

Microprocessor 1

Series Editor
Jean-Charles Pomerol

Microprocessor 1

Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture

Philippe Darche

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2020
The rights of Philippe Darche to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020938715

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-563-3

Contents

Quotation. vii

Preface . ix

Introduction . xiii

Chapter 1. The Function of Computation . 1

1.1. Beginnings . 2
1.2. Classes of computers . 10
1.3. Analog approach . 36
1.4. Hardware–software relationship . 37
1.5. Integration and its limits . 43
1.6. Conclusion . 47

Chapter 2. The Function of Memory . 49

2.1. Definition . 50
2.2. Related concepts . 56

2.2.1. A story of endianness . 56
2.2.2. Alignment . 56

2.3. Modeling . 57
2.4. Classification . 59
2.5. Conclusion . 61

Chapter 3. Computation Model and Architecture: Illustration with
the von Neumann Approach . 63

3.1. Basic concepts . 64
3.1.1. The idea of a program . 64
3.1.2. Control and data flows and mechanisms 65

vi Microprocessor 1

3.1.3. Models of computation . 67
3.1.4. Architectures . 72
3.1.5. The semantic gap . 80

3.2. The original von Neumann machine . 81
3.2.1. von Neumann’s computation model . 81
3.2.2. von Neumann’s (machine) architecture . 82
3.2.3. Control . 89

3.3. Modern von Neumann machines . 90
3.3.1. Abstraction level . 91
3.3.2. Base execution outline . 97
3.3.3. Possible transfers . 100
3.3.4. Summary: advantages and disadvantages of this model 102

3.4. Variations on a theme . 104
3.4.1. Classification by bus . 104
3.4.2. Harvard architectures . 111
3.4.3. Parallelism . 113

3.5. Instruction set architecture . 117
3.5.1. Storage components . 118
3.5.2. Data format and type . 126
3.5.3. Instruction set . 126
3.5.4. Memory model . 127
3.5.5. Execution modes . 128
3.5.6. Miscellaneous . 128

3.6. Basic definitions for this book . 128
3.7. Conclusion . 129

Conclusion of Volume 1 . 131

Exercises . 133

Acronyms . 135

References . 153

Index . 173

Quotation

Every advantage has its disadvantages and vice versa.

Shadokian philosophy1

1 The Shadoks are the main characters from an experimental cartoon produced by the
Research Office of the Office de Radiodiffusion-Télévision Française (ORTF). The two-
minute-long episodes of this daily cult series were broadcast on ORTF’s first channel (the
only one at the time!) beginning in 1968. The birds were drawn simply and quickly using an
experimental device called an animograph.

The Shadoks are ridiculous, stupid and mean. Their intellectual capacities are completely
unusual. For example, they are known for bouncing up and down, but it is not clear why!
Their vocabulary consists of four words: GA, BU, ZO and MEU, which are also the four
digits in their number system (base 4) and the musical notes in their four-tone scale. Their
philosophy is comprised of famous mottos such as the one cited in this book.

Preface

Computer systems (hardware and software) are becoming increasingly complex,
embedded and transparent. It therefore is becoming difficult to delve into basic
concepts in order to fully understand how they work. In order to accomplish this,
one approach is to take an interest in the history of the domain. A second way is to
soak up technology by reading datasheets for electronic components and patents.
Last but not least is reading research articles. I have tried to follow all three paths
throughout the writing of this series of books, with the aim of explaining the
hardware and software operations of the microprocessor, the modern and integrated
form of the central unit.

About the book

This first work in a five-volume series deals with the general operating principles
of the microprocessor. It focuses in particular on the first two generations of this
programmable component, that is, those that handle integers in 4- and 8-bit formats.
In adopting a historical angle of study, this deliberate decision allows us to return to
its basic operation without the conceptual overload of current models. The more
advanced concepts, such as the mechanisms of virtual memories and cache memory
or the different forms of parallelism, will be detailed in the following volumes with
the presentation of subsequent generations, that is, 16-, 32- and 64-bit systems.

The first volume addresses the field’s introductory concepts. As in music theory,
we cannot understand the advent of the microprocessor without talking about the
history of computers and technologies, which is presented in the first chapter. The
second chapter deals with storage, the second function of the computer present in the
microprocessor. The concepts of computational models and computer architecture
will be the subject of the final chapter.

x Microprocessor 1

The second volume is devoted to aspects of communication in digital systems
from the point of view of buses. Their main characteristics are presented, as well as
their communication, access arbitration, and transaction protocols, their interfaces
and their electrical characteristics. A classification is proposed and the main buses
are described.

The third volume deals with the hardware aspects of the microprocessor. It first
details the component’s external interface and then its internal organization. It then
presents the various commercial generations and certain specific families such as the
Digital Signal Processor (DSP) and the microcontroller. The volume ends with a
presentation of the datasheet.

The fourth volume deals with the software aspects of this component. The main
characteristics of the Instruction Set Architecture (ISA) of a generic component are
detailed. We then study the two ways to alter the execution flow with both classic
and interrupt function call mechanisms.

The final volume presents the hardware and software aspects of the development
chain for a digital system as well as the architectures of the first microcomputers in
the historical perspective.

Multi-level organization

This book gradually transitions from conceptual to physical implementation.
Pedagogy was my main concern, without neglecting formal aspects. Reading can
take place on several levels. Each reader will be presented with introductory
information before being asked to understand more difficult topics. Knowledge, with
a few exceptions, has been presented linearly and as comprehensively as possible.
Concrete examples drawn from former and current technologies illustrate the
theoretical concepts.

When necessary, exercises complete the learning process by examining certain
mechanisms in more depth. Each volume ends with bibliographic references
including research articles, works and patents at the origin of the concepts and more
recent ones reflecting the state of the art. These references allow the reader to find
additional and more theoretical information. There is also a list of acronyms used
and an index covering the entire work.

This series of books on computer architecture is the fruit of over 30 years of
travels in the electronic, microelectronic and computer worlds. I hope that it will
provide you with sufficient knowledge, both practical and theoretical, to then

Preface xi

specialize in one of these fields. I wish you a pleasant stroll through these different
worlds.

IMPORTANT NOTES.– As this book presents an introduction to the field of
microprocessors, references to components from all periods are cited, as well as
references to computers from generations before this component appeared.

Original company names have been used, although some have merged. This will
allow readers to find specification sheets and original documentation for the
mentioned integrated circuits on the Internet and to study them in relation to this
work.

The concepts presented are based on the concepts studied in selected earlier
works (Darche 2000, 2002, 2003, 2004, 2012), which I recommend reading
beforehand.

Philippe DARCHE
June 2020

Introduction

In this book, we will focus on the microprocessor, the integrated form of the
central unit. It introduces basic concepts from the perspective of sequential
execution. This first volume, presenting the field’s introductory concepts, is
organized into three chapters. The first two present the calculation and memory
functions which, along with communication, are the computer’s three primary
functions. The last chapter defines concepts concerning computational models and
computer architectures.

1

The Function of Computation

As in music theory, we cannot discuss the microprocessor without positioning it
in the context of the history of the computer, since this component is the integrated
version of the central unit. Its internal mechanisms are the same as those of
supercomputers, mainframe computers and minicomputers. Thanks to advances in
microelectronics, additional functionality has been integrated with each generation
in order to speed up internal operations. A computer1 is a hardware and software
system responsible for the automatic processing of information, managed by a stored
program. To accomplish this task, the computer’s essential function is the
transformation of data using computation, but two other functions are also essential.
Namely, these are storing and transferring information (i.e. communication). In
some industrial fields, control is a fourth function. This chapter focuses on the
requirements that led to the invention of tools and calculating machines to arrive at
the modern version of the computer that we know today. The technological aspect is
then addressed. Some chronological references are given. Then several classification
criteria are proposed. The analog computer, which is then described, was an
alternative to the digital version. Finally, the relationship between hardware and
software and the evolution of integration and its limits are addressed.

NOTE.– This chapter does not attempt to replace a historical study. It gives only a
few key dates and technical benchmarks to understand the technological evolution
of the field.

1 The French word ordinateur (computer) was suggested by Jacques Perret, professor at the
Faculté des Lettres de Paris, in his letter dated April 16, 1955, in response to a question from
IBM to name these machines; the English name was the Electronic Data Processing Machine.

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

2 Microprocessor 1

1.1. Beginnings

Humans have needed to count since our earliest days (Ifrah 1994; Goldstein
1999). Fingers were undoubtedly used as the first natural counting tool, which later
led to the use of the decimal number base. During archeological excavations, we
have also found notched counting sticks, bones and pieces of wood. The incised
bones of Ishango, dated between 23,000 and 25,000 years BC, provide an example
(Figure 1.1).

Figure 1.1. Ishango’s incised bones (source: unknown). For a color version
of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Counting sticks were used during antiquity, as well as pebbles, hence the word
calculus, from the Latin calculus which means “small pebble”. Knotted ropes were
also used for counting, an example being the Incan quipu (Figure 1.2). This Incan
technique (dating ≈ 1200–1570) used a positional numbering system (cf. § 1.2 of
Darche (2000)) in base-10 (Ascher 1983).

Figure 1.2. A quipu (source: unknown). For a color version of this
figure, see www.iste.co.uk/darche/microprocessor1.zip

The Function of Computation 3

The need for fast and precise computation necessitated the use of computing
instruments. Two exemplars are the abacus and the slide rule. The abacus is a planar
calculating instrument, with examples including the Roman (Figure 1.3(a)) and the
Chinese (Figure 1.3(b)) abacus. The latter makes it possible to calculate the four
basic arithmetic operations by the movements of beads (or balls) strung on rods,
which represent numbers.

a) b)

Figure 1.3. Roman abacus (a) between the 2nd and 5th Centuries
(© Inria/AMISA/Photo J.-M. Ramès); Chinese abacus (b). For a color
version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

The 17th Century saw the introduction of mechanical computing machines, and
the beginning of the history of computers is generally dated from their appearance.
They met the need to systematically calculate tables of numbers reliably and
quickly. These machines naturally used the decimal base. The most famous is
undoubtedly the adding machine called the Pascaline (1642), named after its
inventor, the philosopher and scientist Blaise Pascal (1623–1662). Numbers were
entered using numbered wheels (Figure 1.4). The result was visible through the
upper slits. Complementation made it possible to carry out subtraction (cf. exercise
E1.1). But the first description of a four-operation machine was Wilhelm Chickard’s
machine (1592–1635), which appeared in a letter from the inventor to Johannes
Kepler in 1623 (Aspray 1990). The end of the 17th Century and the following one
were fruitful in terms of adding machines. Consider, for example, machines by
Morland (1666), Perrault (1675), Grillet (1678), Poleni (1709), de Lépine (1725),
Leupold (1727), Pereire (1750), Hahn (1770), Mahon (1777) and Müller (1784). A
logical continuation of this trend was the multiplying machine by Gottfried Wilhelm
Leibniz (1646–1716), which was designed in 1673 but whose implementation was
delayed because of the lack of mechanical manufacturing precision in the 17th
Century. For more information on this technology, we can cite the richly illustrated
book by Marguin (1994) introducing the first mechanical calculating machines.

4 Microprocessor 1

Figure 1.4. An example of a Pascaline at the Musée des Arts et Métiers
(source: David Monniaux/Wikipedia2). For a color version of this

figure, see www.iste.co.uk/darche/microprocessor1.zip

The mathematician Charles Babbage (1791–1871) marked the 19th Century a
posteriori with two machines: the Difference Engine and the Analytical Engine.

The first machine was intended for the automatic computation of polynomial
functions with printed results in order to build trigonometric and logarithm tables for
the preparation of astronomical tables useful for navigation. At the time, logarithm
tables were expensive, cumbersome and often out of print (Campbell-Kelly 1987,
1988, Swade 2001). They were calculated by hand, a tedious method that was the
source of many errors. We can cite as an example those of De Prony (1825) for
assessment, which was studied among others by Grattan-Guinness (1990), of which
Babbage was aware. This machine reportedly allowed the successive values of a
polynomial function to be calculated by Newton’s finite difference method (see, for
example, Bromley (1987) and Swade (1993)). Figure 1.5 presents a prototype, with
all the details of this construction given in Swade (2005). It was never produced
during his lifetime because of the enormous cost of manufacturing the mechanics. It
was not until May 1991 that the second model, called the “difference machine no.
2”, was implemented at the London Science Museum where it was also exhibited
(Swade 1993).

2 URL: http://upload.wikimedia.org/wikipedia/commons/8/80/Arts_et_Metiers_Pascaline_
dsc03869.jpg.

The Function of Computation 5

Figure 1.5. Replica of the first Babbage difference machine3. For a color
 version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

The second machine (Figure 1.6) could compute the four basic arithmetic
operations.

3 URL: http://iamyouasheisme.files.wordpress.com/2011/11/babbagedifferenceengine.jpg.

6 Microprocessor 1

Figure 1.6. Babbage’s analytical machine (© Science Museum/Science &
Society Picture Library). For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

It introduces the basic architecture of a computer and its programming (Hartree
1948). Indeed, as illustrated in Figure 1.7, it was composed of a mill, which played
the role of the modern Central Processing Unit (CPU), and a store, which played the
role of main storage. It also implemented the notion of registers (major axes) and
data buses (transfer paths). Integers were internally represented in base-10 using
Sign-Magnitude or Sign and Magnitude Representation (SMR, cf. § 5.2 in Darche
(2000)) in base 10. Extensive details of its operation are given in Bromley (1982).
For the same technological and financial reasons previously mentioned, its
construction has never been completed.

The Function of Computation 7

Figure 1.7. One of the plans for Babbage’s analytical machine
(© Science Museum/Science & Society Picture Library). For a color

version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

To program the machine, Babbage proposed the punched card. The latter had
been invented by Basile Bouchon in 1725 for the weaving industry in the form of a
strip of perforated paper. Jean-Baptiste Falcon improved it by transforming this strip
into a string of punched cards linked together by cords. These cards made it possible
to store a weaving pattern (Figure 1.8). This principle was further improved and
made truly usable by Joseph Marie Jacquard with his famous loom (cf. Cass (2005)
for a notice by J. M. Jacquard from 1809). Essinger (2004) tells the history of this
machine. The latter was not the only programmable machine of the time. The music
box with pegged cylinder was another form. In Babbage’s machine, program
instructions and data were entered separately using two decks of cards. Babbage had
a collaborator, Ada Lovelace, who is considered the first programmer in history to
have written a Bernoulli number algorithm for this machine (reproduced in Kim and
Toole (1999)). However, we should not conclude that Charles Babbage is the source
of the modern computer because of the influence of his ideas on the design of
modern computers (Metropolis and Worlton 1980).

8 Microprocessor 1

Figure 1.8. Falcon’s loom. For a color version of this
figure, see www.iste.co.uk/darche/microprocessor1.zip

The history of the modern computer can also be traced back to the 1880s with
the invention of mechanography for the United States Census Bureau (Ceruzzi
2013). Hermann Hollerith took up the idea of the punched card and mechanized data
processing to calculate statistics (Hollerith 1884a,b 1887). Figure 1.9 shows his
statistics machine, composed of a hole punch called a press, with a tabulator that
read and counted using electromechanical counters, and a sorter called a sorting box.

Figure 1.9. Statistical machine (Hollerith 1887)

The Function of Computation 9

As previously described and illustrated in Figure 1.10, the computer in its current
form is the result of technological progress and advances in the mathematical fields,
particularly in logic and arithmetic. Boole’s algebra offered a theoretical framework
for the study of logic circuits (cf. § 1.3 of Darche (2002)). For example, the
American researcher Claude Elwood Shannon illustrated the relationship between
Boolean logic and switch and relay circuits in his famous article (Shannon 1938).
Thus, a link was established between mathematical theory and manufacturing
technology. A study by Shannon (1953) described the operation of 16 Boolean
functions in two variables using 18 contacts, and was able to show that this number
of contacts was minimal. The mathematical aspect of switching has been studied in
particular by Hohn (1955). Technology played a major role because it had a direct
impact on the feasibility of the implementation, the speed of computation, and the
cost of the machine.

Figure 1.10. Evolution of concepts and technologies
in the development of calculating machines (from Marguin (1994))

10 Microprocessor 1

1.2. Classes of computers

There are several possible ways to classify computers. One is primarily related to
the hardware technology available at the time, as presented in Tanenbaum (2005).
For this reason, we will speak of technological generations. The transition from one
generation to the next is achieved by a change in technology or by a major advance.
Table 1.1 presents these generations in a simplified manner.4

Technological generations Dates

0 – mechanical 1642–1936

1 – electromechanical 1937–1945

2 – tube 1946–1955

3 – transistor 1956–1965

4 – integrated circuits SSI – MSI – LSI 1966–1980

5 – integrated circuit VLSI 1981–1999

6 – integrated circuit GSI – SoC – MEMS 2000 to present

Table 1.1. Generations of calculating machines
and computers based on component technologies

Generation 0 (1642–1936) consisted of mechanical computers, as presented in
the previous section. Mechanography appeared at the end of the 19th Century to
respond in particular to the need for automatic processing of statistical data, initially
for the census of the American population. Its technology naturally evolved towards
electromechanics. A historical examination of mechanography in relation to
“modern” computing was conducted by Rochain (2016).

Generation 1 was that of the electromechanical computer (1937–1945). The
basic component was the electromechanical relay (Figure 1.11(a)) comprised of a
coil that moves one or more electrical contacts on command (i.e. if it is electrically
powered). Figure 1.11(b) presents its equivalent electric diagram. Keller (1962)
describes the technology of the time. The implementation of a logical operator in
this technology was described in § 2.1.2 of Darche (2004). In 1937, George Stibitz,
a mathematician from Bell Labs, built the first binary circuit, an adding machine, the
Model K (K for Kitchen) in electromechanical technology (Figure 1.11(c)). One of
the pioneers of this generation in Europe was the German Konrad Zuse. His first

4 The dates provided are for illustrative purposes only because the transition from one
generation to the next is obviously gradual.

The Function of Computation 11

machine, the Z1, begun in 1936 and completed two years later, was a mechanical
computer powered by an electric motor. The first electromechanical relay computer,
the Z2, was completed in 1939. It was built using surplus telephone relays. The Z3
(storage of 1,8005 relays, 600 for the computing unit and 200 for the control unit,
according to Ceruzzi (2003)), whose construction began 1938 and ended in 1941,
used base-2 floating-point number representation. The Z4, started in 1942, was
completed in 1945. Rojas (1997) describes the architecture of the Z1 and the Z3, and
Speiser (1980), that of the Z4. In the United States, Harvard’s Mark I, also called
Automatic Sequence Controlled Calculator (ASCC) by IBM, was built by Howard
Aiken between 1939 and 1944. Bell Laboratories built six models of computers
using this technology between 1939 and 1950 for military and scientific use
(Andrews 1982). Andrews and Bode (1950) describe the use of the Model V from
Bell Laboratories. The calculation speed of these computers is estimated at 10
operations/s.

Figure 1.11. A modern electromechanical relay, its equivalent electrical diagram,
and the Model K adder. For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

The subsequent generations used electronic components, beginning in the 1946–
1955 period with the electronic tube, also known as the vacuum tube (thermionic
valve). This component has rectification, amplification, and switching functions. It
was the latter that was exploited in this case. As shown in Figure 1.12(a), a tube is a
bulb, made of glass in this implementation, that is sealed under vacuum or filled
with an inert gas. Inside are electrodes: the cathode, the grid(s) and the anode.
Electrons migrate from the cathode to the anode via thermionic effect, subsequently
passing through one (triode) or more grids (tetrode, pentode and higher), which

5 1400 in Zuse (1993) and Weiss (1996).

12 Microprocessor 1

modulates the flow. Figure 1.12(b) illustrates the resulting dimensions of a circuit
board in this technology.

Figure 1.12. An RCA 5965 type electronic tube and an IBM 701
electronic board (source: IBM). For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

Table 1.2 shows the main computers of generations 1 and 2.

(Beginning of
the project –)
operational
computer

Name Designers Country Key features

1936–1938 Z1 Zuse Germany
Mechanical computer

driven by electric motor

1939–1942 ABC Atanasoff/Berry United States
First electronic calculator

(non-programmable)

1943 Colossus Thomas Harold Flowers Great Britain
First electronic computer to

use a stored program

1939–1944 Harvard Mark I Howard Aiken United States

Electromagnetic computer
based on Harvard

architecture

(cf. § 3.4.2)

1942–1945 Z4 Zuse Germany
Electromechanical

computer

The Function of Computation 13

1943–1946 ENIAC

Eckert/Mauchly

(Moore School of
Electrical Engineering

University of
Pennsylvania)

United States

Second electronic computer

(reprogrammable via
wiring)

1946–1952 EDVAC
Eckert/Mauchly/von

Neumann
United States

Electronic computer based
on von Neumann

architecture

1948
Manchester

Baby6
Williams/Kilburn Great Britain

First electronic computer to
use a stored program

1949
Manchester

Mark I7
Williams/Kilburn GB

Second electronic computer
to use a stored program

1947–1949 BINAC Eckert/Mauchly USA
First commercially available

electronic computer

1946–1949 EDSAC Wilkes GB
Electronic computer

implementation of von
Neumann architecture

1951 Whirlwind I MIT USA
Electronic
computer

1951 UNIVAC I Eckert/Mauchly USA
Commercially available

computer

1945–1952 IAS machine
John von Neumann

(Princeton)
USA

Implementation of
von Neumann architecture

1952 701 IBM USA
First commercially available

scientific computer from
this company

1954 704 IBM USA
Scientific computer with
floating-point operations

1957 709 IBM USA
Improved version

of 704

Table 1.2. Reference computers for generations 1 and 2

Generation 3 (1956–1965) saw the emergence of electronic computers with
diodes and discrete transistors.8 These two components have the same function –

6 The Manchester Baby was the nickname given to the Manchester Small Scale Experimental
Computer.
7 The official name of the Manchester Mark I was the Manchester Automatic Digital
Computer or Machine (MADC or MADM). According to Reilly (2003), the correct date
should be June 21, 1948, the date on which the computer became operational.
8 As opposed to “integrated”.

14 Microprocessor 1

rectification and amplification respectively – as the electronic tube, but at a much
lower size, supply voltage, consumption of current and cost by a factor 10, 20 and
30 (orders of magnitude) respectively for the first three criteria. In addition,
reliability and switching speed both increased. The transistor (Figure 1.13(a)), a
contraction of the words “transfer resistor”, was invented in 1948 (Bardeen and
Brattain 1950). Its history is retraced in Brinkman (1997), and Scientific American
(1997); IEEE (1998). A Bipolar Junction Transistor (BJT) (Figure 1.13(a)) is a
sandwich of three layers of doped semiconductor materials (germanium or silicon)
of type NPN or PNP. It behaves like a triode (Bardeen and Brattain 1948) with three
electrodes: the emitter, the base and the collector. It behaves as an amplifier or a
switch, a function used in digital logic. Figure 1.13(b) gives an example of an
implementation of logic gates, in this case, seven inverters (cf. § 2.1.3 of (Darche
2004)).

a) b)

Figure 1.13. A transistor and an electronic transistor board with seven
inverters from a DEC PDP-8 (source: http://www.pdp8.net). For a color
version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Table 1.3 presents the main computers of this third generation. The supremacy of
the United States is notable.

The Function of Computation 15

Year Name Designer/manufacturer Country Key features

1960 PDP-1 DEC USA First minicomputer

1961 1401 IBM USA
First electronic computer

with stored program

1959 7090 IBM USA
Transistor implementation

of model 709

1963 B5000 Burroughs USA
Battery architecture

(cf. § 3.4.1)

1964 CDC 6600 Control Data Corporation USA First parallel computer

1965 PDP-8 DEC USA
The company’s iconic

minicomputer

Table 1.3. The main computers from this generation

a) b)

Figure 1.14. One of the 15 DIP integrated circuit CPU boards from a DEC PDP-
11/20 and an electronic board from an LSI-11 (PDP-11/03 – 1975)
(source: https://sydney.edu.au/science/psychology/pdp-11/Images/Images.html). For
a color version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

The introduction of the integrated circuit marks the beginning of generation 4
(1966–1980), which saw the introduction of centralized architectures and the
microprocessor. The first generations of components were called SSI (Small Scale
Integration) and MSI (Medium-Scale Integration). These emerged during the period
of 1966–1975. They are integrated circuits in a DIP (Dual-In-line Package) as
shown on the CPU (Central Processing Unit) board in Figure 1.14. A central unit
was made up of dozens of boards linked together by a backplane bus (cf. § V2-1.2
and V2-4.8) via edge connector Printed Circuit Board (PCB) gold fingers (bottom of

16 Microprocessor 1

the printed circuit in the photo). The encapsulation of integrated circuits was
presented in § 3.3 of Darche (2004). From the 1970s, the LSI (Large-Scale
Integration) generation enabled the appearance of the microprocessor (cf. § V3-1.1)
manufactured using MOS (Metal-Oxide Semiconductor), PMOS (Positive (channel)
MOS), and NMOS (Negative (channel) MOS), and then CMOS (Complementary9
MOS), which was used in computing for the first time only in the microcomputer.
The microelectronic technology used in computers was essentially bipolar (1965–
1985 period) for the sake of operating frequency. The most widespread were the
“standardized” families of TTL (Transistor–Transistor Logic) and ECL (Emitter
Coupled Logic, cf. § 2.3.3 of Darche (2004)). These families were previously
introduced respectively in § 2.3.2 and 2.3.3 of Darche (2004). Proprietary hybrid
integrated circuit technologies coexisted, such as SLT (Solid Logic Technology)
(Davis et al. 1964), in IBM’s System/360 family. Passive and active components
(Diode–Transistor Logic – DTL) were then assembled on a ceramic substrate and
encapsulated.

Table 1.4 presents some models of microcomputers, minicomputers, mainframe
computers and supercomputers.

Year Name Designer/manufacturer Country Key features

1964 System/360 IBM USA
ISA concept

(cf. § 3.5)

1970 PDP-11 DEC USA Iconic minicomputer

1973 Micral N R2E France
First computer with
PMOS technology

1975 CRAY-1 Cray USA
First

super-computer

1978 VAX-11 DEC USA
Successor

to the PDP family

Table 1.4. Primary computers in this generation

As shown in Figure 1.15, manufacturing technology has evolved over time.
Initially bipolar, it slowly evolved towards unipolar technologies – MOS, and then
today, dominantly, CMOS. Two crossovers should be noted, in 1985, when CMOS
technology achieved the performance level of TTL, and in 1991, when CMOS
achieved results equivalent to ECL technology (Emitter Coupled Logic). This meant
that unipolar technology eventually overtook these two bipolar technologies in terms

9 Technology brought together MOSFET transistors (MOS Field Effect Transistor) from the
two aforementioned technologies, that is, canal p and canal n respectively, from whence this
adjective stemmed.

The Function of Computation 17

of performance. ECL nevertheless continued to be used in the supercomputer
industry until 1990 thanks in particular to its functionality as a line amplifier
(transmission line driver). These technological advances had an impact on the
number of supply voltages and their values, as well as on current consumption. This
subject is dealt with in § V3-6.1.2.

Figure 1.15. Evolution of computing performance over time (from (Bell 2008b))

Generation 510 saw the emergence of electronic computers with integrated VLSI
(Very LSI) circuits in the 1980s. Seraphim and Feinberg (1981) introduce IBM’s
computer encapsulation technologies that were current as of the date of the article
and provide an overview of the evolution. The microcomputer that still serves as a
reference today, the IBM PC (Personal Computer) from the IBM Corporation, was
released in 1981 (Figure 1.16).

The 21 Century has taken us to the next generation with ubiquitous or pervasive
computing and integrated parallel systems. This is the era of SoC (System on (a)
Chip), which is a complete, integrated computer including several so-called core
processors, as well as Input/Output (I/O) controllers and RAM (Random Access
Memory). This is a result of Moore’s law (cf. § 1.5). The SoC’s predecessor is the
Application-Specific Integrated Circuit (ASIC), usually developed for a specific

10 An orthogonal use of the same phrase was used in Japan in 1981 when it launched the
national “fifth generation” project (Moto-oka et al. 1982; Treleaven and Lima 1982). The
associated software development used declarative languages referred to as the fifth
generation. In addition, Treleaven (1981) spoke of the fifth generation to refer to spatially
distributed systems carrying out decentralized computing.

18 Microprocessor 1

client with various design styles (full custom, semicustom and programmable).
These began to emerge in the early 1980s. In addition, MEMS
(MicroElectroMechanical System) or electromechanical microsystems, increasingly
integrated peripherals such as sensors, or even actuators, such as a micro-pump.

Figure 1.16. PC motherboard (5150) from IBM (1981). For a color version
of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Tables 1.5(a–c) summarize the different generations of integrated circuits by
showing, for each of them, the number of transistors n and equivalent gates p per
package, according to different authors. The equivalent gate (NAND with two inputs)11
is independent of technology and logic type. The number of gate-equivalent circuits is a
unit of measurement of the complexity of a circuit that indicates the number of gates
necessary to perform a given function. There exists a correspondence between a given
technology and the number of transistors per gate. Note the introduction of two
generations following VLSI, called ULSI (Ultra LSI) and GSI (GigaScale Integration),
the latter of which allowed for the integration of an entire system or SoC (System-on-
(a)-Chip). We should also anecdotally mention the intermediate generations ELSI
(Extra LSI) and SLSI (Super LSI). The range of the intervals varies from author to
author. Each generation has made it possible to integrate increasingly complex
functionalities. The SSI generation brought integrated gates; the MSI, simple
combinational and sequential functions (for encoding, multiplying, adding, storing,
counting, etc.) and the LSI, which was an entire system (Arithmetic and Logic Unit
(ALU), 4–8-bit microprocessor, I/O controller, memory size < 256 Kib, etc.). The
VLSI and the GSI represent the generations of 16–32-bit and 64-bit microprocessors.

11 Remember that NAND (Not AND) is a complete operator (cf. § 1.5.7 in Darche 2002).

The Function of Computation 19

Today, the purpose of this categorization is to show the hierarchy of the ideas behind
these logical systems and the acceleration of the density of integration.

Generations
Year of

introduction

Primary
electronic
technology

Number of logic gates p
per package

(Osborne 1980;
Weste and Harris 2010)

SSI 1964 Bipolar 1–10

MSI 1968 Bipolar
10–1000

100–1000 (Osborne 80)

LSI 1971
PMOS
NMOS

103–104

ELSI – – –

VLSI 1980
HMOS

CMOS
104–105

SLSI – CMOS –

ULSI 1990 CMOS 105–106

GSI SoC 2000 CMOS –

Table 1.5a. Classification of generations of integrated circuits
according to various authors

Generations

Number of logic gates p
equivalent per package

(van de Goor 1989)
(Kaeslin 2008) and TI

Number of transistors n/gates p
(Lilen 1979)

SSI 1–10 < 100/1–25

MSI 10–100
100 ≤ n < 1000

25 ≤ p < 250

LSI 102–104
1000 ≤ n < 10000
250 ≤ p < 2500

ELSI – –

VLSI 104–106
≥ 10000
p ≥ 2500

SLSI – –

ULSI ≥ 106 –

GSI SoC – –

Table 1.5b. Classification of generations of integrated circuits
according to various authors (continued)

20 Microprocessor 1

Generations
Number of transistors n/gates p

(Wickes 1968)
Number of logic gates p
(Siewiorek et al. 1982)

SSI
n < 10
p < 12

1–9

MSI
10 ≤ n < 100

12 ≤ p < 100
10–99

LSI
100 ≤ n < 1000

p ≥ 100
100–9999

ELSI 100 ≤ p < 999 –

VLSI
1000 ≤ n < 10 000

1000 ≤ p < 999 999
104–99 999

SLSI 10 000 ≤ n < 100 000 –

ULSI
n ≥ 106

p ≥ 106
≥ 105

GSI SoC – –

Table 1.5c. Classification of generations of integrated circuits
according to various authors (continuation and end)

The point of this functional decomposition was to “standardize” the electronic
components, thus allowing for a reduction in costs and a simplification of design.
We are referring to off-the-shelf components (COTS for Commercial Off-The-
Shelf). The first such components were digital electronics with simple
combinational and sequential logic (gates, latches, and flip-flops), followed by more
complex ones (decoders, registers, etc., cf. Darche (2002, 2004)). Next came the
microprocessor (cf. V3) and bit slicing (cf. § V3-5.1), which were the next examples
in the field.

The following table specifies the definitions used for this series of works.

Optical technology is an alternative to current (i.e. electronic) technology for
obtaining a high transmission rate, lower attenuation and resistance to corrosion. It is
already used in the telecommunications field in optical fiber and mass storage.
Optoelectronics can be used in the interconnection of display systems and
peripherals. All-optical logic gate operators exist in laboratories, aiming to achieve a
higher computing speed.

The Function of Computation 21

Generations Year of
introduction

Primary
electronic
technology

Number of transistors n
per package

SSI 1964 Bipolar < 10

MSI 1968 Bipolar 10 ≤ n < 1000

LSI 1971
PMOS

NMOS
1000 ≤ n < 10 000

ELSI – – –

VLSI 1980
HMOS12

CMOS
10 000 ≤ n < 100 000

SLSI – CMOS –

ULSI 1990 CMOS 105 à 109 (Meindl 1984)

GSI SoC 2000 CMOS
n ≥ 109 (Meindl 1995)

p ≥ 106

Table 1.6. Classification of generations of integrated circuits adopted

The quantum computer will undoubtedly be, if technology allows, a giant step
forward from the point of view of computing performance (cf. § V4-3.4).
Information is presented in the form of a qubit (quantum bit), which is a
superposition of two basic states |0〉and |1〉. This superposition, in association
with the property of entanglement, opens the way to massive parallelization of
computation. Indeed, it is possible to access all possible results in a single
computation.

Bell (2008a, 2008b) defines the concept of computer class as being a set of
computers with similar price, size, hardware and software technologies, computing
power and field(s) of application. A hardware and software industry is associated
with a class. The class determines the domain of use. The life cycle of a class, that
is, the process of creation, evolution, and disappearance, evolves along four axes of
cost evolution as illustrated in Figure 1.17. The class of supercomputers outstrips the
others in the race for performance. There is a class at constant cost whose
performance increases thanks to technological progress. There is a low-cost class. A
class generates a less efficient and less expensive subclass (order of magnitude:
factor of 10). A new class can supersede a previous one, as the PC did with the
workstation, or it can incorporate it. The emergence phase lasts for about 10 years,
triggered by new hardware technologies that enable advances in processors, buses,

12 HMOS: High-density MOS.

22 Microprocessor 1

storage and I/O interfaces (in particular display and communications) and new
software technologies (programming environment, Operating System (OS), Human–
Machine Interface (HMI), etc.).

Figure 1.17. Axes of evolution over time of the price of classes
(from (Bell 2008a b) modified)

The six main classes of computers before 2000 were, in descending order of
performance, the scientific computer, the mainframe computer, the minicomputer,
the workstation, the microcomputer or personal computer and the embedded system.

Scientists require intensive and time-consuming computation involving a large
amount of data. This is the field of High-Performance Computing (HPC), and the
associated computers are called supercomputers. This type of machine by definition
has the highest computing speed, more primary and secondary storage than a
minicomputer (order of magnitude: factor of 103 or 210). They originally had a
single, ultra-fast processor. They then evolved by implementing parallelism. The
representative company in this field from the 1980s is Cray Corporation with the
Cray-1 (Figure 1.18), which operated in n = 64-bit format. In 1984, three classes of
architecture – pipelined, vector (array processor), and multiprocessor – could be
distinguished. The top countries in terms of computing performance were China and
the United States (2016 data), with computers having a floating-point computing
power (cf. § 4.2 of Darche (2000)) greater than 15,000 PFLOPS (petaFLOPS = 1015
Floating-Point Operations Per Second). The TOP500 project site (URL:
http://www.top500.org) ranks their performance. The subclass is the mini-
supercomputer (Architecture Technology Corporation 1991; Besk et al. 1993) like
the “Crayette”, a CMOS implementation of the original. This group also includes
midrange systems. This type of machine, which was air cooled, consumed much less

The Function of Computation 23

power than a supercomputer. It had vector computing capabilities and could be a
multiprocessor.

Figure 1.18. The iconic Cray-1 supercomputer referred to as the “World’s
most expensive loveseat?”13 (Computer World 1976). For a color

version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Figure 1.19 shows the performance curve for some reference machines.

Figure 1.19. Evolution over time of supercomputer performance
(according to Succi et al. 1996)

13 The title of the photograph in the associated article.

24 Microprocessor 1

The term “mainframe” describes the cabinet containing the central unit and
primary storage. This type of computer is characterized by sufficient computing
power to support communications with hundreds of terminals and the execution of
associated applications. The “mainframe” is also referred to as a “central system or
central computer”. It is a transaction-based system that is associated with concepts
such as batch processing, Simultaneous Peripheral Operations On-Line (SPOOL),
cache and devices like the hard disk Mass Storage Device (MSD). The company that
is most representative of the first category is undoubtedly IBM, with the IBM
System/360 (Figure 1.20) described in Pugh (2013) and the IBM System/370. In the
1990s, the IBM 3090 was a representative central computer. This type of computer
could be cooled by a heat transfer fluid other than air, such as water (see Ellsworth
et al. (2008) on this subject).

Figure 1.20. IBM System/360 mainframe computer

The minicomputer, abbreviated mini, is a lower-level class. It is therefore
sometimes called a departmental computer14 as opposed to the centralized view of
the mainframe. A minicomputer is a central computer of reduced size and power.

14 That is, for use by a group of people. But this name is not discriminative, because a
parallel computer like the cydra 5 (Rau et al. 1989) is referred to as a departmental machine.

