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Chapter 1
Introduction

Himal A. Suraweera’, Jing Yang?,
Alessio Zappone’ and John S. Thompson*

Inventions made in the last century laid the ground-work for the development of wire-
less communications; one of the largest sectors of the telecommunications industry.
At present, there are more mobile connections than there are people on Earth, while
wireless systems and devices such as smartphones have penetrated all sectors of the
society at an unprecedented scale. As such, energy consumption has become a signifi-
cant concern for green wireless systems operation [1]. Traditionally, wireless system’s
design has focused on performance optimization such as maximizing the spectral effi-
ciency, throughput and minimizing the end-to-end communication latency. On the
other hand, energy efficiency (EE) of wireless communications, which was mostly
overlooked in the operation of previous generations of wireless systems, is now a key
figure of merit [2]. Over the past few years, telecommunication operators across the
world have seen their revenues eroding, while infrastructure, operation and mainte-
nance costs have increased. At the same time, research projects have found that the
information and communications technology (ICT) industry is responsible for a major
percentage of greenhouse gas emissions such as carbon dioxide. As more wireless
networks and devices get connected every day, pollution levels will further rise, and
it is essential to reduce harmful emissions to acceptable levels in order to act on the
threat of global warming and climate change.

Over the years, all segments of the ICT industry, academia and other stake-
holders have collaborated to find breakthrough solutions for increasing the network
EE through several research initiatives such as the GreenTouch Consortium, Energy
Aware Radio and neTwork tecHnologies (EARTH), Cognitive radio and Coopera-
tive strategies for POWER saving in multi-standard wireless devices (C2POWER),
sustainable cellular networks harvesting ambient energy (SCAVENGE) and

! Department of Electrical and Electronic Engineering, University of Peradeniya, Peradeniya, Sri Lanka
2School of Electrical Engineering and Computer Science, The Pennsylvania State University, State College,
PA, USA

3Department of Electrical and Information Engineering, University of Cassino and Southern Lazio,
Cassino, Italy

“Institute for Digital Communications, School of Engineering, The University of Edinburgh,
Edinburgh, UK



2 Green communications for energy-efficient wireless systems

energy-autonomous portable access points for infrastructure-less networks
(PAINLESS). The mission of GreenTouch founded in 2010 was to deliver the archi-
tecture, specifications and road map to increase the EE by a factor of 1,000 compared
to the 2010 reference network [3]. The consortium announced its final results in
2015. The European-funded EARTH project from 2010 to June 2012 looked at the
EE in base stations and focused on 3GPP mobile broadband technologies in particular
Long Term Evolution (LTE) [4]. The aim of the C2POWER project was to investigate
on cognitive and cooperative strategies that can be extended to decrease the over-
all power consumption of mobile devices [5]. The SCAVENGE project* focuses on
sustainable design of architectures, protocols and algorithms for 5G cellular systems
and their components such as base stations, mobile devices and sensors by taking
advantage of renewable sources. The goal of the PAINLESS project’ is to demon-
strate energy-neutral and infrastructure-less operation by adopting solutions such as
holistic optimization of energy harvesting, optimized access and backhauling tech-
niques and unmanned aerial vehicle (UAV) access points for the future generations
of wireless networks.

Energy consumption is responsible for 20%-40% of the network operational
expenditure, of which the majority is due to electricity consumption [6]. The primary
power source of legacy networks is grid-supplied energy with backup power supplied
from diesel generators. Current commercial grids operate with electricity produced
using coal and other types of fossil fuels. In order to address the capacity, maintenance
and upgrade issues of existing grids, modern smart grids are being rolled out. Fur-
ther, in order to reduce the reliance on mains power, operators are increasingly moving
toward green renewable technologies such as photovoltaic (PV) panels and fuel-cell
generators. Other factors such as carbon market volatility, emission regulation, cost
reduction in renewables and environmental change continue to accelerate this con-
version. Green base station development is a major step toward implementing future
sustainable wireless networks [7]. Equipped with local PV or wind generation capa-
bilities, green base stations use battery storage systems, smart DC controllers, etc. to
enable flexible and energy-efficient operation of radio equipment. Air cooled, outdoor
and light-weight base stations can remove the need for air conditioning and, coupled
with renewable sources, are an energy solution, in particular to provide connectivity
in rural areas.

Power models help one to estimate the realistic energy consumption of indi-
vidual components within different types of base stations (e.g., macro, micro, pico
and femto). Power amplifier (PA), signal processing circuits, analog-to-digital (A/D)
converter (ADC), antenna, feeders, power sources and cooling are responsible for
different power consumption figures [8]. Furthermore, power consumption depends
on the base station mode (operational or idle) and, if operational, also on conditions
such as high/low traffic. Figure 1.1 shows the power consumption breakdown of
macro and micro base stations at maximum load [9]. At variable load, base station
power consumption mainly depends on the PA consumption. The scaling overload is

*http://www.scavenge.eu/
Thttp://painless-itn.com/
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Macro Micro
Power amplifier

Power amplifier
DC-DC supply Main supply 25%
A 8%

Cooling Baseband

DC-DC supply

Figure 1.1 Base station power consumption breakdown at maximum load

significant especially for macro base stations as the PA is responsible for 57% of the
overall consumed power at full load.

As connectivity demands continue to increase at an exponential rate, new services
pose more constraints on the performance that end users expect. Between 2020 and
2030, mobile traffic will rise by 55% annually, reaching 607 exabytes in 2025 and
5,016 exabytes in 2030 [10]. LTE is currently the fastest mobile technology available,
which can only support peak data rates of up to 300 Mbit/s. On the other hand, 5G
wireless networks featuring innovative technologies such as infrastructure densifica-
tion, antenna densification and the use of frequency bands in the millimeter wave
(mmWave) range, which promise to achieve 1,000x higher data-rates. Lower end-
to-end latency of 5G will also make it ideal for supporting a wide range of real-time
use cases such as critical Internet of Things (IoT). Such a huge data-rate increase
and low latency must be achieved in an energy-sustainable way [11]. EE was already
identified as a main target of 5G wireless networks, and indeed the goal was for 5G
to provide 2,000 x higher energy efficiencies.

In the literature, several approaches have been listed as useful for increasing the
EE [3]. These approaches can be organized into four categories as follows:

Energy-efficient resource allocation: This technique refers to optimally allo-
cating radio resources such as power and bandwidth to strike a balance between
performance metrics and the required energy consumption. In many cases, by
optimally allocating power, high EE can be achieved at the expense of moderate
performance degradation.

Network design and deployment: According to this technique, network infras-
tructure is deployed to jointly optimize the covered area and energy usage. Since base
station is a key point of network design, in order to promote EE, base station on—off
techniques, antenna muting and antenna down tilting can be used.

Energy harvesting communications: While today’s networks largely offer ser-
vices to mobile users, 5G and beyond systems will also feature device-to-device
(D2D) communications that will connect millions of sensor-like devices operating
in diverse and harsh environments. A sustainable solution for powering up low cost,
low energy sensors is to adopt energy harvesting [12]. Moreover, renewable energy
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sources such as solar can be used in parts of the world where off-grid or poor-grid
(in poor grids frequent system outages occur) base stations are predicted to grow in
number.

Efficient hardware design: Hardware components should be designed to min-
imize the power consumption. A major source of power inefficiency in wireless
transceivers is the PA. Some solutions to increase the PA efficiency aim at the device
level, while other techniques such as Doherty amplifiers, envelope tracking, digi-
tal pre-distortion and peak power reduction schemes are also possible. Additionally,
transceiver design with system-on-chip architectures is a low power consumption
approach.

The first four sections of this chapter will deal with these four themes in turn.
Finally, Section 1.5 concludes the chapter with an overview of the remaining chapters
of this book.

1.1 Energy-efficient resource allocation

1.1.1 Energy-efficient performance metrics

Several performance metrics have been proposed to define the EE of a complex
multiuser network where multiple nodes interact and interfere with one another. Nev-
ertheless, two general approaches have been identified as far as defining the EE of a
communication network is concerned.

e Network benefit—cost ratio. This approach defines the network EE as an energy-
efficient benefit—cost ratio, wherein the cost is represented by the total power
consumed in the network, whereas the benefit is represented by any measure that
quantifies the reliable transfer of information in the network, e.g., the network
capacity/achievable rate, bit error rate and outage capacity. The resulting metric is
called global EE (GEE) and is the EE metric with the strongest physical meaning
from a network-wide perspective.

e Multi-objective approach. One drawback of the GEE is that it does not allow tun-
ing the individual energy efficiencies of the different network nodes. To address
this issue, an alternative approach is to regard the EE of each individual node
in the network as a different objective to maximize, thus performing a multi-
objective resource allocation and maximizing a combination of all the EE values
for the network. Several combining functions have been proposed, among which
the most widely used are the weighted sum EE, defined as a weighted sum of
the different EEs in the network, the weighted product EE, defined as an expo-
nentially weighted product of the different EEs in the network, and the weighted
minimum energy efficiency (WMEE), defined as a weighted minimum of the
different EEs in the network. All three combining functions are able to describe
(at least parts of) the energy-efficient Pareto boundary of the system, by varying
the choice of the weights, with the WMEE being able to describe the complete
Pareto boundary, by sweeping the weights of the combination [13].



Introduction 5

1.1.2 Energy-efficient resource allocation methods

Compared to traditional resource allocation schemes, energy-efficient radio resource
allocation involves the maximization of a fractional performance function, which, in
turn, requires the use of a specific branch of optimization theory, named fractional
programming [13]. Fractional programming provides a framework to maximize a
fractional function with a concave numerator and a convex denominator, subject to
convex constraints, by means of standard convex optimization methods. Direct use
of fractional programming for EE maximization has been used in several instances
of wireless communication networks. However, this method typically requires a pro-
hibitive complexity to operate in interference-limited networks, because the presence
of multiuser interference typically means that the numerators of the EE functions are
not concave in terms of the resources to allocate. Since multiuser interference is a
peculiar trait of present and future wireless networks, energy-efficient resource allo-
cation must cope with the presence of multiuser interference. One simple approach is
to employ orthogonal transmission schemes and/or interference neutralization tech-
niques to fall back to the noise-limited regime. However, these approaches are not
practical in large networks where many users must be served. Instead, a more use-
ful approach is the development of energy-efficient optimization frameworks that
extend fractional programming by coupling it with specific methods to handle the
presence of multiuser interference. In this context, the most widely used framework
is that of sequential fractional programming, which merges fractional program-
ming with the tool of sequential optimization, also known as successive convex
approximation, or majorization—minimization. Sequential fractional programming
provides a systematic approach to extend fractional programming to interference-
limited networks with affordable complexity while enjoying optimality properties.
Sequential fractional programming has been successfully used to optimize the EE
of many wireless networks employing 5G and beyond 5G technologies, e.g., cloud
radio access network (C-RAN) and coordinated multipoint (also with multi-carrier
transmissions) [14], multicell massive multiple-input—multiple-output (MIMO) sys-
tems [15], full-duplex systems [16], D2D communications [17], cell-free systems [ 18]
and systems employing physical-layer security [19].

Other practical optimization methods for energy-efficient resource allocation in
interference-limited systems consider similar successive approximation approaches,
such as the successive pseudo-convex method from [20], which can reformulate a
wide class of EE problems as a sequence of pseudo-convex programs. Similarly,
in [21], fractional programming is merged with the weighted minimum mean square
error algorithm to develop a practical energy-efficient resource allocation method.

As already mentioned, all previous approaches trade off optimality with complex-
ity. Instead, recently, a novel global optimization framework has also been proposed
that can converge to the globally best solution of a wide class of EE maximization
problems, with a complexity that is significantly lower than general-purpose global
optimization methods [22,23]. While this approach is not fast enough for online
resource allocation, it provides an effective and efficient way of computing offline the
maximum EE of a complex network where many users reuse the same resource block.
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On the other hand, optimal energy-efficient resource allocation can be performed in
dense networks exploiting stochastic geometry arguments [24].

Recently, the issue of energy-efficient resource allocation has become a major
point also in the context of wireless networks empowered by reconfigurable intelligent
surfaces (RISs) [25]. The use of RISs is a recent technological breakthrough that holds
the potential to revolutionize the traditional approach to wireless network design and
operation. RISs are planar structures made of special materials, known as meta-
materials, which are not bound by conventional reflection and diffraction laws, but
that instead can modify the phase and direction of the radio wave impinging on
them in a fully customizable way. This enables an RIS to control the phase of the
reflected/refracted signal. Moreover, the electromagnetic properties of the surface
can be dynamically reconfigured, so that the effect of the RIS on the incoming radio
waves can be adapted in real time in response to the sudden changes in the network
and/or in the traffic demands. RISs can be deployed on the walls of buildings or can
be used to coat objects in the environment between the communicating devices, which
effectively makes the wireless channel a new variable to be optimized, besides the
design of the transmitters and receivers. Compared to traditional antenna arrays, RISs
have the advantage of granting a large amount of degrees of freedom to exploit, in
a more energy-efficient and cost-efficient way, being composed of cheap and nearly
passive reflecting elements. In [26], it is shown that an RIS is much more energy-
efficient than traditional relaying schemes. Similar results are obtained in [27] with
reference to the power consumption of RIS-based wireless networks.

On the other hand, the design of an RIS-based wireless network is more involved
because it requires the design of the RIS. In other words, the use of RISs provides new
free parameters that can be optimized to improve the performance, but this comes at
the expense of a more difficult resource allocation problem to be solved, especially
if a large number of RIS are employed. A promising approach that might ease the
computational burden of the design of RIS-based wireless networks is the use of
artificial intelligence-based resource allocation. Indeed, artificial neural networks
have been shown to be able to learn the map between the parameters of a neural
network and the corresponding optimal resource allocation to employ. The joint use
of artificial neural networks and RISs forms the concept of smart radio environment,
a paradigm that has recently emerged for future wireless networks [28,29].

1.2 Network design and deployment

Innovative solutions at network design and deployment stages can improve the EE of
wireless systems.

1.2.1 Dense networks

In order to address the issue of explosively increasing number of 5G connections,
wireless operators are moving toward densely deployed infrastructure [30]. For a
long time, cellular system design has been based on the principles of hexagonal cell
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structure, and capacity improvements were realized by uniformly splitting a macro-
cell into a number of small areas covered with small base stations. On the other hand,
in cell densification architectures, a large number of infrastructure nodes per unit area
which are connected to a centralized processing unit with optical fiber-based backhaul
will be deployed. Moreover, heterogeneous nodes such as macro base stations, small
cell base stations and relays will be activated to meet the traffic demands in different
geographical areas of the network.

In principle, densely deployed infrastructure reduces the distance between the
transmitters and mobile users considerably, and high data rates can be achieved with
low transmit power, since the effect of path loss on signal attenuation can be min-
imized. Also, node cooperation and infrastructure sharing among different network
operators may lead to substantial energy savings. However, there are several chal-
lenges related to the EE of dense networks [31]. Any uncoordinated dense deployment
of transmitters at different sites can create interference and introduce a ceiling for the
achievable EE with increased densification. Also, modeling the positions of densely
deployed base stations and mobiles to capture real deployments is complicated in
general. A powerful tool used in the literature to model dense networks is based on
stochastic geometry, and mathematical models of point processes such as the Poisson
point process, Matérn hard-core point process and cluster processes have been found
useful. Such analytical models allow accurate understanding of the impact of inter-
ference, and thus network optimization in terms of energy consumption to deliver a
certain performance becomes possible. Dense deployment of infrastructure demands
the installation of a large number of nodes at different points in the network. Con-
sequently, overall power consumption could increase. In addition, nodes should be
connected with many miles of cables, and losses in them will increase the overall
energy budget. Interconnections among users, remote radio heads (RRHs) and core
network functions made possible through fronthaul and backhaul connections will
also require additional signaling and processing power and will increase the energy
consumption. To this end, mobile edge computing is a recently considered approach to
reduce the core network traffic as the technology allows storing of frequently accessed
information at selected local nodes. Moreover, integrated access and backhaul is a
complement for dense deployment of street-level radio nodes or in sites where fiber
access is not available or is cost inefficient.

1.2.2  Base station on/off switching

The base station is a major source energy usage in a cellular network. Many base sta-
tions are powered by off-grid diesel generators, while grid connections are expensive
and unreliable. To this end, in order to reduce the energy usage, a cell can be put into
sleep by switching off of lightly loaded base stations or by discontinuous transmission
(DTX). In such situations, traffic can be divided to other base stations as required.
Even if there is no user data in the cell, cellular standards require the base stations
to transmit signaling information. For example, Wideband Code Division Multiple
Access (WCDMA) systems continuously transmit a common pilot channel and a com-
mon control channel even in the idle mode and PA utilization remains high [32]. With
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5@, there are new tools to reduce energy such as devices that are allowed to spend most
of their time in idle or deep sleep states and provide different levels of monitoring
granularity (short and long DTX configurations). In addition, wake-up schemes can
reduce the power consumption of DTX even further [33]. In wake-up schemes, the
receiver periodically monitors a wake-up signal to activate itself. The wake-up signal
can be optimized to achieve a desired delay-energy consumption trade-off.

Turning off underutilized base stations can preserve energy while guaranteeing
quality-of-service requirements of the mobile users [34]. Antenna muting can also
be used to reduce the power consumption of networks. In particular, depending on
the user requirements and channel conditions, some antennas can be switched off
at the cost of marginal performance degradation. Electrical or mechanical antenna
down tilting can reduce the interference on neighboring cells for improved EE. Cell
zooming or cell breathing is a technique that can be applied to fill the coverage gaps
when some base stations are switched off [35]. It adjusts the cell size according to the
prevalent traffic conditions in the network. To find the ideal cell size, cell zooming
increases the transmit power of the active base stations or adjusts the antenna height
and tilt angle. Accordingly, consumed energy of the active base stations in the network
increases; however, additional energy savings can be achieved when cell zooming and
sleeping strategies are used in combination.

1.2.3 Massive MIMO

MIMO technology has been integrated into modern wireless systems such as it can
provide multiplexing and diversity gains. In particular, installing multiple antennas
at the base station due to available space is possible, and beamforming techniques
can be used to improve the performance. A fairly new development in MIMO is
the introduction of massive MIMO technology for 5G [36]. Massive MIMO exploits
the large number of degrees of freedom available to the system due to the use of a
massive antenna array to serve multiple users under favorable propagation conditions.
Moreover, it has been shown that even with linear signal processing significant capac-
ity gains can be achieved. A characteristic of massive MIMO is its ability to form
“pencil-sharp” beams, and thus energy can be beamformed into user locations with
minimal inter-user inference. Therefore, massive MIMO is widely regarded as a green
solution to realize modern wireless systems. With imperfect channel knowledge at
the transmitter and for a fixed rate, a single-cell massive MIMO system can reduce
the radiated power by a factor proportional to the square root of the number of anten-
nas [37]. Figure 1.2 shows the massive MIMO testbed at Lund University, Sweden,
which was the first real-time experimental platform demonstrating the technology.
However, massive MIMO system implementation comes with several challenges.
The large number of required antennas and transceiver chains could increase the
hardware-consumed power. Moreover, pilot contamination is an issue to be concerned
with at the design phase. EE of massive MIMO systems under various system/channel
parameters and with different uplink and downlink processing schemes has been stud-
ied in many papers. One needs to construct an accurate power consumption model
when optimizing the energy consumption in massive MIMO systems. For example,
several optimization variables, namely number of base station antennas, active users,
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Figure 1.2 The massive MIMO testbed at Lund University, Sweden has been used
to validate reciprocity-based beamforming using 100 antennas and up
to 12 users, in both static and mobile scenarios (Image credit: Emil
Bjornson)

transmit power, base station density and pilot reuse factor, influence the EE of massive
MIMO deployment. Optimal design of energy-efficient multiuser MIMO is investi-
gated in [38] and contrary to the belief that the transmit power should decrease, it has
been shown that the transmit power should increase when the number of antennas is
increased, since the increase in circuit power can be compensated for.

1.2.4 mmWave cellular systems

There are opportunities to harness abundant spectrum at mmWave frequencies for
increasing 5G data rates and capacity. For example, 26 and 28 GHz bands suit dense
5G small cell networks, while the multi-gigabit Wi-Fi technology, 802.11, can uti-
lize the 60 GHz band and the lightly licensed E-band (70/80 GHz) is suitable for
HetNet backhaul/fronthaul deployment. At such high frequencies, higher path loss,
rain absorption and blockage effects from hand, body, walls, etc. adversely influence
the propagation conditions. Factors such as amplifier efficiency, antenna complexity,
A/D and digital-to-analog converters pose challenges in achieving the required link
budget at mmWave frequencies, while beamforming and directional architectures
allow increased gain. Techniques such as device-assisted power saving, reducing
blind decoding of control channels using carrier aggregation and wake-up signals
based on beamforming can also be employed for improving the power efficiency in
5G mmWave devices. As an example, mobile devices can provide additional informa-
tion on battery level, antenna, orientation of the mobile, etc. to select optimal power
and enable efficient beamforming/switching. In the literature, the suitability of the
mmWave and massive MIMO combination has been studied [39]. However, imple-
menting mmWave massive MIMO based on a fully digital architecture is an energy
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inefficient and costly affair. In the near term, the hybrid analog/digital beamforming
approach is a potential solution as energy-efficient fully digital architectures will take
time to develop.

1.2.5 Cloudification and virtualization

The concept behind network cloudification in the form of the C-RAN architecture
was first proposed by the China Mobile Research Institute as C-RAN in 2010.
C-RAN is a centralized cloud computing architecture with an integrated baseband
unit (BBU) pool and distributed RRH equipment connected by high-speed optical
fiber. The BBU pool capable of processing baseband signals functions as a cloud
data center solution, while RRHs perform signal modulation and amplification and
are located at the cell sites. Since early 2019, solutions such as the Nokia AirScale
C-RAN has been deployed. Cloudification ushers in new opportunities to improve
the network EE [40]. For example, the mix of traditional and cloud base stations
can be optimized for cost-effective, energy-aware high-performance deployments in
the context of 5G. Furthermore, network function virtualization allows clouds to
be virtualized to create end-to-end network slices consolidated in common physical
infrastructure. Each network slice can be customized from an energy-efficient point
of view to deliver heterogeneous services in parallel for new deployment cases such
as industrial IoT, intelligent transportation systems, public safety and positioning.

In addition to the network, computing and storage servers, cloud management
system and appliances (operating systems, platforms, applications used by end users)
that make up a cloud computing architecture can benefit from energy-efficient fea-
tures, including dynamic voltage and frequency scaling, server enclosure design,
scheduling and load balancing of physical and virtual machines and the development
of energy-efficient software [41]. When migrating to cloud computing systems, open
access models such as The Cloud Energy and Emissions Research Model developed
by Lawrence Berkeley National Laboratory and Northwestern University are useful
for assessing the energy savings.

1.2.6 Offloading techniques

In the context of 5G, offloading will allow operate to free up network capacity and
increase the EE. Mobile devices continue to become more capable and already they can
connect to multiple cellular, Wi-Fi, Bluetooth networks as required. Hence, macro
cellular traffic can be offloaded when users are in areas of small cells or indoor
coverage. In addition to popularly used Wi-Fi, D2D communication and visible light
communication (VLC) are also helpful to implement offloading techniques in wireless
networks. D2D communication enables the possibility of direct transmission between
two devices with low transmit power instead of using a cellular connection. VLC uses
high-speed light-emitting diodes and photodiodes at the transmitter and receiver,
respectively, for direct modulation of light [42]. LiFi, a form of VLC, can transmit at
multiple gigabits offering latency values several times lower than Wi-Fi. Base stations

*http://cleermodel.1bl.gov/
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or access points in terrestrial networks are fixed entities, and there are many situations
where they cannot be optimally used for offloading tasks. In this light, a promising
solution that has received significant attention is the use of UAVs for communication
and computing [43]. The mobility and high maneuverability of drones make them
ideal candidates to be deployed in crowded areas such as stadiums, concerts or in
disaster recovery applications to off-load cellular traffic. Moreover, encouraged by
the availability of strong line-of-sight air-to-ground links, a new aerial edge computing
paradigm where computational tasks of terrestrial users can be off-loaded to overhead
drones has emerged. However, drones have limited on-board energy, and all offloading
tasks should be completed within a limited period through solutions such as optimum
trajectory planning and resource allocation.

Off-loading of computation, communication and storage operations from the
main processor of a mobile device is also a way of improving its battery life. Off-
loading at the processor level can be performed using approaches such as running
of lightweight applications in secondary processors on behalf of the main processor,
offloading storage to a less resource constrained neighboring device and opportunistic
offload into a cloud server.

1.3 Energy harvesting communications

Sensor networks equipped with energy harvesting devices have attracted great atten-
tion recently. Compared with conventional sensor networks powered by batteries,
energy harvesting capabilities of nodes make sustainable and environment-friendly
sensor networks possible. However, the random, scarce and nonuniform energy supply
features also necessitate a completely different approach to energy management.

According to the source types, energy harvesting communications can be divided
into the following two groups:

Ambient energy harvesting: This technique refers to harvesting energy from
natural sources such as solar, wind and ocean waves. The intermittent and seasonal
nature of such natural energy sources pose challenges for energy-efficient system
design due to uncertainty of key parameters.

RF energy harvesting: In these techniques, radio waves in the environment
or dedicated transmitters such as power beacons are used to transfer energy. In this
context, interference normally considered as an unwanted signal can also provide
benefits for energy harvesting. Further, information-carrying signals can be designed
for energy harvesting, resulting in the paradigm of simultaneous wireless information
and power transfer (SWIPT) [44].

The main element of an RF energy harvesting node is the rectifying antennas
(rectennas), while the end-to-end efficiency of a wireless-powered system depends
on several individual components such as the antenna, the RF-to-DC rectifier and
the power management circuit [45]. Two main architectures for designing RF-power
and information receivers are the antenna-switching architecture and the colocated
architecture. In the antenna-switching architecture, separate antennas are used for
RF power harvesting and the information reception, while in the colocated receiver,
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both the tasks are accomplished using a single-shared antenna. The colocated receiver
architecture can be designed based on the time-switching or power-splitting model.
A time-switching receiver switches between the energy harvester and the information
receiver, while a power-splitting receiver separates the received RF signal into two
streams for the energy harvesting and the information receiver.

A single-node energy harvesting communication system is illustrated in
Figure 1.3. It is equipped with an energy harvesting module that converts ambient
energy to electrical energy, which is stored in a rechargeable battery, and will be used
to power the communication operations of the sensor. Therefore, energy harvesting
communications are subject to the so-called energy causality constraint imposed by
the energy harvesting process, i.e., energy cannot be used before it is harvested.

The performance analysis and optimization of systems harvesting energy from
natural sources or RF signals require an accurate model of the energy harvesting
process. In the literature, recorded data has been fitted to Gamma, Weibull and
log-normal distribution functions to provide statistical models for wind and solar
energy [46]. In the case of wireless power transfer, deterministic models in the form of
simple linear models and piecewise-linear models were proposed in the early literature
on the topic, while advanced nonlinear models based on the parametric functions such
as logistic (sigmoidal) have been proposed recently. The nonlinear models are better
suited to model sensitivity and saturation issues of real hardware.

In the following, we briefly summarize several research directions on the
energy management of energy harvesting communication networks, as well as the
information theoretic limits of energy harvesting communications.

1.3.1 Information-theoretic characterization of energy
harvesting channels

In energy harvesting communication channels, the cumulative energy expended can-
not exceed the total energy harvested at each channel use. This is in contrast to
the classical information theory setting, where a single average power constraint is
imposed for the entire code word. Instead, the energy causality constraint imposes
n power constraints on the code word, which dramatically increases the difficulty of
characterizing the corresponding channel capacity. Here, n refers to the code word
length measured in channel uses.

The channel capacity of the additive white Gaussian noise (AWGN) energy har-
vesting channel is characterized in [47]. It has shown that the capacity of the AWGN
channel with an infinite-sized battery subject to energy harvesting constraints is equal
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Figure 1.3 A single-node energy harvesting communication system
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to the capacity of the same channel with an average power constraint equal to the aver-
age recharge rate of the battery. In particular, save-and-transmit and best-effort are
proposed as capacity-achieving transmission strategies.

For a fixed tolerable error probability, [48] has performed a finite blocklength
analysis of save-and-transmit proposed in [47] and obtained a non-asymptotic achiev-
able rate for the AWGN energy harvesting channel. The first-, second- and third-order
terms of the non-asymptotic achievable rate are also presented. Reference [49] has
further improved the second-order term. For the block energy arrival model where
the length of each energy block L grows sublinearly in n [49,50], [49] has proved that
save-and-transmit achieves the optimal second-order scaling.

In [51], the first finite blocklength analysis of the best-effort scheme is provided
for the AWGN energy harvesting channel. In addition, this work obtains a new non-
asymptotic achievable rate for save-and-transmit, which outperforms the state-of-the-
art result for save-and-transmit [49] in the high signal-to-noise ratio regime.

1.3.2  Offline energy management for throughput
maximization

In the offline optimization framework, it is assumed that the energy harvesting profile
is predictable and known in advance for the whole duration of operation. With such
assumptions, energy has been managed to optimize the throughput of various com-
munication systems. Noncausal knowledge of the energy harvesting process allows
the optimal policy to be obtained through a one-shot optimization problem. The struc-
tural properties of the optimal policies have also been explicitly characterized in the
literature.

For single-user energy harvesting communication channels, the optimal solution
can be obtained through a directional water-filling [52] algorithm. It requires walls at
the points of energy arrival with the right permeable water taps. The water taps allow
water to flow only to the right, which implements the energy causality constraint. In
addition, if a finite battery constraint (E,,x ) is imposed, these taps allow at most £,
amount of water to flow to the right. The directional water-filling algorithm is based on
the Karush—Kuhn—Tucker (KKT) optimality conditions for the corresponding convex
optimization problem.

For broadcast channels with an energy harvesting transmitter, [53] shows that
the optimal total transmit power is the same as the optimal single-user counterpart.
Moreover, the distribution of the optimum total transmit power among users exhibits
a cutoff structure, i.e., only the amount that is above this cutoff level is allocated to
the weaker user. In [54], a generalized iterative backward water-filling algorithm is
proposed to obtain the maximum throughput region for a multiple access channel with
multiple energy harvesting transmitters. The algorithm combines directional water-
filling together with generalized iterative water-filling in [55] to solve the optimization
problem.

Similar approaches have been applied to obtain the optimal energy manage-
ment schemes in interference channels in [56], systems with battery imperfections or
processing costs [57].
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1.3.3 Online energy management for performance
optimization

In contrast to the offline setting, in the online optimization framework, it is assumed
that the system knows the past realizations of the energy harvesting process but
has only statistical knowledge of their future evolution. The major approach is to
formulate the optimal energy management problem as a stochastic control problem,
with the objective to determine the optimal decision rules so that the expected reward
of the decisions is maximized. The reward could be data throughput, channel capacity,
sensing utility, etc. With this approach, the energy harvesting process and/or the data
arrival process are usually modeled as Markov processes, while the online problem
can be cast under the powerful framework of Markov decision processes and solved
numerically with standard dynamic programming tools, see, e.g., [52,58,59].

Modeling the energy replenishing process as a Markov process, [60] aims to
maximize the time average reward by making decisions regarding whether to transmit
or discard a packet based on the current energy level. The optimal policy is shown to
have a threshold structure. Reference [61] studies the utility maximization problem of
an energy harvesting sensor with finite battery capacity and data buffer. It proposes
an adaptive energy management policy that decides the energy spent in each time slot
based on the instantaneous battery level and data queue length and shows that it is
asymptotically optimal.

In [62], the online sensing scheduling problem for an energy harvesting sensor
is studied. The objective is to strategically select the sensing time such that the long-
term time-average sensing performance is optimized, where the sensing performance
depends on the time durations between two consecutive sensing epochs. It shows that
when the battery size is infinite, a best-effort uniform sensing policy is optimal. For
the finite battery case, an energy-aware adaptive sensing scheduling policy, which
dynamically chooses the next sensing epoch based on the battery level at the current
sensing epoch, is shown to be asymptotically optimal. When multiple energy harvest-
ing sensor nodes are considered, [63] studies the dynamic activation of sensors with
a unit battery in order to maximize the sensing utility. In [64], it is assumed that the
sensing utility is a concave function of the number of active sensing nodes in each
time slot. It shows that a randomized myopic policy, which aims to select a number
of sensors with the highest energy levels to perform the sensing task in each slot,
maximizes the long-term average utility and thus is an optimal approach.

A different online energy management approach is introduced in [65] and then
extended for various system models. The policy uses a fixed fraction of the available
energy for transmission in each time slot and is shown to perform within a constant
gap from the optimal online policy.

1.3.4 Routing and resource allocation in multi-hop energy
harvesting networks

While the aforementioned works focus on algorithms and protocols for point-to-
point links or small-scale systems powered by energy harvesting, it is of paramount
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importance to study the effects of energy harvesting on large-scale networks from
the perspective of network design and operation. One critical aspect is routing and
resource allocation methods that must cope with fluctuating energy harvesting pro-
cesses in multiple-hop networks. For such problems, one common approach is to
model the wireless network by a directed graph, where the set of vertices represents
the sensor nodes and the set of edges represents the communication links between
them. While the energy harvesting process at each node is modeled as a random
process, the objective is to design online scheduling, routing and resource allocation
schemes to manage the available energy and to optimize the network utility [66—69].
Commonly used tools include the standard dual decomposition and the subgradient
methods [70] and the Lyapunov optimization technique [71].

In [66], an online algorithm named E-WME (Energy-opportunistic Weighted
Minimum Energy) is proposed. The basic idea of the algorithm is to assign a cost
to each node, which is an exponential function in its residual energy, and then use
the shortest path routing with respect to this metric. It is shown that the E-WME
achieves the asymptotically optimal competitive ratio. In [67], an algorithm called
QuickFix is proposed to compute the data sampling rate and routes. The algorithm
is based on the dual decomposition and subgradient method [70]. In order to cope
with the fluctuations in the recharging process, a local algorithm called Snaplt is
designed to adapt the sampling rate and maintain the battery charge at a target level.
Reference [68] leverages the Lyapunov optimization technique [71] to design an
online algorithm called the energy-limited scheduling algorithm (ESA). ESA keeps
track of the amount of energy left at the network nodes and makes power allocation
decisions for packet transmissions. It shows that ESA achieves a utility that is within
O(e) of the optimal, for any € > 0, while ensuring that the network congestion and the
required capacity of the energy storage devices are deterministically upper bounded
by bounds of size O(1/¢€). Similar approaches have been adopted in [69] to jointly
control the data queue and battery buffer to maximize the long-term average sensing
rate of an energy harvesting wireless sensor network.

1.4 Efficient hardware design

Wireless networks contain diverse hardware components, e.g., power sources, bat-
teries, electronics, antennas and RF chains. Moreover, recent trends such as network
densification and IoT have led to a major increase in the number of hardware com-
ponents deployed. Different EE levels of hardware components pose challenges for
the reduction of network wide total power [72].

A major part of the macro base station power budget is consumed by the RF
PA. Two practical parameters of PAs are the linearity and efficiency. Transmit sig-
nals of modern wireless systems are based on multicarrier modulation, and they
exhibit a high peak-to-average power ratio. Therefore, PAs should operate in the lin-
ear region by selecting a back-off to avoid out-of-band emissions. As a result of a
large back-off, average output power is reduced and the PA efficiency is adversely
affected. Consequently, power-added efficiency (PAE) that is a measure of how well
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Figure 1.4 Peak PAE versus saturated output power (Py,) for frequencies
up to 6 GHz. Adapted from [73]

a PA can convert DC power into RF/microwave power can be improved using a
technology such as complementary metal-oxide—semiconductor (CMOS), gallium
nitride, silicon-germanium bipolar plus CMOS. Figure 1.4 shows the peak PAE ver-
sus saturated output power for different PA technologies in the frequency range up to
6 GHz [73].

Attention has also given to design simplified transmitter and receiver architec-
tures, including ones that use coarse signal quantization. For example, in massive
MIMO systems and mmWave systems, the use of 1-bit ADCs is an effective approach
to increase the hardware EE. Coupling high-resolution ADCs with 1-bit ADCs, a
mixed-ADC architecture for massive MIMO systems is proposed in [74]. The paper
shows that the proposed energy-efficient solution can achieve a large fraction of the
channel capacity of conventional architecture even with relatively a small number of
high-resolution ADCs. There are also other cases where implementation of differ-
ent hardware solutions within a system becomes a prospective solution to achieve a
trade-off between the EE and the system performance. In mmWave systems, hybrid
analog/digital beamforming is a solution to achieve a low energy cost. Unlike a fully
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connected architecture that employs a large number of high-resolution phase shifters,
the sub-connected architecture with low bit resolution ADC is advantageous from the
power consumption point of view [75].

Most wireless protocols to date are implemented on custom hardware. How-
ever, programmable options offer potential advantages, and both professional and
open source software are increasingly used to design and deploy wireless systems to
multiple hardware targets. Moreover, software-defined radio (SDR) architectures
realize multiple radio standards using reduced hardware at the RF front-end and
baseband software. Therefore, hardware/software codesign continues to play a major
role in the design of many energy-efficient wireless applications in cellular systems,
sensor networks, etc. In low-power SDR platforms, hardware support for operations
such as floating-point arithmetic is crucial to achieve a higher EE. Further, pro-
grammable features of SDR solutions combined with low power hardware are an
attractive prospect to implement power management function in energy harvesting
circuits.

There is also scope to optimize hardware usage for low power consumption in
cloud-based network deployments. Since C-RAN allows virtualized radio functions
to run in a distributed cloud, the technology offers flexibility to deploy hardware in
the most energy-efficient manner while meeting the application needs. Moreover,
energy harvesting at different nodes and locations is an sustainable approach for
C-RAN. Since energy demands and availability vary across different geographical
locations, energy storage using batteries will be the answer to balance intermittent
generation and transportation of energy from one place to another. Engineers continue
to pioneer ways of improving the battery technology. For a long time, lead—acid battery
has served as the standard, while valve-regulated lead—acid batteries, lithium-ion
batteries are used in telecom sites. However, high capacity, long-life batteries that can
power base stations and mobile devices are yet to be developed. Innovative solutions
with the potential to replace existing battery technologies, namely, lithium—sulfur,
sodium-ion and graphene, hold promise for better performance and low environmental
impact. Fuel cells have also received attention as a backup power source. A hydrogen
fuel cell converts chemical energy stored in the element to electricity with water
and heat being the only by-products. They are more effective than batteries, require
limited maintenance and cause less pollution. However, the distribution of hydrogen
is hazardous and prone to accidents. Hence, more stable fuels containing hydrogen,
such as methanol, are being closely examined as alternatives.

1.5 Overview of the textbook

The remainder of this book is organized thematically into three major sections to
capture major research advances in this field. To begin with, the focus is on new
mathematical tools that are being developed to analyze green communications sys-
tems. In future networks, it will become increasingly important to find good solutions
to very complex optimization problems that describe the behavior of communications
systems and networks. The second chapter by Matthiesen and Jorswieck describes
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the state of the art in this important area and presents a promising method entitled
Mixed Monotonic Programming that can yield significant improvements for find-
ing energy-efficient solutions. Recent advances in deep neural networks have shown
promise for solving complex and ill-posed problems in many fields. The third chapter
by Zappone et al. shows how machine learning can tackle the increasing complexity
of wireless networks and complement existing model-based techniques for operating
and controlling wireless networks. The fourth chapter by Rusu and Thompson explores
efficient management techniques to try to minimize energy consumption in a wireless
network. The approach is based on the concept of sensor management, which is an
algorithmic technique for determining how to activate or switch off different base
stations in order to achieve different performance objectives.

The second theme of the book deals with the use of renewable energy or energy
harvesting techniques to make communications systems more sustainable. The chap-
ter by Meo and Renga considers in detail how renewable energy sources can be used to
power future wireless networks. They carry out extensive studies to show how issues
of intermittent energy availability can be overcome, and new approaches to match
energy supply and demand are described. SWIPT will also be a key technology for
future IoT networks, and this topic is studied by Kishk et al. They use mathemat-
ical tools from stochastic geometry to analyze the performance of two networks:
one is a single network using power and information transfer; the other involves
power/information transfer network sharing resources with a second secure wireless
networks. Next, the chapter by Ko et al. describes the related technology of backscat-
ter communications, where a transmitter generates a carrier signal that powers a low
energy tag and allows it to communicate back to the sender. A detailed description of
these systems is provided, highlighting the current state of the art and future research
directions. Finally, the age of information is currently a hot topic in the research
community, which helps system designers to understand how timely information can
be provided in a communication network. The chapter by Arafa et al. provides a
detailed discussion of communications systems that relies on energy harvesting and
how such systems may be designed to minimize the age property of data in a wireless
network.

The third and final part of this book deals with research advances in EE relat-
ing to specific communications technologies. Massive MIMO technologies are a key
enabler for 5G wireless networks, and assessing EE is crucial for developing sus-
tainable future communications systems. The first chapter in this part by Pizzo et al.
studies the EE of 5G in detail, developing increasingly realistic energy models that
give insight into key performance trade-offs. The use of large-scale or massive MIMO
antenna arrays is also a key technology for future wireless systems operating at high
frequency millimeter wave bands (above 6 GHz). The chapter by Buzzi and D ’Andrea
studies the spectral efficiency and EE trade-offs and explores what is the best overall
transceiver architecture for such systems. The next chapter by Nguyen et al. studies
C-RAN where the baseband signal processing is separated from base station antennas,
using optical fiber connections. Optimal beamforming strategies across all the anten-
nas in a C-RAN system are typically too complex, so this chapter presents several
suboptimal but promising approaches that can be applied in practical radio networks.
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The chapter by da Silva et al. studies the performance of full-duplex interference
cancellation techniques that can be implemented in a single transceiver system. A
number of different network scenarios are evaluated, and the authors highlight under
what conditions full-duplex cancellation can provide improvements in energy and
spectrum efficiency. Another promising technology for 5G wireless networks is non-
orthogonal multiple access (NOMA), which enables two or more users to share the
same radio channel simultaneously, increasing the overall capacity. The chapter by
Wei et al. studies new mathematical approaches that enable NOMA systems to oper-
ate in a highly energy-efficient manner. The final technical chapter by Elgala et al.
discusses recent research on VLCs, which can offer a low-cost and energy-efficient
alternative to radio frequency wireless communications. This chapter describes recent
research advances on this technology to enable higher data rates and novel approaches
of machine learning technology to achieve advanced transmitter and receiver designs.
Chapter 15 concludes the book and also discusses future research directions.
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Chapter 2
Optimization techniques for energy efficiency
Bho Matthiesen' and Eduard A. Jorswieck?

2.1 Introduction and motivation

Classical resource allocation, power, and flow control techniques for wireless commu-
nication networks comprise general network utility maximization (NUM) problems
with constraints [1]. Common assumptions regarding the utility and constraint func-
tions include that they are defined over the non-negative numbers, continuously
differentiable, non-decreasing, and concave. The typical representatives of this class
of utility functions are a-fair utility functions, including achievable rates, propor-
tional fair rates, the negative delay, and more [2]. This NUM framework exploits the
concavity of the utility and constraint functions in order to apply convex optimization
methods [3] to efficiently solve them.

Energy efficiency (EE) is a key performance indicator in communication net-
works introduced about a decade ago [4]. It is motivated by an exponential increase
of connected devices, significantly increased data rates, a rapid expansion of wireless
networks, and finally due to ecological and economical concerns. Several different
EE metrics have been proposed, each having its own merits and applications. For
example, the global energy efficiency (GEE) measures the networks EE as a whole,
while individual metrics like the weighted sum EE and weighted minimum EE focus
more on the performance of individual devices. The analytical properties of EE util-
ities differ from classical a-fair utilities and require the development of new NUM
frameworks: it is usually neither convex nor concave and increasing up to one point,
called the mode, after which it decreases. The resulting NUM is a non-convex problem
and the standard approaches cannot be applied.

Another reason for non-convex NUM problems are novel physical and medium
access control layer technologies that support transmission of different links on the
same time—frequency resources, e.g., non-orthogonal multiple access systems [5]. The
resulting achievable rate expressions are neither increasing nor concave in the transmit
power and, therefore, lead to even more involved non-convex resource allocation
problems.

'Department of Communications Engineering, University of Bremen, Bremen, Germany
2Department of Information Theory and Communication Systems, Technische Universitéit Braunschweig,
Braunschweig, Germany
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The wireless engineer is interested in both global optimum solutions for non-
convex NUM problems and suboptimal efficient algorithms. The first ones serve as
ultimate benchmarks and upper bounds on the achievable performance, while the latter
ones are compared with these bounds to justify their real-world implementations. This
chapter provides the methods, tools, and algorithms to serve this demand. Please note
that the monograph [6] covers the methodological background material of fractional
programming theory and provides the basis for the motivating example and the review
on fractional programming. However, the global solution to the non-convex NUM
problems in interference networks is based on more recent results.

2.1.1 Motivating single-link examples

Let us motivate the development of the novel NUM framework by a simple example
of a point-to-point link whose EE should be maximized. We introduce the EE of a
point-to-point link with the general a-fair utility function for « € [0, c0) as

)
R 4>0,a#]l
— 1 —a) +Pc ’ - ? ’
BER) =1 Ui ™" 2.1)
up(R) + P -0

where R is the achievable rate, @ is the power amplifier inefficiency, p(R) is the
transmit power necessary to support a rate of R, e.g., p(R) =28 — 1, and P, > 0 is
the constant power consumption. As special cases, we obtain for « = 0 the EE as
defined in [7]. For « = 1, we obtain the proportional fair EE [8].

Please note the following properties of the EE utility function in (2.1) for a fixed
o > 0: (1) the numerator of the EE in (2.1) is by assumption differentiable and concave
with respect to R. (2) The denominator (2.1) is positive, differentiable, and convex
with respect to R. The following statement follows from [6, Proposition 2.9].

Proposition 2.1. Forfixeda > 0, the EE definedin (2.1) is a pseudo-concave function
with respect to the achievable rate R.

Pseudo-concave functions have important properties that allow one to develop
algorithms for efficiently finding their global optimum [9,10]. Consider the following
fractional programming problem:

R(-)
max .
R0 (I —a) - (u2* = 1D+ Pe)

2.2)

Since the utility function in (2.2) is pseudo-concave the Karush—Kuhn—Tucker (KKT)
optimality conditions are necessary and sufficient for the global optimum. Further,
there exist at least two simple ways to transform this fractional program. The first is
based on Dinkelbach’s Algorithm [9], where the problem in (2.2) is transformed into
the following parametric program for A > 0:

F(}) = max (R — A1 —a)- (2" = 1)+ P.)). (2.3)
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Then, the global optimum solution R* of (2.2) corresponds to the argument of the
maximization in (2.3) where F'(1) = 0. The second approach is the non-parametric
approach outlined in [7].

In the simple case of only scalar fractional programming in (2.2), we can compute
the global optimum by the KKT conditions in closed form. However, this does not
generalize to multiple parallel point-to-point links to multi-carrier or to multiple
antenna links.

