). At least three2 elements or nodes can connect to

1 Frequency-Division Multiplexing (FDM) is not suitable here.

2 Some authors, Borrill (1981), for example, consider a bus to be formed of the connection of
two or more elements.

4 Microprocessor 2

it; otherwise, it would be a point-to-point connection, also known as a link. These
elements can be electronic components, electronic boards, peripherals or computer
systems, depending on the level of observation. These buses can also be inside
computer systems, particularly in a microprocessor (cf. § 4.2.9). Information is
considered in a broad sense in this work, so it can refer to data, an address3, a
command, a control, a state or even an interrupt request or its vector (cf. § V4-5.7).
These lines are usually permanently grouped by information type or by function.
The result is referred to as a dedicated bus. Two examples are the address bus and
the memory channel (cf. § 7.2 in Darche (2012)). Thurber et al. (1972) define these
buses as functionally dedicated4. A dedicated bus is more expensive in terms of
connectors and electronics, but its interface is simpler in terms of design
(no (de)multiplexing, for example). Otherwise it is undedicated. As the technology
used is electric or electronic, the bus takes the form of electric conductors (electric
ribbon cables, metallic traces in a printed or integrated circuit) through which the
electric signals travel, most of the time in two states. Optics is a possible future
development, but it remains currently under research (cf., for example, Feldman
et al. (1999)). Fiber optics are used extensively throughout networks, however.

A bus can be of a unique design, produced by computer or microprocessor
makers, or a regulated solution that follows established standards, coming from
private solutions, or not. A standardized solution, which by definition provides
generic characteristics, is usually less effective than an ad hoc solution, but it is
usually cheaper due to the standardization of its components and systems
(Commercial Off-The-Shelf (COTS) solution). In particular, defining a standard for
the interface helps with design as it allows for interoperability and reuse of the
modules.

A bus is characterized mainly by its width w (w bit-wide), its bitrate (incorrectly
referred to as its transfer speed) and by its communication protocol that defines its
signals. The typical values of w are 1, 4, 8 and multiples thereof, usually of eight.
This is particularly true for data buses, as the data that passes through them are
themselves multiples of eight5. The address bus, however, can also be expressed in
other multiples, for example, the 8086 microprocessor from Intel whose address bus

3 An address is a digital label that takes the form of an integer, and is linked to a location or
memory cell.

4 He adds to the definition that a bus can only be physically dedicated if a pair of elements
belong to the bus and use it exclusively. We shall not keep this addition as this would be a
link according to our own definition.

5 A counter-example is the 12-bit data format in the PDP-8/E mini-computer from Digital
Equipment Corporation (DEC).

Basic Definitions 5

has a width of 20 bits. The width of the address bus gives the addressing capacity
C = 2w memory words of the component that generated the address, which is usually
the microprocessor. It therefore defines its Address Space (AS, cf. § V3-2.1.1.1). It
represents the amount of physical memory accessible without any additional
mechanisms, such as Virtual Memory (VM, cf. V2 on semiconductor memory). The
width of address buses and data buses do not have to correlate with each other.
Some examples are: (m/n) 16/8 (8-bit generation microprocessor), 16/16 and 21/16
(first-generation 16-bit microprocessor), 24/32 and 32/32 (32-bit generation
microprocessor), etc. The width of the data bus is linked to the flow of information
(cf. below).

A serial bus has a single communication channel (w = 1). A parallel bus has w
channels (w > 1). In the first case, this means that only a single bit is sent at a time.
In order to send a piece of data in the format n > 1, serialization must first take
place, with the inverse operation, deserialization, taking place upon reception of the
data (Figure 1.4). The number of signals is therefore low, which reduces the
connection cost (cables, surface area and therefore number of PCB traces,
connectors6 and number of IC package pins). There is no time delay between signals
from different lines. Moreover, scalability, that is, increasing the bitrate, is made
easier as all that is required is to increase the number of links. Serial communication
is used in linked connections, mainly in Input/Output (I/O) interfaces. It can also be
used in a bus, for example, in the coaxial cable Ethernet network IEEE 802.3™-
2008 10Base2 and 10Base5 (IEEE 2008). There is a disadvantage in terms of
bandwidth as service bits must be used in order to synchronize the exchange (start
and stop bits of the interface RS-232 (RS for Recommended Standard), for example,
cf. § 8.2.2 in Darche (2003)) and to detect and possibly correct transmission errors.
Moreover, (de)serialization takes time. Each communicating element has a
(de)serializer that either includes or rebuilds the clock signal, depending on the case.
This is the SerDes (Serializer/Deserializer) technology. The SPMT™ (Serial Port
Memory Technology) uses this technology (cf. § 3.6.8 in Darche (2012)). SerDes
type transfers usually utilize an 8b/10b encoding (Widmer and Franaszek 1983),
which is 8 bits of information encoded into 10 bits in order to eliminate the Direct
Current (DC) of the signal (DC-balanced) so that the clock signal can be rebuilt. The
useful bitrate is then equal to 80% of the raw bitrate.

6 This statement is true, but it is important to remember the counter-example of the RS-232
link (EIA 1991 1997), which uses a 25-pin D-Sub connector with only eight effective signals
and the ground (cf. § 8.2.2 in Darche (2003)).

6 Microprocessor 2

Figure 1.4. (De)serialization operations in the serial link

In parallel transmission, n (n > 1) bits are sent to an exchange when the format of
the data n is equal to that of the interface (Figure 1.5). The word to be transmitted
can have a higher format, for example k × n bits, ݇ ∈ ℕ∗. Parallel transmission will
then take place in subwords of n bits. In this case, it is called subword-parallel
transmission.

Figure 1.5. Format n parallel link

Basic Definitions 7

In that last case and in the case of serial transmission, there is the issue of the
order in which bits and bytes are sent. This is the problem of Little Endian (LE) and
Big Endian (BE), identified by Cohen (1981) (cf. § 2.6.2 in Darche (2012) and
§ V1-2.2.1). James (1990) explored this problem looking at the bus specifically.
Note that the byte swapping function, as present either as a microprocessor
instructions (bswap, for example, cf. § V4-2.6.1), or implemented in bus interface
circuits (a bridge, for example) or in communication circuits or controllers (cf. Sriti
(1999), for example) allows for this order to be reversed. Moreover, for the last mode,
there can be an issue with the alignment (cf. § 2.6.1 in Darche (2012)), meaning that a
word in the format n is not transmitted in a single bus cycle, but rather over two cycles,
as shown in the examples of Figure 1.6 for a transmission in the 32-bit format.

Figure 1.6. Possible misalignments during the transmission
of a 32-bit word (Borrill and Theus 1984)

The disadvantages of serial transmission tend to be the advantages of parallel
transmission, and vice versa. In absolute terms, parallel communication is n times
faster than its counterpart (for k = 1) for a set clock rate. The bitrate can be increased
simply by widening the bus. There is no (de)serialization time. The synchronization
signals are additional signals, increasing its width correspondingly. There is
therefore no overhead in terms of bitrate. However, the connection cost (cable, PCB
and connector) is greater than for its counterpart as it takes up more space. Dealing
with errors is also more complicated. The problem of clock skew between signals
(line-to-line skew) has to be considered for high bitrates (cf. § 3.5.3 in Darche
(2004) and § 3.6.6 and 7.1.2 in Darche (2012)). Progress in fast electronics means
that nowadays the serial link is adequate for most bitrate requirements. Moreover, it
is becoming widespread in computers, replacing buses with simpler point-to-point
connections. The link is made up of a pair of one-directional channels of opposing
directions. This is referred to as a link or lane, for example the PCI Express bus
(PCI-E or PCIe), described in Jackson and Budruk (2012).

The flow of information is measured in number of bits, or multiples thereof
(usually bytes), transmitted per unit of time. It is a function of the information
format n. The base unit is the bit per second (bit/s, b/s or bps), and its multiples are

8 Microprocessor 2

powers of 10 (× 103 × k, ݇ ∈ ℕ∗). In increasing order, there is the kilobit/s
(kbit/s = 103 bit/s or kbps), the megabit/s (Mbit/s = 106 bit/s or Mbps), the gigabit/s
(Gbit/s = 109 bit/s or Gbps) and the terabit/s (Tbit/s or 1012 bit/s or Tbps). These
units7 are mostly used for networks. The bit per second is the equivalent to a baud
for a valency of 2. For the bus and the interfaces, we can also use the byte per
second (B/s) and multiples thereof, such as the kilobyte/s (kB/s = 103 bytes/s), the
megabyte/s (MB/s = 106 bytes/s), the gigabyte/s (GB/s = 109 bytes/s) and the
terabyte/s (TB/s = 1012 bytes/s). A dedicated bus provides a higher bitrate than its
generic alternative, and handling the electronics is simpler, especially for the
controller and interface electronics. It is more costly in terms of connections,
however.

A distinction must be made between two types of rate: the raw bitrate or data
rate, and the useful rate or throughput. The data rate is the maximum rate that the
bus is able to physically handle. It is tied to the bandwidth and to the Signal-to-
Noise Ratio (SNR, which is equal to 10 log10(Ps/Pn) in dB) (Shannon 1948). The
throughput is the mean rate that the user, usually a processor or a memory controller,
will be able to make use of. It is calculated as a function of the channel’s bandwidth,
the format n of the information and the encoding used. From this, the rate relating to
handling the data rate communication is subtracted. We can thus define the
efficiency of a bus η as the ratio of the number of useful bits to the total bits in the
message. There is also the burst transfer rate (cf. § 2.2). Moreover, there can also be
transfer modes like the Double Data Rate (DDR) or Quad Data Rate (QDR), as there
is for Random Access Memory (RAM, cf. § 4.6.2 and 6.5 in Darche (2012)), where
each edge of the transmission clock transmits one piece of information, thus
theoretically doubling, or respectively quadrupling, the data rate.

A bus is said to be passive if it contains no active electronic components (i.e.
transistors or diodes). It simply ensures the connection between elements of the bus.
Figure 1.7 gives two examples of this. From left to right, it shows an I/O bus unit
with Hard Disk Drives (HDD), by Integrated Drive Electronics (Schmidt 1995) in the
form of a flat cable and of a backplane bus (cf. § 4.2.7). An example of this last item

7 The prefixes of these units must not be confused with those used for measuring the size
of a memory, which we recall are: kilo (= 210), mega (= 220), giga (= 230) and tera (= 240),
cf. § I-2.6.1 in Darche (2000)). There was some ambiguity surrounding the corresponding
symbols. Only kilo could be represented with capital K, and all the others had to be
determined based on the context. Fortunately, these prefixes have since be standardized by the
IEEE ((IEEE 2002a b), cf. § V1-2.1 and § 1.1 in Darche (2012)).

Basic Definitions 9

was bus S-1008, standardized under reference ANSI/IEEE Std 696-1983
(ANSI/IEEE 1982b). Otherwise, it is said to be active. The driver is tasked with
amplifying the signals and controlling the bus. Other technologies that can be
utilized are radiofrequencies, infrared or even lighting technologies (laser). These
are limited to wireless connections. Optics is a possible next step for buses, but this
is still in the research phase, although they are starting to be used in the extension
bus and the I/O bus. Savage (2002) develops this approach further. A major obstacle
is cost and the need to convert optical/electrical signals.

A bus is said to be external when it is located outside the computer. This is
nearly always an I/O bus (cf. § 4.2.6). Otherwise, it is internal. The SCSI (Small
Computer System Interface) I/O bus could be both internal and external. Internally,
it linked the mass storage units. Externally, it could exist as part of peripherals such
as a printer or a scanner (cf. respectively § 6.3 and 5.3.1 in Darche (2003)).

a) b)

Figure 1.7. Ribbon-cable I/O bus (IDE) and a backplane bus. For a color
version of this figure, see www.iste.co.uk/darche/microprocessor2.zip

Bus mechanics relate to all aspects of the assembly of components and printed
circuits, as well as all aspects of connection. Bus mechanics specify, among other
things, the maximum length of the bus, specifications of the connector/s and,
potentially, the size and fixation type of the electronic card (motherboard,
daughterboard or expansion card) and of the housing, cabinet or rack that houses
them. The connector specifications state their maximum number, size, position,
distance between two connectors, and their interconnection gap, etc. The connectors
of an expansion bus, if installed onto a printed circuit like in the motherboard of a
micro-computer, take up a significant amount of space (1/4th to 1/3rd of the surface

8 Bus S-100 takes its name from the number of lines it contains. It was first used in the kit
micro-computer Altair 8800 (8-bit Intel 8080 microprocessor, main memory with 256 bytes
of RAM, with possible expansion to 64 KiB) from the company MITS (Micro
Instrumentation Telemetry Systems), which first appeared on the market in 1975.

10 Microprocessor 2

area of a personal computer (PC)-type motherboard) and therefore contribute
significantly to the overall cost of the system. A bus’s connections should not be
underestimated as they are without a doubt its weakest link and make it less reliable.

Electrical characteristics relate to the voltages and currents of input, output and
I/O, and the minimum, maximum and nominal voltages and currents of the signals
(cf. § 1.2 and 2.2.1 in Darche (2004)) and of the bus lines. They are primarily those
of the logic used (cf. Chapter 2 in Darche (2004)). The electrical load, as seen by the
emitter, is an important parameter as it directly affects the rise and fall times of the
signals. They rely on the bus itself, as well as on the connector, the daughterboard
and possibly any stub relaying the bus towards the connector. This load is variable
and depends upon, among other things, the number of nodes and whether all the
slots are occupied by an inserted electronic card, thus forming a load. Moreover,
each connector makes the bus longer by creating a stub that derives the main bus, or
“backbone” (Figure 1.8), thus modifying the electrical and temporal characteristics
of the bus. This load is complex (mathematically speaking) as it contains resistive,
capacitive and inductive components respectively. This derivation can also introduce
impedance mismatch, which is a potential source of electrical disturbance due to the
reflection of signals at the end of the line. This characteristic should be considered
when determining the maximum number of connectable elements.

Figure 1.8. Bus lines and derivation stubs

The bus also possesses temporal characteristics that are tied to the protocol or to
the technology used, such as the rise, fall and propagation times of the signals, and
the temporal relations that exist between them. The bus-settling time is the time
required for the signal to become stable. Another important time is the flight time
tflight (cf. § 3.3.4 in Darche (2012), with an example in Intel 97). It is the time taken
by a signal to cover the full length of the bus. It takes into consideration all of the
propagation times of the interface electronics, any skews and the time window of
capture by the receiver. It also includes the bus propagation time tL (cf. § 3.3.1). One
empirical rule is that 6 × tflight should be less than 30% of the Unit Interval (UI, or in

Basic Definitions 11

other words a period of 1 bit) of the eye diagram (or eye pattern, cf. § 3.5.3 in
Darche (2004) and § 7.1.2 in Darche (2012)) for a stable state at the sampling point
at 50%. The protocol also includes delays such as those linked to arbitration.

A bus is poorly scalable, in that the addition of nodes has a negative impact on
its electrical and temporal characteristics, limiting it practically. The access time and
rate are worsened by distortion and the arbitration time, and the designer must plan
for the worst case, which is not very efficient.

SUMMARY.– The advantages of a bus are its versatility and adaptability. New
electronic cards can be added to it easily. Cards can be transferred from one
computer to another as long as they have the same bus standard and maintenance
can be ensured. The computer system itself can be designed to be partitioned. It is
relatively inexpensive as it constitutes a primary approach rather than a collection of
shared cables or traces. The main disadvantage is that it forms a bottleneck (or
tailback) in terms of communication. The bandwidth of a bus limits the I/O data-
rate. Other characteristics also limit this rate, such as the length of the bus, as well as
the number of nodes. Furthermore, if the nodes are heterogeneous, characteristics
such as latency or data transfer speed will be heterogeneous too. Scaling up is just as
hard, and can even prove to be impossible.

1.3. Synchronism and asynchrony

Those involved in an exchange must communicate at speeds that are compatible
with this exchange. An exchange can be synchronous or asynchronous, depending
on whether a clock signal pacing the transfer is explicitly sent or not9. In a
synchronous bus (with an interconnection), a master clock10 provides a clock signal
that paces and synchronizes the exchanges between elements of the bus. This signal
is distributed between all of the nodes of the bus, and is either amplified (radial
clock distribution, Figure 1.9(a)) or not (bussed clock distribution, Figure 1.9(b)),
with each node able to generate a local clock. The problems associated with the
clock are temporal in nature (e.g. skew, jitter, noise, etc.), but can also be electrical,
such as metastability, for example, the criticality of which is directly proportional to
the frequency. Moreover, the user module (cf. § 3.1) can either use this signal or
have its own clocks.

9 Synchronization through software can be a convention of characters, such as the Xon–Xoff
protocol, for example, or a known or given frame length. It cannot be used for buses due to
low efficiency.

10 Continuous time can be considered, as shown in Del Corso et al. (1986), but in practice,
event discretization is preferred.

12 Microprocessor 2

Figure 1.9. Distribution of the (a) radial or (b) bussed clock signal

Each operation has to be carried out within a constant time interval that is tied to
its period. Otherwise, a transfer error takes place. In nearly all cases, the signal in a
bus is handled by the edge of an active clock (this is an edge-triggered logic model),
marking the start of an exchange. However, a level-sensitive logic model can also be
considered. Figure 1.10 shows the causal link between signals, with an example of
an exchange request with a read receipt provided. In the purely synchronous model,
no cycle start signal is needed as it is the active clock edge that marks this start. The
time characteristics are fixed. The period of the clock signal must therefore be
greater than the propagation time of the bus plus any times relating to the logic, such
as the setup time tsetup.

Figure 1.10. Causal link between signals

The cadencing diagrams are asynchronous or synchronous, classical or derived,
mesochronous11 or plesiochronous. In a mesochronous system, local clocks are
derived from a global clock. Delays in the transfer of clock signals are not even,
resulting in phase shifts. A mesochronous system is said to be “static” when the
phase difference between clock signals of the same frequency does not vary during
system operation. A “dynamic mesochronous system” exists when this phase
difference varies for each component, for example, because of temperature or supply

11 From the Greek root “meso”, meaning “in the middle of”.

Basic Definitions 13

voltage variations. An example of such a system is the basic Rambus channel
(cf. § 7.2.1 in Darche (2012)). If the clocks are independent and not synchronized
but the average frequency is the same, so with a slight drift, the communication is
said to be “plesiochronous12”. An example is the RS-232 series interface (cf. § 8.2.2
in Darche (2003)). When the frequencies are different, the communication is said to
be “heterochronous13”. More details on synchronization can be found in
Messerschmitt (1990).

Designing a synchronous system is harder than designing an asynchronous one.
The clock domains and of their interactions must be taken into account (Clock
Domain Crossing, CDC). The problem has been covered in sections § 3.6.6 and
7.1.2 of Darche (2012). A purely synchronous system carries out one transaction per
clock period. This is called a bus cycle. This is not the case in a semi-synchronous
system (also called pseudo-synchronous or clocked), which is instead characterized
by a longer time interval, the bus cycle of which is a multiple of the system clock
period. This number of periods can be fixed, limited or free. During a transaction,
transmission can become asynchronous through the help of a wait request signal (the
Wait signal, for example), adding clock cycles in order to lengthen the transaction.
An example of a semi-synchronous bus is the NuBus (TI 1983). A variation of this
is source-synchronous clocking (cf. § 7.1.2 in Darche (2012)). An example of a
synchronous bus is the Multibus II backplane bus from the company Intel,
standardized through the reference ANSI/IEEE Std 1296 (IEEE 1988).

The asynchronous bus represents a different approach, the advantage of which is
that a global clock signal is not used, which can be limiting in terms of design time.
The dedicated time slot can be made longer as needed. Thus, exchange times can be
adapted to the speed of the nodes. However, there is a risk of blocking the exchange
if there is no limit to the response time, as a new cycle cannot begin if the previous
one has not finished. This means that the bus can remain indefinitely allocated to the
master that holds it. Two examples of asynchronous buses are the Unibus™
backplane bus from the company Digital Equipment Corporation (DEC) and the
Multibus I from Intel, standardized through reference ANSI/IEEE Std 796
(ANSI/IEEE 1982a).

In terms of asynchronous protocols, the first group is those with one-way
control, that is, controlled by a single component of the exchange. This is referred to
as a “One-Way Command”, or OWC. It is simple, with a single Req(uest) (the
forward signal). Figure 1.11 highlights this through the reading of a piece of
information. The request signal is activated (timestamp 1). Next is the positioning of
the information by the source S after a certain amount of access time ta

12 From the Greek root “plesio” meaning “neighbor”.

13 From the Greek root “hetero” meaning “different”.

14 Microprocessor 2

(timestamp 2). When the request is deactivated (timestamp 3), the information is
removed by the slave source S (timestamp 4). The temporal characteristics of the
bus, in particular the propagation delay tpd, must be considered in order to quantify
the access time ta. In this version, the transfer time is adapted to the requester as it is
the latter that (de)activates the request signal (“destination-controlled transfer”). The
main disadvantage is that there is no check for the validity of the exchange by the
destination D. If the source fails, it cannot carry it out. Note that time tdis (dis for
disable) qualifies the deactivation time of the three-state electronic buffers
(cf. § 3.3.4)

Figure 1.11. One-way control protocol

Another term used to refer to one-way control is “strobe protocol”, as shown in
Figure 1.12, which highlights the transmission of a piece of data (source-controlled
transfer). After a certain data setup time tsetup (timestamp 1), the emitter signals its
presence (timestamp 2) and its retreat (timestamp 3), which becomes effective
during step 4. The limits of this protocol are seen again in the transmission of a data
item when there is a transfer error if the receiver is not listening or does not account
for it sufficiently quickly.

Figure 1.12. Strobe protocol

Basic Definitions 15

The handshake protocol was created as a solution to the downsides of the strobe
protocol. It is the most common protocol among unclocked systems (also known as
clockless, or self-timed systems), and is source-controlled. In a master/slave setup, a
master M sends a request to the slave S, which must answer. It uses two signals,
which are a Req(uest) and an Ack(nowledgment). The former is used as part of the
signaling, while the latter is a backward signal. As there are two signals, the protocol
is said to be one of double-track handshake signaling. These signals can be asserted
or non-asserted. A Comp(letion) signal marks the end of processing. Depending on
the presence and direction(s) of the transmission of information (Figure 1.13), the
signal can exist in one of two versions, with either two or four phases, and with four
different channels, which are nonput, push, pull and biput The nonput channel
(a) does not exchange data, but rather allows for synchronization between the
communicating elements. The push channel (b) sends data, while the pull channel
(c) receives it. The biput channel (d) is bidirectional. The black dot in the figure
means that the entity is active in terms of communication, while a hollow dot means
that it is passive. A functioning module can be integrated into the channel as an
element of combinational logic – the whole forms a stage of the pipeline (cf. § 4.5.1
and 6.1 in Darche (2012) and V2 on future microprocessors).

Figure 1.13. The four possible channels of the handshake protocol

There are three different versions of this protocol depending on the position of
the synchronization signals: non-interlocked, half-interlocked and complete.
Complete interlocking means that no more exchanges can take place as long as the
previous one is not yet finished and signaled. In the two-phase handshaking version,
shown in Figure 1.1.4, there are two types of exchange, which are the “up”
handshake, which uses the Req↑ and Ack↑ signals, and the “down” handshake,
which uses signals Req↓ and Ack↓. For each of them, there are two transitions, or

16 Microprocessor 2

phases, embodied by the edges of the request signal Req and the receipt
acknowledgment signal Ack. The level of the signals is therefore irrelevant, as
opposed to the rising or falling edges (this is “edge-sensitive” control, or transition
signaling), which are significant (it is an “event-based” protocol), hence the term
“two-stroke” signaling (or two-cycle signaling, transition, Non-Return-(to-)Zero
(NRZ)). At the end of the exchange, these two signals are in the same state, whereas
during the exchange, they were in opposite states. There is an initialization state,
which is the transition of the reception signal, here Ack↓, which sets off the
exchange (dashed line). Note that the acknowledgment signal can be complemented.

Figure 1.14. Rising and falling versions of the two-phase handshake protocol

In the case of a push channel (Figure 1.15), once the information has been
positioned, a request is sent out in the form of a transition of request signal Req.
When the receiver has processed the information, it signals for it through a transition
of the acknowledgment signal Ack.

Figure 1.15. Two-phase handshake in a push channel

Basic Definitions 17

In the case of a pull channel (Figure 1.16), the request leads to the information
being positioned by the source, which then signals for it through an
acknowledgment.

Figure 1.16. Two-phase handshake in a pull channel

Note that there is an overlapping of data validity between the two previous
channel types during a transaction, as shown in the two gray vertical areas in
Figure 1.17.

Figure 1.17. Validity overlapping between the two channels

18 Microprocessor 2

In order to eliminate the toggle circuit during hardware implementation, a four-
phase handshake protocol is required, also known as double-handshaking. Here, the
level of the signals is significant (level-sensitive control). In the complete
interlocking version shown in Figure 1.18, there are two types of exchange, which
are the up handshake and the descendent handshake. For each of these, there are two
transitions, or phases, which are embodied by the edges of the request signal Req
and the acknowledgment signal Ack, hence the term four-stroke (or four-cycle)
signaling. At the end of the exchange, these two signals return to their initial state 0,
while during the two phases, they were in opposite states. For this reason, the double
handshake is called “Return-(To-)Zero (R(T)Z)” signaling. An initial state is an
equilibrium of the states of the protocol signals. The dashed line in Figure 1.18
represents an example of this.

Figure 1.18. Four-phase handshake protocol

For a push channel, the Req and Ack signals respectively mean valid data
(Strobe) and a completion signal. As shown in Figure 1.19, the emitter signals the
availability of the information through the rising edge of the strobe signal Req14
(Req↑). As previously, receipt of the positive edge of the acknowledgment signal
Acq (Ack↑) results in the removal of the information and deactivation of the request
signal (Req↓), in turn leading to the deactivation of the acknowledgment signal
(Ack↓).

14 Colmenar et al. (2009) starts the transaction one phase earlier, that is, at Ack↓.

Basic Definitions 19

Figure 1.19. Four-phase handshake protocols for a push channel (Darche 2012)

There are actually four versions of this channel: (Figure 1.20) early (Furber and
Day 1996; Furber and Liu 1996), broadish (or extended early), broad and late. For
the first three, there is valid data on the rising edge of the Req request – it is
therefore the invalidation of this data that differentiates them according to the three
edge possibilities. The data is no longer valid on the rising edge of the
acknowledgement signal for the early mode, on the falling edge of the request signal
for the broadish mode, and on the falling edge of the acknowledgement signal for
the broad and late modes. For the late mode, the data is valid on the falling edge of
the request signal.

Figure 1.20. Four versions of the four-phase handshake protocol for a push channel

20 Microprocessor 2

Figure 1.21 shows the “data request” version (pull channel), again with the four
variations.

Figure 1.21. Four versions of the four-phase handshake protocol for a pull channel

Figure 1.22 shows the other two possible versions of the handshake protocol,
which are “half-interblocked” and “non-interblocked”. The causality of the
exchanged is indicated with arrows. The second version is pulse-based signaling,
active on the edge or levels, a technique that is similar to transition-based signaling.
The operating mode was studied by McCluskey (1962) and his asynchronous
version is presented in Nyström and Martin (2002).

Figure 1.22. Half-interblocked (a) and non-interblocked (b)
handshakes (Thurber et al. 1972)

Basic Definitions 21

Figure 1.23 shows how this can be applied through two examples, a read (a) and
a write (b), both asynchronous, carried out by the CPU (Central Processing Unit).
The R/#W (Read/#Write) signal is not shown so as to not overload the illustration.

Figure 1.23. Exchanges between CPU and the memory through a handshake

To summarize, the OWC and handshake protocols are used by the asynchronous
and semi-synchronous buses. The two-phase handshake is quicker than the four-
phase, and requires less current in CMOS logic (Complementary Metal Oxide
Semiconductor, cf. § 2.4 in Darche (2004)). It is particularly well suited for slow
communicating systems (Renaudin 2000). The two Req and Ack signals can
alternatively be carried through a single cable. This approach was named single-
track handshake signaling by Van Berkel and Bink (1996), and its study goes
beyond the scope of this work.

1.4. Coding data

The validity of the transmitted data is inherent to the synchronous protocol, as
data and validity are correlated. There are several solutions for carrying out
validation in an asynchronous protocol. The first is called bundled data. The term
comes from Sutherland (1989, 2007), and leads on to the notion of bundling
constraint, which forces the data to accurately consider this constraint before
proceeding to signaling. A done signal accompanies the transfer of information and
validates the information. A superior solution to this is the use of protocol signals
Req and Ack as well as the handshake. A single cable is used to transfer a bit of
data, hence the notion of single-rail data encoding. For the coding to not be affected
by the propagation delay, unlike in the first solution, the coding can be carried out in
three or four states. This coding uses two cables (two rails) to encode the value of
the validity of the data. This constitutes a robust end solution that is dependent on

22 Microprocessor 2

the data but requires an associated detection logic (cf. exercise E1.1). Three-state
encoding is governed by the truth table shown in Table 1.1. It is called Dual-Rail
(DR) data encoding. This type of approach can be generalized to n number of rails
(Multi-Rail or MRn) while working in base n. For example, DR is MR2 encoding.
Four-state encoding is governed by the same truth table shown in Table 1.1. The
first bit gives the binary value and the second bit gives the logical parity (cf. § III.6.6
in Darche (2000)). We can also see that any change along the second rail marks a
new bit. Note that the dual-rail code is also called 1-of-2 code, and is part of the
1-of-n codes, that is, the one-hot codes with a size of n, who themselves belong to
the m-of-n code family.

Code words
(format n = 2)

States in a three-
state dual-rail code

States in a four-
state dual-rail code

0 0 Invalid or reset 0 even

0 1 0 0 uneven

1 0 1 1 uneven

1 1 Not used 1 even

Table 1.1. Interpretation of code words in three- and four-state dual-rail codes

Another aspect of coding relates to the current consumption. Yand et al. (2004)
suggests encoding the most frequent bit patterns that circulate around the data bus in
order to reduce the current consumption of the electronic buffers. This approach was
already suggested for solid-state memories with the bus invert by Stan and Burleson
(1995), and is further explored in the second volume on future memory devices.

In the microprocessor, the instructions can also be encoded (cf. § V4-1.1.1).

1.5. Communication protocol

In order to exchange information, first a communication protocol must be
defined that can manage this exchange. A protocol is a set of conditions and
operations, whose order must be strictly respected for the transaction to take place.
The rules to follow for the signals are physical specifications (electrical values) and
time and causality constraints of the operations. The operations are the activation or
non-activation (by level or by edge) of signals of state, control, and address and data
positioning. When a master accesses a slave, it states the type of access, read or
write of a word, read or write of a block (in a block transfer), Read–Modify–Write
(RMW mode) or a word, writing after reading (write-after-read mode) or access in

Basic Definitions 23

interruption mode (address-only and interrupt acknowledge cycles. RMW mode
allows for synchronization and locking mechanisms to be implemented, such as the
semaphore, or lower down, the test-and-set instruction (cf. § V4-2.6.1). The
two main corresponding control signals (cf. § 3.2) are read enable or signalization
signals (#R, #RE (E for Enable), #Rd or #RS (S for Signal)) and the same for write
(#W, #WE, #Wr or #WS). There are also spatial characteristics that specify the
information to be exchanged, and in the case of communication through bundles, the
structure of the messages (especially the size). If communication is carried out
through a datagram (i.e. a message), the protocol specifies its size (unit: bit or byte)
and its structure, that is, the different fields (spatial characteristics), as well as the
length and sequencing (temporal characteristics).