The Function of Computation 25

However, it is based on a similar philosophy and is more powerful than a
microcomputer. The first minicomputer was the PDP-8 (1965) from Digital
Equipment Corporation (DEC). The precursor machines were the Bendix G-15
(1956), the LGP-30 (1956) and the LINC (1962), which is considered the first
minicomputer. The representative models were the PDP (Programmable Data
Processor) line, with the PDP-11 as a reference machine; the VAX-11, with the
VAX-11/780 as the reference machine for DEC and the AS/400 from IBM (Figure
1.21). From this class, a derived subclass with superior performance was developed.
These machines were called super minicomputers. A super minicomputer had a
working data format two to four times greater than the basic version of a given
generation. It was equipped with hardware accelerators or coprocessors for
computation of vectors or floating-point numbers. Two representatives were the
VAX 6000 series (Sullivan et al. 1990) and the 8000 series (Burley 1987).

Figure 1.21. The IBM Application System (AS/400)
family of minicomputers

Bell (2014) divides the evolution of this sector into three periods: the
establishment of the associated industry (1956–1964, in green in Figure 1.22), the
“triumph” (1965–1974), which overlaps with the period of cohabitation with the first
(V)LSI microprocessors (1971–1984), and the decline (1985–1995, in red on this
same figure). The advent of the 8-bit and especially 16-bit microprocessor
generations made it possible to introduce low-cost, entry-level versions (low end).

26 Microprocessor 1

Examples include DEC’s LSI-11 (DEC 1975, 1976) chipset for its PDP-11 and the
MicroNova mN601 (Godderz 1976) microprocessor or MPU (Godderz 1976) from
Data General Corp. (compatible with the Fairchild F9440 Microflame™), equipped
with mN606 4 Ki × 1-bit RAM and the mN603 I/O controller; these product lines
provided 8- and 16-bit architecture respectively.

Figure 1.22. Evolution over time of the prices of minicomputers
(in thousands of $) (Bell 2014) © IEEE. For a color version of
this figure, see www.iste.co.uk/darche/microprocessor1.zip

The decline in minicomputers was due to advances in the integration of
electronic technology that led to the appearance of the microprocessor, which
replaced it. The impact of this component on the market in this sector has been
studied in particular by Schultz et al. (1973). In 1973, the microprocessor had a
memory access time slower by a factor 1/2 to 1/3 compared to a mid-range
minicomputer.

The (personal) workstation is a powerful single-station computer built initially
around a 16-bit microprocessor (the MC68000 from Motorola), mainly using the
multitasking UNIX OS and connected to an Ethernet-based Local Area Network

The Function of Computation 27

(LAN). The goal was to break away from the classic computer-terminal system for
individual use of interactive applications. The work environment was to be shared
(files, for example) and distributed over a network. It offered high-resolution
graphics capacity, eventually including color. The preferred fields of application
were Computer-Aided Design (CAD), Computer-Aided Drawing (CAD) and HPC.
Other fields included computer graphics, video processing and 3D (three-
dimensional) image synthesis. The initial idea dated from the 1950s, with prototypes
in the 1960s using a more powerful computer (mainframe) connected to a graphics
terminal. The first prototypes appeared in the early 1970s with graphic terminals
connected to mini or autonomous computers such as the Alto PARC (Xerox Palo
Alto Research Center) in 1973. Mature products emerged during the next decade.
Apollo (since bought by HP Company), Silicon Graphics (now SGI), Sun
Microsystems (since bought by Oracle Corporation) and Xerox were the four
representatives of this class with their first machines respectively the Domain DN-
100 (1981), the IRIS 1400 (1984), the Sun-1 (1982) and the Xerox STAR (1981).
We should also mention IBM’s RS/6000 (January 15, 1990). We began to refer to
3M and 5M machines. RFC (Request For Comments) 782 (Nabielsky and Skelton
1981) specified that a 3M machine had at least one MB (i.e. MiB) of memory, a
screen with a resolution of at least one Megapixel, and computing power of one
Million Instructions Per Second (MIPS). In addition, it should not cost more than
one “Megapenny” ($10,000 at the time). The term 5M referred to Megabyte
memory, Megapixel display, MIPS processor power, 10+ Megabyte disk drive, and
10 Megabit/s network). Bell (1986) and Nelson and Bell (1986) paint a portrait of
this type of machine and trace its evolution. It appeared thanks to the development
of local networks. The price range was $103–104. The systems used 32-bit RISC
(Reduced Instruction Set Computer)-type microprocessors because of their
computing power. Today (2010), 64-bit Intel microprocessors are used. Figure 1.23
shows a modern workstation.

Figure 1.23. An Octane graphics workstation from Silicon
Graphics, Inc. (SGI). For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

28 Microprocessor 1

The microcomputer15 is a self-contained computer whose central unit is a
microprocessor. It is a general-purpose computer, personal, inexpensive, and with
limited computing capacity, in comparison with the above categories. It was
invented in France, with the Micral N, which was patented in 1974 (Gernelle 1974)
(Figure 1.24(a)). It was intended in particular for use in real-time applications. The
first model sold in kit form in 1975 was the ALTAIR 8800 (Roberts and Yates
1975a b) from the American company MITS (Figure 1.24(b)). Before these, there
were evaluation kits (cf. § V5-2.1.1) for implementing a given microprocessor. The
first generation (1971–1976) is considered to include the pioneers. The second
generation (1977–1990) saw the introduction of home microcomputers. The first
machines were built around an 8-bit microprocessor and natively included BASIC
(Beginner’s All-purpose Symbolic Instruction Code) ROM (Read-Only Memory).
An audio cassette player provided mass storage (cf. § 7.2.2 in Darche (2003))! These
computers include the iconic Apple II, the Commodore PET (Personal Electronic
Transactor) 2001, the Tandy TRS-8016 from Tandy RadioShack, the BBC (British
Broadcasting Corporation) Microcomputer System (1981) from Acorn Computer,
and the ZX Spectrum (1982) from Sinclair Research Ltd. Libes (1978) describes this
generation’s technology. These machines naturally evolved towards a 16-bit
architecture. With the appearance of the Floppy Disk Drive (FDD, cf. § 7.2.2 in
Darche (2003)) in the mid-1970s, these machines became equipped with a simple
OS such as CP/M (Control Program for Microcomputers, Digital Research, Inc.).
The microcomputer was de facto standardized with the Personal Computer17 (PC)
from IBM, which had a microprocessor with a 16-bit internal architecture (although
the external interface was in 8-bit format) from Intel. The first laptops that were not
self-sufficient in terms of power were released in 1983 (the Compaq Portable) and
1984 (the IBM18 Portable PC 5155 model 68). In the 1990s, a representative
computer used by large companies was the IBM PS/2. Today, the battery-powered
laptop has an energy autonomy of less than 10 hours. The microcomputer is
available as a touchscreen tablet PC, which first appeared in 2001, and the
associated phablet telephone (phablet is a contraction of the words smartphone and
tablet), which appeared in 2010. Doerr (1978) describes this period.

15 This is called the “micro” for short.

16 TRS stands for Tandy RadioShack.

17 This name was popularized with this machine, but the term has multiple origins (Shapiro
2000). One source was the magazine Byte, which published an editorial by Helmers in its
May 1976 issue. An older source can be found in an advertisement for the HP 9100 in the
journal Science on October 4, 1968 (HP 1968).

18 This company was the first to commercialize the (trans)portable computer in 1975, the
5100. It was not designed around an MPU, but a custom controller called the PALM (Put All
Logic in Microcode).

The Function of Computation 29

a) b)

Figure 1.24. The first microcomputers: the Micral N from R2E
and the ALTAIR 8800 from the American company MITS (source: unknown).

 For a color version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Single-Board Computers (SBC) were a variant of the microcomputer used for
process control and automation. These are complete MPU computer systems on a
single printed circuit, sometimes in an OEM (Original Equipment Manufacturer)
version. One of the first companies to offer this type of equipment was DEC with
the LSI-11 series (Doerr 1978, Stiefel 1978). They were mainly intended for the
industrial market, although there was also a market for individuals (i.e. hobbyists).
These boards generally had a standardized form factor (cf. § V5-3.4.1) and
communicated via an industrial bus (cf. § V2-4.8). There were also versions for
embedded systems, such as those from the PC/104 consortium.

Another type of computer is the embedded or on-board system. These systems
contain a dedicated management system. It therefore consisted of an electronic
system with autonomous software from an operating point of view. The software is
built-in. The algorithms implemented are generally complex and require a powerful
microprocessor. They often involve a real-time concept. Etiemble (2016) thus
distinguishes, on this last criterion, between on-board systems, which are mobile
with real-time constraints, and embedded systems, which are fixed and without real-
time constraints, although the term “embedded” is generally considered to
encompass both definitions. Autonomous energy systems impose thermal and
current consumption constraints. Examples of applications are computer peripherals
like the printer, automated systems like industrial controllers and mobile devices like
the mobile phone. They are widely used in the transportation sector (car, train,
rocket, etc.). And similarly to what was said in the previous section, after 2010, the

30 Microprocessor 1

line between the on-board system and the microcomputer becomes increasingly
blurry for certain devices like the mobile phone (smartphone).

Advances in microelectronic technologies, mainly CMOS, have enabled
advances in the fields of storage and communications, allowing space-saving
(corresponding form factors: SFF for Small Form Factor), low current consumption
and communications-based devices to emerge. We are referring to Cell-Phone-Sized
Devices (CPSDs). As illustrated in Figure 1.25, digital systems equipped with one or
more microprocessors or microcontrollers (MCU for MicroController Unit, cf.
definition in § V3-5.3) are becoming ubiquitous. In everyday life, they control, for
example, washing machines (1), cars (2) and cameras (3). In healthcare, they
manage heart rate monitors (4) and control artificial hearts. They are found in
network interconnection equipment such as the router (6), the gateway and the
Internet modem. They are used in entertainment electronics, for example, in game
consoles (7) and sound/video players (PAD for Personal Audio Device, PVD for
Personal Video Device, PA/VD for Personal Audio/Video Device). They are used in
mobile devices such as the mobile phone (5), the Personal Digital Assistant (PDA),
and the portable microcomputer (8). The server (9) and the mainframe (10) perform
computation even faster thanks to the microprocessor. They have become ubiquitous
in connected objects, with one commercially available example being the connected
watch (11). They are also embedded in devices such as the connected electric meter
(12). Since the early 1990s and the beginning of this century, Wireless Sensor
Networks (WSN) and the Internet of Things (IoT) have opened up a wide field of
applications. The 21 Century will undoubtedly see the rise of robots (13). The
boundaries between all these categories are increasingly blurry or non-existent.
Today (2000), servers are often structured like microcomputers with more powerful
technical characteristics including computing power and the size of primary and
secondary storage. The same goes for the workstation.

Figure 1.25. Increasingly blurry boundaries. For a color version
of this figure, see www.iste.co.uk/darche/microprocessor1.zip

The Function of Computation 31

As of 2010, the microprocessor is the foundation for all classes, from the
supercomputer to the Internet of Things (Figure 1.26). It is gradually eliminating the
notion of classes! This trend was symbolized by the expression “killer micro”
popularized by Brooks (1989), which refers to CMOS-based microprocessors, which
were going to gradually replace the mainframe computers, minicomputers, and
super-computers.19 Belak (1993) illustrates its applications. Figure 1.26 shows the
evolution of these classes over time. Michael Burwen (Architecture Technology
Corporation 1991) divides classes into three categories of large, medium, and small
systems. In the first, we find super computers, central computers with vector
computing capability, and parallel computers. The midrange systems category
includes mini super computers, classic mainframe computers, servers and super
minicomputers. Small systems include servers, conventional and graphical
workstations, and other systems. They merge into a single category, namely,
multiprocessor systems. We can also add two other categories for microcomputers
and small-form factor systems.

Figure 1.26. Categories of computers (according to Bell (2008a))

Thanks to the development of communication networks, the server offers
services to connected clients such as the sharing of applications or storage. These

19 “No one will survive the attack of the killer micro!”

32 Microprocessor 1

computers have powerful computing, storage and communication capabilities
(Figure 1.27).

Figure 1.27. The client–server model. For a color version of this
figure, see www.iste.co.uk/darche/microprocessor1.zip

Figure 1.28. A blade server. For a color version of this figure, see
www.iste.co.uk/darche/microprocessor1.zip

The Function of Computation 33

Its modern form is the blade server. Several blades are mounted in a chassis that
supplies them with power and cools them with air, as illustrated in Figure 1.28. This
pooling of electronic sub-assemblies (power supply, cooling system, communication
elements and even storage systems) makes it possible to achieve a compact format.
The alternative solution is the server rack, which is a cabinet that accommodates
servers with standardized dimensions (unit: U = 1.75"). Another form factor is the
tower. Haghighi (2001) describes this architecture.

Figure 1.29. Example of a Beowulf server architecture. For a color version
of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Today, in order to increase computing power, the computer has become
parallelized. This means that it is made up of several computing units (parallelism of
execution) and that the data is shared. Access occurs simultaneously (data
parallelism). Computing and data resources can be distributed geographically, and
access must be transparent. Thanks to the development of communication networks
and these types of parallelism, three types of computing resources have appeared,
namely, compute farms, grid computing and cloud computing. The term cluster
designates a set or cluster of a dozen servers at most, also called a compute farm.
Each node in the cluster is a commercially available computer, and these nodes are

34 Microprocessor 1

identical in terms of hardware and OS (property of homogeneity). Figure 1.29 shows
an example of a Beowulf cluster (Sterling et al. 1995). For a workstation, we speak
of NOW (Anderson et al. 1995) for a Network Of Workstations, or COW for a
Cluster Of Workstations. The nodes communicate via a broadband network such as
Infiniband. The cluster appears externally as a single computer, with the user
connecting securely via a front-end server. This organization facilitates the hardware
management of the different computer components (processor, primary and
secondary storage, communication interfaces, etc.) and the software. It allows for
easy scalability. From the point of view of fault tolerance, it increases availability.
One possible use is HPC. For more information on the subject, see Pfister (1998).

A computational grid is a heterogeneous hardware and software infrastructure
that is geographically distributed (i.e. delocalized) and allows virtual organizations
(individuals, institutions, etc.) to solve problems and share data (Foster et al. 2001).
This term was chosen by analogy to the electrical network, which supplies energy
pervasively. This virtual computer system thus offers extensible and transparent
access to distributed resources. A node in the grid can be a supercomputer or a
cluster. These resources can communicate via any type of network, including LAN,
Metropolitan Area Networks (MAN), or Wide Area Networks (WAN) like the
Internet. Originally, this Information Technology (IT) infrastructure was
implemented in response to the scientific community’s needs (particle physics in
particular) for distributed computing (computational grid) and data storage (data
grid). A desktop grid is a variant where weakly coupled standalone computers
participate in global computation in their spare time. For more information on the
subject, see Foster and Kesselman (2003) and Shiva (2006).

Cloud computing is a paradigm that enables a user to relocate computing and
storage resources, which can then be accessed via a network, generally a
metropolitan or wide area network like the Internet. The two earlier infrastructures
can be incorporated. These hardware and software resources are delivered as
services. Table 1.7 summarizes the main differences between farm, grid and cloud
computing. The main advantages of these architectures are their scalability thanks to
their modularity and their high power/cost ratio thanks to the standardization of
hardware and software components.

Depending on the level of service, cloud computing can provide Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).
The first offers a virtualization solution for servers, networks and data storage. The
second also provides middleware. The latter, also known as the “ASP model”
(Application Service Provider), offers software functionality over the Internet where
the application, in whole or in part, is run on remote servers.

The Function of Computation 35

Characteristics Computing farm Computing grid Cloud computing

Homogeneity/Heterogeneity Homogenous Heterogeneous Either/or

Hardware and OS
characteristics

Identical hardware
and OS

Different hardware
and OS

Computers managed
by the OS in physical

units

Allocation

Works as a single
unit with no use of

external
computing
resources

Can call on “idle”
PC computing

resources

Several
applications executed

in
parallel

Geographical distribution One location

Distributed over
local, metropolitan,

and wide area
networks

Distributed primarily
on metropolitan

networks

Resource management Centralized
Independent nodes
with own-resource

management
Independent nodes

Centralization
Centralized and
tightly coupled

Decentralized and
loosely coupled

Dynamic
infrastructure

Task and scheduling
management

Centralized Decentralized
Minimal management

or self-managed
platform

User interface
Appears as a
single system

Appears as a
dynamic and

diversified system
Self-service use

Application domain
Education,
research,

engineering

Simulation
and modeling,

Computer-Aided
Design (CAD),

Research

Banking, insurance,
weather forecasting,

SaaS

Table 1.7. Comparison of characteristics between computing resources
(from Suri and Sumit Mittal (2012))

36 Microprocessor 1

1.3. Analog approach

The beginning of the history of computers is generally dated from the
appearance of calculating machines (cf. § 1.1), but we must not forget analog
calculating machines. The first known analog calculator is the Antikythera
mechanism (Figure 1.30) dated around 90–60 BC. It described the movements of the
moon and the sun in order to predict an eclipse.

Figure 1.30. The Antikythera mechanism (left) and a reconstruction (right), by
Michael Wright (source: unknown). For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

An analog computer, unlike the digital version, uses analog quantities
proportional to the calculation values (Truitt and Rogers 1964). The precision of the
result depends specifically on the measurement of the result. The underlying
technology was hydraulic, mechanical, then electrical and electronic. These
computers could be for general use, such as the slide rule, or they could be
dedicated. They were primarily used to perform simulations of physical phenomena
because they were able to compute the four basic arithmetic operations (+, -, etc.) or
more complex functions like integration or derivation. An example of mechanical
technology is Vannevar Bush’s differential analyzer (1931; 1945). Data entry was
done using an entry table that looked like a plotter. Figure 1.31 shows an electronic
implementation, the PACE (Precision Analog Computing Element) 231R-V analog
computer from the leading company of the time, Electronic Associates Inc. (EAI).
The output device could be a galvanometer, an oscilloscope or a paper recorder.
These devices were used by industries including aeronautics and space for
simulation and systems control purposes. Variants were the hybrid computer
(logic/analog combination) and the high-speed analog computer. Its industrial
decline in the late 1970s was due to the predominance of digital electronics, which

The Function of Computation 37

became cheaper, faster and more precise with standard components like the
microprocessor. For a historical introduction, see Small (2001).

Figure 1.31. The PACE 231R-V analog computer
system from EAI (EAI 1964)

1.4. Hardware–software relationship

It is now necessary to position software (SW) in relation to computer hardware.
Figure 1.32 shows a layered view with hardware and software examples. The lowest
layer is the hardware layer (HW). The microprocessor component of the computer is
the subject of this work. Primary storage has been described in Darche (2012). I/O
interfaces were discussed in Darche (2003). Above, a first low-level software layer
called firmware20 (FW) tests the hardware, initializes it, and loads the operating
system. Designated by the term BIOS (Basic Input/Output System) in the PC
(Personal Computer) world, it includes a set of software routines executed in
interrupt mode (cf. Chapter V4-5). The third software layer is the OS (operating
system software), which manages hardware and software resources for the whole. It
is responsible in particular for security in the broad sense. The execution of
applications (last layer, application software) relies on the latter. Between each
layer, an interface allows the upper layer to use the services of the one below. In

20 In contemporary usage (cf. § V5-3.5.1), this is a program stored in ROM, as opposed to
one stored in mass storage (secondary or tertiary memory), which is referred to as software.

38 Microprocessor 1

particular, a virtual machine is a software layer located either below the OS (System
Virtual Machine) or above it (Process Virtual Machine), which emulates another
architecture and its associated computing model (within the meaning of Chapter 3).
On this last subject, Smith and Nair (2005) provide an excellent reference.

Figure 1.32. Layered view of software infrastructure

The technological generations within the meaning of § 1.2 provide support for
software concepts such as programming languages and operating systems. As noted
by Denning (1971), this classification is also linked to technological advances in the
software field. In addition, they characterize the entire computer system. Thus, the

The Function of Computation 39

term “generation of computers” encompasses both hardware and software
technologies, as summarized in Tables 1.8(a) and 1.8(b).

 Generations of electronics

Characteristics 1st 2nd

Period 1946–1955 1956–1965

Electronics

Electronics components vacuum tube transistor

Cycle time 0.1–1 ms 1–10 µs

Primary storage

Components

Delay line

Electrostatic tube

Magnetic drum (start)

Magnetic drum
Magnetic core

Access time 1 ms 1–10 µs

Secondary storage
Punched tape
Punched card

Delay line

Punched card

Magnetic tape

Magnetic disk
Magnetic drum

Programming languages
Machine language

Assembly language (start)

Assembly language

High-level language (HLL)

Hardware concepts Arithmetic units

Floating-point units

microprogramming (concept)
interruption

I/O processor

Software concepts - Batch processing monitor

Hardware examples

ENIAC

IAS Princeton

UNIVAC

IBM 650/701

IBM 7090–7094
CDC 1604
CDC 6600

Table 1.8a. Generations of computers and main features

40 Microprocessor 1

 Generations of electronics

Characteristics 3rd 4th 5th

Period 1966–1975 1976–1989 1990–202X

Electronics

Electronics
components

Integrated circuit
(SSI-MSI)

Integrated circuit
(LSI-VLSI)

Integrated circuit
(ULSI-GSI)

Cycle time 0.1–1 µs 0.1–1 µs 1 µs–1 ns–0.1 ns

Primary storage

Components
Magnetic core

Other magnetic media
Solid-state memory Solid-state memory

Access time 0.1–10 µs 0.1 µs 100 ns–< 1 ns

Secondary storage

Same as 2nd generation

Extended core storage
Mass core storage

Same
Magnetic hard disk

Solid-State Disk (SSD)

Programming
languages

High-level languages

High-level languages

Concurrent
programming

Hardware concepts

Microprogramming

Pipeline cache

Pagination
(Virtual memory)

Code translation

Microprocessor

(1971)
Microcomputer

(1973)

Instruction-Level
Parallelism (ILP)

Thread-Level
Parallelism (TLP)

(multicore)

Massively Parallel
Processing (MPP)

Heterogeneous
environment

Software concepts

Timesharing

Segmentation

(virtual memory)

Multiprogramming

Multiprocessor OS

Windowing

Hardware examples

DEC PDP-8

IBM System 360/370

ILLIAC IV

CDC 6600

TI ASC

Cray 1

Cyber 205 (Control Data)

IBM PC

VAX 9000

IBM 3090

Cray X-MP

Cray MPP

Fujitsu VPP500

TMC CM-5

Intel Paragon

Table 1.8b. Generations of computers and main features (continued)

The Function of Computation 41

ADDITIONAL CONCEPT. ̶ We classify languages by increasing levels of abstraction.
Generation 0 was machine language. The next generation includes Assembly
Languages (AL, cf. § V5-1.3). These are low-level languages. The first high-level
qualified languages that characterize the third generation appeared in the 1950s.
These include FORTRAN (FORmula TRANslation, 1957), ALGOL (ALGOrithmic
Language, 1958) and COBOL (COmmon Business Oriented Language, 1959). The
designation “4th Generation Languages” or 4GL characterizes languages that are
close to natural language. They facilitate programming by offering, for example,
easy access to databases and a better Human–Machine Interface (HMI). Some
enable automatic generation of lower level code. They are generally specialized for a
particular field such as mathematics or management. The subcategories are query
languages, data reporting and code generators.

Figure 1.33. Historical timeline of the evolution of concepts
for the families of computers (inspired by Burger et al. 1984)

A new class of computers is benefiting from advances in technology and
integrating earlier hardware and software concepts as soon as technically possible,

42 Microprocessor 1

as shown in Figure 1.33. An example is the Virtual Memory (VM) mechanism that
appeared in MPUs only in 16-bit versions with segmentation in the 8088/8086. Thus
computer concepts shift from class to class when necessary and when the technology
allows. Innovations, initially much more spread out in time, saw their rate of
appearance intensify with the invention of the MPU. The ‘I’’ mark is just a time
marker to indicate the release of the first MPU, the 4004.

As soon as computing power becomes sufficient, new applications can be
supported, as illustrated in Figure 1.34 for the multimedia field.

Figure 1.34. Need for computing for multimedia applications
(based on 2003 ITRS document)

Finally, it should be noted that the notions of operator/programmer/user were
initially nested. As shown in Figure 1.35, the operator was first responsible for
executing the programs written by the programmer/user. Later, the concept of user
was detached from that of programmer to be attached to the operator. These changes
are due to progress in both hardware and software.

The Function of Computation 43

Figure 1.35. Evolution of computer roles
(from Nelson and Bell (1986))

1.5. Integration and its limits

Electronics, with the three aforementioned active components (diode, transistor
and integrated circuit), represented a major technological development that marked
the computer industry. Continued advances in microelectronics have increased the
functional density of integrated circuits and the speed of information processing. An
observation made by Intel co-founder Gordon Moore that bears his name, Moore’s
Law, was that the number of transistors integrated on a microchip would double
every 18 months (Moore 1975). This value has varied over the years from 24
(Moore 1965) to 12 months, eventually stabilizing at the aforementioned value.
Figure 1.36 shows the evolution of the number of transistors for our topic. The
dominant manufacturing technology, initially essentially bipolar, is today unipolar,
namely, MOS and, more precisely, CMOS.

Bell (2008a b) gives the equation for the growth in the number of transistors n
per chip as a function of the year t, which is: ݊ = 2௧ିଵଽହଽ	ሺfor	1959		t		1975ሻ [1.1]

݊ = 2ଵ × 2షభవళఱభ,ఱ 	ሺfor	t		1975ሻ [1.2]

A professional association, the International Technology Roadmap for
Semiconductors (ITRS), representing the main regional professional associations in
the sector, publishes a report every two years detailing the future of the
semiconductor industry. Current technologies for manufacturing primarily CMOS-
based integrated circuits are reaching their limits. There is what specialists call the
red brick wall first predicted in 2001 to occur in 2005–2008 (ITRS 2001), which is
the physical limit for etching.

44 Microprocessor 1

F
ig

u
re

 1
.3

6.
 E

vo
lu

tio
n

ov
er

 ti
m

e
of

 th
e

nu
m

be
r

of
 tr

an
si

st
o

rs
 o

f a
n

in
te

gr
a

te
d

ci
rc

ui
t.

F
or

 a
 c

ol
or

 v
er

si
on

of

 th
is

 fi
gu

re
, s

ee
 w

w
w

.is
te

.c
o

.u
k/

da
rc

he
/m

ic
ro

pr
oc

es
so

r1
.z

ip

The Function of Computation 45

F
ig

u
re

 1
.3

7.
 T

he
 fi

ne
ne

ss
 o

f
et

ch
in

g
of

 in
te

g
ra

te
d

ci
rc

u
its

 o
ve

r
th

e
ye

ar
s

(t
ec

hn
ol

o
gi

ca
l n

od
e)

.

F
or

 a
 c

ol
or

 v
er

si
on

 o
f t

hi
s

fig
u

re
, s

ee
 w

w
w

.is
te

.c
o.

uk
/d

ar
ch

e
/m

ic
ro

pr
oc

es
so

r1
.z

ip

46 Microprocessor 1

The evolution in etching for integrated circuits depends on physical and
technological parameters, as well as, of course, economic constraints. For example,
as the width of the channel of the unipolar transistor decreases, the mobility of the
electrons also decreases. Figure 1.37 shows its change over time. This controversial
metric, used by the industry (cf. (Arnold 2009)) and withdrawn by the ITRS in 2005,
is called the technology node, also referred to as the process, technology or
manufacturing node, or simply the node or generation. Depending on the case, this is
the length of the gate of a Field Effect Transistor (FET) in MOS technology or the
minimum distance21 between two lines of metal or polysilicon. For storage, we
speak of a half-pitch. This improvement in technology (minimum feature size and
diameter of the wafer) then allows for greater integration and an increase in clock
speed. Greater integration can mean an increase in the number of functional blocks
of the CPU, or even a multiplication of processors for parallel processing. It also
makes it possible to integrate an entire system (SoC approach).

Another wall is the power wall, which refers to a chip’s maximum energy
dissipation.

Figure 1.38. The energy wall (from Xanthopoulos 2009 on data from ISSCC). For a
color version of this figure, see www.iste.co.uk/darche/microprocessor1.zip

Figure 1.38 shows the evolution of the power dissipation per unit area which
continues to increase with the different generations of MPU. In this graph, power
doubles every 3.5 years, going from 0.2 W in 1970 to 200 W in 2005. Considering
that a chip has an area of 1 cm2, the most extreme value to compare is the power
density of a nuclear reactor, for example with pressurized water, which is around
300 W/cm2. Feng (2003) performed the same study, but with Intel circuits.

21 Another term is “feature size”, which is the minimum width that can be etched in silicon.

The Function of Computation 47

Dissipating more calories therefore requires increasingly efficient cooling. This
requires the use of a better thermal conductor (i.e. with lower thermal resistance), for
example ceramic or metal, or the implementation of forced circulation of a gaseous
heat-carrying fluid (air) or liquid.

Another physical limit is the signal propagation speed wall. This is linked to the
operating frequency of the logic. The propagation delay does not decrease, even
with ever-finer etching. Matzke (1997) has shown that the more the technological
node decreases, the less it is possible to reach distant logical subsets (Figure 1.39).

Figure 1.39. Chip area achievable with progress in
integration (according to (Matzke 1997), modified)

1.6. Conclusion

Two inventions have enabled advances in the field of computing. These are the
concepts of the stored program (cf. section 3.2.3) and the transistor (Patterson 1995).
We must add a third, that of the integrated circuit, which, with VLSI and subsequent
generations, enabled the emergence of complex integrated circuits like the
microprocessor. Without them, the microcomputer and the democratization of
computing would not exist. The evolution of computers is characterized by
increasing generalization. Initially specialized for scientific computing, they have
now invaded all fields thanks to the microprocessor. The latter destroyed the notion
of computer classes.

2

The Function of Memory

Storage is one of the computer’s most important functions. It is omnipresent.
It is found in the main memory and obviously in the cache hierarchy, but also in
the processor, Input–Output (I/O) interfaces and peripherals. The main memory
is made up of integrated electronic components designed for memorization,
which are usually soldered onto one or both sides of a small multilayer Printed
Circuit Board (PCB for Printed Circuit Board), the whole called a memory
module. Memory can also be a functional subset of a more complex chip such as
a microprocessor or a microcontroller. It can be present in the form of registers
or memory areas of larger size such as a cache or a small main memory chip. In
this case, it is referred to as “embedded memory” (cf. V2, a continuation of
Darche (2012), forthcoming). It is also found in I/O controllers in these two
formats (i.e. register or cache) or in the form of a buffer that manages the flow
of information according to the “First In, First Out” (FIFO) policy. A peripheral
such as a printer or a Hard Disk Drive (HDD) can also have FIFO or cache-type
buffer memory. Solid-state memory, initially in discrete form and then in
integrated form beginning in the 1970s, has never stopped increasing in
capacity. Manufacturing technologies have evolved over the past 40 years, but
the principles of memorization and its internal structure have hardly changed,
paradoxically. These technologies form the basis of one of the largest markets
for integrated circuits, but have low profit margins.

NOTE.– This chapter only provides a review; the subject was thoroughly addressed
in Darche (2012).

–

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

50 Microprocessor 1

2.1. Definition

Memory is mainly characterized by its total storage1 capacity C as well as its
organization, the method or policy of memory access, the type of access or
operation, its operating speed, permanence (or non-volatility) of the information and
its cost.

The unit of measure of capacity C is the bit. In Table 2.1, we present the
vocabulary relevant to a set of bits. The term byte actually originates from the word
“bite”, but its spelling was changed because of its similarity to the word “bit”
(Buchholz 1962, 1977). It defines a group of bits. In the 1950s and 1960s, computers
used bytes of 1 to 6 bits (Buchholz 1956). Today, the byte is 8 bits. With the advent
of 16-bit microprocessors (1980s), a word came to represent 16 bits. The term
double word was introduced for 32-bit microprocessors. The next generation
brought about the term quad word. We sometimes also speak of density, which
refers to the number of bits stored per unit area (in.2 or mm2).

English terms Format n (bits)

bit (b) 1

nibble 4

byte (B) 8

word
dualoct

16

double word quadlet quadoct 32

quad(ruple) word
octlet (IEEE 1996)

octbyte
64

octaword
(vocabulary VAX)

128

Table 2.1. Vocabulary describing a packet of bits (Darche 2012)

1 This term generally describes a storage peripheral with direct or sequential access, such as
respectively a hard disk drive or magnetic tape, while the term “memory” is used for
components such as random access memory.

The Function of Memory 51

But beware: the term “word” can sometimes apply to any format depending on
the context and the manufacturers, not necessarily limited to a multiple of the byte.
So the word “word” can mean a different format n, which generally changes as a
result of technical evolution. Thus, for the VAX (Virtual Addressed eXtended)
minicomputer from Digital Equipment Corporation (DEC), n = 16, and for MIPS
(Microprocessor without Interlocked Pipeline Stages) microprocessor, n = 32.
Figure 2.1 provides the vocabulary associated with the format of a binary word of
n = 32 bits, which has been adopted for this work (cf. § 1.1 of Darche (2012) for
details).

Figure 2.1. Vocabulary for binary formats

Table 2.2 specifies the symbol and prefix (or name) for multiples of the bit. To
differentiate the International System’s (SI) kilo prefix (103) from the kilo units used
for memory size, the capital letter K is usually used. For example, we have 1 Kb
(kilobit), which represents 1024 bits, and 1 KB (kilobyte), which represents 1024
bytes. A term of art is the kilobinary. However, for the other prefixes (i.e. mega,
giga, etc.), it was necessary to eliminate the ambiguity2 because the symbols all
started with a capital letter and only the context made it possible to distinguish their
value (i.e. 210 × k or 103 × k, k ∈ ℕ*). Thus, the IEC (International Electrotechnical
Commission; in French, the Commission Electrotechnique Internationale – CEI), an
international standardization body, approved a new name for these powers of 2, the
kilobinary, with the symbol Ki and the short name kibi3 (IEC 2000). Self (1999)
describes this aspect. The IEEE (Institute of Electrical and Electronics Engineers),
an American technical professional organization, then standardized it (IEEE
2002a, 2002b).

2 This confusion has always existed. As an example, see the definition of the prefix “giga” in
the glossary in DEC (1983).
3 The second syllable “bi” is pronounced like the word “bee”.

52 Microprocessor 1

Symbols
and prefixes

standardized by
the IEC

Origin Factors Examples

Symbols and
prefixes

standardized
by SI (review)

Ki, kibi kilobinary 210 (= 1 024)
1 Kib,

formerly 1 Kb
k (kilo) = 103

Mi, mebi megabinary
220

(= 1 048 576)
1 Mib,

formerly 1 Mb
M (mega) = 106

Gi, gibi gigabinary 230
1 Gib,

formerly 1 Gb
G (giga) = 109

Ti, tebi terabinary 240
1 Tib,

formerly 1 Tb
T (tera) = 1012

Pi, pebi petabinary 250
1 Pib,

formerly 1 Pb
P (peta) = 1015

Ei, exbi exabinary 260 - E (exa) = 1018

Zi, zebi zettabinary 270 - Z (zetta) = 1021

Yi, yobi yottabinary 280 - Y (yotta) = 1024

Table 2.2. New prefixes of measurement units for memory

The memory cell is the smallest subdivision (atomic entity) of memory for which
it is possible to read or write data. A memory cell or word has a format or width w
or n (width of a register) or a size. Some authors speak of length (Meinadier 1971,
1988; Ciminiera and Valenzano 1987), from which come declarations in
programming languages of variable types such as long int. This term is not used here
because it is reserved for the number of words.

Organization refers to the physical arrangement of cells in memory. From the
overall size, it allows us to specify the distribution between the format n of the
memory cell and the number L of cells. We are talking about data input–output
organization with length L × width n, for example 16 Ki × 16 bits. In cases where
there are several internal memory banks (cf. § 2.3.2 in Darche 2012), we speak of
bank organization B × length L × width n, where B is the number of banks, for
example 8 × 2 Ki × 16 bits. The total memory capacity C is then equal to: ܥ = ܤ × ܮ × ݊ [2.1]

The Function of Memory 53

The access strategy (management strategy or policy) specifies how memory is
accessed. These are ranked in Figure 2.2. In access by address, random4 access
means that any memory cell can be accessed via its address with identical access
time. In the case of serial or sequential access, memory cells or records are accessed
in a pre-determined order defined by the policy. The Shift Registers (SR) SIPO
(Serial In Parallel Out) and PISO (Parallel-In Serial-Out) operate at the bit level and
allow for multiplication or division depending on the direction of shift. They are also
used in I/O interfaces. Example of other policies are “first in last out” (FIFO) for the
queue and “Last In First Out” (LIFO) for the stack. These should not be confused
with serial localization, such as a magnetic stripe, which is not semiconductor-based
memory. Data is accessed sequentially, and the headers are read to determine which
data is being requested. In the case of access by content, data is accessed by partial
correspondence, as would be done with a telephone directory where the name of the
correspondent is used to retrieve his number (Belady et al. 1981). The data must
therefore contain a key or an identifier. This type of policy is well suited to
information retrieval. Content-Addressable Memory (CAM) is often used in network
devices and in the cache (cf. V2 on memory, forthcoming). Associative addressing is
a generalization of content addressing because it does not require an exact match
(Chisvin and Duckworth 1989). Components generally implementing these various
policies are called specialty memory or application-specific memory (ASM).

Figure 2.2. Memory access policies

4 Direct access may also be used as a synonym. It is in fact reserved for defining one of the
addressing methods for a memory location by a processor (microprocessor or
microcontroller). For a Hard Disk Drive (HDD) type mass storage, we also speak of direct
addressing but you should know that the access time is then a function of the location of the
information, unlike a semiconductor memory.

54 Microprocessor 1

In the case of location-based or coordinate addressing, the memory cell is
accessed using an address. If we number each cell in memory from 0, then the cell
address is this number or digit (Figure 2.3).

Figure 2.3. Memory organization and addressing

The access type specifies the requested operation, which can be Read (R), Write
(W), Read-Write (RW), or Read-Modify-Write (RMW). Read-write means that it is
possible to read the stored data and then to store other data at the same address
during the same cycle. The last operation is a special case in which the data read is
modified and then stored at the same address, always within the same cycle. This
last type of access is useful, for example, for the detection and correction of errors
(ED(A)C for Error Detection (And) Correction, ECC for Error-Correcting Code,
cf. § 2.6.4 in Darche (2012)).