2.1.2 Interference networks with treating interference as noise

Let us motivate the contributions of the following chapter further by a slightly more
involved scenario in which two links operate on the same frequency and at the same
time. Denote their channel coefficients as d; and d, for the two direct channels and
as ¢; and ¢, for their cross-channels from transmitters 1 and 2, respectively. The
achievable rate by treating interference as noise for link i = {1, 2} is given by j # i:

di i
Ri(p1,p2) = 10g(1 + —p>- (2.4)
I +¢p

Using matrix inversion, the linear system of two equations (2.4) can be solved for
[p1,p2], which gives:

Ry(cRy + dy)
d1d2 — R1R201C2 ’

Rl(czfﬁ’z +d,)

————— and p(R,Ry) =
dldQ—R1R201C2 p2( 1 2)

PR, Ry) = (2.5)

with R; = 2% — 1. The following problem is to be solved for fixed o > 0 to maximize
the GEE:

I—a
Rl

1—a

4R
max T . (2.6)
RiRyz0 p 4, @M=D —D(er+en)+RM — Ddp 2R —1)dy
cT M dydy—(2R1—1)2R2 —1)c ¢y

Even though the numerator is still jointly concave in R; and R,, the denominator is a
complicated function in R, and R, that is neither concave nor convex. We can transform
problem (2.6) into the power domain using (2.4) and write it as the equivalent problem:

2 dipi I~
i log(1 + %)
220 (1 — )P+ upy + up2)

.7)

In (2.7), the denominator is a linear function in the optimization variables py, p;.
However, the numerator is neither concave nor convex in py, p;.

If one looks at the problem from the information theoretic point of view, then the
corresponding rate region achievable under a sum power constraint is neither convex
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nor concave [11]. Hence, the combined rate R = [R;, R,] and power p = [pi, p>]
allocation problem

e
i=l |-«

max ————— s.t. ReZ(p), 2.8
s ®) 28)

where Z(p) is the achievable rate region described by inequalities, is also a
complicated non-convex programming problem.

In conclusion, it is not possible to directly apply classical fractional programming
approaches that rely on convex optimization even to the considered simple two-user
interference network. This applies for the optimization both in the rate domain and
in the power domain. Therefore, we need new methods and tools in order to solve the
corresponding global and individual EE problems. For a methodical approach to the
system design, we are interested in the global optimal solution as well as suboptimal
efficient algorithms. This chapter will develop the required method and tools and
explain the corresponding optimization algorithms.

2.1.3 Overview and outline

After introducing the necessary notations, symbols, and terms, we will start by review-
ing classical fractional programming theory with a main application to resource and
power allocation problems in interference networks. We have already introduced terms
such as pseudo-concavity that needs proper definition. Dinkelbach’s Algorithm and its
generalization are introduced. Standard convex programming approaches and feasi-
bility checks are explained. Finally, the global extension of Dinkelbach to monotonic
programming for non-convex utility functions is discussed. This will motivate the
section on general global optimization methods, including branch-and-bound (BB),
monotonic programming, the novel approach of mixed monotonic programming
(MMP), and the successive incumbent transcending (SIT) scheme. For the devel-
opment of suboptimal efficient algorithms, this chapter will conclude with first-order
optimal algorithms. As a result, the reader knows the classical approach to fractional
programming and its combination with global programming. The novel methods
MMP and SIT and their algorithmic implementation are learned as well. Thereby,
the reader will obtain a rich toolbox of modeling and programming algorithms for
solving a wide class of relevant optimization problems focused on, but not limited to,
EE maximization.

2.1.4 Notation

Boldface upper case and lower case letters denote matrices and vectors, respec-
tively. [|x], x”, x/ denote Euclidean norm, transpose, and conjugate transpose of the

n-dimensional column vector x = {x;}?_,. 0, and 1, denote an all-0 and an all-1
n-dimensional vector, respectively. Component-wise vector ordering is used, i.e.,
X > ymeansx; > y;, foralli = 1,...,N. The sets R and R, denote the sets of real

and real non-negative numbers, respectively.
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A function f : RZ; — R is increasing if f(x') < f(x) whenever X’ < x, and
decreasing if —f is increasing. The gradient of /" is denoted as Vf.

Sets are typeset in calligraphic letters <7, and IR denotes the set of real numbers. A
set®¥ C R”issaidtobe normal iffor0 <x' <x,x e ¥=x" € Y. Aset. ¥ C R%,
is called conormal if x + R, € S whenever x € J# [12, Section 11.1.1], where
x+ R, ={x+alac IR’;OT. The diameter of <7 is denoted as diam(.«/) and is the
maximum Euclidean distance of two points in .. The projection of <7 onto the x
coordinates is proj, 2/ = {x | (x,y) € / for some y}.

2.2 Fractional programming theory

Let us start this section by formally introducing the terms pseudo-concavity and
pseudo-convexity. The interested reader is referred to [6, Chapter 2] for further
explanations and information.

2.2.1 Pseudo-concavity

Definition 2.1 (pseudo-concavity). Let € € R” be a convex set. Thenr : € — Riis
pseudo-convex if and only if, for all x|, x, € €, it is differentiable and

I”(Xz) < I"(X]) = V(I’(Xz))T(Xl — Xz) > 0. (29)

Remark 2.1. In a similar way, it is possible to define pseudo-convexity. In particular,
if r is pseudo-concave, then —r is pseudo-convex. Moreover, if v is both pseudo-
concave and pseudo-convex, then it is called pseudo-linear.

The strict version of the earlier-mentioned definition for strict pseudo-concavity
replaces the first inequality in (2.9) with “<” and has to hold for all x; # x,. The
following property is important for maximization of pseudo-concave functions.

Proposition 2.2. Letr : € — R be a pseudo-concave function.

1. Ifx* is a stationary point for r, then it is a global maximizer for r.
2. If'ris strictly pseudo-concave, then a unique global maximizer exists.

For our application to fractional programming problems as motivated earlier, the
following statements are very helpful and characterize a rich class of pseudo-concave
functions.

X
Proposition 2.3. Let r(x) = ]% withf . CR">Randg:% CR"—> R,.
g(x
Then:

1. Iff is non-negative, differentiable, and concave, while g is differentiable and
convex, then r is pseudo-convex. If g is affine, the non-negativity of f can be
relaxed.

2. Iff and g are affine, then r is pseudo-linear.
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2.2.2 Specific fractional programming problems
Definition 2.2 (concave—convex fractional program). 4 concave—convex fractional
program is stated as the optimization problem
Jx)
max ——
xg(x)
st. (x)<0, i=1,...,1

hx) =0, j=1,....J,

(2.10)

with f concave, differentiable, and non-negative, g convex, differentiable, and
positive, ¢; convex for alli =1,...,1, and h; affine forallj = 1,...,J.

The objective of (2.10) is pseudo-concave, and, as a consequence, each stationary
point of the objective is a global maximizer. Moreover, the KKT conditions are
necessary and sufficient for optimality. In addition, the numerator f* of the objective
is required to be non-negative.

Definition 2.3 (sum-of-ratios program). A sum-of-ratios program is stated as the
optimization problem

K
Ji(®)
" kXZI: 8k(x)

(2.11)
st. (x)<0, i=1,...,1
h(x)=0, j=1,...,J,
with fi, concave and non-negative for allk = 1,...,K, {gi}5_, convex, and positive

Jorallk =1,...,K, c;convex foralli =1,...,1, and h; affine forallj = 1,...,J.

The sum of pseudo-concave functions is not necessarily a pseudo-concave func-
tion. Thus, contrary to the single-ratio fractional program mentioned earlier, the
objective of (2.11) is, in general, not pseudo-concave and problem (2.11) might
have multiple local extrema. Indeed, sum-of-ratio programs are considered to be
among the most challenging continuous global optimization problems and known to
be essentially NP-complete [13, Theorem 2].

2.2.3 Dinkelbach's Algorithm

Fortunately, there exists an elegant algorithm to approach single-ratio fractional
programs that work very efficiently for pseudo-concave functions. It is known as
Dinkelbach’s Algorithm [9] and will be discussed in the following.

Dinkelbach’s Algorithm has been introduced in [9,14]. It belongs to the class
of parametric algorithms, whose basic idea is to tackle a concave—convex fractional
program by solving a sequence of easier problems that converges to the global solution
of the original concave—convex fractional program. The fundamental result upon
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which Dinkelbach’s Algorithm is built is the relation between the concave—convex
fractional program and the function:

F() = max{f(x) — Ag(x)}, (2.12)

with real variable A.

Lemma 2.1. Assume f and g are continuous, g is positive, and .-/ is compact. Then,
the function F enjoys the following properties:

F is convex for » € R.

F is strictly monotone decreasing for A € R.

F()\) has a unique root A. )

Foranyx € &, F(A ;) = 0, with A; = % with equality when X = arg maX,c »
{f(x) — Azg(x)}.

bl S

As a consequence of this statement, solving a fractional problem is equivalent to
finding the unique zero of the auxiliary function F'(1). Dinkelbach’s Algorithm allows
one to accomplish this. It is important to note that Algorithm 2.1 can be employed to
solve any single-ratio fractional program regardless of convexity properties as long as
the maximization step in line 3 can be implemented correctly, i.e., it must be solved
globally in order to guarantee convergence and performance. If the optimization
problem in line 3 can be solved efficiently, the iterative algorithm converges very
fast. Indeed, it has super-linear convergence. It always converges to an &'-optimal
solution, i.e., the obtained x* has a function value ¢’, close to the global optimum,
f((%:; + & > maxyes %, where ¢’ is related to the stopping criterion &.

It is also possible to generalize Dinkelbach’s Algorithm in order to solve min-max
fractional programming problems [6, Section 3.3.1]. However, the sum-of-ratios frac-
tional program described earlier cannot be solved by any Dinkelbach-type algorithm.
In particular, the algorithm proposed in [15] does not converge to the global optimal
solution [16].

Algorithm 2.1: Dinkelbach’s Algorithm

1: e>0,n=0; 1, =0;

2: while F(X,) > ¢ do

3 X = argmaxye s {f(X) — A,g(X)};
4 F(h) = f(x,) — Aag(X3);

S A Zf(xn);
g(xy)
6: n=n+1;

7: end while
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2.2.4 Variants of Dinkelbach's Algorithm

Depending on the type of inner optimization problem in line 3 of Algorithm 2.1,
different variants are known. The easiest is when the numerator is concave and the
denominator is convex. Then, the inner programming problem

max f(x) — Ag(x), (2.13)

is convex if the constraint set.” is a convex set. It can be solved with polynomial com-
plexity under very mild assumptions using standard convex optimization tools [17].

Instead, if the same problem (2.13) does not fulfill the concavity and convex-
ity constraint, e.g., like the objective function in the two-user interference channel
example (2.7), it is still possible to apply Dinkelbach’s Algorithm in combination
with a global programming method like monotonic programming. This combination
was first proposed in [18] and subsequently developed into a framework in [19]. The
general approach is illustrated in Figure 2.1.

In Figure 2.1, the upper left side represents the classical fractional concave—
convex program that can be efficiently solved by applying the Dinkelbach’s Algorithm
shown on the upper right hand side. If the function f is not concave, as is the case in
the interference channel with treating interference as noise, the resulting fractional
program can be still solved by Dinkelbach’s Algorithm.

Consider then the following inner programming problem,

xrél[g);]ﬁ(x) —H(x)—2rg(x) st xe€.¥, (2.14)

where f1, f2, g are monotonically increasing functionsinxanda < band . = 4 N 7
with & normal and # conormal. In typical communications scenarios, such as
the interference channel mentioned earlier, we can write the signal-to-interference-
and-noise ratio from the log-term as a difference of two log-terms. Therefore, a

Concave fractional program -
Dinkelbach’s

() e Algorithm
2) G e e e
R R O i oy T L

max
X

Fractional program : 5
Monotonic programming

max ! (:‘:) max i log, (1 +74)
x g(x) pep z 2
st. h(x)< O0Vk=1,..,K i

=i (o + o)

Figure 2.1 Illustration of Dinkelbach's Algorithm with monotonic programming
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representation as in (2.14) is possible. In the EE expression, the function g is usually
linear in the transmit power with non-negative coefficients.

Starting from the representation in (2.14), it is possible to introduce an auxiliary
variable ¢ and move the decreasing term f; + Ag to the constraint set [12, Section
11.1.3],1e.,

max fi(x)+¢
X

st. LX)+ Argx)+1<0
—f(b) — Ag(b) <1 < —fi(a) — Ag(a)
x € .Y NJa,b].

(2.15)

This is a monotonic optimization problem and usually solved with the Polyblock
algorithm [12,20,21]. Thus, the inner optimization problem in Dinkelbach’s Algo-
rithm can be solved with global optimality by monotonic programming as illustrated
in Figure 2.1 on the lower right hand side. This approach is known as Fractional
Monotonic Programming [19].

While this approach integrates nicely into existing algorithms and is coherent
with the overall development and trends in global optimal resource allocation, it has
the downside of having very high computational complexity. This is because for each
outer Dinkelbach iteration a complete inner monotonic programming problem has to
be solved. In addition, the complexity is even further increased due the additional
auxiliary variable introduced in (2.15). Finally, the inner monotonic programming
algorithm might not converge in finite time and, in that case, does not produce an
g-optimal solution.

Another option for combining Dinkelbach’s Algorithm with another solution
approach for general fractional programs is to apply a suboptimal solution tech-
nique like sequential convex programming. This combination was proposed in [22] to
solve resource allocation problem for general interference networks and is discussed
in Section 2.5. For this combination, it is very important to note again that the con-
vergence of the Dinkelbach method is only guaranteed if the inner problem is solved
globally. Therefore, the sequential convex approximation has to be performed out-
side, while the Dinkelbach’s Algorithm runs as the inner optimization of the resulting
concave—convex fractional program.

In Figure 2.2, the combination of outer convex sequential programming and
inner Dinkelbach’s Algorithm is illustrated. The general fractional program on the
lower left-hand side is solved by iteratively computing convex lower bounds for the
numerator, illustrated on the lower right-hand side, and then each convex—concave
fractional program is solved by Dinkelbach’s Algorithm shown on the right upper
corner.

In this section, we have reviewed three ways to handle the inner optimization
problems applying Dinkelbach’s Algorithm for fractional problems. However, for the
global optimum solution, we could not present an efficient implementation. This
motivates the search for alternative global programming methods in the next section.
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Concave fractional program - -
Dinkelbach’s

Algorithm

[ &)

g(x)

h ()< 0VEk=1,..,K
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Lower bound
S )
D

st R SOVE= 1, K

Figure 2.2 Illustration of combining Dinkelbach s Algorithm with convex
sequential programming

2.3 Global optimization

Consider the optimization problem:
max f(X), (2.16)
xe9g

where /' : 2 — R is a continuous function and 2 is a compact, non-empty subset
of R”. A point x* satisfying f(x*) > f(x) for all x € Z is called a global maximizer
of (2.16). The existence of such a point is guaranteed by the extreme value theorem
[23, Theorem 4.16] under the assumptions shown earlier. If a point x" satisfies the
optimality condition only within an open e-neighborhood for some ¢ > 0, i.e., f(x') >
f(x)forallx € {x € Z: ||x —X/|| < ¢}, it is called a local optimizer.

Practical algorithms that solve (2.16) are, in general, unable to obtain the exact
solution x* within reasonable, or even finite, time. The standard approach is to
compute an n-optimal solution, i.e., a point X that satisfies:

f(xX)>f(x)—n forallx € 9. (2.17)

The issue with global optimization is that all known solution algorithms for (2.16)
with polynomial computational complexity in the number of variables are, at most,
capable of finding a local optimizer. For convex optimization problems, i.e., with f
concave on & and Z a convex set, and some generalized convex problems, this is not
a problem because every local optimizer also solves (2.16) globally.

Global optimization theory deals with problems where this local-global property
does not hold. This requires completely different algorithmic approaches than known
from convex optimization theory. These usually scale with exponential complexity
in the number of variables. Indeed, many non-convex optimization problems are
known to be NP-hard, including many resource allocation problems in interference
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networks [24]. Global optimization algorithms can be roughly categorized into two
different classes: outer approximation (OA) algorithms and BB methods. The former
approximates the feasible set by a sequence of simpler problems with a relaxed feasible
set. A prominent instance is the Polyblock algorithm [20] mentioned earlier, which
solves monotonic optimization problems. Instead, the general idea of BB algorithms
is to relax and then successively partition the feasible set such that upper bounds on
the objective value can be computed for each partition element.

Experience shows that BB procedures often outperform OA algorithms, espe-
cially for monotonic optimization in the context of energy-efficient resource allocation
in interference networks. The reasons are manifold. First, and foremost, is the fact that
the underlying data structures for BB can be implemented much more efficiently than
for the Polyblock algorithm. Another equally important reason is that BB methods are
much more flexible. The Polyblock algorithm and monotonic optimization in general
take a very specific problem formulations as a basis, i.e., the canonical monotonic
optimization problem:

max f(x) st g(x) <0 <h(x), (2.18)

x€[a,b]

with f, g, h increasing functions. Casting a general optimization problem with hidden
monotonicity into this form often requires cumbersome transformations, auxiliary
variables (cf. (2.15)), and additional algorithms (e.g., Dinkelbach’s Algorithm). Mod-
ifying such an OA algorithms is usually very hard or even impossible since it heavily
relies on problem-specific characteristics. Instead, BB procedures are modular and
one can often easily replace inefficient parts by approaches better suited to the problem
at hand.

2.3.1 Branch and bound

BB algorithms are one of the most versatile and widely used tools in global optimiza-
tion. The core idea is to relax the feasible set & and subsequently partition it. The
partitioning method is chosen such that upper bounds on the objective value can be
determined efficiently for each partition element. During the course of the algorithm,
available or easily computable feasible points are evaluated, and the partition of Z is
successively refined. The algorithm terminates when each partition element is either
proven to be empty, i.e., it does not contain any feasible points, or it does not contain
any points with objective value greater than the current best known feasible solution.
Part of this process is illustrated in Figure 2.3.

There are three basic types of subdivision: simplicial, conical, and rectangular.
The choice of a subdivision procedure mostly depends on the bounding procedure and
the structure of the problem to be solved. Rectangular subdivision is especially well
suited if the primary bounding mechanism relies on exploiting monotonicity. This is
because the extrema of an increasing function over the hyperrectangle:

[rs]={xeR":r,<x; <s;, foralli=1,...,n}, (2.19)
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2 m s ﬂsm ﬂs//a\

9 9 9
B B B

(a) (b) (c)

Figure 2.3 Illustration of rectangular subdivision in a BB procedure: (a) after
2 iterations, (b) in iteration 3, and (c) after iteration 3. The feasible
set is denoted as 9, the bounds are B;, and in (b) the upper left box is
selected for branching

are at the lower left and upper right cornerpoints, respectively, i.e.,

argminf(x) =r argmax f(x) =s. (2.20)
x€(r,s] x€[r,s]

Correctly exploiting this very simple property leads to bounds that can often be
computed with low computational effort. As already discussed in Section 2.2.4, many
utility functions encountered in energy-efficient resource allocation have exactly these
hidden monotonicity properties. Therefore, we focus our exposition on rectangular
BB methods and refer the interested reader to [12] for a treatment of the other two
subdivision approaches.

Rectangular subdivision procedures start with a hyperrectangle .# that contains
the feasible set &. Then, this initial rectangle is subdivided successively to create
a partition of the feasible set. The subdivision of a rectangle .# = [r, s] is defined
by a tuple (v,j) where v defines the point the division is made through and j is the
dimension of the cut, i.e., it results in the two rectangles:

M= x| rF < x <V <x < SE 3£ )) 5o1
M=V <x < sh o < x <) G #E))) 221

1

In its simplest form where v = %(r + s) and; is the index of the longest side of ./Z, this
is known as the standard bisection. It results in an exhaustive subdivision procedure
that creates an infinite nested sequence of rectangles that converges to a singleton,
i.e., a set with diameter zero.

A prototype rectangular BB algorithm is stated in Algorithm 2.2. In iteration £,
the set %, holds the partition elements of the feasible set that are not yet proven to
be infeasible or suboptimal, X* and y; are the current best solution and value, respec-
tively, & is an intermediate set holding the new boxes after branching, and 8(.#)
computes an upper bound on the objective values in .Z, i.e., B(.#) > maxyec_z f (X).
We say that this procedure is convergent if it can be infinite* only when n = 0 and

*A procedure is said to be infinite if it does not terminate.
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then lim;_, o, yx = maxycy f(X). An exhaustive subdivision procedure is said to be
consistent with branching if:

B(A) —max{f(x)|x € 4 NP} — 0 as diam(.#) — 0. (2.22)

We can formally establish convergence of Algorithm 2.2 under this condition.

Proposition 2.4. [f the subdivision procedure is exhaustive and the bounding oper-
ation satisfies (2.22), then Algorithm 2.2 is convergent and the final X* is a global
n-optimal solution of (2.16).

Proof. Please refer to [12, Proposition 6.1], [25, Proposition 3.7], or [26, Theorem 1].
O

Exhaustive rectangular subdivision is straightforward to be implemented because
it is independent of the bounding operation. However, by coupling the subdivision
with the bounding procedure, the convergence speed can be improved. Suppose that
for each rectangle .#;, two points x*, y* € .#, are known such that:

X e 4,02 and B(M)—f(Y)— Oas ||xk —y || — 0. (2.23)

Then, we can subdivide .#; adaptively via (vF,ji) where v¥ = 1(x* +y*) and
Jx € argmax;|yf — xf|. For example, consider the bounding operation B(.#*) =
maxye z,n2.f (X; M) where f(X; .#) is an upper bound of f/ on .# tight at some
pointzF € .Z*,ie., f(x) > f(x)forallx € .#; N 2 and f(z") = f(z"). Then, choos-
ing y* = 2" and x* € argmax,_ , o f(X; . #,) satisfies (2.23). Instead of trying to
minimize the size of each box, this rule strives to bring the bounding point z* close to

Algorithm 2.2: Rectangular BB algorithm

Step 0  (Initialization) Choose .#Z) 2 Y andn > 0.Letk = 1 and %y = {.#,}. If available
or easily computable, find X’ € 2 and set y, = £(x°). Otherwise, set y = —oo0.

Step1 (Branching) Select a box % € argmax{B(.#)|.# € %)_,} and subdivide it via
(vk,7) (cf. (2.21)). Let P = (M, ;7).

Step 2 (Reduction) For each .# € 7, replace .# by .#' such that .#’ C .4 and
(AN\A)VN{x e D|f(X) >y} =0. (2.24)

Step3 (Bounding) For each .#Z € &, compute B(.A#) > sup,c ynef(X). Find x €
MNP andset (M) =f(x).If 4N D =0,seta(H#)= —o0.

Step4 (Incumbent) Let o = max{a(#)| # € P}. If ap > yr_1, set yx = oy and let
x* € 9 such that o = f(X¥). Otherwise, let y; = y;_; and ¥ = x¥~1.

Step 5 (Pruning) Delete every .# € P with 4 NP = or B(M) < yr + 1. Let P},
be the collection of remaining sets and set %y = 7, U (Zi—1 \ {Ar}).

Step 6 (Termination) Terminate if %, = @ or, optionally, if {# € % |B(A) > vi +
n} = @. Return x* as a global n-optimal solution. Otherwise, update k < k + 1 and
return to Step 1.
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a feasible point and, hence, minimizes the distance between the bound and feasible
value. In other words, the goal of an adaptive bisection is to drive the upper bound as
fast as possible toward a feasible point. This often leads to much faster convergence
than exhaustive bisection.

The following proposition formally establishes convergence for Algorithm 2.2
with adaptive bisection.

Proposition 2.5. If the subdivision procedure is adaptive, x* is such that f(x*) =
a(AMy) and (2.23) is satisfied, then Algorithm 2.2 is convergent and the final X* is a
global n-optimal solution of (2.16).

Proof. Please refer to [12, Proposition 6.2] or [25, Proposition 3.11]. O

Another way to improve convergence is the reduction in Step 2 of Algorithm 2.2.
First of all, it is important to notice that this step is entirely optional since choosing
M = M satisfies (2.24). The general idea is to shrink the box under consideration
such that no candidate solutions, i.e., feasible points that might have objective value
greater than y, are lost. The smaller size of a box leads to tighter bounds and, thus,
to faster convergence. However, it should only be implemented if this can be done
efficiently and leads to an overall improvement in run time. Please refer to [12,26,27]
for some example procedures that rely on exploiting monotonicity.

Implementing Algorithm 2.2 for a specific problem requires a bounding proce-
dure B(.#) and a solution to the feasibility problem in Step 3. This will be discussed
in the next two sections.

2.3.2 Bounding methods

In this section, we discuss bounding methods that exploit (hidden) monotonicity in
the objective functions. The traditional approach is monotonic programming [20,27],
where the objective is written as the difference of two increasing (difference of
increasing (DI)) functions, i.e.,

Sx) =/(x) = f(x), (2.25)

where f1, /> are increasing functions. Computing the bound B(.#) over a box .# =
[r, s] is straightforward:

max f(x) < maxf(x) < max (fi(x) — 2(r) = fi(s) = o(¥) = B(A). (2.26)

This bound does not provide any points suitable for an adaptive subdivision and,
thus, has to be combined with exhaustive subdivision. For convergence, the bound
has to satisfy the condition in (2.22). As diam(.#) — 0, the cornerpoints r,s
approach a common limit point y. Hence, at some point # N % = .# and B(A4) —
S1(y) — £o(y) = maxge 4z { f1(X) — f2(x)}. Thus, the bound in (2.26) is consistent with
branching and leads to a convergent exhaustive BB procedure.
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Applying this bound to GEE maximization in interference networks, i.e.,

Zi log(l + %)
max it/ gy pe 2, (2.27)
P Pe+ )2 wipi
with & C RZ,, requires the application of Dinkelbach’s Algorithm. Assuming
d;,c;; > 0 for all i, ;, the numerator can be cast into a DI function as

1 dp; _ L+3cip+dipi
og|l + T oo )= log N
+ Z/’;éi Cijbj + Z/’;ﬁi Ci,jPj

= log 1+Zc,—wjpj+dl- | —log 1+Zci,jpj :
J#i J#

fi(p) f2(p)
(2.28)

The denominator of (2.27) is also an increasing function, but this does not help in
finding a DI representation of (2.27). The common approach is to employ Dinkelbach’s
Algorithm as discussed in Section 2.2.4. Recall that in each iteration of this algorithm,
the auxiliary problem:

dip
max ) log|l + — =——]—A|P. + wpil st. peZ (2.29)
P Z ( 1+Z]#,C,Jp,> ( Z

has to be solved. The objective of (2.29) has the DI representation:

Zlog 1+Zc,Jpj+d,, Zlog 1+chpj —l—)»(P +Zu,p>

J#i JFI
(2.30)

and a suitable bound for (2.29) can be computed as in (2.26). The downside of this
approach is that the non-convex inner problem (2.29) needs to be solved several times.
This increases the computational complexity tremendously.

This is where the flexibility of BB methods comes in handy. The bound can easily
be replaced by a different one without altering any other part of the algorithm as long
as it is consistent with branching. Consider the following function

PRS0}
g(x)
with 11, /5, g increasing and f; — f,, g non-negative. A bound over the box .#Z = [r,s]
can be computed as

(2.31)

max () < M h) X _AE A1) 03
xeMND mine_z g(X) g(r)

Again, since r,s — y as diam(.#) — 0, maxyc ynof(x) = f(y) and B(A4) —

’% = f(y). Thus, this bound is consistent with branching. This approach
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eliminates the need for Dinkelbach’s Algorithm and directly obtains an n-optimal
solution.

We can easily extend this bounding approach to multi-ratio optimization
problems. For example, a consistent bounding function for the sum-of-ratios objective

Zfl(x) — fia(X)

) 2.33
T 239
is directly obtained from (2.32) as
Zfz 1(s) fz(r). (2.34)

g(r)

i

Recall from Definition 2.3 and the discussion made later that this problem cannot be
solved with Dinkelbach’s Algorithm or its generalizations.

The bounding approach taken here can be further improved and generalized into
the MMP framework [26,28]. The core idea is to find a function F : R” x R" - R
that satisfies:

x <x' = F(x,y) < F(x,y), (2.35)
y<yY =FXxy = FXxY), (2.36)

for all x,x,y,y € 4, 2 2. Such a function is called mixed monotonic (MM)
Sfunction. If it satisfies:

Fx,x) =1 (x), (2.37)

it is called an MMP representation of f and (2.16) is said to be an MMP problem. A
bound on the objective /" over .# = [r, s] can be determined easily from F as

n/l/'%@f(x) < maxF(x X) < max F(x,y) = F(s,r) = B(A). (2.38)

It is shown in [26, Theorem 1] that this bound is consistent with branching and,
hence, leads to a convergent BB procedure if combined with an exhaustive rectangular
subdivision. For example, an MMP representation of the GEE in (2.27) is

dix;

% tog(1 + 5
Pc + Zi Hi)i

and, thus, a bounding function to solve (2.27) with Algorithm 2.2 is, for .# = [r,s],

dis;
2 log(l + [ED W Ci,f'f/')
Po+ 3 it .

It is shown analytically in [26, Section I'V] that the bound for the numerator is tighter
than that obtained by the DI approach in (2.28). Figure 2.4 shows performance com-
parisons from [26, Section IV] for the different bounding approaches discussed in

(x,y) —~ s (2.39)

B(A) = F(s,r) = (2.40)
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Figure 2.4 Average run time of Algorithm 2.2 with different bounding approaches.
Results are averaged over 100 independent and identically distributed
channel realizations. (a) Weighted sum rate maximization: MMP bound
vs. DI bound, i.e., (2.40) with u; =0 and P, = I and (2.28),
respectively, (b) GEE maximization: MMP vs. Dinkelbach's Algorithm
as in (2.40) and (2.30), respectively.

this section. Figure 2.4(a) compares bounding of the numerator of the GEE, i.e.,
throughput maximization. It can be observed that MMP bounding is several orders of
magnitude faster than the classical DI bound. For example, MMP solves throughput
maximization problems with 18 variables in the same time than classical monotonic
programming requires for 8 variables. In Figure 2.4(b), run times for GEE maxi-
mization are shown. Solving this problem directly with Algorithm 2.2 and the MMP
bound in (2.40) is again several orders of magnitude faster than using Dinkelbach’s
Algorithm with Algorithm 2.2 and DI bounding as an inner solver, e.g., for six users,
MMP is five orders of magnitude faster than the state-of-the-art approach.

2.3.3 Feasibility test

The second component to implement in any BB procedure is a feasibility test. While
the bounding operation deals with the objective, the feasibility test is concerned
with the feasible set Z. In this section, we first discuss some special cases often
encountered in EE maximization and then focus on more general methods.

2.3.3.1 Box constraints

The most simple feasible sets are simple box constraints on the optimization
variables, i.e.,

9 = {X e R" |xi,min <x; < xi,max} = [Xmina Xmax]' (241)

In this case, the initial box .#, should be chosen as [Xpyin, Xmax]- Because Algo-
rithm 2.2 only generates points within .#, every encountered point is feasible. Hence,
M N D # (@ in every iteration and a(.#) in Step 3 is an arbitrary point in ./Z.
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2.3.3.2 Minimum rate constraints

The most common form of Quality of Service (QoS) constraints in energy-efficient
resource allocation are minimum rate constraints. In interference networks, where
each user & achieves a rate:

dip;
re=log|ll+ ———1, (2.42)
( T+3 Ci,/pj>
the resulting feasible set is
dipi .
2 =1ipel0,P]|log|1 + ——=——— ] = Rimm, forallig. (2.43)
Lt D i ciipy

Despite (2.42) being a non-convex function, this set can be easily transformed into a
linear set as follows:

dpi

log| 1 + ———=———| = Rimin (2.44)

< 1+ Z/’#i Cinj)

dip o

& — > pRimin (2.45)

U2 cipj
& dp— (28— 1) Y " eypy = 2R — 1, (2.46)

J#

where the last inequality is clearly affine in the powers p;. Hence, the feasible set

2 = {p € [0,P] |(2Fwmin — 1) Zc,— b —dip; < 1 —2Riminforalliy (2.47)
J#i

is linear. Thus, the check .Z N & Z@isa simple linear feasibility problem and can
be solved by any linear programming Phase I method.

The initial box .#, should be chosen as tight as possible to avoid slowing down
convergence unnecessarily. Thus, the obvious choice .#; = [0, P] should be improved
by choosing .#y = [Xmin, Xmax ] With

Ximin = minpi Ximax — Maxp;. (248)
pe? pe2

These are linear programs and can be solved at low computational cost.

2.3.3.3 General inequality constraints
Let the feasible set Z be defined by MM functions G; as

Gi(x,x) <0, foralli=1,2,...,m. (2.49)

The following proposition follows from the definition of MM functions.
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Proposition 2.6 ([26, Proposition 1]). Let .# = [r,s] and P be defined by the
inequalities in (2.49). Then,
Viel{l,...,m}:Gi(r,s) 0= ND=H#* (2.50)

Jiell,...,m:Gr,s) > 0= .4 ND =4 2.51)

These are sufficient conditions for (in-)feasibility of a box .#. However, there
exist boxes for which neither condition holds. In that case, it is impossible to answer the

feasibility test.Z N & =9 conclusively solely based on the monotonicity properties.
An exception is the important special cases where the feasible set is either normal
or conormal.

Proposition 2.7 ([26, Corollary 1]). Let .# = [r,s] and 2 = {x|gi(x) <0,
forall i =1,...,m} with g; being increasing functions. Then, 2 N\ .# # O if and
onlyifgi(r) <0foralli=1,...,m.

Proposition 2.8 ([26, Corollary 2]). Let .# =[r,s] and 2 = {x|hi(x) >0,
forall i =1,...,m} with h; being increasing functions. Then, 2 N .# # O if and
only if hi(r) > 0 foralli=1,...,m.

This can be generalized to MM functions that are either increasing or decreasing
in each dimension. Please refer to [26, Section I1I-A] for details.

If neither Proposition 2.7 nor 2.8 is applicable, we can modify Algorithm 2.2 to
work with general MM constraints and the result in Proposition 2.6. In particular,
we only require a feasible solution in Step 3 if one is available and prune boxes in
Step 5 if (2.51) is satisfied. The resulting procedure is stated in Algorithm 2.3. These

Algorithm 2.3: Rectangular BB algorithm for general DI constraints

Step 0  (Initialization) Choose .#) 2 Y andn > 0.Letk = 1 and %y = {.#,}. If available
or easily computable, find X° € 2 and set yy = £(x°). Otherwise, set yp = —o0.

Step1 (Branching) Select a box % € argmax{B(.#)|.# € %)_,} and subdivide it via
(vk,7) (cf. (2.21)). Let P = (M, ;7).

Step 2 (Reduction) For each .#Z € 7, replace .# by .#' such that .#’ C .4 and

(AN\ AN {xeD|f(X) >y} =0. (2.52)

Step3  (Bounding) For each .Z € &, compute (M) > sup,c_ynpf(X). Let x € A
(e.g,x=r).Ifx € 7, seta(.#) = f(x). Otherwise, set a(.A#) = —o0.

Step4 (Incumbent) Let o = max{a(#)| # € P} If oy > yr_1, set yx = oy and let
x* € 9 such that o = f(X¥). Otherwise, let y; = y4_; and x* = x~1,

Step 5  (Pruning) Delete every .Z € &) with B(#) < yx + n or Gi(r,s) > 0 for some i.
Let &, be the collection of remaining sets and set %y = &, U (Z—1 \ {Ai}).

Step 6 (Termination) Terminate if %; = @ or, optionally, if {# € %y |B(A) > yi +

n} = @. Return x* as a global n-optimal solution. Otherwise, update k < k + 1 and
return to Step 1.
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changes seem minor, but the consequence is that convergence in a finite number of
iterations cannot be guaranteed for Algorithm 2.3. This is established in the following
proposition.

Proposition 2.9. [f Algorithm 2.3 terminates, then problem (2.16) with MM con-
straints as in (2.49) is either infeasible or X* is an n-optimal solution of (2.16). If it
is infinite, at least one accumulation point of the infinite sequence {x*} is a globally
optimal solution of (2.16).

Proof. Please refer to [25, Theorem 6.11] or [27]. O

While an infinite algorithm often converges in a finite number of iterations, this
cannot be guaranteed. Moreover, the convergence is often slow. In the next section,
we discuss solution approaches for this issue.

2.4 Successive incumbent transcending scheme

To ease the exposition in this section, consider the special case of DI constraints instead
of the general MM constraints from Section 2.3.3.3, i.e., let Gi(x, x) = g;" (x) — g; (X)
in (2.49) with g;*, g being increasing functions for all i. A widely accepted method
to obtain a finite algorithm from Algorithm 2.3 is to accept any point x satisfying

g (x)—g (x)<e, foralli=1,2,...,m, (2.53)

for some small ¢ > 0 as feasible point in Step 3. Because only strictly infeasible boxes
are pruned in Step 5, a gap between the pruning rule and acceptable points exists.
Algorithmically, this is similar to the motivation behind the n-optimality concept and
results in finite convergence. The result of this algorithm is an n-optimal point that
is almost feasible, also known as an (e, n)-approximate optimal solution. Since this
point X is almost feasible for small &, it should converge to a feasible solution as
& — 0. Moreover, it is expected that f(X) is also close to the optimal value for a
sufficiently small & < gy. While this is usually true, the problem is that &, is unknown
in general, and choosing ¢ too large can result in completely wrong “solutions.” This
is illustrated in the following example from [29].

Example 2.1. Consider the optimization problem.

;lel]iag p1

st. log,(1 +a1p) +oop2) = 0 (2.54)
log,(1 + Bip1) +logy(1 + Bop2) < L
p<[0.P],

where the constants oy, oy, B1, B2, O, L are all positive. This problem could be
motivated as transmit power minimization in a communication system where the first
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Figure 2.5 Feasible set of (2.54) with optimal solution p* and e-approximate
solutions p(g;) and p(e;) for e; = 107> and &, = 10~*. The
€ -approximate solution is quite far away from the true optimum.
© 2019 IEEE [29]

constraint is a minimum throughput constraint and the second, the total information
leakage to non-cooperative eavesdroppers.

The feasible set of (2.54) is illustrated in Figure 2.5 for parameters oy = oy =
10, 1 =05, =1, O =log,(61), L =10g,(8.99). The optimum solution p* is
(4.00665, 1.99335) with an objective value 4.00665. Relaxing the constraints by & =
1073 results in an e-approximate solution (0.995843, 5). Clearly, this solution is quite
far away from the true optimum value and should be considered as wrong. Instead,
choosing &, = 107* results in the correct solution.

Another numerical issue can be observed for L = log,(9) with all other param-
eters as before. In that case, there exists an isolated feasible point at (1,5) that also
happens to be the optimal solution to (2.54). There are several issues with such an
isolated solution. First, it is numerically challenging to compute and some global opti-
mization algorithms fail to converge should the solution be such an isolated point.
Moreover, this solution is numerically instable in the sense that it reacts very sensitive
to small perturbations, e.g., due to an g-relaxation. Lastly, it is usually not desired
as solution to engineering problems because parameters are usually subject to small
variations such as measurement errors, hence rendering such a solution most likely
wrong.

2.4.1 e-Essential feasibility and the SIT scheme

We have identified two issues in the previous section. The first is that relaxing the
constraints by some small &, the common remedy to obtain an finite algorithm from
an infinite, might actually lead to very wrong solutions. The other is that solutions in
isolated feasible points are numerically unstable and undesirable from an engineer’s
point of view. In this section, we discuss an alternative approach that improves the
traditional method in both regards.



48 Green communications for energy-efficient wireless systems

Instead of relaxing the feasible set & as defined in (2.49), we tighten it by a small
amount ¢ > 0, i.e.,

P ={x|gfx)—g (x)<—e, i=1,2,...,m}. (2.55)

A point x € 2* is called e-essential feasible and a point X is said to be an essential
(&, n)-optimal solution of (2.16) if it satisfies

fX) = f(x)—n forallx € 2%, (2.56)

for some n > 0. For e, 7 — 0, this is a non-isolated feasible point that solves (2.16).
Applying this approach directly to Algorithm 2.3 does not fix the convergence

issues. In fact, it will most likely have a negative impact on the convergence speed.

However, when combined with the SIT scheme discussed next, it results in a numer-

ically stable BB algorithm with finite convergence to the globally optimal solution.
Consider the optimization problems:

maxf(x) st g'(x)—g (x)<0, foralli=1,2,...,m, (2.57)
and

min max (g () —g (0} st S0 =7, (2.58)
which are dual in the sense that if the optimal value of (2.58) is greater than zero, the
optimal value of (2.57) is less than y. This is because every point x feasible in (2.58)
having a non-positive objective value is a feasible point in (2.57) with objective value
greater than . We can formalize this observation in the following proposition that is
adapted from [12, Proposition 7.13].

Proposition 2.10 ([29, Proposition 1]). Foreverye > 0, the e-essential optimal value
of (2.57) is less than y if the optimal value of (2.58) is greater than —e.

Proposition 2.10 gives rise to a simple sequential solution method for (2.57)
where y is increased as long as (2.58) has a non-positive solution. This is known as
the SIT scheme that was developed by Tuy [12,27,30,31]. The approach is formalized
in Algorithm 2.4.

The core problem in Algorithm 2.4 is the feasibility check in Step 1. Leveraging
Proposition 2.10, this can be implemented by solving (2.58). At a first glance, this

Algorithm 2.4: SIT algorithm [12, Section 7.5.1]. © IEEE [29]

Step 0 Initialize X with the best known non-isolated feasible solution and set y = f(X) + 1;
otherwise do not set X and choose y < f(x) forall x € 2.

Step 1  Checkif(2.57) has a non-isolated feasible solution x satisfying f (x) > y; otherwise,
establish that no such e-essential feasible x exists and go to Step 3.

Step2 Update X <— xand y < f(X) + n. Go to Step 1.

Step3 Terminate: If X is set, it is an essential (&, n)-optimal solution; else Problem (2.57)
is e-essential infeasible.
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approach seems to increase computational complexity significantly because in its
straightforward implementation the non-convex optimization problem (2.58) would
be solved very often. However, (2.58) has to be solved only partially until some fea-
sible point with non-positive objective value is found or it can be established that no
solution to (2.58) with objective value less than —¢ exists. This can be achieved effi-
or B(.#) > —e&” [12, Proposition 7.14]. Moreover, this BB procedure can be directly
incorporated with Algorithm 2.4 where y is updated every time a point x is encoun-
of [29, Theorem 1] that updating y during the BB procedure does not prevent
convergence.

The great benefit of this method is that (2.58) is often much easier to solve than
(2.57). We have seen in Section 2.3.3.3 that finding a feasible point for general DI
constraints is a challenging problem that leads to an infinite BB procedure. Instead,
the feasible set of (2.58) is often much easier to deal with. Indeed, if /' is an increasing
(or decreasing) function, Proposition 2.8 establishes that a feasible point in a box .#
is easily found. Similarly beneficial properties of f* are linearity or concavity. Even
if f itself is a DI function, we can easily transform (2.57) such that it has a “nice”
objective by introducing an auxiliary variable and bringing it into the epigraph form.

In the next section, we apply Algorithm 2.4 to a very general resource allocation
problem. Other applications of this scheme can be found in [12, Section 7.5] for
difference of convex (DC) programming, and in [12, Section 11.3] for canonical
monotonic optimization.

2.4.2 SIT for fractional DI problems with some convex variables

Consider the optimization problem:
fr(x.8)
max
x5z f7(x,§) (2.59)
s.t. g x&—-gx)<0, i=12,...,m,

with global variables x and non-global variables &. We say that a variable is non-
global if there exists an algorithm to solve (2.59) in & with fixed global variables x
that has much lower computational complexity than in the case when (2.59) is solved
for all variables (x, &). The goal of this section is to develop an algorithm that solves
(2.59) with global optimality and preserves the low computational complexity in the
non-global variables. This is done by means of an adaptive rectangular BB algorithm
in combination with the SIT scheme. For a more detailed exposition, the interested
reader is referred to [29] where this algorithm was first published. This optimization
framework is motivated by joint power and rate allocation problems as in (2.8), where
the rates are linear variables while the powers are non-convex.

Some technical assumptions on (2.59) are necessary. As in every rectangular BB
method, an initial box .7 is required. Because the BB procedure operates only on
the global variables x, it has to enclose the x dimensions of Z, i.e., .#° D proj, 2.
The functions {g; (x)} are required to have a common maximizer over every box
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M < My. A sufficient condition for this is that the functions g; (x) have the same
monotonicity properties per dimension. Further, we assume the functions f~(x, &),
g (x,€),i=1,...,m, to be lower semicontinuous, the functions /" (x, §), g; (x),i =
1,...,m, to be upper semicontinuous, and, without loss of generality, f ~(x, &) > 0.
The remaining assumptions can be grouped into two different cases. Some of these
assumptions depend on the variable y that was introduced in Algorithm 2.4 and stores
the current best primal objective value.

Case 2.1 (DC problems). If 2 is a closed convex set and yf~(x, &) — f1(x, &),
g (x,&),...,25(x,&) are jointly convex in (x, &) for all y, problem (2.59) resem-
bles a DC optimization problem but with fractional objective and additional non-DC
variables.

Case 2.2 (separable problems). Let 2 = 2 x E such that x € 2" and § € E with
E being a closed convex set, and let each function of (x, &) be separable in the sense
that A(x, §) = h.(X) + he(§). Further, let the functions yf, (§) —f;(&), gié é)),...,
g;,é (&) be convex in & for all y, and let the functions yf,~(x) — f.1(x), gltr(x), ces
g, (x) have a common minimizer over 2" N . for every box .# C ., and all y.
Finally, let the function yf,”(x) — ;" (x) be either increasing for all y with 2" being a
closed normal set in some box or decreasing for all y with 2 being a closed conormal
set in some box.

Interchanging objective and constraints in (2.59) leads to the dual problem:

i + _
min max (g (x,€) — g™ (x
xE)eD  i=12rm (& (x.8) — g (v)

AL
e ="

(2.60)

or, equivalently,

min max (g7(x,&) — g (x
x,£)e2 i=12,..m (gl ( g) gl ( )) (261)

st yf (%8 —fT(x,§) <0,

since f~(x, &) > 0 by assumption. The feasible set of (2.61) is convex if the assump-
tions in Case 2.1 are met. While this does not hold for Case 2.2, these assumptions still
lead to a sufficiently nice feasible set [29, Proposition 2] that facilitates an efficient
solution of (2.61) via BB. This requires a lower bound on the objective of (2.61).

Proposition 2.11 ([29, Proposition 3]). Let X*, be a common maximizer of
{gi (X)}i=1,..m over the box M . Then, (2.61) s objective is lower bounded over .4 by

Jmax {g"(x.8) — g ()} - (2.62)

This bound is tight at X*,,.
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Then, a lower bound S(.#) of (2.61) over a box .# is determined as the optimal
value of

min - max {e(x.8) g (X))

st yfT(%,E) —fT(x,£) <0 (2.63)
x,8 e, xeH.

For Case 2.1, this is a convex optimization problem. For Case 2.2, rewrite it as

min - max {g}®) + gL g (X))
p & i=1,2,....m

st v @) - E+ v 0 -fFx) <0 (2.64)
Eecq, xeZNnA.

The functions yf,”(x) — £ (x), g x(x) . & +(x) have a common minimizer x*,
over Z N .# by assumption. This allows one to partially solve (2.64) and obtain the
convex problem:

min  max {g50)+8h00) -8 (X))

st v )~ @) +rfi () — (X ,) <0.

Both bounding procedures, i.e., (2.63) for Case 2.1 and (2.65) for Case 2.2,
provide the necessary points for an adaptive subdivision procedure. Recall that for
the box ., two points x*, y* satisfying (2.23) are required, where y* is often chosen
as the point where the bounding procedure is tight and x* is a feasible point in the
box .. Thus, x* is chosen as the optimal solution of (2.63) for Case 2.1. For
Case 2.2, the optimal solution in x of (2.64) is x*,, and, hence, xk = x*,. By virtue
of Proposition 2.11, both bounds are tight at y* = x*,.