Figure 1.24. Sequencing diagram of a synchronous read

Figure 1.24 shows a synchronous operation, with a master, in this case, a
processor, carrying out a read operation in a memory device. The arrow points to an
action or cause that implies a new signal condition. The transfer is said to be

24 Microprocessor 2

addressed, as the correspondent is unique and chosen by the address. It sends the
address along the address bus, which is subsequently taken into account by all of the
address decoders (cf. § 2.2.2 in Darche (2003)) of the slave entities. The entity
involved is accessed through activation of its selection signal (CS signal for Chip
Select or CE for Chip Enable)) and send the desired data back. Remember that
everything is synchronized to a clock and that the cycle has a duration of
k × T, k , with T the period of the clock. The synchronous protocol is
deterministic.

It is possible to functionally split a cycle, referred to as a “transaction”. This term
refers to a coherent unit during processing, which can be decomposed into an
ordered sequence of unitary tasks. It is the logical activity unit of the bus or bus
cycle that takes the form of a sequence of signals. This sequence follows rule flows
that are gathered together in a communication protocol. If a clock synchronizes the
operation of a bus, then the transaction takes places during one (in the case of a
synchronous bus), or several bus cycles (in the case of a semi- or pseudo-
synchronous bus). Only in the case of a multi-master environment does the clock
start with an access request, followed by an arbitration phase (also called selection
phase) between those requesting access to the bus. Once this arbitration phase is
over, the chosen one then engages in the exchange, which is divided into an
addressing phase, an information transfer phase (Figure 1.25) or even, in more
complex protocols, an error detection and signaling operation phase.

Figure 1.25. A bus transaction

There are four fundamental pieces of information that must pass through the bus:
the addresses of the source and of the destination, the information being transported
and the operation that is to be executed. Usually, the source address is implicit. The

Basic Definitions 25

information to be transferred is typically a machine instruction, data or an address,
but it can also be a command, control, state or an interruption request or associated
vector, etc. Note also that the addressing phase can be prolonged during the transfer
phase, thus blocking the address bus, most likely unnecessarily. The issue can be
addressed by transforming the read operation into a write operation for the case of a
transfer between I/O controllers, or between the bus bridge, as proposed by
Okazawa et al. (1998). The operation to be executed is a read, a write or a read–
modify–write, but there are also special cycles (cf. § 2.2). In terms of the slave, the
phases of access request, address decoding and transfer will take place in succession.
A bus initialization phase is potentially required in order to power on the calculator
or on demand. This involves ordering the powering on or off of the modules, in a set
order if required, and to place them in a known state.

We can now establish the chronogram presented in Figure 1.26, which relates to
the exchange as seen by the microprocessor. The access time tACC is the minimum
time needed before the data can be processed. tDSR is the data setup time that takes
place before the microprocessor can begin processing. Note that there is a data hold
time at the end of each cycle, tDHR or tDHW depending on the operation, and tAH for
the address. A synchronous transfer is faster. It makes design easier (simple logic)
and guarantees exchange times. However, for this to happen, all elements of the bus
have to work at the same frequency. The main principle of synchronous
communication is strict adherence to the times, without which there is a risk of
transfer errors. The cycle length tcyc, in particular, is fixed.

Figure 1.26. Simplified chronograms of synchronous read and
write operations in the MC6802 microprocessor

26 Microprocessor 2

Figure 1.27 gives an example of read access for a microprocessor using a
multiplexed address/data bus. The ALE signal (Address Latch Enable) signals the
presence of a valid address on the bus. The exchange type is “relaxed synchronous”
as the cycle is prolonged by several reference clock periods, depending on the state
of the Ready signal. In this synchronous version, the length a memory access time is
measured in bus cycles, with one bus cycle being made of a number of clock cycles.
More generally, the number of cycles depends on the length m of the data bus,
the format n of the information and whether the access or information is aligned or
not.

Figure 1.27. Read cycle with address/data multiplexing
(iAPX88 microprocessor from Intel)

The alternative is an asynchronous operation. This has the advantages of reduced
current consumption, which is vital in mobile systems, and greater flexibility in
terms of design. However, there is no time guarantee, and specific transfer protocols,
based on handshaking (cf. § 1.3), for example, must be established. Figure 1.28
shows a four-phase handshake.

Basic Definitions 27

Figure 1.28. Read or write cycle with a four-phase handshake

The first one uses two signals, a strobe signal (Ready, in this case) and an
acknowledgment signal, which enables a feedback signal. The transaction requires
the bus to be crossed twice, thus slowing the exchange, as this is one more than in
the synchronous version. During an asynchronous operation, the beginning of the
protocol is the same as previously described, except that the reading of the data is
tied to an acknowledgment signal from the slave (e.g. the -DTAck signal from the
MPU MC68000 by Motorola). It is possible for the signal to not arrive, thus
blocking the exchange, and consequently the bus (Figure 1.29). Mechanisms like the
watchdog (cf. § V3-5.3 and § 3.3.1 in Darche (2003)) can unblock this situation,
generating a bus error in the form of a Negative Acknowledgment (NK), through a
third-party component, for example. A lack of addressable components can easily be
detected, as it is given away by the lack of response.

The advantage of asynchronous communication is the ability to mix slow
elements with faster ones on the same bus without any specific adaptations. The fast
elements adapt to the speed of the others (“leveling down”).

28 Microprocessor 2

Figure 1.29. Diagram of an asynchronous read sequence

Figure 1.30 presents a completely asynchronous read by the MC68000
microprocessor. Once the address has been positioned, the #AS (Address Strobe)
signal marks the start of the bus cycle. The read/write (R/W) signal is activated for
one read. The slave activates the #DTAck signal in order to tell the MPU that the
data to be read has been positioned on the bus. The #UDS/#LDS (Upper/Lower Data
Strobe) signals let us choose the format of the operation. In these chronograms, we
can recognize a handshake with interblocking (cf. 1.3), where the Req/Ack signals
are represented by #AS/#DTAck, which are active in the low state. A more complete
version can be found in Figure V3-2.20.

Basic Definitions 29

Figure 1.30. Asynchronous read cycle in the MC68000 microprocessor

Figure 1.31. Asynchronous write cycle in the MC68000 microprocessor

An asynchronous write cycle (Figure 1.31) starts, as previously, with the
activation of the #AS and write signals. The data is positioned by the CPU, which

30 Microprocessor 2

signals by activating the #UDS/#LDS signals, which mark its validity. A more
complete version of this is the one shown in Figure V3-2.20.

An example of a semi-synchronous transfer is the one presented in Figure 1.32,
which shows a memory access through a “transputer”, a microprocessor from the
company Inmos Ltd (taken over by STMicroelectronics). One read cycle normally
takes place over six half-periods; here, it is made longer by adding a half-period of
waiting W, as sampling of the state of the delay signal is done on the falling clock
edge, before the end of cycle T4. The events are discretized here. The number of
half-periods added is limited physically.

Figure 1.32. Simplified chronograms of an asynchronous read by transputer

Other variations of cycle lengthening can be considered. One example is shown
in Figure 1.33 where the wait request signal must remain active for the amount of
time needed for propagation. The time is here said to be continuous, as there is no
clock signal interfering. The Wait signal allows the exchange to be lengthened.

Figure 1.33. Lengthening a cycle with the handshake (from Nicoud (1987))

Another variation, still of the “handshake” type, is presented in Figure 1.34. It is
run in 32-bit microprocessors, where a positive acknowledgment ends the exchange.
In the case where the slave cannot satisfy the request, a negative acknowledgment

Basic Definitions 31

NAck is sent. In this way, the handshake is able to carry out flow control. It is said
to be bounded.

Figure 1.34. Lengthening a cycle with positive and negative
acknowledgments (from Nicoud (1987))

An addressed selection involves providing an address or a range of addresses to a
slave. An addressed transfer involves providing an address which will then be
decoded in order to select (i.e. activate) a slave. Typically, the slave has defined
addresses. One variation is geographical addressing, which tells us which card is
currently occupying a given slot. For this, each slot is attributed a number, called a
slot space, and each connector is given an equal addressing zone. The most
significant bits (MSbs) of the address are used to identify the location. Both the
NuBus and VME (Versa Module European) buses, to only name a couple, use this
type of addressing. Such an approach simplifies design by splitting the addressing
space by number of connectors.

Borrill (1988) provides another approach to classing protocols than the standard
synchronous–asynchronous dichotomy. He suggests three criteria, which are
localization of the information validation (the locus), periodicity and flow control.
The locus determines who has responsibility for the validation, whether it is the
source (source-controlled), the destination (destination-controlled) or whether it is
centralized. The periodicity states whether the exchange is periodic (fixed
frequency) or aperiodic (variable frequency or synchronization). The control flow
can be bounded (handshake) or not. On top of this, we can add the arbitration
characteristics (cf. the following section).

1.6. Access arbitration

When there are simultaneously different access requests made to a bus,
interruption requests (cf. Chapter V4-5), or Direct Memory Access (DMA, cf. § 2.2.2)
requests made by a master or a slave (only for the first two), access arbitration to the

32 Microprocessor 2

bus is necessary. This involves choosing a master among n and allowing it to take
the bus (grant). Access to the resource is exclusive. The electronics of the bus must
be adapted in terms of output stages in order to (dis)connect to the arbiter request in
a three-state logic, either open-collector or open-drain logic, or open-emitter or open
source logic, depending on the technology used (cf. § 2.2.1 and 2.3 in Darche
(2004)). In the case of a bidirectional bus, the direction of the flow of information
must be invertible on command. Once the exchange has terminated, or under the
constraint, the entity may release the bus. The arbiter is usually defined by a
property of fairness of access. This means that it provides an identical service for all
requesters, thus avoiding situations where the requester with the highest priority
always gets access to the bus in the case of multiple requests. It also allows a
requester with low priority to obtain access to the bus even when there are a large
number of requests. This fairness can be weak, strong weighted or strong not
weighted, or FIFO (First-In First-Out resource handling). An example of strong
fairness is the matrix arbiter, which operates along a last recently served policy. An
SP (Static Priority) arbitration is a predetermined allocation of the bus. This means
that the bus can be allocated to nodes that have not requested access. Allocation can
be determined by the bus cabling, that is, by the position of the node in the bus, or
by software through programming. This simple solution is only suitable for a small
number of nodes. Otherwise, arbitration has to be carried out as a function of the
requesters, and is therefore dynamic (Dynamic Priority, DP).

The arbitration criteria are the location of the arbitration, the type of access
request, allocation rules and bus release rules, the type of grant and the temporal
relations between the arbitration and the transfer of data. The grant is valid for one
or a given number of cycles, until the requester releases the bus, or on demand
(preemption). With regard to localization, this can be centralized or distributed (the
arbiter is decentralized), depending on the decision site. Thus, depending on the
technique chosen, the arbitration electronics will be partially or completely located
in the interface of the bus (cf. § 3.1), with the distributed version usually requiring
more electronics. It is important to note that signaling can be synchronous or
asynchronous15 depending on the bus. Regarding the second point, allocation can be
carried out either classically according to a fixed priority (it is prioritized), or it can
be variable, a Round Robin (RR), for example. It can be sequential, that is, First-Come,
First-Served (FCFS), also called FIFO, or democratic (no rules) (Bell 1978).
Depending on the material solution chosen, not all of these can be implemented.

15 Plummer (1972) explores asynchronous arbiters, and Cowan and Whitehead (1976)
presents a version with polling.

Basic Definitions 33

Priority can be set with cabling or through a program. An RR policy is easy to
implemented. One disadvantage, however, is that a priority transfer (i.e. a quick one)
cannot be granted as all those waiting must first be resolved. A TDMA (Time-
Division Multiple-Access) policy allocates time slots (or time frames) that are either
fixed or variable, and which guarantees the bandwidth and ensures that each is
served. Dynamic reconfiguration allows the bandwidth requirements to be adapted
to the bus. These are both single-level schemes. In order to improve the response
time and bandwidth of the bus, a multi-level scheme can be used. One example is a
TDMA/RR policy, which frees up an unused time slot that can then be allocated
following an RR policy. Sonics SMART Interconnect is a bus that applies this
scheme.

The three phases are demand, arbitration (also called resolution) and grant.
Another way to describe the bus protocol is to use a Finite-State Machine (FSM, cf. §
3.7.3 in Darche (2002)). Its behavior can be described graphically using a state
diagram like the one shown in Figure 1.35. Each circle represents a state, and the
transition from one state to another takes place under the conditions specified by the
arrows. If there is at least one request, the bus goes from the state of resolution to
the state of addressing.

Figure 1.35. Simplified state diagram of a bus protocol

These three phases result in implementation through the following signals: Bus
Request (BReq), Bus Grant (BG) and potentially a Bus Busy (BBusy) signal, or
even a preemption request (Bus preempt) to remove the bus from the current holder.
These are active at the low or high state depending on the implementation and

34 Microprocessor 2

technology of the logic used. These signals can circulate serially or in parallel
between the nodes. A distinction can be made between several connection
topologies. These are the daisy chain, the star, the bus or a mixed solution drawing
on the best aspects of the different approaches. The three most common
communication diagrams for receiving requests or sending out arbitration responses
are the daisy chain, independent requests and polling.

The daisy chain is a type of link between communicating nodes, each with an
input signal and an output signal, thus creating a chain between them. This signal
can be the access grant to a bus, as is the case in Figure 1.36. This daisy chain
allows for a serial distributed arbitration solution to be reached. It is distributed as
each node is in possession of its own arbiter. The requests are made in parallel
thanks to a wired OR. A node that wants the bus activates the request line if its BPRI
(Bus PRiority In) input is not active. The other nodes propagate the request up to the
requesting node, which then becomes the bus owner, while maintaining its request.
Resolution is therefore conducted serially. The bus state can be read in the BPRI
input. In principle, allocation is fixed by the geographical position of the nodes in
the loop, and is therefore not fair. This is a simple and cheap solution, as it does not
involve a lot of logic (Figure 1.40). However, it is slow because the response has to
go from node to node. Another disadvantage is the complex cabling, as, for
example, in the case of a backplane bus with slottable daughter cards, the continuity
of the chain must be maintained. This can be done using a strap, or with a dummy
board, a bit like what is done in the CRIMM16 module (Continuity Rambus In-line
Memory Module, cf. § 7.2.1 in Darche (2012)). Moreover, if one of the nodes fails,
some of the nodes are then isolated and therefore become blocked. A daisy chain
model is studied in exercise E1.4.

Figure 1.36. Another version of daisy chain distributed
arbitration (from Thurber et al. (1972))

Figure 1.37 presents a variation on the previous version, this time with a
permanent state of grant for taking the bus for the first arbiter (no. 0). If it wants the

16 This type of link was already covered for I/O (cf. § 1.2.3 in Darche (2003)) and for
memory (cf. § 5.3 in Darche (2012)).

Basic Definitions 35

bus, and if the bus is free, it takes the bus and activates the corresponding state line.
If the bus is busy, it waits for it to become free. If it does not want it, it activates its
BPRO (Bus PRiority Out) output, passing its right of access to the next one along
the chain.

Figure 1.37. Daisy chain arbitration (variation)

Figure 1.38 shows a simpler version of this, but the state of the bus cannot be
determined on a grant signal level, but rather on an edge.

Figure 1.38. A simple solution for daisy chain distributed
arbitration (from Thurber et al. (1972))

Figure 1.39 shows a centralized version. Requests are made in parallel. An
access grant is given by the controller, but priority is fixed by the physical cabling of
the nodes with the same weaknesses as before, which concern priority and tolerance
to material faults. The entity that takes the bus and keeps the bus signals to it
through the occupation line. It should be noted that if this line is removed, we revert
to the daisy chain solution from Figure 1.36. Several loops or request-grant chain
levels can exist in order to create a priority hierarchy (multi-level arbiter). Exercise
E1.3 is an example of a study in parallel arbiters.

Figure 1.39. Centralized version of the daisy chain

36 Microprocessor 2

Figure 1.40 describes the control logic at the level of each node, which blocks
agreement according to priorities linked to the geographical position of the element
within the bus. Spatial priority can be changed thanks to specific cabling using
cavaliers or straps, as described in Borrill (1981), although this is a very onerous
solution to put in place, and can result in mechanical faults. Inverters have an output
that is compatible with them being placed in parallel, that is, a collector or open
drain, for example. The simplicity of the flowchart should not disguise the
complexity of the timescales, which need to account for all the bus delays and the
processing electronics.

Figure 1.40. Daisy chain agreement bus access control logic (simplified)

The preceding example was inspired by the Unibus™ bus from the PDP-11
made by the company DEC. Figure 1.41 presents the corresponding process
chronograms (positive logic). A node requests access (timestamp no. 1). Access is
granted to the first node concerned (timestamp no. 2). This node acknowledges
receipt (timestamp no. 3) and removes its request (timestamp no. 4), which results in
the grant also being removed (timestamp no. 5). The bus becomes free (time interval
no. 6) and then blocked for the transfer (time interval no. 7), and the arbiter signals
this (time interval no. 8).

Basic Definitions 37

Figure 1.41. Unibus™ bus arbitration sequence

Figure 1.42. Topology of a centralized arbitration

In order to get around the major inconvenience of a chain break, an independent
request approach can be used. Figure 1.43 presents a centralized version inspired by

38 Microprocessor 2

bus PCI (PCI-SIG 1998). Each request and each grant are independent of each other.
They are carried out in an asynchronous manner. For this, the arbiter, or manager,
must be highlighted within the bus controller as the one that receives requests and,
depending on the access policies, determines which entities can get access to the
bus. Examples among the commercial arbiters are the 74xxx148, 74F786 and 82C89
(by Intel). In the example shown in Figure 1.42, a couple of signals (requesti, granti)
handle access to the bus. A requesting node i (i ∈ [0, 3]) generates its access request
to the bus Reqi (Bus Request) and receives its grant Grti (Bus PRiority iN, sometimes
called BPRN).

A priority encoder (Figure 1.43) establishes the number of the line to be served
according to a given policy. The request and resolution are in parallel here.
Arbitration of the VME bus is carried out in this way for n = 2, that is, for four lines
of authorization request. Centralized arbitration is simple to execute, but the number
of nodes is limited. The bus manager always needs to know whether there is a
request currently underway, and whether the bus is busy or released, which depends
on the shared signal of bus busy CBusy (for Common Busy), which is not shown. In
order to avoid a shortage in the case where a node does not release the bus and
another with higher priority asks for it, the bus manager can order the immediate
release of the bus by deactivating its grant.

Figure 1.43. Centralized arbiter with independent request and resolution

The sequence diagram in Figure 1.44 provides an example of centralized
arbitration with fixed priorities. Node no. 0 has the highest priority. The bus is free.
Node no. 1 requests the bus, and is then granted permission to take it. It takes the
bus, then frees it. Node no. 0 does the same. While this last node is master of the
bus, node no. 1 makes a request that will always be denied while a higher-priority
node (in this case, node no. 0) is in possession of the bus. When the bus has been
freed, it can then take it. We can see here that fixed priority is not fair.

Basic Definitions 39

Figure 1.44. Example of a centralized arbitration
protocol with a daisy chain response

Figure 1.45 shows the distributed version of a solution with independent
requests. The requesters place their priorities along one of the lines of the request
bus. This is an expensive option in terms of the width of the bus, but it is easy to set
up in terms of electronics. The node in current possession of the bus deactivates the

40 Microprocessor 2

“bus assigned” signal; the node with the highest priority can then acquire possession
of the bus by activating the assignment signal.

Figure 1.45. Arbitration by independent requests in a decentralized version

Polling is another option that involves cyclically questioning nodes in order to
establish which is the requester (Figure 1.46). The node with the number
corresponding to the current value of the counter activates the occupation line,
which causes the counting to stop. Once the bus has been freed, if an access request
has been made, the counter can start a poll again, either by restarting the counter or
by starting again from the last node that has been granted access. The second option
has the advantage of providing rotating priority, while the former provides the same
as there would be in a daisy chain.

Figure 1.46. Centralized arbitration by polling (from Thurber et al. (1972))

In order to remove the request line, the counting is decentralized and a global
clock signal Clk paces the counting (Figure 1.47). If a node wants the bus and the
value of its counter is equal to its number, then it activates the occupation line,
which results in the counting stopping. As before, after the bus is released, the
counting can either return to its current value or be restarted depending on the
priority policy desired. This type of mechanism is sensitive to noise.

Basic Definitions 41

Figure 1.47. Centralized arbitration by polling

When a node frees the bus in a distributed version (Figure 1.48), it positions the
“bus free” signal and a number on the polling bus. This can represent an address or a
priority. If this value corresponds to a node, the node in question activates the
acceptance signal, which results in the “bus free” signal being deactivated. If this is
not the case, however, counting takes place indefinitely according to the chosen
priority policy until a positive response is received from one of the nodes.

Figure 1.48. Distributed arbitration by polling

In a distributed self-selection approach, each entity is an agent in the negotiation.
There is a linear version (with a linear self-selection arbiter), which has as many
lines as nodes, but the number of which can be reduced with coded version (this is a
coded self-selection arbiter). Here, we have an example of distributed arbitration,
inspired by buses MCA (Micro Channel Architecture), S-100 (IEEE Std 696
(ANSI/IEEE 1982b)), FASTBUS (IEEE 1989) or Futurebus (IEEE Std 896 (IEEE
1994)). Access to the buses is provided synchronously (by cycle). The arbitration
phases are the following: at the start of a cycle, the interested units emit the value of

42 Microprocessor 2

their priority over the bus (excluding values of zero). The address thus formed is the
“logical OR” of the addresses thanks to outputs like the collector or the open drain
(cf. § 2.2.1 and 2.3 in Darche (2004)). The absorbing element is therefore the value
“1” when the outputs are not active. During the arbitration cycle, the units listen to
the bus and change their emission to 0 (i.e. they deactivate its lines) for bits with a
weight that is less than the position of the first difference (the order is MSb → LSb
for Least Significant bit). The winner is the unit that recognizes the value of its
priority on the bus. Figure 1.49 shows a real example of this. A major disadvantage
is that the priority is fixed and therefore not fair. Kipnis (1989) formalized the
protocol, and Taub (1984) describes the arbitration diagram of the Futurebus.

Figure 1.49. Example of arbitration distributed by self-selection

Basic Definitions 43

Figure 1.50. Local arbiter from the MCA bus

Figure 1.50 provides an example of the local arbiter logic, in this case from the
MCA bus. A central arbiter is tasked with managing the arbitration phase by

44 Microprocessor 2

authorizing the local arbitration phase and detecting when it has ended. The
arbitration serially propagates from the MSb towards the LSb. As soon as a stage i
(i ∈ [0, 3]) detects that its bit with a priority of Pribi is greater than the one present
on the bus (+Arbi), it causes the local election to be lost by blocking the lower AND
gates.

Overlapping arbitration (anticipated arbitration) involves carrying out the
arbitration for the next transaction before the current one has finished. Both
Unibus™ and PCI operate with this characteristic. The property of bus parking
allows possession to be retained as long as another master has not yet requested it.

Bus arbitration logic is one of the function modules of the bus interface
(cf. § 3.1). A commercial example of a discrete Arbitration Bus Controller (ABC) is
the TFB2010 circuit from the company Texas Instruments (TI), made for the
Futurebus+ (FB+) bus, which has been standardized under IEEE Std 896 (IEEE
1994). An integrated version of the controller is the MPU NS32132 from the
company National Semiconductor (NS).

In summary, the centralized option has the advantage of being simpler, but the
number of nodes to be managed is limited. Distributed policies are more tolerant
with regard to material faults. This obviously does not apply to the daisy chain,
which is an exception. It tends to be slow, and priority usually depends on the
physical position of the card on the bus. Other arbitration techniques do exist, such
as collision detection and ID tokens. Collision detection is used in the field of
networks through the CSMA/CD protocol (Carrier Sense Multiple Access with
Collision Detection method) by Ethernet (IEEE 1985). The use of ID tokens is
another technique, based on a token that goes from node to node (sequential token
passing). The node that is in possession of the token can access the bus. The
protocol must ensure that the token is unique. Finally, for informative purposes, the
main arbitration protocols are covered in Guibaly (1989). Dandamudi (2003) created
a classification of arbitration criteria, which is shown in Figures 1.51 and 1.52,
which are perfect summary of the points we have made heretofore. The first one
covers organization, allocation policies and bus release.

Figure 1.51. Design tree of a bus arbitration

Basic Definitions 45

The second figure classes the access requests and grants.

Figure 1.52. Design tree of a bus arbitration (continued and end)

1.7. Conclusion

After some general points regarding communication, the main mechanical,
electrical and temporal characteristics of buses were presented. These can potentially
be specified within a reference standard, which would allow for further
standardization of electronic and mechanical components, thus reducing costs. Next,
we looked at the notions of protocol and arbitration. Exchange by the synchronous
approach was examined in great detail.

2

Transactions and Special Cycles

This chapter focuses on transactions. These are important as they provide a
solution to the bottleneck problem. In this context, we shall cover the following
modes of transfer: pipelined, split and Out-of-Order (OoO, an extension of the split
mode). Moreover, in addition to the classical cycles of read and write, this chapter
also covers cycles that are termed “special”, such as broadcasting and block
transfers.

2.1. Transaction

A transaction is made up of a sequence of messages. A message is the base unit
of any information. It comprises an address, data and an access type. The three
phases of a bus cycle are access request (usually in a multi-master environment),
addressing and data transfer. There is also sometimes a termination phase. The
request itself is split into a request, an arbitration and a grant of possession of the
bus.

2.1.1. Transaction pipeline

All of the (sub)phases of a transaction that are normally carried out sequentially
can also be executed in parallel if they are placed into the different functional stages
of a pipeline. This is called a pipelined bus, with a pipelined transaction. This
approach involves functionally splitting the transaction into sub-steps in order to
execute them in parallel in the same number of stages. This is used in Synchronous
Static and Dynamic Random Access Memory (SSRAM and SDRAM, cf. § 4.5.1 and
6.1 in Darche (2012)). Figure 2.1 shows how a write operation can be split into
phases. The request involves sending the address and type of transfer requested. The
transfer, address and data phases are overlaid onto each other.

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

48 Microprocessor 2

Figure 2.1. Pipelined write operation split into phases

For a read to be carried out in phases, a wait cycle has to take place in order for
the read to be effective. This is shown in gray in Figure 2.2.

Figure 2.2. Pipelined read operation split into phases

Transactions and Special Cycles 49

The point of this functional splitting is that it opens up the possibility of
introducing partial parallel operating, as shown in Figure 2.3. This notably frees up
time for decoding the addresses.

Figure 2.3. Transactions with partially parallel phases

Maximization of this parallelism results in transfer pipelining, as illustrated in
Figure 2.4. The address of the next transaction is sent in advance to the dedicated
bus before the current transaction has ended. After a certain structure loading time
has passed, the pipeline is fully effective, and the data bus is 100% occupied. In the
example, this occurs from the third request onward. The transfer of data requested
during previous phases takes place in parallel to any new requests.

Figure 2.4. Pipelined transactions

50 Microprocessor 2

Sometimes, it becomes necessary to temporarily stop the progress of the request
along the pipeline for the duration of one clock cycle because of a conflict of access
in the bus. This forced wait time is called a “stall cycle” and is shown in Figure 2.5.
One of the operating rules is there can only ever be one slave in possession of the
bus at any time. Another rule is that a grant can be made when the bus is being used,
but not until it has been freed by the current owner.

Figure 2.5. Stall cycles in a pipeline

2.1.2. Splitting the transaction

In the previous subsection, we have just seen that, in a pipeline, an increase in
the number of functional stages results in an increase in bit-rate, but strict
sequencing causes stalls, which lower the bit-rates of the buses (cf. above).
Competition in terms of access can be introduced by splitting the transaction into
two separate sub-transactions, which are the request transaction and the reply
transaction. This is illustrated in Figure 2.6. In this way, while awaiting the
response, the bus can be released for another access request and then given away
again in order to finish off the first transaction. This is what is known as a split
transaction. The associated bus is called a split-phase or packet-switched bus. The
address and data phases are completely separate from each other, as is their
arbitration. For this reason, they share a tag, which is generated during the first
phase, which must subsequently correspond to the tag from the second phase.

Figure 2.6. Split transaction

Transactions and Special Cycles 51

The order in which the address bus, followed by the data bus, are taken is
maintained (classical pipeline). However, extension of the splitting allows for an
out-of-order processing, as takes place in microprocessors. This means that the order
of the transfers does not have to follow the order of the requests, as shown in
Figure 2.6, where transfer 1 takes place after transfers 2 and 3. This allows for
further optimization of how the bus space is occupied. A commercial example is the
PowerPath-2™ bus from the Challenge family (Galles and Williams 1994) made by
SGI (Silicon Graphics, Inc.). To order transactions, this bus has to connect the
request and the transfer. To do this, it uses a tag with a format of n = 3 bits, which
enables it to link them together rather than to the address. Another commercial
example is the Gigaplane™ bus from the company Sun. The exchange can be
synchronous or not.

In order to respect real-time constraints, preemption can be added to this
approach, which allows the bus controller to take the bus away from an entity with
lower priority, and allocate it to one with higher priority (this is transaction
preemption). The interrupted transaction can be resumed later on (transaction
resumption). Lastly, overlapping arbitration (cf. § 1.6) enables overlapping address
and data phases to be carried out.

2.2. Special cycles

Beyond the classic transfers of read and write, there are also other types of
access, such as read–modify–write, diffusion and broadcall. The first of these was
explained in the context of dynamic random access memory (DRAM, cf. § 5.2.1 in
Darche (2012)). In a single cycle, it can read and then write a single piece of data in
the same location. This function can be used in the case of a critical section for
changing an access lock. Broadcast allows a master to write an element of data in
various different slaves in the same cycle. One use of this is to maintain coherence
in several caches. Broadcall is a read operation where several slaves position
information on the bus. This can be used in the detection of several interrupt
requests coming from various sources, by carrying out wired AND or OR functions
(cf. § 4.1.1 in Darche (2003)). These two types of transfer can be contrasted with an
addressed transfer.

There are two fundamental types of transfer, either unique by word and multiple
by block of varying or fixed lengths (these are block-oriented transactions), or
block-word combinations of fixed or varying lengths. During a simple cycle, for
example, for a read operation, after any possible arbitration has been conducted, a
command and an address are sent to transfer one word after each cycle. In order to
increase the rate of memories sent, and to adapt to the transfer mode of the cache
memory, a block transfer mode can be used. It resembles the burst mode of RAM

52 Microprocessor 2

(cf. § 5.5.2 and 4.4.5 in Darche (2012), and also the chapters on SDRAM (no. 6) and
on memories using packet-based communication (no. 7) in the same work). This
allows for the consecutive block transfer of n words from the memory (cf. § 4.4.5
and 6.3 in Darche (2012)). Only the address at the start of the block being
transferred circulates along the bus, and potentially the number of words to transfer,
if this is not clear, as well as the data (Figure 2.7). A burst mode is greater than the
value of the unit flow multiplied by the size of the block. It is equally adapted to
Input/Output (I/O) transactions. This approach is better when used with a
multiplexed address/data bus. However, requests coming from other nodes must also
be considered, especially those with real-time constraints. One solution to this is to
limit the length of the bursts, or to add preemption, which interrupts the transaction
and allows it to be continued later.