To characterize memory temporally, the read access and cycle times are
specified. The access time ta is the time elapsed between the presentation of the
address and the presentation of the data output from the component. The cycle time
tc is the overall time for a read or write operation. This cycle time can be
differentiated based on the operation to be performed with a write cycle time (tWC)
and a read cycle time (tRC). It should be noted that ta is usually less than tc. In the
case of Random Access Memory (RAM), we should add that these two times are
independent of the memory cell’s position.

The Function of Memory 55

At the level of the module or of the component itself, other times are used to
refine the temporal characterization. They depend on the type of memory and the
organization selected. They are therefore detailed in Darche (2012).

Operating speed for memory is measured primarily at the macroscopic level
using two parameters, which are latency and bit rate.

For successive accesses, also called access by block or burst mode (cf. § 4.4.5
and 5.5.2 in Darche (2012)), the flow rate must be considered. Flow breaks down
into input–output flow (I/O rate) and data flow (Chen and Patterson 1993). The first,
measured in number of accesses per second, is used when the number of bytes
transferred per access is low, for example in the case of requests (transaction
processing). This definition applies to a storage system such as a hard disk mass
storage unit or HDD. In this work, we will distinguish between two types of flow:
the overall flow, or (raw) data rate, and the useful flow, or throughput. The overall
flow is the maximum flow that the component is capable of providing at the
hardware level. The useful bit rate is the average bit rate that the requester, generally
a memory controller or a processor, will receive. The data rate is measured in
number of bits or multiples of the bit (the byte, usually) transferred per unit of time.
It is a function of the data format n. The basic unit is therefore bits per second
(bits/s). Multiples of the flow are powers of 10. Thus a speed of 1 kb/s (note the
lowercase k, following the SI standard) represents 1000 bits/s. For semiconductor-
based memory, the raw bit rate can be expressed in b/s/pin (bpspp), that is, for n = 1
bit. If the data transfer format is higher, the total bit rate is obtained by multiplying
this bit rate by n. The flow is the reverse of tc. Access is generally done in blocks to
maximize throughput. This is called burst mode access.

Another important parameter is latency, which is the total time elapsed between
the presentation of the address and the availability (read) or recording (write) of the
data. It is the sum of all the delays in the data path. It is an upper boundary. In the
case of block access, latency concerns access to the first element. We must
therefore, as before, consider the flow. This depends on the speed of the memory
(access time for reading and cycle time for writing), the speed of the subsystem
(organization, controller) and the exchange rate between the memory subsystem, the
bus and the processor. For the bus, this is determined by its access protocol, in
particular its arbitration, its operating frequency and its width. For the processor, this
is determined by its protocol and its cycle time. Latency and bitrate(s) are the two
most frequently used parameters to evaluate the performance of a memory subset. A
rule of thumb from Patterson (2004, 2005) is that bandwidth grows at least by the
square of the improvement in latency. More specifically, with regard to secondary
storage using magnetic disks, Gray and Shenay (1999) provide some rules of thumb
concerning the evolution of the computing performance of technologies for

56 Microprocessor 1

processor, memory/storage, and communication interfaces. Notably, storage
capacity increases by a factor of 100 every 10 years, and bandwidth increases by a
factor of 10.

Data permanence indicates whether, when the power supply is interrupted, the
information is erased or remains stored. In the latter case, it is necessary to specify
the storage duration. Data permanence is characterized by data retention time.
Memory that loses its stored information when the power is lost or because of the
properties of the storage material is called “volatile”. In the latter case, it is
necessary to specify the duration of information retention.

2.2. Related concepts

Two concepts that relate to primary memory are the order of storage and
alignment. They have consequences in particular for information exchange.

2.2.1. A story of endianness

The order in which information is stored is a story of endianness according to
Cohen (1981) (cf. § 2.6.2 in Darche (2012)). This problem arises when the CPU’s
information transfer rate is faster than that of the bus and the slave, memory, and I/O
controllers. Big Endian (BE) storage, that is, most significant byte first in the
ascending direction of addresses, is more natural for reading a memory dump listing
or an assembly result file. Microprocessors from Motorola (the 68xx and 68K
families) were based on this model, as have been the processors in many computers,
including the IBM System/360 and/370 families (Amdahl et al. 1964; Gifford and
Spector 1987), the PDP-10 from Digital Equipment Corporation (DEC) (Bell et al.
1978) but also many RISC microprocessors (cf. V2) such as the SPARC from Sun.
The 80x86 family of MPUs from Intel, however, rank data in Little Endian (LE)
order. DEC PDP-11 computers and the VAX family also used the latter. Modern
microprocessors like the PowerPC handle the two orders indifferently (BiE for
Bi-Endian). These aspects were studied in § 2.6.2 of Darche (2012).
The order affects performance, such as in the time to compute an address
(cf. § V4-1.2.3.4).

2.2.2. Alignment

A word of k contiguous bytes can be stored in an arbitrary position in memory
organized in the form of a byte, referred to as arbitrary byte boundary storage. For

The Function of Memory 57

the sake of access time, when the data bus format is the word, it is necessary to
operate at the word border to avoid repeat accesses. This is called alignment. A
generalization is made in § V4-3.1.2. See also § V2-1.2.

2.3. Modeling

Memory as a component or subsystem can be modeled by three subsets, which
are the storage medium or memory area, the controller and the interface (Figure 2.4;
see also Figure 9.1 in Darche (2012)). The latter two can perform complex
operations. The storage medium can be removable, as in the case of a CD-ROM
(Compact Disk Read-Only Memory), or fixed. At the interface level, information
can be exchanged bit by bit (serial interface) or by words of n bits (n > 1) in a single
exchange (parallel interface). This exchange can be synchronous, that is, an external
clock is necessary to clock the operation (cf. the concept of clock in § 3.1.2 and
3.1.4 of Darche (2002)). Otherwise, it is asynchronous, that is, it is performed in a
bounded time frame. The control signals group comprises at least one signal
specifying the type of access (R/#W or #WE for Write Enable) and, generally, a
memory selection signal (#CE for Chip Enable or #CS for Chip Select). The latter
controls the component’s standby. In a synchronous approach, a clock signal Clk is
present. The controller generates the internal control signals from the external
control signals.

Figure 2.4. Memory area

Also, to decrease average processor access times for instructions and data,
several storage technologies have been added to the data path. These different types
of memory have been modeled as a “memory hierarchy”. This abstraction presents
them vertically by levels or layers according to a technical characteristic (Multi
Level Memory (MLM) hierarchy). The hierarchy is generally represented by a

58 Microprocessor 1

triangular, even pyramidal, shape (Nakagomi 1993). Figure 2.5(b) presents a classic
hierarchy. At the top is the flip-flop, an elementary storage component (i.e. one bit
capacity). This is followed by the register, the internal cache on the MPU (on-chip
cache), the external cache (off-chip cache), the main or central memory (primary
memory, main memory) and secondary and tertiary storage, also known as backup
(tertiary memory system, off-line back-up storage, or backing store (Handy 1998)).
Not shown, archival memory is used to store information over dozens of years.
These Mass Storage Systems (MSS) are composed of a library of several hundred
cartridges with a magnetic tape or optical disks manipulated by robotic arms to
insert them into the read/write peripherals. Local memory is the memory built into
the processor, that is, registers, on-board memory and internal cache memory. Since
the technologies used for manufacturing are heterogeneous, each level therefore has
its own technical characteristics, the value of which increase or decrease in a
discrete manner, that is, in stages (Figure 2.5(a)). The surface or base of the
trapezoid is intended to represent the order of magnitude of the values. In general,
we are only interested in four characteristics, which are the total storage capacity,
the cycle times, the access time in reading and the bit rate. A fifth, the cost of
storage per bit, is also to be considered. It decreases when capacity increases. The
memory hierarchy makes it possible to offer the largest amount of memory at the
lowest price while providing the fastest possible access. The utopian goal of any
architect is to design memory with the highest possible capacity and the lowest cost
(lowest level) operating at processor speed (highest level).

Figure 2.5. Memory hierarchy

Today, the technology is electronic, magnetic or optical. But the current trend is
towards the elimination of moving components (motors, plates, arms, etc.).
Secondary memory is starting to use flash-type reprogrammable read-only memory

The Function of Memory 59

(dotted line in Figure 2.6, cf. V2). Each of these three technologies corresponds to a
level of the memory hierarchy, as shown in Figure 2.6.

Figure 2.6. Types of storage technologies in modern computers

2.4. Classification

Classification of semiconductor memories is very difficult since there are many
types and the technology is evolving very quickly. We have classified random
access memory according to its volatility (Figure 2.7). Two large families exist:
random access memory (RAM) and permanent memory. The first loses its
information when the power supply to the chip stops, hence it is also called “volatile
memory”. Permanent memory (NVM for Non-Volatile Memory) has, depending on
the type, an information retention period generally equal to 10 years (programmable
read only memory), equal to the life of the component (hidden read only memory),
or with energy source autonomy (BBSRAM for Battery-Backed SRAM). Among
the kinds of random access memory, we distinguish Static Random Access Memory
(SRAM) and Dynamic Random Access Memory (DRAM). The static model stores
data by sustaining its logical state. The dynamic model stores electrical charges in
stored-charge memory. It originally used a clock (synchronous model) but soon
became asynchronous in 1971. Since 1996, dynamic random access memory
returned to synchronous operation for reasons of speed with synchronous cycle
communication (SDRAM for synchronous DRAM) and packet communication
models. This category requires a periodic refresh (Tref period = 64 ms) of the
information stored to prevent memory loss. It is carried out by specialized logic,
which is usually external. When this logic is integrated with the memory chip, we
speak of Pseudo-Static RAM (PSRAM).

60 Microprocessor 1

Figure 2.7. Simplified classification of random access semiconductor memory

Figure 2.8 shows a classification of non-volatile memory. Read-Only Memory
(ROM) was originally simply that. It then became programmable with the release of
UV (UltraViolet) EPROM (Erasable Programmable ROM) in 1971. Today, it is also
accessible in programming as random access memory but with a much higher cycle
time. In this category, we can also cite MROM (Mask ROM, Mask-programmed
ROM, or Mask-programmable ROM), PROM (Programmable ROM), EEPROM or
E2PROM (Electrically Erasable PROM) and FEEPROM (Flash EEPROM). These
models will be detailed in the forthcoming Volume 2 of this series, a continuation of
Darche (2012).

Figure 2.8. Detailed classification of permanent semiconductor memory

The Function of Memory 61

All these kinds of memory, originally manufactured using bipolar technology,
today use unipolar technologies, with CMOS (Complementary Metal-Oxide
Semiconductor) being dominant, or mixed technologies such as BiCMOS, for
Bipolar and CMOS. Each generation brings its share of innovations to improve
performance (access time, throughput, power consumption, etc.). Today, the market
is mainly segmented into three parts: SDRAM for main memory, SSRAM for the
cache and EEPROM in flash version (FEEPROM) for mass storage (SSD and USB
keys). Random access memory was examined in Darche (2012).

2.5. Conclusion

Storage is one of the computer’s essential functions. The choices made by the
designer for the memory hierarchy directly impact the performance of the computer
system as a whole. As proof, one third to one half of the chip surface in modern
microprocessors is occupied by cache memory.

3

Computation Model and
Architecture: Illustration with
the von Neumann Approach

A user working today in front of his or her microcomputer workstation hardly
suspects that he or she is in front of a machine whose operation is governed by
principles described by the mathematician John von Neumann in the 1940s1
(Ceruzzi 2000). This remains the case when modern terms such as “superscalar
architectures” and “multicore” or accelerating mechanisms like the pipeline,
concepts discussed in the forthcoming Volume 2, are mentioned. Before studying
the functioning of the microprocessor, we need to clarify the theoretical concepts of
the computational model and computer architecture. The so-called von Neumann
approach, which still governs the functioning of computers internally despite all the
progress made since it was developed, is described by presenting the basic execution
diagram for an instruction. This architecture has given rise to variations, which are
also presented. Finally, the programmer needs an abstraction of the machine in order
to simplify his or her work, which is called the “Instruction Set Architecture” (ISA).
It is described before the basic definitions for this book, which complete this
chapter.

NOTE.– In this book, the term CU for “Central Unit” (or CPU for Central Processing
Unit) is taken from the original word, that is, the unit which performs the
computations, and not from the microcomputer itself. It most often describes the

1 The roots of the idea of a stored-program computer are commonly attributed to him.
However, as is generally the case in the sciences, it was the result of collaboration with a
team, including engineers J. Presper Eckert and John W. Mauchly. John von Neumann was
rather the first to formalize this architecture. On this subject, see Stern (1980).

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

64 Microprocessor 1

microprocessor also referred to as an MPU (MicroProcessor Unit) or µP for short,
which is a modern integrated form of the CU. We are also adapting the level of
discourse to the component’s scale. However, we do not include main memory, as
do some definitions, which generally rely on the vocabulary of mainframes from the
1960s.

3.1. Basic concepts

Definitions of the fundamental concepts of the Model of Computation (MoC)
and of architecture have evolved over time and vary from author to author (Reddi
and Feustel 1976, Baer 1984). The same is true for associated terms such as
“implementation” or “achievement”. Before presenting them, the concepts of
program, control and data mechanisms and flows must be clarified.

3.1.1. The idea of a program

A program is a static sequence of high-level statements or constructions broken
down into simple and structured instructions. It is written by a programmer or
produced by a language translator, for example, a compiler (cf. § V5-1.1.2) or an
assembler (cf. § V5-1.2.1). During its execution, the processor triggers a sequence of
actions from the static sequence of instructions that make up the program.

Control structures make it possible to control the instruction flow, which is
historically sequential2. High-Level structured programming Languages (HLL) use
three main types, which are concatenation, selection and repetition. Concatenation
or sequentiality specifies instructions in linear order. For its declaration, we use the
opening and closing braces of C or the begin_end declarations of Pascal. Selection
allows you to make a decision, that is, to take another branch in a program. There is,
for example, the structure if_then_else or the multiple switch selection in C. We can
also anecdotally mention “goto” from Fortran. Finally, repetition or iteration occurs
in two forms, loops and recursion, which make it possible to repeat a block for either
a determinate or indeterminate number of times (depending on a test). We can
mention the for_do, while_do and do_while structures in C. A less common type of
structure is the exception (e.g. in Ada), which allows an error to be addressed by
escaping (cf. § V4-5.1).

2 Operating principle of the von Neumann machine (cf. § 3.2).

Computation Model and Architecture: Illustration with the von Neumann Approach 65

3.1.2. Control and data flows and mechanisms

The central processing unit manipulates instructions and data to perform
computations. The execution of a program is a dynamic process that can be
abstracted using the notion of flow. A particular execution must be distinguished
from the whole or from a subset of the possible executions. There will be three flows
characterized by the type of information concerned. These are the flows of
instructions, control and data3.

The instruction flow is the continuation of the executed instructions, that is, the
path taken by an execution in the program’s code. The execution path is a
succession of program points that characterize this instruction flow, a program point
identifying a location in the code. By default, the instruction flow in a computer is
sequential, but it is possible to control (or alter) this flow using specialized
instructions called control flow statements, as well as using an interrupt or signal
mechanism (cf. Chapter V4-5). The instruction flow graph shows all the possible
flows.

The control flow or flow of control is the succession of path selections for an
execution. The control flow is explicit in an imperative programming language4, and
it is implemented, in particular, in the form of jump instructions (cf. § V4-2.4-1).
This is what distinguishes this type of language from declarative programming
languages. The Control Flow Graph (CFG) shows all the possible control flows. In
an imperative language, a node in this graph will be a basic block, that is, a set of
contiguous instructions without branching or that are not the target of any branching,
and an arc represents a possible branching. A sequential control flow means that
there is only one control thread moving from instruction to instruction in an implicit
manner. A sequential control flow can be transformed into a parallel flow, for
example, by introducing parallel-type operators such as fork-join. An Exceptional
Control Flow (ECF) can be defined when this type of event is detected (Bryant and
O’Hallaron 2016).

The data flow is the path that the data takes during an execution. It should be
noted that Johnson (1990) breaks down the data flow into two categories, register
data flow and memory data flow.

3 The definitions in the next two § are based on Martlet (2011).

4 The adjective “imperative” stems from the fact that the machine is controlled by a series of
instructions. Imperative languages are based on Turing’s computation model.

66 Microprocessor 1

It is now possible to define two mechanisms associated with instruction and data
flows that are respectively control and data mechanisms (Treleaven 1981).
Furthermore, instead of considering the instruction, it is possible, as proposed by
van de Goor (1989), to introduce a higher level of abstraction, the computational
unit, which can be a simple instruction or a more complex function.

The control mechanism specifies how the computation is executed and how one
instruction causes the execution of another. It defines the relationships between the
instructions, for example, when the computation begins and the what operation(s)
will follow. Treleaven and Lima (1982) distinguishes between control-driven, data-
driven, demand-driven and pattern-driven executions. In the first case, an instruction
is executed when it is selected by the control flow. Its execution will make it
possible to designate the following instruction. In the second case, the statement is
executed when all of its arguments are available, hence the moniker “availability-
driven” execution. With demand-driven execution, also called execution by
necessity or by need, an instruction is executed if its result is necessary for the
execution of another that is already being executed. This is referred to as lazy
evaluation. For the latter, the execution of the instruction is conditioned by the
correspondence of certain patterns, also called a goal statement. In all cases, this
means that the execution of a unit of computation takes place if conditions are
satisfied (i.e. are true).

The data mechanism specifies how an instruction obtains its operands and how
the result is communicated to others or, more generally, exactly how computational
units exchange data. A distinction must be made between shared memory and
message passing. In the first case, a main memory stores a single copy of the
information available for computation. Data is shared and accessed by reference.
This is the most common mechanism in today’s computers because it is the simplest.
In the second case, a copy of the operands is sent to each unit of computation. Here,
the data access mechanism is by value5. Table 3.1 brings together the eight possible
cases of these two mechanisms. The intersection of control and data mechanisms
defines a type of execution model referred to by acronym. The most common
architectures implement the instruction-driven execution model with a shared data
computational model (COSH).

5 It should be noted that there is a third data mechanism, which is passing by literal where
the argument is known at compilation and where a copy is provided to each instruction that
uses it.

Computation Model and Architecture: Illustration with the von Neumann Approach 67

Data mechanisms

Shared data (SH)
(access by reference)

Passing messages (ME)
(access by value)

C
on

tr
ol

 m
ec

ha
ni

sm
s

Control-driven (CO)
COSH

control flow

(von Neumann)

COME

control flow

(communicating processes)

Data-driven (DA)
(controlled by availability) DASH

DAME

data flow

Demand-driven (DE)
(controlled by need,

lazy evaluation)

DESH
graph reduction

DEME
chain reduction

Pattern-driven (PA)
PASH

logic
PAME
actor

Table 3.1. Runtime models and computer categories
(Treleaven and Lima 84, van de Goor 89)

3.1.3. Models of computation

A computation model is a high-level abstraction (i.e. formal system) which
explains how computations are carried out. It specifies the basic entities for the
computation, the possible operations and the execution and data models. Sima et al.
(1997) also adds the problem description model. Representative examples are the
Turing and von Neumann models (by control flow, cf. § 3.1.2), object and actor
oriented, by data flow, application or based on the predicate logic.

The Turing model of computation, named after its inventor (Turing 1937a b),
makes it possible to know whether a function is computable. The base entity is a set
of symbols belonging to a ribbon (or strip) of infinite length divided into cells (or
boxes). A state transition function allows you to manipulate these symbols. The
description of a problem is procedural. The Turing machine M is formally described
by the tuple (Q, Σ, Γ, δ, q0, F), where:

– Q is a finite set of states;

– ∃ a symbol #, is the empty symbol filling the band outside initial data; there
are also two sets of symbols or alphabets:

Σ is the finite input alphabet, excluding the blank symbol #,

Γ is the finite alphabet in the ban such that Σ ⊆ Γ and # ∈ Γ;

68 Microprocessor 1

– δ: Q × Γ → Q × Γ × {←, →, ↑} is the transition function;

– q0 ∈ Q is the initial state;

– F ⊆ Q is the set of accepting or final states.

The Turing machine is an Infinite State Machine (ISM, Minsky 1967). For more
information, Turing and Girard (1995) describes the machine’s historical and
theoretical aspects.

Communicating Sequential Processes (CSP) is originally an algebra allowing for
the specification of parallelism in a computer system (Hoare 1978). The latter is
broken down into a set of entities called processes that interact concurrently. It is a
distributed computation model.

Table 3.2 summarizes the characteristics of the previously described models. The
procedural programming style that includes the imperative style is based on the
concept of procedural calls.

 Main computation models

Characteristics Turing Control flow
(von Neumann)

Control flow
(communicating

processes)

Basic elements
of the computation

Symbols
of a finite alphabet
on an infinite band

Applying a transition
function on them

Data rows
in named entities

(variables)

Operations performed
on this data

Process

sending
(a)synchronous

message between
processes

Execution
semantics

State transition State transition State transition

Execution model CO CO CO

Data model SH SH ME

Programming style Procedural Procedural Procedural

Example languages – C, Fortran, Cobol Occam (Inmos)

Execution model Sequential model Sequential model Parallel model

Table 3.2. Characteristics of the main models of computation
(according to Sima et al. (1997))

The object-oriented computational model (Dahl and Nygaard 1966; Nguyen and
Hailpern 1986) uses the object as the basic entity. The latter encapsulates the

Computation Model and Architecture: Illustration with the von Neumann Approach 69

attributes (i.e. variables) and the methods (i.e. functions) that will be applied to the
former as directed by messages. The problem description model can be seen as a
series of passive messages sent to the objects. In the actor computation model
(PAME model), which is derived from the previous model, the message is active.
This paradigm has been defined in Hewitt et al. (1973) and Hewitt (1977). This
model is inspired by social organization models. An actor is an autonomous and
cooperating or expert active entity that communicates with his or her fellows and
with themselves via message. The actor respects the principle of encapsulation of
the object paradigm, with the added notion of activity (Masini et al. 1990). Its
behavior is expressed in the form of a script. Agha’s computation model (1985,
1986) can be considered as a concurrent and distributed computation model with an
object-oriented approach. There are other competing models. Among the most well-
known models are synchronous reactive (SR; Edwards 1997), time-triggered
(Kopetz 1998), event-driven and dataflow process networks (Kahn 1974). Table 3.3
summarizes the characteristics of the last models.

 Main computation models

Characteristics Object Actor

Basic elements of
computation

Objects manipulated
by messages

Sending messages
to these objects

Active objects

Sending asynchronous
messages to each other

Execution semantics State transition State transition

Execution model CO PA

Data model ME ME

Programming style Object oriented Actor oriented

Example languages C ++, Java, Smalltalk Act1, Act2

Competition Sequential model Parallel model

Table 3.3. Characteristics of the primary computation models
(according to Sima et al. (1997))

The dataflow computation model is a data-driven execution model with message
passing (DAME model). The basic entity is the data to which operations will be
applied. The instructions produce data consumed by other instructions. The
availability of all the operands of an instruction will trigger its launch. The control is
driven by the data itself (data-driven control). The description of a dataflow
computing program is done using an oriented graph called a dataflow graph; the
example shown in Figure 3.1 calculates the factorial of n (i.e. n!). Each instruction

70 Microprocessor 1

expects the operand(s)6 necessary for its execution in the form of a data token, which
can be a partial result. As soon as all the operands are available, execution is
requested and the node in turn provides a result in the form of an outgoing token.
The description model is also procedural. Parallelism is specific to the model. The
associated architecture is called a dataflow architecture (Ackerman 1982). There are
variations of the basic model. Examples include the static (Dennis 1980),
synchronous (SDF for Synchronous Dataflow; Lee and Messerschmitt 1987a b),
structured and dynamic (DDF for Dynamic Dataflow; Buck 1993; Buck and Lee
1993) models. Shiva (2006) gives details on this computational model and the
associated languages and architectures.

Figure 3.1. Description of the computation of a factorial via dataflow graph

Computation models that are not based on the change of state over time are
called declarative. We can mention the lambda-calculus (or λ-calculus) or the
interpretation of Horn7 clauses as examples. Languages based on λ-calculus are
called functional or application languages. The computation mechanism of
λ-calculus is reduction (DESH or DEME execution model). Languages based on
Horn clauses are said to be logic-oriented.

6 An operand is a variable or a constant on which an operation is carried out.

7 Horn clauses are a subset of predicate calculus (Kowalski 1979).

Computation Model and Architecture: Illustration with the von Neumann Approach 71

The application computation model uses the argument as the basic entity to
which functions will be applied for evaluation. The problem description model is a
set of function definitions. The description style is declarative. The application
programming style is based on the application of functions and on the recursive
definition of functions. Parallelism is implicit. Execution is demand-driven. In
reduction-based computers, the need for a result triggers the execution of the
instruction that will generate the result (execution on demand). The principle of
reduction is based on a replacement of expressions based on predefined reductive
rules, also called rewrite rules, based on an iterative process until this is no longer
possible. In other words, the execution of the instructions is based on the recognition
of reducible expressions and their transformation, that is, their replacement by
others, the end condition being the obtaining of a constant expression (Treleaven
et al. 1982). The expressions are nested with an evaluation that starts with the
outermost (i.e. the program). Thus, the main function with its arguments (main
expression) is rewritten iteratively by replacing the sub-expressions according to
these rules. For the called functions, the operation of substituting effective
parameters in place of formal parameters is applied to the definition of these
functions referenced before reduction. A reducible expression is also referred to by
the abbreviation “redex”, and its replacement is called a reduction step. The order in
which the rules are applied is called an “evaluation or reduction strategy”, which can
be serial or parallel. The resulting expression (constant expression) is expressed in
its normal form. There are two main types of reduction – graph and chain
reductions. They are distinguished by the way the instructions share the data
(Treleaven 1983) and by the way in which the program is represented in memory.
Graph reduction architectures use a data-sharing (update in place) mechanism
optimized for large graphs (i.e. passage by reference). Chain reduction architectures
have a data mechanism by message passing (i.e. separate copy, passing by value)
which is simpler than the previous method.

The predicate logic-based computation model is based on a set of objects to
which predicates are applied. A predicate is a property or attribute of an object. The
control mechanism is of the “pattern-driven” type, and the data mechanism is of the
shared data type (PASH model). In the framework of the logic of first-order
predicates reduced to Horn clauses, the execution mechanism is a Selective Linear
Definite clause (SLD)-type resolution, that is, a linear resolution with selection
function (SL) with defined clauses. The computation consists of filtering (pattern
matching). The initial goal is iteratively rewritten using the resolution mechanism
until it is satisfied or there is no possibility of unification.

72 Microprocessor 1

Table 3.4 summarizes the characteristics of the three models described above.

 Main computation models (continued)

Characteristics Data flow Application/λ-calculus Logic

Computation
elements

Data stored in named
entities (variables)

Operations performed
on this data

Arguments

Functions applied to
arguments

Elements of predicate
sets declared on these

elements

Execution
semantics

Data flow Reduction SLD resolution

Execution model

DA

(Immediate evaluation

(Eager evaluation))

DE

(Delayed or
lazy evaluation)

PA

(Defined by the goal
processing and the
computation rule)

Data model ME
SH (chain reduction)
ME (graph reduction)

SH

Programming style Procedural
Declarative

(application style)
Relational or declarative

(predicate logic)

Example languages ID, Lucid Lisp
PROLOG

(PROgramming in
LOGic)

Competition Parallel model Parallel model Parallel model

Table 3.4. Characteristics of the main computation models – continued
(based on Sima et al. (1997))

Finally, there are other computational models, for example, those inspired by
biology (biology-inspired computing) such as neural models, a subject beyond the
scope of this work.

3.1.4. Architectures

To function, the computation model relies on a computer architecture and on a
programming language (Figure 3.2(a)). The main language types are procedural
imperative, object oriented, functional or logical. Respectively associated examples
are the C, Ada, Lisp (LISt Processing) and PROLOG (PROgramming in LOGic)
languages. Another way to look at the computation model is shown in Figure 3.2(b),
where the model is executed on the abstract machine that should be implemented.

Computation Model and Architecture: Illustration with the von Neumann Approach 73

Figure 3.2. Positioning of the computation model in relation to the architecture

Originally, the architecture concerned only buildings. Architecture is the art of
imagining, designing and constructing buildings based on a set of rules. An architect
will, for example, be concerned with the appearance and functionality of a building
from the user’s point of view, without being concerned with the details of the
construction. Today, it is not only a question of buildings but also of works such as
bridges and ships. The outline is undoubtedly the basic descriptive document.
Another part of the definition is that “architecture designates the corpus of all the
buildings constructed, that is to say their classification and their study” (Wikipedia
definition). These two definitions also apply to the IT (Information Technology)
field.

The origin of the term “architecture” can be found in Amdahl et al. (1964)8,
designers of the IBM System/360, who define it as “the attributes of the system seen

8 Consider the premises of a definition in Buchholz (1962) presented as part of the
description of the Stretch project, begun in 1961, mentioned in Blaauw and Brooks (1996).

74 Microprocessor 1

by the programmer, that is, the conceptual structure and the functional behavior”,
based on a computation model and on its programming language(s). The architecture
defines the Instruction Set (IS) with, among other things, the format for the
instructions, their operation code and their addressing modes (cf. respectively
§ V4-1.1 and V4-1.2). It specifies the representation of the operands, that is, the type
of data, their number and their format n (i.e. the number of bits, cf. § I-1.2 in Darche
(2000)). It describes storage, that is, the registers and the management of the main
memory. For the latter, it specifies whether the words must be aligned in memory
(memory alignment) and the order in which the bytes are stored (little or big endian
order, cf. § 2.6.2 in Darche (2012), also § 2.2 of this work for these two concepts).
There may also be a mechanism for Virtual Memory (VM) with paging and
segmentation (cf. V2 on semiconductor memory, forthcoming) or structured
memory (Treleaven et al. 1982). If we set aside mass storage for backup (i.e. tertiary
memory, cf. § 7.2 in Darche (2003) and § 1.3 in Darche (2012)), then the memory
hierarchy can be seen as an address space provided to the software architect. It is
therefore a tangible component of the hardware architecture. The Input–Output (I/O)
mechanisms are also specified, as well as the interrupt diversion mechanism
(cf. Chapter V4-5). This means we are examining the interface between hardware
and software.

The term “architecture” also refers to the study and classification of computers.
A family of computers can be characterized by a single basic instruction set and with
backward compatibility (cf. § V4-3.3.3). One consequence will be that a family of
computers with the same architecture will be able to run the same programs. Two
notable examples are the IBM System/360 computer and the Intel x86
microprocessor architecture. The economic benefit is obvious. The counterpart is
that this is a major constraint on potential technical progress.

Intel (1981) defines several computer architectures. Each of them is defined at
the boundary between two conceptual levels (Figure 3.3). An architecture provides
the interface with the lower layer by providing a functional abstraction of the latter
for the upper layer. Brooks (1975, 1995) defined it as the complete and detailed
specification of the user interface. In this definition, the term “user” is a function of
the level being considered. The level most commonly recognized and accepted
under the term “computer architecture” is that of ISA (Instruction Set Architecture,
cf. § 3.5).

Computation Model and Architecture: Illustration with the von Neumann Approach 75

Figure 3.3. Multi-level architectural concepts

Blaauw and Brooks (1996) consider three levels in computer design, namely
architecture, (abstract) implementation and production (Figure 3.4-a). The
architecture does not describe the design (i.e. the combinational and sequential
logical operators) or the physical implementation (i.e. the electronic components).
Not considering these technological aspects allows us to consider progress in
electronics in terms of components (vacuum tube, transistor, then integrated circuit)
and, subsequently, integration (SSI for Small-Scale Integration, MSI for Medium-
Scale Integration, LSI for Large-Scale Integration, VLSI for Very LSI, ULSI for
Ultra LSI, etc., cf. § 1.2) without this having any effect. It is therefore an abstraction,
that is, an idealized view, making it independent of the material (i.e. electronic)
aspects. The (abstract) implementation or organization (as it is called in some
works) concerns functional organization, also referred to as the logical structure of
the architecture or microarchitecture. The organization or structure refers to the
operational units and their interaction (i.e. relationship) that performs the
specifications designated by the architecture. Static and dynamic aspects can be
distinguished. Thus, the structure refers to the arrangement of the elements, while
the organization concerns the dynamic interaction between them. Here, we primarily
focus on describing the control unit and the data path, but other functional units can
be included. The physical implementation concerns the electronic and mechanical
domains at the level of basic components. This layer embodies the implementation.
It is linked to the technology used at a time t. We will speak, for example, of static
or dynamic logic (carried out in unipolar (cf. § 2.2.2 of (Darche 2012)) and bipolar
technologies. An important concluding remark is that the same architecture can have
several possible organizations. An equivalent view is that of Figure 3.4-b. The
architecture here boils down to ISA (cf. § 3.5), which defines among other things the
instruction set (cf. Chapter V4-2) and its characteristics, such as the addressing
modes (cf. § V4-1.2). The microarchitecture describes the data path and the control

76 Microprocessor 1

path with two sub-layers, the RT (Register Transfer)-type description written in RTL
(RT Language) and the firmware (cf. V2, forthcoming) if this approach is chosen.
The concepts of architecture and implementation can be grouped under the concepts
of exo- and endoarchitecture (Figure 3.4(c)). The exoarchitecture provides only the
information necessary for the system programmer or the compiler designer. It
describes the logical structure and behavior of the system, hiding unnecessary
details. Endoarchitecture is interested in the hardware layer by describing its logical
structure, its behavior and its control in relation to the upper layer (Dasgupta 1990).
We also find the designation of external and internal architectures (Figure 3.4(d)).

Figure 3.4. Computer design layers based on Blaauw and Brooks (1996)

These views can be compared with Figure 3.4(e), where each layer is an axis of
the diagram in Y (cf. Figure 2 in Gajski and Kuhn (1983)). The latter is a descriptive
model that represents the design stages of a VLSI circuit like the microprocessor
with three fields of description: behavioral (or functional), structural and physical
(Figure 3.5).

Figure 3.5. Y-diagram (Gajski and Kuhn 1983)

Computation Model and Architecture: Illustration with the von Neumann Approach 77

Figure 3.6. Hierarchical structure of a computer

Another way to structure a computer system is that of Bell and Newell (1970,
1971), who proposed two notation systems to describe a computer in a hierarchical
form (Figure 3.6) using the PMS (Processor, Memory, Switch) and ISP (Instruction
Set Processor) descriptive systems. There are the PMS, the programming or program
level, the logic level and the circuit level. The first level describes the links between
computers. The second is the level of the program. The next is that of logical design.
It is necessary to distinguish the level “transfer by register” (RT) from the lower
level of the basic and complex logical, combinatorial and sequential operators (in
the sense of Darche (2002)). This first sub-level algorithmically describes the
transfer of information between registers using a specialized language called RTL.
The last level concerns implementation, with, for electronic technology, discrete,
passive and active components and integrated circuits.

Figure 3.7. Different levels of abstraction of computer architecture
based on Sima et al. (1997)

Sima et al. (1997) provides another, more hierarchical, architectural view that is
more interesting because it covers all of the computer’s systems (Figure 3.7). Each

78 Microprocessor 1

level is an abstraction of the lower level. Several computation models can run
on the same architecture simply by changing the programming language or using
a virtual machine. The more specialized the architecture, the higher the performance
in terms of processing speed. The Digital Signal Processor (DSP) is an example
(cf. § V3-5.2).

At each architectural level, we must consider both abstract and concrete features,
whether logical or physical (Figure 3.8). The abstract view is that of the black box.
For example, a computer is made up of processors and memory. Microarchitecture is
the concrete view of a processor. The functional units are the registers, the micro-
instruction sequencer. The components at the concrete level are logic gates and
flip-flops.

Figure 3.8. Abstract and concrete hierarchical aspects of an architecture

Computation Model and Architecture: Illustration with the von Neumann Approach 79

A computer architecture Ai is described at an abstraction level i, by an associated
computation model Ci, a functional specification Si and an implementation Ii of the
architecture responding to Si (Figure 3.9). This can be written as: ܣ = ሺܥ, ܵ , ሻ [3.1]ܫ

Figure 3.9. The concept of computer architecture according to Sima et al. (1997)

Finally, Sima et al. (1997) propose integrating these lower levels into the
architecture and considering all the levels as summarized in Figure 3.10. Thus, the
low-level hardware aspects are not eliminated from the description of an
architecture, but rather encapsulated. The design of a computer will consist of
carrying out an iterative process, generally under constraints, which consists of
breaking down a system into subsystems until the result corresponds to the
requirements expressed, usually in the form of specifications. However, the level of
detail changes. In the beginning (1960–1985), this was a question of
microarchitecture, which describes internal functioning with hardwired or
microprogrammed approaches. This then passed to the processor level (1985–2015)
with the progress of integration (solid line arrow on the figure). In the near future, it
will move to the next level, with the computer as the building block of a distributed
system. The functioning or behavior of these elements will be described respectively
by the primitives (i.e. system calls) of the Operating System (OS), the instructions,
the Hardware Description Language (HDL, cf. § 2.2.3 in Darche (2012) for an
example and § 4.4 in Darche (2004)), the Register Transfer Languages (RTL), Boolean
equations and electric equations. The design of an architecture must meet several
objectives such as performance in terms of computing power, minimization of
energy consumption and the ability to run applications programmed in a high-level
language. The performance measure concerns, for example, the number of

80 Microprocessor 1

instructions per second and the memory bandwidth (cf. § V4-3.4 for a development
of this feature).

Figure 3.10. Layered design of a computer

For more details, the excellent synthesis in Sima et al. (1997) studies the
historical evolution of the concepts of computational model and architecture from
the work of Backus (1978), Treleaven and Hopkins (1981), Treleaven et al. (1987),
Dally and Wills (1989) and Treleaven (1990). Another reference work that
conceptualizes computer architecture is Blaauw and Brooks (1996).