The following proposition, which is adapted from [ 12, Proposition 7.14], formally
connects Step 1 in Algorithm 2.4 and Proposition 2.10 into a BB procedure.

(2.65)

Proposition 2.12 ([12, Proposition 4]). Let ¢ > 0 be given. Either g(x*,£*) <0
for some k and & or B(M*) > —e for some k. In the former case, (x*,&¥) is a

non-isolated feasible solution of (2.59) satzsﬁ/mg = Eﬁg ; > y. In the latter case, no
g-essential feasible solution (x, &) of (2.59) exists such that [T > y.

S8 —

Algorithm 2.5 integrates the SIT scheme in Algorithm 2.4 into an adaptive BB
procedure modified according to the earlier-shown proposition, i.e., a BB procedure
with pruning criterion S(.#) > —e and stopping criterion ming. D g(xk, &) < 0.
Of course, as already discussed, the final algorithm does not terminate upon
Ming¢ D4 g(x*, &) < 0 but updates the incumbent y and continues.
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Algorithm 2.5: SIT algorithm for (2.59) [29, Algorithm 2]. © IEEE [29]

Step 0 Initialize &, > 0 and .#, = [r’,s°] as in (2.68), P, = (A}, # =W, and k = 1.
Initialize X with the best known non-isolated feasible solution and set y as described
in Step 4; otherwise do not set X and choose y < f/fgg for all feasible (x, &).

Step 1 For each box 4 € &

e  Compute B(.#). Set B(A) = oo if (2.63) (or (2.65)) is infeasible.
® Add A to Zif B(M) < —¢.

Step 2 Terminate if Z = ¢J: If X is not set, then (2.59) is e-essential infeasible; else X is an
essential (g, n)-optimal solution of (2.59).

Step3 Let % = argmin{B(.#)|.# € #)}. Let x* be the optimal solution of (2.63) for
the box .4 (or X", if (2.65) is employed for bounding), and v = X', - Solve the

feasibility problem:
find &€ Pu
(2.66)
st g6 e)—g () <0, i=1,....m

If (2.66) is feasible, go to Step 4; otherwise go to Step 5.

Step4  x* is a non-isolated feasible solution satisfying ;igig > y for some § € Zy. Let
&* be a solution to:
AT )
te2y fT(x, ) (2.67)

s.t. g;r(xk,g)—gf(xk)fo, i=1L2...,m.

%i JALCF 39| _ %= xk — [fhEY
If X is not set or ke T Y Tl setX =x and y = ok T

Step5 Bisect . via (V,jr) where j; € argmax;{|yf —xf|} and v = 1(xF +yh)
(cf. (2.21)). Remove 4} from Z. Let Py = { A ,.#," }. Increment k and go to
Step 1.

The algorithm is initialized in Step 0 with an initial box .#, = [r°, s°] satisfying:
P < min X sY > max x;. (2.68)
x.£)e2 x,£) e
The set &7, contains new boxes to be evaluated in Step 1, y is the current best value
adjusted by the tolerance 1, and Z holds the remaining partition of not yet eliminated
boxes. Step 1 computes the bounds for the new boxes in &7;. If the bound of a box is
less than —e¢, it might contain a non-isolated feasible solution that improves y and is
added to Z for further evaluation. The next box for branching is selected from & in
Step 3 and the incumbent is updated in Step 4. Branching is done in Step 5 and the
termination criterion is evaluated in Step 2. Convergence of this algorithm is formally
established in the following.

Proposition 2.13 ([29, Theorem 1]). Algorithm 2.5 converges in finitely many steps
to the (g, n)-optimal solution of (2.59) or establishes that no such solution exists.
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2.5 Sequential convex approximation

Although significant performance improvements have been made to global optimiza-
tion methods in the past years [26,29], they are still limited by their exponential
complexity. This prohibits their application to large-scale optimization problems and
online resource allocation in practical systems. Instead, they are motivated by appli-
cations that are not time critical, e.g., system design and evaluation of low complexity
heuristic resource allocation methods.

A powerful method to obtain computationally efficient resource allocation meth-
ods is sequential convex programming [32]. The general idea is to find KKT points of
the original problem by solving a sequence of easier programs. Recall that the KKT
conditions are necessary prerequisites for the solution of a continuous optimization
problem. For convex programs, they are also often sufficient conditions for optimality.
This, however, does not hold in general and a KKT point can at most be considered a
candidate solution for non-convex problems. Indeed, a KKT point is not necessarily a
local minimum and good algorithms also ensure that the objective value is monoton-
ically increasing. It appears reasonable to expect that a solution obtained by such an
ascension process is more likely to obtain a local maximum than any method solely
focusing on the KKT conditions [33].

Consider the general non-convex optimization problem:

max fo(x)
X (2.69)
st. fix) =0, foralli=1,2,...,m.

The following proposition is a direct consequence of [32] and provides the means to
devise a low complexity method to generate candidate solutions for (2.69) [19].

Proposition 2.14. Let the feasible set of (2.69) be compact and the functions fy, f1, . . .
be differentiable. Consider the family of optimization problems:

max go,;(x) s.t. gi;(x)>0, foralli=1,2,...,m, (2.70)
with solution X; where, for all j and i =0,1,...,m, g;; are differentiable func-
tions such that the feasible set is compact. Assume that, for all j and i =0, ..., m,

8i;(X7_y) = fi(X7_)) and g;;(X) < fi(X) for all x. Then, the sequence {fo(X})} is mono-
tonically increasing and converges to a finite limit f*. If, in addition, Vg;;(x;_,) =
Vfi(xi_)) foralljandi = 0,...,m, then every limit point of {x}; with objective value
[* satisfies the KKT conditions of (2.69) under suitable constraint qualifications.

Proposition 2.14 establishes that a sequence of feasible points {x7} with increasing
objective value fo(x7) can be generated by solving a sequence of approximate prob-
lems. For this tool to be of practical use, it is essential to obtain suitable approximate
problems that have much lower computational complexity than (2.69).

Next, we discuss the application of Proposition 2.14 to GEE maximization fol-
lowing the approach in [19]. Further applications are, e.g., weighted minimum EE
maximization [19], weighted sum EE maximization [34], and EE resource allocation
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over multiple resource blocks [22]. It was also applied to other related system models,
e.g., to full-duplex multiuser MIMO systems in [35], for BC IC in [36], or for MISO
BC in [37].

Consider the generic GEE maximization problem:

/i (@) — £ (p)

max R

P Zk:l Mipk + P

st. g'(p)—g (p)=0, foralli=1,2,...,m
p €[0.P],

2.71)

with £,*, /", g, g~ being concave functions on [0, P] for all i and k. Since concave
functions are upper bounded by their first-order Taylor expansion [3, Section 3.1.3],
each term in the objective’s numerator is lower bounded as

LE® =40 =45 = [£0) + (Vo 0lp=p) (P — p))]- (2.72)

Similarly, the constraints are bounded as

g —g (P =g (P —[2g )+ (Vg (P)lp=p) (P —p)]. (2.73)

These underestimators are tightat p = p;, i.e., at this point equality holds in (2.72) and
(2.73). Thus, these are suitable functions to construct the approximate problems as

Y@ = [ @) + (Vi ()omp) (@ — )]
P ZkK: | Mxpr + Pe

st &' () — [g (p) + (Vogi (P)lp=p) (P —p))] = 0, (2.74)
foralli=1,2,...,m

p € [0,P].

Let p;_, be an optimal solution of (2.74) and denote by f(p) the objective of
(2.71). If the approximation point p; = p;_, forallj > 1 with p, some feasible point
in (2.71), then the sequence {f(p;)} is monotonically increasing and converges to a
value £ [19, Proposition 6].

Further, the gradient of the constraint approximation is

Vo (& (P) — [27 (B) + (Vo (P)lp=p) (P — P))])
= pgf(p) - (vpg;(p)|p:pj)> (2.75)
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while that of the constraints in (2.71) is Vg;"(p) — Vg; (p). With p; = p;_,, these are
equal at p7, and, thus, satisfy the third condition in Proposition 2.14. The gradients
of the objective and objective approximation functions are

v (Z’f_lfﬁ(p) —ﬁ(p))
p K
Zk:l wipk + Pe

RELA-A®) (Sl e -f®)s

— - _ . (2.76)
Zk;l Mkpk +Pc (Zle H//(pk +Pc)
and
. (Zf_lmp) — [ () + (Vi (P)lp=p) (P — p_,-)]>
’ S hli Pk + P
_ Vofi T (0) — (Vof;” (P)lp=p,)
K, wpk + P
(A ® = [ @)+ a @le=p) (P — )] @7

(Zf:1 MiDk + Pc)2

respectively. Again, with p; = p;_,, the first terms are obviously equal at p;_, and
the second terms are equal at this point because the approximation is tight at p,.
Hence, the third condition in Proposition 2.14 is satisfied and, thus, any limit point
of the sequence {p;} with objective value f is a KKT point under suitable constraint
qualifications [19, Proposition 6].

The resulting algorithm is straightforward and stated in Algorithm 2.6. Conver-
gence to a first-order optimal solution follows from the discussion made earlier and
Proposition 2.14.

Experience shows that in the case of GEE maximization the point obtained by
Algorithm 2.6 is usually a global maximizer of (2.71) [22]. However, we stress that
the obtained solution is in no way guaranteed to be even a locally optimal solution and
that this observation was only possible by extensive numerical experiments involving
global optimization methods for verification.

Algorithm 2.6: Sequential convex approximation

Initialize j = 0 and choose a feasible p,,.
repeat
Solve (2.74) and denote its solution as p;
P =P
J=Jj+1
until convergence.
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The successive convex approximation method discussed here belongs to the larger
class of majorization—minimization algorithms reviewed in [38]. A completely dif-
ferent approach is to employ deep learning methods that are trained with globally
optimal solutions to predict the optimal power allocation [39]. While the training
phase is costly, the actual power allocation is tremendously fast and often much
closer to the globally optimal solution than first-order optimal approaches [40,41].

2.6 Conclusions

We have reviewed generalized concavity and fractional programming theory and
discussed their application to energy-efficient resource allocation for point-to-point
links. We have motivated the need for more advanced global optimization techniques
for resource allocation in interference networks and introduced the reader to BB meth-
ods. State-of-the-art monotonic optimization and monotonic fractional programming
were explained in the context of BB methods. The MMP framework was presented and
it was shown that this novel bounding approach outperforms monotonic fractional pro-
gramming by several orders of magnitude. Since the MMP bounding approach is much
more versatile than state-of-the-art monotonic optimization and often leads to much
faster convergence, this approach has the potential to replace classical monotonic
programming in the future.

We have also discussed potential issues with non-convex feasible sets and pre-
sented the SIT approach as remedy. In particular, most global optimization problems
where a conclusive feasibility check is not available or has high computational cost
can benefit from this method. In an application example, we have shown that the SIT
scheme can also be used to avoid complicated decomposition methods. It is shown
in [29] that the resulting optimization framework is well suited for resource allocation
in non-orthogonal interference networks.

Although considerable progress has been made toward efficient global optimiza-
tion, the exponential complexity in the number of variables prevents the solution of
large-scale problems. For this reason, we have also introduced the popular successive
convex approximation framework that is often employed to obtain stationary points
of non-convex optimization problems.

2.6.1 Further reading

A classic text on generalized concavity is [42]. Fractional programming for EE
maximization is treated in [6].

A broad and very general coverage of BB methods can be found in [43, Section
IV]. The treatment in [12] is more modern and better suited for a first exposition.
Reference [25] focuses modeling on resource allocation and the connection between
BB and the SIT scheme. Good references for the mentioned Polyblock algorithm
are [12] and [21].

The MMP framework is discussed in much more detail in [26] with several
application examples. The source code, including a fairly general implementation
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of Algorithm 2.2, is published alongside [26]. A specialized bounding method for
EE maximization with even faster convergence than MMP is developed in [41].
Other applications of BB methods for resource allocation are [44] where multiple-
input—single-output beamforming is considered and [45] where weighted sum rate
maximization is reviewed.

The SIT scheme is developed in a series of publications [27,30,31] and is included
in the text book [12]. Besides being applied to resource allocation, the fundamentals
of the SIT scheme are also reviewed in [25,29].

Successive convex approximation is developed in [32]. It is shown that it often
converges to the globally optimal solution for GEE maximization in [19]. A general-
ization to pseudo-convex approximation functions can be found in [46]. This work is
extended to QoS constraints in [47]. The larger class of majorization—minimization
algorithms is reviewed in [38]. An alternative approach to the efficient implementa-
tion of resource allocation algorithms is deep-learning based methods [39]. Although
this approach does not have any optimality guarantee, it is shown in [41] that it can
outperform successive convex approximation. While this is a promising approach to
implement almost globally optimal resource allocation in real-world systems, there
are still some open problems that need to be addressed first.
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Chapter 3

Deep learning for energy-efficient
beyond 5G networks

Alessio Zappone', Marco Di Renzo®
and Merouane Debbah’

3.1 Introduction

Future wireless networks are expected to serve an exponentially increasing amount of
connected devices, which poses green and sustainable growth concerns. Already 5G
networks, to be rolled out in 2020, will have to provide 2,000 x higher bit/J energy
efficiency compared to the previous wireless generation [1-3], and the numbers will
only escalate. It is estimated that the compound annual growth rate of connected
devices will rise by 55% annually, reaching 607 exabytes in 2025 and 5,016 exabytes
in 2030 [4]. Moreover, besides the huge volume of traffic to support, another critical
challenge to be faced by future wireless networks will be the extreme heterogeneity,
with many innovative vertical services to be provided, each with its own specific
requirements [5]:

e End-to-end latency of 1 ms and reliability higher than 99.999% for ultra reliable
low latency communications.

e Terminal densities of 1 million of terminals per square kilometer for massive
Internet of Things applications.

e Per-user data-rate larger than 50 Mb/s for mobile broadband applications.

e Terminal location accuracy of the order of 0.1m for vehicular-to-X
communications.

All of these point toward wireless networks characterized by an unprecedented level
of complexity, which makes traditional design approaches not suitable anymore. The
design of past and present generations of wireless networks has always relied on the
use of mathematical models that are obtained from either theoretical considerations or
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field measurements. Unfortunately, this approach is rapidly becoming unfeasible due
to the huge complexity of future wireless networks, which makes any mathematical
model either too complex for practical designs, or not accurate enough.

In order to face this complexity crunch, it is not enough to simply devise more
performing transmission technologies, but instead the conventional approaches to
system design must be radically rethought. A promising approach to this end is the
use of deep learning and artificial neural networks (ANNs) [6], as it will be explained
in the rest of this chapter.

3.1.1 Al-based wireless networks

The complexity crunch challenge can be tackled by making wireless networks intel-
ligent, i.e., able to determine the best policy automatically, with very limited need
for human intervention. This motivates to endow wireless networks with artificial
intelligence (AI) capabilities, with the aim of making them able to determine the
best policy to employ based on the experience obtained by processing previous data.
Regarding this point, we should explicitly state that although data-driven approaches
reduce the need of mathematical models for network design and operation, it is a
major point of this chapter to show that mathematical models can still be used despite
their cumbersomeness or inaccuracy, to complement and improve purely data-driven
methods.

But how to embed Al into wireless networks? A framework that goes in this direc-
tion is that of deep learning [7-9], which is a specific machine learning technique
that implements the learning process by ANNs. Although being the most popular
machine learning tool, and being a consolidated reality in many fields of science,
deep learning has been proposed for wireless networks only very recently. This was
due to the fact that, unlike other fields of science, wireless networks have always
admitted a suitable mathematical modeling, which made data-driven approaches not
strictly necessary. However, as we have mentioned earlier, the increasing complex-
ity of wireless networks makes data-driven approaches more and more appealing.
In addition, there are other recent factors that facilitate the use of deep learning for
wireless networks:

e The exponential increase of wireless devices results in a corresponding growth
of traffic data [10—12], which can be exploited to train ANNs.

e Modern advancements in computing capacity, such as the use of graphics pro-
cessing units, make it possible to execute larger and more complex algorithms
much faster.

The use of deep learning in wireless communication is being supported also by
industry players [13,14], as well as by regulatory bodies, such as European Telecom-
munications Standards Institute, which activated an Industry Specification Group
named Experiential Network Intelligence, and International Telecommunication
Union (ITU), which recently approved the ITU-T Y.3172 architectural framework
for machine learning in future networks, including IMT-2020 [15].
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Despite all these interests and efforts, there are some critical issues to be
understood in order to realize the vision of Al-based wireless networks. Specifically:

¢ Data acquisition. Deep learning requires a large amount of training data to per-
form well. As mentioned earlier, this data is now available over the air, but the
specific mechanisms to acquire it, store it, and process it are not clear yet. The
next section puts forth the concept of smart radio environments that are based on
the use of innovative infelligent materials, known as meta-materials, which have
communication as well as data storage and processing abilities. Smart radio envi-
ronments appear as a promising solution for truly intelligent wireless networks.
In addition, another useful approach to reduce the amount of required data is the
cross-fertilization between data-driven and model-based techniques. This point
will be exemplified in the rest of this chapter by presenting a concrete case study.

e ANNSs deployment into communication networks. While it appears clear that
future communication networks will have to rely on Al, it is not clear where
and how ANNs should be deployed into communication networks. Should the
acquired data be stored at a centralized location, where a single ANN manages a
large network domain, or should each network device store its own data and run
a local ANN? This point is also discussed in the next section.

3.2 Integration into wireless networks: smart radio
environments

As already anticipated earlier, future wireless networks will provide services beyond
communications among people and objects [16]. Future wireless networks will
become a distributed intelligent wireless communication, sensing, and computing
platform, which, besides communications, will be capable of sensing the environ-
ment, as well as storing and processing data. Future wireless networks will be required
to overcome the challenge of interconnecting the physical and digital worlds in a
seamless and sustainable manner [17,18].

As already mentioned, in order to turn the vision of future networks into reality, it
is not sufficient anymore to rely solely on wireless networks whose logical operation
is software controlled and optimized by traditional approaches [19]. Instead, the
wireless environment itself needs to be made intelligent [20], capable of optimizing
itself to ensure seamless connectivity. We refer to a wireless environment with these
characteristics as a smart radio environment [21].

Our vision is better described through Figure 3.1. Present wireless networks fol-
low the well-known Shannon paradigm [22], according to which the environment is
given and modeled in terms of transition probabilities (i.e., Pr {y|x}), or the Wiener

. Smart wireless
Shannon Wiener

X

X y —> Y

> Pr(yx) > f Pr(y/x) T x ;, Cu;tr(z?;irz)ed N

Figure 3.1 Current networks versus a smart radio environment (or smart wireless)
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paradigm [23], according to which the environment is still given, but its effect can be
controlled by means of feedback signals. Instead, a smart radio environment is char-
acterized by environmental objects whose electromagnetic response can be designed
in order to have a desired effect on the electromagnetic signals. Thus, the input signal
and the response of the environmental objects to the radio waves can be jointly opti-
mized for improved performance. For example, the input signal is steered toward a
given environmental object, which reflects it toward the receiver by suitably optimized
phase shifts. In turn, the receiver is also steered toward the incoming signal.

But how to implement such a futuristic concept? Several possible implementa-
tions of smart radio environments are currently emerging [24—35], with the use of
reconfigurable intelligent surfaces (RIS) appearing as the most promising approach
[36]. Intelligent surfaces, also called meta-surfaces, are thin bidimensional struc-
tures made of a special material, called meta-material, which can be reconfigured in
order to act on incoming radio waves in a programmable way [37]. Thus, RIS have the
potential of increasing the reliability of information transfer and processing [38] while
providing a suitable distributed platform-to-perform low-energy and low-complexity
sensing [34], storage [28], and analog computing [33].

3.2.1 The role of deep learning in smart radio environments

After introducing the paradigm of smart radio environments, let us discuss its con-
nection with deep learning. This section aims at putting forth the idea that smart radio
environment and deep learning are intertwined, enabling each other.

To begin with, let us discuss why smart radio environments enable the integra-
tion of Al into wireless networks. As discussed, besides the ability of improving the
communication performance, meta-surfaces are also able to sense the surrounding
environment and store the sensed data. This makes meta-surfaces the perfect plat-
form for data acquisition and processing, which is an essential requirement of deep
learning. In other words, meta-surfaces provide the fabric of future Al-based wireless
networks. Due to the pervasive use of meta-surfaces, smart radio environments will
be naturally able to acquire and harness large datasets from the signals that travel over
the communication networks. In this sense, smart radio environments represent an
enabler for the implementation of Al-based communication networks.

On the other hand, as already mentioned, smart radio environments offer the pos-
sibility of designing not only the transmit and receive strategies but also the transfer
function of the environment. This significantly increases the amount of variables that
can be optimized, which leads to an equally significant increase of the computational
complexity required to perform the design. In a smart radio environment, the opera-
tion of each environmental object is an optimization variable, besides the transmitter
and receiver strategies. Accurately modeling such an emerging network scenario and
optimizing it in real time appear a very challenging task, which cannot be tackled by
available optimization frameworks that in the best case require a polynomial com-
plexity in the number of variables every time the resource allocation problem needs
to be solved, i.e., when the propagation channel has changed. Moreover, the feed-
back requirements of smart radio environments are also much higher than in present
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wireless networks, which further increases the complexity of the resource allocation
process and leads to significant overheads. In this context, as it will be shown in detail
in the rest of this chapter, the use of deep learning can prove useful to significantly
simplify the resource management task. In this sense, deep learning enables smart
radio environments, making their optimization feasible in terms of computational
complexity. As it will be shown in Section 3.4 with reference to the specific case
study of energy efficiency maximization, merging model-based approaches and deep
learning tools, it is possible to obtain near-optimal designs of complex wireless net-
works, with a complexity that is affordable for online implementation. Considering
the specific energy-efficient aspect, this will have at least two major advantages that
will be exemplified in the rest of this chapter.

e Simplifying the resource management task enables to effectively maximize the
energy efficiency of complex networks, even in scenarios that are considered too
complex with present optimization techniques. This is anticipated to significantly
increase the energy efficiency of the operating points of future wireless networks.

e Even in scenarios where near-optimal energy efficiency optimization is already
possible by traditional optimization approaches, the use of deep learning is able to
reduce the computational complexity, thus yielding considerable energy savings
in the digital signal processor.

3.2.2 ANNs deployment into wireless networks

In order to successfully use deep learning for wireless communications, a key ques-
tion is how to integrate ANNSs into existing and future wireless network topologies.
Otherwise stated, what is the most efficient way to store and process the data to be used
by ANNs? This is a question that is specific to wireless networks, in the sense that in
other application fields of deep learning, the usual approach is to have a centralized
“artificial brain” that carries out the task at hand. However, this ideal solution is not
practical in the wireless context, since wireless networks have specific requirements
to be met. In particular, a centralized “artificial brain” that oversees the management
of a whole network, dictating the actions to take to the edge-users, is problematic due
to at least the following major points:

1. Latency. One major goal of future 5G wireless networks is to reduce the end-to-
end communication latency, which, for some applications, is required to be lower
than a millisecond. Thus, if this constraint is to be fulfilled, it is not possible to wait
for the cloud to perform the computations and then feed back the results. Instead,
the computations should be performed locally by each user equipment (UE).

2. Privacy. The privacy and security of wireless communication will be critical
issues to turn the 5G vision of the “everything-connected world” into reality. This
implies that for some vertical applications, it is not desirable to share information
with the cloud, which makes cloud-based deep learning not possible.

3. Connectivity. One major goal of future 5G networks is to provide connectivity
everywhere and every time. This makes a cloud-based Al problematic, since it
makes an edge device too reliant on the cloud, even when no reliable connection
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to cloud services is available. Instead, mobile terminals should possess some
“local intelligence” to be able to operate in these scenarios, too.

As aresult, like in human society, where there are both a collective intelligence that is
a common heritage and an individual intelligence, wireless networks should possess a
cloud intelligence that should be accessible to all nodes, as well as a device intelligence
that belongs to each individual device. Clearly, this poses several issues that will
have to be addressed in order to successfully implement Al-based wireless networks.
Endowing each network node with Al capabilities will significantly impact not only
the transmission technologies, but also the way the network should be controlled
through feedback signals to avoid instability and malfunctioning. In a scenario in
which each network node will have its own “brain,” i.e., its own ANN, the interactions
among the different devices should be carefully studied and mechanisms to avoid
performance impairments, data inconsistencies, and system failures will have to be
devised.

3.3 State-of-the-art review

The application of deep learning to the design of the physical layer of wireless commu-
nication networks has started attracting research attention only very recently, mostly
in the last couple of years. A comprehensive survey/tutorial on this topic is [6] that also
provides several concrete examples of wireless network design by means of ANNSs.

Focusing specifically on the use of ANNSs for resource allocation purposes, we
cite the following contributions [29,30,39—48].

In[39,43], the idea of using ANNS for network resource management is proposed,
providing an overview of potential applications of Al for network resource manage-
ment in future 5G wireless networks and discussing supervised, unsupervised, and
reinforcement learning. In [45], a fully connected ANN is used for sum-rate maxi-
mization in interference-limited networks. Specifically, the ANN is trained to mimic
the performance of the weighted MMSE resource allocation algorithm [32] but with
lower computational complexity. Instead, [6,26,47] consider the problem of energy
efficiency maximization and propose to train a fully connected neural network based
on the optimal power allocation rule, which is computed based on a novel branch-and-
bound procedure proposed in [26], and which is amenable to offline implementation.
The results indicate that the optimal performance can be approached with limited
online complexity, thus enabling an online implementation. The effectiveness of this
approach is demonstrated in [30,48] for power control and user-cell association in
massive MIMO multicell systems. Instead, a different approach is taken in [44],
where a fully connected ANN is trained to solve the sum-rate maximization problem
subject to the maximum power and minimum rate constraints. In order to reduce
the complexity of building the training set, the authors propose to train the ANN
using directly the system sum-rate as training cost function. The results show a gain
compared with previous low-complexity optimization methods.

In [40], a cloud-RAN system with caching capabilities is considered. Echo-
state neural networks are used to enable base stations (BSs) to predict the content
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request distribution and mobility pattern of each user, thus determining the best
content to cache. An improvement of the network sum effective capacity of around
30% compared with baseline approaches based on random caching is observed. In
[42], deep reinforcement learning is used to develop a power control algorithm for a
cognitive radio system, in which a primary and a secondary users share the spectrum.
The use of deep learning enables both the users to meet their QoS requirements despite
the fact that the secondary user has no information about the primary user’s transmit
power. The use of deep reinforcement learning is also considered in [29] to propose a
power control algorithm for weighted sum-rate maximization in interference channels
subject to the maximum power constraints. In [31], online power allocation policies
for a large and distributed system with energy-harvesting nodes are developed by
merging deep reinforcement learning and mean field games. It is shown that the
proposed method outperforms all other available online policies and suffers a limited
gap compared to the use of noncausal offline policies.

Parallel to the research on the use of deep learning in communication systems,
considerable work is also being made on smart radio environments. Current research
efforts toward making the vision of smart radio environments true are mostly focused
on implementing hardware testbeds or on realizing point-to-point experimental tests
[24-35]. Few technical results are available about the performance of RIS-based
wireless networks. A first contribution in this direction is [49] where alternating
optimization is used to allocate the RIS phase shifts and the BS beamforming in
a MISO downlink system, with the aim of maximizing the system sum-rate and
energy efficiency. A similar setup is considered in [50], with the difference that the
problem of minimizing the power consumption is addressed. In [51], again a MISO
downlink system is considered, with the addition that the OFDM transmission scheme
is considered, and the problem of sum-rate maximization is addressed. Similarly,
alternating optimization methods are used in [52] to tackle again the problem of sum-
rate maximization in a MISO downlink system. The BS beamformer and the RIS
phase shifts are optimized, with the additional difficulty that discrete phase shifts at
the RIS are assumed. In [53], an RIS is used to enhance the secrecy rate of a MISO
downlink channel with multiple eavesdropper. Alternating maximization is again
used to come up with a practical, yet suboptimal, method to optimize the transmit
beamformer and the RIS phase shifts. In [54], the asymptotic rate of an RIS-based
system is derived in the limit of the number of reflecting elements at the RIS growing
large. In [27], the minimum signal-to-interference plus noise ratio (SINR) achieved
by linear detection in downlink RIS-based systems is characterized considering line-
of-sight between the BS and the RIS. In [55,56], it is shown that RIS can be used to
implement phase-shift-keying and spatial modulation techniques.

3.4 Energy efficiency optimization by deep learning
This section presents two case studies that illustrate how deep learning can be used in

conjunction with traditional mathematical approaches to perform energy-efficient
wireless network design. Two types of applications will be discussed. The first
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considers the case in which the resource allocation problem at hand admits an accurate
mathematical formulation, which is, however, too complex to be solved with practical
complexity. Instead, the second approach considers the situation in which no accurate
mathematical model is available for the problem at hand, which calls for the use of
approximate models.

The approach to tackle the first scenario is based on the property that ANNs
are universal function approximators [57], i.e., their input—output map can be tuned
to emulate any continuous map. This property can be exploited observing that any
resource allocation problem can be regarded as a map from the ensemble of all network
parameters of interest, denoted by d € R", to the corresponding optimal resource
allocation x* € ., with .% denoting the set of feasible resource allocations. Formally
speaking:

Z:deR' - x e 7 CS. 3.1)

Then, an ANN can be trained to emulate the unknown map .% . This enables to optimize
a desired performance function for given system parameters without explicitly having
to solve the resource allocation problem by numerical optimization methods, but
rather using the trained ANN to receive as input the current realization of system
parameters, and reading the corresponding optimal resource allocation as the output
of the ANN. This has the huge advantage that any time the system parameters change,
it is not needed to solve again an optimization problem, but it is sufficient to change
the input of the ANN, which will compute the output by means of a simple forward
propagation.

On the other hand, this approach does not directly apply to the second scenario,
since no reliable model is available. However, if only an approximate model is avail-
able, it is still possible to use it to pretrain an ANN by the same approach outlined
earlier. Next, the configuration of the ANN can be refined by means of a second
training phase that assumes the availability of a training set containing empirical
data samples and employs tools from transfer learning theory. The details of both the
approaches are explained in detail in the rest of this section.

3.4.1 Weighted sum energy efficiency maximization

One of the key requirements of future wireless networks is recognized to be a massive
increase of the global energy efficiency measured in bits reliably transmitted over
Joule of the energy consumed. Accordingly, let us consider the uplink of a multicell
network with M BSs and K mobile users. Each BS is equipped with N antennas,
whereas the mobile users have a single antenna. Let hy ,, be the N x 1 channel from
user k to BS m, p; be the kth user’s transmit power, ¢; the N x 1 receive vector for
user k, and o2 the received noise power at BS m. Then, the SINR enjoyed by user k
at its intended receiver my is

Pele Wy, 2 _ Prdii
0%+ 3 PG W P 0%+ 3 pidyy

with di; = |ci'h; , |, for all &, ;.

Ve = (3.2)
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Based on (3.2), the network weighted sum energy efficiency (WSEE) is given by

K
Blog, (1
WSEE = ) wkM (bit/7), (3.3)
P ek T LiDk

wherein B is the communication bandwidth, P, is the hardware static power con-
sumption of the kth communication link, p is the inverse of the power amplifier
efficiency of transmitter k, and wy, is a nonnegative weight modeling the importance
given to the energy efficiency of link k. It is to be stressed that P.; depends on
system parameters such as the number of antennas and the efficiency of the system
hardware components, but it is assumed not to depend on the transmit powers, and
therefore the specific model expressing P.; as a function of the system hardware
components is inessential as far as maximizing (3.3) as a function of the transmit
powers is concerned.

Maximizing the WSEE is considered the hardest type of energy-efficient maxi-
mization problems. Indeed, the sum of fractions are non-polynomial-hard (NP-hard)
in general [58] and thus cannot be tackled with polynomial complexity by any available
fractional programming technique. Moreover, each numerator of the summands of the
WSEE is not concave. This implies that even the simpler special case of weighted sum
rate maximization (obtained setting ; = 0 for alli = 1, ..., L) is an NP-hard prob-
lem [25]. Thus, showing that ANNs can tackle the maximization of (3.3) represents a
strong motivation for its use to tackle simpler problems, too, such as the maximization
of the system sum-rate, or of other energy-efficient metrics, like the system global
energy efficiency. Moreover, unlike system-wide energy-efficient metrics like the
global energy efficiency, the WSEE provides the possibility of prioritizing the energy
efficiencies of the individual users, through the choice of the weights w; > 0. This
might be useful in cases when some users require a higher energy efficiency, e.g.,
because they are powered by energy-harvesting techniques.

Thus, the power control problem is stated as the maximization of the WSEE
subject to power constraints, namely,

max WSEE(py,...,pk) (3.4a)
ik,
S~t~1:)min,k SkaPmaX,kst: I,...,K, (34b)

with Ppax x and Ppin 4 being the maximum feasible and minimum acceptable transmit
powers for user k. Problem (3.4) is a so-called sum-of-ratios problem, which is con-
sidered the hardest class of fractional problems. Moreover, the difficulty of (3.4) is
further increased by the fact that the numerators of (3.4a) are not concave functions
of p = {pr}X_, due to the presence of multi-user interference. As a result, an ANN
is able to learn the optimal map between the system channels, and the power vector
that solves (3.4) makes a very strong case in favor of the use of deep learning for
energy-efficient resource allocation in wireless networks.

Atpresent, in order to solve (3.4), only global optimization methods are available,
while more practical approaches guarantee only the first-order optimality. Moreover,
as already mentioned, if traditional resource allocation methods were used, Prob-
lem (3.4) would have to be solved anew whenever the channel realizations {/ , }r.¢
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change. This clearly is a critical drawback that prevents the use of optimization-
theoretic approach for online resource allocation, i.e., following the small-scale
variations of the channel coefficients. Indeed, the optimal transmit power must be
computed well before the end of the channel coherence time in order to be practically
useful.

Instead, adopting an ANN-based approach, we model the power control prob-
lem as the unknown map from the coefficients {dj ¢}, and the maximum/minimum
transmit powers P and Py, to the optimal power allocation vector p*, namely,

F:d = {dig, Pringe> Pax s Jie € REMHD — p* e RE, (3.5)

and then training an ANN so that its input—output relationship reproduces the unknown
map (3.5). This leads to considering an ANN .4” with K(M + 2) input nodes and K
output nodes, to be trained so that it outputs the optimal K x 1 power vector p*
corresponding to a given K(M + 2) x | input of system parameters d. Specifically,
exploiting the mathematical model represented by Problem (3.4) it is possible to gen-
erate a training set by solving offline many instances of Problem (3.4), corresponding
to many different realizations of the system parameters d. At this point, the consid-
ered ANN .4 can be trained by any training algorithm to learn the optimal map in
(3.5). After the training phase, the trained ANN can be used online to infer the desired
resource allocation corresponding to any system configuration by simply performing
a forward propagation. Thus, the proposed ANN-based resource allocation framework
can be divided into two phases, as described next:

1. Offline phase. During this phase, the ANN is trained and configured. It should
be stressed that both the generations of the training set and the implementation of
the training algorithm can take place offline and only sporadically, i.e., at a much
longer timescale than the rate of change of the network parameters. Thus, the
complexity of this phase becomes negligible in the long term. Moreover, a recent
optimization framework proposed in [26] significantly simplifies the generation
of the training set for energy-efficient resource allocation problems.

2. Online phase. After the ANN is trained, it is used online to infer the optimal
resource allocation corresponding to any realization of the system channels. This
phase is repeated many times for each offline phase, namely, for any coherence
block until the ANN must be trained again. In each coherence block, the current
channel realizations are the input of the ANN, and the corresponding powers are
computed by performing a forward propagation of the trained ANN. This requires

I+ Ny_\N, real multiplications* and evaluating Y +* N, activation functions,
with N, denoting the number of neurons in Layer £ and L the number of hidden
layers of the ANN.

It should be stressed how this approach is not fully data driven but rather represents
one example of cross-fertilization between data-driven and model-based approaches.
Indeed, in the case at hand a model of the problem to solve is given by Problem (3.4) and

*The complexity related to additions is negligible compared to that related to multiplications.



Deep learning for energy-efficient networks 71

allowed us to simply generate a training set without any need of field measurements.
The difficulty is that Problem (3.4) would be too hard to be solved with a complexity
that is compatible with an online implementation, and here is where deep learning
has proved useful.

Numerical performance analysis. This section provides numerical results to
show the performance of the described method. Consider the uplink of a wireless
interference network with K = 4 single-antenna UEs placed in a square area with
edge 2 km and communicating with four access points placed at coordinates (0.5, 0.5),
(0.5,1.5), (1.5,0.5), and (1.5, 1.5) km and equipped with nz = 2 antennas each. The
path-loss is modeled following [59], with carrier frequency 1.8 GHz and power decay
factor equal to 4.5, while fast fading terms are modeled as realizations of zero-mean,
unit-variance circularly symmetric complex Gaussian random variables. In addition,
P.p=1Wand uy =4 forall k =1,...,K, respectively, while the noise power at
each receiver is 02 = F 4B, with F = 3 dB the receiver noise figure, B = 180kHz
the communication bandwidth, and .45 = —174 dBm/Hz the noise spectral density.
The maximum transmit powers are the same for all users, i.€., Pmax1 = -+ = Pmaxx =
Prax, while Priny = 0forallk =1,...,K.

The ANN-based solution of Problem (3.4) is implemented by employing a feed-
forward ANN with L + 1 fully connected layers, in which the L = 5 hidden layers
have 128, 64, 32, 16, 8 neurons, respectively. After generating training set by solving
Problem (3.4) for different realizations of the vector d, the realizations of the parame-
ter vectors d and the optimal output powers in the training set have been converted to
logarithmic units, which has been observed to reduce numerical problems during the
execution of the training algorithm. Moreover, in order to avoid numerical problems
due to the computation of the logarithm of transmit power values that are very close
to zero, logarithmic values approaching —oo have been clipped at —M for M > 0.
In our experiments, M = 20 worked well." Thus, the considered normalized training
set is

S = {(log,, d,, max{—20,log,, P> |1n=1,...,Nr},

where all functions are applied element wise to the vectors in the training set.

The activation functions have been set to exponential linear unit (ELU) for the first
hidden layer, while the following hidden layers alternate ReLU and ELU activation
functions, and the output layer uses a linear activation function. The use of a linear
activation in the output layer is motivated by the consideration that it allows the ANN
to produce low training error as a result of a proper configuration of the hidden layers,
instead of artificially reducing the output error due to the use of cut-off levels in the
activation function. In other words, a linear output activation function allows the ANN
to learn whether the present configuration of weights and biases is truly leading to a
small output error.

fNote that although using a logarithmic scale, the transmit powers are not expressed in dBW, since the
logarithmic values are not multiplied by 10. Thus —M = —20 corresponds to —200 dBW.
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The ANN is implemented in Keras 2.2.4 [60] with TensorFlow 1.12.0 [61] as
backend, using Glorot uniform initialization [62], the Adam training algorithm with
Nesterov momentum, and the mean-squared error as the loss function. The training is
obtained by solving Problem (3.4) for 102,000 independent and identically distributed
realizations of UEs’ positions and propagation channels, and different values of Pyy.
In each scenario, the UEs are associated with the access point toward which they
enjoy the strongest effective channel. A validation and a test set of 10,200 and 510,000
samples, respectively, were also generated following a similar procedure.

Considering training, validation, and test sets, 622,200 data samples were gen-
erated, which required solving the NP-hard Problem (3.4) 622,200 times. This has
taken 8.4 CPU hours on Intel Haswell nodes with Xeon E5-2680 v3 CPUs running at
2.50 GHz, by employing the improved branch-and-bound method proposed in [26].
Thus, the average time required to optimally solve one instance of the WSEE maxi-
mization problem is 7 = 4.86 x 1072 s. On the other hand, a forward propagation of
the considered ANN requires 10,912 real multiplications and 252 activation function
evaluations. Thus, 11,164 elementary operations are required for a forward propaga-
tion, which, given the clock frequency of 2.50 GHz of the computer used to run our
simulations, yields an average time to solve one instance of the WSEE maximization
problem of T = 4.47 s, i.e., four orders of magnitude smaller than with the improved
branch-and-bound method.

This clearly shows how the offline generation of a suitable training set for ANN-
based power control is quite affordable. Finally, all performance results reported
in the sequel have been obtained by averaging over ten realizations of the network
obtained by training the ANN on the same training set with different initialization of
the underlying random number generator.* The average training and validation losses
for the final ANN are shown in Figure 3.2. It can be observed that both the errors
quickly decrease and approach a very small value; thus showing that the adopted
ANN configuration is able to properly fit the training data, without underfitting or
overfitting.
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Figure 3.2 Training and validation losses versus training epoch number. It is seen
that after the training phase, the ANN neither underfits nor overfits

Note that this is not equivalent to model ensembling [63, Sect. 7.3.3] or bagging [9, Sect. 7.1].
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Next, we present the performance of the proposed method over the test set,

comparing the proposed ANN-based method with the following benchmarks:

SCAuos: A first-order optimal method from [26] that leverages sequential convex
approximation (SCA) methods. For each value of Py, the algorithm initializes
the transmit power to p; = Pax, forallk = 1,..., K.

SCA: Again the first-order optimal method based on sequential convex approxi-
mation developed in [26], but with a double-initialization approach. Specifically,
at P = —30dBW maximum power initialization is used. However, for all the
values of P, > —30dBW, the algorithm is run twice, first with the maximum
power initialization, and then initializing the transmit powers with the optimal
solution obtained for the previous Py, value. Then, the power allocation achieving
the better WSEE value is retained.

Max. power: All UEs transmit at maximum power, i.e., py = Puax, for all k =
1,..., K. This strategy is known to perform well in interference networks for low
P« values.

Best only: Only one UE is allowed to transmit, specifically that with the best
effective channel. This approach is motivated for high P, values, as a naive way
of nulling out multi-user interference.

The results in Figure 3.3 show that the ANN-based approach outperforms all other
practical approaches. The only benchmark that performs comparably with the ANN-
based approach is the SCA algorithm that employs the complex initialization rule
requiring to solve the WSEE maximization problem twice and for the complete range
of Ppax values. Thus, this SCA approach is quite more complex than the ANN-based
method, but, despite this, it performs slightly worse. In conclusion, we can argue
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Figure 3.3 WSEE performance of the proposed ANN-based method compared to

the global optimum and to several state-of-the-art algorithms
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that the ANN approach strikes a much better complexity-performance trade-off than
state-of-the-art approaches, and thus it enables online power allocation in wireless
communication networks.

3.4.2 Energy efficiency in non-Poisson wireless networks:
a deep transfer learning approach

The previous example assumes that a mathematical model of the problem at hand was
available to allow us to formulate the optimization problem. The difficulty lied in the
cumbersomeness of the model. Instead, this section considers the different scenario
in which only approximate models are available, while sufficiently accurate models
are lacking. Specifically, consider the problem of energy efficiency optimization with
respect to the BS density [64], in non-Poisson cellular networks [65], which is known
to be an intractable optimization problem because of the analytical complexity of the
utility function to optimize. In this case, the approach used in the previous section
does not directly apply. However, it can be extended to this case by merging it with
the framework of deep transfer learning.

Transfer learning is a machine learning framework that provides tools to transfer
the knowledge acquired when solving a given task, and use it to solve a new, but related
task, without starting the learning process from scratch. This general concept can be
applied in several ways, but here we follow the approach known as network-based
transfer learning, which works by first optimizing the wireless network based on a
mismatched, but simpler for optimization, model, and then refining this inaccurate
optimization by a fully data-driven approach based on a few empirical samples. This
general idea can be applied to our specific problem as the following two-step approach.

First, we assume that the nodes in the wireless network are distributed following
a Poisson point process, while the #rue point process model is assumed to be the
square grid model [66]. This is a simple example that is chosen in order to shed light
on our proposed approach, and that is also easy to simulate and reproduce. Then,
leveraging the Poisson assumption, the EE of the network can be optimized in the
closed-form, as shown in [64]. This makes it quite simple to generate a large training
set of optimal values for the EE as a function of any system parameters, which is then
used to train an ANN, following a similar approach as in the previous section. Thus,
this first step yields a tentative ANN configuration, that is mismatched due to the fact
that the wireless network is not Poisson distributed.

Next, we assume that a second training set is available, which needs to contain
only a few data, but based on the actual measurements. In other words, a second,
smaller dataset of empirical data is needed to refine the ANN configuration. In par-
ticular, this dataset is used to perform a second training phase, in which, however,
the weights and biases of the ANN are initialized to the values obtained after the first
training phase, instead of using typical random initializations. In other words, the
idea behind this approach is to employ the first training phase to obtain an efficient
initialization point for the second training phase. Of course, in order for this to be
true, it is desirable that the mismatch between the approximate model and the true
network model is not too large.
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The rest of this section provides more details and numerical examples to show
the merits of the described approach.

Model-based optimization. From [64], the EE in Poisson cellular networks can
be formulated as follows:

SE(Ass)
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are the spectral efficiency and the power consumption of the cellular network,
respectively.

Equations (3.7) and (3.8) depend on many parameters, whose definitions can be
found in [64]. For the purpose of this discussion, it suffices to observe that Agg is
the deployment density of the BSs, Py is the transmit power of the BSs, P is the
circuit power consumption of the BSs, and P, is the idle power consumption of the
BSs. Throughout this section, P, and P are assumed to be fixed, and they are
further analyzed in the next section. The goal of the optimization is to determine the
optimal deployment density of the BSs, Ags, given the values of the transmit power
Py. In [64], it is proved that this optimization problem has a unique solution, which
corresponds to the unique root of a non-linear equation. This enables the efficient
computation of the optimal BSs density, for any given values of the transmit power,
which allows for the simple generation of a large training set containing the optimal

pairs (P, xg’gt’ ), where Aggt) = argmax; {EE(Xgs)}. Such a training set is then used

for the first training phase of an ANN whose input is P, and whose output is Aggt).

Data-driven optimization. In the case in which we cannot rely on any analytical
models, the EE values need to be estimated by collecting empirical samples from the
cellular network, from which the optimal BS density needs to be inferred. In particular,
the spectral efficiency and the power consumption can be estimated, respectively, as
follows:

1 By E—
PSE()=—— > > —log(1+ y)I(SIR > yp,SNR > y,),
AreaNet Cell(1)eNet NMTeCell(l)NMT
(3.9)
1
Pyig(e) = AreaNet Z Pige + Z P + Peire Z Nur
Cell(0)eNet Cell(1)eNet NureCell(l)

(3.10)
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The previous two formulas can be interpreted as follows. Considering the spectral
efficiency to fix ideas, each mobile terminal in the cellular network determines, based
on the received signal, whether it is in coverage. This is accomplished by measuring
the average signal-to-noise ratio during the cell association phase and the signal-to-
interference ratio during data transmission (if the first phase was successful). This
condition corresponds to the term 1(SIR > yp, SNR > y,), where 1(-) is the indicator
function. Each mobile terminal can transmit one bit of information to a network
controller to report whether it is in coverage or not. Based on the number of mobile
terminals that are in coverage on a given cell (say Nyt), the BS of that cell equally
allocates the available spectrum (say Bw) among them and transmits data with a
fixed rate (Bw/Nwmr) log,(1 + yp). Moreover, exploiting the information from all the
mobile terminals, it is possible to identify the BSs that serve at least one mobile
terminal (say Cell (1)) and to compute the number of mobile terminals that lie in each
of them for each network realization. The spectral efficiency can then be estimated
by summing the rates of all active BSs and by normalizing by the area of the network
under analysis. If the optimization variable is the BS density, all possible values of
density need to be tested, and the value corresponding to the optimal EE needs to
be recorded and used to train an ANN. Based on this simple description, we can
readily understand that the amount of empirical data that is necessary to train an
ANN resorting only to data-driven optimization would not be negligible, thus causing
a significant overhead.