Figure 2.7. Read by block

Lastly, there are also other transfer modes. An example is the address-only
modes, without any data, which can be used for a dialogue with the cache, for
example. Others are the TLB (Translation Lookaside Buffer, cf. V2 on future
memory devices), compelled-data, or packet-data. In a compelled-data mode, the
slave has to provide a response before the master can move on to another transfer
(IEEE 1991).

2.2.1. Managing interruption

The mechanics behind interruption is of importance not only to the management
of I/O, but also in the handling of errors and, especially, for Operating System (OS)
calls. There are two types of interruption, which depend on the origin of the request,
which can be either software or hardware (cf. the classification in § 4.1.1 in Darche
(2003) and § V4-5.1). The latter is the one of interest here, and in this case, these are
the specific input signals of the microprocessor. Each input is sensitive to a single
level or transition of the signal. The request lines can be unique to each slave S, or
the request can be shared. In this case, outputs of the L(ow) type must be used,
which correspond to the collector of an NPN transistor, or the open drain of a PMOS
(Positive (channel) Metal Oxide Semiconductor, cf. § 2.1.3 in Darche (2004)),
depending on the logic technology used (Figure 2.8).

Transactions and Special Cycles 53

Figure 2.8. Interruption bus

Figure 2.9 shows an electric circuit corresponding to the outputs of the open
drain or open collector types. These parallel electronic interrupts connect the request
line to the ground, forming a wired negative logic OR function and a wired positive
logic AND function (cf. § 3.4.5 in Darche (2004)). The sharing of interrupt requests
is a possibility here, as long as the request is level-sensitive at the level of the
master, as opposed to being carried out by transition, which would result in any
requests coming after the first one not being detected. For this reason, the extension
bus ISA1 (Industry Standard Architecture, cf. § 4.2.4) could not share an interrupt
request line. This problem can be overcome using a software solution, and by setting
up a polling technique. However, this solution has its own intrinsic limitations (i.e.
risk of loss of request and high computing power requirements.

Figure 2.9. Interrupt bus

Each request line or interrupt number is associated with an interrupt handler. In
order to start it, first its start address must be known. This is called the interrupt
vector. This vector is typically stored in a table called the interrupt vector table
(cf. § V4-5.7), which is itself saved in the main memory. During a bus cycle, the
interrupt phase corresponds to the transfer of the interrupt vector toward the
processor processing the request. For this to happen, the origin of the requests –
whether of bus access, interrupt, DMA transfer (cf. next §), by slave or by master –
must first be determined physically. This can be achieved using a daisy chain, which

1 Not to be confused with the ISA (Instruction Set Architecture, cf. § V1-3.5).

54 Microprocessor 2

passes the dialogue grant with the master from slave to slave. This technique is
called “proximity addressing”. For the closest authorized entity, this dialogue
involves making an identifying word (called vector) available on the bus. This
vector corresponds to the address, whether direct or indirect, of the start of the
corresponding interrupt handler. Another solution is to activate the bus lines
associated with the slave being questioned (broad-collect cycle) (Nicoud 1987). The
mechanism behind interrupts is explained in detail in Chapter V4-5 and for I/O in
§ 4.1.1 of Darche (2003).

2.2.2. Managing direct memory access

We saw in Chapter 1 of Darche (2003) that any information coming from the
memory from the I/O should in principle pass through the registers of the MPU
(MicroProcessor Unit). Direct memory access (DMA) is a mechanism that allows
the processor to be relieved of this transfer, which is a role taken on by a specialized
controller (Figure 2.10). The processor programs (i.e. initiates) the DMA Controller
(DMAC) by telling it what the source and destination addresses are, as well as the
number of memory words to transfer. It then starts the transaction. The buses are
shared between two masters: processor P, which is free to take on another activity,
and the DMAC, which carries out the transaction. The microprocessor is warned of
the end of the transaction through a general interrupt (cf. § 2.2.1 and Chapter V4-5).
This mechanism has been studied in detail in § 1.2 and 4.1.3 of Darche (2003).

Figure 2.10. Exchanges between the main memory and
classical I/O units and by direct memory access

Transactions and Special Cycles 55

2.2.3. Bus Mastering

Bus Mastering (BM) allows a bus expansion card to take control of the bus
through the arbiter (Integrated System Peripheral (ISP) chip). Reference circuit
82367 by Intel is representative of this concept. The expansion buses (cf. § 4.5)
EISA (Extended ISA) and PCI contain this function. It is different from classical
DMA (“third2 party” DMA), in that it is not the MPU that initiates the transfer of the
descriptor (source and destination addresses, and length), but rather one of the cards.
One of the card’s local DMA controllers is usually needed (“first party” or BM
DMA). In order to avoid one card penalizing all the others, an order of priority is
required. This normally has four levels, which are system memory refresh, the DMA
transaction, the MPU transaction and the BM. One of the first interfaces to use this
was the SCSI (Small Computer System Interface, cf. § 9.3.1 in Darche (2003) and
Schmidt (1995)). The Ultra DMA transfer (UDMA, cf. § 4.1.3 in Darche (2003)) is
another example for hard drive mass storage memory devices or HDD (Hard Disk
Drive).

2.2.4. Detection and correction of errors

Packet communication helps to reduce errors, in both the absolute and
metaphorical sense. Detection takes place at the level of the packet, which allows for
easy and rapid rectification of the error. Classical examples of error detection and
correction protocols that can be applied to packets are the Alternating-Bit (AB, also
called the Stop-and-Wait) protocol and the Automatic Repeat reQuest (ARQ)
protocols (Fairhurst and Wood 2002), which is a form of the sliding window
protocol. These include the go-back-N technique (also called REJect technique or
REJ) and the selective-repeat (also called Selective Reject, SREJ) technique. These
are not covered in this work.

2.2.5. Multiprocessor aspect

In the 1980s, a multi-master bus would allow communication between a mono-
processor system and co-processors or transaction facilitators, such as a DMA
controller (DMAC). Nowadays, multi-master systems contain several processors
that each have their own cache memory and main memory, and furthermore
physically share a cache memory and a main memory. They therefore have a private
address space (AS, cf. § V3-2.1.1.1) and, possibly, a shared AS as well. The
interrupt request and DMA signals are hard to process in such an environment. The

2 The first two elements are the source and destination, respectively. The controller (the third
party) handles the transfer.

56 Microprocessor 2

bus has to be able to provide a range of options for the designer in terms of
arbitration (centralized or distributed, different selection policies, maximum number
of requests processed, etc.). Moreover, the current trend is to use an electrical signal
to replace these interrupt requests and DMA transfer mechanisms with the
mechanism used in the message passing, as shared memory communication is not
suitable for this. The requests are then encapsulated within a classic data transfer so
as to not specialize the bus signals for a given type of microprocessor, and so that it
can easily adapt to the microprocessor environment.

2.3. Conclusion

The notion of transaction has allowed an access to be split into several sub-steps,
which can then be put in parallelized thanks to a pipeline. Special cycles are
solutions that help deal with mechanisms such as interruption and direct memory
transfer. Bus mastering is a way of avoiding, always having to go through the MPU
for any exchange. In order to make communication more reliable, mechanisms for
detecting and correcting errors have been proposed, both in terms of software and in
terms of hardware. The current trend is a shift toward serial buses and packet-based
communication, thus moving away from the cycle.

3

Bus Interfaces

In order for connections to be made with a bus, each of its nodes must have an
interface. This chapter covers the notions relating to these interfaces.

3.1. Functional modules

The nodes of a bus, which usually take on the physical form of an electronic
board, can be modeled as two sub-sets (Figure 3.1): the user module and the bus
interface (I/F). The user module can be a master M or a slave S. Examples of this are
the MPU (MicroProcessor Unit), memory devices or Input–Output (I/O) controllers.
The bus interface enables dialogue between the user module – whether master or
slave – and the bus. It can be modeled functionally by two sub-sets which are the
interfacing logic and management elements or functional modules.

For buses operating synchronously, a distinction must be made between the bus
interface and the user module. If the state machine of the interface is paced by a
clock, then it is called a “clocked interface”. If the host is paced by another clock, or
operates asynchronously, this can result in clock issues, such as metastability
(cf. § 3.5.2 in Darche (2004)) due to the presence of two clock domains (CDC for
“Clock Domain Crossing”, cf. § 3.6.6 in Darche (2012)) and violation of the golden
rule of access (i.e. bus-setup and hold times, cf. § 3.3.4 in Darche (2012)) that
applies to the flip-flops. If both entities are paced by the same clock signal, this is
called a “clocked protocol” (Corso et al. 1986).

Functional modules, or management elements, have historically controlled
access to the bus (request, arbitration, grant, preemption), interruptions (request, ID
vector, state) and DMA type transfers (Direct Memory Access, cf. § 2.2.2). Another
function is the creation of bus timing signals. Lastly, address decoding helps select a
slave that has to respond. The slave is activated by the address, potentially with a

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

58 Microprocessor 2

geographical form of addressing, such as the slot number (cf. § 1.5). There are
several types of selection: decoded, coded or mixed; this depends on the position of
the decoder in relation to the inside or the outside of the slave. Moreover,
incomplete decoding can be chosen in order to cut costs, which results in ghost
addresses (cf. § 2.2.2 in Darche (2003)). Nowadays, the current can be finely
managed in order to control the power-on and power-off processes of the user and to
regulate system current use or the hot swapping of electronic boards. Examples
include the conversion of bus protocols and the temporary storage of information
through FIFO (First-In, First-Out) resource handling, thus adapting the bitrate
between the bus and the nodes (cf. V2 on semi-conductor memory devices). Lastly,
the board can possess a ROM (Read-Only Memory) containing a piece of firmware
(FW) for setup, startup and handling of the I/O (extra BIOS (Basic Input/Output
System, cf. § V5-3.5.3)), or even pre-saved management parameters if the memory
device is programmable. Setup can involve defining an address or a whole range of
addresses. A network interface can also have a start-up program or a primary boot,
resulting in the function of “boot by LAN” (Local Area Network), that is, starting
the computer via the local network.

Figure 3.1. Functional modeling of a bus node

Bus Interfaces 59

3.2. Associated signals

A signal is different from the power supply lines (V+, V-, if needed, and Gnd) as
it carries information in the shape of a physical parameter: electricity. A signal is
said to be unipolar – as opposed to bipolar – when all of its values have the same
polarity. Logical signals can be active for a given level (they are “level-sensitive”) in
the high or low state (positive or negative logic respectively, cf. § 2.1.4 in Darche
(2004)). They can also be active on one or both edges (“edge-sensitive”). Being
active in the low state is marked by the name of a signal (or its acronym), prefixed
or suffixed by the symbols n, -, #, * or /, or if it has an upper bar. An absence of
symbols, or the + symbol mark activity in the high state. In terms of components, a
distinction is made between the Input signal (I), the Output (O) and the input–output.

The signals were initially an amplification of those coming from the
microprocessor. In order to make them generic, meaning that they are able to receive
electronics that are separate from the electrical interface and the communication
protocol of the microprocessor, bus signals are no longer dependent on these
elements. An old example was the PCI (Peripheral Component Interconnect,
cf. § 4.2.4) extension bus, which used to allow the same graphics card to be used by
both a Power Mac G4 computer, made by Apple, with a PowerPC G4
microprocessor from Motorola and IBM, and by a PC (Personal Computer)
equipped with a microprocessor made by Intel. The only element that changed was
the associated device driver (i.e. a system software) because of the different
microprocessors and operating systems.

Bus signals are typically separated into different families based on their function.
For non-multiplexed buses, a distinction is made between the buses used for
transfer, that is, address, data control and transfer state/status/error buses, and the
other buses. These “others” are access arbitration, interruption, DMA transfer,
synchronization and service buses.

The Address Transfer Bus (ATB) carries the address generated by a master to the
slaves in order for them to be chosen. This is the first piece of information sent by
the MPU during an access cycle. A position code can assign a unique value to each
of the boards that are inserted into the bus (geographical addressing, cf. § 1.5).

The Data Transfer Bus (DTB) usually takes on the n signals from the
microprocessor D[n-1:0] (also: Dn-1-D0). A data transfer bus can transfer binary
words in a smaller format than the format of the bus. This is referred to as a sub-
word transfer, for example, 1 byte in a bus with a width of m = 32 bits. In this
context, the bus is said to be unjustified – or straight – when the sub-words (the byte
in this example) take up the amount of space that they would have taken if they were

60 Microprocessor 2

to belong to a larger word (Figure 3.2(a)). The placements are called lanes or
corridors (here “byte lane”).

Figure 3.2. Unjustified bus (a) and justified bus (b) (from Borrill and Theus (1984))

An example is the synchronous NuBus, created in the 1970s at MIT
(Massachusetts Institute of Technology). The concept is illustrated in Figure 3.3.

In a justified bus, the sub-word occupies the extreme bits (which most of the
time are those whose weighting is lowest) during transfer; in the end, they are put
back in their original position within the module. This is illustrated in Figure 3.2(b).
One example is the Multibus-II1. A disadvantage is that the associated management
electronics, based on multiplexers, is integrated into all of the bus interfaces, even if
the nodes respect the native format of the bus. These electronics are complex,
expensive and cause delays. In both cases, one or several additional specific signals
mark the format of the transfer. Mixed solutions exist for the VME bus (Versa
Module European, cf. § 4.2.7), with justification for a 16-bit transfer, and a direct
version for an 8-bit transfer.

The control bus is made of access control signals (memory and I/O read and
write), an additional signal that marks the address type (memory or I/O). It also
contains the byte number. The control can mark the valid byte within a word or
within the width of the transfer.

The status bus reports on the bus errors. Error signals can involve other masters
as well as the memory system. An error can involve address assignment, the
information transmitted or stored, the I/O, the power supply management or even the
bus itself. The detection and correction of errors is based on the same techniques as
those used in the memory, that is, control though Cyclic Redundancy Checks (CRC)
(cf. § III.6.7 in Darche (2000)), with its own particularity that is logical parity
(cf. § III.6.6 in Darche (2000) and § 2.6.4 in Darche (2012)). Control can be global,
or carried on each word, for example in a subword-parallel transfer.

1 This is a partially justified bus as the 24-bit format transfer is not justified.

Bus Interfaces 61

Figure 3.3. Unjustified bus: Nubus

62 Microprocessor 2

The access arbitration bus manages access to the transfer buses. It comprises
signals of request, grant and state (locked or relaxed bus). Arbitration can also
involve interruption and DMA transfer requests. The signals associated with these
belong to the interruption and DMA transfer buses. Interruption management signals
are involved in request and acknowledgment. The reset signal (#Reset) is one of
these. The DMA transfer bus comprises the direct memory transfer management
signals (request and acknowledgment).

The synchronization, or “timing line”, bus carries the clock signals (e.g. the
“constant clock” and the “bus clock”), the synchronization signals (“strobe” and
“transfer acknowledge”) and, although only for the pseudo-synchronous bus, the
Wait or Ready cycle extension signals. The clock can be asymmetrical, with one
edge marking the moment of change, and the other the validity of the information
(in order to take it). An example of this type of clock signal is the NuBus.

Lastly, the utility bus generates the start and stop sequences. A specialized slow
serial bus can coexist alongside the main bus. It allows management information to
be gathered, such as the case in the serial bus of SPB (Serial Presence Detect)
memory in SDRAM (Synchronous Dynamic Random Access Memory, cf. § 5.3 in
Darche (2012)). It allows access to the ROM of modules containing its temporal
characteristics, among other things. It can also assume a diagnostic function for bus
nodes.

3.3. Interfacing logic

The main purpose of the interfacing logic is to isolate and amplify all of the
signals. It can carry out a voltage level shifting between the different types of
technology and logical families (i.e. unipolar or bipolar, cf. Chapter 2 in Darche
(2004)). The logic is made of drivers (line amplifiers) and receivers, which can be
coupled together (transceiver, cf. § 3.3.4). Due to increases in operating frequency,
and in order to provide higher bitrates, “more electronic” functions have been added,
such as impedance matching, input filtering – for example, in the case of a wired-
OR function – and control of the slew rate at the outputs. When going beyond a few
dozen MHz, physical phenomena that could have previously been considered
negligible, such as coupling, have to be taken into account. This is of relevance first
of all for clock signals and then also for other signal families. This section deals with
the specific problems of bus lines.

Bus Interfaces 63

3.3.1. Transmission lines

The path of communication in a bus is embodied materially by an electrical wire,
for example, a ribbon cable, or a metallic trace of a Printed Circuit Board (PCB) with
return current through the ground, called a transmission line. Four parameters
electrically characterize this transmission line. These are: R, a resistance per unit
length (unit: Ω/m); L, an inductance per unit length (unit: H/m); C, a capacitance per
unit length (unit: C/m); and G, a conductance per unit length (unit: S/m). Figure 3.4
represents this RLCG lumped-parameter model for a short length of cable dx. The
value of the resistance is proportional to the length and inversely proportional to the
section.

Figure 3.4. Equivalent circuit of a transmission line (Darche 2004)

A line has a characteristic impedance Z0 or Zc, given in ohms (Ω), which should
not be confused with its resistance R, as they both share the same unit. For a line
with no losses, it is defined by the following expression:

ܼ଴ = ට௅బ஼బ [3.1]

where L0 and C0 are the linear line constants, which are respectively the inductance
and the capacitance, per unit of length.

A low frequency line can be considered to be perfect. It is only resistive, as it has
no parasitic capacitance or inductance (these values are negligible). At high
frequencies, meaning for values of more than one MHz, these secondary
characteristics become significant. The propagation velocity ߥ along a line depends
on the relative permittivity of the insulation ߝr and it is defined by the following
formula, where c is the value of the speed of light: ߥ = 	 ௖√ఌೝ [3.2]

64 Microprocessor 2

A real computer bus contains several lines with stubs (i.e. derivations). At high
frequencies, each connecting pin behaves like an antenna. All kinds of couplings,
whether capacitive, inductive or magnetic, can exist. The electric charge for the
emitter is not uniform along the bus, and the speed of propagation of the signals is
not uniform either. In theory, the propagation time per unit of length tpo is given by
the following formula: ݐ௣௢ = ඥܮ଴ × ଴ [3.3]ܥ

And the bus delay time tL with a length of l is equal to: ݐ௅ = ݈ × ௣௢ݐ [3.4]

The propagation time tpo of a line on an FR4 (Flame Retardant 4) type PCB is in
the order of 140–180 ps/inch, which is a little more than twice that of light in a
vacuum. The bus can be considered to be a transmission line if the transition time of
the signal tr is less than 2 × tL, as the line effects are no longer negligible, especially
those of signal reflection. A quick bus has a fixed value for its length, which is
limited. An example of this is the Rambus memory channel (cf. § 7.2.1 in Darche
(2012)). It should be treated as a collection of transmission lines. The mechanical
and electrical characteristics of these lines should be specified. The management
electronics should be considered to be more analog than digital. The electronics of
the transceivers should be adapted accordingly (cf. § 3.3.7).

3.3.2. Integrity of the signal

The frequential and temporal features of the communication channel are tied to
the electrical parameters of the transmission, which are the value of the resistance,
the capacitance and the inductance. Distributed capacitance increases the rise and
fall times, which limits bitrate. In order to decrease this time, a driver can be used,
but this increases current consumption, as well as noise. The maximum frequency
for a coppered pair sits in the order of several dozen GHz. The longer the line and
the higher the value of the frequency of the signal, the more there are problems
relating to propagation. With every advancing generation of microprocessor, the
exchanges of information are carried out at higher and higher frequencies. The first
models are used to run at frequencies of less than 1 MHz. Nowadays, these
exchanges take place at several hundred megahertz, sometimes even above a GHz
for the most powerful models.

Bus Interfaces 65

This constant race for higher speeds has generated its own electrical problems.
Under certain conditions, there can be overshooting and undershooting of the
amplitude, as well as ringing signal oscillations. These phenomena take place during
changes of the logical state, or when the signal is reflected at the end of line and is
overlaid over the incident signal. Issues of crosstalk, that is, interference of one line
(the aggressor) on another (the victim), can also arise. Noise interferes with the
useful signal and introduces transmission errors. The sources of noise can be RFI
(Radio-Frequency Interference) and EMI (ElectroMagnetic Interference, both
contained in the field of EMC (ElectroMagnetic Compatibility)), and current loops.
One form of protection against electromagnetic interference is shielding. Typically,
this is a ground line that is placed between the two signal lines or between the
ground planes and the internal power planes. The propagation times acquire the
same order of magnitude as the period of the signals, and as a result, management of
the clock signals becomes vital. This issue has been examined in § 3.6.5, 3.6.6 and
7.1 in Darche (2012). The interface electronics must take into account the line
characteristics in order to specify their own characteristics.

3.3.3. Terminating a line

Once it arrives at the end of the line, the signal is reflected. An explanation of
this phenomenon can be found in DeFalco (1970). The reflection coefficient ߔ can
be defined through relation [3.5]. In a short-circuit, 1- = ߔ, for an open line, 1 = ߔ
and when impedance is adapted, 0 = ߔ, so there is no reflection ߔ = ௓ಽି௓బ௓ಽା௓బ [3.5]

where ZL is the charge at the end of the line.

In order to avoid reflection, the transmission line should end with a termination
load RT. This is either an active or a passive load, whose role is to absorb the energy
of the incident signal. In the case of a resistive line, its value must be that of the
characteristic impedance of the line Z0. The first one, which has its resistance in the
ground mass (Figure 3.5(a)), is the simplest. The second one (Figure 3.5(b)),
whose resistance is connected to a reference potential (the value of which is the
median value compared to the electrical current), helps limit any voltage excursions
of the signals during commutation, and therefore improves commutation
 times.

66 Microprocessor 2

Figure 3.5. Passive methods of line termination

The passive approach described above consumes a considerable amount of
current. The method in Figure 3.6, based on a voltage divider bridge, is most likely
the one that uses the least amount of current.

Figure 3.6. Passive method for terminating a line
with a resistive voltage divider bridge (continued)

Figure 3.7(a) and (b) shows an applied example of SSTL (Stub Series
Terminated Logic, cf. § 3.4 in Darche (2012)).

Figure 3.7. Diagrams of passive terminations in SSTL_2 classes I (a) and II (b)

Bus Interfaces 67

A reference tension Vref of 0.7 V helps limit the sub-voltages to roughly 0 V
(pinch-off voltage). This is what happens in the Eurobus bus, which relies on the
direct voltage Vd of the clamping diode when it is conducting (Figure 3.8).

Figure 3.8. Undervoltage diode limiter (active approach)

Active approaches, which use voltage or current regulators, are preferred. These
are shown in Figure 3.9.

Figure 3.9. Active line termination based on a voltage regulator

In order to remove static consumption, an AC termination (Alternating Current)
based on an RC (Resistor–Capacitor) serial network can be considered.

3.3.4. Driver and receiver

In order to transmit a signal along the bus, an emitter tasked with amplifying the
signal (a line or bus driver) and a receiver are required. The emitter sees the line and
the receiver as electrical loads. When there is only one wire, this is called a single-
wire system. In order to emit and receive when in full-duplex, two lines are needed.
This is called a two-wire system. The receiver interprets the signal voltage by

68 Microprocessor 2

comparing it to one or several reference voltages in order to determine what the
corresponding logical state is.

With regard to the electrics, short-circuits can occur along the lines of a bus
when two entities deliver complementary states at their outputs. This issue can be
fixed through the notion of logical gate output with an open collector, emitter, drain
or source, depending on the technology used, as well as with the inaccurately named
“three-state” logic (or TRI-STATE® logic, cf. § 2.2.1 in Darche (2004)). The first
type of output is usually well-adapted for arbitration and buses, as it is less sensitive
to design errors. Unlike in a three-state output, a short-circuit resulting from two
outputs being active in complementary states (one in the state “1” and the other in
the state “0”) is not possible here. It enables a bus connection to be created. These
outputs also establish a wired-AND in active-high logic and a wired-OR in active-
low logic (cf. § 3.4.5 in Darche (2004)). However, they require the presence of a
voltage-pulling system that can either be passive (resistance) or active (Pull-Up or
Pull-Down Network (PUN or PDN) cf. § 2.1.1 in Darche (2004)). One major
disadvantage is the presence of glitches, which can even result in the generation of
unwanted logical states (wire(d)-OR glitch) when the output transistor of the driver
switches to its ON-state in a large enough bus (Gustavson and Theus 1983). A filter
must be put in place in order to eliminate, or at least attenuate, these glitches. The
output of a three-state logical operator allows for a bus element to be electrically
disconnected. Its output stage is of the “push–pull” type, with an adequate command
that allows the two output transistors to be blocked. There are therefore three
possible states, two low-impedance states high (H) and low (L), and one high-
impedance state (Z or Hi-Z).

This specialized management logic of access and exchanges between the entity
(MPU, memory or I/O exchange unit) and the bus is integrated into the bus
interface. Connection and disconnection of the entity to the bus is carried out using a
buffer (Figure 3.10), which also belongs to this subset that allows the bus to be
shared. When flow is permitted in both directions, it is called a transceiver (a
contraction of the terms transmitter and receiver). The command signals of the bus
interfaces are generated from the control and status signals coming from the master
(i.e. the microprocessor), or even from the bus controller. In the case of a three-state
logic, the connection of the outputs of the transmitting buffers to the bus is
controlled by their #OE (Output Enable) signal, which allows movement from the
high impedance state to the low impedance state. Note that the direction in which
the information travels is exclusively determined by this same signal when it is
active, either for the output buffer, or for the input buffer of the bus interface.

Bus Interfaces 69

Figure 3.10. Connecting to the buses with a buffer

Figure 3.11. Difference between a buffer and a transceiver

Strictly speaking, what distinguishes the transceiver (Figure 3.11(c)) from the
bidirectional buffer (Figure 3.11(b)) are the driver D/receiver R couples, which are

70 Microprocessor 2

connected head to tail, and an antagonist command of their three-state outputs. This
has been covered in Darche (2004). The bidirectional buffer separately groups the
commands of the driver outputs (#DE (Driver Enable)) and the receiver outputs
(#RE (Receiver Enable)). The buffer also exists as a one-way version (Figure
3.11(a)). The logical operators can be inverters or not inverters. The driver is
characterized by special functions, such as a shift in the voltage level (i.e. a change
of potential, the relevant operator is called a “level shifter”, cf. § 3.8.2 in Darche
(2004)), whose fanout is high in order to “attack” the line. To limit the production of
parasitic signals along the adjacent lines (crosstalk) due to state changes along the
capacitive line, one solution that does not affect the data rate is to limit the slew rate
of the output voltage of the line drivers, and to add a low-pass filter at the input of
the receivers, which acts as a noise rejecter, limiting noise. The components
involved in implementing this solution are called “trapezoidal” drivers, because of
the limited slope of the signals.

3.3.5. Differential and single-ended links

Electrically speaking, a link between two points can be ‘Single-Ended’ (SE) (also
called an “unbalanced transmission”). This means that it has only one conductor,
which carries a signal whose voltage is referenced to a shared reference rail, which
usually tends to be the ground. One advantage of single-ended links is their
simplicity, which reduces costs. Only one wire is needed per signal, on top of which
a shared reference rail must be added, which is the ground (Figure 3.12). The use of
the ground as a reference means that there can be jumps in voltage (ground
bounced), caused by current consumption peaks. This reference must have as low an
impedance as possible; otherwise, current returns run the risk of generating a
differential voltage that is too high, thus reducing the noise margin (cf. § 2.2.1 in
Darche (2004)). All of this means that the link is not very resilient to noise. For high
frequencies, the capacitive and inductive electrical couplings, and the magnetic
coupling between links that was previously negligible, start to be significant.
Transients appear, introducing crosstalk. The characteristic impedance of the line Z0
must also be taken into account, as a mismatch would lead to signal reflection at the
end of the line. Moreover, the additional presence of the sharp rising (also called
positive) and falling (also called negative) edges of the rapid digital signals results in
the creation of over- and undervoltages. These phenomena are critical for short lines.
In a noisy environment where the frequency is high, a twisted-pair cable must be
used, the cable must be shielded electromagnetically and additional ground lines
must be used, which will act as an electromagnetic shield, and the impedance must
be lowered. All of this obviously contributes to the overall cost.

Bus Interfaces 71

Figure 3.12. Single-ended link (unbalanced) and its electrical model

In order to improve these issues, the differential link (also called “balanced” link,
or “symmetrical transmission”) uses two wires (Figure 3.13). Both solutions can be
grouped together with an asymmetrical driver and a differential receiver, under the
standard TIA/EIA 423 (TIA 2001). The receiver can have a fully differential input,
or, less commonly, a pseudo-differential input2, as can be found in Analog-to-Digital
Converters (ADC) (cf. § 3.5.1 in Darche (2003). When the number of signals to be
carried is equal to n, then n + 1 wires are required for the single-ended link if using a
shared ground (which is most of the time). However, for a high bitrate, a signal
return is still necessary. In a differential link, the number of wires needed is equal to
(2 × n) + 1.

Figure 3.13. Differential link (no link)

One version of the differential transceiver (Figure 3.14(a)) transforms the
differential signal of the link or of the bus into a unipolar signal. In version (b), the

2 Fully differential and pseudo-differential inputs differ in the presence of grounds that are
differentiated from the signal and from the converter.

72 Microprocessor 2

input of the driver is no longer linked to the output of the receptor, and their output
commands are no longer shared (a less strict definition of a transceiver, cf. § 3.3.4),
which opens up the possibility for the designer to return to version (a) through the
corresponding wirings.

Figure 3.14. Differential transceivers

The layout of the differential link (lower part of Figure 3.15) makes it less
sensitive to common-mode noise than an asymmetrical link (higher part of the same
figure). Any electromagnetic interference (EMI) appears as having the same polarity
(common-mode voltage) along both lines (Figure 3.15(b), lower illustration) and is
cancelled by the receiver, which subtracts one signal from the other. Moreover, it
radiates less as a result of the cancelling out of the electromagnetic fields. However,
it has the same requirements with regard to adapting the characteristic impedance in
order to avoid any signal reflection.

Figure 3.15. Noise in the asymmetrical transmission lines
(upper half) and differential transmission lines (lower half)

3.3.6. Topologies

Let us consider for the moment that a communication point is either a driver or a
receiver. When there are only two points communicating, therefore necessarily one

Bus Interfaces 73

driver and one receiver, this is called a point-to-point link3 (or “simplex”). When
there are more than two, this is called multipoint-to-multipoint topology (or
“multiplex”). The classic topologies are the bus (Figure 3.16 for the asymmetrical
version) and the daisy chain. In the case of the bus, the communication medium is
shared.

Figure 3.16. Bidirectional link or asymmetrical type multipoint bus

Figure 3.17 presents the differential version of the multipoint bus.

Figure 3.17. Bidirectional link, or differential type multipoint bus

One variant is the “multidrop” topology (“point-to-multipoint” or “distributed
simplex”), where a single driver sends the signal to several receivers (at least two).