3.1.5. The semantic gap

The semantic gap is the difference between the High-Level programming
Language’s (HLL) computation model and the architecture that must support the
execution of programs written with them. This is closely linked to the organization
of memory. The manipulation of information in a computer can be done by value,
reference or literal. It is stored in memory. For example, a multi-dimensional array is
implemented by adding management code, thus increasing the management time.
Figure 3.11 situates the semantic gap between the different architectural approaches
that will be discussed in this work, particularly in § 3.4.3.1.

Computation Model and Architecture: Illustration with the von Neumann Approach 81

Figure 3.11. Positioning of architecture for four
historic architectures (Corporaal 1995)

3.2. The original von Neumann machine

This section describes the computation model and the architecture of the von
Neumann machine.

3.2.1. von Neumann’s computation model

The von Neumann computation model that gave birth to the current computer
has been the reference model since its origin (von Neumann 1945). The base entity
is data implemented as a variable in computer languages. The problem description
model is procedural, a sequence of instructions executed on an incoming flow of
data and producing an outgoing flow of data that is the result of computation. Here,
we can see the execution of a program and the definition of the latter, which is an
ordered sequence of instructions executed on a data set. The centralized execution
model is based on a semantics of state transition. It is “control-driven”, with a shared
data mechanism (COSH model, cf. § 3.1.2), the most commonly encountered model
in computers. The stream of instructions executed on data stored in memory is
unique (single-instruction stream).

This architecture is capable of supporting different computation models and
programming styles. Let us cite as an example the functional and application models
of computation and their associated programming styles. However, imperative and
procedural programming styles are specific to the historical model of computation.

82 Microprocessor 1

3.2.2. von Neumann’s (machine) architecture

The result of the EDVAC (Electronic Discrete Variable Automatic Computer)
project (von Neumann 1945), this architecture is at the heart of all current
processors, even if new mechanisms are added to accelerate computation time or
data access speed, such as the pipeline (cf. § 4.5.1 in Darche (2012)), cache memory
or prefetching of instructions or data (cf. V2, forthcoming).

3.2.2.1. von Neumann’s report

In his report, von Neumann compared the functioning of the computer to the
brain, and its various components to neurons. He theoretically describes the subsets
in the form of a network of E-elements, an E-element being a formal model of a
neuron, Pitts and McCulloch’s binary model (McCulloch and Pitts 1943). Therefore,
this approach allows him to step away from implementation and therefore from
technology.

The version corrected and described by Godfrey and Hendry (1993) broke down
the computer into six parts (Figure 3.12): the control unit (CC for Central Control),
the processing unit (CA for Central Arithmetical or Central Arithmetic logic unit),
Memory (M) and Input (I) and Output (O) units. The visible part of the device is the
external storage area for information in transit R (External Recording medium for
the device). The program currently running is stored in primary memory (stored-
program computer). The memory is said to be unified because it contains both the
instructions and the program data. The memory is read sequentially, but only the
state of the machine at the time a word is fetched from memory makes it possible to
determine its type (i.e. instruction or data). The CC is responsible for fetching,
decoding and executing the instruction. To do so, a Program Counter (PC), not
shown in the figure, points to the next instruction to be executed. The CA performs
the computation from the operands stored in the ICA input register and then
transferred to JCA. The result of the computation is added to the existing contents of
the OCA register, hence the name “accumulator” for a register, referring to this
function (cf. § V3-3.1.2). This means that the result of an instruction is added to the
contents of this register (i.e. OCA ← OCA + result). The two input registers work in a
stack, ICA being the top of the stack. The R subset allows for interaction between
humans and computers. There we see the input–output devices, which at the time
were various types of perforated media players and perforators, playing the
embryonic role of secondary memory.

Computation Model and Architecture: Illustration with the von Neumann Approach 83

Figure 3.12. Architecture according to von Neumann (1945)

Figure 3.13. Von Neumann machine with its five functional units

By not taking into account the realm of external (i.e. mass) storage, this
architecture is reduced to five functional units, which are the computation and
control units, the main memory and the input and output exchange units. Through
the input unit, an unlimited number of instructions and associated operands are read.
The control unit receives the instructions to be executed. The arithmetic and logic

84 Microprocessor 1

unit performs the computations under the control of the control unit. The results are
sent to memory or to the output unit. The memory stores all information
(instructions and data) in its cells. Each of these is associated with an address for its
location. I/O units, in addition to providing the basic interface between the computer
and the outside world, have two subsidiary functions: buffering9 and converting
information. Buffering makes it possible to adapt the speed and provides
synchronization. An example of conversion is a conversion from binary base to
base-10 so that a human will be able to read the results. Figure 3.13 presents its
information path. In computer architecture, the term “path” characterizes the set of
functional units that participate in storage and transformation, in this case of
information. We can divide information into data and instructions and their
associated paths, the data path and the instruction path.

3.2.2.2. The IAS

These ideas were implemented in an electronic vacuum tube-based machine at
the IAS (Institute for Advanced Study), and the architectures that were based on this
machine were called von Neumann architecture, or preferentially, Princeton
architecture, due to the location of this institute. It is described in Burks et al.
(1946–1947). It contains all of the modern aspects of computer architecture.
Internally, the machine uses a binary numbering system (represented in fixed-
decimal mode in sign and module with the complement at 1 for signed numbers).
Figure 3.14 shows its functional organization. We can see four subsystems. The
main memory M contains the program and the data:

“Conceptually we have discussed above two different forms of
memory: storage of numbers and storage of orders. If, however, the
orders to the machine are reduced to a numerical code and if the
machine can in some fashion distinguish a number from an order, the
memory organ can be used to store both numbers and orders.”
(Burks et al. 1946–1947)

The Data Processing Unit is responsible for carrying out the four basic arithmetic
operations with the help of an adder and three registers, two of which are shift-type
registers:

“Inasmuch as the device is to be a computing machine there must be
an arithmetic organ in it which can perform certain of the elementary
arithmetic operations. There will be, therefore, a unit capable
of adding, subtracting, multiplying and dividing.” (Burks et al.
1946–1947)

9 That is, temporary storage.

Computation Model and Architecture: Illustration with the von Neumann Approach 85

Figure 3.14. Simplified functional organization of the IAS machine

Three registers with the format n = 40 bits, named RI, RII and RIII, store
information in the DPU. RI is a shift register, referred to as an accumulator
register (Ac), because it receives the results of an addition. It will receive the
resident number (i.e. the implicit operand or cumuland (augend)). To store a

86 Microprocessor 1

number, the accumulator must be previously set to zero, because the number will be
added to its current value. It can also be dedicated to storing the partial product
(the most important part), the dividend or the partial remainder. This register also
makes it possible to store a value in memory. It therefore plays the role of a memory
(general-purpose) data register (cf. below).

RII is also a shift register. It was initially called the Arithmetic Register (AR). It
stores the multiplier, the partial product (the less important part) or the quotient. RIII
is called the Selectron Register (SR) because it receives information from memory.
The latter was originally composed of Selectron tubes (cf. § 1.3.1 in Darche (2012))
from RCA (Radio Corporation of America). Subsequently, during implementation,
the Selectrons used in the prototype were replaced with Williams tubes (Kilburn
1948; Williams and Kilburn 1949, cf. § 1.3.1 in Darche (2012) for an introduction)
with an individual capacity of 1,024 bits; 40 tubes were used (Estrin 1952, 1953) for
availability reasons. This decision leads to structural changes. Specifically, the FR
and CR registers (cf. below) were removed because RIII could serve this role. This
is what was done during reading of a Memory Data Register (MDR) (cf. below).
Contrary to its two predecessors, it did not have a shift function. It received
a random number (cf. the explicit operand of the addition, that is, the addend, the
multiplicand and the divisor). Before being used, an operand can be complemented
to carry out an algebraic addition (i.e. Signed, cf. § 3.1.1 in Darche (2000):

“It should be a parallel storage organ which can receive a number
and add it to the one already in it, which is also able to clear its
contents, and which can transmit what it contains. We will call such
an organ an Accumulator.” (Burks et al. 1946–1947)

This unit is controlled by the Program Control Unit (PCU) responsible for
executing the program. An SR word contains a pair of instructions, because it has a
large size. The first code is sent to the FR register (for Function table Register),
which will be the Instruction Register (IR). The second is sent to the control register
(CR), also called the Instruction Buffer Register (IBR), which serves as temporary
memory (buffer). The FR is so named because it controls the function tables, that is,
in modern terminology, the binary decoders concerned with memory addressing
(cf. § 2.1 and 2.2.6 in Darche (2012) and the determination of which operation to
execute (cf. § 3.3.2). A table contains n inputs and 2n outputs, with only one active at
a time; hence, it is referred to as a decoding or many-one function table. Once the
instruction is decoded, the control circuits generate control signals for the two units
and the memory. A 12-bit address counter called Control Counter (CC), which will
be the future Program Counter (PC), makes it possible to access all memory
addresses. Contrary to a modern program counter, it contains the address of the last
pair of executed instructions, and not the address of the next instruction to be
executed. In addition, FR plays the role of the future MAR for reading:

Computation Model and Architecture: Illustration with the von Neumann Approach 87

“If the memory for orders is merely a storage organ there must exist
an organ which can automatically execute the orders stored in the
memory. We shall call this organ the Control.” (Burks et al. 1946–
1947)

To overcome the obstacle of sequential execution, a conditional jump instruction
makes it possible to change the address of the next instruction to be executed in
the CC:

“We introduce an order (the conditional transfer order) which will,
depending on the sign of a given number, cause the proper one of two
routines to be executed.” (Burks et al. 1946–1947)

The CPU is made up of the DPU combined with the PCU. To conclude, the input
and output equipment, the paper tape reader and paper tape punch respectively make
it possible to access memory serially via the accumulator, whose structure makes
shifting possible. It is notable that the central role of the DPU in the circulation of
information can become a bottleneck (cf. § 3.3.4). Burks et al. (1946–1947) describe
the logical features of this machine, and Goldstine and von Neumann (1947–1948)
describe the programming features.

The preceding functional organization is shown in Figure 3.15.

Figure 3.15. Functional organization of a von Neumann machine

88 Microprocessor 1

Figure 3.16. Functional organization of the IBM 701
(based on Frizzell (1953), modified)

3.2.2.3. The IBM 701

This architecture gave rise to the production of several dozen computers. The
IBM 701 is a commercial example of the results of the preceding ideas. All of the
functional units in modern computers are found here, as illustrated in Figure 3.16.
The four main management registers are (M)AR ((Memory) Address Register),
(M)DR ((Memory) Data Register), IR (Instruction (opcode) Register) and PC
(Program Counter). The first two allow the CPU to communicate externally. The

Computation Model and Architecture: Illustration with the von Neumann Approach 89

memory deflection register10 is the address register, or MAR. The address either
comes from the instruction counter, also known as the Sequence Counter (SC, also
known as the Program Counter (PC)), or from the renewal counter for refreshing
memory, such as for DRAM (Dynamic Random Access Memory). The accessed
information (instructions and data) enters through the (M)DR data register. In the
case of an instruction, its code is transmitted to the instruction register (IR). The
operation code is decoded for execution. Data is transmitted to the accumulator. The
CPU executes instructions sequentially. Two important data registers are the
accumulator (Acc) and the Multiplier-Quotient register (MQ). The latter
communicates with the input/output (I/O) peripherals. More information about this
machine is given in Buchholz (1953) and Ross (1953).

3.2.2.4. Execution cycle

The execution cycle for an instruction is a graph that represents the different
states for executing an instruction. It also indicates the execution time. On first
impression, it can be broken down into two parts, the code fetch in main memory
and actual execution (Figure 3.17). During the first phase, the address contained in
the PC is presented to memory via the MAR. After it is read, the instruction code is
stored in the MDR. Then, it is transferred to the IR to be decoded. The control unit
can then begin the second phase, during which the actual execution occurs. A
description of the cycle is given in § 3.3.2.

Figure 3.17. Infinite two-phase execution cycle

3.2.3. Control

The fundamental principles underlying the modern general-use computer rely
especially on the stored-program concept. According to the progress as described by
Metropolis and Worlton (1980), the control of the first computers was manual, with

10 The name of the era is based on the use of electrostatic memory made up of Williams
tubes.

90 Microprocessor 1

instruction input using a terminal keyboard called a teletypewriter, an example of
which is the complex calculator developed by Bell Labs (1940). Then, the sequence
to be calculated was entered using either a perforated 35 mm film reader for the Z311
electromechanical computer (1941) or punched tape for Harvard’s Mark I (1944).
The ENIAC (Electronic Numerical Integrator And Computer) at first (1946)
employed internal hardwired controls, using cables with jacks plugged into
plugboards and by positioning interrupters. Then, the principle of memory-based
control (decoding matrix associated with read-only function tables) was
implemented in 1948. Finally, the BINAC (BINary Automatic Computer, 1949) and
the EDSAC (Electronic Delay Storage Automatic Calculator, 1949) were the first
two machines to implement program storage in read-write memory, the concept
having emerged from the EDVAC (1946–1951). The historical details have been
described by Goldstine (1993) and Rojas and Hashagen (2000). See also Hartree
et al. 1948) along with Nature (1948) and Williams and Kilburn (1948).

3.3. Modern von Neumann machines

This architecture has been extended over time to offer additional functionality in
high-level languages and to increase processing speed. Thus, the idea of a stack (cf.
§ V4-4.1) made it possible to implement the concept of a procedure that
encapsulates that of function. This made recursive computation possible. New kinds
of data were able to be used, such as Binary Coded Decimal (BCD), real numbers
coded in fixed and floating-point representations and character strings (cf. Darche
(2000) for more details on representation). Modes of address became more complex,
with modes such as indexing and indirection (cf. § V4-1.2.3). The former facilitates
the use of tables. The latter makes it possible to introduce the concept of the pointer
and dynamic entities. The capacity of main memory was increased using the concept
of virtual memory, which led to the mechanisms of pagination and segmentation.
Access times were improved with mechanisms such as interleaving (cf. in Darche
(2012)) or the implementation of memory hierarchy with the addition of a cache to
minimize traffic between main memory and the processor. I/O exchanges were
facilitated using mechanisms such as Direct Memory Access (DMA, cf. § 1.2 and
4.1.3 in Darche (2003)) or using specialized I/O processors, freeing up the central
processor for other tasks. Parallel computation was introduced by multiplying the
functional units externally (the idea of the co-processor, cf. § V3-5.4) and then
internally, for example, in superscalar architectures and by implementing the
pipeline structure (cf. V2). Today, microprocessors internally execute computations
in parallel using cores, with each core being a basic processor (cf. V3).

11 The idea had already been used in Konrad Zuse’s Z1 (cf. § 1.2).

Computation Model and Architecture: Illustration with the von Neumann Approach 91

3.3.1. Abstraction level

It is possible to functionally present a computing system in hierarchical form.
We must therefore distinguish between two levels of abstraction – the computer and
the processor.

3.3.1.1. Computer-level abstraction

From an organizational and modern perspective, it is no longer necessary to
distinguish between the three subsystems that make up the central unit or processing
unit, in other words, microprocessor P for a microcomputer, memory M, called
central, primary, or main, and the input–output (I/O) exchange units, and the
communication system called the interconnection bus, which enables
communication between the three subsystems (Figure 3.18). A bus consists of a
number of tracks or electrical wires shared by the connected units (cf. V2 and
§ V3-1.1). The peripherals D (for Device) are connected to the exchange units,
which enables the central process to receive and transmit information. The main
memory is made up of semiconductor-based Random Access Memory (RAM) and
Read-Only Memory (ROM). This is a master-slave-type model. The process is
always the master in exchanges (active entity). The memory and the input–output
exchange units are passive entities, and therefore referred to as slaves12.

Figure 3.18. Modern view of a von Neumann computer

This communication medium is generally composed of three buses. A bus is a
set of communication paths in which information circulates, in the most general
sense. There are buses for data (exchange), addresses and control. As their name
may or may not suggest, the first carries data, as well as instruction codes, the
second carries addresses and the third enables control of exchanges between the

12 This term needs to be qualified, because these entities can be active. For example, a
process can be integrated into the memory chip, which becomes Intelligent RAM (IRAM).
For more information on this topic, see Patterson et al. (1997a, 1997b, 1997c, 1997d).

92 Microprocessor 1

various subsystems and can also carry state information (Figure 3.19) for each of
them in the format respectively of n, m and c bits. To use a “postal” analogy, when
the central unit wants to communicate with the memory or the I/O interface or
exchange units, it does so via an envelope labeled with an address and containing
information (instruction or data). The study of buses is the subject of the following
volume.

Figure 3.19. The three communications buses

3.3.1.2. The processor level of abstraction

At this level, we find the analysis of von Neumann’s central unit (i.e. CC and
CA). Thus, as illustrated in Figure 3.20, the processor is made up of an Integer
Processing Unit (IPU), controlled by a (Central) Control Unit ((C)CU). To these
functional units must be added a storage subsystem composed of registers R.

Figure 3.20. The three functional units of a microprocessor

Figure 3.21 presents the internal information flow. A program being executed is
stored in main memory. It is an ordered sequence of instructions. The control unit
(command portion) accesses information (i.e. machine code or data) by presenting
its address on the address bus, first internally, then externally. It must also indicate

Computation Model and Architecture: Illustration with the von Neumann Approach 93

whether it is a read or write access. After decoding the instruction, it asks the
processing unit (operating portion) to execute the instruction.

Figure 3.21. Internal circulation of information inside a microprocessor

We can examine the previously described diagram in Figure 3.22. Some registers
can be used by both units, such as the status register, while others, such as the
instruction register, cannot. Some registers can be accessed by the programmer:
they are part of the ISA, in other cases, only internal units have access, such as for
the previously mentioned registers. Carter (1995), who uses the vocabulary
promulgated by AMD, distinguishes three subsystems in the microprocessor, the
CCU (Computer Control Unit), the PCU (Program Control Unit) and the ALU
(Arithmetic and Logic Unit). The Control Unit defined in this work is made up of
the first two units.

94 Microprocessor 1

Figure 3.22. Microarchitecture of bus-based microprocessors

3.3.1.2.1. Integer processing unit

Henceforth, we will refer to the integer processing unit as the ALU (Arithmetic
and Logic Unit). In effect, its role is to execute fundamental logical and arithmetic
instructions.

With regard to arithmetic operations, addition and subtraction are always
implemented. Note the specific cases of incrementation and decrementation,
operations for which one of the operands is a constant, usually 1. Subtraction makes
it possible to implement comparisons (cf. Exercise E3.2). Multiplication and
division can also be implemented. Historically, the latter were added much later to
second-generation microprocessors because the technology offered enough room on
the chip. For other, more complex, operations, such as an elementary function (i.e.
logarithmic, exponential, trigonometric, etc.), there is an alternative, which is either
to add hardware or to emulate the desired instruction in software. In the first case,
one solution can be the use of a specialized circuit, which we will call the
mathematical co-processor. This co-processor is today integrated with the process
(in the case of the Intel Pentium). In the second case, a subprogram will replace the

Computation Model and Architecture: Illustration with the von Neumann Approach 95

execution of this specialized instruction (software solution). These specialized
functions belong to mathematical libraries. More generally, if the hardware does not
implement the desired operation, there is a software alternative. Of course, this
emulation will be computationally expensive, because it requires the execution of
several other replacement instructions for each requested instruction.

Logical operations are the classical Boolean functions AND, OR, XOR
(eXclusive OR) and NOT, a combinatorial operator (cf. § 2.2 in Darche (2002)), and
the functions for logic or arithmetic shift, and for rotation (cf. § V4-2.3.2.3), classes
that are typically sequential but have been implemented in combinatorial logic to
increase execution speed (cf. § V3-3.3). They are described in § 3.5 in Darche
(2002).

The operations can be unary or binary, that is, there can be one or two operands.
As an example, logical NOT only uses one operand, while addition requires two
operands to execute. The ALU may set binary indicators called flags to confirm the
validity of the result (cf. § V3-3.1.5). This is primarily the case for most instructions,
which are arithmetic. The constructor’s information indicates the state of each
instruction after execution.

The Data Path (DP) is the set of components or logical subsystems participating
in computations on data, in other words the components responsible for storing and
transferring data and carrying out arithmetic and logical operations on the latter. It is
characterized by its format or width, which is generally expressed in powers of 2,
beginning with 22, that is to say 4, 8, etc., for accounting purposes. There are
exceptions, such as among DEC minicomputers, which used 18 for PDP-1, 24 for
PDP-2 and 36 for PDP-3 and PDP-6. This path is made up of functional units,
storage elements and steering logic. The functional units generally employ
combinatorial logic for maximum processing speed. They perform operations on the
data path (cf. § below). The primary such unit is the IPU. The storage components
are registers, including register files, latches, Flip-Flops (FF) and memory. The
interconnection logic is made up of (de)multiplexers and buses. It is programmed
using register transfer language (RTL). In general, the data path is used to describe a
microprocessor, since the control component is hidden.

3.3.1.2.2. Control unit

The control unit is also referred to as the command unit or the Instruction
Control Unit (ICU). This is what manages the overall processor. It is made up of the
CCU and the PCU.

The CCU is the sequencer, in other words, the Finite State Machine (FSM,
cf. § 3.7.3 in Darche (2002)). Timing is provided by the clock signal generator, in
the case of a hardwired version (Figure 3.23). It exclusively uses the instruction

96 Microprocessor 1

register (IR), which is occasionally referred to as order memory (Profit 1970). From
an instruction accessed and stored in main memory, this unit decodes the required
information and implements a series of basic commands. The circled levels indicate
the location of the three basic steps in the execution of an instruction, respectively
fetch, decoding and execution proper, as presented in § 3.3.2. The sequencer may
be guided by status register flags, also referred to as Processor Status Registers
(PSR, cf. § V3-3.1.5). The size of this subsystem is a function of the number of
instructions and addressing options provided to the programmer. The
controller/sequencer can be hardwired or microprogrammed. In the former, a timing
generator creates sequencing signals. The microprogrammed version, invented by
Wilkes (1951), is also a state machine controlled by a microprogram (cf. V2).

Figure 3.23. Decoding of an instruction by a hardwired sequencer

The PCU carries out (external) addressing at the processor level. This unit
provides access to unified memory. It is made up of a Program Counter (PC), a
Stack Pointer (SP) and the MAR and MDR register interfaces. It has an incrementer
and, for some kinds of addressing such as relative addressing (cf. § 1.2.3.2), an

Computation Model and Architecture: Illustration with the von Neumann Approach 97

adder. It manages the stack with a stack pointer and may use an internal stack, such
as in the Am2930 circuit.

All of these logical operators belong to the instruction path, which is
occasionally referred to as the Control Path (CP), which is the set of components or
logical subsystems (i.e. functional unit), which participates in the fetching, decoding
and execution of an instruction and, therefore, commanding the DP. As for the data
path, we are not taking the bus into account.

3.3.1.2.3. Registers

A register is fast memory with storage capacity for a binary word in n-bit format
that operates at the speed of the component13 or logical subsystem into which it is
integrated. For pedagogical reasons, registers are shown in Figure 3.20 separately
from the other two units. In fact, some registers are dedicated to a unit. The
processor can also provide a generic storage area to the programmer. The register
can be implemented in static or dynamic logic (cf. § 2.2.1 in Darche (2012) on these
kinds of logic. It can be composed of flip-flops (cf. § 3.4 in Darche (2002)), each
storing a bit. More details on the use of registers are given in § V2-2.7.1.

3.3.2. Base execution outline

Main memory contains the instructions in machine code14 and the data on which
the operations will be carried out. Two approaches are taken in microprocessors:
instructions and data can have the same address space (in the case of the 1st MPU),
or they can be distinct. The latter is the case in the Harvard architecture or when the
memory is segmented. Thus, in the segmentation15 mechanism used in the x86
architecture, the data and the machine code are contained in separate segments. The
value of this approach is to be able to share a program among multiple users such
that each user has his or her own data storage area.

The command unit gives orders to the ALU in order to carry out the requested
instruction. However, as illustrated in Figure 3.24(a), it plays this role in three
successive stages or steps, which are the Instruction Fetch (IF) stage, the Instruction
Decode (ID) stage and the Execute (EX) stage, referred to as the Fetch-Decode-
eXecute cycle (FDX), the Fetch-Decode-Execute cycle (FDE) or the fetch-and-
execute cycle.

13 Initially a subsystem.

14 Machine code is also called hard code (cf. Bell (1973)) in reference to the instructions
permanently set in the hardware (hardwired or microprogrammed).

15 A segment is a set of contiguous memory words with specialized contents. This
mechanism will be introduced in Volume 2.

98 Microprocessor 1

During the instruction fetch phase (no. 1), the instruction code pointed by the
program counter is transferred from main memory to an inaccessible register by the
user, which is the instruction register IR.

During the second stage, decoding, the type of operation requested and the
operands to be used are determined. If necessary, the processor will fetch the
operand(s) to execute the instruction (stage 2 in Figure 3.24(b)). During this stage,
the program counter is incremented by a value k such that it contains the address of
the next instruction to be executed. This value k will depend on the location in
memory occupied by the instruction being executed:

“The function table just described energizes a different output wire for
each different code operation.” (Burks et al. 1946–1947)

Finally, the last stage involves the execution of the operation. The execution unit
may provide information about the properties of the result, particularly its validity
(i.e. whether the result is correct), via the intermediary of the status register’s
indicators or status flags (CC for Condition Code, cf. § II-3.4 in Darche (2000) and §
V2-2.7.1.5). For example, for the 8086, the instruction xor ax,ax (cf. exclusive
OR on the same register) sets the indicator Z to 1, since the result is 0. On the other
hand, a transfer instruction mov ax,0 (i.e. resetting of a register to zero) does not
set any indicators. The result may be stored (Write Back (WB)) in main memory.

Figure 3.24. Basic steps of the basic execution cycle

Computation Model and Architecture: Illustration with the von Neumann Approach 99

Figure 3.25 shows the execution cycle in the form of a flowchart. To simplify,
the request and management of interruptions (cf. Chapter V4-5) are not included. By
convention, at initialization, for example, when the power is turned on, for example,
the first word the microprocessor fetches will always be an instruction code. It
should be noted that the execution cycle can be incorporated into an interpreter’s
loop. This will be developed in the second volume.

Figure 3.25. Execution cycle flowchart

Fetching one or more operands in memory that are required for execution and
storage of the result can be carried out in separate cycles. This then leaves us with a
five-stage cycle: IF, ID, OF, EX and WB. Fetching an operand will require
computation of its address. A processor can be studied from a functional point of
view. It is thus possible to break down the MPU into five functions, as shown in
Figure 3.26, which are procurement of instructions, their decoding, procurement (if
necessary) of associated operands and the effective computation and storage of the
result. Computation of an address can be requested at several steps. These steps can
provide a reference for the concept of a pipeline (cf. V2).

100 Microprocessor 1

Figure 3.26. Functional steps to execute an instruction

Figure 3.27 summarizes the preceding remarks by describing the various steps of
an execution cycle with, in addition, an operand fetch and an operand storage in
main memory. The dotted lines indicate an optional execution path.

The duration of an execution cycle for an instruction is a function of, among
other things, the period of the timing or clock signal. Sections V3-1.4 and V4-3.2.1
describe the temporal features of execution.

3.3.3. Possible transfers

The von Neumann architecture is characterized by the sequentiality of the
operations. Moreover, the memory data path is unique. If we consider the registers
and the memory, this of course has consequences on the types of transfers that are
possible. Traditionally, there are three directions of transfer: from register to register
(example: mov ax,bx), register to memory (examples: mov [memo],ax or
mov [bx],bx) and memory to register (example: mov dl,[memo1]). To this,
we must add the two transfers connected to immediate addressing, immediate value
to register (example: mov cx,4) and immediate value to memory (example:
mov [memo],0FFFFh). Memory to memory transfer cannot take place because it
would violate what we can call the golden rule of transfer in the von Neumann
model for architectures with one or two buses (cf. § 3.4.1). Some processors will
have different instructions depending on the direction (load and store), while
others have one undifferentiated instruction (mov). Of course, there are exceptions
to this rule, in which memory-to-memory transfers can take place. This occurs for
stack manipulation instructions, such as push [memo], and character
manipulation instructions, such as movsb. These features are studied in detail in the
first two chapters of Volume 4.

Computation Model and Architecture: Illustration with the von Neumann Approach 101

Figure 3.27. Execution cycle described with different forms of access

102 Microprocessor 1

3.3.4. Summary: advantages and disadvantages of this model

This model is the most widespread. It is the basis for the modern computer. The
three main subsystems in the von Neumann architecture are:

– a single main memory made up of a linear organization of memory cells of
fixed size that contain instruction codes, data and address or pointers (unified
memory);

– a single computation component, integer processing unit (IPU or ALU),
controlled by the control unit (CU), with the whole forming the processor
(Figure 3.28);

– an I/O system enabling communication.

Figure 3.28. Information flow in a processor

To this, we must add the following characteristics. There is a low-level language
called “machine language” to program the processor. Control of execution is
centralized and sequential. The CPU executes instructions sequentially. The
address16 for an instruction is therefore implicit during execution. All machines
execution status is represented by all or some of the registers (cf. § V3-3.4.1). The
processor possesses a linear address space with cells on a single level. The data, the
basic component in the computation model, is stored in a memory cell or a register.
It is addressed by reference or literally (Treleaven 1981). Instructions and data are

16 An address is a numeric designation (cf. a natural or relative integer) for a location or a
memory cell.

Computation Model and Architecture: Illustration with the von Neumann Approach 103

stored in a single memory and processed homogeneously (i.e. access and transport),
which justifies the use of the term “unified memory”. The distinction between the
two is made via the machine state. After initialization, the first information read is
an instruction.

This architecture possesses intrinsic disadvantages. The main one is called the
von Neumann bottleneck or tailback, a term introduced by John Backus during an
Association for Computing Machinery (ACM) conference (Backus 1978). It refers
to the fact that information transfer between processor and memory is only done in a
unitary manner using a sequence “address sent to memory/transfer of the word” via
a communication system referred to by Backus (1978) as a connecting tube. The
traffic between the first two subsystems does not only concern useful data but also
instructions and addresses. This limits computation speed to the flow rate. In modern
computers, the communication system is a bus shared by all of the communicating
subsystems. All information is required to be transmitted over the bus. This is
another bottleneck. An analogy is traffic congestion during the holidays, when all of
the vacation-goers find themselves on the road at the same time at the beginning or
end. Solutions for this problem have been proposed in other architectures, such as
the Harvard17 architecture (Moore 4199), for example, with the separation of data
and instructions. This architecture was subsequently modified. Modified Harvard
architectures are characterized by specialized memory, one for instructions and the
other for data. They are shown in § 3.4.2. Besides, the centralization of data
exchange means that the processor is also a bottleneck because it slows down
communication. An exchange between memory and an I/O exchange unit is required
to take place via the microprocessor, which executes the transfer via one of its
registers. With improvements such as Direct Memory Access (DMA), the control
of exchanges can be shared among multiple masters, the processor and the
DMA controller. In addition, in a parallel architecture, that is, one with several
processors, memory becomes a new bottleneck, as does shared I/O, although to a
lesser extent.

From this physical bottleneck, Van de Goor (1989) distinguishes a conceptual
bottleneck. He is referring to the fact that high-level entities are precisely based on
the machine’s low-level entities, which introduce restrictions. For example, variable
memory refers to a memory cell or to a register. Control structures that are
associated with tests and conditional and unconditional jumps are another example.
Programming styles such as functional or logical programming make it possible to
reduce this kind of bottleneck. This is the semantic gap (cf. § 3.1.5). Finally, the

17 Name of the university.

104 Microprocessor 1

sequentiality that is inherent in the model makes it difficult to specify parallelism.
This was not important in the early days, but today, this disadvantage weighs
heavily on performance (cf. § V4-3.4).

Improvements have been introduced to speed up the communication flow rate
between processor and memory. Memory, for example, has been segregated with
the introduction of several levels of cache (cf. § 2.1). Its size was increased, and
the subsystems were interleaved (cf. § 2.4.1 and 2.4.4 respectively in Darche
(2012)).

3.4. Variations on a theme

The processor’s main functional blocks are the execution unit, the control unit
and the registers (Figure 3.2.1). Let us now look at these components in their
environment. Since the processor communicates with the outside world, it has
several internal buses of the same type, since this kind of interconnection enables
communication between all of the microarchitecture’s components. One or more
data buses and an address bus carry information. These buses communicate with
external buses via electronic buffers, that is, amplifiers that, when necessary, adjust
voltage and current levels using logic-level translators (cf. § 3.8.2 in Darche (2004)).
They play the role of logical isolator. They can also perform a storage function.
They enable the use of buses by allowing for connection or disconnection to their
three-state output (cf. § 3.4.1 of Darche (2004)). These roles are played by the MAR
and MDR registers. Architectures can be classified according to their number of
internal buses, from zero to three. Based on the number of buses and operands, both
explicit and implicit, and their storage location (i.e. register, stack, random access
memory), the number of fields and therefore the instruction size will vary
proportionately (cf. § 3.5.1 and V4-1.1).

3.4.1. Classification by bus

An architecture with no buses uses the stack and is explained in § 3.5.1. The
architecture in Figure 3.29 is a single internal bus architecture. This is an
accumulator-based machine, with a register (Acc in the figure) always receiving an
operand and the result of a computation for a dyadic operation, that is, one with two
variables (cf. § V4-1.1). This architecture resembles the one used in the Z3 computer
(development begun in 1938) described in Rojas and Hashagen (2000).

Computation Model and Architecture: Illustration with the von Neumann Approach 105

Figure 3.29. Internal organization of a bus (control signals not shown)

A commercial example of an MPU is Intel’s 8080 microprocessor, which was
based on the internal architecture of the 8008 (Figure 3.30). Another example is the
Toshiba TLCS-12 (n = 12 bits).

106 Microprocessor 1

F
ig

u
re

 3
.3

0.
 F

un
ct

io
na

l i
nt

er
n

al
 o

rg
an

iz
at

io
n

of
 In

te
l 8

08
0A

 m
ic

ro
pr

oc
es

so
rs

w

ith
 a

 s
in

gl
e-

b
us

 in
te

rn
al

 d
at

a
pa

th
 (

In
te

l 1
9

75
)

Computation Model and Architecture: Illustration with the von Neumann Approach 107

Double internal bus architectures are the most common. The variations in
Figure 3.31 are located at the accumulator, which can be connected to both buses
(version b). It should be noted that some of the registers are bidirectional. In version
a, a circuit enabling information passing between the internal buses can be
implemented (bypass register).

Figure 3.31. Two variations of a double internal bus organization
(CU and control signals not shown)

108 Microprocessor 1

A commercial example is the Motorola MC6800, which operated in 8-bit format
(Figure 3.32). Its organization can be compared to the preceding single bus
approach. Also note that, for performance reasons, the ports on each register are
bidirectional, contrary to those in the preceding figure. The address bus was cut in
two to make internal transfers independent (Bennett et al. 1977) but logically still
only form one bus.

Figure 3.32. Internal functional organization of the Motorola MC6800
microprocessor with double internal bus data path

Computation Model and Architecture: Illustration with the von Neumann Approach 109

Another example is the PACE MPU from NS, whose structure is shown in
Figure 3.33. Contrary to the preceding example, one of the internal buses is
extended externally via a multiplexed address/data bus. Several 8-bit accumulators
ACi (i ∈ [0, 3]) make it possible to increase the locality of computations. Note the
presence of a 10-word capacity stack whose full or empty status can be detected and
indicated via interrupt (cf. Chapter V4-5).

Figure 3.33. Functional internal organization of the PACE microprocessor
from NS with a double internal bus data path

110 Microprocessor 1

Figure 3.34 presents a three-bus architecture. Its value lies in its ability to
transfer operands and the result of a dyadic operation in a single instruction cycle.

Figure 3.34. Internal three-bus organization
(CU and control signals not shown)

The number of buses will have an effect on the ability to simultaneously address
operands and the storage location of the result during execution of an instruction,
and therefore its syntax and encoding (cf. Chapter V4-1). A study on these different
kinds of buses can be found in Tseng and Siewiorek (1981, 1982). Section 3.5.1
shows the different types of addressing depending on the number of buses.

Computation Model and Architecture: Illustration with the von Neumann Approach 111

3.4.2. Harvard architectures

To avoid bottlenecks, the Harvard Mark I computer (1944) stored code and data
in two distinct memories that operated independently (Figure 3.35). Each possesses
its own communication path (i.e. bus). Access conflicts are thus avoided. Parallelism
is intrinsic to this model. A consequence is that a given address will correspond to
several storage locations, each belonging to separate address spaces. The name of
the university was applied to this architecture. The Harvard architecture therefore
predates the von Neumann architecture. Instruction memory is read-only, while data
memory is read-write. The bus size, particularly in terms of addresses, cannot be
equal.

Figure 3.35. Pure Harvard architecture

Several versions were subsequently proposed. The modern variants gathered
under the “modified Harvard architecture” umbrella are a mix of von Neumann and
Harvard architectures. The x86 family is a commercial example. As shown in
Figure 3.36, we see the former’s unified memory, as well as specialized memory
closer to the processor to improve flow rate with cache memory for specialized

112 Microprocessor 1

contents (split cache). In relation to the original model, address zero refers to a
single memory cell in the unified memory containing instructions and data, but the
communication buses are separated for the caches.

Figure 3.36. Example of a modified Harvard architecture (x86 family)

Microprocessors specialized for digital signal processing (DSP) and
microcontrollers (MCU for MicroController Unit, cf. respectively § V3-1.1 and
V3-5.3) have preferred to adopt this architecture because it is more efficient for
these applications. There will be variations in implementation. An example concerns
instruction memory accessible via programming (operation equivalent to a write, but
more complex) to be able to store a program (this is the case for flash EEPROM
(Electrically Erasable Programmable ROM) memory). We should also mention

Computation Model and Architecture: Illustration with the von Neumann Approach 113

microcontrollers from the Maxim MAXQ® family, which can fetch an instruction in
any type of memory. The Atmel AVR family, for example, can read or write
constants in instruction memory thanks to specialized instructions such as lpm
(Load Program Memory) or spm (Store Program Memory). Figure 3.37 shows the
data path with, on the dotted line, an additional path that makes it possible to read
data, which will be constants in the case of non-volatile memory (i.e. ROM) in
instruction memory for the SHARC® architecture. This architecture integrates an
instruction cache that is not shown. This variant is called the super-Harvard
architecture, which uses (at least) two memory banks for data. This provides a first
memory reserved for programs and the remainder for data. This makes it possible to
parallelize signal processing instructions such as MAC (multiply-and-
accumulate), because two simultaneous accesses to operands for the computation
are possible.