Numerical results. Figures 3.4 and 3.5 illustrate some numerical examples that
analyze the performance of the described transfer learning approach. A feed-forward
ANN architecture with fully connected layers and ReLU activation functions is con-
sidered. Specifically, after trying many different ANN configurations, an ANN with
three hidden layers equipped with 8, 8, and 2 neurons was selected, as it was found
to yield the best performance-complexity trade-off.

Figure 3.4 shows the training and validation-relative MSE versus the number of
training epochs for the following approaches:

e the proposed deep transfer learning technique that employs both model-based and
empirical data samples;
e the baseline approach, where only empirical data samples are used.

As for the first approach, the size of the training set is always equal to 30,000 samples,
out of which x samples follow the true BS distribution (square grid model), while the
remaining (30,000 — x) follow the Poisson distribution. As for the second approach,
the adopted training set contains only the x empirical samples. Thus, this comparison
is fair in terms of number of empirical data samples employed and is aimed at showing
that augmenting a small dataset of empirical data with a larger dataset of model-based
data can provide substantial performance improvements. For both the approaches, the
values x = 300, 600, 1,500, 2,100, and 3,000 have been considered, and, for each value
of x, it is seen that the proposed deep transfer learning method performs much better
than the baseline approach.

A similar consideration emerges in the testing phase, too. Figure 3.5 shows the
density of BSs as a function of their transmit power, considering a test set of 8,000 new
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transmit powers, which were independently generated from the training and validation
sets. The results of the following four schemes are compared:

e the optimal density computed through exhaustive search;

e the density predicted by means of deep transfer learning, where 3,000 empirical
samples are used in the second training step;

e the density obtained without transfer learning and performing the training by
using only 3,000 empirical samples; and

e the density obtained without transfer learning and performing the training by
using only 30,000 model-based samples.

Remarkably, it is seen that using only the 3,000 empirical samples yields quite worse
performance compared to the deep transfer learning method that merges the same
3,000 empirical data samples with model-based data. This highlights how perform-
ing the model-based pretraining before employing actual measurements for system
optimization can overcome the lack of enough empirical samples. Moreover, it is
important to note that using only the 30,000 model-based samples does not lead to sat-
isfactory performance, thus showing that it is necessary to employ both model-based
and empirical data samples to obtain accurate performance.

3.5 Conclusions

This chapter has been concerned with the description of the use of Al based on
deep learning, transfer learning, and ANNSs for the design of energy-efficient future
wireless networks. Two main conclusions can be drawn at the end of this chapter:

¢ Developing intelligent wireless networks is becoming more and more necessary as
the complexity of communication networks increases. More and more demanding
requirements are being enforced, which cannot be met by simply developing faster
transmission technologies, but rather rethinking the whole architecture of wireless
networks. In this sense, the paradigm of smart radio environments has been put
forth, and it has been shown how deep learning will be an essential enabler for
the optimization of smart radio environments.

e The complexity of wireless networks is exceeding our ability to derive suitable
mathematical models that lend themselves to being optimized with affordable
complexity. In this context, complementing the a priori knowledge given by
(possibly inaccurate) mathematical models, with deep learning techniques based
on ANNSs, provides excellent complexity-performance trade-offs that are quite
superior to any other available optimization frameworks.

Thus, this chapter demonstrates that while deep learning will be an essential tool for
the design of future wireless networks, it should not replace the traditional model-
based design paradigm. On the contrary, there is much to be gained by the joint use
of data-driven and model-based techniques for wireless networks design.
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Chapter 4

Scheduling resources in 5G networks
for energy efficiency

Cristian Rusu' and John Thompson®

The deployment of a large number of small cells is currently regarded as an important
approach in the pursuit of addressing the traffic demands and sensing capabilities of
the next-generation 5G networks. In this chapter, we propose an adaptive scheduling
algorithm that activates/deactivates network resources to establish a trade-off between
the estimation accuracy and the energy consumption of the network. The method
is based on the iterative reweighted convex optimization techniques. We provide
experimental results to show how the proposed method can establish, in polynomial
time, a trade-off between the quality of the network estimation accuracy and its
energy consumption. Furthermore, the proposed method can adapt to changes in the
network’s topology, say due to unexpected hardware and communication failure or
when network resources completely run out of energy and power down.

4.1 Introduction

As 4G networks are reaching their mature state, research has long moved toward
the design and deployment of the fifth-generation cellular network technology (5G
networks) [1] that comes with big promises: high speeds (large bandwidths that lead to
x 1,000 capacity over current networks) and low latency of communications (targeting
1-4 ms to the base station).

Several factors have to lead to the development of 5G networks: (i) rapidly
increasing mobile data traffic, mostly due to the significantly increased demand of
high-quality video streaming; (ii) an explosion in the number of devices connected to
the networks, particularly due to the growth in Internet of Things (IoT) devices;
(iii) the demands of customers for better services while keeping flat-rate tariffs;
and (iv) new business opportunities stemming from innovative services that exploit
the high bandwidth and low-latency features of the networks. Currently, industrial
companies in many nations have taken several concrete steps toward the deployment

'LCSL, Istituto Italiano di Tecnologia, Genova, Italy
’Institute for Digital Communications, School of Engineering, The University of Edinburgh,
Edinburgh, UK
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of a full 5G network: spectrum auctioning* and allocation,” the development of 5G
devices and telecommunications infrastructures,’>3 and carriers making available 5G
subscriptions.

Due to a large number of mobile devices and the increased data traffic, one
potential downside of 5G networks is the high energy consumption [2]. Scientists
have already raised serious concerns regarding the high levels of carbon dioxide
in the atmosphere! and have highlighted concerns about several information and
communications technologies, among them are modern (deep) machine learning [3]
and millimeter-wave (mmWave)/5G communications [4]. Researchers and companies
are making significant efforts to improve several aspects of 5G networks to tame the
energy consumption of the overall communication system. This effort bears the name
of green communications. While, for environmental reasons, energy consumption
reduction is a goal in itself, there are several other factors to consider, for example, high
electricity bills might turn customers off reducing the network utilization; extending
the life of battery-operated devices increases their usability and reducing the amount
of radiation absorbed by the human body, as measured by the specific absorption
ratio, will have significant benefits on the health of the users.

Research that breaks down the energy needs of next-generation mobile networks
has been underway for quite some time now [4]. While mobile device manufacturing
and operation of the data centers that collect and manage the data collected from
the network make up for approximately 50% of the energy consumption, the rest is
almost entirely taken by network operational costs: mobile device operation, radio
access network, or operator activities.

While it is beyond the scope of this chapter to provide a detailed, exhaustive review
of the current state of the art, we detail next some of the main green communications
research directions.

To achieve large data transfer bandwidths, massive multiple-input—multiple-
output (MIMO) and mmWave [5] systems are the wireless communication technology
at the heart of 5G. The large number of antennas deployed on each device in such

*Archive for the “5G Auctions” category. The European 5G Observatory [accessed 2019 Aug 16]. Available
from: https://5gobservatory.eu/category/5g-auctions/.

fSpectrum for 5G networks: licensing developments worldwide. Global mobile Suppliers Association
(GSA) [accessed 2019 Mar 26]. Available from: https://gsacom.com/paper/5g-spectrum-licensing-mar-
2029/.

fMe F.,, San Marino primo Stato 5G d’Europa, accesa 1’antenna. Corriere Comunicazioni (in Italian)
[accessed 2019 Jul 11]. Available from: https://www.corrierecomunicazioni.it/digital-economy/san-
marino-primo-stato-5g-accessa-la-prima-antenna.

SThune J., Streamlining the rapid evolution and modernization of leading-edge infrastructure necessary to
enhance small cell deployment act (S. 3157) also known as the Streamline Small Cell Deployment Act. US
Congress; [accessed 2019 Jun 30]. Available from: https://www.congress.gov/bill/116th-congress/senate-
bill/1699.

IJoon-ho H., From the first day of 5G, 40,000 subscribers ... The Asia Business Daily [accessed 2019 Apr
6]. Available from: http://view.asiae.co.kr/news/view.htm?idxno=2019040610062165080.

IThe Climate Group on behalf of the Global e-Sustainability Initiative (GeSI). SMART 2020: Enabling the
Low Carbon Economy in the Information Age. Global e-Sustainability Initiative (GeSI) [accessed 2019
Jun 15]. Available from: http://www.gesi.org.



Scheduling resources in 5G networks for energy efficiency 85

systems and the high carrier frequencies has spawned several ideas at the radio
frequency chain level to reduce the energy consumption, among these: perform
less baseband processing [6], use simple hardware such as switches [7] or use
low-resolution ADCs and DACs [8].

Regarding the spectrum itself, dynamic allocation is necessary to ensure con-
tinuous coverage at all times. To this end, spectrum sharing technologies [9] have
been developed, which allow secondary users to access underutilized (or unutilized)
parts of the spectrum that have been originally allocated to different users/tasks. This
technology is one of the few that simultaneously improves both energy and spectrum
efficiency—others show a trade-off between communication efficiency and energy
consumption.

The number of devices connected to networks is expected to increase drastically
especially because of the development of 10T [10]. The infrastructure that supports
this technology consists mainly of wireless sensor networks (WSNs) [11] where
optimal power control is essential to making the network competitive from an energy
consumption perspective. In this context, the management of sensors and sensor
networks is essential to the IoT, and its energy management can lead to significant
gains in energy efficiency (EE) [12].

One way to deal with a large number of devices connected to mobile 5G net-
works is to allow device-to-device communications [13], i.e., direct link formation is
allowed between two mobile users without the involvement of the base stations or any
other core network elements. When devices are in the range of each other, direct com-
munications are allowed leading to high data rates that also simultaneously improve
EE and latency [14]. Such situations do require the network to provide mandatory
power management and interference mitigation among the devices [15] .

To deal with the large concurrent number of connections in 5G networks, ultra-
dense networks (UDNs) [16] have also been developed. It has been shown that a large
number of picocells and femtocells (i.e., small and very small, respectively) lead to
improved spectral and EE. These cells have low-cost access points (APs) and exhibit
reduced transmission power: 20 dBm for femtocells as compared to 46 dBm for a
macrocell [17].

As the research community has identified the need for efficient 5G commu-
nications early, several excellent works provide an overall literature review of the
main ideas and research efforts on this topic, among these the reader is encouraged to
check[2,18,19]. Researchers have identified several general areas of research and pro-
posed optimization (reduction) of the power consumption: (i) make use of renewable
energy using energy harvesting techniques; (ii) optimized network planning that will
check for optimal base station distribution and activation; and (iii) optimized alloca-
tion of resources such as time and frequency which lead to natural trade-offs between
the EE and other metrics that relate to the communications or sensing performance
of the network.

A particular interesting energy reduction technique in 5G system is Wi-Fi offload-
ing [20], i.e., the ability to transfer some of the mobile traffic from a base station to
nearby Wi-Fi APs or other active base stations. When used in conjunction with base
station activation/deactivation, the energy benefits can be considerable, as entire
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radio resources can be moved offline [21]. In this case, management tools that decide
activation/deactivation policies need to be deployed.

Scheduling a set of mobile network resources, in time, has been addressed in
various scenarios. In the context of 5G networks, scheduling usually refers to the
allocation of users according to some quality or energy criterion: allocate user data
packets in the frequency domain for each time interval to increase the quality of
service (QoS) given partially unknown network conditions and highly dynamic traffic
scenarios. This makes resource allocation in the 5G networks extremely complex
(space, time, and frequency allocation have to be considered).

The work in [22] proposed a scheduling algorithm based on ideas from rein-
forcement learning to minimize the packet delay and drop rates for given QoS
requirements. Then, scheduling in [23] is performed by prioritizing public safety
data and users who are mandatory to intervene during special alerts in active dis-
aster areas. Several other constrained scenarios are also considered: a throughput
constrained mid-haul element in the network [24], an overall cross-layer optimization
for scheduling and resource allocation (SRA) at both the physical (PHY) and data
link control layers to investigate and compare the performance between orthogonal
frequency-division multiplexing and quadrature amplitude modulation-based filter
bank multicarrier (OQAM/FBMC) [25], a dynamic programming algorithm, which
supports fairness, for effective cross-layer downlink SRA considering the channel and
queue state [26], dynamic cell bandwidth allocation is proposed to enhance quality of
experience (QoE) using inter-cell scheduling of users [27], a user scheduling method
that exploits the properties of massive MIMO 5G systems of the BS [28], and finally
scheduling under severe time constraints [29]. An overview of the agile multiuser
scheduling functionality in 5G is given in [30], while different scheduling algorithms
that consider the QoS requirements of each user, as well as the individual channel
conditions, are evaluated and compared in [31]. QoS and QoE are related, as QoE
measures the overall level of customer satisfaction, while QoS refers to hardware and
software characteristics and performance, i.e., coverage, data rates, and delay.

Scheduling of hardware/radio/sensor resources has been studied to a larger extent
in the signal processing (for communications) literature. From this line of work, two
important examples are hardware resource scheduling in UDNs [32] (especially BS
scheduling [33,34]) and sensor measurement scheduling in distributed measurement
scenarios [35]. 5G networks will be greatly enhanced by IoT sensor networks. Indeed,
many services associated with 5G technologies would not be possible without the mas-
sive deployment of (i) localization sensors; (ii) environment monitorization sensors;
and (iii) data flow sensors at the base stations and other important network nodes.
The GSMA foundation estimated™ that a regular 5G cell will be able to cope with
the data flow from more than 250,000 sensors without affecting the regular traffic
performance of the network. This amount of sensors needs to be managed not only to
ensure correct functionality but also to optimize for energy consumption and improve

**The Australian, 5G sensor revolution is coming [accessed 2019 Sep 20]. Available from:
https://www.theaustralian.com.au/life/5g-sensor-revolution-is-coming/news-story/20b1991b0220
b72c61fdadfc55269bff.
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robustness to hardware failures that will inevitably happen when so many resources
are deployed in the field.

The sensor placement/scheduling/management problems have been extensively
studied in the past. A general approach is to use greedy methods based on a minimum
eigenspace approach [36] or with submodularity-based performance guarantees [37]
that provide results within (1 — e~!) of the optimal solution. Another popular greedy
sensor selection method, FrameSense [38], initially activates all the sensors and then
removes one at each step based on a “worst-out” principle to optimize its submodular
objective function. Convex optimization techniques have also been proven useful for
experimental design [39, Chapter 7.5] with £; norm minimization [40]. Additional
scenarios where further limitations are added to the network sensing problem include
energy budget constraints [41] and ways to maximize the lifetime per unit cost in
WSNss [42], regularization terms that discourage the selection of the same sensors
over some time [43,44], and scheduling [45] over the network. In the same spirit,
recent work introduces a greedy sampling set selection algorithm for graph signal
processing (GSP) applications [46].

In line with the previous work on optimized network planning, in this chapter
we provide a high-level view and solution to the energy management problem for
5G networks. We are concerned with the management and scheduling of 5G net-
work resources that exhibit some level of redundancy such that a trade-off between
quality of communications and EE can be established. We outline a simple example
of the network scenario we consider in Figure 4.1. We start the chapter by describ-
ing some of the most important and widely used EE metrics. Then, based on ideas
from convex optimization, we describe the basic mathematical concepts and then
propose an algorithm that deals with scheduling network resources in time such that
a measure of network efficiency is optimized under some operational constraints.

D @ D User equipment (UE)

@ Base station (BS)

Figure 4.1 An outline of the proposed 5G network scenario. A UDN with multiple
base stations that serve multiple users but note that only a subset of the
base stations are active (those in solid blue) as they are able to
successfully cover all currently active users in the network
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We describe in detail the proposed method and then proceed to various experimen-
tal results under various assumptions that we can accommodate due to the convex
optimization framework we are using.

The work presented here is based on the previously proposed algorithms for
sensor scheduling published in [47—49].

4.2 Preliminaries

We start by describing basic metrics for green performance evaluation and a primer
on convex optimization. Then with these prerequisites, in this section, we describe
the proposed method for resource scheduling in 5G networks.

4.2.1 Energy efficiency metrics and objectives

In any wireless communications system, we can define clear performance metrics:
number of users served, throughput, downtime, etc. In general, the most used per-
formance metric is the spectral efficiency, a measure of the maximum data rates
achievable without error (the channel capacity). When it comes to metrics that mea-
sure EE, we again find several that are appropriate in different scenarios. A fairly
detailed enumeration is given in [50], among the most used, we have the following:

1. Energy efficiency (EE): measured in bits/s/W, it is defined as the total capacity
over the total power consumed:
Data rate (bits/s)

EE = . >
Power consumption (W)

4.1)

2. Area energy efficiency (AEE): is an EE measure applied in the case of cellular
heterogeneous network cells that take into account the area of the cell under
consideration:

EE

- Cell area (km?)’

While these two indicators provide an overall performance measure, the next two refer
to per user (assuming users connected in the downlink) performance.

AEE 4.2)

3. Outage probability (OP): is defined as the probability that a user, say the ith
in the downlink, will have a signal-to-noise ratio (SNR) below a prescribed,
performance guaranteeing target value, SNR gt

OP = P(SNR; < SNRaget); (4.3)

4. Energy harvest ratio (EHR): is a dimensionless unit that measures the fraction of
time, out of a total standard time slot/unit T\, during which energy harvesting
is done Tgy:

T
EHR = 21, (4.4)

total
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In this setting, an important drawback is to note that many simple devices are not
able to perform data decoding and harvest information simultaneously [51].

5. Average sum rate (ASR): measured in bits/s, is the sum of all the data rates (R;
for the ith user) of all the »n users connected to the network:

ASR =) R (4.5)
i=1

While this metric measures the data rate directly, it is connected to the power
consumption as the achieved rates depend on the power allocation strategy in
the cellular network. We would like to contrast here the simple equal power
allocation (EPA) strategy against the water filling algorithm (WFA) which per-
forms power allocation to maximize capacity in inter-symbol interference and
frequency-selective fading channels. Other power allocation strategies, taking
into account other performance indicators, can also be applied here.

These indicators can be used separately or in some combination to assess the
performance level of the network. As EE is usually inversely proportional to achieved
data rate (due to the simple fact that higher SNR can always be achieved by increasing
the consumed power), most of the time we will observe a trade-off between the
QoS provided by the network and its energy consumption. Furthermore, the use of
renewable energy sources and battery power backups may put more constraints on
base station operation and lead to the necessity of optimizing the active/sleep cycle
of base stations [52].

As the network designers, we can define some desirable characteristics and goals
for its operation:

1. Maximize network life: as the network contains several devices that are battery
powered or that are known to have different wear and tear properties, one goal
might be to operate the network in such a way that no (or few) devices break
down completely over a fixed period of time;

2. Network sensing/coverage and connectivity: as the network needs to serve con-
necting users and sense environment parameters, an important goal is to ensure
that a predefined geographical area has coverage and that users trying to connect
to the network from this area can be serviced promptly;

3. Robustness: coverage and user connectivity have to be ensured even in the case
of failure of some of the devices in the network.

While we consider that the network is fixed and static, i.e., no major restructuring
takes place in a certain time period, we assume some level of redundancy in the network
(several devices are capable of providing the same services to the same users in the
same geographical area) and that the resources of the network are controllable and can
be switched to active and deactivated modes. The redundancy assumption is essential.
Without some level of redundancy in the network, all resources need to activate all the
time and no planning or scheduling is possible. This assumption is realistic as traffic
demand and network resources are usually concentrated in a relatively small portion
of the network (20% of sites account for 50% of traffic [53]).
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Luckily, UDNs exhibit a very high density of radio resources in a given area
(dense, small cells) to serve approximately the same number of users as a classic
network but where each user has a significant increase in traffic. This means that
either the number of base stations is on the same order of magnitude with the number
of users, or the distance between any user and a base station is only a few meters.
Moreover, this improved (higher) density is the property that will allow us to schedule
resources in time. Furthermore, the high density of base stations has one significant
drawback: there is strong interference between all the base stations, which degrades
performance. As such, mechanisms to set some of the base stations in sleep mode are
essential for energy savings.

In this chapter, we focus on the three main characteristics listed previously. We
will design an algorithm that can schedule (turn on/off or set to active/sleep mode)
devices that are in the network such that (i) we ensure that the life of each device
is extended as much as possible (e.g., to a particular, predefined number of time
slots) and (ii) the network is robust to hardware failures and it is able to reorganize
(reschedule) its structure such that the goal of point (i) is still ensured to the best
current capabilities of the network.

To incorporate several real-world constraints in the design of our scheduling algo-
rithm, we base the development on the convex optimization platform. We will define
the objective function we consider and the constraints imposed upon the network. This
will allow us to make design adjustments with little effort to the scheduling algorithm
itself.

4.2.2 A primer on convex optimization

Convex optimization [39] is a subbranch of mathematical optimization concerned
with the study of optimization problems with convex objective functions and convex
constraints. Such a problem is expressed as

minimize f(z)
’ (4.6)
subjectto  g(z) = 0,,; and A(z) < 0,4,

where f(z) is convex and is called the objective function, g(z) encodes the p affine
constraints, 4(z) encodes the » convex constraints, and z € R” is the optimization vari-
able. Ifthe constraint set admits at least one point, i.e., it is not empty, then the problem
is called feasible. The convexity assumptions guarantee that every local minima of
the problem is actually a global minimum and therefore the problem is solved exactly.
Furthermore, if there are multiple solutions their set is itself convex and if the prob-
lem is strictly convex, then the problem has at most a single optimal point. There are
several other reasons that account for the popularity of convex optimization methods:

1. Many real-world problems can be formulated as convex optimization prob-
lems (linear programming, least squares, semidefinite programming, geometric
programming, etc.);

2.  Many more real-world problems can be approximated by (or relaxed to) convex
optimization problems;



Scheduling resources in 5G networks for energy efficiency 91

3. It is trivial to model additional real-world constraints by augmenting the
optimization problem with further constraints (as long as they are convex/affine);

4. There are several specialized ready-to-use software packages (including, CVX'T
and CVXPYH) for different programming languages that solve convex optimiza-
tion problems in polynomial time (mostly by interior-point methods [54]).

In this chapter, our goal is to define convex optimization problems that can be
solved efficiently. We will use extensively optimization with £, norms, which are
convex. We are interested mainly in the £; and £, norms, defined as

n
Izl = |zl and 2]l = max|zl, (4.7)
i=1

where the first is known to promote sparsity [55] in the solution and the latter one
promotes equal entries (in absolute values) in the solution [56]. These two penalties
are useful in our case, and we will use them jointly: the £, will serve as a selection
mechanism to model on/off states, while the £, will ensure that no network resource
is overused (by minimizing selection of the maximally used resources) and we can
strike a balance between the performance of the work and its energy consumption.

General scheduling algorithms, which give solutions to time-dependent job allo-
cation tasks, have been extensively studied in the past. Unfortunately, these problems
are in general non-convex and in most situations are NP-hard to solve to optimality
(these are nonlinear mixed-integer optimization problems [57] but where the objective
functions are convex or concave). This is because activating and deactivating resources
are modeled most of the time as a binary decision variable, i.e., z; € {0, 1}, which
is discontinuous and therefore non-convex (to ensure optimality, a combinatorially
large number of solutions should be checked exhaustively). Because of this, several
approaches (or heuristics) have been proposed in the literature to reach approximate
solutions to the scheduling plans: greedy methods (i.e., scheduling resources one-at-
a-time), and search algorithms (including, genetic algorithms, simulated annealing,
particle swarm optimization, tabu search and, inspired by more recent research in
reinforcement learning, dynamical programming, and approximations of it). In this
chapter, our approach will be to relax the binary constraints to convex interval con-
straints (i.e., z; € [0, 1]) and then use an iterative process to push the entries to either
limiting value.

4.2.3 Sensors and their measurements

With the basic mathematical formulation described, it is also important to clarify what
we mean when we refer to “a sensor” in the context of this work. Broadly speaking,
we consider two scenarios.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.0 beta.
http://cvxr.com/cvx, 2013 [accessed 20 September 2019].

1S, Diamond and S. Boyd. CVXPY: A Python-Embedded Modeling Language for Convex Optimization.
https://www.cvxpy.org, 2016 [accessed 20 September 2019].
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First, in the spirit of the work from [58], the sensors represent base stations and
the measurements they take are of signals from mobile devices in the network. Our
objective is to minimize the number of activated base stations in the network. The
measurements thus represent the propagation channel from the mobile devices to all
the base stations in the network. Second, the sensors have a more abstract function
and are measuring properties of the environment and network [59], e.g., data flows
through the network, energy consumption in the overall network, and environmental
parameters. In this situation, the measurements represent the connections between
the quantities of interest and where they can be measured.

In this chapter, we model sensors as devices capable of linear measurements, com-
munication with some neighboring sensors, and possessing a known energy profile
(or characteristics).

4.3 The proposed scheduling algorithm

In this section, we introduce the different system modeling choices that we assume
throughout the chapter and then outline the proposed solution for adaptive resource
scheduling over time. We build up the formulation starting from resource selection in
a single time instance, extending to scheduling resources over multiple time instances
and finally describing adaptive scheduling while allowing network topology changes
(including due to unexpected hardware failure). We conclude the section by discussing
the computational properties of the proposed method.

4.3.1 The mathematical model: the measurements

We now introduce the mathematical notation and set up the objective function that
models the sensor’s accuracy and that we consider in this chapter.

We assume that the network can perform a total number of m different measure-
ments and is used to estimate a parameter vector x € R” that can change over 7 time
instances such that at time ¢ we use k; linear measurements (such that n < k, < m) as

y: = A;X, + n,, where A, € R andt =1,...,T. (4.8)

We have denoted by n, € R¥*! zero-mean i.i.d. Gaussian noise with variance oI,
y: € R4*1 is the measurement vector at time ¢, and X, is the realization of x. In the
simplest situation, X, can be constant over all time instances 7. We do assume that
the whole sensor network can be modeled as a large linear measurement operator
A € R™" where each row a] models the measurement a single sensor can perform.
The matrix A, models the measurements that a subset of the sensor network performs at
time ¢. We also assume that we always take k; > n measurements such that estimation
of x leads to a well-posed inverse problem. With these measurements, we consider the
classic least squares estimator X,, given by applying the pseudo-inverse of the sensing
matrix to the measurements as

% = Aly, = (ATA) ATy, (4.9)
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The quality of the estimation at time 7 can be measured in several ways. In this chapter,
we choose the mean-squared error (MSE) (or A-optimality quantifier):

§ 1
MSE(A) = tr(A7A) ) = 3 .

i=1

(4.10)

Here we have denoted with A, the ith eigenvalue of AT A, that is always real valued, and
the trace that is the sum of the eigenvalues. Without loss of generality, we do assume the
orderingA; > A, > --- > A, > 0. There are two other classic performance indicators,
the worst case error variance (E-optimality) and the volume of the confidence ellipsoid
(D-optimality), which for clarity of exposition we choose not to describe in detail here.
We just note that the framework we propose easily extends to these two indicators as
well. From an algorithmic perspective, all these indicators are very interesting as A
and E optimality are convex (and therefore can be minimized), while D-optimality is
concave (and therefore can be maximized).

In general, with the assumption of white Gaussian noise, to achieve low error
indicators, we focus on the eigenvalues of the symmetric positive semidefinite
AT A, € R™" that should obey two properties: (i) the smallest eigenvalue ,(ATA,)
should be as high as possible and (ii) all the eigenvalues should be approximately equal
A,-(A,T A)~ )Lj(AtT A)), Y i#]j, ie., the measurement matrix A, behaves approxi-
mately as a tight frame with large Frobenius norm SNR. All the three optimality
criteria enumerated previously are functions of the eigenvalues of AT A, and capture,
in different ways, these two desirable properties.

4.3.2 The mathematical model: the network

An innovative concept in 5G networks is the idea of integrated access and backhaul
links in mmWave systems. This leads to scenarios where some base stations are
directly connected to the core network, while others need to relay their data via wireless
links to other base stations [60]. In this chapter, we assume a similar structure imposed
on our sensor network and explore how it affects the management of the resources.

Therefore, the sensors in the network are not isolated nor fully connected, but
communication between them is governed by a graph structure ¢4 = (¥, &), where
¥ is the set of vertices (the sensors) such that || = m and & is the set of edges
(the allowed connections between the sensors) which we assume is not dense, i.c.,
|&| = O(m), which determines possible links and their connection to a centralized
(master) node where the estimation (4.9) takes place following the collection of the
measurements. For clarity, let us consider a concrete example in Figure 4.2. The
closest sensors to the master node are 5, 7, and 8, while the furthest are 1 and 3 which
need 3 hops to get to the master node. In our context, the graph structure has two
consequences: (i) it shows that even sensors that do not perform measurements will
still consume energy in order to forward measurements taken by other sensors to the
master node and (ii) it highlights bottlenecks in the network, single nodes that collect
measurements from many nodes and whose failure would lead to the loss of a large
number of sensors.
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Figure 4.2 An example of sensor network with only m = 8 sensors and a master
node. Left: the topology of the undirected network and right: the cost
matrix representation that we use for the network on the left

We have denoted by C € R”*” the sensing and communication costs of all the
sensors. The entry c¢; > 0 expresses the cost incurred by the ith sensor to convey
data from the jth sensor to the master node. When the ith sensor has a direct link
to the master node, the ith row of C has only one nonzero entry, namely c¢;; that
captures simultaneously the cost of sensing and communications. The nonzero values
c;j, shown here as “*,” are interpreted as the cost of sensing (when i = j) or the cost
of transmitting data from the ith to the jth sensor (when i > ;). The summation along
the ith line of C denotes the total cost of the sensor network to transmit data collected
by the ith sensor to the master node. The nonzero values “*” can just denote the
existence of a connection or can convey an actual positive cost in energy consumption,
if a value is known. If we are just interested in the number of activations, then the
matrix C is just binary, while otherwise, we need to be able to estimate the energy
consumption. In fact, the diagonal entries ¢; can model the cost of performing the
measurement at sensor i and in general, these will obey ¢; > ¢, i #j, i.e., cost of
sensing data (which might include acquisition, filtering, storing, compression, etc.) is
in most cases significantly larger than the cost of just communication and forwarding
information. The authors in [48] have linked the sensing cost to the quality (SNR)
of the measurement, i.e., the £, norm of the ith row like ¢;; o ||a] |3 meaning that
precise measurements are most likely more expensive from an energy consumption
perspective. The same paper proposes to model the communication cost as a function
of the distance between the sensors that communicate, i.e., ¢; o d(i,j) where d(i, ;)
denotes the Euclidean distance between sensors i and j. If no such estimations are
available or possible, then the cost matrix C will be modeled similarly to the selection
variable z, nonzero entries will be taken as “1,” i.e., the sensor is used but we are not
exactly sure about the cost incurred.

To model the sensor network, we use ideas from the GSP literature and exper-
imentally we will generate these networks using standard GSP toolboxes.?¥ From

SYP. Nathanael et al., GSPBOX: A toolbox for signal processing on graphs. Available online: https://epfl-
Its2.github.io/gspbox-html/.
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this perspective, the cost matrix C can be viewed as a partial (potentially weighted)
adjacency matrix. To avoid overly complicated network scenarios and optimal routing
issues, we consider that a single (possible multi-hop) predefined path was computed
from each sensor to the master node and this is the only communication path. If no
graph structure is imposed then simply C = L.

4.3.3 Scheduling for a single time instance

Let us now consider the optimization problem we would like to solve considering that
there is only one time instance, i.e., 7 = 1. Let us denote by .#| the set of sensors
that perform a measurement at this time. Then we have that:

ATA; =) aa] = A" diag(z))A € R™". (4.11)
ie s

‘We have now denoted the following: withz, € {0, 1} a binary variable that has values
one only for indices that belong to .# and diag is a function that takes as input a vector
and returns a square matrix whose diagonal is the input vector. Ideally, we would like
to solve exactly the following non-convex optimization problem:
minimize ||z
“ (4.12)
subjectto MSE(A|) < y; and z; € {0, 1}™,

where y, is given by the designer and is a maximum level of error (in the MSE sense)
that is allowed. It is important to understand what the limits of this parameters are. If
we are using the entire sensor network to measure the parameters, i.e., A, = A, then
on average this yields the lowest possible MSE, which is

Yanin = tr((ATA)™), (4.13)

and therefore it is only natural that y; = §; i, With 6; > 1. Note that if §; = 1, the
only feasible solution in (4.12) is to select all the sensors. Now, combining (4.10)
with (4.11), we have that:

MSE(A,) = tr((ATA) ™) = tr((A, diag(z))A)™), (4.14)

which is a convex quantity (as it is the composition between a convex function, the
trace inverse, and a linear function (4.11) in the unknown z;). Given this formulation,
we can now state the following optimization problem that is the convex relaxation of
(4.12), which is

minimize 1!,z
Z (4.15)
subjectto  tr((A, diag(z;)A)™") < y; and z; € [0, 1]™*".

Here we have used that since the entries of z; are all positive, the £, norm is just the
sum of the entries, while the discrete constraints are relaxed to the interval [0, 1]. Of
course, in this case, we are not guaranteed to have a binary solution, as z; will have in
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general entries between [0, 1] and not just at the extreme points. To fix this problem,
we will use iteratively reweighted £; optimization [61] by following the next steps:

1. Solve problem (4.15) as is.
2. Initialize the weights vector w; = z;.
3. Ifz is not binary yet, update it by solving the new optimization problem
minimize Ww{z
" (4.16)
subjectto  tr((A, diag(z;)A)™") < y; and z, € [0, 1]™!,

i.e., we are weighting the summation in order to “push to” zero entries that are
low and “lift to” one those that are high in z;. Go to step 2 and repeat the process
until the solution z; does not change anymore.

4. If the solution z, is still not binary, then select the largest entry in z;, which is
not one and set it to one. With this constraint now fixed, go to step 2 and repeat
the process until z; is binary.

The idea of the approach is to let the iterative process set to zero/one as many entries as
possible and only intervene with a hard constraint when it gets stuck permanently. In
such a case, we have to set to one and not zero to guarantee that the MSE performance
indicator is below the threshold, otherwise, we risk the possibility of an infeasible
solution. Also, note that in this formulation, we cannot control directly the number
of sensors that are activated. Of course, indirectly, lowering y; will lead to more
activations of sensors in general.

We finally note that the scheduling strategy we develop can be applied also when
considering some other objective functions to optimize for the network operation. As
long as that new objective function is either convex or concave, the proposed method
extends directly and trivially with minimal modifications. The requirement to have
an appropriate objective function is there to ensure that the same numerical solver
can be used.

This completes our discussion on the sensor scheduling problem with a single
time step, i.e., sensor selection. We now move to the case where the sensor network
operates over multiple time instances and we want to take into account two additional
factors: balancing the resources of the network and taking into account the possibility
of sensor failure.

4.3.4 Scheduling for multiple time instances

In the previous section, we have seen a method for approximating the optimal set of
sensors from a network that we activate to establish a minimum level of accuracy when
estimating some parameters. In many real-world situations, a sensor network does
not just take a snapshot of some unknown quantities and then becomes inactive, but it
continuously measures and monitors their progress over time. Given the approximate
solution that we got in the previous section, the obvious solution would be to use
those sensors all the time. This would, of course, raise the question of why bother
have the large network in the first place? What purpose would it serve? From this
perspective, the problem that we previously looked at might be practically a sensor
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placement problem: we have several candidate sensor types and sensor positions and
the goal is to select the best combinations such that the real physical network will
perform measurements with high accuracy.

In this section, we extend the goal previously set. Yes, we want at each time
instance a minimum level of accuracy but we also have now two additional constraints:
a balance between the network devices utilization and the accuracy (MSE is below a
given threshold) by scheduling resources and take into account, adaptively, sensors
breakdown by rescheduling resources.

We deal with the same m sensors that need now to be scheduled over 7 time
instances. We define the binary scheduling table:

Z=[z 12, - zr] € (0,1}, (4.17)

where the scheduler at time ¢ is denoted z, € {0, 1}"*! (these are the columns of the
table Z). It is convenient to access a particular entry in the scheduling table and
therefore z; denotes whether the ith sensor is active during the jth time instance.

Based on the optimization problems we have seen before, we now propose to
solve the following convex problem:

T T
miniZmize Z th Z; + A max (WC Z z,)

=1 =1

subjectto  tr((A” diag(z)A)™") < 8, Ymin fort=1,...,T (4.18)

T
Z [O, 1]m><T and er > 1.

t=1

Let us analyze each element of this problem separately. First, note that this is a
convex optimization problem. Of course, it is a relaxation of the problem we would
actually like to solve exactly (i.e., with the binary scheduling table in (4.17)). That
is why, we again have used the idea of ¢; penalization and weights (the first term of
the objective function) to try to obtain a binary solution Z. The second term of the
objective function discourages the activation of the same sensor over multiple time
instances, in the spirit of the £, norm: we penalize the maximum (highest) entry. The
¢~ combines: the activation frequency of each sensor (the summation over the z,),
the topology of the sensor network (C), and any prior information about the power
profile of the sensors (W). The matrix W € R™*” is diagonal and acts as a weight
that describes our motivation to use one sensor rather than another. For example, if
w; = 0 we are modeling a situation where we do not care if the ith sensor is used
in all time instances (maybe because we know it is highly robust or that it has an
unlimited power supply at its disposal or that it has been deployed in a sensitive area
and therefore its measurements are highly valuable). Otherwise, let us say that, for
example, wy, = 2, while all other w; = 1, for i # 2, would discourage the activation
of the second sensor twice as much as any other, on average. Then, we have the
requirement that each time instance performs the estimation with a minimum degree
of accuracy at each time step. Finally, the relaxed constraint of sub-unitarity and that
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we want all sensors in our network to be activated at least once in the lifetime of the
network.

Overall, this new problem is a regularized optimization problem and the regular-
ization parameter A € R needs to be chosen appropriately. The parameter A controls
the trade-off between accuracy (on one extreme, select all sensors all the time) and
activation of the sensors (on the other extreme, do not activate anything to save power).
Choosing A is done by running a grid search to decide the desired trade-off (a Pareto
curve). A trade-off necessarily appears because for the trivial value of A = 0, the
sensor network would activate at each step all the sensors and therefore produce the
most accurate results. Conversely, for A — 0o no sensors would be activated in any
of the time slots, i.e., maximum EE with no measurements from the network. It is
up to the user to choose the desired balance and solve the tension between sensing
accurately and sensing efficiently.

4.3.5 Adaptive scheduling for multiple time instances

We now consider the final element in the setup of our formulation. We assume that in
the 7 time instances the sensor network can change, and in particular we assume that
some sensors might fail or are constrained by limited energy availability or battery
life. Initially, we schedule our sensors using the optimization problem in (4.18), but
then we assume that at time #; the sensors with indices in the set .# are offline. The
optimization problem we consider now is

T T
minimize Z w/z, + A max <WC Z zt>
=1

t:lff+1
subjectto z, € [0,1]™7 and tr((AT diag(z)A)™") < 8 Vimin
zy=0 for ie Fandt=1t+1,...,T

T
C Z z, = 0,7)x1

t:{f+1 z

T
(Z Zf) > 17
=z

Note that the scheduling takes place only on variables from time # + 1 with the
additional constraints that any sensor index in .% can no longer be activated, while
the £, constraint still takes into account the history of the sensors’ activations. We
have denoted . = {1,...,m}\.%, i.e., the complement of .%, and |.%| denotes the
size of the set. We keep the previous historic activations fixed inzy, .. ., z,, as we still
have to keep track of the most used sensors. The second constraint z;; = 0 from the
current time step makes sure that the sensors in .% will not be activated in the future.
Still, they can be part of the path from some other sensor (that is not in .%) to the
master node. This is again not allowed, and therefore the third constraint guarantees
that sensors in .% do not receive any information to forward toward the master node.

(4.19)
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Algorithm 4.1: Adaptive sensor scheduling by ¢, /£., minimization

Input: The sensing matrix of the network with m sensors A € R”*”, the total number
of time instances 7', the maximum allowed error § > 1, the regularization parameter
A > 0, and the matrix of communication costs C € R”*™,

Output: The scheduling table Z € {0, 1}”"*7 for sensor activations at each time step.

Initialize variables: set initial weights w, = 1,,,.; and initial all-zero solution z, =
0,x fort =1,...,T,1e.,Z = 0,,7; initialize sets .4 = @ indexing sensors that
are not selected and #° = ( indexing sensors that are selected; and establish the
best MSE performance y, by (4.13).

Iterative procedure:

1. Set Z®PY) « 7,

2. Update weights according to w; = (i + )"

3. Solve (4.18) (or (4.19) if in adaptive mode) with the additional linear equality
constraints z; = 1, ¥ (i,j) € # ,and z; = 0, V (i,j) € ¥, to get the current Z.

4. Update the sets A" = {(i,j) | z; < e} and & = {(i,j) | z; > 1 — &}.

5. If the iterative process (4.18) (or (4.19) if in adaptive mode) has converged (or
20 iterations have been completed since the last convergence) and the solution is
not binary, i.e., [|Z — Z®V |2 < ¢ and |.A| + |# | = mT, then set ¥ <« # U
{argmax;, z;, (i,j) € ¢} and update Z such thatz; =1, V (i,j) € X"

6. If the solution is binary, i.e., |.4'| + || = mT, then continue otherwise go

to step 1 of the iterative process.
Adaptive procedure: if #; is set then update Y, set & =0, set A =
{(G,1), Yiand t = ¢ + 1,..., T}, the solution is cleared for all future time slots by
setting z, = 0, fort =, +1,..., T, and we go to step 1 of the iterative process
to compute the new activations given the new network.

In the adaptive mode, a large number of sensors might be removed from the
network and therefore the sensing ability might change significantly. To take this into
account we update ymi, to reflect the best new performance achievable by the new
sensor network. In most situations, sensor failure does lead to more activations of the
sensors that are left in the network to keep a similar level of sensing accuracy.

4.3.6 The proposed algorithm

Based on the convex optimization problems described before, we now propose an
algorithm for the adaptive sensor scheduling problem. The full procedure is depicted
in Algorithm 4.1. We note that Algorithm 4.1 is an improved variant of the algorithm
described in [48]. The improvement consists of the capacity of the new algorithm to
cope with adaptive situations: the network is not static, but its topology can change
during the scheduled 7 time instances and the algorithm has to take this situation into
account and reschedule network resources in real time.

The proposed method keeps track of two sets .# and .4/, storing the indices
from the solution Z for the activation and deactivation of sensors, respectively. Our
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algorithm terminates only after every sensor indexed is either in J# or .4/, i.e., we
have reached a binary solution. Every convex relaxation approach to binary optimiza-
tion problems needs a similar rounding procedure as we describe here. The goal of
the proposed approach is to apply a thresholding operation only when the iterative
procedure converges to nonbinary solutions, and even then only a single variable (the
highest entry in Z which is not one) is forcibly thresholded. The same threshold is
applied if the iterative reweighted £, does not converge (in our case this means that
convergence is not achieved in 20 iterations—which happens rarely but does happen).

Given its structure, the result of the proposed method is that most variables are set
to zero/one by the optimization procedure. Classically, when using convex relaxations
of binary problems we solve a single instance of the relaxed problem followed by a
rounding procedure. This approach works very well for a single time instance, i.e.,
when there are only m variables, but the performance deteriorates quickly in the sense
that many entries will be nonbinary when m7T is large. If many entries are nonbinary
and we round the result to the nearest binary solution we will end up with a very
large number of sensor activations. This is in contradiction with our goal of reducing
energy consumption by activating sensors only when absolutely necessary. Therefore,
our approach is different from many other strategies that usually threshold only once,
at the end of the procedure.

Algorithm 4.1 is numerically efficient. It enjoys polynomial complexity and
can be implemented using any off-the-shelf convex optimization library in either
MATLAB® or python (in this chapter we have used CVX). Furthermore, as the
algorithm progresses, the optimization problems (4.18) and (4.19) get progressively
smaller. Starting from the m7T variables, as the sets .# and .4, grow they remove
variables with equality constraints by ensuring that indices allocated to these sets will
never flip—once an entry (7,/) has been allocated to either %" or .4 it will remain
there for the remainder of the algorithm. As such, the first steps of the iterative proce-
dure in Algorithm 4.1 are relatively slower than the final steps, which will deal with
problems that have a number of variables much smaller than mT.

The only fixed parameter of Algorithm 4.1 is set to € = 0.001 (the thresholding
parameter) while X is found using a grid search.

Due to the trace inverse constraints, the proposed optimization problem is a
semidefinite program (SDP) with binary constraints used iteratively and therefore its
analysis in terms of the optimality of the solution is very difficult in general (without
any assumptions on the measurement matrix A). In our case, the theoretical analysis
is even harder due to the addition of the sets . and .4 that store all indices that were
decided to be binary. As such, we extensively validate our approach experimentally.
Furthermore, the thresholding operation complicates a possible analysis, but as we
will see in the next experimental section it does provide very good performance.

4.4 Experimental results

In this section, we provide experimental numerical simulations to show the perfor-
mance of the proposed method to schedule a sensor network over time while also
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balancing its power consumption, communication effort, and allowing for unexpected
sensor failures.

We model the sensor measurements A in two possible ways: random measure-
ments drawn from i.i.d. standard Gaussian distributions or random tight frames [48].
In the latter case, all measurement matrices used are m-tight, i.e., we scale the mea-
surement matrix with the number of sensors. They are constructed after projecting
random Gaussian matrices on the set of tight matrices (numerically this is done by tak-
ing the polar factor of a random Gaussian matrix via the singular value decomposition:
A < /mUVT starting from the random matrix A = UX V7).

Communications constraints are modeled with graph structures, as depicted in
Figure 4.3. These structures serve to quantify the communication costs and are essen-
tial in the adaptive setting where sensor failure can lead to removal from the network
of many other sensors that are no longer able to communicate the collected data. For
the graph generation, we use the GSP Toolbox from which we use the community
graph generation feature. The toolbox also provides coordinates for the sensors and we
control explicitly the connectivity between the groups of sensors by adding/removing
communications links. We assume dense connectivity in the same group of sensors
and sparse connectivity between them.

Based on these assumptions, we next consider scheduling sensor networks in 5G
systems with energy and communications constraints. We separate the simulations
between two cases: static network and adaptive (when we allow reconfiguration of
the network, say due to sensor failure or communications node failure).

4.4.1 Scheduling without sensor failures

To demonstrate the versatility of Algorithm 4.1 to scheduling problems, we show how
to deal with energy and communication constraints when scheduling a sensor network
over multiple, fixed, time instances.

First, we show the implicit energy constraint approach, i.e., we assume no explicit
information about the energy profiles of the sensors, and our goal is to operate the
sensor network over 7 time instances such that we diversify the activations and do not

. o ™
¥ e ¥ P oJla
& * e

Figure 4.3 Three examples of network architectures we consider with different
levels of connectivity between four groups of sensors (from left to right
with increased number of communications links). The graphs are
generated using the GSP Toolbox and model the cost matrix C, starting
from the adjacency matrices of the graphs
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activate the same sensors continuously at each time instance. The £/, style opti-
mization problem balances between the estimation accuracy of the sensor networks
and making sure that the sensing is distributed more evenly between the network
sensors. Results are shown in Figure 4.4. We show results for a low m = 100 to ease
of exposition, as we show activations per sensor. The measurement matrix is taken
to be standard Gaussian, and the performance indicator is fixed to y, = 0.5 for all
t=1,...,T, ie., 50% measurement accuracy on average as compared to the full
network. We fix the number of time instances to 7 = 10.