3 This can also be called “single-drop bus”, that is, a bus with a master and only one slave.

74 Microprocessor 2

The driver can be placed at the end of the line (Figure 3.18(a)), or in the middle
(Figure 3.18(b)), in order to minimize the propagation time tL and, consequently, the
flight time tflight (cf. § 1.2) of the signal.

Figure 3.18. One-directional links (multidrop)
with single end (a) and double end (b)

Figure 3.19 shows the differential version of a bus with a “multidrop” topology.

Figure 3.19. One-directional links (multidrop)
with single end (a) and double end (b)

The advantage of this approach is diffusion. The connections seen in Figure 3.20
help establish a multidrop connection.

Figure 3.20. Connection in a multidrop bus (from Strassberg (1999))

Bus Interfaces 75

A final version is the switched point-to-point bus. The gate, or communication
matrix, in Figure 3.21 can only connect an input Ij to a single output Ok with i, k ∈
[0,	3] and j ≠ k (so no backlooping possible). The advantage is that the
communication is full-duplex, and, electrically speaking, there are no stubs, as they
are point-to-point links. The disadvantage is the presence of a switch in the middle
of the bus, which is a sensitive node for communication.

Figure 3.21. Switching matrix enabling communication
between the electronic boards of a bus

Instead of sharing a channel, point-to-point connections can be considered using
an approach based on circuit-switching networks and packet-switching networks. In
the latter, there is no established circuit, so no time is lost establishing it. Of the two,
it is the more tolerant to faults, and reordering of the packets is possible.

3.3.7. Electronic technologies

From a logic technology point of view (cf. (Darche 2004)), transceivers belong
first and foremost to the group of discrete connected logical components. An
example of bipolar technology is the ECL (Emitter Coupled Logic), which is a rapid
open-emitter logic. Otherwise, these are logics that derive from TTL (Transistor–
Transistor Logic), such as the FAST (Fairchild Advanced Schottky TTL). MOS-
bipolar mixed technologies such as the BCT (BiCMOS Technology) have helped
lower electrical consumption and increase switch speed. Nowadays, they are
becoming specialized. Examples are the CMOS GTL (Gunning Transceiver Logic)
family (Gunning 1991; JEDEC 2007) and the GTLP (GTL Plus4) family made by
the company Fairchild, and presented in § 1.5.4 and 2.5.4 in Darche (2004).
Technologies that were specially developed for backplane buses include the BTL
(Backplane Transceiver Logic) by the company National Semiconductor (NS),

4 Intel has developed its own improved GTL, called GTL+ (Intel 1997), for its Pentium
microprocessor range.

76 Microprocessor 2

introduced in 1984, as well as its version of CMOS, called CBTL (CMOS BTL).
Others were developed for memory interfaces on the channel. Examples include
RSL (Rambus Signaling Level) logic for Rambus memories, and SSTL for SDRAM
(cf. § 3.4 in Darche (2012)). As the supply voltage is decreased in order to reduce
power consumption as well as electromagnetic interference, following a differential
approach, bus technologies have been derived from LVDS (Low-Voltage
Differential (LVD) Signaling, standard TIA/EIA-644) technology through the
BLVDS (Bus LVDS) by the company NS, as well as the LVDM (LVD Multipoint)
by Texas Instruments (TI). M-LVDS (Multipoint-LVDS) is the normalized version
of this (ANSI/TIA/EIA 2002).

3.4. Insertion-withdrawal under tension

Some advanced functions have made their appearance, such as live insertion-
withdrawals, or hot plugs/hot swap capabilities. These allow for the insertion of
electronic subunits without having to power down first. This is particularly useful in
a server that has to have high rates of availability. The function itself can be applied
to an I/O interface (cf. § 2.2 in Darche (2003). The USB (Universal Serial Bus) is an
example of this. In this way, a device can be (dis)connected without cutting off the
power supply and without disturbing the Operating System (OS). The insertion of an
electronic board into a powered system can result in electrical interference at the
level of the signals (glitches) and of the supply, which can even lead to the
destruction of electrical components, particularly the I/O stages of the interface logic
of the transceivers, as an example (cf. § 3.5.1 in Darche (2003)). One of the
causative phenomena is called “latch-up” (cf. § 3.5.1 in Darche (2004)), which is the
parasitic powering-on of thyristors formed of parasitic transistors. This can be
avoided by having a power-on sequence (cf. § V3-6.1.3 on power supply profiles).
Live withdrawal or insertion characterizes the ability to insert or disconnect a
component or electronic subset – here a bus – without having to first turn off the
power supply of the system and without disturbing its operation. The integrity of the
data is also preserved. This hardware functionality makes maintenance easier and
quicker. Subsequently, recognition and initialization of the board has to be handled
at a software level, for example, through the operating system. The OS must also
detect any disconnection of a node in order to take suitable measures, such as
ejecting a device.

There are several levels of electrical protections. Soltero and Cox (2002) list four
levels of isolation. Level 0 shows that there is no way of inserting an electronic
board with the power on without risking destruction of the component parts. In level
1 (“partial power down”), a board can be inserted with the power on, but the receiver
must first put all of its output signals under high impedance. The board contains
eddy-current limiters. Level 2 (“hot plugging”, “insertion” or “swapping”) goes

Bus Interfaces 77

further than the previous level, with a high impedance guarantee, varying from 0 V
up to a threshold voltage. The validity of the exchanges is not always ensured,
however. The final level (“live insertion”) overcomes this limitation. The data is not
corrupted.

3.5. Test and debugging

Debugging a bus can be done by analyzing transaction traces, either in real-time
or post-hoc, using generalized measuring devices such as an oscilloscope, or with
specialized devices like the logic analyzer, which integrates the protocol.

Moreover, there are dedicated buses available for the hardware and software
debugging of computer systems or single components, such as a processor or a SoC
(System on (a) Chip). Examples include the JTAG bus (Joint Test Action Group,
IEEE reference 1149.1 (IEEE 2013)). This aspect is covered in detail in § V5-2.2.5.

3.6. Bus limits

The limit of a classical bus (i.e. a data/address/control bus with cycle-based
communication) is the dispersion of electrical and temporal characteristics. Figure
3.22 shows this grid distribution of the signal of a classic memory subset that uses
memory sticks. There are three distinct signal types: address, control and data (DQ).

Figure 3.22. Distribution of signals in a memory subset with communication
by cycle (from Crisp et al. (1997) and Ware et al. (2001))

78 Microprocessor 2

Looking more closely at the SDRAM version (Figure 3.23), these three buses are
the DQ/DQM data bus, the control bus represented by the #RAS (Row Address
Strobe), #CAS (Column Address Strobe) and #CE (Chip Enable), and the address
bus A. The clock signal, like the address, must reach each component. By measuring
each bus and each line of these buses, it becomes apparent that the signal path
lengths are not identical for all of the signals, and that the number of connected pins
is not the same. This will have consequences for the electrical and temporal
characteristics of these buses, which will end up being different.

Figure 3.23. Distribution of the signals in an SDRAM subset with
communication by cycle (from Crisp et al. (1997) and Ware et al. (2001))

Figure 3.24 shows how, for an (a)synchronous memory device with
communication by cycle, the electrical and temporal characteristics of a bus line
change as a function of the number of connected components, that is, as a function
of the storage capacity of the subset. Electrically speaking, these characteristics are
the resistance, the inductance and the capacitance. The characteristic impedance, and
thus the reflection coefficient, can vary. This results in an impedance mismatch. For

Bus Interfaces 79

the time being, this affects mostly the rise and fall times and the propagation time.
Progression is linear for all signals apart from the control signal as they are
distributed between all of the components. The control is unique for each row.
Moreover, the memories can have different storage capacities. Also, the output
drivers usually have different fan-outs (cf. § 2.2.1 in Darche (2004)) and
input/output impedances. A solution to this issue of disparity of the bus
characteristics is provided by the company Rambus and involves encapsulating all
of these signals into an information packet that is to be carried by a bus whose
electrical and temporal characteristics are uniform.

Figure 3.24. Evolution of the electrical and temporal characteristics of a bus line
as a function of the number of components (adapted from Crisp (1997))

An example of an optimized storage bus is the Rambus channel. The name of
this interface is that of the company that created it. As a result, it is owned, patented
and non-standardized, which has led to commercial disputes and resulted in lawsuits
with other memory device producers (Stern 2001a, 2001b, 2001c, 2002, 2003, 2007,
2009). It was described for the first time by Kushiyama et al. (1992) and Slater
(1992). The physical communication medium is made of a data bus, two command
signals, BusCtrl and BusEnable, as well as two clock signals, ClkFromMaster and
ClkToMaster. All of these signals taken together form a Rambus channel. This
channel has more than 32 slave nodes, which are managed by a channel master
(Figure 3.25), and is terminated by a “terminating load”. A channel slave can only
be a memory device. The channel master is the only entity that can send requests.
The master is usually a memory controller, but it can also be a processor or an I/O
controller.

80 Microprocessor 2

Figure 3.25. The original version of the Rambus channel

The channel lines, which are separated by a ground line in order to form an
electromagnetic shield to avoid coupling, are routed in parallel on the printed circuit.
Each trace that carries a signal can electrically be considered as a transmission line.
As a result, each bus line has the same electrical characteristics (characteristic
impedance, capacitance, inductance, etc.) and temporal characteristics (propagation
time, etc.). Moreover, the line drivers have the same fanout and the same output
impedance, and they can see the same length of line. This means the characteristics
change in the same way at the same time (Figure 3.26), which was not the case when
using the approaches above, where they changed by group or by category (i.e. the
bus type) as memory devices were inserted onto the bus (Figure 3.24). In order to
avoid any reflection of the incident signal at the end of the line, an active resistive
load (made of transistors, for example) or a passive one (resistor, inductor or
capacitor) is placed at each extremity of the channel.

Figure 3.26. Evolution of the electrical and temporal characteristics of a channel line
as a function of the number of chips in the channel (adapted from Crisp (1997))

The current trend is for serial point-to-point connections. By increasing the
number of links or channels, the format n of the information also goes up. Link
buses are an example of this (cf. § 4.2.3).

Bus Interfaces 81

3.7. Conclusion

This chapter has covered the aspects of interfacing of a one-bus logical module.
After examining the signals of different buses, we looked at electronic notions such
as the transmission line, signal integrity, line termination and drivers. To finish off,
specific themes such as powered insertion/withdrawal, or the test, were covered.

4

Bus Classifications

The primary purpose of this chapter is to present the different topologies of bus-
based architectures. It also covers buses currently used in the computer industry.

4.1. Multibus architecture

Initially, all the entities shared the same bus, called a “shared bus”, or “linear bus”
(DEC PDP-11 vocabulary), when there was only one bus connecting all of the
subunits inside a computer (CPU for Central Processing Unit), memory, devices and
the display terminal). All sorts of information and signals would pass through this bus,
at variable bitrates. Table 4.1 gives a summary of the exchanges between masters and
slaves.

Transfer from/to CPU Memory I/O

CPU
Interrupt request

message
Medium bitrate

information (data)
I/O control/command

Low bitrate information

Memory

Medium bitrate
information

(instruction and
data)

High bitrate
information

(DMA transfer/burst)

High bitrate
information

(DMA transfer/burst)

Input/Output (I/O)

Status of the I/O
Low bitrate
information

interrupt request

High bitrate
information

(DMA transfer/burst)

High bitrate
information

(DMA transfer/burst)

Table 4.1. Exchange types between the master and the slave

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

84 Microprocessor 2

Despite mechanisms such as the interrupt request or Direct Memory Access (DMA,
cf. § 2.2.2), and with the ever-rising speeds of the central units, isolation of the slower
entities – that is, the I/O and the memories – has become a necessity. The natural
consequence of this process has been the splitting of buses into several levels,
depending on the number of nodes. This is known as a multi-tiered bus architecture,
and relates to the processor bus, with its low latency and a high bitrate, the memory
bus with a high bitrate, and the I/O controller bus. A bus that is local to the
microprocessor allows it to communicate with a single coprocessor or cache
controller. The size of each of the buses is tied to the bitrates or to the type of entities
connected. Separation of the buses helps decrease the latency and increases the
bandwidth. This approach is called functional partitioning. There is also an electronic
justification for this partitioning. The number of logical inputs and outputs that are
connected is limited by the fan-in and fan-out of logic gates (cf. § 2.2.1 in Darche
(2004)). Figure 4.1 demonstrates this concept through a presentation of the
organization of buses in a microcomputer such as the PC XT (“Personal Computer
eXtended Technology”, cf. § V5-3.2.1), made by the company IBM. The term “local
bus” refers to the bus at the level of the microprocessor, hence the alternative name of
“processor bus”. A bridge connects the processor bus to the “extension bus”, which
allows the entities of the two buses to communicate.

Figure 4.1. Layout of communication in a PC XT microcomputer

Bus Classifications 85

A commercial example of this is the Multibus II, made by Intel, which has five
buses (Figure 4.2). The iPSB™ (Parallel System Bus) and the iSSB™ (Serial System
Bus) establish communication between the cards of a system. Together, they form the
communications “backbone” of the system. The multichannel iLBX™, iSBX™ and
DMA buses help expand the available functions of a card. The iLBX™ II bus (Local
Bus Extension), or the memory-only execution bus, is reserved for memory
expansions. The iSBX™ (Single Board Bus) allows a mezzanine card to be connected
to the expansion card. The Multichannel™ I/O bus allows direct transfers to be made
between the memory and the I/O.

Figure 4.2. Architecture of the Multibus II

4.1.1. Segmented buses

Many researchers and engineers have come up with a number of different types of
interconnections in order to determine their properties. Figure 4.3 illustrates the
example of a split – or “segmented” – bus. Each segment is a portion of a bus. This is
the logical unit of bus splitting, allowing communication between the masters M and
the slaves S. It comprises the classical line terminations. The segments communicate
via the signal repeaters R. Given that both the length of each segment and the number
of nodes are reduced, the loads – whether parasitic in nature, or not – are also reduced,
resulting in a reduction in switching noise and in power consumption. Propagation
times also go down. This approach is best used in asynchronous buses.

86 Microprocessor 2

Figure 4.3. Serially segmented buses

4.1.2. Hierarchical buses

A variation here is the hierarchy of segmented buses (Figure 4.4). A cluster of
elements communicates through a locally segmented bus. The local buses are linked
together by the global bus. The bus shown in bold is the inter-cluster bus. All of these
buses taken together form what is known as a bus hierarchy. This is a partial solution
to the issue of overly long buses, which have negative effects, both temporally and
electrically. This approach also increases the total bitrate, capability and reliability.

Figure 4.4. Segmented bus hierarchy (Borrill 1988)

This structure can be generalized to more than two levels, forming a generalized
bus hierarchy, illustrated in Figure 4.5. This is also referred to as a clustered bus
arrangement. The locality of the communication and the bitrate are the typical criteria
for defining this hierarchy. Other criteria such as the type of elements linked together
can also be taken into account (cf. § 4.2). Care must be taken with regard to bus
multiplexing on several levels – if buses are not multiplexed, this can result in time-
consuming (de)multiplexing operations.

Bus Classifications 87

Figure 4.5. Generalized bus hierarchy

Figure 4.6 presents a topology for shared memories, adapted to a parallel
architecture.

Figure 4.6. Classical (a) and hierarchical (b) shared memory and bus topologies

4.1.3. Multiple buses

In the 1980s, research focused on parallel architecture for calculators using
multiple processors, multiple storage systems and multiple buses. The term “parallel
buses” has been used before, but in order to avoid confusion, we have favored the
term “multiple buses”, in reference to the number of communication channels

88 Microprocessor 2

(cf. § 1.2), as shown in Figure 4.7. Multiple buses allow for concurrent communication
to take place. The notion of hierarchy can also be applied here.

Figure 4.7. Topology with multiple buses for a multiprocessor architecture

There are other forms of interconnection topologies, such as the grid, or multistage
interconnection networks. These are especially used in SoCs (System on (a) Chip),
cf. § 4.2.9).

4.1.4. Bridge

A bridge links two buses together. It must respect their electrical and temporal
specifications. A bridge can be as simple as a driver (signal amplifier), which isolates
and amplifies the signals (buffering). This corresponds to the function of a repeater.
Most of the time, it has its own RAM (Random Access Memory), which can be FIFO
(First-In First-Out), or a Double Port DRAM (DP(DRA)M (Figure 4.8(b), cf. § 2.5.2
in Darche (2012)) so that the two buses can be kept functionally separate. This allows
two elements belonging to different buses to be able to communicate, thus enabling
retrocompatibility. An example of this is the ISA (Industry Standard Architecture) bus
used in the original PC. In the 1990s, this bus coexisted alongside the PCI bus, which
enabled a smooth transition for the computer industry in terms of input–output
interface cards (Figure 4.10).

Bus Classifications 89

Figure 4.8. Inter-bus communication through
FIFO (a) and double port (b) memory devices

Figure 4.9. A bus controller

The greater the number of bus functionalities, the more complex the electronics.
Bridges manage complex data paths. Simple electronic buffers are no longer adequate
in this case, and a controller is required for each bus, as shown in Figure 4.9. In this
example, the ability to initiate exchanges is only in the hands of a master of the first
bus, which in this case is called the primary, or upstream, bus. The second bus is called
the secondary, or downstream, bus. A bus controller can carry out simple operations
on the data, such as address translation (cf. Childers and Baden (1997), for example),
byte swapping, temporary storage (buffer or cache) of data or addresses (not shown),
or complex processes such as the packing/unpacking of packets, or protocol
translations. The management of interrupts and of DMAs must be taken into account.
An Error-Detecting Circuit (EDC) or even Error Checking and Correcting (ECC) can

90 Microprocessor 2

be considered, based on logical parity, for example (cf. § III.6.6 in Darche (2000)). A
codeword can thus be generated for the detection of errors on the fly, during a write
phase. In some cases, such as with a multiprocessor system, an address translation
must be carried out. A study of the bridge between a PCI bus and the bus of a
MC68000 multiprocessor was done by Rodriguez Corral et al. (2002).

Examination of the elements of a modern microcomputer, but belonging to an
older generation, reveals different types of interconnected buses (Figure 4.10). The
local bus, which is implied to be local to the microprocessor, communicates with the
north bridge. The memory bus is dedicated to the main – or primary – memory.
The PCI and ISA expansion buses allow for the connection of I/O interface cards. The
AGP (Accelerated Graphics Port) expansion card, which is one of the second-
generation PC buses (cf. § 4.2.4), is dedicated to the display interface (cf. § 9.1 in
Darche (2003)). The I/O bus is reserved for communication with devices.

Figure 4.10. Block diagram of a PC type
microcomputer of the n-2 generation (1997)

Bus Classifications 91

Based on this diagram, the bus can be categorized into six main families
(Figure 4.11): local bus, link bus, memory bus, expansion bus (called “system bus” at
Intel), I/O bus and backplane bus. The first five buses are used in (micro-)computers.
The sixth is targeted more specifically at industrial real-time systems. On top of this,
there is also the field bus, which is used in process control, as well as the power bus.
The next section looks at these in more detail.

Figure 4.11. Classification of buses by category

4.2. Classification of digital system buses

This section aims to introduce buses that are presented in the industry depending
on their location in a digital system.

4.2.1. Local bus

This is the lowest level, as it can be found at the component level. It is located on
the Printed Circuit Board (PCB) itself. The local bus is the bus of the microprocessor,
which is the sole initiator of exchanges, unless a DMA controller is present. The
signals are those emanating from this initiator. In terms of PCs in particular, the
examples include the VLB, BSB and FSB buses (Figure 4.12).

Figure 4.12. The local bus

92 Microprocessor 2

Commercially speaking, the VESA (Video Electronics Standards Association)
Local Bus (VLB), birthed from a consortium of companies, allowed the connection of
one to three rapid controllers to the local bus, depending on the version (A or B). It
preferentially addressed the display interface. This bus was an expansion of the bus of
microprocessor 80486 made by the company Intel. Figure 4.13 shows its block
diagram.

Figure 4.13. Block diagram of the VL-Bus

The architecture of the Dual Independent Buses (DIB) made by the company Intel
in the middle of the 1990s for its Pentium Pro and II/III microprocessors allowed for
separation of the cache traffic from the traffic of the main memory and of the I/O. The
Back-Side Bus (BSB) made the CPU communicate with its external cache, while the
Front-Side Bus (FSB) would communicate with the northbridge chipset, or the
Graphics and Memory Controller Hub (GMCH), which comprised a graphics
controller (Figure 4.14). Nowadays, the BSBs and the FSBs are integrated with the
cache and the northbridge chipset into the MPU (MicroProcessor Unit). The I/O
controllers are integrated into the southbridge chipset or the I/O Controller Hub (ICH).
The role of the chipsets is explained in § V5-3.3.

Bus Classifications 93

Figure 4.14. Double independent bus (DIB) architecture

Two older examples are the Z-bus (Zilog 1985) made by the company Zilog,
which connected components of the Z800, Z8000 and Z80,000 families, and the
Microbus, made by the company National Semiconductor (NS).

4.2.2. Memory buses

In the case of a system of memories, a controller serves several ranks or memory
devices connected to each other via several channels or memory buses (Figure 4.15).
By increasing the number of channels, an interleaving access can be established
(cf. § 2.4.4 in Darche (2012)).

Figure 4.15. The memory in its environment

94 Microprocessor 2

The channel is specific to a given family of memory devices. There is a return to
the alternative forms of communication by cycle or by packet (Figure 4.16). A circuit
like the IDT73720 from the company Integrated Device Technology, Inc. (IDT)
enables two memory banks to be managed at the same time, with the possibility of
having interleaved addressing, and thus doubling the bandwidth through burst access.

Figure 4.16. Memory buses

The bus present in cycle-based communication dynamic memory devices, as well
as the memory channel of the Rambus memory using packet-based communication,
has been examined in detail in § 5.2.3, 6.9 and 7.2.1 in Darche (2012).

4.2.3. Link buses

Link buses link microprocessors to each other or to a bridge. There are three
principal link buses (Figure 4.17). They are characterized by a point-to-point link that
carries rapid signals using technology based on differential low-voltage logic, such as
the LVDS (Low-Voltage Differential (LVD) Signaling). Communication takes place
through packets, the advantage here being the lack of cycles. A packet is the base
element of communication, and a transaction is a sequence of packets. A transaction
results in a transfer of information. One advantage of packet communication is that
error detection – and even correction – can be added, as can flow control like in a
network.

Bus Classifications 95

Figure 4.17. A PC link bus (2013)

The HyperTransport bus (HT), whose codename is “Lightning Data Transport”
(LDT), was initiated by the company AMD, and enables a CPU to be connected to
other CPUs or co-processors, to the memory and to other I/O controllers, southbridge
chipset of the PC or interface cards. The base connection is a two-directional link,
whose format of n varies from 2 to 32 bits, with a growth factor of 2. It has three signal
families, which are CAD (Command, Address, Data), CTL (ConTroL) and CLK
(CLocK), which are differential in nature (Figure 4.18). The format m of the CTL
varies from 4 to 16 depending on the value of the format n.

Figure 4.18. HyperTransport type link

The transfer is of the DDR type (Double Data Rate, cf. § 3.4 and 6.5 in Darche
(2012)), with a clockspeed of 800 MHz in full-duplex, which results in a maximum
bitrate of 1.6 Gb/s per link. Table 4.2 shows the values of the maximum bitrates
depending on the version used. More information can be found in Trodden and
Anderson (2003) and Holden et al. (2008).

96 Microprocessor 2

 Versions

Features HT 1.x HT 2.0 HT 3.0 HT 3.1

Year 2001
February

2004
April 2006

August
2008

Maximum frequency (GHz) 0.8 1.4 2.6 3.2

Max bitrate per 32-bit link (Gb/s) 12.8 256 41.6 51.2

Hot plugging No No Yes Yes

Table 4.2. Binary outputs of the different versions of the HyperTransport bus

Originally made by Intel (2004), the DMI bus (Direct Media Interface) links the
northbridge chipset (MCH) to the southbridge one (ICH). As a reminder, the
southbridge chipset is the loaded chip of the I/O. The bitrate is equal to 10 Gbit/s × 2
per link (type x4). Version 2.0, which came out in 2011, doubled the bitrate.

The QPI bus (Quick Path Interconnect, internally known as CSI for “Common
System Interface”) was released by Intel in 2008, following the HyperTransport, from
which it drew a lot of inspiration. It enables CPUs to communicate with each other or
with the ICH. The bus has a width of 20 bits.

4.2.4. Expansion slot bus

In an expansion slot bus, connectors allow for the insertion of I/O interface cards,
also called expansion cards, hence the name. The expansion bus is the equivalent of
the backplane bus but for microcomputers, especially IBM’s PC. It was initially
regarded from a signal point of view as an extension of the microprocessor bus. Its
protocol is therefore heavily influenced by the latter’s. In order to separate the
microprocessor and memory from the I/O, an expansion bus was introduced that some
manufacturers call the “system bus”. The idea originally came from the company
Apple, and was first seen in the Apple II (cf. § V5-3.1). The idea was next used by
IBM in its personal computer (PC). This approach allows the I/O to be configured,
and to later modify this configuration, while easily trouble-shooting the computer.
It also frees up a significant amount of space as the third dimension can be used.
Disadvantages include a limit on the number of connectors for electrical reasons and
because of the space taken up on the printed circuit, issues to do with air flow
stemming from the vertical arrangement of daughterboards, which can disturb the
flow of cooling air, and the low reliability of slottable connectors. An electrical
link can form between two adjacent daughterboards; an example of this is the

Bus Classifications 97

SLI (Scalable Link Interface), produced by the company Nvidia to link two graphics
cards (Figure 4.19).

Figure 4.19. The SLI by Nvidia. For a color version of this
figure, see www.iste.co.uk/darche/microprocessor2.zip

Figure 4.20 shows a classification. Initially, the bus was dedicated to a given
microprocessor, or to a family of MPUs. This meant that the bus signals were actually
the microprocessor signals amplified by electronic buffers. With the exception of the
AGP bus, these constituted the first generation of PC buses. Nowadays, the expansion
bus is independent from the MPU, thus enabling a vast array of choice of expansion
cards. The PCI/PCI-X and the PCI Express make up the second and third generations
respectively.

Figure 4.20. Expansion bus of the PC and PS/2 microcomputers

98 Microprocessor 2

Figure 4.21. Block diagram of an EISA system

The PC bus could be found in the first ever PCs in 1981 (cf. § V5-3.2). It was made
up of two rows of 31 signals mainly coming from the Intel 8088 microprocessor. The
exchanges were clocked by the clock signal (Clk) at a frequency of 4.77 MHz. There

Bus Classifications 99

was the address signals A[19:0], the data signals D[7:0], read and write memory
signals (-MEMR and -MEMW), read and write I/O signals (-IOR and -IOW), as well
as the management, interrupt (IRQ0 to IRQ7, Reset) and DMA signals. The electrical
power was also present (±5 V and ±12 V). The width of the bus was then increased to
16 bits, with a frequency of 8 MHz. The XT and AT buses (Advanced Technology,
cf. § V5-3.2.2) by IBM were next specified by the company Intel under the name
“Industry Standard Architecture”, or “ISA” (cf. Intel (1989) for version 2). Several
works have covered the ISA, such as Solari (1994) and Shanley and Anderson
(1995a). The 32-bit ISA compatible version was named EISA for “Extended ISA”
(Figure 4.21). This specification was published in 1988, one year after the release of
the first PC of the PS/2 range (Personal System/2). It was made available by the “Gang
of Nine” (Compaq Computer Corp., AST Research Inc., Epson America Inc., Hewlett-
Packard (HP), NEC Corp., Ing C. Olivetti & Co., Tandy Corp., Wyse Technology and
Zenith Data Systems), a group made up of the nine leading companies in the market of
PC clones (1/3 of the microcomputer market in 1987, compared to 26.8% for IBM) in
response to the attempt by IBM to lock down the market of microcomputers by
patenting its MCA bus (Micro Channel™ Architecture). More information on this bus
can be found in Shanley and Anderson (1995b), among others. Chapter 8 provides
examples of practical applications of this bus.

Table 4.3 presents the main characteristics of the buses found in these first PC type
architectures.

The PCI bus is a project initiated by Intel in 1992, and whose reference document
(PCI-SIG 1993a, 1993b) was published by a consortium of companies called the PCI-
SIG (for PCI Special Interest Group), which grouped together all of the main actors of
microcomputing, including Dell, IBM, Fujitsu, HP-Compaq, NEC, Microsoft and
Western Digital. The PCI bus was designed to fulfill the need for a high-speed
expansion bus and, most importantly, one that was independent from the processor.
The interface electronics of the bus thus only rely on the bus signals, and no longer on
those of the entities connected to the bus. As a result, a manufacturer can sell the same
I/O interface for different computers – a PC or a MacIntosh, for example. The
difference is then only made by the driver (cf. § 4.2.2 in Darche (2003)) of the
operating system. This bus is derived from the µP i486 bus, which is a multiplexed
address/data bus with a width of 32 bits, and later 64 bits. Several PCI buses can be
connected in a tree layout. An even logical parity control is established on the address
and on the data. It presents a clock frequency that varies from continuous to 133.3
MHz. The advantage of a frequency of zero is the ability to halt the operation of a
synchronous component, in order to reduce energy consumption, for example. At
maximum frequency, the theoretical maximum transfer rate is 533 Mb/s for a bus
width of 64 bits. The expansion connector in the 5 V version has four rows of 31 pins.
The latest version is version 3.0 (PCI-SIG 2002). It was described in detail in Shanley
and Anderson (1995c) and Weiss and Finkelstein (1999).

100 Microprocessor 2

Type PC ISA EISA MCA

Generation 1st

Width of the data
bus (bits)

8 16 32 16/32

Width of the address
bus (bits)

20 24 32 24/32

Address/data
multiplexing

No No No No

Clock (MHz) 4.77 8.33 8.33 10

Minimum number
of cycles

2 2 1 1

Unit transfer bitrate
(Mo/s)

24 8.33 16.66 13.11

Burst transfer bitrate
(Mo/s)

- - 33.33 21.05

Multi-master No
Yes

(limited)
Yes Yes

Notes
Original PC

bus
16-bit AT

PC bus
Retrocompatibility with

the ISA bus
PS/2 bus

Table 4.3. Main features of the PC family buses (1/2)

Released by Intel in 2004, the PCI Express (acronym: PCI-E) belongs to the third
generation of expansion buses for PC. It succeeds the PCI bus and the local AGP bus.
With the impending arrival of version 5.0 (2019), it ensures ascending logical
compatibility (cf. § V4-3.3.3) with the PCI bus at the level of the software drivers
(cf. § 4.2.2 in Darche (2003)). The communication type is a bidirectional differential
serial link in point-to-point full-duplex (i.e. between two cards), called “lane”. The
bitrate is currently doubling every 3 years. It can be modulated by increasing the
number of links (x1, x2, x4, x8, x16 and x32) in order to reach the maximum of
32 GTransfers/s (version 5.0). A full description can be found in Budruk et al. (2003)
and Jackson and Budruk (2012).

Table 4.4 summarizes the key features of these buses, which were the successors of
the first PC buses. For a detailed comparison of these buses, see Finkelstein and Weiss
(1999).