Figure 3.37. Simplified architecture of a SPARC® family processor

3.4.3. Parallelism

To speed up sequential computation in von Neumann machines, it was necessary
to move to parallelization. There are several types of parallelism at the level of

114 Microprocessor 1

instructions or data. As a first look, we discuss parallelism at the instruction level,
among activity threads or the cores. An example of data parallelism is vector-based
architecture (cf. § V4-2.7.1).

NOTE.– This section is illustrated by the MPU examples in § V3-4.7.

3.4.3.1. Instruction-level parallelism

Instruction-Level Parallelism (ILP) brings together design techniques from other
families of processors and compilers to overcome sequential execution. The first
research along these lines dates to the end of the 1960s – beginning of the 1970s
(Jouppi 1989). These techniques first appeared in microprocessors in the 1980s to
speed up execution of instructions, particularly those related to transfers between the
CPU and main memory (and vice versa) and to arithmetic computation with integer
and floating-point numbers. Improving performance requires executing more than
one Instruction Per Processor cycle (i.e. IPC > 1, cf. § V4-3.4). In other words, the
microprocessor must issue and execute several instructions in parallel. There will
therefore be several Execution Units (EU). But how can we detect which
instructions in a sequential flow can be executed in parallel (implicit parallelism),
and where should this detection take place? Looking over the development and
execution chain, two candidates come to mind. They are the compiler and the
microprocessor. In the former case, the compiler will detect a potential parallel
between instructions. In the latter case, the microprocessor will do this dynamically.
Two conflicting schools exist for controlling these execution units. They are
distinguished by the type of control, dynamic or static, of these execution units. The
former case involves a superscalar approach, and the latter uses (Very) Long
Instruction Word ((V)LIW) and Transport Triggered Architecture (TTA, Corporaal
1995), which is based on (V)LIW. The Explicitly Parallel Instruction Computing
(EPIC) approach, emerging from the PlayDoh project (Kathail et al. 1993, 2000) is a
potential intermediate solution. Figure 3.38 shows these different methods, which
will be described in more detail in the forthcoming Volume 2.

Figure 3.38. The four basic approaches to ILP

Computation Model and Architecture: Illustration with the von Neumann Approach 115

Architectures are classified based on a variety of criteria. The first was to
consider the instruction set. Thus, there are CISC and RISC type architectures. CISC
stands for Complex Instruction Set Computer. Two historical representatives are the
System/360 (Amdahl et al. 1964) and VAX (Levy and Eckhouse 1989)
architectures. RISC stands for Reduced Instruction-Set Computer (cf. V2,
forthcoming). The convergence of the two forms has led to the modern version of
processors, called CRISC for Complex-Reduced ISC. To speed up execution, the
Very Long Instruction Word (VLIW) architecture and its descendant, the EPIC
architecture, gathers together several instruction fields per instruction word. As an
illustration, we can mention the ISA, with a minimal number of instructions, or
MISC (Minimal ISC) with an instruction (OISC for One ISC, also referred to as
SISC for Single ISC18 (Azaria and Tabak 1983), or URISC for Ultimate RISC
(Mavaddat and Parhami 1988)) and finally the ultimate solution with ZISC (Zero
Instruction Set Computer, Lindblad et al. 1995), which is a neuronal co-processor
from IBM. We will conclude by mentioning WISC (Writable ISC), a theoretical
processor from Koopman (1987a, 187b) and NISC (No ISC) from Gajski (2003,
2005).

Figure 3.39. Simplified classification of TLP architectures

3.4.3.2. Thread level

After increasing the frequency of the processor’s clock and having taken
advantage of parallelism at the cycle level (ILP) with the pipeline and superscalar
approaches such as VLIW or EPIC, Thread-Level Parallelism (TLP) was proposed,
which is also referred to as multithreaded parallelism. It breaks down along the lines
of two approaches, explicit or CMT (Chip MultiThreading) and implicit. The former
is further divided into Hardware MultiThreading (HMT) and Chip MultiProcessing
(CMP). Finally, hardware multithreading can be very Fine-Grained (FGMT) or

18 This should not be confused with Special ISC (cf. § V2-9.2), or, in the case of the
illustration, Small ISC!

116 Microprocessor 1

Coarse-Grained (CGMT), or in the form of hyperthreading. Originally called
Simultaneous parallel MultiThreading (SMT) by its inventors (Tullsen et al. 1995,
1996), hyper-threading consists of transforming parallelism at the activity thread
level into parallelism at the instruction level. With the Implicit MultiThreading
(IMT) approach, threads are generated implicitly by the hardware or the compiler.

3.4.3.3. Multicore architectures

Figure 3.40 shows the evolution of the clock frequency over time (middle
curve). It stopped increasing after 2005 because of power dissipation problems
(second curve). This led to the stagnation of computation power (fourth curve).
Knowing that the number of integrated transistors on a chip continues to increase
(last curve), commercial producers began to increase the number of processors or
cores (first curve).

Figure 3.40. Variation of characteristics over time
(based on (Leavitt 2012))

A multicore microprocessor or (S)CMP ((Single) Chip Multiprocessor) is made
up of several independent cores gathered on the same chip (die). We speak of dual-
core, quad-core, etc. The first multicore microprocessor was the IBM Power 4
(Tendler et al. 2002). When their number exceeds several hundred or even a
thousand cores, we must speak of many-core and massively multi-core approaches
(Borkar 2007).

Each core is a modern, pipelined, even superscalar microprocessor, with several
levels of cache. All the cores, on the other hand, share the last level of cache and the

Computation Model and Architecture: Illustration with the von Neumann Approach 117

external interface. Since 2010, chips have integrated a GPU (Graphics Processing
Unit) and a memory controller. Figure 3.41 illustrates our point with an example of a
component, here a second-generation Intel® Core™ i7 microprocessor manufactured
in 32 nm engraving technology and clocked at 3.4 GHz.

Figure 3.41. Microphotograph of an Intel Sandy Bridge quad-core i7
(source: Intel 2011). For a color version of this figure, see

www.iste.co.uk/darche/microprocessor1.zip

A multi-core chip can be symmetric or asymmetric. SMP stands for Symmetric
(shared memory) MultiProcessing. In the first category, the cores can be identical
(homogeneous cores approach). For the second category, also called the
heterogeneous cores approach, one or more of the cores is more powerful than the
others.

3.5. Instruction set architecture

Abbreviated as ISA, this refers to the architecture of the processor seen by the
programmer (in the sense of Figure 3.4(a)). It is the interface between software and
hardware, providing only the hardware details necessary for programming and
compilation. The architecture exposes a common, or at least ascending, set of
instructions. Hence, commercial producers also call it the programmer model, since
it primarily refers to the processor’s instruction set. It is an abstract view of the
hardware. The ISA was initially relevant to a family of machines of a given class,
then to a single processor and, finally, to a family of processors. Two examples from
the first category are, for mainframe computers, the IBM System/360 and
System/370 lines and, for minicomputers, the PDP and VAX lines from Digital

118 Microprocessor 1

Equipment Corporation (DEC), and in the case where a series of machines have
upward software compatibility (cf. § V4-3.3.2 and 3.3.3). The first microprocessors
had their own ISA19. Then, Intel successively created the evolution of the x86
architecture (Intel 1989), the IA-32 (Intel 2003) and the Intel 64 (Intel 2017). We
should also mention the RISC-based Arm® instruction set architecture (Arm 2019),
implemented in the MIPS32 (MIPS 2001a) and the MIPS64 (MIPS 2001b), the
PowerPC (IBM 2017) and the SPARC (Weaver and Germond 1994).

The ISA primarily defines the Instruction Set (IS). This set will constitute the
target language for a compiler. However, it also specifies the architecture of the
processor by specifying the storage components, data format, (memory) model,
processor execution modes and hardware and software interrupt model.

3.5.1. Storage components

The potential information storage components are the General-Purpose Register
(GPR, cf. § V3-3.1), the main memory and the stack (based on registers or in main
memory, cf. § V4-4.1). A way to classify ISAs is to use as criteria the locations for
storing the operands (explicit) and the result. Thus, five classes can be defined
(Figure 3.42), which are the stack, accumulator, register-memory, register-register or
load-store architecture and memory-to-memory. Each class will have a number of
internal buses.

Figure 3.42. Classes of instruction set architectures with examples

From the programming point of view, each class corresponds to a pair (o, a) with
maximum number of operands o and number of memory references a, as shown in
Table 3.5. The number of internal buses will vary depending on the class.

19 With a few exceptions such as the Intel 8080 with the Zilog Z80 or the Motorola MC680X
(X = 0, 2 or 9).

Computation Model and Architecture: Illustration with the von Neumann Approach 119

ISA classes Maximum number
of operands o

Number of memory
addresses a Examples Types

Stack 0
0

(Implicit address)
Transputer Stack

Accumulator 1 1
Intel 8080, Motorola

MC680x
CISC

Register-
memory

2 1

IBM System/360 and
System/370,

Intel 80x86,

Motorola MC68000,
TI TMS320C54x

CISC

Memory-
memory

2 2 VAX CISC

Load/store

(register-
register)

3 0
MIPS, SPARC,

PowerPC, Arm®,
Alpha, SuperH

RISC

Memory-
memory

3 3 VAX-11® CISC

Table 3.5. Characteristics of architecture classes
(according to Hennessy and Patterson (2007) modified)

The stack or pushdown-store architecture works only with LIFO access memory
(Last-In, First-Out, cf. § V4-4.1). The stack management primitives are the push
pop instructions. We also speak of a 0-address or zero operand machine. The
location of the operands is implied. They should always be at the top of the stack, as
shown in Figure 3.43. The operation uses them by popping them off the stack, and
the result is implicitly stored on the top of the stack. A sample program is given
below. The Mi (i ∈ [1, 3]) are the locations in memory. The add statement only uses
implicit operands20 stored in the stack. Assuming that, with each access of the stack,
a push or pop is carried out depending on the type of access, a series of instructions
for an addition could be:

push M1; stack M1
push M2; stack M2
add; stack stack + stack

20 The semantics of the term “operand” of an operation is, in this case, Assembly Language
(AL); in other words, the operand specified after the mnemonic (i.e. abridged instruction, cf. §
V4-2.1). This references either a “traditional” operand (i.e. the value used for the computation
(mathematical definition)) or a result.

120 Microprocessor 1

Figure 3.43. Zero-address stack architecture (from Nurmi (2007), modified)

Variants can use one operand with reference (one-operand instruction) and
another on the stack or two operands with reference with the storage of the result on
the stack (Koopman 1989). The code is thus more concise. In the following
example, an address field is added to the operation, and the storage of the result on
the top of the stack is implicit.

push M1; stack M1
add M2; stack stack + M2

We should mention two pioneering machines, the KDF9 from English Electric
(Lavington 1980) and the Burroughs B5000. For pocket calculators, we can point to
the HP35, which used the modified post-fixed notation also called Reverse Polish
Notation (RPN), which was invented by the philosopher Jan Lukasiewicz. Koopman
(1989) studied this architecture.

The accumulator architecture was presented earlier. In this architecture, an
operand is implicitly stored in the accumulator. There is at most one access to main
memory (Figure 3.44). For a dyadic function, the use of an implicit work register
will imply the presence of a single address (case of the Whirlwind computer) in the

Computation Model and Architecture: Illustration with the von Neumann Approach 121

coding of the instruction. A sample program is given below. It should be noted that
access to the operand M1 is implicit for the addition instruction.

load M1; Acc M1
add M2; Acc Acc + M2
store M3; M3 Acc

The only purpose is to limit the instruction size. The IAS was one of the first
machines with one address. Another example was the ICL 2900 central computer
(Buckle 1978). An example of a machine (on paper) with one address was the
MARIE (Machine Architecture that is Really Intuitive and Easy) from Null and
Lobur (2003).

Figure 3.44. One-address architecture, with accumulator
(from (Nurmi 2007), modified)

In a machine with two memory addresses, the instructions have two reference
fields for the operands. Examples of implementation include the IBM System/360

122 Microprocessor 1

and /370 families and the UNIVAC Solid State computer. We must mention the
notion of the one-and-a-half address computer with, for the two-operand
instructions, a memory reference and another for a register (hence the 0.5 by
memory address space) or a constant. Two examples are the PDP-6 and PDP-10
minicomputers (Bell 1978). The x86 architecture also falls into this category. From a
historical point of view, Reilly (2003) includes in this category the pioneering
computers with cylindrical memory (drum-based computers), which specified
address of the next instruction in the previous one.

In a GPR-type architecture, all or some of the operands are preferably stored in
registers for general use to speed up the execution time. An example implementation
is the VAX-11® from DEC. The variants are the load-store architecture, register-(to-
)memory and memory-(to-)memory. With load-store, also called register-register,
there are no instruction operand(s) in memory (Figure 3.45). RISC microprocessors
like the Arm® family from the company of the same name are representatives of
load-store architecture. In the register-memory variant, at least one operand is in a
register.

Figure 3.45. Architecture with two (a) and three (b) register
references (from Nurmi (2007), modified)

Computation Model and Architecture: Illustration with the von Neumann Approach 123

In a register-register architecture, only the load and store instructions access
the memory to (un)load the registers containing the operands and the result of
computation. The other instructions only use the registers as memory to improve
access time. Execution time is therefore very short and is the same for all
instructions. The use of registers leads to simplified instruction encoding
(cf. § V4-1.1). Their size is fixed and small. The counterpart is a longer program
length. The RISC approach is an example of this architecture. A sample program is
given below. It should be noted that the references to the operands and, here, to the
result are explicit.

load R1, M1; R1 M1
load R2, M2; R2 M2
add R3, R1, R2; R3 R1 + R2
store M3, R3; M3 R3

One advantage of a register-memory architecture is not having to fetch an
operand in memory (which would require an additional instruction). It generalizes
the accumulator architecture. Block transfer is therefore not suitable without
adapting the architecture (cf. § V4-2.8.1). In addition, for the sake of reducing the
instruction size, the number of registers is generally low (ten is the order of
magnitude) to have a wide address field. The execution time for an instruction also
varies depending on the location of the operands. In the version in Figure 3.46(a),
the operands are not equivalent in the case of a binary operation (i.e. with two
operands). Indeed, the destination operand (the one on the left in the case of an MPU
in the x86 family) is destroyed by the result of the computation, as this sequence of
instructions shows:

move R1, M1; R1 M1
add R1, M2; R1 R1 + M2
move M3, R1; M3 R1

An example program in relation to Figure 3.46(b) is given below. It should be
noted that the references to the operands and to the result are explicit.

load R1, M1; R1 M1
add R3, R1, M2; R3 R1 + M2
store M3, R3; M3 R3

124 Microprocessor 1

F
ig

u
re

 3
.4

6.
 M

em
or

y-
re

gi
st

er
 a

rc
hi

te
ct

ur
es

 (
fr

om
 N

ur
m

i (
20

07
),

 m
od

ifi
ed

Computation Model and Architecture: Illustration with the von Neumann Approach 125

Figure 3.47. Three-address architecture (from Nurmi (2007), modified

In memory-memory architecture, all operands are in memory (Figure 3.47). An
instruction references at most three operands in memory. The instruction size is
therefore large and variable depending on the addressing mode. In a machine with
three addresses, there are two buses for the source operands (source buses A and B)
and one for the result. The advantage is that this decreases the number of internal
cycles by increasing the parallelism linked to the transfer. An example of these
machines is the CDC 6600/6700 family (i.e. CYBER 70 model 76). A code example
for a hypothetical machine would be:

add M3, M2, M1; M3 M1 + M2

One notable exception is the IBM 650, where the second address pointed to the
next instruction (IBM 1955; Knuth 1986). Three or four addresses with a pointer to
the next instruction are the last two variants, an example being the SEAC (Standards
Electronic Automatic Computer, Greenwald et al. 1953).

The distinctive TMS9900 microprocessor from Texas Instruments (TI 1976) is
an example of a memory-memory architecture with user registers installed in main
memory. A WP (Workspace Pointer) points to a bank of 16 register words serving

126 Microprocessor 1

as registers. The value lies in the speed of context change (cf. § V4-4.2.2) since one
only needs to change the value of WP. The last three locations (registers 13:15) are
used to save the three unique internal registers accessible to the programmer, which
are SC for the return address, the status register (ST) and WP. Therefore, there is no
need for a stack. It is no longer used for performance reasons, since main memory
has a much higher latency than a register (by a factor of about 30). This architecture
has an inherent bottleneck because everything happens in memory. It was therefore
abandoned. In addition, access to memory compared to a register is time-consuming.

For reference, EDVAC (Gluck 1953) was a four-address machine.

3.5.2. Data format and type

ISA characterizes the type of data (natural or relative integers, floating-point
numbers, numbers in BCD, alphanumeric data, character strings, etc.), the size and
the associated vocabulary. A 64-bit processor will handle integers in 8 (byte),
16 (halfword), 32 (word) 64 (doubleword) and 128 (quadword) formats. If it has a
computation unit for floating-point numbers, then it will manipulate basic scalar data
or, for more modern components, vector data (cf. § V4-2.7.1).

3.5.3. Instruction set

Defining an instruction set consists of defining the operations, the format of the
instructions, their coding (code operation) and their addressing modes (cf. § V4-1.2),
and the number, type and size of the explicit operands. The instructions are
classified in families (cf. § V4-2.1). Several instruction sets, generally inclusive, can
exist for the same architecture. An IS is generally fixed, but it can be dynamic on
demand (DISC for Dynamic Instruction Set Computer) by reprogramming, for
example, an FPGA (Field-Programmable Gate Array, cf. § 4.3.2 in Darche (2004))
as proposed by Wirthlin and Hutchings (1995). The definition of the instructions
takes place at the assembly language level, with the mnemonic (i.e. short name,
cf. § V4-2.1), its semantics, the syntax of the instructions, the methods of addressing
the operands and the result. The instruction size defines the total width (i.e. the
number of bits) and the different fields of the instruction code. This size can be fixed
or variable (cf. § V4-1.1). Historically, the IAS handled two instructions per address,
and the IBM 701 only one, which has become the standard today except for special
architectures such as Very Long Instruction Word (cf. V2). Chapter 5 presents all
these aspects.

Computation Model and Architecture: Illustration with the von Neumann Approach 127

3.5.3.1. Properties

An instruction set has properties. Orthogonality expresses the independence of
the instructions from the types of data. It is linked to the notions of completeness
and consistency. Completeness is the fact that each type of data has a full set of
operations. The consistency of an instruction set characterizes the degree of
availability of an instruction set for the different types of data. Weak consistency
would mean that the add statement is provided but subtraction is not for a given data
type.

Another property is symmetry. An instruction set is said to be symmetric if any
instruction can use any addressing mode and any register. This can also apply to
data formats and types or to the updating of flags. Variations in the definition are
acceptable. Vajda (1986) talks about independence between instructions, data types
and addressing modes. A first example is the VAX, whose instructions were
independent of the addressing modes. Another example is the fact that mathematical
exceptions are thrown transparently without specialized instructions. This simplifies
the hardware and, in particular, the life of the system programmer!

A final property is the simplicity of the instruction set. The architecture that best
illustrates this is called RISC (cf. V2, forthcoming). The purpose of this architecture
was to accelerate computation speed by choosing the most frequently used
instructions and optimizing their execution.

All these concepts are detailed in § V4-3.1.3.

3.5.4. Memory model

The (memory) model specifies the order in which bits and bytes are stored in
memory (i.e. little and big-endian orders, cf. § 2.6.2 in Darche (2012)). It also
indicates the access unit. For example, Intel’s x86 MPU architecture uses byte
addressing. It specifies whether the information should be aligned to the word and
the behavior in the event of unaligned memory access.

Unaligned access will generally cause an exception or slow execution (case of
the x86 family). For the most powerful architectures, it describes virtual memory
with address translation from logical memory to physical memory, memory
protection, cache management and synchronization of access to memory shared by
several PEs (Processing Element).

128 Microprocessor 1

3.5.5. Execution modes

As the processor executes at least two processor execution modes (i.e. supervisor
and user, cf. § V4-3.2.2), there will be two ISA specifications, the application level
programmers’ model and the system level programmers’ model. Each will have its
own instruction set or, more exactly, the supervisor (or system) mode will include
the other set. A mode can also have, for reasons of upward compatibility
(cf. § V4-3.3.3), sub-modes linked to the data format. We can point to, for example,
the AArch64 and AArch32 modes of the Arm® family (Arm 2019). The
consequences will also relate to the other elements of the ISA such as storage and
the (memory) model.

3.5.6. Miscellaneous

The interrupt model specifies the types of interrupts. It details the request
mechanism, where the interrupt vectors are located and how the contextual
backup/restore process takes place. This mechanism is explained in detail in V4-5.
More generally, ISA defines the data structures specific to an SE such as descriptor
tables (examples from Intel include GDT for Global Descriptor Table, LDT for
Local Descriptor Table and IDT for Interrupt Descriptor Table), page tables or
process control blocks.

3.6. Basic definitions for this book

This section is dedicated to the basic definitions that apply to this book. A
processor (hardware) is a programmable functional unit composed of at least one
Control Unit (per instruction) and one Integer Processing Unit (IPU). The control
unit is responsible for fetching the instructions and the associated operands of a
program from main memory, for decoding them and for generating the control flow
for the processing unit, which is responsible for execution (definition ISO/IEC 2382-
1: 1993 extended). It has its own storage area, a basic one in the form of registers or
an advanced one in the form of a cache for the most powerful processors. The
integer processing unit or IU (Integer Unit) is a computation unit dedicated to
processing integers (cf. § 2.5 in Darche (2000)), signed as the 2n’s complement or
not as natural binary or BCD (Binary Coded Decimal). The GPRs (cf. § V3-3.1.1)
enable storage of the operands. They can be grouped in the form of a bank (register
file, bank of registers). This is referred to as multi-port memory. Registers dedicated
to management (i.e. specialized registers, see § V3-3.1.1) maintain the state of the
processor. In general, the processor is generally dedicated to computation. It can
also be dedicated to a function or a domain such as I/O. We speak of I/O Processors
(IOP). It will then have registers of the CSR type (Control and Status Register,

Computation Model and Architecture: Illustration with the von Neumann Approach 129

cf. § 2.2.1 in Darche (2003) and § 3.8). Hardware accelerators such as a computation
unit dedicated to the processing of real numbers in standardized fixed and floating-
point representations (cf. §4 in Darche (2000)) or an FPU (Floating-Point Unit) or
any other co-processor (CP for CoProcessor) can be added to it. The microprocessor,
the microcontroller or the DSP are examples of processors as “discrete
components”. More generally, a computation element, that is, a processor, will be
designated by PE (Processing Element) or, preferably, PU (Processing Unit). A
(central) computing unit or (C)PU ((central) processing unit) or central processor is
a functional unit that contains one (uniprocessor) or several processors
(multiprocessor). The integrated version is the microprocessor, which is the central
unit of the microcomputer. We also speak of a “MicroProcessing Unit” (MPU). The
microprocessor is at the origin of the microcomputer21 or C and its industry.

To facilitate the modeling of architectures, it may be useful to define generic
entities. A processor consists of one or more computation elements or PE. A PE is
the entity that performs computations. It consists of several functional units
including the CU and the IPU. For microprocessors, a PE is equivalent to a core.
Associated with this PE, there is the Memory Element (ME) and the Communication
Element (CE). In a generic parallel architecture, a processing node is made up of
several processors and, depending on the model, local memory.

3.7. Conclusion

In this chapter, we have defined the fundamental concepts, computational model
and architecture of a computer. A computational model is a high-level abstraction
that explains how computations are performed. We have more specifically described
the control flow computation model, which uses a data by reference mechanism to
access shared memory cells. The control mechanism is originally sequential with a
single control thread passed from instruction to instruction. However, the
mechanism can be parallelized (cf. Farrell et al. 1979; Hopkins et al. 1979). The
dataflow computation model has a data by value mechanism and a parallel control
mechanism. This means that the data is passed directly to the instructions and that,
as before, the literals are stored with the instruction code. The runtime consumes the
data tokens, which can no longer be reused.

Computer design can be broken down into three levels: the study of behavior –
the functional aspect of computers; its organization – the structural aspect; and its
implementation in a given technology. In modern vocabulary, these three levels are
respectively called the architecture of the instruction set or ISA, the
microarchitecture and implementation. ISA refers to the architecture of the processor

21 Computer whose central unit is made up of at least one microprocessor.

130 Microprocessor 1

as seen by the programmer. Microarchitecture refers to the operational units and
their interactions (i.e. relationship), which implement the architecture specifications.

We then illustrated the concepts of computational model and architecture with
the so-called von Neumann approach. A computer following the latter has a
sequential control flow. It executes a program, an ordered sequence of instructions,
stored in main memory. Each of these instructions can be followed by one or more
operands, which can be a literal datum, an address referencing it, or the reference to
a register or a target (instruction) address during a disconnection (cf. § V4-2.4). The
binary word representing the instruction has a variable or fixed format depending on
the ISA.

Conclusion of Volume 1

The microprocessor is at the heart of current digital systems. This programmable
logic component sequentially executes the instructions of a program stored in main
memory. This first introductory volume to the field presented the basic concepts of
how a computer works.

The introduction presented the different technologies that make up computers:
mechanics, electromechanics and electronics. With regard to the latter, the different
generations have been described according to their technologies. A classification of
families of computers was then proposed. The analog approach has not been
forgotten, and this chapter has ended with the integration of components in
microelectronics and its limits.

A review of the function of storage and of former and current technologies was
made in the second chapter. Associated concepts such as information storage order
and alignment were then discussed. Finally, modeling and classification were
proposed.

In the third chapter, the fundamental concepts, computational model and
architecture of a computer have been defined. A computational model is a high-level
abstraction that explains how computations are performed. We have more
specifically described the computation model with control flow and data flow. The
architectural aspect is then addressed. Computer design can be broken down into
three levels: the study of behavior – the functional aspect of computers; its
organization – the structural aspect; and its implementation in a given technology. In
modern vocabulary, these three levels are known respectively as Instruction Set
Architecture (ISA), microarchitecture and implementation. ISA refers to the
architecture of the processor as seen by the programmer. Microarchitecture refers to
the operational units and their interaction (i.e. relationship), which meets the
specifications of the architecture. The notions of computational model and

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

132 Microprocessor 1

architecture were then illustrated with the so-called von Neumann approach. A
computer following the latter has a sequential control flow. It executes a program,
an ordered sequence of instructions, stored in main memory. Each of these
instructions can be followed by one or more operands, which can be a literal datum,
an address referencing it or the reference to a register or a target (instruction)
address during a transfer of control, that is, during a break in the instruction flow.

The following volume is devoted to the communication features of digital
systems.

Exercises

Here are some exercises that complement the concepts presented in this book.
Their numbering refers to the chapter with which they are associated.

Chapter 1. Exercises

E1.1. The notion of a complement is used in machine arithmetic to implement
subtraction. There are two types, which are the true and restricted complements
denoted respectively ⌃ and ¯. They were studied in § 4.2 of Darche (2000). Show
that it is possible to subtract by using addition.

Answer. For the limited complement, a good example is the Pascaline
(Figure 1.4). The method is as follows: ܵ = ܣ − ܤ = ሺ10 − 1ሻ − ሺ10 − 1 − ܣ + ሻܤ = ሺ10 − 1ሻ − ܵᇱ = ܵ′ഥ ܵᇱ	ℎݐ݅ݓ [1.3] = ܣ̅ + ܤ

Another approach is formula [1.4], more restrictive because it is necessary to
increment the result at the end of addition. ܣ − ܤ = ܣ + ሺ10 − 1 − ሻܤ + 1 [1.4]

Take an example of size n = 3. Let S = A - B = 704 - 196 = 508. We have: ̅ܣ = 999 − 704 = 295 ܵ′ = ܣ̅ + ܤ = 295 + 196 = 491

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

134 Microprocessor 1

ܵ = ܵ′ഥ = 999 − 491 = 508

If we now consider the representation in addition to 2n, we must use the
following formula: ܣመ = ܤ − ܣ = ሺܤ − 1ሻ − ܣ + 1 = ܣ̅ + 1 [1.5]

Let us use the previous example. Let S = A - B = 704 - 196 = 508, we have: ܤത = 999 − 196 = 803 ܵ = ܣ − ܤ = ܣ + ሺ−ܤሻ = ܣ + ܤ = 704 + 803 + 1 = 1508	ሺ=	508	if	the	value	is	truncated	in	the	n	=	3	digit	formatሻ
Chapter 3. Exercises

E3.1. What is the major difference between the von Neumann and Harvard
architectures?

Answer. The von Neumann architecture (cf. § 3.2.2) has a unified memory. This
means that the instructions and the data are stored in a single memory. The Harvard
architecture (cf. § 3.4.2) stores them in two separate memories (memory with
specialized content).

E3.2. To which internal operation is the comparison reduced (comp operator)?

Answer.

⇔B	comp	ܣ ܣ − 0 [3.2]	comp	ܤ

This relation means that the comparison operation (<,>, = and combinations of
these) is reduced to a subtraction and a comparison with respect to zero. This
justifies the presence of the binary indicators (flags) ZF, SF, CF and OF in the status
register (cf. § V3-3.1.5).

Acronyms

This section includes all of the acronyms used in this volume. They will be
introduced once per chapter.

General

A

A Address

ABC Atanasoff–Berry Computer

Ac or Acc Accumulator register

AL Assembly Language

ALGOL ALGOrithmic Language

ALU Arithmetic and Logic Unit

AR Arithmetic Register

AS/400 Application System/400

ASCC Automatic Sequence Controlled Calculator (IBM)

ASIC Application-Specific Integrated Circuit

ASM Application-Specific Memory

ASP Application Service Provider

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

136 Microprocessor 1

B

b bit (cf. BIT)

B Byte

BASIC Beginner’s All-purpose Symbolic Instruction Code

BBSRAM Battery-Backed SRAM

BCD Binary Coded Decimal

BE Big Endian

BiCMOS Bipolar CMOS

BiE Bi-Endian

BINAC BINary Automatic Computer

BIOS Basic Input/Output System

BIT BInary digiT or Binary digIT

BJT Bipolar Junction Transistor

C

CA Central Arithmetical part or Central Arithmetic logic unit

CAD Computer-Assisted/Aided Design

CAD Computer-Assisted/Aided Drawing

CAM Content-Addressable Memory

CC Central Control part or unit

CC Condition Code

CC Control Counter

CCU Computer Control Unit

CD Compact Disk

CD-ROM CD Read-Only Memory

CE Chip Enable (cf. CS)

CE Communication Element

CF Carry Flag

Acronyms 137

CFG Control Flow Graph

CGMT Coarse-Grained MultiThreading

CISC Complex Instruction Set Computer

Clk (input) Clock

CM Central Memory

CMOS Complementary MOS

CMP Chip MultiProcessor

CMP Chip MultiProcessing

CMT Chip MultiThreading

CO COntrol-driven

COBOL COmmon Business Oriented Language

COTS Commercial Off-The-Shelf

COW Cluster of Workstations

CP CoProcessor

CP Control Path

CP/M Control Program for Microcomputers (Digital Research)

CPSD Cell-Phone-Sized Device

CPU Central Processing Unit

CR Control Register

CRISC Complex-Reduced Instruction Set Computer

CS Chip Select (cf. CE)

CSP Communicating Sequential Processes

CSR Control and Status Register

CU (Central) Control Unit

D

D Data

D Device

138 Microprocessor 1

DA DAta-driven

DDF Dynamic Dataflow

DE DEmand-driven

DIL Dual-In-Line

DIP DIL Package

DISC Dynamic Instruction Set Computer

DMA Direct Memory Access

DP Data Path

DPU Data Processing Unit

DQ Data input/output

DR Data Register

DRAM Dynamic RAM

DSP Digital Signal Processor

DTL Diode–Transistor Logic

E

EAROM Electrically Alterable ROM, one of the two types of
 EEPROM

ECC Error Checking and Correcting/Error-Correcting Code

ECF Exceptional Control Flow

ECL Emitter Coupled Logic

EDAC Error Detection And Correction (cf. ECC)

EDSAC Electronic Delay Storage Automatic Calculator

EDVAC Electronic Discrete Variable Automatic Computer

EEPROM Electrically EPROM

E2PROM Electrically EPROM

ELSI Extra LSI (Fujitsu)

ENIAC Electronic Numerical Integrator And Computer

EPIC Explicitly Parallel Instruction Computing

Acronyms 139

EPROM Erasable PROM

EU Execution Unit

EX EXecute phase

EXOR EXclusive OR (cf. XOR)

F

FD Floppy Disk

FDD FD Drive

FDE Fetch-Decode-Execute cycle

FDX Fetch-Decode-eXecute cycle

FEEPROM Flash EEPROM (definition JEDEC – JESD88C)

FET Field Effect Transistor

FF Flip-Flop

4GL 4th Generation Languages

FGMT Fine-Grained MultiThreading

FIFO First In, First Out

FORTRAN FORmula TRANslation

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FR Function table Register

FSM Finite State Machine

FW FirmWare

G

GDT Global Descriptor Table (Intel)

GPR General-Purpose Register

GPU Graphics Processing Unit/Graphics Processor Unit

GSI GigaScale Integration

140 Microprocessor 1

H

HD Hard Disk

HDD HD Drive

HDL Hardware Description Language

HLL High-Level Language

HMI Human–Machine Interface

HMOS High-density MOS (Depletion-load NMOS)

HMT Hardware MultiThreading

HPC High-Performance Computing

HW HardWare

I

I Input

IaaS Infrastructure-as-a-Service

IBR Instruction Buffer Register

ICU Instruction Control Unit

ID Instruction Decode

I/D Instructions/Data

IDT Interrupt Descriptor Table (Intel)

IF Instruction Fetch

ILP Instruction-Level Parallelism

IMT Implicit MultiThreading

I/O Input/Output

IO Input/Output (rarely used)

IOP I/O Processor

IoT Internet of Things

IP Instruction Path

IP Instruction Pointer (Intel x86) (cf. SC and PC)

Acronyms 141

IPU Integer Processing Unit

IR Instruction Register

IRAM Intelligent RAM

IS Instruction Set

ISA Instruction Set Architecture

ISBN International Standard Book Number

ISC Instruction Set Computer

ISM Infinite State Machine

ISP Instruction Set Processor

IT Information Technology

J

JFET Junction FET

JPEG Joint Photographic Experts Group

K

K Kitchen

L

LAN Local Area Network

LDT Local Descriptor Table (Intel)

LE Little Endian

LIFO Last In, First Out

Lisp LISt Processing

LIW Long Instruction Word

LSI Large-Scale Integration

142 Microprocessor 1

M

M Memory

MAC Multiply-and-ACcumulate

MADC Manchester Automatic Digital Computer

MADM Manchester Automatic Digital Machine

MAN Metropolitan Area Network

MAR Memory Address Register

MARIE Machine Architecture that is Really Intuitive and Easy

MCU MicroController Unit (preferred)

MCU MicroComputer Unit

MDR Memory Data Register

ME Memory Element

ME passing MEssages

MEMS MicroElectroMechanical System

MIPS Microprocessor without Interlocked Pipeline Stages from
 MIPS Technologies (therefore called MIPS Computer
 Systems)

MISC Minimal ISC

MLM Multi-Level Memory

MoC Model of Computation

MOS Metal-Oxide Semiconductor

MOSFET MOS FET

MPEG Moving Picture Experts Group

MPP Massively Parallel Processor/Processing

MPU MicroProcessor Unit

MQ Multiplier-Quotient Register

MROM Mask ROM or Mask-programmed ROM (JEDEC)

MSD Mass Storage Device

Acronyms 143

MSI Medium Scale Integration

MSS Mass Storage System

N

NAND Not AND

NISC No ISC

NMOS Negative (channel) MOS

NOVRAM Non-Volatile RAM (cf. NVRAM and NVSRAM)

NOW Network of Workstations

NVM Non-Volatile Memory

NVSRAM Non-Volatile SRAM (cf. NOVRAM)

O

O Output

ObS On-board System

OEM Original Equipment Manufacturer

OF Operand Fetch

OF Overflow Flag

OISC One Instruction Set Computer (sometimes SISC)

OS Operating System

OTPROM One-Time EPROM

P

PA PAttern-driven

PaaS Platform-as-a-Service

PACE Precision Analog Computing Element

PAD Personal Audio Device

PALM Put All Logic in Microcode

144 Microprocessor 1

PA/VD Personal Audio/Video Device

PC Personal Computer

PC Program Counter (cf. SC and IP)

PCB Printed Circuit Board

PCU Program Control Unit (Carter 1995) (cf. DSP from
 Motorola)

PDA Personal Digital Assistant

PDP Programmable Data Processor (DEC)

PE Processing Element, Processor Element

PET Personal Electronic Transactor (Commodore
 International)

PI/O Peripheral (Input–Output)

PISO Parallel In Serial Out

PMOS Positive (channel) MOS

PMS Processor, Memory, Switch descriptive system

PN dataflow Process Networks

POWER Performance Optimization With Enhanced RISC

PowerPC POWER Performance Computing

PROLOG PROgrammation en LOGique (programming in logic)

PROM Programmable ROM

PS/2 Personal System/2

PSR Processor Status Register

PSRAM Pseudo-Static RAM

PU Processing Unit

PVD Personal Video Device

Q

Qubit Quantum bit

Acronyms 145

R

RAM Random Access Memory

RC Read Cycle

RFC Request For Comments

RISC Reduced Instruction Set Computer

RMW Read-Modify-Write

ROM Read-Only Memory

RPN Reverse Polish Notation

RT Register Transfer (cf. RTL)

RTL RT Language (preferred over RT Level)

RW or R/W Read/Write

S

SaaS Software-as-a-Service

SBC Single-Board Computer

SC Sequence Counter (cf. IP and PC)

(S)CMP (Single-)Chip Multiprocessor

SDF Synchronous Dataflow

SDRAM Synchronous DRAM

SEAC Standards Electronic Automatic Computer

SF Sign Flag

SFF Small Form Factor

SH SHared data

SI Système International d’unités (International System of
 Units)

SIPO Serial In Parallel Out

SISC Single Instruction Set Computer (sometimes OISC)

SISC Special Instruction Set Computer

146 Microprocessor 1

SL linear resolution with Selection Function

SLD Selective Linear Definite clause (cf. SL)

SLSI Super LSI

SLT Solid Logic Technology (IBM)

SMP Symmetric (shared memory) MultiProcessing

SMP Simultaneous Multi-threaded Parallelism

SMT Simultaneous MultiThreading

SoC System on (a) Chip, System-on-Chip

SP Stack Pointer

SPARC Scalable Processor ARChitecture

SPOOL Simultaneous Peripheral Operations On-Line

SR Selectron Register

SR Shift Register

SRAM Static RAM

SRP Synchronous-Reactive Programming

SSD Solid-State Disk

SSI Small-Scale Integration

SSRAM Synchronous SRAM

ST Status Register (TMS9900)

SW SoftWare

T

TLP Thread-Level Parallelism

TT Time-Triggered

TTA Transport Triggered Architecture

TTL Transistor–Transistor Logic

Acronyms 147

U

ULSI Ultra LSI

UNIVAC Universal Automatic Computer

URISC Ultimate RISC

URL Uniform Resource Locator

USB Universal Serial Bus

UV UltraViolet

UV-EPROM UltraViolet EPROM

V

VAX Virtual Addressed eXtended (DEC)

VLIW Very LIW

VLSI Very LSI

VM Virtual Memory

VoIP Voice over IP

W

W Write

WAN Wide Area Network

WB Write Back

WC Write Cycle

WE Write Enable

WISC Writable Instruction Set Computer

WP Workspace Pointer (TMS9900)

WSN Wireless Sensor Network

X

XOR eXclusive OR (cf. EXOR)

148 Microprocessor 1

Z

ZF Zero Flag

ZISC Zero Instruction Set Computer

Miscellaneous

µC Microcontroller

µP Microprocessor

2D or 2-D Two-dimensional

3D or 3-D Three-dimensional

3M a megabyte of memory, a block of resolution of at least
 one Megapixel and with computation power of a million
 instructions per second (MIPS)

5M Megabyte memory, Megapixel display, MIPS processor
 power, 10+ Megabyte disk drive and 10 Megabit/s
 network

Measurement units/prefixes

b/s or bps bit(s) per second

bpspp bps per pin

E exa (= 1018)

Exbi exabinary (prefix Ei)

FLOPS Floating Point Operations Per Second

G giga (= 109)

Gb gigabit

GB gigabyte

GB/s or GBps gigabyte(s) per second

Gib gibibit

Gibi gigabinary (prefix Gi)

GiB gibibyte

Acronyms 149

Gops gigaoperation(s) per second

IPC Instructions Per Cycle

k kilo (= 1000)

K kilobinary (= 1024) – a deprecated prefix; the capital letter
indicates the value of the prefix (which we have selected
for this work)

kb kilobit (= 1000 b)

Kb kilobit (= 1024 b) – former multiple, to be avoided

KB kilobyte (1024 bytes)

kBps kilobyte(s) per second

Kib kibibit

Kibi kilobinary (prefix Ki)

KiB kibibyte

M mega (= 106)

Mebi megabinary (prefix Mi)

MFLOPS Million FLOating-point Operations Per Second

Mib mebibit

MiB mebibyte

MIPS Million Instructions Per Second

P peta (= 1015)

Pebi pebibinary (prefix Pi)

PFLOPS PetaFLOPS

SPECfpxx System Performance Evaluation Corporation floating
 point, xx = year

T tera (= 1012)

Tb terabit

Tbps terabit per second

TB terabyte

TBps terabyte per second

Tebi tebibinary (prefix Ti)

150 Microprocessor 1

Tib tebibit

TiB tebibyte

Y yotta (= 1024)

Yobi yobibinary (prefix Yi)

Z zetta (= 1021)

Zebi zebibinary (prefix Zi)

Temporal characteristics

ta access time

tc cycle time

tRC Read Cycle time

Tref Reference time (DRAM refresh)

tWC Write Cycle time

Companies and Organizations

ACM Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

AFISI Association Française d’Ingénierie des Systèmes
 d’Information

AIEE American Institute of Electrical Engineers

AMD Advanced Micro Devices, Inc.