Simulation results with the regularization parameter A = 100 are shown in
Figure 4.4 (top right). The plot clearly shows a more balanced activation of the sen-
sors, as opposed to the results in Figure 4.4 (top left) that are obtained with no
regularization, i.e., . = 0. Given higher regularization parameter values A the sensor
scheduling is “moved” to rarely select the same sensors again (unless absolutely nec-
essary to achieve the prescribed MSE). For example, in Figure 4.4 (top right) most
sensors are selected six times with a maximum of eight times as compared to Figure
4.4 (top left) where several sensors are selected in all ten-time instances, while others
are never selected. This comes at the cost of activating, overall, a larger number of
sensors over the ten-time instances.

The purpose of Figure 4.4 (top left) is to show, for reference, a scheduling table
generated by the proposed algorithm without the £, regularization (the max regu-
larization). The almost flat solution depicted in Figure 4.4 (top right) is typical of
solutions to convex optimization problems whose objective functions involve £, reg-
ularization (for details see [39, Chapter 6]). For our purposes, these solutions are
ideal. The nearly uniform activation of the sensors over time ensures that the sensing
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Figure 4.4  Number of activations for a sensor network with m = 100 elements: no
Lo regularization (top left), with £, regularization and parameter
A =100 (top right) and activations of sensors as a function of the
varying regularization parameter ). (bottom)
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workload is distributed across the network and thus ensures balanced power con-
sumption together with increased robustness and fault tolerance in the case of any
particular sensor failure. Figure 4.4 (bottom) shows one of the intuitive side effects
of Algorithm 4.1: we can reduce the frequency with which one particular sensor is
activated but at the cost of activating other (usually more or even many more) sensors
from the network such that the imposed estimation accuracy is fulfilled. Figure 4.4
(bottom) plots the maximum sensor activation max ( ZLI Z,) against the total sensor
activations ) ;| " tT: | Zi- We achieve different values for these activations by varying
the parameter A, in this case, six values between 0 and 100.

In Figure 4.5, we also highlight the use the weight matrix W that serves to add
preferences or a-priori information about the network into the planning of the sensors.
The experiments are as follows: in Figure 4.5 (top left) we have that w; = 1, i =
1,...,25 and w; = 2, i = 26,...,100 and therefore the first sensors are used far
more often than the later; in Figure 4.5 (top right), we have thatw; = 7, i =1,...,50
and w; =1, i =51,...,100 and therefore the first half of the sensors is heavily
penalized for any activation (there is one activation as per the constraint to use each
sensor at least once); in Figure 4.5 (bottom), we have that w; =1, i =1,...,75 and
w; =0, i =76,...,100 and therefore the last quarter of sensors are used in all time
instances as there is no penalty in overusing these devices (possibly highly robust
sensors, placed in sensitive areas and enjoying a virtual unlimited power supply).

We now superimpose the graph structure on the measurement network. We
assume a network whose topology is similar to the examples in Figure 4.3: m = 100
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Figure 4.5 Number of activations for a sensor network with m = 100 elements and
various weight matrices that encourage/discourage the usage of
particular sensors
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sensor broadly grouped in four, unbalanced, groups. Regarding the sensing and
communications cost, we assume that entries of the matrix C are characterized as

ci=0(lal I3, i=1,...,m, (4.20)
for the sensing cost incurred at the sensor and

as the cost of communication between sensors i and j. For communication between
the groups of sensors, we assume a land connection and therefore a cost of O(1). We
have denoted with p; the 2D position of sensor i.

In Figure 4.6, we show the achieved MSE levels as a function of the energy
consumption of the whole sensor network. A clear trade-off between the two becomes
apparent in the spirit of a no-free-lunch result. As expected, to achieve the high
estimation accuracy (the lowest levels of MSE) we need (almost) all the sensors
activated (almost) all of the time. Therefore, the highest accuracy of the network
can only be achieved with substantial energy consumption. Fortunately, giving up
some accuracy in the MSE has a substantial positive impact on energy consumption,
especially at the limit of the best accuracy. Depending on the currently available energy
supplies, Figure 4.6 shows what levels of MSE estimation accuracy are possible with
the sensor network. In the figure, we distinguish between the Gaussian and tight
measurement models (left and right plots). Notice that the tight random measurement
model behaves much better in two ways: lower levels of the MSE are reached for the
same energy measure and the MSE scales much better (decrease is steepest) with the
energy consumption.

4.4.2 Scheduling with sensor failures

In this section, we study the behavior of the proposed algorithm in situations where
the network topology changes. We mostly consider situations where elements of the
network break and it falls on the other network elements to perform more measure-
ments to keep the prescribed level of performance. This might arise, for example,
in a scenario where the sensors have limited energy availability over the period of
operation and run out of available energy due to being activated too often. For sim-
plicity, we assume that the change times are at each quarter of the total number of time
instances. We consider a network with m = 500 sensors and 7" = 100 time instances,
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Figure 4.6  Energy consumption for a sensor network with m = 100 elements under
a Gaussian (left) and tight (right) measurement models
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while the measurement model is the random Gaussian one. The nominal measurement
performance level is kept at 50% of the capacity of the whole network.

Results are shown in Figure 4.7 and we break them down in four steps: Figure 4.7
(top left) depicts the scheduling scheme before any sensor failures, this can be done
off-line before the network is activated, and if no failures appear, the scheduling will
persist for the rest of the time slots; Figure 4.7 (top right) shows the network activations
when 100 sensors become unavailable (e.g., due to the failure of a communica-
tion hub) and clearly, on average, the utilization of the remaining sensors increases;
Figure 4.7 (bottom left) shows a further deterioration of the network: an additional
200 sensors fail, while the previously failed 100 sensors are still offline, and the oper-
ating network sensors are pushed to almost permanent activations; finally, Figure
4.7 (bottom right) shows what happens when all network sensors are made available
again and the previously offline sensors are now activated significantly more than the
others (especially the 50 sensors that were offline for half of the operating lifetime of
the network).

In these experimental results, we observe the same characteristics as with previ-
ous results: failure of network resources leads to higher strain on the active elements,
for which balancing utilization becomes that bit more important.

In this setting, the running time of the proposed algorithm is extremely important.
While the initial scheduling table can be computed offline, real-time changes to the
network configuration happen during the operation of the network and therefore
rescheduling needs to be done during one time slot. Regarding the running time,
although it enjoys polynomial complexity, Algorithm 4.1 is slower in general than
some of the state-of-the-art greedy methods from the literature, which also have
polynomial asymptotic complexity but exhibit lower constant factors, i.e., they are
2x or 3x faster. Still, the numerical complexity of Algorithm 1 is polynomial in the
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Figure 4.7 Adaptive sensor scheduling for a network of m = 500 sensors over
T = 100 time instances where the network configuration changes three
times during its lifetime
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number of variables and constraints and simulations from this chapter take only a few
minutes to complete on a modern computing Intel i7 system with sufficient memory
resources. Therefore, the proposed method is well suited for highly dynamical sensor
network scheduling. Furthermore, a specialized convex solver, which uses efficient
first-order optimization methods, could be considered to deal with the requirements
(both memory footprint and running time) of extra-large problems: over m = 10,000
sensors scheduled in more than 7' = 1,000 time instances.

We highlight again that one of the advantages of our convex optimization-based
approach is that they allow easy generalizations and extensions. With few modifica-
tions, Algorithm 4.1 allows the addition of multiple extra constraints as long as they
can also be coded with convex constraints, like: operating the sensor network over a
variable number of multiple time instances, without any repetition of sensor selection,
with some preference for a few sensors and not for others, etc. From this perspective,
our setting is ideal for modeling, with minimum effort, real-world applications where
unexpected constraints show up.

4.5 Conclusions

Large networks play a central role in the development of IoT and 5G technologies.
In this chapter, we have proposed a new algorithm for the scheduling of resources
in 5G networks and it aims for two goals: increase the EE of the network and
its robustness to hardware failures. We provide simulation results that show how
the proposed algorithm strikes a balance between the accuracy of the network’s
measurements/operations and the frequency of network’s resource utilization or
an absolute measure of energy when this is available. The algorithm can provide
adaptive, real-time rescheduling of the network resources such that the estimation
accuracy is kept at similar levels even when unexpected events such as hardware and
communication failures take place.
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Chapter 5
Renewable energy-enabled wireless networks
Michela Meo' and Daniela Renga’

The introduction of renewable energy sources (RESs) as power supply for communi-
cation systems and, for wireless cellular networks in particular, is becoming more and
more attractive for a number of reasons. First, the need to reduce network operation
costs through energy saving. Second, the interest in bringing cellular communica-
tions to areas of the world where the power grid is not developed and/or reliable,
or in emergency situations, generates a great interest in off-grid base stations (BSs)
that are energy self-sufficient. Finally, the introduction of RES as power supply is a
promising way to start responding to the timely issue of Information and Telecommu-
nication Technology (ICT) sustainability. In this chapter, we discuss the technological
challenges associated with the introduction of RES-based power supply for wireless
networks. Sources like photovoltaic (PV) panels and small wind turbines are the
most suited ones for powering cellular access networks, due to their limited size and
relatively ease of deployment. However, these sources are intermittent and generate
variable amounts of energy not always easy to predict. Network operations require
mechanisms and algorithms for deciding the optimal configuration that depends also
on consumption and energy availability. Optimality of network operation is not simply
performance maximization but becomes also consumption reduction, cost minimiza-
tion, and emission reduction, through the optimal usage of the locally produced
energy. In addition, considerations on the power supply dimensioning will also be
presented in this chapter.

5.1 Introduction

The staggering increase of mobile traffic observed in the recent years is currently
leading mobile network operators (MNOs) to deploy denser and denser mobile access
networks. This trend is bound to further grow at remarkable pace in the next future.
According to Cisco forecast [1], by 2023 there will be nearly 5.3 billion Internet users
worldwide, accounting for 66% of the global population, 29.3 billion of networked
devices and connections are expected by the same year, with an average of 3.6 con-
nected devices per capita. The number of mobile users worldwide will raise to 5.7
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billion and global mobile data traffic will reach more than 77 exabytes per month. The
Middle East and Africa will have the strongest mobile data traffic growth in the period
2017-22, with a 56% Compound Annual Growth Rate. Furthermore, the enhance-
ments introduced by 5G technology in mobile networks in terms of higher bandwidth
and ultralow latency will enable the deployment of massive Internet of Things (IoT)
applications in the smart city framework. Several services entailing critical commu-
nications with strict delay constraints will be facilitated in 5G scenarios, like in the
case of smart mobility and autonomous vehicles, machine-to-machine communica-
tions for factory automation, smart metering, environmental monitoring, smart grid
(SG) management, just to cite some examples. By 2023, IoT devices will account for
50% of all networked devices, and over 10% of devices and connections will have 5G
capability, leading to a disproportionate effect in the mobile traffic growth, since 5G
speeds are expected to be 13 times higher than the average mobile connection [1].

The consequent substantial raise in the cellular traffic entails the need to deploy
properly dimensioned cellular networks to make Internet access available everywhere
and provide the high bandwidth capacity required for the increasing number of mobile
users and for the introduction of applications that result more and more demanding in
terms of bandwidth requirements. Considering that the access segment is responsible
of up to 80% of the total network consumption [2], it appears evident how the energy
demand to operate cellular networks is rapidly growing and MNOs are facing huge
operational costs due to power supply [3]. In addition, with the considerable mobile
data traffic growth that is expected in the next years in emerging countries, in particular
in the Middle East and Africa [4], where the electric grid may not be reliable or even
totally absent, MNOs face new issues related to the power supply of mobile access
networks that require that the networks are made more independent from the electric
grid.

Besides cost, these data hint to sustainability issues. Up to 2% of the total carbon
emissions are currently accounted for by the ICT sector, and this percentage is forecast
to increase [5]. Considering that the communication function contributes for 19% to
the ICT energy consumption [6] and, as already mentioned, radio access networks
(RANSs) are responsible of 80% of mobile networks consumption [2], improving
mobile network sustainability clearly represents an additional objective to be achieved
in mobile networks.

In this context, the introduction of RESs as power supply of RANs appears an
attracting mean to jointly achieve a number of goals: making the cellular network
more independent from the power grid, decreasing the energy costs, and reducing the
carbon footprint of mobile communications. Relevant research efforts are devoted to
this topic, as it appears from the several studies in the literature focusing on the use of
alternative power supply for green cellular networks [7-9]. RESs can be effectively
exploited to power BSs jointly with the power grid in hybrid networks to reduce the
on-grid energy consumption and the cost for the electric energy supply [10-12]. The
potentiality of renewable energy (RE) is also investigated in Cloud-RAN scenarios,
where the baseband processing unit of BS is decoupled from the remote radio head
to provide more flexibility and address ever-increasing diverse communication needs
in the 5G framework [13,14]. Furthermore, with the spreading of fog computing as
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a way to move computing and storage capability closer to the network edge, RESs
are expected to be adopted to power fog nodes, in order to make them more energy
sustainable [15].

One of the most suitable solutions in an urban environment, due to the limited
environmental impact, is the deployment of PV panels and battery units. While the
most suited, still the available space for the installation of a PV-based generation
system is generally rather limited due to physical constraints and to possible autho-
rization constraints. It is necessary to trade off the system dimensioning requirements
to significantly reduce costs and the carbon footprint, on the one hand, and the fea-
sibility constraints that limit the maximum available surface that can be occupied by
the RE generation system, on the other hand.

However, a wider penetration of RE to power BSs is expected in the next future.
In particular, for solar energy, more efficient modules are bound to be brought into
the market that will improve the feasibility of RE systems, especially in urban envi-
ronments. Although currently available commercial modules, built with traditional
technologies based on crystalline silicon, show an efficiency that never exceeds
20%, emerging technologies (like CPV—Concentrating Photovoltaics) should allow
to increase the efficiency to more than 30% [16—18]. This will positively affect the
area required to deploy a PV system, since currently almost 5 m? are needed per each
kWp of PV panel capacity [19]. In addition, the shift from the traditional electric
power grid to the SG paradigm has brought several benefits to the electricity man-
agement. Several functionalities supported by the SG rely on an efficient exchange
of huge monitoring data volumes that will be further enhanced by the 5G technol-
ogy. In particular, the SG framework allows an active interaction between producer
and consumers, leading to a better match between energy demand and supply, and
enables power grid monitoring for predictive maintenance, enhanced energy man-
agement, and better integration of RESs. However, new cyber vulnerabilities arise
in an Internet-connected grid that may be subject to power outages caused by cyber
attacks. In this context, RESs represent a promising solution to make the mobile net-
work more independent from the SG and more robust to power outages to guarantee
the continuity of service.

In this chapter, we discuss the challenges associated with the introduction of
RESs, in particular PV panels, to power mobile access networks. To ease the dis-
cussion, we introduce three scenarios that we consider representative of the main
families of application contexts and we refer to the scenarios when we present the
relevant challenges and some of the solutions. In detail, this chapter is organized as
follows. In Section 5.2, we first present an overview of the main challenges raised by
the utilization of RE to power mobile networks. Section 5.3 details the green network
scenarios that will be investigated in this chapter, whereas Section 5.4 highlights the
critical issues to be addressed with specific reference to the different presented sce-
narios of renewable powered networks, describing possible solutions to achieve MNO
goals. Section 5.5 details how the previously presented issues are tackled in real case
studies, detailing the actual implementation and application of the proposed solutions
and providing some performance analysis. Conclusions are drawn in Section 5.6.
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5.2 Renewable energy to pursue mobile operator goals

As previously mentioned, RES-based power supply for the BSs represents a valid
solution to decrease the operational expenditures (OPEXs) of MNOs, lower the car-
bon footprint, and make the access network energy self-sufficient with respect to
the power grid. However, some critical issues may raise when introducing RES in
mobile networks and, in particular, the main ones are due to the intermittent nature
of RE production, as well as the intraday and inter-day variability. In this section, we
investigate these variabilities.

5.2.1 Renewable energy production variability

In what follows, we consider as an example the case of the city of Turin, in Italy, that
is representative of a large number of temperate areas. The daily energy production
profile of a PV panel of 1 kWp production* is reported in Figure 5.1 for 3 months of
different seasons. First, observe the different production levels in different months;
in summer, the typical production is three times the one of December. This element
is already quite critical indicating that a PV panel dimensioning for summer times is
clearly inadequate in winter, and, conversely, a dimensioning defined based on winter
production leads to extra production in summer times.

Second, it can be noted that different days of the same month have, in their turn,
quite different production levels, again indicating the difficulty in defining a proper
dimensioning of the PV panels. Moreover, within the same day the profile obviously
follows the typical day/night pattern with peak productions around 1 pM and starting
production time that is seasonal dependent. To investigate the latter factor, observe
the duration of daylight for 3 winter months in Figure 5.2(a) and the corresponding
daily production in Figure 5.2(b). The daylight slowly but significantly changes in the
period and a high daily variability overlaps with these slow changes. The inter-day
and intraday variability is highly affected by medium and short-term variations of the
weather conditions (e.g., sunny versus rainy days, fast cloud movements within the
same hour in a partially cloudy day, ...).
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Figure 5.1 Daily profiles of RE power production (W) per 1 kWp in different
sample months in Turin (results obtained with PVWatts) [20]

*The kilowatt peak (kWp) is the unit of measure of the nominal power of a PV panel, as measured under
Standard Test Conditions (STCs). STC include a light intensity of 1,000 W/m?, a solar spectrum of airmass
1.5 and a module temperature of 25°C. A PV panel with 1 kWp of nameplate capacity is able to produce
up to 1 kWh of solar energy per hour when operating at its maximum capacity under STC.
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5.2.2 The problem of uncoupled traffic demand and solar
energy production

While seasonal variations imply a difficulty in properly dimensioning the power sup-
ply system, the inter-day and intraday variability calls for dynamic power management
strategies. The strategies need to take into account both energy production and energy
demand, keeping in mind that their patterns may not result coupled and the energy
management can therefore get even more complicated. Indeed, regarding the solar
energy production, its intermittence is strictly linked to the night—day alternating and
to the season succession, and the level of solar generation is highly influenced by the
location latitude and by the short-term and long-term weather condition variabilities.
The mobile traffic patterns vary a lot over time mainly depending on the area type
(whether rural or urban regions, residential or business areas or locations where spe-
cial events occur periodically ...), on the period of the week, and on the time of the
year (national holidays or vacation periods ...). Hence, the energy demand pattern
is not always coupled with the RE production profiles. Figure 5.3 shows the traffic
profiles for a typical weekday (continuous line) and weekend day (dashed line), both
in a business (BA) and a residential (RA) area (red circles and blue squares, respec-
tively). The traffic patterns are derived from real data provided by one of the main
Italian mobile operators. In the BA, the traffic peaks are observed during the central
hours of the day during the week, while in the evening and during the night almost no
traffic is registered, like it is observed during the whole weekend. Conversely, in the
RA, the traffic demand gradually rises in the morning hours to achieve the highest
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Figure 5.2 (a) Daylight time duration across the 3 months and (b) normalized
daily RE production with its moving average [20]
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levels in the evening and night hours. Clearly, only in the BA, the weekday energy
demand appears somehow coupled with the RE production, whereas in the RA, the
energy demand results higher during period in which no RE can be produced. In this
latter case, the energy management becomes more critical.

The RE production intermittence and the traffic variability imply the need for
some kind of storage, to harvest for future usage any extra amount of energy that is
produced but cannot be immediately used. In addition, proper energy management
strategies are required to efficiently use the generated RE, limiting the RE wastage
and making the RE system dimensioning feasible in terms of capital expenditures
(CAPEX) and area occupancy.

5.2.3 Traffic load and BS energy consumption

Finally, concerning the relation between traffic and energy demands, it is worth to
be mentioned that the BS energy consumption does not grow proportionally with
the traffic load. Figure 5.4 depicts the power consumption profiles for a Long-Term
Evolution (LTE) macro BS in a BA and RA (red and blue curves, respectively), during
the week-day (continuous lines) and the week-end (dashed lines), based on the same
traffic data reported in Figure 5.3 and on the EARTH consumption model [3]. Despite
huge traffic variations over time, a consistent fixed amount of power is consumed,
even when the traffic is negligible, leading to a power wastage for long periods in
which the traffic is low. Considering a micro LTE BS, the little traffic proportionality
of the BS power consumption becomes even more evident, with a fixed consumption
accounting for up to 80% of the maximum energy demand of the BS. This little
load proportionality of the BS consumption represents a critical issue that must be
addressed in order to make the mobile network more energy efficient. New generations
of BSs exhibit a consumption more proportional to the actual traffic load. However,
the penetration of these new access network devices is far from being widespread
in mobile systems. Hence, proper solutions need to be deployed and implemented
to make the current access network infrastructures capable of dynamically adapting
their energy consumption to the actual traffic variations that are observed over time.
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Figure 5.3 Week-day (wd) and week-end (we) traffic loads in a business (BA) and
residential (RA) area [21]
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5.3 Scenarios

We now present the three different scenarios that will be investigated to understand
the manifold roles played by the use of RE to power RANSs. These scenarios represent
the main situations in which the use of RE to power RANS is particularly interesting.

5.3.1 On-grid BSs in an urban environment and reliable
power grid

With the exponential increase of the mobile traffic expected in the next years and the
need for ubiquitous high-speed mobile access, smoothly supporting users mobility,
MNOs are enforced to deploy more and more densified mobile access networks.

The typical considered scenario is shown in Figure 5.5. It consists of a portion of a
densified access network, composed by a macro BS that provides baseline coverage,
and a set of additional micro BSs that guarantee additional capacity during peak
periods of traffic demand. The considered access network is deployed in an urban
environment where the electric grid is available and fully reliable. The BSs are powered
by a hybrid system, since they can draw energy from the electric grid but they are also
equipped with a set of PV panels to locally produce RE. Furthermore, a set of battery
units stores, for future usage, any amount of produced energy that is not immediately
used. Although the PV panels and storage units may be distributed or centralized, a
central control unit is in charge of energy management. Any BS can exploit the energy
produced by any PV panel and stored in any battery unit, so that a wider flexibility and
a higher efficiency can be guaranteed in terms of RE usage. The central controller also
operates as radio resource manager to properly perform operations such as activating
or deactivating the BSs and redistributing load among BSs.
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Figure 5.5 Scenario 1: urban environment and reliable power grid

5.3.2 Off-grid or on-grid BSs with unreliable power grid

Emerging countries represent a huge market where MNOs are willing to invest to
deploy adequate mobile access networks to satisfy the traffic demand that is currently
growing exponentially. Nevertheless, the electric power infrastructure is currently
insufficient for the demand and its expansion cannot keep the pace with its staggering
increase. The power grid experiences frequent power outages that make the electric
network unreliable.

In addition, more and more often MNOs need to provide Internet access in remote
regions, where the electric grid is completely unavailable. The use of diesel generators
to make up for the lack of electric supply, besides not being a green solution, leads to
huge OPEX, due to the high cost for fuel transportation and storage. In both cases,
the implementation of renewable powered BSs can effectively address the need for
energy self-sufficiency. However, a careful dimensioning of the RE generation system
is essential, since the requirements to make the mobile network self-sustainable are
clearly more difficult to meet. A crucial role is played by a properly size energy
storage, whose capacity should allow to accommodate an energy amount suitable for
compensating the RE production intermittence. A full level of energy self-sufficiency
may be a hard target to be achieved by using RESs only. A minimum level of quality
of service (QoS) may therefore be defined, envisioning the possibility of allowing
some coverage interruptions or temporary suspensions of some types of services, i.e.,
data service.

Asshown in Figure 5.6, as a case study, we consider a single off-grid BS providing
coverage on a remote region that is powered only by a set of PV panels and is equipped
with a set of battery units.
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Figure 5.6 Scenario 2: off-grid BS in emerging country or emergency situation

A similar scenario, with similar challenges but slightly different constraints,
occurs in emergency situations in which power supply becomes unavailable or
unreliable due to the effect of the critical event.

5.3.3  Green mobile networks in the smart grid

With the shift toward the SG paradigm, the presence of several distributed energy
producers is replacing the traditional approach that envisioned a single energy supplier
serving many distributed consumers. The risk of a mismatch between the user energy
demand and the electric power supply grows and this calls for techniques to improve
or induce a better balance between energy consumption and provisioning.

SG operators (SGOs) try to induce users to shift their consumption from peak
to low-demand periods, so as to flatten the energy demand pattern peaks and to
dynamically adapt the energy user demand to the actual available supply. To this
extent, SGOs are extensively deploying demand respond (DR) strategies. Customers
participating in DR programs are periodically requested by the SGO to increase or
decrease their consumption, on the basis of the current supply availability. Whenever
the users satisfy the requests from the SG, they receive some incentives, either in
terms of an additional monetary rewards or energy price reductions.

In this framework, MNOs can play a significant role. With the increasing mobile
network densification expected in the next years, there may be a huge margin for
MNOs to modulate their energy consumption from the electric grid to satisfy the SGO
requests, thus obtaining a considerable reduction of the electric bill and, ultimately,
contributing to improve the reliability, stability, and power quality of the SG. The
introduction of RESs can help one to reduce the power drawn from the grid when
the SGO requests its users to decrease their consumption. In addition, by coupling
RE generators with some battery units, the BSs can be powered whenever the SGO
requests to decrease consumption, even if no RE is produced in that moment, and extra
amounts of energy can be drawn from the grid, in case an increase of the consumption
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is requested. Finally, the participation in a DR program allows any extra produced
energy that is neither used nor stored to be sold back to the SGO instead of being
wasted, thus mitigating the dimensioning discrepancy issue between cold and warm
seasons.

The third scenario that we consider is a portion of an on-grid renewable powered
mobile access network similar to the one described in the first scenario. In this case,
as depicted in Figure 5.7, the SGO implements a DR policy to enforce changes of
the energy consumption pattern of its customers. The MNO that participates in such
a program, applies, through a central control unit, an energy management strategy to
properly interact with the SG and accomplish its requests. As in the first scenario, the
central control unit also operates as radio resource manager to activate or deactivate
the BSs and redistribute the load among BSs. Furthermore, the controller is also in
charge of shifting some traffic toward close-by access points (APs), in case some
Wi-Fi offloading (WO) techniques are implemented to temporarily reduce the mobile
network load.

5.4 Challenges, critical issues, and possible solutions

We now present some among the main challenges that can be encountered when
RESs are employed to power mobile networks, with reference to the scenarios already
introduced in Section 5.3. Furthermore, we describe possible solutions that can be
adopted by MNOs to tackle the detailed issues. The performance and effectiveness
of the proposed solutions in achieving the MNO goals in the various scenarios will
be investigated in the next section.
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Figure 5.7 Scenario 3: demand response framework
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5.4.1 PV system dimensioning

The proper sizing of PV panels and storage in a renewable powered mobile network
represents a critical task under several aspects. First, feasibility issues impose strict
constraints in the RE generation system deployment. The efficiency of PV modules
currently available on the marketplace falls typically below 20%, requiring a surface
occupancy of about 5 m? per kWp of capacity. Hence, in an urban environment, such
as the one of the scenarios 1 and 3 previously presented, physical constraints rather
than high CAPEX represent a remarkable limitation to the free deployment of RE
generation power.

In addition, operational cost can be highly affected by the need to periodically
replace the battery units. Whereas the lifetime of a PV panel from installation can
usually last up to 25 years, the lead-acid batteries, which are the type of storage most
commonly employed in RE generation systems, need to be replaced after a few years
of operation. The battery lifetime depends on the number of charging/discharging
cycles undergone during operation, with the need for battery replacement after an
average of about 500 cycles under a maximum depth of discharge of 70% [23]. For
fixed PV panel capacity, a small set of lead-acid battery undergoes a higher number
of charging/discharging cycles with respect to a large battery unit operating in the
same period. This means that a battery with larger capacity, despite showing higher
CAPEX, will likely last longer than a smaller battery, thus leading to lower OPEX
due to less frequent replacements required.

A proper planning and deployment of RE-powered mobile networks strongly
depends on the presence and reliability of the electric power grid. On the one hand,
the main focus of RES usage in on-grid scenarios (scenarios 1 and 3) is reducing
operational costs, with physical constraints limiting the maximum expansion of PV
panels. On the other hand, in the off-grid case (scenario 2), the efforts aim at achieving
the highest possible level of self-sustainability, trading it off with QoS constraints. In
particular, QoS constraints should be relaxed to allow a feasible deployment in terms
of CAPEX, still limiting the QoS impairment to reasonable levels.

The latitude and local weather conditions of the RE generation system installation
strongly affect the correct sizing of PV panels and batteries. Indeed, high seasonal,
inter-day and intraday variability of RE production makes it harder to determine
a proper system dimension that is suitable to satisfy the mobile network demand
across the whole year. This aspect clearly constitutes a remarkable and more critical
obstacle in sizing the RE powering system for off-grid BSs, considering the required
trade-off between the RE overproduction during the warm season and the RE system
underdimensioning during the cold season. Conversely, in on-grid scenarios, the extra
need for energy that is not satisfied by the local RE production can be covered by
the brown energy, i.e., the energy drawn from the electric grid, that is assumed to be
derived from not RESs. In addition, ina DR framework, in the case of an RE generation
system that results overdimensioned during the warm season, extra amounts of RE
can be sold back to the SGO instead of being wasted, providing additional revenues.

The complexity of the dimensioning procedure requires the deployment of sim-
ulation and stochastic models that take into account all the aforementioned critical
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aspects. In the literature, some studies can be found investigating the performance
of renewable powered mobile networks under variable combinations of PV panels
and battery sizing, either via simulation or stochastic models [21,24]. Few papers
explicitly analyze the system sizing problem and thoroughly examine the impact of
variable system dimensions on the battery depletion probability, system costs, and
network performance, by means of simulations, stochastic models, and optimization
approaches [19,25-30].

5.4.2 System operation and management

An overview of the system operation and management challenges in solar-powered
mobile networks is now presented.

Energy management. In a renewable powered mobile network, a proper energy
management must be envisioned to efficiently use the available energy resources.
In our investigation, a simple energy management policy is assumed, based on
which the solar energy is first used to power the BS, whereas only the extra
amounts of RE that are not immediately used for powering the BS are harvested
into the storage to be used later on to power the BS in the case of RE unavail-
ability. This behavior follows a principle that is similar to the harvest-use-store
paradigm that is adopted in wireless networks [31,32]. Following this principle,
charging/discharging losses can be minimized with respect to the case in which
the battery is first charged and then the energy is drawn from the storage to sat-
isfy the BS demand. Indeed, charging/discharging losses are not negligible at all,
amounting up to 25% [33]. When no RE is currently being generated or if its
production is not sufficient to satisfy the BS demand, energy can be drawn from
the storage. Only if the battery is discharged, the required energy is taken from
the power grid, if available. In our system, we assume that a single centralized
PV panel installation produces RE that can be distributed to operate the vari-
ous BSs. However, scaling up to wider scenarios that include larger portions of
mobile access networks, distributed PV panel installations should be envisioned.
Even in this case, RE could be shared among BSs by means of energy sharing
techniques based on energy transmission mechanisms; in this way, it is possible
to take better advantages of locally produced RE and further limit the energy pro-
curement from the SG [34]. A proper energy management should guarantee that
the battery charge level never falls below a minimum threshold, corresponding to
a maximum depth of discharge of 70%, that allows to prevent charging efficiency
impairment [35] and to limit battery aging [36] and capacity loss [37].

Radio resource management. The benefits of the RE use in mobile networks can
be enhanced by the synergic effects provided by the implementation of Resource
on Demand (RoD) techniques. As it can be observed from Figure 5.4, the typical
LTE BS power consumption is very little traffic proportional and even during
periods of negligible traffic, up to 80% of the maximum energy consumption is
consumed, with huge energy wastage and useless cost for MNOs. Furthermore,
busy hour Internet traffic is growing more rapidly than average Internet traffic [4].
Hence, considering that mobile networks are typically dimensioned based on peak
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demand, the over-provisioning issue and the related energy wastage are bound to
become even more evident. RoD strategies are widely adopted to make the mobile
network consumption more proportional to the actual traffic demand that may vary
a lot over time. In particular, BS sleep mode approaches can exploit the energy
consumption decrease by means of gradual deactivation of radio components, to
enter progressively lower power levels. Simple on/off switching policies are based
on this principle and can effectively reduce the power consumption, although
MNOs can take advantage of energy saving approaches based on new multi-
sleep-mode power models featured by next-generation BSs. Several studies are
devoted to the application of these techniques to new-generation mobile networks,
also considering renewable powered BSs [28,38—40].

e Wi-Fi offloading. WO techniques can also be introduced in the system. WO
consists in transferring a portion of the mobile traffic from the BSs to some
nearby Wi-Fi APs. This technique is commonly adopted to relieve mobile access
networks from a part of their traffic load during peak hours in heterogeneous net-
works. WO alone may not lead to remarkable reduction in the consumption, due to
the limited load proportionality of energy consumption. However, when applied
in a scenario where the BSs can also be switched on and off, WO allows one to
further decrease the number of active BSs, hence to further reduce the system con-
sumption. Policies are required for managing the timely activation/deactivation
of radio resources and to shift traffic from switched off BSs to active BSs or to
neighboring APs.

e Traffic prediction. Finally, in renewable powered network scenarios, especially
when RoD strategies are envisioned, the prediction of RE production, traffic,
and energy prices becomes crucial to deploy energy management algorithms
capable of following and adapting to the system dynamics, with the purpose
of optimizing the reduction of brown energy as well as the financial benefits,
still maintaining an acceptable QoS. To this extent, predictive approaches based
on machine learning (ML) techniques represent a promising solution to further
improve the overall system performance. Several different types of management
strategies can be implemented that integrate the prediction of various system
parameters. For instance, RoD policies can take decisions based on the short-
term or medium-term prediction of the traffic demand, the RE production, the
battery charge level.

5.4.3 Interaction with the smart grid

In an SG context, the use of RES to power the mobile network can be effectively
controlled by properly designed energy management strategies to adapt the operational
decisions taken on the network to follow the dynamic variations of the energy price
or to dynamically satisfy the periodical requests from the SG in a DR framework,
as shown by few studies from the literature confirming the potentiality of similar
scenarios [41—43]. For example, when the request from the SGO is of decreasing
the consumption, the mobile network can use the locally produced RE or the energy
previously stored in the battery. In case the SGO requests its customers to increase
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the consumption, some extra amount of energy can be drawn from the grid and stored
into the battery for future usage. The interaction between MNOs and SGO can be
further improved by exploiting the combined application of RoD approaches and
WO techniques [44,45]. When RoD and/or WO strategies are applied, the operational
management process must integrate proper decision algorithms allowing to timely
activate/deactivate BSs and to move traffic among BSs or close-by APs, so that these
strategies can effectively be exploited to enhance the accomplishment of SG requests
when it requires to decrease the energy demand.

In addition, in a smart city environment, new business models are emerging
that may further boost the penetration of RE in mobile networks, contemplating the
appearance of multiservice providers and opening the way to brand new scenarios. In
a similar context, MNOs could exploit the cooperation with Household Consumers
(HCs) to enhance the interaction with the SG and reduce the energy bill. The MNO
performs some kind of agreement with HCs that participate to the same DR program
and that are willing to contribute to the achievement of the MNO goals, for instance
by modulating their own energy demand to the advantage of the mobile network. In
return, the HCs willing to join the cooperation program receive some benefits from
the MNO in terms of discounts on the pricing of communication or free additional
benefits (e.g., higher speed Internet connection) when stipulating the contract for the
Internet access provisioning.

The specific scenario is presented in Figure 5.8. HCs accept to help the MNO in
accomplishing SG requests when a reduction of the energy consumption is requested,
in case neither RE is currently available nor any BSs can be switched off due to high
traffic load.

Another example of a future possible scenario could be the cooperation between
MNOs with electrical vehicles that could operate both as moving mobile antennas
and backup batteries for the cellular network.
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Finally, a very important challenge is cybersecurity of the integrated SG and
communication network infrastructures. With the diffusion of the SG concept as a
new paradigm in power networks, new vulnerabilities arise in the electric system
in urban scenarios, making it more prone to new types of cyber attacks that may
significantly and abruptly impair the power grid reliability.

5.5 Some case studies

We now show more in detail the actual performance and effectiveness of some of the
solutions presented in previous section, considering the different scenarios illustrated
in Section 5.3.

5.5.1 Photovoltaic system dimensioning

Starting from the objective of reducing costs, Figure 5.9 shows the total capital and
OPEX for a renewable powered BS in the city of Turin, assuming various levels of
independence from the grid that result inversely proportional to the parameter P7.
This parameter denotes the percentage of time in which the RE production is sufficient
to satisfy the BS demand, without the need to draw energy from the grid. As compar-
ison, the graph reports the case of an urban environment (pink line), corresponding
to scenarios 1 and 3, where the BS is only powered by the grid (corresponding to
scenario 1), and the case of an off-grid BS (green line, with circles), where the grid
is not available at all and the power supply is only provided by a diesel generator
(scenario 2). Whereas a full self-sustainability can be obtained at the price of high
CAPEX, a hybrid power supply consents to remarkably reduce the initial investment,
still obtaining benefits in terms of OPEX. In an urban scenario, a hybrid system
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Figure 5.9 Total cost (CAPEX + OPEX) for different values of the parameter
PT [46]
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dimensioned to allow a PT =80% costs about 75% less than a pure solar system,
becoming even cheaper than the grid-only case after 8 years of operation. The battery
units need to be replaced more frequently than the off-grid case, as shown by the
small steps in the cost curves. In an emerging country scenario, the initial investment
is necessarily high. However, the total cost becomes more convenient compared to a
diesel generator in less than 5 years of operation.

These results indicate that, from an economical point of view, RE-based power
supply is convenient in several scenarios, and the convenience increases if it is possible
to rely on some backup power system and full self-sustainability is not required.

The solar radiation is highly location dependent, hence the latitude and the
weather conditions of the location where the renewable powered mobile network
is installed show a considerable impact on the proper system dimensioning [46].
Figure 5.10 reports the simulated battery charge level of a 12 kWh storage unit in two
different urban scenarios, Turin and Aswan, over a year, assuming a PV panel capac-
ity that guarantees a PT =70% and a single BS. The selected locations differ for the
solar radiation profiles, with the radiation in Turin featuring a much higher intraday
and over season variability. The required PV panel size results 13% larger in Turin,
where the average RE production is lower and shows a higher variability. The red
portion over 100% represents the loss of produced RE that cannot be stored, whereas
the red zone below zero corresponds to the energy drawn from the grid to operate the
BS when the battery is depleted. In Aswan, although deeper battery charge/discharge
cycles can be observed with respect to Turin, we note a relatively more stable depth of
discharge. Furthermore in Turin, due to the remarkable solar radiation variability from
day to day and over seasons, the system tends to result significantly overdimensioned
in Summer, leading to consistent energy waste if no energy sell-back is possible,
whereas in the rest of the year some energy must be taken from the grid in any sea-
son. Conversely, in Aswan, the lower radiation variability makes the dimensioning of
the RE system better matched to the BS power demand during the whole year, with
limited wastage, and the need for brown energy is mainly observed in Winter.
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Figure 5.10 Charge level of a 12 kWh battery, assuming a PV panel capacity
of 4.3 kWp in Turin (a) and 3.8 kWp in the city of Aswan (b),
respectively, with PT = 70% [46]
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A firstindication that we can derive from these results is that the dimensioning and
the dynamic behavior of the PV power system strongly depend on the meteorological
conditions; for example, quite different patterns of battery usage are observed in
locations with different degrees of variability of energy production.

Besides geographical location, also the type of traffic pattern affects the system
dimensioning. Figure 5.11(a) reports the amount of energy bought from the grid in
a year, Eg, for different PV panel sizes and battery units (Sp and Sg, respectively),
considering a portion of a mobile access network in two areas characterized by a
residential (RA) and a business (BA) traffic. As the panel size increases, the energy
from the grid reduces, especially for values of panel sizes <45 kWp. For a fix panel
size, a larger battery allows to further decrease the energy bought from the grid, both
in RA and BA. Moreover, also the resource management influences the dimensioning.
Figure 5.11(b) shows that under the application of a RoD strategy, a target threshold of
maximum Eg = 50 kWh can be achieved with panels as small as 27 kWp, more than
30% smaller than without any RoD. Furthermore, the benefit of the RoD application
is more evident in the RA, since the peaks in the traffic patterns result coupled with the
peaks observed in the RE production profiles. In a business area, most of the traffic
is generated during working hours; hence, the renewable power can be immediately
used to run the BS.

In a scenario where the grid is not available, the dimensioning of the RE sys-
tem becomes very critical, considering the feasibility constraints and QoS issues
raised by the possible impairment of the continuity of service. Furthermore, the
location-dependent RE production variability may have a remarkable impact on the
proper system sizing. Figure 5.12(a) shows the battery occupancy, By, obtained from
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Figure 5.11 Yearly grid energy, Eg, versus Sp in residential and business area (RA
and BA), for different values of the energy storage capacity [25]:
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a stochastic model for a single BS powered by RE, for various levels of average
renewable power generation, denoted as REp. REp is represented as a random vari-
able with uniform distribution, considering different values of its variance. As it can
be observed from the figure, the impact of the variance is very high, especially for
intermediate levels of RE generation. For fix mean RE production, a low variance
allows to achieve higher mean values of battery charge; hence, smaller panels can be
used in this case. However, when the RE production is not sufficient for satisfying
the BS demand (REp < 250 W), the battery tends to be depleted more easily if the
variance is higher. Figure 5.12(b) highlights the impact of the variance (vg) on the
amount of energy that should be provided by an alternative energy source, like a
diesel generator, denoted G, assuming different values of RE production, REp. As
the variance increases, the value of G becomes higher. The ascent results steeper for
low values of mean RE production, whereas it decreases up to becoming negligible
as the RE production level increases.

To investigate more in detail, the effect of the variance, we consider five different
day types based on the average energy that is produced during a day and we evaluate the
battery charging and discharging process during these different day types. Figure 5.13
depicts the results for the average hourly battery charge of a solar-powered BS in the
various day types assuming a storage capacity of 25 kWh. During the nighttime,
the BS drains the energy stored in the battery during the peak production hours. At
the end of the day, the balance can be positive (for good weather days, e.g., type 5) or
negative (for bad weather days, e.g., type 1). Observe how different the charge levels
are in different day types. Clearly, by increasing the panel capacity, larger amounts
of energy are stored in the battery. The most critical days are those with bad weather
(type 1) and it is necessary to double the PV panel size (from 20 to 40 kWp) to observe
a relevant effect on the battery charge level.

An important contribution to the feasibility of these systems, to the reduction
of the PV system size and cost, is provided by the shift toward new technologies
for the BSs. The consumption of next-generation BSs shows lower average power
levels and it results to be more load proportional. Figure 5.14 compares the battery
charge level and the probability of battery depletion of a renewable powered BS under
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two BS consumption models: the EARTH model (denoted as EarthM in the figure)
[3], corresponding to the currently most widespread BS technology, and the next-

generation BS consumption model (2020M) [47]. Both the residential and the business
areas are considered.
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The new BSs (2020 model) yield to better performance than the traditional ones,
represented through the EARTH model, guaranteeing a battery charge level that is
more than three times higher even with a panel as small as 20 kWp. For the new
BSs, the panel size required to achieve an almost zero probability of empty battery
(20 kWp) is half the capacity needed for the traditional model. This confirms that
the new-generation BSs make the use of RE less expensive, leading to the possible
increase of the diffusion of renewable powered BSs, in both those regions where the
grid is not available or unreliable, as well as those with a reliable power infrastructure.
In addition, more efficient PV modules will be brought into the market in the coming
years, further reinforcing this trend.

5.5.2 System operation and management

In previous section, we have observed that power system dimensioning is a difficult
task. Hence, a proper joint management of the RE usage and of the mobile network
operation can be a fundamental help to improve the system feasibility and to reduce
cost. Consider the use of RoD strategies. Figure 5.15 shows the values of the mean
yearly cost (CAPEX + OPEX) averaged over a period of 25 years for a cluster of
solar-powered BSs, also including the cost for battery replacement, together with the
requested size of the PV panel, Sp, for different target levels of energy self-sufficiency,
denoted as /5, : the bottom plots refer to the cases in which RoD is adopted, while top
plots correspond to cases in which no RoD is used. For example, the case fg,,,. = 0
corresponds to a design target that requires that no energy should be bought from the
grid; the case fg,,,, = 1% allows that up to 1% of the times energy can be purchased
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from the grid. Note that, despite a similar energy demand in the RA and in the BA
when all the BSs are always kept active, RoD in the BA allows to save twice (26%) the
energy saved in the RA (11%). Assuming a system totally independent from the grid,
as in scenario 2, the RoD strategy reduces cost by 17% in RA, against a 39% decrease
obtained in BA, due to a larger decrease in Sp. By slightly relaxing the constraint on
self-sustainability up to 1%, as for scenarios 1 and 3, RoD never decreases cost by
more than 14% in RA, against a 41% reduction in BA, due to the smaller required
Sp. Again, this is partly explained by the coupling between the radiation patterns and
the traffic profiles in the BA. Considering that a surface of about 5 m? is required
per kWp, a similar reduction of the panel size allows to more easily address the strict
physical constraints that prevent the installation of large PV systems occupying wide
areas in urban environment. Conversely, it is not very effective to further lessen the
constraint on fg,,,, both in terms of PV panel size and cost.

In order to operate the network dynamically, for example, using RoD strategies,
accurate predictions of the traffic are required. To this extent, ML techniques represent
an attracting solution, since they can be applied to obtain reliable real-time forecasts
of the user demand. In particular, several papers are available in the literature inves-
tigating the potentiality of neural networks for load prediction in various contexts,
from power networks [49-52], to heat systems [53], to Cloud Data Centers [54].
To investigate the effectiveness of similar approaches, we report in Figure 5.16 the
energy saving and the traffic loss observed under application of RoD coupled with
various traffic prediction algorithms. Eight portions of a RAN are considered, each
featuring a different traffic profile. Traffic data are derived from real traces provided
by an Italian MNO from a wide area, including the city of Milan, for a duration of
2 months in 2015. The eight areas were selected for being quite representative of the
various zones that coexist in an urban environment: (1) the train station area, featuring
intense activity especially at the beginning and at the end of the working day (train
station); (2) a district hosting big events, fairs, and exhibitions, which might last for a
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Figure 5.16 Comparison of the effectiveness of prediction techniques: (a) energy
consumption reduction, (b) percentage of lost traffic [48]



134 Green communications for energy-efficient wireless systems

few days (Rho Fiera); (3) a turistic area, with high activity levels during several hours
of the day (Duomo area); (4) the university area, hosting a huge campus (PoliMi);
(5) the soccer stadium area, where the activity is quite bursty and variable, depending
on the held events (SanSiro); (6) a business neighborhood, with traffic peaks in the
central hours of the day (business); (7) a residential area, where the traffic demand
raises in the evening hours (residential); and (8) an industrial zone, with business
traffic profile (industrial).

The RoD decisions are taken based on the RE production forecast and on the
traffic predictions. RE production is forecast by applying a linear regression-based
method on real traces that are obtained from the tool PV Watts. Regarding the traffic
prediction, various ML approaches are evaluated. The training phase is performed on
historical data over a period of 47 days, whereas the remaining 14 days of the dataset
are used for the run-time phase. The ML techniques proposed for traffic prediction
include the following:

1. A method based on Block Linear Regression (BLR) [55], in which the predictor
reflects the daily and weekly periodicity of mobile traffic, is formulated using
the linear regression. A single model is constructed to forecast the traffic of the
entire BS cluster.