Bus Classifications 101

Type PCI PCI-E

Generation 2nd 3rd

Width of the data bus (bits) 32/64 Bidirectional serial link

1 (x1), 2 (×2), 4 (×4),

8 (×8), 16 (×16) and 32
(×32)

Width of the address bus (bits) 32/64

Address/data multiplexing Yes -

Clock (MHz) 0 to 33, 66 or 133 2.5/5/8 GHz

Minimum number of cycles 1 -

Unit transfer bitrate (Mb/s) 33.33 ≈ 4 Gb/s

Burst transfer bitrate (Mb/s) 132/264/533 32 GTransfers/s

Multi-master Yes Yes

Notes Father of the PCI-E

Current PC bus

8b/10b and 128b/130b
codings

Table 4.4. Main features of the PC family buses (2/2)

4.2.5. Expansion buses

These buses enable a microprocessor board (a “baseboard”) to have its own small
I/O expansion board. It is therefore a board-level bus. A commercial example of this is
the iSBX™ bus, part of the Multibus made by Intel, which gave rise to IEEE standard
P959 (IEEE 1984). This document defines two formats for the cards: single or double
wide. It supports interrupt and transfer requests such as the DMA.

4.2.6. I/O buses

An I/O bus links one or more devices to one or several I/O controllers. An I/O bus
can depend on a group of devices (e.g. for the interfaces of mass storage units ATA
(AT Attachment, cf. § 9.2.3 in Darche (2003)), in the parallel version (PATA

102 Microprocessor 2

for Parallel ATA), or in series (SATA for Serial ATA), or it can be generic (e.g. the
SCSI (Small Computer System Interface, cf. § 9.3.1 in Darche (2003)). Figure 4.22
presents those most commonly found in a PC. It should be noted that for the USB
(Universal Serial Bus), this a logical bus, as opposed to a physical bus, in the sense
that the host controller directly communicates with the devices, and that the bandwidth
is shared. The connection between devices is a point-to-point connection, and it has a
tiered star topology. This looks like a tree where the leaves are the devices.

Figure 4.22. The I/O buses

4.2.7. Backplane and centerplane buses

A backplane bus enables communication between connected electronic cards
(backplane interface). It is the printed circuit board (motherboard1) version of the
ribbon cable. Parallel copper traces (for parallel transmission) or serial traces link
the slot connectors (or card-edge connectors) so that the daughterboards can be slotted
in. Guiding rails are placed at each extremity of the connectors in order to center the
electronic board. A locking system can be set up so as to avoid the possibility of
pull-out occurring (Figure 4.23); screws can also be fixed onto the front face for the
same purpose. Good reliability at high bitrates is an advantage of this type of bus.

1 This term should not be confused with the equipped printed circuit used in a microcomputer.

Bus Classifications 103

Figure 4.23. A VME64x chassis with its backplane and a VPX 6U board. For a
color version of this figure, see www.iste.co.uk/darche/microprocessor2.zip

The PCB of the daughterboard can also serve as a male connector: it is split in such
a way that the traces of the PCB (direct-edge connector) come into contact with the
contacts of the female card-edge connector by insertion. This approach is sensitive to
attacks from the environment (abrasions, dust, changes in temperature, etc.). Corrosion
can be avoided by using a gold coating on the surface, but this can be worn down
through repeated abrasion during the slotting/removal of the electronic card. An
alternative to this solution is an indirect, or “two-part”, connection. In such a case, the
daughterboard can have a male connector in lieu of the traces. The advantage of
having a male connector instead of the contact points of the daughterboard’s printed
circuit is the possibility of having more than two rows of contacts, and higher levels of
reliability thanks to greater protection of these contact points. An example of an
indirect connector for a standardized bus is the EURODIN DIN41612 (IEC 60603-2)
connector, which is shown in Figure 4.24.

Figure 4.24. Female and male connectors, standard DIN41612. For a color
version of this figure, see www.iste.co.uk/darche/microprocessor2.zip

The bus locations are usually unimportant, meaning that a daughterboard can be
slotted into any connector. This bus removes the need for cabling with electrical wires,
and therefore the presence of cabling errors and inherent failures. It provides
mechanical support in the case of these occurring. The density of the daughterboard is
maximal. It facilitates reuse and interoperability, all the more so if the bus is

104 Microprocessor 2

standardized. Connection costs (electronic, electrical and mechanical costs) are also
reduced. This principal has been reused for the expansion buses of the motherboard
(cf. § 4.2.4). The electrical power supply is also provided through a power bus with
wide, thick copper traces along which the current can pass (order of magnitude:
usually several dozen Amperes (A)). An example of a backplane bus was the
OMNIBUS® made by the company DEC; a description can be found in DEC (1970).
In the field of microcomputers, we can cite the example of the ALTAIR 8800 (Roberts
and Yates 1975a b) made by the American company MITS (cf. § V1-1.2).

If the bus is active, line drivers condition the signals. If required by the exchange
type, a clock does the clocking. Line terminations, whether active or passive, can also
be installed. An electrical link can exist between a daughterboard and another
backplane bus.

Figure 4.25. Classical backplane topologies

The backplane connection can be either point-to-point or multipoint. Furthermore,
it can be either a serial link (bit-to-bit) or a parallel one. Figure 4.25(a) presents the
classical bus communication. The serial version has two types of architecture, the star
type (Figure 4.25(b)) and the mesh type (Figure 4.25(c)). Case b uses a crossbar
switch. This is an effective solution, which tends to be used in network equipment. An
associated piece of technology is the “switch fabric”.

In order to minimize the distances between connectors, and therefore to decrease
the total length of the bus, the “centerplane” bus version was developed. It involves
placing the connectors throughout the printed circuit board, as shown in Figure 4.26.

Bus Classifications 105

F
ig

u
re

 4
.2

6.
 A

n
ex

am
pl

e
of

 a
 c

en
te

rp
la

ne
 b

us
,

in
sp

ire
d

by
 t

he
 S

un
 F

ire
™

 E
25

K
/E

20
K

 s
ys

te
m

s
(2

00
6)

106 Microprocessor 2

Connections tend to become point-to-point in order to provide ever-increasing
bitrates. Techniques taken from wired and optical networks have been used, such as in
the 8/10-bit and 64/66-bit SONET (Synchronous Optical NETwork) encoding
schemes, which is what the consortium of companies HSBI (High-Speed Backplane
Initiative, created in 2002) uses. SONET provides a point-to-point communication link
via a backplane bus, with a minimum bitrate of 4.976 Gb/s, and a peak bitrate of
6.375 Gb/s, over a distance of 75 cm. In 2003, it merged with the OIF (Optical
Internetworking Forum).

Type NuBus Multibus I Multibus II FutureBus+ VME

Width of data
bus (bits)

32 16 32 32/256 16/64

Width of
address bus
(bits)

32 24 (16 I/O) 32 32/64 24/64

Address/data
multiplexing

Yes No Yes Yes Yes/no

Clock (MHz) 10 5 10 - -

Minimum
number of
cycles

2 - 1 - -

Unit transfer
bitrate (Mo/s)

20 10 40 200 40

Burst transfer
bitrate (Mo/s)

37.5 - 40 4000 80

Multi-master Yes Yes Yes Yes Yes

Split
transaction

No No No Yes No

Standard
ANSI/IEEE
1196-1987

ANSI/IEEE
796

IEEE 1296-
1987

IEEE 896.
1-1987

IEEE 1014-
1987

Table 4.5. Main features of the representative backplane buses

Two commercial examples are the VME bus (Versa Module European) and the
VPX bus (VITA 46). The former is an open parallel commercial bus standard. It
dominated real-time industrial systems and was described by DeBock (1982). VMEbus
is the standardized version, under ANSI/IEEE standard 1014-1987 (IEEE 1987). The

Bus Classifications 107

second example, also called VITA (VMEbus International Trade Association) 46, is its
successor, going from a parallel version to a modern serial version. Introduced in
2007, it was designed to support different buses like the Serial RapidIO®, PCIe,
SATA, gigabit Ethernet, etc. Table 4.5 shows a reminder of their main features,
comparing them to other common buses. In the early 2010s, backplane connectors
provided a maximum bitrate of 5, 10 and 25 Gb/s, marginally2 40 Gb/s for a
characteristic impedance of 85, 100 or, more rarely, 50 Ω. The commercial backplane
buses are described in Di Giacomo (1990). VME64 is a 64-bit version, standardized
under reference ANSI/VITA 1-1994.

4.2.8. Fieldbus

The fieldbus goes a bit beyond the scope of this chapter. In reality, it is closer to a
network of a defined area, which could be an automobile or a production unit. The
element that is most often associated with the fieldbus is the “Programmable Logic
Controller” (PLC). It interacts with the bus through measurement instruments, sensors
and actuators. The term “fieldbus” is used in opposition to the term “computer bus”.
The fieldbus does indeed tend to be a lot simpler, due to the small amount of digital
resources included inside industrial sensors and actuators. It is also more resilient
when faced with external disturbances, as it must be able to operate even in very noisy
environments (industrial environments). Another key element regarding fieldbuses is
their deterministic and real-time aspects. Examples of industrial products are the serial
CAN (Controller Area Network) bus, produced in 1983 by the company Bosch for the
automobile industry, and standardized by ISO (International Organization for
Standardization) in 1986 under the standard ISO 11898, Profibus/Profinet, and the
Interbus made by Phoenix Contact. There is also the VAN (Vehicle Area Network),
first heralded by the automobile companies PSA (Peugeot Société Anonyme) and
Renault.

4.2.9. SoC: from bus to network

A SoC (System on (a) Chip, cf. § V1-1.2) is the result of an integration of
components from the system level (i.e. microprocessors, memories and I/O controllers)
down to the level of a single chip. Originally, the architecture of communication
between internal function blocks was specific (called “custom” or “ad hoc”), and
point-to-point in nature. Starting in 1995, the external buses of the microprocessor,
as well as their protocols, became integrated (called “on-chip bus”, as opposed to the

2 The company FCI announced in January 2015 that it had achieved a transfer along a
backplane bus of 56 Gb/s without any errors, using duobinary encoding (EDN January
30, 2015).

108 Microprocessor 2

“off-chip bus”). In this way, a SoC bus carries out the same functions as the external
buses, but at the level of a chip. There have been buses within this component since the
advent of the very first microprocessor in 1971, but these were all ad hoc solutions. The
shared bus structure has been adapted to systems with low numbers of components, as it
does not survive the change in scale. A SoC can integrate several dozen components to
be interconnected. The bus has therefore been adapted as an external element in the
Single Shared Bus (SSB, Figure 4.27(a)) version, in the split-bus structure (Figure
4.27(b)), in the hierarchical bus structure (Figure 4.27(c)) and in the multiple bus
structure (Figure 4.27(d)). Each node is a Processing Element – or Unit (PE or PU),
made up of a processor P and of its local memory M, and which is connected to the bus
through a functional subset called a “wrapper” (W). Depending on the direction of the
communication, access to the bus is ensured through classical buffers, or through three-
state output transceivers, if required. The communication element between two buses is
either simply a transceiver (Figure 4.27(b)) or, in more advanced cases, a bridge
(Figure 4.27(c)), hence the acronym HBB, for Hierarchical Bus Bridge (architecture).
An example of this is the ASB bus with the AMBA (Arm® Microcontroller Bus
Architecture) specification, from the company Arm® Ltd (originally Acorn RISC
Machine, and later Advanced RISC Machines). Remember that this hierarchization
(cf. § 4.1.2) increases the bitrate (compared to the single version) by isolating the nodes
by their bitrate class. The electrical load of the bus is therefore decreased. The
transactions can take place in parallel along each bus. Moreover, in order to save on
energy, a local bus can be put on standby (Zhang et al. 1998; Chen et al. 1999).

Figure 4.27. Variations on the concept of a shared bus

An alternative to the shared version of the bus is the AND-OR bus, as shown in
Figure 4.38(a). Another approach is the multiplexer-based bus. Figure 4.28(b)
illustrates an example.

Bus Classifications 109

Figure 4.28. AND–OR bus and multiplexer-based bus

We can cite other representative industrial examples, such as the CoreConnect Bus
Architecture from IBM, whose bus topology and standard are free, the open-source
bus WISHBONE (WISHBONE SoC Interconnection Architecture) (OpenCores
2010), as well as the Split Transaction Bus (STBus®), made by the company
STMicroelectronics. For the latter, one of its instantiations is the bus matrix with
the crossbar (i.e. a switch matrix), which can be either partial
(Figure 4.29(a)) or whole (Figure 4.29(b)); the latter is also called the point-to-point
bus architecture.

Figure 4.29. Bus matrices: partial (a) and complete (b)

From the 2000s onwards, SoCs have acquired multiple masters, and, most of the
time, they have multiple, heteregeneous (i.e. different) processors (MPSoC, or
“MultiProcessor SoC”). While bus-based topologies tend to be widespread in the area
of SoC for historical reasons, they present some major disadvantages, such as high
levels of energy consumption, and poor scalability, if any at all. Other topologies,
notably from the field of networks and from parallel computer architectures, have been
suggested with their protocols. Among these static, direct connection (i.e. point-to-
point) topologies, there is the linear array (Figure 4.30(a)), the ring (Figure 4.30(b)),

110 Microprocessor 2

with a possible variation being the counter-rotating ring, also called the double ring,
and the slightly more complex cordal ring (Figure 4.30(c)). The cordal ring is a fully
connected network. Each PE is connected to a communication element of the network
that carries out the functions of connection or of routing (Router Element, or Router
Unit (RE or RU)).

Figure 4.30. Static interconnection network

Even more complex, there is the crossbar switch (not shown here), the near-
neighbor mesh (Figure 4.31(a)) or the unfolded torus (Figure 4.31(b)). The near-
neighbor mesh is also called a 2D array. Note the feedback of the frontal nodes of the
torus. A variation of the torus is the folded torus (Figure 4.31(c)), which is
characterized by a constant distance between each of the nodes. The advantage of
these topologies is their simple wiring, as well as their predictable features (bitrate,
etc.).

Figure 4.31. Examples of different topologies: near-neighbor
mesh (a), unfolded torus (b) and folded torus (c)

Bus Classifications 111

Others are more complex, like the classical binary tree, shown in its balanced
version in Figure 4.32(a), and in the fat-tree version (Leiserson 1985), where the
bandwidth is greater toward the root, the cube (Figure 4.32(b)), or the 4D hypercube
(four dimensions, i.e. a cube in a cube, not shown here). For the tree, each node is a
switch. The leaves are PEs. This is therefore an indirect network.

Figure 4.32. Interconnection networks: indirect (a) and direct (b and c)

Another form of indirect network with a dynamic connection is the butterfly
network. It allows any node to be connected via several levels of switches, shown in
grey in Figure 4.33.

Figure 4.33. Connections by a butterfly network

112 Microprocessor 2

F
ig

u
re

 4
.3

4.
 C

la
ss

ifi
ca

tio
n

of
 o

n-
ch

ip
 in

te
rn

a
l a

rc
hi

te
ct

ur
es

Bus Classifications 113

In order to achieve high-performance communication, the internal buses of these
SoCs are in possession of the most advanced technical features, such as bus
reservation, overlapped arbitration, the overlapping of data and address phases with
out-of-order processing (cf. § 2.1.2). CoreConnect, for example, have all of these.
They also tend to provide diffusion. Moreover, several provide packet-based
communication, which is a technique that has its origins in computer networks, but
which has been adapted to SoCs. These networks are called NoC3 (Network-on-Chip).
The move to networks is a normal evolution for the bus, providing a flexible solution
in terms of scalability. There are two categories, which are circuit-switching networks
and packet-switching networks. In a packet-switching network, there is no dedicated
circuit and therefore no added costs associated with establishing a new circuit. The
packet is the atomic unit of communication. It has a heading, which contains the
routing information (source address and destination address, among others). The
advantage of packet-based communication is that the packets can follow different
paths in a multipath network. The order of reception can be different from the order of
emission, and therefore a re-ordering mechanism must be put in place. AMBA-AHB
uses split transactions. Using a network with packets means that the electrical
characteristics can be predicted. The interface is standardized, which facilitates
interconnection and allows components to be reused, which reduces costs. This type of
network tends to be more extendible and more flexible. A disadvantage, however, is
that the interface provided can have characteristics that are overly powerful for their
intended use. Dally and Towles (2001) have covered these issues. Figure 4.34 shows a
summary of the internal topologies (On-Chip Connection (OCC)) of all of the
architectures presented. Their study goes beyond the scope of this work; they are dealt
with exhaustively in Pasricha and Dutt (2008).

4.2.10. Power bus

Supplying power to a computer system is a complex process. It requires several
different voltages (e.g. +3.3 V, +5 V and +12 V) that need to be precise (±5%, for
example). These classical values for the voltage are tied to the technology of the logics
used, or to particular components (e.g. the motors of the Hard Disk Drive or HDD).
Nowadays, with the drive for integration, some ULSI components (Ultra Large Scale
Integration, cf. § V1-1.2) like an MPU, a chipset or an FPGA (Field-Programmable
Gate Array) require several different supply voltages for the core and the interface
logic, as well as for other entities. Some sit at approximately 1 volt, with current
surges of several dozen Amperes (30–50 A). The subset tasked with the power supply
often has to respond to criteria that are contradictory in nature. For example, a high
current delivered with a small drop in serial voltage, a short response time at high

3 More information in Gebali et al. (2009).

114 Microprocessor 2

current surges, a precise regulation of the load variation and, or, lastly, a long line with
a small value of the impedance.

In order to distribute these voltages, the power bus is made up of electrical supply
lines and ground lines. As such, it is not a communication bus. The conductors (copper
traces or wires) are very large and thick, in order to best carry strong currents and to
limit any overly large drops in voltage. Decoupling capacitors can be distributed
uniformly throughout in order to reduce the impedance of the supply lines, and thus to
smooth out the voltage during current surges.

A power supply fulfills three many functions, which are electrical isolation,
transformation (lowering, as well as raising the voltage) and controlling the voltage
and the current. It has to isolate the input and the output for electrical (e.g. AC
(Alternating Current) input and DC (Direct Current) output, different values of the
voltage, etc.) as well as safety reasons. It transforms the input voltage into another
voltage that is higher or lower. Lastly, the output voltage has to be precise (typical
order of magnitude is 1–5%) for the powered electronics.

The power subset has changed over time with the technological advancement of
electronic components and architectures (i.e. linear regulator followed by switching
regulator). There are three classical architectures, which are the centralized power
system, the distributed power system and the factorized power system, with the latter
being the current approach.

Historically, the power supply architecture has been the centralized version, called
CPA for Centralized Power (supply) Architecture. This is shown in Figure 4.35. A
single converter delivers n regulated voltages under high currents over long distances,
sometimes in the order of the meter. The power source has to be close to the AC entry
point, for reasons of safety and of ElectroMagnetic Interference (EMI), meaning far
away from the cards of the bus. Drops in voltage that go beyond a volt can then be
seen at the end of the backplane bus as a result of the impedance of the lines, which
implies high levels of power dissipation (I2 × R). Given that the source of the power is
located in a single spot, cooling can be challenging, and the response time to load
variations is high. Another major inconvenience is its lack of flexibility, as the number
of distributed voltages cannot be extended, nor can the maximum current be changed.
To add a voltage, a regulator would have to be added to the card itself. Because of
these limitations, this type of power supply can still be found in low and medium
power systems.

Bus Classifications 115

Figure 4.35. Architecture of a centralized power supply

In the 1970s, the PDE (Power Distribution Element) was invented, providing a
great help to PCB designers. This was an insulated copper bar that was positioned
vertically like a classical electronic component. The objective was to improve the
component density and the electrical properties of the power bus. Carey and Grossman
(1977) describe the principle and its use.

As a result of the high levels and variability of the currents causing voltage drops
not tolerated by the electronics, and to reduce and distribute the overall thermal
dissipation, at the end of the 1980s, the proposal was made to separate the central
power supply into several modules for processing energy called “Power Processing
Units” (PPUs). This type of system is called a “Distributed Power System” (DPS), or
“Distributed Power Architecture” (DPA). The two main topologies are a series (or
cascade) circuit (Figure 4.36(a)), and, for stronger currents, a parallel circuit (Figure
4.36(b)). Organization as a cascade helps optimize the various abovementioned
functions of a power supply, with each module taking control of one of these. Parallel
organization is beneficial in terms of the reliability of the global power supply system,
as it provides redundancy and ease of maintenance, as well as allows for hot swapping.
The advantages of this modularity are the standardization of the modules (electronic
characteristics and encapsulation), which speeds up and simplifies design, ease of
maintenance, and optimizes conversion yield and reliability by decreasing electrical
and heat stresses.

Figure 4.36. Layout topologies of the PPUs in a cascade
circuit (a) and a parallel circuit (b) (from Tabisz et al. (1992))

116 Microprocessor 2

In order to obtain different voltages, the modules can be stacked, either as additive
stacking (Figure 4.37(a)) or as subtractive stacking (Figure 4.37(b)).

Figure 4.37. Layout topologies of the PPUs in
additive stacks (a) or subtractive stacks (b)

Using this approach, it is possible to have several power sources (“source
splitting”, Figure 4.38(a)), or to provide several load points (“load splitting”, Figure
4.38(b)). By allowing for several sources, an uninterrupted power supply system by
battery can be created. The second option allows the supply to power electronic
subsets located in different areas (distributed loads). In this way, regulation can be
optimized, and the noise can be reduced. Adding an extra output voltage really means
adding a simple output regulator, which affords a great amount of flexibility to the
design. In this case, it is referred to as a modular power system.

Figure 4.38. Structure with source splitting and
load splitting (from Tabisz et al. (1992))

One such architecture is the one shown in Figure 4.39. A single weakly regulated
voltage coming from the front-end converter is distributed by the backplane bus at a
value of typically 48 V, which is a classic voltage used in the field of
telecommunications. Non-isolated local voltage regulators, which are usually DC/DC
converters, then provide the terminal power supply, which is usually
+5 V, +3.3 V, and voltages close to one volt for the ULSI integrated circuits. The last

Bus Classifications 117

level, which delivers the power as close as possible (load point), is a Non-Isolated (NI)
voltage-lowering converter, called Point-Of-Source regulator (POS), which as a whole
is referred to as a POL (Point-Of-Load) or a POU (Point-Of-Use) converter.

Figure 4.39. Classical architecture of the power
supply by medium voltage for the backplane bus

Figure 4.40. Architecture with intermediate power bus

Working on the layout of the aforementioned architecture, the modern approach is
to insert an intermediate power bus onto the electronic card in order to reduce the
amount of energy dissipated during regulation (Figure 4.40). The associated regulator
is called an IBC (Isolated Buck Converter)4. It isolates the intermediate bus from the
backplane bus. The architecture is known as an “Intermediate Bus Architecture”

4 This is called BCM® (Bus Converter Module) in the proprietary version by the company
Vicor. Some of these modules accept the sector in the input.

118 Microprocessor 2

(IBA). The low intermediate voltage is usually of +12 V. The aforementioned non-
isolated terminal regulators (POL converters) are connected to this power bus. These
regulators have a high yield thanks to their – and the bus’s – limited voltage swing,
and through optimization of the components for a given value of the output voltage
and current.

There is a more advanced power supply architecture, called FPA for “Factorized
Power Architecture”. The approach involves separating the three classical functions of
a power supply by localizing them preferentially in a specific area of the system, so as
to gain some form of technical advantage. The low value intermediate voltage (7–15
V) is increased (36–55 V) in order to limit the bus current. In this way, it can reduce
the surface of the copper by 2/3 compared to the IBA. FPA provides the same
functions as IBA, but does so in a different order. The example from Figure 4.41
shows the dual power supply of a microprocessor. A voltage pre-regulator module
(PRM) supplies a regulated factorized bus voltage VF, which is brought to the value of
the output voltage by a final regulator called the VTM (Voltage Transformation
Module). A VTM is a fixed-ratio current multiplier that transforms the voltage and
isolates the input from the output. Its energy yield is in the order of 96%. It should be
noted that PRMs like the VTM can be set up in parallel in order to provide more
power.

Figure 4.41. Factorized power supply architecture

All of these converters can be autonomous, or more or less programmable and
monitored. If they are monitored, the information (command/status) passes through a
management bus, which is usually a serial bus, as the required bitrate is low. Lastly,
depending on the domain in which it is used (portable systems, for example), the
energy constraints must be accounted for.

Bus Classifications 119

4.3. Summary: bus classifications

Based on the previous categories, another form of classification is possible, one
that is different from the classification based on hierarchy from § 4.2, which was
categorical. This is shown in Figure 4.42, minus the power bus. It is based on the
localization and type of the entity involved. A distinction must be made between the
buses that are internal to the component and those that are external to it. For the latter,
another distinction must be made, this time between the different levels, which are
component or local, board or backplane, system, device or interface, and network. A
rule emerges from this classification: the higher the level, the greater the maximal
length (Borrill 1981).

Figure 4.42. Classification of communication buses

Bus Level Reach Dependency Examples of
industrial buses

Local Component PCB Processor
Microbus (NS)
Z-bus (Zilog)

Backplane Electronic card Several cards None

S-100
Multibus

VME
STD-bus

System Rack
Several
systems

None
Unibus™ (DEC)

Eurobus (Ferranti)
BXPbus (Intel)

Device
Electronic card

and higher
levels

Cards,
systems and

networks
None

SCSI, USB,
IEEE1394

Network
Electronic card

and higher
levels

Cards,
systems and

networks
None

CAN, Modbus,
Profibus

Table 4.6. Features of the different bus families

Table 4.6 contains the main features of each of the external categories.

Conclusion of Volume 2

The bus is a simple and effective shared communication medium that is used for
systems with a small number (i.e. a dozen) of nodes. The way it operates is usually
fairly simple to understand, and applying it practically tends to be easy for typical
operating frequencies. However, it represents a bottleneck in the von Neumann
machine model. The memory and the I/O also become bottlenecks if several masters
share the same bus. The buses therefore have a key role in computer performances.
They have mechanical, electrical, temporal and spatial characteristics, which can be
specified in a reference standard, enabling standardization of the electronic and
mechanical components, and thus lowering costs. Tests are a topic that has not been
covered here, but these are limited due to the heterogeneity of the nodes. The three
main topologies are the multipoint and the one-directional (multidrop) bus, as well
as the point-to-point link. One way around the heterogeneity of the communicating
elements and their data rates, as well as the locality of transfers, is bus hierarchy.
The current trend is a shift toward serial buses, using packet-based communication,
thus moving away from cycle-based communication. With the advance of
integration, buses are disappearing from the motherboard of micro-computers, and
instead are to be found on chips, such as the SoC (System-on-Chip). Three works
(Del Corso et al. 1986; Di Giacomo 1990; Buchanan 2000) further complete the
notions covered in this chapter on external buses.

Volume 3 will look at logical sequences, which correspond to the material side
of the microprocessor.

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

Exercises

Below are some exercises that follow on from the notions covered in this work.
The number scheme reflects the chapter with which they are associated.

Chapter 1. Exercises

E1.1. Create a logic diagram of a validation system of binary data (format n = 2
bits) using three-state data encoding (cf. § 1.4).

Answer. The system has to send an acknowledgment signal when the data is
valid, with input values (0, 0) and (1, 1) respectively marking an invalid piece of
data, and a non-utilized state. This data can be the result of an operation, in which
case the acknowledgment signal is a computation termination signal. Figure E1.53
shows a logic diagram based on a Muller C-element (Muller and Bartky 1959;
Muller 1963), the function of which was explained in § 3.4.2 in Darche (2002).

Figure E1.53. Dual-rail code validation system (n = 2 bits)

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

124 Microprocessor 2

E1.2. What is bus arbitration?

Answer. Arbitration is the mechanism that determines who will be in possession
of the bus when there are several simultaneous access requests.

E1.3. Provide two arbiter logic diagrams.

Answer. The two base models are the ripple arbiter and the look-ahead arbiter,
whose logic diagrams are shown in Figure E1.54(a) and E1.54(b) respectively. The
terms used are similar to those for the natural binary adders (NB(C) for Natural
Binary (Code), cf. § 2.6.1 in Darche (2002)) in relation to the propagation of internal
carries.

Figure E1.54. Arbiters with the propagation of serial and look-ahead decisions

E1.4. With a limit of n = 3 requests, redraw the look-ahead arbitration in order to
obtain a daisy chain solution.

Answer. Figure E1.55 shows the logic diagram of the solution.

E1.5. Technological question: what are the criteria for choosing a bus?

Answer. The key criteria are the bitrate and the connection cost. Obviously, there
are other parameters too, like the width of the bus, the communication type
(synchronous or asynchronous), the protocol, arbitration, etc.

Exercises 125

Figure E1.55. Daisy chain arbiter

E1.6. How can the performance of a bus be improved?

Answer. Depending on the case, the performance of a bus can be improved by
either widening the bus, increasing the serial links or increasing the nominal
frequency if it is synchronous (principle of overclocking, which carries its own
intrinsic limitations. Particular care has to be made to respecting the maximal heat
dissipation of the components). Increasing the valency (i.e. the number of possible
significant states of the signal) should not be considered (solution for a network).

126 Microprocessor 2

Chapter 4. Exercises

E4.1. What is the purpose of expansion connectors in a micro-computer
motherboard (advantages/disadvantages)? Is this technically viable in the long-term?

Answer. Expansion connectors provide choice in terms of the material settings,
and they make maintenance and changing the hardware easier. However, this has a
cost, and reliability can be an issue, as the daughterboard undergoes environmental
stresses (of all types). These can be chemical, ElectroStatic Discharge (ESD), dust,
changes in temperature, voltage changes, etc. (PVTL for “Process–Voltage–
Temperature–Loading”), and can result in failures (bad contacts due to rust or dust).
Moreover, the connection cost is not negligible. These expansion connectors are
destined to disappear, and are being replaced by high bitrate serial buses, for
example the bus from the SATA (Serial ATA) interface.

Acronyms

This section includes all of the acronyms used in this volume. They will be
introduced once per chapter.