ARM Acorn RISC Machine; later Advanced RISC Machines

BBC British Broadcasting Corporation

CDC Control Data Corporation

DEC Digital Equipment Corporation

EAI Electronic Associates, Inc.

HP Hewlett-Packard

IAS Institute for Advanced Study

IBM International Business Machines Corporation

Acronyms 151

ICL International Computers Limited

IEC International Electrotechnical Commission

IEDM International Electron Devices Meeting

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

Inria Institut national de recherche en informatique et en
 automatique

ISO International Organization for Standardization

ISSCC IEEE International Solid-State Circuits Conference

ITRS International Technology Roadmap for Semiconductors

JEDEC Joint Electron Device Engineering Council (Solid-State
 Technology Association)

MIT Massachusetts Institute of Technology

MITS Micro Instrumentation Telemetry Systems

NS National Semiconductor

PARC Xerox Palo Alto Research Center

RCA Radio Corporation of America

SGI Silicon Graphics, Inc.

TI Texas Instruments

TRS Tandy RadioShack

Trademark (™)

Microflame NS

Registered Trademarks (®)

AMD AMD

Ethernet Xerox Corporation

Intel Intel

Pentium Intel

152 Microprocessor 1

PS/2 International Business Machines Corporation

UNIX AT&T

Windows Microsoft Corporation

References

Preface

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Collection Support IUT. Éditions Gaëtan Morin.
November.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert. March.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert. June.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Editions Vuibert. November.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert. January. Un des quatre ouvrages
sélectionnés pour le prix AFISI (Association Française d’Ingénierie des Systèmes
d’Information) du meilleur livre informatique.

Chapter 1

Anderson, T.E., Culler, D.E., and Patterson, D.A. (1995). A case for NOW (Networks of
Workstations). IEEE Micro, 15(1), 54–64. February.

Andrews, E.G. (1963). Telephone switching and the early bell laboratories. The Bell System
Technical Journal (BSTJ), 341–353. March. Also in (La Porte and Stibitz 1982, 13–19).

Andrews, E.G. and Bode, H.W. (1950). Use of the relay digital computer. Electrical
Engineering, 69(2), 158–163. February. Also in (La Porte and Stibitz 1982, p. 5–13).

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

154 Microprocessor 1

Architecture Technology Corporation (1991). Minisupercomputers. Architecture Technology
Corporation Report. September.

Arnold, B. (2009). Shrinking possibilities. IEEE Spectrum, 46(4), 26–28 and 50–56. April.

Ascher, M. (1983). The logical-numerical system of Inca quipus. IEEE Annals of the History
of Computing, 5(3), 268–278. July.

Aspray, W. (ed.) (1990). Computing Before Computers. Iowa State University Press.

Bardeen, J. and Brattain, W.H. (1948). The transistor, a semi-conductor triode. Physical
Review, 74(2), 230–231. July 1948. Republished in Proceedings of the IEEE, 86(1),
29–30. January.

Bardeen, J. and Brattain, W.H. (1950). Three-Electrode Circuit Element Utilizing
Semiconductive Materials. American patent no. 2524035. Application number:
US3346648A. Application date: June 17, 1948. Publication date: October 3.

Belak, J. (1993). Harnessing the killer micros: Applications from LLNL’s massively parallel
computing initiative. Theoretica Chimica Acta, 84(4), 315–323. January.

Bell, C.G. (1986). Toward a history of (Personal) workstations. ACM Conference on the
History of Personal Workstations. Conference date: January 9–10. Also in (Goldberg
1988, 1–50).

Bell, C.G. (2008a). Bell’s law for the birth and death of computer classes. Communications of
the ACM (CACM), 51(1) 50th Anniversary Issue: 1958–2008, 86–94. January.

Bell, C.G. (2008b). Bell’s law for the birth and death of computer classes: A theory of the
computer’s evolution. IEEE Solid-State Circuits Society (ISSCS) Newsletter, 13(4), 8–19.
Fall.

Bell, G. (2014). STARS: Rise and fall of minicomputers (Scanning Our Past). Proceedings of
the IEEE, 102(4), 629–638. April.

Besk, G.R., Yen, D.W.L, and Anderson, T.L. (1993). The cydra 5 minisupercomputer:
Architecture and implementation. The Journal of Supercomputing, 7(1/2) Special Issue on
Instruction-Level Parallelism, 143–180. May.

Brinkman, W.F. (1997). A history of the invention of the transistor and where it will lead us.
IEEE Journal of Solid-State Circuits (JSSC), SC-32(12), 1858–1865. December.

Bromley, A.G. (1982). Charles babbage’s analytical engine, 1838. IEEE Annals of the History
of Computing, 4(3), 196–217. July.

Bromley, A.G. (1987). Charles babbage’s tabulations using the 1832 model of difference
engine no. 1. Technical Report 304. Basser Department of Computer Science, The
University of Sydney, Australia. April.

Brooks III, E.D. (1989). Attack of the killer micros. Teraflop computing panel.
Supercomputing’89. Conference date: November 13–17. Conference location: Reno,
Nevada, USA.

References 155

Burger, R.M., Cavin III, R.K., Holton, W.C., and Sumney, L.W. (1984). The impact of ICs on
computer technology. IEEE Computer, 17(10), 88–95. October.

Burley, R.M. (1987). An overview of the 4 systems in the VAX 8800 family. Digital
Technical Journal, 1(4), 10–19. February.

Bush, V. (1931). The differential analyzer: A new machine for solving differential equations.
Journal of The Franklin Institute, 212(4), 447–488. October.

Bush, V. and Caldwell, S.H. (1945). A new type of differential analyzer. Journal of The
Franklin Institute, 240(4), 255–326. October.

Campbell-Kelly, M. (1987). Charles babbage’s table of logarithms (1827). Research Report
106 (RR106). Department of Computer Science, University of Warwick. September.

Campbell-Kelly, M. (1988). Charles babbage’s table of logarithms (1827). IEEE Annals of the
History of Computing, 10(3), 159–169. July/September.

Carson, J.H. (ed.) (1979). Tutorial: Design of microprocessor systems. Initially presented at
Tutorial Week 79, December 10–14, 1979, San Diego, California, USA. Institute of
Electrical and Electronics Engineers (IEEE).

Cass, S. (2005). Genius on the block: The foundations of the computing age go up for auction.
IEEE Spectrum, 42(7), 40–45. July.

Ceruzzi, P.E. (2003). Zuse computers. Encyclopedia of Computer Science, 4th edition, 1876–
1877. John Wiley and Sons Ltd.

Ceruzzi, P.E. (2013). Inventing the computer (Scanning Our Past). Proceedings of the IEEE,
101(6), 1503–1508. June.

Computer World (1976). Cray-1 has power of five 370/195s. Computer World, 21, August 23.

Darche, P. (2000). Architecture des ordinateurs - Représentation des nombres et codes -
Cours avec exercices corrigés. Collection Support IUT. Edition Gaëtan Morin.
November.

Darche, P. (2002). Architecture des ordinateurs - Fonctions booléennes, logiques
combinatoire et séquentielle - Cours avec exercices et exemples en VHDL. Edition
Vuibert. March.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert. June.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Editions Vuibert. November.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert. January. Un des quatre ouvrages
sélectionnés pour le prix AFISI (Association Française d’Ingénierie des Systèmes
d’Information) du meilleur livre informatique.

156 Microprocessor 1

Davis, E.M., Harding, W.E., Schwartz, R.S., and Corning, J.J. (1964). Solid logic technology:
Versatile, high-performance microelectronics. IBM Journal of Research and
Development, 8(2), 102–114. April.

DEC (1975 1976). LSI-11, PDP-11/03 User’s Manual. 1st Edition, September 1975.
2nd Printing (Rev). November 1975. 3rd edition (Rev), May. Digital Equipment
Corporation.

Denning, P.J. (1971). Third generation computer systems. ACM Computing Surveys (CSUR),
3, 176–210. December.

Doerr, J. (1978). Low-cost microcomputing: The personal computer and single-board
computer revolutions. Proceedings of the IEEE, 66(2), 117–130. February. Also in
(Carson 1979, 110–123).

Electronic Associates Inc. (1964). EAI 231R-V Analog Computer Information Manual.
Electronic Associates Inc.

Ellsworth, M.J., Campbell, L.A., Simons, R.E., Iyengar, M.K., Schmidt, R.R., and Chu, R.C.
(2008). The evolution of water cooling for IBM large server systems: Back to the future.
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems (ITHERM 2008). Conference date: May 28–31.

Essinger, J. (2004). Jacquard’s Web: How a Hand-Loom Led to the Birth of the Information
Age. Oxford University Press.

Etiemble, D. (2016). Introduction aux systèmes embarqués, enfouis et mobiles. Article Réf.
H8000 V2. Techniques de l’Ingénieur. August 10.

Feng, W. (2003). Making a case for efficient supercomputing. Queue - Power Management
Queue, 1(7), 54–64. October.

Foster, I. and Kesselman, C. (eds) (2003). The Grid 2, Blueprint for a New Computing
Infrastructure. The Elsevier Series in Grid Computing, 2nd edition. Morgan Kaufmann.

Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 15(3), 200–
222. Fall.

Gaspard Clair Francois Marie Riche (Baron de) Prony (De Prony 1825). Recueil de cinq
tables, pour faciliter et abréger les calculs des formules relatives au mouvement des eaux
dans les canaux découverts et les tuyaux de conduite. Imprimerie royale. September.

Gernelle, F. (1974). Ordinateur, en particulier pour des applications en temps réel. Brevet
d’invention no. 73.03553. Institut National de la propriété Industrielle. Filing date: 1
February 1973. Decision date: August 19.

Godderz, J.E. (1976). The most significant bits. ACM SIGMINI (Special Interest Group on
Minicomputers newsletter) Newsletter, 2(4-5), 5. September.

Goldberg, A. (ed.) (1988). A History of Personal Workstations. ACM Press (Addison-Wesley
Publishing Company).

References 157

Goldstein, C. (1999). La naissance du nombre en Mésopotamie. La Recherche, special edition
no. 2, L’Univers des Nombres, 10–12. August.

van de Goor, A.J. (1989). Computer Architecture and Design. Addison-Wesley Publishing
Company, Inc.

Grattan-Guinness, I. (1990). Work for the hairdressers: The production of de Prony’s
logarithmic and trigonometric tables. IEEE Annals of the History of Computing, 12(3),
177–185. July/September.

Haghighi, S. (2001). Server computer architecture. In (Oklobdzij 2001, section 5.1, section II
Computer Systems and Architecture, Chapter 5 - Computer Architecture and Design).

Hartree, D.R. (1948). A historical survey of digital computing machines. In (Hartree et al.
1948, 265–271). December.

Hartree, D.R., Newman, M.H.A., Wilkes, M.V., Williams, F.C., Wilkinson, J.H., and Booth,
A.D. (1948). A discussion on computing machines. Proceedings of the Royal Society of
London, Series A, Mathematical and Physical Sciences, 195(104), 265–287.
December 22.

Helmers, C. (1976). Trends in pplications. Byte, 1(9), 4, 6, 90, 92, 94 and 96. May.

Hewlett-Packard (1968). Powerful computing genie: $4900. Ready, willing and able. Hewlett-
Packard. Advertisement for the HP 9100. Science, 162(3849), 6. October 4.

Hewlett-Packard (1998). Proceedings of the IEEE, 86(1) Special Issue: 50th Anniversary of
the Transistor. January.

Hill, M.D., Jouppi, N.P., and Sohi, G.S. (2000). Readings in Computer Architecture. Morgan
Kaufmann Publishers Inc.

Hohn, F. (1955). Some mathematical aspects of switching. The American Mathematical
Monthly, 62(2), 75–90. February.

Hollerith, H. (1884a). Art of Compiling Statistics. United States Patent 0395782. Application
number: US143805XA. Filing date: September 23.

Hollerith, H. (1884b). Apparatus for Compiling Statistics. United States Patent 0395783.
Application number: US28493988DA. Filing date: 09/23/1884.

Hollerith, H. (1887). Art of Compiling Statistics. United States Patent 0395781. Application
number: US24062987DA. Filing date: June 8.

Ifrah, G. (1994). Histoire universelle des chiffres. Editions Robert Laffont, Paris.

ITRS Emerging Research Devices Technology Working Group (2001). International
Technology Roadmap For Semiconductors-Executive Summary. ITRS Emerging
Research Devices Technology Working Group.

Kaeslin, H. (2008). Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication. Cambridge University Press.

158 Microprocessor 1

Keller, A.C. (1962). Relays and switches. Proceedings of the Institute of Radio Engineers
(IRE), 50(5), 932–934. May.

Kim, E.E. and Toole, B.A. (1999). Ada and the first computer. Scientific American, 280(5),
76–81. May.

La Porte, D. and Stibitz, G.R. (1982). Eloge: E. G. Andrews, 18981980. IEEE Annals of the
History of Computing, 4(1), 4–19. January.

Libes, S. (1978). Small Computer Systems Handbook. Hayden Book Company, Inc.

Lilen, H. (1979). Circuits Intégrés JFET-MOS-CMOS: Principes et Applications, 3rd edition.
Editions Radio.

Marguin, J. (1994). Histoire des instruments et machines à calculer, Trois siècles de
mécanique pensante, 1642–1942. Editions Hermann.

Matzke, D. (1997). Will physical scalability sabotage performance gains? IEEE Computer,
30(9), 37–39. September.

Meindl, J.D. (1984). Ultra-large scale integration. IEEE Transactions on Electron Devices,
31(11), 1555–1561. November.

Meindl, J.D. (1995). Low power microelectronics: Retrospect and prospect. Proceedings of
the IEEE, 83(4), 619–635. April.

Metropolis, N. and Worlton, J. (1980). A trilogy on errors in the history of computing. IEEE
Annals of the History of Computing, 2(1), 49–59. January.

Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8),
114–117. April 19. Republished in (Hill et al. 2000, 56–59).

Moore, G.E. (1975). Progress in digital integrated electronics. International Electron Devices
Meeting (IEDM), 11–13. Republished in (Moore 2006).

Moore, G.E. (2006). Progress in digital integrated electronics. Technical Literature. IEEE
Solid-State Circuits Society (SSCS) Newsletter, 20(3), 36–37. September.

Moto-Oka, T. (1982). 5th Generation Computer Systems. International Conference on 5th
Generation Computer Systems, Moto-Oka, T. (ed.). October 19–22, 1981, Tokyo, Japan.
Elsevier.

Nabielsky, J. and Skelton, A.P. (1981). A virtual terminal management model. Request For
Comments (RFC) 782. The MITRE Corporation. Internet Engineering Task Force (IETF).
January.

Nelson, D.L. and Bell, C.G. (1986). The evolution of workstations. IEEE Circuits and
Devices Magazine, 2(4), 12–16. July 1986.

Oklobdzija, V.G. (ed.) (2001). The Computer Engineering Handbook. CRC Press.

Osborne, A. (1980). An Introduction to Microcomputers: Volume 1 - Basic Concepts,
2nd edition. Osborne/McGraw-Hill.

References 159

Patterson, D.A. (1995). Microprocessors in 2020. Scientific American, 273(3), 62–67.
September.

Pfister, G. (1998). In Search of Clusters, 2nd edition. Prentice Hall.

Pugh, E.W. (2013). Stars: IBM system/360. Proceedings of the IEEE, 101(11), 2450–2457.
November.

Rau, B.R., Yen, D.W.L., Wei, Y., and Towle, R.A. (1989). The Cydra 5 departmental
supercomputer. Design philosophies, decisions, and trade-offs. IEEE Computer, 22(1),
12–35. January.

Roberts, E.W. and Yates, W. (1975a). ALTAIR 8800: The most powerful minicomputer
project ever presented – can be built for under $400. ALTAIR 8800 Minicomputer, Part I.
Popular Electronics, 7(1), 33–38. January.

Roberts, E.W. and Yates, W. (1975b). Build the ALTAIR minicomputer. ALTAIR 8800
minicomputer, Part II. Popular Electronics, 7(2), 56–58. February.

Rochain, S. (2016). De la mécanographie à l’informatique. 50 ans d’évolution. ISTE
Editions, London.

Rojas, R. (1997). Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of
the History of Computing, 19(2), 5–16. April/June.

Scientific American (1997). The solid-state century: The past, present and future of the
transistor. Scientific American, Special Issue, 8(1). January 22.

Schultz, G.W., Holt, R.M., and McFarland, H.L. (1973). A guide to using LSI
microprocessors. IEEE Computer, 6(6), 13–20. June.

Seraphim, D.P. and Feinberg, I. (1981). Electronic packaging evolution in IBM. IBM Journal
of Research and Development, 25(5), 617–629. September.

Shannon, C.E. (1938). A symbolic analysis of relay and switching circuits. Transactions of
the American Institute of Electrical Engineers (AIEE), 57, 713–723. Also in (Shannon
1993).

Shannon, C.E. (1953). Realization of all 16 switching functions of two variables requires 18
contacts. Bell Laboratories Memorandum. November 17.

Shannon, C.E. (1993). In Claude Elwood Shannon, Collected Papers. Sloane, N.J.A. and
Wyner, A.D. (eds). IEEE Press.

Shapiro, F.R. (2000). Origin of the term “personal computer”: Evidence from the JSTOR
electronic journal archive. Comments, Queries, and Debates. Werner Buchholz. IEEE
Annals of the History of Computing, 22(4), 70–71. October–December.

Shiva, S.G. (2006). Advanced Computer Architectures. CRC Press.

Siewiorek, D.P., Bell, C.G., and Newell, A. (1982). Computer Structures: Principles and
Examples. McGraw-Hill Book Company.

160 Microprocessor 1

Small, J.S. (2001). The Analogue Alternative. The Electronic Analogue Computer in Britain
and the USA, 1930–1975. Routledge.

Smith, J.E. and Nair, R. (2005). Virtual Machines. Versatile Platforms for Systems and
Processes. Morgan Kaufmann Publishers. Elsevier Inc.

Speiser, A.P. (1980). The relay calculator Z4. IEEE Annals of the History of Computing, 2(3),
242–245. July.

Sterling, T., Becker, D.J., Savarese, D., Dorband, J.E., Ranawake, U.A., and Packer, C.V.
(1995). Beowulf: A parallel workstation for scientific computation. 1995 International
Conference on Parallel Processing (ICPP), I (Architecture), I-11–I-14. CRC Press.
August 14–18, University of Illinois at Urbana-Champain, Illinois, USA.

Stiefel, M.L. (1978). Single board computers. Mini-Micro Systems. September. Republished
in (Carson 1979, 124–133).

Succi, S., Ayati, B.P., and Hosoi, A.E. (1996). A six lecture primer on parallel computing.
Technical Report CS-96-11. University of Chicago. Chicago, IL, USA.

Sullivan, P., Callander, M.A. (Sr.), Lundberg, J.R., Stamm, R.L., and Bowhill, W.J. (1990).
The VAX 6000 model 400 scalar processing module. Digital Technical Journal, 2(2),
27–35. Spring.

Suri, P.K. and Mittal, S. (2012). A comparative study of various computing processing
environments: A review. International Journal of Computer Science and Information
Technologies (IJCSIT), 3(5), 5215–5218. October.

Swade, D.D. (1993). Redeeming charles babbage’s mechanical computer. Scientific
American, 268(2), 86–91. February.

Swade, D.D. (2001). The Difference Engine: Charles Babbage and the Quest to Build the
First Computer. Viking Press.

Swade, D.D. (2005). The construction of charles babbage’s difference engine No. 2. IEEE
Annals of the History of Computing, 27(3), 70–88. July/September.

Tanenbaum, A. (2005). Architecture de l’ordinateur, 5th edition. Pearson Education.

Treleaven, P.C. (1981). 5th generation computer architecture analysis. International
Conference on 5th Generation Computer Systems, 265–275. October 19–22, 1981,Tokyo,
Japan. In (Moto-Oka et al. 1982).

Treleaven, P.C. and Lima, I.G. (1982). Japan’s 5th generation computer systems. IEEE
Computer, 15(8), 79–88. August.

Truitt, T.D. and Rogers, A.E. (1964). Introduction au Calcul Analogique: Principes et
Applications. Dunod.

Weiss, E. (1996). Konrad zuse obituary. IEEE Annals of the History of Computing, 18(2),
3–5. Summer.

Weste, N.H.E. and Harris, D. (2010). CMOS VLSI Design: A Circuits and Systems
Perspective, 4th edition. Addison-Wesley Longman, Inc.

References 161

Wickes, W.E. (1968). Logic Design with Integrated Circuits. John Wiley & Sons Inc.

Xanthopoulos, T. (2009). Clocking in Modern VLSI Systems. Series on Integrated Circuits and
Systems. Thucydides Xanthopoulos Editor.

Zuse, K. (1993). The Computer - My Life. Springer-Verlag.

Chapter 2

Amdahl, G.M., Blaauw, G.A., and Brooks, F.P. (1964). Architecture of the IBM system/360.
IBM Journal of Research and Development, 8(2), 87–101. April.

Belady, L.A., Parmelee, R.P., and Scalzi, C.A. (1981). The IBM history of memory
management technology. IBM Journal of Research and Development, 25(5), 491–504.
September.

Bell, C.G., Mudge, J.C., and McNamara, J.E. (eds) (1978). Computer Engineering: A DEC
View of Hardware Systems Design. Digital Press.

Buchholz, W. (1956). Memory word length. Stretch Memo no. 40. 3. July 31.

Buchholz, W. (ed.) (1962). Planning a Computer System - Project Stretch. McGraw-Hill
Book Company, Inc.

Buchholz, W. (1977). The word “Byte” comes of age. Byte, 2(2), 144. February.

Chen, P.M. and Patterson, D.A. (1993). Storage performance-metrics and benchmarks.
Proceedings of the IEEE, 8(9), 1151–1165. September.

Chisvin, L. and Duckworth, R.J. (1989). Content-addressable and associative memory:
Alternatives to the ubiquitous RAM. IEEE Computer, 22(7), 51–64. July.

Ciminiera, L. and Valenzano, A. (1987). Advanced Microprocessor Architectures. Electronic
Systems Engineering Series. AddisonWesley Publishing Co.

Cohen, D. (1981). On holy wars and a plea for peace. IEEE Computer, 14(10), 48–54.
October. Original: IEN (Internet Engineering Note) 137. USC/ISI (University of Southern
California /Information Sciences Institute). April 1.

Darche, P. (2002). Architecture des ordinateurs - Fonctions booléennes, logiques
combinatoire et séquentielle - Cours avec exercices et exemples en VHDL. Edition
Vuibert. March.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert. June.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert. January. Un des quatre ouvrages
sélectionnés pour le prix AFISI (Association Française d’Ingénierie des Systèmes
d’Information) du meilleur livre informatique.

162 Microprocessor 1

Digital Equipment Corporation (1983). PDP-11 Architecture Handbook. Order Code: EB-
23657-18. Digital Equipment Corporation (DEC).

Gifford, D. and Spector, A. (1987). Case study: IBM’s system/360–370 architecture.
Communications of the ACM (CACM), 30(4), 291–307. April.

Gray, J. and Shenay, P. (1999). Rules of thumb in data engineering. December 1. 16th
International Conference on Data Engineering (ICDE’00), 3. February 28–March 3.

Handy, J. (1998). The Cache Memory Book, 2nd edition (First Edition in 1993). Academic
Press.

IEEE (1996). IEEE Standard for High-Bandwidth Memory Interface Based on Scalable
Coherent Interface (SCI) Signaling Technology (RamLink). IEEE Std 1596.4-1996.
Approved March 19.

IEEE (2002a). Draft Standard for Prefixes for Binary Multiples. IEEE Std P1541/D5. The
Institute of Electrical and Electronics Engineers. New York, USA. April 18.

IEEE (2002b). IEEE Std 1541-2002: IEEE Standard for Prefixes for Binary Multiples.

International Electrotechnical Commission (2000). Letter symbols to be used in electrical
technology-Part 2: Telecommunications and electronics-Symboles littéraux à utiliser en
électrotechnique - Partie 2: Télécommunications et électronique. International
Electrotechnical Commission. IEC 60027-2 - Edition 2.0 Bilingual. 22 November.

Meinadier, J.-P. (1971 1988). Structure et Fonctionnement des Ordinateurs. Librairie
Larousse, Paris.

Nakagomi, T., Holzbach, M., Van Meter, R., III, and Ranade, S. (1993). Re-defining the
storage hierarchy: An ultra-fast magneto-optical disk drive. 12th IEEE Symposium on
Mass Storage Systems: “Putting all that Data to Work”, 267–274. April 26–29.

Patterson, D. (2004). Latency lags bandwith. Communications of the ACM (CACM), 47(10),
71–75. October.

Patterson, D. (2005). Latency lags bandwidth. 2005 IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD 2005), 3–6. October 2–5.

Self, K. (1999). Memory in megabytes and/or mebibytes. IEEE Spectrum, 36(8), 18. August.

Chapter 3

Ackerman, W.B. (1982). Data flow languages. IEEE Computer, 15(2), 15–24. February.

Agha, G.A. (1985). Actors: A model of concurrent computation in distributed systems.
Technical report 844. Massachusetts Institute of Technology (MIT) Artificial Intelligence
Laboratory. Cambridge, MA, USA. June.

Agha, G.A. (1986). Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA.

References 163

Amdahl, G.A., Blaauw, G.A., and Brooks, F.P., Jr. (1964). Architecture of the IBM
system/360. IBM Journal of Research and Development, 8(2), 87–101. April.

ARM (2019). ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture
Profile. Arm® DDI 0487D.b (ID042519). Arm® Limited.

Azaria, H. and Tabak, D. (1983). Design considerations of a single instruction microcomputer
– A case study. Microprocessing and Microprogramming, 11(3–4), 187–194. March–
April.

Backus, J. (1978). Can programming be liberated from the von Neumann Style? A functional
style and its algebra of programs. Communications of the ACM (CACM), 21(8), 613–641.
August.

Baer, J.-L. (1984). Computer architecture. IEEE Computer, 17(10), 77–87. October.

Bell, J.R. (1973). Threaded code. Communications of the ACM (CACM), 16(6), 370–372.
June.

Bell, C.G. and Newell, A.C. (1970). The PMS and ISP descriptive systems for computer
structures. 1970 Spring Joint Computer Conference (Spring AFIPS’70), 351–374.
Conference date: May 5–7.

Bell, C.G. and Newell, A. (1971). Computer Structures: Readings and Examples. McGraw-
Hill Computer Science Series. McGraw-Hill Book Company.

Bell, C.G., Kotok, A., Hastings, T.N., and Hill, R. (1978). The evolution of the DEC system
10. Communications of the ACM (CACM), 21(1), 44–63. January.

Bennett, T.H., Kouvoussis,A.E., and Wiles, M.F. (1977). Microprocessor chip register bus
structure. American patent no. 4004281. Assignee: Motorola, Inc. Application number:
05/519133. Filing date: October 30, 1974. Publication date: January 18.

Blaauw, G.A. and Brooks, F.P. Jr. (1996). Computer Architecture: Concepts and Evolution.
Addison-Wesley Professional.

Borkar, S. (2007). Thousand core chips: A technology perspective. 44th Annual Design
Automation Conference (DAC’07), 746–749. June 4–8. San Diego, CA, USA.

Brooks, F.P. Jr. (1975 1995). The Mythical Man-Month: Essays on Software Engineering.
20th Anniversary Edition. Other Editions in 1975 and 1982. Addison-Wesley.

Bryant, R.E. and O’Hallaron, D.R. (2016). Computer Systems: A Programmer’s Perspective,
3rd edition. Addison Wesley.

Buchholz, W. (1953). The systems design of the IBM type 701 Computer. Proceedings of the
IRE, 41(10), 1262–1275. October.

Buchholz, W. (ed.) (1962). Planning a Computer System – Project Stretch. McGraw-Hill
Book Company, Inc.

Buck, J.T. (1993). Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. Doctor of Philosophy in Engineering-Electrical Engineering and
Computer Sciences Dissertation, University of California at Berkeley.

164 Microprocessor 1

Buck, J.T. and Lee, E.A. (1993). Scheduling dynamic dataflow graphs with bounded memory
using the token fow model. 1993 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-93), 1, 429–432. April 27–30. Minneapolis, MN, USA.

Buckle, J.K. (1978). The ICL 2900 Series. MacMillan Press Ltd.

Burks, A.W., Goldstine. H.H., and von Neumann, J. (1946–1947). Preliminary discussion of
the logical design of an electronic computing instrument. Part I, 1. Report prepared for
U.S. Army Ordnance Department. 28 June 1946-2 September. In CD-ROM by (Shriver
and Smith 1998) and in (Taub 1963, 34–79).

Carter, J.W. (1995). Microprocessor Architecture and Microprogramming: A State-Machine
Approach. Prentice Hall International Limited, London.

Ceruzzi, P. (2000). “Nothing new since von Neumann”: A historian looks at computer
architecture, 1945–1995. In (Rojas and Hashagen 2000, 195–217).

Corporaal, H. (1995). Transport triggered architectures: Design and evaluation. PhD
Dissertation, Delft University of Technology (TU Delft). September 13.

Dahl, O.J. and Nygaard, K. (1966). SIMULA – An ALGOL-based simulation language.
Communications of the ACM (CACM), 9(9), 671–678. September.

Dally, W.J. and Wills, D.S. (1989). Universal mechanism for concurrency. Proceedings of
PARLE. Lecture Notes in Computer Science (LNCS), 365, 19–33. Springer Verlag, Berlin.

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Collection Support IUT. Éditions Gaëtan Morin.
November.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert. March.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Editions Vuibert. June.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Editions Vuibert. November.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Editions Vuibert. January. One of four books
selected for the AFISI (Association Française d’Ingénierie des Systèmes d’Information)
prize for the best book on computing.

Dasgupta, S. (1990). A hierarchical taxonomic system for computer architectures. IEEE
Computer, 23(3), 64–74. March 1990. See also (Schmidt and Dasgupta 1990).

Dennis, J.B. (1980). Data flow supercomputers. IEEE Computer, 13(11), 48–56. November.

References 165

Edwards, S.A. (1997). The Specification and Execution of Heterogeneous Synchronous
Reactive Systems. PhD Thesis. Technical Report No. UCB/ERL M97/31. Electrical
Engineering and Computer Sciences (EECS) Department, University of California,
Berkeley.

Estrin, G. (1952). A description of the electronic computer at the institute for advanced
studies. 1952 ACM National Meeting (ACM’52), 95–109. Toronto, Canada.

Estrin, G. (1953). The electronic computer at the institute for advanced study. Mathematical
Tables and Other Aids to Computation, 7(42), 108–114. April.

Farrell, E.P, Ghani, N., and Treleaven, P.C. (1979). Concurrent computer architecture and a
ring based implementation. 6th Annual International Symposium on Computer
Architecture (ISCA’79), 1–11.

Frizzell, C.E. (1953). Engineering description of the IBM type 701 computer. Proceedings of
the IRE, 41(10), 1275–1287. October.

Gajski, D. (2003). NISC: The ultimate reconfigurable component. Technical Report TR 03-
28. Center for embedded computer systems, University of California. October.

Gajski, D. (2005). No-instruction-Set-Computer Processor. United States Patent Application
20050097306. Application number: 10/ 944365. Filing date: 09/17/2004. Publication
date: 05/05/2005.

Gajski, D.D. and Kuhn, R.H. (1983). Guest editors’ introduction: New VLSI tools. IEEE
Computer, 16(12), 11–14. December.

Gluck, S.E (1953). The electronic discrete variable computer. Electrical Engineering, 72(2),
159–162. February.

Godfrey, M.D. and Hendry, D.F. (1993). The computer as von Neumann planned it. IEEE
Annals of the History of Computing, 15(1), 11–21. January. In CD-ROM by (Shriver and
Smith 1998).

Goldstine, H.H. (1993). The Computer from Pascal to von Neumann. Princeton University
Press.

Goldstine, H.H. and von Neumann, J. (1947–1948). Planning and coding of problems for an
electronic computing instrument. Part II, Vols. 1 to 3. Three reports prepared for U.S.
Army Ordnance Department. Republished in (Taub 1963, 80–235).

van de Goor, A.J. (1989). Computer Architecture and Design. Addison-Wesley Publishing
Company, Inc.

Greenwald, S., Haueter, R.C., and Alexander, S.N. (1953). SEAC. Proceedings of the IRE,
41(10), 1300–1313. October.

Hartree, D.R., Newman, M.H.A., Wilkes, M.V., Williams, F.C., Wilkinson, J.H., and Booth,
A.D. (1948). A discussion on computing machines. Proceedings of the Royal Society
of London, Series A, Mathematical and Physical Sciences, 195(104), 265–287.
December 22.

166 Microprocessor 1

Hennessy, J.L. and Patterson, D.A. (2007). Computer Architecture. A Quantitative Approach.
4th edition. Morgan Kaufmann Publishers, Inc.

Hewitt, C. (1977). Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8(3), 323–364. June.

Hewitt, H., Bishop, P., and Steiger, R. (1973). A universal modular actor formalism for
artificial intelligence. 3rd International Joint Conference on Artificial Intelligence
(IJCAI), 235–245. August 20–23. Stanford University, Stanford California, USA.

Hoare, C.A.R. (1978). Communicating sequential processes. Communications of the ACM
(CACM), 21(8), 666–677. August. Republished in (Kuhn and Padua 1981).

Hopkin, R.P., Rautenback, P.W., and Treleavan, P.C. (1979). A computer supporting data
flow, control flow and updateable memory. Technical Report 144, Computing Laboratory,
University of Newcastle upon Tyne. September.