2. Four different methods based on artificial neural networks (ANNSs) [56]. These
methods employ as input five different sample values of the traffic selected
among those registered in the previous hour and in the previous 2 days at the
same daytime. For each BS, a single ANN can be used, without distinguishing
the daytime (1 ANN), or 24 ANNs are used, one per each hour of the day (24
ANNSs). Furthermore, 2 ANNs can be separately trained for each BS, 1 for the
week-day traffic pattern and the other for the week-end pattern (2 ANNG5). Finally,
48 ANNSs can be separately trained, 1 per each of the 24 h of the week-day traffic
pattern and the remaining 24 for each of the 24 h of the week-end pattern.

3. A long short-term memory cell (LSTMC) algorithm that exploits a recurrent
neural network trained for each BS [57].

4. A Baseline algorithm (Baseline), a simple method against which the performance
of the tested ML approaches is compared. It is based on the computation of the
average traffic demand, either for week-days or for week-ends, for each hour
using the traffic samples belonging to the corresponding training dataset and it
is used as the predictor [48].

5. A Baseline withANN (BaselineANN) algorithm that is similar to the previous one,
but an ANN is adopted to perform the traffic prediction [48]. This algorithm takes
as inputs the difference between the estimated traffic value (according to Baseline
method) and the actual values of traffic demand at five different time instants,
selected among the previous hour and in the previous 2 days, at the same time.

The energy saving reported in Figure 5.16(a) is computed with respect to the ref-
erence scenario, in which no action is taken to reduce energy consumption, i.e., RoD
is not used. In Figure 5.16(b), the ideal case assumes a perfect knowledge of future
traffic demand. Results show that up to 40% of energy can be saved in all the areas,
with an energy consumption level that is very close to the ideal case with almost any
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of the algorithms, which turn out to be rather similar in terms of effectiveness. Energy
saving is obtained at the cost of QoS deterioration. Except for one of the algorithms
(BaselineANN), the other ML approaches show a similar QoS deterioration in each
zone, usually lower than 5% besides the traffic area. BLR, LSTMC, and n-ANNs algo-
rithms can hence be considered equivalent. Even if one of them may provide a more
energy-consuming configuration at some point during the run-time with respect to
another method, the same algorithm will provide a less energy-consuming one during
other periods, so that the differences among ML techniques are marginal.

Itis interesting to note that a good algorithm does not necessarily make an accurate
traffic prediction at any time, but it predicts the correct traffic demand right when
the traffic level is around the threshold according to which the decision of switching
on or off a BS is taken. Figure 5.17 reports the traffic predictions under the different
algorithms, compared with the actual traffic profile (black line with stars). Some
algorithms are not able to predict the traffic peaks or the periods of low traffic.
However, this does not significantly affect the performance of the ML techniques that
provide similar energy savings, since the prediction tends to be accurate around those
values close to the switching threshold, rather than at any traffic level. This is the
case, for example, of the baseline: its predictions around the peak traffic are pretty
bad, but they are good for values of the traffic corresponding to RoD decisions.

These results confirm that RoD strategies are feasible, but several challenges,
including correct estimation of the network condition at any time, need to be tackled.

5.5.3 Interaction with the smart grid

The possibility of interacting with the SG opens up new opportunities for MNOs in
terms of financial benefits. Proper energy management strategies need to be imple-
mented to achieve the desired economic goals. Moreover, considering that the mobile
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traffic demand cannot easily be reduced, the introduction of RoD and WO approaches
provides wider margin to accomplish the requests of the SG when it requests its cus-
tomers to reduce the consumption. Figure 5.18 shows the cost saving that can be
obtained from the combination of RE usage and resource management strategies.
Realistic patterns for the SG request occurrences are considered, and the energy
management algorithm described in Section 5.4.3 is implemented.

In the case in which no RE is locally produced (orange bars), the application of
WO and RoD, either alone or combined, allows to achieve up to 15.2% cost saving.
However, WO alone results more effective than RoD alone, providing almost double
cost saving. In addition, two cases are presented in which an RE generator is installed,
either with intermediate (denoted as I: Spy =5 kWp, B =5—Dblue bars) or large
(denoted as L: Spy = 10 kWp, B = 15—green bars) size. A local RE supply leads to
significantly higher cost savings. The energy bill can be completely nullified even
with intermediate RE system sizing, whereas positive revenues provided by the SG
to the MNO are obtained increasing the system size.

It is interesting to note that, unlike the case when no RE is produced locally,
the benefits provided by the application of WO in the presence of RE are lower with
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Figure 5.18 Cost saving under different RE system size [44]
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(2) With RE—under RE production (Spy = 10 kWp, B=15); (3) RE
selling—assuming that the extra amounts of produced RE are sold
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respect to the case of RoD alone. In particular, positive revenues are increased by up
to 40% under RoD alone, against 27% when only WO is applied. Combining RoD
and WO allows to increase revenues by up to 53% when WO and RoD are combined.
Further financial benefits can be obtained by envisioning the possibility of selling
back to the SGO extra amounts of RE that are not immediately used and, in case
they cannot be harvested in the storage, are usually wasted. Figure 5.19 compares
the cost saving obtained in a similar case (red bars) with the cases in which no RE is
locally produced (orange bars) or, if it is produced, it cannot be sold back to the SG
(green bars). The price per each energy unit that is sold to the grid is assumed to be
half the price due for each energy unit bought by the MNO from the grid. Under any
combination of resource management strategy, huge cost reduction can be obtained,
amounting to up to more than twice the energy bill registered in baseline conditions
in case no RE is present and no WO or RoD strategies are applied. In relative terms,
WO alone or RoD alone is equally effective in raising the cost saving, since they both
provide savings that are about 1.8-fold higher than those assured when no energy is
sold back to the grid. When WO is applied in conjunction with RoD, up to 223%
cost saving can be achieved. These revenues may contribute to compensate the higher
CAPEX faced for the initial installation of an RE generation system.

It should be observed that a good energy management strategy does not operate
by reducing the total grid consumption, but by timely increasing or decreasing the
grid consumption exactly when required by the SG. Figure 5.20 compares the amount
of energy bought from the grid, denoted E, and the operational cost under various
combinations of resource management strategies, either with or without a local RE
system. From the graphs, it appears evident the key role of a timely reaction to the SG
grid requests. Despite Eg is reduced by at most 48.3% when RE is locally produced,
the operational cost is not only nullified but even becomes negative, thanks to the joint
action of the WO strategy and the RE generation, along with storage, in improving
the interaction with the SG, providing huge rewards that compensate for energy cost
and penalties.

Finally, we present a case of cooperation between MNO and household customers
to show the potentiality of new business models that may arise in a smart city scenario.
Figure 5.21 depicts the yearly energy demand from the grid and the yearly energy cost
assuming that household customers may be available to postpone part of their load
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Figure 5.20 (a) Energy drawn from the grid, E¢, and (b) OPEX cost when no RE is
produced and under RE production (Spy = 10 kWp, B=10) [25,44]
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Figure 5.21 (a) Yearly energy demand from the grid and (b) yearly energy cost
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on behalf of the mobile network (HC Trade) and/or to offer WO service. RoD may
be applied as well on the MNO side. The green bars represent the case in which HCs
do not agree to postpone any load to the MNO benefit. The other bars correspond to
different levels of contribution by the HCs. The parameter x,, denotes the fraction of
load that the HCs agree to postpone on behalf of the MNO in the case of request of
decreasing the consumption from the SG.

The effect of increasing the values of x), on the reduction of the energy bought
from the grid is negligible, whereas it can give a relevant contribution to the MNO
cost saving. By increasing x,, from 5% to 10%, the cost saving is almost doubled only
when HC cooperation is applied alone. Higher values of this fraction, besides being
unlikely, do not provide significant further benefit in terms of energy bill reduction,
resulting 11%.

5.6 Conclusion

In this chapter, we focused on the introduction of RESs to power RANs. Motivated by
the increase of the operational costs to power the networks, the need to reduce carbon
footprint, and the interest in making power supply more independent from the power
grid, the introduction of renewable-based power supply is becoming more and more
attractive.

There are, however, a number of challenges and some possible solutions. MNOs
must tackle various critical issues to optimize the potentiality and benefits of similar
energy supply, also depending on the specific scenario where the renewable powered
networks are deployed.

First, the RE system dimensioning is a very hard task, made particularly critical
when the BSs should be completely independent from the electric grid. A slight
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relaxation on the self-sustainability constraints combined with RoD approaches
allows to remarkably reduce the size of the required PV panels, hence improving
the system feasibility by reducing the occupied area and CAPEX by up to more than
40%. In the future smart city scenario, dominated by 5G technology and characterized
by physical constraints typical of the urban environment, the feasibility of these RE
generation systems will be further enhanced by more efficient PV modules brought
into the market and by new-generation BSs featuring higher energy efficiency.

Second, network management and operation techniques can be tailored to
improve the feasibility and effectiveness of these systems, and proper system oper-
ation and energy management policies are required to efficiently use the RE and
guarantee the continuity of service. ML algorithms are proved to be effective in pre-
dicting mobile traffic load in real time, and this allows to dynamically adapt the
radio resources to the actual traffic demand, trading off energy saving and QoS, and
achieving energy consumption reductions of more than 40%.

Furthermore, the interaction with the SG provides relevant opportunities to
MNOs in urban environments, since they become significant stakeholders in demand
response frameworks. The use of RE properly combined with RoD techniques and
WO approaches makes it possible to dynamically adapt the network consumption to
the SG requests. MNOs can achieve significant cost reduction and even positive rev-
enues by implementing proper energy management policies that do not necessarily
operate by decreasing the total grid consumption but by timely reacting to the dynamic
SG requests.

Finally, new smart city scenarios offer wider potentialities for achieving MNOs
goals, by means of the cooperation with nonmobile users and the introduction of new
business models.

While several issues and challenges need to be further investigated to make it
possible to deploy on a massive scale renewable power supply for RANSs, the direction
is promising and will contribute to alleviate the concerns on cost, sustainability, and
global deployment of the communication infrastructures.
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Chapter 6

Coverage and secrecy analysis of RF-powered
Internet-of-Things

Mustafa A. Kishk!, Mohamed A. Abd-Elmagid®
and Harpreet S. Dhillon®

The Internet-of-Things (IoT) is an emerging digital fabric that will integrate our
physical world into computer networks by connecting billions of things, such as small
sensors, wearables, vehicles, and actuators, to the Internet. Owing to its massive scale,
it is considered highly inefficient and even impractical to replace or recharge batteries
of IoT devices, especially the ones that are deployed at hard-to-reach places, such as
under the ground or in tunnels. This has naturally led to the consideration of energy
harvesting to circumvent or supplement conventional power sources, such as replace-
able batteries, in these devices. Due to its ubiquity and cost-efficient implementation,
radio frequency (RF)-energy harvesting has quickly emerged as an appealing solution
for powering IoT devices (majority of which are tiny devices, such as sensors, with
very low energy requirement).

The objective of this chapter is to provide a comprehensive performance analysis
of RF-powered IoT using tools from stochastic geometry. In order to capture the
cyber-physical nature of IoT, our emphasis is on the metrics that jointly characterize
the wireless, energy harvesting, and secrecy aspects. In the first part of this chapter,
we characterize the joint probability of receiving strong enough signal and harvesting
sufficient energy to operate the link. We term this the joint coverage probability. In this
analysis, we assume that the locations of the sources of RF signals and the locations of
the ToT devices are modeled using two independent Poisson point processes (PPPs).
For this setup, we derive insightful mathematical expressions for key performance
metrics, which collectively provide insights into the effect of the different system
parameters on the overall system performance and how these parameters can be tuned
to achieve the performance of a regular battery-powered system. In the second part of
this chapter, we also incorporate the secrecy aspect in our analysis. In particular, we
study the secrecy of RF signals when the RF-powered IoT devices are placed close to
the sources of RF signals. Rigorous mathematical expressions are derived for various
performance metrics, which provide several useful system design insights.

ICEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. This
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6.1 Introduction

Owing to its ability to transform current towns and cities into smart and connected
communities of tomorrow, [oT is widely regarded as one of the next frontiers in infor-
mation and communications technology. The grand vision for an IoT network is to
tightly integrate the cyber and physical worlds by connecting billions of things, such
as small sensors, wearables, vehicles, and actuators, to the Internet. This will naturally
enable numerous applications across many industrial verticals, such as home automa-
tion, intelligent transportation systems, public safety, agriculture, and medicine. A
key hindrance in making this vision a reality is the energy-constrained nature of a
majority of IoT devices [1]. It is well known that most of these devices will have to
be battery powered, and replacing or recharging these batteries may not be a viable
option for many of them. In order to overcome this issue, energy harvesting solu-
tions have been proposed to supplement or even circumvent the use of replaceable
batteries in the IoT devices. Due to its ubiquity and cost-efficient implementation,
ambient RF-energy harvesting has recently been considered as an appealing solution
for powering IoT devices.

Ambient RF-energy harvesting IoT devices (sometimes referred to as wirelessly
powered IoT devices) can, in principle, have a dedicated charging network, which
is deployed specifically for charging IoT devices through broadcasting RF-energy
signals. For instance, one can envision a network of power beacons (PBs) deployed
solely to charge the IoT devices. However, a far more realistic and cost-efficient
alternative for the [oT devices is to simply rely on the existing communication infras-
tructure, such as Wi-Fi access points (APs) or cellular base stations (BSs), for both
charging and communication. Given its dual purpose, this network needs to be care-
fully designed in order to (i) deliver the amount of RF-energy required at each IoT
device and (ii) maintain reliable communication links between the APs or the BSs
and the IoT devices. Since the same set of BSs (or APs) is used for both charging
and communication, the amount of harvested energy and the communication signal
quality (signal-to-interference-plus-noise ratio or SINR) are highly correlated. This,
in turn, complicates the performance analysis of such system setup. In the first part
of this chapter, we use tools from stochastic geometry to rigorously analyze the per-
formance of this setup. In particular, we derive the joint energy and SINR coverage
probability and use the derived expressions to provide several system-level insights.

In the second part of this chapter, we focus on secrecy in addition to the energy
harvesting and wireless performance. Specifically, we focus on a scenario in which
an RF-powered IoT network coexists with a primary network that is also the sole
source of RF-energy for the IoT network. We further assume that the coexisting
primary network is using the guard zone technique [2,3] to preserve the privacy of its
transmitted signals. In such scenarios, RF-energy harvesting can be challenging since
the IoT devices do not belong to the primary network and may hence be considered
as potential eavesdroppers by the primary network. We use tools from stochastic
geometry to analyze the performance of the two coexisting networks. In particular,
we study the secrecy performance of the primary network and the energy harvesting
performance of the [oT devices. Furthermore, we investigate how the performance of
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the two networks is affected by the key system parameters, such as guard zone radius
and the deployment density of the IoT devices, which allows us to obtain useful
insights on the coexistence of the two networks.

6.1.1 Literature review

Asalready noted, this chapter considers two aspects of the performance of RF-powered
IoT devices: (i) energy and SINR coverage of [oT devices and (ii) secrecy of RF signals
used for energy harvesting. We use tools from stochastic geometry to study each of
these aspects. The existing literature on the use of stochastic geometry for the analysis
of energy harvesting wireless networks has focused mainly on the coverage aspect.
On the other hand, the works that discussed the secrecy problem have focused mainly
on simpler setups composed of a single point-to-point link or a fixed set of nodes,
unlike the work in this chapter that considers large-scale networks. Therefore, the
literature review will focus on two main research directions: (i) stochastic geometry-
based analysis of energy harvesting wireless networks with emphasis on coverage
analysis and (ii) secrecy analysis of RF signals used to charge RF-powered wireless
networks.

Stochastic geometry has emerged as a promising mathematical tool for the
system-level performance analysis of wireless networks [4—7]. Not surprisingly, there
have also been a lot of recent works that use stochastic geometry to study the perfor-
mance of large-scale energy harvesting wireless networks [8—12]. This literature has
focused mainly on the analysis of a setup where a wireless device harvests energy
and then uses it to transmit information to a receiver. The main performance met-
ric of interest in these papers is the joint probability of energy and SINR coverage,
which is the joint probability of (i) harvesting sufficient energy to be able to transmit
the information signal to the receiver and (ii) successfully decoding the information
signal transmitted by the energy harvesting device. These two events are independent
when the locations of RF-energy sources are independent from the locations of the
information receivers. For instance, in [8], authors considered a system where a sen-
sor harvests RF-energy from the ambient signals emitted by TV and radio stations,
as well as cellular networks. The sensor harvests the RF-energy and then uses it to
communicate with a data sink. The authors modeled the locations of the sources of
RF-energy using Ginibre «-determinantal point process (DPP). The main advantage
of this point process over a PPP is its capability of capturing repulsion among the
locations of TV, radio stations as well as cellular BSs. Given the technical challenges
in deriving exact expressions for DPP, authors derived useful bounds for the energy
coverage probability and the average harvested energy by considering the worst case
scenario that focuses on the energy harvested from the nearest RF source only. The
concept of having a dedicated charging network with the sole purpose of providing
RF-energy was proposed in [9] for a simple point-to-point setup. In this setup, the
charging network is represented by a set of PBs. This setup was then extended to a
large-scale network in [10].

When the IoT device harvests RF-energy from a given network and then uses it
to transmit information to the same network, the energy and SINR coverage events
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become correlated. This is due to implicit correlation between the locations of success-
fully powered nodes (interferers during information transmission) and the locations of
the RF sources. However, capturing this correlation is highly challenging and hence is
typically ignored in the literature to maintain tractability [11,12]. For instance, authors
in [11] considered a k-tier cellular network where the users harvest RF-energy from
the signals emitted by the cellular BSs and then use this energy to communicate with
the nearest BS in the uplink channel. The authors assumed the existence of a limited-
capacity battery at each user and derived the energy coverage probability as well as
uplink SINR coverage probability by modeling the battery level at each user as a
Markov Chain followed using tools from stochastic geometry.

Another set of relevant works in the first direction considered the scenario where
the energy harvesting device uses the harvested energy to activate its processing units
and enable information reception [13—22]. This is particularly important in wireless
devices with limited power resources, such as the IoT devices. In such devices, the
energy consumption during information reception should not be neglected [23-25].
Authors in [13] considered a power-splitting architecture for the RF-energy harvesting
devices. This architecture splits the received signal into two portions. One portion
is used to charge the device, and the other portion is decoded as an information-
carrying signal. This work considered a large-scale network of energy harvesting
devices, where the distance between each device and its information transmitter was
assumed to be fixed. The objective of this system is to maintain the average amount of
harvested energy above a predefined threshold while maximizing the SINR coverage
probability. For this setup, the SINR and the amount of harvested energy are analyzed
separately. The joint analysis of the amount of harvested energy and the SINR at
the energy harvesting device is much more challenging due to the high correlation
between the two random variables. This correlation is induced by the fact that the
same transmitters are used for information reception and energy harvesting. Hence,
the amount of harvested energy and the SINR are both functions of the same point
process. This problem has not received as much attention in the literature [26,27].
For instance, authors in [26] derived an upper bound on the joint energy and SINR
coverage probability in order to provide tractable expressions that enable drawing
system-level insights. In [16,18,20,21], the authors of this chapter proposed a simple
approximation that assisted in deriving this joint probability and provided several
useful system-level insights. The first part of this chapter will be based on these
recent developments.

In the second part of this chapter, we use tools from stochastic geometry to study
the scenario where the IoT devices harvest energy from the RF signals transmitted by
a coexisting wireless network. This coexisting network is assumed to adopt a secrecy-
enhancing technique to maintain the confidentiality of its transmitted messages. It is
instructive to note that, until recently, this problem was only studied in the literature
for the point-to-point setup or a setup with a fixed number of transmitters, RF-powered
devices, and legitimate receivers [28—32]. The general theme in these works is the
implicit assumption that the transmitter aims to ensure secrecy while providing RF-
energy for the RF-powered device. For instance, authors in [28,29] studied a system of
one transmitter—receiver pair with the coexistence of one RF-powered device. In order
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to satisfy both secrecy and RF-energy delivery needs, the transmitter uses artificial
noise to maintain the amount of RF-energy while reducing the probability of decoding
the information signal by the RF-energy receiver. Authors in [30] proposed to use a
jammer to increase the amount of RF-energy while degrading the information signal
quality at the RF-powered device. Authors in [31] considered a setup of a single
transmitter—receiver pair with K coexisting RF-powered devices. A more general
setup with K transmitters, N receivers, and M RF-powered devices was considered
in [32]. One of the few works that considered secrecy in large-scale networks with
RF-powered devices using stochastic geometry is [33]. This work studied a system
setup in which the legitimate transmitters are RF-powered, which is different from the
setup considered in this chapter. In [17,19], the authors of this chapter have recently
extended the point-to-point setup to a more general system of two coexisting large-
scale networks: (i) the IoT network and (ii) the secrecy-enhancing network. These
recent works will form the basis of the second part of this chapter.

6.2 RF-energy harvesting from a coexisting cellular network

6.2.1 System setup

We consider a system of RF-powered IoT devices and a charging network (cellular
network) that dedicates a subset of its resources to serve the [oT devices. The locations
of'the IoT devices and the cellular BSs are modeled by two independent homogeneous
PPPs & = {x;} C R? with density Az and ®; = {3;} C R? with density Ag, respec-
tively. Hence, without loss of generality, we focus our analysis on a typical [oT device
located at the origin due to the stationarity of PPP. To enable simultaneous charging
and communication, we consider a time-switching architecture for the loT device. In
particular, each time-slot is divided into two sub-slots: (i) charging sub-slot with dura-
tion 7.7 and (ii) downlink sub-slot with duration 747, where T is the total duration of
each time-slot and 7. + t4 = 1. In the charging sub-slot, all the BSs emit RF signals
with the purpose of charging the IoT devices. In the downlink sub-slot, each IoT
device associates with its nearest BS and receives information-carrying signals from
this BS. We assume that fading gains among all sets of BS-IoT device links are inde-
pendent and exponentially distributed with mean 1. In addition, we assume that for a
given link, the fading gains in the charging and downlink sub-slots are independent.

In the charging sub-slot, the amount of power received by the typical device from
a BS located at y € @ is pg, |ly[|™*, where p is the transmission power of the BS,
g, ~ exp(1) is the fading gain in the charging sub-slot, and « is the path-loss exponent.
Hence, given that the duration of the charging sub-slot is 7,7 and that all the BSs
are active during the charging sub-slot, the total energy harvested by the typical loT
device in the charging sub-slot is

Eq=ntT Y pg Iyl ™, (6.1)
yedp

where 7 is the RF-DC conversion efficiency. We assume that any leftover energy from
the previous slots is no longer available for use in the current time slot.



150 Green communications for energy-efficient wireless systems

During the downlink sub-slot, the value of the SINR at the typical IoT device is

Phy Iyl ™

SINR = ,
> eapy, Py IVITE + 02

(6.2)

where o2 is the noise power, y, is the location of the nearest BS to the typical IoT
device, and &, ~ exp(1) is the fading gain in the downlink sub-slot.

6.2.2 Performance metrics

For the system setup described previously, our design goal is to ensure that the IoT
devices are harvesting sufficient energy and the downlink SINR is above a predefined
threshold. However, due to the correlation arising from relying on the same set of
BSs for both charging and communication, the analysis of IoT charging cannot be
separated from that of downlink communication. Hence, we focus on deriving the
joint energy and SINR coverage probability, which is defined next.

Definition 6.1 (Joint coverage probability). For a given time-siot, the loT device
needs to satisfy two conditions: (i) Ey > & and (ii) SINR > B, where & is the min-
imum threshold on Ey to ensure acceptable energy harvesting performance and B
is the minimum threshold on SINR required for successful decoding. The probabil-
ity of satisfying both conditions is defined as the joint energy and SINR coverage
probability, which can be mathematically represented as follows:

Pioine = P(Ey = &,SINR > B). (6.3)

Another metric that is typically studied in the literature of RF-powered wireless
networks is the energy coverage probability, which is defined as

Penergy = P(Ey > &). (6.4)

Obviously, the energy coverage probability is a special case of the joint coverage prob-
ability, i.e., the joint coverage probability reduces to the energy coverage probability
when 8 = 0.

Another important metric to quantify the performance of this setup is the average
throughput. We assume that when the IoT device fails to harvest the minimum required
amount of energy &, it cannot communicate in the downlink sub-slot. Given that the
link is only used for communication for a 74 fraction of time, it is important to study
how the parameters 7. and 74 should be selected in a way that ensures energy coverage
while maximizing the downlink average throughput.

Definition 6.2 (Average throughput). The average downlink throughput in
bits/s/Hz is

Dy = taE[log,(1 4+ A)L(SINR > B)1(Ey = &)]
7q log, (1 + B)Pioint, (6.5)

where 1(E) = 1 if the event B happens and 1(Z2) = 0 otherwise.
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6.2.3 Analysis and main results

We aim to derive the joint coverage probability described in Definition 6.1, which is
the joint probability of the two events: (i) Ey > & and (ii) SINR > S. Recalling (6.1)
and (6.2), we can observe that both £ and SINR depend on @, which leads to high
correlation between the two random variables. In particular, ®; models the locations
of the sources of RF-energy signals in £ as well as the locations of the interferers in
SINR. Building on that observation, we can treat £5 and SINR as two independent
random variables when we condition our analysis on ®. Hence, we can rewrite (6.3)
as follows:

Pioint = Eqp[P(Ey = &|Pr)P(SINR = f]Dp)]. (6.6)

Based on the previous expression, we first need to derive each of the energy and SINR
coverage probabilities conditioned on the point process ®. Next, we need to take
the expectation of their product over ®5. Before proceeding with this approach, we
propose an efficient approximation that has been shown to be remarkably accurate in
the literature [34—39]. This approximation is provided next:

D&yl =gy i + gy Il ™ + A (31, 2), (6.7)

yedr

where y; and y, are the locations of the two nearest BSs to the typical IoT device,
respectively, and .# (y1,y,) = E[ZyE¢R\V1,y2 gyl Iyl,yz]. In (6.7), we simply
approximate the summation of received RF signal powers by the summation of RF
signal powers received from the nearest two BSs and the expectation of the summation
of RF signal powers received from the rest of the BSs conditioned on the location of
the nearest two BSs. This is motivated by the power-law path-loss, because of which
the RF signals received from the nearby BSs dominate the total received power. Using
this approach, we can approximate the value of £ in (6.1). This leads to the following
approximate expression:

Ey =0t T o (g 11 117% + g 2~ + 4 (31,12)) - (6.8)

Using similar approach, we can approximate the value interference term in the dom-
inator of the SINR expression in (6.2). This leads to the following approximate
expression:

h -
SINR = Phy | (6.9)

p(hy, 2l + A (y1,12)) + 02

As will be evident shortly, this lends tractability to the analysis of the joint distribution
in (6.3). In particular, this approximation reduces (6.6) to:

Pjoint = Eyl,yz [IP(EH > £7|y13y2)P(SINR = ,3|y1,J/2)] (610)

In the following lemma, we derive the first term inside the expectation in (6.10),
namely, P(Ey > &[y1,2).
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Lemma 6.1 (Conditional energy coverage probability). Probability that the har-
vested energy during the charging sub-slot is greater than & conditioned on

Y1,Y2 18

o o _ {gﬁ + o o _ y +
P (Eu = 8lniy) = 2 Xp(rarl_[ra ) A Xp(rarz_[ra ) 611y
2 1 2 1

while the unconditioned probability is

P(Ey > &) = 1 — nigd” exp(—m iz ?) — exp(—mAra?)

(-
7 1§ exp(—r{ . F(r2)) o exp(—r4.Z(r2))
(e

ry =1 ry —ry
X [y ko (11, 72)dridr, (6.12)
1
_2mig )7 2mhR 2~
where o = ((a 2 ) =l =l Fe) =] rig 2]

C(r) = [x]" = max{0, x}, ande] Ry (rl,rz) = (ZJTAR)Zrlrze‘*Rmzz.

T Tnp

Proof. The value of .# (yy,y,) can be derived as follows:

M) =E[ S gl ey | 2E] Y e

YEPR\YV1 )2 YEPR\V1.2

[ 27
L. ,\Rf —rdr = IR (2, (6.13)
re o—2

where (a) follows from the assumption that all {g,} are independent and exponen-
tially distributed random variables with mean one, and (b) follows from Campbell’s
theorem [40] with conversion from Cartesian to polar coordinates and using r, =
[ly2]l. Using the approximation introduced in (6.7), the conditional energy coverage
probability can be expressed as

2w A
P (El—l > £’|y1,y2) =P (rCTn,o (gylrl‘* + g, + a——;r§a> > g’)

_a —a 27T)\R «
=P (gylrl +gy2r2 = C(Tc) - 2 % )
=P (gy1 gt > 9(}’2))

© 73 exp(=ri[F()]") — ri exp(=r3 [F(r2)]")
ry —ry

, (6.14)

where step (c) is due to hypo-exponential distribution of g, * + gy2 ry % (sum of
two exponential random variables with rates #{ and r5), C(t.) = - TW and [x]T =

max{0,x}. This concludes the proof of (6.11). Given that P (Ey > &|y1,y2) = 1
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when Z#(r,) < 0, we define two sets: A, = {r| : #(r,) <0, ry <r;} and &, =
{ri : #(r;) = 0, r <r}. We note that the set .47, is an empty set for r, > o7,
while for r, < &7 the set reduces to .4;, = {r; : r; < r,}. Similarly, the set 9,2

an empty set for , < .o/, while for r, > &/ the set reduces to &,, ={r; :r <
r,}. Using these observations and integrating over »; and r, with le,Rz(rl,rz) =
(271)»13)2r1r2e*‘””22 [41], the result in (6.12) follows. O

Remark 6.1. The energy coverage probability is significantly affected by the duration
of the charging sub-slot. This intuitive insight is captured clearly in the previous
theorem by C(t.), which is a decreasing function of t.. As this value decreases, the
energy coverage probability in (6.12) increases.

Now, in the next lemma, we derive the second term inside the expectation in
(6.10), which is P(SINR > B|y1, 7).

Lemma 6.2 (Conditional SINR coverage probability). Probability that the down-
link SINR at the typical IoT device exceeds B, conditioned on y, and y,, is

1
P (SINR > B|y1,»2) = exp(—4(r1,72)) e (6.15)

o
5]

ﬂazr‘l" 27 AR BrY
(oz—2)rg_2 :

where 7y = ||yill, 72 = [Iy2ll, 9(r1,72) =
Proof. Using the definition of SINR in (6.9), we get:

phy ' )
>
T ol onya) + 07 > By,

P(SINR > Bly1,)2) = P( —
phy,r

@ phyr*
P yl27rl)» 1 o ﬂ yl;yZ
phy, sy + p=F— +0?
o Bo? 2w ,Br “ o
= P(hyll’l > — %—l_ﬁhyzrz V1,2

Il

. o2 2magBrie
) Ey,, [exp (—r‘f (ﬂT + a+/322 + ,Bhyzrz_“>>i|
1

exp(—=¥(r1, 1’2))

15

= (6.16)
n
"

where (d) follows from substituting for .#(y;,),) as derived in (6.13), and steps
(e) and (f) follow from the assumption that A, ~ exp(1l), and defining ¥(r,r,) =

2—a o

Bo2r 2l Brs” “r

1 2 1 D
P a—2

We can now proceed to the final step of deriving the joint coverage probability
described in Definition 6.1. As can be observed from (6.10), the only remaining step
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is to take the expectation of the product of P(Ey > &|y1,y,) and P(SINR > Bly1,»2)
over y; and y,. The final result is provided in the following theorem.

Theorem 6.1 (Joint coverage probability). The joint coverage probability, intro-
duced in Definition 6.1, is given by
o

1
Pigint = //le,RZ(’”l,l’z)eXI(—g(’”lﬂ’z))l—ﬂ,?d”ldrz
+ -
0 0 53

oo

+ Jrir(r1, 1) exp(—=4 (r1, 12))
/]

rs exp(—r‘f‘ﬁz(rz)) —rf exp(—rg‘ﬂ(rz))

(rg’ - r‘f‘) (1 + ﬁ)

2

where G (r, 1) is defined in Lemma 6.2, 7, and ¥ (r;) are defined in Lemma 6.1.

di"ldl"z, (617)

Proof. This result follows directly by substituting (6.11) and (6.15) in (6.10) and
integrating over r; and r, using the joint distribution fg, &,(71,72) as defined in
[41, (28)]. O

Remark 6.2. As the duration of the charging sub-slot increases, the probability of
satisfying the energy coverage condition increases. Hence, for the large enough t., the
Jjoint coverage probability reduces to the probability of satisfying the SINR coverage
condition. This insight is captured in the previous theorem through the value of <,
which is an increasing function of t.. Increasing the value of &/ decreases the second
term in (6.17) and increases the first term. When <f approaches oo, the expression
in (6.17) reduces to the SINR coverage probability.

Remark 6.3. The value of </ represents a threshold on r,. In particular, for a given
Dy, the energy coverage condition is satisfied when r, < <f. This can be observed
from the integration limits in (6.17). The value of <7 can be used to optimize the deploy-
ment of RF-powered [oT devices in order to ensure high energy coverage probability.
Recalling the expression of &/ provided in Lemma 6.1, we observe that increasing
its value can be achieved through increasing the density of Lg or the duration of the
charging sub-slot.

6.2.4 Numerical results and discussion

In this section, we demonstrate the accuracy of the derived expressions, verify the
insights provided in the remarks, and use the numerical results to draw other important
system-level insights and performance trends. The values of system parameters used
in the simulation setupare & = 1 wJ, p =1, Az = 107" m™2, o = 4, and n = 0.75.
In Figure 6.1, we plot the energy coverage probability. Clearly, the value of
the energy coverage probability increases as we increase 7., which agrees with our
comments in Remark 6.1. The perfect match between the theoretical and simulation
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results demonstrates the remarkable accuracy of the approximation in (6.7). We also
observe the high influence of the value of Ax on the energy coverage probability.

In Figure 6.2, we plot the joint coverage probability, which was derived in
Theorem 6.1. We observe that as . increases, the joint coverage probability starts
saturating to a fixed value, which coincides with the SINR coverage probability. This
is due to the high energy coverage probability at higher values of 7., as observed
from Figure 6.1, which, in turn, reduces the Pjin; to P(SINR > ). We also note that
reducing the value of Az, which reduces the energy coverage probability, also reduces
the joint coverage probability.

Finally, the average throughput, described in Definition 6.2, is plotted in
Figure 6.3. The results show the existence of an optimum value for 7. that maximizes
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the average throughput. We note that this optimal value increases as we reduce Ag,
due to the decrease in the density of RF-chargers, which increases the amount of time
needed for charging.

6.3 RF-energy harvesting from a coexisting,
secrecy-enhancing network

In the previous section, we studied a scenario where there was a coexisting cellular
network that allocates some of its resources for powering the IoT devices. On the con-
trary, we study a scenario where the [oT devices rely on a coexisting primary network
for harvesting RF-energy. The primary network is composed of primary transmitters
and receivers (PTs and PRs) and uses some secrecy-enhancing transmission policy
to ensure a certain level of secure communication probability for the primary com-
munication links (between PTs and PRs). As described next in detail, the IoT devices
would be secondary devices for this network. Our objective in this section is to inves-
tigate the impact of the use of secrecy-enhancing technique on the energy harvesting
performance of the RF-powered IoT devices.

6.3.1 System setup

Similar to the previous section, we model the locations of the IoT devices and the
PTs using two independent PPPs & = {x;} C R? and ®; = {;} C R?, with densities
Ag and Ag, respectively. Each PT aims to communicate with its associated PR and
transmit confidential messages. In order to maintain tractability, we consider a Poisson
bipolar model where the distance between each PT and its associated PR is 7;. Due
to the stationarity of PPP, we focus our analysis on a typical PT-PR pair with the PR
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located at the origin. Different from the system setup studied in the previous section,
the charging network (the primary network) in this setup (i) does not allocate any
resources for solely charging the [oT devices and (ii) is using a secrecy-enhancing
technique that affects the energy harvesting performance of the IoT devices. The
secrecy-enhancing technique used by the primary network is described next.

There are multiple secrecy-enhancing techniques studied in literature such as
(1) beamforming [42—44], (ii) protected zones [45,46], (iii) artificial noise addi-
tion [47,48], and (iv) guard zones [2,3]. The guard zone technique was recently proven
to outperform other techniques under some specific deployment scenarios [49].
Hence, we focus on this technique in this chapter. The guard zone technique is based
on ensuring that the distance between the PT and its nearest illegitimate receiver (from
the perspective of PT, any receiver except PRs is an illegitimate receiver) is above
a given threshold. Otherwise, the PT stops its transmission (goes silent). While this
discussion is not in the scope of the current chapter, the illegitimate receivers can be
detected by the primary network using specialized devices such as metal detectors or
leaked local oscillator power detectors [45]. To focus on the interaction between the
IoT devices and the primary network, we assume that the IoT devices are the only
existing illegitimate receivers in the system. The radius of the guard zone is the main
design parameter in this secrecy-enhancing technique. The selection of this parame-
ter is based on the performance metrics that the primary network aims to maximize.
Before defining the performance metrics used in this chapter, we first provide some
physical layer security preliminaries.

In order to ensure secrecy, the PT selects two transmission rates: (i) code word
transmission rate Z%, and (ii) confidential messages transmission rate %,,, where
R, > %, The difference Z. — Z%,, represents the cost paid for secure transmission.
To ensure that the PR is able to successfully decode the confidential message, the
mutual information between PT’s channel input and the PR’s channel output should
be greater than Z%,. In addition, to ensure perfect secrecy, the mutual information
between the PT’s channel input and any illegitimate receiver’s channel output should
be less than %, — %,,. This can be translated into two conditions. The first one is
SINRy > 2% — 1, to ensure successful connection between PT and PR, where:

—a
owWir]

SINRR = )
Z)’i€¢R\}’l Sipwillyill= + op

(6.18)

apz is the noise power, and w; ~ exp(1) models the Rayleigh fading gain for the link
between the PT located at y; and the typical PR. We use the subscript i = 1 to refer to
the typical PT-PR pair. The value of the indicator function §; = 1 if the PT located at
y; 18 active, which means it does not have any illegitimate receivers in its guard zone.
Otherwise, if its guard zone has at least one illegitimate receiver, we have §; = 0.
This captures the effect of the guard zone radius on the interference levels at both
the legitimate and illegitimate receivers. Clearly, as the radius of the guard zone r,
increases, more PTs will go silent, which, in turn, leads to less interference. The
expected value of this indicator function equals to the probability of the PT being
active: E[§;] = Pactive- The value of P,y can be derived as follows. Denoting the
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distance between the typical PT and its nearest [oT device by D,, and recalling that
the locations of the IoT devices are modeled by a PPP with density Az, we then have:

Pacive = P(D, = rg) = exp(_n)‘E’ﬁ)‘ (6.19)

The second condition that needs to be satisfied to ensure perfect secrecy is
SINRg(x;) < 2%#<~%n — 1, where SINRg(x;) is the value of SINR at the IoT device
located at x;. This condition should be satisfied at all IoT devices in order to ensure
perfect secrecy. The SINR of the confidential signal transmitted by the typical PT
measured at the IoT device located at x; is
P&yt — X7

SINRE () = ,
Y eony 0Py — X517 4 of

(6.20)

where g;; ~ exp(1) is the fading gain for the link between the PT located at y; and
the IoT device located at x;, and o7 is the noise power at the IoT device.

Clearly, only those PTs are active that are at a distance greater than r, from all
IoT devices. This can be formally defined as follows:

Oy = {yECDR:x¢ U ,%’(x,rg)}, (6.21)

xedgp

where %(x, r,) is a ball centered at x with radius r,, and @, models the locations of
the active PTs. The point process @ in (6.21) is nothing but a Poisson hole process
(PHP) [50,51]. The density of the PHP ® that models the locations of active PTs is
P activc)\R-

Similar to the previous section, one of the main aspects of the performance of the
IoT devices that we focus on is their ability to harvest sufficient amount of energy. The
amount of energy harvested by the IoT device located at x;, assuming an RF-energy
harvesting time-slot of duration 7', is

Eg =nTplyi1 — x5l g, (6.22)

where g; ~ exp(1) models the Rayleigh fading gain of the link between the IoT device
located at x; and its nearest active PT. Here, we are focusing on the energy harvested
from the nearest active PT, located at y; ;. This is motivated by many recent studies
that showed the dominance of the RF-energy harvested from the nearest transmitter in
the total amount of harvested energy, such as [16]. This assumption lends tractability
to an otherwise intractable analysis. For instance, this enables us to study the effect of
some important system parameters, such as 7, and Az on the statistics of the harvested
energy. In particular, using this approach, we can capture an interesting behavior in
this system, which is how increasing the density of the IoT devices Ay decreases the
average distance between a typical IoT device and its nearest active PT, and hence,
decreases the average amount of harvested energy. This results from (6.19) where we
showed that the value of P,y is a decreasing function of Az and the density of active
PTs is AgPactive-



Coverage and secrecy analysis of RF-powered Internet-of-Things 159

6.3.2 Performance metrics

Our objective in this section is two-fold: (i) study the effect of the deployment den-
sity of the RF-powered IoT devices on the performance of the primary network and
(ii) study the effect of the guard zone radius r, on the energy harvesting performance
of the [oT devices. For the primary network, we consider two performance metrics to
capture: (i) the connectivity between the PT and its associated PR and (ii) the secrecy
of the transmitted confidential signal through studying its SINR at the illegitimate
receivers (i.e., the IoT devices). We define these two performance metrics next.

Definition 6.3 (Probability of successful connection). /n order to ensure successful
connection between the typical PT and PR, two conditions need to be satisfied: (i) the
typical PT is active and (ii) the SINR at the typical PR is greater than the threshold
Br. Therefore, the probability of successful connection is

Pcon(rgy )\E) = ]P)(De = Fg, SINRR = ﬁR), (623)
where Br = 2% — 1

The second performance metric for the primary network focuses on the secrecy
of the transmitted signals when the PT is active, which is provided next.

Definition 6.4 (Secure communication probability). Given that a PT is active, the
probability that its transmitted data is perfectly secure is

Puclrs ) =E | 1| (1) SINRe(x) < Bi| Do = 7y | |, (6.24)
xjedg

where B = 2%e=Tm _ |

The goal of the primary network is to maximize the value of P, while ensuring
that Py is above a predefined threshold €. The parameter tuned to achieve this
objective is r,. Hence, the value of 7, selected by the primary network is

*

7, = arg max Peon(re, A
g grge‘f(kg) con( g5 )a

g4()"E) = {rg : Psec(rg; )\E) > &} (625)

There are many metrics that have been used in the literature to study the perfor-
mance of the energy harvesting aspect, for instance, the average amount of harvested
energy E[Ey] or the energy coverage probability P(Ey > &). In this section, we focus
on a modified version of the latter (defined next), which enables us to better under-
stand the relation between the two coexisting networks, which is one of the main
objectives of this section.

Definition 6.5 (Average density of successfully charged devices). The average
density of devices that successfully harvest at least & amount of energy is

ie = AP(Ey > &). (6.26)

The goal of the IoT network is to optimize the value of Az with the objective of
maximizing the previous performance metric. While this may seem counter intuitive,
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one can make sense of it (based on the discussion provided earlier) by observing that
increasing the value of Az reduces the density of active PTs that are the main sources
of RF-energy for the IoT devices.

6.3.3 Analysis and main results

We start our analysis by deriving the performance metrics for the primary network. In
the next theorem, we provide an expression for the successful connection probability,
introduced in Definition 6.3.

Theorem 6.2 (Probability of successful connection). For a given value of Ag, the
probability of successful connection introduced in Definition 6.3 is

2
2 o .2
2w )‘«RPactive:BI? Ty

asin(27) (6.27)

2
g
Pcon(rga)"E)zexp - )\ETH";—F,BR?RVT—F

Proof. Recalling the expression for SINRy given in (6.18), specifically the indicator
function §; that indicates which interferer is active and which is silent, we concluded
that the locations of active PTs can be modeled by PHP ® in (6.21). However, before
using @ in our analysis, we need to make it clear that §; for different y; € ®p are
correlated. This implicit correlation arises from the dependence of §; for all i on
the PPP ®;. However, capturing this correlation in our analysis will significantly
reduce the tractability of the results. Hence, this correlation will be ignored here.
The accuracy of this approximation will be verified in Section 6.3.4. Now, revisiting
the expression of P, in Definition 6.3, we note that the correlation between §; at the
typical PT and §; values at each of the interferers in the expression of SINRy is the
only source of correlation between the events (D, > r,) and (SINRgr > ). Hence,
ignoring this correlation, for the reasons stated earlier, will lead to the following:

Peon = ]P)(De = rg)P(SINRR = /BR) (628)

The first term in the previous expression represents Poive = exp(—7Agr;) (please
recall (6.19) where P, Was derived). To derive the second term in the previous
expression, characterizing the statistics of the interference from a PHP-modeled net-
work at a randomly located reference point (the typical PR) is required. However,
ignoring the correlation between {3;} is equivalent to approximating the PHP &y with
a PPP W of equivalent density Ak = ArPactive. Defining [ = Zy,-e\l' w;llyi || 7%, then:

wiry®

02
1+%

2
P
o2
= exp(—ﬁR?Rr‘f‘) E; [exp(—Brlry)]

®)

P(SINRg = fg) = P

> Br

2

em(—ﬂk%r’f‘) 2 (Brr}) s (6.29)
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where w; ~ exp(1) leads to step (a), and in step (b) we use the definition of Laplace
transform of / which is .Z;(s) = E[exp(—sI)]. The Laplace transform of the inter-
ference in PPP is a well-established result in the literature [4]. For completeness, its
derivation is provided next.

Z1(s) = Eu gy | exp| —s D willyill ™
yieV

= Eup | [ ] exp(—swillyil =)

yiew

© 1
= E -
v |11 1+ sllyi[—

Vi€V

@ = 1
= exp| —A f l— —dy
§ I+ slyl-—

yeR?
© z sry®
= exXp —27'[)\.](/.1_'_#]”},(11’),
., y
2725 pst csc( 2
9 exp(—R—(") , (6.30)
o

where knowing that the set of fading gains w; are i.i.d. with w; ~ exp(1) leads to
step (c), step (d) results from using the probability generating functional (PGFL) of
PPP [40], step (e) results from converting to polar coordinates, and step (f) follows
after some mathematical manipulations. Substituting (6.30) in (6.29) and then in
(6.28) leads to the final result in Theorem 6.2. O

Remark 6.4. The expression in Theorem 6.2 captures two important insights on
the effect of vy on Peon. Recalling the definition of P, we notice that successful
connection requires (i) the typical PT being active (guard zone free of illegitimate
receivers), and (ii) the SINR at the typical PR is above a predefined threshold Bg.
The first condition gets harder to satisfy as the value of r, increases, due to the
difficulty of ensuring that the guard zone is free of ERs when its radius is large. This
effect is captured in the first term inside the exponential in Theorem 6.2. For the
second condition, namely, the SINR value, we observe that increasing the value of ry
decreases the density of active interferers, leading to higher values of SINRg. Hence,
increasing v, makes it easier to satisfy the SINR condition. This is also captured in
the third term inside the exponential in Theorem 6.2, implicitly in the expression of

P active-



162 Green communications for energy-efficient wireless systems

To further investigate the effect of 7, on P,,, we derive the value of 7, = 7, that
maximizes P, in the next theorem.