General

A

A Address

AB Alternating-Bit

ABC Arbitration Bus Controller

AC Alternating Current

Ack Acknowledgment

AD Address/Data

ADC Analog-to-Digital Converter

AGP Accelerated Graphics Port

AHB Advanced High-performance Bus (AMBA)

ALE Address Latch Enable

AMBA Arm® Microcontroller Bus Architecture

ARQ Automatic Repeat request

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

128 Microprocessor 2

AS Address Space

AS Address Strobe

ASB Advanced System Bus (AMBA)

AT Advanced Technology

ATA AT Attachment

ATAPI AT Attachment Packet Interface (cf. PATA)

ATB Address Transfer Bus

B

b bit (cf. BIT)

B Byte

BBusy Bus Busy

BCM® Bus Converter Module (by Vicor)

BCT BiCMOS Technology

BE Big Endian

BG Bus Grant

BIOS Basic Input/Output System

BIT BInary digiT or Binary digIT

BLVDS Bus LVDS

BM Bus Mastering

BPRI Bus PRiority In

BPRN Bus PRiority iN

BPRO Bus PRiority Out

BReq Bus Request

BSB Back-Side Bus

BTL Backplane Transceiver Logic

Acronyms 129

C

C Output Clock (cf. Clk)

C Cycle

CAD Command, Address, Data

CAN Controller Area Network

CAS Column Address Strobe (cf. CE)

CBTL CMOS BTL

CBusy Common Busy

CD Clock Domain

CD Collision Detection

CDC CD Crossing

CE Chip Enable (cf. CS)

CE Column Enable (abbreviation from JEDEC–JESD88C)

Clk Clock (cf. E)

CMOS Complementary MOS

Comp Completion

COTS Commercial Off-The-Shelf

CPA Centralized Power (supply) Architecture

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRIMM Continuity RIMM

CS Chip Select (cf. CE)

CSI Common System Interface (Intel)

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CTL ConTroL

130 Microprocessor 2

D

D Data (input)

D Driver

D-Sub D-Subminiature (connector)

DC Direct Current

DDR Double Data Rate

DE Driver Enable

DIB Dual Independent Bus

DMA Direct Memory Access

DMAC DMA Controller

DMI Direct Media Interface (Intel)

DP Dynamic Priority

DPA Distributed Power Architecture

DPDRAM Double Port DRAM

DPS Distributed Power System

DQ Data input/output

DQM DQ Mask

DR Dual-Rail

DRAM Dynamic RAM

DTAck Data Transfer Acknowledge (MC68000)

DTB Data Transfer Bus

E

E Clock signal (cf. Clk)

E (Chip) Enable

ECC Error Checking and Correcting/Error-Correcting Code

ECL Emitter Coupled Logic

EDC Error-Detecting Circuit/Code

Acronyms 131

EISA Extended ISA

EMC ElectroMagnetic Compatibility

EMI ElectroMagnetic Interference

ESD ElectroStatic Discharge

F

FAST Fairchild Advanced Schottky TTL

FB+ Futurebus+

FCFS First-Come First-Served

FDM Frequency-Division Multiplexing

FIFO First In, First Out (resource handling)

FPA Factorized Power (supply) Architecture

FPGA Field-Programmable Gate Array

FR4 Flame Retardant 4

FSB Front-Side Bus

FSM Finite-State Machine

FW FirmWare

G

G Ouput Enable (cf. OE)

GMCH Graphics and Memory Controller Hub

Grt Grant

GTL Gunning Transceiver Logic

GTLP GTL Plus

H

H or h High

HBB Hierarchical Bus Bridge (architecture)

132 Microprocessor 2

HD Hard Disk

HDD HD Drive

HDL Hardware Description Language (cf. VHDL)

HSBI High-Speed Backplane Initiative

HT HyperTransport

I

I Initiator

iAPX Intel Advanced Performance Architecture

IBA Intermediate Bus Architecture

IBC Isolated Buck Converter

IC Integrated Circuit

ICH I/O Controller Hub

ID IDentification

IDE Integrated Drive Electronics

IEN Internet Engineering Note

I/F InterFace

iLBX™ Local Bus Extension (Intel)

I/O Input/Output

IO Input/Output (rarely used)

IOR I/O Read

IOW I/O Write

iPSB™ Parallel System Bus (Intel)

IRQ Interrupt Request

ISA Instruction Set Architecture

ISA Industry Standard Architecture

ISBN International Standard Book Number

iSBX™ Single Board Bus (Intel)

Acronyms 133

ISP Integrated System Peripheral (Intel)

iSSB™ Serial System Bus (Intel)

J

JTAG Joint Test Action Group

L

L or l Low

LAN Local Area Network

LDS Lower Data Strobe

LDT Lightning Data Transport (AMD) renamed
 HyperTransport

LE Little Endian

LSb Least Significant bit

LSI Large-Scale Integration

LVD Low-Voltage Differential

LVDM LVD Multipoint (TI)

LVDS LVD Signaling

M

M Master

M Memory

MCA Micro Channel™ Architecture

MCH Memory Controller Hub

MEMR MEMory Read

MEMW MEMory Write

M-LVDS Multipoint-LVDS

MOS Metal-Oxide Semiconductor

134 Microprocessor 2

MPSoC MultiProcessor SoC

MPU MicroProcessor Unit

MR Multi-Rail

MSb Most Significant bit

MUX MUltipleXer

N

NAck Negative Acknowledge

NB(C) Natural Binary (Code)

NI Non-isolated

NK Negative acKnowledgment

NoC Network-on-Chip

NRZ Non-Return to Zero

O

OCC On-Chip Communication

OCC On-Chip Connection

OE Output Enable (cf. G)

OoO Out-of-Order

OS Operating System

OWC One-Way Command

P

P Processor

PATA Parallel ATA

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect (standard)

Acronyms 135

PCI-E or PCIe® PCI Express

PDE Power Distribution Element

PDN Pull-Down Network

PDP Programmable Data Processor (DEC)

PE Processing Element, Processor Element

PLC Programmable Logic Controller

PMOS Positive (channel) MOS

POL Point-Of-Load (regulator) (cf. POU)

POS Point-Of-Source (regulator)

POU Point-Of-Use (converter) (cf. POL)

POU Point-Of-Use (regulator) (cf. POL)

PPU Power Processing Unit

PRM Pre-Regulator Module

PS/2 Personal System/2 (IBM)

PU Processing Unit

PUN Pull-Up Network

PVTL Process–Voltage–Temperature–Loading

Q

QDR Quad Data Rate

QPI Quick Path Interconnect

R

R Read

R Repeater

R Receiver

RAM Random Access Memory

RAS Row Address Strobe (cf. RE)

136 Microprocessor 2

Rd Read

RE Read Enable

RE Receiver Enable

RE Router Element (cf. RU)

RE Row Enable (abbreviation from JEDEC – JESD88C)

REJ REJect (technique)

Req Request

RFC Request For Comments

RFI Radio-Frequency Interference

RIMM™ Rambus In-line Memory Module

RISC Reduced Instruction Set Computer

RMW Read–Modify–Write

ROM Read-Only Memory

RR Round Robin

RS Read Signal

RS Recommended Standard

RSL Rambus Signaling Level

RTC Real-Time Clock

R(T)Z Return-(To)-Zero

RU Router Unit (cf. RE)

RW or R/W Read/Write

Rx Receiver

S

S Schottky

S Signal

S Slave

S Source

Acronyms 137

SAck Selection Acknowledge

SATA Serial ATA

SCSI Small Computer System Interface

SDRAM Synchronous DRAM

SE Single-Ended

SerDes Serializer/deserializer

SLI Scalable Link Interface (Nvidia)

S/N Signal/Noise (cf. SNR)

SNR Signal-to-Noise Ratio (S/N)

SoC System on (a) Chip

SONET Synchronous Optical NETwork

SP Static Priority

SPD Serial Presence Detect

SPMT™ Serial Port Memory Technology

SRAM Static RAM

SREJ Selective REJect (technique)

SSB Single Shared Bus (architecture)

SSRAM Synchronous SRAM

SSTL Stub Series Terminated Logic

STBus® Split Transaction Bus

T

T Target

TDMA Time-Division Multiple-Access

TLB Translation Lookaside Buffer

transceiver transmitter/receiver

TTL Transistor–Transistor Logic

Tx Transmitter

138 Microprocessor 2

U

UDMA Ultra DMA

UDS Upper Data Strobe

UI Unit Interval

ULSI Ultra LSI

USB Universal Serial Bus

V

VAN Vehicle Area Network

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

VL-Bus or VLB VESA Local Bus or Video Local Bus

VLSI Very LSI

VM Virtual Memory

VME Versa Module European

VTM Voltage Transformation Module

W

W Wait

W Wrapper

W Write

WE Write Enable

Wr Write (signal)

WS Write Signal

X

XT eXtended Technology (IBM)

Acronyms 139

Others

µC Microcomputer

µP Microprocessor

2D or 2-D Two-dimensional

4D or 4-D Four-dimensional

Measurement units or unit prefixes

b/s or bps bit per second

B/s or Bps byte per second

G giga (= 109)

Gb gigabit

Gb/s or Gbps gigabit per second

GB gigabyte

GB/s or GBps gigabyte per second

k kilo (= 1000)

kb kilobit (= 1000 b)

kb/s or kbps kilobit per second

kB kilobyte (1000 bytes)

kB/s or kBps kilobyte per second

Kibi kilobinary (prefix Ki = 210)

KiB kibibyte (= 210 bytes)

M mega (= 106)

Mb megabit

Mb/s or Mbps megabit per second

MB megabyte

MB/s or MBps megabyte per second

T tera (= 1012)

Tb terabit

140 Microprocessor 2

Tb/s or Tbps terabit per second

TB terabyte

TB/s or TBps terabyte per second

Voltage features

Gnd Ground

VCC Collector DC supply voltage

Vd Direct voltage

VDD Drain DC supply voltage

VDDQ Output stage drain power voltage (JEDEC)

Vref Reference voltage

VSS Source–Source voltage

VT Threshold voltage

VTT TerminaTion rail voltage

Temporal characteristics

ta access time

tacc or tACC access time

tAH Address Hold time

tAV Address Valid time to E (rise)

tc or tcyc cycle time

tDDW Write Data Delay time

tDHR Read Data Hold time

tDHW Write Data Hold time

tdis disable time (of a three-state output)

tDSR Read Data Setup time

tflight flight time

th or thold hold time

Acronyms 141

tpd or tpo propagation delay time

tsu or tsetup setup time

Company or body

ACM Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

AFISI Association Française d’Ingénierie des Systèmes
 d’Information

AMD Advanced Micro Devices, Inc.

ANSI American National Standards Institute

ARM Acorn RISC Machine, later Advanced RISC Machines

DEC Digital Equipment Corporation

DIN Deutsches Institut für Normung

EIA Electronic Industries Association, later Electronic
 Industries Alliance

HP Hewlett-Packard

IBM International Business Machines Corporation

IDT Integrated Device Technology

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization,
 Organisation Internationale de Standardisation

ISSCC IEEE International Solid-State Circuits Conference

JEDEC Joint Electron Device Engineering Council (Solid-State
 Technology Association)

MIT Massachussets Institute of Technology

MITS Micro Instrumentation Telemetry Systems

MPR Microprocessor Report

NS National Semiconductor

OIF Optical Internetworking Forum

142 Microprocessor 2

OSI Open Systems Interconnection

PCI-SIG PCI Special Interest Group

PSA Peugeot Société Anonyme

SGI Silicon Graphics, Inc.

TI Texas Instruments

TIA Telecommunications Industry Association

VESA Video Electronics Standards Association

VITA VMEbus International Trade Association

Trademarks - ™

Gigaplane Sun

iLBX Intel

iPSB Intel

iSBX Intel

iSSB Intel

i486 Intel Corporation

MCA Micro Channel

Micro Channel IBM (cf. MCA)

Pentium Intel Corporation

PowerPath-2 SGI

RIMM Rambus (cf. CRIMM)

SPMT Consortium SPMT, LLC

VMEbus Motorola Incorporated

Registered trademark – ®

AMD AMD

Arm Arm Limited

BCM Vicor

Acronyms 143

DEC Digital Equipment Corporation

DIGITAL Digital Equipment Corporation

Fairchild Fairchild Semiconductor Corporation

Intel Intel

Micro Channel IBM Corporation

Multibus Intel Corporation

OMNIBUS Digital Equipment Corporation

PCIe PCI-SIG

PDP Digital Equipment Corporation

Pentium Intel

PS/2 International Business Machines Corporation

Rambus Rambus Inc.

RapidIO RapidIO.org

STBus STMicroelectronics

TRI-STATE NS

References

Preface

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et
codes – Cours avec exercices corrigés. Éditions Gaëtan Morin. November.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert. March.

Darche P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert. June.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Editions Vuibert. November.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert. January. Un des quatre ouvrages
sélectionnés pour le prix AFISI (Association Française d’Ingénierie des Systèmes
d’Information) du meilleur livre informatique.

Chapters 1 to 4

ANSI/IEEE (1982a). IEEE Standard Microcomputer System Bus. ANSI/IEEE Std 796–1983.
Approved December 9, 1982 by IEEE Standards Board, Approved February 17, 1984 by
American National Standards Institute.

ANSI/IEEE (1982b). IEEE Standard 696 Interface Devices. IEEE Std 696–1983. Approved
June l0, by IEEE Standards Board, Approved September 8, 1983 by American National
Standards Institute.

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

146 Microprocessor 2

ANSI/TIA/EIA (2002). Electrical Characteristics of Multipoint-Low-Voltage Differential
Signaling (M-LVDS) Interface Circuits for Multipoint Data Interchange. TIA/EIA
Standard ANSI/TIA/EIA-899-2002. Approved February 26.

Bell, C.G., Kotok, A., Hastings, T.N., and Hill, R. (1978). The Evolution of the DECsystem
10. Communications of the ACM (CACM), 21(1), 44–63. January.

van Berkel, K. and Bink, A. (1996). Single-track handshake signaling with application to
micropipelines and handshake circuits. Second International Symposium on Advanced
Research in Asynchronous Circuits and Systems, 122–133. March 18–21, Aizu-
Wakamatsu, Fukushima, Japan.

Borrill, P.L. (1981). The microprocessor bus structures and standards. IEEE Micro, 1(1),
84–95. February.

Borrill, P.L. (1988). Limits of backplane bus design. 1988 IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD’88), 236–239. October 3–5.

Borrill, P. and Theus, J. (1984). An advanced communication protocol for the proposed IEEE
896 Futurebus. IEEE Micro, 4(4), 42–56. August.

Buchanan, W. (2000). Computer Busses. Arnold.

Budruk, R., Anderson, D. and Shanley, T. (2003). In PCI Express System Architecture,
Winkles, J. (ed.). PC System Architecture Series. Addison-Wesley Developer’s Press.
MindShare, Inc.

Carey, B.J. and Grossman, H. (1977). Assembling a complex breadboard can be as easy as
1,2,3. Electronics, 50(20), 104–109. Republished in (Lyman 1980).

Chen, J.Y., Jone, W.B., Wang, J.S., Lu, H.-I., and Chen, T.F. (1999). Segmented bus design
for low-power systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 7(1), 25–29. April.

Childers, B.A. and Baden, E.A. (1997). Bus bridge address translator. American patent no.
5634013. Application number: 08/434183. Filing date: May 3, 1995. Publication date:
May 27.

Cohen, D. (1981). On holy wars and a plea for peace. IEEE Computer, 14(10), 48–54.
October 1981. Original: IEN (Internet Engineering Note) 137. USC/ISI (University of
Southern California /Information Sciences Institute). April 1.

Colmenar, J.M., Garnica, O., Lanchares, J., and Hidalgo, J.I. (2009). Characterizing
asynchronous variable latencies through probability distribution functions.
Microprocessors and Microsystems, 33(7–8), 483–497. October-November.

Corral, J.M.R., Balcells, A.C., Moreno, G.J., Estévez, A.M., and Barranco, A.L. (2002).
Application of bus emulation techniques to the design of a PCI/MC68000 bridge.
Microprocessors and Microsystems, 26(8), 373–389. November 10.

Corso, D.D., Kirrmann, H., and Nicoud, J.-D. (1986). Microcomputer Buses and Links.
Academic Press Inc.

References 147

Cowan, A.S. and Whitehead, D.G. (1976). Asynchronous polling arbiter. Electronics Letters,
12(2), 43–44. November 24.

Crisp, R., Donnelly, K., Moncayo, A., Perino, D., and Zerbe, J. (1997). Development of
single-chip multi-GB/s DRAMs. 44th IEEE International Solid-State Circuits Conference
(ISSCC 1997), 226–227 and 461. February 6–8.

Dally, W.J. and Towles, B. (2001). Route packets, not wires: On-chip inteconnection
networks. 38th Annual Design Automation Conference (DAC’01), 684–689. June 18–22.
Las Vegas, NV, USA.

Dandamudi, S. (2003). Fundamentals of Computer Organization and Design. Springer.

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Éditions Gaëtan Morin, November.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert, March.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert, June.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Editions Vuibert, November.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert, 556, January. Un des quatre
ouvrages sélectionnés pour le prix AFISI (Association Française d’Ingénierie des
Systèmes d’Information) du meilleur livre informatique.

DeBock, R. (1982). VERSAbus – a multiprocessor bus standard – and VMEbus – its
Eurocard counterpart. Microprocessors and Microsystems, 6(9), 475–481, November.

DEC (1970). PDP-8/E, PDP-8/M & PDP-8/F Small Computer Handbook. PDP-8 Handbook
Series. Digital Equipment Corporation.

DeFalco, J.A. (1970). Reflection and crosstalk in logic circuit interconnections. IEEE
Spectrum, 7(7), 44–50. July.

EIA (1991). Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange. Standard ANSI/EIA/TIA-232-E.
Electronic Industries Association (EIA). July.

EIA (1997). Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange. Standard ANSI/EIA/TIA-232-F.
Electronic Industries Association (EIA). October.

Fairhurst, G. and Wood, L. (2002). Advice to link designers on link automatic repeat request
(ARQ). Request for comments (RFC) 3366. August.

148 Microprocessor 2

Feldman, M., Vaidyanathan, R., and El-Amawy, A. (1999). High speed, high capacity bused
interconnects using optical slab waveguides. 11th IPPS/SPDP’99 Workshop, held in
conjunction with the 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing (IPPS/SPDP’99). Lecture Notes in
Computer Science (LNCS), vol. 1586, 924–937. April 12–16, San Juan (Porto Rico),
USA.

Finkelstein, E. and Weiss, S. (1999). Microprocessor system buses: A case study. Journal of
Systems Architecture, 45(1213), 1151–1168. June.

Furber, S.B. and Day, P. (1996). Four-phase micropipeline latch control circuits. IEEE
Transactions on Very Large Scale Integration (VLSI), 4(2), 247–253. June.

Furber, S.B. and Liu, J. (1996). Dynamic logic in four-phase micropipelines. Second
International Symposium on Advanced Research in Asynchronous Circuits and Systems,
11–16. March 18–21.

Galles, M. and Williams, E. (1994). Performance optimizations, implementation, and
verification of the SGI challenge multiprocessor. Twenty-Seventh Hawaii International
Conference on System Sciences, 1, 134–143. 4–7 January.

Gebali, F., Elmiligi, H., and El-Kharashi, M.W. (2009). Networks on Chips - Theory and
Practice. Gebali, F., Elmiligi, H., and El-Kharashi, M.W. (eds). CRC Press.

Giacomo, J.D. (1990). Digital Bus Handbook. Mc Graw-Hill Book Company, Inc.

Gray, J. and Shenay, P. (1999). Rules of thumb in data engineering. December 1. 16th
International Conference on Data Engineering (ICDE’00), 3. February 28 – March 03,
2000.

Guibaly, F.E. (1989). Design and analysis of arbitration protocols. IEEE Transactions on
Computers, 38 (2), 161–171. February.

Gunning, W.F. (1991). Drivers and receivers for interfacing VLSI CMOS circuits to
transmission lines. United States patent 5023488. Application date: 07/502372. Publication
date: June 11. Filing date: March 30, 1990.

Gustavson, D.B. and Theus, J. (1983). Wire-OR logic on transmission lines. IEEE Micro,
3(3), 51–55. June.

Holden, B., Trodden, J., and Anderson, D. (2008). HyperTransport 3.1 Interconnect
Technology. MindShare, Inc.. MindShare Press.

IEEE (1984). P959 I/O Expansion bus proposed standard. IEEE Micro, 4(3), 33–54. June.

IEEE (1985). IEEE Standards for Local Area Networks: Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.
ANSI/IEEE Std 802.3-1985. The Institute of Electrical and Electronics Engineers. New
York.

IEEE (1987). IEEE Standard for A Versatile Backplane Bus: VMEbus. ANSI/IEEE IEEE Std
1014™-1987(R2008). Approved 12 March 1987 by IEEE Standards Board, Approved 11
September 1987 by American National Standards Institute.

References 149

IEEE (1988). IEEE Standard for a High-Performance Synchronous 32-Bit Bus: MULTIBUS
II. ANSI/IEEE Std 1296-1987. Approved June 11, 1987 by IEEE Standards Board,
Approved February 8, 1988 by American National Standards Institute.

IEEE (1989). IEEE Standard FASTBUS Modular High-Speed Data Acquisition and Control
System and IEEE FASTBUS Standard Routines. ANSI/IEEE Std 960-1989. Approved
October 11, 1989 by IEEE Standards Board. Approved February 26, 1990 by American
National Standards Institute.

IEEE (1991). IEEE Standard for Futurebus+ – Logical Protocol Specification. IEEE Std
896.1-1991 (Revision of IEEE Std 896.1-1987). Approved September 26.

IEEE (1994). Information Technology - Microprocessor Systems – Futurebus+ – Logical
Protocol Specification. ISO/IEC Standard 10857. ANSI/IEEE Std 896.1. First edition.
April 27.

IEEE (2002a). Draft Standard for Prefixes for Binary Multiples. IEEE Std P1541/D5. The
Institute of Electrical and Electronics Engineers. New York, USA. April 18.

IEEE (2002b). IEEE Std 1541-2002: IEEE Standard for Prefixes for Binary Multiples.

IEEE (2008). IEEE Standard for Information Technology – Telecommunications and
Information Exchange between Systems – Local and Metropolitan Area Networks –
Specific Requirements. Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications. IEEE Std 802.3™-2008
(Revision of IEEE Std 802.3-2005). The Institute of Electrical and Electronics Engineers.
New York, USA. December 26.

IEEE (2013). Standard for Test Access Port and Boundary-Scan Architecture. IEEE Std
1149.1 -2013 (Revision of IEEE Std 1149.1-2001). Approved February 6.

Intel (1989). Intel ISA Bus Specification and Application Notes. Rev. 2.01. Intel Corporation.
September 12.

Intel (1997). Pentium® II Processor GTL+ Guidelines. Application Note AP-585. Intel. May.
Order Number: 243330-001.

Jackson, M. and Budruk, R. (2012). PCI Express Technology. Comprehensive Guide to
Generations 1.x, 2.x and 3.0. MindShare Technology Series. MindShare, Inc.

James, D.V. (1990). Multiplexed buses: The endian wars continue. IEEE Micro, 10(3), 9–21.
May/June.

JEDEC (2007). Gunning Transceiver Logic (GTL) Low-Level, High-Speed Interface
Standard for Digital Integrated Circuits. JEDEC Standard JESD8-3A (Revision of JESD8-
3, November 1993). Addendum no. 3A to JESD8. May.

Kipnis, S. (1989). Priority arbitration with busses. technical report MIT/LCS/TM-408.
Laboratory for Computer Science, Massachusetts Institute of Technology (MIT). October.

150 Microprocessor 2

Kushiyama, N., Ohshima, S., Stark, D.C., Sakurai, K., Takase, S., Furuyuma, T., Barth, R.M.,
Dillon, J., Gasbarro, J.A., Griffin, M.M., Horowitz, M., Lee, V., Lee, W.K.M., and Leung,
W. (1992). 500 Mbyte/sec data-rate 512 Kbits × 9 DRAM using a novel I/O interface.
Symposium on VLSI Circuit, 66–67. June 4–6.

Leiserson, C.E. (1985). Fat trees: Universal networks for hardware-efficient supercomputing.
IEEE Transactions on Computers, 34(10), 892–901. October.

Lyman, J. (1980). In Microelectronics: Interconnection and Packaging, Lyman, J. (ed.).
Electronics Book Series. McGraw-Hill.

McCluskey, E.J. (1962). Fundamental mode and pulse mode (operations of) sequential
circuits. 1962 International Federation For Information Processing Congress (IFIP 62),
725–730. August 27 – September 1, Munich, Germany. North Holland Publishing
Company 1963.

Messerschmitt, D.G. (1990). Synchronization in digital system design. IEEE Journal on
Selected Areas in Communications, 8(8), 1404–1419. October 1990.

Muller, D.E. (1963). Asynchronous logics and application to information processing. In
Switching Theory in Space Technology. Aiken, H. and Main, W.F. (eds). Stanford
University Press.

Muller, D.E. and Bartky, W.S. (1959). A Theory of Asynchronous Circuits. The annals of the
computation laboratory of Harvard University, 204–243. Harvard University Press.
Cambridge, Massachusetts.

Nicoud, J.D. (1987). Principles and comparison of major buses. Europhysics Conference on
Control Systems for Experimental Physics, 467–490. September 28 – October 2, Villars-
sur-Ollon, Switzerland.

Nyström, M. and Martin, A.J. (2002). Asynchronous Pulse Logic. Kluwer Academic
Publishers.

Okazawa, K., Osaka, H. and Saitou, K. (1998). Increasing Data Transfer Efficiency for a
Read Operation in a Non-Split Transaction Bus Environment by Substituting a Write
Operation for the Read Operation. American patent no. 5754802. Application number:
08/648424. Filing date: May 15, 1996. Publication date: May 19.

OpenCores (2010). Wishbone B4 WISHBONE System-on-Chip (SoC) Interconnection
Architecturefor Portable IP Cores. OpenCores.

Pasricha, S. and Dutt, N. (2008). On-Chip Communication Architectures: System on Chip
Interconnect. Morgan Kaufmann Publishers.

PCI-SIG (1993a). PCI Local Bus Specification. Revision 2.0. Intel Corporation. April 30.

PCI-SIG (1993b). PCI System Design Guide. Revision 1.0. Intel Corporation. September 8.

PCI-SIG (1998). PCI Local Bus Specification, Revision 2.2. PCI-SIG (Special Interest
Group). December 18.

References 151

PCI-SIG (2002). PCI Local Bus Specification. Revision 3.0. PCI-SIG (Special Interest
Group). August 12.

Plummer, W.W. (1972). Asynchronous arbiters. IEEE Transactions on Computers, C-21(1),
37–42. January.

Renaudin, M. (2000). Asynchronous circuits and systems: A promising design alternative.
Microelectronic Engineering, 54(1–2), 133–149. December.

Roberts, H.E. and Yates, W. (1975a). ALTAIR 8800: The most powerful minicomputer
project ever presented - can be built for under $400. ALTAIR 8800 Minicomputer, Part I.
Popular Electronics, 7(1), 33–38. January.

Roberts, H.E. and Yates, W. (1975b). Build the ALTAIR minicomputer. ALTAIR 8800
minicomputer, Part II. Popular Electronics, 7(2), 56–58. February.

Savage, N. (2002). Linking with light. IEEE Spectrum, 39(8), 32–36. August.

Schmidt, F. (1995). The SCSI Bus and IDE Interface: Protocols, Applications and
Programming. Addison-Wesley Publishing Company, Inc.

Shanley, T. and Anderson, D. (1995a). ISA System Architecture. MindShare, Inc. Addison-
Wesley Developers Press.

Shanley, T. and Anderson, D. (1995b). EISA System Architecture. MindShare, Inc. Addison-
Wesley Developers Press.

Shanley, T. and Anderson, D. (1995c). PCI System Architecture. MindShare, Inc. Addison-
Wesley Developers Press.

Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27, 379. Republished in (Shannon 1993).

Shannon, C.E. (1993). Claude Elwood Shannon, Collected Papers. Sloane, N.J.A. and Wyner,
A.D. (eds), IEEE Press.

Slater, M. (1992). Rambus unveils revolutionary memory interface. Microprocessor Report
(MPR), 15–21. March 4.

Solari, E. (1994). ISA & EISA Theory and Operation. Annabooks 1992, 1993.

Soltero, J.M. and Cox, E. (2002). Logic in live-insertion applications with a focus on GTLP.
Application report SCEA026. Texas Instruments. February.

Sriti, M. (1999). System for performing DMA byte swapping within each data element in
accordance to swapping indication bits within a DMA command. Application number:
08/616594. Filing date: March 15, 1996. Publication date: January 19.

Stan, M.R. and Burleson, W.P. (1995). Bus-invert coding for low-power I/O. IEEE
Transaction on VLSI Systems, 3(1), 49–58. March.

Stern, R.H. (2001a). Preventing abuse of IEEE standards policy. Micro law. IEEE Micro,
21(3), 8–11. May/June.

152 Microprocessor 2

Stern, R.H. (2001b). More standardization skullduggery. Micro law. IEEE Micro, 21(4), 12–
15, 69. July/August.

Stern, R.H. (2001c). Another update on standardization skullduggery. Micro law. IEEE
Micro, 21(5), 8–10. September/October.

Stern, R.H. (2002). FTC piles onto standardization rambus’ skullduggery. Micro law. IEEE
Micro, 22(4), 6–7, 86–87. July/August.

Stern, R.H. (2003). Weird turn of events in continuing rambus saga. Micro law. IEEE Micro,
23(1), 76–80. January/February.

Stern, R.H. (2007). Coming down the home stretch in the rambus standardization
skullduggery saga: To levy or not to levy royalties. Micro law. IEEE Micro, 27(2), 80–82.
March/April.

Stern, R.H. (2009). One of the last updates on rambus standardization skullduggery. Micro
law. IEEE Micro, 29(1), 139–143. January/February.

Strassberg, D. (1999). Digital buses, analog problems. EDN, Design Feature. 73–74, 76–78,
81, 83, 85–86. May 27.

Sutherland, I.E. (1989, 2007). Micropipelines. Communications of the ACM (CACM), 32(6),
720–738. June. Also in ACM Turing Award Lectures Book, Year Awarded 1988.

Tabisz, W.A., Jovanovic, M.M., and Lee, F.C. (1992). Present and future of distributed power
systems. 7th Annual Conference of Applied Power Electronics Conference (APEC’92),
11–18. February 23–27.

Taub, M.D. (1984). Arbitration and control acquisition in the proposed IEEE 896 futurebus.
IEEE Micro, 4(4), 28–41. August.

Thurber, K.J., Jensen, E.D., Jack, L.A., Kinney, L.L., Patton, P.C., and Anderson, L.C.
(1972). A systematic approach to the design of digital bussing structures. Fall Joint
Computer Conference (AFIPS’72), Part II, 719–740, December 5–7.

TI (1983). NuBus Specification – Nu Machine. Texas Instruments Incorporated.

TIA (2001). Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits.
Standard TIA/EIA-423-B. Telecommunications Industry Association. November 20.

Trodden, J. and Anderson, D. (2003). HyperTransport™ System Architecture. MindShare,
Inc. Addison-Wesley.

Ware, F.A, Barth, R.M., Stark, D.C., Hampel, C.E., Tsern, E.K., Abhyankar, A.M., Holman,
T.J., Anderson, A.V., and Macwilliams, P.D. (2001). Apparatus and method for bus
timing compensation. American patent no. 6226757. Filing date: October 9, 1998.
Publication date: May 1.

Weiss, S. and Finkelstein, E. (1999). Extending PCI performance beyond the desktop. IEEE
Computer, 32(6), 80–87. June.

References 153

Widmer, A.X. and Franaszek, P.A. (1983). A DC-balanced, partitioned-block, 8B/10B
transmission code. IBM Journal of Research and Development, 27(5), 440–451.
September.

Yang, J., Gupta, R., and Zhang, C. (2004). Frequent value encoding for low power data buses.
ACM Transactions on Design Automation of Electronic Systems, 9(3), 354–384. July.

Zhang, Y., Ye, W., and Irwin, M.J. (1998). An alternative architecture for on-chip global
interconnect segmented bus power modeling. Thirty-Second Asilomar Conference on
Signals, Systems and Computers, 2, 1062–1065. November 1–4, Pacific Grove, CA, USA.

Zilog (1985). Z·BUS® Component Interconnect – Summary. Zilog. April.