IBM (1955). IBM Presents The 650 Magnetic Drum Data Processing Machine. Reference
Document: 32-6770. International Business Machines Corporation (IBM).

IBM (2017). Power ISA™. Version 3.0 B. IBM. March 29.

Intel (1975). Intel 8080 Microcomputer Systems User’s Manual. Intel Corporation.
September.

Intel (1981). Introduction to the iAPX 432 Architecture. Manual Order Number: 171821-001.
Intel. August.

Intel (1989). 8086/8088 User’s Manual, Programmer’s and Hardware Reference. Intel.

Intel (2003). IA-32 Intel® Architectures Software Developer’s Manual, Volume 1: Basic
Architecture. Order Number 245470-012. Intel Corporation.

Intel (2017). Intel® 64 and IA-32 Architectures Software Developer’s Manual. Order
Number: 325462-062US. Intel Corporation. March.

Johnson, M. (1990). Superscalar Microprocessor Design. Prentice Hall Series in Innovative
Technology. Prentice Hall.

Jouppi, N.P. (1989). The nonuniform distribution of instruction-level and machine parallelism
and its effect on performance. IEEE Transactions on Computers, 38(12), 1645–1658.
December.

Kahn, G. (1974). The semantics of a simple language for parallel programming. IFIP
Congress, 471–475. August 5–10. Stockholm, Sweden.

Kathail, V., Schlansker, M.S., and Rau, B.R. (1993). HPL PlayDoh architecture specification:
Version 1.0. HPL Technical Report HPL-93-80. HP Laboratories Palo Alto.

Kathail, V., Schlansker, M.S., and Rau, B.R. (2000). HPL-PD architecture specification:
Version 1.1. HPL Technical Report HPL-93-80(R.1). HP Laboratories Palo Alto.
February (Revised).

References 167

Kilburn, T. (1948). A storage system for use with binary digital computing machines. PhD
Thesis, University of Manchester. 13 December.

Knuth, D.E. (1986). The IBM 650: An appreciation from the field. IEEE Annals of the
History of Computing, 8(1), 50–55. January–March.

Koopman, P. Jr. (1987a). Writable instruction set, stack oriented computers: The WISC
concept. 1987 Rochester Forth Conference. June 9–13. University of Rochester. The
Journal of Forth Application and Research, 5(1).

Koopman, P. (1987b). The WISC concept. Byte, 12(4), 187–193. April.

Koopman, P.J. Jr. (1989). Stack Computers: The New Wave. Mountain View Press.

Kopetz, H. (1998). The time-triggered model of computation. 19th IEEE Real-Time Systems
Symposium (RTSS’98), 168–177. December 2–4. Madrid, Spain.

Kowalski, R. (1979). Algorithm = Logic + Control. Communications of the ACM (CACM),
22(7), 424–436. July.

Kuhn, R.H. and Padua, D.A. (eds) (1981). Tutorial on Parallel Processing. IEEE Press.

Lavington, S.H. (1980). Early British Computers. Manchester University Press.

Leavitt, N. (2012). Will power problems curtail processor progress? IEEE Computer, 45(5),
15–17. May.

Lee, E.A. and Messerschmitt, D.G. (1987a). Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers, C-36(1), 24–35.
January.

Lee, E.A. and Messerschmitt, D.G. (1987b). Synchronous data flow. Proceedings of the
IEEE, 75(9), 1235–1245. September.

Levy, H.M. and Eckhouse, R.H. Jr. (1989). Computer Programming and Architecture: The
VAX, 2nd edition. Digital Equipment Corporation (DEC).

Lindblad, T., Lindsey, C.S., Minerskjöld, M., Sekhniaidze, G., Székely, G., and Eide, A.
(1995). Implementing the new zero instruction set computer (ZISC036) from IBM for a
Higgs Search. Letter to the Editor. Nuclear Instruments and Methods in Physics
Research, Section A, 357(1), 192–194. April.

Marlet, R. (2012). Program Specialization. ISTE, London and John Wiley & Sons, New York.

Masini, G., Napoli, A., Colnet, D., Léonard, D., and Tombre, K. (1990). Les langages à
objets. Inter Editions.

Mavaddat, F. and Parhami, B. (1988). URISC: The ultimate reduced instruction set computer.
International Journal of Electrical Engineering & Education. 25(4), 327–334. October.

McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4), 115–133. December.

Metropolis, N. and Worlton, J. (1980). A trilogy on errors in the history of computing. IEEE
Annals of the History of Computing, 2(1), 49–59. January.

168 Microprocessor 1

Minsky, M.L. (1967). Computation: Finite and Infinite Machines. Prentice-Hall, Inc.

MIPS Technologies, Inc. (2001a). MIPS32™ Architecture For Programmers. Volume I:
Introduction to the MIPS32™ Architecture. Document Number: MD00082, Revision
0.95. MIPS Technologies, Inc.. March 12.

MIPS Technologies, Inc. (2001b). MIPS64™ Architecture For Programmers. Volume I:
Introduction to the MIPS64™ Architecture. Document Number: MD00083, Revision
0.95. MIPS Technologies, Inc.. March 12.

Moore, B.L. (1949). The Mark III Calculator. Second Symposium on Large-Scale Digital
Calculating Machinery, XXVI, 11–19. 13–16 September. The Annals of the Computation
Laboratory of Harvard University. Harvard University Press. Cambridge, MA, 1951.

Moto-Oka, T. (ed.) (1982). Fifth generation computer systems. International Conference on
Fifth Generation Computer Systems. October 19–22, 1981. Tokyo, Japan. Elsevier.

Nature (1948). Calculating machines. Nature, 161(4097), 712–713. May 8.

von Neumann, J. (1945). First draft of a report on the EDVAC. contract no. W-670-ORD-
4926 Moore School of Electrical Engineering, University of Pennsylvania. June 30. See
also (Godfrey and Hendry 1993). In CD-ROM of (Shriver and Smith 1998).

Nguyen, V. and Hailpern, B. (1986). A generalized object model. 1986 SIGPLAN Workshop
on Object-Oriented Programming (OOPWORK’86). June 9–13, 1986. Yorktown Heights,
New York, USA. ACM SIGPLAN (Special Interest Group on Programming Languages)
Notices, 21(10), 78–87. October.

Null, L. and Lobur, J. (2003). MarieSim: The MARIE computer simulator. ACM Journal of
Educational Resources in Computing (JERIC), 3(2), Article no. 1. June.

Nurmi, J. (ed.) (2007). Processor Design. System-on-Chip Computing for ASICs and FPGAs.
Springer.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
and Yelick, K. (1997a). A case for intelligent RAM. IEEE Micro, 17(2), 34–44.
March/April.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
and Yelick, K. (1997b). Intelligent RAM (IRAM): Chips that remember and compute.
1997 IEEE International Solid-State Circuits Conference (ISSCC’97). 6–8 February. San
Francisco, USA.

Patterson, D., Kozyrakis, C.E., Perissakis, S., Anderson, T., Asanovic, K., Cardwell, N.,
Fromm, R., Colbus, J., Gribstad, B., Keeton, K., Thomas, R., Treuhaft, N., and Yelick, K.
(1997c). Scalable processors in the billion transistor Era: IRAM. IEEE Computer, 30(9),
75–78. September.

Patterson, D., Asanovic, K., Brown, A., Fromm, R., Colbus, J., Gribstad, B., Keeton, K.,
Kozyrakis, C.E., Martin, D., Perissakis, S., Thomas, R., Treuhaft, N., and Yelick, K.
(1997d). Intelligent RAM (IRAM): The industrial setting, applications, and architectures.
IEEE International Conference on Computer Design (ICCD’97), 2–7. October.

References 169

Profit, A. (1970). Structure et technologie des ordinateurs. Armand Colin.

Randell, B. and Treleaven, P.C. (1983). VLSI Architecture. Prentice-Hall.

Reddi, S.S. and Feustel, E.A. (1976). A conceptual framework for computer architecture.
Computing Surveys, 8(2), 277–300. June.

Reilly, E.D. (2003). Milestones in Computer Science and Information Technology.
Greenwood Press.

Rojas, R. and Hashagen, U. (eds) (2000). The First Computers: History and Architectures.
MIT Press.

Ross, H.D. (1953). The arithmetic element of the IBM type 701 computer. Proceedings of the
IRE, 41(10), 1287–1294. October.

Schmidt, U. and Dasgupta, S. (1990). Comments, with reply on “A Hierarchical Taxonomic
System for Computer Architectures”. IEEE Computer, 23(6), 6. June.

Shiva, S.G. (2006). Advanced Computer Architectures. CRC Press.

Shriver, B. and Smith, B. (1998). The Anatomy of a High-Performance Microprocessor: A
Systems Perspective. IEEE Press.

Sima, D., Fountain, T., and Kacsuk, P. (1997). Advanced Computer Architectures: A Design
Space Approach. Addison-Wesley Longman Limited.

Stern, N. (1980). John von Neumann’s influence on electronic digital computing, 1944–1946.
IEEE Annals of the History of Computing, 2(4), 349–362. October.

Swartzlander, E.E. Jr. (1976). Computer Design Development: Principal Papers. Hayden
Book Company, Inc.

Taub, A.H. General (ed.) (1963). John von Neumann: Collected Works. Vol.: Design of
Computers, Theory of Automata and Numerical Analysis. Pergamon Press.

Tendler, J.M., Dodson, J.S., Fields, J.S. Jr. (Steve), Le, H., and Sinharoy, B. (2002). Power4
system microarchitecture. IBM Journal of Research and Development, 46(1), 5–27.
January.

Texas Instruments Incorporated (1976). TMS9900 Microprocessor Data Manual. Texas
Instruments Incorporated. December.

Treleaven, P.C. (1981). 5th generation computer architecture analysis. International
Conference on 5th Generation Computer Systems, 265275. October 19–22. Tokyo, Japan.
In (Moto-Oka et al. 1982).

Treleaven, P.C. (1983). Decentralised computer architectures for VLSI. In (Randell and
Treleaven, 348–380).

Treleaven, P.C. (1990). Parallel Computers. Wiley, New York.

Treleaven, P.C. and Hopkins, R.P. (1981). Decentralized computation. 8th Annual Symposium
on Computer Architecture, 279–290. May, Paris, France.

170 Microprocessor 1

Treleaven, P.C. and Lima, I.G. (1984). Future computers: logic, data flow, ..., Control Flow?
IEEE Computer, 17(3), 47–58. March.

Treleaven, P.C. and Vanneschi, M. (eds) (1987). Future Parallel Computers, An Advanced
Course. Pisa, Italy, June 9–20. Lecture Notes in Computer Science (LNCS), 272.
Springer-Verlag.

Treleaven, P.C., Brownbridge, D.R., and Hopkins, R.P. (1982). Data-driven and demand-
driven computer architectures. ACM Computing Surveys (CSUR), 14(1), 93–143. March.

Treleaven, P.C., Refenes, A.N., Lees, K.J., and McCabe, S.C. (1987). Computer architectures
for artificial intelligence. In (Treleaven and Vanneschi, 416–492).

Tseng, C.-J. and Siewiorek, D.P. (1981). The modeling and synthesis of bus systems. 18th
Design Automation Conference (DAC’81), 471–478. June 29–July 1. Nashville, Tennessee,
USA.

Tseng, C.-J. and Siewiorek, D.P. (1982). The Modeling and Synthesis of Bus Systems. DRC-
18-42-82. Paper 65. Department of Electrical and Computer Engineering. Carnegie
Institute of Technology. April.

Tullsen, D.M., Eggers, S.J., and Levy, H.M. (1995). Simultaneous multithreading:
Maximizing on-chip parallelism. 22nd Annual International Symposium on Computer
Architecture (ISCA), 392–403. June 22–24. Santa Margherita Ligure, Italy.

Tullsen, D.M., Eggers, S.J., Emery, J.S., Levy, H.M., Lo, J.L., and Stammy, R.L. (1996).
Exploiting choice: Instruction fetch and issue on an implementable simultaneous
multithreading processor. 23nd Annual International Symposium on Computer
Architecture (ISCA), 191–202. May 22–24. Philadelphia, PA, USA.

Turing, A.M. (1937a). On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society. Series 2, 42,
Part 1, 230–265.

Turing, A.M. (1937b). On computable numbers, with an application to the
entscheidungsproblem. A correction. Proceedings of the London Mathematical Society,
Series 2, 43, Part 1, 544–546.

Turing, A.M. and Girard, J.-Y. (1995). La machine de Turing. Le Seuil, Paris.

Vajda, F. (1986). Super micros – objectives and approaches. Microprocessing and
Microprogramming, 17(1), 1–17. January.

Weaver, D.L. and Germond, T. (eds) (1994). The SPARC architecture manual. Version 9.
SPARC International, Inc. PTR Prentice Hall.

Wilkes, M.V. (1951). The best way to design an automatic computing machine. Report of the
Manchester University Computer Inaugural Conference, 16–18. Electrical Engineering
Department of Manchester University. Manchester, England. July. Republished in
(Swartzlander 1976; Williams and Campbell-Kelly 1989). Also in IEEE Annals of the
History of Computing, 8(2), 118–121. April 1986.

References 171

Williams, M.R. and Campbell-Kelly, M. (1989). The Early British Computer Conferences.
MIT Press, Cambridge, MA, USA

Williams, F.C. and Kilburn, T. (1948). Electronic Digital Computers. Letters to Editor.
Nature, 162(4117), 487. September 25.

Williams, F.C. and Kilburn, T. (1949). A storage system for use with binary digital computing
machines. Proceedings of the IEE - Part II: Power Engineering, 96(50), 183–200. April.

Wirthlin, M.J. and Hutchings, B.L. (1995). A dynamic instruction set computer. 1995 IEEE
Symposium on FPGAs for Custom Computing Machines, 99–107. April 19–21. Napa
Valley, CA, USA.

Index

3M and 5M, § V1-1.2

A

abacus, § V1-1.1
ABC, § V1-1.2 and computer model
ABI, cf. interface
access, § V3-2.4.2

read, § V3-2.4.2
write, § V3-2.4.2
read-modify-write, § V3-2.4.2
multiple, § V3-2.1.1.4

accumulator, cf. register
adding machine, § V1-1.1

Model K, § V1-1.2

addition, cf. arithmetic operation
address

effective (EA), § V3-3.1.6, V3-3.4.4,
V4-1.2, V4-2.2.2 and V4-3.2.1

format, § V4-1.2.1 and V4-1.2.3
physical (PA), § V4-1.2 and V5-1.2.1
translation, § V4-3.2.2
virtual (VA), § V1-1.4, V3-2.1.1.1,

V4-2.5.4, V4-3.2.2, V4-5.7 and
V5-1.2.1

addressing, § V4-1.2
bit-reversed, § V4-1.2.4.5.2
circular, § V4-1.2.4.5.1
geographical, § V2-1.5
linear, § V4-1.2.4.5.3
memory to memory, § V1-3.3.3,

V4-1.1 and V4-1.2.4.1
MMR, § V3-3.1.1 and V4-1.2.4.4
mode, § V4-1.2

random, § V1-2.1
space (AS), § V3-2.1.1.1

alignment, § V1-2.2.2
Arithmetic and Logic Unit (ALU), cf.

unit/integer processing
Antikythera mechanism, § V1-1.3
API, cf. interface
Apple II, cf. microcomputer
arbitration, cf. bus
architecture, § V1-3.1.4

according to storage location, §
V1-3.5.1

accumulator, § V1-3.4.1
memory-to-memory, § V1-3.5.1
stack, § V1-3.5.1
register-memory, § V1-3.5.1
register-register (load–store),

§ V1-3.5.1

This index covers all 5 volumes in this series of books.

Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

174 Microprocessor 1

CISC, § V3-1.2, V4-1.1, V4-2.1,
V4-2.4 and V4-2.8.1

fault, § V4-1.2.5
classification of computers (definition),

§ V1-3.1.4
CRISC, § V1-3.4.3
EPIC, § V1-3.4.3 and V3-4.7
exo/endoarchitecture, § V1-3.1.4
General-Purpose Register (GPR),

§ V1-3.5.1
Harvard, § V1-3.3.2, V1-3.3.4, V1-

3.4.2, V3-2.1.1.1, V3-5.2 and
V3-5.3

microarchitecture, § V1-3.1.4,
V1-3.3.1.2, V4-3.4.2, V4-3.4.5
and V4-5.2.4

MISC, § V1-3.4.3.1
OISC/SISC/URISC, §

V1-3.4.3.1
ZISC, § V1-3.4.3.1

no or several addresses, § V1-3.5.1
one or several buses, § V1-3.4.1
RISC, § V1-1.2, V1-2.2.1,

V1-3.4.3.1, V1-3.5, V3-1.2,
V3-3.1.2, V3-3.1.11.3,
V3-3.1.12.6, V3-4.6, V3-5.3,
V4-1.1, V4-1.2, V4-2.1,
V4-2.4, V4-2.7.1 and V5-1.1.4

superscalar, § V1-3.3, V1-3.4.3.1,
V1-3.4.3, V3-4.6, V4-1.1, V4-2.4.2
and V5-1.3

TTA, § V1-3.4.3.1
very long instruction word (VLIW),

§ V1-3.4.3, V1-3.5.3, V3-4.6,
V3-4.7, V3-5.2, V4-2.4.2, V4-2.8.5
and V5-1.3

von Neumann, § V1-3.2.2, V1-3.3,
V3-5.3 and V4-1.2.4.8

x86, § V1-3.3.2, V1-3.4.2, V1-3.5.1,
V1-3.5.4, V3-3.1.9, V4-2.1,
V4-3.1, V4-3.2.2, V4-3.3, V4-4.1,
V4-5.2.1, V4-5.4, V4-5.7 and
V5-2.2.5

arithmetic operation, § V1-3.3.1.2.1,
V3-3.3 and V4-2.3.1
addition, § V1-1.1, V1-1.2, V1-3.2.2,

V1-3.3.1.2.1, V1-3.4.2, V1-3.5.3.1,
V3-3.1.5.1 and V4-2.3.1

complementation, § V1-1.1
divide-by-zero, § V4-5.4, V4-5.6 to

V4-5.9, V4-5.11 and V5-2.3
division, § V1-2.1, V1-3.3.1.2.1,

V3-5.4, V4-2.3.1 and V4-2.7.1
multiplication, § V3-3.1.1, V3-3.1.2,

V3-4.3, V3-5.2, V3-5.4, V4-
1.2.2.2, V4-2.7.1 and V4-2.7.2

subtraction, § V1-1.1, V1-3.5.1,
V3-3.1.5.1, V4-2.4.1, V4-2.7.2
and exercises V1-E1.1, V1-E3.2,
V4-E2.2 and V4-E2.3

arithmetic
integer, § V1-1.1, V3-1.2, V3-3.1.1,

V3-3.3, V4-2.3.1 and V4-2.7.2
floating-point, § V1-1.2, V1-3.3 and

V4-2.8.4.2
modular, § V3-5.2, V4-1.2.4.5.1 and

V4-2.3.1
saturation, § V3-5.2

ASIC, § V1-1.2 and V5-3.3.1
assembler, § V5-1.2.1 also cf.

development tool
MASM, § V5-1.3.3
SAP, § V5-1.3.3
SOAP, § V5-1.2.1

asynchronism, § V2-1.3 and V3-2.4.3
ATB, cf. bus/address

B

Babbage, § V1-1.1, V4-5.1 also cf.
mechanical computing machines

bandwidth, § V1-2.1, V1-3.1.4, V2-1.2,
V2-1.6, V2-4.1, V2-4.2.2, V2-4.2.6,
V2-4.2.9, V3-5.2 and V4-3.4

BCD, cf. representation/integer

Index 175

BCS, cf. file format
benchmark, cf. performance
Beowulf, cf. cluster
BINAC, cf. computer model
binding, § V5-1.2.2.
BIOS, cf. firmware
binary format, § V1-2.1 and V4-1.1

byte, § V1-2.1
nibble, § V1-2.1
superword, § V4-2.3.2.1
word, § V1-2.1

binary pattern, § V2-1.4, V3-5.3, V3-5.4,
V4-5.9, V5-2.2.2 and V5-3.5.3

bit rate, § V1-2.1 and V2-1.2
black box, § V1-3.1.4 and figures

V3-E3.2 and V3-E3.4
BNF, § V5-1.2.1
Boolean logic, § V1-1.1, V1-3.1.4,

V4-2.4.1 and V4-2.6.1
bottleneck, § V1-3.2.2.2, V1-3.3.4,

V1-3.4.2, V1-3.5.1 and V2-1.2
branching, § V1-3.1.2, V3-3.1.5, V3-5.2,

V4-1.1, V4-2.3.2.2, V4-2.4 and V5-1.3
conditional, § V4-1.2.4.3 and V4-2.4.1
test-and-branching, § V4-2.6.1
unconditional, § V1-3.3.4 and V4-2.4.1

break, § V4-2.5.2
bus

concepts, § V1-1.1 and V2-1.1
alignment, § V2-1.2 also cf.

memory (concepts)
arbitration (local/distributed), §

V2-1.5, V2-1.6, V2-2.1, V2-
3.1, V2-3.2 and V2-4.2.9

bandwidth, § V2-1.2 and V2-
4.2.9

characteristics, § V2-1.2
derivation, § V2-1.2 and V2-

3.3.1
multi- § V2-4.1.3
MUX-based or multiplexed, §

V2-4.2.9
parallel, § V2-1.2

passive, § V2-1.2
serial, § V2-1.2
specialized (i.e. dedicated),

§ V2-1.2
starvation, § V2-1.6 and V4-5.3

computer, cf. computer bus
fieldbus, § V2-4.2.8
microprocessor, § V3-2.1

address, § V3-2.1
data, § V3-2.1
control, § V3-2.1
interface, § V3-3.5 and

V2-3.1
power, § V2-4.2.10
products, § V2-4.2

AGP, § V2-4.1.4, V2-4.2.4 and
V5-3.3.1

BSB, § V2-4.2.1 and V5-3.3.1
DIB, § V2-4.2.1 and V5-3.3.1
DMI, § V2-4.2.3 and V5-3.3.1
FSB, § V2-4.2.1, V3-2.4.1 and

V5-3.3.1
EISA, § V2-2.2.3, V2-4.2.4 and

V5-3.3.1
HyperTransport (HT/LDT), §

V2-4.2.3 and V5-3.3.1
ISA, § V2-2.2.1, V2-4.1.4,

V2-4.2.4, V5-3.2.1, V5-3.2.3
and V5-3.3.1

MCA, § V2-4.2.4
NuBus, § V2-4.2.7
PCI, § V2-1.1, V2-1.6, V2-2.2.3,

V2-3.2, V2-4.1.4, V2-4.2.4,
V3-2.1.1.1 and V5-3.3.1

PCI express (PCIe), § V2-1.2,
V2-4.2.4 and V2-4.2.7

PCI-X, § V2-4.2.4
QPI, § V2-4.2.3
Unibus™, § V2-1.3, V2-1.6 and

V2-4.3
VMEbus™, § V2-1.5, V2-1.6,

V2-3.2, V2-4.2.7 and
V2-4.3

176 Microprocessor 1

products for Multibus, § V2-1.3,
V2-3.2, V2-4.1, V2-4.2.5, V2-4.2.7
and V2-4.3

iLBX, § V2-4.1
iPSB, § V2-4.1
iSBX, § V2-4.1 and V2-4.5
iSSB, § V2-4.1

SoC bus, § V2-4.2.9
butterfly (circuit), § V4-2.3.2.5

C

cache, cf. memory/cache
capacity, cf. memory/characteristics
carry, § V4-2.3.1, exercise V4-E2.1 also

cf. code/condition
CDC, cf. computer model
CFSD, § V1-1.2
CGMT, cf. parallelism/ multithreading
circuit logic, cf. integrated circuit logic
checksum, § V3-5.3 and V5-3.5.3
chip set, § V5-3.3

CCAT, NEAT, POACH and SCAT, §
V5-3.3

definition, § V5-3.3.1
hub, § V2-4.2.1, V2-4.2.3 and V5-3.3.1
northbridge (GMCH), § V2-4.2.1
southbridge (ICH), § V2-4.2.1

CISC, cf. architecture
clock, § V3-2.4.1 and V3-3.4.2

circuit, § V3-1.2, V3-2.1, V3-2.4.1 and
V3-4.3

cycle, § V5-2.2.4.3
domain crossing (CDC), § V2-1.3, V2-

3.1 and V3-6.1.3
energy saving, § V3-6.1.4
frequency/period, § V1-1.2, V1-1.5,

V1-2.1, V1-3.4.3.2, V1-3.4.3.3,
V2-1.2, V3-1.2, V3-6.1, V4-3.4.1
and V4-3.4.5

signal, § V2-1.2, V2-1.3, V2-3.2,
V2-3.6, V3-3.4.2, V3-3.4.3.3, V4-
3.4.1 and V5-2.2.5

cloud, cf. cloud computing
cluster, § V1-1.2

definition, § V1-1.2
workstations (COW), § V1-1.2

CMOS, cf. electronic technology
CMP, cf. multicore
CMT, § V1-3.4.3.2 and V3-4.7
code

8b/10b, § V2-1.2
compression, § V4-1.1.1
condition, § V3-3.1.5, V3-3.1.12.1,

V4-2.4 cf. also register/status
Dual-Rail (DR), § V2-1.4 and exercise

V2-E1.1
instruction/operation, § V4-1.1
machine, cf. language/machine
Multi-Rail (MRn), § V2-1.4
pure, § V4-3.1.4
re-entrant, § V4-3.1.4, V4-4.2.1 and

V4-5.3
relocatable, § V4-3.1.4

COFF, cf. format
commands, § V5-1.2.2

assembly, § V5-1.3, V5-1.3.3 and
V5-1.3.4

preprocessor, § V5-2.2.1
communication, § V2-1.1

broadcast, § V2-1.1, V2-2.2, V2-3.3.6
and V4-5.7

cycle
bus, § V2-3.6 and V2-4.2.2

duplex, § V2-1.1
full, § V2-3.3.4, V2-3.3.6, V2-

4.2.3 and V2-4.2.4
half-duplex, § V2-1.1
simplex, § V2-3.3.6

general points, § V2-1.1
protocol, § V2-1.5

Index 177

splitting the transaction, § V2-2.1.1
through bundles, § V2-4.2.2
transaction pipeline, § V2-2.1.1

comparison, cf. logical operation
compatibility, § V4-3.3

backward and forward, § V4-3.2.3
electromagnetic (EMC), § V2-3.3.2
hardware, § V4-3.2.1
software, § V4-3.2.2

Commercial Off-The-Shelf (COTS), §
V1-1.2 and V2-1.2

compiler, cf. development tool
computer

analog, § V1-1.3
classes, § V1-1.2

electromechanical, § V1-1.2
electronic, § V1-1.2

Mr Perret’s letter, § V1-1 (footnote)
stored program, § V1-3.2.3

computer bus
access arbitration, § V2-1.6
asynchronous/synchronous,

§ V2-1.3
backplane, § V1-1.2 and V2-4.2.7
bridge, § V2-4.1.4
centerplane, § V2-4.2.7
extension, § V2-4.2.4
hierarchical, § V2-4.1.2
I/O, § V2-4.2.6
local, § V2-4.2.1
mastering, § V2-2.2.3
memory (channel), § V2-1.2, V2-3.3.1,

V2-3-6 and V2-4.2.2
multiple, § V2-4.1.3
packet switching, § V2-3.6
protocol, § V2-1.5 and V3-2.4.2
standard, § V2-1.2
segmented, § V2-4.1.1
switch, § V2-3.3.6, V2-4.2.7 and V2-

4.2.9
computer categories, § V1-1.2

macrocomputer, cf. computer/
mainframe

microcomputer, § V1-1.2 also cf.
microcomputer

minicomputer, § V1-1.2
supercomputer, § V1-1.2

computer model
ABC, § V1-1.2
BINAC, § V1-1.2
Burroughs B5000, § V1-1.2
Colossus, § V1-1.2
Control Data Corporation (CDC), §

V1-1.4
CDC 6600, § V1-1.2 and V1-3.5.1
Cyber 205, § V1-1.4
Cray, § V1-1.2 and V4-2.4.1

Cray-1, § V4-2.4.1
Cray MPP, § V1-1.4
Cray X-MP, § V1-1.4
Cray Y-MP, § V4-3.2.2

DEC, § V1-3.5
EDSAC, § V1-1.2 and V5-1.1
EDVAC, § V1-1.2
ENIAC, § V1-1.2
Harvard Mark I, § V1-1.2
IAS Princeton, § V1-1.2
IBM, § V1-1.2

IBM 650, § V1-1.4 and V1-3.5.1
IBM 701, § V1-1.4, V1-3.2.2.3,

V1-3.5.3 and V3-2.1.1.1
IBM 3090, § V1-1.4
IBM stretch, cf. § V1-3.1.4

(footnote)
IBM System/360, § V1-1.2 and

V4-2.4.1
IBM System/370, § V4-1.1, V4-

1.2.3.1, V4-2.4.1 and V4-
3.2.4

Illiac IV, § V1-1.2, V3-2.4.3 and V3-
3.3

Manchester, § V1-1.2
Manchester Baby, § V1-1.2
Manchester Mark I, § V3-3.1.6

PDP, § V1-1.2

178 Microprocessor 1

PDP-11, § V1-2.2.1, V2-1.6 and
V3-3.1.3

SEAC, § V1-3.5.1
VAX, § V1-1.2, V1-2.1 and V1-2.2.1

VAX-11, § § V1-1.2 and V1-
3.5.1

VAX-9000, § V1-1.4
UNIVAC I, § V1-1.2
Whilwind, § V1-1.2
Zuse Z1, Z2, Z3 and Z4, § V1-1.2

computation model, § V1-3.1.3
concurrent, § V1-3.1.3
control flow, § V1-3.1.3
declarative, § V1-3.1.3
Turing, § V1-3.1.3
von Neumann, § V1-3.2.1
object oriented, § V1-3.1.3

computing
cloud, § V1-1.2

IaaS, PaaS and SaaS, § V1-1.2
ubiquitous, § V1-1.2

control mechanism, § V1-3.1.2
control-driven (CO), § V1-3.1.2
data-driven (DA), § V1-3.1.2
demand-driven (DE), § V1-3.1.2
pattern-driven (PA), § V1-3.1.2

control structure, § V1-3.1.1, V1-3.3.4,
V3-3.1.5.7, V4-1.2.3.2, V4-1.2.5, V4-
2.4, V4-2.4.1, V4-2.4.3 and V4-3.1.5
loop, § V1-3.1.1
if_then_else, § V1-3.1.1

co-processor, § V3-5.4
graphics, § V3-5.4
I/O, § V3-5.4
mathematical, § V3-5.4

core, cf. multicore
costs

bus, § V2-1.1, V2-1.2, V2-3.3.5 and
V2-4.2.7

computer, § V1-1.1
memory, § V1-2.1 and V1-2.1

counting stick, § V1-1.1
CPI, cf. performance/unit of measurement

Cray-1, cf. computer model
crossbar, cf. grid/crossbar matrix
cryptography, § V4-2.7.3
cycle

access, § V3-2.1.2
clock, cf. clock
CPU/processor, § V1-3.4.3
execution, § V1-3.2.2.4, V1-3.3.1.2.2,

V1-3.3.2 and V3-3.1.3
decoding, § V1-3.2.2, V1-

3.3.1.2, V3-3.4.3.2, V4-1.1
and V4-1.2.3.2

fetch, § V3-3.1.4, V3-3.4.3.1
phase, § V3-3.4.3

life, § V1-1.2
machine, § V3-2.4
number, § V2-1.5 and V3-2.4.1
read, § V2-1.5
special, § V2-2.2
time, § V1-2.1 and V2-3.2.1
write, § V2-1.5

D

data mechanism, § V1-3.1.2
passing messages (ME), § V1-3.1.2
shared data (SH), § V1-3.1.2

datasheet, § V3-6
DDR, cf. semiconductor-based memory

(component)
debug monitor, cf. firmware
debugging hardware interface

BDM (Background Debug Mode), §
V5-2.2.5 and V5-2.2.7

ITP (In-Target Probe), § V5-2.2.5
JTAG, § V2-3.5, V3-2.2, V3-5.3,

V4-5.5, V5-2.2.2 and V5-2.2.5
TAP, § V5-2.2.5OnCE, § V5-2.2.5

decoding
address, § V2-2.1.1, V2-3.1,
V3-2.1.1.1, V3-2.1.1.2, V3-2.3 and
V5-3.3.1

Index 179

incomplete, § V2-3.1
instruction, cf. execution cycle

decrement/increment, § V4-1.2.3.3, V4-
1.2.3.5 and V4-1.2.4.5
automatic, § V3-3.1.6
pre- and post-, § V4-1.2.3.3

debugging, § V5-2.2
hardware, § V5-2.1
mode, § V5-2.2.7

ForeGround Debug Mode
(F(G)DM, § V5-2.2.7

BackGround Debug Mode
(B(G)DM, § V5-2.2.7

remote, § V5-2.2.6
software, § V5-2.2.4

delay
time, § V2-1.2, V2-1.3, V3-2.4.1 and

V3-2.4.3
descriptor table, § V1-3.5.6

GDT, § V3-3.1.9
IDT, § V4-5.10
LDT, § V3-3.1.9

development/design stage, § V5-1.1.2
delayed/lazy linking, § V5-1.2.2
loader, § V5-1.2.3
(re-)assembly, § V4-3.1.4, V4-3.2.2,

V5-1.1, V5-1.2.1 and V5-1.3.3
(re-)compilation, § V4-3.2.2
static and dynamic link library, §

V4-3.2.2, V5-1.2.1, V5-1.2.2 and
V5-1.3.3

development/design chain/tools, cf.
development tool

Dhrystone. cf. performance/
benchmark/synthetic suite

diagram in Y, § V1-3.1.4
Direct Memory Access (DMA),

§ V1-3.3
disassembler, cf. development tool
division, cf. arithmetic operation
DSP, cf. processor
DTL, cf. electronic technology

E

EDSAC, cf. computer model
EDVAC, cf. computer model
EFI, cf. firmware
electrical overshooting, § V2-3.3.2
electromechanical relay, § V1-1.2
electronic board, § V1-1.2, V2-1.2 and

V5-2.1.1
dummy board (CRIMM), § V2-1.6
start, evaluation, development board, §

V5-2.1.1
motherboard, § V1-1.2, V2-1.2 and

V5-3.1
electronic logic

buffer, § V1-3.4, V2-3.3.4, V2-4.1.4,
V3-2.4.1, V4-3.1, V4-3.2.1 and
V4-3.3.1

driver, § V2-3.3.4
transceiver, § V2-3.3.4
three-state, § V1-3.4, V2-1.3, V2-1.6,

V2-3.3.4 and V3-2.1
electronic technology, § V1-1.2

BiCMOS, § V1-2.4, V2-3.3.7
CMOS, § V1-1.5, V1-2.4, V2-1.3,

V2-3.3.7, V3-1.1, V3-1.2, V3-2,
V3-4 and V3-6

DTL, § V1-1.2
ECL, § V2-3.3.7 and V3-5.1
(C)HMOS, § V3-4.3, V3-4.5, V3-4.6,

V3-5.3 and V4-3.3.1
GTL/GTLP, § V2-3.3.7
LVDS, § V2-3.3.7, V2-4.2.3 and

V4-3.3.1
MOS, § V3-1.2, V3-4.6 and V4-3.4.1
NMOS, § V3-1.2, V3-4.3 and V3-6.1.1
PMOS, § V3-1.1, V3-1.2, V3-4.2,

V3-4.3, V3-4.5, V3-5.3, V3-5.4
and V3-6.1.1

SLT, § V1-1.2
TTL, § V2-3.3.7, V3-4.3, V3-5.1,

V3-5.4, V5-3.1 and V5-3.2.1
electronic tube, cf. grid

180 Microprocessor 1

element
communication, § V2-4.2.9
processing (PE), § V2-4.2.9
router (RE), § V2-4.2.9
storage, § V1-3.3.1.2.1

ELF, cf. format
ELSI, cf. integration technology
emulator, cf. development tool
endian/endianness, cf. memory/order of

storage
energy savings, § V3-6.1.4
ENIAC, cf. computer model
error, § V1-2.1, V2-2.2.4, V2-3.2, V2-

4.1.4, V2-4.2.3 and V3-5.2
ASCII/BCD, § V4-2.3.1 and exercises

V4-E2.1 and E2.2
checking (ECC), § V2-4.1.4
CRC, § V2-3.2 and V4-2.7.1
detection (EDC), § V4-2.7.1 and V5-

3.2.1
evolution

of concepts, § V1-1.4
of integration, cf. law/Moore’s
of roles, § V1-1.4

exception, cf. interruption
execution

conditional, § V4-2.4.2
context, § V3-3.1.12.2 and V4-4.2.2
mode, § V1-3.5.5, V3-3.1.12.4, V4-

3.2.2, V4-5.9 and V4-5.10
real/protected, § V3-3.1.5.6,

V3-3.1.12.4, V3-4.5, V3-4.6,
V4-2.5.3, V4-3.2.2, V4-5.7,
V4-5.10 and V4-5.11

supervisor, § V1-3.5.5, V3-1.2,
V3-3.1.8, V4-3.2.2, V5-2.2.2
and V5-2.2.4.1

user, § V1-3.5.5
sequential, § V4-1.2.5
stop, § V3-4.3, V3-6.1.4, V4-2.5.2,

V4-2.5.2, V4-5.2.2, V4-5.6,
V4-5.8, V4-5.11 and V5-2.2.7

breakpoint, § V3-3.1.5.6, V4-5.4,
V4-5.5, V4-5.7, V4-5.9,
V4-5.11, V5-2.2.2, V5-2.2.3,
V5-2.2.4 and V5-2.2.5

time, § V4-3.2.1, V4-3.4.3, V4-5.11
and V5-1.1.2

F

famine, cf. bus/concepts
faults

hardware/software, § V4-3.1.2,
V4-3.2.4, V4-5.1, V4-5.4, V4-5.7
to V4-5.9 and V4-5.11

tolerance, § V1-1.2, V2-1.6 and
V2-3.3.6

FFT (Fast Fourier Transform), cf. Fourier
transform/fast
flow graph, § V4-1.2.4.5.2