2
2 o 2
Theorem 6.3. Defining </ = M we have:

asin(gm)
o [fah <1, then Py, is a decreasing function of r,, and 74 = 0.
o Ifol > 1, theni, = In()

TAp

Proof. From the expression of P.,, in Theorem 6.2, we note that it can be rewritten
as a function of P,ge = exp(—AEnré) as follows:

2
Pcon - exp<_,8Ra_Rr(1¥> Pactive exp(_PactiveQ{l)- (631)
14

To get more information about the behavior of P, against P,.y., we compute the
first derivative (with respect to P,eve). Given that P,y is a decreasing function of
rg (recall (6.19)), we conclude the following:

1. If1 — @ Paciive = 0, then P,y is a decreasing function of 7.

2. If1 — @ Pociive < 0, then Py is an increasing function of r,.

Consequently, we can infer that since 0 < Pyive < 1, Pcon is a decreasing function of

rq as long as @7 < 1. In the case of &/ > 1, the relation between P, and r, can be
explained as follows: (i) P, is an increasing function of 7, as long as Pyegve >

»Qfl
(orry < %) and (ii) Pcoq 1s a decreasing function of 7, as long as Pygve < ﬁ
(orrg > %). This concludes the proof. O

Remark 6.5. Consistent with the intuition, we observe from the previous theorem that
when o7, < 1, the effect of v, on the event Dy > ry dominates its effect on the density
of interferers, because of which Pc.o, is a decreasing function of r,. This is because
&\ is an increasing function of each of A, r1, and Bg. At lower values of <, one
or more of these parameters are small enough to ignore the effect of the interference

level on Pqy.

Now we derive the secure communication probability, introduced in Defini-
tion 6.4, in the following theorem.

Theorem 6.4 (Secure communication probability). For a given value of vy and A,
the probability of secure communication is

® 2 o
Paslryshe) = exp| ~2s [ exp(—"Eﬁ—E”) LB |, (632)
0

g

srg 2
where £7,(s) = exp( 27 AgPactive fo e dz).

a(l4z)ze rx
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Proof. From Definition 6.4 of P, we observe that we need to jointly analyze the val-
ues of SINRg(x;) at all the locations x; € ®p. Despite the usual assumption throughout
most of the stochastic geometry-based literature on secrecy analysis that these values
are uncorrelated, this is actually not precise. The reason for that is the dependence of
SINRE(x;), by definition, on the PPP @ forallx; € ®x. Somerecent works focused on
characterizing the correlation between interference levels at different locations [52].
However, most of these works focus on characterizing the correlation between only
two locations assuming the knowledge of the distance between them. Unfortunately,
these results are not directly applicable to our analysis. Hence, aligning with the
existing literature, we will ignore this correlation in our analysis with the knowledge
that this will provide an approximation. Furthermore, the accuracy of this approxi-
mation is expected to get worse as the value of Az increases. This is due to the fact
that the distances between ERs decrease as Ay increases, which was shown in [52]
to increase the correlation. For notational simplicity, and without any loss of gen-
erality due to the stationarity of PPP, we will assume that the typical PT is placed
at the origin, i.e., y; = o, in the rest of this proof. All the analyses provided in this
section are conditioned on the event D, > r,. Following the same approach as in the
proof of Theorem 6.2 of approximating the PHP & with a PPP W, and defining
bL(x) =3 ey, &ijllvi — %117, Pec can be derived as follows:

gujllx 1™

Pye = EQE,IZ,{gl,j} 1 o2
Y €PE IZ(XJ') + TE

© Ll
Eop.n.g,) H 1 < B

| 5 €PE IZ(XJ) + GE

2
Be (L(x) + £
(QE‘PEJz H 1 —exp _%
XjE<I>E xl
2

i Be Z L (v:
S By, | [T |1 - exp —ﬁ E[exp(—ﬁE mf))} . (6.33)

flx; 11— flx; 11—

xjedbp

where step (g) (and step (i)) follow from assuming that the values of SINRg(x;) (and
I,(x;)) are uncorrelated. Step (h) is due to assuming the set of fading gains {g,;} to
be i.i.d. with g;; ~ exp(1). Defining the Laplace transform of /(x;) by £, ;)(s) =
E[exp(—s/2(x;))], we note that there is only one difference in the derivation of £7,y,)(s)
compared to that of %} (s) in the proof of Theorem 6.2. The difference is in the reference
point from where we are observing the interference. In the proof of Theorem 6.2, the
reference point was the PR that does not have a minimum distance from any active
interfering PT. In the current derivation, the reference point is an IoT device that
has a minimum distance of r, from any active interfering PT. Hence, the derivation
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of Z,;(s) will be exactly the same as in (6.30) until step (¢), where the minimum
distance effect will appear in the lower limit of the integral as follows:

o]
—o

- sr
— _ Y
ZLhy)(s) = exp| —2mAg / p— rdry | . (6.34)
rg -
Note that the previous expression is not a function of x;, so we drop it from the notation

of Laplace transform. The final expression for .7, (s) as provided in Theorem 6.4
follows after simple mathematical manipulations. Substituting (6.34) in (6.33), we get

Eo, ]‘[ ( —exp( ﬂE< z)nxju ).212 (ﬂEnx,-n“))

xjedbg

Psec

—
=
<

exp| =27 Ag / eXp( ﬂg( )IIXII )ﬂz(ﬂEIIXII")dx » (6.35)

xeR2N%B(o0,rg)

where step (k) results from applying PGFL of PPP, and the integration is over y €
R? N %o, r¢) because the analysis in this section is conditioned on the event D, > r,,
which means that the typical PT is active. Since we assumed that the typical PT is
placed at the origin in this derivation, the ball %(o,,) is clear of ERs. Converting
from Cartesian to polar coordinates leads to the final result in Theorem 6.4. O

Remark 6.6. As stated in the earlier remarks, the value of v, has a significant effect
on the density of active interferers. Hence, the total interference at any receiver,
legitimate or not, decreases as we increase the value of v. This is captured in the
Laplace transform term of the expression derived in Theorem 6.4. In addition, since
transmitting signals are already conditioned on the guard zone being free of the
illegitimate receivers, there is a minimum distance r, between the typical PT and the
nearest illegitimate receiver. Hence, increasing the value of v, reduces the quality
of the confidential signal transmitted by the PT at the illegitimate receivers. This is
captured in Theorem 6.4 in the integration interval, which decreases as we increase
rq. This trade-off in the effect of r, on the secure communication probability will
be further investigated and visualized with the aid of numerical results in the next
subsection.

In the following theorem, we provide the main performance metric for the IoT
devices, which is the density of successfully charged devices.

Theorem 6.5 (Density of successfully charged devices). For a given value of r, and
Ag, the density of successfully charged IoT devices is

_ , &ry
A = Ag / 277 AR Pactive?p €XP —JT)LRPacﬁve(rp — rg) — —= ] dr,. (6.36)
on

g



Coverage and secrecy analysis of RF-powered Internet-of-Things 165

Proof. The density of successfully charged IoT devices can be derived as follows:

Penergy = )\E]P> (UPR;ag > éa)

&R
9 Ry, |:exp<— npp)}, (6.37)

where R, is the distance between the ER and its nearest active PT, and step (1) is due
to g ~ exp(1). The distance R, represents the contact distance of a PHP observed
from a hole center. Unfortunately, the exact distribution of this distance is unknown.
However, the approach of approximating the PHP ®, with a PPP W is known to
provide fairly tight approximation of the contact distance distribution of PHP [53].
Given that the nearest active PT to the ER is at a distance of at least r,, the distribution
of R, is

fo, (1) = 2 Agexp(—mwhr(r, — 1)), 1y = 7. (6.38)
Using this distribution to compute the expectation in (6.37) leads to the final result
in Theorem 6.5. O

6.3.4 Numerical results and discussion

In this section, unless otherwise specified, we use the following values for the
simulation parameters: n = 0.75, e =09, Ax =10""m™2, p=1, T =1, a =4,

Br=3dB, B =0dB, and & = 1 pnJ. We also refer to the SNR value at the IoT

devices as y = 5.

In Figure 6.4, we plot the successful connection probability for different values
of r,. Given that the simulation setup captures a scenario with ./ < 1 (introduced

T
© Simulations

—Theoretical

o
%

Increasing 4,: [0.2 0.4 0.6
0.8 1]m>

N 5
iS =N
T

.O
o

Successful connection probability

0 0.5 1 L5 2 2.5 3

Guard-zone radius r,

Figure 6.4 Successful connection probability against different values of ry
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in Theorem 6.3), Pco, is a decreasing function of r,. This is consistent with our
observations in Theorem 6.3 and the following remarks. Hence, recalling (6.25), we
conclude that for the considered simulation setup, r; is the minimum value of r, that
ensures Py, > €.

In Figure 6.5, we plot the secure communication probability for different values of
r4. The effect of 7, on the secure communication probability, discussed in Theorem 6.4
and the following remarks, can be observed in Figure 6.5. At low values of r,, the
performance is dominated by the high interference at the illegitimate receivers, due to
the high density of the active PTs. This reflects the stronger effect of A on Py, at lower
values of 7,,. Athigh values of 7,,, despite the low density of active PTs, the performance
is dominated by the large distance between the PT and its nearest illegitimate receiver.
We observe the existence of a minimum value for Py, at which the value of 7, is not
small enough to result in high level of interference at the illegitimate receivers, nor is it
high enough to result in large distance between the active PT and its nearest illegitimate
receiver. We also observe that increasing the value of A increases the value of r;; that
ensures Py, = ¢, where ¢ = 0.9.

In Figure 6.6, we study the effect of y = (% on the value of Pg.. Unlike A, the

effect of y on Py is more prominent at higher values of 7,. As stated earlier, this is
due to the dominance of the interference on the performance at lower values of r,,
leading to negligible effect of y in this regime.

In Figure 6.7, we plot the density of successfully charged devices for different
values of Az. As reported earlier, there exists an optimal value of Az that maximizes
this density. Furthermore, we observe that increasing the value of r, has a clear
negative effect on the performance of the IoT devices. This can be noticed from the
decrease in the value of the maximum achievable density of successfully charged
devices as we increase the value of r,.

1 r r r
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Figure 6.5 Secure communication probability against different values of rq and L
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We can observe from Figures 6.5 and 6.7 that the parameter selection of the two
networks (7, selection by the primary network and A selection by the IoT devices) is
intertwined. This interaction can actually be modeled as a two-player noncooperative
game. The Nash equilibrium of such game would capture a state where the primary
network has no incentive to change the value of 7, given the value of Ag, and the IoT
devices have no incentive to change the value of A given the value of r,. However,
the main complexity of analyzing such a game arises from the relatively complicated
expressions of Py and Az, because of which it is challenging to prove the existence
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of'a Nash equilibrium. This actually is one of the main challenges that arise whenever
the objective is to optimize an expression derived using stochastic geometry tools.
Interested readers are advised to refer to [19] for more details.

6.4 Summary

This chapter focused on the application of stochastic geometry to the performance
analysis of RF-powered IoT networks. In particular, we focused on two scenarios of
general interest: (i) the same wireless network provides connectivity and RF charging
tothe IoT devices and (ii) IoT devices rely on a coexisting, secrecy-enhancing network
for harvesting RF-energy. In the first part of this chapter, we considered an IoT
network that relies on the cellular infrastructure for communication and RF charging.
For this setup, we studied the joint probability of harvesting sufficient energy and
maintaining sufficiently high downlink SINR. We proposed a dominant-interferer
approximation that enabled the derivation of the joint probability and resulted in
several system-level insights. One of the main insights obtained from this analysis
is the existence of an optimal charging slot duration that maximizes the downlink
average throughput. We also derived a tuning parameter that captures the effect of
the system parameters on the system performance, such as the density of the BSs.

In the second part of this chapter, we considered an RF-powered IoT network
coexisting with a secrecy-enhanced primary network. The IoT network relies on the
RF transmissions of the primary network for RF charging. The primary network
is assumed to use the guard zone technique. This technique maintains a minimum
distance between any active PT and its nearest [oT device. For that setup, we derived
the secrecy performance metrics of the primary network and the energy harvesting
performance metrics of the IoT network. We showed that the performance of both
networks is correlated, because both secrecy and energy harvesting performance
metrics depend on the deployment density ofthe [oT devices and the guard-zone radius
of the primary network. A useful insight obtained from this study is the existence of
an optimal deployment density for the IoT network that maximizes the density of
successfully charged devices.
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Chapter 7

Backscatter communications for ultra-low-power
IoT: from theory to applications

Seung-Woo Ko', Kaifeng Han’, Bruno Clerckx’
and Kaibin Huang?

Internet-of-Things (IoT) is expected to connect tens of billions of devices anytime and
anywhere and enable a wide range of services such as smart city, connected vehicles,
and health care [1]. Recent advancements have driven the rapid growth of IoT in
5G technologies along with cloud- and edge-computing-enabled big-data analytics.
However, one typical drawback of the existing IoT solution is the limited lifetime due
to the massive number of IoT devices being powered by batteries with finite capacities.
Therefore, keeping a large number of energy-constrained IoT devices alive poses
a key design challenge. To this end, Backscatter Communication (BackCom) has
emerged as a promising technology, allowing IoT devices to transmit data with low-
power consumption. Moreover, its low-complexity design and small form factor make
BackCom more attractive by realizing cost-effective IoT deployment. We organize
the remainder of this chapter as follows. In Section 7.1, we provide fundamental
knowledge for BackCom, including the basic principles, key design parameters, and
standardization. Then, we summarize several BackCom networks in Section 7.2 and
introduce several advanced emerging communication technologies redesigned for
BackCom in Section 7.3. In Section 7.4, we explain several performance improvement
methods of BackCom. Next, we focus on the applications empowered by BackCom
in Section 7.5. Last, we discuss the open issues and future directions of BackCom in
Section 7.6.

7.1 BackCom basic principle

This subchapter aims at introducing critical principles of BackCom, which are
required to understand more advanced designs explained in the sequel. We first
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illustrate the architecture and basic operations of BackCom, including modes and
modulation. Next, we deal with the issues of determining several parameters for
performance enhancement. Last, we review the current standardization of BackCom.

7.1.1 Architecture

Although there are various types of BackCom, all of them are based on a fundamental
architecture consisting of two entities, a tag and a reader [2]. The tag, which is
a passive device without any active component, comprises an energy harvester, a
battery, an information decoder, and a modulation block, as shown in Figure 7.1. On
the other hand, the reader can transmit and receive a signal with its power supply and
has active Radio Frequency (RF) components to generate a single-tone sinusoidal
Continuous Wave (CW). The tag reflects a portion of the incident sinusoidal CW
radiated from the reader, while it harvests the remaining CW for powering the on-tag
Integrated Circuit (IC). The IC modulates data onto the reflected CW by controlling
impedance matching between the antenna and the load in the tag. Specifically, a
reflection coefficient I' is defined as the ratio of the incoming and reflected signal.
Itis givenas I' = Z;Z, where Z; and Z, represent the impedances of the load and
the antenna, respectively. The tag has multiple load impedances each of which is all
different. Each load impedance follows a different reflection coefficient, and it thus
corresponds to a different symbol of the backscatter transmission. We call such a
procedure a backscatter modulation.

7.1.2 Modes and modulation

Given the tag—reader pair, there are two kinds of modes: a forward information trans-
mission from the reader to the tag and backward information transmission from the
tag to the reader [3].
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Figure 7.1 The architecture of a backscatter tag
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For forward information transmission, the reader transmits a modulated signal to
the tag. This signal is delivered to the tag’s information decoder, and it is translated
into a binary sequence based on On—Off Keying (OOK) demodulation. Specifically,
the decoded bit is 1 or 0 when the received energy is high or low, respectively. It
is worth recalling that the reason why BackCom uses this primitive OOK is due to
the hardware limitation without any power-hungry component, i.e., RF chains and
oscillators.

For the backward information transmission, the CW radiated from the reader is
delivered into the tag’s modulation block. The tag’s data stream is embedded onto
the CW by switching over tag’s impedances according to the stream, corresponding
to forming a constellation. For example, in the case of two impedances, Binary
Phase-Shift Keying (BPSK) modulation is available by choosing either one of the two
depending on the bit the tag wants to send. A higher modulation order is possible if
there are more tag’s impedances. In this chapter, we focus on a tag with two loads
unless specified, and the tag can embed binary data onto its reflected signal. One
important design criterion in the mode of backward information transmission is the
energy-rate trade-off. Specifically, a backscatter tag is typically designed to switch
between inactive and active states. In the inactive state, the tag harvests a large portion
of energy from the incident CW by matching its load impedance to that of the antenna,
and its circuit remains inactive for energy conservation.* In the active state, on the
other hand, the circuit becomes activated, and the tag’s data is embedded into the
backscattered signal via impedance mismatching. The fraction of harvested energy
thus decreases. Define a duty cycle as the ratio of the duration for the active modes,
which is a crucial design parameter to optimize the energy-rate trade-off [4].

The mode of backward information transmission is dominant in most common
Radio Frequency IDentification (RFID) applications due to the asymmetricity of data
traffics. For example, low-rate signaling data is delivered via the forward transmis-
sion mode, whereas high-rate information-bearing information is delivered via the
backward information transmission mode. However, both of the modes are important
in future IoT applications due to the need for more complex signaling and the increase
of direct transmissions between the massive number of devices.

7.1.3 Design parameters

The performance of BackCom can be affected by many parameters. We use the max-
imum available distance R as an exemplified performance metric to explain such
effects. According to Friis equation, the distance R can be expressed as

R =

(7.1)

A PGB, 9)G(6, p)pT
4 PTH '

*Note that the inactive mode does not mean that a reader is in silence, since it receives a certain amount of
energy in the inactive mode due to a structure mode scattering depending on the antenna’s geometry and
material [2].
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where A is the wavelength, P, is the reader’s transmit power, G,(0, ¢) and G,(0, ¢) are
gains of the transmit and receive antennas on the angle of (9, ¢), respectively. More-
over, Pry is the minimum threshold power required to activate the tag’s circuit, and p
is the polarization efficiency. The parameter T = |I"|? is the power transmission effi-
ciency depending on the impedance matching between antenna and load impedances.
We explain the effect of these parameters on the distance R as follows.

7.1.3.1 Operating frequency

An operating frequency, which is inversely proportional to wavelength A, is an essen-
tial factor to determine the size of antennas. In the case of half-dipole antennas, for
example, its size can be calculated as %, ie., 16 cm at 915 MHz and 2.5 cm at 5.79
GHz. The most common operating frequency band of RFID systems is Ultrahigh
Frequency (UHF) ranging from 860 to 960 MHz. Recently, there exist some recent
works in the literature suggesting backscatter systems operating in Superhigh Fre-
quency, i.e., 2.4-2.5 GHz and 5.725-5.875 GHz for achieving higher data rate [5] as
well as reducing its form factor. On the other hand, it leads to reducing the distance
R according to (7.1).

7.1.3.2 Impedance matching

The impedance matching between the antenna and load can control the states of a
backscatter tag between active and inactive ones. The complex load and antenna
impedances are given as Z; = R; + jX; and Z, = R, + jX,. Here, R; and R, are the
load and antenna’s resistance, respectively, and X; and X, are the load and antenna’s
reactance, respectively. In general, Z; is not easy to switch due to its dependency
on the operating frequency and the received power. Consequently, the change in
antenna impedance Z, is more suitable for controlling impedance matching. These
two impedances are said to be perfectly matched when the transmission efficiency ©
specified in (7.1) becomes one. The efficiency t is given as

4R R
r=—11 (7.2)
1Z1 + Z4)?
As a result, the antenna impedance for perfect impedance matching can be easily
calculated as Z;, = Zj.

7.1.3.3 Antenna gain

Antenna gain is defined as the ratio of the received power in the specific direction to
an isotropic source. In a typical communication system, an antenna with a higher gain
is used to extend the transmission range, but it is an expensive solution. In the case
of BackCom, whose target distance is small and the manufacturing cost is limited,
a low-gain antenna is preferable. Another vital factor to affect the antenna gain is
the on-board gain penalty, defined as the loss of antenna gain due to the material
attachment [4]. It depends on multifold factors, including material properties, object
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geometry, frequency, and antenna type, making it challenging to calculate tractably.
The most common effective method to determine the on-board gain penalty is based
on simulation and measurements [6].

7.1.3.4 Polarization

Polarization is the trajectory of an end point of the vector to represent the instantaneous
electric field, describing the change of the field vector’s direction and magnitude. The
received power is maximized when the polarization of the incident wave is matched
to that of the antenna. To this end, the antennas of the reader and tag should be located
in parallel. If the reader’s antenna is rotated by 7, on the other hand, the received
power becomes zero. The problem of the polarization is critical since the orientation
is usually random. Several antenna designs have been suggested to cope with the
polarization issue. For example, one can use a circular array in both of the reader
and the tag [7] and two linearly polarized antennas with 7 orientation to avoid the
complete polarization mismatch [8].

7.1.4 Standardization

A standard, which is defined as the set of rules, conditions, or requirements that
the components of a system must follow to operate effectively, is an essential issue
in the area of BackCom. There exist two significant initiatives regarding BackCom
standardization groups, International Standard Organization (ISO) [9], and EPC-
global [10], which have different approaches introduced next. ISO aims at creating
technology-oriented standards for general use. It closely works with International
Electrotechnical Commission [11] responsible for the standards of all electrical, elec-
tronic, and related technologies covering various issues, e.g., air interface (e.g., ISO
18000 series), data content (e.g., ISO 15418), and conformance and performance
(e.g., ISO 18046, ISO 18047). Moreover, there exist a few separate standards devel-
oped for different applications such as tracking animals (e.g., ISO 11784, ISO 11785,
and ISO 14223) and contactless cards (e.g., [ISO 14443 and ISO 15693). Different
ISO standards are summarized in Table 7.1.

EPCglobal tends to make application-specific standards such as Electronic Prod-
uct Code (EPC), a unique code used for numbering items and identifying objects.
EPCglobal also categorizes standards into different classes, which help vendors to
manufacture tags with different capabilities and prices. A higher class tag can provide
more functionalities than a lower class one. Specifically, there are six classes such
as Class 0 and 1 for all passive tags, Class 2 for higher functionality tags enabling
read/write, Class 3 for semi-passive tags with an additional power sources, Class 4
for active tags with the ability of communications between the tags in the same class,
Class 5 for tags having capability of powering Class 1 and 2 tags and communicate
with Class 3 tags. The classification of EPCglobal is summarized in Table 7.2.

It is worth noting that the two main initiatives cooperate to help the broader
adoption of BackCom. For example, EPCglobal Class 1 Gen 2 [12], which is designed
to work in UHF, is developed based on the compliance with UHF air interface protocol
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Table 7.1 ISO RFID standards

Standard  Details
ISO 10536  Identification cards—contactless integrated circuit(s) cards
ISO 11784 RFID of animals—code structure
ISO 11785 RFID of animals—technical concept
ISO 14443  Cards and security devices for personal identification—contactless
cards proximity
ISO 15418 Information technology—automatic identification and data capture techniques
ISO 15459  Information technology—unique identification
ISO 15693  Identification cards—contactless integrated circuit cards—vicinity cards
ISO 15961 RFID for item management—data protocol: application interface
ISO 15962 RFID for item management—data encoding rules and logical memory functions
ISO 15963  RFID for item management—unique identification of RF tag
ISO 18000 RFID for the air interface for a unique frequency range:
Part 1: Reference architecture, Part 2: 135 kHz, Part 3: 13.56 MHz,
Part 4: 2.45 GHz, Part 5: 5.8 GHz, Part 6: 860-960 MHz, Part 7: 433.92 MHz
ISO 18046  RFID performance test methods
ISO 18047 RFID conformance test methods
ISO 24710 RFID for item management—elementary tag licence plate functionality for
ISO 18000 air interface definitions
ISO 24729  RFID for item management—implementation guidelines
ISO 24730 Information technology—Real-Time Locating System (RTLS)
ISO 24752  Information technology—user interfaces—universal remote console
ISO 24753  RFID for item management—encoding and processing rules for sensors
and batteries
ISO 24769 RTLS device conformance test methods
ISO 24770 RTLS device performance test methods

Table 7.2  Classification used by EPCglobal for its tags

Class Tag classification Feature Programming
0 “Read only” Programmed by the
Passive manufacturer
1 “Write once-read Programmed by the customer;
many” cannot be reprogrammed
Passive
2 Rewritable A passive tag with up to 65 kB Programmed by the customer;
Passive of read—write memory cannot be reprogrammed
3 Semi-passive Similar to a Class 2 tag but with Reprogrammable
a built-in battery to support
increased read range
4 Active An active tag that transmits and Reprogrammable
runs its chip’s circuitry with the
use of a built-in battery
5 Active An active tag that can communicate Reprogrammable

with other Class 5 tags and/or
other devices or tags
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in ISO 18000-6 [13]. Consequently, the standard has been widely used in various
applications, including inventory tracking and pallet tracking.

7.2 BackCom networks

In this section, we introduce three most popular and representative types of BackCom
networks based on their different network architectures, including the point-to-point
BackCom network, multi-access BackCom network, and interference BackCom net-
work. Different types of BackCom network architectures could be adopted in and
enable various applications in [oT scenarios.

7.2.1 BackCom networks

The simplest and basic setup for BackCom is the point-to-point network that can
be further classified into two major types: the monostatic and bistatic BackCom
networks.

7.2.1.1 Monostatic BackCom networks

In monostatic BackCom network, the CW emitter and backscatter receiver are inte-
grated (colocated) in one device. We called it a reader in the previous section. One
typical example of the monostatic BackCom network is the RFID system that consists
of one backscatter reader and one backscatter tag, as shown in Figure 7.2(a).

The main advantages of monostatic BackCom network include simple archi-
tecture, low power consumption, and low implementation cost. To be specific, the
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Figure 7.2 Point-to-point BackCom networks (a) monostatic and (b) bistatic
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backscatter tag can communicate by leveraging the incident signals. It thus needs not
the oscillator to generate active RF signals, leading to the low power consumption. For
example, the backscatter tag used in [14] only consumes 10.6 W for operating its cir-
cuit. Moreover, as the backscatter tag can harvest energy from the incident signals for
its operations, it does not require any battery. As a result, it can be designed in a small
form size with low complexity. Therefore, the implementation cost of the monostatic
BackCom network can be dramatically reduced. For example, a passive backscatter
tag only costs 7—15 cents USD [15] and implementing a large-scale BackCom system
consisting of 100 tags only costs 10 USD [14].

However, the main drawback of monostatic BackCom network is the short trans-
mission distance between the reader and tag due to the round-trip pass-loss effect [16]
and limited emitted power of the reader [17]. Therefore, the monostatic BackCom
system is mainly used for short-range RFID applications. On the other hand, the
principle of BackCom can be applied to more complex networks and integrated into
different wireless communication technologies introduced in the sequel.

7.2.1.2 Bistatic BackCom networks

In the bistatic BackCom network, the CW transmitter and backscatter receiver are
separated and deployed in different devices, as shown in Figure 7.2(b). In general, the
carrier transmitter is the dedicated RF source such as Power Beacon (PB) [18].

Using the bistatic BackCom configuration can significantly increase the commu-
nication range between the backscatter tag and the backscatter receiver. The reason
is that the path-loss of the forward link (from carrier transmitter to tag) decreases if
the carrier transmitter is deployed close to the tag. Also, multiple carrier transmitters
can be jointly used to power the tag to increase the power level of the backscattered
signal and hence enlarge its transmission distance [19]. For example, in [16], if carrier
transmitter emits power with 13 dBm and its distance to backscatter tag is 2—4 m, the
BackCom range from tag to backscatter receiver could reach to 130 m. It can cover a
wide range of Device-to-Device (D2D) communication area. Furthermore, the bistatic
BackCom network is cost-effective since manufacturing the CW transmitter as well
as the backscatter receiver is cheaper than those in the monostatic system [20].

7.2.2 Multi-access BackCom network

In practical IoT scenarios, a single reader may serve multiple backscatter tags for
delivering multiple D2D BackCom links. It is called a multi-access BackCom network
shown in Figure 7.3. Many [oT applications can be modeled as multi-access BackCom
networks. In a smart home, for example, the central data processor could support a
large number of IoT sensors and collect and aggregate the sensing data backscattered
from IoT sensors simultaneously [21].

Multiple tag’s concurrent transmissions can be collided, resulting in the transmis-
sion failure. For the collision avoidance, multi-access BackCom network should adopt
suitable Multiple-Access Channel (MAC) schemes, including Time-/Frequency-/
Code-/Space-Division Multiple Access (TDMA/FDMA/CDMA/SDMA) [3].
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Specifically, TDMA is the most practical and straightforward MAC scheme
for multi-access BackCom network that the different tags use different preassigned
well-separated time slots for transmission [16]. The synchronization requirement
between reader and tags could be easily satisfied due to the benefit of inherent closed-
loop signaling of BackCom system. Then, in FDMA, the tag can change the frequency
of the backscattered signals via RF switch [22], and thus, the reader could differentiate
different signals in the frequency domain. However, applying FDMA increases the
complexity significantly, power consumption, and cost of signal processing. Next, in
CDMA, each tag uses a unique orthogonal or near-orthogonal code for modulating
the backscattered signals for data separation at reader side. For example, in [23], the
time-hopping spreading spectrum technique is used to generate the orthogonal codes
for different tags to enable multi-access. It is worth mentioning that enabling power
control at the tag side is vital in the CDMA system to avoid the near—far problem.
Last, in SDMA, the reader is equipped with antenna arrays to form beams for scan-
ning the around space. So, the tags within the scanning space of the reader can be
distinguished via angular information [24]. The main drawback of SDMA is the high
cost and high complexity due to the directional beamforming antennas.

7.2.3 Interference BackCom network

In the case with multiple tags and multiple readers, the tags reflect all incident signals,
including useful RF signals as well as unwanted interference signals transmitted by
other tags. The resultant interference effect could be more severe in this BackCom
network and results in interference regeneration [23] as shown in Figure 7.4 (the
case with two readers and two tags). Therefore, the total number of interference links
received at the reader side is the square of the number of coexisting BackCom links,
which is larger than that in the conventional sensor network. So effectively suppressing
the interference is the one design challenge in distributed D2D or ad hoc BackCom
network. In [25], anovel solution is proposed that treats the useful BackCom signals as
sparse codes. It can be successfully decoded by using compressive sensing approach
at the reader side.
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7.3 Emerging backscatter communication technologies

Despite the advantages mentioned earlier, the conventional BackCom system has
several drawbacks. First, the transmit power of a reader is limited due to several
reasons (i.e., regulation and hardware constraints). It is thus challenging to extend
the coverage area of BackCom. Second, the receive antenna of a reader is typically
collocated with its energy source, bringing about the self-interference between them.
Third, due to its passive operation, it is challenging to apply advanced communica-
tion techniques such as multiple-access transmission and interference cancellation.
These drawbacks make it challenging for BackCom to be adopted in many appli-
cations. It calls for developing ways to overcome the limitations. To this end, new
types of BackCom system have been emerging for future loT systems introduced as
follows.

7.3.1 Ambient BackCom

There exist many kinds of RF sources in our environments, e.g., TV tower, FM
towers, cellular base stations, and Wi-Fi Access Points (APs). We can utilize them
for powering backscatter devices without the dedicated energy sources (i.e., reader).
We call it an ambient BackCom [4]. Figure 7.5 illustrates BackCom, comprising the
three main entities: an RF source, a backscatter transmitter, and a backscatter receiver.
The backscatter transmitter can send information to the receiver by harvesting and
reflecting the ambient signals broadcast from the RF source. By separating the RF
source and the backscatter receiver, ambient BackCom provides several benefits.
First, its energy consumption can be significantly reduced. For example, for the first
design of ambient BackCom proposed in [26], its transmitter and receiver consume
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0.25 and 0.54 wW, respectively. On the other hand, for Wireless Identification and
Sensing Platform [27], which is one popular programmable BackCom system, the
tag and reader consume 2.32 and 18 wW, respectively. Second, the manufacturing
cost can also decrease since the RF source is an expensive component in conventional
BackCom. Last, the ambient BackCom system does not actively transmit signals in the
licensed spectrum, and the resultant interference to the legacy receiver is negligible.
In other words, the ambient BackCom can operate as underlay cognitive radio without
the dedicated bandwidth, helping the reduction of its operating cost.

For the ambient BackCom be practical, it is vital to develop a way to extract
the desired information from the ambient backscatter signal. Contrary to the conven-
tional BackCom using an unmodulated CW, the ambient RF source is a modulated
signal. Consequently, the resultant backscatter signal is the mixture of the ambient and
backscatter modulations, making the demodulation of the ambient BackCom more
challenging. One simple scheme is to cancel the effect of the ambient modulation by
averaging adjacent samples [28]. The backscatter signal’s modulation rate is much
slower than ambient ones. Therefore, the correlation between the adjacent samples
of the desired backscatter modulation is almost one if it is within one symbol dura-
tion. On the other hand, the samples of the ambient signal are independent, and it is
possible to cancel out the ambient signals by the averaging algorithm. However, this
scheme is only valid when the concerned data rate is low. Besides, it suffers from
direct interference from RF sources, bringing about the significant degradation of the
received signal quality. Recently, several works have been proposed to improve the
data rate by utilizing other RF sources such as FM broadcasting [28], Wi-Fi AP [29],
and Orthogonal Frequency Division Multiplexing (OFDM) [30]. Especially in [28],
the authors developed an algorithm to cancel out the direct-link interference based on
the knowledge of the OFDM signal structure. It leads to increasing the data rate as
well as improving the received signal quality.
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7.3.2 Wirelessly powered BackCom

In the future massive 10T, the readers are energy limited and thus may not be used
to power other tags for BackCom over sufficiently long ranges. Consequently, the
conventional monostatic BackCom architecture is not suitable. Although the ambient
BackCom system introduced in Section 7.3.1 could leverage the rich ambient RF sig-
nals to empower the BackCom, it has the following two major limitations [19]. First,
it has a much lower data rate than that of ambient signal links. Second, it does not have
the scalability since it depends on other networks as energy sources. The limitations
mentioned earlier motivate the design of using the dedicated energy source (e.g., PB)
to wirelessly power and enable the BackCom links between tags and receivers. It is
called a wirelessly powered BackCom network. Figure 7.6 shows a typical example
of a wirelessly powered BackCom network. Specifically, the low-complexity PB is
deployed for wirelessly powering its nearby backscatter tags via either beamform-
ing or isotropic transmission. The tags will first harvest energy from the incident
signal and then modulate and backscatter the signal to their paired receivers. By
using this network design, the data rate and communication distance are further
increased.

Authors in [19] made the first attempt to model and optimize a large-scale wire-
lessly powered BackCom network by jointly using stochastic geometry and convex
optimization. To be specific, the network topology is modeled as a Poisson cluster
process where PBs are the cluster centers, and the tags are distributed around PBs as
the cluster members. This modeling is motivated by the fact that only the tags that are
close enough to the PBs could harvest sufficient energy for BackCom. Then, based
on the proposed model, the network performance, including network coverage prob-
ability and capacity, is optimized in terms of BackCom parameters such as duty cycle
and reflection coefficient. In [31], a hybrid wirelessly powered BackCom network is
proposed to increase the transmission distance of BackCom further. The tags could
be powered by either ambient signals (e.g., TV tower) or dedicated RF signals (e.g.,
carrier transmitter). In [32], the sum-throughput of a wirelessly powered BackCom
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network is maximized by optimizing the transmission policies such as time allocation
and working mode permutation of BackCom users.

The advantages of wirelessly powered BackCom networks can provide flexibility
to apply BackCom to a wide range of [oT scenarios. For example, authors in [33] pro-
posed a novel backscatter sensing framework that uses BackCom for efficient sensing
data transmission by sensors and applies statistical learning for accurate detection and
inference at the receiver.

7.3.3  Full-duplex BackCom

Recall that the basic BackCom is designed for a unidirectional data transmission
from a tag to its paired reader. On the other hand, it is expected in the future IoT
services that bidirectional communications are essential to support frequent and low-
latency data exchange between IoT devices. It is thus natural to consider Full-Duplex
(FD) BackCom by allowing the [oT devices to speak and listen simultaneously. It is
worth noting that in conventional communication systems, an essential technique for
enabling FD is self-interference cancellation based on a knowledge of the signal the
device is transmitting [34]. However, this approach is unsuitable for low-cost and low-
complexity [oT devices, since sophisticated analog and digital signal processing units
are required. On the other hand, BackCom’s simultaneous information and energy
transmissions make it much easier to implement FD BackCom without concerning
the self-interference cancellation.

There exist some recent works designing FD BackCom. In [35], a simple FD
BackCom is first proposed, where high-rate and low-rate transmissions in the opposite
direction are superimposed. However, this method is based on the rate asymmetricity,
and its usage is limited if both forward and backward links require high data rates.
In [23], Time-Hopping Spread-Spectrum (THSS) is adopted in FD BackCom, where
a THSS bit sequence is transmitted from a reader to a tag, which plays a role to
suppress interference. Besides, it enables the reader to harvest more energy, which
facilitates noncoherent energy detections.

7.3.4 Visible-light-BackCom

To deliver the reliable backscatter data links in RF-limited scenarios (e.g., hospitals
or tunnels), Visible-Light-BackCom (VL-BackCom) system has been proposed as a
complementary solution. It exploits the benefits of visible light such as its sufficient
spectrum and good directionality [36]. In general, the VL-BackCom has a similar
key principle to the conventional RF-enabled BackCom. The main difference is that
the VL-BackCom leverages the visible light signals, instead of RF signals, for data
transmission.

The primary setting of VL-BackCom system includes the VL-BackCom transmit-
ter, VL-BackCom tag, and VL-BackCom receiver, shown in Figure 7.7. Specifically,
the VL-BackCom tag first uses its solar panel to harvest energy from the visible
light emitted by VL-BackCom transmitter and then modulates and reflects the visible
light signal to the dedicated VL-BackCom receiver for demodulation. The modulation
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Figure 7.7 Basic setting of VL-BackCom system

procedure at tag is done by switching (i.e., pass or block) the Liquid Crystal Display
shutter. The demodulation at receiver is achieved by using photodiode.

VL-BackCom has been a hot topic in green IoT and further enriches the func-
tionality of BackCom. For example, in [37], an ambient VL-BackCom system is
designed and implemented. It is shown in the experimental results that the system
could deliver 0.5 and 10 kbps data rates for uplink and downlink, respectively, over
a communication distance of 2.4 m. To further increase the data rate, several novel
modulation schemes, named 8 Pulse Amplitude Modulation and trend-based modula-
tion, are proposed in [36,38], respectively. Specifically, the data rate of uplink could
be improved up to 1 kbps, which is four times higher than that in [37]. In addition, a
large-scale VL-BackCom network that consists of multiple D2D VL-BackCom links
is modeled and analyzed in [39] by using stochastic geometry. It is shown that the
network performance could be optimized in terms of BackCom parameters such as
duty cycle.

7.3.5 BackCom system with technology conversion

To enable the BackCom between various types of commercialized devices (e.g., Blue-
tooth and Wi-Fi devices), it is necessary to study and set up the BackCom system
with different technology conversions.

Figure 7.8 shows one technology conversion that using the Bluetooth signal trans-
mits data from a tag to a Wi-Fi device [40], following a bistatic BackCom architecture.
Specifically, a smart watch, acting as the carrier transmitter, will emit the Bluetooth
signal via Gaussian Frequency-Shift Keying (FSK) to the backscatter tag (e.g., a sen-
sor). Then, the tag could shift the Bluetooth signal (carrier frequency is 2,426 MHz)
to the Wi-Fi channel (carrier frequency is 2,462 MHz) by performing an FSK modu-
lation via turning the mismatch level between antenna’s impedances, and backscatter
to the Wi-Fi device (e.g., a smartphone) for decoding. This technology conversion
has been verified and implemented in [40].



Backscatter communications for ultra-low-power loT 187

Backscatter tag

Bluetooth ~ Backscattered

. ~ .
signal ~ signal
~ ~

A a s |

—
b 3 =

0

—
Bluetooth watch Wi-Fi device

Figure 7.8 BackCom system with technology conversion

Technology conversion can also be implemented by using a multi-access Back-
Com architecture that includes a Wi-Fi AP and multiple backscatter tags [41].
Specifically, after receiving the Wi-Fi signals, tags could modulate their informa-
tion onto the Wi-Fi signals and reflect them back to AP for decoding. Therefore, the
tags may access the Internet, even in the presence of access by legal Wi-Fi clients
such as laptops and smartphones. In summary, BackCom system with technologies
conversion is envisioned to interconnect everything for smart IoT.

7.4 Performance enhancements of backscatter communication

The simple and low-cost designs of BackCom can help large-scale deployments for
future IoT system, but they limit its performance such as communication range and
error probability. Besides, the existing advanced signal processing techniques adopted
in other communication systems may be unsuitable for BackCom due to its primitive
architecture. As a result, it is essential to develop new techniques for BackCom
introduced as follows.

7.4.1 Waveform design

A waveform refers to a specific shape of a signal expressed in terms of voltage.
Recall that BackCom commonly considers a sinusoidal CW as its waveform. Such
a CW is simple to generate, but more advanced waveforms can be used to boost the
performance of the system.

To this end, we can leverage the significant progress made on the design of
efficient communications and signal strategies for Wireless Power Transfer (WPT)
[42]. In particular, multi-sine waveforms adaptive to the Channel State Information
(CSI) have been shown particularly powerful in exploiting the rectifier nonlinearity
and the frequency selectivity of the channel to maximize the amount of harvested
DC power and extend the range of WPT [43,44]. Such a design can be leveraged
to design efficient BackCom waveform. Interestingly, BackCom waveform design is
slightly different from WPT waveform design, since the waveform design influences
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not only the amount of energy delivered to the tag (as in WPT) but also the quality
of the communication at the reader, measured e.g., in terms of Signal-to-Noise Ratio
(SNR). This leads to a trade-off between the SNR at the reader and the amount of
energy harvested at the tag, and the waveform design aims at identifying this trade-off
and maximizing the amount of energy delivered at the tag subject to a minimum SNR
requirement at the reader, or inversely [45].

7.4.1.1 Single-tag case

To study such trade-off more concretely, consider a multi-sine waveform (with N sine
waves) transmitted at time ¢ over a single antenna

N—1
x(f) = Re |:Z wnejznﬁ":| , (7.3)

n=0

with w, = s,e" where s, and ¢, refer to the amplitude and the phase of sine wave n
at frequency f,, respectively. The transmit waveform propagates through a multipath
channel and is received at the tag as

N—1
¥(t) = Re [Z hnwnd’z”f'”} ) (7.4)

n=0

where 4, is the forward channel frequency response at frequency f,. This signal is
absorbed by the tag (and not reflected to the reader) whenever the reflection coefficient
is zero. Then it is conveyed to a rectifier that converts the incoming RF signal into DC.
The amount of DC power harvested at the output of the rectifier Ppc is a nonlinear
function fy;(y) of the input signal y(¢) [43]. On the other hand, when the reflection
coefficient is 1, the signal is reflected to the reader (and not absorbed by the tag) such
that the received signal at the reader can be written as

N-1

z(t)=m - Re |:Z hr,,,h,,wne"zmt:| + n(t), (7.5)

n=0
where m equals 0 or 1 when the reflection coefficient at the tag is 0 and 1, respec-
tively. n(¢) is an additive white Gaussian noise at the reader, and 4, , is the frequency
response of the channel between the tag and the reader (4, , could be different from
h,, if the transmitter and reader are not colocated). After applying a product detector
to each frequency and assuming an ideal low-pass filtering, the baseband signal on
each frequency n is obtained and the N observations are combined using Maximum
Ratio Combining. The SNR at the reader can then be computed.

Assuming that all channel coefficients have been estimated in advance, the wave-
form can then be optimized and the SNR-energy trade-off (so-called SNR-energy
region) be characterized by formulating an optimization problem that aims at find-
ing the set of complex coefficients w, (hence, magnitude and phase) that maximizes
the harvested energy Ppc = fy.(y) subject to an average transmit power constraint,
and the SNR at the tag being larger than a minimum threshold [45]. Such optimiza-
tion problem can be solved, and results highlight that as the SNR threshold is low,
the transmit power is allocated over multiple frequencies (as a consequence of the
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nonlinearity of the rectifier), while for large SNR threshold, the transmit power is
dominantly allocated to a single frequency [45].

7.4.1.2 Multi-tag case

In amore general setting, it is likely that a transmitter has to serve multiple tags. In that
case, all tags will compete to have access to the resources. This leads to a multiuser (or
multi-tag) BackCom problem design. In [46], the problem of waveform design was
studied for a multiuser BackCom. In contrast to the single-tag setup, in the presence of
multiple tags, energy needs to be delivered to each of them and the waveform design
for one given tag may not be suitable for another tag. Hence, there is trade-off between
the amounts of energy delivered at the different tags. One valid metric is to consider
a weighed sum of harvested DC power, where the higher the weight of one tag,
the higher it is prioritized to receive energy. Moreover, since all the tags reflect data
simultaneously, multiuser interference is created at the reader, and the communication
quality can be measured in terms of Signal-to-Interference-plus-Noise Ratio (SINR)
(instead of SNR as in single tag). The problem is therefore to identify the best transmit
waveform that leads to the best trade-off between the weighted, harvested DC power
and the SINRs (the so-called SINR-energy region). To that end, a multi-sine waveform
at the transmitter is optimized dynamically as a function of the wireless channels so as
to maximize a weighted sum of the harvested DC power, subject to SINR constraints
at the tags [46]. The numerical results demonstrate the benefits of accounting for
the harvester nonlinearity, multiuser diversity, frequency diversity, and multi-sine
waveform adaptive to the channel state to enlarge the SINR-energy region. Results also
highlight that such a simultaneous multiuser transmission using optimized waveform
outperforms a TDMA approach.

7.4.2 Multi-antenna transmissions

Due to the two-way propagation, the BackCom requires a different channel model
from other wireless systems. To be specific, it follows a cascaded channel of the
forward and backward links, which can be modeled as the product of the two wire-
less channels. Consequently, the BackCom suffers from a double-propagation loss.
According to [5], the link budget of BackCom is proportional to R~, where R rep-
resents the tag—reader distance. Noting that the link budget of other wireless systems
with a one-way propagation is proportional to R~2, its maximum distance is shorter
than the conventional systems. One solution to extend the range is to deploy more
antennas at both a reader and a tag, making it possible to use space-time coding for
reliable data transmission. Besides, it helps one to increase the efficiency of the energy
harvesting via energy beamforming and increasing receive antenna apertures [47].

7.4.2.1 Space-time coding

Let us consider a backscatter tag with L antennas and reader with M transmit and
N receive antennas. Compared with a standard M by N Rayleigh Multiple-Input—
Multiple-Output (MIMO) channel, the distinguishable feature of the backscatter
channel is that all multipath signals from the reader are combined at the tag’s antenna,
called a pinhole effect. Then, the combined signal is returned back to the reader’s
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antenna as if it is generated from a single source. We define it as a Dyadic Backscat-
ter Channel (DBC) and represent it as (M, L, N) DBC. In [48], the Bit Error Rate
of uncoded BPSK over the DBC channel is analyzed, providing three interesting
observations. First, SNR gain can be achieved when the tag’s number of antennas L
increases, even though the reader’s number of receive antennas N is 1. Second, diver-
sity gain can be achieved when both L and the reader’s receive antennas N increase.
In other words, increasing the number N cannot guarantee the reliability of the back-
ward data transmission, which is different from the conventional MIMO channels.
Third, increasing the number of the reader’s transmit antennas M leads to coding
gain. In [49], the pairwise error probability of BackCom is analyzed when Orthogo-
nal Space-Time Block Codes [50] is used. It is shown that the diversity order is L if
N is less than L. In [2], the Diversity-Multiplexing Trade-off (DMT) of BackCom is
derived such that when the optimal DMT is given as d*(r) = L — » when N > L, and
d*(ry=L(1 —r/N) when N < L, which is different from that of the conventional
MIMO channel in [51].