Index

3M and 5M, § V1-1.2

A

abacus, § V1-1.1
ABC, § V1-1.2 and computer model
ABI, cf. interface
access, § V3-2.4.2

read, § V3-2.4.2
write, § V3-2.4.2
read-modify-write, § V3-2.4.2
multiple, § V3-2.1.1.4

accumulator, cf. register
adding machine, § V1-1.1

Model K, § V1-1.2

addition, cf. arithmetic operation
address

effective (EA), § V3-3.1.6, V3-3.4.4,
V4-1.2, V4-2.2.2 and V4-3.2.1

format, § V4-1.2.1 and V4-1.2.3
physical (PA), § V4-1.2 and V5-1.2.1
translation, § V4-3.2.2
virtual (VA), § V1-1.4, V3-2.1.1.1,

V4-2.5.4, V4-3.2.2, V4-5.7 and
V5-1.2.1

addressing, § V4-1.2
bit-reversed, § V4-1.2.4.5.2
circular, § V4-1.2.4.5.1
geographical, § V2-1.5
linear, § V4-1.2.4.5.3
memory to memory, § V1-3.3.3,

V4-1.1 and V4-1.2.4.1
MMR, § V3-3.1.1 and V4-1.2.4.4
mode, § V4-1.2

random, § V1-2.1
space (AS), § V3-2.1.1.1

alignment, § V1-2.2.2
Arithmetic and Logic Unit (ALU), cf.

unit/integer processing
Antikythera mechanism, § V1-1.3
API, cf. interface
Apple II, cf. microcomputer
arbitration, cf. bus
architecture, § V1-3.1.4

according to storage location, §
V1-3.5.1

accumulator, § V1-3.4.1
memory-to-memory, § V1-3.5.1
stack, § V1-3.5.1
register-memory, § V1-3.5.1
register-register (load–store),

§ V1-3.5.1

This index covers all 5 volumes in this series of books.

Microprocessor 2: Core Concepts Communication in a Digital System
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

–

156 Microprocessor 2

CISC, § V3-1.2, V4-1.1, V4-2.1,
V4-2.4 and V4-2.8.1

fault, § V4-1.2.5
classification of computers (definition),

§ V1-3.1.4
CRISC, § V1-3.4.3
EPIC, § V1-3.4.3 and V3-4.7
exo/endoarchitecture, § V1-3.1.4
General-Purpose Register (GPR),

§ V1-3.5.1
Harvard, § V1-3.3.2, V1-3.3.4, V1-

3.4.2, V3-2.1.1.1, V3-5.2 and
V3-5.3

microarchitecture, § V1-3.1.4,
V1-3.3.1.2, V4-3.4.2, V4-3.4.5
and V4-5.2.4

MISC, § V1-3.4.3.1
OISC/SISC/URISC, §

V1-3.4.3.1
ZISC, § V1-3.4.3.1

no or several addresses, § V1-3.5.1
one or several buses, § V1-3.4.1
RISC, § V1-1.2, V1-2.2.1,

V1-3.4.3.1, V1-3.5, V3-1.2,
V3-3.1.2, V3-3.1.11.3,
V3-3.1.12.6, V3-4.6, V3-5.3,
V4-1.1, V4-1.2, V4-2.1,
V4-2.4, V4-2.7.1 and V5-1.1.4

superscalar, § V1-3.3, V1-3.4.3.1,
V1-3.4.3, V3-4.6, V4-1.1, V4-2.4.2
and V5-1.3

TTA, § V1-3.4.3.1
very long instruction word (VLIW),

§ V1-3.4.3, V1-3.5.3, V3-4.6,
V3-4.7, V3-5.2, V4-2.4.2, V4-2.8.5
and V5-1.3

von Neumann, § V1-3.2.2, V1-3.3,
V3-5.3 and V4-1.2.4.8

x86, § V1-3.3.2, V1-3.4.2, V1-3.5.1,
V1-3.5.4, V3-3.1.9, V4-2.1,
V4-3.1, V4-3.2.2, V4-3.3, V4-4.1,
V4-5.2.1, V4-5.4, V4-5.7 and
V5-2.2.5

arithmetic operation, § V1-3.3.1.2.1,
V3-3.3 and V4-2.3.1
addition, § V1-1.1, V1-1.2, V1-3.2.2,

V1-3.3.1.2.1, V1-3.4.2, V1-3.5.3.1,
V3-3.1.5.1 and V4-2.3.1

complementation, § V1-1.1
divide-by-zero, § V4-5.4, V4-5.6 to

V4-5.9, V4-5.11 and V5-2.3
division, § V1-2.1, V1-3.3.1.2.1,

V3-5.4, V4-2.3.1 and V4-2.7.1
multiplication, § V3-3.1.1, V3-3.1.2,

V3-4.3, V3-5.2, V3-5.4, V4-
1.2.2.2, V4-2.7.1 and V4-2.7.2

subtraction, § V1-1.1, V1-3.5.1,
V3-3.1.5.1, V4-2.4.1, V4-2.7.2
and exercises V1-E1.1, V1-E3.2,
V4-E2.2 and V4-E2.3

arithmetic
integer, § V1-1.1, V3-1.2, V3-3.1.1,

V3-3.3, V4-2.3.1 and V4-2.7.2
floating-point, § V1-1.2, V1-3.3 and

V4-2.8.4.2
modular, § V3-5.2, V4-1.2.4.5.1 and

V4-2.3.1
saturation, § V3-5.2

ASIC, § V1-1.2 and V5-3.3.1
assembler, § V5-1.2.1 also cf.

development tool
MASM, § V5-1.3.3
SAP, § V5-1.3.3
SOAP, § V5-1.2.1

asynchronism, § V2-1.3 and V3-2.4.3
ATB, cf. bus/address

B

Babbage, § V1-1.1, V4-5.1 also cf.
mechanical computing machines

bandwidth, § V1-2.1, V1-3.1.4, V2-1.2,
V2-1.6, V2-4.1, V2-4.2.2, V2-4.2.6,
V2-4.2.9, V3-5.2 and V4-3.4

BCD, cf. representation/integer

Index 157

BCS, cf. file format
benchmark, cf. performance
Beowulf, cf. cluster
BINAC, cf. computer model
binding, § V5-1.2.2.
BIOS, cf. firmware
binary format, § V1-2.1 and V4-1.1

byte, § V1-2.1
nibble, § V1-2.1
superword, § V4-2.3.2.1
word, § V1-2.1

binary pattern, § V2-1.4, V3-5.3, V3-5.4,
V4-5.9, V5-2.2.2 and V5-3.5.3

bit rate, § V1-2.1 and V2-1.2
black box, § V1-3.1.4 and figures

V3-E3.2 and V3-E3.4
BNF, § V5-1.2.1
Boolean logic, § V1-1.1, V1-3.1.4,

V4-2.4.1 and V4-2.6.1
bottleneck, § V1-3.2.2.2, V1-3.3.4,

V1-3.4.2, V1-3.5.1 and V2-1.2
branching, § V1-3.1.2, V3-3.1.5, V3-5.2,

V4-1.1, V4-2.3.2.2, V4-2.4 and V5-1.3
conditional, § V4-1.2.4.3 and V4-2.4.1
test-and-branching, § V4-2.6.1
unconditional, § V1-3.3.4 and V4-2.4.1

break, § V4-2.5.2
bus

concepts, § V1-1.1 and V2-1.1
alignment, § V2-1.2 also cf. memory

(concepts)
arbitration (local/distributed), §

V2-1.5, V2-1.6, V2-2.1, V2-3.1,
V2-3.2 and V2-4.2.9

bandwidth, § V2-1.2 and V2-4.2.9
characteristics, § V2-1.2
derivation, § V2-1.2 and

V2-3.3.1
multi- § V2-4.1.3
MUX-based or multiplexed, §

V2-4.2.9
parallel, § V2-1.2

passive, § V2-1.2
serial, § V2-1.2
specialized (i.e. dedicated),

§ V2-1.2
starvation, § V2-1.6 and V4-5.3

computer, cf. computer bus
fieldbus, § V2-4.2.8
microprocessor, § V3-2.1

address, § V3-2.1
data, § V3-2.1
control, § V3-2.1
interface, § V3-3.5 and

V2-3.1
power, § V2-4.2.10
products, § V2-4.2

AGP, § V2-4.1.4, V2-4.2.4 and V5-
3.3.1

BSB, § V2-4.2.1 and V5-3.3.1
DIB, § V2-4.2.1 and V5-3.3.1
DMI, § V2-4.2.3 and V5-3.3.1
FSB, § V2-4.2.1, V3-2.4.1 and V5-

3.3.1
EISA, § V2-2.2.3, V2-4.2.4 and V5-

3.3.1
HyperTransport (HT/LDT), § V2-

4.2.3 and V5-3.3.1
ISA, § V2-2.2.1, V2-4.1.4,

V2-4.2.4, V5-3.2.1, V5-3.2.3
and V5-3.3.1

MCA, § V2-4.2.4
NuBus, § V2-4.2.7
PCI, § V2-1.1, V2-1.6, V2-2.2.3,

V2-3.2, V2-4.1.4, V2-4.2.4, V3-
2.1.1.1 and V5-3.3.1

PCI express (PCIe), § V2-1.2, V2-
4.2.4 and V2-4.2.7

PCI-X, § V2-4.2.4
QPI, § V2-4.2.3
Unibus™, § V2-1.3, V2-1.6 and V2-

4.3
VMEbus™, § V2-1.5, V2-1.6, V2-

3.2, V2-4.2.7 and
V2-4.3

158 Microprocessor 2

products for Multibus, § V2-1.3,
V2-3.2, V2-4.1, V2-4.2.5, V2-4.2.7
and V2-4.3

iLBX, § V2-4.1
iPSB, § V2-4.1
iSBX, § V2-4.1 and V2-4.5
iSSB, § V2-4.1

SoC bus, § V2-4.2.9
butterfly (circuit), § V4-2.3.2.5

C

cache, cf. memory/cache
capacity, cf. memory/characteristics
carry, § V4-2.3.1, exercise V4-E2.1 also

cf. code/condition
CDC, cf. computer model
CFSD, § V1-1.2
CGMT, cf. parallelism/ multithreading
circuit logic, cf. integrated circuit logic
checksum, § V3-5.3 and V5-3.5.3
chip set, § V5-3.3

CCAT, NEAT, POACH and SCAT,
§ V5-3.3

definition, § V5-3.3.1
hub, § V2-4.2.1, V2-4.2.3 and V5-3.3.1
northbridge (GMCH), § V2-4.2.1
southbridge (ICH), § V2-4.2.1

CISC, cf. architecture
clock, § V3-2.4.1 and V3-3.4.2

circuit, § V3-1.2, V3-2.1, V3-2.4.1 and
V3-4.3

cycle, § V5-2.2.4.3
domain crossing (CDC), § V2-1.3,

V2-3.1 and V3-6.1.3
energy saving, § V3-6.1.4
frequency/period, § V1-1.2, V1-1.5,

V1-2.1, V1-3.4.3.2, V1-3.4.3.3,
V2-1.2, V3-1.2, V3-6.1, V4-3.4.1
and V4-3.4.5

signal, § V2-1.2, V2-1.3, V2-3.2,
V2-3.6, V3-3.4.2, V3-3.4.3.3,
V4-3.4.1 and V5-2.2.5

cloud, cf. cloud computing
cluster, § V1-1.2

definition, § V1-1.2
workstations (COW), § V1-1.2

CMOS, cf. electronic technology
CMP, cf. multicore
CMT, § V1-3.4.3.2 and V3-4.7
code

8b/10b, § V2-1.2
compression, § V4-1.1.1
condition, § V3-3.1.5, V3-3.1.12.1,

V4-2.4 cf. also register/status
Dual-Rail (DR), § V2-1.4 and exercise

V2-E1.1
instruction/operation, § V4-1.1
machine, cf. language/machine
Multi-Rail (MRn), § V2-1.4
pure, § V4-3.1.4
re-entrant, § V4-3.1.4, V4-4.2.1 and

V4-5.3
relocatable, § V4-3.1.4

COFF, cf. format
commands, § V5-1.2.2

assembly, § V5-1.3, V5-1.3.3 and
V5-1.3.4

preprocessor, § V5-2.2.1
communication, § V2-1.1

broadcast, § V2-1.1, V2-2.2, V2-3.3.6
and V4-5.7

cycle
bus, § V2-3.6 and V2-4.2.2

duplex, § V2-1.1
full, § V2-3.3.4, V2-3.3.6, V2-4.2.3

and V2-4.2.4
half-duplex, § V2-1.1
simplex, § V2-3.3.6

general points, § V2-1.1
protocol, § V2-1.5

Index 159

splitting the transaction, § V2-2.1.1
through bundles, § V2-4.2.2
transaction pipeline, § V2-2.1.1

comparison, cf. logical operation
compatibility, § V4-3.3

backward and forward, § V4-3.2.3
electromagnetic (EMC), § V2-3.3.2
hardware, § V4-3.2.1
software, § V4-3.2.2

Commercial Off-The-Shelf (COTS), §
V1-1.2 and V2-1.2

compiler, cf. development tool
computer

analog, § V1-1.3
classes, § V1-1.2

electromechanical, § V1-1.2
electronic, § V1-1.2

Mr Perret’s letter, § V1-1 (footnote)
stored program, § V1-3.2.3

computer bus
access arbitration, § V2-1.6
asynchronous/synchronous,

§ V2-1.3
backplane, § V1-1.2 and V2-4.2.7
bridge, § V2-4.1.4
centerplane, § V2-4.2.7
extension, § V2-4.2.4
hierarchical, § V2-4.1.2
I/O, § V2-4.2.6
local, § V2-4.2.1
mastering, § V2-2.2.3
memory (channel), § V2-1.2, V2-3.3.1,

V2-3-6 and V2-4.2.2
multiple, § V2-4.1.3
packet switching, § V2-3.6
protocol, § V2-1.5 and V3-2.4.2
standard, § V2-1.2
segmented, § V2-4.1.1
switch, § V2-3.3.6, V2-4.2.7 and

V2-4.2.9
computer categories, § V1-1.2

macrocomputer, cf. computer/
mainframe

microcomputer, § V1-1.2 also cf.
microcomputer

minicomputer, § V1-1.2
supercomputer, § V1-1.2

computer model
ABC, § V1-1.2
BINAC, § V1-1.2
Burroughs B5000, § V1-1.2
Colossus, § V1-1.2
Control Data Corporation (CDC), §

V1-1.4
CDC 6600, § V1-1.2 and V1-3.5.1
Cyber 205, § V1-1.4
Cray, § V1-1.2 and V4-2.4.1

Cray-1, § V4-2.4.1
Cray MPP, § V1-1.4
Cray X-MP, § V1-1.4
Cray Y-MP, § V4-3.2.2

DEC, § V1-3.5
EDSAC, § V1-1.2 and V5-1.1
EDVAC, § V1-1.2
ENIAC, § V1-1.2
Harvard Mark I, § V1-1.2
IAS Princeton, § V1-1.2
IBM, § V1-1.2

IBM 650, § V1-1.4 and V1-3.5.1
IBM 701, § V1-1.4, V1-3.2.2.3,

V1-3.5.3 and V3-2.1.1.1
IBM 3090, § V1-1.4
IBM stretch, cf. § V1-3.1.4

(footnote)
IBM System/360, § V1-1.2 and

V4-2.4.1
IBM System/370, § V4-1.1,

V4-1.2.3.1, V4-2.4.1 and
V4-3.2.4

Illiac IV, § V1-1.2, V3-2.4.3 and
V3-3.3

Manchester, § V1-1.2
Manchester Baby, § V1-1.2
Manchester Mark I, § V3-3.1.6

PDP, § V1-1.2

160 Microprocessor 2

PDP-11, § V1-2.2.1, V2-1.6 and
V3-3.1.3

SEAC, § V1-3.5.1
VAX, § V1-1.2, V1-2.1 and V1-2.2.1

VAX-11, § § V1-1.2 and V1-3.5.1
VAX-9000, § V1-1.4

UNIVAC I, § V1-1.2
Whilwind, § V1-1.2
Zuse Z1, Z2, Z3 and Z4, § V1-1.2

computation model, § V1-3.1.3
concurrent, § V1-3.1.3
control flow, § V1-3.1.3
declarative, § V1-3.1.3
Turing, § V1-3.1.3
von Neumann, § V1-3.2.1
object oriented, § V1-3.1.3

computing
cloud, § V1-1.2

IaaS, PaaS and SaaS, § V1-1.2
ubiquitous, § V1-1.2

control mechanism, § V1-3.1.2
control-driven (CO), § V1-3.1.2
data-driven (DA), § V1-3.1.2
demand-driven (DE), § V1-3.1.2
pattern-driven (PA), § V1-3.1.2

control structure, § V1-3.1.1, V1-3.3.4,
V3-3.1.5.7, V4-1.2.3.2, V4-1.2.5,
V4-2.4, V4-2.4.1, V4-2.4.3 and
V4-3.1.5
loop, § V1-3.1.1
if_then_else, § V1-3.1.1

co-processor, § V3-5.4
graphics, § V3-5.4
I/O, § V3-5.4
mathematical, § V3-5.4

core, cf. multicore
costs

bus, § V2-1.1, V2-1.2, V2-3.3.5 and
V2-4.2.7

computer, § V1-1.1
memory, § V1-2.1 and V1-2.1

counting stick, § V1-1.1
CPI, cf. performance/unit of measurement

Cray-1, cf. computer model
crossbar, cf. grid/crossbar matrix
cryptography, § V4-2.7.3
cycle

access, § V3-2.1.2
clock, cf. clock
CPU/processor, § V1-3.4.3
execution, § V1-3.2.2.4, V1-3.3.1.2.2,

V1-3.3.2 and V3-3.1.3
decoding, § V1-3.2.2, V1-3.3.1.2,

V3-3.4.3.2, V4-1.1 and
V4-1.2.3.2

fetch, § V3-3.1.4, V3-3.4.3.1
phase, § V3-3.4.3

life, § V1-1.2
machine, § V3-2.4
number, § V2-1.5 and V3-2.4.1
read, § V2-1.5
special, § V2-2.2
time, § V1-2.1 and V2-3.2.1
write, § V2-1.5

D

data mechanism, § V1-3.1.2
passing messages (ME), § V1-3.1.2
shared data (SH), § V1-3.1.2

datasheet, § V3-6
DDR, cf. semiconductor-based memory

(component)
debug monitor, cf. firmware
debugging hardware interface

BDM (Background Debug Mode), §
V5-2.2.5 and V5-2.2.7

ITP (In-Target Probe), § V5-2.2.5
JTAG, § V2-3.5, V3-2.2, V3-5.3,

V4-5.5, V5-2.2.2 and V5-2.2.5
TAP, § V5-2.2.5OnCE, § V5-2.2.5

decoding
address, § V2-2.1.1, V2-3.1,
V3-2.1.1.1, V3-2.1.1.2, V3-2.3 and
V5-3.3.1

Index 161

incomplete, § V2-3.1
instruction, cf. execution cycle

decrement/increment, § V4-1.2.3.3,
V4-1.2.3.5 and V4-1.2.4.5
automatic, § V3-3.1.6
pre- and post-, § V4-1.2.3.3

debugging, § V5-2.2
hardware, § V5-2.1
mode, § V5-2.2.7

ForeGround Debug Mode (F(G)DM,
§ V5-2.2.7

BackGround Debug Mode
(B(G)DM, § V5-2.2.7

remote, § V5-2.2.6
software, § V5-2.2.4

delay
time, § V2-1.2, V2-1.3, V3-2.4.1 and

V3-2.4.3
descriptor table, § V1-3.5.6

GDT, § V3-3.1.9
IDT, § V4-5.10
LDT, § V3-3.1.9

development/design stage, § V5-1.1.2
delayed/lazy linking, § V5-1.2.2
loader, § V5-1.2.3
(re-)assembly, § V4-3.1.4, V4-3.2.2,

V5-1.1, V5-1.2.1 and V5-1.3.3
(re-)compilation, § V4-3.2.2
static and dynamic link library, §

V4-3.2.2, V5-1.2.1, V5-1.2.2 and
V5-1.3.3

development/design chain/tools, cf.
development tool

Dhrystone. cf. performance/
benchmark/synthetic suite

diagram in Y, § V1-3.1.4
Direct Memory Access (DMA),

§ V1-3.3
disassembler, cf. development tool
division, cf. arithmetic operation
DSP, cf. processor
DTL, cf. electronic technology

E

EDSAC, cf. computer model
EDVAC, cf. computer model
EFI, cf. firmware
electrical overshooting, § V2-3.3.2
electromechanical relay, § V1-1.2
electronic board, § V1-1.2, V2-1.2 and

V5-2.1.1
dummy board (CRIMM), § V2-1.6
start, evaluation, development board, §

V5-2.1.1
motherboard, § V1-1.2, V2-1.2 and

V5-3.1
electronic logic

buffer, § V1-3.4, V2-3.3.4, V2-4.1.4,
V3-2.4.1, V4-3.1, V4-3.2.1 and
V4-3.3.1

driver, § V2-3.3.4
transceiver, § V2-3.3.4
three-state, § V1-3.4, V2-1.3, V2-1.6,

V2-3.3.4 and V3-2.1
electronic technology, § V1-1.2

BiCMOS, § V1-2.4, V2-3.3.7
CMOS, § V1-1.5, V1-2.4, V2-1.3,

V2-3.3.7, V3-1.1, V3-1.2, V3-2,
V3-4 and V3-6

DTL, § V1-1.2
ECL, § V2-3.3.7 and V3-5.1
(C)HMOS, § V3-4.3, V3-4.5, V3-4.6,

V3-5.3 and V4-3.3.1
GTL/GTLP, § V2-3.3.7
LVDS, § V2-3.3.7, V2-4.2.3 and

V4-3.3.1
MOS, § V3-1.2, V3-4.6 and V4-3.4.1
NMOS, § V3-1.2, V3-4.3 and V3-6.1.1
PMOS, § V3-1.1, V3-1.2, V3-4.2,

V3-4.3, V3-4.5, V3-5.3, V3-5.4
and V3-6.1.1

SLT, § V1-1.2
TTL, § V2-3.3.7, V3-4.3, V3-5.1,

V3-5.4, V5-3.1 and V5-3.2.1
electronic tube, cf. grid

162 Microprocessor 2

element
communication, § V2-4.2.9
processing (PE), § V2-4.2.9
router (RE), § V2-4.2.9
storage, § V1-3.3.1.2.1

ELF, cf. format
ELSI, cf. integration technology
emulator, cf. development tool
endian/endianness, cf. memory/order of

storage
energy savings, § V3-6.1.4
ENIAC, cf. computer model
error, § V1-2.1, V2-2.2.4, V2-3.2,

V2-4.1.4, V2-4.2.3 and V3-5.2
ASCII/BCD, § V4-2.3.1 and exercises

V4-E2.1 and E2.2
checking (ECC), § V2-4.1.4
CRC, § V2-3.2 and V4-2.7.1
detection (EDC), § V4-2.7.1 and

V5-3.2.1
evolution

of concepts, § V1-1.4
of integration, cf. law/Moore’s
of roles, § V1-1.4

exception, cf. interruption
execution

conditional, § V4-2.4.2
context, § V3-3.1.12.2 and V4-4.2.2
mode, § V1-3.5.5, V3-3.1.12.4,

V4-3.2.2, V4-5.9 and V4-5.10
real/protected, § V3-3.1.5.6,

V3-3.1.12.4, V3-4.5, V3-4.6,
V4-2.5.3, V4-3.2.2, V4-5.7,
V4-5.10 and V4-5.11

supervisor, § V1-3.5.5, V3-1.2,
V3-3.1.8, V4-3.2.2, V5-2.2.2
and V5-2.2.4.1

user, § V1-3.5.5
sequential, § V4-1.2.5
stop, § V3-4.3, V3-6.1.4, V4-2.5.2,

V4-2.5.2, V4-5.2.2, V4-5.6,
V4-5.8, V4-5.11 and V5-2.2.7

breakpoint, § V3-3.1.5.6, V4-5.4,
V4-5.5, V4-5.7, V4-5.9,
V4-5.11, V5-2.2.2, V5-2.2.3,
V5-2.2.4 and V5-2.2.5

time, § V4-3.2.1, V4-3.4.3, V4-5.11
and V5-1.1.2

F

famine, cf. bus/concepts
faults

hardware/software, § V4-3.1.2,
V4-3.2.4, V4-5.1, V4-5.4, V4-5.7
to V4-5.9 and V4-5.11

tolerance, § V1-1.2, V2-1.6 and
V2-3.3.6

FFT (Fast Fourier Transform), cf. Fourier
transform/fast
flow graph, § V4-1.2.4.5.2

FGMT, cf. parallelism/ multithreading
field, § V4-1.1, V5-1.2.1 and V5-1.3.3

address, § V4-1.2.3.1
comment, § V5-1.3.3
condition, § V4-2.4.2
function, § V4-1.1
identification, § V4-1.1
instruction, § V5-1.3.3
label, § V5-1.3.3
operand, § V4-1.1, V4-1.2.2.1 and

V5-1.3.3
sub-field, § V4-1.1

file format
BCS, § V5-1.1.4
COFF, § V5-1.1.4 and V5-1.2.2
ELF, § V5-1.1.4 and V5-1.2.2
OMF, § V5-1.2.2

filtering/filter, § V2-3.3.4 and V3-5.2
Finite Impulse Response (FIR), §

V3-5.2
Infinite Impulse Response (IIR), §

V2-V3-5.2

Index 163

digital, § V4-1.2.4.5.1, V4-1.2.4.5.2,
V4-2.8.4.2 and V4-3.4.2

firmware, § V1-1.4, V2-3.1, V4-5.7 and
V5-3.5
BIOS, § V4-5.9 and V5-3.5.3
EFI, § V5-3.5.3
microcode, § V4-2.5.7
monitor, § V4-V4-5.7, V5-2.1.1,

V5-2.2.4, V5-2.2.5, V5-2.2.7,
V5-3.1, V5-3.2.1 and V5-3.5.1

open firmware, § V5-3.5.4
POST, § V5-2.2.1, V5-3.2.1, V5-3.2.2,

V5-3.5.3 and V5-3.5.4
UEFI, § V5-3.5.3

flag, cf. code/condition
flip-flop, § V1-1.2, V1-2.3, V1-3.1.4, V1-

3.3.1.2.1, V1-3.3.1.2.2, V2-1.3, V2-3.1,
V3-2.4.1, V3-3.1.1, V4-5.2.3, V4-5.3
and V5-2.2.5

flow, § V1-3.1.2 and V1-3.1.3, V2-1.5,
V3-3.1.5.1 and V4-5.2
control, § V1-3.1.2

exceptional (ECF), § V1-3.1.2
graph (CFG), § V1-3.1.2

data flow, § V1-3.1.2
form factor, § V1-1.2, V5-3.4.1 and

V5-3.4.2
AT, ATX, BTX, ITX, NLX, PC, WTX

and XT, V5-3.4.1
format

binary, cf. binary format
file, cf. file format
instruction, cf. instruction format

Fourier transform, § V3-5.2
discrete, § V4-1.2.4.5.2
fast, cf. § V3-5.2, V4-1.2.4.5.2 and

V4-3.4.4
FPGA, § V1-3.5.3, V2-4.2.10, V4-5.7

and V5-2.2.3
frame, cf. memory
FSM, cf. state/state machine
function, cf. subprogram

G

gate, cf. transistor/gate
glue logic, § V3-2.1.1.1, V3-2.3, V5-3.1

to V5-3.3 and V5-3.4.2
grid

crossbar matrix, § V2-3.3.6, V2-4.2.7
and V2-4.2.9

electronic tube, § V1-1.2
GSI, cf. integration technology

H

HAL (Hardware Abstraction Layer), §
V5-1.1.4

hardware development tool
development system, § V5-2.2.3 and

V5-2.2.7
emulator, § V5-2.2.3

hardware, § V5-2.2.3, V5-2.2.4.3
and V5-2.2.6

ICE, § V5-2.2.3 and V5-2.2.7
programmer, § V5-2.1.2

hardware interface
microprocessor, § V3-2.2
RS-232, § V2-1.3, V3-5.3, V5-2.1.1,

V5-2.1.2, V5-2.2.1 and V5-2.2.4.1
SCSI, § V2-1.2, V2-2.2.3, V2-4.2.6,

V2-4.3 and V5-3.3.1
HMT (Hardware MultiThreading), §

V1-3.4.3.2 and V3-4.7
hot plugging, § V2-3.1 and V5-1.1.4
HPC (High-Performance Computing), §

V1-1.2

I

I/O
isolated (IIO) or separated, §

V3-2.1.1.1

164 Microprocessor 2

memory-mapped interface (MMIO), §
V3-4.3 and V3-5.4

IAS Princeton, cf. computer model
IBI, § V5-3.5.3
iCOMP, cf. performance/benchmark
Illiac IV, cf. computer model
ILP, cf. parallelism/instructions
incrementation, cf. decrement
insertion-withdrawal under tension, §

V2-3.4
instruction format, cf. instruction
Instruction Set Architecture (ISA),

§ V1-3.5
extension, § V4-2.4.2
IA-32 (Intel), § V3-3.1.1
instruction set, § V1-3.5.3
properties

execution modes, § V1-3.5.5
memory model, § V1-3.5.4

storage elements, § V1-3.5
integrated circuit logic

combinational, § V1-1.2, V1-3.1.4,
V1-3.3.1.2.1, V3-3.3 and V4-4.1

family, § V1-1.2
sequential, § V1-3.3.1.2.1, V3-3.1

and V3-3.3
integrated circuit package

DIP, § V1-1.2, V3-1.1, V3-4.1,
V4-5.2.2, V5-3.1 and V5-3.2.2

LGA, § V3-6.3
PGA, § V3-4.5 and V3-6.3

instruction
advanced bit manipulation instructions,

§ V4-2.3.2.4 and V4-2.3.2.5
alignment, § V4-2.3.2.4 and V4-3.1.2
arithmetic, § V3-3.1.5.1, V3-3.1.5.7,

V4-2.3.1, V4-2.8.4, V4-2.4.1,
V4-2.7.1 and V4-2.7.2 cf. also
arithmetic operation

atomic, § V4-2.1, V4-2.3.2, V4-2.6.1
and V4-2.6.2

branching, § V3-5.2 and V4-2.4.1 to
V4-2.4.3

break, § V4-2.5.2
bundle - VLIW, § V3-2.1.2
character manipulation (chains), §

V4-2.8.1
class, § V4-2.1

control transfer, § V4-2.4
data processing, § V4-2.3
environmental, § V4-2.5
parallelism, § V4-2.6
transfer, § V4-2.2

code (op-code), § V4-1.1
coding, § V4-1.1 and appendix V4-1
control transfer, § V4-2.4
decoding, § V3-3.4.2 and appendix

V4-1
dyadic, § V1-3.4.1 and V4-1.1
environmental, § V4-2.5
extension to the set, § V4-2.7

cryptography, § V4-2.7.3
format, § V4-1.1 and V4-1.2
multimedia, § V4-2.3.2.4 and