FGMT, cf. parallelism/ multithreading
field, § V4-1.1, V5-1.2.1 and V5-1.3.3

address, § V4-1.2.3.1
comment, § V5-1.3.3
condition, § V4-2.4.2
function, § V4-1.1
identification, § V4-1.1
instruction, § V5-1.3.3
label, § V5-1.3.3
operand, § V4-1.1, V4-1.2.2.1 and

V5-1.3.3
sub-field, § V4-1.1

file format
BCS, § V5-1.1.4
COFF, § V5-1.1.4 and V5-1.2.2
ELF, § V5-1.1.4 and V5-1.2.2
OMF, § V5-1.2.2

filtering/filter, § V2-3.3.4 and V3-5.2
Finite Impulse Response (FIR), §

V3-5.2
Infinite Impulse Response (IIR), §

V2-V3-5.2

Index 181

digital, § V4-1.2.4.5.1, V4-1.2.4.5.2,
V4-2.8.4.2 and V4-3.4.2

firmware, § V1-1.4, V2-3.1, V4-5.7 and
V5-3.5
BIOS, § V4-5.9 and V5-3.5.3
EFI, § V5-3.5.3
microcode, § V4-2.5.7
monitor, § V4-V4-5.7, V5-2.1.1, V5-

2.2.4, V5-2.2.5, V5-2.2.7, V5-3.1,
V5-3.2.1 and V5-3.5.1

open firmware, § V5-3.5.4
POST, § V5-2.2.1, V5-3.2.1, V5-3.2.2,

V5-3.5.3 and V5-3.5.4
UEFI, § V5-3.5.3

flag, cf. code/condition
flip-flop, § V1-1.2, V1-2.3, V1-3.1.4, V1-

3.3.1.2.1, V1-3.3.1.2.2, V2-1.3, V2-3.1,
V3-2.4.1, V3-3.1.1, V4-5.2.3, V4-5.3
and V5-2.2.5

flow, § V1-3.1.2 and V1-3.1.3, V2-1.5,
V3-3.1.5.1 and V4-5.2
control, § V1-3.1.2

exceptional (ECF), § V1-3.1.2
graph (CFG), § V1-3.1.2

data flow, § V1-3.1.2
form factor, § V1-1.2, V5-3.4.1 and V5-

3.4.2
AT, ATX, BTX, ITX, NLX, PC, WTX

and XT, V5-3.4.1
format

binary, cf. binary format
file, cf. file format
instruction, cf. instruction format

Fourier transform, § V3-5.2
discrete, § V4-1.2.4.5.2
fast, cf. § V3-5.2, V4-1.2.4.5.2 and V4-

3.4.4
FPGA, § V1-3.5.3, V2-4.2.10, V4-5.7

and V5-2.2.3
frame, cf. memory
FSM, cf. state/state machine
function, cf. subprogram

G

gate, cf. transistor/gate
glue logic, § V3-2.1.1.1, V3-2.3, V5-3.1

to V5-3.3 and V5-3.4.2
grid

crossbar matrix, § V2-3.3.6, V2-4.2.7
and V2-4.2.9

electronic tube, § V1-1.2
GSI, cf. integration technology

H

HAL (Hardware Abstraction Layer), §
V5-1.1.4

hardware development tool
development system, § V5-2.2.3 and

V5-2.2.7
emulator, § V5-2.2.3

hardware, § V5-2.2.3, V5-2.2.4.3
and V5-2.2.6

ICE, § V5-2.2.3 and V5-2.2.7
programmer, § V5-2.1.2

hardware interface
microprocessor, § V3-2.2
RS-232, § V2-1.3, V3-5.3, V5-2.1.1,

V5-2.1.2, V5-2.2.1 and V5-2.2.4.1
SCSI, § V2-1.2, V2-2.2.3, V2-4.2.6,

V2-4.3 and V5-3.3.1
HMT (Hardware MultiThreading), § V1-

3.4.3.2 and V3-4.7
hot plugging, § V2-3.1 and V5-1.1.4
HPC (High-Performance Computing), §

V1-1.2

I

I/O
isolated (IIO) or separated, §

V3-2.1.1.1

182 Microprocessor 1

memory-mapped interface (MMIO), §
V3-4.3 and V3-5.4

IAS Princeton, cf. computer model
IBI, § V5-3.5.3
iCOMP, cf. performance/benchmark
Illiac IV, cf. computer model
ILP, cf. parallelism/instructions
incrementation, cf. decrement
insertion-withdrawal under tension, § V2-

3.4
instruction format, cf. instruction
Instruction Set Architecture (ISA),

§ V1-3.5
extension, § V4-2.4.2
IA-32 (Intel), § V3-3.1.1
instruction set, § V1-3.5.3
properties

execution modes, § V1-3.5.5
memory model, § V1-3.5.4

storage elements, § V1-3.5
integrated circuit logic

combinational, § V1-1.2, V1-3.1.4, V1-
3.3.1.2.1, V3-3.3 and V4-4.1

family, § V1-1.2
sequential, § V1-3.3.1.2.1, V3-

3.1 and V3-3.3
integrated circuit package

DIP, § V1-1.2, V3-1.1, V3-4.1, V4-
5.2.2, V5-3.1 and V5-3.2.2

LGA, § V3-6.3
PGA, § V3-4.5 and V3-6.3

instruction
advanced bit manipulation instructions,

§ V4-2.3.2.4 and V4-2.3.2.5
alignment, § V4-2.3.2.4 and V4-3.1.2
arithmetic, § V3-3.1.5.1, V3-3.1.5.7,

V4-2.3.1, V4-2.8.4, V4-2.4.1, V4-
2.7.1 and V4-2.7.2 cf. also
arithmetic operation

atomic, § V4-2.1, V4-2.3.2, V4-2.6.1
and V4-2.6.2

branching, § V3-5.2 and V4-2.4.1 to
V4-2.4.3

break, § V4-2.5.2
bundle - VLIW, § V3-2.1.2
character manipulation (chains), § V4-

2.8.1
class, § V4-2.1

control transfer, § V4-2.4
data processing, § V4-2.3
environmental, § V4-2.5
parallelism, § V4-2.6
transfer, § V4-2.2

code (op-code), § V4-1.1
coding, § V4-1.1 and appendix V4-1
control transfer, § V4-2.4
decoding, § V3-3.4.2 and appendix V4-

1
dyadic, § V1-3.4.1 and V4-1.1
environmental, § V4-2.5
extension to the set, § V4-2.7

cryptography, § V4-2.7.3
format, § V4-1.1 and V4-1.2
multimedia, § V4-2.3.2.4 and

V4-2.7.1
randomization management, §

V4-2.7.4
signal processing, § V4-2.7.2
variable, § V3-3.4.3.2

high-level, § V4-2.8.3
illegal, § V4-3.1.1
Input/Output (I/O), § V4-2.8.2
invalid, § V4-3.1.1
macro-instruction, § V4-2.4.3, V4-4.2,

V4-4.2.2, V5-1.1.2, V5-1.2.1, V5-
1.3.3 and V5-1.3.4

micro-, § V1-3.1.4, V3-3.4.1, V3-
3.4.3.2, V4-5.2.4 and V5-1.1.1

mnemonic, § V4-2.1, V4-3.1.5, V4-3.5
and V5-1.1

monadic, § V4-1.1
number per cycle/IPC, § V2-3.4.2
parallelism, § V4-2.6
per cycle (IPC), cf. performance/ unit

of measurement
prefix, § V4-1.1

Index 183

pseudo-instruction, § V5-1.3.3 and V5-
1.3.4

set (IS), § V1-3.5.3 and V4-2.1
properties, § V1-3.5.3.1
orthogonality/symmetry, § V4-

2.4.1
SIMD, § V4-2.3.2.4 and V4-2.7.1

micro, § V4-2.3.2.1
specific to digital representation, § V4-

2.8.4
integration technology, § V1-1.2, V1-1.4,

V1-1.5 and V1-3.1.4
ELSI, § V1-1.2
GSI, § V1-1.2
LSI, § V3-1.1, V3-4.2, V5-3.1 and V5-

3.3.1
MSI, § V1-1.2
SLSI, § V1-1.2
SSI, § V1-1.2
ULSI, § V2-4.2.10
VLSI, § V3-1.2, V5-2.3, V5-3.2.1, V5-

3.3 and V5-3.3.1
interruption, § V4-5

cause
external, § V4-5.2
internal, § V4-5.4

controller, § V4-5.2.5
debugging, § V4-5.5
definition, § V4-5.1
hardware, § V4-5.2
instruction, § V4-3.2.2 and V4-5.4
mask and maskable/non-maskable INT,

§ V3-2.1.3, V3-3.1.5.4, V3-3.1.5.6,
V3-3.1.5.7, V3-6.2, V4-5.2,
V4-5.3, V4-5.6, V4-5.7, V4-5.9
and V4-5.11

nested, § V4-5.3 and V4-5.8
orthogonal, § V4-5.7
software, § V4-5.4
vectorization, § V4-5.7

IP (Intellectual Property), § V3-1.2
register x86, cf. register

ISA, cf. instruction set architecture or
bus (products)

ISC, § V5-2.1.2
Ishango (incised bones of), § V1-1.1
ISP

bus, § V2-2.2.3
processor, § V1-3.1.4 and V4-2.1
programming, § V5-2.1.2

ITRS, § V1-1.4 and V1-1.5

J

JTAG, cf. test/interface

L

language
concepts, § V1-1.4
high-level (HLL), § V1-3.1.5,

V4-1.2.3.3, V4-2.4.3, V5-1.1.1,
V5-1.1.4, V5-1.3 and V5-1.3.4

layer of, § V5-1.1
level, § V5-1.1.1
machine, § V1-1.4, V1-3.3.4, V4-3.1.5,

V5-1.1, V5-1.1.1 and V5-1.3
programming, cf. programming

language
register transfer (RTL), cf. § V1-3.1.4,

V1-3.3.1.2.1 and V3-3.1.3
LAPACK, cf. performance/core
latch, § V1-3.3.1.2.1
launcher cf. development tool
law

iron, § V4-3.4.3
Moore’s, § V1-1.2, V1-1.5 and V3-1.2

library (development), § V4-3.1.5 and
V5-1.2.2
archiver, § V5-1.2.2
dynamic link (DLL) § V4-3.1.5
of macro-instructions, § V5-1.3.4
runtime, § V4-3.4.4

184 Microprocessor 1

standard, § V5-1.1.4
static, § V5-1.1.2

LINPACK, cf. performance/core
loading, cf. development tool
logic gate, § V1-1.2, V1-3.1.4, V2-3.3.4

and V2-4.1
logical operation, § V1-3.3.1.2.1,

V4-2.3.2.2 and V4-2.7.1
comparison, § V4-2.4.1
complementation, § V4-2.4.1, V4-2.6.1

and § V3-2.1.3 (footnote)
NOT AND (NAND), § V1-1.2
permutation, § V2-1.2 and V2-4.1.4

look up memory, § V3-3.4.3.2 and
V4-2.8.4.2

loom, § V1-1.1
loop

current, § V2-3.3.2
hardware, § V3-3.1.9 and V3-5.2
phased-locked (PLL), § V3-2.4.1
software, § V1-3.1.1, V1-3.3.2, V4-

1.2.3.2 and V4-2.4.3
LSI, cf. integration technology
LVDS, cf. electronic technology

M

MAC, § V3-5.2 and V4-2.8.4.2
MACS, § V4-3.4.2
MBR

register, § V3-3.1.1 and V3-3.5
sector, § V5-1.2.3 and V5-3.5.3

mask
binary/logical, § V3-3.3, V4-2.3.2.2,

V4-2.3.2.4 and exercise
V4-E2-5

interruption, cf. interruption
window, § V3-3.1.11.3

mass storage, § V1-1.2, V1-2.1, V1-2.3,
V1-2.4 and V1-3.2.2.1
interface, § V2-1.2 and V2-4.2.6
library of cartridges, § V1-2.3

mechanical computing machines, §
V1-1.1
analytical engine (Babbage), § V1-1.1
difference engine (Babbage), § V1-1.1
Pascaline, cf. exercise V1-E1.1
statistics machine, § V1-1.1

mechanism, § V1-3.1.2
control, cf. control mechanism
data, cf. data mechanism

memory
alignment, § V1-2.2.2, V1-3.5.4, V2-

1.2; V3-2.1.1.4 and V3-3.4.3.2
boundary, § V4-3.1.2
buffer

queue (FIFO), § V1-2.1, V2-1.6,
V2-3.1, V2-4.1.4, V4-
1.2.4.5.1 and V5-2.3

stack (LIFO), § V1-3.5.1 and
V4-4.1

byte access, § V2-3.2 and V3-2.1.1.4
cache, § V1-2.3, V1-2.4, V2-2.2,

V2-2.2.5, V2-4.2.1, V3-3.1.9,
V4-2.5.4, V4-2.5.5, V4-3.4,
V4-5.7, V5-2.3 and V5-3.3.4

capacity/size, § V1-2.1
characteristics, § V1-2.1
classification, § V1-2.4
cycle communication, § V1-2.4
extension, § V3-2.1.1.3
hierarchy, § V1-2.3
interleaving, § V1-3.3.4 and V2-4.2.2
internal, § V3-3.2
look up, cf. look up memory
memory map, § V5-1.1.4
method or policy of access, § V1-2.1
model, § V2-3.5.4
modeling, § V1-2.3
multiport, § V3-3.1.11.1
order of storage (little/big endian,

bi-endian), § V1-2.2.1, V2-1.1 and
V2-1.2

organization, § V1-2.1 and V1-3.1.5
punched card, § V1-1.1 and V1-1.4

Index 185

random access, cf. random access
memory (RAM)

read-only, cf. read-only memory
(ROM)

semiconductor-based, § V1-2
technology, § V1-2.3 and V1-2.4
UMB, § V5-3.2.3
unified, § V1-3.3.1.2.2, V1-3.2.2.1,

V1-3.3.4, V1-3.4.2, V3-5.4, V5-
3.3.1 and exercise V1-E3.1

MEMS, § V1-1.2
microcontroller (MCU), § V3-1.1 and

V3-5.3
microcomputer, § V1-1.2 and V5-3

Apple II, § V5-3.1
IBM Personal Computer (PC)

IBM 5150, § V1-1.2 and V5-
3.2.1

IBM 5160, § V5-3.2.2
IBM 5170, § V5-3.2.3

Micral N, § V1-1.2 and V3-1.2
microprocessor (MPU)

commercial, § V3-1.2
definition, § V3-1.1
digital signal processor (DSP), § V3-

5.2
family, § V3-4
generations, § V3-1.1 and V3-4
history, § V3-1.2
initialization, § V3-6.2 and V4-5.2.2
interfacing, § V3-2
single-bit, § V3-4.1

microprogramming, cf. logical
unit/control unit

MIPS, cf. performance/unit of
measurement

mixed language programming, § V5-1.1.3
MMX, cf. instruction/extension to the set
MOS, cf. electronic technology
MPP, cf. parallelism/processor
multiplication, cf. arithmetic operation
MSI, cf. integration technology

multicore, § V1-1.4, V1-3.3, V1-3.4.3.3,
V3-1.1, V4-3.4.1 and V3-4.7

multiprocessor, § V1-3.6, V2-2.2.5, V2-
4.2.9, V3-1.1, V4-3.2.2 and V4-3.6.2

N

NMOS, cf. electronic technology
NoC (Network-on-Chip), § V2-4.2.9
node

processing, § V1-1.2 and V1-3.6
technology, § V1-1.5

norms, cf. standard

O

object module, § V5-1.1.2, V5-1.1.3, V5-
1.2.1, V5-1.2.2, V5-1.2.4 and V5-1.3.4

Operating System (OS), § V1-1.2, V1-1.4
and V3-1.2
calls, § V2-2.2.1
debugging, § V5-2.2.2
flag, § V3-3.1.5.6
MS-DOS, § V5-3.2.1 and V5-3.2.3
protection, cf. execution/mode

organization
of a memory, cf. memory
of computers, § V1-3.1.4

overflow, § V3-5.2
buffer, § V4-1.2.4.5.1
capacity, § V4-2.3.1 and V4-2.3.2.2

overflow (positive/negative), §
V3-3.1.5.1, V3-3.1.5.3,
V3-3.1.5.4, V3-5.3, V4-5.1,
V4-5.4, V4-5.7, V4-5.11 and
exercise V3-E3.4

underflow, § V3-3.1.5.4 and
V4-5.4

format (unsigned), § V3-3.1.5.1,
V4-2.3.1, V4-2.3.2.2 and exercise
V3-E3.2

186 Microprocessor 1

register window, § V3-3.1.11.3
segment, § V4-5.4
stack, § V4-4.1, V4-4.2.1 and V4-5.1

P

parallelism, § V1-1.4 and V1-3.4.3

instruction-level (ILP), § V1-3.4.3.1
multicores, § V1-3.4.3.3
multithreading, § V1-3.4.3.2
processor, § V3-5.5
thread level, § V1-3.4.3

parameters
calling convention, § V4-4.2.3
passage, § V3-3.1.12.3 and V4-4.2.3

path
control (CP), § V1-3.1.4 and

V1-3.3.1.2.2
data (DP), § V1-2.3, V1-3.1.4,

V1-3.2.2.1, V1-3.3.1.2.1, V1-3.3.3
and V5-3.3.1

definition, § V1-3.2.2.1
execution, § V1-3.1.2, V3-3.4.3, V4-

2.4.1 and V4-2.4.2
instruction (IP), § V1-3.2.2.1
scan/exam/access, § V5-2.2.5 and V5-

2.3
PC, cf. register/program counter
PCMark, cf. benchmark
PCMC, § V5-3.3.1
performance, § V4-3.4

core
LAPACK and LINPACK, §

V4-3.4.4
measurement, § V4-3.4
program performance, § V4-3.4.4
unit of measurement (metric), §

V4-3.4.4
Dhrystone, § V4-3.4.4
IPC, § V4-3.4.3.1

permutation, cf. logical operation/
permutation

Personal Computer (PC), cf.
microcomputer

PIC, cf. interruption/controller
pin, § V1-2.1, V2-1.2, V2-3.3.1, V2-3.6,

V3-6.3, V4-5.2.2, V4-5.7 and V3-4.1
pipeline, § V1-3.3.2, V1-3.4.3.2, V3-1.2,

V4-3.4.5, V4-5.11 also cf.
communication/transaction pipeline
stall cycle, § V2-2.1.1 and V4-2.4.1

PLL, cf. loop/phase locked
PMOS, cf. electronic technology
PMS, § V1-3.1.4
poison bit, § V4-5.11
portability, § V4-3.2.3
POST, § V5-3.5.3
post-fixed notation, Reverse Polish

Notation (RPN), § V1-3.5.1
power, § V3-6.1.2

dissipation, § V2-4.2.10
domain, § V3-6.1.3
dynamic, § V3-6.1.2
static, § V3-6.1.2
supply

consumption, § V3-6.1.2
profile, § V3-6.1.3
voltage, § V3-6.1.1

pre-decoding, § V3-3.4.3.2
predication, § V2-2.4.2
processor

bit slice, § V3-5.1
graphics, § V3-5.4
I/O, § V3-5.4
signal processing (DSP), cf.

microprocessor
program, § V1-3.1.1

definition, § V1-3.1.1
stored, cf. computer (concepts)

program counter (CO/PC/IP), cf. register
programmer, § V5-2.1.2 and V5-3.5.3
programming language, § V1-3.1.4

Index 187

assembly, § V1-1.4, V1-3.5.3, V4-1.2,
V4-2.1, V4-2.4.2, V4-2.4.3, V4-3.1.3
to V4-3.1.5, V5-1.1 and V5-1.3

BASIC, § V5-3.1, V5-3.2.1, V5-3.5.2
and V5-3.5.2.2

COBOL, § V1-1.4, V1-3.1.3,
V4-2.8.4.1 and V5-1.3

FORTRAN, § V1-1.4, V1-3.1.1,
V1-3.1.3 and V4-3.4.4

LISP, § V1-3.1.3 and V1-3.1.4
punched card, cf. memory

Q

quipu, § V1-1.1

R

Random-Access Memory (RAM)
DRAM, § V5-3.3.1
Rambus (D)RDRAM, § V5-3.3.1
SDRAM, § V2-3.6, V5-3.3.1 and
V5-3.4.2
SRAM, § V2-2.4 and V3-5.3
SRAM BBSRAM/NVSRAM, §
V5-3.3.1 (footnote)

randomization management, § V4-2.7.4
and V5-3.3.1

Read-Only Memory (ROM), § V1-2.3,
V1-2.4, V1-3.3.1.1 and V3-5.3
EPROM, § V5-2.1.2 and V5-3.5.3
EEPROM, § V5-3.5.3
flash EEPROM (FEEPROM), §

V5-2.2.4.3 and V5-3.5.3
MROM, § V1-2.4
PROM, § V1-2.4

register, § V3-3.1 and V3-3.1.1
accumulator § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.4.1, V1-3.5.1,
V3-3.1.2, V4-1.2.2.2, V4-1.2.4.2
and V4-2.2.1

address (MAR), § V1-3.2.2.2 to
V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 to V3-3.5

bank, § V3-3.1.11.2
category, § V3-3.1
cause, cf. register/surprise
data (MBR/MDR), § V1-3.2.2.2,

V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 and V3-3.5

definition, § V3-3.1.1
encoding, § V3-3.1.12.6
file, § V3-3.1.11.1
floating point number, § V3-3.1.2 and

V3-3.1.5.4
format, § V3-3.1.1
general-purpose (GPR), § V1-3.5.1,

V3-3.1.3, V3-3.1.8, V4-2.4.1 and
V4-4.1

index, § V3-3.1.1, V3-3.1.6, V4-
1.2.2.2, V4-1.2.3.4 and V4-1.2.3.5

indirection, § V2-.1.7, V4-1.2.3 and
V4-4.1

instruction, § V3-3.1.1 and V3-3.4.3.1
Multiplier-Quotient (MQ), § V3-3.1.1
number, § V3-3.1.12.6 and V4-1.1
parallelism, § V3-3.1.12.5
Program Counter (PC), § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.3.1.2, V1-3.3.2,
V3-2.1.1.1, V3-3.1.3, V4-1.1,
V4-1.2, V4-1.2.3.2, V4-1.2.3.5,
V4-2.4, V4-2.4.1, V4-2.4.3,
V4-4.2, V4-4.2.2, V4-5.2.1,
V4-5.7, V5-2.2.1, V5-2.2.3 and
V5-2.2.4.3

projected in memory, § V3-5.4,
V3-3.1.1, V4-1.2.4.4 and § V3-3.1
(footnote)

Shift Register (SR), cf. shift/register
and shifter

stack pointer (SP), § V3-3.1.1,
V3-3.1.8, V3-4.3, V4-1.2.4.2,
V4-4.1 and V4-4.2

188 Microprocessor 1

status (CCR)/of flags, § V1-3.3.1.2,
V1-3.3.1.2.2, V1-3.3.2, V1-3.5.1,
V3-3.1.5, V3-3.1.5.1, V3-3.1.5.4,
V3-3.1.5.7, V3-3.1.8, V3-3.3,
V3-3.4, V3-3.4.1, V3-3.4.3.3,
V4-2.2.1, V4-4.2.3, V4-5.2.1,
V4-2.2.4.3 and V5-2.2.5

surprise, § V4-5.7
test, § V3-3.1.9
windowing, § V3-3.1.11.3

relocatable, cf. code
representation of information

adjustment, § V4-2.3.1
ASCII, § V3-5.4 and V4-2.8.1
decimal number:

fixed-point, § V1-3.2.2.2,
V1-3.6, V3-3.1.5.3 and
V4-9.4

floating-point, § V3-3.1.5.4 and
V4-9.4

integer
2n’s complement (signed), §

V1-3.6, V3-3.1.5.1, V3-3.3,
V4-1.2.3.2, V4-2.3.1 and
exercise V1-E1-1

BCD, § V1-3.3, V1-3.5.2, V1-
3.6, V4-2.3.1, V3-3.1.5.1,
V3-3.1.5.2 and V3-5.4

Unicode, § V4-2.8.1
reverse, § V4-1.2.4.5.2
RISC, cf. architecture
RNG, cf. random generator
rotation, § V3-3.3, V4-2.3.2 and V4-

2.3.2.4
routine, cf. subprogram
RTC, § V3-6.1.4 and V4-3.3.1
RTL, § V1-3.1.4

S

SBC, § V1-1.2
scalability, § V2-1.2 and V2-4.2.9

SDR, cf. semiconductor-based
(component)

(de)serialization, § V2-1.1
semantic gap, § V1-3.1.5
server, § V1-1.2

blade, § V1-1.2
SFF, § V1-2
shift, § V1-3.2.2.2, V1-3.3.1.2.1,

V3-3.1.1, V3-3.3, V4-1.1, V4-1.2.4.5.1,
V4-2.3.2 and V4-4.1
arithmetic, § V4-2.3.2.3
logical, § V4-2.3.2.3 and V4-2.3.2.4
register (SR), § V1-2.1, V1-3.2.2.2,

V3-3.4.2, V3-5.4, V4-4.1 and V5-
2.2.5

shifter
barrel, cf. exercises V3-E3.5 and V3-

E3.6
circular, § V3-3.3
funnel, § V3-3.3

side effect, § V3-3.1.12.1 and V4-2.4.1
signal

integrity of the, § V2-3.3.2
noise, § V2-1.2, V2-1.3, V2-1.6,

V2-3.3.4, V2-3.3.5, V2-4.1.1,
V2-4.2.8, V2-4.2.10, V3-2.4.3,
V3-5.2 and V3-6.3

simulator, cf. software debugging
SLSI, cf. integration technology
SLT, cf. electronic technology
(S)CMP, cf. multicore
SMP, cf. multicore
SMT

component, § V5-3.1 and V5-3.4.2
processor, § V1-3.4.3.2 and V3-4.7

SoC, § V1-1.2
software development tool, § V5-1.2

assembler, § V4-1.2.4.6
assembler-launcher, § V5-1.2.1
cross-assembler, § V5-1.2.1
high-level, § V5-1.2.1
inline, § V5-1.2.1
macro-assembler, § V5-1.3.4

Index 189

(multi)pass, § V5-1.2.1
patch, § V5-1.2.1 and V5-2.2.4.3

compiler, § V1-3.1.1, V1-3.1.4,
V1-3.4.3.1, V1-3.4.3.2, V1-3.5,
V3-3.1.5.7, V3-3.1.12.1,
V3-3.1.12.5, V3-4.6, V4-1.1,
V4-2.1, V4-3.2.3, V4-2.4.1 to V4-
2.4.3, V4-3.1, V4-4.2 and V5-1.1

cross-compiler, § V5-2.1.1
disassembler, § V5-1.2.4
loader, § V3-5.3, V4-1.1.2, V4-1.3 and

V5-1.2.3
monitor, § V5-2.2.4.1
static and dynamic link library, §

V4-3.2.3 and V5-1.2.2
profiler, § V5-2.2.4.3
(program) launcher, § V5-1.2.3
simulator, § V5-2.2.4.2

software interface
ABI (Application Binary Interface), §

V4-4.1 and V5-1.1.4
API (Application Programming

Interface), § V5-1.1.4 and
V5- 3.5.3

POSIX, § V5-1.1.4
software library, § V4-2.8.4.2
SPEC cf. performance/ benchmark/

application suite
SSE, cf. instruction/extension to the

instruction set
SSI, cf. integration technology
standard

BCS, cf. file format
CAN, cf. bus/fieldbus
component, § V1-1.2, V1-1.3, V2-1.2,

V2-3.3.5 and V2-3.3.7
IEEE Standard

IEEE Std 694-1985, § V4-1.3.2,
V4-1.3.3, V4-2.1 and V4-
2.3.2.2

IEEE Std 754, § V4-2.8.4
IEEE Std 1003.1, § V4-1.1.4

IEEE Std 1149.1, § V2-3.5,
V4-2.1.2 and V4-2.2.5

IEEE Std 1275, § V4-3.5.4
IEEE Std 1532, § V4-2.1.2
IEEE-ISTO Std 5001, § V4-2.2.2

ISA, cf. bus/extension
multibus, cf. bus/expansion
SEAC, cf. computer/SEAC
VESA, cf. bus/local

state
diagram, § V2-1.3, V3-3.4.1 and

V5-2.1.2
information, § V3-3.3.1.1, V3-3.4 and

V4-5.11
machine, § V1-3.3.1.2.2, V2-1.6,

V2-3.1, V3-1.1, V3-2.4.1,
V3-3.4.2, V3-3.4.3.2, V5-2.1.2 and
V5-2.2.5

Turing, § V1-3.1.2 and V1-3.1.3
static and dynamic link library, cf.

development tool
subprogram § V1-3.3.1.2.1 and V4-4

call/return, § V3-3.1.1, V3-3.1.5.7,
V3-3.1.8 and V4-2.4.3

definition, § V4-4.2
instruction, § V4-2.4.3
nested, § V4-4.2.1
open, § V5-1.3.4
passing parameters, § V3-3.1.12.3
sheet, § V4-4.2
standard passing parameters, §

V4-4.2.3
subtraction, cf. arithmetic operation
switching

circuit-, § V2-3.3.6 and V2-4.2.9
packet-, § V2-1.5, V2-2.2, V2-2.2.4,

V2-4.1.4 and V2-4.2.9
synchronism, § V2-1.3
system

embedded, § V1-1.2
logical, cf. unit

190 Microprocessor 1

T

technology
electronic, cf. electronic technology
integration, cf. integration technology

test, § V5-2.3
BIST, § V5-2.2.5
bus, § V2-3.5
instruction, cf. instruction/atomic,

instruction/branching
interface, cf. debugging hardware

interface
register, cf. register/test
self-test, § V3-5.3
test program, cf. performance/ program

and firmware/POST
time, § V1-1.4

access, § V1-1.2, V1-1.4, V1-2.1, V2-
1.2, V2-1.5, V3-2.4.2, V3-3.1.11.1
and V3-3.2

bus settling, § V2-1.2, V2-1.3, V2-1.5
and V2-3.1

execution, cf. execution/time
cycle, § V1-1.4, V1-2.1, V1-2.3, V1-2.4,

V3-1.2, V3-2.4.1 and V3-3.4.3.2
hold, § V2-1.5 and V2-3.1
reaction, § V4-5.3
starvation, § V4-5.3
switching, § V4-3.4.5
transfer, § V2-1.1 and V2-1.3

time (linked to software development)
assembly, § V5-1.1.2
compilation, § V5-1.1.2
loading, § V2-2.1.1

TLP (Thread-Level Parallelism), § V1-
3.4.3.2 and V3-4.7

transistor, § V1-1.2, V1-1.4 to V1-1.6,
V1-3.1.4, V2-2.2.1 and V2-3.3.4
bipolar junction (BJT), § V1-1.2
density, § V1-1.2
field effect (FET), § V1-1.2
gate, cf. § V1-1.5 and V4-3.4.5

TTL, cf. electronic technology

U

UEFI, cf. firmware
ULSI, cf. integration technology
UMA, cf. memory (concepts)/unified
UMB, cf. memory (concepts)
unit

central, cf. § V1-1.2 and V3-1.1
logical

AGU, § V3-3.4.4 and
V4-1.2.4.5.2

control unit, § V1-3.2.2.1,
V1-3.3.1.2, V1-3.3.1.2.2 and
V3-3.4

hardwired, § V1-3.2.3
microprogrammed, § V3-3.4,

V3-3.4.3.2 and V4-1.1
(footnote)

DPU, § V5-3.3.1
FMAC, § V3-5.2
functional, § V3-1.2
Integer Processing (IPU), §

V1-1.2, V1-3.3.1.2,
V1-3.3.1.2.1, V3-3.3, V3-5.1
and V3-5.2

MAC, § V4-2.8.4.2 and
V3-5.2

vector-based, § V1-1.2, V4-2.3.2
and V4-2.7.1

of measurement, § V1-1.2, V1-2.1 and
V4-3.4

processing, cf. element/processing unit
UNIVAC, cf. computer model

V

verification
cycle, § V3-5.3
exchange, § V2-1.3
machine, § V2-2.5.7
memory, § V5-2.2.4.3 and V5-2.2.5
result, § V2-2.4.1

Index 191

virtualization
debugging, § V5-2.2.6
MPU, § V3-3.1.5.6 and V4-3.2.4
server, § V1-1.2
virtual machine, § V1-1.4

VLIW, cf. architecture
VLSI, cf. integration technology
von Neumann machine, § V1-3.2

and V1-3.3
advantages and disadvantages,

§ V1-3.3.4

W

wall, § V1-1.5 and V3-1.2
fineness of etching, § V1-1.5
power, § V1-1.5, V3-1.1 and V3-6.1.2
red brick, § V1-1.5
speed, § V1-1.5

Whetstone, cf. performance/
benchmark/synthetic suite

Whilwind, cf. computer model
word (broken down) into packets,

§ V4-2.3.2.1
workstations, cf. cluster/workstations

Other titles from

in

Computer Engineering

2020
LAFFLY Dominique
TORUS 1 – Toward an Open Resource Using Services: Cloud Computing
for Environmental Data
TORUS 2 - Toward an Open Resource Using Services: Cloud Computing for
Environmental Data
TORUS 3 - Toward an Open Resource Using Services: Cloud Computing for
Environmental Data

LAURENT Anne, LAURENT Dominique, MADERA Cédrine
Data Lakes
(Databases and Big Data Set – Volume 2)

OULHADJ Hamouche, DAACHI Boubaker, MENASRI Riad
Metaheuristics for Robotics
(Optimization Heuristics Set – Volume 2)

SADIQUI Ali
Computer Network Security

2019
BESBES Walid, DHOUIB Diala, WASSAN Niaz, MARREKCHI Emna
Solving Transport Problems: Towards Green Logistics

CLERC Maurice
Iterative Optimizers: Difficulty Measures and Benchmarks

GHLALA Riadh
Analytic SQL in SQL Server 2014/2016

TOUNSI Wiem
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud
Computing and IoT

2018
ANDRO Mathieu
Digital Libraries and Crowdsourcing
(Digital Tools and Uses Set – Volume 5)

ARNALDI Bruno, GUITTON Pascal, MOREAU Guillaume
Virtual Reality and Augmented Reality: Myths and Realities

BERTHIER Thierry, TEBOUL Bruno
From Digital Traces to Algorithmic Projections

CARDON Alain
Beyond Artificial Intelligence: From Human Consciousness to Artificial
Consciousness

HOMAYOUNI S. Mahdi, FONTES Dalila B.M.M.
Metaheuristics for Maritime Operations
(Optimization Heuristics Set – Volume 1)

JEANSOULIN Robert
JavaScript and Open Data

PIVERT Olivier
NoSQL Data Models: Trends and Challenges
(Databases and Big Data Set – Volume 1)

SEDKAOUI Soraya
Data Analytics and Big Data

SALEH Imad, AMMI Mehdi, SZONIECKY Samuel
Challenges of the Internet of Things: Technology, Use, Ethics
(Digital Tools and Uses Set – Volume 7)

SZONIECKY Samuel
Ecosystems Knowledge: Modeling and Analysis Method for Information and
Communication
(Digital Tools and Uses Set – Volume 6)

2017
BENMAMMAR Badr
Concurrent, Real-Time and Distributed Programming in Java

HÉLIODORE Frédéric, NAKIB Amir, ISMAIL Boussaad, OUCHRAA Salma,
SCHMITT Laurent
Metaheuristics for Intelligent Electrical Networks
(Metaheuristics Set – Volume 10)

MA Haiping, SIMON Dan
Evolutionary Computation with Biogeography-based Optimization
(Metaheuristics Set – Volume 8)

PÉTROWSKI Alain, BEN-HAMIDA Sana
Evolutionary Algorithms
(Metaheuristics Set – Volume 9)

PAI G A Vijayalakshmi
Metaheuristics for Portfolio Optimization
(Metaheuristics Set – Volume 11)

2016
BLUM Christian, FESTA Paola
Metaheuristics for String Problems in Bio-informatics
(Metaheuristics Set – Volume 6)

DEROUSSI Laurent
Metaheuristics for Logistics
(Metaheuristics Set – Volume 4)

DHAENENS Clarisse and JOURDAN Laetitia
Metaheuristics for Big Data
(Metaheuristics Set – Volume 5)

LABADIE Nacima, PRINS Christian, PRODHON Caroline
Metaheuristics for Vehicle Routing Problems
(Metaheuristics Set – Volume 3)

LEROY Laure
Eyestrain Reduction in Stereoscopy

LUTTON Evelyne, PERROT Nathalie, TONDA Albert
Evolutionary Algorithms for Food Science and Technology
(Metaheuristics Set – Volume 7)

MAGOULÈS Frédéric, ZHAO Hai-Xiang
Data Mining and Machine Learning in Building Energy Analysis

RIGO Michel
Advanced Graph Theory and Combinatorics

2015
BARBIER Franck, RECOUSSINE Jean-Luc
COBOL Software Modernization: From Principles to Implementation with
the BLU AGE® Method

CHEN Ken
Performance Evaluation by Simulation and Analysis with Applications to
Computer Networks

CLERC Maurice
Guided Randomness in Optimization
(Metaheuristics Set – Volume 1)

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,
ALLIOT Jean-Marc
Metaheuristics for Air Traffic Management
(Metaheuristics Set – Volume 2)

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume
Parallel Scientific Computing

MUNEESAWANG Paisarn, YAMMEN Suchart
Visual Inspection Technology in the Hard Disk Drive Industry

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems:Implementation of the B
Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches for Complex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1
Software Architecture 2

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series, 2nd Edition
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition
Problems and New Approaches – Volume 2, 2nd Edition
Applications of Combinatorial Optimization – Volume 3, 2nd Edition

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1:
Introduction to Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2:
Applications to Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012
ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011
BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMES Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHE Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUEDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A TO Z OF SUDOKU

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