7.4.3 Energy beamforming

Energy beamforming refers to one multi-antenna technique making the electromag-
netic energy into a narrow beam for efficient energy transfer. Specifically, the reader
transmits a narrow energy beam to the tag’s direction (forward channel). It enables
the tag to harvest more energy that are used to activate the tag’s circuit more fre-
quently and transmit data to the reader (backward channel) more reliably. For the
energy beamforming to be more efficient, one prerequisite is to obtain CSI. Contrary
to conventional wireless communications who use pilot symbol transmissions from
the transmitter to the receiver to perform CSI estimation, it is difficult to estimate the
forward and backward channels individually due to its cascade channel between the
two. When the pilot symbol is transmitted from the reader, it only enables to obtain
the product of the forward and backward CSls, called a Backscatter-Channel CSI
(BS-CSI). In [52], energy beamforming is optimized based on BS-CSI for a single-
tag case. In [47], energy beamforming for a multi-tag case is considered where a new
energy beamforming technique is developed by only using BS-CSI, and the optimal
resource allocation scheme is derived for the proportional-fair-energy maximization.

7.5 Applications empowered by backscatter communications

Backscatter tags connected to the IoT based on BackCom will find a wide range
of applications ranging from autonomous driving to logistics management. Several
applications are introduced as follows based on the survey articles in [3,53].

7.5.1 BackCom-assisted positioning

Autonomous driving is envisioned as a disruptive technology for next-generation
smart transportation. The technology is being developed at leading companies such as
Google and Tesla and was recently demonstrated in real-life applications. Autonomous
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vehicles are expected to be widely deployed in the near future, giving rise to an emerg-
ing market of tens of billions of dollars. An essential operation in autonomous driving
technology is positioning, namely, recognizing the car’s absolute and relative posi-
tions concerning other objects such as buildings, pedestrians, and other vehicles. The
state of the art of vehicular positioning relies on Global Positioning System (GPS)
satellites for positioning so as to follow planned routes. This requirement of line-of-
sight to satellites limits the positioning to be in environments with few blockages such
as rural areas or highways. Unfortunately, autonomous driving services are mostly
needed in urban areas where GPS signals are frequently blocked by high-rise build-
ings. To overcome the limitation, Nvidia has developed a solution for Unmanned
Aerial Vehicle (UAV) navigation without GPS by using visual recognition and deep
learning. The technology is prone to accidents caused by visual errors under hostile
weathers (i.e., fog, snow, and heavy rain) or in a poorly lighted environment. Further-
more, a required powerful computer for deep learning adds to the UAV weight and
power consumption, which shortens the delivery ranges. An alternative technology,
backscatter-tag-assisted autonomous driving (see Figure 7.9), is a promising solu-
tion that relies on the infrastructure’s support to avoid the need of GPS satellites for
positioning.

BackCom-based positioning has been extensively studied in the area of
indoor positioning (e.g., [54-57]), while there exist a few recent works consid-
ering BackCom positioning in a vehicular environment. In [58,59], for example,
tag-assisted vehicular positioning systems are proposed, where a large number of
tags are deployed on the road surfaces embedding the corresponding location-related
information. An on-board reader installed at bottom of a vehicle attempts to read tags
that it passes by to know its location. Unfortunately, this approach may be infeasible in
practice due to the following reasons. First, due to the limited coverage of BackCom,
it requires high tag density and thereby high costs to achieve high positioning accu-
racy. Second, the tags on the road surfaces are unlikely to be durable because heavy
vehicles frequently press down the tags. Besides, it is not easy to replace broken tags

Tag
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.
Tag-assisted UAV delivery Tag-assisted autonomous driving

Figure 7.9 Backscatter-tag-assisted positioning for autonomous driving
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because of safety issues on highway. Third, a vehicle with high velocity frequently
fails to read the information of tags due to its short contact duration.

Tag-assisted vehicular positioning involves the embedding of a large number
of low-cost backscatter tags into the ambient environment and a vehicle positioning
itself by communicating with the tags. The principle of tag-assisted positioning is
to (1) detect the relative location of a vehicle with respect to a tag; (2) read the
absolute position stored in the tag; and (3) combine the relative and tag’s absolute
positions to give the absolute position of the vehicle. Developing this technology faces
numerous challenges. For example, to reduce the required latency, positioning and
BackCom should be integrated and calls for the development of new algorithms. As
another example, Doppler shift at high mobility compromises positioning accuracy
and needs to be coped with in the design.

7.5.2 Smart home and cities

Low-power or passive BackCom devices with energy-harvesting capabilities can be
densely deployed to provide pervasive and uninterrupted sensing and computing ser-
vices that provide a platform for implementing applications for smart homes/cities.
In a smart home, a large number of passive BackCom sensors can be placed at
flexible locations (e.g., embedded in walls, ceilings, and furniture). They are freed
from the constraints due to recharging or battery replacements as one or multiple
in-house PBs can be deployed to simultaneously power all the sensors or otherwise
they can operate on ambient energy harvesting. The tasks performed by the sensors
have a wide range such as detection of gas leak, smoke and Carbon Dioxide (CO,),
monitoring movements, indoor positioning, and surveillance (see Figure 7.10). As
an example, BackCom-based smart dustbins are able to monitor their trash levels

Figure 7.10 BackCom-powered smart home
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and communicate the information with passing-by garbage trucks by backscattering,
streamlining the trash-collection process. Another example is that household robots
are able to use the backscattered signals from the tags located on doors and furni-
ture for indoor navigation. In a smart city, ubiquitous BackCom sensor nodes can be
placed in every city corner such as buildings, bridges, trees, streetlamps, and park-
ing areas. They can streamline the city operations and improve our life quality via,
e.g., monitoring of air/noise pollution and traffic and parking-availability indicating.
The efficient sensing data fusion and wireless power for BackCom sensors can be
realized by the deployment of integrated PBs and APs at fixed locations or mounted
on autonomous ground vehicles or UAVs, providing full-city coverage without costly
backhaul networks.

7.5.3 Logistics

BackCom for logistics is a very attractive proposition due to the ultra-low manu-
facturing cost of simple and passive BackCom tags, as illustrated in Figure 7.11.
For example, as early as 2007, the biggest 100 suppliers of the global renowned
chain commercial group Wal-Mart have used the BackCom technology for logistics
tracking. The technology has been helping the companies to substantially reduce
operational cost, guarantee product quality, and accelerate the processing speed. In
the past decade, the popularization and the application of BackCom have brought
revolutionary changes to the logistics industry, due to its advantages compared with
the conventional bar code technology such as reduced manual control, long service
lives, long reading distances, and encryptable and rewritable data.

Figure 7.11 Backscatter-tag-assisted logistics management
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Looking into the future, apart from the existing BackCom techniques for logistics
tracking and management, BackCom-based three-dimensional orientation tracking is
an emerging technique. By attaching an array of low-cost passive BackCom tags as
orientation sensors on the surface of the target objects, three-dimensional orientation
information is available at the reader by analyzing the relative phase offset between
different tags. In this way, human workers can be warned when the angle of a cargo
is larger than a threshold.

7.5.4 Biomedical applications

IoT biomedical applications such as plant/animal monitoring, wearable, and
implantable human health monitoring require tiny and low heat-radiation commu-
nication devices. BackCom devices, which do not rely on any active RF component,
can meet such requirements and thereby avoid causing any significant effect on the
plants, animals, tissues, or organs being monitored. These advantages make BackCom
a promising solution for IoT biomedical applications. One example is the BackCom-
based smart Google Contact Lens, as illustrated in Figure 7.12. The lens was invented
in Google in 2014 for the purpose of assisting people with diabetes by constantly
measuring the glucose levels in their tears (once per second). The device consists of
a miniaturized glucose sensor and a tiny BackCom tag. The tag is able to provide
energy to the sensor by RF energy harvesting from a wireless controller and also
backscatter the measured blood sugar level to the wireless controller for diagnosing
purpose. Looking into the future, we envisage that BackCom will find a wide range of
biomedical applications. In particular, implantable tiny BackCom neural devices with
ultra-low power consumption and heat radiation may be placed on the surface of the
patient’s brain to help the study, diagnosis, and treatment of diseases such as epilepsy
and Parkinson’s disease, where the BackCom implants act as the brain—computer
interface.

Figure 7.12  Backscatter-tag-enabled smart contact lens
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7.6 Open issues and future directions
We discuss a few open research problems that have not fully studied in the literature.

7.6.1 From wireless information and power transmission
to BackCom

BackCom is closely related to the general research area of Wireless Information and
Power Transmission (WIPT), and Wirelessly Powered BackCom is actually one of
the possible types of WIPT [60]. This implies that much work and ideas from the
area of WPT and WIPT can be leveraged to analyze and enhance the performance of
BackCom. Some examples were already discussed in Section 7.4. Progress not only
in WPT regarding energy harvester modeling, energy beamforming for WPT, channel
acquisition, power region characterization in multiuser WPT, waveform design with
linear and nonlinear energy receiver model, safety and health issues of WPT, massive
MIMO and millimeter wave (mmWave)-enabled WPT, wireless charging control, and
wireless power and communication system codesign, as discussed in [42], but also in
the RF design and the interplay between RF and signal design for WPT [61] can cer-
tainly play a role to enhance the WPT performance of Wirelessly Powered BackCom.
Similarly, progress in the WIPT area, including energy harvester and receiver models
and their impact on signal and system designs, rate-energy region characterization,
transmitter and receiver architecture, waveform, modulation, beamforming and input
distribution optimizations, resource allocation, and RF spectrum use, as discussed
in [60], can also play a role to enhance the communication performance along with
the energy delivery/harvesting performance of a BackCom system.

7.6.2 Security and jamming issues

The lightweight protocol and low-energy transmission of BackCom provide many
advantages for future IoT devices explained so far. On the other hand, its simple
architecture makes it impractical to apply advanced security and anti-jamming proto-
cols, which results in exposing many malicious attacks. For example, when a jamming
device intentionally sends RF signals during the BackCom procedure, the received
signal quality can be significantly degraded since the BackCom signal’s strength is
too weak to suppress the jamming signal. Besides, an eavesdropper overhears the
BackCom transmission without difficulty due to the lack of conventional security
solutions such as encryption and digital signature. To overcome the limitations, there
exist some works adopting physical-layer security approaches, which exploit wire-
less channel characteristics such as fading and noises, traditionally considered as
obstacles, for defending BackCom against malicious attacks [62]. The authors in [63]
proposed an artificial noise that is injected with the aid of the reader to protect the
BackCom from unauthorized eavesdroppers. Specifically, a reader generates a ran-
dom noise signal and adds it to the CW signal, which obscures the eavesdroppers to
decode the BackCom information signal. The authors of [64] extend this approach
into multi-antenna BackCom where the energy supply power and the precoding matrix
of'the artificial noise are jointly optimized. Using the additional degree-of-freedom of
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multi-antenna channel, it helps the BackCom from jamming devices as well as eaves-
droppers. The authors of [65] study the physical-layer security of multi-tag BackCom
system under the consideration of channel correlation between forward and backward
links. However, this artificial noise injection approach is only viable in the traditional
BackCom where the reader plays a role of CW emitter and BackCom receiver, since
the assumption of the noise injection knowledge is a prerequisite. In cases of other
BackCom systems such as ambient BackCom, this assumption is invalid, making it
challenging to apply the artificial noise injection approach directly. It opens a new
research direction to develop a new physical-layer security approach for different
types of BackCom systems.

7.6.3 mmWave-based BackCom

To enrich the limited spectrum resource under sub-6 GHz, mmWave communications
explore a huge amount of available bandwidth, ranging from 24 to 100 GHz, to pro-
vide high data rate and high network capacity for 5G wireless networks [66]. Although
the mmWave signal is previously assumed unsuitable for wireless transmission due to
its high propagation loss, now it can be leveraged to offer high-speed-low-latency ser-
vices based on the advanced signal processing technologies [67] (i.e., beamforming)
and high gain antenna arrays [68].

Consider the massive [oT network of 5G. mmWave could also further enhance
the performance of BackCom, including increasing the energy-efficiency, peak data
rate, and enriching its functionality. Specifically, in [69], an mmWave-enabled mono-
static BackCom system is designed and implemented to deliver 4 Gigabit backscatter
transmission rates but just consume 0.15 pJ/bit energy. In [70], an indoor tag-assisted
localization technique is proposed by transmitting mmWave-backscattered signals.
The reader is equipped with high-directional beam-steering antennas to achieve reli-
able positioning performance. In addition, a novel backscatter-tag-assisted vehicular
positioning approach is proposed in [ 71] by transmitting the mmWave signal to enable
both BackCom and ranging purposes simultaneously.
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Chapter 8

Age minimization in energy harvesting
communications

Ahmed Arafa’, Songtao Feng?, Jing Yang®,
Sennur Ulukus’ and H. Vincent Poor?

Latency assessment in communication systems is commonly approached through
measuring throughput (the amount of data that could be transmitted in a certain
amount of time), or transmission delay (the amount of time it takes to transmit a certain
amount of data). In this chapter, we introduce an alternative perspective on assessing
latency in energy harvesting communication systems, namely, through the notion
of the age-of-information (Aol) metric. Different from throughput and transmission
delay, Aol measures the amount of time elapsed, since the latest amount of data
has reached its destination. Therefore, it provides a mathematical measure of data
freshness and timeliness at the destinations, and hence, is very suitable to assess
latency for applications in which a fresh stream of data is continuously required over
aperiod of time, such as in surveillance videos, remote sensing systems, and vehicular
networks.

Minimizing Aol, however, leads to relatively different characteristics for optimal
policies when compared to those maximizing throughput or minimizing transmission
delay. This chapter discusses and characterizes Aol-optimal policies in the context of
energy harvesting communications, in which transmitters do not have enough energy
to transmit data all the time and maintain its freshness at the receivers.

The notion of Aol is introduced first, along with some related works. Then,
the focus shifts to single transmitter—receiver pair systems. For these, the effects of
having different battery sizes on the optimal policies are shown for perfect (zero-
error) channels and erasure channels. This chapter is concluded by some takeaways
and future directions for this active line of research.
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8.1 Introduction: the age-of-information (Aol)

Real-time sensing applications in which time-sensitive measurements of some phys-
ical phenomenon (status updates) are sent to a destination (receiver) call for careful
transmission scheduling policies under proper metrics that assess the updates’ timeli-
ness and freshness. The Aol metric has recently attracted attention as a suitable candi-
date for such a purpose. Aol is defined as the time spent, since the latest measurement
update has reached the destination, and hence it basically captures delay from the desti-
nation’s perspective. Mathematically, at time 7, the Aol a(¢), or merely age, is given by

a(t) = t — u(t), (8.1)

where u(¢) denotes the time stamp of the last measurement received at the destination.
To keep the data fresh at the destination, one needs to minimize the Aol

The Aol metric has been studied in the literature under various settings: mainly
through modeling the update system as a queuing system and analyzing the long-
term average Aol, and through using optimization tools to characterize optimal status
updating policies, see, e.g., [1-25].

8.1.1 Status updating under energy harvesting constraints

When sensors (transmitters) rely on energy harvested from nature to transmit their
status updates, they cannot transmit continuously, so that they do not run out of
energy and risk having overly stale status updates at the destination. Therefore, the
fundamental question of how to optimally manage the harvested energy to send timely
status updates needs to be addressed.

8.1.1.1 Summary of related works

There have been a number of works studying this setting under various assumptions
[26-55]. With the exception of [31], an underlying assumption in these works is
that energy expenditure is normalized, i.e., sending one status update consumes one
energy unit. References [26,27] consider a sensor with infinite battery, with [26]
focusing on online policies under stochastic service times, and [27] focusing on both
off-line and online policies with zero service times, i.e., with updates reaching the
destination instantly.* Reference [28] studies the effect of sensing costs on Aol with
an infinite battery sensor transmitting through a noisy channel. Using a harvest-then-
use protocol, [28] presents a steady-state analysis of Aol under both deterministic
and stochastic energy arrivals. The off-line policy in [27] is extended to nonzero, but
fixed, service times in [29] for both single and multi-hop settings, and in [31] for
energy-controlled variable service times.

The online policy in [27] is analyzed through a dynamic programming approach
in a discretized time setting and is shown to have a threshold structure, i.e., an update
is sent only if the age grows above a certain threshold and energy is available for
transmission. Motivated by such results for the infinite battery case, [32] then studies

*In fact, most works focus on the zero service time case (cf. Table 8.1).
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the performance of online threshold policies for the finite battery case under zero
service times. Reference [33] proves the optimality of online threshold policies under
zero service times for the special case of a unit-sized battery, via tools from renewal
theory. It also shows the optimality of best effort online policies, where updates are
sent over uniformly spaced time intervals if energy is available, for the infinite battery
case. Reference [30] shows that such best effort policy is optimal in the online case
of multi-hop networks, thereby extending the off-line work in [29]. Best effort is
also shown to be optimal, for the infinite battery case, when updates are subject to
erasures, with and without erasure feedback, in [34-36].

Under the same system model of [34], study of [37] analyzes the performances
of the best effort and the save-and-transmit online policies, where the sensor saves
some energy in its battery before attempting transmission, for the purpose of coding
to combat channel erasures. A slightly different system model is considered in [38],
in which status updates’ arrival times are exogenous, i.e., their measurement times
are not controlled by the sensor. With a finite battery, and stochastic service times,
[38] employs tools from stochastic hybrid systems to analyze the long-term average
Aol. The work in [39] considers a similar queuing framework as in [38] and studies
the value of preemption in service on Aol. Reference [40] also considers a similar
approach as in [38,39] under general energy and data buffer sizes. An interesting
approach is followed in [41] where the idea of sending extra information, on top of
the measurement status updates, is introduced and analyzed for unit batteries and zero
service times.

Optimality of threshold policies for finite batteries with online energy arrivals has
been shown in [42—44] using tools from renewal theory and a Lagrangian framework,
which provides closed-form solutions of the optimal thresholds. This has also been
shown independently and concurrently in [45] using tools from the optimal stopping
theory. Reference [46] shows the optimality of threshold policies under general age-
penalty functionals. Online policies for unit batteries with update erasures have been
shown to also have a threshold structure in [47,48].

Other frameworks where Aol with energy harvesting has been studied include
works that focus on wireless power transfer [49], multiple access channels [50],
cognitive radio systems [51], monitoring with priority [52], operational and sensing
costs [53,54], and trade-offs between Aol and distortion [55].

8.1.1.2 Categorization
We categorize the previous related works according to three main aspects:

The first is the battery size B, which can either be finite or infinitely large.

The second is the energy arrival process knowledge, which can either be offline,
i.e., predictable before the energy arrives (is harvested), or online, i.e., can only
be known causally after the energy arrives.

e The third is the service time d, denoting the time for an update to traverse through
the communication channel and reach the destination; this can take multiple forms
but is mainly categorized into deterministic (zero or nonzero) services times and
stochastic service times.
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Using the previous three categories (B, offline/online, d), we summarize the related
works [26—55] in Table 8.1.

8.1.2 Chapter outline and focus

Over the next two sections, we will discuss two main categories of status updating
under energy harvesting constraints to further illustrate how Aol affects the optimal
transmission policies. The first is related to updating over perfect (zero-error) com-
munication channels [33,42—44] in Section 8.2, and the second is related to updating
over erasure channels [34-36,47,48] in Section 8.3. We will be discussing works
with various battery sizes (B = oo, B = 1 and B < 00), with online knowledge of the
energy arrivals, along with zero service times (d = 0). One main takeaway from the
findings of these works is emphasized next.

Greedy is not always optimal

To minimize the long-term average Aol, depending on the energy arrival profile,
it is not always optimal to send a new status update whenever energy is available.
Rather, it is optimal to evenly spread out the status updates over time, up to the
extent allowed by the energy availability.

Table 8.1 Summary of works on Aol with energy harvesting

Battery Energy arrival Service Specifics/keywords Ref.
size B knowledge time d

00 Online Stochastic ~ Lazy scheduling [26]

00 Offline and online 0 Equispaced updating [27]

o0 Offline and online  Fixed Sensing costs [28]

00 Offline and online  Fixed Single-hop and multi-hop [29,30]
00 Offline Variable Energy controls service time [31]
<00 Online 0 Update erasures [32]

00, <00,1  Online 0 Best effort and threshold policies  [33]

o0 Online 0 Update erasures [34-36]
00 Online 0 Coding for update erasures [37]
<00 Online Stochastic ~ Queuing framework [38—40]
1 Online 0 Simult. updates and information ~ [41]
<00 Online 0 Threshold policies [42—45]
<00 Online 0 General Aol functionals [46]

1 Online 0 Update erasures [47,48]
<00 Online 1 Wireless power transfer [49]

o0 Online 1 Multiple access [50]
<00 Online 1 Cognitive radio setting [51]
<00 Online 1 Priority monitoring [52]

o0, 1 Online 0 Operational costs [53]

1 Online Stochastic ~ Sensing costs [54]

o0 Offline and online 1 Distortion effects [55]
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Figure 8.1 System model for status updating over perfect (zero-error) channels

The abovementioned takeaway is one fundamental observation that makes
Aol minimization different from (conventional) transmission delay minimization or
throughput maximization approaches.

8.2 Status updating over perfect channels

In this section, we discuss the results reported in [33,44] in greater detail. In these
works, energy arrives in units according to a Poisson process with normalized rate
A = 1 arrival per unit time (see Figure 8.1). In addition, energy expenditure is also
normalized in the sense that one update transmission consumed one energy unit.” Let
s; denote the time at which the sensor acquires (and transmits) the ith measurement
update, and let &(¢) denote the amount of energy in the battery at time #. We then
have the following energy causality constraint:

E(s7) =1, Vi (8.2)

We assume that we begin with an empty battery at time 0. The battery evolves as
follows over time:

& (s7) =min{& (s_,) — 1 + &/ (x)), B}, (8.3)

where x; £ s; — s5;_, and .o7(x;) denotes the number of energy arrivals in [s;_;, s;).
Note that o7 (x;) is a Poisson random variable with parameter x;. We denote by .%, the
set of feasible transmission times {s;} described by (8.2) and (8.3) in addition to an
empty battery at time 0, i.e., £(0) = 0.

Let n(t) denote the total number of updates sent by time z. We are interested in
minimizing the average Aol represented by the area under the age evolution curve
versus time, see Figure 8.2 for a possible sample path with n(f) = 3. At time ¢, this
area is given by

n(t)
1 1
(OE PREE 5 (- suy)” - (8.4)
i=1

"Normalized arrival rates and transmission times are an assumption that will carry along the whole chapter.
Extensions to non-normalized arrival rates and transmission times can be directly derived, at the expense
of increased Aol as the arrival rate decreases or the transmission time increases.
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Figure 8.2 Example of the age evolution versus time with n(t) =3

The goal is to choose a set of feasible transmission times {s1, 52,53, ...} € % such
that the long-term average Aol is minimized. Equivalently, one can optimize the inter-
update times {x;, x, x3, . . . } to do so. Therefore, the goal is to characterize the optimal
long-term average Aol, as a function of the battery size, p(B) by solving:

1
p(B) £ min limsup =K [r(T)]. (8.5)
xileZ 1500 T
We will first discuss the solution for B = oo, followed by the special case of
B =1 energy unit, and then conclude the section by discussing the general case of
B < oc0.

8.2.1 The case B = o0

When the battery size is infinite, no energy overflow will happen. If we then replace
the energy causality constraint in (8.2) by its long-term average (which is in this case
equal to 1), one can show that [33]

1
p(o0) = 5. (8.6)
The intuition is that one would send a new update per unit time without violating the
constraints on average. In reality, however, sending one update per unit time is not
always feasible, since (8.2) represents an instantaneous constraint. Let us now define
the following policy.

Definition 8.1 (Best effort uniform updating [33]). The sensor is scheduled to send
a new update at s, = n,n = 1,2,3,.... The sensor performs the task as scheduled if
&(s;) = 1. Otherwise, it stays silent until the next scheduled sampling time.

Clearly, the best effort uniform (BU) updating policy is always feasible. One of
the main results of [33] is showing that it is also optimal for B = oco. That is, proving
the following theorem:

Theorem 8.1 ([33]). The BU updating policy is optimal for B = oo.

Proof sketch. The main idea is to show that under the BU updating policy, p(c0) < %,

and hence it must be optimal since % is already a lower bound. Toward that end, let us
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define K(7') as the number of missed transmission opportunities under the policy up
totime 7, i.e., the number of times in which the sensor could not transmit a new update
as scheduled due to the lack of energy. Leveraging tools from laws of large numbers,
one can show that limy_, o, K(7)/T = 0 almost surely (details in [33]). Thereby, the
policy will eventually be transmitting a new update at the highest possible value of 1
update per unit time and achieving the lower bound. O

Through simulation results, it has also been demonstrated in [33] that the BU
updating policy works quite well for other energy arrival models different from Pois-
son, such as Markovian energy sources. This shows that the policy can achieve
desirable performances under general arrival models as well.

8.2.2 Thecase B=1

This subsection and the next deal with finite battery cases. In order to minimize
the long-term average Aol when B is finite, the status update policy should try to
prevent battery overflows, since wasted energy leads to performance degradation. On
the other hand, owing to the nature of Aol, one should also try to send updates as
uniformly as possible (as seen in the B = oo case). As we will see, the optimal policy
would then strike a balance in between these two premises.

One technical condition is needed for the treatment of this finite battery case,
namely, that optimal status update policies have inter-update times of bounded second
moment. Policies that abide by this technical condition are denoted as uniformly
bounded policies in [33]. For such policies, we have the following structural result.

Theorem 8.2 ([33]). The optimal status updating policy has a renewal structure, in
which the update times {s;} constitute a renewal process.

The proof of the theorem mainly relies on the memoryless property of the expo-
nential distribution governing energy inter-arrival times. The reader is referred to [33]
for more details. Focusing on renewal policies, one can vastly reduce the complex-
ity of the problem. It basically states that history does not really matter in between
updates.

Further, by [33, Theorem 4], it is shown that the optimal renewal policy admits a
threshold structure, in which a new update is only transmitted if the Aol grows above
a certain threshold. The following is a proof of such statement, which is also stated
in [44, Section III].

Let 7; denote the time until the next energy arrival since the (i — 1)th update
time, s;_1. Since the arrival process is Poisson with rate 1, ;s are independent and
identically distributed (i.i.d.) exponential random variables with parameter 1. Under
renewal policies, the ith inter-update time x; should not depend on the events before
s;_1; it can only be a function of 7;. Moreover, under any feasible policy, x;(t;) cannot
be smaller than t;, since the battery is empty at s;,_;. Next, note that whenever an
update occurs, both the battery and the Aol drop to 0, and hence the system resets.
This constitutes a renewal event, and therefore using the strong law of large numbers
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of renewal processes (renewal reward theorem) [56, Theorem 3.6.1], p(1) becomes
equal to

E [x(1)?]
)= min ——,
P =m0 SRR
where expectation is over the exponential random variable 7.

In order to make problem (8.7) more tractable to solve, we introduce the following
parameterized problem:

(8.7)

pi1(A) £ min %E[x(r)z] — AE[x(1)]. (8.8)

x(1)>1
One can show that p; () is decreasing in A, and the optimal solution of problem (8.7)
is given by A* that solves p;(A*) = 0 [57], which can be found by, e.g., a bisection
search. Therefore, .* = p(1). Focusing on problem (8.8), we introduce the following
Lagrangian [58]:

oo oo oo

1
L = 3 / ¥} (t)e Tdt — A f x(v)e "dr — / w(t)(x(r) — t)dr, (8.9)
0 0 0
where 1(7) is a nonnegative Lagrange multiplier. Taking (the functional) derivative
with respect to x(¢) and equating to 0, we get:

X(t) = h + M(f,)-
e

(8.10)

Now if # < A, x(¢) has to be larger than ¢, for if it were equal, the right-hand side
of the above equation would be larger than the left-hand side. By complementary
slackness [58], we conclude that in this case w(¢) = 0, and hence x(#) = A. On the
other hand, if # > X, x(¢) has to be equal to ¢, for if it were larger, by complementary
slackness, w(¢) = 0 and the right-hand side of the previous equation would be smaller
than the left-hand side. In conclusion, we have:
A, P A
x(1) = N (8.11)
This means that the optimal inter-update time is threshold-based; if an energy
arrival occurs before . amount of time since the last update time, i.e., if 7 < A, the
sensor should not use this energy amount right away to send an update. Instead, it
should wait for A — t extra amount of time before updating. Else, if an energy arrival
occurs after A amount of time since the last update time, i.e., if T > A, the sensor
should use that amount of energy to send an update right away. We denote this kind
of policy as A-threshold policy. Substituting this x(¢) into (8.8), we get:

_ 4_1 2
pi)=e A (8.12)

which admits a unique solution of A* ~ 0.9012 when equated to 0.

We can now see that the balance in updating is attained. Basically, a threshold
policy tries to evenly spread out updates over time by delaying sending new updates
if an energy arrives relatively early, i.e., before exactly 0.9012 for B = 1. In the next
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subsection, we extend this policy to work for general 1 < B < oo and show that it
has a multi threshold structure, one for each possible energy level in the battery.

8.2.3 The case B < o0

In this section, we focus on problem (8.5) for the general case of 1 < B < 0o, whose
solution is reported in [44].} Similar to the B = 1 case, [44] first shows that the
optimal update policy that solves problem (8.5) has a renewal structure, namely,
that it is optimal to transmit updates in such a way that the inter-update delays are
independent over time, and that the time durations in between the two consecutive
events of transmitting an update and having & < B — 1 units of energy left in the
battery are i.i.d., i.e., these events occur at times that constitute a renewal process. We
first introduce some notation.

Let the pair (£(¢),a(t)) represent the state of the system at time ¢. Fix k €
{0,1,...,B — 1}, and consider the state (k, 0), which means that the sensor has just
submitted an update and has k& units of energy remaining in its battery. Let /; denote the
time at which the system visits (k, 0) for the ith time. We use the term epoch to denote
the time in between two consecutive visits to (£, 0). Observe that there can possibly be
an infinite number of updates occurring in an epoch, depending on the energy arrival
pattern and the update time decisions. For instance, in the ith epoch, which starts at
l;_1, one energy unit may arrive at some time /;_; + 7, ;, at which the system goes to
state (k + 1, 71;), and then the sensor updates afterward to get the system state back
to (k,0) again. Another possibility (if £ > 1) is that the sensor first updates at some
time /;_; + xx,;, at which the system goes to state (k — 1, 0), and then two consecu-
tive energy units arrive at times /;_; + 71, and /;_; + 71; + 1, respectively, at which
the system goes to state (k 4+ 1, 7;; + 12,), and then the sensor updates afterward to
get the system state back to (k,0) again. Depending on how many energy arrivals
occur in the ith epoch, how far apart from each other they are, and the status update
times, one can determine the length of the ith epoch and how many updates it has.
The next theorem provides a structural result of the optimal update policy, extending
Theorem 8.2 to work for 1 < B < oo0.

Theorem 8.3 ([44]). The optimal status update policy for problem (8.5) in the case
1 < B < oois arenewal policy, i.e., the sequence {I;} denoting the times at which the
system visits state (k,0), for some fixed 0 < k < B — 1, forms a renewal process.

The proof follows the memoryless property of the exponential distribution gov-
erning energy inter-arrival times. The reader is referred to [44] for more details. Based
on Theorem 8.3, the next corollary now follows.

Corollary 8.1 ([44]). In the optimal solution of problem (8.5), the inter-update times
are independent.

tWe note that [44] also investigates another energy arrival model in which one energy arrival completely
fills up the battery. We do not discuss such model here for coherence of treatment and refer the reader
to [44, Section IV] (and originally [42]) for more details.
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Proof. Observe that whenever an update occurs, the system enters state (7, 0) for some
J < B — 1. The system then starts a new epoch with respect to state (j,0). Since the
choice of k£ energy units in Theorem 8.3 is arbitrary, the results of the theorem now
tell us that the update policy in that epoch, and therefore its length, is independent of
the past history, in particular the past inter-update lengths. O

Based on Corollary 8.1, we have the following observation. Let us assume that the
optimal policy is such that the state at time 7 is (j, 7). This means that the previous status
update occurred at time ¢ — 7. By Corollary 8.1, the policy at time ¢ is independent
of the events before time ¢ — t. However, it may depend on the events occurring in
[t — 7,1). For instance, for j > 1, it may be the case that at time (+ — 7)" the sensor
had j — 1 energy units in its battery and then received another energy unit at some
time in [¢ — 7, ¢); or it may have already started with j energy units at time (r — 7)*
and received no extra energy units in [¢ — 7,¢). The question now is whether the
optimal policy at time ¢ is the same in either of the two scenarios. The following
result concludes that it is indeed the same. The proof also depends on the memoryless
property of exponentials, whose details are in [44].

Lemma 8.1 ([44]). The optimal status update policy of problem (8.5) is such that at
time t the next scheduled update time is only a function of the system state (&(t), a(t)).

By Theorem 8.3, focusing on state (k, 0) for some k& < B — 1 and defining the
epochs with respect to this state, problem (8.5) reduces to an optimization over a
single epoch. Based on Corollary 8.1 (and Lemma 8.1), we introduce the following
notation.

Once the system goes into state (k,0), for 1 <k < B — 1, at some time /, the
sensor schedules its next update after x; time. Since x; does not depend on the history
before time / and cannot depend on the future energy arrivals by the energy causality
constraint, we conclude that it is a constant. Now if the first energy arrival in that
epoch occurs at time / + 7; with t; > x;, the sensor transmits the update at [ + x;,
whence the state becomes (k — 1,0), and if £ > 2 the sensor schedules its next update
after x;_, time, i.e., at / + x; + x;_;. On the other hand, if the first energy unit arrives
relatively early, i.e., T; < x;, the state becomes (k + 1, t;) at / + 11, and the sensor
reschedules the update to be at / + y;,1(t) instead of / + x;. Note that y,,; only
depends on 7y, since it does not depend on the history before time /. If the second
energy arrival in that epoch occurs at time / + 7; 4+ 7, with t, > y;, (1), the sensor
transmits the update at / + y;,(71), whence the state returns to (k,0). On the other
hand, if the second energy arrival occurs relatively early as well, i.e., 7o < yx41(71),
and if £ < B — 2, the state becomes (k + 2,7, + 12) at [ + 71 + 12, and the sensor
reschedules the update at / + y, () + 72) instead of / + y, .1 (71).

In summary, the optimal update policy is completely characterized by B — 1 con-
stants: {x;,xy,...,Xxp_1}, and B functions: {y1(:),2("), . . ., ys(-)}, where x; represents
the scheduled update time after entering state (k, 0), and y;(¢) represents the scheduled
update time after entering state (k, ¢) at some time ¢. We emphasize the fact that by
Corollary 8.1, the constants {x;} neither depend on each other, nor on the functions

()}
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8.2.3.1 Renewal state analysis

To analyze the optimal solution of our problem, in view of Theorem 8.3, we now need
to choose some renewal state (k,0), k£ < B — 1, and define the epoch with respect to
that state. We note that for all choices of £ < B — 1, there can possibly be an infinite
number of updates in a single epoch. In the sequel, we continue our analysis with state
(0, 0) as the renewal state and define the epochs with respect to it, i.e., an epoch from
now onward denotes the time between two consecutive visits to state (0, 0). We note,
however, that any other renewal state choice yields the same results with equivalent
complexity. We use the notation R(x,y) and L(x,y) to denote the area under the age
curve in a given epoch and its length, respectively, as a function of the constants

x 2 [x1,x2,...,xp_1] and the functions y £ V1,72, - - .,yg]- Using the strong law of
large numbers of renewal processes [56], problem (8.5) now reduces to:
E[R
o(B) = min [R(x,p)]

xy  E[L(x,p)]
st. x>0, 1<k<B-1
w()=t, 1<k=<B (8.13)

We now introduce the auxiliary parameterized problem:
ps() =min E[R(x,y)] = AE[L(x,p)]
s.t. constraints of (8.13) (8.14)

and solve for the unique A* such that pz(1*) = 0. Observe that A* = p(B). One main
goal now is to express E[R(x,y)] and E [L(x,y)] explicitly in terms of x and y in
order to proceed with the optimization.

For convenience, we remove the dependency on {x, y} in the sequel. Observe that
starting from state (0, 0), the system can go to any other state (,0),0 <j < B— 1, by
the next status update, i.e., after only one update, each with some probability. Then,
from state (j,0), 1 <j < B — 1, the system can only go to one of the following states
by the next update: {(j — 1,0), (j,0),...,(B — 1,0)}, each with some probability.
We denote by p;; the probability of going from state (i, 0) to state (j,0) after one
update. Clearly, p;; = 0 for j <i — 2. We also denote by r;; and ¢;; the area under
the age curve and the time taken when the system goes from state (i, 0) to state (7, 0)
in one update, respectively. Finally, since the goal is to compute the area under the
age curve in an epoch together with the epoch length, we define R; and L; as the
area under the age curve and the time taken to go from state (j,0) back to (0,0)
again (in, however, many number of updates). See Figure 8.3 where we depict the
relationships between the previous variables/notation in the form of a tree graph. The
graph basically represents the transitions between different system states (nodes on
the graph) after only one update, which occur with probabilities indicated on the
arrows in the graph that connects the nodes. We emphasize that, for instance, state
(0,0) in the first column of the graph is no different than state (0, 0) in the second
column, and that the arrow connecting them merely represents a loop connecting a
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Figure 8.3 Transitions among system states after only one update. Each transition
Srom state (i, 0) to (j, 0) occurs with probability p;; as indicated on the
tree branches

state to itself; we chose to expand such loop horizontally for clarity of presentation.
From the graph, one can write the following equations:

B—1

E[R] = pooE [7’0,0] + X; Do, (IE [Vo,;] +E [R/]) , (8.15)
=
B—1

E[L] = pooE [€o0] + Zl po; (E[€o;] +E[L]) . (8.16)
=

Through meticulously involved analysis, the previous variables can be expressed
explicitly in terms of x and y. We refer the reader to [44] for the fine details. We are
now ready to find the optimal x* and y*.
8.2.3.2 Multi threshold policy

One of the main findings of [44] is showing that the optimal status update policy has a
multi threshold structure, in the sense that y; is an x;-threshold policy, 1 <j < B — 1,
and that y; is a A-threshold policy. Moreover, the optimal thresholds x;s are all found,
in closed-form, in terms of A. For instance, for B = 4, this allows for expressing (see
the derivation details in [44]):

1 3 1
ps()) = ek(gx3 + EAZ + 61 + 10) - EAZ — (= A) = —A)—(x3—A)

1 1
—(x1 +2)e™ — <§x§ + 2x; + 3) e — (gxg +x3 + 3% + 4)6_"3,
(8.17)

where

1
X3 = 10g<m> , (818)
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Figure 8.4 Comparison of long-term average age versus battery size under
optimal and best effort update policies

1 1 1
X = —log((k + De ™ + E)Lz + A —|—<e_A — Ekz + l>log<e_A — 5)3)),
(8.19)

12 -\ —X 1 —X
x; = —log E)» +Ar+1)e —xz(e 2+1)—x3 §x3e S—1)).

(8.20)
Solving the previous for p4(1*) = 0, we get that A* &~ 0.6023, with the remaining
thresholds x5 ~ 1.005, xJ ~ 1.243, and x] ~ 1.636.

We note that the thresholds are monotonically decreasing: xj > x5 > xj > A%,
which has an intuitive explanation; it basically says that the sensor is less eager to
send an update when it has relatively lower energy available in its battery than it is
when it has relatively higher energy available.

To show the gain achieved with respect to another baseline, Figure 8.4 shows the
gap between the optimal multi threshold policy and the BU updating policy (which
is optimal for B = 00).

8.3 Status updating over erasure channels

In this section, we describe the results reported in [36,47,48] in more detail. The
system model is very similar to that described in Section 8.2, yet with the main differ-
ence in that status updates are subject to erasures. Specifically, the communication
channel between the sensor and the destination is modeled as a time-invariant noisy
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Figure 8.5 System model for status updating over erasure channels

channel, in which each update transmission gets erased with probability g € (0, 1),
independently from other transmissions, see Figure 8.5. We differentiate between two
main cases in our treatment:

1. No updating feedback. In this case, the sensor has no knowledge of whether an
update is successful. It can only use the up-to-date energy arrival profile and
status updating decisions as well as the statistical information, such as the energy
arrival rate and the erasure probability of the channel, to decide the upcoming
updating time points.

2.  Perfect updating feedback. In this case, the sensor receives an instantaneous,
error-free feedback when an update is transmitted. Therefore, it can decide when
to update next based on the feedback information, along with the information it
uses for the no feedback case.

Since each update transmission is not necessarily successful, we denote by {/;}
the set of update transmission times and by {s;} the times of the successful ones of
which. Therefore, in general, {s;} < {/;}. The energy causality constraint in (8.2) now
becomes:

E(I7) =1, Vi (8:21)
and the battery evolution in (8.3) becomes:
&(I7) =min{& (I_,) — 1+ & (x;),B}, Vi, (8.22)

where x; £ I, — I,_; now denotes the inter-update attempt delay. We assume sy = [y =
0 without loss of generality, i.e., the system starts with fresh information at time 0.
We denote by .%,, the set of feasible transmission times {/;} described by (8.2) and
(8.3) in addition to an empty battery at time 0, i.e., £(0) = 0.5
Letusdenote by y; £ s; — s;_, the successful inter-update delay and by n(¢) denote
the number of updates that are successfully received by time ¢. We are interested in the
average Aol given by the area under the age evolution curve (see Figure 8.6), which
is given by
1 n(t) , 1 5
=3 Z]: Vit3 (t = su)” - (8.23)

$In [36], it is assumed that &'(0) = 1 to simplify the analysis. For &'(0) = 0, the same results would follow
after slightly modifying the proofs. We set &'(0) = 0 for consistency of the chapter’s framework.
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Figure 8.6 Age evolution versus time with n(t) = 3 successful updates. Circles
denote failed attempts. In this example, the first update is successfully
received after three update attempts

The goal is to choose a set of feasible transmission times {/;, >, /5, . . . } € .#,, orequiv-
alently {x{,x,,x3, ...}, such that the long-term average Aol is minimized. Therefore,
the goal is to characterize the optimal long-term average Aol, as a function of the
battery size, p;'(B) by solving:

py (B) £ min lim sup %}E [7(T)], (8.24)

{x[}eﬂq T—o0

where the superscript w = noFB in the case without updating feedback, and w = wFB
in the case with perfect feedback.

In the following subsections, we present the solution of (8.24) for B = oo fol-
lowed by the special case of B = 1, in view of the previous two feedback availability
cases.

8.3.1 The case B = o0

For the case B = oo, without updating feedback, [36] shows that the BU updating
policy, as per Definition 8.1, is optimal, while for the scenario with perfect feed-
back, [36] proposes a BU with retransmission (BUR) updating policy and shows its
optimality. Optimality in both the cases is shown by first evaluating a lower bound on
the long-term average Aol and then showing that it can be achieved by BU updating.

Although the proposed policies are quite intuitive, their optimality is quite chal-
lenging to establish, compared with the scenario of Section 8.2.1. This is because both
battery outages and updating erasures will affect the Aol under the proposed policies.
While the impact of either of those two events can be analyzed relatively easily when
isolated, it becomes extremely challenging when both of them are involved. Moreover,
when there exists perfect updating feedback to the sensor, updating erasures under the
BUR will lead to subsequent retransmissions and energy consumption, thus affecting
the battery outage probability in the future. Such complicated interplay between those
two events makes the problem even more complicated.

In order to overcome such difficulties, [36] proposes a novel virtual-policy-based
approach. Specifically, for both BU and BUR updating policies, a sequence of virtual
policies is constructed, which are strictly suboptimal to their original counterparts,
and eventually converge to them. Leveraging the virtual policies, the effects of battery
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outages and updating errors could be decoupled in the performance analysis. Finally,
the long-term average Aol under the virtual policies is shown to converge to the
corresponding lower bound, which implies the optimality of the original policy.

We elaborate on the earlier over the next two subsections.

8.3.1.1 Updating without feedback

A technical condition is introduced to facilitate the following analysis, which basically
states that the focus is on optimal status update policies that have inter-update attempt
times that have bounded first moment. Policies abiding by this condition are termed
bounded updating policies in [36]. Focus on such policies arises from the fact that we
are interested in policies that achieve finite long-term average Aol. Now the following
lower bound holds [36]:

P (o0) 2 5 (825)

I-9
The previous can be shown by replacing the energy causality constraint by its long-
term average, as in the approach used to show the lower bound in (8.6).
To achieve the abovementioned bound, let us introduce the next virtual policy.

Definition 8.2 (BU-ERy, [36]). The sensor performs BU updating until the battery
level after sending an update becomes zero for the first time or until time T, , in which
case the sensor depletes its battery. After that, when the battery level becomes higher
than or equal to 1 after a successful update for the first time, the sensor reduces the
battery level to 1 and then repeats the process.

Observe that as 7y — oo, the BU-ER, updating policy becomes a BU updating
policy. The next result now holds the following.

Lemma 8.2 ([36]). for any Ty > 0, BU-ERy, updating policy is suboptimal to the
BU updating policy.

Proof. Note that BU-ERy, updating is identical to BU updating except the energy
removal at time 7, and when &(s;") becomes higher than 1. Given the same energy
harvesting sample path, the battery level under BU is always higher than that under
BU-ERy,. Thus, BU-ERy, incurs more infeasible status updates. With the same update
erasure pattern, the instantaneous Aol under BU-ERy, updating is always greater
than or equal to that under BU updating sample path wisely. Thus, the expected time-
average Aol under BU-ERy, is greater than or equal to that under BU, which proves
the lemma. O

One can now show the following.

Theorem 8.4 ([36]). As Ty — oo, the long-term average Aol under the BU-ERy,
I+g

updating policy is upper bounded by g
Proof'sketch. Observe that the BU-ER 7, updating policy is a renewal-type policy, i.e.,
the states of the system evolve according to a renewal process. To see this, we note

that the updating process under BU-ER 7, works in cycles, where each cycle begins



Age minimization in energy harvesting communications 219

100 - Qo

ras B /
T, . T FT,
— N — _—
Stage 2

o Update success
% Update failure
m Battery outage

N

P =

;4
~

' _ [}
' T] + T2 Sty '

Figure 8.7 An illustration of the BU-ERy, updating policy and the battery level
right after each updating epoch. Aol will be reset to zero at the
successful updating points

with the initial battery level to be 1 and the Aol to be 0, followed by i.i.d. battery
and Aol evolution processes. Therefore, to analyze the expected long-term average
Aol, it suffices to analyze the expected average Aol over one renewal interval. In the
following, we will focus on the first renewal interval and show that the corresponding
expected average Aol converges to the lower bound in (8.25) as T} increases. As
illustrated in Figure 8.7, the renewal interval consists of two stages. The first stage
starts at time zero and ends until the battery becomes empty for the first time or until
time 7,". We denote 7) as the end of the first stage. We note that all scheduled status
updating points over (0, T} ] are feasible. The second stage starts at 77 and ends when
the battery level becomes higher than or equal to 1 after a successful update for the
first time after 7;. We denote the duration of the second stage as 75. The second stage
thus ends at 7, + T>.

By renewal theory properties of BU-ERy; policy, the result can be shown. We
refer the reader to [36] for more details. O

By the previous theorem, it is readily shown that the BU updating policy achieves
the lower bound in (8.25) and is therefore optimal, since the BU-ER 7, updating policy
becomes a BU updating policy as Ty — oo.

In Figure 8.8, some numerical evaluations of the virtual policies BU-ERy, for
different value of T are presented for ¢ = 0.4. For comparison, a greedy updating
policy is also evaluated, in which the sensor updates instantly when one unit of energy
arrives. From the figure, greedy updating has the highest Aol and never approaches
the lower bound. On the other hand, the