V4-2.7.1
randomization management, §

V4-2.7.4
signal processing, § V4-2.7.2
variable, § V3-3.4.3.2

high-level, § V4-2.8.3
illegal, § V4-3.1.1
Input/Output (I/O), § V4-2.8.2
invalid, § V4-3.1.1
macro-instruction, § V4-2.4.3, V4-4.2,

V4-4.2.2, V5-1.1.2, V5-1.2.1,
V5-1.3.3 and V5-1.3.4

micro-, § V1-3.1.4, V3-3.4.1,
V3-3.4.3.2, V4-5.2.4 and V5-1.1.1

mnemonic, § V4-2.1, V4-3.1.5, V4-3.5
and V5-1.1

monadic, § V4-1.1
number per cycle/IPC, § V2-3.4.2
parallelism, § V4-2.6
per cycle (IPC), cf. performance/ unit

of measurement
prefix, § V4-1.1

Index 165

pseudo-instruction, § V5-1.3.3 and
V5-1.3.4

set (IS), § V1-3.5.3 and V4-2.1
properties, § V1-3.5.3.1
orthogonality/symmetry, §

V4-2.4.1
SIMD, § V4-2.3.2.4 and V4-2.7.1

micro, § V4-2.3.2.1
specific to digital representation, §

V4-2.8.4
integration technology, § V1-1.2, V1-1.4,

V1-1.5 and V1-3.1.4
ELSI, § V1-1.2
GSI, § V1-1.2
LSI, § V3-1.1, V3-4.2, V5-3.1 and

V5-3.3.1
MSI, § V1-1.2
SLSI, § V1-1.2
SSI, § V1-1.2
ULSI, § V2-4.2.10
VLSI, § V3-1.2, V5-2.3, V5-3.2.1,

V5-3.3 and V5-3.3.1
interruption, § V4-5

cause
external, § V4-5.2
internal, § V4-5.4

controller, § V4-5.2.5
debugging, § V4-5.5
definition, § V4-5.1
hardware, § V4-5.2
instruction, § V4-3.2.2 and V4-5.4
mask and maskable/non-maskable INT,

§ V3-2.1.3, V3-3.1.5.4, V3-3.1.5.6,
V3-3.1.5.7, V3-6.2, V4-5.2,
V4-5.3, V4-5.6, V4-5.7, V4-5.9
and V4-5.11

nested, § V4-5.3 and V4-5.8
orthogonal, § V4-5.7
software, § V4-5.4
vectorization, § V4-5.7

IP (Intellectual Property), § V3-1.2
register x86, cf. register

ISA, cf. instruction set architecture or
bus (products)

ISC, § V5-2.1.2
Ishango (incised bones of), § V1-1.1
ISP

bus, § V2-2.2.3
processor, § V1-3.1.4 and V4-2.1
programming, § V5-2.1.2

ITRS, § V1-1.4 and V1-1.5

J

JTAG, cf. test/interface

L

language
concepts, § V1-1.4
high-level (HLL), § V1-3.1.5,

V4-1.2.3.3, V4-2.4.3, V5-1.1.1,
V5-1.1.4, V5-1.3 and V5-1.3.4

layer of, § V5-1.1
level, § V5-1.1.1
machine, § V1-1.4, V1-3.3.4, V4-3.1.5,

V5-1.1, V5-1.1.1 and V5-1.3
programming, cf. programming

language
register transfer (RTL), cf. § V1-3.1.4,

V1-3.3.1.2.1 and V3-3.1.3
LAPACK, cf. performance/core
latch, § V1-3.3.1.2.1
launcher cf. development tool
law

iron, § V4-3.4.3
Moore’s, § V1-1.2, V1-1.5 and V3-1.2

library (development), § V4-3.1.5 and
V5-1.2.2
archiver, § V5-1.2.2
dynamic link (DLL) § V4-3.1.5
of macro-instructions, § V5-1.3.4
runtime, § V4-3.4.4

166 Microprocessor 2

standard, § V5-1.1.4
static, § V5-1.1.2

LINPACK, cf. performance/core
loading, cf. development tool
logic gate, § V1-1.2, V1-3.1.4, V2-3.3.4

and V2-4.1
logical operation, § V1-3.3.1.2.1,

V4-2.3.2.2 and V4-2.7.1
comparison, § V4-2.4.1
complementation, § V4-2.4.1, V4-2.6.1

and § V3-2.1.3 (footnote)
NOT AND (NAND), § V1-1.2
permutation, § V2-1.2 and V2-4.1.4

look up memory, § V3-3.4.3.2 and
V4-2.8.4.2

loom, § V1-1.1
loop

current, § V2-3.3.2
hardware, § V3-3.1.9 and V3-5.2
phased-locked (PLL), § V3-2.4.1
software, § V1-3.1.1, V1-3.3.2,

V4-1.2.3.2 and V4-2.4.3
LSI, cf. integration technology
LVDS, cf. electronic technology

M

MAC, § V3-5.2 and V4-2.8.4.2
MACS, § V4-3.4.2
MBR

register, § V3-3.1.1 and V3-3.5
sector, § V5-1.2.3 and V5-3.5.3

mask
binary/logical, § V3-3.3, V4-2.3.2.2,

V4-2.3.2.4 and exercise
V4-E2-5

interruption, cf. interruption
window, § V3-3.1.11.3

mass storage, § V1-1.2, V1-2.1, V1-2.3,
V1-2.4 and V1-3.2.2.1
interface, § V2-1.2 and V2-4.2.6
library of cartridges, § V1-2.3

mechanical computing machines, §
V1-1.1
analytical engine (Babbage), § V1-1.1
difference engine (Babbage), § V1-1.1
Pascaline, cf. exercise V1-E1.1
statistics machine, § V1-1.1

mechanism, § V1-3.1.2
control, cf. control mechanism
data, cf. data mechanism

memory
alignment, § V1-2.2.2, V1-3.5.4,

V2-1.2; V3-2.1.1.4 and V3-3.4.3.2
boundary, § V4-3.1.2
buffer

queue (FIFO), § V1-2.1, V2-1.6,
V2-3.1, V2-4.1.4, V4-1.2.4.5.1
and V5-2.3

stack (LIFO), § V1-3.5.1 and V4-4.1
byte access, § V2-3.2 and V3-2.1.1.4
cache, § V1-2.3, V1-2.4, V2-2.2,

V2-2.2.5, V2-4.2.1, V3-3.1.9,
V4-2.5.4, V4-2.5.5, V4-3.4,
V4-5.7, V5-2.3 and V5-3.3.4

capacity/size, § V1-2.1
characteristics, § V1-2.1
classification, § V1-2.4
cycle communication, § V1-2.4
extension, § V3-2.1.1.3
hierarchy, § V1-2.3
interleaving, § V1-3.3.4 and

V2-4.2.2
internal, § V3-3.2
look up, cf. look up memory
memory map, § V5-1.1.4
method or policy of access, § V1-2.1
model, § V2-3.5.4
modeling, § V1-2.3
multiport, § V3-3.1.11.1
order of storage (little/big endian,

bi-endian), § V1-2.2.1, V2-1.1 and
V2-1.2

organization, § V1-2.1 and V1-3.1.5
punched card, § V1-1.1 and V1-1.4

Index 167

random access, cf. random access
memory (RAM)

read-only, cf. read-only memory
(ROM)

semiconductor-based, § V1-2
technology, § V1-2.3 and V1-2.4
UMB, § V5-3.2.3
unified, § V1-3.3.1.2.2, V1-3.2.2.1,

V1-3.3.4, V1-3.4.2, V3-5.4,
V5-3.3.1 and exercise V1-E3.1

MEMS, § V1-1.2
microcontroller (MCU), § V3-1.1 and

V3-5.3
microcomputer, § V1-1.2 and V5-3

Apple II, § V5-3.1
IBM Personal Computer (PC)

IBM 5150, § V1-1.2 and
V5-3.2.1

IBM 5160, § V5-3.2.2
IBM 5170, § V5-3.2.3

Micral N, § V1-1.2 and V3-1.2
microprocessor (MPU)

commercial, § V3-1.2
definition, § V3-1.1
digital signal processor (DSP), §

V3-5.2
family, § V3-4
generations, § V3-1.1 and V3-4
history, § V3-1.2
initialization, § V3-6.2 and V4-5.2.2
interfacing, § V3-2
single-bit, § V3-4.1

microprogramming, cf. logical
unit/control unit

MIPS, cf. performance/unit of
measurement

mixed language programming, § V5-1.1.3
MMX, cf. instruction/extension to the set
MOS, cf. electronic technology
MPP, cf. parallelism/processor
multiplication, cf. arithmetic operation
MSI, cf. integration technology

multicore, § V1-1.4, V1-3.3, V1-3.4.3.3,
V3-1.1, V4-3.4.1 and V3-4.7

multiprocessor, § V1-3.6, V2-2.2.5, V2-
4.2.9, V3-1.1, V4-3.2.2 and V4-3.6.2

N

NMOS, cf. electronic technology
NoC (Network-on-Chip), § V2-4.2.9
node

processing, § V1-1.2 and V1-3.6
technology, § V1-1.5

norms, cf. standard

O

object module, § V5-1.1.2, V5-1.1.3, V5-
1.2.1, V5-1.2.2, V5-1.2.4 and V5-1.3.4

Operating System (OS), § V1-1.2, V1-1.4
and V3-1.2
calls, § V2-2.2.1
debugging, § V5-2.2.2
flag, § V3-3.1.5.6
MS-DOS, § V5-3.2.1 and V5-3.2.3
protection, cf. execution/mode

organization
of a memory, cf. memory
of computers, § V1-3.1.4

overflow, § V3-5.2
buffer, § V4-1.2.4.5.1
capacity, § V4-2.3.1 and V4-2.3.2.2

overflow (positive/negative), §
V3-3.1.5.1, V3-3.1.5.3,
V3-3.1.5.4, V3-5.3, V4-5.1,
V4-5.4, V4-5.7, V4-5.11 and
exercise V3-E3.4

underflow, § V3-3.1.5.4 and
V4-5.4

format (unsigned), § V3-3.1.5.1,
V4-2.3.1, V4-2.3.2.2 and exercise
V3-E3.2

168 Microprocessor 2

register window, § V3-3.1.11.3
segment, § V4-5.4
stack, § V4-4.1, V4-4.2.1 and V4-5.1

P

parallelism, § V1-1.4 and V1-3.4.3
instruction-level (ILP), § V1-3.4.3.1
multicores, § V1-3.4.3.3
multithreading, § V1-3.4.3.2
processor, § V3-5.5
thread level, § V1-3.4.3

parameters
calling convention, § V4-4.2.3
passage, § V3-3.1.12.3 and

V4-4.2.3
path

control (CP), § V1-3.1.4 and
V1-3.3.1.2.2

data (DP), § V1-2.3, V1-3.1.4,
V1-3.2.2.1, V1-3.3.1.2.1, V1-3.3.3
and V5-3.3.1

definition, § V1-3.2.2.1
execution, § V1-3.1.2, V3-3.4.3,

V4-2.4.1 and V4-2.4.2
instruction (IP), § V1-3.2.2.1
scan/exam/access, § V5-2.2.5 and

V5-2.3
PC, cf. register/program counter
PCMark, cf. benchmark
PCMC, § V5-3.3.1
performance, § V4-3.4

core
LAPACK and LINPACK, §

V4-3.4.4
measurement, § V4-3.4
program performance, § V4-3.4.4
unit of measurement (metric), §

V4-3.4.4
Dhrystone, § V4-3.4.4
IPC, § V4-3.4.3.1

permutation, cf. logical operation/
permutation

Personal Computer (PC), cf.
microcomputer

PIC, cf. interruption/controller
pin, § V1-2.1, V2-1.2, V2-3.3.1, V2-3.6,

V3-6.3, V4-5.2.2, V4-5.7 and V3-4.1
pipeline, § V1-3.3.2, V1-3.4.3.2, V3-1.2,

V4-3.4.5, V4-5.11 also cf.
communication/transaction pipeline
stall cycle, § V2-2.1.1 and V4-2.4.1

PLL, cf. loop/phase locked
PMOS, cf. electronic technology
PMS, § V1-3.1.4
poison bit, § V4-5.11
portability, § V4-3.2.3
POST, § V5-3.5.3
post-fixed notation, Reverse Polish

Notation (RPN), § V1-3.5.1
power, § V3-6.1.2

dissipation, § V2-4.2.10
domain, § V3-6.1.3
dynamic, § V3-6.1.2
static, § V3-6.1.2
supply

consumption, § V3-6.1.2
profile, § V3-6.1.3
voltage, § V3-6.1.1

pre-decoding, § V3-3.4.3.2
predication, § V2-2.4.2
processor

bit slice, § V3-5.1
graphics, § V3-5.4
I/O, § V3-5.4
signal processing (DSP), cf.

microprocessor
program, § V1-3.1.1

definition, § V1-3.1.1
stored, cf. computer (concepts)

program counter (CO/PC/IP), cf. register
programmer, § V5-2.1.2 and V5-3.5.3
programming language, § V1-3.1.4

Index 169

assembly, § V1-1.4, V1-3.5.3, V4-1.2,
V4-2.1, V4-2.4.2, V4-2.4.3, V4-3.1.3
to V4-3.1.5, V5-1.1 and V5-1.3

BASIC, § V5-3.1, V5-3.2.1, V5-3.5.2
and V5-3.5.2.2

COBOL, § V1-1.4, V1-3.1.3,
V4-2.8.4.1 and V5-1.3

FORTRAN, § V1-1.4, V1-3.1.1,
V1-3.1.3 and V4-3.4.4

LISP, § V1-3.1.3 and V1-3.1.4
punched card, cf. memory

Q

quipu, § V1-1.1

R

Random-Access Memory (RAM)
DRAM, § V5-3.3.1
Rambus (D)RDRAM, § V5-3.3.1
SDRAM, § V2-3.6, V5-3.3.1 and
V5-3.4.2
SRAM, § V2-2.4 and V3-5.3
SRAM BBSRAM/NVSRAM, §
V5-3.3.1 (footnote)

randomization management, § V4-2.7.4
and V5-3.3.1

Read-Only Memory (ROM), § V1-2.3,
V1-2.4, V1-3.3.1.1 and V3-5.3
EPROM, § V5-2.1.2 and V5-3.5.3
EEPROM, § V5-3.5.3
flash EEPROM (FEEPROM), §

V5-2.2.4.3 and V5-3.5.3
MROM, § V1-2.4
PROM, § V1-2.4

register, § V3-3.1 and V3-3.1.1
accumulator § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.4.1, V1-3.5.1,
V3-3.1.2, V4-1.2.2.2, V4-1.2.4.2
and V4-2.2.1

address (MAR), § V1-3.2.2.2 to
V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 to V3-3.5

bank, § V3-3.1.11.2
category, § V3-3.1
cause, cf. register/surprise
data (MBR/MDR), § V1-3.2.2.2,

V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 and V3-3.5

definition, § V3-3.1.1
encoding, § V3-3.1.12.6
file, § V3-3.1.11.1
floating point number, § V3-3.1.2 and

V3-3.1.5.4
format, § V3-3.1.1
general-purpose (GPR), § V1-3.5.1,

V3-3.1.3, V3-3.1.8, V4-2.4.1 and
V4-4.1

index, § V3-3.1.1, V3-3.1.6, V4-
1.2.2.2, V4-1.2.3.4 and V4-1.2.3.5

indirection, § V2-.1.7, V4-1.2.3 and
V4-4.1

instruction, § V3-3.1.1 and V3-3.4.3.1
Multiplier-Quotient (MQ), § V3-3.1.1
number, § V3-3.1.12.6 and V4-1.1
parallelism, § V3-3.1.12.5
Program Counter (PC), § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.3.1.2, V1-3.3.2,
V3-2.1.1.1, V3-3.1.3, V4-1.1,
V4-1.2, V4-1.2.3.2, V4-1.2.3.5,
V4-2.4, V4-2.4.1, V4-2.4.3,
V4-4.2, V4-4.2.2, V4-5.2.1,
V4-5.7, V5-2.2.1, V5-2.2.3 and
V5-2.2.4.3

projected in memory, § V3-5.4,
V3-3.1.1, V4-1.2.4.4 and § V3-3.1
(footnote)

Shift Register (SR), cf. shift/register
and shifter

stack pointer (SP), § V3-3.1.1,
V3-3.1.8, V3-4.3, V4-1.2.4.2,
V4-4.1 and V4-4.2

170 Microprocessor 2

status (CCR)/of flags, § V1-3.3.1.2,
V1-3.3.1.2.2, V1-3.3.2, V1-3.5.1,
V3-3.1.5, V3-3.1.5.1, V3-3.1.5.4,
V3-3.1.5.7, V3-3.1.8, V3-3.3,
V3-3.4, V3-3.4.1, V3-3.4.3.3,
V4-2.2.1, V4-4.2.3, V4-5.2.1,
V4-2.2.4.3 and V5-2.2.5

surprise, § V4-5.7
test, § V3-3.1.9
windowing, § V3-3.1.11.3

relocatable, cf. code
representation of information

adjustment, § V4-2.3.1
ASCII, § V3-5.4 and V4-2.8.1
decimal number:

fixed-point, § V1-3.2.2.2,
V1-3.6, V3-3.1.5.3 and
V4-9.4

floating-point, § V3-3.1.5.4 and
V4-9.4

integer
2n’s complement (signed), §

V1-3.6, V3-3.1.5.1, V3-3.3,
V4-1.2.3.2, V4-2.3.1 and
exercise V1-E1-1

BCD, § V1-3.3, V1-3.5.2, V1-3.6,
V4-2.3.1, V3-3.1.5.1, V3-3.1.5.2
and V3-5.4

Unicode, § V4-2.8.1
reverse, § V4-1.2.4.5.2
RISC, cf. architecture
RNG, cf. random generator
rotation, § V3-3.3, V4-2.3.2 and

V4-2.3.2.4
routine, cf. subprogram
RTC, § V3-6.1.4 and V4-3.3.1
RTL, § V1-3.1.4

S

SBC, § V1-1.2
scalability, § V2-1.2 and V2-4.2.9

SDR, cf. semiconductor-based
(component)

(de)serialization, § V2-1.1
semantic gap, § V1-3.1.5
server, § V1-1.2

blade, § V1-1.2
SFF, § V1-2
shift, § V1-3.2.2.2, V1-3.3.1.2.1,

V3-3.1.1, V3-3.3, V4-1.1, V4-1.2.4.5.1,
V4-2.3.2 and V4-4.1
arithmetic, § V4-2.3.2.3
logical, § V4-2.3.2.3 and V4-2.3.2.4
register (SR), § V1-2.1, V1-3.2.2.2,

V3-3.4.2, V3-5.4, V4-4.1 and
V5-2.2.5

shifter
barrel, cf. exercises V3-E3.5 and V3-

E3.6
circular, § V3-3.3
funnel, § V3-3.3

side effect, § V3-3.1.12.1 and V4-2.4.1
signal

integrity of the, § V2-3.3.2
noise, § V2-1.2, V2-1.3, V2-1.6,

V2-3.3.4, V2-3.3.5, V2-4.1.1,
V2-4.2.8, V2-4.2.10, V3-2.4.3,
V3-5.2 and V3-6.3

simulator, cf. software debugging
SLSI, cf. integration technology
SLT, cf. electronic technology
(S)CMP, cf. multicore
SMP, cf. multicore
SMT

component, § V5-3.1 and V5-3.4.2
processor, § V1-3.4.3.2 and V3-4.7

SoC, § V1-1.2
software development tool, § V5-1.2

assembler, § V4-1.2.4.6
assembler-launcher, § V5-1.2.1
cross-assembler, § V5-1.2.1
high-level, § V5-1.2.1
inline, § V5-1.2.1
macro-assembler, § V5-1.3.4

Index 171

(multi)pass, § V5-1.2.1
patch, § V5-1.2.1 and V5-2.2.4.3

compiler, § V1-3.1.1, V1-3.1.4,
V1-3.4.3.1, V1-3.4.3.2, V1-3.5,
V3-3.1.5.7, V3-3.1.12.1,
V3-3.1.12.5, V3-4.6, V4-1.1,
V4-2.1, V4-3.2.3, V4-2.4.1 to
V4-2.4.3, V4-3.1, V4-4.2 and
V5-1.1

cross-compiler, § V5-2.1.1
disassembler, § V5-1.2.4
loader, § V3-5.3, V4-1.1.2, V4-1.3 and

V5-1.2.3
monitor, § V5-2.2.4.1
static and dynamic link library, §

V4-3.2.3 and V5-1.2.2
profiler, § V5-2.2.4.3
(program) launcher, § V5-1.2.3
simulator, § V5-2.2.4.2

software interface
ABI (Application Binary Interface), §

V4-4.1 and V5-1.1.4
API (Application Programming

Interface), § V5-1.1.4 and
V5- 3.5.3

POSIX, § V5-1.1.4
software library, § V4-2.8.4.2
SPEC cf. performance/ benchmark/

application suite
SSE, cf. instruction/extension to the

instruction set
SSI, cf. integration technology
standard

BCS, cf. file format
CAN, cf. bus/fieldbus
component, § V1-1.2, V1-1.3, V2-1.2,

V2-3.3.5 and V2-3.3.7
IEEE Standard

IEEE Std 694-1985, § V4-1.3.2,
V4-1.3.3, V4-2.1 and V4-2.3.2.2

IEEE Std 754, § V4-2.8.4
IEEE Std 1003.1, § V4-1.1.4

IEEE Std 1149.1, § V2-3.5,
V4-2.1.2 and V4-2.2.5

IEEE Std 1275, § V4-3.5.4
IEEE Std 1532, § V4-2.1.2
IEEE-ISTO Std 5001, § V4-2.2.2

ISA, cf. bus/extension
multibus, cf. bus/expansion
SEAC, cf. computer/SEAC
VESA, cf. bus/local

state
diagram, § V2-1.3, V3-3.4.1 and

V5-2.1.2
information, § V3-3.3.1.1, V3-3.4 and

V4-5.11
machine, § V1-3.3.1.2.2, V2-1.6,

V2-3.1, V3-1.1, V3-2.4.1,
V3-3.4.2, V3-3.4.3.2, V5-2.1.2 and
V5-2.2.5

Turing, § V1-3.1.2 and V1-3.1.3
static and dynamic link library, cf.

development tool
subprogram § V1-3.3.1.2.1 and

V4-4
call/return, § V3-3.1.1, V3-3.1.5.7,

V3-3.1.8 and V4-2.4.3
definition, § V4-4.2
instruction, § V4-2.4.3
nested, § V4-4.2.1
open, § V5-1.3.4
passing parameters, § V3-3.1.12.3
sheet, § V4-4.2
standard passing parameters, §

V4-4.2.3
subtraction, cf. arithmetic operation
switching

circuit-, § V2-3.3.6 and V2-4.2.9
packet-, § V2-1.5, V2-2.2, V2-2.2.4,

V2-4.1.4 and V2-4.2.9
synchronism, § V2-1.3
system

embedded, § V1-1.2
logical, cf. unit

172 Microprocessor 2

T

technology
electronic, cf. electronic technology
integration, cf. integration technology

test, § V5-2.3
BIST, § V5-2.2.5
bus, § V2-3.5
instruction, cf. instruction/atomic,

instruction/branching
interface, cf. debugging hardware

interface
register, cf. register/test
self-test, § V3-5.3
test program, cf. performance/ program

and firmware/POST
time, § V1-1.4

access, § V1-1.2, V1-1.4, V1-2.1,
V2-1.2, V2-1.5, V3-2.4.2,
V3-3.1.11.1 and V3-3.2

bus settling, § V2-1.2, V2-1.3, V2-1.5
and V2-3.1

execution, cf. execution/time
cycle, § V1-1.4, V1-2.1, V1-2.3, V1-2.4,

V3-1.2, V3-2.4.1 and V3-3.4.3.2
hold, § V2-1.5 and V2-3.1
reaction, § V4-5.3
starvation, § V4-5.3
switching, § V4-3.4.5
transfer, § V2-1.1 and V2-1.3

time (linked to software development)
assembly, § V5-1.1.2
compilation, § V5-1.1.2
loading, § V2-2.1.1

TLP (Thread-Level Parallelism), §
V1-3.4.3.2 and V3-4.7

transistor, § V1-1.2, V1-1.4 to V1-1.6,
V1-3.1.4, V2-2.2.1 and V2-3.3.4
bipolar junction (BJT), § V1-1.2
density, § V1-1.2
field effect (FET), § V1-1.2
gate, cf. § V1-1.5 and V4-3.4.5

TTL, cf. electronic technology

U

UEFI, cf. firmware
ULSI, cf. integration technology
UMA, cf. memory (concepts)/unified
UMB, cf. memory (concepts)
unit

central, cf. § V1-1.2 and V3-1.1
logical

AGU, § V3-3.4.4 and
V4-1.2.4.5.2

control unit, § V1-3.2.2.1,
V1-3.3.1.2, V1-3.3.1.2.2 and
V3-3.4

hardwired, § V1-3.2.3
microprogrammed, § V3-3.4,

V3-3.4.3.2 and V4-1.1
(footnote)

DPU, § V5-3.3.1
FMAC, § V3-5.2
functional, § V3-1.2
Integer Processing (IPU), §

V1-1.2, V1-3.3.1.2,
V1-3.3.1.2.1, V3-3.3, V3-5.1
and V3-5.2

MAC, § V4-2.8.4.2 and
V3-5.2

vector-based, § V1-1.2, V4-2.3.2
and V4-2.7.1

of measurement, § V1-1.2, V1-2.1 and
V4-3.4

processing, cf. element/processing unit
UNIVAC, cf. computer model

V

verification
cycle, § V3-5.3
exchange, § V2-1.3
machine, § V2-2.5.7
memory, § V5-2.2.4.3 and V5-2.2.5
result, § V2-2.4.1

Index 173

virtualization
debugging, § V5-2.2.6
MPU, § V3-3.1.5.6 and V4-3.2.4
server, § V1-1.2
virtual machine, § V1-1.4

VLIW, cf. architecture
VLSI, cf. integration technology
von Neumann machine, § V1-3.2

and V1-3.3
advantages and disadvantages,

§ V1-3.3.4

W

wall, § V1-1.5 and V3-1.2
fineness of etching, § V1-1.5
power, § V1-1.5, V3-1.1 and V3-6.1.2
red brick, § V1-1.5
speed, § V1-1.5

Whetstone, cf. performance/
benchmark/synthetic suite

Whilwind, cf. computer model
word (broken down) into packets,

§ V4-2.3.2.1
workstations, cf. cluster/workstations

Other titles from

in

Computer Engineering

2020
LAFFLY Dominique
TORUS 1 – Toward an Open Resource Using Services: Cloud Computing
for Environmental Data
TORUS 2 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data
TORUS 3 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data

LAURENT Anne, LAURENT Dominique, MADERA Cédrine
Data Lakes
(Databases and Big Data Set – Volume 2)

OULHADJ Hamouche, DAACHI Boubaker, MENASRI Riad
Metaheuristics for Robotics
(Optimization Heuristics Set – Volume 2)

SADIQUI Ali
Computer Network Security

2019
BESBES Walid, DHOUIB Diala, WASSAN Niaz, MARREKCHI Emna
Solving Transport Problems: Towards Green Logistics

CLERC Maurice
Iterative Optimizers: Difficulty Measures and Benchmarks

GHLALA Riadh
Analytic SQL in SQL Server 2014/2016

TOUNSI Wiem
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud
Computing and IoT

2018
ANDRO Mathieu
Digital Libraries and Crowdsourcing
(Digital Tools and Uses Set – Volume 5)

ARNALDI Bruno, GUITTON Pascal, MOREAU Guillaume
Virtual Reality and Augmented Reality: Myths and Realities

BERTHIER Thierry, TEBOUL Bruno
From Digital Traces to Algorithmic Projections

CARDON Alain
Beyond Artificial Intelligence: From Human Consciousness to Artificial
Consciousness

HOMAYOUNI S. Mahdi, FONTES Dalila B.M.M.
Metaheuristics for Maritime Operations
(Optimization Heuristics Set – Volume 1)

JEANSOULIN Robert
JavaScript and Open Data

PIVERT Olivier
NoSQL Data Models: Trends and Challenges
(Databases and Big Data Set – Volume 1)

SEDKAOUI Soraya
Data Analytics and Big Data

SALEH Imad, AMMI Mehdi, SZONIECKY Samuel
Challenges of the Internet of Things: Technology, Use, Ethics
(Digital Tools and Uses Set – Volume 7)

SZONIECKY Samuel
Ecosystems Knowledge: Modeling and Analysis Method for Information and
Communication
(Digital Tools and Uses Set – Volume 6)

2017
BENMAMMAR Badr
Concurrent, Real-Time and Distributed Programming in Java

HÉLIODORE Frédéric, NAKIB Amir, ISMAIL Boussaad, OUCHRAA Salma,
SCHMITT Laurent
Metaheuristics for Intelligent Electrical Networks
(Metaheuristics Set – Volume 10)

MA Haiping, SIMON Dan
Evolutionary Computation with Biogeography-based Optimization
(Metaheuristics Set – Volume 8)

PÉTROWSKI Alain, BEN-HAMIDA Sana
Evolutionary Algorithms
(Metaheuristics Set – Volume 9)

PAI G A Vijayalakshmi
Metaheuristics for Portfolio Optimization
(Metaheuristics Set – Volume 11)

2016
BLUM Christian, FESTA Paola
Metaheuristics for String Problems in Bio-informatics
(Metaheuristics Set – Volume 6)

DEROUSSI Laurent
Metaheuristics for Logistics
(Metaheuristics Set – Volume 4)

DHAENENS Clarisse and JOURDAN Laetitia
Metaheuristics for Big Data
(Metaheuristics Set – Volume 5)

LABADIE Nacima, PRINS Christian, PRODHON Caroline
Metaheuristics for Vehicle Routing Problems
(Metaheuristics Set – Volume 3)

LEROY Laure
Eyestrain Reduction in Stereoscopy

LUTTON Evelyne, PERROT Nathalie, TONDA Albert
Evolutionary Algorithms for Food Science and Technology
(Metaheuristics Set – Volume 7)

MAGOULÈS Frédéric, ZHAO Hai-Xiang
Data Mining and Machine Learning in Building Energy Analysis

RIGO Michel
Advanced Graph Theory and Combinatorics

2015
BARBIER Franck, RECOUSSINE Jean-Luc
COBOL Software Modernization: From Principles to Implementation with
the BLU AGE® Method

CHEN Ken
Performance Evaluation by Simulation and Analysis with Applications to
Computer Networks

CLERC Maurice
Guided Randomness in Optimization
(Metaheuristics Set – Volume 1)

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,
ALLIOT Jean-Marc
Metaheuristics for Air Traffic Management
(Metaheuristics Set – Volume 2)

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume
Parallel Scientific Computing

MUNEESAWANG Paisarn, YAMMEN Suchart
Visual Inspection Technology in the Hard Disk Drive Industry

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems:Implementation of the B
Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches for Complex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1
Software Architecture 2

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series, 2nd Edition
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition
Problems and New Approaches – Volume 2, 2nd Edition
Applications of Combinatorial Optimization – Volume 3, 2nd Edition

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1:
Introduction to Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2:
Applications to Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012
ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011
BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMES Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHE Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUEDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A TO Z OF SUDOKU

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

